forked from TheAlgorithms/Java
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fibonacci.java
98 lines (82 loc) · 2.64 KB
/
Fibonacci.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
package DynamicProgramming;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map;
/**
* @author Varun Upadhyay (https://github.com/varunu28)
*/
public class Fibonacci {
private static Map<Integer, Integer> map = new HashMap<>();
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
// Methods all returning [0, 1, 1, 2, 3, 5, ...] for n = [0, 1, 2, 3, 4, 5, ...]
System.out.println(fibMemo(n));
System.out.println(fibBotUp(n));
}
/**
* This method finds the nth fibonacci number using memoization technique
*
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
**/
private static int fibMemo(int n) {
if (map.containsKey(n)) {
return map.get(n);
}
int f;
if (n <= 1) {
f = n;
} else {
f = fibMemo(n - 1) + fibMemo(n - 2);
map.put(n, f);
}
return f;
}
/**
* This method finds the nth fibonacci number using bottom up
*
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
**/
private static int fibBotUp(int n) {
Map<Integer, Integer> fib = new HashMap<>();
for (int i = 0; i <= n; i++) {
int f;
if (i <= 1) {
f = i;
} else {
f = fib.get(i - 1) + fib.get(i - 2);
}
fib.put(i, f);
}
return fib.get(n);
}
/**
* This method finds the nth fibonacci number using bottom up
*
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
* <p>
* This is optimized version of Fibonacci Program. Without using Hashmap and recursion.
* It saves both memory and time.
* Space Complexity will be O(1)
* Time Complexity will be O(n)
* <p>
* Whereas , the above functions will take O(n) Space.
* @author Shoaib Rayeen (https://github.com/shoaibrayeen)
**/
private static int fibOptimized(int n) {
if (n == 0) {
return 0;
}
int prev = 0, res = 1, next;
for (int i = 2; i < n; i++) {
next = prev + res;
prev = res;
res = next;
}
return res;
}
}