Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Avletters #1

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions pyVSR/Learn/htk.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from os import path, makedirs, remove, listdir, environ, pathsep
from subprocess import list2cmdline, run, Popen, PIPE
from subprocess import list2cmdline, check_call, Popen, PIPE
import numpy as np
from ..utils import read_htk_header
from ..tcdtimit.files import phoneme_file, phoneme_list, viseme_file, viseme_list, character_file, character_list
Expand Down Expand Up @@ -178,7 +178,7 @@ def _initialize_stats(self):

cmd = ['HCompV', '-C', self._config, '-f', '0.01', '-m', '-S', self.trainscp, '-M', firstdir, self._hmm_proto]
print(list2cmdline(cmd))
run(cmd, check=True)
check_call(cmd)

def _increase_mixtures(self, nmix):
scp = self._gen_edit_script_num_mixtures(nmix)
Expand All @@ -191,7 +191,7 @@ def _increase_mixtures(self, nmix):
cmd = ['HHEd', '-H', prevdir + 'vFloors', '-H', prevdir + 'hmmdefs', '-M', nextdir, scp,
self._viseme_list]
print(list2cmdline(cmd))
run(cmd, check=True)
check_call(cmd)

def _fix_silence_viseme(self):
edit_script = self._gen_edit_script_silence_vis()
Expand All @@ -206,7 +206,7 @@ def _fix_silence_viseme(self):
nextdir, edit_script, self._viseme_list]

print(list2cmdline(cmd))
run(cmd, check=True)
check_call(cmd)

def _gen_edit_script_silence_vis(self):
fname = './run/sil.hed'
Expand Down Expand Up @@ -267,17 +267,17 @@ def _gen_wordnet(self, wdnet):

cmd = ['HLStats -b ./run/bigrams -o ' + self._viseme_list + ' ' + self._labels]
print(list2cmdline(cmd))
run(cmd, check=True, shell=True)
check_call(cmd, shell=True)

cmd = ['HBuild -n ./run/bigrams ' + new_hmmlist + ' ' + wdnet]
print(list2cmdline(cmd))
run(cmd, check=True, shell=True)
check_call(cmd, shell=True)
self._word_net = wdnet

else:
cmd = ['HParse', self._grammar, wdnet]
print(list2cmdline(cmd))
run(cmd, check=True)
check_call(cmd)
self._word_net = wdnet

def _replicate_proto(self):
Expand Down Expand Up @@ -392,7 +392,7 @@ def _embedded_reestimation(self, num_times, binary=False, pruning='off', stats=F
['-H', previous_dir + 'vFloors', '-H', previous_dir + 'hmmdefs',
'-M', current_dir, '-p', '0', self._viseme_list] + acc_files

run(list2cmdline(cmd), shell=True, check=True)
check_call(list2cmdline(cmd), shell=True, check=True)

# cleanup folder (remove accs, scp.i)
# cmd = ['rm ' + current_dir + '*.acc']
Expand All @@ -410,7 +410,7 @@ def print_results(self, nmix, case):
cmd = ['HResults', '-I', self._labels, '-f', '-p', self._viseme_list, self.predicted_labels]
print(list2cmdline(cmd))
with open('./run/results_' + case + '_' + str(nmix)+'_mixtures.txt', 'w') as logfile:
run(cmd, check=True, stdout=logfile)
check_call(cmd, check=True, stdout=logfile)


# r"""these functions are not part of the class"""
Expand Down
6 changes: 2 additions & 4 deletions pyVSR/__init__.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
from .avsr import AVSR
from .avsr import run
from . import utils




from .avletters.files import request_files
#from .ouluvs2 import files
121 changes: 121 additions & 0 deletions pyVSR/avletters/files.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
from os import path
try:
from pathlib import Path
except ImportError:
from pathlib2 import Path # python 2 backport
from natsort import natsorted
from sys import argv
import pprint
import re

