From e16c8cb1ce7e37d7b5cc6823ae8a7d80dbc64980 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jacqueline=20H=C3=B6llig?= Date: Tue, 8 Aug 2023 14:35:35 +0200 Subject: [PATCH] notebooks --- .../models/BasicMotions/OneHotEncoder_tf.pkl | Bin 0 -> 660 bytes .../counterfactual/CF.py | 2 +- .../counterfactual/COMTE/Optimization.py | 4 - .../COMTE/Optmization_helpers.py | 2 +- .../counterfactual/COMTECF.py | 8 +- docs/Notebooks/Ates_sklearn.ipynb | 37 +- docs/Notebooks/Ates_tensorflow.ipynb | 20277 ++++++------- docs/Notebooks/Ates_torch.ipynb | 24075 +--------------- 8 files changed, 10200 insertions(+), 34205 deletions(-) create mode 100644 ClassificationModels/models/BasicMotions/OneHotEncoder_tf.pkl diff --git a/ClassificationModels/models/BasicMotions/OneHotEncoder_tf.pkl b/ClassificationModels/models/BasicMotions/OneHotEncoder_tf.pkl new file mode 100644 index 0000000000000000000000000000000000000000..b5a738f0e57bc396e6c1a0afa665eae382ce93bb GIT binary patch literal 660 zcmZuv!D-iL*C` zUR(caAmlb991lzFX=%A8h!P#VmAL0R&5mRnXG5fH@LljAb}PT>NaC&uZMTuQ zzi6!X&z{0C&R5!04XI$(#(p*s5wm63R%|=TOG!m9{NvL$KH@t$|SDT~(XW!lON1G*qFkIgE#!4gw|FG~W7atmK2lqsx-h(lVuO zXnd`iHCni>nBeX_hti{u)nVK>)sVc9Y;rCq(?Y(>sT^n1EIEf@b%1tv-aVJ?kAc4t zr!OSW^Xx&EWH-GO+moL!F&Yh2Knv7>0X$&G_!N5><34w#St7n#ZxQr&daqv7`~9nX zKjs_k>;L3IO$24>cu)1iP<3^t^uiOXCEL*9vtS$te^NNyQP-Xn^LKc|EYaY{zotIn RW7W2w^W*eM`ba{N{swuj*Sr7# literal 0 HcmV?d00001 diff --git a/TSInterpret/InterpretabilityModels/counterfactual/CF.py b/TSInterpret/InterpretabilityModels/counterfactual/CF.py index ce37363..8afae39 100644 --- a/TSInterpret/InterpretabilityModels/counterfactual/CF.py +++ b/TSInterpret/InterpretabilityModels/counterfactual/CF.py @@ -178,7 +178,7 @@ def plot_in_one( """ if self.mode == "time": item = item.reshape(item.shape[-1], item.shape[-2]) - exp = exp.reshape(item.shape[-1], item.shape[-2]) + exp = exp.reshape( exp.shape[-1], exp.shape[-2]) else: item = item.reshape(item.shape[-2], item.shape[-1]) exp = exp.reshape(item.shape[-2], item.shape[-1]) diff --git a/TSInterpret/InterpretabilityModels/counterfactual/COMTE/Optimization.py b/TSInterpret/InterpretabilityModels/counterfactual/COMTE/Optimization.py index 42be96a..d74f537 100644 --- a/TSInterpret/InterpretabilityModels/counterfactual/COMTE/Optimization.py +++ b/TSInterpret/InterpretabilityModels/counterfactual/COMTE/Optimization.py @@ -422,8 +422,6 @@ def explain( tr, _ = explanation if tr is None: print("Run Brute Force as Backup.") - import sys - sys.exit(1) explanation = self.backup.explain( x_test, num_features=num_features, to_maximize=to_maximize ) @@ -483,8 +481,6 @@ def _get_explanation(self, x_test, to_maximize, num_features): if not self.silent: logging.info("Current probas: %s", probas) - print('probas', probas) - print('probas',np.argmax(probas)) if np.argmax(probas) == to_maximize: current_best = np.max(probas) if current_best > best_explanation_score: diff --git a/TSInterpret/InterpretabilityModels/counterfactual/COMTE/Optmization_helpers.py b/TSInterpret/InterpretabilityModels/counterfactual/COMTE/Optmization_helpers.py index 68267ab..71a22d9 100644 --- a/TSInterpret/InterpretabilityModels/counterfactual/COMTE/Optmization_helpers.py +++ b/TSInterpret/InterpretabilityModels/counterfactual/COMTE/Optmization_helpers.py @@ -1,6 +1,6 @@ import numpy as np def random_hill_climb(problem, max_attempts=10, max_iters=np.inf, restarts=0, - init_state=None, curve=True, random_state=None): + init_state=None, curve=False, random_state=None): # Set random seed if isinstance(random_state, int) and random_state > 0: diff --git a/TSInterpret/InterpretabilityModels/counterfactual/COMTECF.py b/TSInterpret/InterpretabilityModels/counterfactual/COMTECF.py index 1f69389..13a5f27 100644 --- a/TSInterpret/InterpretabilityModels/counterfactual/COMTECF.py +++ b/TSInterpret/InterpretabilityModels/counterfactual/COMTECF.py @@ -90,7 +90,7 @@ def explain( ([np.array], int): Tuple of Counterfactual and Label. Shape of CF : `mode = time` -> `(time, feat)` or `mode = time` -> `(feat, time)` """ - + org_shape=x.shape if self.mode != "feat": x = x.reshape(-1, x.shape[-1], x.shape[-2]) train_x, train_y = self.referenceset @@ -107,7 +107,9 @@ def explain( max_attempts=self.max_attemps, maxiter=self.max_iter, ) - return opt.explain(x, to_maximize=target) + exp,label= opt.explain(x, to_maximize=target) elif self.method == "brute": opt = BruteForceSearch(self.predict, train_x, train_y, threads=1) - return opt.explain(x, to_maximize=target) + exp,label= opt.explain(x, to_maximize=target) + return exp.reshape(org_shape), label + \ No newline at end of file diff --git a/docs/Notebooks/Ates_sklearn.ipynb b/docs/Notebooks/Ates_sklearn.ipynb index 4d5d2bc..51174d6 100644 --- a/docs/Notebooks/Ates_sklearn.ipynb +++ b/docs/Notebooks/Ates_sklearn.ipynb @@ -4,7 +4,16 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jacqueline/.local/share/virtualenvs/TSInterpret-x4eqnPOt/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], "source": [ "import numpy as np \n", "from tslearn.datasets import UCR_UEA_datasets\n", @@ -55,15 +64,26 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-05-30 09:05:36.402327: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", - "2023-05-30 09:05:36.402348: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n" + "2023-08-08 14:05:08.336311: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2023-08-08 14:05:09.740330: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "(6, 100)\n", + "(6, 100)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAP8CAYAAAAzzV8tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOy9ebwkVX33/67e7joLDMuw7+KC4IYgKhARFPe4IBGNaHxicPnFmDxuSQxo1Phooj4uDxIXMCqIu6DsioY4YoIyuCL76szAwDBzt16qzu+Pc07VqdOn+nbf291Vt+d8Xq++Vbe7uvqcqlPnfD/fNfjRj34k8PDw8PDw8PDw8PDw8PDwKBxKeTfAw8PDw8PDw8PDw8PDw8PDDU/aPTw8PDw8PDw8PDw8PDwKCk/aPTw8PDw8PDw8PDw8PDwKCk/aPTw8PDw8PDw8PDw8PDwKCk/aPTw8PDw8PDw8PDw8PDwKCk/aPTw8PDw8PDw8PDw8PDwKCk/aPTw8PDw8PDw8PDw8PDwKCk/aPTw8PDw8PDw8PDw8PDwKikpeP/zDH/6Q73znO9x2223Mzc1x9dVXUy6XM4/fsWMHn/jEJ/jZz34GwLHHHsvb3vY2pqenh9VkDw8PDw8PDw8PDw8PD4+hIjdL+/T0NC9+8Yt585vf3NXxH/jAB3j44Yf5yle+wle+8hUefvhhPvShDw24lR4eHh4eHh4eHh4eHh4e+SE30v7Upz6Vk046ib333nvRYzdt2sT111/PWWedxZo1a1izZg1nnXUWP/3pT9m8efMQWuvh4eHh4eHh4eHh4eHhMXysiJj2W2+9lWq1yqGHHhq/d+ihh1KtVrn11ltzbJmHh4eHh4eHh4eHh4eHx+CQW0x7L5ibm3PGrk9PTzM3N9f2fhRFbN26lYmJCYIgGEYTPTw8PDw8PDw8PDw8PHZiCCGYn59n3bp1lEr9s4+vCNI+OTnJzMxM2/szMzNMTk62vb9161Ze94a/plmfoVHfod4N2HPfJ7Dlvo0IEQGwepf9CcMGs9s3AVCujLNuz8PZct/G+FxrdzuE+vw25me3AlAbX8WqtfuyddPv4mPWrX8MO7bdS2NB/tbE1DrGJtay7cHb4mP22Ocotm6+mbC1AMDU6vWUyzW2P3y3bF1QYo99jvLt8+3rqX1jE2uYXrN3YdtX9Ovn27cy2jc2sYZWs17Y9hX9+vn2rYz2Vapj1OcfKWz7in79fPtWRvtmHrmf+vwjhW1f0a+fb18x27f53hsBIX9rbBWN+g4uvvhidt99d/qFFUHaDz30UJrNJrfddhuHHHIIALfddhvNZjPlMq8xMTHB7PY/cs8997B69ephN9fDY2h4z3vewwc/+MG8m+HhMVD4ce6xM8CPc4+dAX6ce4w6tm/fzn777cfExERfz5sbaQ/DkDAMaTabADQaDcrlMpVKpc2VYP369RxzzDGce+65/MM//AMA5557Lscddxx77rln27m1S/zq1as9afcYadRqNT/GPUYefpx77Azw49xjZ4Af5x47C/odop1bIrqrrrqK5zznObzjHe8A4HnPex7Pec5zuOmmm9i8eTOnnnoqN910U3z8e97zHlavXs0ZZ5zBGWecwZo1a3j3u9+dV/M9PDw8PDw8PDw8PDw8PAaO3Cztz33uc3nuc5+b+flll12W+n/16tX84z/+Y9fnn1q915Lb5uGxUjA+tUfeTfDwGDj8OPfYGeDHucfOAD/OPTyWhhVR8m0piMJG3k3w8Bg4Xnnay/JugofHwOHHucfOAD/OPXYG+HHu4bE0jCxp19kCPTxGGUc9/rC8m+DhMXD4ce6xM8CPc4+dAX6ce3gsDSsie7yHh4eHh4eHh4eHx/CxsLBAo+E9WD08NGq1GuPj40P9zZEl7bXxVXk3wcNj4Lj9zvs4+MB98m6Gh8dA4ce5x84AP849ioiFhQUOOuggNm3alHdTPDwKg/Xr13PHHXcMlbiPLGlftXbfvJvg4TFw/PDHN3ghz2Pk4ce5x84AP849iohGo8GmTZu45557fKk2Dw+SOuyNRsOT9n5g66bf5d0ED48lQwiBAEqL1Hh8w2tfNJwGeXjkCD/OPXYG+HHuUWSsXr3ak3YPjxwxsqTdw2OlQQhBU0ATEOpVEoIKUA0WJ/AeHh4eHh4eHh4eHqMHT9o9PAqAlhAsCKgLaAloqffLQCWAcWAcQcUTdw8PDw8PDw8PD4+dCiNb8m3d+sfk3QQPj64QCsG8gNkIZiKYEXI7q/b1+7ORJPcmPnfB93JqtYfH8ODHucfOAD/OPTw8PDyyMLKW9h3b7s27CR4ei0IoC/t8hNwKaChLuxDSyl4LpKt8AJQFTCEIlMX9WSc8Oc/me3gMBX6ce+wM8OPcw8PDwyMLI2tpbyzsyLsJHh6LIkK6wzdISPusUBZ25HZevWL3eeP7PtOwx84AP849dgb4ce7hMRycf/75BEEQv1atWsVRRx3Fpz71KVqt1uInWAbuvPNOgiDg/PPPj98788wzOfDAA3s6z7XXXsvZZ59NFEV9bd/ZZ58dG4Z6xb333stb3/pWnva0pzE5OUkQBNx55519bd/OjJEl7R4eKwEtlXiuJaCprOwLwA3Ah9S2rj4LkSQ/FB1O6OHh4eHh4eHhsSi+/vWvs2HDBr75zW/y1Kc+lbe+9a28733vG3o7/vEf/5Fvf/vbPX3n2muv5Zxzzuk7aV8Obr31Vi6++GJ22WUXnvnMZ+bdnJHDyJL2ial1eTfBw2NRtJAkPFT7LWAj8B7gWuCdwI3Iz0OVpC40vr/xV7cMtb0eHnnAj3OPnQF+nHt4DBdPeMITOPbYYznllFP493//d0488UQ+8YlPZB7fbDYRov+Wk0MOOYQnPvGJfT/vsHH88cezefNmfvCDH/CKV7wi7+aMHEaWtI9NrM27CR4eiyJUr0jIuPUIuMI65jK11WXgTJ3qzbfcPfA2enjkDT/OPXYG+HHu4ZEvjj76aLZv386WLVtiN/bPfOYzvOMd72DvvfdmbGyMbdu2AfCtb32LY489lsnJSdauXcsrXvEK7r47/QzPzc3xpje9iXXr1jE9Pc2LXvQi7r23PeeWyz1+dnaWd73rXRxyyCGMjY2xfv16Xvayl7F582bOPvtszjnnHACq1Wrs5m/+7jvf+U4OOuggarUaBx10EB/4wAfarPK//OUveeYzn8n4+Dj77LMP73//+5ellCiVRpZWFgIjm4hu24O35d0ED4+OEEKkiLjePxlpZdd4rnof4xghZDK601560vAa7OGRE/w499gZ4Me5h0e+uOOOOyiXy0xPTzM3NwfABz7wAY4++mjOO+88wjBkfHycc889l7POOovXve51vPe972XHjh2cffbZnHDCCdx0002sWrUKgDe+8Y187Wtf45/+6Z84+uijueqqq3jVq161aDsajQYnn3wyGzdu5F3vehfHHnssjzzyCFdccQUPP/wwb3jDG7j33nv5/Oc/z3XXXUe5XI6/22q1eM5znsNvf/tb/vEf/5HHP/7x/OxnP+P9738/Dz30EP/6r/8KwIMPPsiznvUs1q9fzwUXXMDY2Bgf+chH2hQPIJUKF1xwwUC8DDy6x8iSdg+PokOS74S0a2v745B12VvAOcAR1vd8pXYPDw8PDw+PokEIwSDTQK+CJSdJcyEMQ1qtFjt27ODiiy/mW9/6Fi984QuZnJyMj9lzzz359re/Hf/uzMwM73znO3nd617HF77whfi4pz71qRx++OF8/vOf521vexs333wzX/3qV/nABz7Au971LgBOOeUUZmZmOPfcczu268tf/jIbNmzgu9/9Li960Yvi91/+8pfH+/vuuy8AxxxzDJVKQucuvPBCrrvuOn784x9z/PHHA3DSSVIheM455/DOd76TPfbYg4997GPMzs5y5ZVXst9++wFw8sknc8ABB7S1p1wupxQDHvnA+zF4eOQEm6xH6hUik9EdjiTwNjxp9/Dw8PAYJbSEoCkE9UhuQyG8VW8FYgewZ31wr34rBB796EdTrVbZddddedOb3sQZZ5yRIuIAL3nJS1KKgg0bNrB9+3bOOOMMWq1W/Npvv/149KMfzU9+8hMArr/+eqIo4rTTTkud7/TTT1+0XVdeeSXr169PEfZucfnll3PAAQdw3HHHpdp3yimn0Gw2+dnPfhb349hjj40JO8DU1BQvfOEL2875+c9/fuBZ9T0Wx8ha2vfY56i8m+Dh0RGmS7zpIv+g+rxhHCsECLVmmGLMxz51EX/zlsUXAA+PlQw/zj12BuyM47wlBA1VzlQnWQ2EFE4rAYwjKPfRsuoxWKwCNo8N9vz9xLe//W323XdfVq1axQEHHMD4+HjbMXvttVfq/y1btgDw7Gc/23nOXXbZBYA//vGPgLTUm7D/d2Hr1q3ss8/SSkBu2bKFu+66i2q1mnlu3b4jjrB9Obtrn0c+GFnSvnXzzXk3wcOjIyKHa3wEbFaf141jhWMbAK8+/bnDaKqHR67w49xjZ8DONs5bQjAbScLeQFZH0WtbJYAxZNWUyZKg4on7ikAQBKzOuxE94IgjjuDQQw/teIztjr9unaxOdf755/O4x7X7Q+p4dk32N2/ezMEHHxx/vnnz5rbv2Nhtt9349a9/vehxLqxbt46DDjqIiy++2Pm5Tni31157OdvSTfs88sHIkvawtZB3Ezw8OkKTdW1h1zk99XQZOr+Vxu67rR1Ayzw8igU/zj12BuxM4zwUgnkB8wIWlKW9hVwTSwFUBLQCCAMoCZhEUPLE3aMAOO6441i1ahW33norr33tazOPO+aYYyiVSlx88cVxTDvARRddtOhvnHLKKVx00UVccsklTnd1gLEx6dIwPz8fKwoAnvvc5/LNb36T6elpHv3oR2f+xtOe9jQ+8pGPcM8998Qu8rOzs1xyySWLts8jH4wsaffwKDp0DLudPX4TsDtSgAGHlV2bIjw8PDw8PFYgGoqsL1jEXSBJei2Q62KAJPBlYMKvex4FwOrVq/nIRz7Cm9/8Zh544AFOPfVU1qxZw3333cePf/xjTjzxRF71qldx+OGH86pXvYr3vve9RFHE0UcfzZVXXskPfvCDRX/j1a9+Nf/+7//On/3Zn/Hud7+bY445hh07dnDFFVfwtre9jUc/+tE89rGPBeBf//VfOfXUUymXyzzlKU/hjDPO4Itf/CInnXQSf/u3f8tRRx1Fo9Hgtttu43vf+x7f+c53mJyc5G/+5m/4zGc+wymnnMLZZ58dZ4+fmJhoa89f/MVfcMEFF3QV1/6Nb3wDgBtuuAGAyy67jN13353dd9+dE044oZdL7WFhZEn71Or1eTfBwyMTutyb7RqvSfu+wF32d6wtwHUbNvKMp/n8DR6jDT/OPXYG7CzjXAhBC0ncNXmfE/AL4DLgVOBJQhL2MlAT0uKuS516eOSNN77xjey333585CMf4atf/SqtVot99tmHZz7zmTzhCU+Ij/vsZz/L9PQ0H/3oR2k0GjzrWc/iq1/9Ks94xjM6nr9arXLllVdyzjnncN5553HOOeewbt06nv70p7PrrrsC8IIXvIA3velNfOYzn+F973uflCuFoFqtcsUVV/Av//IvnHfeedxxxx1MTU1xyCGH8PznP59arQZIF/xrrrmGv/7rv+a1r30t69at46/+6q9otVq8733vS7UnDEPCsBv/T3jFK16R+v9Nb3oTACeccALXXnttV+fwcCP40Y9+NHLpOWdnZ3nVa97EPXf+itWrV1J0jcfOgkgIZgU8EsFsBDsimAPmgbcjs8b/CPgysvzbFDBVglUlWBXIbSkIuOzKDZx6ytPy64iHxxDgx7nHzoCdZZy3hGCHWvdmhFwDfw78nXHMR4FjSK970yV8UrocsH37dtasWcMjjzziZWoPDxZ/JvTnl156KVNTU3373ZEt+bb94bvzboKHRyYE7RZ2HdO+BdiPJBGddpvHsd0ZBDwPDz/OPXYG7CzjPETFryPXwRCwHYYvx1gbRbI+enh4eOysGFnS7uFRZGS5xs8DM0j3+KZxrGvr4eHh4eGx0qBJuJnX5WTrmFNIr3n6WA8PD4+dFSNL2oNgZLvmMQIQSOuCbXHfjHwodzOO64R6vbHIER4eKx9+nHvsDNhZxrlZOUW/HgfoFFXvBNqrR3t4eHjs3BhZZrvHPqOfzMVj5cK2sJuZ4/cmyRDZlkFepIn8xz/ztSG01sMjX/hx7rEzYGcY564krFqBrde2Q3F7lvlodg8Pj50ZI0vat9y3Me8meHhkwhZYNHn/I7AnUFPHabtLlov82970ysE31sMjZ/hx7rEzYGcY56Z3mQBCkbyvMxHZoWEeHh4eHiNM2oXw0U8exUXsFijSlvYtwHoS0t50fz3G2FhtkSM8PFY+/Dj32BmwM4xz07Jub+9RxyxeCdrDw8Nj58PIknYPj6LCdA/UZF3vb0aSdu0e38QnovPw8PDwGA3YCmtN2B9U+yBJuyskzK99Hh4eOzNGlrSv3mX/vJvg4eGEnXwuMoSSTUj3eP1gutwEzf3LrtwwyKZ6eBQCfpx77AzYGcZ5KizMWAfvBfYAVuEt7R4eHh4ujCxpD8OdIwurx8pDKnO8tb0faWkHKJN2jxcOM8OqVZMDbKmHRzHgx7nHzoCdYZxHyDh2O5/LPcA+QBXL0m5tPTw8PHZWjCxpn92+Ke8meHg4kVWj/WH1+Z5qO07aPR7aBZhnPM1XSfAYffhx7rEzYGcY55qoh9b6dy+wL5K02x5mpqu8h4eHx86KkSXtHh5Fhcs1PkK6xq8GxtRxNWT2eG9x8PDw8PBY6YhUPpfY08xIxHovsD/tHmYeHoPEhg0bOO2009h7772p1WqsW7eOk08+mQsuuIAwDBc/wQBx5513cvbZZ3P77bcP5PwbNmzgmGOOYWpqiiAIuPHGG/t27m3btnH22Wfzi1/8om/nzMKZZ57JgQceuKTv/vrXv+aNb3wjT37yk6nVagRBsQtLjixpL1fG826Ch4cTtku8rnOwmcTKDt1ZHB54cNvgGurhURD4ce6xM2DUx7ku8RYrrUnWv3uQlvYy7THto6CwjoQgFIKW2grvNpA7Pv7xj/P0pz+dhx56iA9/+MNcffXVfOELX+BRj3oUZ511Fpdeemmu7bvzzjs555xzBkba/+Iv/oJWq8Ull1zChg0beNSjHtW3c2/bto1zzjlnKKR9Objhhhv4wQ9+wP77789TnvKUvJuzKEaWtK/b8/C8m+Dh4YRtYbczx2s9X4XFLQ5fvujyQTXTw6Mw8OPcY2fAqI9zMwGdSdp3qNd+uEn7SkYoBPORYCaCHeo1E8GsgEZUfPIeCUGz4G1cCn7yk5/w9re/nbe85S1cffXVvOY1r+H444/nxS9+MZ/+9Kf51a9+xUEHHZR3M/uOMAxptVpEUcTNN9/M85//fJ71rGdx7LHHMjk5+jk1bLzmNa/hnnvu4dvf/jbPetaz8m7OohhZ0r7lvo15N8HDow1CiLaSN5q0/5HFSbttcfibt5w+2AZ7eBQAfpx7jDK0Ffatb37lSFthU1Z2g7jfgwwNm0aGhWnSrl3nYWVa2VtCMKsI+g4B2xVp3y4S4r4g5P0vGiIhWIhErGgYNXz4wx9m11135f/8n//j/PyQQw7hyCOPjP//+c9/zrOf/Wymp6eZmpripJNO4uc//3nqOyeeeCInnnhi27kOPPBAzjzzzPj/888/nyAI+NnPfsYZZ5zB6tWr2Xvvvfn//r//j4WFBQCuvfZa/uRP/gSAk08+mSAICIKAa6+9Nj7Peeedx1FHHcX4+Di77bYbf/EXf8FDDz2U+u0gCPj7v/97/uVf/oWDDjqIWq3GJz/5ScrlMlEU8f73v58gCGL38v/+7//m5S9/Ofvuuy8TExMcfvjhvOc972F+fr6tX9/+9rd5+tOfzvT0NKtXr+apT30q3/ve97jzzjtjhcf/+l//K277+eef77weZlvPPvvs+P9bb72V17zmNRx00EFMTExw8MEHc9ZZZ/Hwww+3fXepKJVWFg1eWa318FjhsOuyRyJ5fwtp0m67x69k4cXDw8PDI41ICOqRkKQukqROk7n6CrDC9gqbrGsueC/Syg6StI9CTHsoBPMC5jVBV/d1Rlj7AuoFu82REMyp9s2o9o8SwjDkRz/6Eaeccgrj44uH0t50002ccMIJPPzww5x//vl86UtfYvv27Zxwwgls3Lh0A+FrXvMaDjnkEL71rW9x1lln8elPf5oPfehDADzpSU/i05/+NAD/9//+XzZs2MCGDRt40pOeBMC73vUu3vzmN/PsZz+b733ve3zkIx/h8ssv59RTT22LxT///PP5/ve/z0c/+lG+//3v86pXvYrrrrsOkC7yGzZs4Nvf/jYAd999N094whM499xzufzyy/nrv/5rvvCFL/C6170udc5PfvKTvPSlL2WPPfbgggsu4Otf/zp/+qd/yp133slee+3Ft771LQDe/e53x21//vOf39P1uf/++9lvv/34+Mc/zhVXXMF73/terrnmGp73vOct+t0TTzxxyXHuRUYl7wZ4eOxMsGu0m2TcjmnX2eM9PDw8PEYLmtQtKNKmrdClACoCxgLpSj6OoFTw5EjdIiLtHq/XQR3PDlIoNS3tru1KQEPAfERM3OsCmqrfZdT9DSAoyT5XhaBSgPsshKCu2jwXyXbP9nDhhRAwP8AEbhPlZScLe/DBB5mfn+eAAw7o6vj3ve99jI2Ncc0117B27VpAWr8PPPBAzjnnnJig9opXvepVnHPOOQA8+9nP5vrrr+fCCy/knHPOYfXq1Tz2sY8F4DGPeQzHHnts/L0777yTj3zkI/zTP/0T733ve+P3H/WoR/GMZzyDSy65hJe85CXx+0IIrrzySiYmJuL31q1bB8C+++6bOvfLXvay1Pee/vSns3r1av78z/+cT3/606xbt47t27fznve8hz/90z9N9f05z3lOvP/EJz4RgIMPPjh1/l5w/PHHc/zxx8f/H3fccRx66KE885nP5Je//GX8Gy6Uy2UqldGjuKPXI4W1ux2SdxM8PNqghRQ7GU8DeAhJ2k33+IbxPdf24m9dw2kvPWnQzfbwyBV+nHuMEiJF2GcjSdobQipor/rONZzykpOoBorgleR6MI4ofFbjxZAKDaO93NuT1HE6e7wr+apYIZcgEiK+pw2lmJkTcCNwGfA84GjVsYqAprrflQL0r4Vsr1YmafLeNeZD+PNrB9Q64EsnwuRwqctPfvITXvCCF8SEHWD16tW86EUv4pJLLlnyeW3L8+Mf/3iuvvrqRb931VVXEUURZ5xxBq1WkgHimGOOYdWqVfzkJz9JkfbnPve5KcLeCdu3b+cDH/gA3/jGN7jnnntoNhPT0S233MK6dev46U9/yszMDH/5l3/Z1TmXikajwUc/+lG+9KUvcdddd8WhAwA333xzR9J+zTXXDLRteWFkSXt9flveTfDwaIPtGq/3H1Cfr6M9pr2T8HL4YfsPvtEeHjnDj3OPUUJdJMRIW9tbAnY/ZH9mI6gFEAUQCEliy8j3VjLaXONFsqbdC7xY7XeTgLXoCJHkt2kQ918A71CfXwP8G3As8r63hLS6C5G/cqalPAIaBmlvj2bugImyJNaDwkR52adYt24dExMT3HXXXV0d/9BDD7HXXnu1vb9+/fplxVfvuuuuqf/Hxsao1+uLfm/Lli0AHHrooc7Pt27dmvrf1fYsvO51r+Pqq6/mfe97H094whOYmpri5z//OW9+85tj0qzPv++++3Y61bLx7ne/m09+8pO8973v5bjjjmPVqlXce++9vPSlL00R+J0JI0va52e3Ln6Qh8eQ4XKNj0iS0JWQpD0gqdPeCUc9/rDBNdbDoyDw49xjVNBSVlhtydTE/RfAZY87jFOBpyg2WxZyDRgL5HqwkiFIXOPjfaCOVFpr8b+qPjO/Z25XAppC9iFEetWFSAu7icuQ1nYRJHXrBYnSPg8IIVLtbiFfvURtB0EwdEt4r6hUKpx44olcddVV1Ot1xsbGOh6/6667smnTprb3N23axC677BL/Pz4+zvbt29uOs5PDLRfatf3KK69M/b79uUa3iqCFhQW++93vcvbZZ/PXf/3X8fu/+tWvUsfttttuANx3330cccQRPbUd5HVqNNLSra1oALjooov48z//c/7hH/4hfm9mZqbn3xsl+ER0Hh5DhKvcG6Tj2U1L+0oXXjw8PDw8JIQi7HXDklkX8D/A3yEtsH8H3IAkS5o4heq7KxmmZ5kZHnYvcq3TNKPKyi/5FiEt1qZy4hTrGB39q+9qWIDbqxUHWokQqnv2w1xbNRi8613vYuvWrbzjHe9wfn7HHXdw0003AXDCCSfwgx/8gB07dsSf79ixg0suuSSVLf6AAw7gD3/4Q4qQ/uQnP0l9rxdoZYKduf3kk0+mVCpx991385SnPKXttdRSdfV6nTAMqVarqfd11neN4447junpac4777ye2w7yOv36179Ovff973+/7bi5ubm2tnzxi1/s2IdRR7HVYctAbXxV3k3w8GiDK54vIl2jXZN209KeFdN++533cfCB+wy41R4e+cKPc49RQIgi7CSu003gB+rz6l330zxgby5HWmHDwHArD6Sb/EpFTARJr3/3IDPH67XPdI9fiYnoIiES8msoJx4D7A/cDfwzoO2TK6FvJwKLR1qvLBx//PH827/9G29/+9v57W9/y5lnnsn+++/Pww8/zDXXXMPnPvc5vvrVr3LkkUfyj//4j1x66aWcdNJJvPOd7yQIAj784Q8zNzeXSgR3+umnc9555/H617+eM888kzvuuIN/+7d/Y82aNUtq46Me9SgqlQpf+MIX2HXXXRkbG+Pwww/nkEMO4Z3vfCdvectbuPnmmznhhBMYHx/nnnvu4aqrruINb3hDXC6uF6xZs4Zjjz2Wf/3Xf2WvvfZit9124wtf+AL33Xdf6rhVq1bxoQ99iLe+9a287GUv44wzzmDVqlXceOONjI+P89a3vpU999yTdevWcdFFF3HkkUcyNTXFQQcdxLp16zj99NN5/etfz9/8zd/wghe8gI0bN7YpBkDG4l9wwQU8/vGP59BDD+Vb3/oWP/3pT7vqy0knncRdd93Frbfe2vG4ubk5fvADOQP//ve/B+Ab3/gGIEvTPeUpT+nq94aFkbW0r1o72FgLj+4hVA3apipvU48ErRGuRZsFoRZz00VQCy6bgD1Ik/Yqi7vH//DHNwyotR4exYEf5x4rHTord8N4aeKuUyxOXifH+cn6O9Z2JcOVgFUnoduftIeZaWk3r8FKuA6mhdrsM8Assn9H0F7GNaAY/dNimdm2x+TVmAHjbW97G9dddx1r167l7/7u73jWs57FmWeeye9+9zs++9nP8sIXvhCAI488kmuvvZbVq1fz2te+lte85jVMT0/z4x//mKOOOio+35/8yZ9w7rnncv311/PCF76QL37xi3z5y19OJbDrBevWreNTn/oUGzdu5IQTTuDoo4/mhhvkHPHBD36Q8847j5/85CecdtppvPjFL+bDH/4wu+yyC4cdtvRwsgsvvJAnP/nJvPnNb+bMM89k/fr1fOITn2g77i1veQtf//rXuffeeznjjDN42ctexje+8Y3Yyl8qlfjc5z7Hww8/zLOf/WyOPvroOGnfa1/72jjr/gtf+EKuuOKKuOSciU9+8pO86EUv4u///u955StfyY4dO7jwwgu76kcYhqkkfVnYsmULr3jFK3jFK17BN7/5TYD4/0996lNd/dYwEfzoRz8qwjzRV8zOzvKCF7yARx55hNWrV+fdnJ0akSGo6KRqAdJiUA1krF51hWfF7RaREMxEsF3IrME7IphDJnl5K3A6cDzSwl4H/h15zc4CJoGpAFaVYFptp0o7x3Xz6IzIUH6NSmkoD49RQ1PN/zNCZuOeFTKj+DzSLV6LxecARwNTwLQx368uQXmFPt9CyFr0j6h65br+9zzwIeAw4DR17Epf95pCsD0ivtczkSTrDwKvVcd8B7nOTwNTJdmvVap/ed7jSAh2RLBDSPlkVrV96/btvGzPtV6m9vBQ2L59O2vWrMl8JvTnl156KVNTU3373ZG1tHvkj5ZaqGeEXARmFFHVr5lI1QGNRk5v5IRpWTddBCHbPb6tXq0ohjbeI18I5bkyG8lnbIciAbORoBHtfF4sHh5FhsvKrhXZdeBC4PXqWF2sdiW6hmfBdBU3Pc0gqdE+Kuuejt0369FHwB3GMTpXTdH65xpzRWiXh4eHhCftHgOBFlLmFDGfVaRiRpF1bWWYEbrczegvDbFboOUavwPpBr8n6QdSW9yzzuWxc0IIwYLxLG1X3huPqP1ZIbNRRzvBM+XhsRKgy3/VRVJOq4GqzY70PDtVHTvPaBF2aHcVj/8H7qfdPX4ll3xrYRF3ZJ9vI3EzXyzsLU+M2tjz8BgljCxpX7d+VKNwVgZ0SRv9mhOJu9iscg+fi5KSN3Wx8rPjLgaTqJvEfRMwgXSVMy3tZRwWB+ucn7vge4NsskfBoAn7rHpp98sZpRibM6zu8yP0TPlx7rFSoRXYdZHU7G4i5/Z54CLgDGQOkzVfuaQt+ai9vxKR8i4T6VwukFZYd1r3in4ddN4am7gL4HbgcHXcYglmi4aitsvDY2fDyGaP37Ht3rybsFOjhSx50iIh5gvIep9XAS8AjgGqAhqBFGTGghEekLRb2PV2M7C7OkbXaQcpxOk8ALi2QvCsE5486GZ7FAgtDEVYlBCBUMixo/NEBOr/CvL/lQ4/zj1WKrSFPeUej3yWLwXWAk9Xx4bPeHLa0i5kHW9Y2cTJlYAuQmZS3wdJ1LMS0a0kmN4EZhiAQLrHP0MdV6e4hF3QnoxuJXs+eHiMEkbW0t5YWFpdRI/lIxJC1iklIe5N4Ebg3cian28H/kcJMPqYVlFWrQHBlTVeWxv2JhFaUPs13IuleZl8GaydC1ro1yRgQVnb55AJg+b1+5GR/HEErO1+nHusRERC0CB5FnW2+BYyLOrryORkupRb7YC9C03olgo7vtsu9waJMKrrtHdSVhcVmqyniDvSYHE/Sb4Cu6SdvZ8Xsq55kd35PTx2JowsaffID7b7t96/0jruUhKy3lTEvcgL8nIRCywWcd9EkoTOtLSbCXk8PExlWKiE/3mk1eZ/kFmY/welCDOOi7JO6OHhMVBoK7su72a6xn8bSeKeRELax5DPNLjI6rBa3V+4Sp1ql/F7kPHsWhANSEh723mG0NblwlXqLQTuQobA7Y68xynFjCiWcsZF3LNy63h4eAwXI0vaJ6bW5d2EnRrCekXAs61jnoNc2EziHjKa0IKLaWXQr83ImD4znh2km2A9dY72BXXjr24ZZLM9CgRBIhSGxv5NwD8A1wJ/B/ySRDmkheOVDj/OPVYasqzsTWAr8C3gNch5PrYy/+aWNoJUJEK3FGglflw5xXC9vpskc7xtaV+JMOflkHQ8+6HIfo5TfPd4e9+7x3t4FAMjG0I8NrE27ybstDAt7JBY+g41jvnfyEyqsQt9kGTYrYxADK6NLO8DgC1ISzu0Z4833dJci/zNt9zNUY8/bDCNXgIipZwI8DXDBwFBorzRr6usY34AHGccPwoo2jj38FgMppXdLPHWAr6BtLA/BklS9Uw5duvdNB4nx7l+vmFlP8emZd3e3ot0jzdXijLWuidWRly/UJ5Qtnu8QGaOP1AdN0a2u7nQi2dOyBpvur3bt28fYms8PIqLvJ6FkSXt2x68Le8meJBeBHSWgcOBB5ALmnbjbSmhphVI4jdqhM8m62bJG12jXbvG62vWTUKe01560kDa2yuaQtAQSR9LAQRCxMkFgxG7n0XCCcCPjf9PZeUIut2iKOPcw6MbRI667HUk+dmMVKx9HElQKyQeZlMvPokFtV9US2yvsMPCNJF9UO3vQzosrMLKjKE2PaG0e7x+/zbgxeo4s39FvrdmMjpRq1Fbv5799tuv43c8PHYmrF+/nlqtNtTfHFnS7pEfUq7xhlVwFimknIiMb38JirhrS7uQrygYvbgN2y1e7z+oPt+dxD1eL+A1EmGuTYDLWSOvoYXTBcOSBIBQ9XYDqAUwwegpYoaNLCFee7A8ATgdOHKIbfLw8GiHzhBvusa3kPP5hchs8QcirexV9X5AEtPumu/FCp0+UzXLDaX1PcAeyHXOJu1mmJxr3ivipTDJuqmUD5GZ4w9Wx9lhb1As8u663tH4OMHvbmey0eA/kON0EpguwVQJVgVyv+zX+JGCCCOYb0EjglYEzShxoS0FUC1BpQS1EkxUCMqjJrl3Rq1WY3x8fKi/6Um7x0DgmvhnkOVtjgM+C/wR6RqnE2aFgYr7G0EXeZdrfERS7k3HNZZIrlmVdotDkRZ3kO6fsyZpVwJLCXkPGwImSlLImkB4i/sy4Xqu9Bh5BfC4jOM8PDyGg9Coy26WeGsiieq1wGdIrOwlVaIRFg+JWomwrexm5vh91TFmPhetxICV1W8zh4hJ3HXxYV3/YoJ09vgi3WO71Jve1oFgfJxofJxJJGmfRhF2RdpXedI+UhCRgHoLRAhBCEEkX9qFpKxIe60sSft4GcYqBCU/BgaJkVWL7LHPUXk3YaeFHcuuJ/4Z5IK1Bngi8J8k2ug4GZ3aj1ZqqtwMaMHFrFELkrTvofZNwUVn0V3MTfBjn7qozy3tHk0hUjXDZyNJ4GcjmFH/68/nlfDqsTwIx74WAFvW+ymvjBWOPMe5h0cviEm6w8r+ZeBkZInPmnqZNcpnz71opNzjhRAxUTdrtQvS8eympd0k7fF54vMNvMlLhvYksOP2bwcOIl0hQFvai3aPs9rRBHZV+22u/aL3dvv5fAUgEtLC3lSveggLobS8z7fkfj2ERiit8C1R7Ad0RDCypH3r5pvzbsJOC1t7rPfngFVq/3hkHG5M2kU6tn3Ussib7vF2jfY9SAi7VlLqOu3m4u5a4F99+nMH3vYsuGqGzwoZBqFrhi8ImDfIe+gn9b5Dk/aVGAfaLfIc5x4e3SJUuT1SL+QzegtwPfBKEit7LUgravd4xXPd7vHkT+hcCIWQyttIUI/kvqlw1+3WBFZb3E3SbhJ2UGFV1u8UhdR2gnaFN4l7RDpzPEilhDN7/BLI7yDgGnMNpGUd3CUJex2ffj5fAYhdQoVyhRWSoN+yBb5xE/xhc/K++fIYKEaWtIethcUP8hgIBLRluBbAdmBKHXMMcB+yfqm2rpvEvTlCz36q3JtlbbBrtJsPpFn6Jksjv/tuawfX8A7Iqhm+QLpmeN2wNukYT4+lISUkiWRfk3U7aeFKEHS7RV7j3MOjF+i5UK9l2tq+EXgX8FRgNxIre9VQ0gKsXre23QpbEDJnIhKC+UgwE8H2CHYI+dquvK3qkUjqsxtrnn5B2j1eW6G1h9lKKzGmq6ZorwLTq+4OZDy7Vk6sxBCIBonBZYF2ot5r2/18vgIQijRxjwTc9gBcdD/8LoKv3CeJu03uVziEmruKipEl7R75wSbrpqV9GrlwTSKJ+08gJn+aAGriPiou8voauOrU/pGEtJsvSBJOFPEq6H6YxN1VM/wXtFvkWyNyX/OAS3mjBdyixkl6eOwsMF2jNXG/ETknhsDPgZuRxLQWyLwfppW5BoV3j4+EYF5Icj4jYEckX9tVWNRMJN9fEOkEdCZp344Ml9uXdHgAtGdXL+p1MCFQ3sEYxF29fytwiHHsGMVVSmRd6wZKyURC2iGtUCriffFYDtQd1fGuAti4OX3ILzelj1mho0CEAtEIEfMtWJAvMd9CtKLCEfiRJe1Tq9cvfpDHQJC10O4gcbEqI0tV6bh2m7A3GR0Xea2ENIm7vi5bgD3VvukmqDXykCZjkF4or9uwcVDNXhS2xVcAV1jHXEpC2E3iXrSJcCUg65LZMe2jiDzHuYdHL7DnentOvBqVNT5on/Nnr7/J7TqttwWYN+tChj7NGnlMZqx9HRrVNK3sBnG/F5nbZpq0h1m3uVyKhlTmeJEQ9weQJPcAkj4WPabdlYyujrwvU2RUN+jxd/x8XmwI1yAQAo7aM33gUeuTYxRxL8Ic1QtEM5QJ93Ss/lwL5tKx+6JAHgQjS9rL5eHWzvNIEFuWtaJOvT+DdLHSruBPAR5CxvqFpN0KdWz7KMAUWuJ95OI3Q7pGu5l8taq2WTVdBbBjx9wAW56NrEX76dZxJ6Hc40m7yI8ywRw0XFYQcCh3rO1KRl7j3MOjF7ievedYxzwXmXhZVwyBhLiXZmbbyoGZ58sbLSP5qM5joi3rMyKdfHROHWNb2UG6xuuK33YiOrOk0UqZy1pWH/XrdmTSwTGS/mn3eFffitA/17VuIOWRcdwx7ZCtVHbBz+crBPZNPWh3qW0DOH1vOGR3w8pOcQZxlxCtSCbUWzCS7Olt3dg2QplNvwAYWdK+/eG7827CTgmtZXMtSHNIt/gAaWmvIUmeTkinXeTjLPJiNBKXCdoT8ehybyXkHKgFF0gnrAF5LbKEl1NPedrgGr4I7OoAAll7GKRANgU8Ctl+MzGTt7YvDVmCqysR3VIEqSIjz3Hu4dEtTJlVbx8LPBmZffuDwJHqfa2gNUOiDjrpacya5xPFIqzaG07P4/NCWpJ/Drwf+G8SQm9mzbcrp9yDLIFmJ2CFJL7dLvtWxNh+jYiEuJtl7W5HxrObigkzpr1ofcuSMxpIxYOZHDfrO93Az+crAOYNNQWJqZocCAfulraymwLuCoCIhEyspzPj1y3ivhDK7Pk6Q34zWvykQ8DIknaP/CDMl/EA2+7xZeCZwHUki7te6LXFvUBeKUuGyzVeIJPQ7UWixLBj2k3SXjSkrAMi6dMCst0fQ3pVXIEi7bS7yI+KJ8Uw4bLKmDHtrkvqL7OHR77YDVkx5Qj1f1YlYzveuWiW5jjfDIl33C+BdwM/Av4WuIH0PO+qnJJV7k27x8PKCY/TSVntsnYRcBsJaTct7UV1jwd3G3RM+xTpnAtFardHH2HfUFO71AqVq4hIk/SiaJ66RcsoZ9d0WNzrYbrkXRgVwto+sqQ9CEa2a4WGSeL0/xozJKRdE9UnIgWB35DUaw9FksiniIS1V5iu8aYWXmeO1yhZSYn0vu32bO7X6/lF/7kEjjnkwl4BXgt8BXnfWyQu8rHlndFJNpgnXDHtoyZM5TnOPTx6gamsNi2VOmDPJKiB9V613sgOh8r5YdbZ4LVBTRNTO2b/+6Q9q8yM6roLNmk3pTXtHr9Swn0ESSJWk7gD3IlMQmeT9iz3eMjXA80lYwgSS3tH9/gefsfP5ysArrh2kFZnkLHf+jjTGlW4JzQDZpk6TcwbIdy8GS6+CX6/SRJ7nRW/IHXoR5bZ7rHPUXk3YaeFHta2+/QsCWkvkdSqfQZJFvnY2i5Gx0U+jnGz5rbNpMu9uYQ4XbPWpcwUwMc/87WBt9+FrPl8HphQ+8cC+wPfIIlrd7nJe3SHLCEpq+TbKCGvce7h0Qs6PaOV9sOB9Jx/43kXY0f7CuuVJ1JtUY052TpG5zGJSbulsJ4HHiSp0V5ChgqYpBZWjsLelSE/RGbI3wocRHp9L3L2eOisdBpDKuZdCqVexqafz1cAsrSF2k1ke739mBVibRdCJJ4Cpmt/XNIuhC/fB7dsTrJLFqSk3ciS9i33+eyUecAWMAQJeX+EJFtsQJKI53iki7zOGO+KbV+pMGu0m9dDk/Y9MeL6jH0twIzTeYF/25teOZiGL4Is7fo8iXtjBXg98G1kXxvI+d52kV/pSplhwSVMaSsIrBzL1FKQ1zj38OgWWflcQD6bVeP/lLXdiG0/4S9Pi0m7TdLzfo6z5pXHAWuR830FaVlukBD3Jmnifh+SAO5Cu5Udkpj2TrlcigRN1m3ifgcyLGI16bJ2Y7iz4xehb52UTlWkQt7OnbIUhZKfzwsO1wOnhQ9N2ufUExoLturzAriQLwp7wOo2b9yUPu6GPxpWSE/aBwohipE0QENEIn6NOrI0tSBdpyEh7WXgMcgEdb8kIe06tl27U6/UpGV6LtNk3XQR1O7xLhdBjRqdhZexsfyqJJht0ft1ZCw7yHt7GDJvwZdI31s7m7zH0uGKaXfdm5WMPMe5h8dyIJDzXo12Typ7O6XGuZ3/pCgGrCwPq3HgXchM6d9BJatDVQoxCDskmeOzFNV2IrrU7/enG31FC4u4I9t5K0liVjPsrUriYg7t3nN5oVMSYW1p1+7xNlHvdZ3x8/kKRExekYL8jHpC7ezxKwWR4ojmID7KKhX+hPXW5Jt/B0eWtBcFIowQC6oO4FwTFlqI+RaiFa1YItoJLku7QMY1g7S06wW6EiQJ6XQW+ZAknr0l1P8isdavNGhhRZN2c3s/Vrk3x/erdLCg5jh8ImgPZUK6zo2rfX1vXwP8F3Azsi+2tX1ByFJCHovDJdxpt/giu1x6eOwscM1kTRK3bxsmcddzZ1ETlWW1Q+cyeSNwEbI+uelZpddAgYxn3x+DpAftygtI5rW8+9wJ2pPOJu4CmTn+EBKFvBa2zezxUNx7bELHtE+QTkQHxVEoefQZLuubJuhrxyRpt99fQdnjY5iy54G7Jfun7y1L3GnLW0Hq0I8saV+9y/65/r4QAqHr/M01YVaVEZhryffmW9AoRjbCfkM49nUZGzMZTxlJSkvACcBPkQuCTdxXsou8bWHXhP1h9XnKPd4hvFRwu9JpXHblhr63uVu4hI15pOBpxifuAbwM+DxJQjoztl0T+Lwnw6IjS7jLdI9fgetnFvIc5x4e3SJleTQePu1eDJ0T0d18jRznC2Q/73nB1R5zfZ9EusofA1xA2rMqXgeBu0nKvWm3cVsQrarvuuayvK+DCTPxnHaP19flDmQ8u+6nRo12hUQRFPGd0O9EdH4+Lzossq4Hpi57tm5SchqXsL8SOI1AxiWl2m/8s0c5IfAFq0M/sqQ9DHPOTtmIYEER9bj+X5j+f0GWFRglsmJaXmPlG9LSvkYdoy3LpSAdB7cHss5rKq6dle0i73KN1zXaVyMXwjgZD+3W9jLtFlRzkVy1anJALe+MrAW7TpKITpfvqSJJ+x+Ripk4kzxpF/lRTqTWD5jrhbndGWLa8xrnHh79wAJJIroUWTfi2QGmp2UAmW1pt/fzQhZxD5GErgS8DvhP4PcknlXaRR7SlnbTAm1el6Ina9PQfbeT7dWRnnQH0762u2LaizJXZymddCnXcTorlLqV0fx8vgLgGpQ6c/yaGsyoUdxWo12sDFndbqL5/1bL9b9AdehHlrTPbt+0+EEDgghV6QCz9p+2upv/mzUARwQmUYdkfM+QjmcHlT1eucjrhHQ/IW1pN2PbV0rdVhO2S7y+LpuQVnZwCy8aOqYd3KTtGU87qv+N7gJZBHKONGnXSpkp4AxkbHudhKjrZHQLat+XgOsdrpJvo4a8xrmHR7fopCwLaXePd8W1P+aYIyljEaOCWJldynhI3KU1ad8TOA34LIlytqWObyGVtzpzfIB0j7ehw8KKroB0lXoLkaXeJoDdaV/bayTXrEjodK11eMcEiULJ9d1u4efzFQCXLNbUpL0CM/X2Y1eae1+W+3+I5GWpCS9RSuSJkSXtucIk4/o130qIez1M3m9FEI5WfLuthQfpPjdlHKOJqi77VkImLPtvkrreOoO8Gdu+0mBb2F2Z4yFxjTezCUOxLQ6mNl7fmgXkwm7mLaghhbCTkff6UtKJikwX+eYKvMfDhOua6yRBnYTcUZpfPDyKiqxEbS3S2eM1XK7yUxTTPR7cbdLu0pPIdbwCvBTYhsxTo9dygSTsIL3qTPd4G9o9vujQZN0s9SaQ8eyH4lbI10i7mBfpPmeNX03ax0lCHfXxRWi3R59h3kxzUNRD+dBOl2G2gTOx0Yog7vZAVzstw4C6zVCtFShmf2RJe7kyvvhBA0Cq/l+oXg1lVb95M1x8E/x+syTsoXHciBjbsxKU7SDJKg6SmJaQpK6CXKT3U6/rSVzkTYv7SnORF0K01WjXpP2PwF6kM+iWOlgcwL24P/DgtsE0fhFkCRpzSEWDRgDUgsRN/nXIREWPYLjJCyPOHW9tz0LWNW8gQy1cQu6oXMm8xrmHRy/Iet509njIzhwPsH3rNsbpkIgu5wdaOPa1aGuW+pwEzgTOR5I8bWm/B9iXJEmpuf5B2guviAlYTQghYq9ALcKZpP1ADOOEka9mDAfPsbZ5IasdTZKY9nqH47ttv5/PVxCEsdOK5ECYqkkhDtqt7ObALjJcg1Z7Pa9G1aE3+lSQknYjS9rX7Xl4Pj+cYmgGKb/9AbjofvhdCF++F27ZbBH2lTDKu4NrItfZZV2J1kwX+ROQLvKa7LZEoqnXFtmVgvhZJ/3MC2ALSbk3W3AxoRPRuQQXAXz5ossH0/gO0IoTOwRCIBf0SQwPAhLCXgGeAjwa+ATwEeAXJC7y+rUSwyAGDbscj4kWch1dCZappSKPcZ4FIQQt4+WVTB427BFRR86BLqJuvveTr1+essTa58vVCmtsTeObTj4KSR6TCjLcbQ/gGyReQGa5N5CKatfaV6Z9PivCNTAhaHeP1+/fSpI53k60p5U3bcno8jfiAe42LJC4xzes45aiTCnSfO7hQKbLRQTjAUzXkv9tQivMLxQYrgEbx+xPwDb1hJrWdW9pHxy23Lcxvx+3VzUB/NKKsf+F8f8ICX1t9WXVawey3Bskg64UJJZ27SJ/PLAR+DBwI0k8exz/DIQr5Hrpucwk7rrl2j0e2hPVmFvT0m6fG+Bv3nJ6n1vdHVwCHLTHtIO0tNeUm3wZeAZwA3At8HfAL1FOKSQ6L4/OMK9/E6kQS5UREu3r7UpGXuPchBCCeiSYETATwSMR7IhgVsB85Mn7zg6Xslrv13GXfLPn/Bf81emMkba0F+k5dvVxnnS+Gl0VpgL8JfBNZA4XbWm3k9BpDzOTuLsSsBYNJlk33eNDZOb4g2kPAdDu8dCB/A622Zmwf9cce/MkiejmMo4zj18MRZjPPTogSxPTiKBahnFVD2G20f6dlSDAmU00uZq2tO86Do+00tchtsLl27/K4ocMDkIIzj//fL7//e8zOzvLox71KN72trdx0EEHOY///e9/z2c/+1luvfVWSqUSRx55JG9+85tZv379kFu+BDx+D7jZIOpPWp9+IFbAOO8Wts4CZJy6jmODtBtcOYCykINxi3p/g3r9K/BUARWh4t/VceMIgsDWzxcLmqzrBDV6YW8ADyFJuym4uIi7HdtXhGHSSciwrS460VCNxGviN9b5vo8sE6THTVTs25orXPdfk/aHhtyWnQmhECwI4pd+pvX4Hgt0Bm1BpeDzksfgkDU36pJvZtb4VDx7kBw8STHrtGcZ3+ZJQqI0GR9DPg+HAX8CfAF4D7Lc2zGkSbvrabHLohWh/zYikbjDm8T9XvX5Phh9DCBQjdfXqk6x7q/5+67tGFL20jHttiEi77Z79BkuYtuIoFySA3oCmUF+nTLT2KXRVgqEsdMI5UBfXYMtc5blTVtCZHb8vPhHrpb2r33ta1x22WX8n//zf/jOd77DEUccwTve8Q7m523nMIiiiHe/+90cfPDBfPOb3+TCCy+kXC7zz//8zzm0vBPslU3t7LtObvcGXrUPHLLHyhrYXUAI4bSyC+REb1pgzURlpov81dY5v49c3OpCvrTQvBISlmmirp93vf+A+nwdVky74xx29njXNg9kCXBmyTcN7SJfUa6Qp1ifn8rStPU7G1IWPOMiNZCKkjDjWHPr0TuEIuxzQlrY5yKktV29ZqPktSB8TgaPNPRosOu0Z0G7x7c9wyLnOR/3HL1Aex6TqlrXy8BrkJ5VG0m7x5esrSkD1yh+mJSuyx4Td7W9A1mfXcft25502lJWRE8Cl8FFK09qJF4CIelj8h6bHgOGvrlNARU1gldXYKaV/twkuEWGPcg1QkXa11bgkQXH8SJ3ITVX0v7d736X0047jYMPPpixsTFe//rX02w2+c///M+2Y2dnZ9m2bRunnnoqtVqNyclJnvOc53DLLbc4z712t0MG3fxsuCTlULldPHN/OGg394rczalVDGUkilkLMYt4zSJzOwTWqxykk9E9z/res2jPMr4gJDksupu8yzU+QiahW097ffYgaK/bWyUjpl29Lv7WNYPuhhNZZHCedPb4OGbf6NfjgCcDuwIfBI6gvV9FhPnsFYmYLSAt7W0xknpbnKYuGXmNc0jmnHlFyueEIu6KqM8ZykRdutBj50Qn0uNya7Q9qzZ895pFk33lBbsdZsm3aeO4IJCkfQxJ8tYBfwa8T313G+lyb1m5XIqorDahXeFN4h4Bt5Fkjtd9tGvRB7R7U9j7w0bWddbt1DHtkCQfXOq9yXM+9+gCrolMIBdD7Ro/XoMZo575StLg2MKR/r8hYKwEa6qwrUmbW7y5zQm5kfaZmRk2bdrEYx7zmPi9crnMYYcd5iTiq1at4iUveQnf//73WVhYYGZmhssvv5xnPvOZzvPX57cNqulLgy4l0LLudpbGx0Ko4ilnhYyhNGMpi0Je2xZ1o1nbSce9mYnKasq9tBbAk4APAcepz7chF2/T2q4t7g1BIRUXGq5yb5COZ9eE1o5701tN2rNw+GH797XN3SBLgQAyd4Em7ZC2npj9Ohg4Ckngiz7Xi4xnby4SNIekPOskHLWQz1bRLVPLQR7jXCNOgomce+aFjOv8OXAO8HP1np6bQoo9Ly0GEQpEK5KvMEIU3WpSEGQ9o5p81lg8Ed3eh+7fOXt831rbO7Lk+FnSlnaQ65nOY1JBklg9P50N/JZkzXN5mZqkvYiIlFehmYdFK+fvQK5vJdpDAPRWJ3RzrX1532O7DS7S7vQE6eF38pzPPbqES+vfjKCmaOPqGsyG7YO4yJYXE642tgSUy7BmXGqmdIUvk9SIrC8PB7nFtM/NyXQW09PTqfenp6fjz2yccMIJfOxjH+P5z38+QggOPfRQ/uVf/sV57Pzs1v42uBe4BDZN2nWigy7i2SNVUqQhVNkzpHeKXvxKQt7AsQDGA8GYq2bYkBEnkVT/667Nk2jjTcJeQra/FagSb0IS98ciE5WdCzweaZUtk8S+69j2SuCuf1sEmHXZze1G4C6k4PIU0hnkbdSQ+QDAmhvVRTzq8YcNpvGLwFXaT49LM6YdZL8i0sqacdK1al3bIkDHMqcIGcmzVwtkMtVh5FjICkkIkXGwtnKniNdzqchtnAsRJ0kMhUqKiXT3fY865hrgUwKOC5KKF5FSxK0kiFBAM5RrlX7AVXpvUS1DpURQgDVmpUE/l5kl31Q8ewAc+LjDGCObFOX9LGeRunHS/dLK+BbyebjWOs8VwNM6KKs1aW+7BsbalycEsl8p4q7evxX4c3Wcdo+HtKJmnGwPuiJBkChPzJwMy/USyGs+9+gSWQOyKWQiOpBl32Ya6YkpFlIiVtQKqNvdVDH704pVbK/D7pNprdrOammfnJwEpMXdxMzMTPyZiXvvvZf//b//N3/6p3/KZZddxve//32OPfZY3vrWtzpj4Mcmd+GM17yet7/97bz97W/n0ksv5cMf+w/q9US0vezKDVy3YWP8/wMPbuNjn7oodZ6Lv3UNG3+VWP5vv/M+PnfB91LHfO6C73H7nffJfwRs/O1tXHzZj1NS9scuv4wHw7nY0v5fv/otl/30f+Jz1OuNuH3aqv6dKzdw9U9vYiaCHQLufmAb/+/TFzGrshbPRPDNb1/Df//qFuYENIRYvH3Axl/d0uae9LFPXZSqnXndho1cduUGZ/tc109EggceeJj/9+mLUs/7T757DXf+5ha2IUn7lrvu5wdfuSS1QF/8H5ew+a77GVMW93t+cwvXf/cajgcOB84DvnvuRTy4dVucRX7Dhpu47KoNcQzpYu2DPt3fbq/fTzdy5VUbYve5er3BxZ/8MjfWG/wc6UHwgWs28IPrb4qt7Q9v3caX/t9F8XUBeOi71zD7m1vi63n/XffzzS9fEv+/5Pb1eH/N62fe36u+cw23qvYtANW77ud/rPv79f+4hHvvvD9+767f3MJD370mJZhedO5FPLx1W6zsue6nS2+fieXc30gR9tkIPvnpi7jvwW3MqOfuPzfcxOVXbZAWdwHbFwbdvvvja3Xzr2/hR99N7m8T+OO5F9Haug3UNb3p+pv4r6s3xN9ZKNrzsYzxN8z2aUVbvd7g8//3yyzUG4TAlcDUNRuYuP4mAC4FHtq6jc9/5qJYsTOM9mks9/qJVgQLTW7/w718/kuXwHwLFkKYa/H5Cy7h9pvvgXoLEYqRur/9bt+dd97P1//jkvQa+JVLqN51f6xcvu03t3DVd65JJaP72rkX8cjWbQRIa+bD19/EL69Jnt/6QoPPfOLL+V4/a375+TXy+s0D4/UG3/nklwlV+wLg+ms28Nvrb6IKvAAob93GLufK9r0AScyv+u41/OHXSfs23XU/13zlEiokYQWXf+US7rvr/vi3f1WA8Wdmjv/2f1zCvXfdT4TMVyN+cwubvntNrJAoB/CV/3cR27Ym7Ru//iZuVtdPAI16g/PU/dVi47Dv74MPbovH243X38T1qn0NIKg3+N4nv0yz3mASec9vuGYDv77+ppjPbN26jU98emU/v759qn1CcNm1P+e/fvHr+JgHt23nYxt/lJD26TIX//4XbLz9zpjU3n7PH/n8Rd9XpxCDax/9u36f/84V3H6fShLeEGyce4CLr/sprELGtQvBx772XR58aFu8sP9XRvsuvfTSmHOe8ZrXMwgEP/rRj3LTGfzZn/0ZL3/5y3nZy14GQBiGvPzlL+ess87ilFPS6ap+/OMf85GPfIRLL700fm92dpYXvOAFfPrTn+axj31s6v2XvvzPeGDzvaxevXo4nVEQrQhmm1Lg0YLPfAh3PwL/cQecvBc8dQ+olWGyIuNDJiqIiQphrZSyqjeUZUdrq5vqfV0PtBwklr7JAKZLMBVAaUhZDYUQyvwUgRCEkWAHsIMSM+WAmaDELHKCfxnw78g8fFPItk4HsKoEE4F0d58RMlZ0ThGheWQ2+bOAtyNd5seQVsVJ1dcptR0PKFQ2+VCIWNmyQyeqAv6FtNXhOcD71L2bCJJkVzNCuuBejNTcvxupnV8VyP6uKsnXlrvv5+AD9xlq31pCsF0rjlR7Z5Gx+m9AlviZIH2fW6T79UPgEuCj9rElWK2+k/f9NMt7aWt7U0hhraw8PMYDmFDtnS4xsMzhkRDscIynBeDVwOuBTwHfQj4jqeup2lYu0PPRK26/876hj3OQz7FrrP8MGaOr8QmkpX1aPZerS1BdIddbhALqaq1qRvIVCsPSHkC1JN0ix+WalfezWUS0hOCRKJnndkRyrrsLeBPwHaS1fRq5bq0qyTnEDLm54677+dEBe3MX8A7cc/50Tt4Os5GIn4M4RAj4DHLOeQNyLtdz4ViQzgPxS+AyJGF/MnINnwxk/PuskdxxHvg3ZN6XM5Drve7/dCCfrYmcPT4WIhHPxea69l/Al5DXZBw5D0+VpHVMj4d54C3Iefvp6phpJcusLsn7nYfXZNOc61SfZoHfA/8AaDr0v4C/Roa3TWPcmxKs6XLey2s+9+gOYr4pectcC+pq24jge3fC2jF45nr4/UOwYRO87rEwVpYvzWkmKzBeKaxnlqiHMNdM+Nm86ud/bYI/zsFLD4L/uBkevw6evHsbX2OiQjDW2ZNg+/btrFmzhksvvZSpqamOx/aCXBPRvfjFL+biiy/mjjvuoF6v88UvfpFKpeKMUz/88MNpNptccsklhGFIo9HgG9/4BhMTE+y3335tx69au+8wutAZwtjRieiahmuF2m0KwZxeEJVgrpMczQpjqxa/OeRkOifkomjGeg8rq7qIhHyI51vyNddCLISIhQhRbxLUW9AKQYjYvXuadCIWSDLNjinira3tOonNbsAbkYvgdpL4dm1x18mfzLJoRYB2m9