-
Notifications
You must be signed in to change notification settings - Fork 17.7k
/
worker.go
1195 lines (1089 loc) · 37.7 KB
/
worker.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzz
import (
"bytes"
"context"
"crypto/sha256"
"encoding/json"
"errors"
"fmt"
"io"
"os"
"os/exec"
"reflect"
"runtime"
"sync"
"time"
)
const (
// workerFuzzDuration is the amount of time a worker can spend testing random
// variations of an input given by the coordinator.
workerFuzzDuration = 100 * time.Millisecond
// workerTimeoutDuration is the amount of time a worker can go without
// responding to the coordinator before being stopped.
workerTimeoutDuration = 1 * time.Second
// workerExitCode is used as an exit code by fuzz worker processes after an internal error.
// This distinguishes internal errors from uncontrolled panics and other crashes.
// Keep in sync with internal/fuzz.workerExitCode.
workerExitCode = 70
// workerSharedMemSize is the maximum size of the shared memory file used to
// communicate with workers. This limits the size of fuzz inputs.
workerSharedMemSize = 100 << 20 // 100 MB
)
// worker manages a worker process running a test binary. The worker object
// exists only in the coordinator (the process started by 'go test -fuzz').
// workerClient is used by the coordinator to send RPCs to the worker process,
// which handles them with workerServer.
type worker struct {
dir string // working directory, same as package directory
binPath string // path to test executable
args []string // arguments for test executable
env []string // environment for test executable
coordinator *coordinator
memMu chan *sharedMem // mutex guarding shared memory with worker; persists across processes.
cmd *exec.Cmd // current worker process
client *workerClient // used to communicate with worker process
waitErr error // last error returned by wait, set before termC is closed.
interrupted bool // true after stop interrupts a running worker.
termC chan struct{} // closed by wait when worker process terminates
}
func newWorker(c *coordinator, dir, binPath string, args, env []string) (*worker, error) {
mem, err := sharedMemTempFile(workerSharedMemSize)
if err != nil {
return nil, err
}
memMu := make(chan *sharedMem, 1)
memMu <- mem
return &worker{
dir: dir,
binPath: binPath,
args: args,
env: env[:len(env):len(env)], // copy on append to ensure workers don't overwrite each other.
coordinator: c,
memMu: memMu,
}, nil
}
// cleanup releases persistent resources associated with the worker.
func (w *worker) cleanup() error {
mem := <-w.memMu
if mem == nil {
return nil
}
close(w.memMu)
return mem.Close()
}
// coordinate runs the test binary to perform fuzzing.
//
// coordinate loops until ctx is canceled or a fatal error is encountered.
// If a test process terminates unexpectedly while fuzzing, coordinate will
// attempt to restart and continue unless the termination can be attributed
// to an interruption (from a timer or the user).
//
// While looping, coordinate receives inputs from the coordinator, passes
// those inputs to the worker process, then passes the results back to
// the coordinator.
func (w *worker) coordinate(ctx context.Context) error {
// Main event loop.
for {
// Start or restart the worker if it's not running.
if !w.isRunning() {
if err := w.startAndPing(ctx); err != nil {
return err
}
}
select {
case <-ctx.Done():
// Worker was told to stop.
err := w.stop()
if err != nil && !w.interrupted && !isInterruptError(err) {
return err
}
return ctx.Err()
case <-w.termC:
// Worker process terminated unexpectedly while waiting for input.
err := w.stop()
if w.interrupted {
panic("worker interrupted after unexpected termination")
}
if err == nil || isInterruptError(err) {
// Worker stopped, either by exiting with status 0 or after being
// interrupted with a signal that was not sent by the coordinator.
//
// When the user presses ^C, on POSIX platforms, SIGINT is delivered to
// all processes in the group concurrently, and the worker may see it
// before the coordinator. The worker should exit 0 gracefully (in
// theory).
