This example will copy the values from Kafka into out.jsonlines
.
morpheus run pipeline-nlp --viz_file=basic_usage_img/simple_identity.png \
from-kafka --input_topic test_pcap \
deserialize \
serialize \
to-file --filename out.jsonlines
This example will only copy the fields 'timestamp', 'src_ip' and 'dest_ip' from examples/data/pcap_dump.jsonlines
to
out.jsonlines
.
morpheus run pipeline-nlp --viz_file=basic_usage_img/remove_fields_from_json_objects.png \
from-file --filename examples/data/pcap_dump.jsonlines \
deserialize \
serialize --include 'timestamp' --include 'src_ip' --include 'dest_ip' \
to-file --filename out.jsonlines
This example will report the throughput on the command line.
$ morpheus run pipeline-nlp --viz_file=basic_usage_img/monitor_throughput.png \
from-file --filename examples/data/pcap_dump.jsonlines \
deserialize \
monitor --description "Lines Throughput" --smoothing 0.1 --unit "lines" \
serialize \
to-file --filename out.jsonlines
Configuring Pipeline via CLI
Starting pipeline via CLI... Ctrl+C to Quit
Pipeline visualization saved to basic_usage_img/monitor_throughput.png
Lines Throughput: 88064lines [00:11, 7529.37lines/s]
This example will report the throughput for each stage independently. Keep in mind, buffer
stages are necessary to
decouple one stage from the next. Without the buffers, all montioring would show the same throughput.
$ morpheus run pipeline-nlp --viz_file=basic_usage_img/multi_monitor_throughput.png \
from-file --filename examples/data/pcap_dump.jsonlines \
monitor --description "From File Throughput" \
buffer \
deserialize \
monitor --description "Deserialize Throughput" \
buffer \
serialize \
monitor --description "Serialize Throughput" \
buffer \
to-file --filename out.jsonlines --overwrite
Configuring Pipeline via CLI
Starting pipeline via CLI... Ctrl+C to Quit
Pipeline visualization saved to basic_usage_img/multi_monitor_throughput.png
From File Throughput: 93085messages [00:09, 83515.94messages/s]
Deserialize Throughput: 93085messages [00:20, 9783.56messages/s]
Serialize Throughput: 93085messages [00:20, 9782.07messages/s]
This example shows an NLP Pipeline which uses most stages available in Morpheus.
$ morpheus run --num_threads=8 --pipeline_batch_size=1024 --model_max_batch_size=32 \
pipeline-nlp --viz_file=basic_usage_img/nlp_kitchen_sink.png \
from-file --filename examples/data/pcap_dump.jsonlines \
buffer --count=500 \
deserialize \
preprocess \
buffer \
inf-triton --model_name=sid-minibert-onnx --server_url=localhost:8001 \
monitor --description "Inference Rate" --smoothing=0.001 --unit "inf" \
add-class \
filter --threshold=0.8 \
serialize --include 'timestamp' --exclude '^_ts_' \
to-kafka --output_topic "inference_output"
Configuring Pipeline via CLI
Starting pipeline via CLI... Ctrl+C to Quit
Pipeline visualization saved to basic_usage_img/nlp_kitchen_sink.png
Inference Rate: 16384inf [19:50, 13.83inf/s]