-
Notifications
You must be signed in to change notification settings - Fork 10.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding a simple program to measure speed of dot products (#1041)
On my Mac, the direct Q4_1 product is marginally slower (~69 vs ~55 us for Q4_0). The SIMD-ified ggml version is now almost 2X slower (~121 us). On a Ryzen 7950X CPU, the direct product for Q4_1 quantization is faster than the AVX2 implementation (~60 vs ~62 us). --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
- Loading branch information
Showing
5 changed files
with
326 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -305,4 +305,5 @@ endif () | |
|
||
if (LLAMA_BUILD_EXAMPLES) | ||
add_subdirectory(examples) | ||
add_subdirectory(pocs) | ||
endif() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
# dependencies | ||
|
||
find_package(Threads REQUIRED) | ||
|
||
# third-party | ||
|
||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}) | ||
|
||
if (EMSCRIPTEN) | ||
else() | ||
add_subdirectory(vdot) | ||
endif() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
set(TARGET vdot) | ||
add_executable(${TARGET} vdot.cpp) | ||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) | ||
target_compile_features(${TARGET} PRIVATE cxx_std_11) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,305 @@ | ||
#include <cstdio> | ||
#include <vector> | ||
#include <random> | ||
#include <chrono> | ||
#include <cstdlib> | ||
#include <cmath> | ||
#include <cassert> | ||
#include <cstring> | ||
#include <array> | ||
|
||
#include <ggml.h> | ||
|
||
constexpr int kVecSize = 1 << 18; | ||
|
||
float drawFromGaussianPdf(std::mt19937& rndm) { | ||
constexpr double kScale = 1./(1. + std::mt19937::max()); | ||
constexpr double kTwoPiTimesScale = 6.28318530717958647692*kScale; | ||
static float lastX; | ||
static bool haveX = false; | ||
if (haveX) { haveX = false; return lastX; } | ||
auto r = sqrt(-2*log(1 - kScale*rndm())); | ||
auto phi = kTwoPiTimesScale * rndm(); | ||
lastX = r*sin(phi); | ||
haveX = true; | ||
return r*cos(phi); | ||
} | ||
void fillRandomGaussianFloats(std::vector<float>& values, std::mt19937& rndm, float mean = 0) { | ||
for (auto& v : values) v = mean + drawFromGaussianPdf(rndm); | ||
} | ||
|
||
// Copy-pasted from ggml.c | ||
#define QK4_0 32 | ||
typedef struct { | ||
float d; // delta | ||
uint8_t qs[QK4_0 / 2]; // nibbles / quants | ||
} block_q4_0; | ||
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); | ||
|
||
#define QK4_1 32 | ||
typedef struct { | ||
float d; // delta | ||
float m; // min | ||
uint8_t qs[QK4_1 / 2]; // nibbles / quants | ||
} block_q4_1; | ||
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); | ||
|
||
// Copy-pasted from ggml.c | ||
#define QK8_0 32 | ||
typedef struct { | ||
float d; // delta | ||
int8_t qs[QK8_0]; // quants | ||
} block_q8_0; | ||
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); | ||
|
||
// "Scalar" dot product between the quantized vector x and float vector y | ||
inline double dot(int n, const block_q4_0* x, const float* y) { | ||
const static float kValues[16] = {-8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f, 0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f}; | ||
constexpr uint32_t kMask1 = 0x0f0f0f0f; | ||
uint32_t u1, u2; | ||
auto q1 = (const uint8_t*)&u1; | ||
auto q2 = (const uint8_t*)&u2; | ||
double sum = 0; | ||
for (int i=0; i<n; ++i) { | ||
float d = x->d; | ||
auto u = (const uint32_t*)x->qs; | ||
float s = 0; | ||
for (int k=0; k<4; ++k) { | ||
u1 = u[k] & kMask1; | ||
u2 = (u[k] >> 4) & kMask1; | ||
s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] + | ||
y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] + | ||
y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] + | ||
y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]]; | ||
y += 8; | ||
} | ||
sum += s*d; | ||
++x; | ||
} | ||
return sum; | ||
} | ||
// Alternative version of the above. Faster on my Mac (~45 us vs ~55 us per dot product), | ||
// but about the same on X86_64 (Ryzen 7950X CPU). | ||
inline double dot3(int n, const block_q4_0* x, const float* y) { | ||
const static std::pair<float,float> kValues[256] = { | ||
{-8.f, -8.f}, {-7.f, -8.f}, {-6.f, -8.f}, {-5.f, -8.f}, {-4.f, -8.f}, {-3.f, -8.f}, {-2.f, -8.f}, {-1.f, -8.f}, | ||
{ 0.f, -8.f}, { 1.f, -8.f}, { 2.f, -8.f}, { 3.f, -8.f}, { 4.f, -8.f}, { 5.f, -8.f}, { 6.f, -8.f}, { 7.f, -8.f}, | ||
{-8.f, -7.f}, {-7.f, -7.f}, {-6.f, -7.f}, {-5.f, -7.f}, {-4.f, -7.f}, {-3.f, -7.f}, {-2.f, -7.f}, {-1.f, -7.f}, | ||
{ 0.f, -7.f}, { 1.f, -7.f}, { 2.f, -7.f}, { 3.f, -7.f}, { 4.f, -7.f}, { 5.f, -7.f}, { 6.f, -7.f}, { 7.f, -7.f}, | ||
{-8.f, -6.f}, {-7.f, -6.f}, {-6.f, -6.f}, {-5.f, -6.f}, {-4.f, -6.f}, {-3.f, -6.f}, {-2.f, -6.f}, {-1.f, -6.f}, | ||
{ 0.f, -6.f}, { 1.f, -6.f}, { 2.f, -6.f}, { 3.f, -6.f}, { 4.f, -6.f}, { 5.f, -6.f}, { 6.f, -6.f}, { 7.f, -6.f}, | ||
{-8.f, -5.f}, {-7.f, -5.f}, {-6.f, -5.f}, {-5.f, -5.f}, {-4.f, -5.f}, {-3.f, -5.f}, {-2.f, -5.f}, {-1.f, -5.f}, | ||
{ 0.f, -5.f}, { 1.f, -5.f}, { 2.f, -5.f}, { 3.f, -5.f}, { 4.f, -5.f}, { 5.f, -5.f}, { 6.f, -5.f}, { 7.f, -5.f}, | ||
{-8.f, -4.f}, {-7.f, -4.f}, {-6.f, -4.f}, {-5.f, -4.f}, {-4.f, -4.f}, {-3.f, -4.f}, {-2.f, -4.f}, {-1.f, -4.f}, | ||
{ 0.f, -4.f}, { 1.f, -4.f}, { 2.f, -4.f}, { 3.f, -4.f}, { 4.f, -4.f}, { 5.f, -4.f}, { 6.f, -4.f}, { 7.f, -4.f}, | ||
{-8.f, -3.f}, {-7.f, -3.f}, {-6.f, -3.f}, {-5.f, -3.f}, {-4.f, -3.f}, {-3.f, -3.f}, {-2.f, -3.f}, {-1.f, -3.f}, | ||
{ 0.f, -3.f}, { 1.f, -3.f}, { 2.f, -3.f}, { 3.f, -3.f}, { 4.f, -3.f}, { 5.f, -3.f}, { 6.f, -3.f}, { 7.f, -3.f}, | ||
{-8.f, -2.f}, {-7.f, -2.f}, {-6.f, -2.f}, {-5.f, -2.f}, {-4.f, -2.f}, {-3.f, -2.f}, {-2.f, -2.f}, {-1.f, -2.f}, | ||