//
// This condition is probably intended by the user, so suppress
// the error.
return nil
}
if exitErr, ok := err.(*exec.ExitError); ok && exitErr.ExitCode() == workerExitCode {
// Worker exited with a code indicating F.Fuzz was not called correctly,
// for example, F.Fail was called first.
return fmt.Errorf("fuzzing process exited unexpectedly due to an internal failure: %w", err)
}
// Worker exited non-zero or was terminated by a non-interrupt
// signal (for example, SIGSEGV) while fuzzing.
return fmt.Errorf("fuzzing process hung or terminated unexpectedly: %w", err)
// TODO(jayconrod,katiehockman): if -keepfuzzing, restart worker.
case input := <-w.coordinator.inputC:
// Received input from coordinator.
args := fuzzArgs{
Limit: input.limit,
Timeout: input.timeout,
Warmup: input.warmup,
CoverageData: input.coverageData,
}
entry, resp, isInternalError, err := w.client.fuzz(ctx, input.entry, args)
canMinimize := true
if err != nil {
// Error communicating with worker.
w.stop()
if ctx.Err() != nil {
// Timeout or interruption.
return ctx.Err()
}
if w.interrupted {
// Communication error before we stopped the worker.
// Report an error, but don't record a crasher.
return fmt.Errorf("communicating with fuzzing process: %v", err)
}
if sig, ok := terminationSignal(w.waitErr); ok && !isCrashSignal(sig) {
// Worker terminated by a signal that probably wasn't caused by a
// specific input to the fuzz function. For example, on Linux,
// the kernel (OOM killer) may send SIGKILL to a process using a lot
// of memory. Or the shell might send SIGHUP when the terminal
// is closed. Don't record a crasher.
return fmt.Errorf("fuzzing process terminated by unexpected signal; no crash will be recorded: %v", w.waitErr)
}
if isInternalError {
// An internal error occurred which shouldn't be considered
// a crash.
return err
}
// Unexpected termination. Set error message and fall through.
// We'll restart the worker on the next iteration.
// Don't attempt to minimize this since it crashed the worker.
resp.Err = fmt.Sprintf("fuzzing process hung or terminated unexpectedly: %v", w.waitErr)
canMinimize = false
}
result := fuzzResult{
limit: input.limit,
count: resp.Count,
totalDuration: resp.TotalDuration,
entryDuration: resp.InterestingDuration,
entry: entry,
crasherMsg: resp.Err,
coverageData: resp.CoverageData,
canMinimize: canMinimize,
}
w.coordinator.resultC <- result
case input := <-w.coordinator.minimizeC:
// Received input to minimize from coordinator.
result, err := w.minimize(ctx, input)
if err != nil {
// Error minimizing. Send back the original input. If it didn't cause
// an error before, report it as causing an error now.
// TODO: double-check this is handled correctly when
// implementing -keepfuzzing.
result = fuzzResult{
entry: input.entry,
crasherMsg: input.crasherMsg,
canMinimize: false,
limit: input.limit,
}
if result.crasherMsg == "" {
result.crasherMsg = err.Error()
}
}
if shouldPrintDebugInfo() {
w.coordinator.debugLogf(
"input minimized, id: %s, original id: %s, crasher: %t, originally crasher: %t, minimizing took: %s",
result.entry.Path,
input.entry.Path,
result.crasherMsg != "",
input.crasherMsg != "",
result.totalDuration,
)
}
w.coordinator.resultC <- result
}
}
}
// minimize tells a worker process to attempt to find a smaller value that
// either causes an error (if we started minimizing because we found an input
// that causes an error) or preserves new coverage (if we started minimizing
// because we found an input that expands coverage).
func (w *worker) minimize(ctx context.Context, input fuzzMinimizeInput) (min fuzzResult, err error) {
if w.coordinator.opts.MinimizeTimeout != 0 {
var cancel func()
ctx, cancel = context.WithTimeout(ctx, w.coordinator.opts.MinimizeTimeout)
defer cancel()
}
args := minimizeArgs{
Limit: input.limit,
Timeout: input.timeout,
KeepCoverage: input.keepCoverage,
}
entry, resp, err := w.client.minimize(ctx, input.entry, args)
if err != nil {
// Error communicating with worker.
w.stop()
if ctx.Err() != nil || w.interrupted || isInterruptError(w.waitErr) {
// Worker was interrupted, possibly by the user pressing ^C.
// Normally, workers can handle interrupts and timeouts gracefully and
// will return without error. An error here indicates the worker
// may not have been in a good state, but the error won't be meaningful
// to the user. Just return the original crasher without logging anything.
return fuzzResult{
entry: input.entry,
crasherMsg: input.crasherMsg,
coverageData: input.keepCoverage,
canMinimize: false,
limit: input.limit,
}, nil
}
return fuzzResult{
entry: entry,
crasherMsg: fmt.Sprintf("fuzzing process hung or terminated unexpectedly while minimizing: %v", err),
canMinimize: false,
limit: input.limit,
count: resp.Count,
totalDuration: resp.Duration,
}, nil
}
if input.crasherMsg != "" && resp.Err == "" {
return fuzzResult{}, fmt.Errorf("attempted to minimize a crash but could not reproduce")
}
return fuzzResult{
entry: entry,
crasherMsg: resp.Err,
coverageData: resp.CoverageData,
canMinimize: false,
limit: input.limit,
count: resp.Count,
totalDuration: resp.Duration,
}, nil
}
func (w *worker) isRunning() bool {
return w.cmd != nil
}
// startAndPing starts the worker process and sends it a message to make sure it
// can communicate.
//
// startAndPing returns an error if any part of this didn't work, including if
// the context is expired or the worker process was interrupted before it
// responded. Errors that happen after start but before the ping response
// likely indicate that the worker did not call F.Fuzz or called F.Fail first.
// We don't record crashers for these errors.
func (w *worker) startAndPing(ctx context.Context) error {
if ctx.Err() != nil {
return ctx.Err()
}
if err := w.start(); err != nil {
return err
}
if err := w.client.ping(ctx); err != nil {
w.stop()
if ctx.Err() != nil {
return ctx.Err()
}
if isInterruptError(err) {
// User may have pressed ^C before worker responded.
return err
}
// TODO: record and return stderr.
return fmt.Errorf("fuzzing process terminated without fuzzing: %w", err)
}
return nil
}
// start runs a new worker process.
//
// If the process couldn't be started, start returns an error. Start won't
// return later termination errors from the process if they occur.
//
// If the process starts successfully, start returns nil. stop must be called
// once later to clean up, even if the process terminates on its own.
//
// When the process terminates, w.waitErr is set to the error (if any), and
// w.termC is closed.
func (w *worker) start() (err error) {
if w.isRunning() {
panic("worker already started")
}
w.waitErr = nil
w.interrupted = false
w.termC = nil
cmd := exec.Command(w.binPath, w.args...)
cmd.Dir = w.dir
cmd.Env = w.env[:len(w.env):len(w.env)] // copy on append to ensure workers don't overwrite each other.
// Create the "fuzz_in" and "fuzz_out" pipes so we can communicate with
// the worker. We don't use stdin and stdout, since the test binary may
// do something else with those.
//
// Each pipe has a reader and a writer. The coordinator writes to fuzzInW
// and reads from fuzzOutR. The worker inherits fuzzInR and fuzzOutW.
// The coordinator closes fuzzInR and fuzzOutW after starting the worker,
// since we have no further need of them.
fuzzInR, fuzzInW, err := os.Pipe()
if err != nil {
return err
}
defer fuzzInR.Close()
fuzzOutR, fuzzOutW, err := os.Pipe()
if err != nil {
fuzzInW.Close()
return err
}
defer fuzzOutW.Close()
setWorkerComm(cmd, workerComm{fuzzIn: fuzzInR, fuzzOut: fuzzOutW, memMu: w.memMu})
// Start the worker process.
if err := cmd.Start(); err != nil {
fuzzInW.Close()
fuzzOutR.Close()
return err
}
// Worker started successfully.
