-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathpredict_utils_test.py
84 lines (66 loc) · 2.54 KB
/
predict_utils_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
from absl.testing import parameterized
import bert_example
import predict_utils
import tagging_converter
import numpy as np
import tensorflow as tf
FLAGS = flags.FLAGS
class DummyPredictor(object):
def __init__(self, output_ids):
"""Initializes for a dummy predictor that always predicts `output_ids`."""
self._output_ids = output_ids
def __call__(self, example=None):
# Prepend and append IDs for the begin and the end token.
return {'pred': np.array([[0] + self._output_ids + [0]])}
class PredictUtilsTest(parameterized.TestCase):
def setUp(self):
super(PredictUtilsTest, self).setUp()
vocab_tokens = ['[CLS]', '[SEP]', '[PAD]', 'a', 'b', 'c', '##d', '##e']
vocab_file = os.path.join(FLAGS.test_tmpdir, 'vocab.txt')
with tf.io.gfile.GFile(vocab_file, 'w') as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens]))
self._label_map = {'KEEP': 0, 'DELETE': 1, 'KEEP|and': 2}
max_seq_length = 8
do_lower_case = False
converter = tagging_converter.TaggingConverter([])
self._builder = bert_example.BertExampleBuilder(
self._label_map, vocab_file, max_seq_length, do_lower_case, converter)
@parameterized.parameters(
{
'prediction_ids': [1, 0, 2],
'target': 'b and ade',
},
# When predictions are truncated, the missing tags should be set to KEEP.
{
'prediction_ids': [1, 0],
'target': 'b ade',
},
)
def test_predictions(self, prediction_ids, target):
sources = ['a b ade']
predictor = predict_utils.LaserTaggerPredictor(
DummyPredictor(prediction_ids), self._builder, self._label_map)
realized_prediction = predictor.predict(sources)
self.assertEqual(realized_prediction, target)
if __name__ == '__main__':
tf.test.main()