-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_img_embeddings.py
59 lines (42 loc) · 1.74 KB
/
get_img_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Get the embeddings of all the test images
import os
import torch.utils.data
import model
import json
import numpy as np
import YFCC_dataset_test
dataset_folder = '../../../hd/datasets/YFCC100M/'
test_im_dir = '../../../datasets/YFCC100M/test_img/'
split = 'test.txt'
batch_size = 700
workers = 6
ImgSize = 224
model_name = 'YFCC_MCC'
model_name = model_name.strip('.pth')
gpus = [0]
gpu = 0
if not os.path.exists(dataset_folder + 'results/' + model_name):
os.makedirs(dataset_folder + 'results/' + model_name)
output_file_path = dataset_folder + 'results/' + model_name + '/images_embeddings_test.json'
output_file = open(output_file_path, "w")
state_dict = torch.load(dataset_folder + '/models/saved/' + model_name + '.pth.tar',
map_location={'cuda:1':'cuda:0', 'cuda:2':'cuda:0', 'cuda:3':'cuda:0'})
model_test = model.Model_Test()
model_test = torch.nn.DataParallel(model_test, device_ids=gpus).cuda(gpu)
model_test.load_state_dict(state_dict, strict=False)
test_dataset = YFCC_dataset_test.YFCC_Dataset_Images_Test(test_im_dir, split, central_crop=ImgSize)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=workers,
pin_memory=True)
out_img_embeddings = {}
with torch.no_grad():
model_test.eval()
for i, (img_id, image) in enumerate(test_loader):
image_var = torch.autograd.Variable(image)
outputs = model_test(image_var)
for idx,embedding in enumerate(outputs):
out_img_embeddings[str(img_id[idx])] = np.array(embedding.cpu()).tolist()
print(str(i) + ' / ' + str(len(test_loader)))
print("Writing results")
json.dump(out_img_embeddings, output_file)
output_file.close()
print("DONE")