You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Describe the bug
There is a two line of code in the script that affects to run correctly.
And they are useless. pandas can read csv file without them. so we can clean those.
To Reproduce
Steps to reproduce the behavior:
just run all the script.
Clean version;
Admission_Prediction_using_Machine_Learning By Zahra Shahid
"""# Import libraries"""
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
"""# Upload and Read file"""
#from google.colab import files
#files.upload()
df = pd.read_csv("Admission_Predict_Ver1.1.csv")
df.head(8)
"""# Cleaning the data"""
df.columns
df.drop('Serial No.',axis=1,inplace=True)
df.head()
"""#Exploratory Data Aanalysis"""
df.describe()
df.corr()
sns.heatmap(df.corr(), annot=True)
sns.distplot(df.CGPA)
sns.pairplot(df,x_vars=['SOP','GRE Score','TOEFL Score','CGPA'],y_vars=['Chance of Admit '],height=5, aspect=0.8, kind='reg')
"""# Creating Model"""
df.columns
x=df[['GRE Score', 'TOEFL Score', 'CGPA']]
y=df[['Chance of Admit ']]
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import random
Describe the bug
There is a two line of code in the script that affects to run correctly.
And they are useless. pandas can read csv file without them. so we can clean those.
To Reproduce
Steps to reproduce the behavior:
just run all the script.
Clean version;
Admission_Prediction_using_Machine_Learning By Zahra Shahid
"""# Import libraries"""
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
"""# Upload and Read file"""
#from google.colab import files
#files.upload()
df = pd.read_csv("Admission_Predict_Ver1.1.csv")
df.head(8)
"""# Cleaning the data"""
df.columns
df.drop('Serial No.',axis=1,inplace=True)
df.head()
"""#Exploratory Data Aanalysis"""
df.describe()
df.corr()
sns.heatmap(df.corr(), annot=True)
sns.distplot(df.CGPA)
sns.pairplot(df,x_vars=['SOP','GRE Score','TOEFL Score','CGPA'],y_vars=['Chance of Admit '],height=5, aspect=0.8, kind='reg')
"""# Creating Model"""
df.columns
x=df[['GRE Score', 'TOEFL Score', 'CGPA']]
y=df[['Chance of Admit ']]
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import random
x_train, x_test, y_train, y_test =train_test_split(x,y,test_size=0.20,random_state=0)
x_train.shape
y_train.shape
linreg = LinearRegression()
linreg.fit(x_train,y_train)
"""# Testing and Evaluating the Model"""
y_pred=linreg.predict(x_test)
y_pred[:7]
y_test.head(7)
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,y_pred)) #96% prediction
The text was updated successfully, but these errors were encountered: