forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multiclass.py
756 lines (608 loc) · 27.2 KB
/
multiclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
"""
Multiclass and multilabel classification strategies
===================================================
This module implements multiclass learning algorithms:
- one-vs-the-rest / one-vs-all
- one-vs-one
- error correcting output codes
The estimators provided in this module are meta-estimators: they require a base
estimator to be provided in their constructor. For example, it is possible to
use these estimators to turn a binary classifier or a regressor into a
multiclass classifier. It is also possible to use these estimators with
multiclass estimators in the hope that their accuracy or runtime performance
improves.
All classifiers in scikit-learn implement multiclass classification; you
only need to use this module if you want to experiment with custom multiclass
strategies.
The one-vs-the-rest meta-classifier also implements a `predict_proba` method,
so long as such a method is implemented by the base classifier. This method
returns probabilities of class membership in both the single label and
multilabel case. Note that in the multilabel case, probabilities are the
marginal probability that a given sample falls in the given class. As such, in
the multilabel case the sum of these probabilities over all possible labels
for a given sample *will not* sum to unity, as they do in the single label
case.
"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# Author: Hamzeh Alsalhi <93hamsal@gmail.com>
#
# License: BSD 3 clause
import array
import numpy as np
import warnings
import scipy.sparse as sp
from .base import BaseEstimator, ClassifierMixin, clone, is_classifier
from .base import MetaEstimatorMixin, is_regressor
from .preprocessing import LabelBinarizer
from .metrics.pairwise import euclidean_distances
from .utils import check_random_state
from .utils.validation import _num_samples
from .utils.validation import check_consistent_length
from .utils.validation import check_is_fitted
from .utils.validation import check_X_y
from .utils.multiclass import (_check_partial_fit_first_call,
check_classification_targets)
from .externals.joblib import Parallel
from .externals.joblib import delayed
from .externals.six.moves import zip as izip
__all__ = [
"OneVsRestClassifier",
"OneVsOneClassifier",
"OutputCodeClassifier",
]
def _fit_binary(estimator, X, y, classes=None):
"""Fit a single binary estimator."""
unique_y = np.unique(y)
if len(unique_y) == 1:
if classes is not None:
if y[0] == -1:
c = 0
else:
c = y[0]
warnings.warn("Label %s is present in all training examples." %
str(classes[c]))
estimator = _ConstantPredictor().fit(X, unique_y)
else:
estimator = clone(estimator)
estimator.fit(X, y)
return estimator
def _partial_fit_binary(estimator, X, y):
"""Partially fit a single binary estimator."""
estimator.partial_fit(X, y, np.array((0, 1)))
return estimator
def _predict_binary(estimator, X):
"""Make predictions using a single binary estimator."""
if is_regressor(estimator):
return estimator.predict(X)
try:
score = np.ravel(estimator.decision_function(X))
except (AttributeError, NotImplementedError):
# probabilities of the positive class
score = estimator.predict_proba(X)[:, 1]
return score
def _check_estimator(estimator):
"""Make sure that an estimator implements the necessary methods."""
if (not hasattr(estimator, "decision_function") and
not hasattr(estimator, "predict_proba")):
raise ValueError("The base estimator should implement "
"decision_function or predict_proba!")
class _ConstantPredictor(BaseEstimator):
def fit(self, X, y):
self.y_ = y
return self
def predict(self, X):
check_is_fitted(self, 'y_')
return np.repeat(self.y_, X.shape[0])
def decision_function(self, X):
check_is_fitted(self, 'y_')
return np.repeat(self.y_, X.shape[0])
def predict_proba(self, X):
check_is_fitted(self, 'y_')
return np.repeat([np.hstack([1 - self.y_, self.y_])],
X.shape[0], axis=0)
class OneVsRestClassifier(BaseEstimator, ClassifierMixin, MetaEstimatorMixin):
"""One-vs-the-rest (OvR) multiclass/multilabel strategy
Also known as one-vs-all, this strategy consists in fitting one classifier
per class. For each classifier, the class is fitted against all the other
classes. In addition to its computational efficiency (only `n_classes`
classifiers are needed), one advantage of this approach is its
interpretability. Since each class is represented by one and one classifier
only, it is possible to gain knowledge about the class by inspecting its
corresponding classifier. This is the most commonly used strategy for
multiclass classification and is a fair default choice.
