Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding a simple program to measure speed of dot products #1041

Merged
merged 2 commits into from
Apr 18, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
Adding a simple program to measure speed of dot products
  • Loading branch information
Kawrakow committed Apr 18, 2023
commit 42031dac730774fdef02c06c99d8e43a504c264c
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -305,4 +305,5 @@ endif ()

if (LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
5 changes: 4 additions & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ $(info I CC: $(CCV))
$(info I CXX: $(CXXV))
$(info )

default: main quantize quantize-stats perplexity embedding
default: main quantize quantize-stats perplexity embedding vdot

#
# Build library
Expand Down Expand Up @@ -169,6 +169,9 @@ perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o
embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)

vdot: pocs/vdot/vdot.cpp ggml.o
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)

libllama.so: llama.o ggml.o
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)

Expand Down
12 changes: 12 additions & 0 deletions pocs/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# dependencies

find_package(Threads REQUIRED)

# third-party

include_directories(${CMAKE_CURRENT_SOURCE_DIR})

if (EMSCRIPTEN)
else()
add_subdirectory(vdot)
endif()
4 changes: 4 additions & 0 deletions pocs/vdot/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
set(TARGET vdot)
add_executable(${TARGET} vdot.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
250 changes: 250 additions & 0 deletions pocs/vdot/vdot.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,250 @@
#include <cstdio>
#include <vector>
#include <random>
#include <chrono>
#include <cstdlib>
#include <cmath>
#include <cassert>
#include <cstring>
#include <array>

#include <ggml.h>

constexpr int kVecSize = 1 << 18;

float drawFromGaussianPdf(std::mt19937& rndm) {
constexpr double kScale = 1./(1. + std::mt19937::max());
constexpr double kTwoPiTimesScale = 6.28318530717958647692*kScale;
static float lastX;
static bool haveX = false;
if (haveX) { haveX = false; return lastX; }
auto r = sqrt(-2*log(1 - kScale*rndm()));
auto phi = kTwoPiTimesScale * rndm();
lastX = r*sin(phi);
haveX = true;
return r*cos(phi);
}
void fillRandomGaussianFloats(std::vector<float>& values, std::mt19937& rndm, float mean = 0) {
for (auto& v : values) v = mean + drawFromGaussianPdf(rndm);
}

// Copy-pasted from ggml.c
#define QK4_0 32
typedef struct {
float d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");

// Copy-pasted from ggml.c
#define QK8_0 32
typedef struct {
float d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");

