@@ -40,7 +40,6 @@ run the command:
40
40
gsutil -m cp -R gs://atari-replay-datasets/dqn/[GAME_NAME]
41
41
```
42
42
43
-
44
43
This data can be generated by running the online agents using
45
44
[ ` batch_rl/baselines/train.py ` ] ( https://github.com/google-research/batch_rl/blob/master/batch_rl/baselines/train.py ) for 200 million frames
46
45
(standard protocol). Note that the dataset consists of approximately 50 million
@@ -58,6 +57,10 @@ agent's previous action again, instead of the agent's new action.
58
57
[ gcp_bucket ] : https://console.cloud.google.com/storage/browser/atari-replay-datasets
59
58
[ project_page ] : https://offline-rl.github.io
60
59
60
+ ### Dataset Visualization Colab
61
+ A colab showing how to load the dataset using dopamine replay buffers and
62
+ visualize the observations can be found [ here] ( https://colab.research.google.com/drive/17JQzRpIrguMjmZN5bL-RYzDJD5GSV8MJ?usp=sharing ) .
63
+
61
64
## Asymptotic Performance of offline agents on Atari-replay dataset
62
65
63
66
<div >
@@ -190,7 +193,7 @@ If you find this open source release useful, please reference in your paper:
190
193
> An Optimistic Perspective on Offline Reinforcement Learning
191
194
> * International Conference on Machine Learning (ICML)* .
192
195
193
- @article{agarwal2019optimistic ,
196
+ @article{agarwal2020optimistic ,
194
197
title={An Optimistic Perspective on Offline Reinforcement Learning},
195
198
author={Agarwal, Rishabh and Schuurmans, Dale and Norouzi, Mohammad},
196
199
journal={International Conference on Machine Learning},
0 commit comments