This strategy can also be used for multilabel learning, where a classifier
is used to predict multiple labels for instance, by fitting on a 2-d matrix
in which cell [i, j] is 1 if sample i has label j and 0 otherwise.
In the multilabel learning literature, OvR is also known as the binary
relevance method.
Read more in the :ref:`User Guide <ovr_classification>`.
Parameters
----------
estimator : estimator object
An estimator object implementing `fit` and one of `decision_function`
or `predict_proba`.
n_jobs : int, optional, default: 1
The number of jobs to use for the computation. If -1 all CPUs are used.
If 1 is given, no parallel computing code is used at all, which is
useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are
used. Thus for n_jobs = -2, all CPUs but one are used.
Attributes
----------
estimators_ : list of `n_classes` estimators
Estimators used for predictions.
classes_ : array, shape = [`n_classes`]
Class labels.
label_binarizer_ : LabelBinarizer object
Object used to transform multiclass labels to binary labels and
vice-versa.
multilabel_ : boolean
Whether a OneVsRestClassifier is a multilabel classifier.
"""
def __init__(self, estimator, n_jobs=1):
self.estimator = estimator
self.n_jobs = n_jobs
def fit(self, X, y):
"""Fit underlying estimators.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
y : (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]
Multi-class targets. An indicator matrix turns on multilabel
classification.
Returns
-------
self
"""
# A sparse LabelBinarizer, with sparse_output=True, has been shown to
# outpreform or match a dense label binarizer in all cases and has also
# resulted in less or equal memory consumption in the fit_ovr function
# overall.
self.label_binarizer_ = LabelBinarizer(sparse_output=True)
Y = self.label_binarizer_.fit_transform(y)
Y = Y.tocsc()
self.classes_ = self.label_binarizer_.classes_
columns = (col.toarray().ravel() for col in Y.T)
# In cases where individual estimators are very fast to train setting
# n_jobs > 1 in can results in slower performance due to the overhead
# of spawning threads. See joblib issue #112.
self.estimators_ = Parallel(n_jobs=self.n_jobs)(delayed(_fit_binary)(
self.estimator, X, column, classes=[
"not %s" % self.label_binarizer_.classes_[i],
self.label_binarizer_.classes_[i]])
for i, column in enumerate(columns))
return self
def partial_fit(self, X, y, classes=None):
"""Partially fit underlying estimators
Should be used when memory is inefficient to train all data.
Chunks of data can be passed in several iteration.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
y : (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]
Multi-class targets. An indicator matrix turns on multilabel
classification.
classes : array, shape (n_classes, )
Classes across all calls to partial_fit.
Can be obtained via `np.unique(y_all)`, where y_all is the
target vector of the entire dataset.
This argument is only required in the first call of partial_fit
and can be omitted in the subsequent calls.
Returns
-------
self
"""
if _check_partial_fit_first_call(self, classes):
if (not hasattr(self.estimator, "partial_fit")):
raise ValueError("Base estimator {0}, doesn't have partial_fit"
"method".format(self.estimator))
self.estimators_ = [clone(self.estimator) for _ in range
(self.n_classes_)]
# A sparse LabelBinarizer, with sparse_output=True, has been shown to
# outperform or match a dense label binarizer in all cases and has also
# resulted in less or equal memory consumption in the fit_ovr function
# overall.
self.label_binarizer_ = LabelBinarizer(sparse_output=True)
Y = self.label_binarizer_.fit_transform(y)
Y = Y.tocsc()
columns = (col.toarray().ravel() for col in Y.T)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(delayed(
_partial_fit_binary)(self.estimators_[i],
X, next(columns) if self.classes_[i] in
self.label_binarizer_.classes_ else
np.zeros((1, len(y))))
for i in range(self.n_classes_))
return self
def predict(self, X):
"""Predict multi-class targets using underlying estimators.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
Returns
-------
y : (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes].
Predicted multi-class targets.
"""
check_is_fitted(self, 'estimators_')
if (hasattr(self.estimators_[0], "decision_function") and
is_classifier(self.estimators_[0])):
thresh = 0
else:
thresh = .5
n_samples = _num_samples(X)
if self.label_binarizer_.y_type_ == "multiclass":
maxima = np.empty(n_samples, dtype=float)
maxima.fill(-np.inf)
argmaxima = np.zeros(n_samples, dtype=int)
for i, e in enumerate(self.estimators_):
pred = _predict_binary(e, X)
np.maximum(maxima, pred, out=maxima)
argmaxima[maxima == pred] = i
return self.classes_[np.array(argmaxima.T)]
else:
indices = array.array('i')
indptr = array.array('i', [0])
for e in self.estimators_:
indices.extend(np.where(_predict_binary(e, X) > thresh)[0])
indptr.append(len(indices))
data = np.ones(len(indices), dtype=int)
indicator = sp.csc_matrix((data, indices, indptr),
shape=(n_samples, len(self.estimators_)))
return self.label_binarizer_.inverse_transform(indicator)
def predict_proba(self, X):
"""Probability estimates.