// After this, w.client owns fuzzInW and fuzzOutR, so w.client.Close must be
// called later by stop.
w.cmd = cmd
w.termC = make(chan struct{})
comm := workerComm{fuzzIn: fuzzInW, fuzzOut: fuzzOutR, memMu: w.memMu}
m := newMutator()
w.client = newWorkerClient(comm, m)
go func() {
w.waitErr = w.cmd.Wait()
close(w.termC)
}()
return nil
}
// stop tells the worker process to exit by closing w.client, then blocks until
// it terminates. If the worker doesn't terminate after a short time, stop
// signals it with os.Interrupt (where supported), then os.Kill.
//
// stop returns the error the process terminated with, if any (same as
// w.waitErr).
//
// stop must be called at least once after start returns successfully, even if
// the worker process terminates unexpectedly.
func (w *worker) stop() error {
if w.termC == nil {
panic("worker was not started successfully")
}
select {
case <-w.termC:
// Worker already terminated.
if w.client == nil {
// stop already called.
return w.waitErr
}
// Possible unexpected termination.
w.client.Close()
w.cmd = nil
w.client = nil
return w.waitErr
default:
// Worker still running.
}
// Tell the worker to stop by closing fuzz_in. It won't actually stop until it
// finishes with earlier calls.
closeC := make(chan struct{})
go func() {
w.client.Close()
close(closeC)
}()
sig := os.Interrupt
if runtime.GOOS == "windows" {
// Per https://golang.org/pkg/os/#Signal, “Interrupt is not implemented on
// Windows; using it with os.Process.Signal will return an error.”
// Fall back to Kill instead.
sig = os.Kill
}
t := time.NewTimer(workerTimeoutDuration)
for {
select {
case <-w.termC:
// Worker terminated.
t.Stop()
<-closeC
w.cmd = nil
w.client = nil
return w.waitErr
case <-t.C:
// Timer fired before worker terminated.
w.interrupted = true
switch sig {
case os.Interrupt:
// Try to stop the worker with SIGINT and wait a little longer.
w.cmd.Process.Signal(sig)
sig = os.Kill
t.Reset(workerTimeoutDuration)
case os.Kill:
// Try to stop the worker with SIGKILL and keep waiting.
w.cmd.Process.Signal(sig)
sig = nil
t.Reset(workerTimeoutDuration)
case nil:
// Still waiting. Print a message to let the user know why.
fmt.Fprintf(w.coordinator.opts.Log, "waiting for fuzzing process to terminate...\n")
}
}
}
}
// RunFuzzWorker is called in a worker process to communicate with the
// coordinator process in order to fuzz random inputs. RunFuzzWorker loops
// until the coordinator tells it to stop.
//
// fn is a wrapper on the fuzz function. It may return an error to indicate
// a given input "crashed". The coordinator will also record a crasher if
// the function times out or terminates the process.
//
// RunFuzzWorker returns an error if it could not communicate with the
// coordinator process.
func RunFuzzWorker(ctx context.Context, fn func(CorpusEntry) error) error {
comm, err := getWorkerComm()
if err != nil {
return err
}
srv := &workerServer{
workerComm: comm,
fuzzFn: func(e CorpusEntry) (time.Duration, error) {
timer := time.AfterFunc(10*time.Second, func() {
panic("deadlocked!") // this error message won't be printed
})
defer timer.Stop()
start := time.Now()
err := fn(e)
return time.Since(start), err
},
m: newMutator(),
}
return srv.serve(ctx)
}
// call is serialized and sent from the coordinator on fuzz_in. It acts as
// a minimalist RPC mechanism. Exactly one of its fields must be set to indicate
// which method to call.
type call struct {
Ping *pingArgs
Fuzz *fuzzArgs
Minimize *minimizeArgs
}
// minimizeArgs contains arguments to workerServer.minimize. The value to
// minimize is already in shared memory.
type minimizeArgs struct {
// Timeout is the time to spend minimizing. This may include time to start up,
// especially if the input causes the worker process to terminated, requiring
// repeated restarts.
