diff --git a/lib/recognition.gi b/lib/recognition.gi index 10202db..13e09d6 100644 --- a/lib/recognition.gi +++ b/lib/recognition.gi @@ -49,7 +49,7 @@ InstallGlobalFunction( ClassicalForms_ScalarMultipleFrobenius, Add(I,q-1); # we need gcd one in order to get alpha exactly (ignoring +-) t := GcdRepresentation(I); - i0 := I*t; + i0 := I*t; #note that this is just Gcd(I) if not IsZero(tM) and not IsZero(tMi) then return [i0, tM/tMi]; @@ -76,7 +76,7 @@ InstallGlobalFunction( ClassicalForms_ScalarMultipleFrobenius, "characteristic polynomial does not reveal scalar\n" ); return false; fi; - return [i0,a]; + return [i0,a]; #We will compute all solutions in the new version of the code for the next function! end ); @@ -124,6 +124,31 @@ InstallGlobalFunction( ClassicalForms_GeneratorsWithoutScalarsFrobenius, end ); +ClassicalForms_GeneratorsWithoutScalarsFrobeniusNew := + function( grp ) + local tries, gens, field, m1, a1, new, i; + + # start with 2 random elements, at most 10 tries + tries := 0; + gens := []; + field := FieldOfMatrixGroup(grp); + #This function will generate all possible Frobenius dual modules that need to be checked. + for m1 in GeneratorsOfGroup(grp) do + #while Length(gens) < 2 do + #tries := tries + 1; + #if tries = 11 then return false; fi; + #m1 := PseudoRandom(grp); + a1 := ClassicalForms_ScalarMultipleFrobenius(field,m1); + #compute all solutions of lambda^a1[1] = a1[2] where a1[2] is defined as in the paper. + if IsList(a1) and a1[1]=1 then + a1:=a1[2]; + Add(gens, a1*TransposedMat(m1^-1)); + fi; + od; + new := GModuleByMats( gens, field ); + return new; + end; #); + ############################################################################# ## #F ClassicalForms_ScalarMultipleDual( , ) @@ -562,7 +587,7 @@ ClassicalForms_InvariantFormFrobenius := function( module, fmodule ) if 0 = Length(hom) then return false; elif 1 < Length(hom) then - Error( "module acts absolutely irreducibly but two form found" ); + Error( "module acts absolutely irreducibly but two forms found" ); fi; Info( InfoForms, 1,"found homomorphism between V and (V^*)^frob\n" );