Skip to content

google-research/distilling-step-by-step

Repository files navigation

Distilling Step-by-Step!

Code for paper Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes

Environment Setup

  • Setup Conda environment:
conda create --name distill python=3.10.6 -y
conda activate distill
conda install -y pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install git+https://github.com/huggingface/transformers@v4.24.0 datasets sentencepiece protobuf==3.20.* tensorboardX
  • Extract datasets to datasets/:
unzip datasets.zip

Command Usages

Args usages

  • --from_pretrained: google/t5-v1_1-small, google/t5-v1_1-base, google/t5-v1_1-large, google/t5-v1_1-xxl
  • --dataset: esnli, anli1, cqa, svamp
  • --label_type:
    • --label_type gt: Use GT label for training
    • --label_type llm: Use LLM predicted label for training
  • --alpha: Task weight for multi-task training. Loss = alpha * label_prediction_loss + (1 - alpha) * rationale_generation_loss
    • --alpha 0.5: recommended
  • --batch_size: Batch size
  • --grad_steps: Gradient accumulation step
  • --max_input_length: Maximum input length
  • --eval_steps: How many steps to evaluate the model during training
  • --max_steps: Maximum steps for training
  • --run: Random seed to use
  • --model_type:
    • standard: Standard finetuning (--label_type gt) or distillation (--label_type llm)
    • task_prefix: Distilling step-by-step
  • --parallelize: Model parallelism

Example usages

  • Standard finetuning:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type standard --label_type gt --batch_size 64
  • Distilling step-by-step with GT label and PaLM rationale:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type task_prefix --label_type gt --llm palm --alpha 0.5 --batch_size 64
  • Standard distillation:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type standard --label_type llm --batch_size 64
  • Distilling step-by-step with PaLM label and PaLM rationale:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type task_prefix --label_type llm --llm palm --alpha 0.5 --batch_size 64

Cite

If you find this repository useful, please consider citing:

@article{hsieh2023distilling,
  title={Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes},
  author={Hsieh, Cheng-Yu and Li, Chun-Liang and Yeh, Chih-Kuan and Nakhost, Hootan and Fujii, Yasuhisa and Ratner, Alexander and Krishna, Ranjay and Lee, Chen-Yu and Pfister, Tomas},
  journal={arXiv preprint arXiv:2305.02301},
  year={2023}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages