-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathfeast.py
471 lines (393 loc) · 15.4 KB
/
feast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""
The FEAST module provides an interface between the C-library
for feature selection to Python.
References:
1) G. Brown, A. Pocock, M.-J. Zhao, and M. Lujan, "Conditional
likelihood maximization: A unifying framework for information
theoretic feature selection," Journal of Machine Learning
Research, vol. 13, pp. 27-66, 2012.
"""
__author__ = "Calvin Morrison"
__copyright__ = "Copyright 2013, EESI Laboratory"
__credits__ = ["Calvin Morrison", "Gregory Ditzler"]
__license__ = "GPL"
__version__ = "0.2.0"
__maintainer__ = "Calvin Morrison"
__email__ = "mutantturkey@gmail.com"
__status__ = "Release"
import numpy as np
import ctypes as c
libFSToolbox = c.CDLL("libFSToolbox.so");
def BetaGamma(data, labels, n_select, beta=1.0, gamma=1.0):
"""
This algorithm implements conditional mutual information
feature select, such that beta and gamma control the
weight attached to the redundant mutual and conditional
mutual information, respectively.
@param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
(REQUIRED)
@type data: ndarray
@param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
(REQUIRED)
@type labels: ndarray
@param n_select: number of features to select. (REQUIRED)
@type n_select: integer
@param beta: penalty attacted to I(X_j;X_k)
@type beta: float between 0 and 1.0
@param gamma: positive weight attached to the conditional
redundancy term I(X_k;X_j|Y)
@type gamma: float between 0 and 1.0
@return: features in the order they were selected.
@rtype: list
"""
data, labels = check_data(data, labels)
# python values
n_observations, n_features = data.shape
output = np.zeros(n_select)
# cast as C types
c_n_observations = c.c_int(n_observations)
c_n_select = c.c_int(n_select)
c_n_features = c.c_int(n_features)
c_beta = c.c_double(beta)
c_gamma = c.c_double(gamma)
libFSToolbox.BetaGamma.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.BetaGamma(c_n_select,
c_n_observations,
c_n_features,
data.ctypes.data_as(c.POINTER(c.c_double)),
labels.ctypes.data_as(c.POINTER(c.c_double)),
output.ctypes.data_as(c.POINTER(c.c_double)),
c_beta,
c_gamma
)
selected_features = []
for i in features.contents:
selected_features.append(i)
return selected_features
def CIFE(data, labels, n_select):
"""
This function implements the Condred feature selection algorithm.
beta = 1; gamma = 1;
@param data: A Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
@type data: ndarray
@param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select.
@type n_select: integer
@return selected_features: features in the order they were selected.
@rtype: list
"""
return BetaGamma(data, labels, n_select, beta=1.0, gamma=1.0)
def CMIM(data, labels, n_select):
"""
This function implements the conditional mutual information
maximization feature selection algorithm. Note that this
implementation does not allow for the weighting of the
redundancy terms that BetaGamma will allow you to do.
@param data: A Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
@type data: ndarray
@param labels: labels represented in a numpy array with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select.
@type n_select: integer
@return: features in the order that they were selected.
@rtype: list
"""
data, labels = check_data(data, labels)
# python values
n_observations, n_features = data.shape
output = np.zeros(n_select)
# cast as C types
c_n_observations = c.c_int(n_observations)
c_n_select = c.c_int(n_select)
c_n_features = c.c_int(n_features)
libFSToolbox.CMIM.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.CMIM(c_n_select,
c_n_observations,
c_n_features,
data.ctypes.data_as(c.POINTER(c.c_double)),
labels.ctypes.data_as(c.POINTER(c.c_double)),
output.ctypes.data_as(c.POINTER(c.c_double))
)
selected_features = []
for i in features.contents:
selected_features.append(i)
return selected_features
def CondMI(data, labels, n_select):
"""
This function implements the conditional mutual information
maximization feature selection algorithm.
@param data: data in a Numpy array such that len(data) = n_observations,
and len(data.transpose()) = n_features
@type data: ndarray
@param labels: represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select.
@type n_select: integer
@return: features in the order they were selected.
@rtype list
"""
data, labels = check_data(data, labels)
# python values
n_observations, n_features = data.shape
output = np.zeros(n_select)
# cast as C types
c_n_observations = c.c_int(n_observations)
c_n_select = c.c_int(n_select)
c_n_features = c.c_int(n_features)
libFSToolbox.CondMI.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.CondMI(c_n_select,
c_n_observations,
c_n_features,
data.ctypes.data_as(c.POINTER(c.c_double)),
labels.ctypes.data_as(c.POINTER(c.c_double)),
output.ctypes.data_as(c.POINTER(c.c_double))
)
selected_features = []
for i in features.contents:
selected_features.append(i)
return selected_features
def Condred(data, labels, n_select):
"""
This function implements the Condred feature selection algorithm.
beta = 0; gamma = 1;
@param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
@type data: ndarray
@param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select.
@type n_select: integer
@return: the features in the order they were selected.
@rtype: list
"""
data, labels = check_data(data, labels)
return BetaGamma(data, labels, n_select, beta=0.0, gamma=1.0)
def DISR(data, labels, n_select):
"""
This function implements the double input symmetrical relevance
feature selection algorithm.
@param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
@type data: ndarray
@param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select. (REQUIRED)
@type n_select: integer
@return: the features in the order they were selected.
