-
Notifications
You must be signed in to change notification settings - Fork 18
/
ogn.h
1940 lines (1647 loc) · 93.5 KB
/
ogn.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef __OGN_H__
#define __OGN_H__
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#ifndef __AVR__
#include <time.h>
#endif
#include <math.h>
#include "intmath.h"
#include "bitcount.h"
#include "nmea.h"
#include "mavlink.h"
#include "ldpc.h"
#include "format.h"
/*
class OGN_SlowPacket // "slow packet" for transmitting position encoded in packet transmission times
{ public:
union
{ uint32_t Word[12]; // OGN packet as 32-bit words
uint8_t Byte[45]; // OGN packet as 8-bit bytes
struct // OGN packet as HeaderWord+Position+FEC
{ uint32_t Header; // ECRR PMTT AAAA AAAA AAAA AAAA AAAA AAAA
// E=Emergency, C=enCrypt/Custom, RR=Relay count, P=Parity, M=isMeteo/Telemetry, TT=address Type, AA..=Address:24-bit
// When enCrypt/Custom is set the data (position or whatever) can only be decoded by the owner
// This option is indented to pass any type of custom data not foreseen otheriwse
uint32_t Data[4];// 0: QQTT TTTT LLLL LLLL LLLL LLLL LLLL LLLL QQ=fix Quality:2, TTTTTT=time:6, LL..=Latitude:20
// 1: MBDD DDDD LLLL LLLL LLLL LLLL LLLL LLLL F=fixMode:1 B=isBaro:1, DDDDDD=DOP:6, LL..=Longitude:20
// 2: RRRR RRRR SSSS SSSS SSAA AAAA AAAA AAAA RR..=turn Rate:8, SS..=Speed:10, AA..=Alt:14
// 3: BBBB BBBB YYYY PCCC CCCC CCDD DDDD DDDD BB..=Baro altitude:8, YYYY=AcftType:4, P=Stealth:1, CC..=Climb:9, DD..=Heading:10
uint32_t FEC[7]; // Gallager code: 194 check bits for 160 user bits
} ;
} ;
*/
/*
class OGN_HardwareByte
{ public:
union
{ uint8_t Byte;
struct
{ uint8_t Baro:2; // 0=none, 1=BMP180, 2=BMP280, 3=MS5611
uint8_t RF :2; // 0=RFM69, 1=RFM95, 2=CC1101, ...
} ;
} ;
} ;
class OGN_FirmwareByte
{ public:
union
{ uint8_t Byte;
struct
{ uint8_t Revision:3;
uint8_t Version :3;
} ;
} ;
} ;
*/
// the packet description here is how it look on the little-endian CPU before sending it to the RF chip
// nRF905, CC1101, SPIRIT1, RFM69 chips actually reverse the bit order within every byte
// thus on the air the bits appear MSbit first for every byte transmitted
class OGN_Packet // Packet structure for the OGN tracker
{ public:
static const int Words = 5;
static const int Bytes = 20;
union
{ uint32_t HeaderWord; // ECRR PMTT AAAA AAAA AAAA AAAA AAAA AAAA
// E=Emergency, C=enCrypt/Custom, RR=Relay count, P=Parity, M=isMeteo/Other, TT=address Type, AA..=Address:24-bit
// When enCrypt/Custom is set the data (position or whatever) can only be decoded by the owner
// This option is indented to pass any type of custom data not foreseen otheriwse
struct
{ unsigned int Address :24; // aircraft address
unsigned int AddrType : 2; // address type: 0 = random, 1 = ICAO, 2 = FLARM, 3 = OGN
unsigned int Other : 1; // 0 = position packet, 1 = other information like status
unsigned int Parity : 1; // parity takes into account bits 0..27 thus only the 28 lowest bits
unsigned int RelayCount : 2; // 0 = direct packet, 1 = relayed once, 2 = relayed twice, ...
unsigned int Encrypted : 1; // packet is encrypted
unsigned int Emergency : 1; // aircraft in emergency (not used for now)
} Header ;
} ;
union
{ uint32_t Data[4]; // 0: QQTT TTTT LLLL LLLL LLLL LLLL LLLL LLLL QQ=fix Quality:2, TTTTTT=time:6, LL..=Latitude:20
// 1: MBDD DDDD LLLL LLLL LLLL LLLL LLLL LLLL F=fixMode:1 B=isBaro:1, DDDDDD=DOP:6, LL..=Longitude:20
// 2: RRRR RRRR SSSS SSSS SSAA AAAA AAAA AAAA RR..=turn Rate:8, SS..=Speed:10, AA..=Alt:14
// 3: BBBB BBBB YYYY PCCC CCCC CCDD DDDD DDDD BB..=Baro altitude:8, YYYY=AcftType:4, P=Stealth:1, CC..=Climb:9, DD..=Heading:10
// meteo/telemetry types: Meteo conditions, Thermal wind/climb, Device status, Precise time,
// meteo report: Humidity, Barometric pressure, Temperature, wind Speed/Direction
// 2: HHHH HHHH SSSS SSSS SSAA AAAA AAAA AAAA
// 3: TTTT TTTT YYYY BBBB BBBB BBDD DDDD DDDD YYYY = report tYpe (meteo, thermal, water level, other telemetry)
// Device status: Time, baro pressure+temperature, GPS altitude, supply voltage, TX power, RF noise, software version, software features, hardware features,
// 0: UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUUU UU..=Unix time
// 1: SSSS SSSS SSSS SSSS TTTT TTTT HHHH HHHH SS..=slot time, TT..=temperature, HH..=humidity
// 2: BBBB BBBB BBBB BBBB BBAA AAAA AAAA AAAA Baro pressure[0.5Pa], GPS altitude
// 3: VVVV VVVV YYYY HHHH HHHH XXXX VVVV VVVV VV..=firmware version, YYYY = report type, TT..=Temperatature, XX..=TxPower, VV..=battery voltage
// Pilot status:
// 0: NNNN NNNN NNNN NNNN NNNN NNNN NNNN NNNN Name: 9 char x 7bit or 10 x 6bit or Huffman encoding ?
// 1: NNNN NNNN NNNN NNNN NNNN NNNN NNNN NNNN
struct
{ signed int Latitude:24; // // QQTT TTTT LLLL LLLL LLLL LLLL LLLL LLLL QQ=fix Quality:2, TTTTTT=time:6, LL..=Latitude:24
unsigned int Time: 6; // [sec] // time, just second thus ambiguity every every minute
unsigned int FixQuality: 2; // // 0 = none, 1 = GPS, 2 = Differential GPS (can be WAAS)
signed int Longitude:24; // // MBDD DDDD LLLL LLLL LLLL LLLL LLLL LLLL F=fixMode:1 B=isBaro:1, DDDDDD=DOP:6, LL..=Longitude:24
unsigned int DOP: 6; // // GPS Dilution of Precision
unsigned int BaroMSB: 1; // // negated bit #8 of the altitude difference between baro and GPS
unsigned int FixMode: 1; // // 0 = 2-D, 1 = 3-D
unsigned int Altitude:14; // [m] VR // RRRR RRRR SSSS SSSS SSAA AAAA AAAA AAAA RR..=turn Rate:8, SS..=Speed:10, AA..=Alt:14
unsigned int Speed:10; // [0.1m/s] VR
unsigned int TurnRate: 8; // [0.1deg/s] VR
unsigned int Heading:10; // [360/1024deg] // BBBB BBBB YYYY PCCC CCCC CCDD DDDD DDDD BB..=Baro altitude:8, YYYY=AcftType:4, P=Stealth:1, CC..=Climb:9, DD..=Heading:10
unsigned int ClimbRate: 9; // [0.1m/s] VR // rate of climb/decent from GPS or from baro sensor
unsigned int Stealth: 1; // // not really used till now
unsigned int AcftType: 4; // [0..15] // type of aircraft: 1 = glider, 2 = towplane, 3 = helicopter, ...
unsigned int BaroAltDiff: 8; // [m] // lower 8 bits of the altitude difference between baro and GPS
} Position;
struct
{ unsigned int Pulse : 8; // [bpm] // pilot: heart pulse rate
unsigned int Oxygen : 7; // [%] // pilot: oxygen level in the blood
unsigned int FEScurr : 5; // [A] // FES current
unsigned int RxRate : 4; // [/min] // log2 of received packet rate
unsigned int Time : 6; // [sec] // same as in the position packet
unsigned int FixQuality: 2;
unsigned int AudioNoise: 8; // [dB] //
unsigned int RadioNoise: 8; // [dBm] // noise seen by the RF chip
unsigned int Temperature:8; // [0.1degC] VR // temperature by the baro or RF chip
unsigned int Humidity : 8; // [%] // humidity
unsigned int Altitude :14; // [m] VR // same as in the position packet
unsigned int Pressure :14; // [0.08hPa] // barometric pressure
unsigned int Satellites: 4; // [ ]
unsigned int Firmware : 8; // [ ] // firmware version
unsigned int Hardware : 8; // [ ] // hardware version
unsigned int TxPower : 4; // [dBm] // RF trancmitter power
unsigned int ReportType: 4; // [0] // 0 for the status report
unsigned int Voltage : 8; // [1/64V] VR // supply/battery voltage
} Status;
struct
{ uint8_t Data[14]; // [16x7bit]packed string of 16-char: 7bit/char
unsigned int DataChars: 4; // [int] number of characters in the packed string
unsigned int ReportType: 4; // [1] // 1 for the Info packets
uint8_t Check; // CRC check
} Info;
struct
{ signed int Latitude:24; // // Latitude of the measurement
unsigned int Time: 6; // [sec] // time, just second thus ambiguity every every minute
unsigned int : 2; // // spare
signed int Longitude:24; // // Longitude of the measurement
unsigned int : 6; // // spare
unsigned int BaroMSB: 1; // // negated bit #8 of the altitude difference between baro and GPS
unsigned int : 1; // // spare
unsigned int Altitude:14; // [m] VR // Altitude of the measurement
unsigned int Speed:10; // [0.1m/s] VR // Horizontal wind speed
unsigned int : 8; // // spare
unsigned int Heading:10; // // Wind direction
unsigned int ClimbRate: 9; // [0.1m/s] VR // Vertical wind speed
unsigned int : 1; // // spare
unsigned int ReportType: 4; // // 2 for wind/thermal report
unsigned int BaroAltDiff: 8; // [m] // lower 8 bits of the altitude difference between baro and GPS
} Wind;
} ;
uint8_t *Byte(void) const { return (uint8_t *)&HeaderWord; } // packet as bytes
uint32_t *Word(void) const { return (uint32_t *)&HeaderWord; } // packet as words
// void recvBytes(const uint8_t *SrcPacket) { memcpy(Byte(), SrcPacket, Bytes); } // load data bytes e.g. from a demodulator
#ifdef __AVR__
#endif
#ifndef __AVR__
void Dump(void) const
{ printf("%08lX: %08lX %08lX %08lX %08lX\n",
(long int)HeaderWord, (long int)Data[0], (long int)Data[1],
(long int)Data[2], (long int)Data[3] ); }
void DumpBytes(void) const
{ for(uint8_t Idx=0; Idx<Bytes; Idx++)
{ printf(" %02X", Byte()[Idx]); }
printf("\n"); }
int WriteDeviceStatus(char *Out)
{ return sprintf(Out, " h%02X v%02X %dsat/%d %ldm %3.1fhPa %+4.1fdegC %3.1f%% %4.2fV %d/%+4.1fdBm %d/min",
Status.Hardware, Status.Firmware, Status.Satellites, Status.FixQuality,
(long int)DecodeAltitude(), 0.08*Status.Pressure, 0.1*DecodeTemperature(), 0.1*DecodeHumidity(),
(1.0/64)*DecodeVoltage(), Status.TxPower+4, -0.5*Status.RadioNoise, (1<<Status.RxRate)-1 );
}
void Print(void) const
{ if(!Header.Other) { PrintPosition(); return; }
if(Status.ReportType==0) { PrintDeviceStatus(); return; }
}
void PrintDeviceStatus(void) const
{ printf("%c:%06lX R%c%c %02ds:",
'0'+Header.AddrType, (long int)Header.Address, '0'+Header.RelayCount, Header.Emergency?'E':' ', Status.Time);
printf(" h%02X v%02X %dsat/%d %ldm %3.1fhPa %+4.1fdegC %3.1f%% %4.2fV Tx:%ddBm Rx:%+4.1fdBm %d/min",
Status.Hardware, Status.Firmware, Status.Satellites, Status.FixQuality,
(long int)DecodeAltitude(), 0.08*Status.Pressure, 0.1*DecodeTemperature(), 0.1*DecodeHumidity(),
(1.0/64)*DecodeVoltage(), Status.TxPower+4, -0.5*Status.RadioNoise, (1<<Status.RxRate)-1 );
printf("\n");
}
void PrintPosition(void) const
{ printf("%c%X:%c:%06lX R%c%c",
Position.Stealth ?'s':' ', (int)Position.AcftType, '0'+Header.AddrType, (long int)Header.Address, '0'+Header.RelayCount,
Header.Emergency?'E':' ');
printf(" %d/%dD/%4.1f", (int)Position.FixQuality, (int)Position.FixMode+2, 0.1*(10+DecodeDOP()) );
if(Position.Time<60) printf(" %02ds:", (int)Position.Time);
else printf(" ---:");
printf(" [%+10.6f, %+11.6f]deg %ldm",
0.0001/60*DecodeLatitude(), 0.0001/60*DecodeLongitude(), (long int)DecodeAltitude() );
if(hasBaro())
{ printf("[%+dm]", (int)getBaroAltDiff() ); }
printf(" %3.1fm/s %05.1fdeg %+4.1fm/s %+4.1fdeg/s",
0.1*DecodeSpeed(), 0.1*DecodeHeading(), 0.1*DecodeClimbRate(), 0.1*DecodeTurnRate() );
printf("\n");
}
void Encode(MAV_ADSB_VEHICLE *MAV)
{ MAV->ICAO_address = HeaderWord&0x03FFFFFF;
MAV->lat = ((int64_t)50*DecodeLatitude()+1)/3;
MAV->lon = ((int64_t)50*DecodeLongitude()+1)/3;
MAV->altitude = 1000*DecodeAltitude();
MAV->heading = 10*DecodeHeading();
MAV->hor_velocity = 10*DecodeSpeed();
MAV->ver_velocity = 10*DecodeClimbRate();
MAV->flags = 0x17;
MAV->altitude_type = 1;
MAV->callsign[0] = 0;
MAV->tslc = 0;
MAV->emiter_type = 0; }
int8_t ReadAPRS(const char *Msg) // read an APRS position message
{ Clear();
const char *Data = strchr(Msg, ':'); if(Data==0) return -1; // where the time/position data starts
Data++;
const char *Dest = strchr(Msg, '>'); if(Dest==0) return -1; // where the destination call is
Dest++;
const char *Comma = strchr(Dest, ','); // the first comma after the destination call
Position.AcftType=0xF;
uint8_t AddrType;
uint32_t Address;
if(memcmp(Msg, "RND", 3)==0) AddrType=0;
else if(memcmp(Msg, "ICA", 3)==0) AddrType=1;
else if(memcmp(Msg, "FLR", 3)==0) AddrType=2;
else if(memcmp(Msg, "OGN", 3)==0) AddrType=3;
else AddrType=4;
if(AddrType<4)
{ if(Read_Hex(Address, Msg+3)==6) Header.Address=Address;
Header.AddrType=AddrType; }
if(Comma)
{ if(memcmp(Comma+1, "RELAY*" , 6)==0) Header.RelayCount=1;
else if(Comma[10]=='*') Header.RelayCount=1;
}
if(Data[0]!='/') return -1;
int8_t Time;
if(Data[7]=='h') // HHMMSS UTC time
{ Time=Read_Dec2(Data+5); if(Time<0) return -1; }
else if(Data[7]=='z') // DDHHMM UTC time
{ Time=0; }
else return -1;
Position.Time=Time;
Data+=8;
Position.FixMode=1;
Position.FixQuality=1;
EncodeDOP(0xFF);
int8_t LatDeg = Read_Dec2(Data); if(LatDeg<0) return -1;
int8_t LatMin = Read_Dec2(Data+2); if(LatMin<0) return -1;
if(Data[4]!='.') return -1;
int8_t LatFrac = Read_Dec2(Data+5); if(LatFrac<0) return -1;
int32_t Latitude = (int32_t)LatDeg*600000 + (int32_t)LatMin*10000 + (int32_t)LatFrac*100;
char LatSign = Data[7];
Data+=8+1;
int16_t LonDeg = Read_Dec3(Data); if(LonDeg<0) return -1;
int8_t LonMin = Read_Dec2(Data+3); if(LonMin<0) return -1;
if(Data[5]!='.') return -1;
int8_t LonFrac = Read_Dec2(Data+6); if(LonFrac<0) return -1;
int32_t Longitude = (int32_t)LonDeg*600000 + (int32_t)LonMin*10000 + (int32_t)LonFrac*100;
char LonSign = Data[8];
Data+=9+1;
int16_t Speed=0;
int16_t Heading=0;
if(Data[3]=='/')
{ Heading=Read_Dec3(Data);
Speed=Read_Dec3(Data+4);
Data+=7; }
EncodeHeading(Heading*10);
EncodeSpeed(((int32_t)Speed*337146+0x8000)>>16);
uint32_t Altitude=0;
if( (Data[0]=='/') && (Data[1]=='A') && (Data[2]=='=') && (Read_UnsDec(Altitude, Data+3)==6) )
{ Altitude = (3*Altitude+5)/10;
Data+=9; }
EncodeAltitude(Altitude);
for( ; ; )
{ if(Data[0]!=' ') break;
Data++;
if( (Data[0]=='!') && (Data[1]=='W') && (Data[4]=='!') )
{ Latitude += (Data[2]-'0')*10;
Longitude += (Data[3]-'0')*10;
Data+=5; continue; }
if( (Data[0]=='i') && (Data[1]=='d') )
{ uint32_t ID; Read_Hex(ID, Data+2);
Header.Address = ID&0x00FFFFFF;
Header.AddrType = (ID>>24)&0x03;
Position.AcftType = (ID>>26)&0x0F;
Position.Stealth = ID>>31;
Data+=10; continue; }
if( (Data[0]=='F') && (Data[1]=='L') && (Data[5]=='.') )
{ int16_t FLdec=Read_Dec3(Data+2);
int16_t FLfrac=Read_Dec2(Data+6);
if( (FLdec>=0) && (FLfrac>=0) )
{ uint32_t StdAlt = FLdec*100+FLfrac;
StdAlt = (StdAlt*3+5)/10;
EncodeStdAltitude(StdAlt); }
Data+=8; continue; }
if( (Data[0]=='+') || (Data[0]=='-') )
{ int32_t Value; int8_t Len=Read_Float1(Value, Data);
if(Len>0)
{ Data+=Len;
if(memcmp(Data, "fpm", 3)==0) { EncodeClimbRate(Value/200); Data+=3; continue; }
if(memcmp(Data, "rot", 3)==0) { EncodeTurnRate(3*Value); Data+=3; continue; }
}
}
if( (Data[0]=='g') && (Data[1]=='p') && (Data[2]=='s') )
{ int16_t HorPrec=Read_Dec2(Data+3);
if(HorPrec<0) HorPrec=Read_Dec1(Data[3]);
if(HorPrec>=0)
{ uint16_t DOP=HorPrec*5; if(DOP<10) DOP=10; else if(DOP>230) DOP=230;
EncodeDOP(DOP-10); Data+=5; }
}
while(Data[0]>' ') Data++;
}
if(LatSign=='S') Latitude=(-Latitude); else if(LatSign!='N') return -1;
EncodeLatitude(Latitude);
