Bug: JSON Schema - enum behind a $ref generates an object with unrestricted properties #8073
Description
What happened?
I'm using the json_schema feature in llama-server. Using a simple prompt like Write a dialog between Alice and Biff
, if I send a schema like:
{
"type": "array",
"minItems": 15,
"maxItems": 15,
"items": { "$ref": "#/$defs/TALK" },
"$defs": {
"TALK": {
"type": "object",
"required": [ "character", "emote", "dialog" ],
"properties": {
"character": { "enum": [ "Alice", "Biff"] },
"emote": { "enum": ["EXCLAMATION", "CONFUSION", "CHEERFUL", "LOVE", "ANGRY", "NERVOUS", "ANNOYED", "SILENCE", "INSPIRED", "SLEEPING"] },
"dialog": {
"type": "string",
"minLength": 1,
"maxLength": 200
}
}
}
}
}
I get back an array of responses in the format I'd expect, like:
{ "character": "Alice", "emote": "SILENCE", "dialog": "I'm just saying, it's not like you to be so... quiet. Is everything alright?" }
{"character": "Biff", "emote": "NERVOUS", "dialog": "Yeah, everything's fine. Just... busy. You know how it is." }
Things stop working right if I try to put the enums in separate definitions. The following schema:
{
"type": "array",
"minItems": 15,
"maxItems": 15,
"items": { "$ref": "#/$defs/TALK" },
"$defs": {
"characters": { "enum": ["Biff", "Alice"] },
"emotes": { "enum": ["EXCLAMATION", "CONFUSION", "CHEERFUL", "LOVE", "ANGRY"] },
"TALK": {
"type": "object",
"required": [ "character", "emote", "dialog" ],
"properties": {
"character": { "$ref": "#/$defs/characters" },
"emote": { "$ref": "#/$defs/emotes" },
"dialog": {
"type": "string",
"minLength": 1,
"maxLength": 200
}
}
}
}
}
...gives me arbitrary things like:
{ "character": {"name": "Alice","description": "Alice, a young woman, has a bright and curious expression on her face."},
{"emotion": "curious"}
{ "character": {"name": "Biff","description": "Biff, a friendly-looking man, has a warm smile and a hint of mischief in his eyes."},
{"emotion": "amused"}
The output should follow the same format in both, but I get an object with random properties in place of the enum, and possibly more random things afterward (in this run, it was a bonus object tagging along, but it can vary).
Notably if I reorder the properties to put "dialog" before "character" I'll actually get the dialog
property and string I asked for, so things only seem to go off the rails when it reaches one of the referenced enums.
I'm aware json_schema currently has some known bugs and features yet to implemented, but I didn't see anything in the readme I thought this would fall under. Terminal output from llama-server doesn't appear to show anything relevant but it's included for completeness.
Name and Version
o0@hades:/ai/llama.cpp$ ./llama-cli --version22.04) 11.4.0 for x86_64-linux-gnu
version: 3203 (b5a5f34)
built with cc (Ubuntu 11.4.0-1ubuntu1
What operating system are you seeing the problem on?
Linux
Relevant log output
INFO [ main] build info | tid="139722331939776" timestamp=1719130838 build=3203 commit="b5a5f34e"
INFO [ main] system info | tid="139722331939776" timestamp=1719130838 n_threads=12 n_threads_batch=-1 total_threads=24 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
llama_model_loader: loaded meta data with 26 key-value pairs and 291 tensors from ../models/text/L3-8B-Stheno-v3.2-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = L3-8B-Stheno-v3.2
llama_model_loader: - kv 2: llama.block_count u32 = 32
llama_model_loader: - kv 3: llama.context_length u32 = 8192
llama_model_loader: - kv 4: llama.embedding_length u32 = 4096
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 6: llama.attention.head_count u32 = 32
llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 8: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 10: general.file_type u32 = 7
llama_model_loader: - kv 11: llama.vocab_size u32 = 128256
llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 14: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 20: tokenizer.chat_template str = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv 21: general.quantization_version u32 = 2
llama_model_loader: - kv 22: quantize.imatrix.file str = /models/L3-8B-Stheno-v3.2-GGUF/L3-8B-...