@rtype: list
"""
data, labels = check_data(data, labels)
# python values
n_observations, n_features = data.shape
output = np.zeros(n_select)
# cast as C types
c_n_observations = c.c_int(n_observations)
c_n_select = c.c_int(n_select)
c_n_features = c.c_int(n_features)
libFSToolbox.DISR.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.DISR(c_n_select,
c_n_observations,
c_n_features,
data.ctypes.data_as(c.POINTER(c.c_double)),
labels.ctypes.data_as(c.POINTER(c.c_double)),
output.ctypes.data_as(c.POINTER(c.c_double))
)
selected_features = []
for i in features.contents:
selected_features.append(i)
return selected_features
def ICAP(data, labels, n_select):
"""
This function implements the interaction capping feature
selection algorithm.
@param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
@type data: ndarray
@param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select. (REQUIRED)
@type n_select: integer
@return: the features in the order they were selected.
@rtype: list
"""
data, labels = check_data(data, labels)
# python values
n_observations, n_features = data.shape
output = np.zeros(n_select)
# cast as C types
c_n_observations = c.c_int(n_observations)
c_n_select = c.c_int(n_select)
c_n_features = c.c_int(n_features)
libFSToolbox.ICAP.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.ICAP(c_n_select,
c_n_observations,
c_n_features,
data.ctypes.data_as(c.POINTER(c.c_double)),
labels.ctypes.data_as(c.POINTER(c.c_double)),
output.ctypes.data_as(c.POINTER(c.c_double))
)
selected_features = []
for i in features.contents:
selected_features.append(i)
return selected_features
def JMI(data, labels, n_select):
"""
This function implements the joint mutual information feature
selection algorithm.
@param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
@type data: ndarray
@param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select. (REQUIRED)
@type n_select: integer
@return: the features in the order they were selected.
@rtype: list
"""
data, labels = check_data(data, labels)
# python values
n_observations, n_features = data.shape
output = np.zeros(n_select)
# cast as C types
c_n_observations = c.c_int(n_observations)
c_n_select = c.c_int(n_select)
c_n_features = c.c_int(n_features)
libFSToolbox.JMI.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.JMI(c_n_select,
c_n_observations,
c_n_features,
data.ctypes.data_as(c.POINTER(c.c_double)),
labels.ctypes.data_as(c.POINTER(c.c_double)),
output.ctypes.data_as(c.POINTER(c.c_double))
)
selected_features = []
for i in features.contents:
selected_features.append(i)
return selected_features
def MIFS(data, labels, n_select):
"""
This function implements the MIFS algorithm.
beta = 1; gamma = 0;
@param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
@type data: ndarray
@param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select. (REQUIRED)
@type n_select: integer
@return: the features in the order they were selected.
@rtype: list
"""
return BetaGamma(data, labels, n_select, beta=0.0, gamma=0.0)
def MIM(data, labels, n_select):
"""
This function implements the MIM algorithm.
beta = 0; gamma = 0;
@param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
@type data: ndarray
@param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select. (REQUIRED)
@type n_select: integer
@return: the features in the order they were selected.
@rtype: list
"""
data, labels = check_data(data, labels)
# python values
n_observations, n_features = data.shape
output = np.zeros(n_select)
# cast as C types
c_n_observations = c.c_int(n_observations)
c_n_select = c.c_int(n_select)
c_n_features = c.c_int(n_features)
libFSToolbox.MIM.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.MIM(c_n_select,
c_n_observations,
c_n_features,
data.ctypes.data_as(c.POINTER(c.c_double)),
labels.ctypes.data_as(c.POINTER(c.c_double)),
output.ctypes.data_as(c.POINTER(c.c_double))
)
selected_features = []
for i in features.contents:
selected_features.append(i)
return selected_features
def mRMR(data, labels, n_select):
"""
This funciton implements the max-relevance min-redundancy feature
selection algorithm.
@param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
@type data: ndarray
@param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
@type labels: ndarray
@param n_select: number of features to select. (REQUIRED)
@type n_select: integer
@return: the features in the order they were selected.
@rtype: list
"""
data, labels = check_data(data, labels)
# python values
n_observations, n_features = data.shape
output = np.zeros(n_select)
# cast as C types
c_n_observations = c.c_int(n_observations)
c_n_select = c.c_int(n_select)
c_n_features = c.c_int(n_features)
libFSToolbox.mRMR_D.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.mRMR_D(c_n_select,
c_n_observations,
c_n_features,
data.ctypes.data_as(c.POINTER(c.c_double)),
labels.ctypes.data_as(c.POINTER(c.c_double)),
output.ctypes.data_as(c.POINTER(c.c_double))
)
selected_features = []
for i in features.contents:
selected_features.append(i)
return selected_features
def check_data(data, labels):
"""
Check dimensions of the data and the labels. Raise and exception
if there is a problem.
Data and Labels are automatically cast as doubles before calling the
feature selection functions
@param data: the data
@param labels: the labels
@return (data, labels): ndarray of floats
@rtype: tuple
"""
if isinstance(data, np.ndarray) is False:
raise Exception("data must be an numpy ndarray.")
if isinstance(labels, np.ndarray) is False:
raise Exception("labels must be an numpy ndarray.")
if len(data) != len(labels):
raise Exception("data and labels must be the same length")
return 1.0*np.array(data, order="F"), 1.0*np.array(labels, order="F")