Skip to content

Commit d066ee3

Browse files
Update generated Python Op docs.
Change: 139328977
1 parent 12dcf29 commit d066ee3

File tree

5 files changed

+18
-6
lines changed

5 files changed

+18
-6
lines changed

tensorflow/g3doc/api_docs/python/contrib.layers.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -528,7 +528,7 @@ layers are called with `scope='stack'`.
528528

529529
- - -
530530

531-
### `tf.contrib.layers.safe_embedding_lookup_sparse(embedding_weights, sparse_ids, sparse_weights=None, combiner=None, default_id=None, name=None, partition_strategy='div')` {#safe_embedding_lookup_sparse}
531+
### `tf.contrib.layers.safe_embedding_lookup_sparse(embedding_weights, sparse_ids, sparse_weights=None, combiner=None, default_id=None, name=None, partition_strategy='div', max_norm=None)` {#safe_embedding_lookup_sparse}
532532

533533
Lookup embedding results, accounting for invalid IDs and empty features.
534534

@@ -565,6 +565,8 @@ along the last dimension.
565565
* <b>`name`</b>: A name for this operation (optional).
566566
* <b>`partition_strategy`</b>: A string specifying the partitioning strategy.
567567
Currently `"div"` and `"mod"` are supported. Default is `"div"`.
568+
* <b>`max_norm`</b>: If not None, all embeddings are l2-normalized to max_norm before
569+
combining.
568570

569571

570572
##### Returns:

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.nn.embedding_lookup_sparse.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
### `tf.nn.embedding_lookup_sparse(params, sp_ids, sp_weights, partition_strategy='mod', name=None, combiner=None)` {#embedding_lookup_sparse}
1+
### `tf.nn.embedding_lookup_sparse(params, sp_ids, sp_weights, partition_strategy='mod', name=None, combiner=None, max_norm=None)` {#embedding_lookup_sparse}
22

33
Computes embeddings for the given ids and weights.
44

@@ -31,6 +31,8 @@ is the sum of the size of params along dimension 0.
3131
"mean" is the weighted sum divided by the total weight.
3232
"sqrtn" is the weighted sum divided by the square root of the sum of the
3333
squares of the weights.
34+
* <b>`max_norm`</b>: If not None, each embedding is normalized to have l2 norm equal
35+
to max_norm before combining.
3436

3537
##### Returns:
3638

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.layers.safe_embedding_lookup_sparse.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
### `tf.contrib.layers.safe_embedding_lookup_sparse(embedding_weights, sparse_ids, sparse_weights=None, combiner=None, default_id=None, name=None, partition_strategy='div')` {#safe_embedding_lookup_sparse}
1+
### `tf.contrib.layers.safe_embedding_lookup_sparse(embedding_weights, sparse_ids, sparse_weights=None, combiner=None, default_id=None, name=None, partition_strategy='div', max_norm=None)` {#safe_embedding_lookup_sparse}
22

33
Lookup embedding results, accounting for invalid IDs and empty features.
44

@@ -35,6 +35,8 @@ along the last dimension.
3535
* <b>`name`</b>: A name for this operation (optional).
3636
* <b>`partition_strategy`</b>: A string specifying the partitioning strategy.
3737
Currently `"div"` and `"mod"` are supported. Default is `"div"`.
38+
* <b>`max_norm`</b>: If not None, all embeddings are l2-normalized to max_norm before
39+
combining.
3840

3941

4042
##### Returns:

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.nn.embedding_lookup.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
### `tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True)` {#embedding_lookup}
1+
### `tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None)` {#embedding_lookup}
22

33
Looks up `ids` in a list of embedding tensors.
44

@@ -41,6 +41,8 @@ tensor. The returned tensor has shape `shape(ids) + shape(params)[1:]`.
4141
is `"mod"`.
4242
* <b>`name`</b>: A name for the operation (optional).
4343
* <b>`validate_indices`</b>: Whether or not to validate gather indices.
44+
* <b>`max_norm`</b>: If not None, embedding values are l2-normalized to the value of
45+
max_norm.
4446

4547
##### Returns:
4648

tensorflow/g3doc/api_docs/python/nn.md

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1907,7 +1907,7 @@ tensors.
19071907

19081908
- - -
19091909

1910-
### `tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True)` {#embedding_lookup}
1910+
### `tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None)` {#embedding_lookup}
19111911

19121912
Looks up `ids` in a list of embedding tensors.
19131913

@@ -1950,6 +1950,8 @@ tensor. The returned tensor has shape `shape(ids) + shape(params)[1:]`.
19501950
is `"mod"`.
19511951
* <b>`name`</b>: A name for the operation (optional).
19521952
* <b>`validate_indices`</b>: Whether or not to validate gather indices.
1953+
* <b>`max_norm`</b>: If not None, embedding values are l2-normalized to the value of
1954+
max_norm.
19531955

19541956
##### Returns:
19551957

@@ -1963,7 +1965,7 @@ tensor. The returned tensor has shape `shape(ids) + shape(params)[1:]`.
19631965

19641966
- - -
19651967

1966-
### `tf.nn.embedding_lookup_sparse(params, sp_ids, sp_weights, partition_strategy='mod', name=None, combiner=None)` {#embedding_lookup_sparse}
1968+
### `tf.nn.embedding_lookup_sparse(params, sp_ids, sp_weights, partition_strategy='mod', name=None, combiner=None, max_norm=None)` {#embedding_lookup_sparse}
19671969

19681970
Computes embeddings for the given ids and weights.
19691971

@@ -1996,6 +1998,8 @@ is the sum of the size of params along dimension 0.
19961998
"mean" is the weighted sum divided by the total weight.
19971999
"sqrtn" is the weighted sum divided by the square root of the sum of the
19982000
squares of the weights.
2001+
* <b>`max_norm`</b>: If not None, each embedding is normalized to have l2 norm equal
2002+
to max_norm before combining.
19992003

20002004
##### Returns:
20012005

0 commit comments

Comments
 (0)