You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
var fragment = document.createDocumentFragment();
for (let i = 0;i<10;i++){
let node = document.createElement("p");
node.innerHTML = i;
fragment.appendChild(node);
}
document.body.appendChild(fragment);
那详细的流程是怎样的呢?网络进程接收到响应头之后,会根据响应头中的 content-type 字段来判断文件的类型,比如 content-type 的值是“text/html”,那么浏览器就会判断这是一个 HTML 类型的文件,然后为该请求选择或者创建一个渲染进程。渲染进程准备好之后,网络进程和渲染进程之间会建立一个共享数据的管道,网络进程接收到数据后就往这个管道里面放,而渲染进程则从管道的另外一端不断地读取数据,并同时将读取的数据“喂”给 HTML 解析器。你可以把这个管道想象成一个“水管”,网络进程接收到的字节流像水一样倒进这个“水管”,而“水管”的另外一端是渲染进程的 HTML 解析器,它会动态接收字节流,并将其解析为 DOM。
DOM的具体生成流程
字节流(Bytes) => 分词器(Tokens) => 生成节点(Node) => DOM
我在两段 div 中间插入了一段 JavaScript 脚本,这段脚本的解析过程就有点不一样了。script标签之前,所有的解析流程还是和之前介绍的一样,但是解析到script标签时,渲染引擎判断这是一段脚本,此时 HTML 解析器就会暂停 DOM 的解析,因为接下来的 JavaScript 可能要修改当前已经生成的 DOM 结构。
基于 DOM 的 XSS 攻击
基于 DOM 的 XSS 攻击是不牵涉到页面 Web 服务器的。具体来讲,黑客通过各种手段将恶意脚本注入用户的页面中,比如通过网络劫持在页面传输过程中修改 HTML 页面的内容,这种劫持类型很多,有通过 WiFi 路由器劫持的,有通过本地恶意软件来劫持的,它们的共同点是在 Web 资源传输过程或者在用户使用页面的过程中修改 Web 页面的数据
常见的浏览器内核有哪些?
浏览器/RunTime 内核(渲染引擎) JavaScript 引擎
Chrome Blink(28~)
Webkit(Chrome 27) V8
FireFox Gecko SpiderMonkey
Safari Webkit JavaScriptCore
Edge EdgeHTML Chakra(for JavaScript)
IE Trident Chakra(for JScript)
PhantomJS Webkit JavaScriptCore
Node.js - V8
浏览器的主要组成部分是什么?
值得注意的是,和大多数浏览器不同,Chrome 浏览器的每个标签页都分别对应一个呈现引擎实例。每个标签页都是一个独立的进程。
浏览器是如何渲染UI的?(webkit主流程)
浏览器如何解析css选择器?
我们知道DOM Tree与Style Rules合成为 Render Tree,实际上是需要将Style Rules附着到DOM Tree上,因此需要根据选择器提供的信息对DOM Tree进行遍历,才能将样式附着到对应的DOM元素上。
从右往左匹配性能更好,是因为从右向左的匹配在第一步就筛选掉了大量的不符合条件的最右节点(叶子节点);而从左向右的匹配规则的性能都浪费在了失败的查找上面。
DOM Tree是如何构建的?(待深入理解)
浏览器重绘与重排的区别?
重排: 部分渲染树(或者整个渲染树)需要重新分析并且节点尺寸需要重新计算,表现为重新生成布局,重新排列元素
重绘: 由于节点的几何属性发生改变或者由于样式发生改变,例如改变元素背景色时,屏幕上的部分内容需要更新,表现为某些元素的外观被改变
单单改变元素的外观,肯定不会引起网页重新生成布局,但当浏览器完成重排之后,将会重新绘制受到此次重排影响的部分
重排和重绘代价是高昂的,它们会破坏用户体验,并且让UI展示非常迟缓,而相比之下重排的性能影响更大,在两者无法避免的情况下,一般我们宁可选择代价更小的重绘。
『重绘』不一定会出现『重排』,『重排』必然会出现『重绘』。
如何触发重排和重绘?
