forked from armorleon/ProgrammerGuidToDataMining
-
Notifications
You must be signed in to change notification settings - Fork 0
/
recommender3.py
370 lines (343 loc) · 13 KB
/
recommender3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import codecs
from math import sqrt
users2 = {"Amy": {"Taylor Swift": 4, "PSY": 3, "Whitney Houston": 4},
"Ben": {"Taylor Swift": 5, "PSY": 2},
"Clara": {"PSY": 3.5, "Whitney Houston": 4},
"Daisy": {"Taylor Swift": 5, "Whitney Houston": 3}}
users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,
"Norah Jones": 4.5, "Phoenix": 5.0,
"Slightly Stoopid": 1.5, "The Strokes": 2.5,
"Vampire Weekend": 2.0},
"Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,
"Deadmau5": 4.0, "Phoenix": 2.0,
"Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
"Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,
"Deadmau5": 1.0, "Norah Jones": 3.0,
"Phoenix": 5, "Slightly Stoopid": 1.0},
"Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,
"Deadmau5": 4.5, "Phoenix": 3.0,
"Slightly Stoopid": 4.5, "The Strokes": 4.0,
"Vampire Weekend": 2.0},
"Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,
"Norah Jones": 4.0, "The Strokes": 4.0,
"Vampire Weekend": 1.0},
"Jordyn": {"Broken Bells": 4.5, "Deadmau5": 4.0,
"Norah Jones": 5.0, "Phoenix": 5.0,
"Slightly Stoopid": 4.5, "The Strokes": 4.0,
"Vampire Weekend": 4.0},
"Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,
"Norah Jones": 3.0, "Phoenix": 5.0,
"Slightly Stoopid": 4.0, "The Strokes": 5.0},
"Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,
"Phoenix": 4.0, "Slightly Stoopid": 2.5,
"The Strokes": 3.0}
}
class recommender:
def __init__(self, data, k=1, metric='pearson', n=5):
""" initialize recommender
currently, if data is dictionary the recommender is initialized
to it.
For all other data types of data, no initialization occurs
k is the k value for k nearest neighbor
metric is which distance formula to use
n is the maximum number of recommendations to make"""
self.k = k
self.n = n
self.username2id = {}
self.userid2name = {}
self.productid2name = {}
#
# The following two variables are used for Slope One
#
self.frequencies = {}
self.deviations = {}
# for some reason I want to save the name of the metric
self.metric = metric
if self.metric == 'pearson':
self.fn = self.pearson
#
# if data is dictionary set recommender data to it
#
if type(data).__name__ == 'dict':
self.data = data
def convertProductID2name(self, id):
"""Given product id number return product name"""
if id in self.productid2name:
return self.productid2name[id]
else:
return id
def userRatings(self, id, n):
"""Return n top ratings for user with id"""
print ("Ratings for " + self.userid2name[id])
ratings = self.data[id]
print(len(ratings))
ratings = list(ratings.items())[:n]
ratings = [(self.convertProductID2name(k), v)
for (k, v) in ratings]
# finally sort and return
ratings.sort(key=lambda artistTuple: artistTuple[1],
reverse = True)
for rating in ratings:
print("%s\t%i" % (rating[0], rating[1]))
def showUserTopItems(self, user, n):
""" show top n items for user"""
items = list(self.data[user].items())
items.sort(key=lambda itemTuple: itemTuple[1], reverse=True)
for i in range(n):
print("%s\t%i" % (self.convertProductID2name(items[i][0]),
items[i][1]))
def loadMovieLens(self, path=''):
self.data = {}
#
# first load movie ratings
#
i = 0
#
# First load book ratings into self.data
#
#f = codecs.open(path + "u.data", 'r', 'utf8')
f = codecs.open(path + "u.data", 'r', 'ascii')
# f = open(path + "u.data")
for line in f:
i += 1
#separate line into fields
fields = line.split('\t')
user = fields[0]
movie = fields[1]
rating = int(fields[2].strip().strip('"'))
if user in self.data:
currentRatings = self.data[user]
else:
currentRatings = {}
currentRatings[movie] = rating
self.data[user] = currentRatings
f.close()
#
# Now load movie into self.productid2name
# the file u.item contains movie id, title, release date among
# other fields
#
#f = codecs.open(path + "u.item", 'r', 'utf8')
f = codecs.open(path + "u.item", 'r', 'iso8859-1', 'ignore')
#f = open(path + "u.item")
for line in f:
i += 1
#separate line into fields
fields = line.split('|')
mid = fields[0].strip()
title = fields[1].strip()
self.productid2name[mid] = title
f.close()
#
# Now load user info into both self.userid2name
# and self.username2id
#
#f = codecs.open(path + "u.user", 'r', 'utf8')
f = open(path + "u.user")
for line in f:
i += 1
fields = line.split('|')
userid = fields[0].strip('"')
self.userid2name[userid] = line
self.username2id[line] = userid
f.close()
print(i)
def loadBookDB(self, path=''):
"""loads the BX book dataset. Path is where the BX files are
located"""
self.data = {}
i = 0
#
# First load book ratings into self.data
#
f = codecs.open(path + "u.data", 'r', 'utf8')
for line in f:
i += 1
# separate line into fields
fields = line.split(';')
user = fields[0].strip('"')
book = fields[1].strip('"')
rating = int(fields[2].strip().strip('"'))
if rating > 5:
print("EXCEEDING ", rating)
if user in self.data:
currentRatings = self.data[user]
else:
currentRatings = {}
currentRatings[book] = rating
self.data[user] = currentRatings