Timeout time.Duration
// Limit is the maximum number of values to test, without spending more time
// than Duration. 0 indicates no limit.
Limit int64
// KeepCoverage is a set of coverage counters the worker should attempt to
// keep in minimized values. When provided, the worker will reject inputs that
// don't cause at least one of these bits to be set.
KeepCoverage []byte
// Index is the index of the fuzz target parameter to be minimized.
Index int
}
// minimizeResponse contains results from workerServer.minimize.
type minimizeResponse struct {
// WroteToMem is true if the worker found a smaller input and wrote it to
// shared memory. If minimizeArgs.KeepCoverage was set, the minimized input
// preserved at least one coverage bit and did not cause an error.
// Otherwise, the minimized input caused some error, recorded in Err.
WroteToMem bool
// Err is the error string caused by the value in shared memory, if any.
Err string
// CoverageData is the set of coverage bits activated by the minimized value
// in shared memory. When set, it contains at least one bit from KeepCoverage.
// CoverageData will be nil if Err is set or if minimization failed.
CoverageData []byte
// Duration is the time spent minimizing, not including starting or cleaning up.
Duration time.Duration
// Count is the number of values tested.
Count int64
}
// fuzzArgs contains arguments to workerServer.fuzz. The value to fuzz is
// passed in shared memory.
type fuzzArgs struct {
// Timeout is the time to spend fuzzing, not including starting or
// cleaning up.
Timeout time.Duration
// Limit is the maximum number of values to test, without spending more time
// than Duration. 0 indicates no limit.
Limit int64
// Warmup indicates whether this is part of a warmup run, meaning that
// fuzzing should not occur. If coverageEnabled is true, then coverage data
// should be reported.
Warmup bool
// CoverageData is the coverage data. If set, the worker should update its
// local coverage data prior to fuzzing.
CoverageData []byte
}
// fuzzResponse contains results from workerServer.fuzz.
type fuzzResponse struct {
// Duration is the time spent fuzzing, not including starting or cleaning up.
TotalDuration time.Duration
InterestingDuration time.Duration
// Count is the number of values tested.
Count int64
// CoverageData is set if the value in shared memory expands coverage
// and therefore may be interesting to the coordinator.
CoverageData []byte
// Err is the error string caused by the value in shared memory, which is
// non-empty if the value in shared memory caused a crash.
Err string
// InternalErr is the error string caused by an internal error in the
// worker. This shouldn't be considered a crasher.
InternalErr string
}
// pingArgs contains arguments to workerServer.ping.
type pingArgs struct{}
// pingResponse contains results from workerServer.ping.
type pingResponse struct{}
// workerComm holds pipes and shared memory used for communication
// between the coordinator process (client) and a worker process (server).
// These values are unique to each worker; they are shared only with the
// coordinator, not with other workers.
//
// Access to shared memory is synchronized implicitly over the RPC protocol
// implemented in workerServer and workerClient. During a call, the client
// (worker) has exclusive access to shared memory; at other times, the server
// (coordinator) has exclusive access.
type workerComm struct {
fuzzIn, fuzzOut *os.File
memMu chan *sharedMem // mutex guarding shared memory
}
// workerServer is a minimalist RPC server, run by fuzz worker processes.
// It allows the coordinator process (using workerClient) to call methods in a
// worker process. This system allows the coordinator to run multiple worker
// processes in parallel and to collect inputs that caused crashes from shared
// memory after a worker process terminates unexpectedly.
type workerServer struct {
workerComm
m *mutator
// coverageMask is the local coverage data for the worker. It is
// periodically updated to reflect the data in the coordinator when new
// coverage is found.
coverageMask []byte
// fuzzFn runs the worker's fuzz target on the given input and returns an
// error if it finds a crasher (the process may also exit or crash), and the
// time it took to run the input. It sets a deadline of 10 seconds, at which
// point it will panic with the assumption that the process is hanging or
// deadlocked.
fuzzFn func(CorpusEntry) (time.Duration, error)
}
// serve reads serialized RPC messages on fuzzIn. When serve receives a message,
// it calls the corresponding method, then sends the serialized result back
// on fuzzOut.