{ 0.f, -2.f}, { 1.f, -2.f}, { 2.f, -2.f}, { 3.f, -2.f}, { 4.f, -2.f}, { 5.f, -2.f}, { 6.f, -2.f}, { 7.f, -2.f}, | ||
{-8.f, -1.f}, {-7.f, -1.f}, {-6.f, -1.f}, {-5.f, -1.f}, {-4.f, -1.f}, {-3.f, -1.f}, {-2.f, -1.f}, {-1.f, -1.f}, | ||
{ 0.f, -1.f}, { 1.f, -1.f}, { 2.f, -1.f}, { 3.f, -1.f}, { 4.f, -1.f}, { 5.f, -1.f}, { 6.f, -1.f}, { 7.f, -1.f}, | ||
{-8.f, 0.f}, {-7.f, 0.f}, {-6.f, 0.f}, {-5.f, 0.f}, {-4.f, 0.f}, {-3.f, 0.f}, {-2.f, 0.f}, {-1.f, 0.f}, | ||
{ 0.f, 0.f}, { 1.f, 0.f}, { 2.f, 0.f}, { 3.f, 0.f}, { 4.f, 0.f}, { 5.f, 0.f}, { 6.f, 0.f}, { 7.f, 0.f}, | ||
{-8.f, 1.f}, {-7.f, 1.f}, {-6.f, 1.f}, {-5.f, 1.f}, {-4.f, 1.f}, {-3.f, 1.f}, {-2.f, 1.f}, {-1.f, 1.f}, | ||
{ 0.f, 1.f}, { 1.f, 1.f}, { 2.f, 1.f}, { 3.f, 1.f}, { 4.f, 1.f}, { 5.f, 1.f}, { 6.f, 1.f}, { 7.f, 1.f}, | ||
{-8.f, 2.f}, {-7.f, 2.f}, {-6.f, 2.f}, {-5.f, 2.f}, {-4.f, 2.f}, {-3.f, 2.f}, {-2.f, 2.f}, {-1.f, 2.f}, | ||
{ 0.f, 2.f}, { 1.f, 2.f}, { 2.f, 2.f}, { 3.f, 2.f}, { 4.f, 2.f}, { 5.f, 2.f}, { 6.f, 2.f}, { 7.f, 2.f}, | ||
{-8.f, 3.f}, {-7.f, 3.f}, {-6.f, 3.f}, {-5.f, 3.f}, {-4.f, 3.f}, {-3.f, 3.f}, {-2.f, 3.f}, {-1.f, 3.f}, | ||
{ 0.f, 3.f}, { 1.f, 3.f}, { 2.f, 3.f}, { 3.f, 3.f}, { 4.f, 3.f}, { 5.f, 3.f}, { 6.f, 3.f}, { 7.f, 3.f}, | ||
{-8.f, 4.f}, {-7.f, 4.f}, {-6.f, 4.f}, {-5.f, 4.f}, {-4.f, 4.f}, {-3.f, 4.f}, {-2.f, 4.f}, {-1.f, 4.f}, | ||
{ 0.f, 4.f}, { 1.f, 4.f}, { 2.f, 4.f}, { 3.f, 4.f}, { 4.f, 4.f}, { 5.f, 4.f}, { 6.f, 4.f}, { 7.f, 4.f}, | ||
{-8.f, 5.f}, {-7.f, 5.f}, {-6.f, 5.f}, {-5.f, 5.f}, {-4.f, 5.f}, {-3.f, 5.f}, {-2.f, 5.f}, {-1.f, 5.f}, | ||
{ 0.f, 5.f}, { 1.f, 5.f}, { 2.f, 5.f}, { 3.f, 5.f}, { 4.f, 5.f}, { 5.f, 5.f}, { 6.f, 5.f}, { 7.f, 5.f}, | ||
{-8.f, 6.f}, {-7.f, 6.f}, {-6.f, 6.f}, {-5.f, 6.f}, {-4.f, 6.f}, {-3.f, 6.f}, {-2.f, 6.f}, {-1.f, 6.f}, | ||
{ 0.f, 6.f}, { 1.f, 6.f}, { 2.f, 6.f}, { 3.f, 6.f}, { 4.f, 6.f}, { 5.f, 6.f}, { 6.f, 6.f}, { 7.f, 6.f}, | ||
{-8.f, 7.f}, {-7.f, 7.f}, {-6.f, 7.f}, {-5.f, 7.f}, {-4.f, 7.f}, {-3.f, 7.f}, {-2.f, 7.f}, {-1.f, 7.f}, | ||
{ 0.f, 7.f}, { 1.f, 7.f}, { 2.f, 7.f}, { 3.f, 7.f}, { 4.f, 7.f}, { 5.f, 7.f}, { 6.f, 7.f}, { 7.f, 7.f} | ||
}; | ||
double sum = 0; | ||
for (int i=0; i<n; ++i) { | ||
float d = x->d; | ||
auto q = x->qs; | ||
float s = 0; | ||
for (int k=0; k<4; ++k) { | ||
s += y[0]*kValues[q[0]].first + y[1]*kValues[q[0]].second + | ||
y[2]*kValues[q[1]].first + y[3]*kValues[q[1]].second + | ||
y[4]*kValues[q[2]].first + y[5]*kValues[q[2]].second + | ||
y[6]*kValues[q[3]].first + y[7]*kValues[q[3]].second; | ||
y += 8; q += 4; | ||
} | ||
sum += s*d; | ||
++x; | ||
} | ||
return sum; | ||
} | ||
|
||
inline double dot41(int n, const block_q4_1* x, const float* y) { | ||
const static float kValues[16] = {0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f}; | ||
constexpr uint32_t kMask1 = 0x0f0f0f0f; | ||
uint32_t u1, u2; | ||
auto q1 = (const uint8_t*)&u1; | ||
