Code for paper Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
- Setup Conda environment:
conda create --name distill python=3.10.6 -y
conda activate distill
conda install -y pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install git+https://github.com/huggingface/transformers@v4.24.0 datasets sentencepiece protobuf==3.20.* tensorboardX
- Extract datasets to
datasets/
:
unzip datasets.zip
--from_pretrained
:google/t5-v1_1-small
,google/t5-v1_1-base
,google/t5-v1_1-large
,google/t5-v1_1-xxl
--dataset
:esnli
,anli1
,cqa
,svamp
--label_type
:--label_type gt
: Use GT label for training--label_type llm
: Use LLM predicted label for training
--alpha
: Task weight for multi-task training. Loss = alpha * label_prediction_loss + (1 - alpha) * rationale_generation_loss--alpha 0.5
: recommended
--batch_size
: Batch size--grad_steps
: Gradient accumulation step--max_input_length
: Maximum input length--eval_steps
: How many steps to evaluate the model during training--max_steps
: Maximum steps for training--run
: Random seed to use--model_type
:standard
: Standard finetuning (--label_type gt
) or distillation (--label_type llm
)task_prefix
: Distilling step-by-step
--parallelize
: Model parallelism
- Standard finetuning:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type standard --label_type gt --batch_size 64
- Distilling step-by-step with
GT label
andPaLM rationale
:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type task_prefix --label_type gt --llm palm --alpha 0.5 --batch_size 64
- Standard distillation:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type standard --label_type llm --batch_size 64
- Distilling step-by-step with
PaLM label
andPaLM rationale
:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type task_prefix --label_type llm --llm palm --alpha 0.5 --batch_size 64
If you find this repository useful, please consider citing:
@article{hsieh2023distilling,
title={Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes},
author={Hsieh, Cheng-Yu and Li, Chun-Liang and Yeh, Chih-Kuan and Nakhost, Hootan and Fujii, Yasuhisa and Ratner, Alexander and Krishna, Ranjay and Lee, Chen-Yu and Pfister, Tomas},
journal={arXiv preprint arXiv:2305.02301},
year={2023}
}