Closed
Description
Hi there, while trying to train based on the example, I keep getting GGML_ASSERT: /Users/pp/fiddle/llama.cpp/ggml-alloc.c:116: tensor->data == NULL
- any thoughts on how I can triage? The models look ok to me. I tried with falcon/llama
- same result. (M2 pro, 96GB memory)
(ml) [pp@pps-2023-MBP:~/fiddle/llama.cpp/build]$ ./bin/train-text-from-scratch --vocab-model ../models/ggml-vocab-falcon.gguf --ctx 64 --embd 256 --head 8 --layer 16 --checkpoint-in chk-shakespeare-256x16-LATEST.gguf --checkpoint-out chk-shakespeare-256x16-ITERATION.gguf --model-out ggml-shakespeare-256x16-f32-ITERATION.gguf --train-data "shakespeare.txt" -t 6 -b 16 --seed 1 --adam-iter 256 --no-checkpointing
main: seed: 1
llama_model_loader: loaded meta data with 17 key-value pairs and 0 tensors from ../models/ggml-vocab-falcon.gguf (version GGUF V2 (latest))
llama_model_loader: - kv 0: general.architecture str
llama_model_loader: - kv 1: general.name str
llama_model_loader: - kv 2: falcon.context_length u32
llama_model_loader: - kv 3: falcon.tensor_data_layout str
llama_model_loader: - kv 4: falcon.embedding_length u32
llama_model_loader: - kv 5: falcon.feed_forward_length u32
llama_model_loader: - kv 6: falcon.block_count u32
llama_model_loader: - kv 7: falcon.attention.head_count u32
llama_model_loader: - kv 8: falcon.attention.head_count_kv u32
llama_model_loader: - kv 9: falcon.attention.layer_norm_epsilon f32
llama_model_loader: - kv 10: general.file_type u32
llama_model_loader: - kv 11: tokenizer.ggml.model str
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr
llama_model_loader: - kv 13: tokenizer.ggml.scores arr
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr
llama_model_loader: - kv 15: tokenizer.ggml.merges arr
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32
llm_load_print_meta: format = GGUF V2 (latest)
llm_load_print_meta: arch = falcon
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 65024
llm_load_print_meta: n_merges = 64784
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 4544
llm_load_print_meta: n_head = 71
llm_load_print_meta: n_head_kv = 1
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 64
llm_load_print_meta: n_gqa = 71
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: n_ff = 18176
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = mostly F16
llm_load_print_meta: model params = 0.00 B
llm_load_print_meta: model size = 0.00 MiB (nan BPW)
llm_load_print_meta: general.name = Falcon
llm_load_print_meta: BOS token = 11 '<|endoftext|>'
llm_load_print_meta: EOS token = 11 '<|endoftext|>'
llm_load_print_meta: LF token = 138 'Ä'
llama_model_load: vocab only - skipping tensors
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
main: init model
GGML_ASSERT: /Users/pp/fiddle/llama.cpp/ggml-alloc.c:116: tensor->data == NULL
Abort trap: 6
Models:
(ml) [pp@pps-2023-MBP:~/fiddle/llama.cpp/build]$ ls -l ../models/
total 101338696
-rw-r--r--@ 1 pp staff 23237177504 Oct 12 07:35 codellama-34b-instruct.Q5_K_S.gguf
-rw-r--r--@ 1 pp staff 23838797984 Oct 12 07:32 codellama-34b.Q5_K_M.gguf
-rw-r--r--@ 1 pp staff 4783256256 Oct 12 06:16 codellama-7b.Q5_K_M.gguf
-rw-r--r-- 1 pp staff 4825676 Oct 9 17:28 ggml-vocab-aquila.gguf
-rw-r--r-- 1 pp staff 2547782 Oct 9 17:28 ggml-vocab-falcon.gguf
-rw-r--r-- 1 pp staff 595423 Oct 9 17:28 ggml-vocab-llama.gguf
Metadata
Metadata
Assignees
Labels
No labels