任何改变用来构建渲染树的信息都会导致一次重排或重绘:
添加、删除、更新DOM节点
通过display: none隐藏一个DOM节点-触发重排和重绘
通过visibility: hidden隐藏一个DOM节点-只触发重绘,因为没有几何变化
移动或者给页面中的DOM节点添加动画
添加一个样式表,调整样式属性
用户行为,例如调整窗口大小,改变字号,或者滚动。
如何避免重绘或者重排?(待深入理解)
我们往往通过改变class的方式来集中改变样式
我们可以通过createDocumentFragment创建一个游离于DOM树之外的节点,然后在此节点上批量操作,最后插入DOM树中,因此只触发一次重排
将元素提升为合成层有以下优点:
合成层的位图,会交由 GPU 合成,比 CPU 处理要快
当需要 repaint 时,只需要 repaint 本身,不会影响到其他的层
对于 transform 和 opacity 效果,不会触发 layout 和 paint
提升合成层的最好方式是使用 CSS 的 will-change 属性:
参考:https://fed.taobao.org/blog/2016/04/26/performance-composite/
前端如何实现即时通讯?(待深入)
短轮询
短轮询的原理很简单,每隔一段时间客户端就发出一个请求,去获取服务器最新的数据,一定程度上模拟实现了即时通讯。
优点:兼容性强,实现非常简单
缺点:延迟性高,非常消耗请求资源,影响性能
Websocket
Websocket是一个全新的、独立的协议,基于TCP协议,与http协议兼容、却不会融入http协议,仅仅作为html5的一部分,其作用就是在服务器和客户端之间建立实时的双向通信。
优点:真正意义上的实时双向通信,性能好,低延迟
缺点:独立与http的协议,因此需要额外的项目改造,使用复杂度高,必须引入成熟的库,无法兼容低版本浏览器
特点:
(1)建立在 TCP 协议之上,服务器端的实现比较容易。
(2)与 HTTP 协议有着良好的兼容性。默认端口也是80和443,并且握手阶段采用 HTTP 协议,因此握手时不容易屏蔽,能通过各种 HTTP 代理服务器。
(3)数据格式比较轻量,性能开销小,通信高效。
(4)可以发送文本,也可以发送二进制数据。
(5)没有同源限制,客户端可以与任意服务器通信。
(6)协议标识符是ws(如果加密,则为wss),服务器网址就是 URL。
Web Worker
Web Worker 的作用,就是为 JavaScript 创造多线程环境,允许主线程创建 Worker 线程,将一些任务分配给后者运行。在主线程运行的同时,Worker 线程在后台运行,两者互不干扰。等到 Worker 线程完成计算任务,再把结果返回给主线程。这样的好处是,一些计算密集型或高延迟的任务,被 Worker 线程负担了,主线程(通常负责 UI 交互)就会很流畅,不会被阻塞或拖慢
参考:https://www.cxymsg.com/guide/browser.html#%E5%A6%82%E4%BD%95%E9%81%BF%E5%85%8D%E9%87%8D%E7%BB%98%E6%88%96%E8%80%85%E9%87%8D%E6%8E%92%EF%BC%9F
什么是浏览器同源策略?
协议+域名+端口 必须一致
如何实现跨域?
jsonp本质上是一个Hack,它利用<script>标签不受同源策略限制的特性进行跨域操作。
jsonp优点:
实现简单
兼容性非常好
jsonp的缺点:
只支持get请求(因为<script>标签只能get)
有安全性问题,容易遭受xss攻击
需要服务端配合jsonp进行一定程度的改造
最流行的跨域方案cors
最方便的跨域方案Nginx
参考:https://www.cxymsg.com/guide/browser.html#%E5%A6%82%E4%BD%95%E5%AE%9E%E7%8E%B0%E8%B7%A8%E5%9F%9F%EF%BC%9F
深入理解浏览器的缓存机制 ✨
参考: https://www.jianshu.com/p/54cc04190252
多进程架构中有哪些多进程?
最新的Chrome浏览器包括:1个浏览器(Browser)主进程、1个 GPU 进程、1个网络(NetWork)进程、多个渲染进程和多个插件进程
多进程模型提升了浏览器的稳定性、流畅性和安全性,但同样不可避免地带来了一些问题
参考:https://www.processon.com/mindmap/5f8aa16d07912906db2cd8ec
Chrome进程架构
最新的Chrome浏览器包括:1个浏览器(Browser)主进程、1个 GPU 进程、1个网络(NetWork)进程、多个渲染进程和多个插件进程
打开1个页面至少需要1个网络进程、1个浏览器进程、1个GPU进程以及1个渲染进程,共4个;如果打开的页面有运行插件的话,还需要再加上1个插件进程。
TCP协议:保证页面文件完整的送达浏览器
UDP来传输会存在两个问题:
TCP有下面两个特点:
网络模型 OSI & TCP/IP
OSI
物理层 => 数据链路层 => 网络层 => 传输层 => 会话层 => 表示层 => 应用层
TCP/IP
物理层 => 数据链路层 => 网络层 => 传输层 => 应用层
FE协商 IP TCP UDP HTTP DNS
浏览器端发起HTTP请求流程
Chrome有个机制,同一个域名同时最多只能建立6个TCP连接,如果在同一个域名下同时有10个请求发生,那么其中4个请求会进入排队等待状态,直至进行中的请求完成。
服务器端处理HTTP请求流程
响应行返回的状态码是301,状态301就是告诉浏览器,我需要重定向到另外一个网址,而需要重定向的网址正是包含在响应头的Location字段中,接下来,浏览器获取Location字段中的地址,并使用该地址重新导航,这就是一个完整重定向的执行流程。
从输入URL到页面展示这中间发生了什么
当用户在地址栏中输入一个查询关键字时,地址栏会判断输入的关键字是搜索内容,还是请求的URL。
URL请求过程
准备渲染进程
Chrome的默认策略是,每个标签对应一个渲染进程。但如果从一个页面打开了另一个新页面,而新页面和当前页面属于同一站点的话,那么新页面会复用父页面的渲染进程。官方把这个默认策略叫process-per-site-instance。
提交文档
首先要明确一点,这里的“文档”是指URL请求的响应体数据。
一旦页面生成完成,渲染进程会发送一个消息给浏览器进程,浏览器接收到消息后,会停止标签图标上的加载动画。
总结:从输入URL到页面展示,这中间发生了什么
用户输入url并回车
浏览器进程检查url,组装协议,构成完整的url
浏览器进程通过进程间通信(IPC)把url请求发送给网络进程
网络进程接收到url请求后检查本地缓存是否缓存了该请求资源,如果有则将该资源返回给浏览器进程
如果没有,网络进程向web服务器发起http请求(网络请求),请求流程如下:
进行DNS解析,获取服务器ip地址,端口(端口是通过dns解析获取的吗?这里有个疑问)
利用ip地址和服务器建立tcp连接
构建请求头信息
发送请求头信息
服务器响应后,网络进程接收响应头和响应信息,并解析响应内容
网络进程解析响应流程;
检查状态码,如果是301/302,则需要重定向,从Location自动中读取地址,重新进行第4步 (301/302跳转也会读取本地缓存吗?这里有个疑问),如果是200,则继续处理请求。
200响应处理:检查响应类型Content-Type,如果是字节流类型,则将该请求提交给下载管理器,该导航流程结束,不再进行后续的渲染,如果是html则通知浏览器进程准备渲染进程准备进行渲染。
准备渲染进程
浏览器进程检查当前url是否和之前打开的渲染进程根域名是否相同,如果相同,则复用原来的进程,如果不同,则开启新的渲染进程
传输数据、更新状态
渲染进程准备好后,浏览器向渲染进程发起“提交文档”的消息,渲染进程接收到消息和网络进程建立传输数据的“管道”
渲染进程接收完数据后,向浏览器发送“确认提交”
浏览器进程接收到确认消息后更新浏览器界面状态:安全、地址栏url、前进后退的历史状态、更新web页面
HTML,CSS,JavaScript是如何变成页面的?
