diff --git a/doc/ref/fieldfin.xml b/doc/ref/fieldfin.xml
index 6f7bd019ffa..f8ce185dc13 100644
--- a/doc/ref/fieldfin.xml
+++ b/doc/ref/fieldfin.xml
@@ -179,8 +179,8 @@ Finally note that elements of large prime fields are stored and
displayed as residue class objects. So
Z(65537);
-ZmodpZObj( 3, 65537 )
+gap> Z(NextPrimeInt(2^30));
+ZmodpZObj( 2, 1073741827 )
]]>
diff --git a/lib/ffe.gd b/lib/ffe.gd
index 955f0cb3517..7fb75d7a727 100644
--- a/lib/ffe.gd
+++ b/lib/ffe.gd
@@ -18,6 +18,7 @@
##
##
##
+##
##
##
## For creating elements of a finite field,
@@ -30,8 +31,8 @@
##
## ⪆ can represent elements of all finite fields
## GF(p^d) such that either
-## (1) p^d <= 65536 (in which case an extremely efficient
-## internal representation is used);
+## (1) p^d <= MAXSIZE_GF_INTERNAL (in which case an
+## efficient internal representation is used);
## (2) d = 1, (in which case, for large p, the field is represented
## using the machinery of residue class rings
## (see section ) or
@@ -39,6 +40,11 @@
## p elements is known, or can be computed
## (see ).
##
+##
+## MAXSIZE_GF_INTERNAL may depend on the word size of your computer
+## and the version of &GAP; but will typically be either 2^{16} or
+## 2^{24}.
+##
## If you attempt to construct an element of GF(p^d) for which
## d > 1 and the relevant Conway polynomial is not known,
## and not necessarily easy to find
@@ -107,14 +113,15 @@
## 0*Z(2)
## gap> a*a;
## Z(2^5)^2
-## gap> b := Z(3,12);
+## gap> b := Z(3,20);
## z
## gap> b*b;
## z2
## gap> b+b;
## 2z
## gap> Print(b^100,"\n");
-## Z(3)^0+Z(3,12)^5+Z(3,12)^6+2*Z(3,12)^8+Z(3,12)^10+Z(3,12)^11
+## 2*Z(3,20)^2+Z(3,20)^4+Z(3,20)^6+Z(3,20)^7+2*Z(3,20)^9+2*Z(3,20)^10+2*Z\
+## (3,20)^12+2*Z(3,20)^15+2*Z(3,20)^17+Z(3,20)^18+Z(3,20)^19
## ]]>
## Z(11,40);
@@ -270,7 +277,7 @@ DeclareCategoryCollections( "IsFFECollColl" );
## true
## gap> Z(256) > Z(101);
## false
-## gap> Z(2,20) < Z(2,20)^2; # this illustrates the lexicographic ordering
+## gap> Z(2,30) < Z(2,30)^2; # this illustrates the lexicographic ordering
## false
## ]]>
##
diff --git a/src/finfield.c b/src/finfield.c
index dcb25a1c096..3dcdb43932b 100644
--- a/src/finfield.c
+++ b/src/finfield.c
@@ -1443,7 +1443,6 @@ Obj INT_FF (
}
-
Obj FuncINT_FFE_DEFAULT (
Obj self,
Obj z )
@@ -1503,10 +1502,10 @@ Obj FuncZ (
FF ff; /* the finite field */
/* check the argument */
- if ( (IS_INTOBJ(q) && (INT_INTOBJ(q) > 65536)) ||
- (TNUM_OBJ(q) == T_INTPOS))
- return CALL_1ARGS(ZOp, q);
-
+ if ((IS_INTOBJ(q) && (INT_INTOBJ(q) > MAXSIZE_GF_INTERNAL)) ||
+ (TNUM_OBJ(q) == T_INTPOS))
+ return CALL_1ARGS(ZOp, q);
+
if ( !IS_INTOBJ(q) || INT_INTOBJ(q)<=1 ) {
RequireArgument("Z", q, "q", "must be a positive prime power");
}
@@ -1521,7 +1520,7 @@ Obj FuncZ (
return NEW_FFE(ff, (q == INTOBJ_INT(2)) ? 1 : 2);
}
-Obj FuncZ2 ( Obj self, Obj p, Obj d)
+Obj FuncZ2(Obj self, Obj p, Obj d)
{
FF ff;
Int ip, id, id1;
@@ -1529,20 +1528,21 @@ Obj FuncZ2 ( Obj self, Obj p, Obj d)
if (ARE_INTOBJS(p, d)) {
ip = INT_INTOBJ(p);
id = INT_INTOBJ(d);
- if (ip > 1 && id > 0 && id <= 16 && ip < 65536) {
+ if (ip > 1 && id > 0 && id <= DEGREE_LARGEST_INTERNAL_FF &&
+ ip <= MAXSIZE_GF_INTERNAL) {
id1 = id;
q = ip;
- while (--id1 > 0 && q <= 65536)
+ while (--id1 > 0 && q <= MAXSIZE_GF_INTERNAL)
q *= ip;
- if (q <= 65536) {
+ if (q <= MAXSIZE_GF_INTERNAL) {
/* get the finite field */
- ff = FiniteField(ip, id);
+ ff = FiniteFieldBySize(q);
if (ff == 0 || CHAR_FF(ff) != ip)
RequireArgument("Z", p, "p", "must be a prime");
/* make the root */
- return NEW_FFE(ff, (ip == 2 && id == 1 ? 1 : 2));
+ return NEW_FFE(ff, (q == 2) ? 1 : 2);
}
}
}
diff --git a/src/finfield.h b/src/finfield.h
index ee72418e4c0..bccfc44eeda 100644
--- a/src/finfield.h
+++ b/src/finfield.h
@@ -12,8 +12,11 @@
**
** Finite fields are an important domain in computational group theory
** because the classical matrix groups are defined over those finite fields.
-** In GAP we support small finite fields with up to 65536 elements,
-** larger fields can be realized as polynomial domains over smaller fields.
+** The GAP kernel supports elements of finite fields up to some fixed size
+** limit, typically 2^16 on 32 bit systems and 2^24 on 64 bit systems.
+** To change the limits, edit etc/ffgen.c. To access the current limits use
+** MAXSIZE_GF_INTERNAL. Support for larger fields is implemented by the
+** library
**
** Elements in small finite fields are represented as immediate objects.
**
@@ -24,10 +27,11 @@
** The least significant 3 bits of such an immediate object are always 010,
** flagging the object as an object of a small finite field.
**
-** The next 13 bits represent the small finite field where the element lies.
-** They are simply an index into a global table of small finite fields.
+** The next group of FIELD_BITS_FFE bits represent the small finite field
+** where the element lies. They are simply an index into a global table of
+** small finite fields, which is constructed at build time.
**
-** The most significant 16 bits represent the value of the element.
+** The most significant VAL_BITS_FFE bits represent the value of the element.
**
** If the value is 0, then the element is the zero from the finite field.
** Otherwise the integer is the logarithm of this element with respect to a
@@ -64,10 +68,9 @@
**
** Small finite fields are represented by an index into a global table.
**
-** Since there are only 6542 (prime) + 93 (nonprime) small finite fields,
-** the index fits into a 'UInt2' (actually into 13 bits).
+** Depending on the configuration it may be UInt2 or UInt4. The definition
+** is in `ffdata.h` and is calculated by etc/ffgen.c
*/
-typedef UInt2 FF;
/****************************************************************************
@@ -131,18 +134,9 @@ extern Obj SuccFF;
** Values of elements of small finite fields are represented by the
** logarithm of the element with respect to the root plus one.
**
-** Since small finite fields contain at most 65536 elements, the value fits
-** into a 'UInt2'.
-**
-** It may be possible to change this to 'UInt4' to allow small finite fields
-** with more than than 65536 elements. The macros and have been coded in
-** such a way that they work without problems. The exception is 'POW_FFV'
-** which will only work if the product of integers of type 'FFV' does not
-** cause an overflow. And of course the successor table stored for a finite
-** field will become quite large for fields with more than 65536 elements.
+** Depending on the configuration, this type may be a UInt2 or UInt4.
+** This type is actually defined in gen/ffdata.h by etc/ffgen.c
*/
-typedef UInt2 FFV;
-
/****************************************************************************
**
@@ -274,11 +268,12 @@ static inline FFV QUO_FFV(FFV a, FFV b, const FFV * f)
** the finite field pointed to by the pointer .
**
** Note that 'POW_FFV' may only be used if the right operand is an integer
-** in the range $0..order(f)-1$.
+** in the range $0..order(f)-1$ (tested by an assertion)
**
** Finally 'POW_FFV' may only be used if the product of two integers of the
-** size of 'FFV' does not cause an overflow, i.e. only if 'FFV' is
-** 'unsigned short'.
+** size of 'FFV' does not cause an overflow. This is tested by a compile
+** -time assertion.
+**
**
** If the finite field element is 0 the power is also 0, otherwise we have
** $a^n ~ (z^{a-1})^n = z^{(a-1)*n} = z^{(a-1)*n % (o-1)} ~ (a-1)*n % (o-1)$
@@ -311,7 +306,7 @@ static inline FFV POW_FFV(FFV a, UInt n, const FFV * f)
static inline FF FLD_FFE(Obj ffe)
{
GAP_ASSERT(IS_FFE(ffe));
- return (FF)((((UInt)(ffe)) & 0xFFFF) >> 3);
+ return (FF)((UInt)(ffe) >> 3) & ((1 << FIELD_BITS_FFE) - 1);
}
@@ -327,7 +322,8 @@ static inline FF FLD_FFE(Obj ffe)
static inline FFV VAL_FFE(Obj ffe)
{
GAP_ASSERT(IS_FFE(ffe));
- return (FFV)(((UInt)(ffe)) >> 16);
+ return (FFV)((UInt)(ffe) >> (3 + FIELD_BITS_FFE)) &
+ ((1 << VAL_BITS_FFE) - 1);
}
@@ -342,7 +338,8 @@ static inline FFV VAL_FFE(Obj ffe)
static inline Obj NEW_FFE(FF fld, FFV val)
{
GAP_ASSERT(val < SIZE_FF(fld));
- return (Obj)(((UInt)(val) << 16) + ((UInt)(fld) << 3) + (UInt)0x02);
+ return (Obj)(((UInt)val << (3 + FIELD_BITS_FFE)) | ((UInt)fld << 3) |
+ (UInt)0x02);
}