if(LonSign=='W') Longitude=(-Longitude); else if(LonSign!='E') return -1;
EncodeLongitude(Longitude);
return 0; }
#endif // __AVR__
// calculate distance vector [LatDist, LonDist] from a given reference [RefLat, Reflon]
int calcDistanceVector(int32_t &LatDist, int32_t &LonDist, int32_t RefLat, int32_t RefLon, uint16_t LatCos=3000, int32_t MaxDist=0x7FFF)
{ LatDist = ((DecodeLatitude()-RefLat)*1517+0x1000)>>13; // convert from 1/600000deg to meters (40000000m = 360deg) => x 5/27 = 1517/(1<<13)
if(abs(LatDist)>MaxDist) return -1;
LonDist = ((DecodeLongitude()-RefLon)*1517+0x1000)>>13;
if(abs(LonDist)>(4*MaxDist)) return -1;
LonDist = (LonDist*LatCos+0x800)>>12;
if(abs(LonDist)>MaxDist) return -1;
return 1; }
// sets position [Lat, Lon] according to given distance vector [LatDist, LonDist] from a reference point [RefLat, RefLon]
void setDistanceVector(int32_t LatDist, int32_t LonDist, int32_t RefLat, int32_t RefLon, uint16_t LatCos=3000)
{ EncodeLatitude(RefLat+(LatDist*27)/5);
LonDist = (LonDist<<12)/LatCos; // LonDist/=cosine(Latitude)
EncodeLongitude(RefLon+(LonDist*27)/5); }
// Centripetal acceleration
static int16_t calcCPaccel(int16_t Speed, int16_t TurnRate) { return ((int32_t)TurnRate*Speed*229+0x10000)>>17; } // [0.1m/s^2]
int16_t calcCPaccel(void) { return calcCPaccel(DecodeSpeed(), DecodeTurnRate()); }
// Turn radius
static int16_t calcTurnRadius(int16_t Speed, int16_t TurnRate, int16_t MaxRadius=0x7FFF) // [m]
{ if(TurnRate==0) return 0;
int32_t Radius = 14675*Speed;
Radius /= TurnRate; Radius = (Radius+128)>>8;
if(abs(Radius)>MaxRadius) return 0;
return Radius; }
int16_t calcTurnRadius(int16_t MaxRadius=0x7FFF) { return calcTurnRadius(DecodeSpeed(), DecodeTurnRate(), MaxRadius); }
// uint8_t WritePFLAA(char *NMEA, uint8_t Status, GPS_Position &Position)
// { return WritePFLAA(NMEA, uint8_t Status, Position.Latitude, Position.Longitude, (Position.Altitude+5)/10, Position.LatitudeCosine); }
// produce PFLAA sentence (relative position) from a reference point [RefLat, RefLon]
uint8_t WritePFLAA(char *NMEA, uint8_t Status, int32_t RefLat, int32_t RefLon, int32_t RefAlt, uint16_t LatCos)
{ int32_t LatDist=0, LonDist=0;
if(calcDistanceVector(LatDist, LonDist, RefLat, RefLon, LatCos)<0) return 0; // return zero, when distance too large
int32_t AltDist = DecodeAltitude()-RefAlt;
return WritePFLAA(NMEA, Status, LatDist, LonDist, AltDist, Status); } // return number of formatted characters
uint8_t WritePFLAA(char *NMEA, uint8_t Status, int32_t LatDist, int32_t LonDist, int32_t AltDist)
{ uint8_t Len=0;
Len+=Format_String(NMEA+Len, "$PFLAA,"); // sentence name and alarm-level (but no alarms for trackers)
NMEA[Len++]='0'+Status;
NMEA[Len++]=',';
Len+=Format_SignDec(NMEA+Len, LatDist);
NMEA[Len++]=',';
Len+=Format_SignDec(NMEA+Len, LonDist);
NMEA[Len++]=',';
Len+=Format_SignDec(NMEA+Len, AltDist); // [m] relative altitude
NMEA[Len++]=',';
NMEA[Len++]='0'+Header.AddrType; // address-type (3=OGN)
NMEA[Len++]=',';
uint32_t Addr = Header.Address; // [24-bit] address
Len+=Format_Hex(NMEA+Len, (uint8_t)(Addr>>16)); // XXXXXX 24-bit address: RND, ICAO, FLARM, OGN
Len+=Format_Hex(NMEA+Len, (uint16_t)Addr);
NMEA[Len++]=',';
Len+=Format_UnsDec(NMEA+Len, DecodeHeading(), 4, 1); // [deg] heading (by GPS)
NMEA[Len++]=',';
Len+=Format_SignDec(NMEA+Len, DecodeTurnRate(), 2, 1); // [deg/sec] turn rate
NMEA[Len++]=',';
Len+=Format_UnsDec(NMEA+Len, DecodeSpeed(), 2, 1); // [approx. m/s] ground speed
NMEA[Len++]=',';
Len+=Format_SignDec(NMEA+Len, DecodeClimbRate(), 2, 1); // [m/s] climb/sink rate
NMEA[Len++]=',';
NMEA[Len++]=HexDigit(Position.AcftType); // [0..F] aircraft-type: 1=glider, 2=tow plane, etc.
Len+=NMEA_AppendCheckCRNL(NMEA, Len);
NMEA[Len]=0;
return Len; } // return number of formatted characters
uint8_t Print(char *Out) const
{ uint8_t Len=0;
Out[Len++]=HexDigit(Position.AcftType); Out[Len++]=':';
Out[Len++]='0'+Header.AddrType; Out[Len++]=':';
uint32_t Addr = Header.Address;
Len+=Format_Hex(Out+Len, (uint8_t)(Addr>>16));
Len+=Format_Hex(Out+Len, (uint16_t)Addr);
Out[Len++]=' ';
// Len+=Format_SignDec(Out+Len, -(int16_t)RxRSSI/2); Out[Len++]='d'; Out[Len++]='B'; Out[Len++]='m';
// Out[Len++]=' ';
Len+=Format_UnsDec(Out+Len, (uint16_t)Position.Time, 2);
Out[Len++]=' ';
Len+=PrintLatitude(Out+Len, DecodeLatitude());
Out[Len++]=' ';
Len+=PrintLongitude(Out+Len, DecodeLongitude());
Out[Len++]=' ';
Len+=Format_UnsDec(Out+Len, (uint32_t)DecodeAltitude()); Out[Len++]='m';
Out[Len++]=' ';
Len+=Format_UnsDec(Out+Len, DecodeSpeed(), 2, 1); Out[Len++]='m'; Out[Len++]='/'; Out[Len++]='s';
Out[Len++]=' ';
Len+=Format_SignDec(Out+Len, DecodeClimbRate(), 2, 1); Out[Len++]='m'; Out[Len++]='/'; Out[Len++]='s';
Out[Len++]='\n'; Out[Len]=0;
return Len; }
static uint8_t PrintLatitude(char *Out, int32_t Lat)
{ uint8_t Len=0;
char Sign='N';
if(Lat<0) { Sign='S'; Lat=(-Lat); }
uint32_t Deg=Lat/600000;
Lat -= 600000*Deg;
Len+=Format_UnsDec(Out+Len, Deg, 2, 0);
Len+=Format_UnsDec(Out+Len, Lat, 6, 4);
Out[Len++]=Sign;
return Len; }