The returned estimates for all classes are ordered by label of classes.
Note that in the multilabel case, each sample can have any number of
labels. This returns the marginal probability that the given sample has
the label in question. For example, it is entirely consistent that two
labels both have a 90% probability of applying to a given sample.
In the single label multiclass case, the rows of the returned matrix
sum to 1.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
T : (sparse) array-like, shape = [n_samples, n_classes]
Returns the probability of the sample for each class in the model,
where classes are ordered as they are in `self.classes_`.
"""
check_is_fitted(self, 'estimators_')
# Y[i, j] gives the probability that sample i has the label j.
# In the multi-label case, these are not disjoint.
Y = np.array([e.predict_proba(X)[:, 1] for e in self.estimators_]).T
if len(self.estimators_) == 1:
# Only one estimator, but we still want to return probabilities
# for two classes.
Y = np.concatenate(((1 - Y), Y), axis=1)
if not self.multilabel_:
# Then, probabilities should be normalized to 1.
Y /= np.sum(Y, axis=1)[:, np.newaxis]
return Y
def decision_function(self, X):
"""Returns the distance of each sample from the decision boundary for
each class. This can only be used with estimators which implement the
decision_function method.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
T : array-like, shape = [n_samples, n_classes]
"""
check_is_fitted(self, 'estimators_')
if not hasattr(self.estimators_[0], "decision_function"):
raise AttributeError(
"Base estimator doesn't have a decision_function attribute.")
return np.array([est.decision_function(X).ravel()
for est in self.estimators_]).T
@property
def multilabel_(self):
"""Whether this is a multilabel classifier"""
return self.label_binarizer_.y_type_.startswith('multilabel')
@property
def n_classes_(self):
return len(self.classes_)
@property
def coef_(self):
check_is_fitted(self, 'estimators_')
if not hasattr(self.estimators_[0], "coef_"):
raise AttributeError(
"Base estimator doesn't have a coef_ attribute.")
coefs = [e.coef_ for e in self.estimators_]
if sp.issparse(coefs[0]):
return sp.vstack(coefs)
return np.vstack(coefs)
@property
def intercept_(self):
check_is_fitted(self, 'estimators_')
if not hasattr(self.estimators_[0], "intercept_"):
raise AttributeError(
"Base estimator doesn't have an intercept_ attribute.")
return np.array([e.intercept_.ravel() for e in self.estimators_])
def _fit_ovo_binary(estimator, X, y, i, j):
"""Fit a single binary estimator (one-vs-one)."""
cond = np.logical_or(y == i, y == j)
y = y[cond]
y_binary = np.empty(y.shape, np.int)
y_binary[y == i] = 0
y_binary[y == j] = 1
ind = np.arange(X.shape[0])
return _fit_binary(estimator, X[ind[cond]], y_binary, classes=[i, j])
def _partial_fit_ovo_binary(estimator, X, y, i, j):
"""Partially fit a single binary estimator(one-vs-one)."""
cond = np.logical_or(y == i, y == j)
y = y[cond]
y_binary = np.zeros_like(y)
y_binary[y == j] = 1
return _partial_fit_binary(estimator, X[cond], y_binary)
class OneVsOneClassifier(BaseEstimator, ClassifierMixin, MetaEstimatorMixin):
"""One-vs-one multiclass strategy
This strategy consists in fitting one classifier per class pair.
At prediction time, the class which received the most votes is selected.
Since it requires to fit `n_classes * (n_classes - 1) / 2` classifiers,
this method is usually slower than one-vs-the-rest, due to its
O(n_classes^2) complexity. However, this method may be advantageous for
algorithms such as kernel algorithms which don't scale well with
`n_samples`. This is because each individual learning problem only involves
a small subset of the data whereas, with one-vs-the-rest, the complete
dataset is used `n_classes` times.
Read more in the :ref:`User Guide <ovo_classification>`.