// "Scalar" dot product between the quantized vector x and float vector y
inline double dot(int n, const block_q4_0* x, const float* y) {
const static float kValues[16] = {-8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f, 0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f};
constexpr uint32_t kMask1 = 0x0f0f0f0f;
uint32_t u1, u2;
auto q1 = (const uint8_t*)&u1;
auto q2 = (const uint8_t*)&u2;
double sum = 0;
for (int i=0; i<n; ++i) {
float d = x->d;
auto u = (const uint32_t*)x->qs;
float s = 0;
for (int k=0; k<4; ++k) {
u1 = u[k] & kMask1;
u2 = (u[k] >> 4) & kMask1;
s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] +
y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] +
y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] +
y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]];
y += 8;
}
sum += s*d;
++x;
}
return sum;
}
// Alternative version of the above. Faster on my Mac (~45 us vs ~55 us per dot product),
// but about the same on X86_64 (Ryzen 7950X CPU).
inline double dot3(int n, const block_q4_0* x, const float* y) {
const static std::pair<float,float> kValues[256] = {
{-8.f, -8.f}, {-7.f, -8.f}, {-6.f, -8.f}, {-5.f, -8.f}, {-4.f, -8.f}, {-3.f, -8.f}, {-2.f, -8.f}, {-1.f, -8.f},
{ 0.f, -8.f}, { 1.f, -8.f}, { 2.f, -8.f}, { 3.f, -8.f}, { 4.f, -8.f}, { 5.f, -8.f}, { 6.f, -8.f}, { 7.f, -8.f},
{-8.f, -7.f}, {-7.f, -7.f}, {-6.f, -7.f}, {-5.f, -7.f}, {-4.f, -7.f}, {-3.f, -7.f}, {-2.f, -7.f}, {-1.f, -7.f},
{ 0.f, -7.f}, { 1.f, -7.f}, { 2.f, -7.f}, { 3.f, -7.f}, { 4.f, -7.f}, { 5.f, -7.f}, { 6.f, -7.f}, { 7.f, -7.f},
{-8.f, -6.f}, {-7.f, -6.f}, {-6.f, -6.f}, {-5.f, -6.f}, {-4.f, -6.f}, {-3.f, -6.f}, {-2.f, -6.f}, {-1.f, -6.f},
{ 0.f, -6.f}, { 1.f, -6.f}, { 2.f, -6.f}, { 3.f, -6.f}, { 4.f, -6.f}, { 5.f, -6.f}, { 6.f, -6.f}, { 7.f, -6.f},
{-8.f, -5.f}, {-7.f, -5.f}, {-6.f, -5.f}, {-5.f, -5.f}, {-4.f, -5.f}, {-3.f, -5.f}, {-2.f, -5.f}, {-1.f, -5.f},
{ 0.f, -5.f}, { 1.f, -5.f}, { 2.f, -5.f}, { 3.f, -5.f}, { 4.f, -5.f}, { 5.f, -5.f}, { 6.f, -5.f}, { 7.f, -5.f},
{-8.f, -4.f}, {-7.f, -4.f}, {-6.f, -4.f}, {-5.f, -4.f}, {-4.f, -4.f}, {-3.f, -4.f}, {-2.f, -4.f}, {-1.f, -4.f},
{ 0.f, -4.f}, { 1.f, -4.f}, { 2.f, -4.f}, { 3.f, -4.f}, { 4.f, -4.f}, { 5.f, -4.f}, { 6.f, -4.f}, { 7.f, -4.f},
{-8.f, -3.f}, {-7.f, -3.f}, {-6.f, -3.f}, {-5.f, -3.f}, {-4.f, -3.f}, {-3.f, -3.f}, {-2.f, -3.f}, {-1.f, -3.f},
{ 0.f, -3.f}, { 1.f, -3.f}, { 2.f, -3.f}, { 3.f, -3.f}, { 4.f, -3.f}, { 5.f, -3.f}, { 6.f, -3.f}, { 7.f, -3.f},
