|
| 1 | +gap> START_TEST("NormalSubgroups.tst"); |
| 2 | + |
| 3 | +# Natural symmetric groups |
| 4 | +gap> NormalSubgroups(SymmetricGroup(0)) = [Group(())]; |
| 5 | +true |
| 6 | +gap> NormalSubgroups(SymmetricGroup(1)) = [Group(())]; |
| 7 | +true |
| 8 | +gap> Set(NormalSubgroups(SymmetricGroup(2))) = |
| 9 | +> Set([Group(()), SymmetricGroup(2)]); |
| 10 | +true |
| 11 | +gap> Set(NormalSubgroups(SymmetricGroup(3))) = |
| 12 | +> Set([Group(()), AlternatingGroup(3), SymmetricGroup(3)]); |
| 13 | +true |
| 14 | +gap> Set(NormalSubgroups(SymmetricGroup(4))) = |
| 15 | +> Set([Group(()), Group((1,2)(3,4), (1,3)(2,4)), |
| 16 | +> AlternatingGroup(4), SymmetricGroup(4)]); |
| 17 | +true |
| 18 | +gap> Set(NormalSubgroups(SymmetricGroup(5))) = |
| 19 | +> Set([Group(()), AlternatingGroup(5), SymmetricGroup(5)]); |
| 20 | +true |
| 21 | +gap> Set(NormalSubgroups(SymmetricGroup(6))) = |
| 22 | +> Set([Group(()), AlternatingGroup(6), SymmetricGroup(6)]); |
| 23 | +true |
| 24 | +gap> Set(NormalSubgroups(SymmetricGroup(100))) = |
| 25 | +> Set([Group(()), AlternatingGroup(100), SymmetricGroup(100)]); |
| 26 | +true |
| 27 | +gap> Set(NormalSubgroups(SymmetricGroup([3,7,4,11,70]))) = |
| 28 | +> Set([Group(()), AlternatingGroup([3, 4, 7, 11, 70]), |
| 29 | +> SymmetricGroup([3, 4, 7, 11, 70])]); |
| 30 | +true |
| 31 | +gap> Set(NormalSubgroups(SymmetricGroup([7,4,13,21]))) = |
| 32 | +> Set([Group(()), Group((4,7)(13,21), (4,13)(7,21)), |
| 33 | +> AlternatingGroup([4, 7, 13, 21]), SymmetricGroup([4, 7, 13, 21])]); |
| 34 | +true |
| 35 | +gap> NormalSubgroups(SymmetricGroup([42])) = [Group(())]; |
| 36 | +true |
| 37 | +gap> NormalSubgroups(SymmetricGroup([])) = [Group(())]; |
| 38 | +true |
| 39 | +gap> G := Group((7,3,5,11), (11,3), (5,3));; |
| 40 | +gap> IsNaturalSymmetricGroup(G); |
| 41 | +true |
| 42 | +gap> Set(NormalSubgroups(G)) = |
| 43 | +> Set([Group(()), Group((3,5)(7,11), (3,7)(5,11)), |
| 44 | +> AlternatingGroup([3, 5, 7, 11]), SymmetricGroup([3, 5, 7, 11])]); |
| 45 | +true |
| 46 | + |
| 47 | +# Non-natural symmetric groups |
| 48 | +gap> S4 := Group((1,2,3,4), (1,2));; |
| 49 | +gap> hom := ActionHomomorphism(g, Arrangements([1..4], 4), OnTuples);; |
| 50 | +gap> G := Image(hom);; |
| 51 | +gap> IsSymmetricGroup(G); |
| 52 | +true |
| 53 | +gap> SymmetricDegree(G); |
| 54 | +4 |
| 55 | +gap> MovedPoints(G) = [1..24]; |
| 56 | +true |
| 57 | +gap> Set(NormalSubgroups(G)) = Set([G, |
| 58 | +> Group([(1,13,9)(2,14,10)(3,15,7)(4,16,8) |
| 59 | +> (5,17,12)(6,18,11)(19,23,22)(20,24,21), |
| 60 | +> (1,21,16)(2,22,15)(3,19,18)(4,20,17) |
| 61 | +> (5,24,13)(6,23,14)(7,11,10)(8,12,9)]), |
| 62 | +> Group([(1,24)(2,23)(3,22)(4,21)(5,20)(6,19) |
| 63 | +> (7,18)(8,17)(9,16)(10,15)(11,14)(12,13), |
| 64 | +> (1,8)(2,7)(3,11)(4,12)(5,9)(6,10) |
| 65 | +> (13,21)(14,22)(15,19)(16,20)(17,24)(18,23)]), |
| 66 | +> Group(())]); |
| 67 | +true |
| 68 | + |
| 69 | +# Natural alternating groups |
| 70 | +gap> NormalSubgroups(AlternatingGroup(0)) = [Group(())]; |
| 71 | +true |
| 72 | +gap> NormalSubgroups(AlternatingGroup(1)) = [Group(())]; |
| 73 | +true |
| 74 | +gap> Set(NormalSubgroups(AlternatingGroup(2))) = |
| 75 | +> Set([Group(()), AlternatingGroup(2)]); |
| 76 | +true |
| 77 | +gap> Set(NormalSubgroups(AlternatingGroup(3))) = |
| 78 | +> Set([Group(()), AlternatingGroup(3)]); |
| 79 | +true |
| 80 | +gap> Set(NormalSubgroups(AlternatingGroup(4))) = |
| 81 | +> Set([Group(()), Group((1,2)(3,4), (1,3)(2,4)), |
| 82 | +> AlternatingGroup(4)]); |
| 83 | +true |
| 84 | +gap> Set(NormalSubgroups(AlternatingGroup(5))) = |
| 85 | +> Set([Group(()), AlternatingGroup(5)]); |
| 86 | +true |
| 87 | +gap> Set(NormalSubgroups(AlternatingGroup(6))) = |
| 88 | +> Set([Group(()), AlternatingGroup(6)]); |
| 89 | +true |
| 90 | +gap> Set(NormalSubgroups(AlternatingGroup(100))) = |
| 91 | +> Set([Group(()), AlternatingGroup(100)]); |
| 92 | +true |
| 93 | +gap> Set(NormalSubgroups(AlternatingGroup([3,7,4,11,70]))) = |
| 94 | +> Set([Group(()), AlternatingGroup([3, 4, 7, 11, 70])]); |
| 95 | +true |
| 96 | +gap> Set(NormalSubgroups(AlternatingGroup([7,4,13,21]))) = |
| 97 | +> Set([Group(()), Group((4,7)(13,21), (4,13)(7,21)), |
| 98 | +> AlternatingGroup([4, 7, 13, 21])]); |
| 99 | +true |
| 100 | +gap> NormalSubgroups(AlternatingGroup([42])) = [Group(())]; |
| 101 | +true |
| 102 | +gap> NormalSubgroups(AlternatingGroup([])) = [Group(())]; |
| 103 | +true |
| 104 | +gap> G := Group((7,3,5), (11,3,7));; |
| 105 | +gap> IsNaturalAlternatingGroup(G); |
| 106 | +true |
| 107 | +gap> Set(NormalSubgroups(G)) = |
| 108 | +> Set([Group(()), Group((3,5)(7,11), (3,7)(5,11)), |
| 109 | +> AlternatingGroup([3, 5, 7, 11])]); |
| 110 | +true |
| 111 | + |
| 112 | +# |
| 113 | +gap> STOP_TEST( "NormalSubgroups.tst", 1); |
0 commit comments