forked from prideofisland/arduino-dw1000
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDW1000.cpp
1775 lines (1630 loc) · 57.9 KB
/
DW1000.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2015 by Thomas Trojer <thomas@trojer.net>
* Decawave DW1000 library for arduino.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* @file DW1000.cpp
* Arduino driver library (source file) for the Decawave DW1000 UWB transceiver IC.
*/
#include "DW1000.h"
DW1000Class DW1000;
/* ###########################################################################
* #### Static member variables ##############################################
* ######################################################################### */
// pins
uint8_t DW1000Class::_ss;
uint8_t DW1000Class::_rst;
uint8_t DW1000Class::_irq;
// IRQ callbacks
void (* DW1000Class::_handleSent)(void) = 0;
void (* DW1000Class::_handleError)(void) = 0;
void (* DW1000Class::_handleReceived)(void) = 0;
void (* DW1000Class::_handleReceiveFailed)(void) = 0;
void (* DW1000Class::_handleReceiveTimeout)(void) = 0;
void (* DW1000Class::_handleReceiveTimestampAvailable)(void) = 0;
// registers
byte DW1000Class::_syscfg[LEN_SYS_CFG];
byte DW1000Class::_sysctrl[LEN_SYS_CTRL];
byte DW1000Class::_sysstatus[LEN_SYS_STATUS];
byte DW1000Class::_txfctrl[LEN_TX_FCTRL];
byte DW1000Class::_sysmask[LEN_SYS_MASK];
byte DW1000Class::_chanctrl[LEN_CHAN_CTRL];
byte DW1000Class::_networkAndAddress[LEN_PANADR];
// monitoring
byte DW1000Class::_vmeas3v3 = 0;
byte DW1000Class::_tmeas23C = 0;
// driver internal state
byte DW1000Class::_extendedFrameLength = FRAME_LENGTH_NORMAL;
byte DW1000Class::_pacSize = PAC_SIZE_8;
byte DW1000Class::_pulseFrequency = TX_PULSE_FREQ_16MHZ;
byte DW1000Class::_dataRate = TRX_RATE_6800KBPS;
byte DW1000Class::_preambleLength = TX_PREAMBLE_LEN_128;
byte DW1000Class::_preambleCode = PREAMBLE_CODE_16MHZ_4;
byte DW1000Class::_channel = CHANNEL_5;
DW1000Time DW1000Class::_antennaDelay;
boolean DW1000Class::_smartPower = false;
boolean DW1000Class::_frameCheck = true;
boolean DW1000Class::_permanentReceive = false;
uint8_t DW1000Class::_deviceMode = IDLE_MODE; // TODO replace by enum
boolean DW1000Class::_debounceClockEnabled = false;
// modes of operation
// TODO use enum external, not config array
// this declaration is needed to make variables accessible while runtime from external code
constexpr byte DW1000Class::MODE_LONGDATA_RANGE_LOWPOWER[];
constexpr byte DW1000Class::MODE_SHORTDATA_FAST_LOWPOWER[];
constexpr byte DW1000Class::MODE_LONGDATA_FAST_LOWPOWER[];
constexpr byte DW1000Class::MODE_SHORTDATA_FAST_ACCURACY[];
constexpr byte DW1000Class::MODE_LONGDATA_FAST_ACCURACY[];
constexpr byte DW1000Class::MODE_LONGDATA_RANGE_ACCURACY[];
/*
const byte DW1000Class::MODE_LONGDATA_RANGE_LOWPOWER[] = {TRX_RATE_110KBPS, TX_PULSE_FREQ_16MHZ, TX_PREAMBLE_LEN_2048};
const byte DW1000Class::MODE_SHORTDATA_FAST_LOWPOWER[] = {TRX_RATE_6800KBPS, TX_PULSE_FREQ_16MHZ, TX_PREAMBLE_LEN_128};
const byte DW1000Class::MODE_LONGDATA_FAST_LOWPOWER[] = {TRX_RATE_6800KBPS, TX_PULSE_FREQ_16MHZ, TX_PREAMBLE_LEN_1024};
const byte DW1000Class::MODE_SHORTDATA_FAST_ACCURACY[] = {TRX_RATE_6800KBPS, TX_PULSE_FREQ_64MHZ, TX_PREAMBLE_LEN_128};
const byte DW1000Class::MODE_LONGDATA_FAST_ACCURACY[] = {TRX_RATE_6800KBPS, TX_PULSE_FREQ_64MHZ, TX_PREAMBLE_LEN_1024};
const byte DW1000Class::MODE_LONGDATA_RANGE_ACCURACY[] = {TRX_RATE_110KBPS, TX_PULSE_FREQ_64MHZ, TX_PREAMBLE_LEN_2048};
*/
// range bias tables (500 MHz in [mm] and 900 MHz in [2mm] - to fit into bytes)
constexpr byte DW1000Class::BIAS_500_16[];
constexpr byte DW1000Class::BIAS_500_64[];
constexpr byte DW1000Class::BIAS_900_16[];
constexpr byte DW1000Class::BIAS_900_64[];
/*
const byte DW1000Class::BIAS_500_16[] = {198, 187, 179, 163, 143, 127, 109, 84, 59, 31, 0, 36, 65, 84, 97, 106, 110, 112};
const byte DW1000Class::BIAS_500_64[] = {110, 105, 100, 93, 82, 69, 51, 27, 0, 21, 35, 42, 49, 62, 71, 76, 81, 86};
const byte DW1000Class::BIAS_900_16[] = {137, 122, 105, 88, 69, 47, 25, 0, 21, 48, 79, 105, 127, 147, 160, 169, 178, 197};
const byte DW1000Class::BIAS_900_64[] = {147, 133, 117, 99, 75, 50, 29, 0, 24, 45, 63, 76, 87, 98, 116, 122, 132, 142};
*/
// SPI settings
#ifdef ESP8266
// default ESP8266 frequency is 80 Mhz, thus divide by 4 is 20 MHz
const SPISettings DW1000Class::_fastSPI = SPISettings(20000000L, MSBFIRST, SPI_MODE0);
#else
const SPISettings DW1000Class::_fastSPI = SPISettings(16000000L, MSBFIRST, SPI_MODE0);
#endif
const SPISettings DW1000Class::_slowSPI = SPISettings(2000000L, MSBFIRST, SPI_MODE0);
const SPISettings* DW1000Class::_currentSPI = &_fastSPI;
/* ###########################################################################
* #### Init and end #######################################################
* ######################################################################### */
void DW1000Class::end() {
SPI.end();
}
void DW1000Class::select(uint8_t ss) {
reselect(ss);
// try locking clock at PLL speed (should be done already,
// but just to be sure)
enableClock(AUTO_CLOCK);
delay(5);
// reset chip (either soft or hard)
if(_rst != 0xff) {
// dw1000 data sheet v2.08 §5.6.1 page 20, the RSTn pin should not be driven high but left floating.
pinMode(_rst, INPUT);
}
reset();
// default network and node id
writeValueToBytes(_networkAndAddress, 0xFF, LEN_PANADR);
writeNetworkIdAndDeviceAddress();
// default system configuration
memset(_syscfg, 0, LEN_SYS_CFG);
setDoubleBuffering(false);
setInterruptPolarity(true);
writeSystemConfigurationRegister();
// default interrupt mask, i.e. no interrupts
clearInterrupts();
writeSystemEventMaskRegister();
// load LDE micro-code
enableClock(XTI_CLOCK);
delay(5);
manageLDE();
delay(5);
enableClock(AUTO_CLOCK);
delay(5);
// read the temp and vbat readings from OTP that were recorded during production test
// see 6.3.1 OTP memory map
byte buf_otp[4];
readBytesOTP(0x008, buf_otp); // the stored 3.3 V reading
_vmeas3v3 = buf_otp[0];
readBytesOTP(0x009, buf_otp); // the stored 23C reading
_tmeas23C = buf_otp[0];
}
void DW1000Class::reselect(uint8_t ss) {
_ss = ss;
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
}
void DW1000Class::begin(uint8_t irq, uint8_t rst) {
// generous initial init/wake-up-idle delay
delay(5);
// Configure the IRQ pin as INPUT. Required for correct interrupt setting for ESP8266
pinMode(irq, INPUT);
// start SPI
SPI.begin();
#ifndef ESP8266
SPI.usingInterrupt(digitalPinToInterrupt(irq)); // not every board support this, e.g. ESP8266
#endif
// pin and basic member setup
_rst = rst;
_irq = irq;
_deviceMode = IDLE_MODE;
// attach interrupt
//attachInterrupt(_irq, DW1000Class::handleInterrupt, CHANGE); // todo interrupt for ESP8266
// TODO throw error if pin is not a interrupt pin
attachInterrupt(digitalPinToInterrupt(_irq), DW1000Class::handleInterrupt, RISING); // todo interrupt for ESP8266
}
void DW1000Class::manageLDE() {
// transfer any ldo tune values
byte ldoTune[LEN_OTP_RDAT];
readBytesOTP(0x04, ldoTune); // TODO #define
if(ldoTune[0] != 0) {
// TODO tuning available, copy over to RAM: use OTP_LDO bit
}
// tell the chip to load the LDE microcode
// TODO remove clock-related code (PMSC_CTRL) as handled separately
byte pmscctrl0[LEN_PMSC_CTRL0];
byte otpctrl[LEN_OTP_CTRL];
memset(pmscctrl0, 0, LEN_PMSC_CTRL0);
memset(otpctrl, 0, LEN_OTP_CTRL);
readBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, LEN_PMSC_CTRL0);
readBytes(OTP_IF, OTP_CTRL_SUB, otpctrl, LEN_OTP_CTRL);
pmscctrl0[0] = 0x01;
pmscctrl0[1] = 0x03;
otpctrl[0] = 0x00;
otpctrl[1] = 0x80;
writeBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, 2);
writeBytes(OTP_IF, OTP_CTRL_SUB, otpctrl, 2);
delay(5);
pmscctrl0[0] = 0x00;
pmscctrl0[1] &= 0x02;
writeBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, 2);
}
void DW1000Class::enableClock(byte clock) {
byte pmscctrl0[LEN_PMSC_CTRL0];
memset(pmscctrl0, 0, LEN_PMSC_CTRL0);
readBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, LEN_PMSC_CTRL0);
if(clock == AUTO_CLOCK) {
_currentSPI = &_fastSPI;
pmscctrl0[0] = AUTO_CLOCK;
pmscctrl0[1] &= 0xFE;
} else if(clock == XTI_CLOCK) {
_currentSPI = &_slowSPI;
pmscctrl0[0] &= 0xFC;
pmscctrl0[0] |= XTI_CLOCK;
} else if(clock == PLL_CLOCK) {
_currentSPI = &_fastSPI;
pmscctrl0[0] &= 0xFC;
pmscctrl0[0] |= PLL_CLOCK;
} else {
// TODO deliver proper warning
}
writeBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, 2);
}
void DW1000Class::enableDebounceClock() {
byte pmscctrl0[LEN_PMSC_CTRL0];
memset(pmscctrl0, 0, LEN_PMSC_CTRL0);
readBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, LEN_PMSC_CTRL0);
setBit(pmscctrl0, LEN_PMSC_CTRL0, GPDCE_BIT, 1);
setBit(pmscctrl0, LEN_PMSC_CTRL0, KHZCLKEN_BIT, 1);
writeBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, LEN_PMSC_CTRL0);
_debounceClockEnabled = true;
}
void DW1000Class::enableLedBlinking() {
byte pmscledc[LEN_PMSC_LEDC];
memset(pmscledc, 0, LEN_PMSC_LEDC);
readBytes(PMSC, PMSC_LEDC_SUB, pmscledc, LEN_PMSC_LEDC);
setBit(pmscledc, LEN_PMSC_LEDC, BLNKEN, 1);
writeBytes(PMSC, PMSC_LEDC_SUB, pmscledc, LEN_PMSC_LEDC);
}
void DW1000Class::setGPIOMode(uint8_t msgp, uint8_t mode) {
byte gpiomode[LEN_GPIO_MODE];
memset(gpiomode, 0, LEN_GPIO_MODE);
readBytes(GPIO_CTRL, GPIO_MODE_SUB, gpiomode, LEN_GPIO_MODE);
for (char i = 0; i < 2; i++){
setBit(gpiomode, LEN_GPIO_MODE, msgp + i, (mode >> i) & 1);
}
writeBytes(GPIO_CTRL, GPIO_MODE_SUB, gpiomode, LEN_GPIO_MODE);
}
void DW1000Class::deepSleep() {
byte aon_wcfg[LEN_AON_WCFG];
memset(aon_wcfg, 0, LEN_AON_WCFG);
readBytes(AON, AON_WCFG_SUB, aon_wcfg, LEN_AON_WCFG);
setBit(aon_wcfg, LEN_AON_WCFG, ONW_LDC_BIT, true);
setBit(aon_wcfg, LEN_AON_WCFG, ONW_LDD0_BIT, true);
writeBytes(AON, AON_WCFG_SUB, aon_wcfg, LEN_AON_WCFG);
byte pmsc_ctrl1[LEN_PMSC_CTRL1];
memset(pmsc_ctrl1, 0, LEN_PMSC_CTRL1);
readBytes(PMSC, PMSC_CTRL1_SUB, pmsc_ctrl1, LEN_PMSC_CTRL1);
setBit(pmsc_ctrl1, LEN_PMSC_CTRL1, ATXSLP_BIT, false);
setBit(pmsc_ctrl1, LEN_PMSC_CTRL1, ARXSLP_BIT, false);
writeBytes(PMSC, PMSC_CTRL1_SUB, pmsc_ctrl1, LEN_PMSC_CTRL1);
byte aon_cfg0[LEN_AON_CFG0];
memset(aon_cfg0, 0, LEN_AON_CFG0);
readBytes(AON, AON_CFG0_SUB, aon_cfg0, LEN_AON_CFG0);
setBit(aon_cfg0, LEN_AON_CFG0, WAKE_SPI_BIT, true);
setBit(aon_cfg0, LEN_AON_CFG0, WAKE_PIN_BIT, true);
setBit(aon_cfg0, LEN_AON_CFG0, WAKE_CNT_BIT, false);
setBit(aon_cfg0, LEN_AON_CFG0, SLEEP_EN_BIT, true);
writeBytes(AON, AON_CFG0_SUB, aon_cfg0, LEN_AON_CFG0);
byte aon_ctrl[LEN_AON_CTRL];
memset(aon_ctrl, 0, LEN_AON_CTRL);
readBytes(AON, AON_CTRL_SUB, aon_ctrl, LEN_AON_CTRL);
setBit(aon_ctrl, LEN_AON_CTRL, UPL_CFG_BIT, true);
setBit(aon_ctrl, LEN_AON_CTRL, SAVE_BIT, true);
writeBytes(AON, AON_CTRL_SUB, aon_ctrl, LEN_AON_CTRL);
}
void DW1000Class::spiWakeup(){
digitalWrite(_ss, LOW);
delay(2);
digitalWrite(_ss, HIGH);
if (_debounceClockEnabled){
DW1000Class::enableDebounceClock();
}
}
void DW1000Class::reset() {
if(_rst == 0xff) {
softReset();
} else {
// dw1000 data sheet v2.08 §5.6.1 page 20, the RSTn pin should not be driven high but left floating.
pinMode(_rst, OUTPUT);
digitalWrite(_rst, LOW);
delay(2); // dw1000 data sheet v2.08 §5.6.1 page 20: nominal 50ns, to be safe take more time
pinMode(_rst, INPUT);
delay(10); // dwm1000 data sheet v1.2 page 5: nominal 3 ms, to be safe take more time
// force into idle mode (although it should be already after reset)
idle();
}
}
void DW1000Class::softReset() {
byte pmscctrl0[LEN_PMSC_CTRL0];
readBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, LEN_PMSC_CTRL0);
pmscctrl0[0] = 0x01;
writeBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, LEN_PMSC_CTRL0);
pmscctrl0[3] = 0x00;
writeBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, LEN_PMSC_CTRL0);
delay(10);
pmscctrl0[0] = 0x00;
pmscctrl0[3] = 0xF0;
writeBytes(PMSC, PMSC_CTRL0_SUB, pmscctrl0, LEN_PMSC_CTRL0);
// force into idle mode
idle();
}
void DW1000Class::enableMode(const byte mode[]) {
setDataRate(mode[0]);
setPulseFrequency(mode[1]);
setPreambleLength(mode[2]);
// TODO add channel and code to mode tuples
// TODO add channel and code settings with checks (see Table 58)
setChannel(CHANNEL_5);
if(mode[1] == TX_PULSE_FREQ_16MHZ) {
setPreambleCode(PREAMBLE_CODE_16MHZ_4);
} else {
setPreambleCode(PREAMBLE_CODE_64MHZ_10);
}
}
void DW1000Class::tune() {
// these registers are going to be tuned/configured
byte agctune1[LEN_AGC_TUNE1];
byte agctune2[LEN_AGC_TUNE2];
byte agctune3[LEN_AGC_TUNE3];
byte drxtune0b[LEN_DRX_TUNE0b];
byte drxtune1a[LEN_DRX_TUNE1a];
byte drxtune1b[LEN_DRX_TUNE1b];
byte drxtune2[LEN_DRX_TUNE2];
byte drxtune4H[LEN_DRX_TUNE4H];
byte ldecfg1[LEN_LDE_CFG1];
byte ldecfg2[LEN_LDE_CFG2];
byte lderepc[LEN_LDE_REPC];
byte txpower[LEN_TX_POWER];
byte rfrxctrlh[LEN_RF_RXCTRLH];
byte rftxctrl[LEN_RF_TXCTRL];
byte tcpgdelay[LEN_TC_PGDELAY];
byte fspllcfg[LEN_FS_PLLCFG];
byte fsplltune[LEN_FS_PLLTUNE];
byte fsxtalt[LEN_FS_XTALT];
// AGC_TUNE1
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
writeValueToBytes(agctune1, 0x8870, LEN_AGC_TUNE1);
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
writeValueToBytes(agctune1, 0x889B, LEN_AGC_TUNE1);
} else {
// TODO proper error/warning handling
}
// AGC_TUNE2
writeValueToBytes(agctune2, 0x2502A907L, LEN_AGC_TUNE2);
// AGC_TUNE3
writeValueToBytes(agctune3, 0x0035, LEN_AGC_TUNE3);
// DRX_TUNE0b (already optimized according to Table 20 of user manual)
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(drxtune0b, 0x0016, LEN_DRX_TUNE0b);
} else if(_dataRate == TRX_RATE_850KBPS) {
writeValueToBytes(drxtune0b, 0x0006, LEN_DRX_TUNE0b);
} else if(_dataRate == TRX_RATE_6800KBPS) {
writeValueToBytes(drxtune0b, 0x0001, LEN_DRX_TUNE0b);
} else {
// TODO proper error/warning handling
}
// DRX_TUNE1a
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
writeValueToBytes(drxtune1a, 0x0087, LEN_DRX_TUNE1a);
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
writeValueToBytes(drxtune1a, 0x008D, LEN_DRX_TUNE1a);
} else {
// TODO proper error/warning handling
}
// DRX_TUNE1b
if(_preambleLength == TX_PREAMBLE_LEN_1536 || _preambleLength == TX_PREAMBLE_LEN_2048 ||
_preambleLength == TX_PREAMBLE_LEN_4096) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(drxtune1b, 0x0064, LEN_DRX_TUNE1b);
} else {
// TODO proper error/warning handling
}
} else if(_preambleLength != TX_PREAMBLE_LEN_64) {
if(_dataRate == TRX_RATE_850KBPS || _dataRate == TRX_RATE_6800KBPS) {
writeValueToBytes(drxtune1b, 0x0020, LEN_DRX_TUNE1b);
} else {
// TODO proper error/warning handling
}
} else {
if(_dataRate == TRX_RATE_6800KBPS) {
writeValueToBytes(drxtune1b, 0x0010, LEN_DRX_TUNE1b);
} else {
// TODO proper error/warning handling
}
}
// DRX_TUNE2
if(_pacSize == PAC_SIZE_8) {
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
writeValueToBytes(drxtune2, 0x311A002DL, LEN_DRX_TUNE2);
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
writeValueToBytes(drxtune2, 0x313B006BL, LEN_DRX_TUNE2);
} else {
// TODO proper error/warning handling
}
} else if(_pacSize == PAC_SIZE_16) {
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
writeValueToBytes(drxtune2, 0x331A0052L, LEN_DRX_TUNE2);
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
writeValueToBytes(drxtune2, 0x333B00BEL, LEN_DRX_TUNE2);
} else {
// TODO proper error/warning handling
}
} else if(_pacSize == PAC_SIZE_32) {
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
writeValueToBytes(drxtune2, 0x351A009AL, LEN_DRX_TUNE2);
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