OlobQL3fHWcc8jCRNwYYwMN0G1/eG1N/SryT3B5Rank9Poqcx0/7Tvu9bW2+fI8soaNiIhaJDkTqirZ28W9fwZY68xhGfPdX1iKxxSWLZDUopyLfuBH/4433Fub3Wa0ycgFXFHDrFNfUcrknN5M5KCSz2Uwox+1Q0y3wiTUC+PFLKesyZJHKLtCo71/6+uu4Ex5FyaNfbyypeg5xw7BG4eOZ9Du4u7XtenAjg2gHMCOCaQhH1CK9sdv2WWOi3ifBaiwmBI1nYB3E5Sn1170NnrIcj+uWL28+6b61o3SULeQLY9M7Styw7kNZ97LA5heAintiDXAh3TPl2B7Y7s8ea2yHAN2qZI+reLVavdTESXY/9yrdP+yle+krm5Of72b/+Wubk5Dj/8cD784Q8zMTHB5s2bOfPMM/nwhz/MkUceyfr16/nnf/5nzj//fM477zwADj74YD74wQ+yatWqtnNv3fS7YXdHIjPwVO00I+NQwQLKiqfkJtOq3sLYkmQrvQm4CmmlPRqoChkTHqqtnRSm3xBCJMJdM5JCnOpfBJKlVVRjqzBbk8tWW6yzQebGAlXHW1llW+r/EJlB/j+BzwFvQxF3kcS46/rtZcTQvAwWg1m3Ve+HJMn4TgSeDzyROGxUZlgX7YnoXAoJPaz+4rUvHEwHOiBFHI3hPk/SP7vMjb2dpD0DrX4yIoFbkhsiBMl9MxOR3YB0jX4OMh9BhWTc6gRkg7JCZgmvTRKheQUslUvCG177otx+26UM0WP3ZchkivbnKwUiUgrlVpQQ84UQ/rAZfrkJnrQeHr1esQ+9yIjiJhIpAOx5sUG6jrk5F9pz/slnvJDLcCcfzXNcaUHeNQeZddoh6UsZSc5LQq7POgdvOUgIfS2Qa3lgXYcKnROw5olIiNTaLkjW+tuQ80FAEs9eCuSapvsISSI6SCtg80SW6GqOX9S+UQwrPraXfuQ5n3t0CZcGph7KhzYIYLqmkm9YJLbXwZAHshZrM2Z/9Rg8Urc0lckX86rVnitpD4KA17/+9bz+9e2+/3vuuSeXXXZZ6r2jjz6ao48+eljNWxqyVI56xTKyx9fR5YIEdZF2h4/d4pFCeaS2FwHfUN+/FvhX4FjkWGoFWmAY8GDSFhdtmVHulCISiHKAKAWISBCohWq2HDBdLqVrspIWYMpBwFggE++1gDBILNUh0r3wTcAzgKdiJKUTchDX1Xaiz90WekLSShflLrqY249uu62Jvw2ZWO9tyIW7pPqiibtNbs067UVClvBmZ6PIIu6TyEzz+rtZhDQv6PtmEvcbSZKPXYt07T9GyLEak/xguOlX9HXS172JFKrMaagIiZtWKuxxqP/XQmtmlu8CKJ66gg5xCo157pbN8BUVg/jb++A1ATxuLyOTrpzri+r6mCdc85h+Jl1wzY86EV18TuMZzntedP1+HTn/tM3zgVyPdVK5UH1QQiaQHVNKe1eJRK2sdl3PIlwDWymv23QX8CKSZHyauNu+KTWKWSHAhTppojBFMv9puaaobfdYIswbaXKZMJShUgEyER1IDlAtO0qiFXgRdCkkBNI7uKIkuLUVuHNb8rlJ3HMc6LmS9p0KmvSplKMhcjJcELAQyRiphUhliCexqofAJmS21atJiI7G5UjiMKxFXcaxK8u6RdwFQClAVEvyOOUXPVsWTFtMxlzgY4KqrOzjtJP2PYG/QLrJP4ZkMZQWdtPiLvoWSyqakcqmLIizrQRAOUDUsrMpC6WJt93jBTI+/RCSRV2TdfPymNekSlqrXQQBrlOFANOiZG9Na4rOdl5Ewq6h26H7e7n1+eVIBdKwFMtSIZdum1boTFr/F/WarkToexsZ194m7eax5rbwsK0IkYBfbEof88s/wmPWF6ZObVGRZals0u6Y4HKPN0l7as53bPMQhVPE2bj/s7R70Znr13jJqnqDXO+qgZR/XGtFBUct8IIoIGNFvEnckeF7DwIHYZR76+D+X8et7Murj1lzV4M0UcisblCQ++OxTGRpqoWQpLamBnVVuZHvaCQEPp4EV8gaYU/arUjGrAOsqcD2RtIXe63MaSLONaZ9kFi3/jGLHzQouLRUsaU9jP9tIpPXNFSylnlk7d8PAf8NXAf8E/BXwL3I5B/vt37qOTgmz372xYZWLeuXdqm8eTPiGzchbt2CaEay1m8YIQQsRBET6jrYVnYzg24QBIwHUgutXed0rdcq8FxgL+B8EuWGGc+vX9EyY/6EEDJRxYJOJNhKklXoOM/5lsym7IhtMV3i9T6kSbte1LWV3Sx9Y8KuV2vf489dcMmy+rpUpAQ4tT9POvbNSdzVSx9nWxv0XJj3fO8SwE+xjjnFOn6Qbc56xrWLpU3aRw12xtdhwTUOTNLucnHNe+z2BLODuuFPWJ8+5ijrf4+eYJKerDlR4+qvXMIEHZRvOQ2uTjLGAmnSbvexEgRMlAKmSwFTAUyWAsZKAaUgyAyfygoLKwI0WbeJ+9Xq87sxXONRIRCk+1gj7f5flLnDta43Seqz67W7k1KpG+Q1n3t0icxYiTAh6wBrgFllftGDJu/JqivY/VM79VBqE4NA1mqfUZ+5arXn1L2RJe07tt2bdxMkYg2OJu3SPtmC2BW8BTQiwQ3Au5Cut/8EfARZr/xzwN8DxyATH71anfKfgSOsnxn4c6LdKU2ry61b4KL7Eb8J4cJ7EXc+ABGyVGMkmBOCNUa7UkTdOn1ZEfcx61VDCj5vRdZF3ojKsA9xaIEm7a3lXgPtRVA3XiZh1y+VvMlODCRod48PVVvvJk3aTeLuuh5VEguFC39ywpOX2dnekSXALZDEtIP7PuutJplzOOb6vrZ2aXC14Qjgz9T+e9X/w2yr67prwU9f905JC1cynpXDOIfsa6jdl1eKi2sm7IVDAAftBk9bI/9/xV5w0O6WOW3IbVwhyLr3TTqHzJhz4+Of8WRqpN3jO517mOgU82wnotOCpe2I1m3YXpnieg2ZZF2Hvv0amTUeZKb1XyNj9/Ua7wqBMBV+ru2wkdWOOunwjgmWP+/lNZ97dIksQlEnIe1BoGq1h+ljTct0AdEx0Z6plFilRv2Opv6iZXHPp4MjS9obC7Yjec7Q5tZGqO67iBNX6cn/CusrxwOnI0ufTJBosx8L7EJC2CGnCV9bmX8p3SlFSblM/25LEsMlpNuYzhwP7Qu7vZDXgiSDfGxxR772As4EPgB8GFlGpkFSDk9vlwoRCekSbyZl0hmUtYW9YXzeCNsySbri3UIkYa+qPgSkY9nbMq7ra0GHLLoCDj5w72X0dmkQuAW4OTrEblpKCe0uamehtffzht0WXaTmEOvzvAQuPTaq1v9FvZ5LRZ7lgcx7ayqooIOL65Da1hekBov6Z9203O63a/p94fqSh4ZrrNgx7S4ru96uP2BvJpBzqX2ePEmdcLw0tHt8loJ2MbiOtz3MigS9tsd2C9pltyuII+kkabfWvyxLu70/TGSt63ZM+zgZ7vF033Zf7q3AcE00emAskCRqA0nad4QWmWVlhFC5LJytSFraS8iHdwLYNp8ca1vcc8DIkvbckDXzafNvw8wen/7qydYbz0NOkJPqVSFxT8ptUW8T3ojdKeMY50fvoQ6VBy0I0Pn9Y6JubU0EhrU9JvCGm/xByAXvv4B3IhOEtUji3yPjt5fUv5ZIZ1NuRvC7TXDhjfD7TUl5JF3P2DLtt7nHq/dvAx5FQtht4u5ClfYsunlr5LPaoEuPtYVAWC/d12kSSzukyU4R5vssARwyyNqQ2mPu6/boa1tUQXelIuse162t65gVAXO90v+DTLQCqWonK7OD+aOJXLs0TA8kMPJ9qP0xkiRsRSDsGnYb9MiYw0pE18GTrlt0SkQHy1jflwkhREzUdXsEcLJ13PNJ1niXMkNb2u1e5P1oucaZHr+6LxM4Sr6tAI7msQyYA6NmkPbpMZht4RROilz2zaWQABm+XNWTcQBrq0lZuzipjehNQ9VnjCxpn5hal9+PmzOZhiZ2ql57anJU/zwO2B04FBnX/iRgOpA1Tse0Rwpywi+MW6ZAulMetwaA6BX7IPZbZ3jKCGaFdN9NWRiCtNuYDdNN3oxxrwI/tI69nHSYybIWEO36Hxn7f1DZlH8bwpfvk//rpE2RgChdxi9OIihIudDdSlLDVSvytJW9nOFKbpN2u183/uqWpfZ0yciqBz6HIyFRBwFuinb3ePMe5oms58oVy2x/Z9DtsctJaSv7GJZ7fMGUIMvBxhzGOWTrYLXQWjQX1yXBFrIEsgYpSK+jtuNXVO+GhqwxYJP2LATAHb+5JbbKt7mH50yMXM+CHh12AlJ7Pwu2wkJvFwsLywumfGFa2x+HVFw8Dim7HUlaUa3R0T2+oMS3U8m3pc57ec3nHl3C9bDr9UGT9gBZq322kf48KvgqmKUpEyLJjq+xZgK2tRLBNFWrfSitbcPIkvaxibV5NyGNmLSHaW2xnqjVmxPI2r9HIG9OFZgopQmunkD1ojbUSd+lkADEHqtkubd91qqPpUY6QLrPTWYlouvwU7WAmLhXFWGv0J4Q7Dl203rvVRrmhBWK2P0/xi82pR9iEs2/IDsJ3S0k8eymlV0nrYF2IcbMHu8iiH+45e7l9HTJkN4MaaK9gLv0T5Z3xRiJx4hGUab7LLLmdIvOkRw3SRQlOpRiRRPIDNyc0zgH93V0WdrN41fMNc8aJA3D0u6a81dMB4eHrDnDdi/WsK2wAXD/rXfHSb+WS4z6iaw2aOWVs+RbF+fN+k4FdyK6vIedJuuu7Rzwl8iSrrZXmX0tdPZ4fU7XdtjIakeDROmkLe0LHY7vxgsiz/ncYzHYk5ja0V5XtVJijZkuy+zx1lc1uc3LI2ZRZMW11yNJPED2b82YyiBPum+ATNo1fIwsad/24G35/HDWzBsJVcssAkVok2OSAeQqD2MnMsnKvD20ST/FHvUDrUhrK0pbBZET/GocC3TQeWEPgoBaIGu6mtfg8cjFEdLJ+PoCl+R11J7pY56wPlOANcm66R7fAu5EelG43OOzrkOVbMu2AF7x0pO67lq/0EmAyyr9ExN4o6NmvVdzTizKNO9qTxHc482taQXRlvZRxGk5jHPIvsemx0XRxm1PyKpX21Aq4YYuVskK7eBw4bpELeQ8njUnmttnvPik+HnuRIzygKstWum62LzfK9qqpuSoGDWhSboZzw5JKd7dSWQVe10393VM+3KIb7/hWoP1GmN6ikySzh7v+v5iyGs+9+gSrodNrwkVgzZOl2G+nqwjZsx3UV1HwK2IBjnYy4YnwdoKPDSfHFsApcTIkvbckCUEtYT0c9cDX9iHyx3Tcpa1ABZqUdf9aEaIAIRypzQH83aRZLfWC1o3lnZI9920QD9OnUtn8O7rdbAf6IN2h8PVXTl9bzhk9/YfUP+bcfUmcb9HtXdv0i7xet8V5wiJAqeNuOc0H5oeBfZ2nqQ0DLRbkex7PYmsqGGfR4jcPI9iZI2nhrVtF7YG1B6LN5nt0Va8jhmXi7p4FhxZc4tdpz3v53LpMIQtc1tXds5W6DzcD6jOsBV9eh53kVk7hEgLZfbYsveHDVc7FkjanFrXg+6FS3udgLQlukjQRF2vU/r/B5DEVnscmMTdVfItS8Ga91Ol+6X3IVEMm/LnrPEduwJW3n3w6ANc87sOlQqMkTxZhW3W2mG7YBYNroEal3xDucerPq6pwsyC8bC3E/dhw5P2YSGMoFaNpX2Lq8eYJz1B2i50kAgAuSzqrlldAE3lPdCM2p6JBWDaathyNfFjdLZALxlZJ9lltcycduBuHRmRy8oukEnoDsMg6bS7x7uUNFrDXTQLqusam4noMLeBu292Flr7fuaJrPVGP3O2pWHQAkvW+Zu4SbtH/+Ca8jJJu7UtMjqWvplXAlpLtH/m4UTWGOgU0+5ykYfEmulSBuWirDVeZuqDBeSyCG5ZZTmWdlNdVJTnK9Ztkb4mDyCt7NCuwMgq+ZallMirb1nXuE56/I7jlcMjDReZFcgKSmaZowBYPZYkcEppbvSEtUIGhDmQa+VE87hmDLapDwqilBhZ0r7HPkfl24C2jC0R1CrQcE+Oen+eJFMn4EzSAnJRyy2u1jFDi5Yk7SKMkjGtBvkOkpJvba8uVvVOFui2cmjLVX5lekpE7ausdY91EjqbuEck8ey63zrxXDfZ4yF7kfz4py/qtmd9Q2rcGpdrhsTSbgsuOLY6EZ19TnNbBJhtclna82yzWQPaRdqLeD2Xgo99avjjHLLH5QKwjuK5uC4JrnY21MzaFO5jV0jXhgnXXKDnjDZLe4Zn1XfOleN8knxCcLLg0u8I2r2roDfCnnWsTdqLAts1XpP3B4E9jOP0mp6llKmS5AOAPsgtA4TpzQWStC9XaZ3XfO7RI4Sx0wyNjJNqJE+qkTGXVcu8oDCFV91MO9EeSNIOMGdkkNd9y6lW+8iS9q2bb87pl+3VTe20IpiqxCwz5WZsjnM6u8fbmnjrV4dI2K33W4IoAEKBsrnHz8WCEHH2eE3Ul7Owa/cyGKCly36gm6HBnI2zGz8oaHeP1/fVtLQ73eONvplbreHOIgdnvPK5y+hk79D31HWdGyRjV0P3Q9eqNYn8JMuv9zpIuOZ1Pd7sMnzDao/exsOS5JrrUlH2MUW4lsvFq08f7jgHa462tnWk0sk1DlbM9bYfNNOS0FQjSSek80nolgztHu9czy2l/LNeIcd5DUdZLb3N4fpnzSXaMxDcHlZLhZk9vgj91zCJut6CJO270W6UyEpEp5OGauStnOk01zVJe39OkLjHZymqFkMe87lHl8jywGpFMjM0JLEfQSAf1h1WXDvWdwuFDhwNkpj9UiD3K8DDC+7+5aCYGFnSHrZcqTIGizZ3QxPNCMaqxrH6sCQpneaEZiK6LHI7TqKJH+qilmGJFmrAC+VOqQ/TgseUEG196WbwLUZm+18neZEHGpH5A1lJ6ELS5d5M9/hyYHkcWUKc/izL7Xm33dZ2160+IlZMWv/r7PHgHrf2exMklnZ9Ljs+Li9kCSK2e/ywhK2s3zFdb21BcJSwew7jXKPtngpBIxKsi+RWzxF5uzAvCZlZdBVlalqfe3SES9FnJ/IyYVti16xbC7hjuvMeWy6lYac8JuY2C508Ce25LPf+GzXabTf5B0hIeyqePeNcZkx7kZQSrp82k53qsDZtRFjq+pfnfO6xCLIGYkNAtdz+0K4tyVrt5nfbyr8VDK4Bq7Pj65JvWiBfV4Ht6mk1+5WToDqypL0QsAfEuKRgwgwKg7j0m7bajNO+2NmLWqdELUMdR4YWLgoC6R5vfDarngNN5vSA05lVu7W02/OE6Tber/52dGetZ8R4GpJ6JJIYdpO436sO3RfD0m65x2dBf2SHAdj7w4Jrkdb7s6THrstDxOyqJu1ZC39e7sWdrA76GXW6rmbrcwaGOsmzUGFE6oYXCKlxHgmCZkh5oUW40GT3uSYsNCkvtAiaYTyvr6hrniWgzSNjmpoOTUSRfXlzRCfFmnYvziKzdqjYFGkvsrzHVFbfTEUt9O5FZx5nbqvk483UCcJ6mWKcdo+3LeyuJHQglTiFVsoYjVggHd6hPbvalA5+WhgdpARN9U8jgko5fVwQwPgYzCj52LayF3VAdEq0Zwvkq8ZhW7P9wfeJ6PqLqdXr8/tx14AIIxhXl1sna9Ol3xTq6nu2uxmO/12JTIb6jNh12nWW4ZBYGy2EJGVTIjvRWi9wkUCbpNj7S4Jr9dRZ/5uWu6ihoQixiLva3o6MZy+TJJ3TxF3vQ2evAlM5YS6O/7XhpqX1cRnIIu5tieiC9n3zZZZ8c50/b7jaocdb03HcINttClLm75mZqXWZpFHkWNdt2Dj030xdx0jIZ78REtRDyvMheyyEVOfl/9TDNHFfCRfcNXBjAQ2YribznfnZSuhbgWCXcbXXMXMd/O31cj4fo3h12l3zzyztiXPBWNOW6CNvKyCLcA0gHc9utushpKUd0sTdpbAOkGt6p3Knw+5fp9+3Le3as2I54zOP+dxjiYi1jyIph2ZidQ1mWslxZtx3EdcK13onSELBIP3grh2XlnbzQc3Rk6Cy+CErE+VylkPagOEaEABRBBNqKVO1zIU6Xh+lFynTXRoU4RFKE68OnsCtibeb0H/YK7cSUlX2eGF4yQjkxK7LvdmkrRdLuwv6GqTISZBu3pKQpXQBS4g1tkIQBkGcSFPHteskdLo+e0A6ll1b3DVciokxsq0OO2ZmMz4ZHFwCnCaxdj4GrP/Nfk2Q1LcFNccHaWvG0kS+5cO6tTG0ZTuPrOGu3zAJQZXRzR6/Y8fc4gcNAJEaAKIZETRakpyHgkpTusdXgoCgGkAYEUQl9YCXEcsJ6B0m7IdZC1sAk7XEs8g83tx6AHT0zsms0+6wws7NzBIg53xnvg9jjRsmhPXSaJAdEtXL2h57Ggi5b5L2okCTddMzVofAafd42zU+q39ZRhdzO2xk6eRspVM/Sg7nNZ97dIEsDV1DxN7CQOIuO1WT7vEp7ZNIb4sKYew0rER7WlhdU4Fbt6vDzIdf7gghlqycXApG1tK+/eG7825CGmEENXm5RSshfjFxFxlZZjNOp8tlxedg8JN9pxJBQlmiNXnX2C6E1MyKbKGlEzq5Wmsy21filKV0CZWlveHIaatj3UTaPV4/27cjSXuJdiu7rNGevhD2ZWmztBvb55z8tF56t2xkXWs9FnWdWvOVlYxHZ0h2njfHub7TeFoA1pKd2XlQzc5qk03aOyU3Wsk49ZThjnMwrl8rUokoI2hGBAshYqHF6npIUG8R1EOCRkTQki+d/6L4192tgI0tDqvHZJ9dHSm6MJYTXFfFtFTasNe3o0+S41zHDdvnzY3Q0T7PCaQnXVvi3CBbbukWFbLnvDyvgWlh1/sPq8/XkbawY+1j7GuT0iDXjOVCt6tF2tKu+2jLn/Z+J+Qxn3v0AJcg1kg4TDqWpwzb68nxKe2eKF4VlSztVBimJ+pAKeHXVmHWSkSnv5uDN8HIkvZcYN88c+BHkWRqAM3QuRAtkLgeuazQtntVbnG1jodQhJG0kiq2qh/UBrCapFFmLHuvlnb7WNMC3RfS1+n+aUVLM3T+iCbstnu8Xe7N5R6vkXUtzPi+IpBbOwGdHruQCCMuxYyteNHZ403kLZgthibyGW27H8Ofu+P26GtexORNKx0CVIIKRcYbkXKTj1h/12aed9UtcOcWGfKkCLtoRSuH1Fr5VQCoq1E0UUni/IqgTSs4UqTWuEymYi1LCW1b3YvmHq9/15Z3tczSSbm+GFykVruAFmm0mVzEdJN/EFiFnIdNl3iXtV1vzaow+tyQ3zqSaoP1/gJJGWLdh2n1viuBbJHumccS4FoTQHpdVZWl3RTgp8swZ6gYTSt7EQdElpzfFIZSQr0IpPv/g0pFV4Ba7SNL2oMgp65lWaObirRXkMKfnpyNWbop3CWzzMkyy2V6aAt6Sq2a/CPCUE7gjbSlfYbs5GTdYrFa9X1F1v1rGKTdtlBhkHYS93gB/BG5vz9uK3vZuBBZ/XTV39ao14frRGgLpnrOmidxAbXbbwsy+rMJYLt5PscrL2RWPQF2IZ/s8a7fMjNTa4+MQbYjLwx7nGuISMg49VC9hEC0Iva65wEOu/JeTti4ndoP7kLcs0Xm81DZ5FcEt3XN5QJYaCkf5aBjDg+P7mAn8spaCwOgWW8QkK4Og7E1y4wNE1nz3DydS9T2AvN7ZqLZ1O/mSGrteHZNWB8EdlX7piXaXO9sDLxkbY9w/b6pmLE9RSbosAZ20fi85nOPHmCX+WyGKnu8ek8LrNNlmGmmBcKVkD3eHqhNIRPtmYJ4gIxpB1iILI2dUJPAcPs4sqR9j32OyrsJabSQQlAN5R5vEF4AIVKZoLNcyXPVxGdpqIRAhCGMKyHX+Gi7gNVqv826QLtruI1OgoArhnfZ1yBr5dGrayzEpo8Phci0sh+AVDAsJQkduEm7/vlP/r+Lu+5av+Aab/O05y7AsTX3tVeJvmZFEMw0ssbRAtLKkOUeDwzMHcxcZ2JdIO3Z4zsJYCsVH//M14b+m/H1U4u0EJK4N0TEk2/dJjVOExA9Avz2IXVzBKI1uDEwMJhkvBHKh7MWpMOBrIG14vo4QHRag1tkJw+y58fvnCfnc2f4m603GRI6xet3srR3C9exek6zq6bkRWohHc9uuslvQWaO19DehJ2S75qW9iL0zfX75hpjW9prLM9LLo/53KNbWBONJt7NEKqW62QQwPSYtM4h3DXai75M6Im1GUHZoMR6wI8p74JtC47JePjC6siS9i33bcznh7NIXwMolWAMhCJ+bbxQiNTi3kkjn6WJH7iAnmGCFC1BtKqEaEbGJRC0gEkBJVWnXT/nvQy8LAFggrQmvn+E3XxP/ROTduvsKp5d12M3iXsE3AY8CsNqHqSJezfCzTjZ/XzLWad1cYb+IcsCPUe6Xi+4XSXNrSb5OiVNkYUXs5+rcHs+DLK9Wec2Le1V5NgbRbztTa/M5Xd1OU7Tf6gO/OrANXIOm4dgNXD4rkr5mv/47Rq2NUQ3uBHCZCDr1TbdOTw82tHJO8dOi+tSYgbAn/6lnM/NkmDCesnfGv49cP2iWfItrYzvbo3PknG0HFSkxJo6sax9Px4Edqfdwm5fD0h7z8GAqt8sES6lsH76q9axtqW91zkvr/ncBSEEoRC01HZnVkZ2yltFPUzcx01Mq9lNe6O2lUQr+PWM1z2RLmlnusrsXlJx+yIZ8KbFfYgYWdIuRLT4QX3/UWsrGyK3LaQQVC3H2ePjQ41DXDVPXaRnHIelfRhKnwylhGgKqCTpY/SnO0jH6ZvbXgefufhBe9kU13bZME80STIxmaEBIu0er71mBEm5N+0Or8m63jc9DVIk1+pnm5ug/mxsuFUSsq6vywXU9BIx5z9937VbZada7Xkhqz0h0nOk72EZXcJuj1kD2pn7YPiK4IFgbMjjXKNtKhdybZ9Zt4rGBNzw6BoPn7Iv7LMOECkF/IqAa61aiKBakVYVI2lqm7vkECGEIFJCdbRiLq5EiCPXh7E1CV11rBaHDplKeY08em6TVPPy76A9SRnGdqkwLe1FWBuESDwIbWv7g8jM8YH16lTyDRyeUQVU+Gm5Q1vaNTq6x3dx3rzmcxNCCOqRYFbATATbI9gRwYyAhWjlzTN9havv9VB6X9kDeUxJdDNmXLvaFrHsm0s7JZAGuTGzpJ2emAOYGodtrfQEALn0b2RJe+EQAZUSlEuS4GJacQCRJPzIgu0aPvR4qIwfEMjGRONVRBTFz4QAZhGsFu1EvRT0trBnudD1PRmf64HWmrTpcmJpN35Ax7Gn4trVIToJHbS7xzsqXmb2cxAWByGETCDYCBELIWK+JffDqKO22bzeen8BaYHWcNVlx9oGyL7p0kbmuDHPnQdcw0BbHVaRdg0ctLDVyT3VrDih67RnHevRG1LzSZS82wCmGy2YqPA/j9uH+l7rUseDWJnXWze6EUkFbDWQGXWz/LKH0EkhBE0hmFOC9YwSrGcjKXAXySqW9azpsLdO6509P5qkCPIndOYQMOdmnZjTRK/E3WWJ1nKCnVgzL8SEXW+Nm7CFxNLusraD2+vMTGiaN7LWCy1j2jHtHUsSDqSF/UWk5xQh55PteqteMwLmhAx73OlgdtmuoFQ1ErWBssQEMmZwppEcb5LZIl5DV9tajuz42tK0ywQ80nIPdG9p7w9W77J/3k2QMO9nuSRr+OoE5CJ9UF24SXuWe3yneKihCTOaUITAdBVaYapvcUZ85R4PvS3q2hLt+m6Nfifjs7Vvakdbm8aqkrRbPyTdqxIruybsm1T7DkCVdqPdPb4b6IR7rgXyiqs29NZF/d1ISM3pXEu9mjDfSv5vRPIYCxFuYm2W/jGR5Qaq91dRPEv7YgKM7R4/rLa7zmu63pqkfdRw2ZVLG+fLhVCTWbxFVcRQbuNTrUjOQSI5XqidAooqabg0UwJYEDJzvOke75p8Bt08IVgwyPp2oYRrUTzB2jUHmPOG6V5sz4Pm//99jRznNZKwoazzDxNZvztPtifdckoX66/aMe2uNgwDmqhr4m624yGkpR0Mwk62wlpjMRlu2HC1Q8tXplyq5U/T26zXtuc1n4OcV+bV3DETEVvaZxWJn4tgVr3mBTuXxd3uqjnft5SlHZRVRltmAin7z6q1wpVhvUjIGqwNYWXHNzSJa6qwTZlqTLf4WD4YXiez8qOseIRhTjpMpyCkdqrS0o5Ry9y81To+tZN21tTSulx0h/58CCnKCkCMVRGz9VQ7ZjESlAlBEARti9liyCL7YwxAE++6MTr53HQt2Yf4vraE5R6vXrcC+yHvaZl29/gUoQ2CTMVGp/rbq1ZN0StEKKDRgoVQugiYtZhLgUyYGAqISoixCoGVAte1uM8j70fWvSoF8kA78d44HWLaBd0Pkj7D1Udt+Zqmg0V7yG1uklhBanR2JxXq+VuJWLVqcvGD+gxhzuUkitamgEpLvl+KBC01/yHap/5Cw9S8mUJHI5JugtVS+yIzpA5qwj4rpA6hLtQ8i5xDKoG8D5GaUCYp7tiuY63rDi8z/f/ktJzPxyjOHNNJITGLjBpbikJeo5P7eN8TzS4RmqxrHqLX+CYyH+VuuOPZ9brnQoVFMrAPeTi7FCNairbX7QkciRId58lCHvO5RlPNJwvGtqHktzJybtFSXllI+WusmFPLYJAV194wLO2Q1spN1mBHK72m6HMVbTF0EWyBVEpUyumJSL/WVuC3Vq12fS7d3yGNkZEl7bPbN+XwqxmjUwl4lEswVka0hCK7JFtEquSba/EziW6bJl6ACDq2oj9wKCVESwmtY2XEw1HcH5CaylUiw1W6h0EeK75E+hr0PUTA9UBroj5WcSSia09Cpxf024DDSNprW9ltN5cs4cUm7SaeduyRi/fJRiuCulFzuhklk1ApULkX1IUuRak4n6zrXCedkMjeCsf7kM6SrM9nz/tFgRYgp0i7rsLghcmUwGz8yALpmHbXOCnadVwKnvG0o4b+m6l7qgakAJpCsIvyvpkUenoXbYMgT6VTV8gSXhqhnOvKJbf/7hCYUwspTM8LmI+kcN1QpD1AGnzGAyCS+V0r5C9YdyK3dlUYvW+vaY8/5khmcCvl8yKsrt/WfWtilXQN3PN8FjoZKNqUkDk/T2YSOr2/VX22K+0yTmxtt+5xUZUSemuKd2Z1ErP9mrR3GvOdkMd8rtFEziUNRdjnhJzmNgJXAi8U8FRkPytCzjO1Fazw7hmpB87AAmn3eNMavaqWWNr1d+OHpaASiK2caEUwblDiWOsGrK7CQ5YnQZvFfTgYWdKeK+xBHyrSV5aEKJ1hPflKnXRSF6At1ktDu1a1/aSx7f8UYw3y2H1cWdrHS7L0G2pcC2kpGQdK6lBXcr1eYH5Hk/alLhxtcH1JkLiIVsty3zhOL96hEM4kdMeoNpvu8a4kdJ1ghgEsVzkhwkgK5S1F1uuh3IbqTKbPfjmAcoiolAjU++a1Nbeme3wnAc4UYkBarbXyyXY7zHOqF479OolrYKfMuf1ud6fzm0JVJ+WOx9Kgk88JhIprlzHtE2pKWBXZLrzWHLkSYAsv9RasHoNa2ejccDukheqGkIR9TsjnT1vatR48QOoXmwUQrG3CA9nZt0245sgx0h5Ig55jFoOrb3pN0qTdXNP7EXepc7nk3XdIu8ab+w8grexmvhot63cq+QbyHtsVAiC/qcP1u3Xawx9Q72mFhV63IwEiGHz7hRCEKE8b9V4JmYKjTGe5KlJyWgs5hzQVYb8BeI865mrgUwKOUxb3loAocOcgGjm4BqFZQalq+IiaD/1UVWZXN0l6lPeIzkIGj2lYJe00gkDGtLeQsnKllJEhfzhrz8jGtJcrrgjbIcA1TrWEUQniG56apNWOWQ8Ta2u/t6j73KDg6J9ohnKynixBFMUTaUM1xFW/u9eSb/bjEJBBZvul9DIvYjOUP1YJkvh2/dwLgXKcSFnZBUkSOq11t4m7C6by0rS0ZwkvD2zd1lu/dMa8lkis7PUQfr8JvrZRbuvKbV6/onQlBpcAp0v/tHlTWH2zMYF0sXSN4byFF7ufWoAZo39KlK7blHHiFulEdKk4QzH4dg0LDzy4bei/qddiHcykr+E8UFNkthyln03zuCJfc5FoI4yXavFCKDMC1/QsNdyHMVJzahM5TTWUYF1HCtcfUtuGkOM/hDinSF7Imgf0Gm0mosuaG4MAHtm6LbZkDrwySpcwh4j5+9pDqpOHVTfIOr5GcUpYxgnoSF+LB5FWdmi3sJtu8vHnRiftUq6ubR4w29AgnYROy22dDCag55dsLHU+D1UCOZ3l3Uwct6OLGHSBnCtMeS1EWthNXEp7jqJhQsqVySvXvB3mza2V3cL4qjI8kpE9nsXHw7DQc0k7bWmfMGq1a7QR9+FgZEn7uj0Pz+eHXYNTE70gkDETZhkd427XhVjUPV5vxxi+i648ubt/AqASqIz48hhtKZhS/wfqq8td1E33uYFl0BfGTjOSP1YL5IMNcR/1pB5GIuUe/wBSqDkId6k3VxI6F9kN6Jw9/msXXd5bv8xU95Ei5bdugQvvh9+G8OX74JbNcozqz80w/oztHO3JamwhxvWaxMqSbGyLIrjobQMpTOt+hvYxQ5i77XaZiejMkm+uY4uxbC4NX+51nPcBJo+N30De9ynFWMotQ/CO778YtmF66XA1dKElSbt2hdRK5yEN9BBFxkWy3wJ+CfwDcC3wd+p/PZ2ZbtRFgp3Iq5NCHuDqr1+eOj6POcYFe14WJKS9zX066H5t74QyHZSjQ74ImsDpfX0NtKU9NkYE7WsfuK+HWbI2b2RxmTqJO645ZpebU2kp87km7LMGSTcrSswI6dm5WHJKc17XR/2JdcypPbeuP7DL0D0SJf2ciySBH3wjaL9AevDXDHOT1kwBTFdgoZ58z3SJz1uYcyGLp1Ud7qE6Q/4uKG8CkfSpzatg8BhZ0r7lvo15NyGBSdIrAcJhrUWkJ0hwKLQMC+w40kKpTzMUAT0lwCYPtWiGiEogXzp7PIZrfAABIhUGs5Qa7eYWEkt7Vt971u5lrVytSAZMVkvShYbk85b6mlzURSoJ3T5I5YrLyt6LUNPJo+DNbz69lx4afTT6euPm9DG/2JT+MUtb6nJjryM9KtqEUmsOtL0IJkiyx7teeaCTAFMlsTwM09qedW5d8k0rd4pimeo3/uYtPY7zPkDKLvJB09nj9f6YuvmTTcMimjFuCgvXfA7QUqS9okl7lD4mPnQwPWwJwwqm5rkQ+I513A9Iy095X2/XPKDniG7d41/+V6fHpAiKYW1PEXZjCOgStVnK5m5hrwl6W6Y44T6Cdtd4gbS070GaoJuu8Z2q3wykZO0SkTWuzPArE2YCWUi3uZu29zqfCyHiGPR5kWR4nxGKrEfyvbkoSSznPE/G9jC1fSLwL8CRS+jTchGp5Jvak2B7ZNSPVyR+NoLGQAmivYipHZ3XybREmw/+ZEVqGMzv5hTzvSgy1z3DPb5NCxfA9ISs1Q651mofWdKeCzJILa0ovtJCuVgrGpSaFEJlae9EfDTGSNx2clnQTcGtGSFqyAHeEvHHCwKm1HHLWdhdZE97G/R1UbcnKo2mkB4StSCJb1eIkFZ2LVjqxfw24FCSfpcC2sq+2ci6Pv2tv+2YlI/aM33IE9bLrSMmySXAgbS6ZHmJmJYH+/1JHNnjc57jFyPImrQPy0riuuemIsEs+dZmmdPbIi2aKwQxGRRyptaXcA6ohXLmqTbUs2ld8LzH8KKwGZjZ2YZyj6+oJ7XRwdVmADBzg+gknwB7W8edajUjT/d4sJZ/tdXztm1xNXO74NjqubSTC/Iw4WrDPO7Qt6UQdxdcpD0XpYUQKaJuvh4A1qnjTK8yHd/ugr4uOtFe/DvWdthYbH2BpE+uBLKubb8QIuVJ/ZoX0ihkvuZFkg1+QdCTVVp7DbwCeJzVh2Hdj7pIys7NGvuxUkIR+vke+9YzXB3XxiqtyA2MJz4IYNWYsqCJ9hrtRVoI7baY7UzVoQ+MSVr1c9dx2O6o1S7wlvaRgElqW1GirqyVoB46yXYdGNeu5Oo9231O72vi0EbmBvmMZJiSolAKeVGlhNBVH4SI45zNBpna6G6RJQyYscWpZnZ/6s5fjrWMQmZSrpbkg62gLetxTKVIYtpvJ4lnN13iK3ROQucSePpVfzsznueg3RPJ4/S94eDd01pEEsHF9XWQRMZMWNOJuJufdyz51n3X+o4sAWaM5FEuQo3dBdKW9qJYpkYFQqRd3YWQHk6VliLtKaZoln4rkqSSgSyNzpxQFhX1lDYd/hsD6p+eZ/ScqvcjEsH6CGRc++P1d7B3ioMmDsLu2NpKae1xZ1va7f1hIGvZcCYftbaLodP3zPnMJS8NC1omd8nnDwC7kybqtjdh1jWxE9G5tsNC1u/r6gA2Jhhu6IIOlWmKJOv7PPDfwAeA/0GSXl0aUlfzccHVVy1fZd6PAd+QlrKyLwhZLWNeWdV3RGnCbpaqG9ga4zqvJu1t1jO1M6WkorlWcg79wOhFsSjImtAaUUYiOvVaXZMx7eYkkEOt9pEl7Wt3OyTvJiQIDdJeCWTJNwXzPmt3syyYk7+piYchTfpZk2BTIGogqiVoJoftIElSA+7ELMtBFUvbK/rc/3jliqSlvSq9JPRNE0LHUop4kdDa+FtJLO3LSUIX0Ln+9re+dc3SwwBMTE3AHmU4cDf5f0ZMUuZ8R0LaNdoIu6NvU7hLx8Qu+DmQn6xnqUE6U7L97Nn7w2gTZMe0Zx2/EnHxt64Z+m8K4zmXRFz+0xIw3mrBWECVMC68oI5u9yIvIlwDI05Ehyz5BpI9NoyKGcKaF/oM2yXevLZ/UMe8AEncB9iMnmFeTvP+m6THpXy318MfffealCU2ZWnv9/rWJbJ+05ZXUkpZh3dgFlzKC2i3ROcFQXsiOr0+maRdN91MRKfhWv/6Xv1mALAt7bqfZp12jV7GZq/zuc5xYXrfbERmfL8W+N/AjZAyomSFirnWa03a81o/m0qW1NUy5oVUiv0ceB/wc2GUvkRltB9EQ1zrgUCuAVpw1QPbdBfS7qM7Gu1rRVGt7bZsWUfK+WA8zEYf11bgEUciOlNBMQSMLGmvz28b/o9mMZpQxKRdVAMw4r5jJZRIL4L2Ym4TXX3cguPn+jV2IpW5sh7JVws1UViDXYQgSmVZzi5KPm8JGLM8B+z+dAvXtTBjvaEP18GWuPS2KWQCjmog65ur9+PsooK4DEmELIWyg3QSOts9vhfUcFvaBXDYYfv3drIshBHM6CR76j1Hko2sa6st7S5relbpN5BKHZ2bAfITTLuBKcBoS8OwBGrX0LTLSZmk3VxDino9e8Hh/RrnXSJF2ONt4iZbmwuhWqPcjOKcDFjbwl9vc1DZ/+t6tTVUTPtwNBEmWY/3keP6bmANncst5gnXGNAVYTSypn79/v6H7p+aGwe5vncL4XiBbNu0cVyvNdoXg5mANc9roPtsx7PPI9eE3WjPGG+Xe3Otf84KQDnxmyzRR+dxseW35eZUWsp8rkVLfQ+usD7/PqRCGFykNjU/m5xUve/y3BwGQpSHgCbvwC+AdwLXAG9T/2vlRSyLDxLC2GmG6TIC0G5tXxvAnJKKzIcGst0ehg3XANUDoY5yj7e0a1pJsaYK25ppkp5D3P7Ikvb52a2LH9RvmDOviVAksSCVAKFKaAl1rD48FO7nwqWl1Uov20XJ3l8KhBA0VAZLnQRjh4DtkWA2FIl2WAu2jQhRKiEqZVn6TTVgBlgLBEIQCIeLdJc1dbMEAVMT37ZoLPUiuE7QFNJdtFJOpUxtIRUbgkTI1Eno9kISO21l18S94uiHRhaxzSLtAEc8/rCMTzLgmqxAuv3HBdNF+/EOUmou1jOQzscQpO81uIWYSYYbG9cNsgQY7YoOSfbcYbQ369xmkquAJLHRKOKoXsd5PyA0TRf6XwAaCOkeP1WjEoWSRJqPjEhIf3FhDXD9zMcJh9QKM2a817dJNhspa5qxfydyfjmA4rgUm8jyrmjQ7j3X5oFk/H/o45JxPk6HRHRD7Kw9H+qXmcfExFIIu+s7/QoLWy5Mom66yT+gPl+ttt3WaNdb0z2+CHA9R2Z1EkjaPk66vG3W97PQ63zu+o1TrGO6zfjuOpe+D3mEY5g5E8x8Hk6lhEgfN4DGqC3pbSuCcYerpJmobaKWGH5cMmRRYfbVLGkXBGmvgjXjckLWsbDm2inMEw0WI0vaC4WWkDHRoKzRoSTr5jFC0ATG1Jsuomq/pxd1cyFf7kQjVGyNLjmxw3jNhJKczaAyfuvnOxSIalkqJABCmWhvu0gIRaAauJRyMFnZZU1Nddx+a9sTsr7ciqBalg90rCWR8exa46ktQoJ0PLue18y49k4PnYvYVrDKooll9s/+XwhpaYe2OvT2hGRqu/W7euE2Y9qx9vXcZ8f5TdIuhGsNcp7K2SwBRivVTII8bIE6IY8SZiK6LAGq6OtmEZFSThnS6YKActiCsRpVIpoZF7nwxN3Vbl3SUmcJrtolSslmqH2AK5ZdALcAj0I+f07PhqXOiQOCbksTd8ksoC3Pkf15lZzKujrg+l1N2jPJaZdK+SyUkdcv73ttW9j1/gPAetKWdbu8qYZLnqsw3AoknZD1+2addrMPWeGZplKjb23TxiHrtx4L7A+sAj5IEjKzlPGh5cg8qjVk/dazrePsxJuDbYz1Sw0h14KsyQpkMrodYXow6G3RJuc25YTaqVrBq1qAB5hWJpvt9eQ7bXLy4DGypL02viqfHzZvnGlCL8lLLSoBNI2ERcZX5hGM0dkyae4Pwtqnk3yYWTl1Lcw5VStyTh2zoLoomgJRLSGUYiJSBDAEVhlKCPO13JJvAQOoc+oSsgVG9vhy/Kap8ZTu8cn/t9GehM60svcqzNgJxsz7fOed9/d2vzsl4QCYtxKJGMfYX9GivL4H2j0ex9b1XqC+s8M4b97Ci+u39VYnogO3VXuQbXa1yS4npclBW0m+gq2ZS8Htd9431N9LXW+RbBGCBlBqhTA2RkU/N8JMQjfUpi4NpuBiYkE9/3qOqpSJtRIDjmcXhiLUtLILkhwh43QOicoLWe0wSXsn6Dnxj3fdH783TpoUFY3QLdCuqM3yistCp5JoZjWMPGFnjdfz61ZkPDtYRkdj34bZP210yLq+w1T6Za29ZkiY2R9933U+ml7H51Lmc9d5VyPJ+uMcv+86Pkv80c+ZM7nsENZPV7uOIPEu+hCGUsLa9r8xjoY1oiTeG0hZ32JSW5OJ6FLfV9uiuMe3CbNqR3uTVQ1mYg74UiD7vAoZ1x7HaYih93FkSfuqtfvm3YTkZjYT0k61hGhGqY/1zgKkSXvgJj0aY/TXfS4SIk6CobNYzkXpMhQLAuqRYF4Jr6HqnxiXWjgREMfszwjBtG636H1B10gpLAxFX43EtbqvhM+eQVuhLH+kSbtSJmrBUiBSbmK3Iet+auWETdyzkHV97Cy65vYnP76hl55lDxAtCc82248xVi3XNdZe9Z0EuKx7qC3tRSHs+ncXE2CGLVC71kFtHdBLac16f5Tww17HeR8gTAmdxDOqBZSbwCqoNEIjSaRIPTJyWxRhpQPMhDr10MicFkC5nBQ9HnBX7CR0ptXuFhLSXoTa5S6Y7TCfUbPO9WJz4y+vS8b5BMXoa9Z8aFcMgXaZpRtkEf5OyuphwpTNTQKvy73Z99JVo92lp7cVUObvFQU6vMN1b2Dp1Q16nc9Tz5bxA3P0pvjIGkOuRHTDHG9ZvzUBnIijDN0QFAmpH2wIwkqZOlLmngfqgaFUC4CpskxEB7lmV18Urottk3b9wJqauCCA1WPpWu2Q3IwhdW9kSfvWTb/LuwkJzJj2cqnjTG27Ipn7romzn9a+CDl5mWU15oCfAe8H/ke910KV3wBaAYgokvHsgKiAUO6U8ySTe8rSHvRn4NVwWBWtbW+wmanaaar6jfoeNiMlYCYWdylkCh4CtuFOQqfd47OQ5XnUKYvua/78hd13rxP0mFxQS6CehKxr4Vqc9RjU5DFLgDNd4/VLC31trubDnQfbYAoH8bpFwmfGyT9Jkl1Oqmq8n2e7BoE3vPZFQ//NxC3TGgh6gR+DUiuijv1sJFb3wiLT4yZMl4GolmR/26XhvvdP0G5lj5DE4F4S0u6qNpHnXNEJdsmsrGRtev8Fr07m8zEy+josgd2Aaz7Ulnbbi24pnnQuFCURnRlDbBJ3u9ybtrDbNdo7yW9ZYW95jOWsNc+2tOutNhq5xuVi7e9lPu907xtkJ+nt5nxmP8k4V56oM2RFgmMQRALmQ8HMdJUdJdgRqBcwUwpYCJDGuukKzBiMxCa1RYFLeaDLmpYsIdx8D2CXcXjE8CYwE9ENydLejeeWR7dwzXqCNGmvluNa5uZg1lXgXFpNWxuvod3j45829peCphKWWqo9LWTGynerz38qBB+P4MnqMy1giZZ0j5f9Q5VFkxP6KkRM1APR3odu4RJw9GKik6WkFo8efySzhjkk9Rsr6qTNkJBqOns8iWv8nshSZr0koesEM/Ytbq+jmYvC9aU4hAPZuNkw/b7BnlOLnXG55pD9hXRMH11sdUnAOaTnkbBeeSBLSDAt7XZoxnLGXi/tMa+7TQj0ZN6rEOPRDidRikm7UqHVAkpRGBui4+Os7xYSZsdMNCKoVRIN4pjhHm8eP4DO2VZ2TdxvR2Yp3x255s04utDvZ65XZM0ZDXrzrjK3Y+QfCqCTZLnki3nSiXOX6kmnvxME8uT6+xXyL/lmJgmzr8FW4DG0W9hdrvEuWU6XfIt/y7Ed1rDuZs3T0G2aYnjVDTJ1jPQn47ttaR9GnzRcv6X3F/JokzGxRsB8APMhLEyVVe4mOQLKQiWLDAJCYGK6TGmukZIZ2zQ6Oc/TTtlXkCjiwU3Y9UO9akzGtGuijrFFehMsN5fHYhhZS3tucAlDTRG7XYhqSTN2gwiJOAOxK+kHxr45HmwXXde2F9ja5JD2DJbXCIgQKbIq3f1LcmGrJnXo50hIWaCuhx5wpR7HdZZQA33OJuzSwjVCSdr1xW+EhIGRKEnIPG4CKWAebLTRtLJrLXwnuPppLu4u4WlZk7eI/8C6QMZEZE24Gb+9QHKfzX6Yr/g9S5GprcNmmAOO/WHBTnpjokHSXrvG7qDhuu62FcS0tK8I4lhwCPUMiDg3o3wOyo0WogpUSpSjKMOFN3scFQZm47TgsRBB1aCZ1XKiUba/1+fOuazsAukar8ONTGXZMAXrxSBwEwtzzjDRjSddkUIBOs37be13kNalQGeP70RqBg0tmwtrH6SlfTe1byeg62Rp1+hUFWao1QEyEr25xq/ZB+0J4vxun9ufNe4X6M1bIes5Mku+5THestoV4Vbc2ft9Q2wdlxvtDj8nYGGsyixSrp+PBPME8rMA5oOAxnRNupkCLqNP4RZDsz2N0BCmjFGuhXi9v0sFHjbqHeWQbG9kSfu69Y8Z/o9mzRYpS3tJfqw9DuOHQ5ZFa3NFcnhraOiYbteEuZTxo8m6Sdztshonkl7EQkC0IkRNZY4vlxBqIM+LdIx+CdFG5LpBllCjr9XArRGtMIl1KUPUCKXSAukSHyelEzJh0iG4rewl6KiFyyK3nUp5/ceXLumtLy7pUgcmTY7DnJH6x5pw4/mJ9NfnyFY22fOfS7CZxsoIvcjCO0zYAozu5zCtYFlWhqwa0Hb+g0G1a5j43AXfG/pvykclfdVbQLUpw4GCSkAQRYkLryWYFCWEz4ksllmPpHVdw3aPT52jfx3UFk1ZRrM9CZ0uEKUV1VlCbmHiJhV0THumRd2Ke77ky5e0kfY8SWvb7xo/PM/yE9HpY13fr5J/IjqTb0TWdhPS+8Mk7Ka1XaNT9ZusXDV5wPXbTdIyHMb+cqob9DKfdxr/Oqa907H2uZzTntpvs2oPiYt1EstMRYJ5/GAbJGgBdaGt/YL6WEWSdASzImCOxH1/IYD66ppss/K0dcW15w7n+iCIWiGNSamAmAlgFqmIiPPVxLXaK7Dd8iYYMnEfWdK+Y9u9eTchQShkLHsQQKWECII47jtOzqgOLWcIHYN2n9PCjk3IHgvsrfbPFoLDAoPcoxKwNcM4c7wolaAlaKmHflqdzDXp94JOVlrXpLYkpFiO8U+o3OMBxqSSIlSuQ0n2eMFvgP8mXf6l2yR0nVCl/d7q7TOPf3IPZ7JXK7WjSzrtMi6zx3cQ0F0L5wJW3KZj6xLMNCZJSHvbK6d53vWzZky7+ewtJigMCi7XW10mKU+IUEhFXiOUrzCKFXlLxbNO6GWcLx9SxhDpeyrkNZ9qRgTlCkG5RClUlnbTG8V6zAoLex4A6R4/oUZVgFQ222UgB/BQ6nk0yQ+SzAFaEQrp5GwminCtXc9/i3Rel6yt3n/KM58cv+e0tA+JRGh0mtvmMHIWsjz3eBeq5EeiNGJZRyT7ANvVVse0a6JuEncXbA+6Ipb0S00HpBXyphJ+mqWHZ/Y6n2cRdx2m6TwmoyGuduo1s69em10i67ca1nY4z0CyeIVAC0EINETEQqXEAvDbED4bwk0teb20e3xzvExUAmaabacrTPZ4x8VuIRNub19dYUcA2wP5fM8EMnZ/oRQQ6cG/ZlzGZwnhrtXuSfvS0VjYsfhB/YZrlhBI0qdJrba4q1rm+mstkrjgTou7ue2ne7xWGJmLlEagGrknaTIlgChAusdXpaVdlMoQKXd/ROw+Fwi3y3SvcAk69qRm73cF+wupmxMmpH1cKly0W7wm7r8T8F51/78E/Jb2JHTdhARkabQh0byaTdv/wL3pCU7JUoki01WYVxOuK14n4xTzJGMXyE621MHiMEcaeQkv9m/bliU7pj1LmBhUe0y4akC3lRESw7uWIhKIeijH0GxTln+Zb8FsCxZaksgvkfAdfOA+fW7t4tBE3cwi3xCCsVAQVMpQKRG0DKFRJE9J4Yl75GigQFraa4YqqBIkSXrM49q+vDxoATyV2BM5L/wRmYROK6pnze/1OL5FKKQiqR4iFgyl0jIVEVlzo+0N44I5H+59wN6pZ7kI7vGd4oknrGOXaml3bc2Y9rz6rx/9lMwDPIi8rzoRnx3PbvffdT1s9/I873EWXMmENcZJ1u1e297rfG6uxfrcemz0ku+n03NqbosA3a9hKRLsvE6hIu4hEDZDwvGAWyPBx4EfB/DPAfwmDOR8XQqIgoDWFDIZnT6XSSSKMKA1VPuayPVkJoK5WoXZQHoQzKIqZgGzgbS6C5Ax7ZAoJtos7oPv5MiS9lzRNrtESRKzkrr5zYSCCWTY+7g6PstdzCY9bdk7je1SSLv9MuuRgnQHixVMIilzJlohQpFaUSlBJCfzKu2kYqnxblnfaXOXXA5JyZRORBLeUJEl+6JALyTyoKutNl5FkkXWJO6LIctNEPq0oDgzZ2rSXumoJRVCOC+RnZBIw6WA0FtTgTFNWjgtCmG322DG9zkt7WJwbXY92y5CoDMuD1sAFJGAuiTnLITyNd9KiLv+30z4UmCYQmJicRfUgbEQmKxAuUQgXCHfAxwI/UZbuuhQlrbUz2etJN8zjx0AbCu7mYRuLbK0Vol01Qaz2SapckEISdaZbypFUhPmlGJpTo5PES69f1lrrjlndFoDXWRXlwTLepaHFQqQNYfokm+2Mt62yHYDV//L5J+IzgwJM2WjB4A91DGuePastc8uWZu3UmKx39ZJfm1oBZopf+qZvd9ewlnt0zJDVuhgL9Dn6KV8XD/h+s3F4uwH1ibDq1IbpcRCSFSFnwpoKK/ROnBtAGEAIlDHrq5IJb3ZSDPDehFgPNN1IeJEe/NV7f6vytoJIUtfI93/G6VAln8aB7YtpBUTlqw8SIwsaZ+YWpd3ExKEUVzrSwCUaKvVXkct7sY970R6tPtcVqmsXhE/oIbiSE8cC8A+wGb97Bm5yiJARBHomPZaiSiSAz1OQodwWtu7hVOBofYXE2x6gnkRTdRJYtorZaKmyiirSGwk4E+srzyX9AJeXqKyAtrrb5t9/PWvb1n+AqkVSFMlaDTJ1JJmKEQ6lf4B0nGbtF+HSRwZoSH2ZBg2OsWQa3dQOzmgazto6HhDE53KAw4KQgjpVl2PEsJuvurplw4N6gUbf3XLAFreGdpybra2IWBdA6hUpLUd5PxO+7RRtPjqNOxBrnYWWjBmMItKIO+r9bX4633qo8vKLoA/kLjGQ7q2tU0WOhH2WGlkjsnUey1YaCLC5c84tuCdFdPuInO3/vqW+D1zfXedfxgwZQGs/RmSeR+yPayWCm1pz1NpYbvG2+XeNHSSWdPabqJXD7phzxxZa16L9goBuv1mqEqva2Cv87nr/Pq3e/FWyDpGh751qMY8UAjHfqcydANrkynypZJph1CBpwXEnsG1IOAEY6yLIIDxMZhRI9oks3kM6kXQRJawrgONFixMVJgV0lV+TsjxVQ+CJGa/BFEQwC5VeMTySDUt7gPGyJL2sYm1OfxqhiDUimLWJgCqkrSblpwF4bBKq61dOtC2tKd+0tr2AlP40YvTQ+q9xwjYrNoqSJIERUJAFBJVlHv8WBlCKdwmpF1+ryzS/ekFWcKAdgfW7U5te7kIrgtnJhyoKgG9XCYMReweL59TwaOBE4Sc+D8APJ72GLfFuu0S7CCdcM9u5q233N1d/7L6JlCeIMhYVj3hxhJxQuCzxtg86dhGSAQ4F3G3t3bt5cWE8EEj6xkys7WPMbyEWFm/oZNcmdAZl91t6luT0giFtLI3QmlJrysyZJKkBfVZM4Jm2PP1ubmXcd4HpJon1LOuhJXSPNKFXE1k1TBqU5QUUEaJEV97l4v8QgvGSgazCCB0pAPrcxI6XWrUJu63Ao8iEVTGSdzjuxHSAWPcRW4PkHqYKJ0aS3eVF7STn17d4++69e5UX82woWGGupjQ/TIJvB4R9rxv73cD2wKtt1UKYGmnPQEdSO/D3WhXUsdrveVq4Fr3NBl2hfe5/h8kssaVWfLN7sNyEiX2Op93IrW2vLDYM5L1nK7GKsE3pOctdd2Mdtlx9gNH1gBUMr4owUEleBQBuwSyFPSjyiheo0bF6pqUIW2yPiRCuyiMi9wSyvVfSJ1EfapKA8HvIzgvhJsUj2kF0v1fr0msmYBtraRPqVrtg+/CyJL2bQ/eNtTf61jnu2m4xwOiFsiRgkjxwglDWMgicOZSYJedWg5xsMuagBx/DwG7AHsB9yNSi5gQOns8iSdBqQRNReSMn+/Uj26QFQ+t3XQGAvPyaUv7WJmokWSM19ZggaAm4Dkowk6idc9ayF1wCTA6l7NLgHnxn57UW580hLHTiuRgmqwaQWqi7dhYcLHmYe1V0cmaZL9vbifpUDqm134tE50EkAXSpH1YGnCXkCEwvHMMuBLRDfxahoK4BqQmR/UQfrcZLrwRfr8peT8UcrXscXE77aVLHOdLhAAwwkG0srIBrAoFBBUCNeeVW1FcyrzTMlAopKRg45+mIu0atVKatDvmheVCWzPtJHQAtyEt7ZoQTdDbXCEiJZE1FDlvSmLe5gWix2cjVGtzb8hqi6lY67QG6v2TX5KMc60YXOw3Boms39TGgpSl3douF1leQ8N6pswa7bab/BaSJHSutd5E1vWxS9bGv9uf5neNxda8LE8Rp6VddNf+XubzLFJrJvHr1lshazzXSSd+7PSdYUErJYwCY4NXJGjXeHs9iyIZGkrAGuDwAA4tIa3rJOZ2MVWVoUfmILJPlje0/CpksmwZsx8RUuJWAf8G/ARpfPtVJOvSR0AYBIQBsGZMZZAn6WOsAB88ax9Z0l4oaNIem06DNsEgRCV1UQPbdjVzkdZ+uvPEhN3YgtQor0FmkN9kHm/EtEeNCFFW7vGUEQ3pOhcn1hNpy+tSNPGuLaQzzJp9Mbddw8WO9MOoLO1irIxoRCnFhekytyftWncd294NOvXVtqDa+4si0wfOIO36f3tCEokSyP6609LuaH98TayxYGaPt89fkGkeSPqprSS91IddLlzn1onozGs87OzxQggZLxOn/1ak/JYtcOF9MtXsl+6FWzYnn0fqOwWHUH8EiZdJExhrtpIBX4JKK1TX3BB4uhRec4HdMFO4aoZp0l4N1HwgOn93GXBZ2UPkGrIZmYROt0grzbp2Kdaa5VAkSqV6CL/fDF/bCL8zFEpaW7CM2HYbdoWHToTdZckcuteMA655Wet2+1XyzbU1vYbygLBepmPKg1iZ49V3NHG34brfnTzoijJ3LJAu+WbKbx3rtPe5Ha7z1422dFPJpZMRq4mUc00l0TDvgavduk+uNg1snFgTTCyDNUKEMjzWA8NYGIAIjK9OVRDb68k5Ug+PyD9kzNAfpPQKkUBUy2yIpGVdllkO+GEQIAKpnND9ZY1Rq91ceCw5eVDwpL3fcN2wSMSWdgFSYxUZMe1KzrWtZmC5GFtbWzO4HOLgsqAKEjewfYD71YGyxJmK6QaiZgCKtIuaLPkWIUl7oJUQiuHGfeg1U00GbMFm6ZOZTWjVjk6cVZUl+0Sl1B7Trw61k9PYGvjlQCc+cwmpXfc1S+JrCdm/cWXTn28lx4n0V1yLhlmvF7IFt06Wdi0E2sls8pjiXX3U+2b2eFMDnvXdQcKVJMiu/Tvw9sSThfoFPTls3JQ+7oY/ym2eN7YHCOUPn3pkhIyBG4taiZmsCuNhZAiN7c9MIWFXh9BtnY+kdV3DjGkfEHN0JaHTrvG7IRPRKS/MeJ7pOiwsWawS4m4qlL5yH/xhc/K5Uij1InhlKTMF2Ym8TJgKeVspb88xw5xf7N8097V1WHuBJev60iztLlJYwSppuwz5Zqkw49nNaesh5NgEt5LeBVvk0f8uWxnfB3Sz5tn3VVvas57BfpGXLNljAdhV7ffibelqbxMph/RaPq4fyOqf7tPQ2mT9gDB/pEW8LoSoMRuAUFZ2UZLklukyzBtPrSMvUq4wLlqqu80IUSrztJJ8oxkEjAF/AoDqm04ivrYCOxaSCclV+m2AGFnSvsc+Rw3/R1OzrvFPmLjHi1KgapknD4UQcgKqiGxis5im0/z5pSxsWbFbDyMz9+pyb9uMc8fHtkDUykoTVUYQsV0kC7qphV6KpR2s/hsn6Gtcv+uLOmmWyh4vamUiVfJNEnYRx7tuEoK9SMewm8R9MSx2r12ZTT/7mYu67l5b3zSaEZTL8sKWSNybwFhR5GTk+nqdDDdJhwDnIvQTZFva5U8Pd6YXtC+kWrCqkVjah6WVz7ouZoy9ab3Jsk4NrI0uAnjU+vQxTzT+X0LA98c+1eM4XybiMWAKGkJmj6/Ww0TDWiozGQoapmwiFHlnsONiyXDNc3rAzwNjhv9Gpezw37UejmVCG8JNK7sAbgEOVseYimroTBbSbSU9LiMBN1oKpV9sSo/hJfbLObWSzBngnhtNr6MLz70ofs8sb5cahh1+r99IkTjjMpplPu3s6f1Rx6dLvtltMbeDgpZvUqGDyPH5IJK0u8Pg2s+VJc+15UYRw72/Gt2seZC+x6Z7vH2uxdDLfJ51PeokeZN68VbIek5XkR2qMMz13WwT5NMm+8dEA7kWBPKZbOkRoS3t2to+VYEdrfRAbisfnD906EtsqIwkRzswkGPqEOCdwKONeBdtcWfNuCJCwp2IzpP2pWHr5pvzbkKCKMkeDyAqZWim721DCGm86YK4a5gCejvR6a2J8aKkny/1/1akNnMM2FXIWK4IMxGbEk6rkvSJcgBhxAzSQhIgre2BSPqw1EXd9T3pxuLuf++k3fENXe5IsW5RLRG1wvQDLwQPq6+acW52Irpu0M29NvGyVz63yzM7EGtRBZTVVLAKWFDqAWsSMi1K5qWaIeUt7PQO0fu2a3yAFP6Wuvj3G1kLv27fmLEdlutqlsBulpPSMJM3DWVxd/1IJOBAVb1jCvizveHgPdyJz7rEq09fxjhfItKheMnYH19oKdNvAKUS46GMjWuzmBTa1G5B9zFCkvYAIJDl32I3AmEdz7IHV6TCrGwru7a0a9d40/oK7ZUbOjbFfjCP2jP9+RPWt3+5T7fOTETXaT3X+8877bkpBYVt4R02oXORSE3aJ61jXcrmbpC15lVIwiDygCbpwtrXyXnX0b6+dxvTbt7jTnmJhoGs39aPve0pYrZ91ni/F4VDr/O5eV69r40F0L23Quo8xgELyNKz5rwyzHuSpUiAzuVw+94mdWH0ciAg0VqpENFWEFjerUo2DgKYqiLm1CeuGu25L4nJIq1XdNnXEKGEu1IATwQOVVZHoYT5uOlr1IFzStJKJaIbPGsfWdIetlw0YIDIWvSFSFvaAcolREukDlsAxpOR5IQ9+U/Qn3huM+GKPTE8TOKCtLeAB9Sn8TgN1aCvlOR3a0ArIsRRKkS5x/dK2jtlHrfJ7JLnhtRsb0jfZl3pAJklv6lIu3rgBVLzvosQ1HC7xi/X+mC6Cpp9XLdu7dJJov5eUySkfaIKc1ZdZiMhl+v6Nki7x4Pb6mKTeXMc7zCOs8sODnuedy2MejE3Le32DDPsdUm73prXskyG1aHz1LIMGAsWxlZnZnvc7nDQ7qnDU9susftua5fRxt6hibrt+twSglqrlSSmLJVAkXbzuPR5igbrniWdk1sdJhOQ9NM8rr8tSVvZjXF6OzJzvE2M7PrQHcmCS1F00O5wkKL/p+8NB++ePmYJN60TGTCrwmQRVP3/LuvWxv9nZRcf3LPcDv07dobueZL2ubwI+oFOCshhPFfm+mO6yT+IzDSu13p9Xzut9Vn3XYe92b8Lw507XGuebpd5n8322zmVeiGUvcznWeddUG2o0V3oYKf2aat93mu6Ke/ojPbDYzLpuTJe+5S3qVDeproEGhBb2ePrNKXMCAtqxjDlgsg4eQ6wk4WnxklDes9phfFsqn+KsOsQgEpJTuoPW7Xa4x8abD9GlrTngk6JvgzSLmplaKaJkElyzcXPJj/mtl/u8VrQsBcoSLLHB0KwB/BH4/gQEKEgCpIHWtQAImZFOklN8hLORW0xZFkpsrJ4LwvC2GmEKe1DNBYg6kkiOn2tdGIaDMVEp7qtWeiUJX/ZWcFNidL8so5pBxivykKVNmMWgkiX37R+19R4dxLgsgQXU/mUh3Bmw7XQ62uvQz7MmPbUZXKco19tsm+d6R4PimMxgOdhMbiI0bxqRb3VNo5S24KircnqOZ8BKqFB2stl1kSClmGd0MdC/8dB3+BimXX1gOvylua+fY/7xBxdVvYQeASZI+QQ0kpQSITrnp458+ERwOpV8mE+cLf0Mfa81wU6taOFO1eNiay1zQwFWOx3lgIhhCzZuthxxlbvm8lHYXGvwE7otOblaWm349n1uvcgUiYCul7rs/poJtLNc65wrXm6XVmliE3Srr9j5qTpZ9tcYotOkreY8qAbtJBOhvHvLa2pS0LWc10nCUEZhoyRefKmegqVYScM5PUSYAxsNfD1erGjbgwKB0vOE0aumvitRgTl9uR/wiTsID2JAdZVYLtVq920uA8QI0vap1avX/ygDhBhhGiEiIUQMd+S++EiGY+zmEaDVFCzqJVi7RXIsR6SXVrDPM6c/M06rm2DsHNL2441rezmBPEAScKVPVGk3ZRtmqHUPuns8WUgjFgAptRZsiysvcLuPyRl73Q/XNuukBWnGYYpbUpUKxOFUXzNdJjAZpHUbYXea7RD53uflUn35z+7qYszG3CN0aaQbrAA04alXR8n3Ium3p+hu9I/WYKLmYiurZmL9afPcHEZQbsrup3wzbUdRJvMrZmZOkvQHfh1TEl7xgWbVaN1odX+2RJadN2GjUts4NIhjHGvB8QcUGlGBPp5qZaYikiyxxeerSu4yFpd3SsjlCtWTmiPo2XeRxu2lV3Pqbcg15tVyCXFFFTMBG1tz4bRHBEnJXAcMN9KHpQ+CFmZ+nraSXuntf3G629KKaRhCQqKju0UNCLBXCSYFTArYCYSzEeC0DEmsn5Xru9G+4PseX+psBPRudoxSJjx7KZ8tIUk4SwsvtZ3WhfL5Byz3AFmdnZXn0z3+F5JZa/zueucuoa8naS343k6PKfTar8t7G3AXNOWNfTWJO1Da5MrUVszROhwMOS1boBhVQzSFuk1wKy6IzahyFtZ37Y+qLcaIZSTubYFcX9kWTuB0BwuCCBswTX3wu0PpIm6T0S3dJTLi+VsdUOEAlEPZbzCXAvmmnKBn5f/i3ooa7/2ghZJIjOQ2qjQGDDIrMSd6rnaCzwkVjYzcdxSJnz9TNkL1Lxq+i7qN9cLeFBPLsplOgojRBAQ6QFeBhphqlSIGc8O3SVl6xadatX3dJfsg+PZXKSyKUe1gCgMjblIHvgQsJdo17r3UqO9E+wYat28HTtm3V9wIWtwtEQ8PpmowXzovHhZWZJ1jVPTup4pmJJcG5DXZxLYbpzTvofDnuZdY2mBtDeBFqjbiHuf5+xOmanNGtAaHfNc9LFdRgOTk8c3SyQVCHTcl9kANX/2EvO9Y4et1hksdDeE0ljFLRWCSgjUKnJs18ogjGuuv0P+8kkmzHaZ92/BTLCnHlBN2g0lcz8HlE3WdRK620gnoTMt7TqPiYmOTerkCRJan/X5ATazx3fjhTSn5nNzrrQt7fZ+twiFYF5Ior4jgkci2B7J/RkBsxHULdkmi1DMkQ5/s/vRK1wyj6mottcFczsomMl5zddW3DXa43vWw1o/Qb+q3ywdqfXWuNdNHN6ShuJ9gqWXfOtlPs86tw7Lq9DBcGM1JKt9JkHupnxcv+H6De0eP7Q2GSeL5Q6BJLTj6h8Vz14Pkic1bosm7lM1mGkPscxFmDMh0rtmTiohQigFaq4NmFPdi93/lVArggBxxwPS3WYGuPB+uG2LPHhICfdGlrRvf/junr8jIgENRdAXwvRrriXdBxdaUG+1E3fXU6QHbBMZx67frsiyaMnEIqS7mSApkaY+67TVi2bbhNXjmBGkXZ71SydcWQ2UhKzV/oCQ10kLV5HSUOlGiRLQjOJ4o6z+9ArbWq+3Op5Jtx2WKXfZF68pJKHVSolqiSgKlWth8jtbVfhAINKLeTno7SFLKWqMi1XDbdl91slP676vWQOjFcnMoADjpaRkhzUJaUWN2QZ97W33eHvf9Z7e19/VYyp+9Vd+XhYapN1BtSDeFy+PJcLOTA051DY2bxbGdl4t2k2TtFurZg849ZSnLbWFPaOt3Jv6IyC2OAexe3yJauhyYRbJd4qGLEVLs+VITqFGV8PhqLxMrYSZhM4k7trSrpPQla3vTdI5YVS6jRnt1eOyYQuXri8ujk5koBf3+Kc/+2mptW6K/mQXF0KwIBLCrkn6jCLts+q9OQENB3G3f8+sGGK/oDfi6lrzAtKu48NGnF2admOG9j60+63DOFzIWtd19njIZw3RcP22veZp6Obrz5aiuO5lPnc94wKpMKjRfeig6xx6v05iae8lE/0g0SRRJAw9WWF8D4XMv1VJyHk9sAwDJUVq9f+atJsPEAzFCr0ojHleL3sARBFRJaChRvdCQFJ/Pt6qnZs2p8/5y01WXwdbj35kSXuvEEJAI5I1aeuhfGkLu03iG1E6QVnmSY2ttmQGKDcLldxBHdNCSNJOfJjcOrTxNtlZ7qSvJ1nbHewhEo1yAOwhBA2SpGGReqDFuDEBlgIII+pCMGUswDqWPTD62AuylBdO0m5tu4ZLwGuocmio61MNEC0ze76EdJmT/5n1WvW2F7iuz8AEGIEi7aqVk2WYaaY/h1hJZVt+taY9S4Cz++K6j3phskM9hrVgpkJh5lrQVKEwBnGrk3ZFHzfeH0Z7Xec0M1Nr6Jj2TgJK3xtmkcBQQHMuZKEE9TCkpchZWvoqwAK+CJw6hmZL7pdLBOrpnmwapalE+vuF7KJ5D0zUo3QSOvMhbUbu7y2jgwLp5BNb2Y3rdRvpJHSmd1bXFj7H2Izf02Eb9WxPkF76YW/1vg6ryVq/WOT9xWphd4u6gHkB85HcapK+IyJ2k58X0uNvXhC7ymdlrzdj2k1ZxTXnLxVVkgiGoa8JpIm6OSS2kJaLbM+6LGSt632rfrNEZLmMd1I4aUs7DC7nggn7UYbE0m4m83ON1W5getK5lN6DvBdZ181M8OvKe9D3NnXKyVVOVKcCiALtQk784Mfx36vGYDZ0Nzbvsm+6i7YHo8o71kSS9JRSIghk3zR3e4IVen3U+rRCYsDKicrih6xMBEGPVClCJlxoKUJeD+VWu8+Vg2RQlwMoh4hKiaC82BKlvmNm4a2WEJoYqY/jRHRCOBf4WEMrkvf1hLpc4iAcL5BuYGvUfkkIxpFl3B4UsIsalyKMiGrGb5YDIpWxbFKk22/2bSlwCTZtmUPtrRBLc03XJzAyqwsgqpSJGsairoaIdplzucb3IxxAx/e1LawLDaYnegwFsSfnVggTaiqYKkGjmRxjTLJxQq4g+bpdCs0W4EzEQo4ax/qJ0MLfHEmlgmEIZyIS8hlvhvImhiL2OCEICCplee9LQYq0Y+wPYzFNkQHj5HacvbZOzdjfM+5Z32FMGpGQdcwbAbQaEO1bIZiJKAVJ7GE1K3fEIqjXG4yNLS3kaSmImxkRW94RQKNFWFMV3wAqJSrWIFhiF4eL1IBV/yxEUK0Y5k61HUNZpPvbMZOsmzXaH0JWLTmYJJ7dnPt1Ekgn0bHHufmhCa0hXAjdx/SpjwtYda4D9zqm1/ZmvQHVWkopbZOiVLKvLp7rSAjp0iokKa8LZVFXn5eFEnNK8npXA1UF1JjnU3lsSOq0Z8kqvSJw7Os5No/nSOCOZ4fEmAHtCnpX34MgyJTrTKOD/l1zOwxk/aZJ2l33V6/5zmdxkd/sZT7POvc88j64MvD3ci69r59TVznJQcJsg7nV63uJIXmcWPNg3K5QIEqypHPLOKwRBEwE1nUKkLXatyq1apvLeI6rotEEkx8IiJMx63sfX+8gQCjSFbvKH7YHwWsCuHETPGk9HLqnPlk7iRoARtbSvsc+R/X2hTCSAyvUgrwi7r/fBF/bKLeNKBbupaRhWdtNqVrfNK0qNogflQCaUeq+NjC8zDMmeHurF4vlxrxlJVzZiqxFamK9gE0Yi1ooEJVyMk7LAUQRZdSiawxgM+6rV8RKC9LXoG/Z4133TqBi2svxv1G1hGioEnnqIX1ISA8C7TKXKgND9w9Zp9J2dlZw3cR/P/fi7vtoC91x+EZS3YCJihGPpI6LlKugdhk05qZ55H22DXPm1kTWOK6QLP4uIbHfEJFIwl0WQunOrTxponooScpCU34eSaHXrkvsSiIUn79f7ezw2QLtQtXQs8erMRSqJG2zQioNZqKImbVT7IhKzASwQwhmVJuXIpl+/DNf62uzO8Fc0M3/AeV5U0nGdrlErQUNx9TR9t2iwJ7r9Ksh0pnjNWrIhJz6+NR26T3UVnaz1Jt2jd8LSQq1e7w5v3SdLdr1gRYe9Qkahhi6jJvV6b7bz6gNcy78ymcvblNKu+aYXtf3lhJZWkjSXgduAD4E/Lf6jab6XG9jgdbRr3k6VAzpoW2doEl7m7VdDP650mPRLD8aQexpuBvuePYsBX3WNRpI9Zs+wc6ZYq/ZeqZwkdzF7k+383mnnC4N5PXrxdvSJeZpX5sqSSUb11gb5JhztUtXhxlqm8w2JG7ACBU+Ka+VHPCyTXJU6CRtAmC6DNuNGdqQIxHJPc0bIv4DoglUyrEH17wxiwltgSsFcn+iAkfsBa9+Ihyxt/ROGyvLh2IIpe1G1tK+5b6NvX0hRcbV9tYtMtEAwG/vg9cG8Li9k89TnD2DEGliXynJmAghEJWgLUZQJ24z4bJU6q3en8TxQBsa8m7gSrYiSGq0a/IZIrOmPmh0NYoEolxKYlqqJYhCtaCLhMCK5bnOZS16tqZaY0mPjEsQbUTygURdp1oJEaav07ZIsA5psVhujfZO/Wy1H84b/uq0rs5r16hMa4wiaV4JAlWnPf6ScQL3gjhPEgu2GHHvZJVZhfzZoZGeZqSIeZgo6ZRyglJAVCkp75qAoBlRr5UYs5QqzsW0XxKrBdf10BUnTNjJm7K+25c2KdcLIRK32nlkCE2z1SLadYrg3lnKQkiCphpQFoJqj41525te2efWd0YUh4PI/+PmNgVRRS6bcjiUqRAZLsxJ6TeT9BQOrrluIYJJQySImUVJMrnU95dPdDWZFCRWdoF0jT+EdiJkkvauE2C5pGHtPVdBzn3mZ0tMJuT8GbV1uRhnre2vfuNpNILkJGbtaHPNMX9nMUQiub6h2v8l8B71+bXAR4FjtAgUJF4Q5u/Y836nkm+9wrU26JGYB6kVpPuvZaSt6r1dcCvoO/U/NjyINGkvWky73jcT0QGp8Afd/iksS3uX8mev87nrXDoBbscQA+OGZF1fLT+6MtHncS80tFJinBxi2jHmswaxDNwimYwX1ECIZX9dx3xVGRbqBgcS1k2hf5q9XqEmajO8VQjF5SplFoBJlWwPknYKpagQ42Uji3KQPNTmYjVgreLIWtqF6CLmPD5WSZT6JZDbG62EA7/YlL4h3SzsLS2pGpqoahCXfNNiXUvAmDrUtaBnLYrLjXnTgqXWKkOyWG0lIe0BMhndbkjSLpADPwqRrjPqN2WSvWwFxHKIuwtmvWzZnyVOallfMjKry5j2ssyUHyWJajaj4tlF+wLeS412E7ZXgaueqwBqY7Ue++k4uhUm4RtTSsRsRakVXKgL64ppt5PVdBLgbAHcJMCZMe19ngBFKKRLvCbr2qtmQcW1a0t7MyJoRQTNkGYk2oTvCYazmGaGmtGembqCW7kzsDVEQEvluphHXo95YG6+xdy6CrM1mG/KahJ1IdRW96n7Vg3VNd7e6hUeQSkUUC0nXjFVKIdRag4CId3qh9XgXpE1UBsR1BRVih/QQMYz2qR9mWhLQifak9Bpa57tHt/puUu3UiRvmqxaK8x3Lcs4fsBWUPYDer7uJqZdv1ezxvk47aQdepMLhfWKgCutY65QW9P1vtN8VkcqFNr6tcT1zoS55sGQq2Hoc4vkWpleiA8iZSBzXC5VQQ99rH6zDGRdV1dMu90/rVTq9d70Mp+nrolxYi17mBVTFmuDq51aaVKzzjVoOaRTm1DtqJAt+/W9TeYFNn+omeQ60THfVawEhLFgH8BkFbZpMhELkOlJKBek+xbLsqqEs6jIZOGrkMn25DFqTgwCRK0MExVJ3Ccr8ppMVGCinOyPl6UsPcDY/ZEl7T1BkHZ11xf8qD3Txz1RJSAQIr01z2NuISmVY5P2yHCPF4KmUCXSjO+mFsIMslOlQyKQLsdNakE3xvXDGC7f6v3dheBB8zutZLALgHKJUphOUqPzTgZieYu6i/gvFhPW9aPjulgCef+Uy2gUQFQrIQJV6k51+gGMxDRCtNdt7TGm3nW0tqAua3HPOjDUlnaSRFS6ZFdM1ollYBM6g6vZbnPcmrDvn/mxaT3TTR3YHB9aYS7NSBKW32+Cb9yEuGWzDF8JIwLFKBqRiEsYavTj2esGWWPZTkQXkCymWd/pq2uaOlXsUhtJ8l4XgvlWyG0T8IdV8IeFFg0h29tS26ggLnJZSKZ4uaNXh1pI2hpdg0orlFZVm+gU1dJur1/6IWuEiZuf+fCWS+112vX3ltoE0lZ2s7zWraST0BnFSQC3pd10Y07/kKOROgndWK3d0r7Evri2pgUPsol7p7CoTqRuOe07xTrmZCw5gPT1NOV5kCEweo03yetSlPJZigxNGF3z2aCfqzgBHenr8CBJyKBLQZ8Fl+FF39++Vr9ZAsx7a15fXQfdBVP+ansW9bYPneh037V36nKTEWuSXiVdPm4YWMz9v4Y7CfFAnoPUA58YpWgIRJCQ9gqJckMEQZpFBiBWjcmHVsc85TWwXXAsfbQi9QCXpOdokCiiBEi3+GqJYKwsvc40UZ+sSllgsiKNXZMV6ak6XknnMOszRpa0r95l/+4PTq1W6m5GAg5U03MAnL43HLxH+nv2JO20YqopLDDqGVZA+lgnJbQayCRNgWqPi6C6Freea9Y6jjUFHvMZexjpBqZ/s4RgPTJ7KsgJR7Qg0kQP4tJha4xrERN30fuCbp7D3GpklUKT7VvCD9mrVzNSoQ1Isq5K94lWFC/o20Q6jMDUvC8lc3zW4u5yE/zh1Rt6/AUF8+KEKqZdC+slYLbZdiFN4q4/MkulgFWvlvb7lRrXxofTJJb2LLfMvsEMg9GJJ2+RoTDi1y34yr2I27fIBCxCEAhBFIo2AUYnBzQxLKESEkuIeY2zxsmg2iNCoaylIk4q1gJ2hC2+sKbMHeun+Bwtfh8JlQZExJe/l0ZdduUSx/kSIYSh4DAW+ok6BCXlHg9QhQpR8jjZfRKDLf+yNNgSutpZaEHNMWNVDEt7n7piW9k1cX8QGTNsJqGzvZVMImsTS9kdR1vN9+ab8iTjZRnX4Vo4euynS+g2ycBi0P37LzWfmwqKZVeHod2L7nHACWr/PcAR0GZl12TO9XtmZmu7D0tZ4831QH9fSxUuz6FBw/Y81NdjC4khAxZf7zSyZLi+Vr9ZBrLucSqJIu19zPQE+f/Z+/NoW66zsBf9zapa3d779I2OjmS5lXtsGQjgR5PLTUJC6EIw2L44F+LLeHmEdBcuATJC7oN7MwJ+CQ4JBHMvDmBbWBZxh+zIxhYG28I2tmWrty2rs3T6fjerq6r5vT++OWfNqlVr77XP2UfS83jfGHtXrbWqme3XN1u8bzv4fJ6nWc6s0L7ls1rO/T41PH00ve3ZXinfXCNXrT3RQNfGqZDA11eKBMPENNriZRyv1B76ZNsRQrHbJPw7DZGSJLS9KFXZkCjt2Yvf88Z9n2AHGTLoIIMOZpBiBh1MP8V0U0wnxWQJJtXE5CYxl5f8ekH4uhXay3I7+RalLr36o681/IIVeO6hWeyxCHihHXQBgNZsL717vEJVGka/aWaZnSfsLHNlGzpmfJra5VOoMOoXiQEOG81XtOGHagrSSyrC5jwK0tI6y3NE4ADk8rK5z/M0aEvkcnlIbQ4jW5TqGYFuYpsYJAGbl+470czxwkyN9q1KwLTBZsR9xm1LYGXFF0xbrHszn0U0yVQWzckuNAlbJKFbJ8TE9WsBNphl3uJ2t0HbbwP3rB3gnzeFWihMyH4lmgk0btyDZ2pc61SErlsT/hLvpuvbezWIaRsj58/b3Bfn5T64KiDVEJXuaK1gRThrSi51MuhkpBO4UwiuZqEP2xBmd+1qpgG8etDKPIsTVIaoxt2BSaBT2JC4C5jrlfJMgE1zW4wKtSQ0N2jPCe07uDnbrOwWtbJfhwoD3sre5h4/bj6QlqY0PQnCRJbq19vPKkt73J/L4Cs3EwaangLzvM0MsLxruXatF4o2wwOLtq159Ar5a6l3u/kHs4pUX6c9bmvcv50A/5imUr55fjXA80HNBL1nqbzqPG2PXeM3423alBqLVL+52jCPNYg9uebxn82cC23HNtgOPp/3PB/TvtkYtq0ZT7P8+YQqnHNAnc+6GjS9CbU2Rh/imPanJHt8oxGhLaVVmQXF15kxZDRi2l1JNBItj0YHWJtGCCTq2NNFGBsDHeY3t0hX13aBjrkYrRiEweU3SlxCOlPVa3+a4OtWaN9YPbn4xfGCimMwfNmCGmGvH7fU6hc2otqmEmyLynXSOorQLJu12bmHHldWJ9Mv3KYmfsMdmxbkPirTnfUhz7lFkshdNNEldcgpJWoC+5w+LArzLNBtDNx2YFNGdlIJ7UGp0QVxQjvAWYRr3IdUGoL7FbbNQ6wBjpv5177tFYvjwHn9nIq6xwNVMrqycU97JmHvojZP2RAzMcaYGauE/2sy4pfDnC4EFiVCftF7rsyFwoT3vfhQ4PFFqMJXokc168O2HXcC5j3bx7THbWq69112jodFWyZoJn6ifVRaDo+ApMMwzRhQ8GoqIik2qtu+IHzHq1+5s03fAkIOB/0AKDOXYEnj/K0JpHnZnkH56WJOtoIa1xo1Mi+g7zBWzJ13I/f4+J4r6F8JITmhF9wFFdpvpMILseKzKcjGzWld42HBNRo6ttDLtCrItGzvxw5MXs4meLFxre/vN37bK2rXNC2ZvmnbaV2gXVIXxj2Nv0S7ld02pjnGxesozt6qX4vCvOckPPWJ6OI8P9L4a7rHx3R+qxrtV7X6zQ5Ac015qyrMn1cfqjJDo7ZYo4vi8zba58+H6Pi10uE572973pQq1OPp9HxoPt9Xh4krSFzdNjXxuhcKisAfFr5NJi6LRmWQ9Me9iXprEk3EZSb53GmI9zMCMrXq/Ywm2jvoFvvY1O+Jj08nfN0K7duCJpXyx0tuWRZlyz2bTF+86EsbzGG6qI3Gt3sllEjIVdeLHjnPyt48blqzdn4La00NwmhEsM+7370dN5GqDN0hEc6EewWbRDHtRmO/O87STnRfIjtD1GPi14ypuiKk1janUwsdF8fulS49sLlF3NytAwdMNUZXWqO9jQHypbzm9WshjXy8OGKYEkoSAtDrwDCK9YyEF4m+BiUsXme+KAPXxsAsUWWPb/vbMfAbI/aqsQJH9laXvO565NkHK35ftP74QOpt9gqjy917CzeZ2SnzTLYXH030ebOkPDtOdFoUQTIp6BlYSVMOTqa8bg2enxjnqdHen2caSNRQT9wnAiuTAuMWvHHceprbyBJST0L3jOvmDOLwR1GhveeF9sgcnKVVQtWZ+7bfBOvGNFjZpW5pn0lCZ+p0sC3/xUJN8nTd16P3Qnvt5u13qCZQRNshFga2gnm4s1Vobxy30774uO6OF6Pvmzh33tFbOWPr+pUK7m0QYmf9++Xq760aeaAuY5ymbmlf1Ktu3vzOqzH+VOKNefPtY9qbvGhT6TBP2b6T7Ws7xtnjrzSm3RvM/LOuNk33sFl7fcm9TbPj71Q7WkLBwsdJifR01ksnvvRxHjCJQYis7KDIoN+tSgc/E6zsTfDkHYHCIqmWrR6i4y3myktpXy34uhXa06yvTKIVrSVeWGRatgs3PrAuxtYCnHfsb9liZYDFZjAS2kEXA920xllvlbCmDWKkv2jmzDZoat89oToPXMMscTIiXEOVHFJyi3S80K6tsiksu7q+bVbVnYQu82Ogt7XBajsz+lBGlnanRbSdRON80HFKgD3u8oRZwX07ME8jH2frjOHcuYuLPbhtUOKEClmUl2BXR0NDIurQxiwJ9ezxbQxcE+YpobzQXnv+1SCUsUt8sLQLHFvTd+5P4Ib9FfFyt02ossf7PmyVBPFqgH+2Xwttlvan0j0e3DKKqilozLCha+CIZBwuqsuDi/w2J/fM2Ys72PDNIU4OFDdRXYK1NEYY88RgSksR4Qx/t7gPzwRCX4N5HjdjqyaUGAyaiDOfkw7/MoRcX+ottrJ7xfFXqCztsXt8DJt6uDQ5rLa+jq0mE+omVVK6Ge+B7eUiaMONTffirZSaBrhw7mLt+7mKQX/coo3NRIrx/R7fXnTHmmVZ6ufxvX7sm3i/rU+LQNu4xIrROBGdh6uNY5tWdj9+taSzVOsULk9Bv2PVb64Q5s1zswqQB9/V2ENuO/zXdvB5W9u8GS1O1LbVHpnraEil/I6t2k8VzGuX96TbTnb8nWpM/A6ZqAwjprK065jrKhBvaTdRu3b3YL2oHhQbRBcv7LWz0IzZ9x9LCUarialCElRZaMKtT8e+bIOvW6H9wDUvUoI8yjUhwkauZZ4aI+5rDQP1hSXAxQkcTlVwm+cS2OQWmjNbSuR67L7LEmex1IumqDCcua+awk9MxNpq1l6JJn5eltQL1JPQQeXlfxBCBnlrLTZqlABFalgqpD424oX+BRo1B9qYA88UeSTeeOVisNmFLklbbZyy1JWJEC4IHJBK2+6JeHzcCZiXYOw97/rQlT/cUmW7NMCgq+7xzb0CYY/4n0ZUpX+ajGlb3+cpcfpsUvJt+z1qBY1ntw2B3b3giQly0MBQamvIuGMzUzs8Ne7x857bVPQRfZ7ZC/6409TGNkIm3D8ZW+h0yYGpyWAc0emYKdhGe95xyw6s822Ab1/lRS66Bkalcnhes5YZUlu2xt2q4PfUtHdhiCWRZuNGuJJvDa1bZpR2+vtpuXcbUBPWo/NTrgnPpRLW08iC2SYoxN2Kj+FDW18n1mX5NTAu69f7Bu4AxBY8D5sJ7MbAn9z6odo18+JZt9PCGgMe3bjm3rFKY6iiv+b9UAmZTbw/D+eLiNLLwmpYWWlDSI2HeePSzNHxVGwn3/dmPPsQnYuDxDHsi9P6NtrYzAx+tejIZjDvnXHOlHk86Vz3eDZv+6L4fLO2geKCHospqueNaVNob1tvV3Me5r3D44+nKgyv9rAoHJKiDO7j3mU/cTHfEha9F+A15xNLXRgW9YUQhx4/HRDR8uijtitJwZiQYLMHTHxiPfPMEdjh61hoP33sbrUWjrT+MrmtArtiiDE01An2+REcWonK3dA4RtfOY2aiOt/hda6EmHc1nuCRhgShto2ItWmkvXvSdpFm3J62LKlnUaE9KAuczskA+w2cDvJOifSS2ruKJKVf6jf17KqyJWHbDOb1H3Y45ieey7yErgrt1niklAYX2DNWOBC9rOkyt93+zrPGzBB3N/7/yz9+3eUjklhy6kSW9n4CI/c2L6Q7Dsaj8piBa5Yd24yB84wO1Pu4TDvxDxainUD0frF7biz2sHlyFZ57EHLtYzNOu5C6Oyg8dVr5tjUd14COoc0j46oSHImIoJ+j3EK/o7Xbuyq0i1RrNtDubQhH/+s/ed3OtnsTkIAIpda/QoTepAjaSwOQGoy11Zg7BPpMIvJbgp+HAk3O1ty4NaHdT57/cfs9LKkL6/74EPAsdF95K3ubMrCp4JuL89twhqD8QM9Z2otot2zXi65xW/P9U1qS0M15hv/+J3/6dbXPM6EA21xb0TKeEcZHwPWopb32u0Qx7o13CZXCpJmDpxnGACCFVePJsFDDybCAjQLGxXzPxwhSdrg6zAIgtIcMnnG/73bHpmv8ZrR+EaXEU9U/D1r9p4S8RCbuWNogsLWVFG2et1raZeu1uR183ra/4zU4L3u8uOowktvW/sX71K/lpy5+fGvwSpO5ifZs5EE8LZ1C7DJb2bwtnkxbBkkxx5AY5wHk+GGgztgBbKzDF87Do2dmERBPY0WVGFd7xUSJ1mDHhTQlho5xclWLwP50K+K/boV2QLPhjkslGjGDHkOMmZu1Ts5P4dCgpaZak3Fh9rO/pkSTs0Ul30jduXO7L6RKcmWMWt1hVjPbRhRaS8IsgDQ9xK6J8d95qoQrIVbbteEwVcy7LSzi6k4FJJgkUUy760M4Xt6KnyfMeqLSJjxt601zOS+BLKmNk+0kWrEPOIeOhxGp1asNwvvlZMqPjrHQfsUCol/X/hyqWNVOUnFdSymsV3Z9f4sNpZolPGKMCtwz8zNHYTFvHpeoEiP5d+44sfTcaIwLtA4ZPDmGFwxUc+zHxBFAI8JUoBetXS88zKuhfLXxup+dOKbd0F6y5qqBW09hWYk7TkGWOgiwlhlNZEOMn2RbOOqphhpBj76bAoOigE7i1q3BZIbEljofEsWzX431u1PQhgc8s9fPZq/vGrVOx/dHx225kYsrEUgluHshKa7PblAre5TDVY9sx/LkEVfjOHWx+71E4/gXoeeb9WnO5b6mcRu0kYU2vH/Z8fsLtG8DFdovMUv/pXFfzHePcM4mzMfnADJ1vJc3nPg/z5f5o5W51WFSnvpEbU0Luz8/Axyhbllv1qifB5tVv3laSoyVqkyRYYmMSpgUmHFBMi4wkxJT2mDp3WyOe8zWad/p9jfxMFS8kBdqa3H1TphlUmCHTmE0KrAjXXMytTUvsdgjZtFM9DsFm73HG0Rm1og3Jo0LxPcv9DNHJuW2FOK157pG1GhYWTpPTEOB6nD7JsqybypznBjg0XPwgFsVtxyHh89Ez5arN5gLQsBvvikFGrIMjDE65gZGZva++Ph0wde30D5xlnYfQCe0uL41vveWuNwqZjjcjTgEqd1WO86D3NaCnQQqy3thEVzsyhbP2UxovVzNYFy+KyZUoEL5PupCqBFNJnfQwBBhLMDEYjv1fThJEgalBMu6F94NtHMrC0KbldZbGtsQ7bagkijq309Qd3hTuchLP8U6Xm8VdZcDp9yQy6/Rvhk0Y5W3TyAbjKnvpxdQ45JvywlM8+oaW9nXRQgeIjAnpr1xbEIbczrgypnTLaEprHusfVbfLNfv0eO4mLl1zGzOie1krb0SaGNa4tqy8TjHyp0m49181k40LEQXxS5na1B2dWdOl4A8D4JwXX56JtYwV6jNp/uQA72yCAouA1qjtWiWY3wGx7PPwwM+IVungbWM+85b2muP2n7vPK0JVnaphCOfhC62sre5x3t801YCszpv9jNqxEau3kTdBIaN6y4zw3Hb1T7+08Nm+HEezoxz1szs5QWaKC1/Hn2vouX1LsXXy+z1zXePqBLUzhPcJS+V/5pYx4ep4MSwqD5PSpiWSD6/I7GlPe5TfNxpmBfPfg6NZ4fKwm4a55tB2zjtRPWb7YIU1s1HGebCOoWKmZaYSUEyKSgL25o9Pm7/Eu2K653ykIufG2/pyjt11guR0mLGhVrXJyXi1964RKYWM8kxkyLs8TgMoDV7/FXG4/NotKUle7wIJrfal0lZ31tBMaZ7a9uCe9Th2t4vKhlGnCI1hGsa6jHtxiD3NSp3ffFkA5k8TVQx5lP8WhLUu7LjhXYV2H1MO+CUEtUjnm74uhXa9x58vi7gaVkX2JvuI/57oqMAFxwq3dOrgkS3A/41JZCmta+8S4m4rPQFVZIrf9GihH0zax9sjjRnCHrU/XOopT1okaVaLAOEXajm2RYWSeI9aSjShF4t2YSpC+5bgK8HPg/ahL4mom2eb/7CtpsrTl06CdZExLyXIe6F56RSbmwnm+w8mMe8zXOj++B771gcB7b10zPjUQgH/bTK/OkJlhfcGxbIIfV6vVsJ7F5/1WTEPfGPmxeXIdoR8FKCSIQLBJ4cwtFuJSGMC9fvSmIrZFaxFjNc8/bflcI8piUux+PB0MLAXE1ouMWHdViWlKmyVGcznEDYjH+XbY3Rre+548rbuyDMtNMN/hDIcoFeVq31NMGU7dbAZ6w3QbOWF1QJ2bzyLt7MHaPWFg+X6UYOkTu8VFb2ErgXuD+6LqWehC7GKx7fbLn3apsmaujUlbZzoRtz+3QZkxfzpjn17PGbZVj3yugPve+O2u/N8nabNU/dndUVWEY5MiqQiYslb+Qi8TgiFtqb/EBbyTdQod3PQWh/fBTRUre51b0/iazs/nxq9S+3mGmpglbL2MxLwHo1wfddqAvwZ6h4ImgYNGDhGu1XrfrNAiClwKTQsXcCn7i5kWmJjEvM1GJydbvuzSG+89bnoh5y28HnbWMSV62pxaEXbj3lVkt5+fU2UuFd/NrLVUEhIjVaOi+b/9WEJm2H2UR7wcvS9U+mKrRLvLe84O6UYbUynYs0Ij4S0fUJSFcxsUXHKMPFfPsa7f4eA/KKI/Vn33SNf2AdwTwdEMhBxI9MBEg1QarzIkhxY94isD/dNP3rVmifjC7CQ6frArvV1VITCNtc4xG4OIZDSRTruwUH1rbzBFen3VRfG3dpV38T8e45daYhIPmYh2pYmQ1XnqimjTiBEvJQj1Q8gZKwYPYDF128i02rhT0Gik5KN8IXvr2bLTaxojE5I413Y1woks0rjeE8kjijuFiQcGwKEv4h3bSRsC/FTvW382i5NyPMJKW5rHJvLXMM9QRjMTzvxhsWf3ibdF/YxouNSyJSv8cPR3OJ+8QdMWzH0u6PS2hiJP/snUaU4l0EvLAecAJwfAjP2qPX9VEtNVG/gVJkxqPAE/h5bd0pK/IMc05dIKjJVy33XQ1iExJ4ujUhboEIwHRKuUuvm2Soyx4eRUoVM7sN4v2i7azzKwQBF9deb1xhhcxS0QRDqLqQlbYhXGxBL54uiNsUb+axj9U3s8SnYzSU6wrdyEG3Xmxl9wL7L7vffxd4kLqVvYkvvCvrZlnV57ZRpCpt10+rhXgFczWvDVNmc05sBgZ47gtumKHvi8TvSynKsA8LTbzrXYFHOTJWl2CJKjz4cm/Xokln4+c3+erm0LR5HdWWjBXVcpbiBHcnwD94Ev7oi/DASRUscvd9w5gSy75NZfVTwTj7ULgmb3QGFwrHrHJ+u4x0vJbnjfdV6WNhIZcw9jVr9ESFQZOXmNxic0vfCX6m5Q/q67Ot7fP6sCg+n+cw48u9QeSN4tzGTa5COU2B1vVPClHh1/350mpQDy97SuZjzrPjRLPBZd8KJi/dHJaIt7jHHizxfruSGPe4UTlK84yP/9e49to4JdH5cw/C9x3WL157LTznUPTMp5Eu+rXUeL+UAt0k8HI9oIO5olLaVxO+boX20cY5+G8n4OFIcIeKYffgmXeoJ6k6X8DuQeUuWDSxh2CtJieaWGFshYm0lCeJ4iWAKnFDF3U7QTWtW7nRtX0HusBqSFMWRzJtRDomUPuJY7eklhjokLhYOCtIVtVnVKE9UeaWyFJiKov9TDtKjT/ysUdsuL8IGRkfX9wyJlV5hnq/t7W5VKKo3+iNzZHQLoDtpWAtY3TsDzplhoYP1OP/dwIMTrPZ0uSXvPzGxfo5j1n3Qrt/EcCyW42FDZ2uhK7ofipLe+sabRmAeRaH2M3uqhDLYGWnkTle4NgluE5FAVlJldj5F7u/KdAVqbX/qa6xGz+3LTM1VDHAtQzyVjQZjyP0seXtShsUKybCfI1yig50jGEjS7CFxpIE3BSGfvE2vPIbbrzy9i4K0vQKcB+CV0parW2nkO2UarGJ5T9pPOsZBxKdTMvIZcbUN28naaln7o/b612BbsMCQmx7M4/0R6hnj29mrPY0pemZ0zyfbyq2LqbdOdi20PbtTFob6RDmx7S30QX/3UtefmMNL8ZK+Xl4MVhPvcu5F1Kc5c1OLExyzLQI+97nDzmAU7T7fkT9sY13+XOfx8RD7CYOVLi2sFVI0ldOwc3H4IES3vGkfo6qeJiyEg5jiC3tV4UuNMBb4JpGDEG9Dw8ya2FfNOFs2zVe+THTx6sgHIgVVb55Lwgn4MmXT8Ft9yFfPa2CvBNmrRV6NlLWtfRh0/W5SQcWxefz5jpWHAX3cUFzJomWeSbXJHR86SS8627kS6e0v7lbl6Ump26ztM/dazvs2t18mv8cC+0+O76xmjMFq+0X78nypVPwrrtVKTZxQn0hTnG2TWt7033c41CnqB5hSFEX8rFbDNI8ArzYCerX7tfjjHfX00AV23gV0DEyWZTc0Ghi5Eg6vpo4Z7vwdSu0BwjxFFIx7TVLu1vU8aIS4OIU9i9F8ef+d0XqE1HCt2qFVYF1UUvhGjB0yXYAfWcWWdr9MSNol6cSCe0ic93o2gTWZgbr7RA2T5ya8eze4rmfFgKFCqdHDBwXEGdp9zAEbJaAJUo+19JA/9ElRAnJatpc6UYan2TmWNwXrtu76Ui03OQEWmmWfMMgVjgvKmwuuXu8UuNya7R7aJv7Zu6CHWNg8jKq6+Le2Hei38glEHMcRBsDt049q3q9WkA7xC6v/s/LC1eSVHFT8Pu/6XkzKeG8wPW73L7MkEnVhlDhQWaF5JkEOLID89HS7Ph5/jihEtChGkc/lTkoM5yXmHFejykdLZ69eX7DGqdRORcZ5UwyQx9V4PkM3eL+hUR0ws4N1A5C0/gaxmhaYJ0JOKzvRFdzp7Tk0SQ9k4h8DdpCwUCtM4Oo7GN87CQt2bKaTNgirxY1vlLFspfA32xc971UVvaYQYlxyhKNahPNMa8hq2ptAkq4e1mlTA8KCc8fNB9yeeBjZecp3Jvu1G203uOcuUKdSN26FtPPsbo7a2ZpdRc2hcWKsI5mQd/rnneJetc3ozFxSFSz/QaUbjZDEr/QiHO96+SMl2NbktqMpzYRXdSc2jloRZ2QnJd2RdJm0LYOmol0d4yut0FMA/28PHQKbn4S7pnCu56Ax88EDzQpRZOvyiwtjw0mo+ZrdrjtbXzHhLrQPsYJtYX7s64CzFdPI05ZJH/0JDxyuqa0T0rLVKT2rNZQpx3qSxu0zXlcHaaHWx9e0VA64b2wyFfPwB95ZdgxVYYFhYRsQ2iv4/PgPu7ybpFphagxyuN5nts6YSWE/PrYd2/sHEWj6Tu4Y/GOlwchl5ff50WJdGDseTwTGQL//+7xTx10+84/85VHKmQFkZt8JYzMZI0HODeEfVkV4xcl4pmKEq4NK6xbWHV/6yJsWOUJhjhCWwikOswClTYqS4MioJR6FmjfhnkCewy1hAnN4xarq0ag/VCgLt8ZlQW1mRUdgd2o0Iq1ztKui1utpak2yhh1GxepEbjwfhEXW9XOcATB3WkUzbSEhrUT2q3Q24a2Helcw6xDWFVMe4LkJZeA/e76qkb7lVna51mi52WPf+Kx49t/iUQnhW2p2eY45o08XGt9HDiqhInHI45pb/ajCfMYWB+fNqSdebxiRDnXyr4GK8BSB4xBuh0Y27pMIsIEoWvrazgQU6JrW45XAvOeFVvxmsodgNwKydRlBZ5YZKrxfMGVLsS+2csX3H2eg5DvwLWzyJn2Em1fN8Xk4gRhueyxeeSxY5fXxssBcWvbVgK7CDAtKbqmLki6BdErSsdoVWMRC+/PKIgb5ed+YqGTtbjHGA0B2Kw8x4KdtFSW9hJnCAJe4n5/JfDvgJtQhVRm9K9NAbjM5rlcWtsVE7pBJ3hJMLnyJHtt7y/Zvnv8E48dr+FG7wI8N37fivImeURDfQLeKFmV5A7XFyWI8ijLVImuakK7X7dWsIVaZq0TAgQV0uZmFbeubG2MZ63AK66pd/amI411SOs68u7KbbzN1dhbMb2xjeNJNBFdkx/yivrNYB7d80qZzay7OwaxhcbPyxdO6nsSR9e/fC5oLQuEnlXvQd/meC96Zbv32oincKs+LIrP5z1vQj2mPVTv8HTb9U/uOVV/3r0qtHuPQUHIpa4AaCutu1lfrhSa2wAqnj5F9+iIio/2fUOAe+v9m1GGeeXFdhoS8T7i5B7xMozRNnnrfx0xOwE3caukiwrtflLidjwthLHqmNQaUSLdeshhaq6slPbVhK9boX3X3uvhm3bBcw7WrQseC0O1sP1vMTN/aQz7OxUT46yuE1SwGIp62W0IKqgLDC2MRBi5a8YGddPJKgtGmHCTOC2YEsIlqSzSM8l3jNm0ZMiiiWqa0BbPLsxmSTXuYTGROmBcAptCsJ003DsGJFPLTK2tUh1rDSga7loN1z7/vSnU5anN2t5W5mrbiLaNSXMIyybO0m7cWHVBKDknUdw/sSeCXFaN9jbwz4jl6rhvn/rE5xfr4zyTbSENod29cRcw1qCDEL7s9obTvYZ155U7tBzboKmQgIq5bZaPaZ5fNlhbc8es6rOP4frdoUGynGmyGuq0JraKeIi18m1M5dWEOA4PGuMoQhkpumRawMSGhEOBsb+chDUeYubIg8sZwtgyHWRkBtJehnHush61egFet/JiA/Vnf/H57bfxMkG8i6X/7H/ILdYl2Kut7wz6rkSSv6Ot9NszEgIXbCGLnLmTaIN2kyre4gqsJLlULvFldP4Iygj+Miq4J6iw7pPR+WbER8/Ixl2o770Go+iPfq333JNTQuLJ6Ob6A7eAeYJF7Ha7FX70nz/9ic/XPsdCeysD6QUxHz/uaeiXTsItdyNfOlmFxJSOhpaWDSqhZz8Nod1KSGbnPXOSUYEZ55hJycRKuHee4B4LDQjKh3l43VF4nuMwbCWItD2rWTXlaoPnh5q80ar7/RARrTcRzV/g2W10z++4p8SbIPYqdR2UV2rSMLEOL7/wQKD3E5xyphFBF4erDKiHVtBybINF8bmnGc3vxlQKD08HrXViozMwiIC8vK4skpcfrvMzrv3d6FlNz4GrCbW9HLFoU6q10UPDcL0nisTHlx+uj/Mrr6nvPcvsAM5tTMt109KV8tAVa1Gc1MFU7vH+2uYmWDGKi5odnfeuywSx4nDb/LC/uJpIky7LtARXJKzr+hAbZOImPxNo+bwyok8JiAh/8Ad/wAc/+EE2NjZ44QtfyL/4F/+C5z73uXPv+dCHPsStt97KiRMn6Pf7fPd3fzf/7J/9s5nrzp18EJJehU2ahEQbUBfcw3WiWHqvsyEaYFpSOkQ2FmEqwkhUoT01QKlJivrufZ7gdMXSTb3Qbhx1MkiSRq63Qs81IbiUUz+2fec18ZebfVQafx43X0AJuX9HnTgpkT2ES2ZTAmka3rMO7EqTEGQet9VA3QWulOovthR89TTcfQq+8Qi85Ig2oJNUcxf7BaOEIxaeFun7zECE8xhzluAE9ZA93oB0QHLLedTjwKCl8Lw75yLZZDeDtrv8Rq3FKgM/+oYfWFBo98fG1YWtJ9YCXaeDDgwrt9EZREe17pqW9q0Ed9P480qqZSpLu29qLU7qMkGagnp8/sQavGivKtQEdZt1SQbFNSJ3i6oXeXlAvRzTzDuvoL3znhWv7YL5Me2pFUqXsMYUNiTeCd5GqanOEwOpQbIEs63MiXXc6ZNcqWssTHodMgyZX1tFiXQz4tj27dDtn/qJH9xG2y4fAkPk/lVjrziqzOK9YnSvpAnLhVx5Xo2nAmJ6F9O9sYWlCLHGS8HPYduELcwPSmVdlyqmXYAvoNb1DGdhd8d5iehgNiwsborM/YKKiXTZkBmg2eSJxmKHGMtYsRaj1s3w4mv/5x9gzVbX+BmZG7/vBzR2eX74tNZHBuTBY/DGBHnRkSDM4LwBnS8iu4kyyFvRRH2lxZaCjXClMYYksdgyZamXauWEZr/m4dpRJHrHhpRmpxqQUU/AerX3leeDAivozs+g+LbpfbidULg2+uj/tszPsBMQ731//tyDyDeuwj1ryN8+AtcdwFdNyS2kUjW4zXDkaZDPsdJGu9tgO/jcPzNWLTfd4wHyNqnq2Qfg2Sfg8RJ53VF41oHQQI/j45JvwYLceHd83AljzFYQW327OKdccSjJUlWDePZBWDmmjPf3HtKkbx4PxPsvbXtLBA0e2I8NeQlOjMJonfaOMaQGhn7xOqmgWfqNXkcFJPfMcBR2ZHFLyJsRheMkIEkCnQSTtdikG8p4AfX2TXySPQWVq0zN0PpMoelPq9D+rne9i9tvv503velNXHfddbztbW/jX/7Lf8nb3vY2BoPZqKlbb72V9773vfzSL/0SL3vZy5hOpzzxxBPzX3B61C6wi2zuGn/JodA9Dh10VUgbI0xQnn4qKmxPgM8CfwH8XQs3iZCIkDrGpBChmyWzk59V1osRbiJi1+8Gca8hekMQiDeN554/MkClUfbn/p5zVGXM/DsTt4v9Pu0De8rKfdzDBNhNApQzwtkMNGOMGwwHDx6DnzDw0mtVI+8YDpNWYwBztGILjsEMxBxfbhGHsKypQgBsCkxL1gVuMKqI8CXxPEG/EheWNuIe16MfMNuvhfrZQMyAmr/ShBm32F5HXUfcfcF6JRKUTd7SPmMN24IxnSfUx0L7zN+VUEtv3m3WabcWnhzBd18bmfBSZVojmLr5jYVkv/fmxfPtFMxbz82Sb7W9aoXSCqbUElA++Y48cgbuOgHfeK0qw1IThHY6FpKtKHsDQphR1N5xAQYmnZSOgUFiKFMw0wKWqhoZioafbvI3H2I0ENpZoooHt1fCckwSOtbO5DPzZ1e0dnca5iHGqa0SszVxgRfaS1FEFHPmC4LffrGl3brvvwh8G1V99tQtyWDgkTrdA8UVsct4869Gz2NFrC9t5/s4SIKSbqZfC3Yv5kHjo88eP09Ya8I8pacvqxU3r1JmegIeHb9YucyKAXvvaXjRkcjapDHt3lq+B1XUi4gmtCvKyjJvBRsyUBtMJ6EE9iCYfgcSU+/XvDCk42uV2bywyv9EHTL+2NhbbZb2q8k8tzljCiq0e+/DWn4f5s/nZhDfM6DhHl+b3x2EGYKq59JbQrpD2DcI68lPea8Rqtk8ei59BKzE7ulI4BukiU8CPlRGYTNl8by5jrPHd9H+5LEFOuqjdPoIG3DdfocbqvK1iOPRXY/mldYFKkHZtLVoTv+SrY03bbjDezn4Nk38L67NFTsWtSPt6pdxKLBHtNuA2hwWmmjat2tktJhIyGgfYtpxx+pa08vUHbmGmAl9uBLQ5NWufJ+P4Q/lmywUCdJNoZtU4x/zKdG4ydRCqjjW89l9Y1xMe/1Wie6/XKPclcLT6h7//ve/nx/7sR/jec97Hr1ejze+8Y3kec4nPvGJmWs3Njb4/d//ff7pP/2nvOIVryBNUwaDAS984Qvnv+D8RrVAZrS/zHeNvzBW9bOflB5MrcYsjkUXqwrt8HkRfgn4GPBvgPvKijEpgLK0tUUfJt25HIoowgsT4QQEmCUGbedbJqrZBDxxarqCnaeqR5q4h8UJxnxbDwbLndYxx40LHWp1V6ESbFvXecwkRQwHoDE6UcfaktX4eO/ZjbUgbpjnOl6WSC8KH3BJKWwC5JazIhUh98I7Vya0zyOOQZvcbPplvifcmAukLcLaLqclDQQiSh7mbh9RMX4xAxO3uw02C/UYNq7dEQZtRlh35+fGejyyHBolgwSGeUXU0bVl0OzxnsFsCu21vb0TbY6f21ie0F5OKjBShaV07mK4xDw8egbe+SRyfwlvf7JKWOMJe7HN1sZtimLaGeXQ13IpvsZs3kk0rla8i7xU9+7EIO0w+HJvPmFegALsknePN57nVKG9EHUTjRkDqBjEZwrMs5ZPS61bXtvE7iTkdfFKvOaC3LqHPp7dx7H7vzFan/0biYR2d97xgnvL85oeZnH3ZloTt3OcV6nPjdGQgEmjX4t1aeYVzWGJ3W63gs0E+7iyRvx8mUe3Xlm5BAuoC218qQhDkWBp34M6FhofqlZYbKEu8oxcTPy4VKvb1JJPLINCMLmdUcybeR5NT07gBe6N3uoeW90kUsxEfe8wG4J0NcF7EwfeyL33LFruzUONH9pESe1hM7roM7AHXOoyvEsZeUddIcQlOuP5EUFDQUGNFOhlhaihpkfFc7XR9y4659NJiRkXJOPclRwssKMCGZZVNaD1XP823HGUb5kQNaarROexe3wXMKL8uDjevkZjNpxJZxz7bFTPy5kf0w7uma4snuaEcWEjw6jSUbN/G0XVv2J+3ph5Wzim70FoD2FmOn/iDZDrwA1LcGJcdxMJwvsCeWtaGiKgSv+s4g+991AfKDC1WwAV3P3qWIks7W3vuEyQ0tZr0vvz+LuJ5vOpaFZ1f7zHRQRsiSSGIdB3RL2D86BuvvvKmr4j8LQJ7evr65w8eZKXvOQl4bs0Tbnxxht56KGHZq6///77GY/HPPnkk7zhDW/gh3/4h/n5n/95vvrVr7Y+/8CRl2gadF8HtCagQw2BuY/h/HwOewaBgpQ9oznSjBfYtbzbVOBP3fuMaLKlT+BxomNQC0Gi7OoBCXVTJFIhN2tAt0EbYfeIa7uW5sBAt/ydRy3t/h2xQBaXfTtQ+iQVJtx7EUi6YApvaZeQ1yze4jUiEv6kxnAA8CqNuTJul7WNwUzykC36PjsYYVDq308F6SX1eHbQzJilJqLb0xgfI1r+7XJqtG8GsaU97t8fv/22K0MkUaJEoGr4oKvu8U1c7uZJUKY5Lv0DDQau5XXzlBKg+eCa1rP43ZcN3sznMXXpnn5sA67tav8d5yX9BJlE2c5x8WUy26ce0ZpotPVqInfxbWq0Rw0AQt+jO4nueOBMdBHw+RNVaIoVKO32arpGVnbP6AmOucm6QWDZBxRppnWio+ttuG+xd/7eH/7J4m27ApiZx+iLZAzBOS0e+CRllxUKzyjaHeNPrgJEdDA+TssqoM+D/9gU2qPHLNrBUIGIusX9PtSCeZRKYE9N5SLfJih4nB8LsrFltLV//oeJhaUI33XSSGhfrC9NmLf3YxfezfAe0XfvevttM781lYO1pvpwPqiOzz0UELO8/jrssw/qvvPrUtSb1uPuvSjd9lnfxQnsdmqxkwIeOo3c/gDy2CnIS4rSsrsQ0rLEx6SDV8xL3UXeb/Rja3Cde+Mwn91gczTsPnt82xhfjb0VC+r+CCq0x+XeYgOGKhu2Jvjz5r4LTKxgJiVmUpCMq0of1lXOuaJ621DnsSDaFwKrbnVNq9H1ipKuzLY57kdSWHaPC4pxgRlXwpJMosSncY4i9/fWd3ygqhjkftssYVq8PITK0h7zpIUXZmtLSuCiY7RHeX3diAr7U6nHtNeSPhZafUXGufbHt9cL7XP6p985pdeomJvwdR4abca0e2+/cLGnNV4B9pK9cHy16njs8dIsc906wP7YuLAQSNIgiBfomu8aozy307QJVFZ2v0D6HR2L+JEBYV/Bep7aerWMSWPcx84CnwtMo70Te5dER7EWXDLtJdenzFQJFv2tYQux9XBeTXjahPbhUG1qKysrte9XVlbCbzFcunQJgE9+8pO8+c1v5pZbbuEFL3gBv/ALv8D6+vrM9WsXn9TdfGajmqy45FtscashM3STH1DHHzGGSTdjYnUj5ehayEUX8B4IQkwKfKd7f9gDuW2UfPPWiwSZVs0aNJDjosetEtXMA9/tWDHnwZc2qREoiQiUszYeKC2lW0HWNaoAkk74Rtva6FsNeTWRxHMPuUFFE9Y891BosBdK2rS9V5zIpW2wCkGylDLxSMn1KjVY53lxwLdNtp+YZh60WRy8rrPpUfFt3/lNiyGQeI3HCySXKr4zbkA/gZEuUOsWR9B1ued4a2rcznDcZABq6yq6rpmJNm72ZaRK0/s9txqIl2cmgWMjuH5PaJSA9rsoaq6khcDAK42kvu6gJRndAjRyW31oHGETK55Al0qADHP+kkOBUAGazdnHuYe/7frREXCfP0ouMFB1gmYAN4w7WSgdE4hlw3NjK/gf//o3ba9tVwDNNvmP6RjopTr/xq9dA1lCX2IXxvqNTyeBj2GuZRaU2em1sAMm/KtVUIkeutB7C+qZ40t0C34BeAWVd1IQ2E2VOT5qQY3uzc2oTvMkamczS/7AWdqbzKSVK564gtmyjPGxCcbAq7/zm2aua6sc4vdRjfeNEVDPwEGDPLuK4dWD7sKh1N3j17zVzkrIAWJLC4+cRW55guQLI9L3PgFPnMEWrn53WbfCBkTdtLaLheMjuHbgNLORGO6QgucrmuMU12m/2hDXaI/DBgV1j/dC++XEs8MsTQ90xArlpCCZFJhY6J247P/DXL/bLn6udY76nFAd5UIOywaZVGs+R+eji85pk64bwFghmRYcmJTkrt3GC7YTq21vVgNygtV3v+oVdWHXVQlqCraBZkSfQXmPfvR9JhqDH7RSvp+lVCVcXfUhoEbffaiZoZ7Y2RQWMy1d9RWpW3WbwmJTYPfHcF3BdhK+xvkwvCdBNTaRe/+liV5wwzKcyENJuLqcAwsR2uiS8K4CJPLELDAkxiWGd2tBjJl1Izdo6WBf8q2pRL1M5CpxOTtf6nJcwgMn4OYvaK16X78+8Dd1pWzNCwPAlpAZLaPr+tHH4dzI3T9Gr08nPG1C+9KSkoymwL2+vh5+a7v+x3/8xzl06BC9Xo+f+qmfYmNjg/vvv3/mepNkvOG+/8TP/tav8rP/4Zf5wB0f5k1/+MdMJtNAVG6/49Pc+dl7AzI7e+ESb37vba7cWxcMvPPjd3LX6AzjQjf3o0+e4H3v+zA5Wt75w8A33nwb2deO88sCLzDw0EOP8uGPfTJocaRjePN7b+PcxdWwuO8+/jif/fK9CE6rNs159+/fSj7NA4L82Ec/xac+fU/o0/lzF/n937lF++e++6v330Hv/ocCUT/++HHe947bgGqR/d4f/kmtxMbd9z7Ere+5o0aYbn3LLVw8dxHQpDSjz9zDXXd8KtRlz6c5b/29d5FPpqHs24UvfJH7Lj0R3nPp0ipfed9tZAnBde6Oj32SLz30SMiq/sjjx3nrH2r7/I1vfc+HeOTJE1X7yvPc2n2kJrC/+e3v4dz5S8F6f89n7uFzd3wKcJaIyZT3/ud3MJ1Mw6M/9tFP8ZfR+J05e5E3/9YttXVy63vu4O77Km+NR46d5K0fcP4TucWmKTd/6KN87cRJt3END598kjsfv5cVoINa1m/9o/dy8fylQMj/8lP3cPuffio8dzKZ8utvfruuPwe3/+mn+OSn7q617zd/+5YaUf/Y++/gsfsfCp9PPn6cj9x8W7jnWc85ys1vu41Ho9Jvfn5jePNb3sXZc5fceAp33vsAt3/2LlfyLWWS57zplvcwmeb6oqWU2x97gDvvf9DfwoXzl7j5D94drO0joN9o35OPH+fWt98WPkN9/RljuPfeh/jge++oXfPBt9xC99zFENN+/2fu4U43v7KN8ZuZ33ffwd33PhSI+CNPnOCtH/yIduj4Jbiux1v/9KM8clLDMKSX8qVzx/nIx+8MtL8A0re/m9XzF0ObH/zMPXzFtW8K5JMp73Trz++H2z+yQPve49rn4JHHjtWsygK88+23hdJ+Ajx2/0Mcf/8dtSRX/+0tt3DJ7d8O8PBd9/G5Oz8b+j09sovfPvcZJlLAd+yF5xzk9r/8HHd+/r4gtJ89fYHf+K13Lta+SGB/5/s+zBPHTup3Y3h04wxf+sSdGGNYMTAaZLz/jo9y8dJquOezd93HR/78MwEHbDW/z3vOdZc1fjAf/8Xw5t+6hTNndfxEhM997j4+8Ym/ChqYPM/5wqdvp3AZmA2GT3/m89x//4Na1s7ChUurvO+P/wTPEgjwJ+/7M+7d4fYBfPJTd28bv5w9e5E3/+6tNa7j1j//JHc/8pi6EvYTHjl5SvdHxKW/9cMf5RF7URkhgbu/+ii3/ulfVI2TzdtXAhvjKb/zm+9gNJlSOD7yrjs+xd2fuYdXoThz/dxF/vgttwTBPQHe8547ePC+h4KwcOrx49xx820MqBTVH7r5No49Xu2Pe+59iFvf+2dVPwXefOv7OXtpVRPudTPuvP9Bbv/cXS7xpFX89853M5nmiCjTfNtHPsUdf3k3E+dFcfrMhZn19653f5R7730o7Pljjx/nwzffFuh6F/jozbdx4vEKPz9w30O8uzG///G3b+HcuYs8+zlHAbg3om9LwDCib/5dd3z00/zlZ+/VD1Y4e/ESb/5vbm1tCLIqvPfjd3L/Vx8NPPyJJ0/wkXd9UGOQ3XNO33wb5x8/jk9w9ZUvPcyHPvoJFXjuP4UB3nnuc6yuDuFLF5la4dzn7+Pzf/4ZklKV6NPJlN/+zXcwGU8Dzrn9Lz/Hnfc+CBenUMDZpZI3n/u8xrm6ebn1Ix/n7gcr+vvkY8e57R0VfcuAszffxqnHj4d+f+neh7jtvTu/P86cvchv//YtlUFD4BPvv4NH73+Ih4DPAHc+fpwP3XxbYJwTA297221b7l8/v35bhfm1wsqkoFgf8563/BH5+ihYdO/4s0/zl5+6JwgmZ4+f4zf+84L4OYKAX5w24u6vPMKtH/24djIvkdzw+2fu4sLZ1TDGD979AOmdnw3PmE6m/MF/0vXnFTSf//CdfOnT97CSW8pJyeqp89z69nerwO6s0X/8wY9p+5yA/sjDT/LW/3Y7z9t/MFhE3/qu/84jjxxT4bawYfxiAf5tv6P8qf9m/TP3cOmOT4XxHEym/NnvvpN8ql4cYoWP/9Vd/NXndX/IAcO58xd563tuq/SqAnfe/udM738oKMDXHj/O7ptvU8XVtMDklve864M88eixoIS4+96vcusHPlaztL/5D97N2RPngsB+52fu4faPfSYI+JONCW968zsYDyv12+1/qvyp79OFcxd591sUv/hEdH/5/js4ff9DGGc8OPnECT7wvg+HPsh6wX8d3csjU8fbnR5y98OPcusdH68J74vsjze95Z2K/9zY/Pln7+ILD301VNpYXV3j7B+/j56pSqL95fvv4JEHdP8K8MSJU7zd049BAuuF0o8TJwOtv/v+r3Lr+z9Wm9+F9+9wHML5bv+Lv+LOu+7TUL93HOPsPWu8+TffB18+GXiaW//kY9x9z0Ph3Y987QR/+N4P1QwN//2RL3DiwjnWjPJOjz70CF/9078gjwT2W99yC+cdfyXAnXP4+w984AP87M/+LD/7sz/Lj/+DN3I1wHzsYx972vQGr3/963nNa17Dj/zIjwBQliWvec1r+Omf/mm+53u+p3bt6dOnee1rX8uv//qv8y3f8i3h+u/7vu/jV37lV/jWb/3WcO3Gxgbf//3fz8V//RfsXtoN33Odan383yCDQapYOXZh8Vqxt94H33Ud5Yv3a0m3dz/M6MX7GH3DfkadlHEnZdpL+ff9DAYZ/3Mn4WfGBbeMSgaTguW8ZDAtWcotu/7oK+x+6T6Smw6x0Uu5JDCclgw/dYaNxDD9lgP8X0nKy7op37Gc0e+nLA8ylgYZuxPYZaCfGEpxNeEF1q3+baDaoB8F3gTciLq8rRhYSWBXArsTzfbYhFKEVQtrFtZFy9atoxvx7wNvAZ6FMgy7rGVlnCOTko1RwWhcMpyUHDu1ysonjrPy919IlqUUqeG/jEt+4LGLPPsrlxh873NY6iQs9TNW+im7+ym9JR0zZfCjmtHDxvj3uvAPXqRW4EEG/ZSNfsp6L2W9l7EmRsvsAb+HIrmfdu1dNtr3FXdc3sJXXaZlhYB9W6Yl/NVpxo+ssva6F7DeSRimCRuTkvGlIcUHHuH/+tGX8P/qJvR6GYMwbyl7ljssp4bkMhJVbDbPrwP+LfCibcxz6OPYaeybsT93HNd5+Ls3KHJOjX5+8Bx88gS88WWMeylrvZS1Qcaok7DazRj2M/57YrgT+FXUSr5i9G85gT2JzkOb2+CG1bW37tbeuqjm/LdQRvIfxs9ze2BXAkuXEXMghdUYs6YWfJjDb9wP/+QlsLcHnYTp1LJ6co319z3G8B+9jI00YdxJeaCb8dZ+yr9bSun0O/QSjdkeAT+Crr9r/ZxE6253opbmK4GhFdYsrEk1XiP3zgnwj9E1711ox6XlfxsVvHFc8KppydK4ZCkvWZoWrPzmA+x+/i71gv6B5+je8vgw4MYOJt26zX49bYxL1kYFG+OSjWnJ6K8uMLIFH/xrBynThBdZS/rJk7zgcJ/ui/ex1E1Z7qUMljL29FOWlzqk/W0mwLuKUIqwvpGzOi4Zjgo2RiXDcUlelNz/iVM8e3+PvS/bS7+b0UEYTi2Tjx/jc0eWGN+4l+/qpfR7GcuDlKVBykq/w65BymCn42UuA8RKHefGroT/9X549RF42QHoZ2p1L8T9XsJ/vgf+3nPgOXt0vfRSWHLrZrnTnqnXwcRKWL9rloC3TwA/BbwN9VhaotrzKwnsNqowa1v/f4DGYf9T6rhnxe27pdzt+0lZ9XdSwsdPwvkR/NBztXEfOaZ8wN++HvopeT9lMsiY9FJsL0X6WVDE9gz0TX1PiwgbApeso6ERPvvfgVcD3+fauMvhxpiuL/qcbwO+v/kchJVRQT+2AA4LVcT+mgoD67/0DaxmKcN+xrCbsN7LGPdS/vmgww8nhu8E7gF+p7T838OC7rRgZaL8y/KkhC+fZvj+40wSGK7A6O89i1991jX86CDlpQPHr/QzVlLDrrxk17ig6y2Qno7eexY+fRLe+DJ4x1fgZfvhmw9Bt1pDo37GWi9lvZPW1sgfAceBn5szz1vR9u1AIRL4oTU3D0Pgc8C/jq77TeDVMe010N2Kx5gzv+O85N+NS/7HScF35ZZBblkSYUmEFWB3J6HXSXS/9VPoZ5je1vhSXLimt+2awpIMnQt7sASX5CfXWf2jR1j/pkNspAnD7zjMOEt4tJPy/+ll/MellKyXKQ+XaGTJ2MJabhmNC6ajgl8bW75/WnKTLRlYtP1odYJd0lLl5NEz8MWT8Kpr4cXXVH3rpbDUwTh64MesjVf4fwPfgu4JC/yjvOR/GxV8w7RkeVowmFiWJwXLj6+y572Pku7usPEt13Dp5QcYdVM2uinDXsa4m/IzSxn/oJPyLaiX6RuBd+cly6OClWnJclEymFp25ZbdhdWM+puB759P+NpJKpljkGG61fyNHW5cdetizfXvA8CngV9B1+BPTkreNs7ZPylZmpYsueOuvzrDrkcvkb3m+fD2L8PLD1R7q+/2V2NcW9fLpOIP7ahkfVSwOi0Z3XWOjUtjhv/DdUyzhP8zS/nhQcqhfsZP91NuHnQY5CUrYx2rpWnJyqhg96Qkvfcs/NVp+IcvneU1nByw3WRuIdwixuvvuhseiLzAXp7BG15V8TTLmY6HC1nYGBWsjvU4LC3Dtz3A+Iefx627BuzvpPzNpYzHuin/Rz/jLUsZ3TSpeDu331cSSLdo++rqKnv27OEDH/gAy8vNQNLLh4Us7Q8//DCPP/547btPfvKT3HLLLXz84x+nLFvc5haAH/qhH+LWW2/l0UcfZTKZ8Pu///tkWcZ3fud3zlx7+PBhvuM7voObb76Z8+fPM51O+a//9b+ya9cuXv7yl89cP1g+AAd7cMpZ8mdctogCUt0u9LGuZyyyt8cEmBiY9lMtZyyK2Avg0wIPI/wvosyGkSjurOb+bUNMe7zXJUmCu0yB86Bvcf3e7OjPl7h89/igVXZHp69jP5ErmHdbExXCvIvw3lIYJ0nkumcY40Kkc2+RqtzpZ5b4PHfNiYViNoGFYdbV3jCnXrZs3v96O+a0JRdsL52JcZMsJbGwn6pf6iYnJEJ7XxeEzebZ9zNu4pfue2ixfrb59AjKmHuGO35ZP4X1MtwqEFybjLMiauKO+X2YB2G8TN1VfolGybfoeNmaxbakSCKazXgJTZaSGEici9cgQ3JTc6Eai7jqDvUh8iSwWb2heX4lEPc9PsYufc0bMiGUqfMWX1l3Hiiv2gf3XWpxjZftuchH7oW17ZPnkGYMUSZ7AAyzDIbV0PswC39cBGJr0lWF4O7fGHeBji1JeoRFENaCSeg3fHgXwcFPC8R4LvxJsLQHaC6snplN6hMj203Au8UX1F3j7waeg+Z8DaXeTN1Ffh79i91YW+leM5bdw8RGWfJRZnKqkzcVVVyvWWFoJQgJnqH2f1PrkhSWWpVBsxiXGj4Q+avHCa7m9aMJD943u869Qq5t2MWfxD8UNnyUic8lESWBFK18s+zasQc4Fz085OMRYM8S0oFiBYrvux6OHCAXzZuBFRKHUzWW3SWf9aGHoBN9fAJH9+jn5SrBqf5e4ZG2zZKySTbvOWN4uWAlqmwg1Vq9rXHd7dRd4y9bbyBCUlj6hcXmou7huXOPf+g0vPde5METVTncQvHzZrHfoKXPNkQVD6tWFQVrpRoDJj75nEdqlybIoUSFGuvoPTrmHYcE2/iZxIWZGaBvLVNrNQTq8TPwpw/CV88gGzmsTTSx87kRnBnCZ4/Bzce4+64T8I4n4cun6rlV7Gz/2no7oSq/B9CLaJ44jwIB2CiQ3V3odJCx9cPunqsnpa0ntQPVYxoXvyW+JPG0RB46BX98NzxwEtan6p5+YQxn6/3DJ3z90smQMyb0s9G3NtYzTkTXc+M9EXet7xsgGwXsdlzY0d1wYlSP7wjW9i2S0dUYjeo6cYmKBR3s0rWrB4iPa3e/hRBDL8wupRoK4/d28x3b3MASQhulHrP/ikYerJuO1OOGAuMe48HqmWKBNKEUzRoPKo+tm2po2o5PF2xa8m1tbY2f+7mf4+GHHwbgG7/xG/m3//bf8su//Mt87nOfC9e9/OUv59//+39Pp9PMZ7w5vPa1r2U4HPJzP/dzDIdDXvSiF/Hrv/7rDAYDTp06xU/+5E/y67/+67ziFa8A4Bd/8Rf5rd/6LX7iJ36CJEl40YtexJve9KZWLUZvsBcOdeGv1uqLpsnEN+N8NhwB399n4rSK06WMaVHFtK8K3AL8JErw/D4cRYy+J5A2JDkATCUMkBkl9igujhPRNWO7iH5r+95nH/Xvrh2l5QY/FKGdVZvPu+d5gSAWSgWCwG6AfilcTFLOUcXHjTF0U4MpbU3Yr7W7tZERjIBuSRObhf43Psc1ey97g7W1JbfYbuI01lWyPXFC7lHnGujHxMdlGhGMufzIk3nz3FYX/NGvfo1vfsWNiz98hsEr1bIWv8wYWOpWqdxFWsczTgbT/NPHtHMz8xjYJXT9QWUhsAJitjGPTWiWFfTnT4zh+l11zQEgnqEvrMZyiQoHAy/FuQ3l29zh6pfraSPsObNJAH0Des6VrtrYolltdxnt8wrwyEV48X4nTVkokyC0iySbasDjJJI1BhCQModdHQS1Sg6Ar6VZLV6xwo9szkhE8OWHvsYrv2Eb6/wKQOJ+uQ8F0B0VodCCif5jEjq5Zi/298Mzh8jXYB7OHeJKu5kGLnDHLAnCYPWsRkdbwIpQiq5XH17phaG7gG9yrwil3tx5ZiqLQhs+9EL7PHwvDifPKCkmBSx1Im4/gVFBAYwQxm6/TwVyK5SlkBpDZlSQsaCxvLkldYy49cngTAKUmE4KWcLEmJk67fPAGAMiPPrQ17jhpTfWcGlc1rXex4hwx0hiUim8ZZTDcqfaoqL0ah1FAwZNRGdFmIhUeTLECTWTQnMAdECu2QeiscPdshLYExGMmCpzPNQF9+Or8MqDej7oVO7xjQ618T2bJaLzY7BTpZeaORe8cunaxnU/ACHZbDMZ6FZQu9bNWWaFwpcgLS3y2Fl415NICXLXk/APDbz8aIWn5zF1qFA+Fq1y5PecAKaArrX6nRX6Vg0MXMhhaaD7YK0I7bKRIOtxoImwnhEtLYoVeiVMSoFj50jf/SRJAfLFY8AxJKc1Ic2Xp+d5Ze8wfOGEWqObBrVoiKKhCrBBvXpKJjChKuUcrl8tkN19FSinNvxWvUNCnXa/13SN2xAGGKqJPHYObnFhnF8+CZxsnYMa3HVS+xf6JjNrtg19xjHtqWiCx9y3h+ooq2M46ArvXdeDO89VdD/wPlIh33nG9gYuD+OeWzUwRu3KMCFnqY/7rpX1MyAYVY420421CfCLgldG+LH05885iPrjoHmwnufCaoPi0IKk9f75cSxdxYROysjTHKN8rVApKWK6IjuDbi4bNhXab7755lp29rvuuotf+ZVf4bOf/Wztuvvuu4/3v//9vOY1r9nWy40xvPGNb+SNb5z1/b/mmmu4/fbba98tLy/zC7/wC/zCL/zCls++ePZhOLgMk3PqEpgl9Qkvo9UZa3svjCgHMMkSxhhyhGmWMS2EqQilhT+y8FKBb0Un2dJSS9U3xNbrHAboGlXbowS5Lw1eqSEc6HjpQ5pMTIf59aLb9oWIYJ2lzQYLkUESw/nE4FLXtNYhrWX0LQXShAsYrne/D4F+ZjBOaxsE7DYmqtlA/1vObEZf/xxmCftW2eO3JOxzBksKQTppyB4voKXtXLb13WWJorCdq9G+GWTMKmf+zt/7G/p5Ph3fHApbZYeOYbkTfhdXUzcQC9H1OcSEOq2VoN6umW9CGyM+YL6lXV+9PQZNnOa+NZvxE+vw/N2VqSRogNzsTUutVY8u82ZNdH/5gDnlmBZu5RZ9mHOM67TPKHc8v2yphOJhiSw71uRlh+D+i/DC/RUujMu/bUbco4Y1E7oIwFoO1yuxMxiWDeQ9sKsuI7+/xzMdC47Uj/39v7HQdVcKsQYeqr7lCN1pJbTXBMpuQmfq1q40nsPOrYUrhs1w7pS68s4kYJzwZ4yW/ckbnWs+qwUsDWFI6pb276Ve6q2WOd4YpwBlhu75MmitXYyUSjNKinEB+3rVg3oJTEpyo88bo1bosVUlTCkuW7KAJCqopJOCrLAMrKilHbffEotBcaWxMO0mNVf6yyF3dwABAABJREFUecrY+Pfv/+G/wYbU++vj90P/Qj+j/R3DUFW7MgDZyJED9b3m3Y69pX2XO14UWBFclnm92owscrgDkxzOrMO1u8mtVIk5rWht9sTR+JnymhaOT+F7nVq/n8HGdGZu4nKw8Th10PVytcG7k/u16pVL1gojEb5FVOf5fcbwqtTU1usi9N4rZWprQARTapLTqTPtiwX58hkMTs4ogc+fhJdcW+ddW/BzISqwb4gT2oVQhjK1QmEhL7WfBk1+LKs57O8jvUSt0q5dOSoIN/ddOI8MMgOPy79yEWOBDpgpyIsz5G+/xN3o7nzsLNxynB/b9WL9/MrIKhoEdmVmNqOpBXUvv77jzYOQ6i9ez2F3z3kw1I0P4ljMmJZ6gWjq16cT2AG4v1GO+EUGfvDlldtg1L8AN11TX+u+jy1IIO5f3CYEOqLKFiNRewDWJ8jznPHh6AqcsY6nS+r70HsRb8WZBaWAa48tNVTVtW5qdO13DZqkm0qIFTfPgnvNUqdagFt4hywEsaXd7wUf8uXhOQdn6VOjTnvtZ6+IThItI+gu9Xzt2JggwNNyfDpgU3zz6U9/GoAsy7jxxhtJ0zR8d+DAAX7kR36EQ4cOISJ8/OMfv/qt3S50U6Xup1rqtQM19Z0T4uX8lMmhHpPEMHXuH3mWqIYSuEvgayK8wVkFEnf/ClIT2sMCCb7vFYgBMhSRuOdmLQQL2glZfIS6Jr5GC1uGREqBqaUcuXIck0JrSY4L0nHOpbzkQLSqa25gNIR4C6abcMERual+RZaa4Crn//w41RlGZrnbYC1oNrzuYh8fm27jASJXms1dg1p+E5DcYrO0wt3+HQZKA3tcWbuEyE1erlxonzfnKfPrtG+NRBrjHxQkc4R2H/80KjRrvkOYYZrwFuj2OdmMNMQ0PF4jPsxjTsu3DyKVdjYmYGLh2BCuG1RCOxHR6eAyHOvbLULHOqZU6n0LWUafYshpZKb2jbLq1mhjoVNA1i2s9PTzS3fDl9ZUMRGVfFvYRb4xIWIr7T+THDqGHN0HfWB1ANY5uda2fDg+nSRwFirFQvXdBOiXBVnXYUETr/eUTCRaB+5++8zr26Y4t9fQ4ccKsjStSkJto0u1uuxSucg/iio5XkxVl72ZOR7m0724DBrU+XSJv2y2d5RrGEB4UIIt1dLurZC5VTz0BQv/J/BZnDBvhXxSkuclZW41r0Ocj8XVMjfTkiQvSQpL0/dwK8G9zbtgrnt83LXY8DApXDKaRDOQxxdLlRncC+0JsNvCOlJ3HxWQoYVBF3v9XjhZutJTQl9EvemsYFx1DlPDse78jJulg66E7iAJSoWa1S18ri+uednjd3pXWQgJEkt0HTApScYFj4wKvmdU8HOjgpvGOdm0JLW2plxaBJpznzgBc6lUK3Ho/6F9apz2UQRB8JO55btEKgv7WGAkVU6cdStsWGFknUJKNOSrAOT8WD2j+qiXlJv/ibgQiOYcNfshwgDHf964Vy8t3C03HVEe3HmekCXwgsPwWue78LcP1ZIN60TU+zfPxjMlEtpFlUjxFgg4+NIUdmu8fCjlGvql74o9TAxK4wt3YW2vvazhhv3NRzVePO7f8w/B33ZeJa+9Fp7j+9eGoOYLg83wtyUkyL+1PqzmsLvjNnFHN8zJ9ep9Te+XuSCNg7+nrCHjHOg42idEYamOiat5RQ4cPZk6fqJVObMNKBt98gqaY2sV4gzhAL5h/rPMzCegCg6HBKdU/GwPDZe8mgaZy4VN5YtTp05hjOFf/+t/ze/+7u/yr/7VvwrWrl/8xV/kZ37mZ/ilX/olgJmY92cEGKPE4sy0fQE3XeMF8ksFk4NL6iJnXF32NCXHsga8X+BHjQrpHaoB7OHKVTX3ZmGxzr0kLGxQwcBZk3OqmFlkPmGvCUXRj97aF97ZcgRUYJ8UMMyRaUk5togT2M2kgKllfVJyeGobiDly/SY6LyHtpuqYYoxamgz0UgOlrVvWoV5ncjMhEiItxOz9bQxcsLSLQGGr2ppD7R/jApmWiwnv/lCU2CypCeyeqckz2FeUtXCB2E3+cmEz5UyHyyttt2mpp2mpiVLiBvgFlqBrJb7dVgydj1veqt1NMC1/uGet1dpd4zW3jyxnrD7u/MJEObNrV6hcA9TFSwCWQSY2rAd1CaO+Ft0xLsc0s/euELu3WrKpiGVbyTcjQiZesR41YL2A3V3t7zVLWkD9qxcrRrAR176lsBkT4KhxUkyhlzLG0DOqD8lTsMNYaPfl3uSKx2jHIcLfno9GtHLIoCw0U3x8vQFSQ4pt1AqXJjp5BsAcnOu9mnoNPBBDx+VgaVvkczoYSr1JXWAXtNTbq6is6nFMu88c32xKjCvimPZacxpdm/mQN2L3ewabWwoRSgjtfaAU/hXCXwj8AvBFoCwstrCUhVDmFusSp/razTKxGteeW0yhFq+ut0g2+9KCIOeFA7TSd4nwejN+f1TCcoL0u4jz5hNb7bl1h0y90A4a5ncxPJeg72RYIru6cGQJTq4yFVXA92qx7GptF//Z41sEjg/haBeSRDs4SOqWMd9Xd1+z709VybcgrIta1+20RCaaYPPSuOCl44J0XKjAPs5JJwWJta367s2gprB2cdMdERfR4DBHt6ubYAXk9dfBcw9XeBo07ruBOEtcWWrUQ2RkVdHzGeD/EPi8FcYiTC0UVtyeFFgfI/sy3d9FMSM0KkhjD+oCCcYEUeu+Obqf4rqM8lqQ116PPO8w1icf80krE6OC+m5g/6AuXLZs3jaWBbRvveiijmgsv5FK4BQRGI6RXZnu+bDuoqe5NRvTUg03rfaU53d49n7l4Y8C/9N18KIjVd98/4yBlzrh/uh+N1/RPrX198d8TXysjz8MnMJFkMhNXJAhsMd7DiVw7RIcH9flHb8f5wjtm/GHMimhV3k9FEaFdj9OE8CGLOvuB1ciOXgtjqId7B90OZb3ptekH7wnJ3DjLr3Gz3GTeYz7Gx/zUmUx1xdNWaNl7TCzHk7N86cDNpUvfIK5b/u2b6sdAV760pcC8JKXvASgtbb60wmHr3ulnlyzAmfG9clrc423Gns3WZsw3tsnJxLauwk2Fz5gNXP3qxLFqV0ICGaJOBFdtF5yIE3Cgg6xHynBtW4KdERqRHsrwT2GufF9NTwoKqBNLUzVSmDHBXbs6mm6WpIbk5JrcmcpIBLSRUJioGBxLyFLEy66l/jEZKaTQlEXyloXWhtG9lo5/8MCO6Tr+o8VzNRiXI1TxmVVK9RXCBiXqrxoa0iDaEhusT1T3/vGsAbkacpKodfFHgjVTO8MxMxdj3pSHgH+8HduWRyJtElI3j2+TSO0C42JlIYAImqRGVN3UVtEYN/suiVmPUZa6PjiYJkV3BF1jT/SUc14aqpMQl5L3E01lss1ZCqwPKchGXNqKLPQ0l0I2p5T0JKIzlnBMlFFIKBKFoDhBFnKkAQl7i8+DPddqBiAENsulclpqwbF29M6hmIM9DOmpmKqbGY0uVLTcuHavMhANUttXS2otS+a64lAd4pajowLW/LbpgudaVnzpKzh3caztt0m65KeFVaPV+Jq2IpzHVbxyrtoPwToRe7xMNvRFvDbL7a0WyrX+JuoFMCZiWLazebx7EBl3WvpkjQnIvyJMnWx0N5NKScWa6h5X36s8c4P4UIjrc6DzV0SunGJfOUU/Ml9yMOnVGAvBVNYpBS625yr3/sv9ZKuENG3tr7WuEn3YVRCJ0OWu1o+TBo/o/HMsRfAPhGN1pO6l45MCk3idW0fzq4zLUs6IqQOb5hSVPhEj8HK7gWUEyO4bk/1okGq3jhNhUPoQ/1jSiP0TdqX8JWCVyyVogK7nZTItOThScENo5K9k4J0WpKOS9LckhaWdFyQbGq9rEONrxNRb0TRGuOIj50GzkxgV4bsH1TuvmU0Xg1rtP86eLOI0oe7UIXTnwO/JHBvoR4EhTjB3Qj2bAm7u0g3qTxp0K3u3eMh0m2H9uMEXucJ4nC7LC0hf+0G5IYDKuD2Up1zX5nG8RdvPvcFWHWBD/ECjd45s9aj8w28gKXQJU7URsCRcrFAdnegn6qBKh40N1ag/Ld/ls8R1dxb4ifxe1+gioeEKit6N63wpld+rkacgW30sd6MGXTqlfJqDBI6Urnsh2t9GMxyt5qcZ63AiWEl2/hjFE8/FxrKEgEt3+ei6rzCVZUJqpSfa4n2Um+Geje1IaxtbGBpCusxX/fEKtywohcOW97V7JdU3kSS2xC+PMFUihLTIlddJdyzXdhUaN+1S7UXo5GKo/1+xaIPBmpjy/O89vmZAudOfVl7d7gLp102hCby85PpvpsaGK9OmB7oMDW6cXKg6MMlW/KowA85xqJr6gkBlom8B92KEIACxDFDM4vaqjXPJ/QCp8WML/bfO0GqzaIZJ2KbeY+HUlRon5S6UCeOMI0LrBduC8ul3HLQWQrirO9BKHXfJQBT6JiUC+4VY1yMc5pgCq+R3USYa0Mg00grVzTGwmlS/bMqhI267eVW73dKCDuxagHxpSF82Z/I4r6ZltHmmvnfIzDrhLoLQJ4moUZtZW03oYb9lcC88Yot7f4VP/Bjf6fZ7HZoEKAAZVmpTmNJxBhNGjT0GeSrrLP+9jGuckKz3aZlriOY5/7vs8e3NXu7Q6oJaWyF4GNG8vgYrt9TNcYJ7uI+S9aJBBR1J+xC5R4fdW6J+pw8VUh9SiUUN5kpjX/DIyJty9pELQ6gm/dle+DhDfW8qcWz+/MtpHaJGCPPkORWKXu/49zo3K7oGCh9vKQjfs6lflGZ5g2v+zuLXXiFEBiomLAD1rpSPx2P9at8I6YLmdgdd+MVK07pWGiC1I3clblxXkPbFd5r3GGE98Y+ati0b2ZQF9C88b4tFruPEa65yKN4414I9dm9td0L7x0iejcHV/gcMnOb08YkgiKYUHLJQDfDjo1bixLu/66IzgD8LSdkieNcpRSlD189De88htwzhXc+odmzS8U7ZSl0i/kVYZpggB9x6zy+1lu0ZphjnyDLf+n/xhb6HVjK6hmzHQ4fCuyPPACMCLtEuBSNnVNZIsMcGaSwq4cMEuTMBsvuvT5+3Ti+ylvd4/rQnFjVBFme0xyk6rMdd8St4zgRne+/T/Q5D3YCz4pItT4LzfcjhSplHplYXjYpMZOSZFyS5iXJtMTkQlqCKRZvQW3+hTBefevWnp/Ls+vICw8hpybKIzYF9lgp5cDL+2V0/JB/n+Ob/gJxbK8rBzcq1btsTw/6mVptXTssTpnA7Hqt8hTpyXLgWQXJi8id2tHUTkM5DvyDG78JVotqzc64TrtHthz9ueeZExG61lvHxTdFPcamwJ4+0k/Uy8Y/x7V96voTW7V7uJybgeFxpz4MbBAlskyMCu6+TKoXVveg2eXbLL4L4O2apd0KmYgT2h1NF0EuTWAJJDHqyWKAoz1N/BgIlzSE9zkvjMc8XltFZYn2fI4vLdwz1d4MXmZRbXNAs12OC/w41pmkbexekXYjjLXw5BiODvRdoyhQVhr3N04FcUYrpQdjNHmun1ufS6RtDT6dsKnQfvToUQAeffTR8N1v/MZv8B/+w38In5988klAY9yfSVAWjqQf6sOJXClcTWCnhiwKq4nmJqs5012ZWtiBAmGSwRlr+cFEa4R2UKE97FvR+J8NAotcLQyLJvIyjfXq4r69V1QnxozzkOWcYxxXO3eBRcmmxFkJZFLCw6eRD38J+/hpKCyjQthbCkkpIT5bZTkt9VazKk+h101Yc2MVLK9ZqojdEoTYxPerbeXHDGSU+bYqMeSJuut3Y7N3ASksSa6KB/JSM4WOiyrucFKGsh1anqeBvVoQiM1LpJMEYd0vm4sCkqRQNGLZRUNHNhNYF4W2ZzSVMwD7Duzd+mHNrsVIs7Q1Ils37XdgWFmccQTfI9ANIsJJQ3jcpDk1JZCndagAvBo18YqQZdPqEzOSxy7Cdf2ZRod4rH6KTKp3TvAMTKU08rCpFWw77Z0DNWYleuCYSmkYC+wgdEWCvivcOJ7CshNW0kTDhg4l8OWLdYE9lILbwkXeC+wxfZwUasnPEgpTLausm5AUjUR07l9YW1vAoYN7t75oE5BSlBGfqgVNnCV05jqHo8Iv7ryYOryUpbOuzakK7c3s8dFDL6u9uLAehkW9Drf3GpoUrX1Y7AXRybSoyn9ETJeFSHpy2ePbXjenf4VEArtUQvt9aF3266gnoItd5GOI+WOociVsRF1p3XtxszyjPEVdWr1msZ86dCYRnyvcaODvulv+OfBy8d2UoHQC4B6XQTpVGsD953ROSkthhb6Nqqi06ESa/TxwYO/MNbFXQQzxFNbmYGRhKcMOOjCaNsZEk9AtNeZsnxAS4IWSbwDDKSwrkpTD+8hOOJd/EbWuO+HdOALpjwGXnC7h6HJFWwadCGFWbZipMOMgo56Ibidxq4fgESKiIXG5xZYa3nBsWvL8osQ8fobkww+SPHKKpBSyQqsHmKLNc28BkGqs+s7LU5UqVsO3XrSkc3HREaKm8NV4ZbwE/E/f447Gaqb/77IxfypwcazMbCet4o9dX0qUtiVuUzQz+5voZX1UnyegLvbdKBzUH8Pm1ePBg/s1ZKttj0ZCbVu/PA8Uu8cPJCpz6u93ZU61VnmCTAtir0FQl3oQehKhOtFwKOPf6W/wvKnP99OsWRv+DKz0qmz8W1jZ245xyTeI+hd5ETAs1YsgCvHj6C6t2zwpZ9eM54eaMEOv/FHAlkFKLJxSN4NwnBD1ORoPnx9Iq0Vs7lGxEDSFdf+Ms86/+ciylpgL73L3NUOHpLGmCoFEQ2ALo0K7Xwc9TOU93TI0TxdsKrT/9b/+13nFK17B1772tfDdTTfdxE033RQ+f+ITnwAqd/lnFPiYdtCsxjDrMuK+KwXyoiQvDPn+PjmGqcBXLfwxkE5KXma0/ELXOIRGu5VQwp8jfmlSrU+PyFIDUlbaq2gRb0XYm9aHzeL7dIFKFQ9Sat1JW2hpEXvrkyRfGJK+/wn42lkuWctBNzaJVcE2cQSm7gYOlJaMlD5wRlTg6hsC12Wcta5Z+k13TrTq4++npWrMQOMDo59MfIz63wXV9JculjBX5hznSeAt76HeaVMoiTdg1K5SLLZrAgPridAaBslSfWdjTJqJyrYLm3lUzC1/M0sLFofCNjRGVAtsVwdxSNATL4na5Gul1m6N/jYD03Lun+WtBdX63dxbuxWc9WcmeUluNcPq9S6ePY2IDc6rYimrlBXuUb5qQhO80L6jc9J8VuMIvo5uBaFtotnjp27QHIuGXAJWOqoJT1Dm6cWH4N7zdaLu/wqpMU+tDaNiIERE3fX62pIcLZOFgazbIYsSRgetfIOBuhogVhQXjPLKUj10VutR3mqxjtGCxxF2WlJEpSECDnYbP5mWKlh5pYRlhtncTpuDx1CsdPRHL8BPVAm5sMW92SB/nJQw0A4VRunYhvtbB0YJlJ2kwscLcC4hnp26wO5d419J5Rrv49gzUy/1BpsrqmM8MdOtGmfmfvDC1SDaOd1M16QLh7HemuYU8UaEZ7lHGL9eg2UYeMURvb6EMgFetB9x9NJajVfezgKI+xnT943omvBIb5mNQdD57HdgKUHWi4oXcfcNxZWLlMpTbA/CpaZCTQTJc3A0kOt69E5eoucUoWph9w2SUAIsjP3JdUVSu7sRo1RVJalPntTnzEEstLfh2J0A7xFSWnUfL61gCyEvLMdL4YVPnKX3gSfofmFIcvMTpF89TVoKaaAvizekpmB166gnovXTAdbG+rgDS8jhDE6PCPWpYzrWpnBsHF8GfId71/8u8EKjnbXuvfbSFA7q+idLVWnt9ngBLEmjzY1zz4slAhue0kytKsKIsojHQqX/blcGq45rjY1obvE1Q6nioxfafblZRBXVQfHhvpO1Kex25ch6aWupQS+cx0ldMyIlRNQ0vHt95omAH4xGWBHA7p66//tGz8S1V7SlrZ81od1CH9EcBFHbWbWwEgUoJkaVLyvAiajUdVN4b4MGrqyEWuv6q8llMZEynsiIFCtoYq12Vw0/tQ76F2xn/7YZYRB40uXMMKb+LtsYq9Cv+kvFCqQpU9eByj3eaP8aTF9zrp4O2FRof81rXsOb3/xmfvAHf3DuNd/93d/Nb/zGb/ATP/ETO964K4Hl3UdcIc1Eky6dnpNB3msWBcrzY2wHym5KaVRg/22B4ysZ9x7u8TVbucX7DZW4BbEkGkdam1RPl2bc493KL6ucyh2PIFsQJdF5GxPTdJ/zIPFJ/KNV9yd58LQ+pwsMQb58gXWrnj2JR8iRMjF1RD71v5UlpIZ9aH3tAidvJ4k+t4wyyM/DwE1N2NRqshqoW919f1vGp2ddyRRLlPXICegPn4Fb74EvnYoEdqkCLOcMmoggtgxCu0SJyo4LJN0UY2cVGYsIrJcLGfWkPALc9el7FkMg8xj2qYQSdjMSd1/d4wO9iW41IjWhfWZdbjEIbevYG/vmajc3f2QdZuK50DE4vqobZle3WuBOyRTqb6Yd9dZw+6YUYRD2Z9UKQ1W5wMNOI/V509YU2kPbBDKksjoIVZ6IXY4kJYlO0Mv2wtdGKtDGLvLxXxs03OLDkIxLpKOtGpuqfX2XlVwcox5c4/FrauvR+uSn7t7ymiaExJteyHUJw2Y+T+JwGapjYACd0O4sSE6/U+3zBLJp7B4v9ecs1MMIChtyj5DbSmAPwnpZfT8tZ+unzx0Qqn0QN25isd2MUWJYM7BmYNWoEnYVFdzXe2klWMx0arZ3JfVs3P5c0FjbV9Fe6k31SXXk0Rbf7lnVmbh2iRizZn+9t0S3YtGlm2h1jKmtyw3AaXec6yIpAs85iKTu8w9fh1x3AEqwpQqxnRLNsB71Zx5qNMBfffqemd+3qtMusUAAWvmil2CXM5jElnZVJozR0m5IRbP2EFnaLZXQtCbIIFXB55oBvYsbLJdOI1VSucY7HGtifHt8DEeXVKjxAo23UvqQjGDJ1Xc36cJTUfItlHgrLbYU92d5ohT2WMvuh87DBiQdyCyYe0+RWiGNLX8LQCzPJNF4pdYpWUWQ8xPY10USg1yzC05Nqo1TE77qe95f0lzD+9DY9Jd4QdjPsYBcKpDdmtVfEqMbcaLUbGylCv+MH+j7IZ4WCn3jaKAAU5BeVTqyWb/b/915/jHY2CTmew7dEyoDVVwSrSeqcKmFjGxYZKWr570McWEwWI+fxSVWrO/JgWj5PG1O1S4ZF5V5P2ns0tiTwKCW9vW8PnZxHyNoWz0FVcy+EXX/ryklANnIYY/rX2DUjSbYPTZpWTOb0PQYgRI1u9AQUSBUhPFTOjBekDd1J9p4aFacpX1mDNqb0do0cUgp9pj0/P7xYRXquDznXdYv+ujVfhxLoJOGNdWL1uvA1L0om2vx6YIrSXQNwAte8AJuuukmDh8+vBPt2TFI0261iA+swKlp+yIGJ8QKdi1H9mUImu7/kxgmLunp0tTyWRG6RpMV+BqyoK+Ja6mGxVHammtQmHgD0tVkbbm7P3Wqy1joaRLvNkEH6vF9jb1XLbCor6HrLzmsivIc2AUbL9yDAfY6ZKwJZhRpaDI6T+Sdhr6w0IVDRuO8N0QZr6BYdcxkTRZstbBH309djEkHtew0O+Tui5W2PTSzZki24eZYHj+n8YYPlvCOJ+GhUw3k1UCi0a4UQAqwzksiJK8whlUg7SWYsi6sJ6ZyJ7sSmDfPTQERYGN9o9b0udA2jqDcYBahgfilgxRxpc9qOQAcwV5nfsm3zSAoOTydc997RnyzWu0LQ7M6hD9/clJZ2RNTEbsYegmUlQg2RhPdxAJAvPcWqdyw0+AT0cVt8TH3mXODDK6Q6xMtMdlJ1X3dmzf39uBIBg9erLvIlzYc57rItxHAXDSkwpXK7LqWDTLnaTQtq7GxEg/nlrC2tr1Ep1JaV86y3PxvamvhMsrYzu5hm1tyV6TdC+0VBw6mtM7VMr7Vfd6Gm4iIG3+vNPFeQg+cgHd+UY9eYN9Otv/Wl7nDRJj0OmwYFdCHxjC0MEQrggyB9UHKsLSzbtpzXhus61KPaT8HHANeQUNoR5fkViXS4n0HmyVoa2mYzyycVsRDEqX1dlLU8Txwzj2ipkSMFDkiqMIkMSqMph281bmwQlYKXauJ6dr60ARjYH1tY+a6AbO5TGbKEsbd3Sg0dnxgNMO9SI1XXhehT12RsNvCxYg1DUqrKbDkMM1Sl+kg47mnXEkp5/rvBXUT41vBMdQrdQbA75nWhFHMrKeM2dCAncavBRoe6SsD2NKCha+VwvNFYGlZ+Z+pNj99ySEyG3kW2MU2eG1eRQKv0PHzI8AZQQ45V8MDA+S4y8fU4h4/4yHE7FBqgl5bq2Ee5OK1HPb2q/Ec4BSYuua9f2gc3oFrezyVS+Jct70njlfSus5KfLMj+qtJ7mLaI1w7xz2+eT6hsaREFdVFNMYIyKUS2d13fcvCs8P+RcNfB/Vh1PCy+J2+idMSWWns3pqLfPTbrrRKRBcrItxEb4WvQ84aUY8Wze3gx8e1Z22MLHeUpkPFyxxdgWPr9b0Y1o/MemY1NpTHc4CGCTpldUGUx8vJQYH3aQgsEpR0mebYaJvIRT3EgpWd+j4QgeOX4HqnSRl0Wr0pmn3ztwogJUhfhfYeprawYpluhr4s1vKrAlcstD9TYfXC1ypp6vCSxj40FzFEWjeQCwXsGTiLquHbAWMNZQI2gf+HqazslXZOb47LVQXaU3r3+CrJVbgjTZFCsxJXSejcUeqfY2gj/JuVnWr7UnBM87P2Ix3Ij8Dke6/nwrUH2SVV9l4vsJvocy2jPCWmC4eAk2goTbC8ZmjN2jn9mAHfxqlAlinGykviRvvRa4tpr7tGOZzzwKn6ONx1si4lzOzEOrGw0xLJTHCN979eBDJSmEYCqPdCWKSvC0BMA9qEdt+W7/ibr976YW2LIihJ0Ji25iwZNEZoY1ofHqlunYhULmrUFU2LCO7No09K5YX2GnJtNH8zEEecqsQ9EaJ/Yq1iJCPtdC2BSj+p1XSN9ygQEjSCS4JIy1LaRns37Uvj6GFCi3u8ExgSIVSWERHYKJDdEQ7yQnti4CUH4f5tusj7ialeqe8aA7s6TgluQt6PxEDeAaZFbVy8YLAI8f7e71lgnfvnltbFg5d1a/WkrOLDY2u1y3XhY1NrjJr/prAUaRZZ2U2F29KE1JYziej807a1DpreQqXAV07DO47B/aUev3Sq+j0oWxYZGOpcvTtOc8twJWOErquRCCNgQ0Rd5Q2MewlDaxkbX8O48egGTvZu8b7Mm3eNvwd4NmrZjWPY4xrtTZiHC2F+aEqAWFod5dWNicEnyrJdkGkZ8YJ6zzkIlumY5sReGOK9wW7cDcen4bfCCWVdC8baRqPmw9/4W6+u9dOgpLA1Qafb39Ls9DSHQYIddGHVht99dvKRaMUt/3wjonmzwjPdtnSeCdLPwiRcuGYfR07qQAUXb2nEsvt1dtwloTNU3j0wN2FUs5SY4fLLnC4KVsTpvdQl3pZWIwmt5StWuB4wGyV2v0EGkPzo9aTPPkhiFc/6Pi8aomL0pa6+PRgrdKWy7LK6Afv7OlaHu3B6RLAyhvGmEmIctNEfgKGbG1/mTw8OM50bwZ5Oxdv0UnVvd6+JEy0nkbLa5yny3hFdROdoWiBO+yZQJXdNIkIAYAzf+63f7Ah9A/9HrvI1WhotlQmVVx4QLNHBW8HfOMlhpae0vZsGwds/SETxUp86Te+hte51vKOXj2xQSte1Br4h0d/urN2TIHSoOm32EVRp4stAG/HepP4iJ/RvTJDdWfXuILT34PjGLA/Usm7mgr8mR/lD4zPaVwi6YyL8a0y9pLVvUz9Vz594DGzc60XaIrQaYSalalav26VzMsj0XdH41vl9qX8l2j9JE3IiOcx1sQOMfTLFxiMXbPlVga9boR2oNtDhLpzdqGar6dbkCdX6FNk90DlP4LkZ3ABcVwrf9fhFnp+YCGlJ7RUhi3SMbEqrCCPzLtZR25x1M7e2ZjGbV680/N5gXgxVopp5iDtk0XabJcQ0lRbpZMjzrodr97Muykz59zeFdBVOo89ji0lhj4EzKALc6xOxZbgM9JVQG8BvqhYGkqnV+KO+qbIVR783xwMItXAD3+pvu/FQfcy/8cj8Dd0AAWwONlMFjsffJSq0d7opyWRW47sT2ePngc+k2zbP235lfEMnaUjP7sNSApO8zhi6eZs6YtJ0j2+et0GbwO7Pd7EDlvYYydeYHQvHhnB9v+qnY959I8SgmWY3itDnHLVeewLaZKibyQG33d553Wg5Bn6E2ZJv3tLe8wy6v3psodeP+hll833pXs2+uj6tu8jH5d/aGiaef6h+lw0LWYfcjWMXwBh2AdMsq6o2RNbMnd4qUlgnlDeE9an7/kun4Ja74YGTysDFSoqI4ROHyIMwWkDe1wRmAQ97XOySigbrjFzB+o0ZLb9uv3Cifs0XT1SMTxDYF3hDPOiegQHyXJgudbTGM4axwIZV4W4kGgYz6RmmIqGqSq29DfCCUB41zwvunwe+CYKCM5R5Yzae3cM8fJHQbgmp8FX8o+g6iLl995NdNpqYEAnDXwhcFOGI6z8OfcSu4wIwzJXG3LCCPHExzF9hhaSErltXm4W9tfUzpvOtSfdE16jUvkTfPyk0xGy549BefV2PEVZs9b5EYLdoiKzYqOTbxlRd/9MkWNIuXtvhyOkLVaZ4wWlk9Dy4x49Lja24dhc1rT+oMnhcCU/AXMVdbGmvdbNxvFwIazPXfot1bvKFcNwKz5tMMcdXSb/zWaS9jOT6fWSlltWsBCI25SU81ObeK5YFBlLFY3NhDfar6l+uWVKhYi2PaFj03iCEVHu5eZyIKkPWJcJn7igbE9gbJVVLMofvdWUtRTQvbj/iFSwEK3Ah6LrrOX4p8i5tXdgrTuU8jJK11YjC/D75qjXg+WVVfISKdX4uLmjpPAxYx28HZbx74lSgG02dAXrWl3xrtGFskW6kyogt641Ee6xkcGkTT4ItaEQ9/E3za0zc2IS9vFbAistJELvHH13RQdrYfN3UIKIJoW2+vZ3UbXNTtcnMVnYI/YiR1yDVdsxc5A6LKDPbPCZF4PiaKgCXXTb/flK9q2nt8WPnfgvNmAiYVD0Do+n0vF1r/7Zu8VWFr1uh3fg4KmPg8ECzmHpmPl6gtkp6IedGyN4saItAGYnv6hiWfHx2Q1j3QlpflMkBKuav9BGbZnaiU+eWV0otCZ1/dqxxrn3fcoxddGOovTOyOPhYUhkXLvmIIrILwK5gOiPUHPf99p61QYCfFJDAAaNWiVWqBWXShMQRADPTmEYDa1YCJ7RnbSWG2svn+NifptKEw7sgATkCvP46eN7h+vvauAD3uwA2N+pSbCqFwAXRPnZNCoVtjWlf1KoyD2IhNj62lXybjKeLIZEGUiZuZ9M93r90kCLDOnMVlM7ui0F0y2YMaRPmreUB9YSObc3dEpqaZX9+caIDeGSlEmCjotCB2PQMUhThzSWiHhTR+LXtve20U3MmaFLIy3Ft9pb22vg5ZqcjjWqJqxb2dqvPPhFdYjRhztFui4u8P29xvZZqMbhX6tHVdPY2NK9UWAJGWQY+btihGO8RsYiRajLZrPCTa860VAu7jwePremTEh7S8lw84MJlvnJqpr/aNml2U+OU+/V8/bpcDCYzJLashIuYQYDF9qeHNgbllUfq1/jPNmrgIi9pFbChyC1FL6NAt8cEuF/g9yw8WGpC1iLTxJw5UJoGs9V4rKWRgE6qpHF3Mz+ePYWQiNPDZgq+FZQ39bg5NqrX8J2HiVXX3VhJB9heqtVU/LMEzrqHXotavfRx1fPC53GuLrPPWoYzUxfSJRSlxi2n6GZMXOO2Koc5jda5v86H0cYpWMI+Iuqn/3FdkG6GDLJqX1Kty1Uc3hafiE7Y687H7jkWgWGB7IoaZwxnDy2x99IIcQp5n4wVS+Ue7xnqXaj1Kw5B8gmjvBurHxf33rikpqd5NVflluOVgKI4wVp1jS+tVpU4VgqZFa55YkhyYIXkhj0kE0gvjkkEjWdvuuwuClZqXgqZaN4UpiWyIXBwSRVBaYLsT+FkSz4mfx5BWwsmgLEwFg0BDdnHRZBLEtzHAS375gY7CI0Rv+shtkp7/msCit87lVArEPIAVVZ2/ZtIqRt+dVI1vIHP2mw6oGs0CI+Cq96keVxqYXzjMbI74m36qOI2ItQTcZVhosFTPqt6eaBxE1slUowHJWi/fB8dXR27vlip9zFGnXP6GGLaReesi3rvhOutwAhkd7dyRfc0vZPCfgPH16v3N3miGtQbEcbQh4w5/rCkrqfw9ewBddF3Hsre+AGo8nASC+3bpFmwSajjGK7fVSHVpciq33xX8yvf3UKgm9YT/7lODswm2eMXbPrVgK9bof3wda+sVtg+h5jOO718w5oRGLX1CbLLRfK4e4dAJ0ugiPYms4R3gGZlhWhiCxuS1FTlL5wG0iX/soUNi2WGQWmh7m3MS5c52WV9W6T+YyD4G2olEKuC2VBgP5EA6iwEibs/pULYBjCFJUm0fM8lNIHRchikJBD0GQt0mynKw1Q3EWlaJdCKCYfMan677ruJ75h/6LRUJPZNR+F5B+tM3Ga7TpRpEcB2XUw76kJ9EdgLkBpMUYaM8RrzP6touRyYJ9C2uQq+43dvvfwXecmu05Kv2RiNZVyvGENxi0lE3cc8wY7bGCcunAeGGt9cu7ZPFUOqb6v/LQQ+BqrmEiZwbAOuyVRJ4S3NriHiGiZ+PIrK2bmAEPfmFVke4gyqiyB2KV3t7VGhcZ2jXLPSTtpLB7U90583Y9r9vuogTPx8CZrVfdANeE2g8kk2wMsOwP1nG8K6qNKx4SIvsUTqcadrkZQ5rDiLh6l4mK4xjDtZWG+1OV2Qdv/H//Kuub+JSKgWEYT1qTv3LvKlwJ8er9/ow2UabntNNAJgRmBN1r43swRTikukXcdt2+FNtA3U22MFnnMQXup8Wl69Rz/79s24HC4AEedigbIosZ1UE8YBXy4N/84Y/tzAfwIeslAmhlJKSpFgWK0/szqt1WWXykX+MdQF+8VUddljt/hsDtKYpwxszeXi/tXkdd/YkYXYUgZYo5VAxOdtcpdfBA6LUzhFYzbDB45LzdK+0oV9CXJCGeVCLB03f4lbY4soNf/v37l1ps9erPJ4xispmsqh0M8pWuYqMUhm1GLueRwRcgu7IjoKGpecCKx6HI9j2vudYGUXYzg36DBc7mJcP03Ux1oSumNjLT/VzBwOKvi0JYzSV9f6X5+tnYcCKErnGm/Vwi6l8LgVnoNgvnyB5MbdJIkhPdglOTkhEy2JG/bfguEpQRnh5sG713dwlvbzQ1hJnaFAaZMcWoGTmycVi1FVwF0ONtx7gnu8N0gMXa6aPb2KN13uqCAoLj2JVAabNiSWQBAop4i61mcdl7SX8KedpmaN/s33fwD2J5qsLV7EET6bR0fj0LCg2PJo3Eay/2qplWBw7VhKkKnj7Nw1OXXlBEBfvOcD4VoBmEoVG9+0rAdmxn1edtR5w/ERfgwDzq7mrq2P6oruHi1aXcrGBHPoy9m5kfA5enwbju6uktHFa8cKrTkYYprlTwuXg8bldcqN8nv+964xtQTYNff4kK0uVaVh3P9ww9bEUXx7a+139z2x5spJuosHiYYGNTUh/l20fF1aIGFCVEIQp1tkfhLSbVDbHYevW6H99LG7K0uaMXA4hTOjikmLZ8BbvFYF2adRuj6F2gYw6KQkLpCvzc3NiLAM9ZI/4MoluHPvLhQEBAMJ2LIkStuxZfb45nfgwr+jz81FZhurTT26lNEVQFys6XkRdrtrvBtwqBDl/6QS6BOrQvEKGuvyJMrkGMAkysjWhLKamktavkMtFd1UtYV547c549Bx7am5sogEyx4juznCqLXHjVkpWp89SwMzJ2hG4X2OkzJl6RQc2s9mnoOdhjZL+4//ox9b4I0NJOb76rNOhxImjZW17OLdSltZR939E9EEOvH8LsKUeqjtn+iGZSqhPTCnjeNmEMobCpWw7ifwyRFct4dQU9QLra4hbgcivRTGVUjAVHzc22wfvLa5DbGH9vhzX3ps5Gtvu2RoGz6jeR5K7hA9p0mD/BW1mPZognoSvBwVRpOqRjtUBD64yO+DEzmsNVzk49j2lkb58QmwpjHDU0fwSAzGKH4YLWVQOiYous2Gf5vDv/jHr2393u/zYE2fRMK6t7QXFu48qSUuYrgpCpdxjFTIiB91FcBM0OShoBV+oqVDlmAcb1btz3o/F167PmudV+B4WpU50W15qWpvjOC3Yn4ayhbfOAvIqMD2nHLSwCdMlXRomMBfCkiWOBfyBj2JO+neUxCF5VNZ2T8P3ISu2+ASTz1zfBu0hYSBrrFR41px/2bKeQpqae83hXaQbgebe2W23nBOhEOoi3Bwj3cPFzcIAshYBRUAObpX95HosutZL8jicNLmk2SA/+dP/9hMP+OkezW80tZPh9Nl0NH27TZa1SFaIEPUJRuHvxPnXrBXhI34HUOQnvfQUZw5MYaLR/fByTKsJe8qX1mP0URYnqEOylHXo6VNEkY1wGOtsnHZtpVhLWDd+i9LtbDbUihLwVrhSSu8cHWIWR+R3rCLxBiSa3aRnhgpD+QRcxDeF0sGaUCNGZHgnlpXzmvNIgerJKkCcM0AOblR3/ORm3NcwcNv7XiLF1bfNfI427f74gRZMS4RozdUZchY7/TJ3vyD/FpMjH5n/Eup1mdZAMtZNS9xnhjiB8A//3s/AIOeJqODufgs3r7+fErDPd4qD1ZEgyCF83Hf2w9lyDT5s62e63TS/UYfg7t/xMsDyDiv8jvEEK9tv959Vs3VcUTsopHYYqlo8lvCPHdEPf7Cnl+dIrtQuSK2lPjzI0twbLWxXqrz2WR0LQ2alsTp4oOyxJgg1AaeO+q/F97BKL5dm/OueFLngXj8GfWhdHTyyRFcP4gQZfSueC1F77Sx0RI0O35XE672fd/845xSIn7cTuCdK4XLEtovXLjA448/vtNt2VEQsXV3lUNRBnm/eH0cIyCrY52MpQ7WbfIJLlFFmiiiiizHUGXXTFAiWHel0OdLVAO7QmbuPIOysFHpimhFtKyMecxLn5bsstEjwxcRo21BtY4G7FCF9jVgNzITvx6yxYu3tru9bC1JpgjrkHtNzzXUJEllXRCpFpo0TpoNnRZq6eylymTNdKTedyBY/4OM74+FyykwjhiEGY1fezts4cYoS5TpdC+8iCtr14FEqkR7YaxCG65sa7cJwD6+L57Sbq/bKiDOQNu68kJ7M/uTX2iuPI+MGtpiXNmgqI1XIrjHMIA64+iPiyJLb2X3yrkguAscuwTX9aP4DlMp9bwF2oD0M82a7MazRLPTeiY3bncz7slDs61S2sr6G5fwGkZlvCb6m5S29ozm0b8vdo+v1rQygiUetwmsT9WDKCbqXmBPjTLRz+rD/RcrRtSPXWE1O3nsexyvs3i951Oka8gxmrDGvWpgYJRkFE4t7y0GtdjgLaDX6858p/XMrbrEtwnruVUl4EeOwadPwU88D751j978uqPwvEN1L4LYscePnVt3WVkE7ygAT9oNaCiPKB6qe8Jsk8LHtAnqboxn1vVll6J0dzPWm0XeUcd31qDK257mtRARvt39nKMM7bclIB2jVUaiZrZpJPz2iy3tPhzrblRo9wrgzEQx7WbxeHYPzdCUGRTXXKtjW9VodzjOArafIWNbkxtOoQlWezj3+Jh+xu8bWcQ/8/o+HLuAiAphPS+wi1Qlvlr6EUO/152h814512Qgw3ncTx8r3nOJt3qZuvXi9qhVj7pdgYep3rNHYM1W6FI2StjdqfBionO6cTiFExeVL3D4wtQYa6uZ449GuUM84jS45FRFY9Kc0C+zieggMkpYh5PyUv9i3LRNsKiVvSxKFdgLFdhxlvYXPZxjrt9P0s10fR7pkZ1YJXOCVOXNJSxibfe8kGbcJwx0VxxOPz2FXcs6HG6s5JounNrEPb7JvjTeOXVeFWMr9XwM66W6Vkcac+mlwcNM3eMrmlebl8Y8eU/HcgK4kp9hzUDltu0HwRh6nQ7s6cFaWVsDMW82j/6NiJKGuWs71oUY+Ks2Jo6WaxI1C9DtaLJUKl7Jirgs7f55Qi/G4xL9ONRSigGamXeTxsbd6z0JosZHc9fWP3/uQwCqPDXe8dTdNy7VEzJKABfC3gy6946NdS82wziaORhqCEWqw7SEgZ9LrQiTRS6ScT4f64R0f20Yh6WsilvdhtIiQNNj0p+fG2s/rvGhjkZj272GtfmuaJBdD93XJXT1UT6pcpyI7v/n3ePvvfdefuqnforXvOY1vPGNbwTgV3/1V/nZn/1ZHnjggavSwCsGv4gPDuDMsI7spDraSxPkgAluSSTO5dw4oR3UJQpmCAsiweLmcTig1vtOZaUF6os6NdhYaGcWDzShjYlpuhSH9/hjtElruN4l1KdU95U1tK4nRPHsUsWy+3OPH0xeahImtOwbxlQlwNLK+tQUdNob6WBcakaIbtpq4Ws+x38eoJfX+EivVY1Lx9We107xxN1jDSHzv/+7CFxrwKRgRrbCldQTFF4JxIgjnucuzGSoXhja2uWtuvHLan7rRrPBDvNoqPRkLMyUSllUYDemyrzd/AvuqL7ZjeOW4BmopvtiYTWvxbMckvdW9sgDJryn5+w7bv3k4koZRu/w556pj18/g+Ct1F23vWA5js79764E2WYKGM9QNN3jE0eR0gbNYjzV2NKonzVLuwFeth8ebHORl9mNFTEgMU/DtED6qZajixZDHxj2MoqNxiN8Oy+D6RZxY+pj2JvCuneXf/9j8NA5eOML1V33xv06cN7F3PWjEnzr2d59t5OiCOadeH0bAzj60CulqlccDcvCCrwYOcdu72LhVA4vWIFL49nr3GBu+Z6WjlnAFiXSd2TCGJ6fwLe7y34UeF4C0kkQn5g3El6bi30mnt39TYB7gW+EUCXCu8hnxjGobfFg1PFKfMmAOaEpUp/D8MOkdDHt+jAfb2v7afAiCHhelBbWSrm650jEcDMulVkEuG4FLuTIVMMI+s61M5REK73/3nxoo+8GHauapd0b7qWxvkbO7TlRXkb6XWRUR/9jEZaoSrp6pLWEsBZZbpmUSMdZ2t3gD41hcs0yZm0Mk6Lqm9gqpn0tV2Yozh0Sd3qQqgAUvbv6k1pjvdBeWMFMSsw4JxkXqkgeFdhhCZNC52+btLcUl3SuJAjsUgrnxDK2wp6vnSZ59kBlTiC9pk9yMif1STpj5Zr3p94CvMALgtF4GrpOycP5dY01jOgv16xoTMm4nBXYI6MT0dvjloxE2I+wJtUUiACXCmS/htyEkmFRqdNSmE2QHJomta76/SwbqJIIbbtAFW8Ns67kK13YmNYbHJTDVf6TZt+8Fbpau1IJkP6m9dxlVY4WXz+dKT+m7vFS4y07OANQdJ2AJrHrJ7ObtLWPBgZ9WC2rflUEYZZGNI6l66PH7X1R78Zw3arA7qhcnzFgkvq6sWgyPv/+pqdGG4R3CFJIzZ2voG7fmalaZai5yAOVkjSv57CI6dam0BbqiGio47WdKtQRAo8TrHe2cYxeGd5aWOhoSF9q6q3xSuF5c3SlhrnLhYWF9kceeYSf//mf59FHH6019tnPfjZf/OIX+djHPnZVGni5sHvfDZWGzwDXdODserVhYo2XABdLWB6EeByMusYvQ2DKKKISZlLfu95dx1vB1O1TqkA90zLpSYYtZSYuOBYKYmhjXrwwFyfval1kARdW7iF2WCL7EqRQxLIumjsmZMh2VjuIre6QeotjDkmWkKCx8AIsuYaZbgK5R/iNjsTIqwnTUutCZqlu9OiSMO41AqLQF0UqNYuszzky8Zbi5nulQvKN5klpNd7R1IX20ygtMAmYSRl5JbR5E+wstNVp/+RHP7X16+ILYiqYW2YIkAfv2raCMm9I7daxYzbiW0391i2hTTmxRKPkW/S3gBd1iwsh2ufjazqAu7uVsN4sReOPmbM6TnXd5KLuafG+9+2tuYgxb++JCr5eoIwF9lhw9/XC84qotj0vtrTHY+f3bCbiEmopQyMbwK5uNdixwO6PL94Hpwq4MK67xlupYttjiBkIL+yOAJfQrKrnqoeShFpRtMjKvsh2uf1PPxXdKlV99UlDWPfjOC7gnQ9pnOg/fCnsHyi129PTAYwZgTBW7qOtlo2/IC1KjHdtcO6BQchMdOcPChsyGM8zZGwOUm+XP45KXfzP2w2rkYoodv3baiCbeC7cKtiy0Nhnf1miSpcBhkOJ+y5LNZO1e8y8vVhzi5dKaL8fFYKvp56ALnaR3wzafg5W8HqXqmzpTaZtUreU+Zhb28mQwgbluohwHrhWtBLDCKU5tR0pbhzGVgUVY6CbIfu7cGIda3UfBoW5lVCvfbM+fvQjn5oR2EH5kNn4ymaWfNF1vxRds5KFZKJumzKUKoGoxxEGnZ+hu0YAO51qMtKohSNjSHoZ7OqBj2t3E228xeLYOhxK1GOu6b5r0NjTUZ2S+bY0aUmGPtdOCsykwHjPmnGJjN0+HzmvpXwhChGgEGddF4sV7xpveawUXnlmDWxJcv1uUmNIE0Oyu0eWCsnJiI+cESg2B+/ObbzGpVShMbUC62M40EdDERJVvPRSdWk7tVbnXRvKvTY6ISJMRThkNXGsJj91v21MkF3desz5wOh4ovXL+0KwZPu2h8sdIvC8WA+wtkBS553XRDV+7h2Nvf1zd8HuVJPD+hv8PRFea/YLohrm7gcj0Lfi8j67e0YWGWjFlJBHauAqmMTPEuc9Gj2vI8rfRE9zNLxABg5/xIK671esbAHY14O1euK7ipmp5q2pmIjD33w+ga5U7v8iwFqOLPXc2Ho+hoqmp0bz9/jSb23W9tDnegPCVBRW8X40B7GvmQ/L9W0Q97248REINd4ZxbTfHbdQ1odwsdhj0rf9mAt1jMEbW8Yt73IDLY2vmJRIqvm46kYQw8BcvcpAVwILC+1ve9vbmE6n7NlTH6hv/3bVyX/xi1/c0YZdKZTltJ6Y4dCymkl9bdvYLVJALk2RA0rtvKA2xpW08kqswtaVxh6pUcW8jmNkZQWSpL5IoIprTxKkkOByTvTsIJg2JCDTct6nsua3Ie+mpilcOy6RpQGSW0pgDWEvlaCdRLggxu1egE8nYFy5sBxloE46ZGC6KabQFxoiJO416fHKjzF8USpj1U0qS3B0b6uMKV472iBgjoOuMqBHSLNt5/n7Ba3R3p0d14sY9rpBScqi8j6Qxma6gp09IwS740yJDYEl70636MMlOslthKki6TkmPktdjdt0LxQXoJpL5R4Ps3zZVnJ7fE189EJ73NTmctkU5mUa/cIpHbzHzlWMZOy2599nUKZpQKj5qUyCJ0l1JVScT2Jm7/mTQlTwja3YudXs5X98jx69tOPbHCUZovFc/776eqv2Wlci/tEzxwPv5uqUkj4LmCfygwyeswT3X4qIY9Te4IZaja3HLQKatEqAvpZ8y+I4P4BlkEkRmMnaFpStme1du6JaXVYqBUezDntuNTb/7V/Sa//Bi7W8UCfR9vhSQxvT2rgpMyShe+Gzg2xYqHdNS9uMm4heWdZzi8jsmtgU4jj2WOF0ekM3xqEunG8pIyTRcTOI74naZ8eilvTokvPueMkxYZJpeIWNlL7NTopokjpf6s0L7Bb4AnXX+CCwm/ml3qCif224okfdCi6uPbVhiD8MnaUs+skC0jOquKBaimcR9gssiSZ1pElb/JlzmRWUb+C6fXAiV28TJ7Ab5z4eYr83QY67HD5vXtIMBQh146UhuI9LWK7yE0i3q5Zo97OvNbJiCYlTU1GctmzhIpXHhqxPkWVTNSY1TBND1xi4dh/mWO7cd6Wyslvg+ASO7K6EiSgECVBLe5wwyka41fUlCO0idHOLnVrMtMRMNWknEy+0R4q7SamxzAuAiDhPe80ab53ALqXwsMA3PT6FGw6TJglJajQRnUlIr10iORZ5uzQt31uBV2wE70dVCB+8OFQNxXKvws+OBsuRZTgx3fSd8Z4Mc+3m9RorGiEooUggcn6M7O3WLaMd5QnBWaBjpbyfk0hQj+erC5DnquQPP8au29GKTgy7lwZaFm3UiPmOcFSzP/44ISo16xZ/JvU8LnLJIvvViT70sduBPBLaRfMg9fwadl/3aHhM+eOkrMJO/MU14b3BQy13tJSqnyui4ybI2vN4XT/Wosuh1r/RWGvB+6988ql4r127W/eiZ2KD8Au1HAwxLo+hFDCVSsMnx/Oekj3T4EdNo2eeh0ypys8137PZlgmhjo22i8DxSxqOFIcE+DGY967wVaQMcnH7E5Sf1anTjnTN5gm+F9jtVwUWFtrvuecejDG86U1vqn1/ww03AHDmzJmdbdkVwsbqyboGbJer5XdmGCEJKqbz/BjZ1fEoDTGGVaLYmQzIyypBG1Kr2ZyKClVDf797vqROYwoVcsR9SBNXM90hQXfaKpg2vmsyL9AiPIRFVkcYVTKGAtk1gEKt7AYviFVxV00hrHIFV/cuk6U8ZuHPHIJ+C/CYgEkTzLSKAU6aCCKGuMFFobslM5HQXt0bCEc8DgIpMuPGGMxek4IZaLNOhdcINrdIz7lPGk1MOEXj/vcbQ5IlGFsGIU77GD37CiHuX2BgmNX8vepbX7H1w+a1pyypxWaEF1Yrz/Y7sFHWkBUiDHF1XOe0eytoCvj+vj6blHzb4pkh2VaTsXnkDDzoVsctx+HRMxVuiBC+QKWV7yUw0drbRmbd8SoCPxvTPtNenxjPagKYohQmD59m+K7jDL9UMrn5GOVDp1wpHoI2eV6/c6oETWGdOGJm0Gy+pV/fG1M108V9BZU04yz6CfAN++BLp+vCuj/P7Xx3M9AkegbIEhf7FjXYI6myrAQrcUMZhMDNZ/c7Xv3K6kMhLq41Eti9EuTmu+E/PQj7l+H1N2pymm5aWf2MUY5vdTIjNLim1Ubct7dTFJq/A6NEs9Y/ZUwGha6XWhI62Xrd1l5WVmMb1vDZKRwYwN6BLjavePYPXsTVsGUxibi8HWOQXkpcmvSMMXRNJBRnicYtls4iPYPP9Vm5UNW+lopf/AKzpd4yUyWgSzaRZNtoHmzmHh+3L+rwNHJvdbTYAraTqAKbwBJwEfVUXsJVJSGaz5h5G+YqhHokdiSDkxcoxFnaSxVojbVVAjLm48lXv/oVrX1tTboXT4H/MCq1pJq3fC0lyDQP4zJCeZdlf081YOyJ3mERFcL6Dh86AXxsXOjLkQRz8rziHLdWfVk7jq3C0aWKofYQJi6Fda8I9i9sx3ZpKXTzkiIvMbnVPDyTUv9ioT3KYbGI26oFikKzxWsCOnWTFxFOFiVHnzhN8tyei6QyJMbour12BXN868RwbWDci4PyxgnSHREOrxUUu5cJSehioffIMpwatr+T2dwg/jhG53qfKH9XrV+BjQmyu6IiAkgngUKVKaXEU1ct+jq9qWhiF1zJT2aEt0AtI83+t7/spapAPd+kKRL4srY+CbpGAz22Wnoww1mi/TNqFVPc/V0Tyht75dwEoedop5+jXtycoOxAPda6kV0+3sRNrz2D1oi/FHFsDXw9UwfeHSuhnZCwsGPV+yFM4voUdkXvNChNj63uR/twfLUak1gp7AXgZtuo+ktOSMSsHw19P7dG5Z1x/bZq3ULFR67gePBoUiW6aR74NjfXfF7CGavhSMZUdN2/axxVJIjeFT6GZSJaOSsxWNHEc3gWyWyd4PvpgoWF9vX1dQCe+9zn1r6fTnWJDYfDmXuedojdXk0CR7pwxi0zn4FQlEDJ+gjZp8TXM+4jYNntTJOCiQJdgmXcEy0qJiJMbknd0u4WRZj0TDO7OH1g+CEWYtqgSdC90N5e/qayiLmP1e9rBbKniwVWC8seqcdn+72fRCs9c4g6cUn5kjThTtGM0R002/CnRbVViZXwDBMaRLUBZxqLFrvvOEv7JMqkLY1+R4ITKBKfRNcKqPUvQ2tutzDoYUAa7RDAloL0KqYTA2dFGU0NmTAkZZSIDiLrB1cFmjHtbQRtU2heWEgVfNwUsjwsd7Dj0u0TwviMiFws245b+MjHuoH43nY30Mqba8tke/HPVjNZT+89xcjAxOj42btPzRBZaXRA0gxyGxiBTvTs+NKYmW5lMoI5Uy07Y1GPlrUHz7CWwloX1jJYu/90reZ0k5jFS2tKpEz0fxGzk+G92QUZFtBvMC8hSNNEpd8MvHCvLvKb74Gvnq4L7i2EvspcLGrFdOaPEWa2VJPXtkfj5Jq4lZdcfRy8u37swu8F9nceh8fdha9cVne5msCO9nNPBquOHEeKCOWPHIMWFpweemVB1k0CQW+udzLDUmlDFEFcVijwWluBL8XjrXF+kM5O4fASLLtRXWt4CYR7FnhHBKG/FqyLRbWqjuY88GzgrGuCuLI/IYO86xfRMZR6k3rm+L8EnkT3Siy0xzXat4I2fOFLvtXpXQMNVBsR8qJyj3cCkTUgPRXafUjJRfeAg6I0bcM/x41V5ZElSJFXLrPGIEdXYFiQbkzUUumVfBIJa5v0se0I9aRPFTmOrOz+b2RDXLEYtOTVmhfahQ2ruMx7hwULo2jCsrVo/GRc1pU5xjBMEjJjMEd2aUjhOK8E0FJ0DR+bwLUOGQSloJ88A/1OhDSrRdtqtCiFbqnCNYULiZmW8NBpeO898OWTlbeNz7+xgLG9tEJZWM0cXwq2BGst61Y4cmwN0+2QHFxWt/hM3eNTA9nRHhzbxFV9sz0oqrwJce3uegNcd04o9u/Sy1x8snjh/Uiv3T0egmYs3gNhKTjDyx5E3b3d0IgVZB1kT68SsAA6SRBqcxyv16R54TsJR1CrcDIqwmYOYaZEtBXqm3ivS6RRVEptiMYxGJeqvoHSvwH1H0Icun/G+gRZyWr8tvSSmgEC9PW1RNBAz/o67dGLxSG3pU7M5ET9ih7q1/ruFIaT+rzF+KhOIsIxCO3+0aL5g8p4MIZTWPL5AwhHDC7WyMC1S+qh4RSGoQ2xxboFwrBOpXI5N4YxThnvulfzdApyU2Sg9Eh7kFXVImLFSg1Rt0Cbx6SIhjoOcCF/Ub+N0cR3M5Up6gNdW1PWQscwNqZKlO/6V6tD75sUNe3pgoWFdu8W/+ijj9a+/9CHPgTA/v37d7BZVw6pL5HjGVKAw8twJo8kACoN6TkLu7vYaCOOUSHCAKQppnTu8Q1E5qEvUsU0gsZUu3jHsD6j50svBdsUfvQBsRWf8Fv751hon0ECjY3hrewWkEmO7NIHjacFuxrP9YnVjDFVxnwROkBSWDILWZbwXUmVwX4g8B0GMlKSiQ3MWetCq+0eqTrRSVWYnLZQ3zmIZkDsneZOpoLsT1SgqA1KGIzZ9/uxKS02q9wMLXABOOjHqGMw00pYD/rX5jsuA9qYNlDC5NUY/vHnz11sNn8Waoshglw0d0DTrQsqYXbQgYmNGGLFelNxZYNa2ru5uN5+rT/67PGh6S2EbVNwbbKifOEasHrTtaynsJrCpQw2vvmIZuGPsz5CVJbRqLWq1DVtcJYEqXvXGNqTQNbbo42xwNAK61bYEFj/hmvYSNWrYCOB9VdcwwYwctf63rYR9biGa/wer5XPcJYyASYgy73Kg6CZNCdNKhf5Yxf0+yeAPzoGD52qiLyFUC/VDXBt+06chQ8oTaQLMgaDgcxoMreIWRG3niJno7lw5uzF2njOEPMvnqzfcN9pFdY7iQrucb9XXIIgiZ7n++S+8+2zroPdoiTrRljMkxXnKkiSkLhEdHFXGpHQc0GajH+Mm85swEGXk2AXLhldYwxgC05CZvsK2NIlfOqmLgMwDA0UBo5SMWXWK5x9mdDao92eYzYB3T2A9837NeBBqhj22EV+M4jRUnPvzSiqpRrzGcXw0EZCO1W+kp5ByqpfF6xwQNSbrC84xV01j9XaBRlFLrOpgSyDfUsMTo/peaG9pJrPLVyoPT6PlRSgFv8mAxlwcozXxzYkxhPQ7M/OeirARIRl1wHPy3gatkfEKSi0rTICWfHP0vkfJtAzRsPi9ncxx3xmcyeMnnMzcniJWmnNGFzt7CCs1SevAhESa1kqXWZw62KyHzsLtzwB9+TIHz6peKqZg2MLUKFdk8/ZqOTb1wT+2pNDkucdwpiEJE1IkoTEaMhPcnSXJoYbFbMCu4+7nQdClLjPzYFbo9dfXCc/UHmBxIKIHFlWi3Qc2ilEAnu0NqMlPxFYFg2F2AgKJFSgNSDLcciU0URtjoHN0VxLPulcvAfdaqitz66BpMihm2obgsBexTjHivKzl1ZDdZqghPQNhwoXR1/5YyiHJs6DU5Q+e5qnSuQxLEd8DaiXTfC6VA+F0iuxfB8d/Qwt8kvS5UsQ3+b4uTXjoP/eaKI970nQJqw2l7s7euuuz4nhM9oHJ6zSahLp3ZHSJVbEe77moFOcnRlVi6MpvPsXR4MdPk6tyijukrGpPPwAOsZQjWY0HkGAd9DtQAhRZXGYF+r45KRuZY+Fi/hdMT0Mwy/1r5ylfSy1yCmlL8ZsnSvsaYCFhfZXvepVAPybf/Nvwnc///M/z+/8zu9gjAm/P1PgwDUvqoiF30iH+nBKPQZirZddd3q1PZqNURKDTdTa4Cu2JUmi7m0ww0Q4dphlonJVAlII0q2EdqgjVTqV0E7tmRWibEITWRqqSWwS9XAevTQYcbyVoJcgXRhPCpc5Xl344sRzVWI6fVcm0MlVaO8lhpclhn8J/A/G8PMGXpoYeomhIyUdFrOkhEaXqEtrJ9H49vC7VGMk9XFQpEawlFRjXUK/rwmyauMwB1u63yxQ5oKkqRIdd98FY9jrGmE6KWZSjU8c93+l0GaBBlc/tHHtB2/90GIPbfQRUKtEugkKMCBLqbqAEjHDTjk1I7Sb7Y3B7B6qx7THzV4YUYouoQ3RaggbwMaz97M2gPXnGzb+p2ex/tzDbKBEKDScBmJezmCqeo14j3mLtr/VC89zkbr7YWI1fGOECubD6/ex0YP1PbDxuusZPfsgQ9Hfgzuut2Q3ntsutFfMQBLRYy4JLEWpLv1gxwlrvDXsnlP1Z951MiLsEfGMaaG3OuaCdDphLEMuEP/mbkJSVIKRuH/xuG0G77jFr3NpJ+YvPly/4ZuvVStB31nafZ/BlRoqaMMBFWqoE/deDlk3dX0ys54kScpSlD2+pmzaVKMWvaQpuPuBOjuGA27Gd/fgYlTbOL5/q9c0FpIAdlwqA5/5Ws3KZ/aAo8ZwIXq09NCqGi0MEA7/evdyf/7hRhM+TFTmDaWviahbsZTtGfDbBHaoV26Y2Xtt+G6IZo93Twihnp0EKYvgZXGGSjm7hNSTC0p97bKBEz4ipH10L8vHJ3SFwHR7JtkLbfPglls+1IpDvUdPbU011ply1poh3ytgbC8LuSRAPX2WohtC6DTqWbrh+zrVdUG/EyylhTEURmk7xmCu2w/HRzXrK8ddVuc0qSp0+HHxe6bvOALvSSdSN4RECgVEE55avxdE4CsuFNMj5c+fCM9ZxONERAX2SnC3yquJcGpc8OwnLsJz+06naVSvmbhkdL1UM/Y9uVa9rylIz4HgSeD2uKkmk2surTHco2vTeILjhcCVjjJRJ9tKv1XJ5dwMhONIhGURLfkW1q4gq1Nkn86hxCFTvSwomApiS299TD0PhhBc/AdAkheudGQ9ea/HK/HCfvuf/YWuhyVgrRGq5F8X83LR0SeiC0tLoOvu8ytdhoWrGe8LFoP0DVJGXpdod9OGdqAjTncR1hwa/gXqjQAtgrrf/xEe2O3ors/3Ypt9bFIadzlOOA77Sqc/D3hsiiRozXio5tDTOIOj6Qkc7Wr5RU83fZ/iEoW1yYpaU4oadXx/iPhcY2qlpucyraDrdxQt0qZHRQuIF1SszO6xJ9ZcFSDf34iHnfcuaSiBYh64kzAxdTnMGE20d7mhmlcTFhba3/CGN9Dtdjl16lRgWO666y5EhG63y+tf//qr1sjLgdPH7taTWMN3uOu0Th7xoZN5cYzsdos/xBPphj5gdAJJUo1NI2bg6wL0gCoRnaDPD8wQ1BCXfpfMBE20rfkY2gSd8G6iRSX1c78hlalyzPLIqlIhSxlObUCElbAuQQsfv6sL9Kcl/cLSM1rm7aaO4V9k8MpMP3dT6E1K+uJci0NDqr7OqFI9wes6S3tZzl7j+x1/Fk1E4pPsBKSfl8ieroYpIO07rfmdw2W2QLP7+6Yaw3Fgj7OspVmqMf1SJaLzDMdO7Og2RrUWAuDgx3/6da3d2BT8xbngM1/rSyJC5F86SJHhtHq+W0sT8ckXZaadiwjugeZF94GLIW00s4l/54LD82OhEpCd9Wi0kjH87uczvOEAQ9SaOBa3/QxVwhyc5jrNkBEhUU2tIVGbvTg8YwULy0AorGibJBLeRznDpYzRdXsZPesAU5RRGANTK5sa5KZUirAw1n6PisZIBll7PFWXPojcFd1JLLCnBm46Un/RTdfoMRYmfef8wY05Q2CPsnnqHq/P9fxM1k3JXI6KONTB8+FbLeD/9Z/oOm+N+RaBZedZ9dIE3nAdvOiIhth0kjqV80zw6nimb5VOz/XPNTR3CUizTlZ7jCHiF5KE3aXVpGXx2Pi+bt49KsQTjbUVlwkf9RID2NfXWu3xpoiv3/QV9d8twKTEplWVDPUoMuwxatTXsqeO6e0AhSazavJ3nsEO+NL9/a1GE76PKDJDhDR3Mcmj3P1pOS9pWEv9Oo/xhXdfnGGoGuHSNeZ7ULm3WuPa2000h4m7fBU44D6EHBtubur5CnTOpO/ccP04HUnZffoCmbhYdishs3o4toQPGWP4mZ95XSvuj70K9P2CF8K0M+44yYMFU0Ct2ht+r6kicyWiUcZW3kO7ENb9nhxNkYwQFoHREDibGHVWMMCRFPPkBdcvN0YnxnB0t+9QhV98RzyjDVXZNz+g8cKJIHNLW/zieuEhvcUvkZuO1BVdW+wDa51rvBPYy0JzgIgVOk+uM967TLLSUyE9NSRpQpZ491kDR/doCED8vvC3iZXfjZNIJbirdJ3TncJ478Dh6EqYFi+UXNuHU40EeFCFBETD5o8jq27rAxGtCuB37obVBMTOhT3QhY6um8KVyM2ih9WUKS42Jqb9qUCWA71OJKhXsflNIfd/fc0P6ve7O6pAJZq3aH22zeSYiPcQPXZRZXUBmvV8CuzuB4FaQPnKaRlegSjN7cVvEn124fZ3GNNRAT1UAZDM7t2awOx/HziBd73dkyDuXMzmhvA3qbKMZCKhDJ2sTWFXUildwng77Bjvuev2wIlRRFskEt5dMroWRakAMrFgqph2C3QiTXyz3G0830I0Dv2OKhNr9CIahzYIigWhRuPEwpNDuK7fPubz3uXpcvR4ACmATlpVJIjCOnqeTjSavEMs/mXDwkL7DTfcwJve9Cauv/76QABEhOuvv55f+7VfCwnpnlHQSDTF4RVnyirDAhCAizl2Vz9adPp3EVMxCUmCcTSmJsRGCyKjrmiVXIJmLk7yE+5OE5i2T0Kb1bJNoG8KOzMMTKONfo+KCDIBO+giaUaeW45A0Jp7hURS66tHIDCYWgYIS8CScX+JtmMALCXC0rigL7QkoWt89r/7ki2e2Z7WXWoqbXxFLPy9cc3IwCyPC2SpW392m5YvQlqBDufqJRHP3TngqF9OWaq4orQu7n9OH3cQmnUxW+e6DaL5r11cWM2rEEPgjh0xWEpqmX49GVsXn8Cloehhdt3OgzbmdAl1aQ/Npr2v86BAheORI8hj0XI3GwIb3TRYsidojFaofdrUFPc6kNvKqi2a9TlO+AaVNWKuoiEOv7aiCc9FGK1OWO3CF3rCg6UK9bkTtnMIWbrb+hwnooMIH7l9m0llcWCkCWsCY9YkclB5JD3vEPyIE9z/3jXwnEMt7p+Ev1oW1lEJiTJsw3g43Um/m5GVEW/ubgy+NC2MQysIlRuqbxfAmalmk/2hb4DnH6762HHrO7ZG7E7VutN8d6yNj5ozdXGeXWd1aMpbBgNpQmLrbpXx47fsnW3pk4gmTs1Q66QxWmprdVK/LjA+m9Rqj79211sRrZIxiPaYUaH1ILA7gVVT3S6dBOuycwf02UCnAX+671+GGiZfBPw74BW4aSgtyaTAjEpXssv9DbX+NiPNEi5SueI28cVMDXU3ZhKPiT96/N+rdo4FLevZTZQWomv6gqAeVeISTTaGNCh1nKVYBj6Ls2OiD62Q5pYDl+LkYVK5yW8iVLbhRGhkj48VQ9TXKusFDDRpoBiDLHX0dzdvU3FJvMQL6xLwhw+PG4KWVAvuxQYSGDkhoesSXiVHV+AimLUJmhBMNPHV0X6UFMfU3eP95llGlTQRXYoFwwBWk8xa73UkAkf3Ic5VQ15/FJ57qBpnNcnP3wcobi1ctnjNGq8u8hMRbvjKJZIX7iExKqynCaSpi3zwOOToEjy5Wn9ndD4vGV3Ih+AVhB4RnhtxYaVHkThBLKUSyLwAdO2uutAOAR+L2GrdRzAVYSA6r2JFl4CAXLKwz9f4rjaWpAmkULhSp93m3Lj5cXfp0V2y4r0iu1GJMBMd/SaGOgJd6cHanFClSPkWT+cIL9RW7cjcHisE2JhoLqPYyzUxSDdVBVb0zDGa8C30SdSzI/LxRBBkamHF1MfYI6U2xidxX6ygCuIYt0f7tknjhaiknWuoseqyH+LsxxZ6vSpHlt9nXhsaW0SO9uDEavWy4KUmdWu7b1BtrC10kzCPuTGVh587r+Xz8e2J+2RQJeI4b3S02fMGNL1X/PnFiTJ5R1bq4+/fNWh5V4Q7/LyL/1wCacIEVUgY/xxT5Q2ax9ttSdOvEizkuezhG77hG/jDP/xDjh07xoULF9i3bx/XXXfd1WrblUPMoCZGF08fLaHznD342mtyKYcDg0pAc9kIxvx/ufvzmOu287AP+z177zO90zfd786cJ1EiRUeiJ8mOrShOlbZKncmOo0hqYiMBUqe1HcBAYSBAYRStjcJDjQR1E6FIasey4zgpVMeW41mSHTmRRFKUZIoUSZF3vt/8Tuecvfd6+sezhmftc97vfiTvpZQu4H33GfbZa3rWMw9wnNVKjVlWobKq+vN6opHgJaAICl0ppZMZo3TtWpreHVB/vaLtE9zBCPGViejUjUljxuA+ukUuOnOLGjSWtdKMDHfcvrW8mG9HGqxcyVaEWAksJxpaAPOLoQgXV0G8n28S0rsotE85MkfQdxg49cxVfLEZ4SjVbhzNynJV35Q1CmAJl2KsYrrtPnAt0Z2usRCCIdAsUvz/Fc/9Gpufmwh5P3zJt68Zgey7odeKyE61QQqwbK0WMThGw/DmIXv2Q3Zhc1+7ao4+mePXgyQHtRjUAYOHDbAelcsZ/PWm4TcG5ds0ZpsVl7dIJs+fN+jphhFvac+Odvm2ZGm/UmEWUsU3jVXdTDB/5WLkc+89YTPv+DtB+YOj8gkSX29MQ6OO8XHPrerU5i+LI2CHlqQ15xtYRsvXNJNzReDj6w89DcvX4Gi1l9GoOA4c47EZYDHPazGTVMs8LmeCs340l7tQ12lX9IngZidZW1xj7mysrCdQMspSM4tprscxEZ237iXC7vY2vR63A9u2xOmngabSNwDMWtqQlBAOkp4UF3hLCBTt792NeYhFwYnrHXzlofudluvj+tqjtAtA6MdcJSMxWa+JCe2HOAWaKjQtOmp2fa+e64cymboCPwx8jLgdQ7D8BqMiKYFYUsQkIS/52Ivh2gpfxNcL3iL/hV+PdRIqIiPfCBoiLVx0OXO4ItwBfoOaMLuM7u2D1nRaAb2MLrPJmy4SS2mFB0+f8MzdHm5Fi2T0yiKolUKtDnDdpjgxzXXqSZfn7CWavs/BmQpmNBDQdQ+Ljl6Vk/RcR+dR84hbKpyqcrIZ0ZnBXcJBl5i7OC3IINC1yNNzeOmC5nhpe/j6AM/HLOg+PNFb2wEO27IncfjZcuuulhmcbGVEMaa8a+GGwHue2sVRSbl4BUIZkmt8TkJngvtrp2teeHhO9+4XkMYEdukaGmloG6VJ7v7Pr+C/fzVqZKX0n8slXNG58xJKJfIE4KFy7+YRQ4otz8JYpDYNlkT5f7hX44eI40OYoLIIGGs11/hVXMcLNfZXLy/RE3MGrpS5I7AUwnaMdMSeU2qyp33aFeJPNgNBoGktFMnnTtG08QkOPDyc7A9VMtq5X3G9oSjS08RT2cJegbM+8n1SPGfBFJ9jGTMYr7AgeorEXZtptLR7