//
// serve handles RPC calls synchronously; it will not attempt to read a message
// until the previous call has finished.
//
// serve returns errors that occurred when communicating over pipes. serve
// does not return errors from method calls; those are passed through serialized
// responses.
func (ws *workerServer) serve(ctx context.Context) error {
enc := json.NewEncoder(ws.fuzzOut)
dec := json.NewDecoder(&contextReader{ctx: ctx, r: ws.fuzzIn})
for {
var c call
if err := dec.Decode(&c); err != nil {
if err == io.EOF || err == ctx.Err() {
return nil
} else {
return err
}
}
var resp any
switch {
case c.Fuzz != nil:
resp = ws.fuzz(ctx, *c.Fuzz)
case c.Minimize != nil:
resp = ws.minimize(ctx, *c.Minimize)
case c.Ping != nil:
resp = ws.ping(ctx, *c.Ping)
default:
return errors.New("no arguments provided for any call")
}
if err := enc.Encode(resp); err != nil {
return err
}
}
}
// chainedMutations is how many mutations are applied before the worker
// resets the input to its original state.
// NOTE: this number was picked without much thought. It is low enough that
// it seems to create a significant diversity in mutated inputs. We may want
// to consider looking into this more closely once we have a proper performance
// testing framework. Another option is to randomly pick the number of chained
// mutations on each invocation of the workerServer.fuzz method (this appears to
// be what libFuzzer does, although there seems to be no documentation which
// explains why this choice was made.)
const chainedMutations = 5
// fuzz runs the test function on random variations of the input value in shared
// memory for a limited duration or number of iterations.
//
// fuzz returns early if it finds an input that crashes the fuzz function (with
// fuzzResponse.Err set) or an input that expands coverage (with
// fuzzResponse.InterestingDuration set).
//
// fuzz does not modify the input in shared memory. Instead, it saves the
// initial PRNG state in shared memory and increments a counter in shared
// memory before each call to the test function. The caller may reconstruct
// the crashing input with this information, since the PRNG is deterministic.
func (ws *workerServer) fuzz(ctx context.Context, args fuzzArgs) (resp fuzzResponse) {
if args.CoverageData != nil {
if ws.coverageMask != nil && len(args.CoverageData) != len(ws.coverageMask) {
resp.InternalErr = fmt.Sprintf("unexpected size for CoverageData: got %d, expected %d", len(args.CoverageData), len(ws.coverageMask))
return resp
}
ws.coverageMask = args.CoverageData
}
start := time.Now()
defer func() { resp.TotalDuration = time.Since(start) }()
if args.Timeout != 0 {
var cancel func()
ctx, cancel = context.WithTimeout(ctx, args.Timeout)
defer cancel()
}
mem := <-ws.memMu
ws.m.r.save(&mem.header().randState, &mem.header().randInc)
defer func() {
resp.Count = mem.header().count
ws.memMu <- mem
}()
if args.Limit > 0 && mem.header().count >= args.Limit {
resp.InternalErr = fmt.Sprintf("mem.header().count %d already exceeds args.Limit %d", mem.header().count, args.Limit)
return resp
}
originalVals, err := unmarshalCorpusFile(mem.valueCopy())
if err != nil {
resp.InternalErr = err.Error()
return resp
}
vals := make([]any, len(originalVals))
copy(vals, originalVals)
shouldStop := func() bool {
return args.Limit > 0 && mem.header().count >= args.Limit
