-
Notifications
You must be signed in to change notification settings - Fork 391
/
Copy pathslice-nd.c
357 lines (322 loc) · 11.6 KB
/
slice-nd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/log.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/normalization.h>
#include <xnnpack/operator.h>
#include <xnnpack/params.h>
static void init_slice_nd(
uint32_t flags,
enum xnn_operator_type operator_type,
xnn_operator_t slice_op)
{
slice_op->type = operator_type;
slice_op->flags = flags;
slice_op->state = xnn_run_state_invalid;
}
static enum xnn_status create_slice_nd(
uint32_t flags,
enum xnn_operator_type operator_type,
xnn_operator_t* slice_op_out)
{
xnn_operator_t slice_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error(
"failed to create %s operator: XNNPACK is not initialized",
xnn_operator_type_to_string(operator_type));
goto error;
}
status = xnn_status_out_of_memory;
slice_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (slice_op == NULL) {
xnn_log_error(
"failed to allocate %zu bytes for %s operator descriptor",
sizeof(struct xnn_operator), xnn_operator_type_to_string(operator_type));
goto error;
}
init_slice_nd(
flags,
operator_type,
slice_op);
*slice_op_out = slice_op;
return xnn_status_success;
error:
xnn_delete_operator(slice_op);
return status;
}
enum xnn_status xnn_create_slice_nd_x8(
uint32_t flags,
xnn_operator_t *slice_op_out)
{
return create_slice_nd(flags, xnn_operator_type_slice_nd_x8, slice_op_out);
}
enum xnn_status xnn_create_slice_nd_x16(
uint32_t flags,
xnn_operator_t *slice_op_out)
{
return create_slice_nd(flags, xnn_operator_type_slice_nd_x16, slice_op_out);
}
enum xnn_status xnn_create_slice_nd_x32(
uint32_t flags,
xnn_operator_t *slice_op_out)
{
return create_slice_nd(flags, xnn_operator_type_slice_nd_x32, slice_op_out);
}
static enum xnn_status setup_slice_nd(
xnn_operator_t slice_op,
enum xnn_operator_type expected_operator_type,
size_t num_dims,
const size_t* input_shape,
const size_t* offsets,
const size_t* sizes,
const void* input,
void* output,
uint32_t log2_element_size,
size_t num_threads)
{
if (slice_op->type != expected_operator_type) {
xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
xnn_operator_type_to_string(expected_operator_type),
xnn_operator_type_to_string(slice_op->type));
return xnn_status_invalid_parameter;
}
slice_op->state = xnn_run_state_invalid;
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
xnn_operator_type_to_string(slice_op->type));
return xnn_status_uninitialized;
}
if (num_dims == 0) {
xnn_log_error(
"failed to create %s operator with %zu num_dims: num_dims must be non-zero",
xnn_operator_type_to_string(slice_op->type), num_dims);
return xnn_status_unsupported_parameter;
}
if (num_dims > XNN_MAX_TENSOR_DIMS) {
xnn_log_error(
"failed to create %s operator with %zu num_dims: num_dims must be <= %d",
xnn_operator_type_to_string(slice_op->type), num_dims, XNN_MAX_TENSOR_DIMS);
return xnn_status_unsupported_parameter;
}
for (size_t i = 0; i < num_dims; i++) {
if (input_shape[i] == 0) {
xnn_log_error(
"failed to setup %s operator: input shape dimension #%zu is zero",
xnn_operator_type_to_string(slice_op->type), i);
return xnn_status_invalid_parameter;
}
if (offsets[i] >= input_shape[i]) {
xnn_log_error(
"failed to create %s operator with %zu offsets[%zu]: 0 <= offset < %zu",
xnn_operator_type_to_string(slice_op->type), offsets[i], i, input_shape[i]);
return xnn_status_unsupported_parameter;
}
if (sizes[i] == 0 || sizes[i] > input_shape[i]) {
xnn_log_error(
"failed to create %s operator with %zu sizes[%zu]: 0 < size <= %zu",
xnn_operator_type_to_string(slice_op->type), sizes[i], i, input_shape[i]);
return xnn_status_unsupported_parameter;
}
if (offsets[i] + sizes[i] > input_shape[i]) {
xnn_log_error(
"failed to create %s operator with %zu offsets[%zu] and %zu sizes[%zu]: offset + size <= %zu",
xnn_operator_type_to_string(slice_op->type), offsets[i], i, sizes[i], i, input_shape[i]);
return xnn_status_unsupported_parameter;
}
}
size_t normalized_offsets[XNN_MAX_TENSOR_DIMS];
size_t normalized_input_shape[XNN_MAX_TENSOR_DIMS];
size_t normalized_output_shape[XNN_MAX_TENSOR_DIMS];
size_t num_normalized_dims;
xnn_normalize_slice(
num_dims,
offsets,
sizes,
input_shape,
normalized_offsets,
normalized_input_shape,
normalized_output_shape,
&num_normalized_dims);
assert(num_normalized_dims <= XNN_MAX_TENSOR_DIMS);
slice_op->context.slice = (struct slice_context) {
.input = input,
.output = output,
.ukernel = xnn_params.xx.copy,
};
// TODO(b/246969669): move strides calculation into normalization to simplify code here.
for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
slice_op->context.slice.offsets[i] = normalized_offsets[XNN_MAX_TENSOR_DIMS - 1 - i];
}
slice_op->context.slice.offsets[0] <<= log2_element_size;
size_t input_stride = normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1];
size_t output_stride = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1];
for (size_t i = 1; i < XNN_MAX_TENSOR_DIMS; i++) {
slice_op->context.slice.input_stride[i - 1] = input_stride << log2_element_size;
slice_op->context.slice.output_stride[i - 1] = output_stride << log2_element_size;
input_stride *= normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1 - i];
output_stride *= normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1 - i];
}
slice_op->context.slice.contiguous_size = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1] << log2_element_size;
slice_op->context.slice.input =
(void*) ((uintptr_t) slice_op->context.slice.input + slice_op->context.slice.offsets[0]);
// Pre-calculate offsets into input pointer.
for (size_t i = 1; i < num_normalized_dims; i++) {
slice_op->context.slice.input =
(void*) ((uintptr_t) slice_op->context.slice.input +
slice_op->context.slice.offsets[i] * slice_op->context.slice.input_stride[i-1]);
}
switch (num_normalized_dims) {
case 1:
case 2:
slice_op->compute.type = xnn_parallelization_type_1d;
slice_op->compute.task_1d = (pthreadpool_task_1d_t)xnn_compute_slice_1d;
slice_op->compute.range[0] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 2];
break;
case 3:
slice_op->compute.type = xnn_parallelization_type_2d;
slice_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_slice_2d;
slice_op->compute.range[0] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 3];
slice_op->compute.range[1] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 2];
break;
case 4:
slice_op->compute.type = xnn_parallelization_type_3d;
slice_op->compute.task_3d = (pthreadpool_task_3d_t) xnn_compute_slice_3d;
slice_op->compute.range[0] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 4];
slice_op->compute.range[1] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 3];
slice_op->compute.range[2] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 2];
break;
case 5:
slice_op->compute.type = xnn_parallelization_type_4d;
slice_op->compute.task_4d = (pthreadpool_task_4d_t) xnn_compute_slice_4d;
slice_op->compute.range[0] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 5];
slice_op->compute.range[1] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 4];
slice_op->compute.range[2] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 3];
slice_op->compute.range[3] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 2];
break;
case 6:
// TODO(b/246969669): write normalized_output_shape in reverse order to simplify code here.
slice_op->compute.type = xnn_parallelization_type_5d;
slice_op->compute.task_5d = (pthreadpool_task_5d_t) xnn_compute_slice_5d;
slice_op->compute.range[0] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 6];
slice_op->compute.range[1] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 5];
slice_op->compute.range[2] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 4];
slice_op->compute.range[3] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 3];
slice_op->compute.range[4] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 2];
break;
default:
XNN_UNREACHABLE;
}
slice_op->state = xnn_run_state_ready;
return xnn_status_success;
}
enum xnn_status xnn_setup_slice_nd_x8(
xnn_operator_t slice_op,
size_t num_dims,
const size_t* input_shape,
const size_t* offsets,
const size_t* sizes,
const void* input,
void* output,
pthreadpool_t threadpool)
{
return setup_slice_nd(
slice_op, xnn_operator_type_slice_nd_x8,
num_dims, input_shape, offsets, sizes,
input, output, 0 /* log2(element size) */,
pthreadpool_get_threads_count(threadpool));
}
enum xnn_status xnn_setup_slice_nd_x16(
xnn_operator_t slice_op,
size_t num_dims,
const size_t* input_shape,
const size_t* offsets,
const size_t* sizes,
const void* input,
void* output,
pthreadpool_t threadpool)
{
return setup_slice_nd(
slice_op, xnn_operator_type_slice_nd_x16,
num_dims, input_shape, offsets, sizes,
input, output, 1 /* log2(element size) */,
pthreadpool_get_threads_count(threadpool));
}
enum xnn_status xnn_setup_slice_nd_x32(
xnn_operator_t slice_op,
size_t num_dims,
const size_t* input_shape,
const size_t* offsets,
const size_t* sizes,
const void* input,
void* output,
pthreadpool_t threadpool)
{
return setup_slice_nd(
slice_op, xnn_operator_type_slice_nd_x32,
num_dims, input_shape, offsets, sizes,
input, output, 2 /* log2(element size) */,
pthreadpool_get_threads_count(threadpool));
}
static enum xnn_status xnn_run_slice_nd(
enum xnn_operator_type operator_type,
size_t num_dims,
const size_t* input_shape,
const size_t* offsets,
const size_t* sizes,
const void* input,
void* output,
uint32_t log2_element_size,
uint32_t flags,
pthreadpool_t threadpool)
{
struct xnn_operator slice_op;
memset(&slice_op, 0, sizeof(slice_op));
init_slice_nd(
flags,
operator_type,
&slice_op);
const enum xnn_status status = setup_slice_nd(
&slice_op, operator_type,
num_dims, input_shape, offsets, sizes,
input, output,
log2_element_size,
pthreadpool_get_threads_count(threadpool));
if (status != xnn_status_success){
return status;
}
return xnn_run_operator(&slice_op, threadpool);
}
enum xnn_status xnn_run_slice_nd_x32(
size_t num_dims,
const size_t* input_shape,
const size_t* offsets,
const size_t* sizes,
const void* input,
void* output,
uint32_t flags,
pthreadpool_t threadpool)
{
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error(
"failed to create %s operator: XNNPACK is not initialized",
xnn_operator_type_to_string(xnn_operator_type_slice_nd_x32));
return xnn_status_uninitialized;
}
return xnn_run_slice_nd(
xnn_operator_type_slice_nd_x32,
num_dims, input_shape, offsets, sizes,
input, output,
2 /* log2(element size) */,
flags,
threadpool);
}