构建DOM树,这是因为浏览器无法直接理解和使用HTML,所以需要将HTML转换为浏览器能够理解的结构——DOM树。
样式的计算
分层
第一点,拥有层叠上下文属性的元素会被提升为单独的一层。
第二点,需要剪裁(clip)的地方也会被创建为图层。
图层绘制
栅格化(raster)操作
合成和显示
一旦所有图块都被光栅化,合成线程就会生成一个绘制图块的命令——“DrawQuad”,然后将该命令提交给浏览器进程。
结合上图,一个完整的渲染流程大致可总结为如下
渲染进程将HTML内容转换为能够读懂的DOM树结构。
渲染引擎将CSS样式表转化为浏览器可以理解的styleSheets,计算出DOM节点的样式。
创建布局树,并计算元素的布局信息。
对布局树进行分层,并生成分层树。
为每个图层生成绘制列表,并将其提交到合成线程。
合成线程将图层分成图块,并在光栅化线程池中将图块转换成位图。
合成线程发送绘制图块命令DrawQuad给浏览器进程。
浏览器进程根据DrawQuad消息生成页面,并显示到显示器上
DOM => Style => Layout => layer => paint => tiles => raster => draw quad => display
主线程 非主线程
#相关概念
使用了CSS的transform来实现动画效果,这可以避开重排和重绘阶段,直接在非主线程上执行合成动画操作。这样的效率是最高的,因为是在非主线程上合成,并没有占用主线程的资源,另外也避开了布局和绘制两个子阶段,所以相对于重绘和重排,合成能大大提升绘制效率。
变量提升
变量提升,是指在JavaScript代码执行过程中,JavaScript引擎把变量的声明部分和函数的声明部分提升到代码开头的“行为”。变量被提升后,会给变量设置默认值,这个默认值就是我们熟悉的undefined。
JavaScript代码的执行流程
为什么会出现栈溢出
三种执行上下文
当JavaScript执行全局代码的时候,会编译全局代码并创建全局执行上下文,而且在整个页面的生存周期内,全局执行上下文只有一份。
当调用一个函数的时候,函数体内的代码会被编译,并创建函数执行上下文,一般情况下,函数执行结束之后,创建的函数执行上下文会被销毁。
当使用eval函数的时候,eval的代码也会被编译,并创建执行上下文。
调用栈是一种用来管理执行上下文的数据结构,符合后进先出的规则。不过还有一点你要注意,调用栈是有大小的,当入栈的执行上下文超过一定数目,JavaScript引擎就会报错,我们把这种错误叫做栈溢出。
块级作用域:var缺陷以及为什么要引入let和const
作用域是指在程序中定义变量的区域,该位置决定了变量的生命周期。通俗地理解,作用域就是变量与函数的可访问范围,即作用域控制着变量和函数的可见性和生命周期
在ES6之前,ES的作用域只有两种:全局作用域和函数作用域。
ES6之后
变量提升所带来的问题
JavaScript是如何支持块级作用域的
执行上下文中包含:变量环境 词法环境 outer this
块级作用域定义的变量(let const)声明在词法环境中
作用域链和闭包:代码中出现相同的变量,JavaScript引擎如何选择
闭包是怎么回收的
通常,如果引用闭包的函数是一个全局变量,那么闭包会一直存在直到页面关闭;但如果这个闭包以后不再使用的话,就会造成内存泄漏。
如果引用闭包的函数是个局部变量,等函数销毁后,在下次 JavaScript 引擎执行垃圾回收时,判断闭包这块内容如果已经不再被使用了,那么 JavaScript 引擎的垃圾回收器就会回收这块内存。
所以在使用闭包的时候,你要尽量注意一个原则:如果该闭包会一直使用,那么它可以作为全局变量而存在;但如果使用频率不高,而且占用内存又比较大的话,那就尽量让它成为一个局部变量
垃圾回收:垃圾数据如何自动回收
垃圾数据回收分为手动回收和自动回收两种策略。
副垃圾回收器,主要负责新生代的垃圾回收。
主垃圾回收器,主要负责老生代的垃圾回收。
垃圾回收器的工作流程
第一步是标记空间中活动对象和非活动对象。所谓活动对象就是还在使用的对象,非活动对象就是可以进行垃圾回收的对象。
第二步是回收非活动对象所占据的内存。其实就是在所有的标记完成之后,统一清理内存中所有被标记为可回收的对象。