Parameters
----------
estimator : estimator object
An estimator object implementing `fit` and one of `decision_function`
or `predict_proba`.
n_jobs : int, optional, default: 1
The number of jobs to use for the computation. If -1 all CPUs are used.
If 1 is given, no parallel computing code is used at all, which is
useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are
used. Thus for n_jobs = -2, all CPUs but one are used.
Attributes
----------
estimators_ : list of `n_classes * (n_classes - 1) / 2` estimators
Estimators used for predictions.
classes_ : numpy array of shape [n_classes]
Array containing labels.
"""
def __init__(self, estimator, n_jobs=1):
self.estimator = estimator
self.n_jobs = n_jobs
def fit(self, X, y):
"""Fit underlying estimators.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
y : array-like, shape = [n_samples]
Multi-class targets.
Returns
-------
self
"""
X, y = check_X_y(X, y, accept_sparse=['csr', 'csc'])
self.classes_ = np.unique(y)
n_classes = self.classes_.shape[0]
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_ovo_binary)(
self.estimator, X, y, self.classes_[i], self.classes_[j])
for i in range(n_classes) for j in range(i + 1, n_classes))
return self
def partial_fit(self, X, y, classes=None):
"""Partially fit underlying estimators
Should be used when memory is inefficient to train all data. Chunks
of data can be passed in several iteration, where the first call
should have an array of all target variables.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
y : array-like, shape = [n_samples]
Multi-class targets.
classes : array, shape (n_classes, )
Classes across all calls to partial_fit.
Can be obtained via `np.unique(y_all)`, where y_all is the
target vector of the entire dataset.
This argument is only required in the first call of partial_fit
and can be omitted in the subsequent calls.
Returns
-------
self
"""
if _check_partial_fit_first_call(self, classes):
self.estimators_ = [clone(self.estimator) for i in
range(self.n_classes_ *
(self.n_classes_-1) // 2)]
X, y = check_X_y(X, y, accept_sparse=['csr', 'csc'])
check_classification_targets(y)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_partial_fit_ovo_binary)(
estimator, X, y, self.classes_[i], self.classes_[j])
for estimator, (i, j) in izip(self.estimators_, ((i, j) for i
in range(self.n_classes_) for j in range
(i + 1, self.n_classes_))))
return self
def predict(self, X):
"""Estimate the best class label for each sample in X.
This is implemented as ``argmax(decision_function(X), axis=1)`` which
will return the label of the class with most votes by estimators
predicting the outcome of a decision for each possible class pair.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
Returns
-------
y : numpy array of shape [n_samples]
Predicted multi-class targets.
"""
Y = self.decision_function(X)
return self.classes_[Y.argmax(axis=1)]
def decision_function(self, X):
"""Decision function for the OneVsOneClassifier.
The decision values for the samples are computed by adding the
normalized sum of pair-wise classification confidence levels to the
votes in order to disambiguate between the decision values when the
votes for all the classes are equal leading to a tie.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
Y : array-like, shape = [n_samples, n_classes]
"""
check_is_fitted(self, 'estimators_')
predictions = np.vstack([est.predict(X) for est in self.estimators_]).T
confidences = np.vstack([_predict_binary(est, X) for est in self.estimators_]).T
return _ovr_decision_function(predictions, confidences,
len(self.classes_))
@property
def n_classes_(self):
return len(self.classes_)
def _ovr_decision_function(predictions, confidences, n_classes):
"""Compute a continuous, tie-breaking ovr decision function.
It is important to include a continuous value, not only votes,
to make computing AUC or calibration meaningful.
Parameters
----------
predictions : array-like, shape (n_samples, n_classifiers)
Predicted classes for each binary classifier.
confidences : array-like, shape (n_samples, n_classifiers)
Decision functions or predicted probabilities for positive class
for each binary classifier.