{-8.f, -2.f}, {-7.f, -2.f}, {-6.f, -2.f}, {-5.f, -2.f}, {-4.f, -2.f}, {-3.f, -2.f}, {-2.f, -2.f}, {-1.f, -2.f},
{ 0.f, -2.f}, { 1.f, -2.f}, { 2.f, -2.f}, { 3.f, -2.f}, { 4.f, -2.f}, { 5.f, -2.f}, { 6.f, -2.f}, { 7.f, -2.f},
{-8.f, -1.f}, {-7.f, -1.f}, {-6.f, -1.f}, {-5.f, -1.f}, {-4.f, -1.f}, {-3.f, -1.f}, {-2.f, -1.f}, {-1.f, -1.f},
{ 0.f, -1.f}, { 1.f, -1.f}, { 2.f, -1.f}, { 3.f, -1.f}, { 4.f, -1.f}, { 5.f, -1.f}, { 6.f, -1.f}, { 7.f, -1.f},
{-8.f, 0.f}, {-7.f, 0.f}, {-6.f, 0.f}, {-5.f, 0.f}, {-4.f, 0.f}, {-3.f, 0.f}, {-2.f, 0.f}, {-1.f, 0.f},
{ 0.f, 0.f}, { 1.f, 0.f}, { 2.f, 0.f}, { 3.f, 0.f}, { 4.f, 0.f}, { 5.f, 0.f}, { 6.f, 0.f}, { 7.f, 0.f},
{-8.f, 1.f}, {-7.f, 1.f}, {-6.f, 1.f}, {-5.f, 1.f}, {-4.f, 1.f}, {-3.f, 1.f}, {-2.f, 1.f}, {-1.f, 1.f},
{ 0.f, 1.f}, { 1.f, 1.f}, { 2.f, 1.f}, { 3.f, 1.f}, { 4.f, 1.f}, { 5.f, 1.f}, { 6.f, 1.f}, { 7.f, 1.f},
{-8.f, 2.f}, {-7.f, 2.f}, {-6.f, 2.f}, {-5.f, 2.f}, {-4.f, 2.f}, {-3.f, 2.f}, {-2.f, 2.f}, {-1.f, 2.f},
{ 0.f, 2.f}, { 1.f, 2.f}, { 2.f, 2.f}, { 3.f, 2.f}, { 4.f, 2.f}, { 5.f, 2.f}, { 6.f, 2.f}, { 7.f, 2.f},
{-8.f, 3.f}, {-7.f, 3.f}, {-6.f, 3.f}, {-5.f, 3.f}, {-4.f, 3.f}, {-3.f, 3.f}, {-2.f, 3.f}, {-1.f, 3.f},
{ 0.f, 3.f}, { 1.f, 3.f}, { 2.f, 3.f}, { 3.f, 3.f}, { 4.f, 3.f}, { 5.f, 3.f}, { 6.f, 3.f}, { 7.f, 3.f},
{-8.f, 4.f}, {-7.f, 4.f}, {-6.f, 4.f}, {-5.f, 4.f}, {-4.f, 4.f}, {-3.f, 4.f}, {-2.f, 4.f}, {-1.f, 4.f},
{ 0.f, 4.f}, { 1.f, 4.f}, { 2.f, 4.f}, { 3.f, 4.f}, { 4.f, 4.f}, { 5.f, 4.f}, { 6.f, 4.f}, { 7.f, 4.f},
{-8.f, 5.f}, {-7.f, 5.f}, {-6.f, 5.f}, {-5.f, 5.f}, {-4.f, 5.f}, {-3.f, 5.f}, {-2.f, 5.f}, {-1.f, 5.f},
{ 0.f, 5.f}, { 1.f, 5.f}, { 2.f, 5.f}, { 3.f, 5.f}, { 4.f, 5.f}, { 5.f, 5.f}, { 6.f, 5.f}, { 7.f, 5.f},
{-8.f, 6.f}, {-7.f, 6.f}, {-6.f, 6.f}, {-5.f, 6.f}, {-4.f, 6.f}, {-3.f, 6.f}, {-2.f, 6.f}, {-1.f, 6.f},
{ 0.f, 6.f}, { 1.f, 6.f}, { 2.f, 6.f}, { 3.f, 6.f}, { 4.f, 6.f}, { 5.f, 6.f}, { 6.f, 6.f}, { 7.f, 6.f},
{-8.f, 7.f}, {-7.f, 7.f}, {-6.f, 7.f}, {-5.f, 7.f}, {-4.f, 7.f}, {-3.f, 7.f}, {-2.f, 7.f}, {-1.f, 7.f},
{ 0.f, 7.f}, { 1.f, 7.f}, { 2.f, 7.f}, { 3.f, 7.f}, { 4.f, 7.f}, { 5.f, 7.f}, { 6.f, 7.f}, { 7.f, 7.f}
};
double sum = 0;
for (int i=0; i<n; ++i) {
float d = x->d;
auto q = x->qs;
float s = 0;
for (int k=0; k<4; ++k) {
s += y[0]*kValues[q[0]].first + y[1]*kValues[q[0]].second +
y[2]*kValues[q[1]].first + y[3]*kValues[q[1]].second +
y[4]*kValues[q[2]].first + y[5]*kValues[q[2]].second +
y[6]*kValues[q[3]].first + y[7]*kValues[q[3]].second;
y += 8; q += 4;
}
sum += s*d;
++x;
}
return sum;
}

