forked from yueatsprograms/Stochastic_Depth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvhn-dataset.lua
90 lines (82 loc) · 3.23 KB
/
svhn-dataset.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
path = require 'pl.path'
require 'image'
require 'nn'
Dataset = {}
local SVHN, parent = torch.class("Dataset.LOADER")
function get_Data(dataset, path, do_shuffling)
assert(dataset == 'svhn')
print ('=================== loading dataset ===================')
local size_train = 73257
local size_test = 26032
local size_extra = 531131
local data = torch.Tensor(size_train + size_extra + size_test, 3, 32, 32)
local label = torch.Tensor(size_train + size_extra + size_test)
local subset = torch.load(path..'train_32x32.t7','ascii')
data[{ {1, size_train} }] = subset.X
label[{ {1, size_train} }] = subset.y
subset = torch.load(path..'extra_32x32.t7','ascii')
data[{ {size_train + 1, size_train + size_extra} }] = subset.X
label[{ {size_train + 1, size_train + size_extra} }] = subset.y
subset = torch.load(path..'test_32x32.t7','ascii')
data[{ {size_train + size_extra + 1, size_train + size_extra + size_test} }] = subset.X
label[{ {size_train + size_extra + 1, size_train + size_extra + size_test} }] = subset.y
if do_shuffling then
print ('=================== data shuffling ===================')
local shuffle = torch.randperm(size_train)
data[{ {1, size_train} }] = data:index(1, shuffle:long())
label[{ {1, size_train} }] = label:index(1, shuffle:long())
local shuffle_extra = torch.randperm(size_extra) + size_train
data[{ {size_train + 1, size_train + size_extra} }] = data:index(1, shuffle_extra:long())
label[{ {size_train + 1, size_train + size_extra} }] = label:index(1, shuffle_extra:long())
end
return data, label
end
function SVHN:__init(data, label, mode)
local vasize = 10 * ( 400 + 200 )
local trsize = 73257 + 531131 - vasize
local tesize = 26032
local idx_val = torch.Tensor(vasize)
local idx_tr = torch.Tensor(trsize)
local n_tr = 0
for i = 1, 10 do
idx_i = label[{{1,73257}}]:eq(i):nonzero()
n_i = idx_i:size(1)
idx_val[{{ (i-1) * 400 + 1, i * 400 }}] = idx_i[{{ 1,400 }}]
idx_tr[{{ n_tr + 1, n_tr + n_i -400}}] = idx_i[{{ 401, n_i}}]
n_tr = n_tr + n_i -400
end
for i = 1, 10 do -- for the extra training set
idx_i = label[{{73258,604388}}]:eq(i):nonzero()
n_i = idx_i:size(1)
idx_val[{{ 4001 + (i-1) * 200, 4000 + i * 200 }}] = idx_i[{{ 1,200 }}] + 73257
idx_tr[{{ n_tr + 1, n_tr + n_i -200}}] = idx_i[{{ 201, n_i}}] + 73257
n_tr = n_tr + n_i -200
end
self.mode = mode
if mode == "train" then
self.data = data:index(1, idx_tr:long())
self.label = label:index(1, idx_tr:long())
elseif mode == "valid" then
self.data = data:index(1, idx_val:long())
self.label = label:index(1, idx_val:long())
elseif mode == "test" then
self.data = data[{ {trsize+vasize+1, trsize+vasize+tesize} }]
self.label = label[{ {trsize+vasize+1, trsize+vasize+tesize} }]
end
end
function SVHN:preprocess(mean, std)
mean = mean or self.data:mean(1)
std = std or self.data:std()
self.data:add(-mean:expandAs(self.data)):mul(1/std)
return mean,std
end
function SVHN:size()
return self.data:size(1)
end
function SVHN:sampleIndices(indices, batch)
batch = batch or {inputs = torch.zeros(indices:size(1), 3, 32,32),
outputs = torch.zeros(indices:size(1))}
batch.inputs:copy(self.data:index(1, indices))
batch.outputs:copy(self.label:index(1, indices))
return batch
end