f.close()
#
# Now load books into self.productid2name
# Books contains isbn, title, and author among other fields
#
f = codecs.open(path + "BX-Books.csv", 'r', 'utf8')
for line in f:
i += 1
# separate line into fields
fields = line.split(';')
isbn = fields[0].strip('"')
title = fields[1].strip('"')
author = fields[2].strip().strip('"')
title = title + ' by ' + author
self.productid2name[isbn] = title
f.close()
#
# Now load user info into both self.userid2name and
# self.username2id
#
f = codecs.open(path + "BX-Users.csv", 'r', 'utf8')
for line in f:
i += 1
# separate line into fields
fields = line.split(';')
userid = fields[0].strip('"')
location = fields[1].strip('"')
if len(fields) > 3:
age = fields[2].strip().strip('"')
else:
age = 'NULL'
if age != 'NULL':
value = location + ' (age: ' + age + ')'
else:
value = location
self.userid2name[userid] = value
self.username2id[location] = userid
f.close()
print(i)
def computeDeviations(self):
# for each person in the data:
# get their ratings
for ratings in self.data.values():
# for each item & rating in that set of ratings:
for (item, rating) in ratings.items():
self.frequencies.setdefault(item, {})
self.deviations.setdefault(item, {})
# for each item2 & rating2 in that set of ratings:
for (item2, rating2) in ratings.items():
if item != item2:
# add the difference between the ratings to our
# computation
self.frequencies[item].setdefault(item2, 0)
self.deviations[item].setdefault(item2, 0.0)
self.frequencies[item][item2] += 1
self.deviations[item][item2] += rating - rating2
for (item, ratings) in self.deviations.items():
for item2 in ratings:
ratings[item2] /= self.frequencies[item][item2]
def slopeOneRecommendations(self, userRatings):
recommendations = {}
frequencies = {}
# for every item and rating in the user's recommendations
for (userItem, userRating) in userRatings.items():
# for every item in our dataset that the user didn't rate
for (diffItem, diffRatings) in self.deviations.items():
if diffItem not in userRatings and \
userItem in self.deviations[diffItem]:
freq = self.frequencies[diffItem][userItem]
recommendations.setdefault(diffItem, 0.0)
frequencies.setdefault(diffItem, 0)
# add to the running sum representing the numerator
# of the formula
recommendations[diffItem] += (diffRatings[userItem] +
userRating) * freq
# keep a running sum of the frequency of diffitem
frequencies[diffItem] += freq
recommendations = [(self.convertProductID2name(k),
v / frequencies[k])
for (k, v) in recommendations.items()]
# finally sort and return
recommendations.sort(key=lambda artistTuple: artistTuple[1],
reverse = True)
# I am only going to return the first 50 recommendations
return recommendations[:50]
def pearson(self, rating1, rating2):
sum_xy = 0
sum_x = 0
sum_y = 0
sum_x2 = 0
sum_y2 = 0
n = 0
for key in rating1:
if key in rating2:
n += 1
x = rating1[key]
y = rating2[key]
sum_xy += x * y
sum_x += x
sum_y += y
sum_x2 += pow(x, 2)
sum_y2 += pow(y, 2)
if n == 0:
return 0
# now compute denominator
denominator = sqrt(sum_x2 - pow(sum_x, 2) / n) * \
sqrt(sum_y2 - pow(sum_y, 2) / n)
if denominator == 0:
return 0
else:
return (sum_xy - (sum_x * sum_y) / n) / denominator
def computeNearestNeighbor(self, username):
"""creates a sorted list of users based on their distance
to username"""
distances = []
for instance in self.data:
if instance != username:
distance = self.fn(self.data[username],
self.data[instance])
distances.append((instance, distance))
# sort based on distance -- closest first
distances.sort(key=lambda artistTuple: artistTuple[1],
reverse=True)
return distances
def recommend(self, user):
"""Give list of recommendations"""
recommendations = {}
# first get list of users ordered by nearness
nearest = self.computeNearestNeighbor(user)
#
# now get the ratings for the user
#
userRatings = self.data[user]
#
# determine the total distance
totalDistance = 0.0
for i in range(self.k):
totalDistance += nearest[i][1]
# now iterate through the k nearest neighbors
# accumulating their ratings
for i in range(self.k):
# compute slice of pie
weight = nearest[i][1] / totalDistance
# get the name of the person
name = nearest[i][0]
# get the ratings for this person
neighborRatings = self.data[name]
# get the name of the person
# now find bands neighbor rated that user didn't
for artist in neighborRatings:
if not artist in userRatings:
if artist not in recommendations:
recommendations[artist] = neighborRatings[artist] * \
weight
else:
recommendations[artist] = recommendations[artist] + \
neighborRatings[artist] * \
weight
# now make list from dictionary and only get the first n items
recommendations = list(recommendations.items())[:self.n]
recommendations = [(self.convertProductID2name(k), v)
for (k, v) in recommendations]
# finally sort and return
recommendations.sort(key=lambda artistTuple: artistTuple[1],
reverse = True)
return recommendations
r = recommender(0)
r.loadMovieLens('./ml-100k/')
r.showUserTopItems('1', 50)
print "------111"
r.computeDeviations()
print "------222"
print r.slopeOneRecommendations(r.data['1'])
print "------333"
print r.slopeOneRecommendations(r.data['25'])