第三步是做内存整理。一般来说,频繁回收对象后,内存中就会存在大量不连续空间,我们把这些不连续的内存空间称为内存碎片。当内存中出现了大量的内存碎片之后,如果需要分配较大连续内存的时候,就有可能出现内存不足的情况。所以最后一步需要整理这些内存碎片,但这步其实是可选的,因为有的垃圾回收器不会产生内存碎片,比如接下来我们要介绍的副垃圾回收器。
副垃圾回收器
新生代中用Scavenge 算法来处理。所谓 Scavenge 算法,是把新生代空间对半划分为两个区域,一半是对象区域,一半是空闲区域
新加入的对象都会存放到对象区域,当对象区域快被写满时,就需要执行一次垃圾清理操作。
在垃圾回收过程中,首先要对对象区域中的垃圾做标记;标记完成之后,就进入垃圾清理阶段,副垃圾回收器会把这些存活的对象复制到空闲区域中,同时它还会把这些对象有序地排列起来,所以这个复制过程,也就相当于完成了内存整理操作,复制后空闲区域就没有内存碎片了。
完成复制后,对象区域与空闲区域进行角色翻转,也就是原来的对象区域变成空闲区域,原来的空闲区域变成了对象区域。这样就完成了垃圾对象的回收操作,同时这种角色翻转的操作还能让新生代中的这两块区域无限重复使用下去。
由于新生代中采用的 Scavenge 算法,所以每次执行清理操作时,都需要将存活的对象从对象区域复制到空闲区域。但复制操作需要时间成本,如果新生区空间设置得太大了,那么每次清理的时间就会过久,所以为了执行效率,一般新生区的空间会被设置得比较小。
也正是因为新生区的空间不大,所以很容易被存活的对象装满整个区域。为了解决这个问题,JavaScript 引擎采用了对象晋升策略,也就是经过两次垃圾回收依然还存活的对象,会被移动到老生区中。
主垃圾回收器
主垃圾回收器主要负责老生区中的垃圾回收。除了新生区中晋升的对象,一些大的对象会直接被分配到老生区。因此老生区中的对象有两个特点,一个是对象占用空间大,另一个是对象存活时间长。
由于老生区的对象比较大,若要在老生区中使用 Scavenge 算法进行垃圾回收,复制这些大的对象将会花费比较多的时间,从而导致回收执行效率不高,同时还会浪费一半的空间。因而,主垃圾回收器是采用标记 - 清除(Mark-Sweep)的算法进行垃圾回收的。下面我们来看看该算法是如何工作的。
首先是标记过程阶段。标记阶段就是从一组根元素开始,递归遍历这组根元素,在这个遍历过程中,能到达的元素称为活动对象,没有到达的元素就可以判断为垃圾数据。
上面的标记过程和清除过程就是标记 - 清除算法,不过对一块内存多次执行标记 - 清除算法后,会产生大量不连续的内存碎片。而碎片过多会导致大对象无法分配到足够的连续内存,于是又产生了另外一种算法——标记 - 整理(Mark-Compact),这个标记过程仍然与标记 - 清除算法里的是一样的,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。
现在你知道了 V8 是使用副垃圾回收器和主垃圾回收器处理垃圾回收的,不过由于 JavaScript 是运行在主线程之上的,一旦执行垃圾回收算法,都需要将正在执行的 JavaScript 脚本暂停下来,待垃圾回收完毕后再恢复脚本执行。我们把这种行为叫做全停顿(Stop-The-World)。
DOM树:JavaScript是如何影响DOM树构建的
什么是 DOM
从网络传给渲染引擎的 HTML 文件字节流是无法直接被渲染引擎理解的,所以要将其转化为渲染引擎能够理解的内部结构,这个结构就是 DOM。DOM 提供了对 HTML 文档结构化的表述。在渲染引擎中,DOM 有三个层面的作用
从页面的视角来看,DOM 是生成页面的基础数据结构。
从 JavaScript 脚本视角来看,DOM 提供给 JavaScript 脚本操作的接口,通过这套接口,JavaScript 可以对 DOM 结构进行访问,从而改变文档的结构、样式和内容。
从安全视角来看,DOM 是一道安全防护线,一些不安全的内容在 DOM 解析阶段就被拒之门外了。
简言之,DOM 是表述 HTML 的内部数据结构,它会将 Web 页面和 JavaScript 脚本连接起来,并过滤一些不安全的内容。
DOM 树如何生成
在渲染引擎内部,有一个叫HTML 解析器(HTMLParser)的模块,它的职责就是负责将 HTML 字节流转换为 DOM 结构。所以这里我们需要先要搞清楚 HTML 解析器是怎么工作的。
在开始介绍 HTML 解析器之前,我要先解释一个大家在留言区问到过好多次的问题:HTML 解析器是等整个 HTML 文档加载完成之后开始解析的,还是随着 HTML 文档边加载边解析的?