}
fuzzOnce := func(entry CorpusEntry) (dur time.Duration, cov []byte, errMsg string) {
mem.header().count++
var err error
dur, err = ws.fuzzFn(entry)
if err != nil {
errMsg = err.Error()
if errMsg == "" {
errMsg = "fuzz function failed with no input"
}
return dur, nil, errMsg
}
if ws.coverageMask != nil && countNewCoverageBits(ws.coverageMask, coverageSnapshot) > 0 {
return dur, coverageSnapshot, ""
}
return dur, nil, ""
}
if args.Warmup {
dur, _, errMsg := fuzzOnce(CorpusEntry{Values: vals})
if errMsg != "" {
resp.Err = errMsg
return resp
}
resp.InterestingDuration = dur
if coverageEnabled {
resp.CoverageData = coverageSnapshot
}
return resp
}
for {
select {
case <-ctx.Done():
return resp
default:
if mem.header().count%chainedMutations == 0 {
copy(vals, originalVals)
ws.m.r.save(&mem.header().randState, &mem.header().randInc)
}
ws.m.mutate(vals, cap(mem.valueRef()))
entry := CorpusEntry{Values: vals}
dur, cov, errMsg := fuzzOnce(entry)
if errMsg != "" {
resp.Err = errMsg
return resp
}
if cov != nil {
resp.CoverageData = cov
resp.InterestingDuration = dur
return resp
}
if shouldStop() {
return resp
}
}
}
}
func (ws *workerServer) minimize(ctx context.Context, args minimizeArgs) (resp minimizeResponse) {
start := time.Now()
defer func() { resp.Duration = time.Since(start) }()
mem := <-ws.memMu
defer func() { ws.memMu <- mem }()
vals, err := unmarshalCorpusFile(mem.valueCopy())
if err != nil {
panic(err)
}
inpHash := sha256.Sum256(mem.valueCopy())
if args.Timeout != 0 {
var cancel func()
ctx, cancel = context.WithTimeout(ctx, args.Timeout)
defer cancel()
}
// Minimize the values in vals, then write to shared memory. We only write
// to shared memory after completing minimization.
success, err := ws.minimizeInput(ctx, vals, mem, args)
if success {
writeToMem(vals, mem)
outHash := sha256.Sum256(mem.valueCopy())
mem.header().rawInMem = false
resp.WroteToMem = true
if err != nil {
resp.Err = err.Error()
} else {
// If the values didn't change during minimization then coverageSnapshot is likely
// a dirty snapshot which represents the very last step of minimization, not the
// coverage for the initial input. In that case just return the coverage we were
// given initially, since it more accurately represents the coverage map for the
// input we are returning.
if outHash != inpHash {
resp.CoverageData = coverageSnapshot
} else {
resp.CoverageData = args.KeepCoverage
}
}
}
return resp
}
// minimizeInput applies a series of minimizing transformations on the provided
// vals, ensuring that each minimization still causes an error, or keeps
// coverage, in fuzzFn. It uses the context to determine how long to run,
// stopping once closed. It returns a bool indicating whether minimization was
// successful and an error if one was found.
func (ws *workerServer) minimizeInput(ctx context.Context, vals []any, mem *sharedMem, args minimizeArgs) (success bool, retErr error) {
keepCoverage := args.KeepCoverage
memBytes := mem.valueRef()
bPtr := &memBytes
count := &mem.header().count
shouldStop := func() bool {
return ctx.Err() != nil ||
(args.Limit > 0 && *count >= args.Limit)
}
if shouldStop() {
return false, nil
}
// Check that the original value preserves coverage or causes an error.
// If not, then whatever caused us to think the value was interesting may
// have been a flake, and we can't minimize it.
*count++
_, retErr = ws.fuzzFn(CorpusEntry{Values: vals})
if keepCoverage != nil {
if !hasCoverageBit(keepCoverage, coverageSnapshot) || retErr != nil {
return false, nil
}
} else if retErr == nil {
return false, nil
}
mem.header().rawInMem = true
// tryMinimized runs the fuzz function with candidate replacing the value
// at index valI. tryMinimized returns whether the input with candidate is
// interesting for the same reason as the original input: it returns
// an error if one was expected, or it preserves coverage.
tryMinimized := func(candidate []byte) bool {
prev := vals[args.Index]
switch prev.(type) {
case []byte:
vals[args.Index] = candidate
case string:
vals[args.Index] = string(candidate)
default:
panic("impossible")
}
copy(*bPtr, candidate)
*bPtr = (*bPtr)[:len(candidate)]
mem.setValueLen(len(candidate))
*count++
_, err := ws.fuzzFn(CorpusEntry{Values: vals})
if err != nil {
retErr = err
if keepCoverage != nil {
// Now that we've found a crash, that's more important than any
// minimization of interesting inputs that was being done. Clear out
// keepCoverage to only minimize the crash going forward.
keepCoverage = nil
}
return true
}
// Minimization should preserve coverage bits.
if keepCoverage != nil && isCoverageSubset(keepCoverage, coverageSnapshot) {
return true
}
vals[args.Index] = prev
return false
}
switch v := vals[args.Index].(type) {
case string:
minimizeBytes([]byte(v), tryMinimized, shouldStop)
case []byte:
minimizeBytes(v, tryMinimized, shouldStop)
default:
panic("impossible")
}
return true, retErr
}
func writeToMem(vals []any, mem *sharedMem) {
b := marshalCorpusFile(vals...)
mem.setValue(b)
}
// ping does nothing. The coordinator calls this method to ensure the worker
// has called F.Fuzz and can communicate.
func (ws *workerServer) ping(ctx context.Context, args pingArgs) pingResponse {
return pingResponse{}
}
// workerClient is a minimalist RPC client. The coordinator process uses a
// workerClient to call methods in each worker process (handled by
// workerServer).
type workerClient struct {
workerComm
m *mutator
// mu is the mutex protecting the workerComm.fuzzIn pipe. This must be
// locked before making calls to the workerServer. It prevents
// workerClient.Close from closing fuzzIn while workerClient methods are
// writing to it concurrently, and prevents multiple callers from writing to
// fuzzIn concurrently.
mu sync.Mutex
}
func newWorkerClient(comm workerComm, m *mutator) *workerClient {
return &workerClient{workerComm: comm, m: m}
}
// Close shuts down the connection to the RPC server (the worker process) by
// closing fuzz_in. Close drains fuzz_out (avoiding a SIGPIPE in the worker),
// and closes it after the worker process closes the other end.
func (wc *workerClient) Close() error {
wc.mu.Lock()
defer wc.mu.Unlock()
// Close fuzzIn. This signals to the server that there are no more calls,
// and it should exit.
if err := wc.fuzzIn.Close(); err != nil {
wc.fuzzOut.Close()
return err
}
// Drain fuzzOut and close it. When the server exits, the kernel will close
// its end of fuzzOut, and we'll get EOF.
if _, err := io.Copy(io.Discard, wc.fuzzOut); err != nil {
wc.fuzzOut.Close()
return err
}
return wc.fuzzOut.Close()
}
// errSharedMemClosed is returned by workerClient methods that cannot access
// shared memory because it was closed and unmapped by another goroutine. That
// can happen when worker.cleanup is called in the worker goroutine while a
// workerClient.fuzz call runs concurrently.
//
// This error should not be reported. It indicates the operation was
// interrupted.
var errSharedMemClosed = errors.New("internal error: shared memory was closed and unmapped")
// minimize tells the worker to call the minimize method. See
// workerServer.minimize.
func (wc *workerClient) minimize(ctx context.Context, entryIn CorpusEntry, args minimizeArgs) (entryOut CorpusEntry, resp minimizeResponse, retErr error) {
wc.mu.Lock()
defer wc.mu.Unlock()
mem, ok := <-wc.memMu
if !ok {
return CorpusEntry{}, minimizeResponse{}, errSharedMemClosed
}
defer func() { wc.memMu <- mem }()
mem.header().count = 0
inp, err := corpusEntryData(entryIn)
if err != nil {
return CorpusEntry{}, minimizeResponse{}, err