-
Notifications
You must be signed in to change notification settings - Fork 391
/
Copy pathglobal-average-pooling-ncw.c
292 lines (247 loc) · 10.8 KB
/
global-average-pooling-ncw.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <fp16.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/log.h>
#include <xnnpack/operator.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/params.h>
static enum xnn_status create_global_average_pooling_ncw(
size_t channels,
uint32_t flags,
uint32_t log2_element_size,
size_t params_offset,
const void* params,
size_t params_size,
uint32_t datatype_init_flags,
enum xnn_operator_type operator_type,
xnn_operator_t* global_average_pooling_op_out)
{
xnn_operator_t global_average_pooling_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to create %s operator: XNNPACK is not initialized",
xnn_operator_type_to_string(operator_type));
goto error;
}
status = xnn_status_unsupported_hardware;
if ((xnn_params.init_flags & datatype_init_flags) != datatype_init_flags) {
xnn_log_error("failed to create %s operator: operations on data type are not supported",
xnn_operator_type_to_string(operator_type));
goto error;
}
status = xnn_status_invalid_parameter;
if (channels == 0) {
xnn_log_error(
"failed to create %s operator with %zu channels: number of channels must be non-zero",
xnn_operator_type_to_string(operator_type), channels);
goto error;
}
status = xnn_status_out_of_memory;
global_average_pooling_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (global_average_pooling_op == NULL) {
xnn_log_error(
"failed to allocate %zu bytes for %s operator descriptor",
sizeof(struct xnn_operator), xnn_operator_type_to_string(operator_type));
goto error;
}
global_average_pooling_op->channels = channels;
memcpy((void*) ((uintptr_t) global_average_pooling_op + params_offset), params, params_size);
global_average_pooling_op->type = operator_type;
global_average_pooling_op->flags = flags;
global_average_pooling_op->state = xnn_run_state_invalid;
*global_average_pooling_op_out = global_average_pooling_op;
return xnn_status_success;
error:
xnn_delete_operator(global_average_pooling_op);
return status;
}
enum xnn_status xnn_create_global_average_pooling_ncw_f16(
size_t channels,
float output_min,
float output_max,
uint32_t flags,
xnn_operator_t* global_average_pooling_op_out)
{
if (isnan(output_min)) {
xnn_log_error(
"failed to create %s operator with NaN output lower bound: lower bound must be non-NaN",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f16));
return xnn_status_invalid_parameter;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to create %s operator with NaN output upper bound: upper bound must be non-NaN",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f16));
return xnn_status_invalid_parameter;
}
if (fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min)) >= fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_max))) {
xnn_log_error(
"failed to create %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f16),
fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min)),
fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_max)));
return xnn_status_invalid_parameter;
}
union xnn_f16_gavgpool_params params;
if (xnn_params.f16.gavgpool_cw.init.f16 != NULL) {
xnn_params.f16.gavgpool_cw.init.f16(¶ms, 0 /* scale */, fp16_ieee_from_fp32_value(output_min), fp16_ieee_from_fp32_value(output_max), 0);
}
return create_global_average_pooling_ncw(
channels, flags,
1 /* log2(sizeof(uint16_t)) */,
offsetof(struct xnn_operator, params.f16_gavgpool),
¶ms, sizeof(params),
XNN_INIT_FLAG_F16 | XNN_INIT_FLAG_F16_NATIVE,
xnn_operator_type_global_average_pooling_ncw_f16,
global_average_pooling_op_out);
}
enum xnn_status xnn_create_global_average_pooling_ncw_f32(
size_t channels,
float output_min,
float output_max,
uint32_t flags,
xnn_operator_t* global_average_pooling_op_out)
{
if (isnan(output_min)) {
xnn_log_error(
"failed to create %s operator with NaN output lower bound: lower bound must be non-NaN",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f32));
return xnn_status_invalid_parameter;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to create %s operator with NaN output upper bound: upper bound must be non-NaN",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f32));
return xnn_status_invalid_parameter;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to create %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f32), output_min, output_max);
return xnn_status_invalid_parameter;
}
union xnn_f32_gavgpool_params params;
xnn_init_f32_gavgpool_params(¶ms, nanf(""), output_min, output_max, 0);
return create_global_average_pooling_ncw(
channels, flags,
2 /* log2(sizeof(float)) */,
offsetof(struct xnn_operator, params.f32_gavgpool),
¶ms, sizeof(params),
XNN_INIT_FLAG_F32,
xnn_operator_type_global_average_pooling_ncw_f32,
global_average_pooling_op_out);
}
enum xnn_status xnn_setup_global_average_pooling_ncw_f32(
xnn_operator_t global_average_pooling_op,
size_t batch_size,
size_t width,
const float* input,
float* output,
pthreadpool_t threadpool)
{
if (global_average_pooling_op->type != xnn_operator_type_global_average_pooling_ncw_f32) {
xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f32),
xnn_operator_type_to_string(global_average_pooling_op->type));
return xnn_status_invalid_parameter;
}
global_average_pooling_op->state = xnn_run_state_invalid;
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f32));
return xnn_status_uninitialized;
}
if (width == 0) {
xnn_log_error(
"failed to setup %s operator with width %zu: width must be non-zero",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f32), width);
return xnn_status_invalid_parameter;
}
if (batch_size == 0) {
global_average_pooling_op->state = xnn_run_state_skip;
return xnn_status_success;
}
xnn_update_f32_gavgpool_params(&global_average_pooling_op->params.f32_gavgpool,
1.0f / (float) width, width);
global_average_pooling_op->context.global_average_pooling_ncw = (struct global_average_pooling_ncw_context) {
.input_elements = width * sizeof(float),
.input = input,
.input_channel_stride = width * sizeof(float),
.input_batch_stride = global_average_pooling_op->channels * width * sizeof(float),
.output = output,
.output_channel_stride = sizeof(float),
.output_batch_stride = global_average_pooling_op->channels * sizeof(float),
.ukernel = xnn_params.f32.gavgpool_cw.ukernel,
.params.f32 = global_average_pooling_op->params.f32_gavgpool,
};
global_average_pooling_op->compute.type = xnn_parallelization_type_2d_tile_1d;
global_average_pooling_op->compute.task_2d_tile_1d =
(pthreadpool_task_2d_tile_1d_t) xnn_compute_global_average_pooling_ncw;
global_average_pooling_op->compute.range[0] = batch_size;
global_average_pooling_op->compute.range[1] = global_average_pooling_op->channels;
global_average_pooling_op->compute.tile[0] = global_average_pooling_op->channels; //xnn_params.f32.gavgpool_cw.channel_tile;
global_average_pooling_op->state = xnn_run_state_ready;
return xnn_status_success;
}
enum xnn_status xnn_setup_global_average_pooling_ncw_f16(
xnn_operator_t global_average_pooling_op,
size_t batch_size,
size_t width,
const void* input,
void* output,
pthreadpool_t threadpool)
{
if (global_average_pooling_op->type != xnn_operator_type_global_average_pooling_ncw_f16) {
xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f16),
xnn_operator_type_to_string(global_average_pooling_op->type));
return xnn_status_invalid_parameter;
}
global_average_pooling_op->state = xnn_run_state_invalid;
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f16));
return xnn_status_uninitialized;
}
if (width == 0) {
xnn_log_error(
"failed to setup %s operator with width %zu: width must be non-zero",
xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f16), width);
return xnn_status_invalid_parameter;
}
if (batch_size == 0) {
global_average_pooling_op->state = xnn_run_state_skip;
return xnn_status_success;
}
if (xnn_params.f16.gavgpool_cw.update.f16 != NULL) {
xnn_params.f16.gavgpool_cw.update.f16(&global_average_pooling_op->params.f16_gavgpool, fp16_ieee_from_fp32_value(1.0f / (float) width), width);
}
global_average_pooling_op->context.global_average_pooling_ncw = (struct global_average_pooling_ncw_context) {
.input_elements = width * sizeof(uint16_t),
.input = input,
.input_channel_stride = width * sizeof(uint16_t),
.input_batch_stride = global_average_pooling_op->channels * width * sizeof(uint16_t),
.output = output,
.output_channel_stride = sizeof(uint16_t),
.output_batch_stride = global_average_pooling_op->channels * sizeof(uint16_t),
.ukernel = xnn_params.f16.gavgpool_cw.ukernel,
.params.f16 = global_average_pooling_op->params.f16_gavgpool,
};
global_average_pooling_op->compute.type = xnn_parallelization_type_2d_tile_1d;
global_average_pooling_op->compute.task_2d_tile_1d =
(pthreadpool_task_2d_tile_1d_t) xnn_compute_global_average_pooling_ncw;
global_average_pooling_op->compute.range[0] = batch_size;
global_average_pooling_op->compute.range[1] = global_average_pooling_op->channels;
global_average_pooling_op->compute.tile[0] = global_average_pooling_op->channels; //xnn_params.f16.gavgpool_cw.channel_tile;
global_average_pooling_op->state = xnn_run_state_ready;
return xnn_status_success;
}