在这里我统一解答下,HTML 解析器并不是等整个文档加载完成之后再解析的,而是网络进程加载了多少数据,HTML 解析器便解析多少数据。
那详细的流程是怎样的呢?网络进程接收到响应头之后,会根据响应头中的 content-type 字段来判断文件的类型,比如 content-type 的值是“text/html”,那么浏览器就会判断这是一个 HTML 类型的文件,然后为该请求选择或者创建一个渲染进程。渲染进程准备好之后,网络进程和渲染进程之间会建立一个共享数据的管道,网络进程接收到数据后就往这个管道里面放,而渲染进程则从管道的另外一端不断地读取数据,并同时将读取的数据“喂”给 HTML 解析器。你可以把这个管道想象成一个“水管”,网络进程接收到的字节流像水一样倒进这个“水管”,而“水管”的另外一端是渲染进程的 HTML 解析器,它会动态接收字节流,并将其解析为 DOM。
DOM的具体生成流程
字节流(Bytes) => 分词器(Tokens) => 生成节点(Node) => DOM
第一个阶段,通过分词器将字节流转换为 Token。Tag Token 又分 StartTag 和 EndTag,例如:
第二个和第三个阶段是同步进行的,需要将 Token 解析为 DOM 节点,并将 DOM 节点添加到 DOM 树中。
JavaScript 是如何影响 DOM 生成的
我在两段 div 中间插入了一段 JavaScript 脚本,这段脚本的解析过程就有点不一样了。script标签之前,所有的解析流程还是和之前介绍的一样,但是解析到script标签时,渲染引擎判断这是一段脚本,此时 HTML 解析器就会暂停 DOM 的解析,因为接下来的 JavaScript 可能要修改当前已经生成的 DOM 结构。
JavaScript 引擎在解析 JavaScript 之前,是不知道 JavaScript 是否操纵了 CSSOM 的,所以渲染引擎在遇到 JavaScript 脚本时,不管该脚本是否操纵了 CSSOM,都会执行 CSS 文件下载,解析操作,再执行 JavaScript 脚本。
总结
额外说明一下,渲染引擎还有一个安全检查模块叫 XSSAuditor,是用来检测词法安全的。在分词器解析出来 Token 之后,它会检测这些模块是否安全,比如是否引用了外部脚本,是否符合 CSP 规范,是否存在跨站点请求等。如果出现不符合规范的内容,XSSAuditor 会对该脚本或者下载任务进行拦截。
渲染流水线:CSS如何影响首次加载时的白屏时间?
编译器和解析器:V8如何执行一段JavaScript代码的
编译型语言在程序执行之前,需要经过编译器的编译过程,并且编译之后会直接保留机器能读懂的二进制文件,这样每次运行程序时,都可以直接运行该二进制文件,而不需要再次重新编译了。比如 C/C++、GO 等都是编译型语言。
而由解释型语言编写的程序,在每次运行时都需要通过解释器对程序进行动态解释和执行。比如 Python、JavaScript 等都属于解释型语言。
在编译型语言的编译过程中,编译器首先会依次对源代码进行词法分析、语法分析,生成抽象语法树(AST),然后是优化代码,最后再生成处理器能够理解的机器码。如果编译成功,将会生成一个可执行的文件。但如果编译过程发生了语法或者其他的错误,那么编译器就会抛出异常,最后的二进制文件也不会生成成功
在解释型语言的解释过程中,同样解释器也会对源代码进行词法分析、语法分析,并生成抽象语法树(AST),不过它会再基于抽象语法树生成字节码,最后再根据字节码来执行程序、输出结果
js性能优化:
参考: https://blog.poetries.top/browser-working-principle/guide/part3/lesson13.html
该如何实现多种类型文件的下载呢?
HTTP/1.0 的方案是通过请求头和响应头来进行协商,在发起请求时候会通过 HTTP 请求头告诉服务器它期待服务器返回什么类型的文件、采取什么形式的压缩、提供什么语言的文件以及文件的具体编码。最终发送出来的请求头内容如下:
其中第一行表示期望服务器返回 html 类型的文件,第二行表示期望服务器可以采用 gzip、deflate 或者 br 其中的一种压缩方式,第三行表示期望返回的文件编码是 UTF-8 或者 ISO-8859-1,第四行是表示期望页面的优先语言是中文。
服务器接收到浏览器发送过来的请求头信息之后,会根据请求头的信息来准备响应数据。不过有时候会有一些意外情况发生,比如浏览器请求的压缩类型是 gzip,但是服务器不支持 gzip,只支持 br 压缩,那么它会通过响应头中的 content-encoding 字段告诉浏览器最终的压缩类型,也就是说最终浏览器需要根据响应头的信息来处理数据。下面是一段响应头的数据信息:
其中第一行表示服务器采用了 br 的压缩方法,第二行表示服务器返回的是 html 文件,并且该文件的编码类型是 UTF-8。
HTTP/1.1的优点和缺点
优点:
因此,HTTP/1.1 的请求头中增加了Host 字段,用来表示当前的域名地址,这样服务器就可以根据不同的 Host 值做不同的处理。
HTTP/1.1 的主要问题
HTTP/1.1对带宽的利用率却并不理想,这也是 HTTP/1.1 的一个核心问题。
带宽是指每秒最大能发送或者接收的字节数。我们把每秒能发送的最大字节数称为上行带宽,每秒能够接收的最大字节数称为下行带宽。
之所以说 HTTP/1.1 对带宽的利用率不理想,是因为 HTTP/1.1 很难将带宽用满。比如我们常说的 100M 带宽,实际的下载速度能达到 12.5M/S,而采用 HTTP/1.1 时,也许在加载页面资源时最大只能使用到 2.5M/S,很难将 12.5M 全部用满。
缺点:
一旦一个 TCP 连接建立之后,就进入了发送数据状态,刚开始 TCP 协议会采用一个非常慢的速度去发送数据,然后慢慢加快发送数据的速度,直到发送数据的速度达到一个理想状态,我们把这个过程称为慢启动。
你可以把每个 TCP 发送数据的过程看成是一辆车的启动过程,当刚进入公路时,会有从 0 到一个稳定速度的提速过程,TCP 的慢启动就类似于该过程。
慢启动是 TCP 为了减少网络拥塞的一种策略,我们是没有办法改变的。
而之所以说慢启动会带来性能问题,是因为页面中常用的一些关键资源文件本来就不大,如 HTML 文件、CSS 文件和 JavaScript 文件,通常这些文件在 TCP 连接建立好之后就要发起请求的,但这个过程是慢启动,所以耗费的时间比正常的时间要多很多,这样就推迟了宝贵的首次渲染页面的时长了。
你可以想象一下,系统同时建立了多条 TCP 连接,当带宽充足时,每条连接发送或者接收速度会慢慢向上增加;而一旦带宽不足时,这些 TCP 连接又会减慢发送或者接收的速度。比如一个页面有 200 个文件,使用了 3 个 CDN,那么加载该网页的时候就需要建立 6 * 3,也就是 18 个 TCP 连接来下载资源;在下载过程中,当发现带宽不足的时候,各个 TCP 连接就需要动态减慢接收数据的速度。
这样就会出现一个问题,因为有的 TCP 连接下载的是一些关键资源,如 CSS 文件、JavaScript 文件等,而有的 TCP 连接下载的是图片、视频等普通的资源文件,但是多条 TCP 连接之间又不能协商让哪些关键资源优先下载,这样就有可能影响那些关键资源的下载速度了。
通过上一篇文章,我们知道在 HTTP/1.1 中使用持久连接时,虽然能公用一个 TCP 管道,但是在一个管道中同一时刻只能处理一个请求,在当前的请求没有结束之前,其他的请求只能处于阻塞状态。这意味着我们不能随意在一个管道中发送请求和接收内容。
这是一个很严重的问题,因为阻塞请求的因素有很多,并且都是一些不确定性的因素,假如有的请求被阻塞了 5 秒,那么后续排队的请求都要延迟等待 5 秒,在这个等待的过程中,带宽、CPU 都被白白浪费了。
在浏览器处理生成页面的过程中,是非常希望能提前接收到数据的,这样就可以对这些数据做预处理操作,比如提前接收到了图片,那么就可以提前进行编解码操作,等到需要使用该图片的时候,就可以直接给出处理后的数据了,这样能让用户感受到整体速度的提升。
但队头阻塞使得这些数据不能并行请求,所以队头阻塞是很不利于浏览器优化的。
HTTP/2 的多路复用
HTTP/1.1 所存在的一些主要问题:慢启动和 TCP 连接之间相互竞争带宽是由于 TCP 本身的机制导致的,而队头阻塞是由于 HTTP/1.1 的机制导致的。
HTTP/2 的思路就是一个域名只使用一个 TCP 长连接来传输数据,这样整个页面资源的下载过程只需要一次慢启动,同时也避免了多个 TCP 连接竞争带宽所带来的问题。
另外,就是队头阻塞的问题,等待请求完成后才能去请求下一个资源,这种方式无疑是最慢的,所以 HTTP/2 需要实现资源的并行请求,也就是任何时候都可以将请求发送给服务器,而并不需要等待其他请求的完成,然后服务器也可以随时返回处理好的请求资源给浏览器。
HTTP/2 的解决方案可以总结为:一个域名只使用一个 TCP 长连接和消除队头阻塞问题。
该图就是 HTTP/2 最核心、最重要且最具颠覆性的多路复用机制。从图中你会发现每个请求都有一个对应的 ID,如 stream1 表示 index.html 的请求,stream2 表示 foo.css 的请求。这样在浏览器端,就可以随时将请求发送给服务器了。
服务器端接收到这些请求后,会根据自己的喜好来决定优先返回哪些内容,比如服务器可能早就缓存好了 index.html 和 bar.js 的响应头信息,那么当接收到请求的时候就可以立即把 index.html 和 bar.js 的响应头信息返回给浏览器,然后再将 index.html 和 bar.js 的响应体数据返回给浏览器。之所以可以随意发送,是因为每份数据都有对应的 ID,浏览器接收到之后,会筛选出相同 ID 的内容,将其拼接为完整的 HTTP 响应数据。
HTTP/2 使用了多路复用技术,可以将请求分成一帧一帧的数据去传输,这样带来了一个额外的好处,就是当收到一个优先级高的请求时,比如接收到 JavaScript 或者 CSS 关键资源的请求,服务器可以暂停之前的请求来优先处理关键资源的请求
从图中可以看出,HTTP/2 添加了一个二进制分帧层,那我们就结合图来分析下 HTTP/2 的请求和接收过程。
