|  | 
|  | 1 | +#include "arg.h" | 
|  | 2 | +#include "common.h" | 
|  | 3 | +#include "log.h" | 
|  | 4 | +#include "llama.h" | 
|  | 5 | + | 
|  | 6 | +#include <algorithm> | 
|  | 7 | +#include <cstdlib> | 
|  | 8 | +#include <cstdio> | 
|  | 9 | +#include <string> | 
|  | 10 | +#include <vector> | 
|  | 11 | + | 
|  | 12 | +static void print_usage(int, char ** argv) { | 
|  | 13 | +    LOG("\nexample usage:\n"); | 
|  | 14 | +    LOG("\n    %s -m model.gguf -c 8192 -b 2048 -ub 512\n", argv[0]); | 
|  | 15 | +    LOG("\n"); | 
|  | 16 | +} | 
|  | 17 | + | 
|  | 18 | +int main(int argc, char ** argv) { | 
|  | 19 | +    common_params params; | 
|  | 20 | + | 
|  | 21 | +    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) { | 
|  | 22 | +        return 1; | 
|  | 23 | +    } | 
|  | 24 | + | 
|  | 25 | +    common_init(); | 
|  | 26 | + | 
|  | 27 | +    // init LLM | 
|  | 28 | + | 
|  | 29 | +    llama_backend_init(); | 
|  | 30 | +    llama_numa_init(params.numa); | 
|  | 31 | + | 
|  | 32 | +    // initialize the model | 
|  | 33 | + | 
|  | 34 | +    llama_model_params model_params = common_model_params_to_llama(params); | 
|  | 35 | + | 
|  | 36 | +    llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params); | 
|  | 37 | + | 
|  | 38 | +    if (model == NULL) { | 
|  | 39 | +        fprintf(stderr , "%s: error: unable to load model\n" , __func__); | 
|  | 40 | +        return 1; | 
|  | 41 | +    } | 
|  | 42 | + | 
|  | 43 | +    llama_context_params ctx_params = common_context_params_to_llama(params); | 
|  | 44 | + | 
|  | 45 | +    llama_context * ctx = llama_init_from_model(model, ctx_params); | 
|  | 46 | + | 
|  | 47 | +    if (ctx == NULL) { | 
|  | 48 | +        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | 
|  | 49 | +        return 1; | 
|  | 50 | +    } | 
|  | 51 | + | 
|  | 52 | +    const unsigned int n_kv_max = llama_n_ctx(ctx); | 
|  | 53 | +    const llama_vocab * vocab   = llama_model_get_vocab(model); | 
|  | 54 | +    const unsigned int n_vocab  = llama_vocab_n_tokens(vocab); | 
|  | 55 | +    const llama_token bos       = llama_vocab_bos(vocab); | 
|  | 56 | +    const llama_token eos       = llama_vocab_eos(vocab); | 
|  | 57 | + | 
|  | 58 | +    // decode in batches of ctx_params.n_batch tokens | 
|  | 59 | +    auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) { | 
|  | 60 | +        for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { | 
|  | 61 | +            const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); | 
|  | 62 | + | 
|  | 63 | +            llama_batch batch_view = { | 
|  | 64 | +                n_tokens, | 
|  | 65 | +                batch.token    + i, | 
|  | 66 | +                nullptr, | 
|  | 67 | +                batch.pos      + i, | 
|  | 68 | +                batch.n_seq_id + i, | 
|  | 69 | +                batch.seq_id   + i, | 
|  | 70 | +                batch.logits   + i, | 
|  | 71 | +            }; | 
|  | 72 | + | 
|  | 73 | +            const int ret = llama_decode(ctx, batch_view); | 
|  | 74 | +            if (ret != 0) { | 
|  | 75 | +                LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); | 
|  | 76 | +                return false; | 
|  | 77 | +            } | 
|  | 78 | + | 
|  | 79 | +            llama_synchronize(ctx); | 
|  | 80 | +        } | 
|  | 81 | + | 
|  | 82 | +        return true; | 
|  | 83 | +    }; | 
|  | 84 | + | 
|  | 85 | +    const unsigned int pp = params.n_ubatch; | 
|  | 86 | +    const unsigned int tg = params.n_ubatch / 4; | 
|  | 87 | + | 
|  | 88 | +    if (!params.batched_bench_output_jsonl) { | 
|  | 89 | +        LOG("\n"); | 
|  | 90 | +        LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); | 
|  | 91 | +        LOG("\n"); | 
|  | 92 | +        LOG("|%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s"); | 
|  | 93 | +        LOG("|%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "------", "--------", "--------", "--------", "--------"); | 
|  | 94 | +    } | 
|  | 95 | + | 
|  | 96 | +    llama_batch batch = llama_batch_init(n_kv_max, 0, 1); | 
|  | 97 | + | 
|  | 98 | +    // warm up | 
|  | 99 | +    { | 
|  | 100 | +        common_batch_add(batch, bos, 0, { 0 }, false); | 
|  | 101 | +        common_batch_add(batch, eos, 1, { 0 }, false); | 
|  | 102 | + | 
|  | 103 | +        if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | 
|  | 104 | +            LOG_ERR("%s: llama_decode() failed\n", __func__); | 
|  | 105 | +            return 1; | 
|  | 106 | +        } | 
|  | 107 | +    } | 
|  | 108 | + | 
|  | 109 | +    common_batch_clear(batch); | 
|  | 110 | +    llama_kv_cache_clear(ctx); | 
|  | 111 | + | 
|  | 112 | +    for (unsigned int n_kv = 0; n_kv < n_kv_max; n_kv += params.n_ubatch) { | 
|  | 113 | +        // clean up KV cache before generation | 
|  | 114 | +        llama_kv_cache_seq_rm(ctx, 0, n_kv, -1); | 
|  | 115 | + | 
|  | 116 | +        // first measure token generation performance at this context size | 
|  | 117 | +        const auto t_tg_start = ggml_time_us(); | 
|  | 118 | + | 
|  | 119 | +        for (unsigned int i = 0; i < tg; ++i) { | 
|  | 120 | +            common_batch_clear(batch); | 
|  | 121 | +            common_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true); | 
|  | 122 | + | 
|  | 123 | +            if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | 
|  | 124 | +                LOG_ERR("%s: llama_decode() failed\n", __func__); | 
|  | 125 | +                return 1; | 
|  | 126 | +            } | 
|  | 127 | +        } | 
|  | 128 | + | 
|  | 129 | +        const auto t_tg_end = ggml_time_us(); | 
|  | 130 | + | 
|  | 131 | +        // clean up KV cache after generation | 
|  | 132 | +        llama_kv_cache_seq_rm(ctx, 0, n_kv, -1); | 
|  | 133 | + | 
|  | 134 | +        // prepare batch of pp size for prompt processing performance measurement | 
|  | 135 | +        common_batch_clear(batch); | 
|  | 136 | + | 
|  | 137 | +        for (unsigned int i = 0; i < pp; ++i) { | 
|  | 138 | +            common_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false); | 
|  | 139 | +        } | 
|  | 140 | +        batch.logits[batch.n_tokens - 1] = true; | 
|  | 141 | + | 
|  | 142 | +        // measure prompt processing performance | 
|  | 143 | +        const auto t_pp_start = ggml_time_us(); | 
|  | 144 | + | 
|  | 145 | +        if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | 
|  | 146 | +            LOG_ERR("%s: llama_decode() failed\n", __func__); | 
|  | 147 | +            return 1; | 
|  | 148 | +        } | 
|  | 149 | + | 
|  | 150 | +        const auto t_pp_end = ggml_time_us(); | 
|  | 151 | + | 
|  | 152 | +        // calculate and print metrics | 
|  | 153 | +        const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; | 
|  | 154 | +        const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; | 
|  | 155 | + | 
|  | 156 | +        const float speed_pp = pp / t_pp; | 
|  | 157 | +        const float speed_tg = tg / t_tg; | 
|  | 158 | + | 
|  | 159 | +        if(params.batched_bench_output_jsonl) { | 
|  | 160 | +            LOG( | 
|  | 161 | +                "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, " | 
|  | 162 | +                "\"pp\": %d, \"tg\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f }\n", | 
|  | 163 | +                n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, | 
|  | 164 | +                pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg | 
|  | 165 | +            ); | 
|  | 166 | +        } else { | 
|  | 167 | +            LOG("|%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg); | 
|  | 168 | +        } | 
|  | 169 | +    } | 
|  | 170 | + | 
|  | 171 | +    llama_perf_context_print(ctx); | 
|  | 172 | + | 
|  | 173 | +    llama_batch_free(batch); | 
|  | 174 | + | 
|  | 175 | +    llama_free(ctx); | 
|  | 176 | +    llama_model_free(model); | 
|  | 177 | + | 
|  | 178 | +    llama_backend_free(); | 
|  | 179 | + | 
|  | 180 | +    return 0; | 
|  | 181 | +} | 
0 commit comments