gbYPFs46FdShZnqmdOd4ZkoJt1YVXW13+YZtnl+5d6EpER2WU+FmEimpz5Z3jxeB5w7hjbEYaLzCJz+wwGVFBfsxG71UooLDgfWC2rMqz8HBLgCrBl5NeaUcoObl2ON5lBKkVAoqhZfPrf68r3zj26qFl5PQPiEI6W1ScCVvrq4t3htuK9MKXwInfn7u+mvRnsjSvt1u+ef+uX+O7/3e7+XLX/4yL7zwAh/72Md+XQvs15/6QA3E6RDdXsIbxbVJFfT+Bj1euA2x35xjlj8BZB5LmDlC1wigmkt9LTArhSesKiWZGfn58aE0QMj02yeh29E4p3smtC9dK0uz74dC1KvzctlbXEwr5kI3kmu025K5cm3Vw+J1DHSdxccdqwH1idj1GNOPtI9LJLdPE56ShIgYgtywe6+WrUzzTyW5NnHd8lBHSzykDWa92cvxVAuViZ4Oyhjr76b4wDfF1qgBq66h0GxDWaPpHL+BJntez9Lj3Xf//X/7d762B/uxDZqZ2KL9dlhLxKxIZymjdrFEWkx7Pb7p9a2ad3VNf6ka99Xu5o9pGkptaDWXx17hi33gf3jfCX9v0fBngV+MgnRQZYy8iqb5xgHpCtCBgV1XdIM5reZwVT4JWzONjj22fgH44hkMnXAwDpy38FOh8HtKnah9Ou+emucvHgD2N4vuiwFgvbUsujhXyGk83hRH3lpYxnKorb5JkKqIbgKIHj2OTKbAygGBAMu2YRRgO2QhPT/jCeob/5W/9nf2J2tL43vj3OqY5yBdqefls1efLE27qu73kJ9fCUIK/TawnSUruz1zmleEebNTArFypX6rts+9N2CJU5MyAkxof+gyElf3P+aQTHBf3sJe0XlXXGUxGnZNhOvxfXKRD01b5VmYwrr37s/vsfJpN4heW8NIux2QbUC2gSbV2L4cTIhLf9uQM4VLZK6meMVn981TVI/eyx6ydrRFyvgUCPOonI3W6IcKT8f+UpzjOq+bOw+XY7lhIozce+aIm6/HiMiIA5Kwpo+xxv43f+3v7MWnVXm7ROcSrcubqSbQrlqbW2NUXI/I9O+hQrKxJu8w0eIHeIxyqaBbSqIyQEXoJVW8EiQJBe+6jrxksdby+pmdvxuLsiY+rt2fwfnMEgPG9alaoitxTqncVT5P51sTCt6I7r1THDUFTv/oMTBk1/iUhM6AJnxxw+vvuo7MO4tj7yxTftNB11rZN0TgmXge7zrL97Sc1rTfqASyWHYt+6XA/TV3bizMtbsx/jO7x6d1fvbAhK/K48lea6QtbukMPBVm0Uo7R3MyOqvR3mR6UJVoazvCdqTV3dC1KteSeuUKdJuBfi71GU3oqBJw7fJX/t5P2uujrng9TfB7ct2e0sGeKFBlWlRKnfYorBVdTTxnIRth6EM2QATq7PGi0TiSeebY6wZTYqVxTAlAxZS6746XRSkxwdVTPWpqKfytCSnxtTKP/PgAcN6ji+jUP3VFTzgo4aPr8918CFNh2A/CD2YzlsSdYOfffZ1e52R0Kf26Unkss2otbCe1Kf89aXamQz3WhLBfujSX/3QWE37JfTX7+3Jv81ST11grDEIuZ5daF/dxagydvv5mtycS2ufzOcfH5jz1/PPPv6MDerva5vJBUZv4kiPPHJlVJgKBJea4RG92BYHFWy/iRgogrWXWzLgnIaz0HjvsIR92TFMlzd7zAMAcmiFkYcy6dohx0h4nHE1r1nrknZqviawXA5p4QengsmTKr2rRU5QTVduqeR9g2X/nmCAxE7O0S9dYTPq+5h/lCe7W1Q2f71FB7vt9fD1TLeXZSAd/ROdibn6pduO+51F/ZZ4Iikqbn3mBre/teLsgyAykH3PSvqly4e1uCU58Bvn3fPDdby3QXrWOg+4kGvHmUQU4nNu0qhhTq9OeLNB7aPJbtqtgOfHAKaHjvr+rWuJjnBciCvzsdmDZ93RNw4XA30/3poQ5XliPDD1z4HygB2ZJEojAMK0ekcox+TOn6QWOAQFjPRW+5eGWN45nhGHkcITvFjJRv4qYe6ZlVn2hZfIYkybAMJq/th4u6v1NVy/MNk4SfeoA7rkqG5Xvs2Y4ryx8Z1s0JsUoSgWJXQkLgc1crFa2V465xz6ufeRD764Yup0xvbm2DOt5Lmm+JVt4nt9xvC9VlXDPsn2rr0Mf2LRtecx0KQHahnkwRjn+NF61PO+KluMKp662YJnjb7n9O1mapWWicHgrYaUaVLxfgbBRtK1zd9wXs7TPMZfBR2lOXYMm/tMx07iu01963sN4y01Vmm2g2Y402wDxNdtgAuVmT83tSQmvfbiiL0MoV3Xux+nTdR9rdZKVc0HExtlF62A/ompl7q5jzFGy6K0pMJqv2wEOS8x3spKqCK/f7nj61QdO0UQ524/JMv7hD71771yvTLrn9wEMcS7aLLAoWAm49YhiSfUO3Nok1/iE0w7VwIsL0FgqMj0/edAkGiEC8vwcvvLI+JZX1vDCys5c6/CLP4OpHdQJo6YldD09XSg5wSOoZYe+mebrSjdm4Lt6fcOohMFqeieBfQxKUOXWl95k/a4D0/c1YvXZO2EmJrA3QkzG0FiyvVcilZpm5N4X1h73X9z4MpW9c8rFibBJXFdUPOYcS2C5LMDCZRLOc4qCqdAOpmhKe32ssCbCyuXGhGViH0lRLwJdR9iakFjtC2V/Kqt7/Py4D/RdChMh09KkIAMqWvORd79gPz7pHh+qtAd3rilKax++uVCztOsjwBnh8hhiQlLdlpzngxJLGuePmKE1XlHQywAHbfXMak54eHefHy8sZMVPIr2+QnG3JWaOT/eqWf+Txw+XG/SkzkVU5Q6olPGNeYa8ellg1Lud+0SzkyHq2vjx9M1ACsuzs39laKCka3yRBOnJnHK/02VIVvZE43I4nFr4zQuT8Bvv0pfc471S23VbzXEI0MA27lU2nkbcBsUYum+4+3fvnW9PHNP+3d/93QD8/M///Ds2mLezXZ7f3RXYG8zVMGWQj0EzeqeH41LzMIhtzhmFzkNrSWXwCIzyXs1duNLKqOb089ONVjChfQzGZDsISATrrQR3r9DbW/4mPkehMGkJlreBMDdNelh0sIbrUXBIjKkR8yvcVlPm8R3Tf4J2qQW9fUR0uii9s1wkd9pQnzjZQzAkCiolPjZe+tEYsoMWNqH6zseBToeUYht1VpD0zwbhUoSX1Q51AzQdSB8K4XgbT/E+oTYJap6gfPhjH3prJHLV2u+LaU+dJcE9JTVaG+FJhHRLVPK4Z389gvsUfBIhmDKo09d7m1KspfEDBb5zHDlfzHNJwt8BmXFPtZrz89O8WxMwB9UqhmhfScYUb7pzxjOtKdaQhPSvn695fj3nXW+e8+818P4m0ZdJKbUJwdHYVxXXpORkiGjMhqsQLrYxViWepSq5kc0G2K2ycXMBd4qVsCb2aWUp66yKDgPMTM13ieSE7YnCHAEXbYduQ/3boAT0Kh47t098/EP2o32Z4zcuWdtUUZuyMKf5JevfjFI6LY4j4+xqzZXQK5uuK88GBKkAXWjoti7D94S4P3Z6yUSd1jsjaYV7F+ZBkA5Lykh8doWwclVPFVA5PLcNhFVKXGYTuitmGUfMc+oiQr0uW1MC1cuEXzadvL6PZXZeRiG93Y5IH//WI7KJgvvnXof/6tPwT183gX1wgvsY9irJfXbfMg6trnmQm2BJV+KPlUjno7AdZsB24FGczI10NOI5LxUdyDRVLxWSl0IaVDxbb948ND7+3rkJa3FfZYz0a9i/Tx//+If24tF9isEKxtLeb7E49iSoiKCzORr722Iu01nwUkoNeVVOiN6CmxEW8/IMDA7m0bolSXB/7gjOFHmwgVcv4MXj+vwJdYxdZq674h6fJjRdkji+WRJWEp5Yq1WFORY7H+m33vPmCoEoDEqvShgCY8Dc44MS7pwx73tOXjymEaFtGpoW2taS0XVCXT74hWvw8lsk+JpOJsGAUuBhGOG85+6tFZuEf5MgnfBWygT+3BxejxjGKQo0ekB5fCNqXmaHcREPNOZvGQO6Br22snwOUBQDgB5YqIgr9FdZ1KF4XhaeVVn0gXU3q+Oa41XiGTPe2sqEfduH3s8A6HFrJd880nC4eB8OvcBobuNr3qsy1+g1d7mFVcSTXiGPxBqtxRLbozmmPXnMzuNc05FSsPJnq1Iij/jM/GIa/pFeH0XPKNhVOFNyL/j5DUQvRqcgn8XrgFpOk5Vkr7nsxZvcxf2fAC8c29lUdmnnHkSe34YRdYzGAOZtEpcguY+XZKBS7XthkMxbM0809lO9r5q6kCmK4D4EC795McazT6tTINbX6fRxZY4enhgM0FPY0Tw+yPOlB1xRSnvfsL9J7YmF9u/6ru/i+PiYP/7H/zh/6S/9Jf7JP/knfPrTn67+ft01bz1KjOlTS3htS6qToesRHUFvrOIBt99cxkN4kM7ivEH6ics45aBDLJmCh0cLgq9slC5GjA4axt1M0Pn9ftDYJxSlmPYd4ApUDHHOHL9VNGpGt9LS6Zhdk00wjmXfKuTsJtcHy9CSB1UzsXRRaN93OKcHN7VtKAJGSiCVEghNCMeUiZtT4t7yU7f2HJ15od316TFl/DzjiTCijVlRvhDgL8Tb/qzAl0KEgVkU2t24rpzb19D2CexpjmlaX1eb7sUQbJ+mhCZdE7HtKPGbkZBsg8U/onvGuw9A97RJV/lMHRK9l92wnwRZJvKXtjWN912j8rFXT3lxhD8owoc697w4iFKjPX4xb2Dszbrk5umZmNS8m+50nMG7+uUvFC4uObsJ77mE97qPoeAL3fM8KCXf8vpl7YDNt8PwUrjoTWHFNMssZcGnMe0CPDWDB1cww3licbXT3qyHrODZyi5hOQDWXcd2azbYNF/Pq71lm2aOTwN488K4zJjFe6/b/5SputHCaZ2wplirNOMRBXSEMZbXMd6gnJnsENo1zLZRceo2bZ8sstviTd7FNkQm5RHm+ZCsKG3kliYKh+m+XNVNWjOlCO26MoV1Ul7dJSZiA47FeCAFcy8dKlArzwvume7vflBe2I60m8EE9a1Z0mUbaOKVz78OP/oK/FKAv/RyqbudLJIRKXtmSrBlSDHtesVfHuQmwKzLDwiRsSy12iH0gQdqc+8o1RiOFTaewU4PX4/osvi8CEQBVehFuPfsDXijeHNkQS0ohH2C3e4c09V70nkrrccbWRGwLBZPBTiZmaCmZoiYa8FjGafFv4P0mE2PJi8CFERYCyxytQns2rXIc3P41TPk1UeW+MqfOZ8IGNfRsrOQBXf4fTZwkbyBdDpx9DoNcH0B15Zwf6K8mr52TUdlGEO0sMM4BEv4qcrFl3o+9+LT3G7NS6Fpoe0aJFrc29bNpcGsfU+a4AtyueC8/3Ge3L0wS2Qqref5VQFtpVgsnz2G1zd4t/DiHh/yuY4gwjooi6hUWKolY+V0jc4pCca8VxKg847Qu4o/TPcmbaOWz4HFAJcHBe6SDJVCTYOYF9KZwKNGeChw2ghn1xasLyMke9zlttBfFRMeF5E/zUiHmKcGzBJ9XSrhMWQjBNE93joo8eP2sEaVeQwv6wv0Qz+YV6I4HuGxXmtxEU5aOHsyT4J03VAS7aW/Rk0ZvwXYbtDDSNfTeB4X8jZNRrfPo2tneAphdBlvLTxmBhlektySZhcS/Aolp4GIedVs4oQme1xdUxv3jFMVXj2zzbo2r/GLp+0Hs+ivr7tzi/NKj9M+oJ1Ezw1jWvwRhDrZ6Q48PobUvpPtiRPR/Uf/0X+UkwX8Z//Zf7b3nr/zd77G+Np3sM2Xx+UwtQ6Anj6wQ34+mJvk/UtCZ5klVchxGadq16RNaqSBsN0VmLXgvI6aeddRcxkNoE7OANAW9/hKm+me6ZuIOIJdE/UFe+L7SLjI3mXFmmJWgmPTHK4P4Po9Yy6q+uzUSvLqwb3uqfHt7pyJCeHVYNygPMAn6N9qcddOQvt2hMM6gdx0/mCMyGW8J/MBa9BZE90DQ17bveOI1xFLAhaGkTA398mfxDS4HYZ7fgr4OFgG+SFMkvVp9by3syX20Jc5eulXX+Ej733+LbqbjCmNcRihm1T8dlgrJ8I5lmgVKRbRS2CpmuMiq7DoJ5jLlFn0bUdo93+65wduWgGcpj7+pg9I0/Jxgfc2lFg+Cs1vwAnuAssW7UMsv6J7z2R6f2U+iUiYU+bjxCDqGOBy5KvXojVgCFVyNv/7fRqQASYhNW4dAzTEGNXLAItFwYNT4t40IONuTPvNlRXrVt3PDHtwiuYIvcCsZ5LGZ/0kmtEh9IuOWPXNhbJMXZn3ty9++WXe99yzBYlBEXLvbODpRRFsPdPiE9VUjMQCHg2FOdAyrrT0CT/oAGPOOi47sZ4AtC2tNxym2cXnPHZ6nnnyiom70d/keFY6FIHrM3johJXU0ePWcaJ0yedpq7m0JSQBXbgVz8chxmjHSRqjk4dcHladUWwdZQycbUae60dTbo6BZgjIoNHaHszS/pdfrcf6qdfgo8+V9dBIH5OVJ96WaLNXFEgKefOTBMu4PC/sThAhJ2UFwqyDPvAQuD6hM5lxm8C+ucw6lbuA0kBrWt3TZ1Y889VT5Ftv2HlMVnYv2PkyEMCXv/wKt97z/A6Nm5ZXykNRivB/aTRcl3UCVe1m2dK11miIiPis0bJuAlxX5Q6g6x5dLovFHjvX82jZMxfSqLJ693Xkcw8MZzx/VM5hJbQz4YbbAt8OdqVMKn/eYO7reVKXAzqfw1OC3hvrQ1uAk502BsYxZo53CehCUJZfeZ173/UCNMm63piLfCd0jbnLZ15SBF7Yk+BLmST4cvNNLr9QCSPyYISbx4CYYBn5T43daBYIgWcX8Ok7Za5jwjGRrgSKoKrKRuGpOJRjtfKnetpbyBuSLewaIU0BZjPk3JV7myxj5REayB3OtnA+K1Qp44LoQXYpBr9bjJf6yiuv8e5bt+mOFyxmDeNmZNm1tE6Y1IApUp0nQLKRLyKc5CrsydKuCqdrWF6ztfHu/2A4IBmC4pas/BxVc+njEpKBuVzfPCj3eSNVRYQdjQFLenq6P+lpJmXujGlco5lTYCUEu1ArP6pr4HhZKQ/yFBLNy2dP4IUjc3najDWsJgu2uM79deKJuZWSiC79pGG/3FERx5QAulcDLO8NkxG1+8E+bzoFXlrDi4cgTY1bfIuVPNgUnir3RWEdQE1507QlR8IeZnTGnnzY07l+k9sTW9rBIYc9f7/e2vH1F/dbkrrGfP5et9oP+mCD3nbxPZGhv5DoGt9ExrMlu8c3unteIWrD/VJEIN2D+4jUiG4zVvGpU1wwbdPvPAPz2NIEWpgZBXQdCJ25v53PYRXGaj5Shlgg3T9w0P2Zx9O1beoa9P4505Y+TgcNCtLrx+pWAXbjrIyp6T1znCS4RWdI43Liijedj/vJCISNZqH9uzGYGLB+fpuYm5A0LV2/56y/Dcehwv/xs3RYS0QW/I8/8TOP7XLHTdTfuA05fMM6ch3GvyCCLmZoJHSKEdNRqWLa/biftO2zKEHt9roXlq9o+Z5C5wCljzHJO15TRLKflBP+88UMehO0Z2lsGssjhXqe+4T2/KDkEu8VCecbaOGN4yh2DGPNhMOuAO+u2TpAOaeJyU3jminoBjhxCTazq6BjBCshN/76elQmPNiUBc1E1I0tXXM5LcNkvVgMexpME/sbVh3D4I6ft86+xZn5u//gZ3YJOfHHd7a7meNxc9onOFxflqy+cY4aBzO1gHABY9vlxyOToyIADS1jnVdjer1qkt6yQLqqJbp6JmYo8GWzTpbwYH9yo73xtL45a3EAdBzRRcm7cg/hABPORITr4GLa25IXhdiVx51uS2QIyGbgUT9ycxtMaI+x7NKPZmU/7+Evfq5kn0ztE89WQgkarZPUuOItS/J43Lf2ArZZhZJ7fBBB2w7tA49ULW+JI9pztTrXSuKB4lfb0bnMxs9aO2eDCOe35/DGqeV28TWHfbb8SfsH//Bn9vIWKXs8GL0rsFr20yfbq5KLLTo0JmdaA4cJj0H2qkv47UCMjnKxRRNtiM87E7GIuBgWJ/FcNS8u4SuXyAGmYN8XVzvdvIOmclPOrULC9qad7IduNnDUoidz9O4VYTzUfKlqdIlPGeOHkOPZ9eVHbJqW2TPmGt+0DW1r1nVzk28Mpfh5ncwNCb96xl4L5lj3nTw7ZRpDfKeHw0NagfOIWDQL7pEfTWf/mRW8siXXEYXoGh8FXM/fBSt1ehDHtiJWFFmD3lhVCczc0lrMXwzZtK1yZ8gbjBzoCrA4h4tFlz/wkD0gXKhwgVnbLxV+4md/nkuBi1nD+UK4ON0UT1GndJuyL+mse0u0RGTWEmPR1z0cRV+ZiKAT3bNznnfG0vokq33EncmzLtVqB9CLEZYFTxamrPSRP/efHS+K++3UynwFOdgSvWHyn908B0IsZzcNecteWNOz14hZnw+A1073w2pBmNVa66DQFpd3n0snKeMPcEYkqWEpGylTMruEn6pO6rlr0mRMvQEUePnMFBB+jZPhsJn0dbnbl06vg0LTWBlMzwa7/1fmCuPXrj2xpf2Hf/iH38lxvO3t7mu/tAu86SA9dWh1fd+v6L0BTlaFcU8EikkG5FmDxFIYCZEVi4tp0I9IXiCFmdXofpwJu0dCDXUiOmf5lcdARcYRukvU9zEuydqTw68A3QyZyb7o4CQCuY/ZzVb3yaEGYrmwq3Q+kmvQ7/wuIcJ9wuRWSz1iVVvgzVghlYpoSFmzBZqZSAVzGwOrzbno9hTb9a/tTfB//UiY2ev3teYy+QzwryF8uBWaQY3AbyOBe5xb6tfRpoJsphHUms3f/W99/9ffyXas3eMr6dtpb+czuCjywAZb9wPqUinTRzyuXTU/MGWZd0n6WhClNyim8fYB+rZl9BYAIOdMduczE99coizQdG111goOqAnXzngzQ+1d4RQebdHVnI1gpcSyYupqZqU6Jkxj2rU6I2h0n3+kJctsYmByDJw44X3KcAjcFLh3CU+5It6hHlju8tI0Vxq18huJqSkm/MzQdAwuj1I1z7c4P7//B7/fiL5nNNJvXj+Hj1yvBXMfp89kjgIczczS556jfn4e2npl7DrysrnnZl5tDrOLMEmMptU6Xdn2MSiKZY5/6rB0kmjYtSU82lIBWwb8PeZbPx9Nt0eFyXZAr5liJ4hlF7/uDuORiOW9A7Rt0Zj93ysn0vNyaH4/xszvgfU28NQ2IOOIDAGL4w3I3Qvkv/oCcvMQfuAj8NI9c5H/Tcfw3qcqRYTEDmWSM3NvSZ7kHTFd9E0wOhDXMUCO6VUw1/8RXgGuo87ia4nb+gi0eV/BBOHjpduGUrJrLXB5skLmAq+fIS9eMxzi3KMZdYcD+7d/6Pt55HBNaksmSfd2zqGaEHwY5xOFPgX0uEHPDUNttKxbOgoZk2ksK63A0KMrZ7EXs5YeRJwhrZj2WASeO7I5XQBfvgMfeWbXyp5aOoerFrYlOVVRymjGtUlomQXzgMtzfrSF9x6bp9CnJmE8ad+nZd8C5hbvBHYNSnj5Lvy9l/iV957wnkas1FsrNI39dW10+tuJFW6sXvvLa3jPtd0z7DPIp71O1tOxKEnkzil84iYLMUNRiEpGBYjVfXIZuNtRu/VgY69dn+rnjtHnIVi5N1RZqhlb9UGAg1URshxRU4ADkPtDsbRTeKycTyj345XEA6cRmJObf1I6DCJcqtH0LQY2/4vv/11cbAJzQG+1yOVAq1ZCeB7XUOOee4yc+IJlZYm2L2cK2o8wUCVfrRRYB11MDmG/25Kwpcvqj9Iq9Nk6q9D36LLEkZeFdtd9ce0p6el6tIpIEzyvqjWvRQx/Szyym/xcgYseXUUzgvcMTH36BJBe5nn+CF7awPu4mt6krhLfkjxVI/1JYXneY2Ynn0/a+7QOqf/Gxs71ZeqkXP3k81lx4wxqdO2lM/iNt3bnl1ryqpjFvnRV9bWTPyAodC1bkcoIkkPe5C3c4/m1af9/K7QD7M+miJXseNNcs/TRFr2WCG8skRLd44/SYwBmIJtS3ms3GVqEldy5Wq3vlARdyK4w6RdjI7RjyJk68/Oy5nvPlCZ9pusSK63jf5bKTaUP7XxGZq3v0ZvG0J+2wrPbYU+Mm9fCTwaS6lamda6umNBzRfL4PEil5q58TDtxUoNjD9X/uG4NLrePgg5j3JQGXbRG6DxymqrdsEM9xFtCCITO1muNHdx/r4GbHTTbaKTsWppei7uKf/Y7dKIXGPKsuvJE6aq2z8o3Okv7lEv0zzyeoedFeZL0H6v61q9LcPd4PT3/gDpW1V8fZ0gsoK7VfPsRhkXrnimZSdF4Lndi2ptIaLY93WpWRqC785tzhbUvuvdFPqCUzLtQxuu2ettZY0K7t5LkOZTx+WcPlFKU2fqfmKp4Yws0m43l8IDdzfHunnm+jshfPzAr0IeoLdtF6svCg14M6EH8nYgxQlH4F9dnmFlm4rJLLr7srUztnsGYxrrdvYTbt2scD8WV1Vve03hOWviic3xz7nMZTSQcPwyRUUqPlh1ZhDnMTgNrh2MKD3i1e7wm7cU+RuruJTxzsMsQXuvgl1MyVTdgx2T6urd5bZ1GK7uUXw6osyA9pMSzCyYMv5Ie3wm6GX1XO4yQDsESgMYM8I82I9+6DYiOJqwERV56hPy1X6X52G34Z58x77f33YaPnUOzqOcTrz7OOQsK8bpTksfDU3rWZjCLk7jHu6/DqoPBvMhfxNNZLXHeDq0owPmAPtO4M0VWGG2lYdEoPH0TXhrhBapkdLbfAdWm2qvpHNO1co/31nV3ZT3mZHslg3P8cSw7dSFmfU3xwELCG4ZDjlWNh9kE9CD7GKEibAUWEnFlnKe0grx8vyz+j74CP9TAtz23y3v5CS1bOJ+Ez/lQj1AWfKm+Yoqi261ZPQ9mcDe4+91v3TlMn4+jlQENGgX4r9yh+xsvwQV8+xceET50D3nP0+YW31rm+KZrjb43YZePfPHYrH/6zB7cZEoBaRKBocCxEkMlFB6tketzFiJcROFGRUxYH4vga1nrBZ5u4bULU6ZWAruaoaIh04SNWiJFgJsoryiwWROePijLPg2/WkCjgyuDxsT7cxKeGWlOtxkYbk5yKcTrVk04XiOsEX4xwE8Owu8MykdF4GBJe6H0YoJy6lvTIXXPS8rxNsFvdtOy3zVn61j2Isafx70KCY4PZnBZ8PGgdfx+Ep89TQfQfshW3Hx75So4gfMEI11jeOHhBo7mbmIUBaNbqzTHZaAoDqM1qkORS4XDRfHCSN7BuU/ZL/N0A/zE6/BCa0q1ClYdrYj/FI3xMIUf75Fs40k/8e7jFY3zXn1gwlSq4JSJRfqh+2UItbCeztVpbx0978KeE482heEjolV/D2306x+AWcsGp4yIS5iAfI5LLjsZsk66/Wa1r8k9/n92bR/wCpZB/k1j4cP9C/TGrKpZqeKSQcSfyAxnaY/NEVewxFyXOOAIIWdfrOhHvA6dMA9jFZ+an+msyr5Nibkn6lcnTJgKBMBpT1gagbiYCbNhqLTbouzGs/sJDFriXaaDgRKT7rHSdAGmn/Whdrlf4BLRlfv8+qQ1m2tC6PHGaL3URqxWe3KX8UzuZBxJwTeqohoIMR7rVcRq0EvBEw3QLBra7ViSEU6lq6+z7dtjv8+V0D657m0T5iW3MSaimzZHeFQwV/HIrKMWG9ck+PDeD3IFvOxpiVHdN9cVdUx7EtTf0pkh6G54o1ro/nbR2vmI/bpwvFpBQWFKdS6wGVniYC7e5JV2VyeB1MR3UrnVPlCGlQnt66Yl9LsZ1T1xmbbKPd7DcnY1UbMenG0s8Y7boELc0x5cQeRvHcC9iaLLZyz2492O5iETx7uRCFaxjwwTMyEMQ96fvFaPEWpLi8zLlDnuRwOWp48mxDzBME4rRPn8pIOzOmvxvlrHADKOhKShgsyfVTHWHXSMOM/LyfCvmKMhnPLaKyPunRmtms7pegdn6zJ2b2WbWNyqftxYgkShtQ+ERfn6deC2SGZcjiSWAANYgKaKKziFS3of4mHroxv8dmSzHTkeY+zvqDRfuI/8t1+l+R3P0/zO54y5jiXXeGoFb5zXc0qCbhRMpvgiMdcZjnQCm2kTL3tYFqY7YHQ+C+5tCz08UCvrKRTmqM5S7yx/mwFNLvdCUcqLsG2iBe+FBbz6ICGB4iafXOT3aCEfhxPTlDQufnV+1gHms2Jhj/AS5g30W7ZxUZIHYRLA8p+aMjBE7zZduORoAmuBeXKLb1LYiyC/+EbtGfjp13eFddxrEcMXfkJpvoorOUuk7Zo9HVA1zcrhzDxOoCSUnHrhVMKAuUInwX1UCL98l/HcFrc7h+ZXHuZs8U1nrvFdfL/Xa/PFRRTaJzgpnWl/JuPnGY4VeBTrvJ+sWAqM8dllzaUI7GndnjmG1wpezu7xCmihI6jVZT+Mrxu1ygHcu0Rj5nFN9N0DXwfNeW/lr6IyZ1rqtOCYsrfdduCNGAyevtI45gELmRqAzyr8XwT+ocCfVeFzQRluLBhPx1zdMQT1aLmiFZck13gf4mFfLlVpzkd0Gb3LkiLeD1U6fGKVoFrFaXt+0pwjYudrhXlLcbn3z5x8NqU1N8VoDW5SIeHPCc0hxrTHdzkRtEKn0JwCq2W+tyqvNoXP9PrLd+CfRungR1+BX3ljovieLHJcGyAa5gyx9RQ9eJp6xyQK1lnZ1a/HqrMcO75VGnLX7845UrOyPx3dXior+561X7pwWIcDMq5P4DuALhsuFFZxRl7+F+okw355qjPzTW5PbGn/I3/kj7zlPX/qT/2pb2gwb2e79exHa1cR0lXg9spKB6haTPv1eESSG0cjPFS4hoOFFgghA2sq81UInnIYuxuwOBkNwTSnlEPlEcjQCvMQJjWX33puU6IOxrz4BGWZcXFnUaNQo2olmnRmB+yVWUM3lhiQ4vbvGO4dc99YsjXva8kKnzK45YG5CU6f2Y85mRUan7GtD/pO6Z/427laht/8uO1oWVIBXTRmaZk2rRdoxAnuwcrFKcLLAZ73iF1iybdZS7udKFfeplO9b48hZsl37/8/f+HH+Ld+6DEu8tNx+H0YxyK0T7GV/+miRc/X+cMtcBAJkPfO2Dfex7V9zCkY47i3JvGe6fg2hf1EI4cNbGmLUmsyP3NRo8T5pe+6GfQhMj6+Iwc37O6JxntKgiB1g4KwueTi6QMOgE3bMfTmbbPvzO677nWP9wwBlmm2W29KHJ4UZrBiYrwy01vDbs3g5x+V54fJoNK6AbpR6OY5xGiDlOz27vEcYDVr3RIWIqo7FmLffuQ//zF+/7/6fZnhyQ9588Kko1VbKx1SjN/jYg0fxQk5YT0lvNK4GYoxpHTuUZkx0zxHWmj6EBPX6s62XNkqwXvy+o6aIFtpwwSuLSzpF1qvRWbApn1c1aWiYYA21itHOJUitApw0pREdDoD3YRdJVrisYLVwGYIsWTbyGUfuBECaEB+9gHyqVeR738Rec812+vEhA0Bnp7Bz53X6xCcK7GWrfS4YkdhVh83a+toKYs0ODRiwkEScBcmRD7APA0S8y7AMigbd96zwNwPsEw03WKRNQq0gwidCDxzgPz9V4y2tU1xjU+Ce5b0rf2//vMf41/9we/HgRiCKQ6SF1gtsBc44zJUmeNtrmJnox8i/lOWXghTJxigHAPtOpaKbEtZTLCY6xOxOUrbQKeINvCJZ5Cf+2pZ69/4nCliusbO4L4DcBC5nhQi4NGLg2NR82Tr0zOGYB5MR3Mb3zWs7NuNRQUzQKXlDYMlsxvUrOxBlfHDN5F/eoFeQjgB+fD1YmWXEtfeRPqw63J8bIqH8343wVdWGsiOICLRi0DubpCTZZTPzZPB4CjyipEXVXBeoiv43IOqH42v8zWu4aCWv4AAx6jlIlxvrJpARMzTmtraCU0/0l2FRNQLt06Jdtkzdmk7yxoFYJBYsUuEvy1mcT/663+Li3/he/lHA3zrYkHYbCudLKo1nMcRGO8BBKqqKansb7fVWBbT8/xuBvMm53dIHOE84ZYszdlnmWNUNc3ggeN3p/xShA8Lu7HXdhFktTBPF6gtDyHlIqhXegscxXJ2okk9asekWw8xkWDqmLqE6z73+E+/VnfwqdfgW54t4/E0I613MiR0xQsrZ493rcqlleBpamUHC7FMQvsV1hfLWG+5H+pkdFgSuuevUSmyvCLb97WIfe2hh5m3Uiy3QdMSBBzEgHu95OvjRd/J9sRC+6c+9akrGarHMVu/Vu30wUs1I+pVRDejhvbOJXoh6PVFjmVPyOuS5DkcBddGkDDucRcvzERM38Qa22zVUGn7pps9tMJcnUZoypTsgYopMU+fVSVhXMtReFmzF8fS9ybMAmezjm5b950NVDuQGl+kcmHTwaWWvhuiy/tUEtn3zM1gCV6Ik+zaQq2n2njfpVrGz1KnXc3ak8Jnlo2V7PDfT1rKJDwSNXJjYOyiUgN4ASesp7+mtdj2naft7+NraVe5SbbU8dOf/O3fWS/jvmN4lRTYh/112sHFSwGHLbzWx0cpW011RMvzk4LHM9RvOUeKd5O3rhywmz0+XR+3qrUQWGA/rIF5srRXR20nCV0amCLQWabZNpFINwA/z1RDuRqrZzg0Wg+IhOn+JefvPuAYGGYtw05G9V0Z2V99Qhggl2bMuEjN0t6sh+iS5xjNKdORcOTUOvDUHO5u/GLWVtzELynmbnhSKvsGdrPMigAdtOshYaTMnF1lHPbte37bd9TWM585/pk5OaNsno+b175Yw4Rn1iMctZnpTXvkYa1bD5lSeg+R6mw2JrSXuOPdtdrb/Lr6+aUkgCkpoETAFfeZG3th4tNDJ6fQ4YDqjAwjYdZk4eyewIfdT4+Iug1AW0wZyoQfSus1GAeqAUKstX4xBm589Q7N338ZGUH+5Q8itw7NrXrWWl6UPtj8bh+af77PyA3mShzdYKd8RsVU7TBo7s12sNJagEbmOi8/gHT0aokEb0jsKy7SihgSpKDe8essmLDP5Fw1Qt8IbSPIwQxOWuTVM+S914vXgLe2Oy7se37Hd+5lHhNvkTIdFzzjPDjWAQ5mcV+KwK2rObqBi6Cs2nQ8XOgbkNSVB8DhZiDMM8BngWAt5qwgjaChQTQADc2HnoF/G/iZ1+A3PQ8ffdbofyu2j0MoBybtX1QumDKlzQBZ+JvCV7Uak+MBXG4NDhPMXjuAuz18gCs9Toy2W4x30FgdJijhuZvcee9dvnR+Sf+bX+Q3v/BUlAWEtoWutT1EpQgJXiCat2ZFffnU8MnUrTftrQ/zcEKS3BnhVvQQIrrHx+eH2K9i77WJ3i/PLuAfXBogBrFlS7hrVHQW1y6YEaOLtOFAMf5qAD1akpRX2oi51cf3zBuaoa94UF/mTVVqHiwik6YfOO8aS0Ia4S71MWo0iCD8swI/KdB/5yc4Bn5LA3rSoF/YxLOoBV9mRaaSIPWSVEe9nG1Pl7sHwKqEu6Yx5LZq0Kg4HuLcKk/X+OwO5wA1RO+iea0QI+4N2Py2QelFrFa8lIiGxY0F3aNxj6dC3dJHW4214/1fMB63u1zDU0d5wJUx0IWtVLD6G56FX3i5dPQJJ7D7jt1bTZ6qMdFbwpc5bCKe46rcbeKlhOoKmGfMhctP5RVr+TNqYX0s+8/LD+E7n85G1TzPKYMMlq9mmnha43g8vtwC0tLrLotgeMiqh11Vp/0qkv5Ot7cle/yvx7Zdn9Zaman7yO0GfvnUkNXhrCBHDPhOxdyh8ya2ggxjFmR3mDbs8DeYJw2AaqiyL1ZNYNM1zPr6GTkR3BXzmvbpibovTZAFEy2vAxRr+xo0WrXvzWJm5DF6EoSSWba5aiCbsU5EV5mhKFkdB2cp3wfxHnzWY7aG2DOcpd3dVxGNiM6ztTMjWi3Zb5dNrAlbCOZ0LEoU2KPwHgbQKLS/DLyLJGQKbXzddUKzHb+pp7ejaIgBXnjP83uXsmqFw6s/3+Is7fEzt+EhuVceYEqe+PttSESlJKbxPOuTtqtgOQntQGXVeytEqVmKpLpTNdBIy6V7TrI8q5LrU1daYoDDjrao2+M8d110k9C+g9gTbKUxhYgvLzdcHHWsBIZlEdrTjzJZuWKyqYqBxPvTOfALdLgdaQKwmhcGLc1zGvedJuOtSLcODKH04671ys8JjEC2KXO89bMgCrhSBN0mCu1ZyCMdyWIluqq9/13PZealjAVL1nZl5vjJ1X8eYx55uMlLV6w7Hncq3TAUf38cjEt5Iw00/biTxuOqo5dbJbC7RblzCU9JmZOfy6w1QnN/vcsEeY2UH4R/NtHKDoRL0HmTGa57wFOk7oQTDC+uAVoIEVjtUfU+hshopZrR6wBPv3SXp/+7l+nuQ3sBcrFGZg3NvEXmjdGJNK9U2u7Ni7JgPqFX2D1709hTEk+SUEEa3KbEpPpY9vQXVtBvRo4xHOuZuJUmLzYbS4oh1i2W6yALBsXCtBGhJe7fMzfgq9tChJNAF5Rpvfb3vXe33JtQ8oekJKBTeFLFaNwyjsfj4UWHCvTbIStbMzRrEXosJE452QTGue1FyrCPGN5ZIcbIzxqYdzTzBlYdzceehx/+DotlnzcmiM+bEvrglYSJJwNLGOXmWcZS4/I+vT0fLGYjre1TK6vVvhMXRSWUZLf4YAL7CPxKUH7i6Wv8+He9n//6uZt8OWCWdjHYb8RieGl4TIKvE3jZ1U73rr0h1Nmw/dwA3ozhLxh6GaKVXSELJtpO+nvm0Bids1Ku0i+VBM19roO5jAsW7706XRsv1DV1osK8AQKLli7yuV5xUuVwinQQJZd8lbHnct7YWUx0Jv5iFDFwb+AjCM+IEF54lt+P8L4Gyxe2NgVx4lErWupg3TKr1xUPEsLugO5yWyzi6VzmkAPQpcCFEfVUh32W51T6Wqp9rwAx+abOitKPvEdmV7oIcKbCKcoZFlJ0GuWIs2sr1pd9rVRMZziEHb7Bik5pXv/EkSxQZo82sHS8tufb0tlKf2mcH3wa/o3n7fVvvlYSfWa6UxY4v+pHfLx49krwCkr2xP5nwd3BMZgH7XrqHh+vlcsWRVj3is3X+ljuTeqzOKXtUNzj9+DIaq17RedWVciHQtsLe7W3KtceEvvNbE9saf+7f/fvVu/HceTVV1/lR37kR/jpn/5p/tyf+3Nv++C+4eaJw5QpfeoI/fxdeKq1LLLxYAcp2eOP4u8EaDqB3ruOUyduE0BNo5mBeKwt7eVqAN13LV2CYymu6NPrvmnlMcTX++q4Fia0trIzBsIILGZsER5FV3bZjsh8ZsuUCHuFaFwH27A/87hHIlDVxKzaPi62H+vaC4vW1KGT/hMi93xAp86FDjVlQRudvBYtek7dPHGHOnM8JrSHWUvALO3vEin8s5jFW1ox11m/NnuExq+1PQ4OZuxW0vu6e9sSS+y5hYSKY1Uwi0Lf5+W6AI7cWj8p3O5r+36TrGfTlSxLvN+zJ8G4j10CYBjpYjxristUPz/IwnrlOt/N6Lb7NJu1q+4CZ41M18RMTa70Ae3h3tGKQ2Do2roMmoPHq4hDiXkjJ5QiJEbKfnR8sWaYwdwnmovzLCOP16lmXjCX2gYTHl+MZMJrvv1ktwO6MOazj33MZAJTCN2soRuGGhfpZK/2tKyMmcasgmWO/9BJjQzznJvyeUbSbi1uCpzWsYZF0CvT64aRZrYLBRUEtkIzBoY4kbJ3ugO/VbuqJu0bW7g5idMPWsZ+q7Es2n6g/jmPabkrouC5bEmKkweYC3Q6XwugRXgEHDWCRiEz83upa2yf/GcPFT75xQeEHtqlCe184S7yLc9aNZa0pts4P2nguZl5eLx4nAX2nMAtYKVX3Vym2X09jqjaBTnJaYjnPmWPD3GiIwPX4u2J/qU1eFQRHyzhnpDrAid8goC2Qt8KbXJDf9cc/qc3EL1tjLjf8xTIO8mMP716Lz6NfIevTmFfDnBrVhSdQo5dZg7jZc9qucDwl1Yuxl44eH6A/mjOUmoTwpkIczG6SLL8dti+JJhL5sVZY9b0fV4u6RweYLkGnFKzXmT7W4QU+qboZoT5vAgF1+fw+Yfl99U50ow7BrUkZ15w/8dBee/Dc7YfPuKsFX5ShG9viuDetRLlFkGTJ89UYHj+AH7hHvB8ETL8GCohvljaRRUensO1m4YvG2Hb2tokwV0j+soZyxsxhd0N4LUzuDa34+9CLZLCKnrgm7JHlUOU1eUIy2WhfVO8CDDv6Prd2uVCPH9NzQPntoVx3jkBx9YnuYuPmFLiXMyb50AsRJkg6KpDz4daQA8T3jV+nLxYCx0g06QFsLxcoy/MCxQ5V20FmGNhLWqKICHmf5kQ2w6NlaCw6iir+IwJ2zGolbC7wMLCerW5KgY7ncB4rSO8fkoDLCqFos9JUeSEAVMaeIYmWf9nmw16OKvGUgnICVZSS6/fdxs+fAqL5S4NzefNnbvtaDlM4tqZMl7M+9gd6SqnSLx3h2ESDBecTSqeTHH0tCxmmv+rZ4YfbyzKnNI59HQ/99VaElfcHCPtrLrHAHpN1I9DMTTEex6bK4xfm/Z1J6Jr25YXX3yRP/bH/hiqyn/6n/6nb+e4vuG2Orz1+ERLT63Q1wb0eFlrrCISO6cQyqTdkYiRKreyyQ4mdxEFdAS6mJGe3c0ekjXaJSKS+P1VJd+uEoxSgjL/fH827CxEBLiJCHLW8kgjj9sB26EqY5fr0e/jqMfxLTOPAzt11neaf/Ywsd4vJjHtuisgponOSFnNIyIcseRCYC6MyQx/BUObXOMNRyphBO1a3sC07rcd+KTQgXbWIOtJwgv3+G/EC2UCjrml2MbU1S9/9vOPf9A+DJPGNWDMVe7MdSSO6C1bl87dstJWJWHkarh8XPNz8/j3kFoBNZ3KVc3ZqCuBkHE0oYG6/nuaX8jMafouDmrRMT9PjM9EgUWN2Pe6xyeXeOcar48uYSGMXUMjQmhas3am36gDJQdSHpS80O4tDX7tb1yMDIt5+SAutvqFTp/vtUY3FmN8L87Mu9LlLu0zvdzCoZ3bbWPMYE5E5x7bzRvmLndGVmjo7hyrFuDTn/38hCGPP7h3Abf3JGvzRN0LDl55cbCERyXWsIad8n42jGYVTnAeFXhAKUHdChJCFbpSrvuT0Knbux13wXtruLXavz8icLQqtdqvcAuuOyMvcFZsJbfY6Gn1KMLHLSlnUxqL8T5HLHt8tAz5PUuwnbuJ4YRnqnzx/ddNd7IGnYF861NZYJeUdNTXoL99ZAqLyXxy/DU1mkrui3mtdbL2aV235HKiAfMiUpyCr4NwMXCTQt8lfrkAzvPZjM+7jDQ00atkYYowuG6gFat1z3NHcGeA9VBc46u/QuM+/fOf38GLUBi1jdvDdM3bfd5bCEDG3ThhpWNcj0UYSM9Or7W8X53DupuV9Yzn6FKiwNQI2jWERYfMO2TRIKvOLJzL1uLVVzMkhV5NLWFpUoeNedfFfiTuV+GtDDn4TOZcUrJwC3BzBg8nZd8mZykEZRyDyQRBCSEwKHzX2Zr1fM6bBysOFP7ZRmhFaBqrftE6AbVY26UWGp4/iJb2UAvsKcmg96qI30lQU7A8Arll1SGWIvSUg6dNEy3Ekt3jM2A8cwyvRg+hOF+NTF7Kn3KBKWYWcV0PgFunMJ6Yz0YgwYYUeAErkQtcz9b2PbS9snJjpRwVwmIW6WB5ZpAYzx5ff1aE2w2sPv8lLoj06GiORje4TBPi8zUK5Wl8G6KrfySUfmwHqizPd/O45LMApvQYk6W9WC2F6DUQ59ThWM9tgOVE+I/P3mCetRu1kn0XIlwgXGBVGNbA5qRlvd2yxjw8PA+q1QG2NqjGOu2O5gJtH+h64GhR+JfsRWBr/liZ58YSHkwEZ58wMeMUhUFzTiiwvAQqu1belEsrzyddp4h61Rh+sg4qPgIi/F6lwP7U68acf/nuHo+XCY4RrILGuTNtORrlaYRuzUgYqEvZSRy7sKek3fT6DfD4X2/7uoX21O7du8cwDHzmM595O8bztrXF6rq9uCrz5zNRG3fTalZOM66eCpzg4nRnLbIt2Spl0l96vwTWCTgCaNvsJPtIN2+T0B6m9S8hm+6n/Uzonu93O7nXCwFZYFfQyx5d2ME6BY4BZi2ysUrWfo6y88DYxlAyxE+tnul9h1m8C4RPBuj/1OIOvdA+a735PP/G95aUG1F/XLzkevu9goUBQKkJNx2Pxjg3jYL7aNmVtWt4DYtnb5wXZ0uk2y3mHu/n46/vQJuWF/vVL3zla+/W37jHgghk4qRgiU8GbM+xNV44C03+yZP27+6f/oEJyad+uBMcv2+e6uE7abNTP2GkmVnW5DpWfkLUJ0oLpKXT4GLeSj4LH1M3Y/fsTQX2LBSeDehqxT0s0WWYdQSXcjwLwnEy+/Y2lygBl102UyZAWW2V/mhZBHWoavIyfZ3m7gWoW7HsW1p0LxB6C8j5YC6OYoqzFizDdOwgPb6bt5YoCHdO83wfB73K5z7/1ZoZD2pePGeYe7y3SDshIXtkeKKePru+gNOxwEqy7uDcjxVmA7QxntFnw6+ubYOEMeMRD6h7+LL87HFUBrWkR8OoOURH75zD7VmteEhXMAbsUV/jsvR6RzFZH6DMvPQxPj3iyQeYd1lHWU4wq9gFWKjXOIlpV3WeLSlkzl4/As6fu8H2qZbh/Q36r7yL5j1P2zRaQTrqkoMCPLWA1/ZkkNeSQT41oXiYVTN2uAAoSvFYts97VGW6H+P1byX65zbvIFpq/XN13aOLeGf2pjNkoiJsm4ZWxBZy0SHLAf7aL8KX7kRLO7VwF9svf/4rO0czYeiUdC8PLVkZ00cxbt/mVfAbCDqbE7aBo7hzksLMM50vXoMn28D5PPJHsXMVYSOwyoytmOv7ooXVjOagNaH9YIYsWqvj7ieRmlc8XZWcKu55wrUzdTrDU4Xlotx6YxkLkOt+5ZUq4xgdGkYT1geFoIEXHm55990tv3GE/50I3zIzYb0TiTn0HP7wIZb5tVhJRjCPpAQcU2u7e52VT29eINfE+C4xN/yLLKQTre0CLUVgz7zrQXVGMp+XYCoE1sGE0DnW5xI4Ph/oD0qOjKzAVS3CX9tYuFj0IKwS/ypWsjG9jvDDdjAhfdZYZZtIU1VSIjqL8x5F+KzAx4Hmqy+xTnQpnku9KHlzsvzsSQ521hcQrc9xLeM5mAHLdW8xzd5imuFP0HkDG4O5Aa2UWH6eM03GkUhnupm7wa4Bu2eLWdsvVbgI8HMB/uMRfn406/vmoGV7biXthqlydk/rNVra4/qn3BrPnK8ZWkrISVQ8CuRzDg5OPL0QLLns3Wi2SOclLaxbZBUsjr9r88d9HK7EftIyLKhzLBHxDmlM6W/VxpJv6eYJcdTUOfWZ+eKb8Nk45h99Bb70ZqHxPswvzZvY12ZfX6mriDPVvAk2OEHYLR08LlfYr137hrLHb7dbvvjFLzKOIzdu3HhbB/aNtgd3fsVe7BPYReDpA9vAX3kT/fAC/cDTJZ5I4FwsdCRnUJ812YUslfiaMm+gtdVt4MpEXwpsmxT3PQKzWrOpNTz6to9p9GVpyhkoOQeKRUvR9RhdIk05cQTQdkhULSYL+87I88HWOvP4VW3O/jrr/jm+rXGWC6LQvhub4q0uxD2ZxXH3WCZ53WJaf7BSHYLF4afSVGmR4p9ljo/J6EZzfQxNw0sKzzpcmOh1CzTzBtnnSXAll/61tX2rm0pspMd/7+/+3tLlVduRmIn0GgrCTln+px3Hc6Jg4QUCuhlyXctjLR4HZplywswe1/XHzW969wE1Iahoiu75Qf6ipkMJPct6pG2j1jRtfeUOX7vG53YIs7ulFGJ+stbMjPeuSX0nGFUorvEK4RS4tmItws1EeMe6DJpPkrWvDUyyuLofpjNx7QzWi3l0950QcSl7lF0/ZZxY2rGEnW9c7BJSLV2iig59Nq1vRYreLVM/g43VvKNTjKlttZpvwk17W1B+z//6d5pVLnslKdy5sOcfdruCbYpjAUwbP9YMjGAWu9NNYX79WqY5RkVVO+sqsEvQnv/PhCYUZnCeUIDWcJHaoGqJi0Zz19WQrLtKI4o8GJGnljRYia2U/FKIOOjaDH71NK9PJSRgeL86hw7X5vDbzYg2xep8H7gJed3Sr48wgV5njVlgIAv+IU5sGieOmnX6ugBdi/yWF5FnjrPcY0odB29p756ewz+pLafZpTidPTetSlntlVwe5yXF6rwtwoSQhYsAMGtohoHDCYhAim91S4ka43/kqk3EHyQL07qFWStmXvzKPUsWEIAffQl+APjW5wosh+If/3v+le/lNFDBWmoHmFUvqcsyfKW5rvtM8zQKlXk/jmfQR4UMaY4Rh3nPAmC12XKZkvUSmfDIEy2mSisRO15eQbav7fvuwGV5jnOR0mP8TJmrFpl+s83KFwSrpAAWKnJrVdP2CDfjGBhDLPM2BkJ83qN7cH79iB/sxJLOSbSuN5aArtJnJ7dfbwRqBcYGnp/Dyxfw7GHt1uvdfaew/MYAN4+iO67QNcKQkmzF9dZWzMQ55V+fW8DPvB75u0hfkkIr0uK1wjzBUVy82+drtk8fOTilFrLiR8McDrZDTXQd8pL4WYaDdQ9zycrrQhlhlLgk8ax9poEfEuG1f/538GgzlNj6E9BHG/TErMjF8ynOzUXSLDLvVxF7ms1gISkHi1pRLYWvZ9nBugjcM/+ACDeiJWcPAD2WhG5i2DOFRKk61At8WoT/c2MZ9H9GhD8alI+fLAhbU8oOLSxSd8EQp+HScj42qrSacF5p3fnAejnPtD/Pze9nmqenf1nRO49lXHfPyA4v3qtZpeIztkRlSTr/8ZF78/mIowNpDKvGlDtTPjQ1nYwjHfh9me8//nxN76e45aCBy90cVpaIznU/BuhM4VLKYMarm5+PrPV89hXcyjvevuHs8Uko/J7v+Z63b1RvZ0vuTJ5pBbhrUajhHuiPvoT+bxv4wDPxEIjF7TpDsnSt7dKgyJyJhlozE7/EbXIgl0zwQJ1eDxHnt5ExTLy1Fwp2puOuyRgv7HET9Nck0MTPQh/QmWkjHylcF4GuQ4aSgC5fdx4Wr9tQ3OOvanMy07s7KHdfmuslMHcg2Ymrtxjn7TW/7jpL+DVJPBs1K4A3GV0OhcjnvovQMMZuwhAYI1F+Bfg2KBnjxdzlG6DtBEnz8/Nwz75S8/KYJiI1UXTXjj1W3ce2CZJMY0wJAr1SaYKxCiMqsRh5D4cLzoMyywwfmZH2dONJmodf371PRDeZxdWIMjGvFEtfurftR5o2IuA40IR8lXIFSrkdgDnMxjpRUp4zERZFKm1zGU+IQp86oRT0tIeDBRtiYuElcL/AuD+zwVvR3HXEZXFVB8DuAQebkXVyj29s9Ik10+ku5Yys1Ljy1gw+55KCTQh8Bvf1CCsTiIY0NkcEE9lYRgXR0A9087bsme4m1qpatiDFm3zm+Gdn5Mzx+HlQA9aOizlWq/2rKRvBFWOJ2dLbeE6kUkhIfknb5LiVXJbIC1b+kUG5VNiOyiZACCFbyQSQ8x7pGpqnVjksv4mWS7MEwuzGjPkvrnMiqB1Lpcc9E1ybllPXQ6k/L2JeV9nNsnx+QqQtXYOOBQQcPxSFBypr+31Vc2VdB5rVLHspSJO8L2SPMv3QvCf6sSqjJcEsak2cWNqGaUx7dYbSnC/jGY5JYVNMu8YdUhGYNbRhLEn43JLNiMllnWWbPhRG3h8nsdJvQSxOGQH5/D0DxxZkBH72Nfjoc2XfIr7KCRsjXpzGDk+9rHbmeg4s25yXJ1nbAXQ2Q85dwiVNfRg+SAYJAQ7XPa8tlwU/xmlvEFYOPXjSehXeF+eCXf0QotC+m+UZyLk6RO31kM7S5QZ9ZhHpUgONoicg9y5NyahUuEKjJ0sfolJeyVWl1mcXcPvA6Gq0rDdRcO8aC18qE6EI7Exev3ANXr0seGqftd0L7gD3L+DGQVwjO9drZ2VPfGiKca/OyLNHdkbWdkaSS3xIV1F6VYtLz1ps5cbpJWfLE24kmEjwIRYmE8GObTtj6cISK55UJO9LBsKN5Q+aQ5lD/Lpkjoc3gFcRvhX4xzJJYLaYmzEJcqWV5EWQxgX2mzSvJo0pws3JxYbNAhYRV2pUgFRCVkzKyBgYmibzjYnfSvzlKo4ZxZI2HznxPj5vjEJ8qjg0ivC3iTHpYuEkPwl826Kz78+25tnraMw+GXYIMHPzsrEp17bKxfGy4Og4FiWGayVwvSqP182V8djT6hxTd31sEim8FFIJS8pz42WOi5zEeEVVSrK+9JtlC2cTWWDqdeCv6fNPPAu/9EpZnO+MeNNb2T1uQazk21meUJmXSLXObEZoYSsl0WemS/HZU95uSls8mf1mta/JPX6aNT7Ftf/wD/8wf+AP/IF3aozfWEsU2CO+VuAzb9jCpxX4hTu5fELa70P/mDbWXRxc3VjXBe43ihELBUJblnianfoSGFsgxQ9Nn1dB2J7v3evExCcSmIm6Z66Sy+4GWJnYdQ/hQICDjmaIQKveipoeOBnMhiLwTRciXWfNHvd23Z2X5n+W9Cy1ubjs8QW7RVRsXcXPu3hPSfYdiClG7M4VJnTuYXKVUgN3BLQfCVF38BrwYkQGbWQ6G6KlfUb0BNiDed+hNqfOHr/DoO5r+26aCu3ZKpn+EoMbtcsHkonqWp22T7VSpHwtCMzj2ixzYVuVRKnMG1wxDT/F7IquDqRULZFYKxyKWGxqZGjzs2TynPSmg+5iyLCVBOR0LvzZ80qGbFmvTOZxbKeXcL0kupQFiI7+tuo4eOthajmm3a09FEZKgOV6w/aaG1NcaMN5k12aCuzJ2nNrCW9EVZa3cKfhhejOf07Ooj0Q6/RCEWrj21VjyZY22+R4WGcfvxKGs7KA2pXiztZioFPzrtb7iLqfL8BJCxdmedD47IIv435vBzYz00/mx00EWwFL6BiSgOGblj3FLOyXChcK56NyEZSLEc6DcqFwocrFvTUXt4XzruGsEc4a4dSWmVOBRwJn12ZcPAp1jOSU+clDcGumUYZA0T6gi2KNfZUSz96IZKHsSIS7gHYtOlBZ2f3+VV4uamfi+hBLHS276qw3sF9ZdNAZcnmjVhaJUhLSuW317vGiad9qXMB6yAQylXvT6k9h1jDrgyXhy8pqux7gYsnTkl4CM1fNOlligT4KXF0a5Udu2X1jhJXf8Ey9Rw74ryKlEJUHbh8zbkjnsMes0LIHb3Zzmm3gBpS5uT4Kz6EsL3vWXamkg6Q5wUJ2x/aWTGQ+KBMas+xiVRdquu6Si0mcwSaOTS+2Ob5Ym/jM6ysr+zaF/VEZgzKEmIButPM3Rv714M45R8fmIZDLvIkl0WxbKqHdFExNLbwnZuCFBbzysOxjjs3V+mx6peedU3imzWvRCWySkJk8PhvJc6yS0S07A8rXTymVEmzdNMb4rVVZeqSqcHzZc348qxPQuc1PNHHTdSx65yEZf59v9zQHzFIym5mgWm63LRDJQu1nBN4vRgeOGriMSFQR9HgBp6HonvPQtUJfa2JGfHW8afx2dT5wPl/WMDaleYnf2Y4MGtGCTmBaLbHxJj3/QqFLZ71OYqt5Dta+p7Ez04uVC/uupHy5BpxtbX8iPGQlcVIwkb4yj92qMo/CwSO4XLkSoOmLyKwXo6rUNDDN/TBybfuqjpRltK+2mnlxjXvoCqjktqNIFEoGeR8KczAr2tWpgjldlV1a9uJNe/8BgR94AT7wdM2/7MMthzNqS4nryvFT2gdoYkWC/JgSzgex3OeeoU6n8c1sX3f2+F/v7ekXPgFgNUWbBppQ6obOFL7zWfillw02BPQT5h4fGuE0Ik1zB4lEqW1sM/sReYwre6fmbpFVhO2krEZ8JiKWnKNtYob0HfvXlW0fYU8a9C0GaBUTA6XUm4KeKyG6mH0ZQ06/vWtYrYswIiHWH59y0wmDXpV5vHC25l6T48inyMGfJMp9C5dGd+YS1fh7PbMT3wuWXXObPtpY+ThjPLCkN9tx73NMQV7WZ+xHmJvgeI5YTDuFmW3EmPO2awpmf5tP9FXMm88er8CP/j9+lD/w7/8bVddP1JJLQtKR+H2L7yvi3s3QrRHygHI90vSryh8+aZM9r1PG2+xpiBEAVXJ5tn1tD1gAMAsjs1lj2nNxWxTnGzQm5PKmI4CZsOgHxgmDmwV4tQ9yuUHfvxojnVwX82fnazi4ziXCCmXdQrNTu3z3uPi2weDAl0eSPBz78eGjDQ/ee1D2L1rbvXCRmyfsXkN+I2KV0x5uuHrgQmE0+liyZmlMzRZxBDD1acSwBS5nDdtNiSPP8YuOOfMtZX/+0z/yV/nDv+9314z56+fwvpN6/NnK0OzGs3svAgSOF3Cv4Kcd9AKwHdl0reFXZ+FwU4t43hb1IAQ2cYGn01EMXazT32hW9yEoGhn9RkFOA/KUuc6m7UrnzDx0hfHGkoAgQ+Cga0ygxa1N2qhqQk5JApYBvZtlIfYcy9/h+F0QK316HyzGUbCx+igjLXHtyYqpKA8Vvn29RRqQtomCeszIPfV+y9fGXOTf3MC7yRbLnOU8epKn87jESrtnWMGRrPRvMybXhzL3jFvsSRezjoMRbiYFpFuzVdDaKqigl8FiZ1NLeEVgK+Z+n5ncF27BvzjAX38Vfu8L8J7b7kFuUMCf/o9/lH834vPMPMbvDon1ypXdXBmRfuqqq/iN7Dp7DO2dvvJuMg9BijdDXItZv+WVhXNVEbMagotpL9Ournubv8lbr5ct3LvMazHlpRJ+S6XOAXOPXzq+A+CpA7jvkhc6YTmEmC0+CuthtNePhsDJRc/81iqGvZng3rT2utvjVZqF9QpeBV44gjdDjH0u3iHFzFzOpgS1928E5FZMBCLCnLjGQl1xaCqwpzV85hBe26Lvs+d693hEuNCYsC3B2GWPKDyKMe1ZGR/7zLMVYb3o6Ma0Bwk2tN4byDhHBuCgY44JdwlPpjCUUWwZfk6Eb4/fvf5f/jcc/cv/UlGerxboabS0xz1UZW8iupMQx0PMzRDHON/C2bUlN53ZWRsyXGQaPwe2A+PBgi7hFS3zQpVGtZRQHkZYdPmGtC+VgBpv/SjCbwd+RuB/L/CBFluA5QyNXiWZdl5B5EdV5nHeqcoDwPyy536K/4/IOddpF0fUE6Hw5y2FWtxuTGh/9rDgHadtzfxHHywsMi0BtbCYFFopEd0O7UywnNY0hbQkK78/qwlO91j+eRgx77/+MZM3piFwfs6pLeNIN6OFfya6l3mN+HoYs9A+E9kr//uw49Qq/Mo3vz2xpf3Hf/zH+Vt/62/t/e7111/n9ddff9sG9Xa0u69/rryZNQXhzhr7+5Zn0X/nXeh3LOD3vxd939PmatQKZ8QkdA4uRKIL2RAKr0HN4KSEH6eARrdpjXHr1eF2ADY0bV3L3H+9h3BcRSyrkjDxta9XWzFr2xFdzPiSwi8DX2ng//tUx93LUIRTyBr5qqW3AYs/zwOZQDwYI3tlybc8SLum+2ZNecZcLHZ+ugbOspvdmpgKT6PVk41j0nlXkt5kqc4WJyWPsuREig5K6BpeVXgGwzHJOpTWphWxkIlplorHSVtfY/M4N63qtOTb9/3r3/fWD9o3prwvUiO89BOs87xNB3OIfFEpu7KH4H2NbQeeg3K8GTm4HNiue5qLHjYDsh7KmdrzHI/78zXOezaOLDsr4/Ow0CcS6fcxb9V13rIaBnxAxb4klEv2VG4Ik7GEmF/ifICjeSw9B41LZpjPZxT4vfDuCUVKRGc4JzK7ob5pud3wKDK3eUzxOOgOXokwMLVUd425A9ybZGf2a3hhdTDTWbuIPFHqY2LMYd12bLehMAfuqp5YpxZdTn/wf/PP71qrrsocn025ZXo78X0CnMSd3UYlQnCKg3gd+8Bl27lkhORnS5ogJpQCLAYrJZTXKM/R8MygxiSsg3I5Bi4DfHpQ/pNe+YVeuVDl/GHP+fVjs7xjwvRFayFbF5g1a7NsWbfC+tGmuO/tCO6ueThKQnYP2rZZcL2PucKnuMX0dyhRaE8K6DFEUPDJHymMdlzEM4WjtSlPRaS4xadlS/uW9iXt0TNH5kWRPVXUWdtDdf52SvJMzgxg7ruLmDleyPHs/sjcj6EbXQ4RK3u80KgMVgcfmxGN3moFf5iAtcXOWhctpyLAB2+a5erZ6/G8uvOUEgMAP/h7vy/3O22+rOsOk7yO/h2LYh2r3YKh2/S1IBcXzOcmAeg2gQfLYrFHDPZyySc3vqmec2/z++wRfoo9Tc1PKo0TU8aPCUlcgh7NM3CqADfn8KYr8RR/r8HcxPup4K7wyr0L1gthuZhll3irVid0bdq76Tyk4BkvRB/PjAi8elrjySxIU3kqyZvnSAsczeM5EGatEBoYmomlXSbu8Tmu/RBev4jwHmkFmi2MvcI8I1aF0w3rVcdlOmfCbt6DuDnbVccsJc6JfG9egolSSxRkDcw6GoF8OqVMO4Udfgay0P6+/+X3MuZxAIczdLNx9I9y3rTkZloTk+CmMajmcS/vw3lKUjjZvgTHQExGN+4Iop5P6nC89Njbb/I62fN3PHbiXK41wlMNfKDLqWsJRwt4NJajnmFdC56L77dqeTSqPDrA4eWaByeUc+3puRS8u3PevMX72kHtleLdozyfOGjxepVJpn2nuPO8T+6jWqfYd8ovlc77jlAyoV3ps4cbK3GI1PPwBGpqcEhI6mKSQd7RZHsRYNawRlJFv4pspvkloX3CYv2aCOzwNQjtf+JP/An+xJ/4E3u/+32/7/fxb/6b/+bbNqi3o43DurxpxABwHgX2RQurjvDR5+D3fILwoWdh1hJmDTpreNSmGIeaeaEDiQyeAPsElmOJSu8xmFUwxffI7mYPign1Y9EypxvS8/c1z4OmfhNTWcuQmomX9xahH9B5yz8OdvBnQGhnfEnG+iykMU3Hkd5Pk5hNhYHWucf7R+xwVZhWDOrkdvMmJukrv8s0P54ecYuQMn4qwGYwX770ftbBehJTE1siLFlwHxVtOt4kWp6krEfS8bcCzbx19dfcQ9/BUz3VbF67dT13tbe7q9a9H4uVfdocY5WfezhDY+r1tZpHSXU2eEIGbtKNx7ntEGjWAwebgYP1yOZihM1IsxksiclmsDIdV5yLsgbl/wh0A8xnLdeIrrRSu8iGDETO20WMuC/60bmi152le72LGFBrrhPTAXDR2/uDOacChwhNK3TD6Bgv8tWX0fJXS1s5mbmUG1RhsQ6MB3OXrKYwajsJ95KbMuxadG6sSgZ5J2hkpupiMBNgZAB7zMU0/b7S5YnQzzr6wZQSiYGJvPkVx8UO5VPXTsraBjVF5yPg9oE7oBPmNjfZnSPAMpK/R9vSd4oLjX2Pg5q7KIVRqWA+vY4Kj+U4lkSRWu+dRvw0qqX66BU+Oyj/1wA/ocr/XZXPB+jPLtk+JWzELLxrhE+N8J8EsYzEImwR+qcatmcb+szcst9a4XB4MmgoEDZkyywi3McMMUk2SRUAToiMSxNjpYex1ALXPcxr/OAcU8DJbJ7xdLKym9U9rr/PzC1YBvnXz6r99tVVsoWP4r5YrXdUSmQ4vQw5V4rR4lLmMcW3P2ibTBtTUs2koDOcOzmLY5+rk0ybjUdi9vgIH7PWYtofOtfUSnlsL2/fvpHnNr0uiIno1Ass8eeRGU7neydZUicsLras4icNtYtxEsaa3lwl7i1Tpn17Xi/FNX7f2N6y+ZvS+Vs1sK1D1jJfBdkrYB5hlk0ktsuUiC7Cz80OHu2WfQtYdQarza4MKa4d5f7pyPrakQnsAk0jNDFfRNfITgRRnsO05FTyDnn+EF5eV/0bnXXa2yi4y5tbeHqBpFwcDcyjgL5NgphbK0n76b1TnlvU7vHRLT6974OycMogLkYuDpds4kZUiRPTXfH1pumYe+3QhLkwuHG82LlaeVRK1ReFkjlehF/FQsI+KMZV375xjQeOv9ATgYc1Hs50oZBTNqq51nnxzrDrcrPh3qoImlkpIW7OYLzgJrBWpXXzEyl85cqfr/UAB67SjBMeVdz4Yl9rnCIx/eZwgZ4PNW13+CovscIGNQ+A+F2a6/xsw3puG6eOxtqY3P4kjeg+Zc+t1f6yb27fAHQbUOcxtgGjgZNz4RNv5+ZseYVgxk8uJwkO/Ry9AiG9ftBbeVOZzAN2FYH5M4nStkt8F7SasgKMI6E1j+dkmCn0XfL8YBLp6Ib8a9G+ppj2fW3cYwn99dYkCe3L1gT2ZfxbdejS6ozqojGhvW24AK5VXFkk4jNisraIfDPBI+/gTNU0T2Owch0TKPdI8lzE3ONHhwApBPQqqNhHNAWTwXJ8iWoFWPY6Cu/rHj2A39rYgHqgX8KH16XMh1CYozL4eE2H3KdX3Ufk5tE9vjop7oWf5zYF/LlDOZO9MeM7zEJc/xkWswaGdJg7a8PBzIT2NIYcR2QJv1LcVRba25aXFV5oytqaklpyBl5JSot34ARfxRxN3eO/pu79+o+hSH5e2ZIQbFOsR4AlLowW4S2xxJ4WeP2aGDjX8u+Cwnag2Y6025Frm4HtejCBfT2i64BuArodCcPubBON9aXfwCyaXTChfYm5roJjWtxAylPtnmHeMR9h5ohJSjo5ZaZrC5hxGhqZqSS4h4drOGzZNkLAckk0s4Z2rGPaK2FvggoS8TD3eCfMREYKxbL5Ag98lmU/tYlyTaYEMb0GE4rvbXcGlGFuO6KLYq8I1HlwjHco/Q0HM0JWtpc82H7PqpasVeCsVViJJTArF9TMibfa+vn7uSfifo2YQV531hrM0We76opFJgliU0AXY74PYz1o0Go//cuMa1T5+xrDBxXWKH82KJePzvmxw5a/HIT/Lgh/Cfg/ifC3Bf5vCL8UlF6E8XDJeGpx7SkJVVmzyfgyynUK3E2IQrtZHx+K1WQX99cgHOJyTMywJGxuPonHSsyoKvQol8DBAHIwZycJXdqPfUmTbs/hzbVjWClZt53ADia0p7OXhJe07nn9NyG7TAaKpT1VkADzJBhijpICJpoVAwLZg0LByhwunfXNPWuMig8RSmZ1gBuNhZqg9cLhrtTg6q9LYKvlPBSyqpavJaZ30H04btmw7Ps8lzi9LLgbHgfWW2jgvGvMgyP+fo0loVPnhbFvjHvbvtAbiMmpJiFrocwqAeos8i1cbGwzIpxofKbeWMXyBlrBfghWqm9MwnqwkKtRQe4FZteODOyahk5ibfa2Mbm83WWNJeGVfcLQC0fw8qRUYR/MGLEtgrsELPTjWduslD1+BoyNsJlovnXaZ3r/7CHcVXQMdvZ9DH2w/BiHfm8fwfpoZcuUhNmmwC4U3vRy1jHbes5VJ/AyCWUYRkQ6DjCvoPT80MAYueWfA34DMTeIwLIRLmPIlgK6bNDtJuOPQgO1YnB6TQI1RVsY2+x8zdkhBTbcOqawOhWx+PTR+PSF42M8fzlP+BusFF3ilZrimZD6cBCLinDaWL32HNoA6OEMLsyTIPOeUeOZ8qek5/QajSITxm6+3nInVUrJ/YFXTOS2j5YLcGNmVVegwEt6nZYbQMfKPX4bYdSeUypIzHH4F7dVUvBQJpZHxKSgE4Lof6j1WHg4WILJ9Bw/J4+IprjlSCxfhp+TG6QCjIFtG3N1+O+dJ0FKUFfF7e+5fjPbY2Paf+VXfoUvfOEL1Wc//uM/Xr3/0pe+BMBsVtt+fq3b4cmz1Xtpo4t0E0wQHGMZkWDZY0MjjF3LKMLDMeR49kx8AVkIEi2/qSyaj+kVVWYSgXhUq/0KRdumVIhkA2jX5lIrJX6ISZINN4891/Q61XHNP3XIz2fTDhc9zOF5MVz0nQH+V5dwczNUCejEPcOeF19clcTMDwxMqPcC1o7F3r3YDi61rdhns/0x45mhcusFhmizs912rM2RyzbX5/T9Z0GdEtcegvX9MsIncbKAu3ZKKU83qvU1RUDfQLuKKZq6x3/mpz/Dd/2Wb7/6QVNJJF2H4FKQp04cmZb6dhYtnBnqGtRgrRDvEqLwWOZt2l26qiLbkWYIFn6yHbm+DmZBFEz5FRqQltAINBb6kGsBx5H6JU/T3oyBQ6CbtXRE4UNqsA6eUZIy937WMgO63mKjvHdHmbfUZR6BVMZlquXlIsDRiguMUCyBbtbQOaF9qnSYtrT3cyilDytCp3C+ZbtsLJNvpZGX7FK305qGXBbNu/HcnMMvP8jzyINL+GSt6GyW2Dq2cT2qZG0CyXqpXWt16dNwQ3r0FRnkI2P2U//Tz/Pd3/rRKLgr3F2XzPHTWt8uHDfPwxP1/CdwtIDTaKUME4ZRYewNDmwuhZh7wp6vLSy8pT0+SMtLJ6MZ8vkdKD8VDG+dBPh9/cBqo7x4/YCHAm+I8FO2gLRica8/gfCtKOHmivBwKLyrZ3yuSvZTlhQdAqExFuBhnMg1tzxpctcEesTSmHQQhjonQeH7yhl8FAxHzi+BxawKsRQoMe1p37x3x9NHRsg2kwzycc1ES6b1acxhQcF5B5B1KDXak5dNOmeRubyrMHYts81I4/AZRMYtmJVvleZ42VvFhIIMMrD3IsynDKsILJdIhDWuULL85D/+NP/Mb/72ojhw9K0KBZjy2psAB22ZU+wzMdCsZiy3Y8Qbbj3TFbO+czHAoqUBTolJahEuxSVrSttG/f6JWj4wYnuS69RO84aUa6vxvFyOaK6IIWUA1yPL/WBjSsY4r0GtLvYY3eOT4P4Vhefun3H4oRNEzLmvaZroHg9de5ULGpMkdO71iwv4n14vZ3AIO2GPabPktVPkE7cdfrSSb9rApmnqUMr4+Y6SICor9S9/Fn7ni+iHnrFcE0OATrikJKITBU43jCeLGHMOCcKzCcrR/vNOaKPid7q32Rodfw0YkrzecSCmOwGyBTrxVp8Bvp2owBXh7s99louPfks584cdPIzqW+/J5Qk1xlsvo5Cb4STSpO5yw8OUiyEqUTUfIjeTg86yo+OFNc10jfi5pZpSGAcrd+mHEhHZlK1SIXszJPd7yynRoF+YeBLAjpdZUMtrkkIbJMQ96EeaER4eegFWCq3b2ShqWp7o380Z3N9T9i3lUUh4sx8tD1R81qC1E2x6uZPPJ44t4R3FLf1BW3JUFURd3tcE0t4/XEdvOtdpfqDU8/bfz2c74bDTLhmMtiup4o3zsInXJJJcYh5n1XP4tWmPFdp/8id/kv/iv/gv8ntV5U/+yT+5c5+I8Pzzz7/9o/sGWttOJRKMyW9btGts58aAqkTEEuNPgnKB5A3KxBOQDqTfU4rLEZxDImGNNQA9EBdAjodaIcybKqZl+ux97ap7VriaiQnhxMNZ8pSo1VWeNTxCWAr8YAvdHJrzIT+30YmPgIfQnMRsQsXzAOMH3URo98+ZXrehnJD00NluzPjekm/xsxnRPV4Vwoi2Lp530VmMiycCkSgM8RHZ1XOEMG+5h9Vol3iYi+Ae3TuT0qKPY98x1emexfnGWqqFmp5+cXb+eCSyg6li67UoHaYAFTFXSFcBDgW9a+h5i5asq4mAq811xwL5Fk3APE2GgIyK9AH6wHE/0rx8B/3l+4SP3oD3PoM2Cm1AO4meLIW5SgTQ430F1n0kEk3DscDajS9Atrbt1HMF+rZhaKDbDnAwx6+wpyFz9zxI584Goo446z1Fj1ZcAAcY99PNWosfrJ5eiMzOMfF9ekukv/lioF8sCloR93cVPAr7rZ5PzeCnL+vFFSnMlE/IJcKG6HU+pafxjc67XCPGg6bft6pFy9Gjs8t6Y9/cwm1X3yOP3THSuW+XzAl3BSsB+XAoxyNxmnktYei6/Ogd3OsJRNvQDFpFzKSdTMuVtynmOPgg8J0oD0blB4D3P1zDsuE756aM0Ba+oxH+eCMMo3Agwm+LfKiu5ujdi+wKntcrEoBcRsyd/cqVfWux3go8ULgmVp868YJpfqv4/gw4aFu0j0kWXXeKEjKPpDzSyORcKLKY5X0QzBVZ0sP3CUHLWJ/xzXM4uBaZ18jEEpN5xQEucJ5HE2VpooNsxlzqKceyi6Ci2T3+HKBtkT7mrHHPSa6qKckpqug4oEsHc/E5KrARsyhq4pmTgufGAk7HuiLLhFk9Pb2o+VN3XYLLl+AqHoAlxpuVWtLZUyqJVouOLpgnCF1jwoAksc3h8c0I8zlHcb+fjoO5BObuUPlxTYzDu61iotydBxFvxMSG03VJSoVW45naquFhLxQkweQ6cP8SnloZvxMswWMKRwnB4FNV+eWgfM/pGZzcpEViXXYT3GdSojb2tn0Cuwg8f2yLdNablmu9lxrDF9+Ar6zhWzdlbRrjTYPscY+HXIa06vvLd+27l0D/y5fgB4XwgWdIGzsE4+GyQv10TXhhYfmWpPztYyaHA6sJnnir2qNUy+v4M7kYILL/G3EgLcIodj4/Bfww6TxAe3nJWXyjgB4tDH9sA2HV0iTBnSLAg9GXuVlYMuymMXWXA3cOZ3kuvv68N0LovMt8ZRXmN6GlmfXcDhCVAT6swJ4ruGWBeP5DI2wFlun8rRpLohh5zuIhpwUPiJ3vJvg68fG78w3jDC5dxaaseHG8S97Gq8q+3TowRdm07FtanNTWY9HSxfXbdywq/JvGFfmMhIdsHFIL0jvhW24R/XcP1/Chk7JJ0/MX+ZHcR2rLGVyM+dkZ1earoiOs2yYnmZW0Xm4dp2HH1bncsx7fjPaW7vGpvJtlspX8flr67Yd+6Ie+GeN94vbo/leu/E5aQboGnUUBvnXaTTFr3KFzAYHIcDQlG3rGdZOdMxc2zNLeuJJjseW4mnTYZ20uBVPhz8dYa2UCWB7A9gFXsopler8ZCcuGU4mMldiaMA7FNV4fQ4iTILTPJccPqGt3hXY3pqptY9yhd4F5XMz49KAzEWjHMQvVxrQ0zl1G83NShvJco10hBFjPGq5jcNBQZIEm8ZlQVI9pPXJnvC0neg89pcPF7QO/+Xt/a93tVSbaaRvUcg5MgSk9J12TBnYOem7xhxssDCSRxCq/wNfQEsmWIViCqWhpZwi89ytv8oEf/yrdp85o/upX0S+9bgmwoiDs47Bs3lRrnkh+348MMRHBEufG7q0Z1U8LEeyB9byBbWG0I7+cXdOFoq1PZYnS2S0gGtmPzRo9mVmt2fibdmZWrTSfLMCmOU3GmOB7BtnqWBipuCdb2Fxb2KSjhd1ya4gjqpN2VUz7rQMLVExljCaStV6MRoxt6bgQl7Am/pfYrxHFDkJwc/IWh+mexrkF5V/87k+WA6pYSbBby0LAocSb+szxubn5patgGeTPem9kobCLEIbApu2qR8iESchdNS3HQTO/XsGWw8EhMRJxPY8D/HaU9zfK4nRkdbBiKQ0LMQeXb2nh/xj37fcKvL+NTOONBh5dlj68q2N1HgozVFmZdSDMLZb7PiXfT2Zi05TFcrWcAqFtjbbFx05RcaqxfK4xYfumR1ZNkk2qLdhhwnKnAreX8MYmjzsLDEmgi49Iiuo0b8Gdt7Shmz5XEqlyWTgSeweBrrPwtwSr6UYxl9xLt6+6HmHeFkbVrXQvYoJfFEryOh7OkUcu7tnvGcZL/Yv/wm/dK7CD4a91XPhq/RXzIouJ8fzWJ8+a7awlCCzWhcX2ir4mxpNLDxzNWUlJPpfmdOiYlL0KrCvbFKjiL3KW50lyKrcugoWmqWLCxmpe5icFV3NyAPeGvLZBY/6IGNNubvK2bl+96JlvoLl+QCtW1aJthFkU3Jv2MTMS2a9omrU20B/9JfjlNyx296I3If50awm1Pv0K/OVXbb3+9hvIy/cAybkjFo2waZyhQckCu077+8zreWlVQH/xDcv/E+lnr3CshcZyeYkctLnMGg05X8HUqHRnBs16qOccAS1voTeeXPZIa3j/vHAFsXY5fA4zZr2HaPAQ+Pbf9pvMySIdtFmDtqCPNmUs04QZWPjjUin5lpIyb2N7//DQqHGO+c7nsNB8ZubhsU14xHkkpNF3ArmmywYLpc0A7/YofpZRrQiP4vfrfEjE6rzf3+NJEH+cfr+N6zp3B1lQOB0YFwtjhyWVAix/u2yf7IZxwNVl35w1WsHC3pzdMyWiq2g5e/L5ZKVhgafcDpwgnfpN11R2pGiBbUz3e7jmQuBiH4WgXIFbDmclh1W11rHPMaAC664t8exSDze9TnJVdS7Ta7757bGW9u/+7u/mmWeeAeBP/sk/iYjwR//oH83fiwgnJyd86EMf4qmnnnpnR/oOtIqJoljKTsWyhhu99hlvG5pYN3xaqzL9ZSAOCk1T806OyilWgUFprGRG+lp1B3h8u4qgg6vjmr6bAFfKYB3WwHLGuVroBwgya5B+yMgwI8W8WI5j2Ya39o0ToqV93IXsfc/dhlhCzrWUvXKiwKjCCIS8kTN1tTX7ADOnkV+Juf5NxpAqsqhqFtx1gAtannM4wnIlSUlGJ27yGye0T+f1dTY/N7/X0zrtT9T2rXcfcpkqe7jbSEfIM0O6aGEwhm+txsR6N7knZ+DqJtGlT4ZoQQsBRuU3fOGBac+WIBfAL95FP/hstl4nJjcJUJUmVTXz98MQGDrLQ7AUiUZe2RU40p+bwBag7TjaJhOiY+bjvKEI7dv4XRZAFXR0CVDureHFlWXAzXxrhPFhROdtRcDzhNzepL1vwdWTLmcCgIewXSxy7G7eQ0nMjFRrZw+QWnBKBDJZ0e9d5jjMNEcFGAZ0uch9jCJ01Ano0iMBWIE8GCI+SlN0se1+XNGiYq+1ds+/dw7febNmZEmv2W1ToTC14w5eTd4qztU7fd+P9NFNUJj8Nn8Wr03D4aAZDnzzyhgAjYoLDcrD4DxX7g8sjw/MiNA0jCKcN/DhRnixEW5Hl08Fc88+7zO87wiD8Sz4CXlHgnA5oEbeOQeuO7ojTW25OcLKFdO2JXs8jq64eQI8QE0J0G+R1bxyi0/X7Gs7FUjASlq9uXWdJPwAEgLQItjZO48de1pbTftigOed0C7RRV7ImOsR0Kw6JCnQs1JOQYWlWgyspoW+AA66shdOgNyk0VXMJHDcwucdi7vjHVHaPnyakpDm+bnf6NryE9ichSTMJXhfA82i4Wjdw8mKRDYFSp4AjYvZzjgSeJhEGDFl3CLOc98437L5c5fGlYTjiyFXcqjmrRYC10aY5SLAwteplvLM26sq90ZKPhfU8lIEtdcPFFb3LwmHM7pWcgK6lpg5vvGj2NMadpPRCfDlO8ZM3AH+q1eBV69chpyo63N3kA8+bcawqDTYeIEwXZPHYteYaXim8B3Pwi++XNiM9z8FQ8g860YaDuMaEhQuAs3xIpbumyQmjQNLZ2GMZUjLIaq9LmuLtMI4wLzhMCq6k8t2Mi58CvhEnHuLwdORwLYRBrHEpYrAiaCXw54wJc1j2ajVaY+zKEqJ0w1hKZYdP1PmFOutdSKxrkXHgQ1OwazuWVj29l4xjz4FTYppHI8gk32Kn20FtEkGgogXjqKyKYax7IYAKIrQR0V85xT/AGyVcH3JIK7ztGcJ9/gmZR+KJ5hcXfYtrXN6O47orHy1xfgnP++Ef331jrIzFL4j4fSDiSA9XTxPfJNhZg1cW5Y5TMOqMjM2wS2rWZX0TuO/3F00kvSteddMj3zyCgNTPl9Ohuqv3+z2WKH9gx/8IB/84AcB+Jt/828iInzf9z1BialfB01kH+dWWmJmqsMcrxeYBTrDRrp2rVkCwcWyawUvS5J7vBYrpZQDnfsSAwTpmkKJXZ+PI4b+HnFwe4gn6rU2L7vpRtd2XXQ8AE6iFlUWDRKTj+SYvr0qJTVBPGnhpsKeb53sZmyfPjNjBd3NRp/eD8Feu0Odu8qvNVqh4z096KLNAoouO+i90F7cO1PmeCVa3Ddw3jZWn10K7ksW9uQib2MkZoh183Nj+3rbFA7S1TNuANvNFpbzJ+8q3Tho5V6+bwBVbOSyhc0Yk2hp0U66PXxiBi6PRaEPyBjj/0YT3gmBr773Gt/2mTN0DboE/ZZbmcAlBLw7Ld0B16EPDHGeK4z5VDe3fC6TMOt+PyDorKvLFrp+/Z5A0cZKIsRV3Jqil5dwdJtTxAigwrI1F0LtR3J+63T/HlBKe5+Z2tiffWa/lcstw8k8auXzBCurw05LRN7HwXkif29K5OPczrZwa5XXcRRYTrtoyjCaJWjMRJfWxl9rJUU6lMpm27MIUoj5A8w9PmvdhR2rws78pH4twEkLl+uMDzIzla8DYVUYtqkyIi8xmF9t0AKFhdfMy5ZwcYjCqKhZcK+lPbx3TvPuayyxsJSLRnL897HAA3KFYvTaAj2jeJ8kIHEu8oXoFHqX/nRteT9UTMQ4ihNr4uR8AsFDrG9mTc5DkGhM8gopygPlVGPs6dnWErhia17xkRLXTCa5FBrg9gJ+/m4eu09EJ3GO0sjE0u7WXAsusHwpjbnGp3Mv5h6vwCUm1HazFulh6mUmqlXspkb3LF2WjPQZEMQyrTcRxhIbIgBHLXK6dUDPjuC+2W6R2WyvwnYFpVIABdsFMGv1cjbBbQWfnQNNN+NoE4tyRdhzw7a/zQiLGQeYmy8RJi4E5o6R3blehVf23RyfCUSOuM4g78EWTNAbATZb9HaJoctWTgFulNwbVurN0LaVeFMT3FH+aVDef6Y0t45opCSga9qSOf5x/qcWatMUl7v0lyzfqX1Q4Pu/lcpN71fvmKU9YDjxo0+RraaN1YZPa17RsbZB21D66hr4yLPoDwCfeQ19MMIvnqPvu4kOghJYt2Lu8YCcrZEGutWMi7jRmtZt8hcQTruGJiroxQ0kwc2OEL8x9/EZBvupBcxF/ueA76Mk8x0R5v2AYt4cS+J5XCzgbNzFww6PrqOlvSCe2NnFgM6X9nGiZRWT6AZ2ANw1oX1JDZbp9gUJ5qJBJsW0Z6u94438T+NZUSQncgTQzjwx9HSDrmYIZJyd1xU736KlsI/Euct9CKtoaW+k2r9949hL7+J9XKu9UgwHSSa3qKIhuOpC5uo/j33647yTzyetkZS1yjcv94eo1j92nz2KTz5ylvZMN+KLqXdvassGHkR1QlaQuK4H085uGimiTFyfKSpb7pujH/5jUN870d7SPT61P/Nn/gx/+k//6XdyLG9re/qFTzz2e538ea/PB1gc3w5MzBqkL8yRR2jJMm11C5UwKjSty6BYCGlqvWKC07Y+uDKFjD1tH5zM2VOzNl6zwWLdW4K8trEYRSIDOu+QS7vZJ9erxpGuQ5ikW2S/MNBJEXimh3P6mcvwm1vKTu+EporRyOtuHyaXY1XQERO4UpcLMebNMUyqzusXx+v2cNa1Fs9HEtSNYemitT23BdE9fs/83oHWUQvtf+XP/5Wd7amaR4L+xl7r7P+pJaLkXgPoagY9bMeQlVMGK99AnXYlxrMbUy6DWlx7UJ7etGwOYVjB8P0vou96qsAzlH3Mb7W4Hbsuhl4JMUzlIA4wIeAQ5xeUSnuezuwADKtZNm/7M5EZX/fZliiwx8kpZBfoMAa4AD1esBU4jr+ZA30HfV/KwWQhKF3d9lnGW/vCZ46vJr3eEI7qsjNJUtrrGp8mdBWRv3E4KftW3Nu5HGBVujcvgthhvGZiCLQdNNnjRcmlb+yxNQw7d/w/+xf+m7IId2OQw8kVxHwfLprGs0v8dzyH+6FmFEm7Fy1OqVwEXliv+xAEupZ5SIpgB4hapgP2vWgRtM9US2LHR+fI9daMeVHok7iWS4mCVGKKDqI79KNtLJ/nuJLKzbAMI5X/RBUdR4I5d3CGZHwnO8spHBMVmosWHSYwyiRWXuFU4baA9D2ybLOg3kB2B65d4+PrZH19agGvx4RJTmBPC5lWP5GhIc8xnr5M+9SUtck9Pp6B2jXe6GDTdbB2TJGWXT5Q0ysrWOlJMM+YtGCuDSLMnHZH4uTleA5nMYGqZzjcXv2Z/+QvXykYr7BkeDatyXU95BKGFdhFZn6LsF3OcgnW/OyJ4q/ZbOHIKgbcgcyAr6VY2q4a32Pb3vOHJbuKyakyHUnJtyKQdRpj2s82RcqqABS4NYMHlnsjqLnCj2rZ4geN9dkDfEnhfXe3yPEqerlbybdOxCzvIo9XQIDxNclFPgnRn3yuvuc3P28uuquZ8TXzFj70DPzAC8gn5vAD70Le/wx0gjQWpta0Ta5uMl076Rqj17OmlC7+8DPov/Qx9Pd8G3r/DP3swxg6FghDMH5IgUc9cjDjUMhJUDUqEqa8QwoJk7GELFQJT93WSYwrN6TfFf5TSp6oM4FfwSztyeCBwN/4C/81bWMVlLLAeX2Bno4FZU2t0cQoysh3pPGhmAXs+gIVoY/4UqPCRGOf+ToHtgNbYJUUGzqBOVIehR5dUmhn4uNFKsV/woFgST1VLOO65mR4oNfFyr566THHwRkRHNTi2UU1/wHIegPLzniXtH9Z4dPs8H6PLft2cxWT0cEOAKTrUHtiXkodJp9gIKmzp8ZPSHyHg+dVU2qne+KRfjT1pnu4jtZTqRXxldcc+3HLQbtbp92PrR+hM54tRwGI7OThhd0M+X6e03X/ZrTHWtqn7Stf+Qo/9mM/xle/+lW22+3O93/qT/2pt21g32h74+VPv+U9+2QZRLjErA6eKAkgc7NGp+bjeiQ+YBmfNoRYe3PaZ/6FIUgTAUf36Z4BupYSC+0jnKn0lEJ0jTdILcmwFL0YCFG6fYRwSyLCmnc2j0Fp2ppB2hnH45KY+UM6k1wmzE1+9zWYYL6YWH7T223tfp7WepqUbqYxNHiMKKRzQumstUBL15LLXM4aHz9TDdyn4aMUq3oiOCLx0GSuUUqW2B0E+I0d6Sn8wW4M0b/27/6e6jfKPjjaM55BS/jBvs6kIF2FmG8A+u2AtF2sXV5+1mCZ1J+IgSMym9tkYbeN06hB0VH50Gdf51c/9m7e99XX4YWbTiAo9b0fN8XIylqZn848LpYkAQUOnMY8x/S5hdbo6jfOOugdzE3jhmNbESs3JPqb3DfSZ4/WxiwsOs6xowHmtn/RtZmZro9I/Zkx30loh5z7N41L4xfnG8LihCFtpEC2usnO0gGGV/QqIn9rVWLggrnxGY+h0PfoLK4lwkUTXf9L18Y7xH5mrRB6U57Vx6Vow3PLftzK/+H3/e6SOf7OJTwTJWmfOd67xexMkIKbPHG/trBMwmNAYw2kSrGxGTIeyqXxogJCpAigAjBvWAWXQXkyLw/DmSlV5VzhWNU8Tk5BbpW6tKVPuC7CvSSwExnHa1gc6I1lXqv6MEg+FFOvBs1ZkYWHmCU/8UdN7CN1fyTCm4B2rSlEtXSXEuHluSk8RHmfgqxHZNWZMAQuCV1ctGnCJGKnTx+YsuxysCypLq69ifAujeTcpWvgKK214yAVolt1k13is4IhChcPsaz5tB3N1pSSDVSeZnOUy0RP130UHsveaD4/5vY78zCU4C66gHMxwLW2VqxEjeMf+vd/b4EnJrhfNYYC2F8VynExoM82ubRVmMDJGugO5sVAADRarrmf0x55YcU1sXVJoLRGqjrtCf6fyOozPY87yakifXfx/Z7L7oilXNfbzHcUa158zs2VxTgELaXe1IT3EC3ugyq/EpR//cEZ8u6bxVjemFt8KzKpSHJFa8SE5qTxV+Bbn4N/R+BnXjPX9Q88Xebol+LbnoNve87wRs6t1BgO7Zqdmtd5RWaNvUu5XLJ3jaJ08L3vgr/xVcOLt48Yg7BKlqTLAMcrVlFgvxQr3xWScJuQNMaTbucd4vLkVeP3ni5goW0KMp8Zu+fORBD4LPAs8DTkEIRBhO//4X+V/2EwuMweE6sFrIcKR6UXoha+2KjmeO+q/OOjgCwMG3hrv7sjw53OyK7TM3GdOb66I4LjJhSPz8wzuLOVUGz83Rhp7bGIK38X8cPSElEqxBA/ow6ZZyDmWkzz86M/WyMvLKq55TFdBbL7wt0EyyD/2dO4QFrRjOxBsFVL+Os+a9NYnPLOhwYmXOzDjiqEsWpiybdJUy04GwoeeDDAybLCszs5afICuTkT+9oWD54QjK/Pe9YHtGs4JyUF3o9zYdfSXvMt3/z2xEL75z73Of7wH/7DbDZTtGKE+i21k9/kphoe//0VfwAPomUB0uZFJq1rjbHCw2LCOPbrefx8ULJQlAhnvjU+ewCaGVWch8RnXVXyrYxp9+ozORZ3z5qX0+0YSzTBA4EX0tmaNUa8tyPNostCSr1o8YPkWj1VSU0HNZPatTg/Z8/73iPH9Jz4sO2u+3mi1fmuyHiswSzfAnRRAyli8X6b+hkBn4CuxD1thhGWDbfiOJLXcB3PHl84gWtnnb6BU70PH4FpNr0KYx5L4FzZ1VUYZtBiaZ/uYyIyUNwtG4EF9Oue1crE31SCKfEGXxMGCGoEfzTrOumqinz5IUPb8fIHZrzvS2Mm3oWQ784p4X3voqtAGEHnZulTLJvrefqNOHo9xV8Sz6fLdl46K8uVfrXCCJdGIlgbAhR91FutVuChWBbwlHNi27TOI6XMNT/AtWxpd2PxWZcFYLMlHHSMnmACVQzovrbPxVwwK9aX7pf7/FAvTdmW8NswHZ8UwVMQFosGHcyKk3HSJLa99FMYikXXlfwYb/bw1GGZy2Myx9cDceuRiXskgadbc3dWtbnEfWiHwbJtZ0pQPwp/nQuzYLHfNYiW/QwRGYfImKyj4H4I8OASWYAs2qwQEOI1wsylkJVLKoKuFgTnUmrdpYWtBpEVXhq3UPuARiHogcDNtDyy6wZ9Arxki42W0GFTcsYug5MizxVujOZ2IMt5flYW9BrXw77EXvPWzN9vnMHRDYPxoMhIhHPrywvtqe9yHOKrc2DREZCdRHSI8AC4GemVXEZVl8bjovZijksIvh5hKRlvKGk/7Ostpi9O1rCiUBJkjrltnswdQJSxLxZztl4YcS2VoSKud6X46nuzLlHGkUFAojF0MTONZZyf8RlCE/trVJHNFulMGfIgA7rB3bVdMmG/4wmaJ9i+rWJG6YRTHcwKhtS7pIzZ9HAUy0umI5rgKK3nww3D7QOzrodY6i0K7r8arAxad7amubGgQ2hbiV7nFlPOEwjt0ogJ0UloJ/7uY8/Dtz3/ZIQwmfRaE9rDrGXRSJWJuzq+6Uw4oZ2xeOvo8yfwyefRf/gyfP8HGTthIY3B8X2F46UlA4/C5HGi63lv7MUgsJlHnDgGpGsNTtJZyHsT1yK6j0tnscGXUoYXgE+L5Hh2IRk+hNl8xnIcufAW64OWcPc8dlEOcqL/62A8x1KpLO1G8zY0ty1Mq0+w5pVqfi1nDQwDwSMLN0ZRSqjldoR2lnmhdGPmK/1zMYWIChwKrJvJl9cX6KmLs057p+lqfc68QSAh18sNsjIF64AU/DKBlaolfDpVVt+YWbjbPmt3wucbLNFm/G0gGatq4K6S8KbHOFyo/jerthKk92aQ95rIhwPccCWlJgJ7rgrj+8gMWWtJ7/Ig/JIqOig0LSHOIZH86eOgGGTqZ9TXb2Z7Yvf4v/gX/yLr9Zp92eP/59qmLn6KCUQbzJU2MS/57HcT9/j4nKnb0AozIOpc6vPgO5doaV/Yzen4SbxRZOcXTH6+A6c5nj790s8tWVsGteyZYvFEN5PWTARakPWQkeuV7XFJzPyAusaywOxrU8F2OxoynZ6aefxu5+S59/HlTNU0t4O5vlRILTHnY1kUM4aGIrhH19H1ONJGbJSE9CS4W1yWm2/XmlLBj8mP821uqaxd7sIzbl9LnymxDezHVFLWL30e5h3DJrCI65f1UN6N60n73waLZx/c3xjj2z/9Bi9/+y3uRiv33lJOk1Yxsel2NfDT6J6LSM77sMvY2ia7QjJsgUHanIymnHe1uES34CUBZTprUcmQJNNzRa+bBXVAzKoZ+912HcNgsdB5PO7s+jlvid7a3myKFgl4GGELehDj34y65SzSO9lufUtW6kQcEwN7c2GCctLKQ04GyCVZGQFWz1sicvJ1zdPazecNi2GIydpqYTZPh7KGlctcur65J3N8tirsyxzvBrHjZidwCPpoU8bj3OTbcczWvUpYmUoudjez3oWv5LlMGKtAjkN/pFZSbKEKpwPN8dLmUAnstjdHAvdzIrrIMN5coo+G8ny/Vj7mM30c9y4xZjpvGbDM8LdSn5At42l6h2JJvFgUod3jnbR3IQLvGXC03sbQq5g9Pq59kxUr4hhLaqWRiJXverOEZUiIhzCdP5wzVlrXONlyNOIoVzNC46zsDVlYeI1YRWUJzZj8U2pvthxHi5qVZlZXFCjNMoB3aW5pmuntjQ5Oo2g2iWfPGdMndD3zFWrlNj3eyXhvY4pm8yYoJQ7TLM6AsW2hH/bHsqfPNltYtRyLlPhniSXf3LnaC/5XtOyqW3UYf3noLO0UvOYFxBZY9sEI9mruOo9ILZ3jGxDuXTKoWdqzF13kU39J4TedGYfUHi+jpd0E91lDzuXwJE1mrXkGLt111ZX3/m/p/lYdsuqQeYssGnTRWGK0rqm86KZ4XwFpGxPck5v8rLEQja5BG0E/fs1CmX76DYYQmCfD1foSOTZ4PQATlBvJSuvcj9g5GpPxZDsWujelf0SYuexNESUlvjknR2vg08BvwBk8IPvIn4hw6ud5LHBeZ4/PZ1hT+BksQ4GRvF0PLHRiJi73hExhzvrVeQPjwBDHVBHD2FenlniSwfiHbGVP1nqoY8rjZ6niwk2x2P2K9i4X5h6vk3XPPEO0XSU8E9I5UDgf6A5nhLhHxe1fKj63ak9S9i3TV83TBzUmc17c7nukVIBzZ2Sazyevu7tWgvT5xCvVK5qn+PDRxpRxUzoP5ez7PvK4xJSBZ2lAe3jk6P4/6B58u0cxsTcRnV7BR73D7YmF9l/4hV9ARPhDf+gPATaxH/mRH+G7vuu7ePHFF/nzf/7Pv1Nj/LrayY13P/Z7dX+46xkGbMcZxp3VoW1yeS+PwNL7tNdLjUJ7u7u8vs8Bi/EUbzt1SBLKYfbNw6e/pkyONSLQfCaDYom9YizoI0yIyQzaEpqN+T42UGvC/CL1+hZJzOKoZlJc1W0yu4uQPtuMzuXeHZolJoi4/nP8USIe2D5kN5beMl+CIVmF4gqeXO3V4t3McKOVp+KaYLhCqJLFtsiu923rLO1v4wm+inGbAzoGZDMilz0//Td/ykrZbcfsclW1fZK8YmvatfuZlKn1SCICns0Im0BOexf2j/GtmqbEc0FrS3tQ+NJDRISH777GJu3ZmNyatLjiOh/5naSSbi/VUsDnvldiXpQZBKfacinXDdAfYmWr4h3VHB3TkMqC5Bh/p9BUQB/06KFZAk6lxIIBjIs26QWcwG6TmG5fKr2Sb3aCmQBcbKEBmbcMnqlIjLzI1cqdfVr5JDyNGJwpJRFZUlYtSpG3rcTyrmJ0VZqEr+wQLeYdi76Uz7Kp2EQr8FUqq9Lf+Kn/kSyJ3TuHpx0xr4S+K+bm51TFxAmczNBz59HhhtBuw44yUZopzKfnNnR1GN3OVTFBIiUYugjK9bR/byrcPCr4PWa+TJb2a0Iu2ZQZwcMFer7Nupu0XvZlBI4Ej3jvhpgMb97xCKNzKSTM83dJeXCC8XnQWJIiN5/sBaN2Fkc1b4OT9YAsLWhGnEJA3OLlLPL7XDmfOYI317kjiXOTAISQae8KuMwKu6J4gQKjumjLcYl4LR2dU8yKLDOQ9VBwvKMzB2pJsAC0x7JJJ9zhFiwx1SknAU0BSRGB1QJ5OHhgKHum8Df+1j/2EFUrDohKeS3bmt5yFtCFhYzUVi4yDhiPgb7PSgkTfOzeJsYnywWw7DiQyPPGzdqKmCFjOi732WPbRAGc93rZlSzP/vxnvGbZ4w8vDa9577kEK9lF/toB4V5vpd5CrNMere2qyheC8r6HW5qjVRbWUzy7ZZF343uSKc2joH4wM4EkCe4Hk7+V+4vCuyxbmHfoossJc3dKS6Wr22uLaTfBXWN8u84aU8C3DfrbnoU3H/HPfOEhi2iZlruXlklSLEloijsvcdmFo+yJst4MywHEnkGkc4Eim5Azjy4iju8x1/g3gVeAjxO3jnK0f/Yn/glzsUzrWSBetejFUCzPEQ4SFV1HGG1lskiqsFnDqqVD6CN+NJCqy9oZo9zBJrABFvkc1Eq6OZGtG4DD2pvR8w3TvbrEznknMemt//64RR9uo7LEzTGurwSNGe3d2VTMmyFAe2A0r8+wH3ke10/dZL/33FGk1w82fgDldRJHcjUnC2PwWdbTWiXcVtVqj3eo71Mk1k4v881tH+0CuH8J1zrX2R467wmKxy0Hs/K8TJvcGEdF25ZHIjkXlsRnyORRS+o8UtM9/2a3JxbaHz16BMDv+l2/K3/2vve9j//wP/wPeemll/irf/Wvvv2j+wbaOO7G3E/blJlKBFxJ5U3KvUJkYFz8socbKARwjlXBsEjfePv0ABOTCrUgqYycG5tcyVnvJ+hQA5dH+NnlBdBzRdsZARMeTjwNnTdIH6IQHB9QBc7F66BFwJ4O3LdOopVy8ozU/Pv1YNz+dFKLZsf9vLbqFmS7TMi81xgD5rpKVuVYfzTFsI9aXgcTHxg2gaMsbBTBfcc9HowI5wxF1Av/DZ7qnX0OymIz0q4H2vWAbEeOFktkPdi8Lntzed0rqE/2YAilzvxOx74OqcvLcDRHh6RdTV4hERuGr4Hf6dX67wPSh1jyLUAI8Kk34BO3WTXCw6j0sjmlAe0Ho336IADWkbkCExopSUUCUp39KUUagO2CdJhLB/Ga5090CIlrkQmEUgT3843FsWIuhIfJfQ8Iy5aQ6uM467P6/tLSEQX+2EmFe1SRsx5WXawzKyURgyO4VzcpLiWZOIoxiXPgzkXuVyEm1cEY6fj8NRaCUOHOCsdY6M15xKMapvxgmnz8MAruJwcH2SWUewpPHVSM+2Mzx+fO/WDcfcdLOB3qfYtja6Ng6wl6ftzUk2DW0m6TIrBMw+ZlLUTtafLCOA0xhhGQiwvkxjy7kOY+YqcrMTf21FSAkw59sI6go76j+jCkt4kWDKMJrl3LQ+CGEIWWeqnSGA6IUSKdoOOYz5xSG/RRU4qBslyP0M2rZc8x7fsSC6V9BIPD2zN4IxZpVNv7DOcpxh2zHmZl9fQalbQ6j1boqMS15bG+7gNPAdKCXI55jxWyRb/TyG8qJlkdzcqchSofRi8mCNp3UsPd9SU8GqjOtduz4+ODCYyV1yti2T3iOYkwBIr2wKojJGFFatz2EEyRfbp1z49JZ5OFP4ahNcsZR8AjkawIPZcSinAV//HYdtXNy8aEdnZ5nkR5OuBw3RNSotqpBTXBzFMHjA/6XMY156wJyr0R7io8dw+a64elPnsU3GciRTv/NTRpGxPAVzMTFA73CO0Hs/wnBzOztK86dNmZIYgiKL6VcCAiVTK60DnBvW0s98xve57f8alXOLhrpka52CCHptBZiuREaQq5mgLYZwOmPKBrkXXxcCxJAos3KAD9iLQmICVL7Do+8xcQ3oflh2rxlnZhdXTAsZjhyPoW9HiOnpOTt2b6GZX0vcIyEOPpE+MW6eBFgKN5pHvUOQ/SAqdhzztTBoyhLoIUnBJeo+x6DjRt5g9yuKCkPqRKMHoBHDQWJ33ucIAKcNyg600hCt69LB7UISir7AIcez1dW+nb1jyW+jyWQt/3sppC8Z5LY2njoXmqsTw1lL6LN26kzZFnVsjZ42XyePAeFmWN93r0JY+8wVso2LMe8bOH26trtOeBTHBBtpxGXLEuCRUzjcRoO7OGNSmXixQFpMO5sMeDec/1m9meWGhfxPqY8/k8v/7KV77CEOMT/9E/+kfvwPC+/nb+6LX8WqOL1Di1fsU/f+hOgevxd4mvzvAwlxLDc4XgCLGWdg80TTyP7lA5V5aB6KG8LYxCBY+PgYh9NLDKHh8FKS/AKaDbAWZz8yggugUSgbY1V+9GdwlopRnbht2kcfuaj2nfB+X+mcNoAno1SYnZ9XfdzxPh8POfRTzOEAqiFYpL05xYXibJA5o9EBKBR0E3I8dt4gdiAiVME19CMeOLeTMpCTbh0t+upor0gYPNQLceke0IlwMf/7Zvgc1A2AZ0q1bGqcojMBlPGl+/R2ivMLLTTKefdaYpzTHLWhvIpo/YO40x2F5H63qOZQ8KX3yIaID3XmMuwkbEODZXqq9Mo15gHw/tXzdBaaXN47Kam4U58wyLva9nEFrgPDua2z7orgy8wnQ3kk2OlGQzqvDoEl1ZvxcIR44/VLroEUAW1DX2lT5L48wx4/HDzECl9VgHWC5osFJyZY6uNi9XtMQA+2sihE/N4W5RCWpQS351bGuWiF0vkhPR2Wc2CMlZHE2R2W+LS3feA6ffqxGz8t0f/6h9di+qXK5Fdmtqob0CACsX3amAfxJjDV1TpYT2RKXPrhvd5D0NHcEpTsvZy8KyFnokCqeqHCWYuXeOXLOxSSPRndys7NqYO+lFZNSSUBYOG7jYkHM5JIY3rptfx/wWw3EK0FpMd0UHKNue5nbcGG0Z58CQlMDlnKV8EkHhkSonQDOALLvyzMZV3vAHKCuKPGMJ3F7Ca1sDjFCUhNPzt8DqN9uZIzNoKGhMfKTRCm63SU5Ch8BdhBMBaQUZe1ezOW9kjmlXMMV3NyvPwjUxS18XF088FwjIycyyIk/3Jw74u3/Lt1P/oryeZw8Nx7CAKTUFWM3cedLCtCOcIzBvkG1vo1bin/NWu7RwBrqGIzGBLrn7XkidPf5J8X01iR0XV2Ls6cQ9pQYqWlWubQJhPs9AmWl71gaB3pjR3780Sy8li3wAfkmV9wLd+QXN7XkOc2uw5Jgmy1wRWvMk02ssiZ20zZ4/qf8irE/XsMpJ9BZ9MW9NUJ81aCvxaoL79vYx/+Bjz3PwE6/ARY+sgZMVxD1Maht1Zy4pnbLLeDeDbW3A8TxhFt63ILMOxJKqKpbIWUX4OYF/JuIQS0JX5vvRT36claQSrHFPV9EccDlk+ufZlnX0eMnwmsYVeTpW81il1NOu+Hso+GVmzF2zHek8EXKdzeJPQx8snNRvlDdqTK6XwEqs0sc2nr/8+FWHPhpyIl2FEoqlioRAUB+KE288HyDKXDOxsoDZA1J3x1A2ifqsecH32gru+Yow5WfaJ9rQVHDhs6z75UgeroWXErfmbt2TzLAp3q47Qlgej5rC5IZLROfpu1f6+j7SnidgO+8rPUDWUYzAqkUVOielT3GbUIT2fXt+JS/1DrYnFtqvX78OmMX9mWeeAeCP/JE/wh/8g38Q4OtGdu9kuwzKebDsvOdqWurk+eEFdSiLf4rF70FBqpHu0bRydfmx9KFaPLymbDST56cfJIfbpiFnH89MyRPMbZdhNKSfk2F5hIdjGscePYJHahrQJIgKIF2HrDUnFts/eCbx0JPD4gfVNrXqOM5vR7BVjbXfJ0Qd6kRve9Y7uxCFNDQ1YbDtythSOyAiDM28bf6Lj3+I0o4j15rC8xTB3WLgqjnO9iWim1y/jlYhDgEZA20/MuuDKXk2g81lMxI2ATajlbEY7HvLhj1dZ9fBdqyF9sk+hogk1Y9mPoN14CA+SzIGpHIve2wb1P56s7Q3g1namxCQn30d+cSzSCPMG7FQh1mDJmsZULlRu+llJn0y52YcabtCZA5FoiWQHWtUJoTxwG8Ry+rb92WuuWlFMXM8YgLvJLCPMVb9rI9hKcK5OBdyQOctelk9uZqbv25iX2nNQWsN9TnI8YKGaGnP2njeksOWqTDrBanbh5nIZ95tOxjTnRZXzHvIZinu4zo+ejuDftNnATYJnJmwwq5AkzRqd9bwdIwxnCageyv3Vs/AOHjX4w4erncYRbYDQaBtCh6X2N8UDSBAJ8w0mAAZWxam8xR83LyyVjjBEJA8GpCby6z1R6LLbhTgD0V4EBm1RDH0ZIbe12yRKh0zWVBKsk2FsB2slBHGG92Kz0tLMwWZpGTqZwBjndDNdQkWtnikwAbkcJ5xZ37u1BsiwZlntkTg9oE99GzIFmFffipZiGckt/Ey13j60M1gOQvAyr2lMcfJXWKeLzdFkE6QcazoX6LJR56eDkNmQNUBgOEQSyY2a9J62qSzY81xB6c5bV4d0+m4wCkpFUwxKESS6tFRZII1Kr0LXivJRAegWTSwje7x2egQr6pwMdAcWh+zKIQ9jEhqK7uW9qmn4Vs2f2OCgYOmSk4lTjnjf3a0AT1ZlN97wSw+K9yaMT5ax9rssdQbZmn/QoCPiCJvntOeNBbP3ghdYxb35q1Ca97mNkFBwBU1ryfX/Pu2MRi04vJ2nUehvRX+4UeuITcP4cc+D6cD8uZDhBg2LmRB2RRXZWMGIo+z6EyZDuzkq9F0LkAuFY5mGS/6TNu/SB3PniztIhZitEK49AJeI+gS9HRT8LBqVsRt1RIJEj+HmEvn0QY5sIe3SM7lollR6/oAU1a0MN8OkVYVYpvmOks4e9PDak8N9Djf6b5cYraqRRauE26LngRrKJn/C0+TSPkWK3GYcLckmn5tASLMsez7eUeeRFG9zxPt5gHcnyQnSS+3Y1YMpxYww9VUsIX9Hr6VB8DknNZKugkTl96fxicez/Na7zwnPdtf070QXbCG/MyKTxwBadmID57cfWya346lfcoOfhPbE6Op97///QB88Ytf5Lf+1t+KqnL//n3u3LmDiPDJT37yHRvk19Pabsm5wmmAR/Fv4xbaw6p/fUapoQw1n8dMkElMeyLwBk+aNTNBQaW4l9iPChBv41PaRmAcq8Qr/vn7IGN6RtN7D1zTZ2Qm67xHF8aoHUXKkZjqZtUh61AO5T6oVKJrtWPW49zqTqUW2ncs95Orj2n3bdZOssdHQcd3TUK0loiOmDE8PT7HvMVYpnhLlUk5/b2mcBAC7cwyRmdms5Fd7znB1iFltd5Zq2/sWJf9U3MfHwLzPjDbBJvHduTBG/ez8J7/kmD8uHH0wajLDndYPkvMeBBbQz0U2s0QE6Gln2lF7B6nvNNRLSdEKvMW3Z0lWtnZjPCBa0gjWQFF26FbC1zY0fd4Jj0ppXAyHtAOI82yMEkdJljuMENTwh4ZessSPNRKlAkTI0Sh3TEYtnAp4ddo7qtHi1xyJ4VfWF8tKVA8Cxvxdan7bu99IrrMOLlxcDEgiwUdUdOPMe9ZyJvMc6elBC/Toqw3F5YAziFLvVRoY2yv2hpuxFyDp2gBKVbWvusYtn6+iV6XCg5VOaWg3Ln/yF6/ua0zx/sA7McwMHkuzWReApx0cOkSICU6sR3Zzs0tPf3Eu9eLW3gBmEO3DcY01ug8zy0pKlDQoNwLajF1p5c0HXBgQi4xAZ1EgQ8xa7A2cBkt8EGA44WNO1mnvJJjkuMiCfsBRTeWOV6BVxAOJzydydFSfXYscNlCGIoSrfCXmpUS94HrgmnAF4WhF8ix7eDrYUuxtqfOGzFh5ARzkU8MbIxpF4cMDoHeIYZqDzcBDlKNduorcEeNbi4BFg1NhMuGguPArF85Cmrs0QNfLrOu2ZzOaHaZ94t41FkpI8/1eTi/82CvwJ7GIBqz2EcuXxULi0reFxFXJ6BMgss50KxmyEbzWqa/XPJtMyKzeYbxEzFLKMA5kpUG07E9kb0mM0wTPmFZZ3k2nOZwW1yjk0cwpkop2dou0Vpsgwi3DhjOSjx7CDCOyhDgV1T58BiQ857m1gGdxHj2xngw8Xv0a9AyDWGXNnn+tPpNJ+isJKbTWMt93UQL/3uWzF4fmQHzv/4S+uo9ZgIPm7R+lLDNCD8DpqzhoKsClYu1fUL/NgG6WH5TTBndY5UmHorwEYlKEerog9N7DzmSWNM8aggVLO77wsTudKQTLKw1CtNKTAQbv7scYWEW2U7ItczTX6HxFGCdt3TbMQtsXnAHV1YrDLG8Y/wq8/Cyd3/WWHnMuZhyhHwesRAKIg9OoQPpT4npouL5zmfsbISVqcw6Ieeqyed7j/Igt325Qhqs7NudGGCeDF1pMtsxa+gSKtmKZM96j9bSWu3WFGOy9vHuQ6K365RAUocLPFjHPAwTup5fu7O6z4MH4LCE3qjbJKMLgLRc6IS+u/Gm9ylX2HS4/vrNbE8stP/QD/0Qf+yP/TGeffZZfvAHf5BPfvKT2ar1Hd/xHfwH/8F/8I4N8utpt575CI8CnCmcOYHde2FMzgyKxX4d5k2M7EUC1BSjHVvOdJreu/416qY8MfcbnPBh2wmEUDHgvoTTvnYlUSfG6yYkkCxYzgVH1wPMrJbwkTuBAqZd3QSXiMcdovRcKPHQ+2icF97nbV2fzLfp3C6pS76ltphYsnXy2r1fSJRVR2DZVuutYLFMl1FoD1ELT3GRB0uesgijWbcwJjPFsZtL3WQeM8nJCXmLffu6m2KCbVDmQenGwDgE+Mqb/Pj/87+GL75pLpLJ5dwC+R6PUUZnad/ZRyfceY7s0QXHX3qN51+5V5joiqC/xbyHUBQKPqZdA/yPryGfeM4UPU1TFFBtKYdWlreGxySwT/PwDQozHelc1rdrUiq4ZaWEJualMIBgsXksupJzIsV+Qpl7fMYcg6m0LjkMRxXur9EDoG1YR2HL1waVGUhySctHTveC0RZTTlWWMn9GLzdwIkVodxrqtxTYYb/wJBiRf3CRJT8FuAjoUWRExBDdEBk3detYBE971Nh1jH3BiBo3I+Mo70EQCfn/+2/9PbvhzqXVjU9MiL9WguCetsO8xOuxuS1W+E4VtoGh7SzGM1qH8nKmo+OIOzNoGV3Zzbp7VSXE6hUhruOgyg1V5MEWjhYxTKngnsw8iJWeVYRTJ5Bp26ArCA8nsZKlU7uESSK6IRC6DsXOw1OU/WnEx/eV+R0AFw3m1YOjaw5mwZIMzgG2W5pZV5bdbUMl6e3Lo5AW+dahKWri4CW5ThZ3AxaUePN8htK8NwFmXbayVy7ywD3+f9z9d/Bt2V3YiX6+a+990i/c1Ldv51ZoAWqBhEiPaJvhGQPCBCODhRljo/G8wXaZsVyD51WZKlM1r8rSvBkZDH5g0ACSeLRaGYVWjt2KrZY6Sq3O4aa+6RdP2mG9P74r7X3O74ZO8mNVnd/e5/z2Xnl9cxAOuk6ZXo6MCUFYPQ40Vn+b+P26o3naU9wOBGayRJlBcW2G2AciqjGb0RZK+XWy8Ja3fSjMUVcOnrtz71PP+dNjZw12NUlvivYtbANRa4LcBYyUJBirQEz5NsEJWbTFFYSzrs5tUeI20BzpPRdR0vWW5KYT5TkUv8bup32zkmqQCEqsnySC+1u1VlAJ1JtTjVfTqCDpkcayYuHyc2NMX8j7edC0q2W5OI7yokbyjIs/D9Ceu9SnvbMtlhYNDqvMus3ctTBMckOeGXhctev0gDHIAxusIEwdg94k4/VTP8cHSc07NsHtXoT+zyqkH4OF9VD3s3sEXu6+Z3Q17fDJ93yUoYjiWHHZMERTWNqtxuEE61ym9JRV1jKkvS+w6P5xqcEy1K3O+5yHXidWNvpgjpk32qcuoejaywF2Sijce8l592es9R2FpQPU03OaENfWwTU7RLXIqcVAgnPmFno42NO4aZ3ONFaCm0ONVeOEtqnwYNlGSfEdyf3BXBnjZC4D/q1sO2+rqKKjx/LiAyimJbqtdIDYSqYpM0ODRHN4fw+wUaoL3DINe8rEp4ep1Z5AvweTZC+l8zOz0DOt/PIpzktx1TKf/db12ab3L1AuOk/7DTfcwA033BC+v+ENb2BnZ4csyxgOh+d581tTnjp6J2OnPjUoI95YZxbH4mHz0x407Slx5rUEhUHqOjlwKXKNC7cGGvF60NG0J/dz3CHIjTJYJPuwyyQvKRcC+tDO0+5pHFuX2F5GibA/GaMAYjJMmuaj22nfr7KOZitph7pILwSD62KeRaJSJyTN/e6xQMZCrne7/Mz2rUuHVtKKbh+6PyyQaRPmIvC3fn6s5UkLP9jUmrdeYrT4PG0rHWdhFn3uw/Ce2WEOY3TEnWkseWMxtaV+8hTFB57kNXw3vP0J+BXgJUdiEJe6g9zS/oEKn7p52n2jEhFSYPaOnqW4+zTrM/hbH3+S5qcEXnS5WwsbU5DtUVpadq9pdwtgHtpEtmvkxn1K4BphYC21CM1ABT8BoSSEeat+9yecZWtVDjStVRbkhjjCZYjwyDR9P510RIXPvVyFQHUDmUkQfNsdYIDiAR8VHEtMrTWusCM1bxu7Nlq5zEeoNJ3OFrJ+zJ5C1a70XDuSbN6wVzZn8IIVjQEZhqIEqb0YEe2ePu1DDQCnUkA3rhoGvbBPSjefAxyjYp23u2daXF/qXk7j/aKTNbUQzLdbkv/G8m9+6edUA3B2B75r/yKD5wnvC42tey+C3TfQ1HXu7ITcz2XDOMuXBuARIt/gp5gMsqZpp2RMikXXzCYExJajj2QL5NAKPp2k8Zp2cZHXjdpDee1n0E6JwL4Cu5No2v3VT2h665nZ2iqMFGETjeOi0+gIFq9l9wNGM41MnTtXpDl1TwS6EzhrLZcDUs3VPN4vkRFM2FPJfIoPqiSL++/ICE5Po1k87tqgwm5rGIg4Ayp/8NzFgp1Z6OU0QkyHZqKV1QZwwO/PIotm+BkRz1iNMu3TFDIr1W0m3UeBYHCMjxt0KtwBECfkYmcO/SHtzW/5N//iV2jSfdW5DnAa/2SozGsYqoKgSV/w+wOViQ8yAznquz7sta0ErcIgWY+WEUNRZt9j3356jjv9umBJ6YNUGjGMUZ5bglDfL3eKVuczqpUiIeDbdTZGzYaryw3N1pzq0ChkhrmrsbxQLGzXZOt6xlKG3aT77Xkoe63thVK+LSvW+bc3LqKubSzz3JLVwLcfwN6/EznJ7zjASiY85M6ANQYrNgZVQwXVfUGtEqdtHOctXfTeXcsKVnseRDAUYSJwt8DLHCzxWnYjbp+J8HOv/Yd8bVqz6RoIMWX2D7A7Vdzbfq+j+37kDy5JbIvtMvh85+IUYikz22Le3bXIobYaqR0bN3m6HtZCVYWgxi2h/jLaAXfOUNP/MpxBwvN2PYcdr2l37/t9b1U/NQo43T1wdoZcOwKH4ia+7fP0I5RlAngRNY/fISGCbZzzuolB6NzrczzN4mCAR4Co204aPX4hCF3KSPeKoDhbcOdKNaqbFRxI+Mouw949q10JJ2jwx3ETx0V6bYCM0o1Lp0UCGE+rGrLckmCvM/lcl0v24jl79iyf/OQnee9738vq6up/kwy7LztWfdk1H3c0gYaUiIk406L72Ke+aQl5wAXFakIFKf0RPlbNCKmatoSus3HmOL/WPI1I39nE6TUp3SWPDHYAAQAASURBVE3lSzc1QSpBC+bD0wY7yDgpIQtI/PQNMnemwCnx1y1zZ1odOrQHtvOac889LNvlKfTqJzKkAFxdoDfb+Zdtj1/Q5akApmAzbx6foP5hrj7guL1gbesKcMyCKUFyExCOEUXseRcwCDoPs8ScoLNuT1cKt4DYXT09X98DG9hdoAemAe57as8+LP5ulQndM3q8e8z7tAvYB86qP9YQzBbI/edUEuy1yw3n17R7Lbtn1p1PuzQNfOEEvPIKjVjrsLsjAzRisFeCdvZze3+7axPnfAwU81oJcDew3MA01T779zrmbggayM0HISvryDDYxXXpowjXpy/z2bawYDca1Q6jOXJXSJCDgMlAKqdpx7aQeXcpI/K07X/4SZjNYJC52AsS077JYp1LS0rApj7t+52YYXMWTc3KCvp5qM8nk2rJglwVSmMrI9is5CFavifMfC5lmwLlVPDkpfGnrQoQuhJ4fz1vERaEEQArLhK4j4bvYCWVZVbkIT91qH0J8wIgBkwwj4/r017PdIyWiXVB4DanyNrAVZ/kunf+OX4u+8ZHf078s9cGsFEGt/827Pa7Km6RBrAlNCOFtxsI+0wypmTZnbwHQc0+J0Y0XgbRPz6cP6tnz4El9aV1mfnSlG8tNa0vyxh2AQ734NQOgWGvvWm3xbi9MaAdwKuF06cNjPIA89NUbxY4KYT0rsYz7d4FztowDyMSj6OqCkFTUxN468YW0jKmAfbS8zTS9W7vbcKaLcB+f281V3uVCi9B8V1RREsak2garfZjgkYFl37uzNGtG2NC30wrJIn2fxC1RJi4ukadPqXXC5f03BE3mNeeLwtOlRyc0e6cuaOnxM87Ma1UIxqArF5fodpsQnBZa+Eh69KOnanJDq64oGjqz25EhUkIi7EWnsOybP566D7uwvyIttuQOxzzzECR0Tit+05hkMLA9ZdT/+K11K9coX719cj1l1MUhkkuYEywLogR1jX5cA5QGGXIiXvEr0cay4mdEhnGUXjz9HsQXu6eyVydqfbSGsOK10YnzKftFzCdO9jiEajuiZm1KkC1PnOE68hkiqxlof2mZQYiodGWpdlKTq9qa49DNgU/FkCqKklFHJ/1Z727RhqITgUfIXo80X2MYR+743B9EN7GmCS1tcEFIJyB6dSdEyHHWSc42qzptL9QvDA0xZUAXni4MW09bkGzL5msZWVZQ8SDnWOyZywGifRjKENn7dqduJYJNLA1h/V+u8+JgDS1XmrBlrSDwxyme1iFzWvo4VLskdSnf9Lq+kTrTJI60u4/n+WSmPabb76Z17zmNfxv/9v/xu///u8D8NrXvpaf+Imf4NOf/vRz0sFnUu7Apd9xn+DD7IkyFid/C1jrEGXB0iMzLZGLwIKJvC+WyLSnG9iC8x1yARAyQ6qauRhkuIx3hLbvhd+hPjUMFtXwVMCgYGrhQGJ+KYD0DWZcxU2R7sj03gcxW9bZ9N5rvrpCie5B9f/vJeZvvi7PtCfvtZjDBKEEpr2ybZ97/+kp026tSwtC4s9ude7OWWWCTZ4Fmitl3hfG2ZOYRz4tz5LJjEo0o4+fRvaH+Q37ESelqQ3w0stjnvY0MFl3zv21K3gJjbnHUqYIsN9+EFkHJtCsAt92wAWGSnxN9xhyS8teJpp2azUv++kSecV+9ePNBDL1TcuBmhzmbcIlxdd+TPpb+1xPsQzqGrIYt2EfsNVBvvGMthF7iZpQSgbMq4UzmRIvPaB0LgnenC8A9905tj9wfVLGy78HQAbG+175Me6BGIL5YkNb+9g4yfyOhZUi+NRWfjxe276kzvagEgbDd9IzGweAM5P4/m6JHUaCZi7aZh9aCD+l0bWo6WVcU70GZUfqj52azp110M0LEFKC5GI1ZWlnPPFjfACkedxfADXMh1lE6oGJ7oA8X50BM4/m8amLg3Vr1ThG2jPuYywjrEaOP5AMKdG0m0BcCwcEdvBr6upeHaifZNjIJPOn9xZomqgRb2ZAr6BEhVsHkmBp3p+9ZdkoKszezCXmafdgxuLGpe1vWziARcoZ0svClOt0dwgsX7zmtEWgCRwewgkntauTdFM2wps+SQ51C34FLajbUF+FMo1jYn2MByvCaeBKvy2cYMHMkmwurg3Vgrp6XfaUdI+nOD6kZXQMSSq8QkTNPrdiKqL2ZCZz3p0mq6azLQLZooKJQb5IxLvzaK1aZ4wQpCgQl60mjSBvAJmVSD8L+6DntKYT0bl7Rinf/IPp2RNiQNtxGX4GD9vifKzNZ5SD6DsdHnbnvjYqoKz3j2g2y6CoOVNbzlrLiwFzZofsYEYmBMa9CPDj+YtC150Gf73Y6PFpCcc9NzRZhs0Nu0VG1jeaLeAFVyCveinmxZdDL2NQGE4XBpsLNovpygLTjGPah0DjwyV34qfYJOPAvIJ+HEcB3OsEPNebyLD7lLmpW/UQdbsAYr7xdZfL3I8v2QcToAgCrqQPmzNwctw+zuLLwUsfcDKcBz9xJmdl5s8ppBZ0Hr7kqBDW+n0HeCGHhQWNsiVGj++LuMj4tBbc7uuHbDSBZnHzaq0K5PIW8rfItlUmW1wW5QD/LwKn+/ZTAby/v0wUp6aAHJxjfTtmx1zcXHX2LcRAoKEfHoBgWwIhQLXfk1TJ1SF0fB/OTZfnaE9xRNK/9tV9hrkLRBfxbyulrPNUSmROS+XJF8rTvict9RyVi4ZUt956K3/0R39EWZYtid8v/MIvYK3ltttue046+HTL/stezH8A7iYxgaYj1HbXdPKDpr3DuBsEyU1r9RZoD1eRBoxRu/y4kdvXNB8mNa3o29Kpb1lZhjgHKAEmKdFvI6NjXZolipxzolHuwzgE1bTPKsyFdmGdMHzpBHQPqEfIVROfWcqJeKZ9WSA6E3LtpgxoQCIJ46JMHtDUIbVUq7m+gVkVzOYUsduwN44DB72rQp5Fht0hn1bv/BgL02baOwKFZ1Ja+8DVpQIEy+yqg5SvOMxHzn0D/v5V2GsPtZnZhWunM2l2g2XUlyFqMzJBrj7E/O9ew84qPPKKy5ErD0SA2ziir95jwF0tu/dpry3cegL5/iOaC9sx7J5e7wNVP0ZWt8mY0rGGqNydIc8tDJpatQZufCHuAyz6eEvyu6gWYAC6LyfRLSbmiLbhrPStbaWdskkH7dkp9qCar+6Ii5khCmME1bQXVaw/zqJduMxxqZ/chEiYAGBWq9nwUPPVIk7T7sd2MdR1ihS7JnX7RnDaRZAXsNMSRlFTM8WPSQ+ONzcLGhZ/088x0zim1jltEiuFJEDXzZ+6FU5N4LDjLrOkX2kfL2Zs6Rjde3Z/oSnsfD+shRImWd517wt7KX3fz5fUDfPOOgYm0u+NxmlWatix6m9rdmZwoB/cQ0SImr+EKBm4PeT3bgOwL6c5O9N1SJm/xEoqaNjdOxpEMGfD6lR66zJvEaHTlAh00cBks8xA044eH/lObXsHq0FOZzUyylQAkCxVa0y+mOSf3r9YCBYqbM2jS4glBKIyjY0phxyuC3MNMKuw/SzxZY8ad4ANUZcD7ZJg+qifbpg6FYYVOIaq0Rs7TPK0EyYORAXCRTpxjlsRHL7a11fzz+46NZab3/2J9pLTvvrUc65rDq/XSgy7J/3YPNadusoGoLmSZwS4kXZTtufISoxhcFDgDDBzjHKWPstyAnfPsgzHBI0Y7eBU3kIkgfPDmaUaFY7xSvaHqEChRONpNIdy6o2xWv02lq9beKG19LCYzV2y9VyXIxMKcZHSn0fT+HQKutcQfLVT9iIjWvhOhKYwNP2ccT/D9DLsIMcOMs0L38uwvYxh37BVZNT9PBHMx8HPfYcKkHHVaqxNcymdSVUqXYzCi4GBuwS+3cF9n+rN009+79z6gU+wlqwdOOZzJNhZTGEZ4IvVgIIrtt0HrIXJ3GUx0VSLs6Qh211XDzf7OcOxE1DsMcH9ulE408sX6HfPLKeyUXB52lHGfW78c4lWfFTQbM8DXd5eSYUdks6xyzMuK87838RUrheF04V2UNkUV66PWmnfAhyf26BA81xJmaDcbvVtt1y3LE64scBIDyIj3aJNExN9rIWtKex3lrddt7ZlnUiBki/DDHZdyk869GFT06gRJ4NFQ4rW9675f+u61+F8DstFM+3veMc7EBFe/vKXt37//u//fgDuv//+Z7dnz7DMJhsAfIgEUdOOGr6EtmETZ94OQdMREFQaWK3FZOtmM45oGgqqUXSz21rXBLHnEP1km0Vp5l5lGb0oOCbH1WHdoD0waSzYSam5yo2ae+zHn2M3xj4hT214yZe0P3W9hz90h9JIfENbpTs0z5R3g1bA+c3PrW01Hwirsg7pjFqvDA3sVtTiLDBSWGHhaANX16ot9cGgvI9nAFhdYrMnOh9djfZeY72EEqbRAzLXRoGLzXdgyLUHD8OB0SIU2Ut44H+fo1YeLJlzcRgXwTqBqxWBqw/y5A1X0JNB3KeND7xGCNSWlqVa9qrRSX98Ezk2R77nkGq5co166zvTAyoyrI3rn57bdIzp8D2ynwKFD7jn9vgAF/dIpAUHFuoWRVQFaPrAuTeZjQ+n57RnoUSZMfE/e8Q8mWhqIzRfcr+lrRXywmg/aS+fhZjr3TVborEbog+ojf3anukAMw2e2IjmTfcBhy4mEJ3XKC+YK4NL++bN4y2UJTYI2kRN9yUZm9cyQmD/BMgyg2liVNfgF+3H3Ikcj4Vvv+ZqDUh2aDWewRSBL6MoFgbnP8n7rthRH7tZR9gJsAs7vbyVnq9VlXRyLeeCaZoFnKLj1GjWAhrCpLFMrQbKWnv4DJyukI1JrDfRtIe2DexH2HK/hSja6wamUw1uR5wzvVfYmzLsALapafKMLdT6BAhCAm9ZlI4TlBg97YKx+r3Z0ra76xawXjeYEhj24hz5+VrK7clyAjMT5R5PjaNVW5NeLUNrmewh8LITtQYJuF6kdcbPoAYkAQcWuAjyEbeI1TM3t0DpBDs9JShtMhbrvqvrW4Q5ft+H87A2gO2yDXzchvn2F1+7J1Mn1rLSOI1/alZR1qoNFKJwIuwR1ZSDCnwoephdG+CXWJ+L2yLzuVpvuVYHRjNdzCQNztuhP1iylHuVrpmrf3HVBO1bCl8Dc+asnOaDIqwbRAaqEdW010C9nlFPJtSoMP6+2vIyQCYl2QTMoZGaxgNZEBDLheNhPA9Fg7jF0lVCdksC/vX/Rmh6hq1eRjNUJp1+BoOMpp8hvYxhP+f4IA/m1dHfWvfLGBc9PicyjJDEWbLhNwuaR7kXheJDN4ZXogKRZZHjBbjmhutZcZrw3aQPdpTDuSbi96TZ0lr6fmN4HNjYkOYU0XM8IcF30o7lEo6bychsnWjaY1wevwfX5k5oUWShvrAeHv7SXqMJSof33FwiEdYgYFdz2IzmutaZeqaCiVEYo4XNGTLECXJdVh1nRUDaB7t8j5w37duhxbRvFmDeYH1KS1ePz4jhKm2d+2Up39J5WmCkfcq3jnUREInxLWBfJ0f7gpm870/SRrrJhkYza4QHExwxq6mcYqrlIiHSQk9CEug0KV2a8fksF820P/jggwD8+3//71u/Hz58GIAzZ848i9165mWyq/35u7S17Ok9LGrbJ6jWAVmyDzqB1VKk1V3klGknvCUByI7FuRRn7iEXlT4E+LDxrWVFltx7jVDlieBW2xYmdTiMm0jIvevrkMIgkxjJnqVXe35/6GUdLOvF/6fYZlqR5N5o19EzC++Le7/bgyDxs7VPFh0ApgUYGOy80iB0OHPRJu6JY8BVtY4/86aSQot5X6CkckMnnG97rp5mWUa4+fuedUKHMdywegQ7jT6KrSbP136DC/znG4izaVOG3SMIt01PHO6xtuNThdBm2K2NJvq+1E3UsHc/nzkJP3g5MsjVhN2ICrHcgPvAbIhqy9A9bKHlC+aHEi1LbECA20BeWSiyhD5USbXXKLSWTHzSRi2qMRMocsQ7tNpEuOZ+EmBorR5hr0W1uFyslmbLqlmcqDZoNWlDgKIwFHViHu9uUoTgryUaPR6S9v0L4woZugjRDvOUnXGmde1ZlpmiGeCQSxPjYctu48TUKlWvScwNU4ZWkg+QrUBWJkx7Mm61CrJtyXtjecULX6Cm+ZctiRzvTDPOGznezwnJ2Nz7FpRA2G0LTqqmppIsInVxbZgOzPc3mSCN1hFyaaegoWmidsWq8Oi6o2dY+dQxCiB//5Pw5JlQXyYgWZxLEU3NpnmWfTWCHRU0Zx2MDGbq7Q3kXcLCz2UNA2EDx7R7YkUi4eK14252WQN2sszFmEjOnj+XbkxYWJmpNsUE8/huELrOWnnKHhYtPA6twEmXJNXH0PCf2sZUWQmtG+Z8WmH7Jgro3FloEGZWrRYuSzQt0suQqp3NBWIgOjt10aSNtBieEKSKNOVbmqc4Ge++XM0/u+vUWF7xshe3cFuLHrVqVRD0Bt5rbFpC3yyccR+Re9eiDDu4AGMd839Py4yblnn8fuCsKME67JytLn66YOk+uBCcKokZEl5xI9qdMe0LVcc6JhUuVgK1CPXBAfW2Zml4oLbc6YQ6cnaCWc/JM9PKzy4ewV/8SJ6VsgyvF1y6Ge7C/0TY6WfIoKAZ5thBoWs+KGhGOf1+RmUkuAcGEOFgyhToI6qUqauF/RmKs4aQCTDMA+w9gwp5Cnfe08jxKVp54ctuwLhmdtyvVsCu9XVfu2CXNjnvMxuDsAYl166DCz6gocSAqC2818GB1QqszislO5NJFA9ALAxmFXWHjgRiasUl6zFFY0UNxQsjotDAgqa0m80DjRCs66wK4ecW+g3hTDKtEisap8NqwZ3O+i8ry+K4GDSC/Jkk7ZurR6PHR/dSv/whi0qcUmCPVIXSgX/+OjQhDVsofi78/nLuA6wnbnC+jr2sYtLfPJwYZjAvI71ik3kqa6os9l+bkdhcAmoGRJ92u+TzfJeLZtrLUqUj+/bta/1+9uxZAKqqWnjnW13+CXAjcT/4SU4DE/urvz+LRn/vAlUBxPtJV22i2VcQgoUBpuqYx3euc+u1eG6jJCbk0n14SekeHL+5oJ2rPSVimnkNRcEUZR6iWaASZVIYzNgTLB3iL+3PrHFR9NIOdQ6T3/U5qlkNdXQmH6tMeTfvQsBkstT8XJLX/XzluOBI0wryJcCjb7BVRW1t8GWvw76wnLBwZV0juR5gLx0OQVQWKBWHdbo2bXtp3Z9uaa2BEqk1YL0Fg0+J5p9JCfeFupKOFUuOv5fcBhNVwedwRYRja4bBqZ0YLd4SNF+BMk5LyqR7bXvdwBeehCenyBFRZiczkJvgMwwOGfQB6jgU224iNYftCqoaC3lNjG+A5hpGnIkx7bMfGCHHrZQ4rcOK5qwVSBj1NgwYWAULcV+6fm07/7yRRlk/KxqVOSA/gX5h6FUReYcxLsEKc6Dn/dmJ8QQAZNfCoB+QT4aPYCstjeAFi7DoAwdwqAdnnGevtRqYcBTNhEskmOV7hkaSOvx48wLyufc1