forked from qinglew/PCN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
166 lines (130 loc) · 6.73 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import argparse
import numpy as np
import open3d as o3d
import torch
import torch.utils.data as Data
from models import PCN
from dataset import ShapeNet
from visualization import plot_pcd_one_view
from metrics.metric import l1_cd, l2_cd, emd, f_score
CATEGORIES_PCN = ['airplane', 'cabinet', 'car', 'chair', 'lamp', 'sofa', 'table', 'vessel']
CATEGORIES_PCN_NOVEL = ['bus', 'bed', 'bookshelf', 'bench', 'guitar', 'motorbike', 'skateboard', 'pistol']
def make_dir(dir_path):
if not os.path.exists(dir_path):
os.makedirs(dir_path)
def export_ply(filename, points):
pc = o3d.geometry.PointCloud()
pc.points = o3d.utility.Vector3dVector(points)
o3d.io.write_point_cloud(filename, pc, write_ascii=True)
def test_single_category(category, model, params, save=True):
if save:
cat_dir = os.path.join(params.result_dir, category)
image_dir = os.path.join(cat_dir, 'image')
output_dir = os.path.join(cat_dir, 'output')
make_dir(cat_dir)
make_dir(image_dir)
make_dir(output_dir)
test_dataset = ShapeNet('/media/server/new/datasets/PCN', 'test_novel' if params.novel else 'test', category)
test_dataloader = Data.DataLoader(test_dataset, batch_size=params.batch_size, shuffle=False)
index = 1
total_l1_cd, total_l2_cd, total_f_score = 0.0, 0.0, 0.0
with torch.no_grad():
for p, c in test_dataloader:
p = p.to(params.device)
c = c.to(params.device)
_, c_ = model(p)
total_l1_cd += l1_cd(c_, c).item()
total_l2_cd += l2_cd(c_, c).item()
for i in range(len(c)):
input_pc = p[i].detach().cpu().numpy()
output_pc = c_[i].detach().cpu().numpy()
gt_pc = c[i].detach().cpu().numpy()
total_f_score += f_score(output_pc, gt_pc)
if save:
plot_pcd_one_view(os.path.join(image_dir, '{:03d}.png'.format(index)), [input_pc, output_pc, gt_pc], ['Input', 'Output', 'GT'], xlim=(-0.35, 0.35), ylim=(-0.35, 0.35), zlim=(-0.35, 0.35))
export_ply(os.path.join(output_dir, '{:03d}.ply'.format(index)), output_pc)
index += 1
avg_l1_cd = total_l1_cd / len(test_dataset)
avg_l2_cd = total_l2_cd / len(test_dataset)
avg_f_score = total_f_score / len(test_dataset)
return avg_l1_cd, avg_l2_cd, avg_f_score
def test(params, save=False):
if save:
make_dir(params.result_dir)
print(params.exp_name)
# load pretrained model
model = PCN(16384, 1024, 4).to(params.device)
model.load_state_dict(torch.load(params.ckpt_path))
model.eval()
print('\033[33m{:20s}{:20s}{:20s}{:20s}\033[0m'.format('Category', 'L1_CD(1e-3)', 'L2_CD(1e-4)', 'FScore-0.01(%)'))
print('\033[33m{:20s}{:20s}{:20s}{:20s}\033[0m'.format('--------', '-----------', '-----------', '--------------'))
if params.category == 'all':
if params.novel:
categories = CATEGORIES_PCN_NOVEL
else:
categories = CATEGORIES_PCN
l1_cds, l2_cds, fscores = list(), list(), list()
for category in categories:
avg_l1_cd, avg_l2_cd, avg_f_score = test_single_category(category, model, params, save)
print('{:20s}{:<20.4f}{:<20.4f}{:<20.4f}'.format(category.title(), 1e3 * avg_l1_cd, 1e4 * avg_l2_cd, 1e2 * avg_f_score))
l1_cds.append(avg_l1_cd)
l2_cds.append(avg_l2_cd)
fscores.append(avg_f_score)
print('\033[33m{:20s}{:20s}{:20s}{:20s}\033[0m'.format('--------', '-----------', '-----------', '--------------'))
print('\033[32m{:20s}{:<20.4f}{:<20.4f}{:<20.4f}\033[0m'.format('Average', np.mean(l1_cds) * 1e3, np.mean(l2_cds) * 1e4, np.mean(fscores) * 1e2))
else:
avg_l1_cd, avg_l2_cd, avg_f_score = test_single_category(params.category, model, params, save)
print('{:20s}{:<20.4f}{:<20.4f}{:<20.4f}'.format(params.category.title(), 1e3 * avg_l1_cd, 1e4 * avg_l2_cd, 1e2 * avg_f_score))
def test_single_category_emd(category, model, params):
test_dataset = ShapeNet('/media/server/new/datasets/PCN', 'test_novel' if params.novel else 'test', category)
test_dataloader = Data.DataLoader(test_dataset, batch_size=params.batch_size, shuffle=False)
total_emd = 0.0
with torch.no_grad():
for p, c in test_dataloader:
p = p.to(params.device)
c = c.to(params.device)
_, c_ = model(p)
total_emd += emd(c_, c).item()
avg_emd = total_emd / len(test_dataset) / c_.shape[1]
return avg_emd
def test_emd(params):
print(params.exp_name)
# load pretrained model
model = PCN(16384, 1024, 4).to(params.device)
model.load_state_dict(torch.load(params.ckpt_path))
model.eval()
print('\033[33m{:20s}{:20s}\033[0m'.format('Category', 'EMD(1e-3)'))
print('\033[33m{:20s}{:20s}\033[0m'.format('--------', '---------'))
if params.category == 'all':
if params.novel:
categories = CATEGORIES_PCN_NOVEL
else:
categories = CATEGORIES_PCN
emds = list()
for category in categories:
avg_emd = test_single_category_emd(category, model, params)
print('{:20s}{:<20.4f}'.format(category.title(), 1e3 * avg_emd))
emds.append(avg_emd)
print('\033[33m{:20s}{:20s}\033[0m'.format('--------', '---------'))
print('\033[32m{:20s}{:<20.4f}\033[0m'.format('Average', np.mean(emds) * 1e3))
else:
avg_emd = test_single_category_emd(params.category, model, params)
print('{:20s}{:<20.4f}'.format(params.category.title(), 1e3 * avg_emd))
if __name__ == '__main__':
parser = argparse.ArgumentParser('Point Cloud Completion Testing')
parser.add_argument('--exp_name', type=str, help='Tag of experiment')
parser.add_argument('--result_dir', type=str, default='results', help='Results directory')
parser.add_argument('--ckpt_path', type=str, help='The path of pretrained model.')
parser.add_argument('--category', type=str, default='all', help='Category of point clouds')
parser.add_argument('--batch_size', type=int, default=1, help='Batch size for data loader')
parser.add_argument('--num_workers', type=int, default=6, help='Num workers for data loader')
parser.add_argument('--device', type=str, default='cuda:0', help='Device for testing')
parser.add_argument('--save', type=bool, default=False, help='Saving test result')
parser.add_argument('--novel', type=bool, default=False, help='unseen categories for testing')
parser.add_argument('--emd', type=bool, default=False, help='Whether evaluate emd')
params = parser.parse_args()
if not params.emd:
test(params, params.save)
else:
test_emd(params)