forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpg_tf_random.py
265 lines (211 loc) · 7.36 KB
/
pg_tf_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# https://deeplearningcourses.com/c/deep-reinforcement-learning-in-python
# https://www.udemy.com/deep-reinforcement-learning-in-python
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import gym
import os
import sys
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from gym import wrappers
from datetime import datetime
from q_learning import plot_running_avg, FeatureTransformer
# so you can test different architectures
class HiddenLayer:
def __init__(self, M1, M2, f=tf.nn.tanh, use_bias=True, zeros=False):
if zeros:
W = np.zeros((M1, M2)).astype(np.float32)
self.W = tf.Variable(W)
else:
self.W = tf.Variable(tf.random_normal(shape=(M1, M2)))
self.params = [self.W]
self.use_bias = use_bias
if use_bias:
self.b = tf.Variable(np.zeros(M2).astype(np.float32))
self.params.append(self.b)
self.f = f
def forward(self, X):
if self.use_bias:
a = tf.matmul(X, self.W) + self.b
else:
a = tf.matmul(X, self.W)
return self.f(a)
# approximates pi(a | s)
class PolicyModel:
def __init__(self, ft, D, hidden_layer_sizes_mean=[], hidden_layer_sizes_var=[]):
# save inputs for copy
self.ft = ft
self.D = D
self.hidden_layer_sizes_mean = hidden_layer_sizes_mean
self.hidden_layer_sizes_var = hidden_layer_sizes_var
##### model the mean #####
self.mean_layers = []
M1 = D
for M2 in hidden_layer_sizes_mean:
layer = HiddenLayer(M1, M2)
self.mean_layers.append(layer)
M1 = M2
# final layer
layer = HiddenLayer(M1, 1, lambda x: x, use_bias=False, zeros=True)
self.mean_layers.append(layer)
##### model the variance #####
self.var_layers = []
M1 = D
for M2 in hidden_layer_sizes_var:
layer = HiddenLayer(M1, M2)
self.var_layers.append(layer)
M1 = M2
# final layer
layer = HiddenLayer(M1, 1, tf.nn.softplus, use_bias=False, zeros=False)
self.var_layers.append(layer)
# gather params
self.params = []
for layer in (self.mean_layers + self.var_layers):
self.params += layer.params
# inputs and targets
self.X = tf.placeholder(tf.float32, shape=(None, D), name='X')
self.actions = tf.placeholder(tf.float32, shape=(None,), name='actions')
self.advantages = tf.placeholder(tf.float32, shape=(None,), name='advantages')
def get_output(layers):
Z = self.X
for layer in layers:
Z = layer.forward(Z)
return tf.reshape(Z, [-1])
# calculate output and cost
mean = get_output(self.mean_layers)
var = get_output(self.var_layers) + 10e-5 # smoothing
# log_probs = log_pdf(self.actions, mean, var)
norm = tf.contrib.distributions.Normal(mean, var)
self.predict_op = tf.clip_by_value(norm.sample(), -1, 1)
# log_probs = norm.log_prob(self.actions)
# cost = -tf.reduce_sum(self.advantages * log_probs + 0.1*tf.log(2*np.pi*var)) + 0.1*tf.reduce_sum(mean*mean)
# self.cost = cost
# self.train_op = tf.train.AdamOptimizer(10e-3).minimize(cost)
# self.train_op = tf.train.AdagradOptimizer(10e-3).minimize(cost)
# self.train_op = tf.train.MomentumOptimizer(10e-5, momentum=0.9).minimize(cost)
# self.train_op = tf.train.GradientDescentOptimizer(10e-5).minimize(cost)
def set_session(self, session):
self.session = session
def init_vars(self):
init_op = tf.variables_initializer(self.params)
self.session.run(init_op)
# def partial_fit(self, X, actions, advantages):
# X = np.atleast_2d(X)
# X = self.ft.transform(X)
# actions = np.atleast_1d(actions)
# advantages = np.atleast_1d(advantages)
# self.session.run(
# self.train_op,
# feed_dict={
# self.X: X,
# self.actions: actions,
# self.advantages: advantages,
# }
# )
def predict(self, X):
X = np.atleast_2d(X)
X = self.ft.transform(X)
return self.session.run(self.predict_op, feed_dict={self.X: X})
def sample_action(self, X):
p = self.predict(X)[0]
# print("action:", p)
return p
def copy(self):
clone = PolicyModel(self.ft, self.D, self.hidden_layer_sizes_mean, self.hidden_layer_sizes_mean)
clone.set_session(self.session)
clone.init_vars() # tf will complain if we don't do this
clone.copy_from(self)
return clone
def copy_from(self, other):
# collect all the ops
ops = []
my_params = self.params
other_params = other.params
for p, q in zip(my_params, other_params):
actual = self.session.run(q)
op = p.assign(actual)
ops.append(op)
# now run them all
self.session.run(ops)
def perturb_params(self):
ops = []
for p in self.params:
v = self.session.run(p)
noise = np.random.randn(*v.shape) / np.sqrt(v.shape[0]) * 5.0
if np.random.random() < 0.1:
# with probability 0.1 start completely from scratch
op = p.assign(noise)
else:
op = p.assign(v + noise)
ops.append(op)
self.session.run(ops)
def play_one(env, pmodel, gamma):
observation = env.reset()
done = False
totalreward = 0
iters = 0
while not done and iters < 2000:
# if we reach 2000, just quit, don't want this going forever
# the 200 limit seems a bit early
action = pmodel.sample_action(observation)
# oddly, the mountain car environment requires the action to be in
# an object where the actual action is stored in object[0]
observation, reward, done, info = env.step([action])
totalreward += reward
iters += 1
return totalreward
def play_multiple_episodes(env, T, pmodel, gamma, print_iters=False):
totalrewards = np.empty(T)
for i in range(T):
totalrewards[i] = play_one(env, pmodel, gamma)
if print_iters:
print(i, "avg so far:", totalrewards[:(i+1)].mean())
avg_totalrewards = totalrewards.mean()
print("avg totalrewards:", avg_totalrewards)
return avg_totalrewards
def random_search(env, pmodel, gamma):
totalrewards = []
best_avg_totalreward = float('-inf')
best_pmodel = pmodel
num_episodes_per_param_test = 3
for t in range(100):
tmp_pmodel = best_pmodel.copy()
tmp_pmodel.perturb_params()
avg_totalrewards = play_multiple_episodes(
env,
num_episodes_per_param_test,
tmp_pmodel,
gamma
)
totalrewards.append(avg_totalrewards)
if avg_totalrewards > best_avg_totalreward:
best_pmodel = tmp_pmodel
return totalrewards, best_pmodel
def main():
env = gym.make('MountainCarContinuous-v0')
ft = FeatureTransformer(env, n_components=100)
D = ft.dimensions
pmodel = PolicyModel(ft, D, [], [])
# init = tf.global_variables_initializer()
session = tf.InteractiveSession()
# session.run(init)
pmodel.set_session(session)
pmodel.init_vars()
gamma = 0.99
if 'monitor' in sys.argv:
filename = os.path.basename(__file__).split('.')[0]
monitor_dir = './' + filename + '_' + str(datetime.now())
env = wrappers.Monitor(env, monitor_dir)
totalrewards, pmodel = random_search(env, pmodel, gamma)
print("max reward:", np.max(totalrewards))
# play 100 episodes and check the average
avg_totalrewards = play_multiple_episodes(env, 100, pmodel, gamma, print_iters=True)
print("avg reward over 100 episodes with best models:", avg_totalrewards)
plt.plot(totalrewards)
plt.title("Rewards")
plt.show()
if __name__ == '__main__':
main()