diff --git a/doc/ref/fieldfin.xml b/doc/ref/fieldfin.xml
index bf7b567851..2eebddea30 100644
--- a/doc/ref/fieldfin.xml
+++ b/doc/ref/fieldfin.xml
@@ -178,8 +178,8 @@ Finally note that elements of large prime fields are stored and
displayed as residue class objects. So
Z(65537);
-ZmodpZObj( 3, 65537 )
+gap> Z(NextPrimeInt(2^30));
+ZmodpZObj( 2, 1073741827 )
]]>
diff --git a/lib/ffe.gd b/lib/ffe.gd
index 82ee6a4c0a..0928bc9c40 100644
--- a/lib/ffe.gd
+++ b/lib/ffe.gd
@@ -18,6 +18,7 @@
##
##
##
+##
##
##
## For creating elements of a finite field,
@@ -30,8 +31,8 @@
##
## ⪆ can represent elements of all finite fields
## GF(p^d) such that either
-## (1) p^d <= 65536 (in which case an extremely efficient
-## internal representation is used);
+## (1) p^d <= MAXSIZE_GF_INTERNAL (in which case an
+## efficient internal representation is used);
## (2) d = 1, (in which case, for large p, the field is represented
## using the machinery of residue class rings
## (see section ) or
@@ -39,6 +40,11 @@
## p elements is known, or can be computed
## (see ).
##
+##
+## MAXSIZE_GF_INTERNAL may depend on the word size of your computer
+## and the version of &GAP; but will typically be either 2^{16} or
+## 2^{24}.
+##
## If you attempt to construct an element of GF(p^d) for which
## d > 1 and the relevant Conway polynomial is not known,
## and not necessarily easy to find
@@ -107,14 +113,15 @@
## 0*Z(2)
## gap> a*a;
## Z(2^5)^2
-## gap> b := Z(3,12);
+## gap> b := Z(3,20);
## z
## gap> b*b;
## z2
## gap> b+b;
## 2z
## gap> Print(b^100,"\n");
-## Z(3)^0+Z(3,12)^5+Z(3,12)^6+2*Z(3,12)^8+Z(3,12)^10+Z(3,12)^11
+## 2*Z(3,20)^2+Z(3,20)^4+Z(3,20)^6+Z(3,20)^7+2*Z(3,20)^9+2*Z(3,20)^10+2*Z\
+## (3,20)^12+2*Z(3,20)^15+2*Z(3,20)^17+Z(3,20)^18+Z(3,20)^19
## ]]>
## Z(11,40);
@@ -270,7 +277,7 @@ DeclareCategoryCollections( "IsFFECollColl" );
## true
## gap> Z(256) > Z(101);
## false
-## gap> Z(2,20) < Z(2,20)^2; # this illustrates the lexicographic ordering
+## gap> Z(2,30) < Z(2,30)^2; # this illustrates the lexicographic ordering
## false
## ]]>
##