static uint8_t PrintLongitude(char *Out, int32_t Lon)
{ uint8_t Len=0;
char Sign='E';
if(Lon<0) { Sign='W'; Lon=(-Lon); }
uint32_t Deg=Lon/600000;
Lon -= 600000*Deg;
Len+=Format_UnsDec(Out+Len, Deg, 3, 0);
Len+=Format_UnsDec(Out+Len, Lon, 6, 4);
Out[Len++]=Sign;
return Len; }
// OGN_Packet() { Clear(); }
void Clear(void) { HeaderWord=0; Data[0]=0; Data[1]=0; Data[2]=0; Data[3]=0; }
uint32_t getAddressAndType(void) const { return HeaderWord&0x03FFFFFF; } // Address with address-type: 26-bit
void setAddressAndType(uint32_t AddrAndType) { HeaderWord = (HeaderWord&0xFC000000) | (AddrAndType&0x03FFFFFF); }
bool goodAddrParity(void) const { return ((Count1s(HeaderWord&0x0FFFFFFF)&1)==0); } // Address parity should be EVEN
void calcAddrParity(void) { if(!goodAddrParity()) HeaderWord ^= 0x08000000; } // if not correct parity, flip the parity bit
bool hasBaro(void) const { return Position.BaroMSB || Position.BaroAltDiff; }
void clrBaro(void) { Position.BaroMSB=0; Position.BaroAltDiff=0; }
int16_t getBaroAltDiff(void) const { int16_t AltDiff=Position.BaroAltDiff; if(Position.BaroMSB==0) AltDiff|=0xFF00; return AltDiff; }
void setBaroAltDiff(int32_t AltDiff)
{ if(AltDiff<(-255)) AltDiff=(-255); else if(AltDiff>255) AltDiff=255;
Position.BaroMSB = (AltDiff&0xFF00)==0; Position.BaroAltDiff=AltDiff&0xFF; }
void EncodeStdAltitude(int32_t StdAlt) { setBaroAltDiff((StdAlt-DecodeAltitude())); }
int32_t DecodeStdAltitude(void) const { return (DecodeAltitude()+getBaroAltDiff()); }
static uint16_t EncodeUR2V8(uint16_t Value) // Encode unsigned 12bit (0..3832) as 10bit
{ if(Value<0x100) { }
else if(Value<0x300) Value = 0x100 | ((Value-0x100)>>1);
else if(Value<0x700) Value = 0x200 | ((Value-0x300)>>2);
else if(Value<0xF00) Value = 0x300 | ((Value-0x700)>>3);
else Value = 0x3FF;
return Value; }
static uint16_t DecodeUR2V8(uint16_t Value) // Decode 10bit 0..0x3FF
{ uint16_t Range = Value>>8;
Value &= 0x0FF;
if(Range==0) return Value; // 000..0FF
if(Range==1) return 0x101+(Value<<1); // 100..2FE
if(Range==2) return 0x302+(Value<<2); // 300..6FC
return 0x704+(Value<<3); } // 700..EF8 // in 12bit (0..3832)
static uint8_t EncodeUR2V5(uint16_t Value) // Encode unsigned 9bit (0..472) as 7bit
{ if(Value<0x020) { }
else if(Value<0x060) Value = 0x020 | ((Value-0x020)>>1);
else if(Value<0x0E0) Value = 0x040 | ((Value-0x060)>>2);
else if(Value<0x1E0) Value = 0x060 | ((Value-0x0E0)>>3);
else Value = 0x07F;
return Value; }
static uint16_t DecodeUR2V5(uint16_t Value) // Decode 7bit as unsigned 9bit (0..472)
{ uint8_t Range = (Value>>5)&0x03;
Value &= 0x1F;
if(Range==0) { } // 000..01F
else if(Range==1) { Value = 0x021+(Value<<1); } // 020..05E
else if(Range==2) { Value = 0x062+(Value<<2); } // 060..0DC
else { Value = 0x0E4+(Value<<3); } // 0E0..1D8 => max. Value = 472
return Value; }
static uint8_t EncodeSR2V5(int16_t Value) // Encode signed 10bit (-472..+472) as 8bit
{ uint8_t Sign=0; if(Value<0) { Value=(-Value); Sign=0x80; }
Value = EncodeUR2V5(Value);
return Value | Sign; }
static int16_t DecodeSR2V5( int16_t Value) // Decode
{ int16_t Sign = Value&0x80;
Value = DecodeUR2V5(Value&0x7F);
return Sign ? -Value: Value; }
static uint16_t EncodeUR2V6(uint16_t Value) // Encode unsigned 10bit (0..952) as 8 bit
{ if(Value<0x040) { }
else if(Value<0x0C0) Value = 0x040 | ((Value-0x040)>>1);
else if(Value<0x1C0) Value = 0x080 | ((Value-0x0C0)>>2);
else if(Value<0x3C0) Value = 0x0C0 | ((Value-0x1C0)>>3);
else Value = 0x0FF;
return Value; }
static uint16_t DecodeUR2V6(uint16_t Value) // Decode 8bit as unsigned 10bit (0..952)
{ uint16_t Range = (Value>>6)&0x03;
Value &= 0x3F;
if(Range==0) { } // 000..03F
else if(Range==1) { Value = 0x041+(Value<<1); } // 040..0BE
else if(Range==2) { Value = 0x0C2+(Value<<2); } // 0C0..1BC
else { Value = 0x1C4+(Value<<3); } // 1C0..3B8 => max. Value = 952
return Value; }
static uint16_t EncodeSR2V6(int16_t Value) // Encode signed 11bit (-952..+952) as 9bit
{ uint16_t Sign=0; if(Value<0) { Value=(-Value); Sign=0x100; }
Value = EncodeUR2V6(Value);
return Value | Sign; }
static int16_t DecodeSR2V6( int16_t Value) // Decode 9bit as signed 11bit (-952..+952)
{ int16_t Sign = Value&0x100;
Value = DecodeUR2V6(Value&0x00FF);
return Sign ? -Value: Value; }
void EncodeLatitude(int32_t Latitude) // encode Latitude: units are 0.0001/60 degrees
{ Position.Latitude = Latitude>>3; }
int32_t DecodeLatitude(void) const
{ int32_t Latitude = Position.Latitude;
// if(Latitude&0x00800000) Latitude|=0xFF000000;
Latitude = (Latitude<<3)+4; return Latitude; }
void EncodeLongitude(int32_t Longitude) // encode Longitude: units are 0.0001/60 degrees
{ Position.Longitude = Longitude>>=4; }
int32_t DecodeLongitude(void) const
{ int32_t Longitude = Position.Longitude;
// if(Longitude&0x00800000) Longitude|=0xFF000000;
Longitude = (Longitude<<4)+8; return Longitude; }
static uint16_t EncodeUR2V12(uint16_t Value) // encode unsigned 16-bit (0..61432) as 14-bit
{ if(Value<0x1000) { }
else if(Value<0x3000) Value = 0x1000 | ((Value-0x1000)>>1);