HTTP/2 其他特性
HTTP/2 中所存在的一些问题,主要包括了 TCP 的队头阻塞、建立 TCP 连接的延时、TCP 协议僵化等问题。
我们知道在 HTTP/2 中,多个请求是跑在一个 TCP 管道中的,如果其中任意一路数据流中出现了丢包的情况,那么就会阻塞该 TCP 连接中的所有请求。这不同于 HTTP/1.1,使用 HTTP/1.1 时,浏览器为每个域名开启了 6 个 TCP 连接,如果其中的 1 个 TCP 连接发生了队头阻塞,那么其他的 5 个连接依然可以继续传输数据。
浏览器安全:页面安全
浏览器安全可以分为三大块——Web 页面安全、浏览器网络安全和浏览器系统安全,所以本模块我们就按照这个思路来做介绍。鉴于页面安全的重要性,我们会用三篇文章来介绍该部分的知识;网络安全和系统安全则分别用一篇来介绍。
什么是同源策略
如果两个 URL 的协议、域名和端口都相同,我们就称这两个 URL 同源
同源策略主要表现在 DOM、Web 数据和网络这三个层面
第一个,DOM 层面。同源策略限制了来自不同源的 JavaScript 脚本对当前 DOM 对象读和写的操作。
第二个,数据层面。同源策略限制了不同源的站点读取当前站点的 Cookie、IndexDB、LocalStorage 等数据。由于同源策略,我们依然无法通过第二个页面的 opener 来访问第一个页面中的 Cookie、IndexDB 或者 LocalStorage 等内容。你可以自己试一下,这里我们就不做演示了。
第三个,网络层面。同源策略限制了通过 XMLHttpRequest 等方式将站点的数据发送给不同源的站点。
跨站脚本攻击XSS
XSS 攻击是指黑客往 HTML 文件中或者 DOM 中注入恶意脚本,从而在用户浏览页面时利用注入的恶意脚本对用户实施攻击的一种手段。
如果页面被注入了恶意 JavaScript 脚本,恶意脚本都能做哪些事情
基于 DOM 的 XSS 攻击是不牵涉到页面 Web 服务器的。具体来讲,黑客通过各种手段将恶意脚本注入用户的页面中,比如通过网络劫持在页面传输过程中修改 HTML 页面的内容,这种劫持类型很多,有通过 WiFi 路由器劫持的,有通过本地恶意软件来劫持的,它们的共同点是在 Web 资源传输过程或者在用户使用页面的过程中修改 Web 页面的数据
如何阻止 XSS 攻击
服务器对输入脚本进行过滤或转码
充分利用 CSP
浏览器中引入了内容安全策略,称为 CSP。CSP 的核心思想是让服务器决定浏览器能够加载哪些资源,让服务器决定浏览器是否能够执行内联 JavaScript 代码。通过这些手段就可以大大减少 XSS 攻击。
使用 HttpOnly 属性
由于很多 XSS 攻击都是来盗用 Cookie 的,因此还可以通过使用 HttpOnly 属性来保护我们 Cookie 的安全。
使用 HttpOnly 标记的 Cookie 只能使用在 HTTP 请求过程中,所以无法通过 JavaScript 来读取这段 Cookie。
总结:
XSS 攻击就是黑客往页面中注入恶意脚本,然后将页面的一些重要数据上传到恶意服务器。常见的三种 XSS 攻击模式是存储型 XSS 攻击、反射型 XSS 攻击和基于 DOM 的 XSS 攻击。
这三种攻击方式的共同点是都需要往用户的页面中注入恶意脚本,然后再通过恶意脚本将用户数据上传到黑客的恶意服务器上。而三者的不同点在于注入的方式不一样,有通过服务器漏洞来进行注入的,还有在客户端直接注入的。
针对这些 XSS 攻击,主要有三种防范策略,第一种是通过服务器对输入的内容进行过滤或者转码,第二种是充分利用好 CSP,第三种是使用 HttpOnly 来保护重要的 Cookie 信息。
当然除了以上策略之外,我们还可以通过添加验证码防止脚本冒充用户提交危险操作。而对于一些不受信任的输入,还可以限制其输入长度,这样可以增大 XSS 攻击的难度
CSRF攻击
CSRF 英文全称是 Cross-site request forgery,所以又称为“跨站请求伪造”,是指黑客引诱用户打开黑客的网站,在黑客的网站中,利用用户的登录状态发起的跨站请求。简单来讲,CSRF 攻击就是黑客利用了用户的登录状态,并通过第三方的站点来做一些坏事
自动发起 Get 请求
黑客将转账的请求接口隐藏在 img 标签内,欺骗浏览器这是一张图片资源。当该页面被加载时,浏览器会自动发起 img 的资源请求,如果服务器没有对该请求做判断的话,那么服务器就会认为该请求是一个转账请求
自动发起 POST 请求
黑客在他的页面中构建了一个隐藏的表单,该表单的内容就是极客时间的转账接口。当用户打开该站点之后,这个表单会被自动执行提交;当表单被提交之后,服务器就会执行转账操作。因此使用构建自动提交表单这种方式,就可以自动实现跨站点 POST 数据提交。
引诱用户点击链接
这段黑客站点代码,页面上放了一张美女图片,下面放了图片下载地址,而这个下载地址实际上是黑客用来转账的接口,一旦用户点击了这个链接,那么他的极客币就被转到黑客账户上了。
如何防止 CSRF 攻击
SameSite 选项通常有 Strict、Lax 和 None 三个值。