n_classes : int
Number of classes. n_classifiers must be
``n_classes * (n_classes - 1 ) / 2``
"""
n_samples = predictions.shape[0]
votes = np.zeros((n_samples, n_classes))
sum_of_confidences = np.zeros((n_samples, n_classes))
k = 0
for i in range(n_classes):
for j in range(i + 1, n_classes):
sum_of_confidences[:, i] -= confidences[:, k]
sum_of_confidences[:, j] += confidences[:, k]
votes[predictions[:, k] == 0, i] += 1
votes[predictions[:, k] == 1, j] += 1
k += 1
max_confidences = sum_of_confidences.max()
min_confidences = sum_of_confidences.min()
if max_confidences == min_confidences:
return votes
# Scale the sum_of_confidences to (-0.5, 0.5) and add it with votes.
# The motivation is to use confidence levels as a way to break ties in
# the votes without switching any decision made based on a difference
# of 1 vote.
eps = np.finfo(sum_of_confidences.dtype).eps
max_abs_confidence = max(abs(max_confidences), abs(min_confidences))
scale = (0.5 - eps) / max_abs_confidence
return votes + sum_of_confidences * scale
class OutputCodeClassifier(BaseEstimator, ClassifierMixin, MetaEstimatorMixin):
"""(Error-Correcting) Output-Code multiclass strategy
Output-code based strategies consist in representing each class with a
binary code (an array of 0s and 1s). At fitting time, one binary
classifier per bit in the code book is fitted. At prediction time, the
classifiers are used to project new points in the class space and the class
closest to the points is chosen. The main advantage of these strategies is
that the number of classifiers used can be controlled by the user, either
for compressing the model (0 < code_size < 1) or for making the model more
robust to errors (code_size > 1). See the documentation for more details.
Read more in the :ref:`User Guide <ecoc>`.
Parameters
----------
estimator : estimator object
An estimator object implementing `fit` and one of `decision_function`
or `predict_proba`.
code_size : float
Percentage of the number of classes to be used to create the code book.
A number between 0 and 1 will require fewer classifiers than
one-vs-the-rest. A number greater than 1 will require more classifiers
than one-vs-the-rest.
random_state : numpy.RandomState, optional
The generator used to initialize the codebook. Defaults to
numpy.random.
n_jobs : int, optional, default: 1
The number of jobs to use for the computation. If -1 all CPUs are used.
If 1 is given, no parallel computing code is used at all, which is
useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are
used. Thus for n_jobs = -2, all CPUs but one are used.
Attributes
----------
estimators_ : list of `int(n_classes * code_size)` estimators
Estimators used for predictions.
classes_ : numpy array of shape [n_classes]
Array containing labels.
code_book_ : numpy array of shape [n_classes, code_size]
Binary array containing the code of each class.
References
----------
.. [1] "Solving multiclass learning problems via error-correcting output
codes",
Dietterich T., Bakiri G.,
Journal of Artificial Intelligence Research 2,
1995.
.. [2] "The error coding method and PICTs",
James G., Hastie T.,
Journal of Computational and Graphical statistics 7,
1998.
.. [3] "The Elements of Statistical Learning",
Hastie T., Tibshirani R., Friedman J., page 606 (second-edition)
2008.
"""
def __init__(self, estimator, code_size=1.5, random_state=None, n_jobs=1):
self.estimator = estimator
self.code_size = code_size
self.random_state = random_state
self.n_jobs = n_jobs
def fit(self, X, y):
"""Fit underlying estimators.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
y : numpy array of shape [n_samples]
Multi-class targets.
Returns
-------
self
"""
if self.code_size <= 0:
raise ValueError("code_size should be greater than 0, got {1}"
"".format(self.code_size))
_check_estimator(self.estimator)
random_state = check_random_state(self.random_state)
self.classes_ = np.unique(y)
n_classes = self.classes_.shape[0]
code_size_ = int(n_classes * self.code_size)
# FIXME: there are more elaborate methods than generating the codebook
# randomly.
self.code_book_ = random_state.random_sample((n_classes, code_size_))
self.code_book_[self.code_book_ > 0.5] = 1
if hasattr(self.estimator, "decision_function"):
self.code_book_[self.code_book_ != 1] = -1
else:
self.code_book_[self.code_book_ != 1] = 0
classes_index = dict((c, i) for i, c in enumerate(self.classes_))
Y = np.array([self.code_book_[classes_index[y[i]]]
for i in range(X.shape[0])], dtype=np.int)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_binary)(self.estimator, X, Y[:, i])
for i in range(Y.shape[1]))
return self
def predict(self, X):
"""Predict multi-class targets using underlying estimators.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
Returns
-------
y : numpy array of shape [n_samples]
Predicted multi-class targets.
"""
check_is_fitted(self, 'estimators_')
Y = np.array([_predict_binary(e, X) for e in self.estimators_]).T
pred = euclidean_distances(Y, self.code_book_).argmin(axis=1)
return self.classes_[pred]