else if(Value<0x7000) Value = 0x2000 | ((Value-0x3000)>>2);
else if(Value<0xF000) Value = 0x3000 | ((Value-0x7000)>>3);
else Value = 0x3FFF;
return Value; }
static uint16_t DecodeUR2V12(uint16_t Value)
{ uint16_t Range = Value>>12;
Value &=0x0FFF;
if(Range==0) return Value; // 0000..0FFF
if(Range==1) return 0x1001+(Value<<1); // 1000..2FFE
if(Range==2) return 0x3002+(Value<<2); // 3000..6FFC
return 0x7004+(Value<<3); } // 7000..EFF8 => max: 61432
void EncodeAltitude(int32_t Altitude) // encode altitude in meters
{ if(Altitude<0) Altitude=0;
Position.Altitude = EncodeUR2V12((uint16_t)Altitude); }
int32_t DecodeAltitude(void) const // return Altitude in meters
{ return DecodeUR2V12(Position.Altitude); }
void EncodeDOP(uint8_t DOP)
{ // if(DOP<0) DOP=0;
if(DOP<0x10) { }
else if(DOP<0x30) DOP = 0x10 | ((DOP-0x10)>>1);
else if(DOP<0x70) DOP = 0x20 | ((DOP-0x30)>>2);
else if(DOP<0xF0) DOP = 0x30 | ((DOP-0x70)>>3);
else DOP = 0x3F;
Position.DOP = DOP; }
uint8_t DecodeDOP(void) const
{ uint8_t DOP = Position.DOP;
uint8_t Range = DOP>>4;
DOP &= 0x0F;
if(Range==0) return DOP; // 00..0F
if(Range==1) return 0x11+(DOP<<1); // 10..2E
if(Range==2) return 0x32+(DOP<<2); // 30..6C
return 0x74+(DOP<<3); } // 70..E8 => max. DOP = 232*0.1=23.2
void EncodeSpeed(int16_t Speed) // speed in 0.2 knots (or 0.1m/s)
{ if(Speed<0) Speed=0;
else Speed=EncodeUR2V8(Speed);
Position.Speed = Speed; }
int16_t DecodeSpeed(void) const // return speed in 0.2 knots or 0.1m/s units
{ return DecodeUR2V8(Position.Speed); } // => max. speed: 3832*0.2 = 766 knots
int16_t DecodeHeading(void) const // return Heading in 0.1 degree units 0..359.9 deg
{ int32_t Heading = Position.Heading;
return (Heading*3600+512)>>10; }
void EncodeHeading(int16_t Heading)
{ Position.Heading = (((int32_t)Heading<<10)+180)/3600; }
void setHeadingAngle(uint16_t HeadingAngle)
{ Position.Heading = (((HeadingAngle+32)>>6)); }
uint16_t getHeadingAngle(void) const
{ return (uint16_t)Position.Heading<<6; }
void EncodeTurnRate(int16_t Turn) // [0.1 deg/sec]
{ Position.TurnRate = EncodeSR2V5(Turn); }
int16_t DecodeTurnRate(void) const
{ return DecodeSR2V5(Position.TurnRate); }
void EncodeClimbRate(int16_t Climb)
{ Position.ClimbRate = EncodeSR2V6(Climb); }
int16_t DecodeClimbRate(void) const
{ return DecodeSR2V6(Position.ClimbRate); }
// --------------------------------------------------------------------------------------------------------------
// Status fields
void clrTemperature(void) { Status.Temperature=0x80; }
bool hasTemperature(void) const { return Status.Temperature==0x80; }
void EncodeTemperature(int16_t Temp) { Status.Temperature=EncodeSR2V5(Temp-200); } // [0.1degC]
int16_t DecodeTemperature(void) const { return 200+DecodeSR2V5(Status.Temperature); }
void EncodeVoltage(uint16_t Voltage) { Status.Voltage=EncodeUR2V6(Voltage); } // [1/64V]
uint16_t DecodeVoltage(void) const { return DecodeUR2V6(Status.Voltage); }
void clrHumidity(void) { Status.Humidity=0x80; }
bool hasHumidity(void) const { return Status.Humidity==0x80; }
void EncodeHumidity(uint16_t Hum) { Status.Humidity=EncodeSR2V5((int16_t)(Hum-520)); } // [0.1%]
uint16_t DecodeHumidity(void) const { return 520+DecodeSR2V5(Status.Humidity); }
// --------------------------------------------------------------------------------------------------------------
// Info fields: pack and unpack 7-bit char into the Info packets
void setInfoChar(uint8_t Char, uint8_t Idx) // put 7-bit Char onto give position
{ if(Idx>=16) return;
Char&=0x7F;
uint8_t BitIdx = Idx*7; // [bits] bit index to the target field
Idx = BitIdx>>3; // [bytes] index of the first byte to change
uint8_t Ofs = BitIdx&0x07;
if(Ofs==0) { Info.Data[Idx] = (Info.Data[Idx]&0x80) | Char ; return; }
if(Ofs==1) { Info.Data[Idx] = (Info.Data[Idx]&0x01) | (Char<<1) ; return; }
uint8_t Len1 = 8-Ofs;
uint8_t Len2 = Ofs-1;
uint8_t Msk1 = 0xFF; Msk1<<=Ofs;
uint8_t Msk2 = 0x01; Msk2 = (Msk2<<Len2)-1;
Info.Data[Idx ] = (Info.Data[Idx ]&(~Msk1)) | (Char<<Ofs);
Info.Data[Idx+1] = (Info.Data[Idx+1]&(~Msk2)) | (Char>>Len1); }
uint8_t getInfoChar(uint8_t Idx) // get 7-bit Char from given position
{ if(Idx>=16) return 0;
uint8_t BitIdx = Idx*7; // [bits] bit index to the target field
Idx = BitIdx>>3; // [bytes] index of the first byte to change
uint8_t Ofs = BitIdx&0x07;
if(Ofs==0) return Info.Data[Idx]&0x7F;
if(Ofs==1) return Info.Data[Idx]>>1;
uint8_t Len = 8-Ofs;
return (Info.Data[Idx]>>Ofs) | ((Info.Data[Idx+1]<<Len)&0x7F); }
// --------------------------------------------------------------------------------------------------------------
// void Whiten (void) { TEA_Encrypt(Position, OGN_WhitenKey, 4); TEA_Encrypt(Position+2, OGN_WhitenKey, 4); } // whiten the position
// void Dewhiten(void) { TEA_Decrypt(Position, OGN_WhitenKey, 4); TEA_Decrypt(Position+2, OGN_WhitenKey, 4); } // de-whiten the position
void Whiten (void) { TEA_Encrypt_Key0(Data, 8); TEA_Encrypt_Key0(Data+2, 8); } // whiten the position
void Dewhiten(void) { TEA_Decrypt_Key0(Data, 8); TEA_Decrypt_Key0(Data+2, 8); } // de-whiten the position
