-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
152 lines (120 loc) · 5.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import time
import torch
import torch.nn.parallel
import glob
import os
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
def train(train_loader, model, criterion, optimizer, epoch, print_freq, plot_data, gpu):
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
prec1_meter = AverageMeter()
prec5_meter = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (image, label) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
image_var = torch.autograd.Variable(image)
label = label.cuda(gpu, async=True)
label_var = torch.autograd.Variable(label).squeeze(1)
# compute output
output = model(image_var)
loss = criterion(output, label_var)
# measure and record loss
loss_meter.update(loss.data.item(), image.size()[0])
prec1, prec5 = accuracy(output.data, label, topk=(1, 5))
prec1_meter.update(prec1.data.item(), image.size()[0])
prec5_meter.update(prec5.data.item(), image.size()[0])
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec1 {prec1.val:.3f} ({prec1.avg:.3f})\t'
'Prec5 {prec5.val:.3f} ({prec5.avg:.3f})\t'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=loss_meter, prec1=prec1_meter, prec5=prec5_meter))
plot_data['train_loss'][plot_data['epoch']] = loss_meter.avg
plot_data['train_prec1'][plot_data['epoch']] = prec1_meter.avg
plot_data['train_prec5'][plot_data['epoch']] = prec5_meter.avg
return plot_data
def validate(val_loader, model, criterion, print_freq, plot_data, gpu):
with torch.no_grad():
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
prec1_meter = AverageMeter()
prec5_meter = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (image, label) in enumerate(val_loader):
image_var = torch.autograd.Variable(image)
label = label.cuda(gpu, async=True)
label_var = torch.autograd.Variable(label).squeeze(1)
# compute output
output = model(image_var)
loss = criterion(output, label_var)
# measure and record loss
loss_meter.update(loss.data.item(), image.size()[0])
prec1, prec5 = accuracy(output.data, label, topk=(1, 5))
prec1_meter.update(prec1.data.item(), image.size()[0])
prec5_meter.update(prec5.data.item(), image.size()[0])
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec1 {prec1.val:.3f} ({prec1.avg:.3f})\t'
'Prec5 {prec5.val:.3f} ({prec5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=loss_meter,
prec1=prec1_meter, prec5=prec5_meter))
plot_data['val_loss'][plot_data['epoch']] = loss_meter.avg
plot_data['val_prec1'][plot_data['epoch']] = prec1_meter.avg
plot_data['val_prec5'][plot_data['epoch']] = prec5_meter.avg
return plot_data
def save_checkpoint(model, filename, prefix_len):
print("Saving Checkpoint")
# for cur_filename in glob.glob(filename[:-prefix_len] + '*'):
# print(cur_filename)
# os.remove(cur_filename)
torch.save(model.state_dict(), filename + '.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res