auto q2 = (const uint8_t*)&u2; | ||
double sum = 0; | ||
for (int i=0; i<n; ++i) { | ||
auto u = (const uint32_t*)x->qs; | ||
float s = 0, s1 = 0; | ||
for (int k=0; k<4; ++k) { | ||
u1 = u[k] & kMask1; | ||
u2 = (u[k] >> 4) & kMask1; | ||
s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] + | ||
y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] + | ||
y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] + | ||
y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]]; | ||
s1 += y[0] + y[1] + y[2] + y[3] + y[4] + y[5] + y[6] + y[7]; | ||
y += 8; | ||
} | ||
sum += s*x->d + s1*x->m; | ||
++x; | ||
} | ||
return sum; | ||
} | ||
|
||
// Copy-pasted from ggml.c | ||
static void quantize_row_q8_0_reference(const float *x, block_q8_0 *y, int k) { | ||
assert(k % QK8_0 == 0); | ||
const int nb = k / QK8_0; | ||
|
||
for (int i = 0; i < nb; i++) { | ||
float amax = 0.0f; // absolute max | ||
|
||
for (int l = 0; l < QK8_0; l++) { | ||
const float v = x[i*QK8_0 + l]; | ||
amax = std::max(amax, fabsf(v)); | ||
} | ||
|
||
const float d = amax / ((1 << 7) - 1); | ||
const float id = d ? 1.0f/d : 0.0f; | ||
|
||
y[i].d = d; | ||
|
||
for (int l = 0; l < QK8_0; ++l) { | ||
const float v = x[i*QK8_0 + l]*id; | ||
y[i].qs[l] = roundf(v); | ||
} | ||
} | ||
} | ||
|
||
// Copy-pasted from ggml.c | ||
static void dot_q4_q8(const int n, float* s, const void* vx, const void* vy) { | ||
const int nb = n / QK8_0; | ||
const block_q4_0* x = (const block_q4_0*)vx; | ||
const block_q8_0* y = (const block_q8_0*)vy; | ||
float sumf = 0; | ||
for (int i = 0; i < nb; i++) { | ||
const float d0 = x[i].d; | ||
const float d1 = y[i].d; | ||
|
||
const uint8_t * p0 = x[i].qs; | ||
const int8_t * p1 = y[i].qs; | ||
|
||
int sumi = 0; | ||
for (int j = 0; j < QK8_0/2; j++) { | ||
const uint8_t v0 = p0[j]; | ||
|
||
const int i0 = (int8_t) (v0 & 0xf) - 8; | ||
const int i1 = (int8_t) (v0 >> 4) - 8; | ||
|
||
const int i2 = p1[2*j + 0]; | ||
const int i3 = p1[2*j + 1]; | ||
|
||
sumi += i0*i2 + i1*i3; | ||
} | ||
sumf += d0*d1*sumi; | ||
} | ||
*s = sumf; | ||
} | ||
|
||
int main(int argc, char** argv) { | ||
|
||
int nloop = argc > 1 ? atoi(argv[1]) : 10; | ||
bool scalar = argc > 2 ? atoi(argv[2]) : false; | ||
bool useQ4_1 = argc > 3 ? atoi(argv[3]) : false; | ||
|
||
if (scalar && useQ4_1) { | ||
printf("It is not possible to use Q4_1 quantization and scalar implementations\n"); | ||
return 1; | ||
} | ||
|
||
std::mt19937 rndm(1234); | ||
|
||
std::vector<float> x1(kVecSize), y1(kVecSize); | ||
int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64); | ||
int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64); | ||
|
||
auto funcs = useQ4_1 ? ggml_internal_get_quantize_fn(GGML_TYPE_Q4_1) : ggml_internal_get_quantize_fn(GGML_TYPE_Q4_0); | ||
|
||
std::vector<block_q4_0> q40; | ||
std::vector<block_q4_1> q41; | ||
if (useQ4_1) q41.resize(n4); | ||
else q40.resize(n4); | ||
std::vector<block_q8_0> q8(n8); | ||
std::vector<int64_t> H(16, 0); | ||
double sumt = 0, sumt2 = 0, maxt = 0; | ||
double sumqt = 0, sumqt2 = 0, maxqt = 0; | ||
double sum = 0, sumq = 0, exactSum = 0; | ||
for (int iloop=0; iloop<nloop; ++iloop) { | ||
|
||
// Fill vector x with random numbers | ||
fillRandomGaussianFloats(x1, rndm); | ||
|
||
// Fill vector y with random numbers | ||
fillRandomGaussianFloats(y1, rndm); | ||
|
||
// Compute the exact dot product | ||
for (int k=0; k<kVecSize; ++k) exactSum += x1[k]*y1[k]; | ||
|
||
// quantize x. | ||
// Note, we do not include this in the timing as in practical application | ||
// we already have the quantized model weights. | ||
if (useQ4_1) { | ||
funcs.quantize_row_q(x1.data(), q41.data(), kVecSize); | ||
} else { | ||
funcs.quantize_row_q(x1.data(), q40.data(), kVecSize); | ||
} | ||
|
||
// Now measure time the dot product needs using the "scalar" version above | ||
auto t1 = std::chrono::high_resolution_clock::now(); | ||
if (useQ4_1) sum += dot41(kVecSize / QK4_1, q41.data(), y1.data()); | ||
else sum += dot(kVecSize / QK4_0, q40.data(), y1.data()); | ||
auto t2 = std::chrono::high_resolution_clock::now(); | ||
auto t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count(); | ||
sumt += t; sumt2 += t*t; maxt = std::max(maxt, t); | ||
|
||
// And now measure the time needed to quantize y and perform the dot product with the quantized y | ||
t1 = std::chrono::high_resolution_clock::now(); | ||
float result; | ||
if (scalar) { | ||
quantize_row_q8_0_reference(y1.data(), q8.data(), kVecSize); | ||
dot_q4_q8(kVecSize, &result, q40.data(), q8.data()); | ||
} | ||
else { | ||
funcs.quantize_row_q_dot(y1.data(), q8.data(), kVecSize); | ||
if (useQ4_1) funcs.vec_dot_q(kVecSize, &result, q41.data(), q8.data()); | ||
else funcs.vec_dot_q(kVecSize, &result, q40.data(), q8.data()); | ||
} | ||
sumq += result; | ||
t2 = std::chrono::high_resolution_clock::now(); | ||
t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count(); | ||
sumqt += t; sumqt2 += t*t; maxqt = std::max(maxqt, t); | ||
|
||
} | ||
|
||
// Report the time (and the average of the dot products so the compiler does not come up with the idea | ||
// of optimizing away the function calls after figuring that the result is not used). | ||
sum /= nloop; sumq /= nloop; | ||
exactSum /= nloop; | ||
printf("Exact result: <dot> = %g\n",exactSum); | ||
printf("<dot> = %g, %g\n",sum,sumq); | ||
sumt /= nloop; sumt2 /= nloop; sumt2 -= sumt*sumt; | ||
if (sumt2 > 0) sumt2 = sqrt(sumt2); | ||
printf("time = %g +/- %g us. maxt = %g us\n",sumt,sumt2,maxt); | ||
sumqt /= nloop; sumqt2 /= nloop; sumqt2 -= sumqt*sumqt; | ||
if (sumqt2 > 0) sumqt2 = sqrt(sumqt2); | ||
printf("timeq = %g +/- %g us. maxt = %g us\n",sumqt,sumqt2,maxqt); | ||
return 0; | ||
} |