-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
42 changed files
with
1,187 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
gap> START_TEST("Forms: assocbilform.tst"); | ||
gap> #Constructing form: AssociatedBilinearForm | ||
gap> r:= PolynomialRing(GF(121),6); | ||
GF(11^2)[x_1,x_2,x_3,x_4,x_5,x_6] | ||
gap> poly := r.1*r.5-r.2*r.6+r.3*r.4; | ||
x_1*x_5-x_2*x_6+x_3*x_4 | ||
gap> form := QuadraticFormByPolynomial(poly,r); | ||
< quadratic form > | ||
gap> aform := AssociatedBilinearForm(form); | ||
< bilinear form > | ||
gap> Display(aform); | ||
Bilinear form | ||
Gram Matrix: | ||
. . . . 1 . | ||
. . . . . 10 | ||
. . . 1 . . | ||
. . 1 . . . | ||
1 . . . . . | ||
. 10 . . . . | ||
gap> STOP_TEST("assocbilform.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
gap> START_TEST("Forms: basechangehom.tst"); | ||
gap> #morphisms: BaseChangeHomomorphism | ||
gap> gl:=GL(3,3); | ||
GL(3,3) | ||
gap> go:=GO(3,3); | ||
GO(0,3,3) | ||
gap> form := PreservedSesquilinearForms(go)[1]; | ||
< bilinear form > | ||
gap> gram := GramMatrix( form ); | ||
[ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3) ], | ||
[ 0*Z(3), 0*Z(3), Z(3) ] ] | ||
gap> b := BaseChangeToCanonical(form);; | ||
gap> hom := BaseChangeHomomorphism(b, GF(3)); | ||
^[ [ 0*Z(3), 0*Z(3), Z(3) ], [ Z(3), Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3) ] ] | ||
gap> newgo := Image(hom, go); | ||
Group( | ||
[ | ||
[ [ Z(3)^0, 0*Z(3), Z(3) ], [ Z(3)^0, Z(3), Z(3)^0 ], | ||
[ 0*Z(3), 0*Z(3), Z(3) ] ], | ||
[ [ Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3) ], | ||
[ Z(3)^0, Z(3)^0, Z(3) ] ] ]) | ||
gap> gens := GeneratorsOfGroup(newgo);; | ||
gap> canonical := b * gram * TransposedMat(b); | ||
[ [ Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], | ||
[ 0*Z(3), Z(3)^0, 0*Z(3) ] ] | ||
gap> ForAll(gens, y -> y * canonical * TransposedMat(y) = canonical); | ||
true | ||
gap> STOP_TEST("basechangehom.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
gap> START_TEST("Forms: basechangetocanonical.tst"); | ||
gap> #morphisms: BaseChangeToCanonical | ||
gap> gf := GF(3); | ||
GF(3) | ||
gap> gram := [ | ||
> [0,0,0,1,0,0], | ||
> [0,0,0,0,1,0], | ||
> [0,0,0,0,0,1], | ||
> [-1,0,0,0,0,0], | ||
> [0,-1,0,0,0,0], | ||
> [0,0,-1,0,0,0]] * One(gf);; | ||
gap> form := BilinearFormByMatrix( gram, gf ); | ||
< bilinear form > | ||
gap> b := BaseChangeToCanonical( form );; | ||
gap> Display( b * gram * TransposedMat(b) ); | ||
. 1 . . . . | ||
2 . . . . . | ||
. . . 1 . . | ||
. . 2 . . . | ||
. . . . . 1 | ||
. . . . 2 . | ||
gap> STOP_TEST("basechangetocanonical.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
gap> START_TEST("Forms: bg_th_ex1.tst"); | ||
gap> #Background theory: example 1 | ||
gap> mat := [[1,0,0],[0,1,4],[1,2,1]]*Z(5)^0; | ||
[ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)^0, Z(5)^2 ], | ||
[ Z(5)^0, Z(5), Z(5)^0 ] ] | ||
gap> form := BilinearFormByMatrix(mat,GF(5)); | ||
Error, Invalid Gram matrix | ||
gap> STOP_TEST("bg_th_ex1.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
gap> START_TEST("Forms: bg_th_ex2.tst"); | ||
gap> #Background theory: example 2 | ||
gap> mat := [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,-1]]*Z(9)^0; | ||
[ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], | ||
[ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] | ||
gap> form := BilinearFormByMatrix(mat,GF(9)); | ||
< bilinear form > | ||
gap> Display(form); | ||
Bilinear form | ||
Gram Matrix: | ||
1 . . . | ||
. 1 . . | ||
. . 1 . | ||
. . . 2 | ||
gap> IsReflexiveForm(form); | ||
true | ||
gap> IsSymmetricForm(form); | ||
true | ||
gap> IsAlternatingForm(form); | ||
false | ||
gap> Dimension(RadicalOfForm(form)); | ||
0 | ||
gap> STOP_TEST("bg_th_ex2.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
gap> START_TEST("Forms: bg_th_ex3.tst"); | ||
gap> #Background theory: example 3 | ||
gap> mat := [[0,0,-2],[0,0,1],[2,-1,0]]*Z(7)^0; | ||
[ [ 0*Z(7), 0*Z(7), Z(7)^5 ], [ 0*Z(7), 0*Z(7), Z(7)^0 ], | ||
[ Z(7)^2, Z(7)^3, 0*Z(7) ] ] | ||
gap> form := BilinearFormByMatrix(mat,GF(7)); | ||
< bilinear form > | ||
gap> Display(form); | ||
Bilinear form | ||
Gram Matrix: | ||
. . 5 | ||
. . 1 | ||
2 6 . | ||
gap> IsSymmetricForm(form); | ||
false | ||
gap> IsAlternatingForm(form); | ||
true | ||
gap> Dimension(RadicalOfForm(form)); | ||
1 | ||
gap> STOP_TEST("bg_th_ex3.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
gap> START_TEST("Forms: bg_th_ex4.tst"); | ||
gap> #Background theory: example 4 | ||
gap> mat := [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1], | ||
> [0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]*Z(16)^0; | ||
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], | ||
[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], | ||
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], | ||
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], | ||
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], | ||
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ] | ||
gap> form := BilinearFormByMatrix(mat,GF(16)); | ||
< bilinear form > | ||
gap> Display(form); | ||
Bilinear form | ||
Gram Matrix: | ||
. 1 . . . . | ||
1 . . . . . | ||
. . . . . 1 | ||
. . . . 1 . | ||
. . . 1 . . | ||
. . 1 . . . | ||
gap> IsSymmetricForm(form); | ||
true | ||
gap> IsAlternatingForm(form); | ||
true | ||
gap> IsDegenerateForm(form); | ||
false | ||
gap> WittIndex(form); | ||
3 | ||
gap> STOP_TEST("bg_th_ex4.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
gap> START_TEST("Forms: bg_th_ex5.tst"); | ||
gap> #Background theory: example 5 | ||
gap> mat := [[0*Z(5),0*Z(5),0*Z(25),Z(25)^3],[0*Z(5),0*Z(5),Z(25)^3,0*Z(25)], | ||
> [0*Z(5),-Z(25)^3,0*Z(5),0*Z(5)],[-Z(25)^3,0*Z(5),0*Z(25),0*Z(25)]]; | ||
[ [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5^2)^3 ], [ 0*Z(5), 0*Z(5), Z(5^2)^3, 0*Z(5) ], | ||
[ 0*Z(5), Z(5^2)^15, 0*Z(5), 0*Z(5) ], | ||
[ Z(5^2)^15, 0*Z(5), 0*Z(5), 0*Z(5) ] ] | ||
gap> form := HermitianFormByMatrix(mat,GF(25)); | ||
< hermitian form > | ||
gap> Display(form); | ||
Hermitian form | ||
Gram Matrix: | ||
z = Z(25) | ||
. . . z^3 | ||
. . z^3 . | ||
. z^15 . . | ||
z^15 . . . | ||
gap> WittIndex(form); | ||
2 | ||
gap> form2 := BilinearFormByMatrix(mat,GF(25)); | ||
< bilinear form > | ||
gap> Display(form2); | ||
Bilinear form | ||
Gram Matrix: | ||
z = Z(25) | ||
. . . z^3 | ||
. . z^3 . | ||
. z^15 . . | ||
z^15 . . . | ||
gap> IsAlternatingForm(form2); | ||
true | ||
gap> Display(IsometricCanonicalForm(form)); | ||
Hermitian form | ||
Gram Matrix: | ||
1 . . . | ||
. 1 . . | ||
. . 1 . | ||
. . . 1 | ||
Witt Index: 2 | ||
gap> Display(IsometricCanonicalForm(form2)); | ||
Bilinear form | ||
Gram Matrix: | ||
. 1 . . | ||
4 . . . | ||
. . . 1 | ||
. . 4 . | ||
Witt Index: 2 | ||
gap> V := GF(25)^4; | ||
( GF(5^2)^4 ) | ||
gap> u := [Z(5)^0,Z(5^2)^11,Z(5)^3,Z(5^2)^13 ]; | ||
[ Z(5)^0, Z(5^2)^11, Z(5)^3, Z(5^2)^13 ] | ||
gap> [u,u]^form; | ||
0*Z(5) | ||
gap> v := [Z(5)^0,Z(5^2)^5,Z(5^2),Z(5^2)^13 ]; | ||
[ Z(5)^0, Z(5^2)^5, Z(5^2), Z(5^2)^13 ] | ||
gap> [v,v]^form; | ||
0*Z(5) | ||
gap> [u,v]^form; | ||
Z(5^2)^7 | ||
gap> ([v,u]^form)^5; | ||
Z(5^2)^7 | ||
gap> w := [Z(5^2)^21,Z(5^2)^19,Z(5^2)^4,Z(5)^3 ]; | ||
[ Z(5^2)^21, Z(5^2)^19, Z(5^2)^4, Z(5)^3 ] | ||
gap> [w,w]^form; | ||
Z(5) | ||
gap> v := [Z(5)^0,Z(5^2)^10,Z(5^2)^15,Z(5^2)^3 ]; | ||
[ Z(5)^0, Z(5^2)^10, Z(5^2)^15, Z(5^2)^3 ] | ||
gap> u := [Z(5)^3,Z(5^2)^9,Z(5^2)^4,Z(5^2)^16 ]; | ||
[ Z(5)^3, Z(5^2)^9, Z(5^2)^4, Z(5^2)^16 ] | ||
gap> w := [Z(5)^2,Z(5^2)^9,Z(5^2)^23,Z(5^2)^11 ]; | ||
[ Z(5)^2, Z(5^2)^9, Z(5^2)^23, Z(5^2)^11 ] | ||
gap> [u,v]^form; | ||
0*Z(5) | ||
gap> [u,w]^form; | ||
0*Z(5) | ||
gap> [v,w]^form; | ||
0*Z(5) | ||
gap> s := Subspace(V,[v,u,w]); | ||
<vector space over GF(5^2), with 3 generators> | ||
gap> Dimension(s); | ||
2 | ||
gap> WittIndex(form); | ||
2 | ||
gap> STOP_TEST("bg_th_ex5.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
gap> START_TEST("Forms: bg_th_ex6.tst"); | ||
gap> #Background theory: example 6 | ||
gap> V := GF(4)^3; | ||
( GF(2^2)^3 ) | ||
gap> mat := [[Z(2^2)^2,Z(2^2),Z(2^2)^2],[Z(2^2)^2,Z(2)^0,Z(2)^0], | ||
> [0*Z(2),Z(2)^0,0*Z(2)]]; | ||
[ [ Z(2^2)^2, Z(2^2), Z(2^2)^2 ], [ Z(2^2)^2, Z(2)^0, Z(2)^0 ], | ||
[ 0*Z(2), Z(2)^0, 0*Z(2) ] ] | ||
gap> qform := QuadraticFormByMatrix(mat, GF(4)); | ||
< quadratic form > | ||
gap> Display( qform ); | ||
Quadratic form | ||
Gram Matrix: | ||
z = Z(4) | ||
z^2 1 z^2 | ||
. 1 . | ||
. . . | ||
gap> PolynomialOfForm( qform ); | ||
Z(2^2)^2*x_1^2+x_1*x_2+Z(2^2)^2*x_1*x_3+x_2^2 | ||
gap> STOP_TEST("bg_th_ex6.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
gap> START_TEST("Forms: bg_th_ex7.tst"); | ||