_current_path = path.abspath(path.dirname(__file__))

split = re.compile("_|-")

def request_files(dataset_dir,
protocol='speaker_independent',
speaker_id=None, content="video", condition="none"):

files = get_files(dataset_dir, content, condition)
speakers = get_speakers(files)

if protocol == 'speaker_dependent':
train, dev, test = _preload_files_speaker_dependent(files, speaker_id, utterance_types)
elif protocol == 'speaker_independent':
train, dev, test = _preload_files_speaker_independent(files, speakers, content, condition)
else:
raise Exception('undefined dataset split protocol')

return natsorted(train), natsorted(dev), natsorted(test),


def get_files(dataset_dir, content="video", condition=None):

p = Path(dataset_dir)

if content == "video":
p = p.joinpath("Lips")
files = p.glob("*.mat")
elif content == "audio":
#only mfcc in distribution, waveform dir empty
p = p.joinpath("Audio").joinpath("mfcc").joinpath(condition)
print p.as_posix()
if p.exists() and p.is_dir():
files = p.glob("*.mfcc")
else:
raise Exception("unknown condition: " + condition + " in " + p.stem)
elif content == "label":
p = p.joinpath("Label")
#we don't look for the extension here, as it's not a given
files = p.glob("[A-Z][1-3]_*.*")
else:
raise Exception("unknown content: " + content)

#the glob returns a generator that is empty once used
return [f for f in files]


def get_speakers(files):

return list(set([get_speaker(f) for f in files]))

def get_speaker(file_):
return split.split(file_.stem)[1]


#speaker_dependent means: we have some speakers that we trained on in the dev/test sets
def _preload_files_speaker_dependent(files, speaker_id):

raise Exception("speaker dependent protocol not implemented")

### NEED TO BE CREATIVE HERE
## we can basically split along repetitions but it's very little data

#60/20/20 split by recursive split
from sklearn.model_selection import train_test_split
train, test = train_test_split(files, test_size=0.20, random_state=0)
train, dev = train_test_split(train, test_size=0.25, random_state=0)

return train, dev, test

def _preload_files_speaker_independent(files, speakers, content="video", condition=None):

#60/20/20 split by recursive split over speakers
from sklearn.model_selection import train_test_split
strain, stest = train_test_split(speakers, test_size=0.20, random_state=0)
strain, sdev = train_test_split(strain, test_size=0.25, random_state=0)

#map all files to their speaker
speaker_files = {}
for file_ in files:
speaker = get_speaker(file_)
try:
speaker_files[speaker].append(file_)
except:
speaker_files[speaker] = [file_]

train_files = []
dev_files = []
test_files = []
#for each subset
for sset, fset in [(strain, train_files),(sdev, dev_files),(stest, test_files)]:
for speaker in sset:
fset.extend(speaker_files[speaker])

return train_files, dev_files, test_files

if __name__ == "__main__":

print argv[0],": ",argv[1]
pp = pprint.PrettyPrinter(indent=4)

train, dev, test = request_files(argv[1], protocol='speaker_independent',
speaker_id=None, content="video", condition="none")

print "train set:"
pp.pprint(train)
print "dev set:"
pp.pprint(dev)
print "test set:"
pp.pprint(test)

12 changes: 12 additions & 0 deletions pyVSR/avletters/import_data.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
#!/bin/bash
#this is not guarded against whitespace!
src_dir=/data/corpora/audiovisual/avletters
#import audio data as is with sub directories
mkdir data
ln -s $src_dir/Audio data/
#import video data with name change, dropping "-lips" from "xxx-lips.mat"
mkdir data/Lips
for f in $src_dir/Lips/*.mat; do ln -s $f data/Lips/$(basename ${f/-lips/}); done
#make labels from the file name, this is just the first letter
mkdir data/Label
for f in data/Audio/mfcc/Clean/*.mfcc; do name=$(basename $f ".mfcc"); echo $name ${name/[0-9]_*} > data/Label/$name.mlf; done
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The bash scripts wouldn't play nice on Windows platforms. This one seems easy to port.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

probably just as fast to put it in a python script that runs anywhere

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

weird, should be "data/Label/$name.lab"

Loading