static void TEA_Encrypt (uint32_t* Data, const uint32_t *Key, int Loops=4)
{ uint32_t v0=Data[0], v1=Data[1]; // set up
const uint32_t delta=0x9e3779b9; uint32_t sum=0; // a key schedule constant
uint32_t k0=Key[0], k1=Key[1], k2=Key[2], k3=Key[3]; // cache key
for (int i=0; i < Loops; i++) // basic cycle start
{ sum += delta;
v0 += ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1);
v1 += ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3); } // end cycle
Data[0]=v0; Data[1]=v1;
}
static void TEA_Decrypt (uint32_t* Data, const uint32_t *Key, int Loops=4)
{ uint32_t v0=Data[0], v1=Data[1]; // set up
const uint32_t delta=0x9e3779b9; uint32_t sum=delta*Loops; // a key schedule constant
uint32_t k0=Key[0], k1=Key[1], k2=Key[2], k3=Key[3]; // cache key
for (int i=0; i < Loops; i++) // basic cycle start */
{ v1 -= ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3);
v0 -= ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1);
sum -= delta; } // end cycle
Data[0]=v0; Data[1]=v1;
}
static void TEA_Encrypt_Key0 (uint32_t* Data, int Loops=4)
{ uint32_t v0=Data[0], v1=Data[1]; // set up
const uint32_t delta=0x9e3779b9; uint32_t sum=0; // a key schedule constant
for (int i=0; i < Loops; i++) // basic cycle start
{ sum += delta;
v0 += (v1<<4) ^ (v1 + sum) ^ (v1>>5);
v1 += (v0<<4) ^ (v0 + sum) ^ (v0>>5); } // end cycle
Data[0]=v0; Data[1]=v1;
}
static void TEA_Decrypt_Key0 (uint32_t* Data, int Loops=4)
{ uint32_t v0=Data[0], v1=Data[1]; // set up
const uint32_t delta=0x9e3779b9; uint32_t sum=delta*Loops; // a key schedule constant
for (int i=0; i < Loops; i++) // basic cycle start */
{ v1 -= (v0<<4) ^ (v0 + sum) ^ (v0>>5);
v0 -= (v1<<4) ^ (v1 + sum) ^ (v1>>5);
sum -= delta; } // end cycle
Data[0]=v0; Data[1]=v1;
}
static uint8_t Gray(uint8_t Binary) { return Binary ^ (Binary>>1); }
static uint8_t Binary(uint8_t Gray)
{ Gray = Gray ^ (Gray >> 4);
Gray = Gray ^ (Gray >> 2);
Gray = Gray ^ (Gray >> 1);
return Gray; }
uint8_t getTxSlot(uint8_t Idx) const // Idx=0..15
{ const uint32_t *DataPtr = Data;
uint32_t Mask=1; Mask<<=Idx;
uint8_t Slot=0;
for(uint8_t Bit=0; Bit<6; Bit++)
{ Slot>>=1;
if(DataPtr[Bit]&Mask) Slot|=0x20;
Mask<<=1; Slot>>=1; }
return Gray(Slot); }
} ;
// ---------------------------------------------------------------------------------------------------------------------
class OGN_TxPacket // OGN packet with FEC code, like for transmission
{ public:
static const int Words = 7;
static const int Bytes = 26;
OGN_Packet Packet; // OGN packet
uint32_t FEC[2]; // Gallager code: 48 check bits for 160 user bits
public:
uint8_t Print(char *Out)
{ uint8_t Len=0;
Out[Len++]=HexDigit(Packet.Position.AcftType); Out[Len++]=':';
Out[Len++]='0'+Packet.Header.AddrType; Out[Len++]=':';
uint32_t Addr = Packet.Header.Address;
Len+=Format_Hex(Out+Len, (uint8_t)(Addr>>16));
Len+=Format_Hex(Out+Len, (uint16_t)Addr);
Out[Len++]=' ';
Len+=Format_UnsDec(Out+Len, (uint16_t)Packet.Position.Time, 2);
Out[Len++]=' ';
Len+=Packet.PrintLatitude(Out+Len, Packet.DecodeLatitude());
Out[Len++]=' ';
Len+=Packet.PrintLongitude(Out+Len, Packet.DecodeLongitude());
Out[Len++]=' ';
Len+=Format_UnsDec(Out+Len, (uint32_t)Packet.DecodeAltitude()); Out[Len++]='m';
Out[Len++]=' ';
Len+=Format_UnsDec(Out+Len, Packet.DecodeSpeed(), 2, 1); Out[Len++]='m'; Out[Len++]='/'; Out[Len++]='s';
Out[Len++]=' ';
Len+=Format_SignDec(Out+Len, Packet.DecodeClimbRate(), 2, 1); Out[Len++]='m'; Out[Len++]='/'; Out[Len++]='s';
Out[Len++]='\n'; Out[Len]=0;
return Len; }
void Dump(void) const
{ printf("%08lX: %08lX %08lX %08lX %08lX [%08lX %04lX] (%d)\n",
(long int)Packet.HeaderWord, (long int)Packet.Data[0], (long int)Packet.Data[1],
(long int)Packet.Data[2], (long int)Packet.Data[3], (long int)FEC[0],
(long int)FEC[1], (int)checkFEC() ); }
void DumpBytes(void) const
{ for(uint8_t Idx=0; Idx<Bytes; Idx++)
{ printf(" %02X", Packet.Byte()[Idx]); }
printf("\n"); }
// void calcFEC(void) { LDPC_Encode(&Packet.HeaderWord, FEC); } // calculate the 48-bit parity check
// void calcFEC(const uint32_t ParityGen[48][5]) { LDPC_Encode(&PacketHeaderWord, FEC, ParityGen); }
void calcFEC(void) { LDPC_Encode(Packet.Word()); } // calculate the 48-bit parity check
uint8_t checkFEC(void) const { return LDPC_Check(Packet.Word()); } // returns number of parity checks that fail (0 => no errors, all fine)
uint8_t *Byte(void) const { return (uint8_t *)&Packet.HeaderWord; } // packet as bytes
uint32_t *Word(void) const { return (uint32_t *)&Packet.HeaderWord; } // packet as words
void recvBytes(const uint8_t *SrcPacket) { memcpy(Byte(), SrcPacket, Bytes); } // load data bytes e.g. from a demodulator
/*
uint8_t calcErrorPattern(uint8_t *ErrPatt, const uint8_t *OtherPacket) const
{ uint8_t ByteIdx=0; const uint32_t *WordPtr=Packet.Word();
for(uint8_t WordIdx=0; WordIdx<Words; WordIdx++)
{ uint32_t Word=WordPtr[WordIdx];
for(int Idx=0; Idx<4; Idx++)
{ if(ByteIdx>=Bytes) break;
ErrPatt[ByteIdx]=Packet[ByteIdx]^Word; ByteIdx++;
Word>>=8; }
}
return Bytes; }
*/
} ;
// ---------------------------------------------------------------------------------------------------------------------
class OGN_RxPacket // OGN packet with FEC code and some reception info
{ public:
static const int Words = 7;
static const int Bytes = 26;
OGN_Packet Packet;
uint32_t FEC[2]; // Gallager code: 48 check bits for 160 user bits
union
{ uint8_t State; //
struct
{ bool :1; //
bool Ready:1; // is ready for transmission
bool Sent :1; // has already been transmitted out
bool Corr :1; // correctly received or corrected by FEC
uint8_t RxErr:4; // number of bit errors corrected upon reception
} ;
} ;
uint8_t RxChan; // RF channel where the packet was received
uint8_t RxRSSI; // [-0.5dBm]
uint8_t Rank; // rank: low altitude and weak signal => high rank
public:
OGN_RxPacket() { Clear(); }
void Clear(void) { Packet.Clear(); State=0; Rank=0; }
uint8_t *Byte(void) const { return (uint8_t *)&Packet.HeaderWord; } // packet as bytes
uint32_t *Word(void) const { return (uint32_t *)&Packet.HeaderWord; } // packet as words
void recvBytes(const uint8_t *SrcPacket) { memcpy(Byte(), SrcPacket, Bytes); } // load data bytes e.g. from a demodulator
uint8_t calcErrorPattern(uint8_t *ErrPatt, const uint8_t *OtherPacket) const
{ uint8_t ByteIdx=0; const uint32_t *WordPtr=Packet.Word();
for(uint8_t WordIdx=0; WordIdx<Words; WordIdx++)
{ uint32_t Word=WordPtr[WordIdx];
for(int Idx=0; Idx<4; Idx++)
{ if(ByteIdx>=Bytes) break;
ErrPatt[ByteIdx]=OtherPacket[ByteIdx]^Word; ByteIdx++;
Word>>=8; }
}
return Bytes; }
// void calcFEC(void) { LDPC_Encode(&Packet.HeaderWord, FEC); } // calculate the 48-bit parity check
// void calcFEC(const uint32_t ParityGen[48][5]) { LDPC_Encode(&PacketHeaderWord, FEC, ParityGen); }
void calcFEC(void) { LDPC_Encode(Packet.Word()); } // calculate the 48-bit parity check
uint8_t checkFEC(void) const { return LDPC_Check(Packet.Word()); } // returns number of parity checks that fail (0 => no errors, all fine)
int BitErr(OGN_RxPacket &RefPacket) const // return number of different data bits between this Packet and RefPacket
{ return Count1s(Packet.HeaderWord^RefPacket.Packet.HeaderWord)
+Count1s(Packet.Data[0]^RefPacket.Packet.Data[0])
+Count1s(Packet.Data[1]^RefPacket.Packet.Data[1])
+Count1s(Packet.Data[2]^RefPacket.Packet.Data[2])
+Count1s(Packet.Data[3]^RefPacket.Packet.Data[3])
+Count1s(FEC[0]^RefPacket.FEC[0])
+Count1s((FEC[1]^RefPacket.FEC[1])&0xFFFF); }
void calcRelayRank(int32_t RxAltitude) // [0.1m] altitude of reception
{ if(Packet.Header.Emergency) { Rank=0xFF; return; } // emergency packets always highest rank
Rank=0;
if(Packet.Header.Other) return; // only relay position packets
if(Packet.Position.Time>=60) return; // don't relay packets with unknown time - but maybe we should ?
if(Packet.Header.RelayCount>0) return; // no rank for relayed packets (only single relay)
if(RxRSSI>128) // [-0.5dB] weaker signal => higher rank
Rank += (RxRSSI-128)>>2; // 1point/2dB less signal
RxAltitude -= 10*Packet.DecodeAltitude(); // [0.1m] lower altitude => higher rank
if(RxAltitude>0)
Rank += RxAltitude>>9; // 2points/100m of altitude below
int16_t ClimbRate = Packet.DecodeClimbRate(); // [0.1m/s] higher sink rate => higher rank
if(ClimbRate<0)
Rank += (-ClimbRate)>>3; // 1point/0.8m/s of sink
}
uint8_t ReadPOGNT(const char *NMEA)
{ uint8_t Len=0;
if(memcmp(NMEA, "$POGNT,", 7)!=0) return -1;
Len+=7;
if(NMEA[Len+2]!=',') return -1;
int8_t Time=Read_Dec2(NMEA+Len);
if( (Time<0) || (Time>=60) ) return -1;
Packet.Position.Time=Time;
Len+=3;
if(NMEA[Len+1]!=',') return -1;
int8_t AcftType=Read_Hex1(NMEA[Len]);
if(AcftType<0) return -1;
Packet.Position.AcftType=AcftType;
Len+=2;
if(NMEA[Len+1]!=',') return -1;
int8_t AddrType=Read_Hex1(NMEA[Len]);
if((AddrType<0) || (AddrType>=4) ) return -1;
Packet.Header.AddrType=AddrType;
Len+=2;
uint32_t Addr;
int8_t Ret=Read_Hex(Addr, NMEA+Len); if(Ret<=0) return -1;
if(NMEA[Len+Ret]!=',') return -1;
Packet.Header.Address=Addr;
Len+=Ret+1;
if(NMEA[Len+1]!=',') return -1;
int8_t Relay=Read_Hex1(NMEA[Len]);
if( (Relay<0) || (Relay>=4) ) return -1;
Packet.Header.RelayCount=Relay;
Len+=2;
if(NMEA[Len+2]!=',') return -1;
int8_t FixQuality=Read_Hex1(NMEA[Len]);
int8_t FixMode=Read_Hex1(NMEA[Len+1]);
if( (FixQuality<0) || (FixQuality>=4) ) return -1;
if( (FixMode<0) || (FixMode>=2) ) return -1;
Packet.Position.FixQuality=FixQuality;
Packet.Position.FixMode=FixMode;
Len+=3;
int32_t DOP=0;
Ret=Read_Float1(DOP, NMEA+Len); if(Ret<0) return -1;
if(NMEA[Len+Ret]!=',') return -1;
if(DOP<10) DOP=10;
Packet.EncodeDOP(DOP-10);
Len+=Ret+1;
if(NMEA[Len+10]!=',') return -1;
int8_t Deg=Read_Dec2(NMEA+Len); if(Deg<0) return -1;
int8_t Min=Read_Dec2(NMEA+Len+2); if(Min<0) return -1;
if(NMEA[Len+4]!='.') return -1;
int16_t Frac=Read_Dec4(NMEA+Len+5); if(Frac<0) return -1;
char Sign=NMEA[Len+9];
int32_t Lat = Deg*600000 + Min*10000 + Frac;
if(Sign=='N') { } else if(Sign=='S') { Lat=(-Lat); } else return -1;
Packet.EncodeLatitude(Lat);
Len+=11;