Closed
Description
What happened?
b3614 release simplify Mamba with advanced batch splits (#8526)
broke quantization for deepseek2
rolling back to b3613 works fine
Name and Version
llama-cli --version
version: 3614 (a1631e5)
built with cc (Debian 10.2.1-6) 10.2.1 20210110 for x86_64-linux-gnu
What operating system are you seeing the problem on?
Linux
Relevant log output
main: build = 3614 (a1631e53)
main: built with cc (Debian 10.2.1-6) 10.2.1 20210110 for x86_64-linux-gnu
main: quantizing 'deepseek-coder-v2-lite-instruct.fp32.bin' to 'deepseek-coder-v2-lite-instruct.Q5_0.gguf' as Q5_0
llama_model_loader: loaded meta data with 44 key-value pairs and 377 tensors from deepseek-coder-v2-lite-instruct.fp32.bin (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = deepseek2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = ..
llama_model_loader: - kv 3: general.finetune str = ..
llama_model_loader: - kv 4: general.size_label str = 64x1.5B
llama_model_loader: - kv 5: general.license str = other
llama_model_loader: - kv 6: general.license.name str = deepseek-license
llama_model_loader: - kv 7: general.license.link str = LICENSE
llama_model_loader: - kv 8: deepseek2.block_count u32 = 27
llama_model_loader: - kv 9: deepseek2.context_length u32 = 163840
llama_model_loader: - kv 10: deepseek2.embedding_length u32 = 2048
llama_model_loader: - kv 11: deepseek2.feed_forward_length u32 = 10944
llama_model_loader: - kv 12: deepseek2.attention.head_count u32 = 16
llama_model_loader: - kv 13: deepseek2.attention.head_count_kv u32 = 16
llama_model_loader: - kv 14: deepseek2.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 15: deepseek2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 16: deepseek2.expert_used_count u32 = 6
llama_model_loader: - kv 17: general.file_type u32 = 0
llama_model_loader: - kv 18: deepseek2.leading_dense_block_count u32 = 1
llama_model_loader: - kv 19: deepseek2.vocab_size u32 = 102400
llama_model_loader: - kv 20: deepseek2.attention.kv_lora_rank u32 = 512
llama_model_loader: - kv 21: deepseek2.attention.key_length u32 = 192
llama_model_loader: - kv 22: deepseek2.attention.value_length u32 = 128
llama_model_loader: - kv 23: deepseek2.expert_feed_forward_length u32 = 1408
llama_model_loader: - kv 24: deepseek2.expert_count u32 = 64
llama_model_loader: - kv 25: deepseek2.expert_shared_count u32 = 2
llama_model_loader: - kv 26: deepseek2.expert_weights_scale f32 = 1.000000
llama_model_loader: - kv 27: deepseek2.rope.dimension_count u32 = 64
llama_model_loader: - kv 28: deepseek2.rope.scaling.type str = yarn
llama_model_loader: - kv 29: deepseek2.rope.scaling.factor f32 = 40.000000
llama_model_loader: - kv 30: deepseek2.rope.scaling.original_context_length u32 = 4096
llama_model_loader: - kv 31: deepseek2.rope.scaling.yarn_log_multiplier f32 = 0.070700
llama_model_loader: - kv 32: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 33: tokenizer.ggml.pre str = deepseek-llm
llama_model_loader: - kv 34: tokenizer.ggml.tokens arr[str,102400] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 35: tokenizer.ggml.token_type arr[i32,102400] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 36: tokenizer.ggml.merges arr[str,99757] = ["Ġ Ġ", "Ġ t", "Ġ a", "i n", "h e...
llama_model_loader: - kv 37: tokenizer.ggml.bos_token_id u32 = 100000
llama_model_loader: - kv 38: tokenizer.ggml.eos_token_id u32 = 100001
llama_model_loader: - kv 39: tokenizer.ggml.padding_token_id u32 = 100001
llama_model_loader: - kv 40: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 41: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 42: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 43: general.quantization_version u32 = 2
llama_model_loader: - type f32: 377 tensors
/shared/dev/llama.cpp/src/llama.cpp:16840: GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected") failed
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
0x00007f207e755746 in __GI___wait4 (pid=271293, stat_loc=0x7ffdfaa194c4, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:27
27 ../sysdeps/unix/sysv/linux/wait4.c: No such file or directory.
#0 0x00007f207e755746 in __GI___wait4 (pid=271293, stat_loc=0x7ffdfaa194c4, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:27
27 in ../sysdeps/unix/sysv/linux/wait4.c
#1 0x000055a032cd37a9 in ggml_abort ()
#2 0x000055a032be7197 in llama_model_quantize_internal(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>,
std::allocator<char> > const&, llama_model_quantize_params const*) ()
#3 0x000055a032be74d5 in llama_model_quantize ()
#4 0x000055a032b769fa in main ()