writeValueToBytes(drxtune2, 0x353B015EL, LEN_DRX_TUNE2);
} else {
// TODO proper error/warning handling
}
} else if(_pacSize == PAC_SIZE_64) {
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
writeValueToBytes(drxtune2, 0x371A011DL, LEN_DRX_TUNE2);
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
writeValueToBytes(drxtune2, 0x373B0296L, LEN_DRX_TUNE2);
} else {
// TODO proper error/warning handling
}
} else {
// TODO proper error/warning handling
}
// DRX_TUNE4H
if(_preambleLength == TX_PREAMBLE_LEN_64) {
writeValueToBytes(drxtune4H, 0x0010, LEN_DRX_TUNE4H);
} else {
writeValueToBytes(drxtune4H, 0x0028, LEN_DRX_TUNE4H);
}
// RF_RXCTRLH
if(_channel != CHANNEL_4 && _channel != CHANNEL_7) {
writeValueToBytes(rfrxctrlh, 0xD8, LEN_RF_RXCTRLH);
} else {
writeValueToBytes(rfrxctrlh, 0xBC, LEN_RF_RXCTRLH);
}
// RX_TXCTRL
if(_channel == CHANNEL_1) {
writeValueToBytes(rftxctrl, 0x00005C40L, LEN_RF_TXCTRL);
} else if(_channel == CHANNEL_2) {
writeValueToBytes(rftxctrl, 0x00045CA0L, LEN_RF_TXCTRL);
} else if(_channel == CHANNEL_3) {
writeValueToBytes(rftxctrl, 0x00086CC0L, LEN_RF_TXCTRL);
} else if(_channel == CHANNEL_4) {
writeValueToBytes(rftxctrl, 0x00045C80L, LEN_RF_TXCTRL);
} else if(_channel == CHANNEL_5) {
writeValueToBytes(rftxctrl, 0x001E3FE0L, LEN_RF_TXCTRL);
} else if(_channel == CHANNEL_7) {
writeValueToBytes(rftxctrl, 0x001E7DE0L, LEN_RF_TXCTRL);
} else {
// TODO proper error/warning handling
}
// TC_PGDELAY
if(_channel == CHANNEL_1) {
writeValueToBytes(tcpgdelay, 0xC9, LEN_TC_PGDELAY);
} else if(_channel == CHANNEL_2) {
writeValueToBytes(tcpgdelay, 0xC2, LEN_TC_PGDELAY);
} else if(_channel == CHANNEL_3) {
writeValueToBytes(tcpgdelay, 0xC5, LEN_TC_PGDELAY);
} else if(_channel == CHANNEL_4) {
writeValueToBytes(tcpgdelay, 0x95, LEN_TC_PGDELAY);
} else if(_channel == CHANNEL_5) {
writeValueToBytes(tcpgdelay, 0xC0, LEN_TC_PGDELAY);
} else if(_channel == CHANNEL_7) {
writeValueToBytes(tcpgdelay, 0x93, LEN_TC_PGDELAY);
} else {
// TODO proper error/warning handling
}
// FS_PLLCFG and FS_PLLTUNE
if(_channel == CHANNEL_1) {
writeValueToBytes(fspllcfg, 0x09000407L, LEN_FS_PLLCFG);
writeValueToBytes(fsplltune, 0x1E, LEN_FS_PLLTUNE);
} else if(_channel == CHANNEL_2 || _channel == CHANNEL_4) {
writeValueToBytes(fspllcfg, 0x08400508L, LEN_FS_PLLCFG);
writeValueToBytes(fsplltune, 0x26, LEN_FS_PLLTUNE);
} else if(_channel == CHANNEL_3) {
writeValueToBytes(fspllcfg, 0x08401009L, LEN_FS_PLLCFG);
writeValueToBytes(fsplltune, 0x5E, LEN_FS_PLLTUNE);
} else if(_channel == CHANNEL_5 || _channel == CHANNEL_7) {
writeValueToBytes(fspllcfg, 0x0800041DL, LEN_FS_PLLCFG);
writeValueToBytes(fsplltune, 0xBE, LEN_FS_PLLTUNE);
} else {
// TODO proper error/warning handling
}
// LDE_CFG1
writeValueToBytes(ldecfg1, 0xD, LEN_LDE_CFG1);
// LDE_CFG2
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
writeValueToBytes(ldecfg2, 0x1607, LEN_LDE_CFG2);
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
writeValueToBytes(ldecfg2, 0x0607, LEN_LDE_CFG2);
} else {
// TODO proper error/warning handling
}
// LDE_REPC
if(_preambleCode == PREAMBLE_CODE_16MHZ_1 || _preambleCode == PREAMBLE_CODE_16MHZ_2) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x5998 >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x5998, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_16MHZ_3 || _preambleCode == PREAMBLE_CODE_16MHZ_8) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x51EA >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x51EA, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_16MHZ_4) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x428E >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x428E, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_16MHZ_5) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x451E >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x451E, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_16MHZ_6) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x2E14 >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x2E14, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_16MHZ_7) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x8000 >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x8000, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_64MHZ_9) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x28F4 >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x28F4, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_64MHZ_10 || _preambleCode == PREAMBLE_CODE_64MHZ_17) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x3332 >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x3332, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_64MHZ_11) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x3AE0 >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x3AE0, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_64MHZ_12) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x3D70 >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x3D70, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_64MHZ_18 || _preambleCode == PREAMBLE_CODE_64MHZ_19) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x35C2 >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x35C2, LEN_LDE_REPC);
}
} else if(_preambleCode == PREAMBLE_CODE_64MHZ_20) {
if(_dataRate == TRX_RATE_110KBPS) {
writeValueToBytes(lderepc, ((0x47AE >> 3) & 0xFFFF), LEN_LDE_REPC);
} else {
writeValueToBytes(lderepc, 0x47AE, LEN_LDE_REPC);
}
} else {
// TODO proper error/warning handling
}
// TX_POWER (enabled smart transmit power control)
if(_channel == CHANNEL_1 || _channel == CHANNEL_2) {
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x15355575L, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0x75757575L, LEN_TX_POWER);
}
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x07274767L, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0x67676767L, LEN_TX_POWER);
}
} else {
// TODO proper error/warning handling
}
} else if(_channel == CHANNEL_3) {
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x0F2F4F6FL, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0x6F6F6F6FL, LEN_TX_POWER);
}
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x2B4B6B8BL, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0x8B8B8B8BL, LEN_TX_POWER);
}
} else {
// TODO proper error/warning handling
}
} else if(_channel == CHANNEL_4) {
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x1F1F3F5FL, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0x5F5F5F5FL, LEN_TX_POWER);
}
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x3A5A7A9AL, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0x9A9A9A9AL, LEN_TX_POWER);
}
} else {
// TODO proper error/warning handling
}
} else if(_channel == CHANNEL_5) {
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x0E082848L, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0x48484848L, LEN_TX_POWER);
}
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x25456585L, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0x85858585L, LEN_TX_POWER);
}
} else {
// TODO proper error/warning handling
}
} else if(_channel == CHANNEL_7) {
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x32527292L, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0x92929292L, LEN_TX_POWER);
}
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
if(_smartPower) {
writeValueToBytes(txpower, 0x5171B1D1L, LEN_TX_POWER);
} else {
writeValueToBytes(txpower, 0xD1D1D1D1L, LEN_TX_POWER);
}
} else {
// TODO proper error/warning handling
}
} else {
// TODO proper error/warning handling
}
// Crystal calibration from OTP (if available)
byte buf_otp[4];
readBytesOTP(0x01E, buf_otp);
if (buf_otp[0] == 0) {
// No trim value available from OTP, use midrange value of 0x10
writeValueToBytes(fsxtalt, ((0x10 & 0x1F) | 0x60), LEN_FS_XTALT);
} else {
writeValueToBytes(fsxtalt, ((buf_otp[0] & 0x1F) | 0x60), LEN_FS_XTALT);
}
// write configuration back to chip
writeBytes(AGC_TUNE, AGC_TUNE1_SUB, agctune1, LEN_AGC_TUNE1);
writeBytes(AGC_TUNE, AGC_TUNE2_SUB, agctune2, LEN_AGC_TUNE2);
writeBytes(AGC_TUNE, AGC_TUNE3_SUB, agctune3, LEN_AGC_TUNE3);
writeBytes(DRX_TUNE, DRX_TUNE0b_SUB, drxtune0b, LEN_DRX_TUNE0b);
writeBytes(DRX_TUNE, DRX_TUNE1a_SUB, drxtune1a, LEN_DRX_TUNE1a);
writeBytes(DRX_TUNE, DRX_TUNE1b_SUB, drxtune1b, LEN_DRX_TUNE1b);
writeBytes(DRX_TUNE, DRX_TUNE2_SUB, drxtune2, LEN_DRX_TUNE2);
writeBytes(DRX_TUNE, DRX_TUNE4H_SUB, drxtune4H, LEN_DRX_TUNE4H);
writeBytes(LDE_IF, LDE_CFG1_SUB, ldecfg1, LEN_LDE_CFG1);
writeBytes(LDE_IF, LDE_CFG2_SUB, ldecfg2, LEN_LDE_CFG2);
writeBytes(LDE_IF, LDE_REPC_SUB, lderepc, LEN_LDE_REPC);
writeBytes(TX_POWER, NO_SUB, txpower, LEN_TX_POWER);
writeBytes(RF_CONF, RF_RXCTRLH_SUB, rfrxctrlh, LEN_RF_RXCTRLH);
writeBytes(RF_CONF, RF_TXCTRL_SUB, rftxctrl, LEN_RF_TXCTRL);
writeBytes(TX_CAL, TC_PGDELAY_SUB, tcpgdelay, LEN_TC_PGDELAY);
writeBytes(FS_CTRL, FS_PLLTUNE_SUB, fsplltune, LEN_FS_PLLTUNE);
writeBytes(FS_CTRL, FS_PLLCFG_SUB, fspllcfg, LEN_FS_PLLCFG);
writeBytes(FS_CTRL, FS_XTALT_SUB, fsxtalt, LEN_FS_XTALT);
}
/* ###########################################################################
* #### Interrupt handling ###################################################
* ######################################################################### */
void DW1000Class::handleInterrupt() {
// read current status and handle via callbacks
readSystemEventStatusRegister();
if(isClockProblem() /* TODO and others */ && _handleError != 0) {
(*_handleError)();
}
if(isTransmitDone() && _handleSent != 0) {
(*_handleSent)();
clearTransmitStatus();
}
if(isReceiveTimestampAvailable() && _handleReceiveTimestampAvailable != 0) {
(*_handleReceiveTimestampAvailable)();
clearReceiveTimestampAvailableStatus();
}
if(isReceiveFailed() && _handleReceiveFailed != 0) {
(*_handleReceiveFailed)();
clearReceiveStatus();
if(_permanentReceive) {
newReceive();
startReceive();
}
} else if(isReceiveTimeout() && _handleReceiveTimeout != 0) {
(*_handleReceiveTimeout)();
clearReceiveStatus();
if(_permanentReceive) {
newReceive();
startReceive();
}
} else if(isReceiveDone() && _handleReceived != 0) {
(*_handleReceived)();
clearReceiveStatus();
if(_permanentReceive) {
newReceive();
startReceive();
}
}
// clear all status that is left unhandled
clearAllStatus();
}
/* ###########################################################################
* #### Pretty printed device information ####################################
* ######################################################################### */
void DW1000Class::getPrintableDeviceIdentifier(char msgBuffer[]) {
byte data[LEN_DEV_ID];
readBytes(DEV_ID, NO_SUB, data, LEN_DEV_ID);
sprintf(msgBuffer, "%02X - model: %d, version: %d, revision: %d",
(uint16_t)((data[3] << 8) | data[2]), data[1], (data[0] >> 4) & 0x0F, data[0] & 0x0F);
}
void DW1000Class::getPrintableExtendedUniqueIdentifier(char msgBuffer[]) {
byte data[LEN_EUI];
readBytes(EUI, NO_SUB, data, LEN_EUI);
sprintf(msgBuffer, "%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",
data[7], data[6], data[5], data[4], data[3], data[2], data[1], data[0]);
}
void DW1000Class::getPrintableNetworkIdAndShortAddress(char msgBuffer[]) {
byte data[LEN_PANADR];
readBytes(PANADR, NO_SUB, data, LEN_PANADR);
sprintf(msgBuffer, "PAN: %02X, Short Address: %02X",
(uint16_t)((data[3] << 8) | data[2]), (uint16_t)((data[1] << 8) | data[0]));
}
void DW1000Class::getPrintableDeviceMode(char msgBuffer[]) {
// data not read from device! data is from class
// TODO
uint8_t prf;
uint16_t plen;
uint16_t dr;
uint8_t ch;
uint8_t pcode;
if(_pulseFrequency == TX_PULSE_FREQ_16MHZ) {
prf = 16;
} else if(_pulseFrequency == TX_PULSE_FREQ_64MHZ) {
prf = 64;
} else {
prf = 0; // error
}
if(_preambleLength == TX_PREAMBLE_LEN_64) {
plen = 64;
} else if(_preambleLength == TX_PREAMBLE_LEN_128) {
plen = 128;
} else if(_preambleLength == TX_PREAMBLE_LEN_256) {
plen = 256;
} else if(_preambleLength == TX_PREAMBLE_LEN_512) {
plen = 512;
} else if(_preambleLength == TX_PREAMBLE_LEN_1024) {
plen = 1024;
} else if(_preambleLength == TX_PREAMBLE_LEN_1536) {
plen = 1536;
} else if(_preambleLength == TX_PREAMBLE_LEN_2048) {
plen = 2048;
} else if(_preambleLength == TX_PREAMBLE_LEN_4096) {
plen = 4096;
} else {
plen = 0; // error
}
if(_dataRate == TRX_RATE_110KBPS) {
dr = 110;
} else if(_dataRate == TRX_RATE_850KBPS) {
dr = 850;
} else if(_dataRate == TRX_RATE_6800KBPS) {
dr = 6800;
} else {
dr = 0; // error
}
ch = (uint8_t)_channel;
pcode = (uint8_t)_preambleCode;
sprintf(msgBuffer, "Data rate: %u kb/s, PRF: %u MHz, Preamble: %u symbols (code #%u), Channel: #%u", dr, prf, plen, pcode, ch);
}
/* ###########################################################################
* #### DW1000 register read/write ###########################################
* ######################################################################### */
void DW1000Class::readSystemConfigurationRegister() {
readBytes(SYS_CFG, NO_SUB, _syscfg, LEN_SYS_CFG);
}
void DW1000Class::writeSystemConfigurationRegister() {
writeBytes(SYS_CFG, NO_SUB, _syscfg, LEN_SYS_CFG);
}
void DW1000Class::readSystemEventStatusRegister() {
readBytes(SYS_STATUS, NO_SUB, _sysstatus, LEN_SYS_STATUS);
}
void DW1000Class::readNetworkIdAndDeviceAddress() {
readBytes(PANADR, NO_SUB, _networkAndAddress, LEN_PANADR);
}
void DW1000Class::writeNetworkIdAndDeviceAddress() {
writeBytes(PANADR, NO_SUB, _networkAndAddress, LEN_PANADR);
}
void DW1000Class::readSystemEventMaskRegister() {
readBytes(SYS_MASK, NO_SUB, _sysmask, LEN_SYS_MASK);
}
void DW1000Class::writeSystemEventMaskRegister() {
writeBytes(SYS_MASK, NO_SUB, _sysmask, LEN_SYS_MASK);
}
void DW1000Class::readChannelControlRegister() {
readBytes(CHAN_CTRL, NO_SUB, _chanctrl, LEN_CHAN_CTRL);
}
void DW1000Class::writeChannelControlRegister() {
writeBytes(CHAN_CTRL, NO_SUB, _chanctrl, LEN_CHAN_CTRL);
}
void DW1000Class::readTransmitFrameControlRegister() {
readBytes(TX_FCTRL, NO_SUB, _txfctrl, LEN_TX_FCTRL);
}
void DW1000Class::writeTransmitFrameControlRegister() {
writeBytes(TX_FCTRL, NO_SUB, _txfctrl, LEN_TX_FCTRL);
}
/* ###########################################################################
* #### DW1000 operation functions ###########################################
* ######################################################################### */
void DW1000Class::setNetworkId(uint16_t val) {
_networkAndAddress[2] = (byte)(val & 0xFF);
_networkAndAddress[3] = (byte)((val >> 8) & 0xFF);
}
void DW1000Class::setDeviceAddress(uint16_t val) {
_networkAndAddress[0] = (byte)(val & 0xFF);
_networkAndAddress[1] = (byte)((val >> 8) & 0xFF);
}
uint8_t DW1000Class::nibbleFromChar(char c) {
if(c >= '0' && c <= '9') {
return c-'0';
}
if(c >= 'a' && c <= 'f') {
return c-'a'+10;
}
if(c >= 'A' && c <= 'F') {
return c-'A'+10;
}
return 255;
}
void DW1000Class::convertToByte(char string[], byte* bytes) {
byte eui_byte[LEN_EUI];
// we fill it with the char array under the form of "AA:FF:1C:...."
for(uint16_t i = 0; i < LEN_EUI; i++) {
eui_byte[i] = (nibbleFromChar(string[i*3]) << 4)+nibbleFromChar(string[i*3+1]);
}
memcpy(bytes, eui_byte, LEN_EUI);
}
void DW1000Class::getTempAndVbat(float& temp, float& vbat) {
// follow the procedure from section 6.4 of the User Manual
byte step1 = 0x80; writeBytes(RF_CONF, 0x11, &step1, 1);
byte step2 = 0x0A; writeBytes(RF_CONF, 0x12, &step2, 1);
byte step3 = 0x0F; writeBytes(RF_CONF, 0x12, &step3, 1);
byte step4 = 0x01; writeBytes(TX_CAL, NO_SUB, &step4, 1);
byte step5 = 0x00; writeBytes(TX_CAL, NO_SUB, &step5, 1);
byte sar_lvbat = 0; readBytes(TX_CAL, 0x03, &sar_lvbat, 1);
byte sar_ltemp = 0; readBytes(TX_CAL, 0x04, &sar_ltemp, 1);
// calculate voltage and temperature
vbat = (sar_lvbat - _vmeas3v3) / 173.0f + 3.3f;
temp = (sar_ltemp - _tmeas23C) * 1.14f + 23.0f;
}
void DW1000Class::setEUI(char eui[]) {
byte eui_byte[LEN_EUI];
convertToByte(eui, eui_byte);
setEUI(eui_byte);
}
void DW1000Class::setEUI(byte eui[]) {
//we reverse the address->
byte reverseEUI[8];
uint8_t size = 8;
for(uint8_t i = 0; i < size; i++) {
*(reverseEUI+i) = *(eui+size-i-1);
}
writeBytes(EUI, NO_SUB, reverseEUI, LEN_EUI);
}
//Frame Filtering BIT in the SYS_CFG register
void DW1000Class::setFrameFilter(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, FFEN_BIT, val);
}
void DW1000Class::setFrameFilterBehaveCoordinator(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, FFBC_BIT, val);
}
void DW1000Class::setFrameFilterAllowBeacon(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, FFAB_BIT, val);
}
void DW1000Class::setFrameFilterAllowData(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, FFAD_BIT, val);
}
void DW1000Class::setFrameFilterAllowAcknowledgement(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, FFAA_BIT, val);
}
void DW1000Class::setFrameFilterAllowMAC(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, FFAM_BIT, val);
}
void DW1000Class::setFrameFilterAllowReserved(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, FFAR_BIT, val);
}
void DW1000Class::setDoubleBuffering(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, DIS_DRXB_BIT, !val);
}
void DW1000Class::setInterruptPolarity(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, HIRQ_POL_BIT, val);
}
void DW1000Class::setReceiverAutoReenable(boolean val) {
setBit(_syscfg, LEN_SYS_CFG, RXAUTR_BIT, val);
}
void DW1000Class::interruptOnSent(boolean val) {
setBit(_sysmask, LEN_SYS_MASK, TXFRS_BIT, val);
}
void DW1000Class::interruptOnReceived(boolean val) {
setBit(_sysmask, LEN_SYS_MASK, RXDFR_BIT, val);
setBit(_sysmask, LEN_SYS_MASK, RXFCG_BIT, val);
}
void DW1000Class::interruptOnReceiveFailed(boolean val) {
setBit(_sysmask, LEN_SYS_STATUS, LDEERR_BIT, val);