llama_model_loader: - kv 23: quantize.imatrix.dataset str = /training_data/calibration_datav3.txt
llama_model_loader: - kv 24: quantize.imatrix.entries_count i32 = 224
llama_model_loader: - kv 25: quantize.imatrix.chunks_count i32 = 125
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q8_0: 226 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.8000 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 8B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 8.03 B
llm_load_print_meta: model size = 7.95 GiB (8.50 BPW)
llm_load_print_meta: general.name = L3-8B-Stheno-v3.2
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 2 ROCm devices:
Device 0: Radeon RX 7900 XTX, compute capability 11.0, VMM: no
Device 1: Radeon RX 7900 XTX, compute capability 11.0, VMM: no
llm_load_tensors: ggml ctx size = 0.44 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors: ROCm0 buffer size = 3757.53 MiB
llm_load_tensors: ROCm1 buffer size = 3847.80 MiB
llm_load_tensors: CPU buffer size = 532.31 MiB
.........................................................................................
llama_new_context_with_model: n_ctx = 8192
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: ROCm0 KV buffer size = 416.50 MiB
llama_kv_cache_init: ROCm1 KV buffer size = 367.50 MiB
llama_new_context_with_model: KV self size = 784.00 MiB, K (q8_0): 272.00 MiB, V (f16): 512.00 MiB
llama_new_context_with_model: ROCm_Host output buffer size = 0.98 MiB
llama_new_context_with_model: pipeline parallelism enabled (n_copies=4)
llama_new_context_with_model: ROCm0 compute buffer size = 640.01 MiB
llama_new_context_with_model: ROCm1 compute buffer size = 640.02 MiB
llama_new_context_with_model: ROCm_Host compute buffer size = 72.02 MiB
llama_new_context_with_model: graph nodes = 1030
llama_new_context_with_model: graph splits = 3
INFO [ init] initializing slots | tid="139722331939776" timestamp=1719130849 n_slots=1
INFO [ init] new slot | tid="139722331939776" timestamp=1719130849 id_slot=0 n_ctx_slot=8192
INFO [ main] model loaded | tid="139722331939776" timestamp=1719130849
INFO [ main] chat template | tid="139722331939776" timestamp=1719130849 chat_example="<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHow are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" built_in=true
INFO [ main] HTTP server listening | tid="139722331939776" timestamp=1719130849 n_threads_http="23" port="5000" hostname="0.0.0.0"
INFO [ update_slots] all slots are idle | tid="139722331939776" timestamp=1719130849
INFO [ launch_slot_with_task] slot is processing task | tid="139722331939776" timestamp=1719131079 id_slot=0 id_task=0
INFO [ update_slots] kv cache rm [p0, end) | tid="139722331939776" timestamp=1719131079 id_slot=0 id_task=0 p0=0
INFO [ print_timings] prompt eval time = 111.88 ms / 55 tokens ( 2.03 ms per token, 491.61 tokens per second) | tid="139722331939776" timestamp=1719131141 id_slot=0 id_task=0 t_prompt_processing=111.878 n_prompt_tokens_processed=55 t_token=2.0341454545454547 n_tokens_second=491.60692897620623
INFO [ print_timings] generation eval time = 61940.54 ms / 1522 runs ( 40.70 ms per token, 24.57 tokens per second) | tid="139722331939776" timestamp=1719131141 id_slot=0 id_task=0 t_token_generation=61940.538 n_decoded=1522 t_token=40.696805519053875 n_tokens_second=24.57195318516607
INFO [ print_timings] total time = 62052.42 ms | tid="139722331939776" timestamp=1719131141 id_slot=0 id_task=0 t_prompt_processing=111.878 t_token_generation=61940.538 t_total=62052.416
INFO [ update_slots] slot released | tid="139722331939776" timestamp=1719131141 id_slot=0 id_task=0 n_ctx=8192 n_past=1576 n_system_tokens=0 n_cache_tokens=0 truncated=false
INFO [ update_slots] all slots are idle | tid="139722331939776" timestamp=1719131141
INFO [ update_slots] all slots are idle | tid="139722331939776" timestamp=1719131141
INFO [ update_slots] all slots are idle | tid="139722331939776" timestamp=1719131253