gap> #Background theory: example 7 | ||
gap> r := PolynomialRing(GF(8),4); | ||
GF(2^3)[x_1,x_2,x_3,x_4] | ||
gap> poly := r.1*r.2+r.3*r.4; | ||
x_1*x_2+x_3*x_4 | ||
gap> qform := QuadraticFormByPolynomial(poly, r); | ||
< quadratic form > | ||
gap> Display(qform); | ||
Quadratic form | ||
Gram Matrix: | ||
. 1 . . | ||
. . . . | ||
. . . 1 | ||
. . . . | ||
Polynomial: x_1*x_2+x_3*x_4 | ||
|
||
gap> Dimension(RadicalOfForm(qform)); | ||
0 | ||
gap> STOP_TEST("bg_th_ex7.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
gap> START_TEST("Forms: bg_th_ex8.tst"); | ||
gap> #Background theory: example 8 | ||
gap> mat := [[Z(16)^3,1,0,0],[0,Z(16)^5,0,0], | ||
> [0,0,Z(16)^3,1],[0,0,0,Z(16)^12]]*Z(16)^0; | ||
[ [ Z(2^4)^3, Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2^2), 0*Z(2), 0*Z(2) ], | ||
[ 0*Z(2), 0*Z(2), Z(2^4)^3, Z(2)^0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2^4)^12 ] | ||
] | ||
gap> qform := QuadraticFormByMatrix(mat,GF(16)); | ||
< quadratic form > | ||
gap> Display( qform ); | ||
Quadratic form | ||
Gram Matrix: | ||
z = Z(16) | ||
z^3 1 . . | ||
. z^5 . . | ||
. . z^3 1 | ||
. . . z^12 | ||
gap> mat2 := [[Z(16)^7,1,0,0],[0,0,0,0], | ||
> [0,0,Z(16)^2,1],[0,0,0,Z(16)^9]]*Z(16)^0; | ||
[ [ Z(2^4)^7, Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], | ||
[ 0*Z(2), 0*Z(2), Z(2^4)^2, Z(2)^0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2^4)^9 ] ] | ||
gap> qform2 := QuadraticFormByMatrix(mat2, GF(16)); | ||
< quadratic form > | ||
gap> Display( qform2 ); | ||
Quadratic form | ||
Gram Matrix: | ||
z = Z(16) | ||
z^7 1 . . | ||
. . . . | ||
. . z^2 1 | ||
. . . z^9 | ||
gap> biform := AssociatedBilinearForm( qform2 ); | ||
< bilinear form > | ||
gap> Display( biform ); | ||
Bilinear form | ||
Gram Matrix: | ||
. 1 . . | ||
1 . . . | ||
. . . 1 | ||
. . 1 . | ||
gap> STOP_TEST("bg_th_ex8.tst", 10000 ); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
gap> START_TEST("Forms: bg_th_ex9.tst"); | ||
gap> #Background theory: example 9 | ||
gap> mat := [ [ Z(2^2), Z(2^2), Z(2^2), Z(2^2), Z(2^2) ], | ||
> [ 0*Z(2), Z(2^2), Z(2^2)^2, 0*Z(2), Z(2)^0 ], | ||
> [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], | ||
> [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], | ||
> [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ];; | ||
gap> qform := QuadraticFormByMatrix(mat,GF(4)); | ||
< quadratic form > | ||
gap> IsSingularForm(qform); | ||
false | ||
gap> IsDegenerateForm(qform); | ||
#I Testing degeneracy of the *associated bilinear form* | ||
true | ||
gap> biform := AssociatedBilinearForm(qform); | ||
< bilinear form > | ||
gap> Display(biform); | ||
Bilinear form | ||
Gram Matrix: | ||
z = Z(4) | ||
. z^1 z^1 z^1 z^1 | ||
z^1 . z^2 . 1 | ||
z^1 z^2 . 1 1 | ||
z^1 . 1 . 1 | ||
z^1 1 1 1 . | ||
gap> IsDegenerateForm(biform); | ||
true | ||
gap> STOP_TEST("bg_th_ex9.tst", 10000 ); |
Oops, something went wrong.