// Copy-pasted from ggml.c
static void quantize_row_q8_0_reference(const float *x, block_q8_0 *y, int k) {
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;

for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max

for (int l = 0; l < QK8_0; l++) {
const float v = x[i*QK8_0 + l];
amax = std::max(amax, fabsf(v));
}

const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;

y[i].d = d;

for (int l = 0; l < QK8_0; ++l) {
const float v = x[i*QK8_0 + l]*id;
y[i].qs[l] = roundf(v);
}
}
}

// Copy-pasted from ggml.c
static void dot_q4_q8(const int n, float* s, const void* vx, const void* vy) {
const int nb = n / QK8_0;
const block_q4_0* x = (const block_q4_0*)vx;
const block_q8_0* y = (const block_q8_0*)vy;
float sumf = 0;
for (int i = 0; i < nb; i++) {
const float d0 = x[i].d;
const float d1 = y[i].d;

const uint8_t * p0 = x[i].qs;
const int8_t * p1 = y[i].qs;

int sumi = 0;
for (int j = 0; j < QK8_0/2; j++) {
const uint8_t v0 = p0[j];

const int i0 = (int8_t) (v0 & 0xf) - 8;
const int i1 = (int8_t) (v0 >> 4) - 8;

const int i2 = p1[2*j + 0];
const int i3 = p1[2*j + 1];

sumi += i0*i2 + i1*i3;
}
sumf += d0*d1*sumi;
}
*s = sumf;
}

int main(int argc, char** argv) {

int nloop = argc > 1 ? atoi(argv[1]) : 10;
bool scalar = argc > 2 ? atoi(argv[2]) : false;

std::mt19937 rndm(1234);

auto funcs = ggml_internal_get_quantize_fn(GGML_TYPE_Q4_0);

int n4 = kVecSize / QK4_0; n4 = 64*((n4 + 63)/64);
int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64);
std::vector<float> x1(kVecSize), y1(kVecSize);
std::vector<block_q4_0> q4(n4);
std::vector<block_q8_0> q8(n8);
std::vector<int64_t> H(16, 0);
double sumt = 0, sumt2 = 0, maxt = 0;
double sumqt = 0, sumqt2 = 0, maxqt = 0;
double sum = 0, sumq = 0;
for (int iloop=0; iloop<nloop; ++iloop) {

// Fill vector x with random numbers
fillRandomGaussianFloats(x1, rndm);

// Fill vector y with random numbers
fillRandomGaussianFloats(y1, rndm);

// quantize x.
// Note, we do not include this in the timing as in practical application
// we already have the quantized model weights.
ggml_quantize_q4_0(x1.data(), q4.data(), kVecSize, QK4_0, H.data());

// Now measure time the dot product needs using the "scalar" version above
auto t1 = std::chrono::high_resolution_clock::now();
sum += dot(kVecSize / QK4_0, q4.data(), y1.data());
auto t2 = std::chrono::high_resolution_clock::now();
auto t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
sumt += t; sumt2 += t*t; maxt = std::max(maxt, t);

// And now measure the time needed to quantize y and perform the dot product with the quantized y
t1 = std::chrono::high_resolution_clock::now();
float result;
if (scalar) {
quantize_row_q8_0_reference(y1.data(), q8.data(), kVecSize);
dot_q4_q8(kVecSize, &result, q4.data(), q8.data());
}
else {
funcs.quantize_row_q_dot(y1.data(), q8.data(), kVecSize);
funcs.vec_dot_q(kVecSize, &result, q4.data(), q8.data());
}
sumq += result;
t2 = std::chrono::high_resolution_clock::now();
t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
sumqt += t; sumqt2 += t*t; maxqt = std::max(maxqt, t);

}

// Report the time (and the average of the dot products so the compiler does not come up with the idea
// of optimizing away the function calls after figuring that the result is not used).
sum /= nloop; sumq /= nloop;
printf("<dot> = %g, %g\n",sum,sumq);
sumt /= nloop; sumt2 /= nloop; sumt2 -= sumt*sumt;
if (sumt2 > 0) sumt2 = sqrt(sumt2);
printf("time = %g +/- %g us. maxt = %g us\n",sumt,sumt2,maxt);
sumqt /= nloop; sumqt2 /= nloop; sumqt2 -= sumqt*sumqt;
if (sumqt2 > 0) sumqt2 = sqrt(sumqt2);
printf("timeq = %g +/- %g us. maxt = %g us\n",sumqt,sumqt2,maxqt);
return 0;
}