@@ -833,9 +833,9 @@ usual way we now look for the subgroups above <C>u105</C>.
833833gap> blocks := Blocks( a8, orb );; Length( blocks );
83483415
835835gap> blocks[1];
836- [ (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,8 )(6,7 ), (1,4)(2,3)(5,7 )(6,8),
837- (1,5)(2,6)(3,8 )(4,7 ), (1,6)(2,5)(3,7 )(4,8 ), (1,7)(2,8)(3,6 )(4,5),
838- (1,8)(2,7)(3,5 )(4,6 ) ]
836+ [ (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7 )(6,8 ), (1,4)(2,3)(5,8 )(6,7),
837+ (1,5)(2,6)(3,7 )(4,8 ), (1,6)(2,5)(3,8 )(4,7 ), (1,7)(2,8)(3,5 )(4,6),
838+ (1,8)(2,7)(3,6 )(4,5 ) ]
839839]]> </Example >
840840<P />
841841To find the subgroup of index 15 we again use closure. Now we must be a
@@ -1175,8 +1175,8 @@ gap> aut := AutomorphismGroup( p );; NiceMonomorphism(aut);;
11751175gap> niceaut := NiceObject( aut );
11761176Group([ (1,4,2,3), (1,5,4)(2,6,3), (1,2)(3,4), (3,4)(5,6) ])
11771177gap> IsomorphismGroups( niceaut, SymmetricGroup( 4 ) );
1178- [ (1,4,2,3), (1,5,4)(2,6,3), (1,2)(3,4), (3,4)(5,6) ] ->
1179- [ (1,4,3,2 ), (1,4,2 ), (1,3)(2 ,4), (1,4 )(2,3 ) ]
1178+ [ (1,4,2,3), (1,5,4)(2,6,3), (1,2)(3,4), (3,4)(5,6) ] ->
1179+ [ (1,4,2,3 ), (1,2,3 ), (1,2)(3 ,4), (1,3 )(2,4 ) ]
11801180]]> </Example >
11811181<P />
11821182The range of a nice monomorphism is in most cases a permutation group,
0 commit comments