验证请求的来源站点
接着我们再来了解另外一种防止 CSRF 攻击的策略,那就是在服务器端验证请求来源的站点。
Referer 是 HTTP 请求头中的一个字段,记录了该 HTTP 请求的来源地址。比如我从极客时间的官网打开了 InfoQ 的站点,那么请求头中的 Referer 值是极客时间的 URL
Origin 属性只包含了域名信息,并没有包含具体的 URL 路径,这是 Origin 和 Referer 的一个主要区别。在这里需要补充一点,Origin 的值之所以不包含详细路径信息,是有些站点因为安全考虑,不想把源站点的详细路径暴露给服务器。
因此,服务器的策略是优先判断 Origin,如果请求头中没有包含 Origin 属性,再根据实际情况判断是否使用 Referer 值。
CSRF Token
总结:
我们结合一个实际案例介绍了 CSRF 攻击,要发起 CSRF 攻击需要具备三个条件:目标站点存在漏洞、用户要登录过目标站点和黑客需要通过第三方站点发起攻击。
根据这三个必要条件,我们又介绍了该如何防止 CSRF 攻击,具体来讲主要有三种方式:充分利用好 Cookie 的 SameSite 属性、验证请求的来源站点和使用 CSRF Token。这三种方式需要合理搭配使用,这样才可以有效地防止 CSRF 攻击。
再结合前面两篇文章,我们可以得出页面安全问题的主要原因就是浏览器为同源策略开的两个“后门”:一个是在页面中可以任意引用第三方资源,另外一个是通过 CORS 策略让 XMLHttpRequest 和 Fetch 去跨域请求资源。
为了解决这些问题,我们引入了 CSP 来限制页面任意引入外部资源,引入了 HttpOnly 机制来禁止 XMLHttpRequest 或者 Fetch 发送一些关键 Cookie,引入了 SameSite 和 Origin 来防止 CSRF 攻击。
沙盒:页面和系统之间的隔离墙(系统安全)
浏览器本身的漏洞是单进程浏览器的一个主要问题,如果浏览器被曝出存在漏洞,那么在这些漏洞没有被及时修复的情况下,黑客就有可能通过恶意的页面向浏览器中注入恶意程序,其中最常见的攻击方式是利用缓冲区溢出,不过需要注意这种类型的攻击和 XSS 注入的脚本是不一样的
浏览器被划分为浏览器内核和渲染内核两个核心模块,其中浏览器内核是由网络进程、浏览器主进程和 GPU 进程组成的,渲染内核就是渲染进程。
那如果我们在浏览器中打开一个页面,这两个模块是怎么配合的呢?
所有的网络资源都是通过浏览器内核来下载的,下载后的资源会通过 IPC 将其提交给渲染进程(浏览器内核和渲染进程之间都是通过 IPC 来通信的)。然后渲染进程会对这些资源进行解析、绘制等操作,最终生成一幅图片。但是渲染进程并不负责将图片显示到界面上,而是将最终生成的图片提交给浏览器内核模块,由浏览器内核模块负责显示这张图片。
由于渲染进程需要执行 DOM 解析、CSS 解析、网络图片解码等操作,如果渲染进程中存在系统级别的漏洞,那么以上操作就有可能让恶意的站点获取到渲染进程的控制权限,进而又获取操作系统的控制权限,这对于用户来说是非常危险的。
我们知道,如果你下载了一个恶意程序,但是没有执行它,那么恶意程序是不会生效的。同理,浏览器之于网络内容也是如此,浏览器可以安全地下载各种网络资源,但是如果要执行这些网络资源,比如解析 HTML、解析 CSS、执行 JavaScript、图片编解码等操作,就需要非常谨慎了,因为一不小心,黑客就会利用这些操作对含有漏洞的浏览器发起攻击。
基于以上原因,我们需要在渲染进程和操作系统之间建一道墙,即便渲染进程由于存在漏洞被黑客攻击,但由于这道墙,黑客就获取不到渲染进程之外的任何操作权限。将渲染进程和操作系统隔离的这道墙就是我们要聊的安全沙箱
浏览器中的安全沙箱是利用操作系统提供的安全技术,让渲染进程在执行过程中无法访问或者修改操作系统中的数据,在渲染进程需要访问系统资源的时候,需要通过浏览器内核来实现,然后将访问的结果通过 IPC 转发给渲染进程。
安全沙箱最小的保护单位是进程。因为单进程浏览器需要频繁访问或者修改操作系统的数据,所以单进程浏览器是无法被安全沙箱保护的,而现代浏览器采用的多进程架构使得安全沙箱可以发挥作用。
安全沙箱如何影响各个模块功能
HTTPS:让数据传输更安全 (网络安全)
起初设计 HTTP 协议的目的很单纯,就是为了传输超文本文件,那时候也没有太强的加密传输的数据需求,所以 HTTP 一直保持着明文传输数据的特征。但这样的话,在传输过程中的每一个环节,数据都有可能被窃取或者篡改,这也意味着你和服务器之间还可能有个中间人,你们在通信过程中的一切内容都在中间人的掌握中.
HTTPS 在 HTTP 协议栈中引入安全层
HTTP => 安全层(SSL/TLS) => TCP => IP => 数据链路层
安全层有两个主要的职责:对发起 HTTP 请求的数据进行加密操作和对接收到 HTTP 的内容进行解密操作
使用对称加密,使用非对称加密,对称加密和非对称加密搭配使用,添加数字证书
The text was updated successfully, but these errors were encountered: