-
Notifications
You must be signed in to change notification settings - Fork 391
/
Copy pathunpooling-nhwc.c
231 lines (199 loc) · 8.37 KB
/
unpooling-nhwc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/operator.h>
#include <xnnpack/operator-utils.h>
#include <xnnpack/log.h>
#include <xnnpack/common.h>
#include <xnnpack/math.h>
#include <xnnpack/params.h>
#include <xnnpack/indirection.h>
enum xnn_status xnn_create_unpooling2d_nhwc_x32(
uint32_t input_padding_top,
uint32_t input_padding_right,
uint32_t input_padding_bottom,
uint32_t input_padding_left,
uint32_t pooling_height,
uint32_t pooling_width,
size_t channels,
size_t input_pixel_stride,
size_t output_pixel_stride,
uint32_t flags,
xnn_operator_t* unpooling_op_out)
{
xnn_operator_t unpooling_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to create %s operator: XNNPACK is not initialized",
xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32));
goto error;
}
status = xnn_status_invalid_parameter;
const uint32_t pooling_size = pooling_height * pooling_width;
if (pooling_size == 0) {
xnn_log_error(
"failed to create %s operator with %" PRIu32 "x%" PRIu32 " pooling size: "
"pooling size dimensions must be non-zero",
xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32), pooling_width, pooling_height);
goto error;
}
if (pooling_size == 1) {
xnn_log_error(
"failed to create %s operator with 1 pooling element: 1x1 unpooling is meaningless",
xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32));
goto error;
}
if (channels == 0) {
xnn_log_error(
"failed to create %s operator with %zu channels: number of channels must be non-zero",
xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32), channels);
goto error;
}
if (input_pixel_stride < channels) {
xnn_log_error(
"failed to create %s operator with input pixel stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32), input_pixel_stride, channels);
goto error;
}
if (output_pixel_stride < channels) {
xnn_log_error(
"failed to create %s operator with output pixel stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32), output_pixel_stride, channels);
goto error;
}
status = xnn_status_out_of_memory;
unpooling_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (unpooling_op == NULL) {
xnn_log_error(
"failed to allocate %zu bytes for %s operator descriptor",
sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32));
goto error;
}
unpooling_op->padding_top = input_padding_top;
unpooling_op->padding_right = input_padding_right;
unpooling_op->padding_bottom = input_padding_bottom;
unpooling_op->padding_left = input_padding_left;
unpooling_op->kernel_height = pooling_height;
unpooling_op->kernel_width = pooling_width;
unpooling_op->channels = channels;
unpooling_op->input_pixel_stride = input_pixel_stride;
unpooling_op->output_pixel_stride = output_pixel_stride;
unpooling_op->type = xnn_operator_type_unpooling_nhwc_x32;
unpooling_op->flags = flags;
unpooling_op->state = xnn_run_state_invalid;
*unpooling_op_out = unpooling_op;
return xnn_status_success;
error:
xnn_delete_operator(unpooling_op);
return status;
}
enum xnn_status xnn_setup_unpooling2d_nhwc_x32(
xnn_operator_t unpooling_op,
size_t batch_size,
size_t input_height,
size_t input_width,
const void* input,
const uint32_t* index,
void* output,
pthreadpool_t threadpool)
{
if (unpooling_op->type != xnn_operator_type_unpooling_nhwc_x32) {
xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32),
xnn_operator_type_to_string(unpooling_op->type));
return xnn_status_invalid_parameter;
}
unpooling_op->state = xnn_run_state_invalid;
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32));
return xnn_status_uninitialized;
}
if (input_width == 0 || input_height == 0) {
xnn_log_error(
"failed to setup %s operator with %zux%zu input: input dimensions must be non-zero",
xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32), input_width, input_height);
return xnn_status_invalid_parameter;
}
if (batch_size == 0) {
unpooling_op->state = xnn_run_state_skip;
return xnn_status_success;
}
unpooling_op->batch_size = batch_size;
unpooling_op->input_height = input_height;
unpooling_op->input_width = input_width;
unpooling_op->input = input;
unpooling_op->output_height = xnn_compute_unpooling_output_dimension(
input_height, unpooling_op->padding_top + unpooling_op->padding_bottom,
unpooling_op->kernel_height);
unpooling_op->output_width = xnn_compute_unpooling_output_dimension(
input_width, unpooling_op->padding_left + unpooling_op->padding_right,
unpooling_op->kernel_width);
unpooling_op->output = output;
size_t valid_batch_size = 0;
if (output == unpooling_op->last_output &&
input_height == unpooling_op->last_input_height &&
input_width == unpooling_op->last_input_width)
{
valid_batch_size = unpooling_op->valid_batch_size;
if (batch_size <= valid_batch_size) {
unpooling_op->compute.range[0] = batch_size * input_height;
unpooling_op->state = xnn_run_state_ready;
return xnn_status_success;
}
}
const size_t pooling_height = unpooling_op->kernel_height;
const size_t pooling_width = unpooling_op->kernel_width;
const size_t pooling_size = pooling_height * pooling_width;
const size_t indirection_buffer_size = sizeof(void*) * (batch_size * input_height * input_width * pooling_size);
const void** indirection_buffer = (const void**) xnn_reallocate_memory(unpooling_op->indirection_buffer, indirection_buffer_size);
if (indirection_buffer == NULL) {
xnn_log_error(
"failed to allocate %zu bytes for %s operator indirection buffer",
indirection_buffer_size, xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32));
return xnn_status_out_of_memory;
}
unpooling_op->indirection_buffer = indirection_buffer;
xnn_log_debug("allocated %zu bytes for indirection buffer in %s operator",
indirection_buffer_size, xnn_operator_type_to_string(xnn_operator_type_unpooling_nhwc_x32));
xnn_indirection_init_unpool2d(unpooling_op, valid_batch_size, 2 /* log2(sizeof(type32)) */);
const size_t channels = unpooling_op->channels;
const size_t input_pixel_stride_in_bytes = unpooling_op->input_pixel_stride * sizeof(float);
unpooling_op->context.unpooling = (struct unpooling_context) {
.input = input,
.input_height_stride = input_width * input_pixel_stride_in_bytes,
.input_width_stride = input_pixel_stride_in_bytes,
.index = index,
.index_height_stride = input_width * channels * sizeof(uint32_t),
.index_width_stride = channels * sizeof(uint32_t),
.indirect_output = indirection_buffer,
.indirect_output_height_stride = input_width * pooling_size * sizeof(void*),
.indirect_output_width_stride = pooling_size * sizeof(void*),
.pooling_size = pooling_size,
.channels = channels,
.fill_value = 0,
.ukernel = xnn_params.x32.unpool,
};
unpooling_op->compute.type = xnn_parallelization_type_2d;
unpooling_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_unpooling;
unpooling_op->compute.range[0] = batch_size * input_height;
unpooling_op->compute.range[1] = input_width;
unpooling_op->state = xnn_run_state_ready;
unpooling_op->last_output = output;
unpooling_op->last_input_height = input_height;
unpooling_op->last_input_width = input_width;
unpooling_op->valid_batch_size = max(valid_batch_size, batch_size);
return xnn_status_success;
}