i8RCsAzqRI4P83lmFw6nEaQlXi9WU7ZMWi+oBmR31joezGrKvkPqyfRJ8jdWIRpU1Gm2U2yYgtLGC3IsbFvL9z60QTMBGYDMQO4/3YoW35L8C6wY4Zw3u/TzvH+ArcG6eB0LEeQdDtCvzh2oqbAaNJ+DCYGS0nd4EOC+rwhs5YrUbAek6/GzbFjLKpBPNS1aajWg3V6+D/fUCAlweARnJkl+9rhIYi0jG7OCdoVAVBXN0KgG2ggWG7RTp0Rd1HyANU11l2kuc1e3lwgOUIunal5HBjllZJPbGW7PGMI6IrgUfijTPp4miDkBasl9a5rcs4V1Gn/9UR/dUcGEn5W2sEA1cz5csIwMUrmQkY5BNrUTO+xYGGnKNwFGIuyIBs/sesOF68XClNCfJS8MixicauFjYVIzLnp6pjzD5GG109Y2TtPeDAvqHB7bmvDHVtt8ewNnz1nygy5yvKhQvkj32fPn0r6nwCNYSrKEblyCype5d4IKWfrG5XDvZ9h+rgL6zIR4TSHLnutFigMHAtIzUFatvnZprszTwS6A8MONcId78D8JfJ22eXyrLtePFcfkB7NzzyzuLDoKzHBWZkFwbmF7jqyBF6j2UWuaNnPnzkMiaGsKGFRVa9nTIHQAK2VNneehz/HBeOu3qC87qLVB38HnqvWOYIc59pyn12ykzx1s9sH2wopsA2sDfBaWHNG0m5IKDUnfWCx+j3fvDxYqPEwFCBbnzhpTJnt7i2IBB+p1qVuHdPoTGGkTGGmgjatwfdiYBIvB1jqG+87J2cuCZ5jBThOHluApWzXMjWc7UovAxTF6ZeiCZaY9z5w/h+WiQdWRI0cA+OIXvxh+q+uaP/3TPwXgiiuueJa79sxKb7CmGnPapvF+0lPtnP9U7pkQPZ420SJeu9zVutFe6B5WiTcRAmL1xe2OmoRPzQAn3V+GqLtlWZsQN9csDMppVxobIgYzKthC6AEDB9wCgdbPkbkDcWnT3X4E0+olnegWTWBNqLC16921bGI0iJRaBNW0LzE/F3ef5qn2kUWbeR0FJgmRaAcZzaQJgefCvmgstYWngMNVg8kigemRTd46zUlfiyyxDUrm6YKQ9MIlTm2CpIDMOm3LrOTYdAMqL0lM9lrafleI4GUg+d7Hv2ValqhJjx0YkU8qbFmH3PEhroCHjL4Ob+rU0Zry0Cn4lAr7eM9J5LEziNO0SxYluSuCSkMTyWykbWM7QYuYDNcCpReEOU27uCFntCWnfryB0HUlRIHOCsRFWhGITHJy/nvWmej6DnjLg60Z7JcwnyV67nSb69tFkVHUkRj3VgQtBp4IowJS94AMnHl83ZJO5+IQbkDuFymZ38sH7rKRBpCrapg1OmcuR69Fg1YVjgBr41ZpgYdeBv1pFYSLfpyNH5bfJ34+a8vDx0/AqSZGju8ydl2Tub1K+mzCodq1HLs9a81NQ8XuIEGSHcQuQjApF3DxSTS+w5z22qX1+uukgcdevB/TA5mCLcB8x2UgPkhp1LD7/bImidmlI4xsz2AzwW4m0f06rk1eSBnOyLTG5mpdtM9Pi2/LdMboxr0msOMFYI0nhmzrOrawalFtbq8X6/F1pz90S0qkpdKDy3twejdaoTng7QNhDq1lGjYOLSLUzhqagYk4310bgVM4gYWJghFT5EhI4RnxjD9z9ayBTDVfgdEIwvmI271Wyo8hoDVEg0qdadrr5Pr88GPHQj0t1Gr1jA9whl2psKsqscMsMibuLb/WOyRuK0M0PoCv241RZo3eDwu33sK6UYvAiRCY/oV+7bGU3bLUysVvrFFMA5XiuVDmlvFKn1qSFsPmVNjdAGTqCmTXe9y/NWcmGkxs18CxyRSzOowB6ASNGu+Ekxey0nk2S0o+pNdlzM+F4PUyOtYleWnVn7YBPu2pd6dw8+fmsQ+qnXe2+t7tze9DT/fKRGM/SE+tM27zYNW18REnIPGB6NL/nXzsGBgVEGyT5lUXmv2C9bnMLUGwO7OWQTjIDvdOahj4pF0uLrD4OZNk7trrW+UwGPvo+G26xb+1b95Q5d4NRv/h04HaJR9QwcIAJWet0MpDj6D42aIuLX5s1kePV3m1SYStZruC4SDiU3F8jK9X2v1ZWvaKUdNJ+xamoG6gFy13ymRu7RJN+/Lo8Umb6cODLFi0LWxuDws3SzhQtODnRQecTS14hkXYw8EC1F+amnkualUCAef5ko7R82mXmo7xuSoXzbT/8A//MNZafvd3fzf89nM/93N87GMfQ0T4kR/5keekg0+3rO2/hqeIm7kb22jZZ8u/680k8MjWEU+eyfEpYUiQHnGhh0DeNJAlgCN5wKISuML/lKFpZgKRkBjp7rEjUpznn/X6xJkn+tEBu6/YCTT9gl1gzQERY5SQMIAMcq23am/wUPypnkMr+XVrt3dOVI8kevweY5pbyPPFd0Ehxaz9fivlSHLNfb1VvahFFoF+TjPWVF7Wabv8vjiBml6t1xZM1gqckkqJF/vnZ90+66dXZT6LgqEYcK/ijnOPxtCdKeReZiHh18+vR8q0J40E4i/V6LkO7fQy6lGOOTMm7G5rY3C2FrNANGXwjHtj4c4T7WbvPamuJ3milUK1YNMM7KyJ/Klbt1C/XbgNZeosNCRTiOwDoa2iTLsnAmOXE4CPRkPPQTUJ03Zchm6k/H6jPnc45Bv+vdVgh6PAMG+KaIqvZEP1HWEwT85Jq/qEoCiBfuO1Urb98KyEfkR2uQhNSuBedJHlDNTQuVOcnmAnzi8t91rHxLSy255734cryguhX1aMiYyHt5RoUpF4Ejn+k1/8mtZ10KFQz7gn9V/s0NrA0+3t1RymzmzRT+ikYt4NWO242BTeh6ZzA3WX+HZjtHGcPnDiJjC96iDz71ijPAz8wjVw/WGt27QZdt/GqqC5jb1AzbhAR4cEu12SZgtJc+/q1yjcambqkjS2iu/Enbkgn0va9QTjCjD3wlpvvpo0RQNnG8sqFuYW6eXRUsB//NotW69lghgRjSD/lApuxcETz7DTqJWLFwBJXD29Thqafk7jGQPi54ykVgY+rotq2lvn24LBZScpLQza6dVau0ASwZofgxd8+t/2DxSY+VSmibbpk7d+lYTk7Vyd/77vlttH3tUhjE2I5rsi7AoMfE05iNN0tegXH709Cdq56npyUtrm8enyXQpUaVXgXxbawal8SfHIBOb9nnNpSjSMnp4SQnpSKwIHh3zXGIpaBfKrteXbju4gh00wyjEmyc/+LfBnX7a+Pgr3xZa9mIcxUciS1u+x/TqqwA0YLTnoZVCW5GrZEtw2fSN6kwFmWpEZq9YLwI+hAukahU2vIjLsedKMEbjztq8Awrrbn0p3WF3foebX1u1tg89308CoaeKYLPDoOTi3C0fPgGiq2LGDi41rzOOneK6EeS4MKjX/D7xhOEA6RlNBNVhCl3qUK+0tC8ojjtCYFo1oqkU/+Railc5WWzwT4tM0th0c7+hJ5LHjcEzdpgoRpVuEC/qzx8oTXO4XAJamfbOgAoVEKVfBgu93WgouMuWbZ6SDxiTpdcqYbVTqruZLyoinyDCMj+X0jXMrsI6uavWtqZkZ04qIH24T/g/aFsx7nbnns1w00/5rv/ZrXHnlldR1HaSSk8kEay1XXHEFr3nNa56zTj6dcubE1zmJ4xtI+AaW8Dfu6k2GekTCBWgTG9CKhu5gQWsf9YHcNpQOGbRSQ7j7UtQcD0BynH2f9mSv1FlpWY7Ufb7opIJUCzltoF+wQyewjD8LvcylfunkTA11uWuDMsXpYdyrY4WJtovdEqJeN4kJc9Ih0NQTXUzmCY60XzYJlNHUARG3on4OcmpRE1Uf66p283PUwuWgmjJHMMcgKtKJHJ/ce6a9K+h4Nm1nAmWs9RZY1aDulrzqmu/Gjuuk2W4/OldYZNq70h8iARQCnrj5nIpgL1uFzSb6lqUMexpBvmnazLoHzDdc1hqevOIK1Xa5NIKRnxLGuahvncOUreF5KXW8DYjeArOypjGLsL5PTDXTRTKNuDZEgm+qZBnMqsWz7s11gYEXJlhaZm92q8LuHwRByFSSUAK+X24dplWaCib2Kz3Oc28+ZyOR4S0xZHMW8tV6vruSOLaLRjQJEddmjA0cybFnZxrteUUf9mOpRIJGT5uU9jj9se5ljOqK3aQvLWGqXfzhtTf+gDoftwgQaUeRv5iS7vWkHrtWwIaNe8pamFXB7y1oiePwFu8zpcx6je3kDQ8bMzDsoGBxAGBWkBuvQ649FIjroOFOmWdRBnsnaFeSczoc6V5L585NbOt8uP1pXTDRDYTLXAMiUVDplzuGUtP/rQhYA7aqY71+nCjxtg4wB1nvJdsoCiH25PQW9pu7d4IacQGcgmbMmUwNG6vgNz17PoDjjFb0+Eba6d4u726FQYbMUq1vQrxZaCqwK3kYL7DARPqUb0Er5feOt2obuk21leSPdf197a/8TKg43dYBdllFNTbK92Bisb0sukuE9dDvJd6QTZBBBrN5i0kx1mJ2S2TUdsnIRYPXHRelK7qo/ZItyrtaN18GphWcKoAQD+N2G2b9XrQa8pX4hTNRUwtghyMOb1e8HLiusfwmlrWtOXJQA1t5d41LttJ5lko6j+n6poHoltGnLVIstbToXL2mfa92V0nM4xO8AGpVIUJwBRWvoLI2MrVAZi3ZpCIbqHC9Z4TvLOB/BX5S4P8NfK+o5VUBLdNqgL/3j/8+iOpkJkGo5QWofex2FOJ44VRdNeSlVavU2sITZ5CvbZNvQP6+J7HHT9MTzfriNdFNMsE2uc57hqF36U0mII0Ts1rBzPvKExnQZWbp/n4HZdp9iI6ZO3fW7TOLYPcZ7G7HksCC1Jambhg0DTQN8uQZ5Ima7Ck3vmNnGAjMxAPsJYu8rKS43M+Hvz8k0UTej2dat9xf5/6VpLq0+FSFbVoqpb2TN7x/fvRLXZzIrbkLQscSwfwyqxiJY0wP1cAF05t2gt4C1A1lIWGYEaws4nm/A4JlYNLyBWmp56BcNNxdXV3lD//wD/nZn/1ZDh48iDGGQ4cO8bM/+7P8wR/8Aaurqxeu5Hkup1kkCrt+CWlAuh00kiykhH4SPR70z3yJVjxB7n00n+Q8QQbdDb1LAryzDOqOeXx4YXFbdJFn+t4QNSMKUngifcOswvYyNv04PVHhtTpGFGhNl8Qn6PanyBafWeigKNOduBMs1oemfEtztKeIuX+R5ueO0ylAzel7htQ8ygJ2kGmU2dKbyNsgzHm8gStEEYKRLBDOaQCV1kT7k91Na9dlmp/msQ7NuAVMUatBhQ2UFXYtD0KRhSYTBqFVfGC/LhHlGXRwgZbcd8ewzz2C3zeCUykBTTCVBxsBY/BDcIfP52bPegoJbzTwa1cjN1ze0u75rqwBk8JgkyBtQGDK03GG78n/qlLTeqRDBNV0TyS8uoA7/MMzR6wyArHR27CFMhwD0beW0sb5CH3cmcJaL+ydsQgjzwglgKXKYF564YuNWpBOmVlnUWKX9GM6U4rBDcKIz9PeCYbD8m2RTFEbwaeaqEMrcLaCaY1dcX60bmyVeGufZF+5NQ0IX/RMD8ommPmmsIrG+33T3junSji4EgFxql2/mMjx3bEl/bMAaxpzwAc9BDDBYic+HxC6l1lKqCa4DA0cE3k++ZlF8dMqQFNiRkldpq3lDrhIhDVRgVNw9XL9twf7NFt1e4GT9gOs8+85pn0LNXtP2/NBN1McGFwSgSYnMu0QrJYAnrLO3H4bjPHZyqO2fW/CK2kwTfkWtO0GOaVBEH0MDYPCx37j0y3GAVuIUe6HRQvvN67pEwIHOvjdmAxTptq8iN97gN0Fm0dCvrXv3CBnJFZ0YcgR14JolLetWVwnv9/Rq3Tfd2PNcbAfAqywU9RXVpI9kVSwjbDiuzfMkbG+J0k7MqlCujcRQmyRNeApZKnm1l8v2rQ8PXvpGRwlEaWhJYwEYDZntkbI5d2Wwtqgaff12UMCmxOGwA8D1+9M9ZW1fjxfF2tu+zwU33yf5XxMeu2WZb+fzzweOkw7cc+AMl8+HgMZMFtOCxpgMGvo97yrpWrZX1nA6zL4PqOxW4airhlZsmRhz4i6+2x6Os1po+1KHzuJjJY/0GXdMKyVocVa+NpxfbMAmYJ8cxMxPs1pAkMkMvHW/asuMvqODvJNeFfLsB5jmJuOebx7f1mOdItqpX3cHPXXlwBvQh9WC9h2uN66FKdYpGqwZUPfa5S+cFS7n6MB/+7fIHcuK9ZIy1Q/vS4UD1P9fSr0TtO+WdfHUpl2z3THyPGLDK2wmMdc/9GOqxEZ6VxJwVlFifIqpXWCSA+/z3ZytKfnfS8BW9pGt81xGYwSA26oYJa1g8yaDk5Pq8rpBNuzFzHvz1HJL/xILPv37+d1r3vdc9WXZ7085a4BJxJ5B1gM5LGFUx75kiye14rTwwX+0reMTZ6zEcnntmbqtb2ddiy6yX0AHIyJOa4vcgd0kacvA2vbEiELPrqvrUrsqMe2TdKsS8Kw1yA9NNVHYLxsm2j3/UzNz7udSJF4ZpakfEsoWnAJtZcw7UIiHLCtuWmPPzIwBWBKNAiLa8r3v+lpQKJ6WmnEZWuDH+1JLD8AmNoRbuJTvnXM47tQy8c5SMf4LJ3mLuDweyy3zle5qmB15DTRtCHK+Ura1z1goAJcCQw7IkyNAnWzH3g4CUbnfdvB+UeBNdYhV4LPFKCH7skp3HgAfuY6TRfj/dlFQGwgAjeBR3PD95WNMs+2k7uVhOZNmBJfmsqq0AhamtKBRJ++1scjY2JAoFzQM7/rs8nGF8L6WNWAld4cOZn/ZmOCffFqWJodgXUjULdTi8xzoZ43cZtb2xqjLzUacHGZtEF2Ko3k6zqai/rUWf/DRRaRxAevK+k+MMCem2APFZBHM2FEAwrlCYINFkPhyHgYmpPXME21wH7Mfn5Txt2ikeMPP/3I8cno2uPy85MbbF/Ur90FDaSuApxr1e4Itjh0vRHPtFc1lXXEXgLWwxFwFjOltarp3anAy3VS+gT9k57/dVEBzK4RDXbk6malwB7bcYKP9rn0Qls/xw3AvGFeGMYCB4nnI2jE/ZjjFINoxpE6yygqG86cb9NaywxnxVWWSD9vMf8m2St7Lc2exOWhVXhqjnyHNijBr9UyQjWUQhu1WJem0fayoF1PY2Welrbw2gDSz8g2p1Q43A6BeSxAg39mMfiih5Nekw8Epj0l7hfGszrQXO1+vUgqTGGLv7pDMsQqXePH6YXFLh2aJ5StRFg4lsSqb9CDGqSyGkvHp3zbbZCiF/eya3mfCA8LXNlBeynsuqSSvtQJTrU01SzAzozJ1YPWT17cEH2hiSbyowy2x8xwcW425rA+0LElcSIWXBeex7KsRc9AVEQGHtyeXvJCugdTHOGDoUEqLI0vrLGI//xhL3EZU3CdmNTtWBKuQwL0xhUDyWjc+cnECcREyIySfgNRxt3TUA7Fu+aEkeAC0Ukc00qBPb6TDF7brsqGYaPMLY1FdtzzJdgR8NIDmEwoc0e3LHV70D0y7+cUTvIZcHprVqFXNlRFjEqfTBPQJmkgamL93PfFKQe641vt0+xU8Qx7GqlsqGtLUbtgvdsKX6UEuwK87ABFZphlmtnH7/e019baBVwY8Hnq0+7P3qFhSPsW9lBdY2PA+phFJxl7ett16wj4PBm3Ryh1JswyKKcV1b5+wEl5owq3vrXkOxPY76wxlwai65QUWHZxzBo00zLyQK4928A0N07HIa11Tav1P3kcszDfS7rzXJfzatpf//rX84Y3vKH122233cbnPve557RTz0Y5dMVLOYNuuDQIT50QMP7jD90OMWct0NE2uAXso5pcaJnS4P/vNktWwSQzC6bx6eEd+udNFiBAaGdBY9suyyRe4NKG+APYtF9vdjRdzTbRLDAAUjdeMyLmTU9f9v3xDN+eptWdkiXm8Xvt8LIJeW8XJGk+mmhifu7nRxzES89q3zNORVsepVoIoe7pIQ6u1m7ejwNXCdCAKSTkKm6ZxnfHmDbs56zV6LN0pFvYWwMdzgBmDR989KtJLkobkYBNX6S9n8omiutSAJ9sJgtB46XRWGGGqDDj0BC2Zurv1kSNTThcnqlM822njPvRLbh6SJCKSNR8+O481AhfAB5cybn9mnUerm37SAQJNQtp5sK3ssGaGITO34xo590MzztiFxFn7qWmf+TANImk64kY97KxVtfEzbt1FgbWWs3HvOrV/cKOcdklErgCUGU5VdW0j0igxmKAwdpa+sEsX00Wg5XDGFjt4VWaBcI8jTSbjPWCO3OvoGCXFXBujB03sOKYWzeKqcTUUh4WpjDGB/zyrjATr+lI1tVanF87cb9Yy5vuvg0OR4uFVt8uxSc1BeaJQMIC7DMwjpkKzNyq0DCMye3RUFenXVffStW4lErpwHQcKaO7aZUJk/kc6RmXoULC1fMVabd7AgaJ2ilPFO7PsdvTuK7JmYjB4nyYAIutYLOXMSAGRjTu3HuNg7cxSPnOVaA2BlslUXmJ+2nTKiMs5RxWJJnqbsq3JUvjVfFd4lKAy4bIKR9VKO4LGoKVS+yHm/mpWk00mQQ8HzGG5mg/IrFtAUxmVOvs6gldtU57PivxEW4XzlQi8Ov58XiY5j6hvv19Zdr9yw5OvumvPhB+6+J2ZdphYpM2Z14w4XLRi0TTaUdvzIB9vm3nsy4TDS9l3KTJuEZWe631RmAkKjwdiSz05zxLubyEFzs0wyCDcSdPuxuvYGE6p+6H3ZhsTN9Zwj6xiMYMGNfM6kaVMGdQCyE/hswHREz22fNcls2lZ9ovJuBVeva6/5sT/XAhTpdvZ0TUtLfeFbWW8sHqpFcEeq+bKQkL2aRhlGesWj0SKyKMjDAyKrhbNbBiYGTaSwbw4b98H4jGWthOhY8Cdt3ETB6402wtVJZepVp2ObalOdV+8WqaVw5pXn0dXHc5JjfsZkZhupHWHKUTPveWnT6WlP+Aur0Bxaxi1k/n2O+xNh3vr56mGAGIkIu49JwRmliAtT7sdDIiNValubXVlK7f3EL2D+EfXkPzPUPqX7oeue5y8kyY5YINauHOGu5VUhzuz59BI8ifjnDVWqv8TR7HHANrttfQX/t0mHZ/9bjJfa/cfOweMGzPK3asZQfYddedxrIrlnKTdo72Dq7ec3xpp/w4RzlM24GarYvTsJtn9GRxPMvg2pDznMsLTv6zW87LtH/4wx/mwx/+cOu33/md3+F3fud3ntNOPRtle+NJgBCMrsuoLzNd3CSNHB83gbgroFRT4qMdF7q9clkDpTGtNtL7EhfRFZRKqj0TcHFB6JZdQf3uZg7ItbSR1mKrEnrClogSam71javEiCC9PAZ+W9aP4A/dPSR7HKaeM4/fi1uwKMObEMet+kLE/rb5+TKCBmDgn/MCk2Cmo9d6NcOWDQ02KvFQoHME1bRLPwtMu7cSWyqcCH0kuEykfVw63kss4utI9oUG5Fem9ZUvvTGakqXNdbGVTW6qeu+oIkk9QVtjwBrhfoQtgUcHPX3/3DgysMFHyUYz+IZ4b9193cDxOVy9oqNzBJQEramO+TagNJBnOcP5nC9X3WjVvq9JzAYbP+AQYZ5F4tmNTzUNSeCmztxZ0ZgT4PO0G6STszamXNPfeo3CgNp9twBVraar6wOXx1zTyK3FGC+hU1WW0TgLnuDO3SHewWlhHHERXSdAnCUAw5gSLRMXsNARDnsdwaWlK5H3HNfBAfZkBdMG6wO9uEc0EB1KHHuNnekwf+CiPEM58yaQ6RramHUAdM88fIofb66FyZTA1CWE+iX5pHafNwl8GAxg101+Y5Wh6ce89ykzs6esMoesrlsIPp33JiEMxzj+ryo1xRLdoG0SLaGI+2W/qPbUx2uwACs5drPCpufebaSoePcWVw1WYCvP1f88WZsWP0QUWPpxrgCVyTSXL3GfeqJoF035xlapaexa40ka2qt0hUX+/kgPzu6G+Bmao13b7DsBbtVB7HZWY4cO93u/Z/Q6NWo2flA6+7NPjOnix+3qHQCmKiEl5FPNjsTfg0zUmJa1RBjPWl/TWvlN4dbrx3/olQTtd7LHPEMxaKByu8oCTEtsj+jK5DaJj0di0eCXIc2kCDICdsuW0kEmVch17V0CEWGfgx0h080e14sqHa1b+DIsEnvthDALMW9KGOVJfmr/iI65kcSnXcAOcihgZXvKwFrY2UUuc6bx/jwFe21zCVY6z07Zaw49szxnCWOwpJ5wzDvfp0QvqXRk/iyvoYobj+MjYIum0GqVkCNlTAHsr6FMGrJhzshqYOM10TTC60ZYNcKaUU16nggFfT9e8aPfq9bZ4vKZm4ij7DBTRYRNlBCVpakaCuvi5HzxKXjlFciLL4O/9x3I9YchN+SFsJMbmsIx7oHxkxYsLo2hMsC8ak9UMry+rZiNaC3UghCgM+8Qz/5QfMrVuFcB7IoKWHU63duV1TE2Dfm8Qu48Bj9wBK47BD/5Uh1fZpDcMM4MtlDgv5fgZqGkC5DeHyw0xVq6rlUTs0OhNEfeOSLp14K9UhVq/zBq4TQ1ankwXs+ZlA1jYLeBcQOTRi2Ex7OacS7U+/qxgQW/9iVja2305Euv0FheBIgZrYUTq67WWVwioOyxJLRW5/p8lUuOJfL/L2U+3eZyNCq4Z9iXBaJLD7JGVScsYgDwyfeWjzbt/RIkdVbTcs2zTvqVZC9Nkl0mvQypYh0XU9JNleKcESoQCIyDTcZZVtDP2AYOJAx7ShRKlkTK7pqpQaJRXnJ6lmHywrTmK0LheGHeDnzRqiNE7G+bn7eeTr6vlG4iUzNLd20A2zc0ZYxG3lg41sCV1iGrOWR5FgjY4C6bNthF8n2cn3hnXM+gBKanK6SwmqvXI5srrzusZvLLTAv3wvyVXWTaE8nxTPEHtUjIb/xNK/yVQG2EP0bYWV9BzqlGSupISAcThsC424Rxt3ByVwdzMAYakUxahL0I/IhoNP9xbhj3evxAVcW9bNvntkW0WAecLSoI66Ve1vq3Jy4QXUoAWm3YE+Ezq/83oCb88yRjhHshRF62qNle40zkccTG5gxbgHXWImMUBqQElYcrVZ7R1Eln9thKpUUl8el/rYXtGaxEmKW8bbSSuOSSIvb0LB0cKHH11A70c8fwKsFVI84FXFr1eEQYqgWqnmDnUasd0r65bRL82R85BTcf50XFfvjwaXj0FC0V9CVqytK88X4BgkDjQB/rNCDWx31w6QJTxN4yOfX/S+ZqUNuFdHYWZxbvfwPGqGk3M0KqrVTbHhTPsRkwwlCEDW9B4Ri0Zn9f0/E565eUcfdwLuyaUiXEZzLDusSxGePbjf59XaHBPhFmWRbq9cJhH4Rx08IqFuOsB9p4NM75nmWZdYeIukacalzEeOtgvsU0lpFbqjjnaGfmDfgc7Tj47+6/gBKaJ11nAh7sGcTlpxatBY/FB4DsVlELJYmvrHvBe2b3kmEGoWFKNK/nGgDKF7c4L7rmCh3bAtzXg5G7fntAaKd19OmTNp3h++SzYPiiwfZqnT/XroxLzCBL6Ant85ooU3y+lG8XXVJiJWXgh653fl3T8Vc1VDAZ9pwgzCGKEDEx1ht820VgNCDfLpWsOLOD7DNxDUwSX+BbRAG3psL95tdoMUP53oxiek3p2AHtdUo/3jw+vJ/gwQqJAqd+prDJPdhabwvMahgUCOpuOUK17SsCIyP0jES3jKQvAFddfxWIwrKdZDIsAmsFdptAM6jlWkPVWHq1RR7dhHKOvGK/SxPrbPFzUfPxXLBZTFmWZlLw53UGVIVEpt03Rzzv/d2SnawzT55QMeEIhv+PabvX9o2PHi/tM7mWYceJJYHVvOE42H3gzm24fB2uXndJ7gUpBJsbjBNK7OXPvifpmeLL1E3n4EglOHWMRWTntpUVpiTFeXEX+LsBtAKvpv/0/SmNMEWD6M37PSaVZQyMrWViNYvJxFrmG1PmI2HuA10v4PlFqNPC6d1HVgrspA5shwVVpgicMyaGANKKWqnf0moGtAPRXXC+n8PyN5ZpBzUBP+nuUxP5wLwnxL9FfdrXiHtDrwp4AjOdGSUGoJWn2T+rjenDU+dPm+qt/UGYA5l/u2cQF35RoJ1e4zy7YhnS7OFTvun71vXHYrEzC4OcbXCBaeImDThw4DTtLWyQQKayYUH9sqxTQQvdYdrTifD1TivNx76sLl/PvKP98FePTFxdw6qmTigUCxHAiVAXOc1cNZCNIzjvtLr2j1kwM50X9cGSEIiuNabuqe7L3mntnqntzAJ0cJrVmRKPtp+pMCZtqtt2tw9VE2MSdMZSoftnZnWPzkUoRbjV6H0mauJ9/xHnY+oOT2DYIZh5tdK9+fujE7hmoNYlTiJiXGCgqFkUXmLgV4Cshu97covryrp1VnX7RB9oH5Xbj3SGpvyRJFaCP9crQohcnn7S/TwXiWmbXM5acQ2l214AaRp6Vk1NYxIIi92Zw/5cV8wRJ8ZI8A9LA+81g4RpD32yYfnCuKyl59tIHXTHNawk/ncON7tMtBeP3NORdZGmET3Pq2CPj7H9eGYtap1QtGtw4yRqqv148zwI4nxfwhp6AF1b+OoJWuXOk7GSS40cHzq26NpjQf2CZ3Odd5d5ILX+0KtE3EAkhMMzJmO1tktAXsxn7j1IdiyslTWmAfp5a74MtALS+WWwTvs5cQ2GIEcDF4jMRyRPNk1DPCsNYOcVtqdEyHqo3zMy0cLItKZJGxoCs55ahrXODqoxqbEq+J5XyDDDB6HzvFRr3pcVP1h/9QPf11dm7swkpkdycK3vBGgzP0Dfp3lD09eo6p5xt8D9CH/oCOnXAw/ZBAf2BKnqRaYZjSWRl2U0RU/67O89wxXOQde3Kown1yCVfp06gpaUSUq3+MAm+B2Ca5klZU4SmkOEHYJFvxK4eQHTDhzbmut6JUdKUA2qlRjYrPVJzsFFl24FEJn2NGuNL5MSDDRFpoGgknMQmCj/e7qv9o+4fAcGZYPZqeHQqC08eTpWOs9i6ZIQ6bR0zXD3KstgunXvtwLRddZphQT/eYGla3wu6hIoACtOgdMC0Ml1WipnmlQe2urM68LecT+OBMe0J2u6ohoF66wXrUW10HVDv67hjpPI912lblaZ0hHiGNm8MIxz02rfdjuBMpllnsO8icF0Sa1cLfm8os59fBcJ7y/QISwy7YLqcsbi9qZJ6NDVHLujihbrYJZ1mXZG21OGDx1HXnnQKTSMZtXJdZxZYZg4LfsllQCEae/7NQepthIhwkxUk+/ohhnRgm6hWve/Sef3uKe0jjL5TNd7TGeqXb+3svzh3HLPvGEOlOOK+cGCOdB0GfbzCug78DXEy9A9nMJrW9aQaZ9XA7zrKGg7wz2vefxeXXqOyreUabfW8md/9me8+tWv5qd/+qf5rd/6LR555JELvre7u8s/+kf/iB//8R+nrpf4EgPDlUOBae/SuKm2neTqmVnoAJfkSp5GQ3f/S5ikNFf1TgdwtCxQJPE7ytXvO7TVtd3vlBgshoXrwNoQlRnA+mBPZQMNVL2CMaox8UJDPMNkUSYnzUndEhxYNa0OTk8ptIZYYdKpPFtk2rvjmmu098UBuZu9zM8TBsl/z6oGmy9u67AHhjl2EnMMP9jAp63llMD/p4FzdY1xftB5cqAXStrHItNAAq0Gz7+GF1Na+8Em+wIwM3UpeOjkkws+O3vaTPn3S6sWI521anCMOh7AipqRAa8U9RGrBFYsXL8/w5zace4Dmj9ZIGpIvUasG1Ds2C5cs94iysURUqm2HYGXGWEVGBYqKAum8E00IQ8MO7Y11AmwOodMoqY9EqKe6VlyPh1SriQGX5F+HphIcQ+Lu/HfC9REt/SdssCmxa4N8Rr8qQhDo0hcOsR8U+TY1ALfb5/U3B6l0TNsZCr8C9s1MuyDE3rgtKVzx7CkjMUFZIFaQryBuE4BCR8YqDRgxbTqnYqQI8EcWKc40fzH4QamvR0gxmmjvdS/sfDyIwDcOXNhRb/nisSEWi4tcvweY/MEhl3PNXItwLyiKpxZcMLJpCDOjy8ZFhhDr24L8Pz4hKiRnjrmfTRTpkRyp5X22m6HO5ZpqgZGTZ6tm9TGzUWz32ggvZQRbGKGDN1XlmZWY/OME8Dl0o4I7JWPKeHi6T1EWBeY97MWc6wfywaKGnoNMAMz1BgEKVF0QU7PSyxSLt9Hk78iR85oDF/xgh1nLp8BM4d3g+XN1EKRt2RbDfAp992gQbA+4+EPbh0m7fXzQe8MkFel+mB7BsM/5s64Z9q9IZM/iz4au/hJXe/Dhmskid1w59cfWlhvIPjcDq11qMbBuxKNZu+ZL+O1enFRxwaGJnG1WOlhxsqMGT+2eYmsJJYRrp9rbiOk5vGy5P7iSjxHrcF5fD0uo7UiDrbtlsgg1/i/0n7f4pjOIJRPmNDRgNF2xWhjDCNRGJ7iGSNxXz3PZWFtk/shnfRZe6By/71LZniNp9e0d9vw+G87rUck4JgYKRyQPCqo0kZ92a1i+kJYXFeW/0uAh+99AERYNTD2v/rzlBk90J6RtJaq1mBlowe3Vej0wn26lrl+VBttyDNht0v/LVnjBmGeF+3xuTPmx5hXJTuJMqk1/yIL6zGhbcA4MOLSsyXPi4sev0vEcV6p0Vj+73dvUL7gMBwYqWtN7j5GrQmKLGOatd1uu2Tx0uInPoWr/v6gwNmJ2wNWNVq9aKkwJ6ZGs0uO8NJUhRJdExqBWtQ9sAbqXo9qbHnQwn+ycCvwf1j4em0ptyz1+pDK6LNRey7tDb0wvmWbDhVmT8v2eXJKKwtKr3S27bImvGBi2Zw/AxL/aZWLih7/F3/xFxf126//+q9fUuNve9vbuOWWW3jDG97A1VdfzZvf/GZ++7d/mze/+c0Mh8syTWr5gz/4A6699lpOnjy55zP94X4OA4+xqGWvk1VJF8EHomstWkLEADHvuE0OenIVCHaQ9TJzDddWCUmOQBMDfizr2JKyDPCDz9O+WEUzKyGDnVwp6mhRF4lqAfVpTxnkbn+qZk/T6qWdzI0y+gv1JT9UNYsJE5OyxPzco+3uOd5XWSqXyiEQ426AFrCjAjuPjMLnPIAGdg08LDXXF9GnvZXYrk2tx/tWsL1kXM/CaRZrtalIHdMD8nkDec4Tp57ku+aHl0OPZe4NoEKUxGfJj6VEpYlzq/dzq9rTSoQHjHC1gRsQ/o4Rrj1QkJ+akjUNee0sEzwCalDslzAOgcI4ugUv25dwCKpl9/gjIASJ8SXqLCevmpZ1jCfMm7glWkTM2MJwBhQ+mnrUag9Qpqc1TY7g83VVJB4bzkRaZjX08kQynxSrZuuzlMneLLGrA0dcKtAfuIMW3vX3JmuLq+3i8lnAWOtSvhGi+QogOzWs91tnOcPlie1ymhdRRGJu2ZSDswCXrWBPziJid4zWVJI4HaRNpgHptC/NIHcO94C1LouPDT7t1rlc8ILLoDjG/fYsr3jNK+HFlxOCzwlgnqZPaooDnM8dKwZbqjzdzhvKLGfFP5pMoZ+WplOfrqPB1BafOC41y4s+mpZt1M2lN6ugLxgkmO2mS+bbwkahxz40V3vqo21FsCs9mk03qW5vWFAhF/Hs2NJClrMDXC+x7yldt0xYYFCmYlucpt0JHvy527WwblEtOyTR4xdTvp13XVJgkGSvkEMrcKqM1j3B6sUGt7AWAessywLud7jgbwl8UNTsuwD+dhi7YAqDTBxe6cDUVQvZHGy/CHMbzSL0E7JOJOOxEOBcKPscEp3WsJoFGHn/Q0/wild8m8NWcT8ovNFo6Kkpqp0Q8saHPhEZWHDm0ikIGOSwW7dWQbYrNZt3QxKnzNsHLZ/2dJnS60WVZS/5ORkAkxhBPkQqn9bQ67WiV4clSX9z+ya4KRyAww+M6W/lsL6q+8fBsv+W0r11i0+ftcAcdJ7b6/8ehSy4YBGHmqZ804cSs3GRSN71cg286BrQfZj0ZF5q5P9uA0sEc61+CDzx4ONc+dIbGAHbbv0av4Y1LnBHhQ9CN2saVqYVxV3H4EevaTO03sc7M2S9jElLqBMb7WZRKR0OWhiXK/m8YaufxT3nBXWhroRJdXOfmscPUJwY++JoUGdJwKRSU3lr1fz/9DbfdvQszc+9GC+QlkywTtNuC7UkmNEuF2AV4gLsmfZtCGdKuIGI1ELWJmWeM3/GWCQl+uyhCJWImxp0fRug6ec0dc3nGpjn0LOWqSgt/p3bJdXakAY1qS9a5/Q8WWK6G8yXoYEzZdI3q/jPmCigOk+V/tqH1rxf1Jw/R+WimPY3v/nN4d5PWvqbL5fKtL/3ve/ll3/5l3nRi14EwG/8xm/wgQ98gM9+9rP85E/+5NJ3Pve5z/HII4/wz//5P+f222/fs+6N0w9xBPVd86WxRBMyIk/hyxbOjExkwaUurGsvaweic9r1lsbF5YcdJ8ADIhLFSeRDLtfcJATIxeORsD8TBmJgoUzMogMjM6loBurLu45q4dL0PsEStG9g05tYLmm0tNGUfVmHu53PJWru04lPqauyTupMKvC3fYk+7Ukdknz3Mz2oGmrnlpAieB9UzfbyGHEX+GFr+QxKbK038JJpE4kX2trBhf6FMWaL/XsWSptg81fLAEtWWWy/4O/8nR/FPnI/VA02z2Ik9WUMu/8pSYXmS4NqZT3DXlqncTfCOSN82MD/aoQbcqFvhWL/iKKEfHNG79CIoqtV933w3xurbhCbwNVrLY5EnO+b6ZoDi2oF6twHaYu4NZrG26iNtv679r1fo8xwh2lclQuYOokwQ4LARk1KUXPAtX5YGxqi/6X1Zy9WZrcn8IJ9QXi0ZcT5EEvYR3472SLT1C60j4eOy7plUw17Pxzq5DqeqX+a75yoGX5p2sKI9HrBYgxQt5koAQ72lAAZRBM68ME1hUXtc1ubK4Dp54HLSvvjlQ9hz8xqKOGX/9UvwIFBwqyL07hf7GDScUm8emLEa0A2G53vsqHM8yCEaIO6dqCaODaBLGPYeLesODhrE0ETRJPlWYPkRawLgiC1pfFO/rcmcMb90CIeDwywW+2I5Bq3ybb2lWoacrYQTffmp8KtXRSetfuBqI/zU5JhZ5FZtw1gLBtYDWw3nSMF0YrGLVPwaT9PUWGRAakX/RkvGyInd/U5v++dkHBoEmMnf501SY72GEH+2wReIkKJ5V8KfEcuoTkzyDCV29UtuAurlWN0e3kSn8a2mvQMdfi3G3N6FhBi4NWNGXgi3lp++af/Nl66kpALoeSWkKUCaxW3hnRvskDfWNGsH6PkTEq/QHbnDna52RmjOdzD+uvarzvCuxvYLFwvllhJx59e/furBiZJ1hr/mRAEHN5M2ZqEcUpcZGyYZ2G2knFoZ0J+dgX2r8SMDKmm3V+/BWUZ6QTOvdHdL+Am234hjeWSTpevp1t/mGoW87Sn94UD+9I3sOvjO9j4kO/MrFKzH1hOt3VK6lX54z//E4ytZdVpZGeoZVvj6rL9PnYSz3jZWH7s3m24fB9cuRYsJSQxjW+KjNxraLvj8vDS1T8Hao+DSB8ktGkaKHve5cwFfQtE2eL6TGifk4EIY49/A8OPWoLmaBya1T7WadnNHef4wouv4gdGfYWduf8YbC7YIqPnfMOXrV167Zbzpn27bATnnDbaxXsij+ZyjSwyisk0nD9VIW2eC8AODWzMeaXAbQ2UGaw28AMC9e6U5uq1kPXLirf6Sfq7dICwQGQIMMqwsyRuAaji0WRMrKYj9K/4eUrH5q9dn/Zl1+erXJDkCdqPC3wutezs7HDixAle+tKXht+yLOMlL3kJDzzwwNJ3Njc3+f3f/33+3b/7d2QdpmNZuZyYq71rGu9/I/m+C0k0XV0uP0Ehx2yRRf9lWLrAUjc0WYzQCYuE89xJ+QEkU6ZvKSDfY26Xtouax7ckcRbUn101szvWCybiIyYZq/QMjH3eb3/qbOyHZ/iks9v3KrkkDG1nLP7rtGkLAlqDE53zbsR+m7oTxO+mViaPznwH4NEzWFuFYb04U0DzQw38CwOHbBPT4hD3wdLJ9sULcpZh2Wd6or0DbFJR32pKQVby4Apgp1V8ojXoLrLFBaJrH/0S58fuPjOrQLgU4V0Gvl2EF2VCnkHPCIUReocy+qem9Bo1XQsMuu/ugpZ9W1U3g3wBefhovtFnWCd4RSRIxLWaaBqv2tk41brTI/EysnWMTg9hT6wInEul8Z0pV0LXpzlxCz1ENe02ugGEfejOx8AqY239edmdYlfjhpnjTO6ls7cAEYOqGJKxdEzj5+he71naaSYBtmawloW6LbqvqxbHcInFE8X+3jO504kK2jYmgQhChLl437c439Iar/sNMHmuAJcExIDzZ48aaY5uK8Ba68U90/o8Da49IQBaAX1We9gGFxQIpn2fXVhfSvu/bEwA0hN6zXJTuhTxjBvLClbdonJllrygKrUI9MNLCd4VY9j2jAv+A81aX01K/dkDDfY3qzVjhneVOrYLpzcZHDurPu0po04cl8EvbRzfCjDtZZQJkvFnaNq4lKmTOmTgWBqE7kL7cS/XjMsL5JFt+NB9yGOnwbpAatbSqx1R5YV5QFNXWK9pFzWJ9cxeA/wDgZf4Zly3TC/Xs1Ul59wBmWJWUhvAB5g1PiK1DqgRl+c6WSu/jkhy3gOxbGDb6VVTmOkmtYUGvWAQq0J5DxdmdUhvapMGvTWhD345TCqToYGdeRBIqF8vyEqvtf6CRvcGeCdwb3dc51nCpaX7QrrR+0Vg2tN4ArLdQF/dLKqFBiVMrnUHxJvk7q73WZ/W8NSWzrOHSd7iQXh6sONZKnuRFTlclCZ1LxQ/JSqD0rqDrAQVhG+5/8XgjLp3G9GgckpMErKShL2SXsc2puT1jXWFMp3xhcfcJKy4Nrsp6OyBPmzVAZbV2xN+8KHj8IoDun65RlKXwoBjbMljvJjAuEucCes6YEXnqclzGCdjEwguri4Q6XYvUQBJ7J+n1lMeYkw7AOAAh+IcvGnhnQMGJs6SoLHwxCZs7/Lp71wjF9FI8ZlaEkhmnMuAoUeMm7FAbnKB0tVE+oU4UMDpsfIJPg1rFunxNBBdUDYQ/r13qkKJtIjPKW8F7BCYlhwWdSscAP8SywsFmt0p9bqhErVU9jFbLsoqJh2Xp+9GBmZLsqrkGTNJsmKk8FlYOJ+eaV8258+UxL/Ucl5N+6Vqzi+ljMea1XB1dbX1++rqavhft7zxjW/kVa96FS984Qv52te+dsE2jqATvYNuLG8m39gIU9JJP4fSh4FRTxXKAaqaVgqzFlL1pW6wGQsSv/QFDUQXEYl/uhWE7jylCwTTzXXWDco6m8gG1Ke9V7CBahp98YRiOMsD3eR7lrJZalrd7kzyWyHtHObLhjVFGd90NOkBzbPge0SC0KGN4AFGDZTd4GNJ07ZnsOci015ZjfT/iwb2WzSqbpFqm5IxLUy6u+kn/Uv6+ExP80Jzrr5CIBsDJtc+DFBTq32uyWUm+ulvqbUE6i4yA+ZY59Muwbf9pMCHRHij01DkIuSizGd+2Sq9EzN6L6HNsKea9pRxf3KmEVH9XCY+7cbgLFYIkasRYR8w62es1Qlj54bTOKK9lTLMjXkKrM+d6Sm01nPoxlYn7wSa2c32VDppToo8Ctb2gNxFE9NOWSycq7HrvUBIbooSwb4feua0ETMEcy5qmlrH333x/vI9v+dTodqJMdgn1D75hYfB6FrFlDOLXb5gSQkwz7A/eho+e04xxweOw1oOL7wcRNO5pDx+un/9egYcnOVQR7PtYBXUWJp0zzwxhesW90wQKFwIkS8tSV1ufFbAFhkUYHdnUEE5zNuCGw8rvUVoh4ABoJfRa7rRdJMgdG7tNMo6+uBakYCUyOSazlz6E7smaJ52v7b+ui/HPjQN9Ce1VWa9tti60bl94gzFV89AA//jJ56k/imBFx3RcyexHZ2etsBL0GW3GCobgwhaLLYRTloniJg3mKKn7/h6k3ouzLQvWWsRZDKDEuTuEu57Av6JgRcfQRrL0AgT0sCrwLzCrvbduSYQjQCngcvS5sTFEuhlGAtSNtBPiFULq7OasmcC3m5jHi1pjuyAP4yPM0ESQV5gOIi52ruB6BqQlB9ywkJfd2X9WpTQGyzAMT/WHaRl3m4E9fF2edoFQvo3H+3fr7UV4QnR61eArwC/D/zwElR40aWFVJMyyCGNJeDnYlYGt58SgtbSOomSNck94KN6T/uFmt5uTpB9h7WuLMZVkIthAp6jsoDXk/8tuD90rpznf55xDEEHO3X7796Ee+ba82di7tYlCJ16tGjBlnULKJIdFnE9U0Z9ydwGIWBCO4sIAwO7jlOKad962JljT61ldOcmX7/uMN/lfL3FadlDEDoXlC5Nm5c62HZN46dA41LapQKy8MSsosninLRm0P3Unf9Jp82B6Pu2A/OsCAz62K3G0ekNfOUU0+++kmkvw7hI+D4iPl44YaKir+WaBdEK4HwlxXnp/aECNtVGw85rh1OiBZ26TLSt5dKrhy0Lbh1CS9AR4scU0ExKJqhb09TClaJ4v96taFYLGpR2qQWyPQRBrdK13PHXfo7dTZUhji8q1Dy+B0Fo7V9bdj4HaGroMBYucs6fg3JeUeOv//qvX9LnUspopIYkOzst7xp2dnbC/9LyiU98gmPHjvGrv/qrF1X/oSMv5b/8xmtpfvt1/OFvv47PffAD/NV/fivT6TzQubd+7PPc9cW7VNgMmDMbfPmPbgIImoFbPvxp7nvg4cC4Pzw5x5vu+3xoR4C3vesWnjx6QoGStTz6yOPcdvQbVBAO7F/95bs5t7EZXprcdR8PfPkr+r0nlLMZf3Lzu5mVHlDBLZ/6Erd96a7Q1qnTG7zxD25qtf2h93ycB++Jlgn1o8c4+Y4PhB1qgb++5WMcO3EKu1aoNPXhR7n1E7c65kgR2Z+94685s7mlJlFlxW333sctX/pKANCzWckbbn43s0kZTKtv+dJXuO3O+1xnhNPntnjjX7yrtdtvfuCr3HnmWOjfw0dP8KZ3fUi/uLrfdOYuHt48E96784FHuPljn42LmWW88bZPcHpzK5yYL9xxD5/61Jf0sFkoy5J3vu3dZLOSMtf+ffFLd3DnXfcFovb01hZ/dvsnNAUEugk+8YnPYh98hJGr+PjpU7znq7f6ISHAm955Cw8/fjx0585vPqz98+MsMt54x6e0f67c9pV7uOVTXwr9nc3mvP6Nb2HmERFwy0c+z62fv3PP9QV433s/wTfueyjkBT9x7ARf//DHyOcWipx3vvt9/PWJO3ny2AmdCAt33v8wN3/w07ESC2/8q/dwesP1r2q47ewT3HL7HXhTse2y5L/88U3szktKq1r22z/+ef70S3fzI8ZwjYHdrS3e9bb3kjsrkf6BPu//0he456FHA9H58OPHeNNNH2gx8G96/0d4+PhJeHILrlrhzkce5eZP3xYQhxjhD//k7Wyc3QhA89677+OOL32FQmBKzny35K9ufjezeRmY9I986kt87ot3BWC8cW6Tt9/0HkD9a3vU3Hrf7Tz88KP6gMDJJ4/z5Xd8UJ9x0/OBv3wfRx87FpjbR+5/mPs/9plEoim87cEvce6szp9Yy+1fu5dbb/1yIDCr2ZzZW97OdO7MzKYVt515iK898YirV9jY3OLkX77LdwUR+OSnbuWRhx/F9CCj4sSJk9zywY+2iO8P3PQBjj96lBIleJ74xkN85iOfDgy7PHGWNx29nc1HdpF3PgFHz3Dfnfdx5nNfpnREQzmb85b//Fbms3mo94L7T4SbP/Ap7vzmw2GtHrntft6ycRfWoAG6vnmGWz74EU4cO8lUhJ6BR+57iE+/9+OhDhH487e+i42NzXBkHnjqIU7ef1cw55zNS/7s/3ob81mJrdWv/ZYv38Ftd94NV6/wxve8j9Nb27zxpvckzJzw9vd8gjvvjvDv4UeP8qd/8detM/Snf/HXPPzo0fD9znse4Ob3fTIsggX+r3e+j3ObW9jVHHZK7nvgQe569JuMXIersuTNf3Yz5Txqnj7y6S9x+1fvDXTc1uYW773zs+SJOdenPv5ZHrj/Ybzw9PgTx/nI+z7MHGdKOYYPfePLHDt+EkEZ9Xu++TBv/+CnAlErwF/90U1sntkAlGnfvuMevvK524OGcVaW/PHnP8JkazdIt2757Je47fZ7aOY1tqo5942j3Pym92ArYAi9LfjiBz7LIw8+Es7d0SeP85dveX/LNP/d7/oQx4+eCITNmTNP8Ln7vtzao39903vY2dxiPyBzuGf7Sb7w5TvCGMp5yRv+69uYzS8C/iUShJs/+hnufOhRfeDB0zw23+Bt5+5CGpB7T0Nt+eg7b6F48njwJ3/woUf46Kdvw44rza4BvPXt7+Xc5mZwnZl++W5OfOaLYX7LsuRP3vYu5o3LtzCtuPVLd/C1u+4Le7Y+u8FfP/hl8Msr8OGPfob7v/FQmIdTjx1j9S/fFzefCO/+qw/y+NHjYULvfPhRbv7MbXCgD1va3hvf/l5On9tQ/Gnhc1+4k49/9POBYS/nc97xpzdpwDirAtbbv3wHdz38IIxUinRmY4s//6v3uL7puf/Chz7F4IGHwOH6Y8dP8p4v3wbzeWDC3vTRj/OobJChsPjBBx/hkx/9LJmBTzuYeOCPbiI7s8GHUKLxji/exSd9/7g4/Hb6zCZv/OO3tzikmz91G3c+/CiMCpg2PHb8JDd94KMoxATGcz56z63snDjJ3DX20Dcf5uMf/FQyx/Bnf/5ONja3gqvLA/d9g9s2ntCzuX9EWVX8+V++k3ldhaCKt3ziixfEvze/6+OXDl/ufoCb3/Xx1jNv/IObOHV6I3z/4hfu4lMf+3zAA+Vsznv/81sZzOZBk/qlj3+eO78Y6b/TZ2L/PM774Hs+zgP3PBAYiRPd/Qe8+63v49hjx8Janb33Adbe+/GYqx14z1+8gzMbm2CgQLj33m/whfvvhVqjo87Kkv/9Le9g5n3ca8stuw9z22MPxf6d2+SNf/7OllDGz59f8icePcZ73vo+3v5HNwXB0PAdH+TYseNB6//Nhx/llke/BptzhZund/jwZz7Ep16gMJ9MuOueb3DbF25Xf/ZMKOuKd/7ntyJu/82Br3z889z9xbsCjN/Y2OSdN70XROmbZgCfvftLPPTwo3ja6eixE3zwlo/CtKLpZVTARz/0MY4dd1lMBL7+9Yf46/fo+vp5f98f3cT2mY1gHv+NL97FuU98Qa1/BOZlyVve+g5mpbOI3NfnM3ffzdfuuQ8eUL7gxEGYvPf9zuxfGfaPfPgzfPObD2EzFahtP3aMfX/5vpa2/T1vfR9PPBpp7L323+lzjv8wwm133cctX/yKzueBIbPNijfe/G7m42kINP3lL93BfXffp66GAlvnNnnPf32bnwYEuPW9H+fJe/V8zNz++0Cy/yzw5+/6EI8dPREY3AdPHuOzj9zJ1MJlFo40lv/vO9/HuTMb1BU0632+fO/X+dgXvkLlmPFZWfKG33vr3vBF4PRZt/8SwejNd9/B3RtPqWDZWo4eP8mHbrsV+lmwfPzI+z7CsaMnwvm4754H+bBbX//biT+6iV2Hfy1w1xfv4rMf+3z47uHf+9//fl73utfxute9jn/83/8Gz0WRT37yk8uEeM9Lec1rXsOrX/1qfumXfgmAuq559atfzW/+5m8u+LT/x//4H/n0pz9Nr9cLz+7u7rK+vs5v/uZv8lM/9VPh2d3dXX7+F17NzUdP8P9cX+dXgL+FEkmrou5TGZpyZ6dR4v0E8Frg7agkcnVeszYvGc1qVqc169OabFbDp4+rH9rPvQD6GbNhxlbfsFNaxtOa3WnF9PgW088f5y/+/kv45/2M/iBj1M9pBhk7IlSzmn89rvndsuLysmbw9Q1WHt9i9FPXs1oY9g1y8kGm6QpGGQzyliktwLSxbFvYamC3gW2rkr4PzWrumZb89rRmMKsZzWukrBnffo7pbM7NP3g5+/KMnx5qv1Yyw7DUMa5NK0YPnYMPPg7/4uWq/R5kqtGa1upf+rmTcHQHXv1i1daOctU0j5zJ86TSZyeVPv+10/DVU/DrL9Xnh7laK8zcM2UNr78b/tVLYX9f2xvkmrNyXKkG+50Pw5Uj+JErtK1hzu4wYyc37M5rdsc141nFdF7zzTs3GGyXXPejhxkUGaNBxigzrMxqilnFzkPn2P3KKcavfgnTzPBIkfGHFv5jVVPUDaP3PMzo5QcZ3XCA9X7O6iAj82vRd353fnx+Tj5yVKN//tQ1rv/ueXeV4XkNWvYsk8ayvVuyM60ZTyt2JzXTWc1n5zVX3XaKF64XTK83XPnxp1j5nssYvUj7vDLINAvASLWZrf5Oa/joUWWq/9411IOMnUHGziBn0jOM+zk7vZwJ8BDwPwN/UtZcPakYzWpGZcVg1jCcVaw9usnKOx8l+61kr/ixWxvbG7t1fsPd8E9eBNesufl0z49yJoOM7dKyM60YT2p2JxWzWc2nZjXX3n6GF0rG4AcOMHJrujLMWRtmZP2M7cayM4lzNJtWfKZsuOGTT3LFC1YZ3HCAUS+j7mfs9jLm/ZxfHOb8Xi/jegcX1gxUjY3tTiruH9f8P+qaftUw+shjrFy5xugVBxkVGbvDnHHPsNvTM13Oav7PccXfmdd8f1kzOL7F6ONP0PzjGxlnhlmR8ee9nPVBxi8WhtG8YjivmU1rJvOKUw9tsP3gNtf/5LX0csNokDMaZjS9nK1+xm4/5/HG8r9MKm6aVvTmNSuzmuG8ZuUD95LfUzJRupft719j+qqXclM/Y2uQ88+GOcPMsCI6zlV3XbmAP6e1VuMQJHu++foJdt78BFs5jDMY//fXMX7BEWb9jNf1Mv7ZIONlg5xV0Xy9a2XNaF4xndbsTmom04rxrKJ8YIP7T0w48KNXclWRMRxkrAzVH3x1WrM+qSjmbs/8xg2cHjVcdsWBcP4ZurPlzRcvoVhr9TyMK5ppze60ZnNaMSkbdt/3KOOX7mN+Fu6xDfn3H+TGXsaonzEa6pqsDXPWsNTThu1Jxc6sZjypGM8bJp89weP7+3z2Zfv51UHGoJczGun4Jg1MpjXTScU7JzWDquZnbj/DEMPw/3aQlV7GykDrXxlklIOc7X7GdqN4ascqrnq4avjdScWbZxW9Wc1oVjEqG0Znx6z/yQOs/pvvJMsNNDCrG7Yf3GD7rlOMdyrG1/UoHxvTjKFaB151Pf0XXs5wmLMy1DGu9zNWDIynNVvjkt1JzXiiMHY2r/nCPRt8x7kZB3/sCIM8ox5kzBD+y7jiR+qaV351g8HujJW/dQXDImNtmLE2yBgM84uCh7axmurL7zu39+z9J9m9+Rhbme693V+7lsmLjjDtZfyfecb3zGr+u7JiMK8Z1ZbROx5g+LLLmN94gN0iY9LPGPdzHu1l/OtBxtvrhv6kZnXuztGsYrVsGLzxbnZ/9YVsX7XOuJ8xbiyTecVjD2+QfX2Tq37mevq5CXui7Ods9xSG3i7CHwN/hGpnVtAzsDIvWZs3rI4rjMcbnz0Bpybwiy8MuPT0eIfLrjpEPczY6WVsI2xXVvfXpKKa1fzP44rfrWouqxuG736I0XcfYuXFB+j3cx1jL2PHwbq75w1vnVS8Ye72StkwOrHF6J2Psf4/vYxVI5hvnIXPHGX3f/jO8N6knzHtZ3yll/NvBnlwI/kj4IeM0lDrRl2NLiUQpJ1UbRrBz8VHj0FVM/2pa9nuG7aBybxm990PMv3ew3z52n18Mc/5F6OM3iBnZZQxGuSs9Ay9WcXORGmv8bhmMqu5s6zZ/777ufapGb2fvobR9YdZGSjuWB/lrPYzZFSotvZ5LtZadh3t5s/1jqPf/gPwA8DfR7W2a6JJOtaN3g88E9Oh/zxs+DRKw/6ee38FXauGSOvOgH8AvBGNPTaoGspxydFpzf9rWvEHZU0+r1k5vsXwY0+w8ms3slZkrPUzssbh9c0Z/Oevw//yXW2YHOjW9tw2bsybrr9PnNqgd2g/07Lm308qfmlS84PzitG8ZljW9B/eYH77SXZf/RImtzzOqSP7+MtX7Odf9wz9Qcawp/ii19MzvZtl7KAa9H8A/AlwFfH8FbOSicNBs1nF26Y13/vgBjec3GX4Y9cw6hkG/Zx52TCeV0we22B6x2ne+KoX8dv9jJ6j4UdDpT3MIGcXaa3dfwIOA7+GMnufBt43q/k/piWDmeLr0Vw//c+eZLes2P2xI4zffj+TH7mKx6/dz59kGf9hmFE4XDDsZzSDnB1j2EVDAr0G+AvXlqddVsTtEWdht3Tf1RbGZZsWHEcafPw/fZvSm59+gvGvObqln3FTkTMdZPzaMKM/KFjJhL7oOi7bT75Pq3XD6lTpnJ1J5ejYmt0zO0w/8ih3/sOX8lljuCzLyOuaf3Bmm/5HHmf0mhtZyQ3DgdJLK8McM8xguPd5tZ5fGDu+Y6xjrHdKtv/LfWz/1o3s9nMmFna/fo7q1JT/8MNX8K96GVcMMobDjJVBzmiQ0RvmjJFwNifAe4CvAb/jztWqRF5yLzi4tbXFvn37eP/738/Kykq3y0+7PD1u4lkqP//zP8/NN9/M93zP93DVVVfxlre8hTzP+bEf+7GFZ//lv/yXvPa1rw3f7733Xn73d3+XP/7jP2bfvn0Lz9eVhg24EjhOlCi2fNttlJRtoxLk1B9IAESiPzsow+nNvTum2VgnZGwsiFmINuif9imre64RyYH5YiT085nIyx7XobXBhdy3aAFbV5D3KNENpkPrRCtGoKd+PnuWsnGm7LQkqq1OpP8rRBnw7pj81ZuVpz7WYVAS/5emVLM+ui/BtMm/1ptBlfghAS6CpZuHIgMn7bSoW9Z6rBlpajW9om0qE0wtlpXCwCxaSLTG9wxKiBzvi+t0biG3JQwK1vetQ34WOyWYhraeX1Yqt4YSU7xV1lKJpnmrUNPxtwA/DVxuhNwIvQyKSiN69kXoX75CNkGRQG4WzeNdgBUsmkrLAkdW8D7Qaequbso3b0hdCIzJwMY0fdqE9cLxpX7t54D+TPNxpvvDA9Y0V3t4N5nsKSpdDu+6fJ+t9I7+FTfmooF57Xo4qWHUj7lnjZrHX51sqDhW9QAx82jG1fJnd9c5KgRf2Psvugy5+zhU0BTAjQeD9teblKbjvFiTLhFxvnSNrlU/g5degf0NgXuewr7iCLzgco2rkAnjTCjyGM3dH5mgtU3PdQaDSaW+324Bm1o7aH3KwBPOFuLwkMuKLAafE+L90yityPh0TPj29bFbgK3ZkYzDYRwSuo5ISE0Vzerc/3sZ2dz593XWD0swj59buFxAZlUw//WfoCgwHfjs2lwTzQpQ4v1PnUnpWl/rf/vd8Ior4LSlufOkprn8viuwL9uHzXOq42d5/MFNPvdt+/jl6w9jc4PJHD7IOkFY0/bdfdGDOjh/xXO3jTf5rzTYGaml+8WvlRjBGgOmace9ePFh+P4d5I4t+OVrkKsvi4HorG0nX7BWtYT9GNDI44CnBK7w4zIkJvxqIs8Al4K1HRy2V8F4NXqst8xe3bUkZhxp4Q7vGpJO7r4cHvLhjYDGctmBfYEwEUs4xwHeoFrC99XwtxvLjXUZ0hdZSKJla5W7qKxZLV7cHl3pwRznXiOwW0O/R4FaUBVGaNw732fg9wQ+hDKSP2gULvbE0UqXsK748bcmx5WBgaemcTo9wJrNYZRpkLJkbNp1jzBiZHC/JubYWV5wbIaZQ/GBJ5GfF7jhCnyGBrXWubSuPx+lQGFHgNf+2oHbtvNMmC6ieTzEcwttemY/6jYafLJFzZF7Ho4JqixytKB06ZmJs2sJgQCXNJj2o/M5eNl+dhzO3YfPcuL7IzDMsOMKHtuE3V1Ofec1GCNqMm7Unz1cE3dNf5dqokPgQtcxi8vykBPjN4FHvHpfWeygoHL7O/IKiW+2jW2Aks39WFvIBOCHFPCMoPFnHtqFOzZgZYi9dh9VJmoan4lGi3dXDd2u76bm/wt7ZHHa26WLYCD6Lh0AuzFVy63cZ4WJeysPFbSr8r+Mun3y+9XXIXHe6OfYErYby7qB78JyS2Nht6IZDmggpHyrnF+7EZbuq/bgkmf8GPtG12paabsAM7AulfFgCTgyRtSSK/l9SAxEl5ZnTuVfevmWMu2/8iu/wng85t/+23/LeDzm27/923n961/PcDjk5MmT/NN/+k95/etfz8tf/nLW1tZYW1sL7+7fvx+Aw4cP7xmUzqDI+Sk6DLvVNfUT7qP5HnTfPZESEK2HQ4Lz0Y5MqLGxrbDIlcWnFIBF4Or9ZMLkZyBVFdpe6pO8pCwDxj1rGROBrCeI7ayEy3I2LLwCHVvwZ3fjNIJKST0cWxaBvLIxr2q3I8tKLp2IYZ3/ewFI4QMILBJCGvyv/WI7EFckrjJqZo5ssskT/inbNzHlm9XcwqkPGHWzyLSfTzgBbb/9hXE+/WMt7nVxm1cjGlv6AtluFZ3PVjJVsS7D9Mv6VNUwyqlQQDsjpnibWb2/D/gq8CYgc2bPhWfejdA3QtHLNKrNiR1YPRAPV5qHzTOxR3fhykIRbBLx10cAV//ZyAj7vbkf2BgAm1VYM1+1fnwe6vg7wMRaiqoOPqTS2Vc+gq7tfPz+myKdoGpFyILQwh8WjMPoPesiU1hgw2IvG7p6FTFOjNOUSKzX9Y48E3pVFSJ9h7Eka1dZGIZ978KPWZD9IwVA393DvuyIMjMIBcLMdLZE53rBkhsVmtXJ/N54JfalVyLWOp9STblzrpeRu3zjYSqTyWrByByGs4pz1rbW1fuzNxZ4YgzXDTXIwbKo8ZfKMLSK71SSPxew/R7sqllmtV9TR7bgf3i9E5gu/G7I61TGmGTwIBJ/W2jgQilLZNSP7vUJU5EyyulnTdSPdxthhIumbQSOntNAeg8DD5+AVWh+6lqaG/ZjM42wbEXg+sPccf3lKpApDKYwIbCTcR0J/uxesJvMQS8DO2ta5w/U2msVkHmJHBqGWY55vzm/X2JanL9qEOy5nNryg1fD3Ttw2boGiastNA0rjWHiDnGY61mDLbJALHrz27PAYaN72ncpwB0gGxgo6zb8tdCfwGlx6d7Er257T7TyXBPnzOORFj5Zy4MJcCKN1PeSdI4QmZEHaoUDXxTLfQ28ft4w6pvQSKjGwZyxJIFn/XkcaBpMmdYalG63htWCAoUvmhpPM8zkBn7EwI+KjqsnSugOJEmJeSkl3QMpAz/KVAvox+wEdzIGhj0yNPVo8F1P4Lkfq/ULKML6Q5tIiQYQHYN84wzykitUeGS8kPiZwI+nX0QkCGGgTe6kgcZgb3jtYUoXf/lgaN3i949va0TM1e6Zq0p8UDH3Q9+lRHOC95CGz1rNpJJG8QqD61y7Y+9eBfpG2HSMtRfA2H19mIC9/Sn47quYFhm5SXy8ffC5wiiObxJykXb6x3TyvHBnDpCjQlO8QMzGM18Co1yfS/ZWGj0+rdqiTN2oM8djtx+tO5+NFxSvZdjNCZyZYH/uOsQIlTg8l5kkzZtKFT2969ex7LTfvd9z8r2guxMvhPURnC2x+wpsGmgaXMq3Di/UKQP2EDZJ/EQcqxCyKWt6ecaLBM5ZmE4hPzSgFpcizjHuNZBfaiA6992K6IYYl7BPY38wt9QupV2v83r6frrUfdq6zFSI9vQp/KdXvqWyRhHhN37jN3jXu97Fhz70IX7v934vpH87cuQIt9xyCy9/+cuXvvvd3/3dfPKTn9yTYV9ZvwJBmfaTLAK37ubaJgaR6AKW1iQVokxPOo7Oqom1iDHMlkjpEAeUJZFqGvC53dN2z1eWwkareVyrziAtYKcl9GBH1KTDvysmCTwEapoOMUJ+FypUjaoFW51ID0qn97kkQeRiP0PxzG5KoXYHWmRqwtOdZ0cwekALmltznpzEdJ0bATvMsdPYh5l1uYVdPVLWGpU0HUp6DZsi6WjPmfsva5TIkFxyWTZfQG4t/VkFuXDvvV/H9orAJQRGb9kmT6wbbK7RvmdohPg5MT97hZpf/RIqyCpETa4KcVHjjeZyNSJwZBVOzNoMu0WZPGuDJoyjE7h6X5y7DhPmg8+lW0pQgnPaB4jWEd2sdp5tSIdbA3ldQyHtOt2XAYsRa4GQ5WGOIir/Hr0MacqI1N18BuGRtQxT052dOfSVqvGBkrYQRsnZS296hWHQ1G1Bn5PDiGNsSxuD0MWHLMxq5EAOP/EdyLWXhQNdSDcg2qUXMaLWN971YZBh+xn0M+wgg15O08toemqW219CCOtZEsc0uP8XhmFVBUSolk82WBlYCzyx44LQwW33fj0SGj6A4cUygMuKD6zn9qD1Hd1vsNMZ2IrtgYKvNrESmXX/ShinAMZQUJPob8J4mnAuVbC6JsC4RHxWoUSz7iv3sgn/u+CYJ4QdTxDhrl8/FQkkwF5nsN9+UBnXIsP2Mmzf0PQyzvQzRgMVyIhj2ulnGK9tdu0aHAOftm8IcNu68U0byxzLPkC258ggCUAX5vAiCC9fPLMehDTuMyqQy3PkyR28Zkwa6DVWCfUE5zHG+bRLK4/wUyIcDuCnnfZUrQ1yZJowKO7/xdSy5QjOAF6DBl8H5tMetUo6CSmhvG/gzH1sAGa3ffXeAEOXoZ8vuP7kwG6mCol6WFCLj1Ad57gR3SOBznB/JDMIFnZLbXtSw0if6htR80+jsGrFCKtGWDVqpu2vw/QsX2pJX/NneGhg3gmA64OgDQoycdHj3adFMOcakI4MFUTlwmPftp9mnZiH67sOI7nuJY0+/gxgx7NQlq0t6N652Ojgy36f0I5gvmyqQa0LfUwXv5fnuGlxH+llIZJ6eNU3Nq0JEY27NNESuCwdGHLXF+9CUHy7gmOIEnhGP9f9cGwKg4ax+MBzur42CdJGUi9EBjJ0WZJ+us8cUbqt8pmSkr76iTSFwvHOxHurPC848WWXmPLN92PH8wB+z3pYsTGBM5VGP75iTZV8ucHkMee8zTUoXXctC5Zotf39wswn4/KS09Tax6/VZSPYKDXabcpTOQuM3I1hr1NTsCQlmngcm1gngItDAExLRuievwbY2LDU/QGNhRrNgFHhhHVcQMiWbq6w3m7uV43SvP5Za6loM+2ePkmnJi0tqwkufDafy/LfoIHQs1OyTJfjcnzO3Ejwp1GjPau8jWr1fFkwEfSrmEvL3FsSKsEboUoDUpg98/rNIBBk4JBIUyuznz5I58WkpHAoXK1KyqugdYyEhx1XkOs414OWfVHbHkzf99IcV41yA3udny6EyU17t6eVWZTZDRaHe1RaSEjB4V9VqW+Cud3vPVsxGSRTJp3H+ppj17o13LBOOurNDytclFlpr3uor/ODuP4laQDjMJ/5UQ7R8RMiLgf6dQl9w3g8UaZqVi8HIMt+nNfUPXER41XIU0MMQAc8AfyCa6sQoefSvRVG/ZkKf0COjODkOB6ulHn3fiDWwrFNuGYQIU6LcVeTao3KHd1RBGVsTuXAtGox541jgvzSW1AtoxvnjoW8qZUhEVngF9ZFAtOepm3x1zo9/KDBnibeGiYS1QJBE9G3Fp94zx4/DY8+iX3ybGhzIrCqh23xmBRCr65D2iqWIOI56hqR7ncBFYoNsgWmqIemfNsLwVysMEkyUWHeIGHeexm2l1P3M2w/Z9bPaZwwJx0XAeEmTIMowVTUlRKO1rbMoDQ1WaNM+7UDENiaTFum0q0MFk+nJASLhci4DwR2ZjCu2M7aDFiAkUJ7PH6YAAXkZbOgCVkwpbRo8Mt5GaJ2x6Mhsd4lH4ywboQtI8HSARHsjZe3CcnvuRLby2j6KmhRhj3HDjJODDP2D3JwAhfp54iRltVwStOlgorCgKnqEBASYMvq3hxgYVZiCglz5pnhi2bY3RjJpc24Zy6P/LUH4fGdaIFkLf3GUqfWNtZiK2gGeSLY0A6cFPUH9ThYjFo4GLcGUpggaJZk8fJ5Se3Uy6nmyBOmoEKy9p4JRyBaGwRNuzstu45xaCxbuwpLxVoMVvtkLZm7/jBq3VcB++cNl82h6edBI9XWbMGuOOGQP4Metq7FCPKM5+qP7OYjxP4R3WdrRrNerBv9fUWiQPOSSwB8nfeHBsZVyIghFmR7pmnHjLocBFvEDlHeiO6NxmlimyLj2PVH+MzPXEf1vevUr74e86LLITcaiToTvpXp3nxJt4KfDa9pXwazU2i9F0yfslz51F2tFTTtm+5fPZszpO3a4aPtTxJhigcuU81GtDCAdHBLfvJCyPHObujXyMA40UZ7qyFKyGvIP/ok2Ymz9FwKNJuZGDE+waW+DGhr2v0YU3RXCS5Vbx3OeEpjMasxLpVile7Z9NzTXpM0erxx/Zj68bgZsABPnMF+7JTWdbSGY2exmTDNDFIsCiT83PlahiymBez2Zc+SClbStTtQYM+OVXNTeEtV/f9EnBvWkr4E+oVFBUFk3pP9a1SASi+DWc1+99DLBMrZFLvfpXsTpfEqo8x7cyF40z1M7mNFsIM8sQwDW9U0eZKeNlXOiCwdX8q0L9JR5+/as12+9ZDrOSpb5x7HoD7tJ4jp3lKaNyXWt1BA1l2sMEF+Q/QM1HWLCgt7xB/6BsiN+mS4d1N/pDmdXK65aOoJV0foFJx3R3T7KkAfTduV8Os6zrpk2jc0iPpwh/2dmMZDNJ+ZpoA66UdZX9g8XpKbLGHaF8ZioazaeTLCq0mlqSbbI/W0bwRwSFHVzHJt2hNUQMwT6fx17FyZ3AmaWzis4QxN+yOeKO9Aq2Xj7FpfXKR7w4VKd309MZcB/XkNvYzv//7vdWkIy3bbqSlbp9iqYdbLmIsC2hJLaZ0/u6iW/R+iWu4c3au5EXJRM/meETWjFeCKPjy1E9alpW3392UDpxq4elXnM9WyJ1yCcYON+1FYBZoMapcj3Wtkw9TaxSvWMgNM1agpHR6mR2JvKG2f9ujbp+06y8q4Bj00/3RrTdxfZ8pprObftkfPkh+ryY6Cee8TNMfOYAU2jTCSZJwpsihyeiVq4huG0V67uXX+sqmGH2DSYHrFQr9ykSh8SNefSy9iBPEBh0aFWqwMc5p+ju1nzBwAWdDyeDqn86GX05tbl8Yujte6vWM3ZkqZXL0GIvz0D31v26TvmWjZoUW8RO20aPT46Rw7rykzcZYDMSWMHw+kvEMy6z3ImnpBQ+NBqLVADdtYVgBTVjDICCnBEloqaKq7cwf0M2EzE6z/FAb74sPYX7sW+/ICfv0a7I1X0gzUIsL2DbaXBwb+WD9nrZ/RDHNl2DPTtrgicWeQ9HehKAzGW4a5c7dtYZ8XWs/nYUzSGdPFrpuIKGNlaGnaRYAXDpFHtqLbVW0ZNdYJvNwcOyGqHWRx7t06PIWLJ5CMLVgVWNR8fN50XLAgsxWnRzGV6zLGpGse7waj1nQpUemZxx6wMQ1w+qd/6PvCI1ljyd3wM6v1vsTAPwLyBv6HeaneZ47WCKa3rlmLptIa+QrdR0BjdIzdSLZLdbHy3XPCN69lX/MadlFN/DMyK19CWIPAoEjstd1KTWr9HRVkeU17iwlAcXutEmXqngoUdwcZ2y+6An7mO5AXXQG9TN1AeoasZ74lAejSkp7l9Jpq2s9XWuNPrmMi3krhVBeGrNLWtCMKbvuJwBDEOfNWbbrUomvTS3Z6KkjZY2rTcf7QT/xQWPqhCJvuAFoP9L55GhGwfbDbcOVDW/QKcXnLBeuuy5pKc90HoRoEizeP3+nlBPOcZHwCSm8OlGYsHYAIdXkNbmf+Q0YQVwbos6Ufl/vYbzyl+CYDacB+8ywYwzQTMu8+mGUBVnbH6PfIMsHBBYvQzsvqLc4OFbA5w84btaJL6vap0fQdaVWVjjWd88iw61Oe6Q58UF7AvCFzAPs6sWTnpi4GiQqDayNBydpcDKeadijpp+0XKiX33+uGsk/L9S3dm8vO5YDFUF9Pa/6fhfI3lmkHnWyXoZMz6OSmWnaS6w4xIJm43xWodEwWcyFEevMMe7JqAtBA5kRTIbSKRzgkJnSBGjBQdTbLXj7g6TO+2qSJPgnh7wM7oUzqTj9jINHkM5heitc4uIoKlGlf1va86YjdksaX/dbLEiqHOKYA6ayLlNMdVHJfSNv8PKmnC9CyaR3SIIGHxx5waN9sH+yswlrYtDbkLRVnailF1l7zC42zWBTkLIz36ZaU2nf15I2lqIFBoT+NjEbl9U0tgyYJA1hZy7ynMRcq0f1YohLQW0UFGa/Cm+Gq72IvUz/2vpGoZReBK1bgrFUiOfVn94y7tXB8W6HeWhERResTNY0JXkVQxtNmBuvM2BILY5ULeCbPDdiPcgqYCuispa/b+7QvTJMjCqciLkiJe7MHUqr/qUD0OfV7plFt3xyw3zildXk7tvvPMRcN7rTiiaKwnVyHejmZhbnPMR2EEOm6QRGkcfEj4wZG+cIYM3HS72dCZHeL0+56jYfXUHuE7bWMLVhmHP2RmH9LP8dY2K6bON4GbK25zO2TYziSx0A8fs95P+dnOqYWIRbPtl3p62DmM3YLiYg9XbM9CBcAycDQRJCXbK7GMSNT9/OKtTAFGRSJ9XRoJCGe23AeYD0zbOZKvNpCfTvtIMN+2xGaX/1ujTswSLXsGU1PTePrXsZjA9W0S5G1NOxpO96/vUuP93Mha3SEPqDrBi7/swWZgIx6iVwkxRd7rshiSc3iE5gjV61qvvbTu3oOG2Xaxynt7S3FcqN9NO64iKhPu1vQVFAhONeAfo7M7EJ3zU7JPO/4k0ri70pbIN8uYYHjPIjAgVyZZliAnZmIxqSybiqsatt/RCzrwOq8ohmiPqAS1wKJQdu2BQZBqOStxwQpCszEzdFsrkw7Sf9c91R5LerT+mzAkRbBkszFyAkdU6H8xCL9Hog4TXu6EaMixIKucy/DFoamZzg7yCiGce/TV2ZeimxR6fAtKLLHtU+H4aTNU6bF48H02a6mPXyk/dsqtFK+AczFB7ZMGumDzFU41nIDnTawkuz0zkCW7ZV0+0cXHGHVGHYzh+e9APLGwzSZTobsg0dv3K+m45korMvNgjuRv+YsCj66JFEJmF7uCPImoePdE3VJ5iaylOX1pB/Q+fRCa0HXoRGYiMKvEFju5VdoHbWjEb7zMlXyOR99D9P3kn8sCCVo75XzllTTntJxB4aw0ahGuu807e7RipjPHDq0lCtLNdHS/S6RHh/mUFrWUJh2DXBwNuGp1RyL065jaQzBTP58Jey3FL76tlcK7LRO6MSaeZFYRLVfCfddvqrrTsKS6/NRvqWB6J7LIqKagww4hJrIX4Ej9O2i1t2bx0cgp1L9qHF1FReL5t4twOEkAyIZOcv9PFqIXUSDasz9+8nyX2BHdDcZQK+BGhtMFy1gG6vRGnuFC7rmArGYZKxpfSOcebxt71Dc78HRk+UnOC0+wFw8Me6r+zJ3PvJLmWI/KMcUd95ttSgC1mLKmq0s/tYCHI5ItwPBOiHAmERYUzvgnSfmqt1xLhtrT2DW9dvvjPNpFOnMmUeaudfqFxllVaoQYpoy7R6TL7ZtgZlpmBfitOz+qhFcb0JTigzQPVrgogVnQt94TQvxYKwVeshO7qr/McSo8Z5xf3IKV6+gdqgdItxp3bv7MAWaWU+gruNWtB3TePdjSsTUzv1BikSDlHxW0fQpy5AvqFlbkb5XmGBKt8waRhplws42FgZrWGZQai5YbjzIbiY0IkobN8n4xF2duXdVqQVFSoxZq3ChtlYD0aXEBahAa9iy3VFCVwhxNVw3n5XgKXbJvSciupGzQyBAkjUWQlyM2bxW8zVQywLv135sjL12vyJjEWZ1Rd/kBEuNZ0x3uzpMjCRvQYn7HGRmmedmgQELPtDpBvXjFZRpLxtn7dQJQuee3baqOe07lx/j/KT93AR84+pPzdX9Z8UI54pMBR2glkR+7vx4Mm8+LzSZUJuMJhPOGKES4bJOnb4tabUXGT3/20om5I3PdKBnfGLhoCWeERfszKRjulTrCL/WyUcyQayBa1eQx0v1f7OWrLZUuc6yBZiW2B6tqPENQmXhnNHXUncEP90GNI1gcMdSCxqsxcxLJrkwE1E3F0MrhgC4iP6dOQxnXGRxHtYGmqvdnevZdE5/MITGYhxqzLBkzsIqEyXaXgicnDUcKgo1jRdndipxnzUiTHHZYjys8f1azTUHGMCOBiaNHaZN3D/bpbXB3BefBnDqXJossN3Aei/so7KFHJJ3XbFFRiNCYxo2i4bcE3l+4noZUnSyAf03Vnz0eNibMWjRdp3/eZ92X9pnOX5fBR5vtaz7J0teVDcm1Yi2ZsyiTLuPf7SwV5bPb9qHcjbHuPTNw1w46y2GcoOlwd5whObXDNXXzzJ/2SGOXn9E6cDcYLNM85gvGScog5kK1kKWh4TGrAVMrgSwzKtg0RHqGleIy2LsYyCHbAUm1p1eu4HoBmib49xgK4ttGgUWLzlC88/A3vMUzSsuh+supykMExcMtClM69x1Z9XrAtJy0cyjww0LZ2if06WfG8OBUavBBmnRQunVlx4sZMvy14YIg8P/hgU4I1uxahU5mMPtKwOuEO/T7vza3dVaewHBYWcfBpe3HJu4jzKvmWcsjKkrKE//58+UByl+HNY6ZeDzWL71IsfnqFx+9SvChB9BTeRhyaS7zxbtKOJtgoX4n8wsOJQI0IoGWgEY+rTTBITDLeD1YgKqDXRQphvU7nyle4CMtUHSV7qBWQvWBXjZ6ucBgUvn/dY4B3mIlL1Q6mbJbj9Pcf4xQfXUhS7zBvIlZlbpvTc/77gkQOKH5K5ZU7ObKelp08G5+wagyNUMCNXOeLcIqV19IRBdF1LtAbmybDEfxAUsJS62LIuSX8wqKsdwvPvd73dxFsrzt+mZWWspG8u855h1qwGcKoFPokj7x4lm8T3R6nso456nQN8IiIErB/DU1DfQNo+3wJM7cM1qG2EExl2ixNy4OZdISOuAM0zZBMYuZdZbqRtt/M1bw4gL5JIyjwAjkbZ5YJhw7VPl5sAfDOkZGMezrmtjWxGsB0H9L5Tfs5/qlUPqV18L1xxmB40DkHkmRjqwJVOiqSzrFlxKmqOylr5j4NOxMCtjvnKJ+zYTtRh4NksXYfn7BZcf2sem5QrgrnUWYVMMQufuj23FGAgGfu9t743MujEXQN4XUZJOhrk2ErUAQNPLEyQurb7798Otf86AmScBBd2e8PuzsbCDakqZVUgGZDHwZdirrlJfv+m0tw6cLTJqr0HvZ4jzW7c+YKA3i+/n1P1CteyZ4bRo8KeerztpI2XaHV8arn6cwyKjKNvmgmcaq5YpkzmS67nzzGp3TBe9RD7wVCLoC+f4Bevw+LkAZwbWxrAi1mJnDYz8cYzC26fcdb9byJR+DVY+PYOZVQs4kqpi1s9CTJoFuEHUSqUj9YIn3R/SXtB9fdgqQ2W/d9N7w71prMoqXN/Ur13vX4LlzLzBeqadGB1f97PWvyPqkhMFou467GGmGjmbMarp7mqrnpPSGb9vymu/p4ln7KSCvs6m92kPpsn+mnwaC2R6Fk4NCswwpxnl2EGhgc3yZwFuPIulCyfh/D7tQMtlatkzXtO+rO5U+LdGdA/zgqeZOPzu9yq0gzJ6fA4wK1XAuWw695jjtE83/debw+8rmWG7yKDQ+Br0MmSQIS8+Aj97I7zoCOO+ISuiVZGvJ3ySJrtBw9qN602J0xf00ICHloSWtBoEL9cUiPMlKu8uqeXb61o5ZKBMe2FoigznXwjfcQX80suRF1+hMWJyw27PYHvREiRtMr3vBiu8aIbdj797/hwdZg8YODOOKd/c83P3iO0o99KrZ9qX0VKtYKl+oXrqDhMs83ZmVAV8M8/UlVk8TFOGvUbYgyOJpQtT3L3ta5pncOs2q6lMO3J8KrhdNj7fzwsJ1J6P8jeWaX/q6J2ATvgR2hHkU8bdl12UEOoCgZTg1N2ZmHt7U9nORylY0/I9SdubipfcuHpzb7vXgQR72UWxfGNhUaK+gbmNrdppiS1g20jLmkDTCznCxSQDzrPItDcWbHJc6rqdni3t0DJM4f1nQjR6297pc6vAf9ngfClMEhjPPRKuNmHiQeqaellk2AA4BJvlWJfCagsbYxlUdWQe0+EtAdotyrafLffbf6YnOnCi7d96s4qpy2v/i7/4s87nv2k/vixfu1XmvK6gylweTFFJ8j2Npnf7EZGgYe9J8sk0arx0mW6AK9fgxLR9sIKmvdF0b1cP2u/5+8S3MMEfbv4VkPaLDFPHrROtSG1g1OM0WaZWYxukyClsT8c0e5++BeDrulMKZOmiDwrEJd9OA9aIlxq4q7UNHD8HNx7E/nffhlxzmMYIU2MYGTWlDeNzXI2vqyqgnjszLs/BJoE3Un9Zb8ongOyUmjIpnUjRZ1tRzPe4Xmo5H7GYNN+6byFDT3AXmZ5rD/acwMfOajhTY69Tf3aM8Fv/+Bfj3nk2/FHd3vDMOkIMLjZSFN302hpwz4T619NBRvM8kErNSVsmfU4ogdXI8SsW9RUdSIDF7vVWvcFknfa8ruMsRYqMalBg++qvHoIFDjXgnB0WaiLvxwp8Gd3795Aw7HFK2msn8Rx6hi/PM/JGg895tDWxcLlF04gNotAzZfZJrxdb0rRvbu3FCHL9CDk5RUoNXjayLoGGH2TVqMUKkZFtBE4DV7hxtMae9FV6RjW+ydoBMGuo+3kisw+hZ4O2ZanwKj0A6fgFWC/Upx2gsfzWr/x8jB4vltw6v3acxt21+iLR4NN2lNOAg+VuHxPb2hINHBr2qN+/fZdizbv6rfTa/YL2Zni2yrJ94PHIACTJmy3TWTDbz41mOekyX760YJIIEyMMs+jC02JEn73RPO2S0hdpv/osNwXuwup0vCnJ4X3au/V2x76KKqrS+qaSGlG6+RrmyGwxKCO7FQwS9iHd33tMcPrIa/7HXw73q8BTPY1HYIvo0sPQBTod5Gz2MqSX0fRV/X2+NUzT5rVIJ3Ho1Gj0+AKQXBVUwarR05WVBvotUOVGGkfBR0NP65+4q9e0+/6toObxVU+zdzSFxoCRgX7swGX1GORMexqXId2rft67QomFQKdLxru0eCAPLVrMisD6ELtlF9xH5rK3Sbbv1vlSFfozGX+zIDlZ07j5spjtEvp9Hidq1hvxDLueiQsy7WmH3Bg1Y1SG3S4DfWgry9z4+APSmtvuOfFXf6a8a9slC0uexfI3lmm3tnEITs3ij9Nm2BvafM0mRN9m4kFZgEFLzL0XFtrlaW9Jn5JNW9J2Cw+Stdq26klGs3SMywB/3wHVeIAsTGtsT3O0D7wJiHuxZSnjX+nnau69gClsjB6/tENLkKoHAMuiq4O2M8jiO11oBY4pXeyLLPluqobtwiT1SDvSL9CsqGOij5a+7kmvsg4RzJfx6UutAIS9XQCeaekIKPz33rxhnCkYzYtCA4c4tZddKjSIv9VAVTU0udF0Ghbub+A/uv+/HfgG0TS+kOjXnvm8bCnDboAjPTi5E9tKte3bpa7dlWtxfbuMOylj0NYIAKw55snWTWBo07Psm/Ue7VOgX9UB06T+c8Y14s3jSd/3zKOkEVMdUPcmzF6D3ySL4sbba2D19K4yg4dWdM85RuNcpoIP6836OudOgDrPqJJzElbNjXdu1azaS2fCbpyWMDSd46d52qs9TPmertfGXsYccxbzA3fhYsz9rb/ZPAtRupX4VH92TuzQ7BPV/rm90u8Xyb55lshut/8C4+7HuOJGUsS1ao0naX9Bc5cJxrnyeOK7NecWNhtnsjxrIC8CUysQrE5SYdOCHyiqKd7xdRtRf95+TpNE+W+cubDfMg3KqL/d1fPv3fcuDkjXLQrQIjHvXRumdVy7s2gQVJnVSN4La62GEQmReKklMOzEdF1GkNU+HMqQo9tgLUXTUDU6UgtQWhXOuvH7U3VWJESOF/GCa6JpvAB9g4RMEW7cDvbU/ZyQ2Vlop9hjj0B00A5El074vlyzFbiD1fdWZ04gmaNn3jiG3dM0VwGHpjAp8kjP+LFL3HNjgTXaWiQjwChTQnnXkf8+rsxFmjo/o9JtwzexKu0AuNtlUBvnxIBgjZ9791iXiAY9G8GCrvt5DoZ0qaU7u/6a+rRD2AZ6f4ErtCOYL5zl5HtIswbB7LuV+cA/OMxhsoR2m5Uh40C7Idlzy6R96Q96LaZ9JqJWQ4M8ZLxoelmIy7E1zMlchotuXd3ifb5b+6Oz6HNxwrUsi4IriAhurkI/Ix0Lj6TFdN/5uUy1t+Di+EECo118BcesN32NMdL0M3b6Gb0OjFw2vh6Lhp0XW7zVT9vEyI3tMpei1mfIcO+0AtGFetr92zNVYRAk6q9+pqtVWJ2VjEQflKklPzhkVYRHrGPYSczkiW4Kew+O9uH2cHlooCwjjGhqZpmmMA64dwHHt797QWxX0969fz7K31imHeKe9ObxgWlbAgi9pt2/l15b58ibe7sd1I0w61oAhD4JYEzarHG+Q66DkjlNuwuIcbGm1QuA3zGuhYWp26EWaGY1FAVj4JAkhBgdRO536iiPPtq+hBO8hGnfi5mFOHnlHkx7aaHo+NNJm+luuSQs4TbS3pgKprnPpZtG/EyAbL+AqaYFwzqJm1WGn76fF2l1YelYffGmyQsuAM+ciZcFisRiKsukSDwnB4WLsGg7IsB2+4HZLcHmEubnc2FoWt9HaWvZ++4jGW2GPXO76MgQTpQazdkz7D5P+5M7cLmTIHd92TsBxaKJUpvI7HnBz7yOsSh8wLZGEUJL22BhX6UOocE0tXNYRrTjTYRpcw9OUUQUtnNh1Koj0cBpyinrrD0sAyxHTtRw5ACIUV9iR6zPRFhxpt6QMAgJjVObjKaMjFB6pbGULMnTbq365A1dPlfxkaqdVwnPbfG9mbGHebxExigdqw+GRa0zn1pN2Mdn2Kv3RV/E7r55FrCWz1mrmhdveuf92vs0mQbgSsfjB5AKHjr/UlN3F1l93lkq0PHNrNUgdJVFijzs9wXrvhROu48f+hoa/M2Xxiph6X3YIyMXGXYLfLgzDx/q1O3Pn+9ACgf9uH38hUkdc9/uYtXkvARZycM4ghAi/MClFZF29PjMWz0IXHkQnpgjFnq2o+mZE2Il6NhVG35S4DI/rxLHa9K+9g3ifPYVH4PMXKTYIlPrOY9PPDHvriFoUzJkXBuSLrK/rhZwrpMrOnEvMp5xx8ktbBQKHB7DmV4R1rkVp8ct1oaghHEqfQFkaGA+h53SR5lqEzpPZ60upnTrTDdXr4CJRu0Xa2E+Q/q6KzOREExwWd/C1BGZqFGn+u6afKtL2h9/XxC1tucrC0aZ7jpnb017+lknCdbvrqXAwL0VQIDJ1ALRpo1aNR/3mvZlqso9SlcgL0S31DFgc0M9KGgGBc1Qr/UgZ7fIGCxh2BfOGW2fdkiFanrTOLifI9AvVMkGiHV7r7FawaCgIAZAtA5AhrOfrMEERy90+tUjWU8RtSQYqMuGHen47CCnKTLmspgydZk1xjKhBFwCuRnWVtoNeL/2Xhu51UAfiSmplxQvbFroU/KCTQQF8z4M5yUD92C2YaHf5zqBrzs87LXsNULpGPfzpqkNk+/H5PD50Kgbnn+3qdnNPb3UpVcWLXJ8tT5G2bL5fj4Z97+xTPv6gevC4I6gaV4gEjApMQNKAK0RJ2SpBhrUfgiS6BTRXDZ8GguZ+pJNIG4e1+aUTj5ML+1PtdFLdoOtG01VNqnU32tWB1NMgcDgDZ2fspdv2QpYKdhEfRk9ExP8hxOiGljUtKc7co5KJ9Pn98KG6Xcf2Ccdn0WBf88seTcBJv2snZ/PV909wM5SYRLyTOKAbOcQ5znN1MaMAf7glhbxAc6X9WOvsXqNXMgq0BW6PM0jHbZDG1hmFcxWVONz++13qB8UxGAbewh9gnl57SK0ukd+iLbf0atQIjEXF4ROHAPTZdg9JXSZIxPOTtt7pgGOTuHK9fhsiAQuCwyYAF6ZnzIL+wTmOVBWYXweaabN+d9mQK+ySnCwSLh5QsETLelUWQCjiHrQIkbEQW3n/+b6IQ3Bt70ArjyxBVclrgBiaIym5xoab/rWYWLdtckzysoGqbRNOibWUoMiOYua5fuy2zgXkzayzWkHolsY59Moe72fMu1uSPGazHvL9G+UY6oUlLpxn9jCXr1CYzSNVS3wgc/drimt5FmKYg1Rw+AQfQiWU+5iz1Vcfuxc2DRpSrbu+OJvooemUSuvEqIgAidcQjOZrADMwawWST0S5sg3sEzLDgq3utkP/JYIiRuIFmX+/u92puBVxK2ayJRin4jMfDBLdczTOIHp29ZpNndBnBYt9YdPLWoupYiR6NeeaNoRkOv7cPw0WEvfNszTNJcTC6M8YWL1X0+BBuDzjLosjl36AvO6HRR2VsH/j70/D7ZtSQ/6wN+Xa+3hnHOnN99X7716VZRKKlWVVFIJjIXddtMIIdlgNxiDbIMM7tntPyA6wh2ewtHtxnT3H43bA45whMMOGwdCjsAmACOQMHJgjGmQUKmqJJVUUg1vHu674xn2tLL/+PLL/DL32vuce9+9ry5P+m7su9bZe61cmbkyv3mYqkttUfa59ZPAW6XG9gBuLhCBa3O9KSk7/8rf/nv6W3aRhy5GJtH6GHNc+5NsuCGdY3AlZ5KPZp0SUWO1oWvDr/MOuZf4iCu1R0mlWHhIW62CatO4B8wndVnNOxGONK9Eh77HXELX5j5ukzsT2FpXZXg0w3kQGGMjYNs9fksIch//vcEx2zHt+eNw1xEuph21bC6NvLt3IrOgCiv/cFCac9Dwged41GR8IvC3fupv5/1mZdLMcyiiAl7MFmHhhLoyydg7teOoe7ybCPOhmUAyUFEb31ZJSTFRS/uqeeBYybdT6pxYBkdsGwcK0injA123Ywq/dpxT9q+Rc8GHmGU+BeKTydg1rdtaidCznxX2iegqoTbNne7X0uqih4PTdcaLYXFKuNLxaYGvkvBXov2WZHMVz3GR9x2054oof3xSKgvFzcAqyWf17bsFdiiGnrE9+UHCh1Zo32yWmXF4Do3fOaMI7FAm2xbbZWrmEtzGsQVhVr/VpvpdUoO66QfolInNi8wtkDbLpAnP0rSpndSVGhcbJbDHKz2ebVSAOF0TFuvsvgdRN7UxbhHiGTCZcBfnKheq/eqEVNRyvGy0/9ltiCSkNjt4ZJxlzlD3+IryWHsuRn4XmHdDQ50FsgZYs/brbJ+mMj8VosVZIvoONmtOSIg2vTfZREKyImV+pbykEWw1viZ8Hx/ajnaceHcGp92EtcDBwYGWEgFlLMnLID0/Ns3o30Nv8Z7Ct3Xqrvu9An8C+Bw1s57dPb3g3Z4/18NbJ/pgs7IDvHYbXjjAMnVnYT0tQs/Eb8XvBt0bl4Blr/HPbebcLOKmLyJwFqNa2ruuFhrzktU2U29HCcFSiiNBTqJ2JGpp94ngYtRqETEyW2+4/t499TxI8xNT5uK7QTjM4y5z6fHNMO20TCPkBGb+FW4GEwiivUyEiJyBHEw8sgJgIsIifTfG6D0Mwd3O2xq1ebuY14QJWm4bdV3H1UXyRhpQ74nNAG8sGF44YCHCvTR3/aVD7gmcBE2euFfjflGQhgETgdfeo//yDWZr+AN/41V4/Yb22+kVpW6i/q4PsBkS4+jeIbqFBcXNVwXkGAiTtAZKtRJbtG01BS/AXwVuUtZvbD6tsG7y7GdQgf87gT8JfDfF5dqE1zK4Ov+C78umh9OVer6sU5z+FUHd42dpTM6CvT1z9wFNXLuEpLj5yCXkBLh9yjRqPzAys47EbpLmQzKue1fgOZtXL7i7+WXaIVYOLaJ3n22gnzAXOEWy4sLAC4yj8Z9ZAKF+mckrgbvKhVw5OHBaGH2BPZGQGOfgPk8sVrx7WPiatpytJdo8ysxoUQrJYa8XnGxgticJ3QO+sl1gHi6j0uSRWtqJKC3dACm/xERUiNukeyyHQLvuI0WZZfhIRj6PK7SZz6ujW3Bj+x1GhPaGbbGPCZheCFnhssdbG/OAHK/KnFknTlHjTivJnQN22aXLGoxqNP+QUoLOHuP31xLnut+22XShja82Y00ep6gwqeXteiTXSE4XnK10Ewepyqu1xjd/bJUKBgcUS/uu9+lp6JjCr53a0bKAzXEv+L3uY9qfmBOHDfzMN+HV97AQoCVquKmaaI6jQrs/il+vwskkcLQqyZPDjTPCHH6TwGui8tqA5Pj2TeR8F/mKMJdFEY8mxAWYsYe1Voa5hKEfR+dkvDnQd/nApfYeInxohfbjO2/mBf9E+u4tHINTZKCckONyOlZ8tTRWaHurzipeMr4bMz9AqoS1VdtP9MXPWqXABFgNLn7ZrYL1oAL62UY/ydIuiw1xuUGWG2SxzsLEJKbFbUjhOMJswjEaNtYSr2x1N5gHfYbvR2YkUKG+nY99MCUJ1E1boOOZ+Z0ibGEqcz9vLNlbrOBKNXebIFvxpBXCPRJYrzXuzfVFNknQs3fTDq1lMto5aL0JXF8fBMSsLbF+XDiBe7OeDfCZz35afzkETtflce1zjYEfolpi+qCJWZTPZQX8EZSJh8LAe/5yVGC38T93Gd5clnTum6jr9o2VlntDirBumt4G+1QMhlsGhwKnXZcxtsv7VmWPV6/kyDFwNJCUPVK1ZezrUXqQacG94AOaMbVPQy2UKeheS/MpkBhr/Ry+eY+7BxNN6mTjTOvuXhAOg9RL2zHTAHHeQ8nLlpUSlsRsiSajyj9C2RMHljSNzBMHGcmi+z5hF5OwYDvuDcjjqxQyJjTNJhycpDAVVFER3z4mzmD51JzbAneCcLcTPv19n+WuCPcQ7g0a/vO+BfcgJaNtOudXbqiS8wD6O8Cv3FJ8kMzG4haT0YUqxr0PsGmTAFpmfFU23CHV811vtF59ascSom11082lfYxW+fULjaBOLdSbUHcP+D8A3+Xa29rrNjb7rqEbQydZM3wHCDF5DyxWyKykcKwYoQeJaSc14AR3Mat738Hzl+DNJfMYCUMsFraU3brsa332DYGnU4d0zHVMOwhMezhLfU/aDklVTmYIazeMmIRJ0nOs5JubwnJsJ9iUmJeA2xrX/o9816fr+L1BBfZuiCmDvCQli9Cv1szn8GuxEdpF1/IxKpwYea0MUUcTpSu31uNJ6DwyflTQWsbmE+QsubGmWHtJCVdNmFzlhbjdOZsyE5LGXI0f9ZAuCruslm3pLBgXyIyH9d8b92G5RZqtXB0tf1P2NguwQON883UCMg+wXJe2IkUDeOjrtLtFtmOSPf743t/63dVll6kt7f5xQB1v37TXjq/NZG403fbGKn3XgXqobeqYdjnd5If1SHofdn9p0/e1LbVnfbEQ2TG6OUZDR/NhNGtlfHzbc7cTpP0k/HXznhogXoXw375CfP1dEC0F3IHzlqr7Y30arXqQvGKie0EROJsF5utVbqc7OUOOeg5FeEGEX6BkkF+R3OTjBcL9XIxZfkepNGFcDcozbOBm3+H9MFu+yY/PjmOhK/elLHlI8KEV2qFmRl6gziDvP/fQF2IWh/wJreXBHV3WY4nqspbviwPSKyK6y7Zlf22bwOE3mZBd3auLSc9abIrQ7j6yHGA5aDx2IvYHRE6dRZLVivUkcIZaQ8zFVLqaacljm4U6IUwrCPYjy6aVuDxMcdnjm/tWm9o9vsLE6aR1PwcX6+0E+NUmc0wlpqkwVJCySU4hLtecRrhKslYCsgGRUJc9Og8yQ4q+ozGh+X3s6DHCGzYrYheSq2B6xDxovgGvjaooQ4pnX6fSaV3ISqTb6bInqfeMnefni5BNjiawm/Xo2Tm8Ycno0vjfOtbfnnTu4v6+Jgt4VpJJKcUEcBXhrO9ZrzTVUkzPiEN0ySTLJC+B6QAk4UFy3wsz4pmWiklIDz2V5D6XFTiipQlT+RuLY5eUJV8iXHpj4BvPP2kDgSDq0t0FbgfhKH1fjdrzONJlyhdhywVgE6GPFO8SgJNkBZnW8YVRtHzPxluSR473C2PMYkSFR+/aV4Fpsp3lWL/ouMJGGZCkmOCtFesXLnESAqedcIoSypP0uYdwHOE4qgf0+xLcTRhMSc5iJ8RPP4Vc1oeurwKfejLjSzqQFOJA8y7zuLpA0tlmbycgV6sAzblwGVTAPQzV/a2A2zIOth/NUnaH7a3uhXUvxEfMgqHeZ15QFwr9q6Yo96vek7HrOEs4/S6GR0GOF8ghxXr9MFyt0/uxmHafC0NeugKv3KWPEGLMeQTisNZydyjON8XkLeAZm0cpcrNZ3VVQ0XCskhse5RaPJoQ0f6MmTHa7uGYvCj8X9sKvTLVWO7jNZS8uahy7qGKki7HoO0/WHPbwC6hSQsdp+z9ZXRt8kxXSpgh/96QI7Vvv6iGGonjYSt6QYB7gNFHu45WLXRM6UZy2dnNdCSsOJ2UPOka8tx76YB4cttYIdZKxMcFu13dQBIqxkm+14lr3+hSXzBJNvjqzm2zdzETLzVShIkk9YFV/2sb3jVnG38chxUPCj8ngDHI543ZsLcwY8VaQIjiucFUt+q64/xss1asGEh5PD9v3Dk4pPIWHA3ZnVW+PuxR+/lx2jS9uz5l+H1nHyHKILIbIKsYcPlPtw07gy+/o3z1aKeeXbpojoYZHjtG7dPQZ7avnpwtNOW5JJE+mE2Ym5W8G5BS6K3NE4NtE+FUsrl15qHUsGeSHnTRfCkGjHC0UlMUq0+FN3+1UkOxaY3P2780PCj60QnvXzys+4TolGV2btOUuqW4rIwjF8xpGwKYkAdIRdXdkqe7xh+IsIOn+KLr42hwQTEDWiRFvV8NKBXNWQxbe5TQJ7ouNCu2bIWtA58DCc3LDmuWRIupDF75m69vHLGoDIdc1rMB8UybOiaraxbL9HajQvfJCrDtfrYvAscs1z763sm/+kfk8pnnXvq3ci7OEVrns0QTi6Ya7FO1tAFiDdI2gV/VlhNmwa+bs9iZ4AFBhJNZrweZtveb4SKf09u07Or5ea8/7+MpWuopAXA06F11xGbsVlT+aUJhXe51bCgxjoKFyr+L6DN46JVvZI/D6Kbx4ACGMW9kbhtCvR+XV9Pc5sJ51nKXXX2bZ/o8VEl1GOFqjBLlp3x7ZpfFWcX3pukH0M2tet0wniDEs/qb0buZvvMdXnuvSWtPBxE4TKN3rAkehuKd6ZjILaNOOzqlyB/fudFyRqRfYY9Qs13PtZXZBT2u/l3pcBhdOWLMDxohV675YoQBpjvb9ERwsNuqimRrbvH2P0xeucAwcIxyLfl6/eYd7EjhBOBlUYD+N78/iLuZybQLhJMDHnmX1e17mVz9/lZ/6Jz6KfOxZVVL2QQX2brscTzW+lFn9YDOUmHbq7XtCVNfdxQqZl31GkBL/7R5iW0Xc30GnLwvtQK2vi054d4L7m6hAY4y9F9zHlJVd2jQZtRsjFDpOEz24a0qIGJGzFTKTajwedT4IqMIk5HkRE95FkBdn8NZd+s2Gboip1CnE4zXMUnx3aufdqB25JmXs1n415dNeFWOrmCc1nAL9hInougRKDgRtBKjrtNeDsI/DnQZX53Bbc2W8e/NOsWSapxVa9s3c47uoHjdhteSZaeDrUbJyYu36dUx6LwkXZQV9Ci+QCXDzWMtFbi1q19eHDbbg/DwI2o9jterK6UYt7+YVkXBysc0ViM3nhG0BqmJTHu5oHgh2sU0XdX0e+80L7VvPaD6gITY5L0ayQE/aCeoDctIYXEyxYsYbv172bHbf9K0bt6rl5XN0eCOXPfKYkuitfUL73YQdmczRvbEUl0v5EFit6rnZRC0FJ5J5gJjGFx0i9m37UntQcMsBxdLuP2OwoigmxsZlx7bCwC5Yx8hxhLuDlue8E+HOoPh6EdQj1Xswxe9+Tvu2hmEOfOZJ1p3m5Jm4+KGxud/Xp8pomW64Pev1dL1RRS8QpsqvfWeAL0pJGLihZI9fx3Pi2psORnMTuwTxZJ29Ku5YTHvLk3ivufrP/e7x5/XpIcKHVmh/6rnvqJgSn0G+ZWTvMI7owFwDGyQ0Q+uVO6gQ5GqAZJD07hS28Rc4FyZD2CkWcgvdDZSM3KskuP/Sm/DnvoD88lv6d8rWHVJc+2TQuE/jEofjFceTZGXHFAYuZrK1/s2Cxke33L1Zyy0Z35ifzNaEiArSVTCKSZFRreOzsQbadqi8G0ZTN64jdF1B2sKWOxPAMAmwXnM3Rk1KZI9YgkxSJmff3daNz39nMCWXr9re0Q+4pSN1/LQdz9YcT9Rj47//qZ/WS6eTjFHiMP68AYjrQctASRHab0S4lrBXXvcU3qoa6ZjALgLPHemkH6/Ku3n9GF687KQCqc4l1HOYCaeU85D+WM97fAJQyx5vFtqY5iuingPzBYiketGkjOruGYhwlbpWO+l7UwBP3XcCcNgXBsYgJaFjsaa/t+Brz13KxD1maUt4Lzjrjzj+xo9dejoTOqxtd75As2T7e1hs4FKTCTUdTWu/FSryPmAXsVqwHdM3xjQSXCb/KcyHNXfSyxuGgbN37nLyfK8WdtHPMcJf/As/xbEIJ0lQPx2K0L58HwOL00CcBJgGrRs/7YmfeI6/87u+nfc+fp04Tb/1QWOduzKqes7T951AhIP1kN0w87OSBH0HOCISTlaqrLV5obw/Axn5GFyheMm0DKGnc57evYVamsHtcTu2e51CG9rwhtAFzlKJtVsDXEkPluUyW3HzPj4nQdWFwLvHZzd54MpcQ0PevMdh2iMALNfEmcP5AjdEeC7tPQtFqOYgK+W1UkRYbcqcn0Zk1mWLYGHiwacJ3V1FIYnMNtE2HwJcmcHdJUT4L//a30gddm8yqodNH7XsW7Djcs3zs8At0eSGG2NoE865h3MRTwOpSPYVUU2GF9q9EP0+Xtd9gT3zIMAyCYT3NnCQem9WwaBJsXyZPdjGaybgwQgu+qDGdAFo8T+U93UeShsT4E9he6+yzabZ8YA6GetGpPESEd0LJ7Fkj48RTtalo35Ptw9oICtggL/04z9RXX5EE9PujhG19nr38zH6aTBaM9xNxJq0RwVkChw7RTwgZ8Ch5uXoEZZIZTGu2k2QIqpqFhFX8s2PKY6/X/PS8eMZm9KePUqJdFwOkeNB8wXeS4K7fe4h3A2BE4F1UkjHSYBPPgv/wksMnz9g8wdfhpeeZRWEdSdaim4HXYImS74fo7gQNNe/0y5oZZ3FmnBnSbga6EQIInw8wN0gvCYwhOIab/XaN7s2RzX5rnIUqCFyuYH1BgTOQig4Qqg8MXehvlka4xh7/0EK7aM5Uz4M8PZrX6hiAZ8Dfp5xRuYexdIOiZbGxOzjEH1eoVIsxxGEmMshCGhsuqQwY+yyElN9IlJbpUQgBKQ1bhuStBJa6wF+5W34s6/r7195FflRQb79ueQ2qKtngl9YERYrTnrh0ESYBonXeYJEY8itVh2usVUrtOcBbK90Tx27UMejexPFWSyW+zEMZe3MSDHjft6by9cDdD190hrn7tsticGK0wDrFWck5D0kYreMMOu2rUNj/dlaE912LfqxUIeLgh+fEUyDsxXrTpH87/39/7RqDw879bzIXKq73pQ3EYbVhtjXDP4dEc370PCSlTU4g7gM8BRhfNLpJnrrHlx5Up/56h34zNX6uvwZD7EYi59V6Fim5PSVoG7jcIL7CpguKLkQrK2EyI158ExLdM86S4Rmaq6k1sisy3knBDSD+ybt7DeO2Vw95N60UxewTogpc3zshOMu5DhkKgJRhLVuCv1xnQAyuvU+xLJeSyLHqKXTWm5UhD4xG+cR+PuBVjC0o49pb9GCmYpbZpIO5icrFW4jLO4t9D0+c5SIrYAIXxF49V/6Z/nZTvheyKFIPiQpxJjjMe8LOhXWY8p/NXQCm8jpoDIEXSD2ot5Ck1ArOKWspTzuhEwPNkNx1XZr07wKjkAtPMm64K3tfhLtt7ZCCWyXbfIfc41vvcreBJ53bezd6w1a98cwSUkTIxzHyGFaDXICctQXd/NQz9cDg+ieKgK74aCAvPAkvD4wez5Fl8SoLr3JLXJIz74h8Kwfg6Ei8hLNkyIAZ2vkUlrVixVcnnIkqijxTKHfez4udWvuWrd4++Fyn0OL/vjv/6fcSyx7P+BKv0V1kw9n0M8nvAT8UtRYfav8iZCTA6aFWpZWWrcyS+rtoy6Pu5rv9/O+9kE7BwYHQXP1ANzdIJdnuSuguG+TN4R+2Qp3oOPOuJZm2nl0w7pfGNtXhkPNc6kSDNKF1V53LMYZdQZzac5tzVujVyk5l5AUu5w2QhZiDibKH3mCu1xrcqRqMDXeOm/M/+K//CPcHYrV8DJ1/id/NF6upS/5sXF7DluFaf5RJAnt6Y4OZLUq44uogm6quzikeWnH2uJbb2n3c2+CXjuu9v0BhR9l9zoVinv8Lnq+jpHTqGFYp1GV2iauBFEF4DoEYidIHzic6gTGTuA7rhO/4zoSIIbAYhJYTQJ9r2Fh7Zo12Cqz58cqdtQ1FUW4CaymgfnZWuf74IBONAymD8K3CXxZhBfRkJgNpKSnmkhwGuN26E6LV8UpDvoJrCJxpQlnLLmeXqb3jNrmmnn33gTvh496P/ChFdqBSmi/Dvw195tHdncgZxK065H6/ooTbSzHxlDlvwfFRnM0uYdvOKLaollLtIJzIa/ioWMh4BH4uTdLnwD50lvwbc9qXO0mIkE4ijWjHldr7k0D19JqNMW1InGX3dkanvelAZ8UJyda20PQxxjnLri6Tm5ckDCVi6b08+xhjhP802X5mBjGAZiGHIeUkYRrL4JmPV1F7kaNxczbdj0gE2OiWyI0Mmbf176j4tIN3s+OHpr2MlZeE6eBgaIIshq31eMaqjAIxE0kTh0jL/AupXbxWAxghRzNTco4AG9tf/YyvLGET6A5Ee4AL1wuDKC/vmsnsyDQ4glCtpDHWc/6rJ4GcwHOAnsScZfAhAGhK8JQaj847vwK44zCMvW3h4pQMengWDtRqhakh7+6JD5/jSjCMghTEc0cn8Z8S1JJrGpe3VwCYQ7hru4xv+0M1kRmsdj1JAInAzKvEwJZnXbL+Pqwa7W3zCIoMbvCOLGzseYxm0A3ETbLDf/TEHlW4Po7Z0yeOOJnJfBOFN4BfgXhFRGWHfx3IvwJ4PNp7DLo+wzo+VGIubb6/YyFiSpaYhgYwsAwwI0YeTkkb4m+I05CxpF7nyBp4Ww2ycJSh27cHdS1eQaw2BDmllaszFFup51D+zo1dgWN0W4ZyBhLHHcb0+6FdhNWvWv8GCPkf7Nfw6wjDIq+b6PWezGF1nxS2s833N97aUGCEEMolvZOMo7gIxP42XeYfv4a64QzY8qVYjgyUpd78/PphbrczxnIslRzkfUKDlVsWEnBnVDv0zH3+LwX/ISIO7/aw8mibKomER1AGNS63qVjWA90A8i0T2WShH9EUr6c1L+7pAzqYrimfoccJKH9sFWa+wl5BNByx5L+mE+Q5CMtiyVcOSiXJyXkJsBgtDwpJ9r1bxnUtx77iIbzMMGMOQtUkB0TzDzu9Z9T6goesIdlSdf68JoTjOa5+2ZdChUZinHldCiZ46t3SIPEtsHwQtuXS5RqGP5jcwE7YvVHvtvKHo8LqRPdo73dMQmq4PNtLDeqCE9wlsYV3bGlf6fU9M/ALO27BDz/t/It4+DbnY2Mz7e1iGoLs8/pUIT8EJUviKKJPLu4YUJHF0TDHQblaaIEYhDO+sBy0tGlUIhdr3Y0zj4dPa9pAvwAbPqJlq2+OcCVeaIXyht8SuBLAr9TdL+vY7K2S/IokrrSQTVRhh+8cuVwQjyDuB6gD8mrYduAObae7Pgb7vEfAHh8ch14HZ3ctjTKPYpm1ibEW/y0Mbdcu+BcoUscukBi4gdI1vSxxAUFaZR+EjpkPeS2MniBfYjw3c/V933ns8mkkqz9UbVQJwmzxBhhOXBz1jPJjLNLDDVGn1O2xcoPJaLuJaM75RywmPZ2XKC7dzaSjX4LE3dVIrrqEhPe19r3Dq2zDVRuTUP6O057GGCxGTj0dGc9EJIFOLT9aR/a/tZ1lVLhfUMsY8tjNEqxWrOedjlbbASYdlquAyenO8qiyyEyrGOuw2lE7KaokdzvF2+B8iBm5Wjd3QV47lDLvsUIr93VRuf99rUukVTbdl3mSlx/AjGW8UViyRwfdWx5P0eYrTZVGt0xYuPLzPj9ae7x0nAXMgvI8Tq9k/TgISJxgLduED4SGERYJf/3KBpTuw6BM5FSUlJUCDFe1Y5dD9P1Zqusif25gRy2kZfn2VDKRjUD7dK72qeVv1/Y1c5e9/hGMWiv/rU+8PMfOeDVDv7DAb78xppfevoq30QJ9adEeDqQa/YOAn8RfT9nFKbEmJTTCJv7CEXJdeEBusAw7RgOJmwOeu4c9ISDns18Qpx2ewX2jD9t+nu4sh7y/syeLkTukfJrDSAr4GDiFBrbddrbsm/+c5W6Vnv7aWPaIyq4Pufa8O7hY8yApxe4a0IXuLLROMnbpHjTs6V2fRLy+1ba5hb5+4FUPtGs7JJqMspHLsHpkmfvLUoG4zMY5l1l5Xlb4Mk0ljaWPzT4SOZoklfr9b0VMlG6XRJmWS3peo/uYrzLJEq9aK5M4UaiHV5Rm1+k8hhdLNb2brFWT5M+8HKAr4h5Vkiic1rb2ie/LGs0/W1eBEfT7b75/j5sMCTonyFoNnJzFbiTPAAqfLadoXoMn52yW8DTRz6icd0H7OqbKXx2ZQcfOxqcstu9Oox8V1m3RdSCab+m8E4xYW3hYtNOB5jUiuKtge2AMTwGqtCu6rS7MRoPfZFyaHZdZRGNJAOO5Pays+gswGJIvHvag6t1VlDM0ZCM3NaIhweMW9qF2j3ew9ja3aXwG1sjvs3W63ATVYBeGl0E/n/Av5OOFla2mnSsph2bWSDOO+KsU1581jNMNRxsOetZNh5mu/o0WvUgIR0zNRSZSxhmE2QVYXFGOJqmKnvKA34a4YsBViGoezzFNd4S0rVQGdrSJz/30kSz164jBE3KPXPXtrqmCkWl7ywR3dg+/A2h/SHAtac/Ubn+PYdO7C22mRutX74f0VXgLe3R3WcM9bBBei2fYbHVvqGFuGpZ6QeZBnV13bUijJh/7Oki8b/cIR99SjNYbyKyViGiI2VWBuJmIA5wYz7hWf+8tFCz4dGvUssKWiV+i75Q9G5E3U4iJNfxRgEARSkwazQB21RW57yxZEtqKx9XgHRNuSX3WEO4CSEPyw2X/PvbDDWDU/VJxs/zGPX9be/o+OA7Oiq6A7/GFCMvpz1r4G/+9P+oP0yCunDaM60PDQ84DEPOpmkM7S20LKIxc/tiXIFx93gBrk/h7eSw++oCPnKlYMOtmPbxIfs16ZdBOETjVN1YvKCehxqT88agZVsKs7ot/FitdrvfjguBg4TJK/51HnKmWQH17BgicvMUziLh2cvEAEt0gw+dQAicpM2evXnE+lCvtb6D6ZlmUzeFm7kgS4yskpW28uRYrtVChVuWafJsilsNeHt+UaiE3KYNH8tr8+OPof2I8IVJ4NLZQu8LkWfu3eJ7rwv/XAf/TA//WC/8PlFr98F/99MgwlfQd7ZIHxPWT2OJc9+dXXbHuHKndY3GPnAy6Zh1IQuezdRmQk/1tyH1jkuWjNHPXVSXxcMIrFT5I1Mr+VZCQ3KDbg79nrDPaEx7HLewW1feQmmhvRNre2xLlpwnLRMjIB2HC30XxzGVVT1dIwcp4VmQoggYowkPAiEUgd3wSCda1eHpy3z0nbNUqz0SB2A2KQw76h7/nJtDi2O3RHS+jzLrNRSGNKmrNfTCoUhOcjrGrO2NS/U++J4jvDrXhlYbfvyn/9ZWIjqDPsaSiO5kRTfVMbyU+vENpCimUb7mKD0rUf1M91WiSIzEkRfA7LgL+T8kGFsTVrZysYHFAjkquFtRqtZtbhdqK+gdUxLReSPMKF3/FkK9pxRKaTuFXTh7TGBoLe0V/WQbf1yizh6/FlO8uk6JaKdOXdjW2QCXnNkpI/m0yvYoRazJn/hv/3rVP69AaMdowmDnroeGJXPfbwnt/iY0SbFVb2LWJ//1MrtytoJD/XkqatVFXEI1x17Z0ce0+8fNabLi72EH15yfF2bn+NzRhFtL3vb3gf8r8DeAfxX9exPTZ9KxmfUMBz2SBPdh1hGT8vps1mk8+wj4vu0yUBqfic1jIpxnoMaGNch7C7iqOLhPa/SlAHM0NM5c473Avrtee41fcyRuPyGu1hrCGjq17zV7r+L3Ro5t9nh4f+z9g8KHVmhfnN4qDAk64VdoarVTiFsbC5Q/uwQ0Zzn27vFK5AckCHPgJP1QGENldGb4G9AkR5Vl2xPuWFRoMa3c334deW+j2sFsStF7Zr6ZhdYuv9t36i7bIO4QPLOZbjI1pJV9s76sh5Fimf7eph37rQ/ju8zc7S32eEvd5f7ouxH3+Fisz5Bd7XuKCyOgjHg6tfhGOpgs1/V7HzbIVHaW+duaJ9/XWTeeIf+Bd3RLGdJJmrPVrGcj8MJHX1AG8iBoxmS7ZeS5A8AmMqRyb3bJTdRtFLbd40cRxC73+OuXVAOw2mg8+0eOynXV9btLCdmeE8jV5RCN92bYVMKJTUtspJYl0G/UK6RSvqb/7LtLjJR8Q4X2nDk+uNc9F9isc/4KK/XGG0u4fhk6VdQtshSkDM/dRPSModoSjtKx62Cy2rCgCMfRBklTCz1zaiv1AGjaElRYCYyXYnmYENmT+VZfN32QlEtMjxPg+2ZqN1wBTy7W/KY3l0yfO2ImgbkIB73wuV74f4XAd33yZf5tVDj8U6jFbUGxGixiOb+fjPIVc+FuaZNZtR/7QWyQftwhwCZW2eON4bsdo+Kcs5SELu0Nb21vJYtdz7/Mdsk3/2lrtm+Ad1Cvs9bSbOfbUPBhFnIBph2HS50npZ9RXR2nfdVWVfLt/UKgsrSr8J7m68XLvPzmCWcxFroy6UrSMtFkbU9R9oUXYup8ApJKQTlGfrWCmYZeLd2L0LkuYzMX17H9CFI0JH6S5mmGby34jhc/oudecAeIydIeIRDplgNhGrJl6pOSSr85undM4WtsWD6xIHeTmPTGzTS/Hln63j9saMZvR8933B2Kx5/dIgmXiYzuW1v3lj1+7B08qhE9CIyvkZJobEwwaAUifzQPg9x+g0ra57T0z+J8ba6zEHMkpSxaRHPnzJKiZ2t/759hewcf/7aPVvzFJRSXGbhlnwXisTGMvdNcpq2BPE6hhFFNU3T7OhY+/mSdU9XPoHg0pglteRCoKxb4/swZL/nWnkNRfO9aFwbTHeMzMPnGElP+leb3n6DJdRJE83/Me5j3xFmveV66UFWFaefa81Y7qx44DwcouPgMoJvAMcjZKXKkuaRCEPoOpBO+Q+ALUmhXrtUezSFnhMY7HFb9OgvEzbrwvyKVV0NlzHTj9cdWMTF2/CDgQyu0nx7f2Equ8wwa0wdlI4LVmW0YI+dGB9SrddoIaM1zZBWhE+aJyGRZXCSX1sjlK0xAmSRLu2/UMIPHELfS1vj8Uxr/9dZJsbSnLPNztDYjES3PMRNuUZLtGaE3gaRaBGbu6VHi6Ye5iqVm+tbKdj3fUgK02eMTmCW/TWw3hvh3WbI9JC1aj0cg4lwkyVaXYdJxtNzUJd+WG6QP5V224/B/tOOebLvvv98dnTPH+3aSEoZO43I+/m0f16UxA1br8qgGocWo7uTDGmJQpJWiKrgJXJNSp/hcRl6ESmC349FEKcpbx/DKGbxwkPrqrrUs0DsgxyhTKhuALqGsRKK4xuO2h1lYT4F+sSFslZGtLYeXKNr9HPOGiy1zCEEAJh1yrBmlieX98Mpd5CMaYNOLuscP6UGDCHdFBXa/1wSKxTD1jUlgvllXWVgz6BZnGt3SA+TeCubOUyW9sJg6bQR+FwP4IDB2X1URY+QY0DmdBO3TVOA7Zj3/+C/f5QcXG/4vbx3zxKWOw1nPYScc9Foi77AXPtfBv/XZT/KbgX8T+DXgz5BcACkCux0vWgpuH+FdUmcrHhuXvbyCL+y9BiabWGWaJfVnQRKkzjZZ2ZKTtpUmK5zj16z/XKPO/uw9qivhPR1TFd5cMcPTx11eZfnZjacKBI5i5GbqwxUgLEFm07xns3t8NUkPDpaw1RLR5aR0ANcnPP/aLZZDJC7X0Ckzal4Hywh3EJ5ucFs7//lZk17dZm2/nUWY98U1VaQq42rv+YwdJd9sDvJcpD+M3j4B3F3yud/0sVrrAhnBBSil35YDXd/To33/duCXMGZcsvB6CNnCXyVc+toN+HLyM/pzb8DXbXVQc66PAkbWeJ6HOcjxCk5BLqsIY7S4k+Sq3PSt3b+tq/KuR34rYaxfdt7W9m6hVVTY8YRxxalPpeDpT2vdPkXo3X2Z1ZkLLBxvs1grzdnFG+wB+/XTn/1k9fdlthO22fmC8SRvu44zRiqmiFT40FjOzM8uioFK1iskXTAR4dQj4KZvBsfU9M8uPWRbmPVcolfC+PAGD2Pj2xk/HutnROAHm/Z+0D035wXKD5MqBMBklbY/bZ/MV8c/F38uynvbuj0Gun5COF3DPZArsxzPbsfvEeFnk8HNLO3eTX7MRb5iWkNJFhoPg1Y2GpT3hzTXzogzFkLij5qjbDff8KClZ+8XPrRCOxQZwc6vo5Z2WwQGY5Z2KALDqIDWZApXRj4J3RuglyqpiIeVwMwIqN0funK/ByPetsNunMKTon34tsvIrx6rAJEs8jJEjaMx5nw5QD9RrbsJ6s2wgmciDJI7coVWVoOaA0eF2R0gJEv7pt7JoOWq7CLf1lj7s67kEYA0V4VyCegzemEqVvLNafj8BgY2fc+VJGSHdJUsBqQfKb00xsS0fbQ1MbZvH2QzR9e8DwdYrGEW6CUlObQOTAKsXLk1Tw1SE4NAXEVi1+ef7qaxPZke0DLyo2Aby3O+yYLOcwfw5SRKPHdkHL8T3GWv0O5Lb/j+zHoVxImu1BuGKMtA12j2VEn5F4zhy6/LvbZDRkq+AQsRjQfHLQFEy9+cmiIlJkXZgLx+F57XDO69COsgmnU8CEMXuCdSZTMujGjNvzMJzIZN1k1FyEoJ0HjtrTrtqxUclhhim8OcjI79mWbvF/z9raXBuwVXRE+EEGAehANglo6HfeDJFfxLmw3f9vqag2evcChaP/UwqKX9IAizoArQKbpO/y3gLwM/SbG457j24f5KwY0xv6R2dzL+boAeV9iKka7jcIicOfxk8/XuoOXeWG4IXZ/b8++v1ZS182nnl0iZzF3fPWO6oba2v4lmT+8oHmi2dXfGtAdnmcWt106YxYHX0yK9BEnQmhb8UREYR0/fB8hE8Ygk/GOCO9cOWU8Cl9++B8sNcW6KWr3u3fSCnjB0lfrjdY8ex8vcucdvBq3sMpvQS0pUmSdDT23drGisZVKfbyWiswk9SrXaoa780ZTv7Aet2d6dQtf3+d19ZxB+OdEEc+e9h+Nr0nemgAk//2bVLj/3lh69H/n7f127oVkbZVELvJdE1oNpNU+9qAv3GLTCq7e0ty7yjwu0eMXArLM7hYORD2wLt+2xpetHOPwhFutdlCR2pOuRU2fmOl4V7xC75oJrZpcl8xLqpGfj80r0HH/s29lz3BtfLRpikbPAiEAPsliXNpZrNRIlnLEQctLJnATRt4u+r7EkgHPqZLdbwiw17qhK7u1Yr5Nd42N7XQzAZ4F/Mv3+r6W/twXO8T611TDa8dnR3k+rbFJ2VErSTtHs/UugOwLevau46WCijlTJI0+Azwh8VbR05ZraTb4yhu6ASOH74xzi2Yq40Vwncyhr3MbS4upmzN49vn3OBwkfWqF9Or+cF70xJ89T12q3ya6IWzp6RL9tOU7u3k6w8vgqrIAuZCb21AmPoEhgQsPESEDGBFvIiebUXLKCJxQ9yLdfQb72HtlNfKMuPt1AcrGNKuhOJ9wV4bLDrdnaLkWAqMY47zR2ycM6ppogdq3vP+PnkKhtk6QtRhXa24L1bRuVomR7cnQ8SZDaaHtTnCeFaza/dxHWk56nN/pNnpPVBibF4jwKY4ynoGvCPAdaTPggMJYilqiJx7o+a5PffCMxX9NAbLKrbyWiA9igtanReXgvwmXR7vu9Yl4mY9MglaBOsboDPH8J/v4NeH6qa8UwcBbcGZ9Da9s9v1j3hINJYLJZZ8vZ2BSBCmsA3WYD3mvC2nR/X6axVKbjUtoa7XqjHPSwISd8JEbkzXvq5nxNg+BCJyzSg2KKub1HIegZnTjLpT5GX8J0Nag2NylfTHAnuvqyFae2KTkhpJlakcrq8H5hn+DvY3nz45tjjzKVh8ChwIEIR0Pk6GTN0Ss3OXpqrgK7CEedcBSEeQezPvDuK2+owA98FPjXgf8I+AIlvn0Ri/Bu5W5W92ltN7AQpl3M4dYY/cRPhMlg864vccjvMKpX1xpIVmmBHAOeG3XNjVnJBPUO8yXf/NEnnzMs7uPZ87Z156O70m91+wAyg+lyw7sRLscUb3o6IL3lV0gu6Bd0m70wOMWzJE8Vo2XvXH+KK68OSvMmvcP36k30rI3VH0VqlGQns4CYddGyyE86ZgJn9gJsfzaMfFunPZ+Lm0z70p73xBzurPm1N5LwXL3AmL/rUDf5cLImHGrS1SDCUwGeEviylH7k2O6k5LDs9dIJfG9JaAvA56/XithHKeH6cdvf6HcyncCNJdLTKK+ECZo93meFhm0F4jE1vh07Pk6wxS6xxw03sjV2O3r3+JbmjT3ncvOcQWAiul/8PTKbqKU905y1lufLxHrkYXvGKsCrX3+9osdHFMGsFW59vpSLvE9fM7xtCyleYdkjaI4zIKWbE03tcFZtt2bH6MVYnXazzvp72vXqfxvDHf5vYbuMXCuwj1nbr6bzl9x1mVaM9MNgxXaJsS28BlsGyqpPUvYswGlaY/0MuH2KXNFEd11ISlSE0GkS2uvAF1Mffay+xbdvgWcg/XgmAdYqtG98jXa7tF3z7mN0d05TCTtu78MPAj60Qvvlay/WQgjKsLxNvVgjGktzhW2NbFUexUBIVs3N1tfEdNygAovAXISTBtGe4txz7N4JWnIMd2ESxLWzqZH3zuCZQyVw33YN3l4jx0uNrx0iDAMTcYhmBevLigouJ65eHL6taLOP6Uvugfj+rGLyU27nxDEhY9BLU6c9fb/ejPigSrXpcpuTZGmP7utISf4HsNlAyvBbITNvcU8ny6OeufOhsvtlUrtlb41rF7WYNGPEdeBBtnTGrEmp4PMKTCcEhI3Az//9L4II8aCDk3TLsP08cycf1oMmG0mv4RYlbMIYy3MZeVA3Vc/ggW6g55LodmMJX3uHki2e+nxXswlpt8vgILmOV1rrWG8VoiJVrWW+0fjXNDBry7/bI2r3wCy0U5KUlIkB5r2ut+VQHv7qEj56FSRACPQinAZhSJMXk6b4im/OpqDpD9OeyUYFzzwmt3bWSTgyhQEAdyMy75xw5B6CXr+zTvuDLMtmaWfUwO4kOr5LM1RBekmEyxGO+silkzWXXjnj8vMHXEG42glXBC51wmES3H/uf/wZZun+GfA54F8B/gTwDVJ8O0loH5yr/LA7o3zLvPhzKxu1l/l16NL+FIBpx2Ro5ir9cTv1X5Ygl/ptK+CIQqtiINyzrlBiUts8LZvmGFGF9XNNexWN3KFME/d7GSPM2PA2rvLKYonMurp9a/JhxLSDCuomhJqVPQnxNz8y4ak33yOuVLGpeF89ct4DnkncmZTbnEKifoky6ZXGx4icrpBpWb+aQbh2I4XCRFYuxtsDqOfDJuryFO4u+Bs/98XteHb3EHOR784Gullfhch/BvhFkjVQNHv8JZywEQIhhSeFb78Of+hF+GwPP/oifCoJ7V1IeDo8FM+InVDRePec+QR5+xiu6nfiXlQvu/Nz+B1uYQH5Me7zOMEuO8WE7XGOCektLt6XNX/s4z11LEP6mKKSw74YcGKEpbO07+KT9oAA//Pf/JmqL4ZDqqRt6eg9CNpx5fG57eRrhvt1YX6sC2kiMlNlolyhZ0UqaQdTETaUiz2O9fTiLuNzb/1uaXA7Rl+L/kHG19Kw9mPv2XsWXiSJmnkOGex6xXurHogdJfVB832FCWoEmR9kD8seQ0FqLPlugZ+jeI75DPLqSdaMwE1UrhyFwLwjng2wgA1dGZNUh0rma8faltobm/sPAj60QvuNN3+x0qhDcY+HMsGmabTMzh65j8azw5blWKqj7gRJFmmfiMIzVNN2sXSS68JuYWPvB/LOMTyd0sbOe+T5KfzqcRHqN5HDmIzSEeIJLMOEI2p5yawmwf5oYZYQtd/5q5jchpp5qRp15wYTaTLRJ1gMLgld05YHIWnKakt2e6mcpZJ0MhITJgV5AJyGnqsLcsyixIgMQ4mDzvc1L6rqazNGr61tdvKDxLtUU2LrawUkCwvAD/6TKWIpJYaJWx4NgMWzA3EdiS4vwd3oBEqRquLCXkbHuEVjPlP5JZZp5pfAj70Ov/Z2I7ifwwy6NenjfMO0Y76KmqwmxhzDHqkt76dE1QOtN8i0roFtD7BTH9Pu386ZSLI4uJJVoO4IUDLIxwjfvOkS7mnCtUUa7xDURd7Cb8aIcUU0kkLsdDPk8QA5GeWSSO/WkeayAA4ndZvu5XlLgcG+lTjEqPO6R9Ada2PMhTH3U6jizCYoU305ogL6r55wJUYuX51xSeAoqKX9UGDWBQ464V/40d/DXFSZMkOZhB8AfjdayuYG46XgFux3kzfm14/LLA+tEqI917GNZJztA/2mCMweTmy/3QMJVi3YrdG0KNo90lrZhbJvfV4GqCuEeoHe3OP9/jbnl32hMGrJrvGBdDDbDKwpDDdnK+RSuTYEt3/2bPn7BektJ4tZ3ZWY3bl+iUt3z+A2xINiaUeENyQl25R6DoO0+CHBVAgLZdflbJO1eNPUwCq15Rl3ozl1gqP6iO0FvycEuNLDrQX/m9/1A/qd3/uQkUGIKSHdck3XdcnSrnPwSYSfC8WF9zaqmAxBoO8IvUAvyKxTT7rPXId//nvg08+nZBOd8ja97A1her8g3rSVP+l5RxMNAZxNHT+hv3VSZ+63aWrjaE/ZTgpmx4ekO3rfMEoLErRJvXYJB+3xlN15Rezc7+NL6TkDyR0/0b1WmSLTvra0nwwlj0o7sedMsD37D/7o76luN1w7VvbtjNq2s8ugb9+ZQBbHfhRhgcenAt0EMSKxUm9Xmfa5Xyv3sFoJUPh5GJ97E9rbeP32aO97Zz4M165d03LUXmxore230tGE9l0fmnNLMJv7IFTbNb9+d70fl4HRoCGYckk03BC0ekZqI3RSHDRF49p/zvUpC+xJxtmKa3edy0pVgXgwyQzCctalePZmHRmda8Zmx1aWq44flMTOh1hoByotdECtDO9SygZEinvhJXcPjMhlnqpXrtCxui9sUs3HUIR2Hwdh8aU+e7wATKS448E20R4ixAHeWsFTs9Klb3sS+erNrDCQGJnFWBj1xcDZZJJKvxQCL3asxug6euAs7bnzXsiW7XvGdrNQW6H9mJZRBZVsCXD3tljZC8UOO+VM3iRhqlNt3Ukm7pLviUAMOrWLWc/hSdPV1QbpQiVMbcGuMU63vS+qvt4vJMwrUCUkkjM066aQNcBRyGXsqnXpsG+2xK0jAyV7/JtogkbbI9J+dgnYrcBu2PzrN+rrfu6twqCa8L4HMmORmYsk0kx7+gFONi4JHUXTasXfljERmTWlXjRkhBxE5ytQWxq8pfIM101jXNJ+oQM5TbXalxt4a4l85DB3OnSwTvMRUyM+/CYrJBzByBmwk1JgsxpX/qwhxbSnzzLZ9uZ91Y61G0VL2+xyjy8EJ7IYIveGyL1BEzcfRzgdYmWlHmM4WoZxlBltX3nqYydC33VMvvou/YtHdBJU0EtrRYIw7zSu/UA0o/88Hacoc/aHgG8D/h/A3wP+XeBnKK7yi6hrYqwMXDsew1DGQO0cDyP7ovoz0K0doxbTeo2xlGXarLczrY9ZHil7sXWTN4bwDrsZL5/L7A00RCy359rdxwhs4wS9uU+45nKiO3K8VIs05Kzxe3HpA4J0oSShCyHVCRKYddy4dghfu0FM5cMs88l7oqlgxsZdlPOlozILpczVcoN0KgpYVYlFOg7uHm8tgz17wc+HvdSrPdw9K3jbl3vz5zHSx1TybRaqxE2fCYrP36XEf5rwSh+Ik6A4cRKS4N6r8GWfVJuZaZeNDo8cWjeVecoofXnm9hqZd1ntWEt+7d+lJP5k5Pi4gO9X5WzAnkRjO743uuWtva2ir32m0aRjitCeq6ZUBomuZI+3G+Yuc8N9TOwWLqHsx8sorWzdtXcld9w1rja+OuPGRPs3Fv9oY5z1Oa5OTlNse8ptNJFkPXbS6piyBMbzKFhf2vreLa5eNtfvpDtuLnZZ78fWiMk5u8rq7VMmTBiHtm+mbPKCbMRwZJm3MxIenQY1mh1OcqhSR6kwIyHw3aih9U+ioXDmGu+zye/rWHTvOAIsFqzostEUtpXSu9bVAWwlCW7n64OAD7XQbpOfjK88lb43F3lbzDN3Tb4vEYmdQqhLipbjW6FwSYlhn0qNiBapkQoJCSVZm4eWgJ+kbO5PJ/d4EfjEJeS1U1iuNXv8RhPV2GKOixXHBxq3bFxDiU90Me2tprTVroKqtvpdS2YEc9tXfVDX9RaWg9bY3QVeiJ+GvZZsNb2qS/QM0czNacwRMuW3y0/omCWx1wR/WYL0od4UFecwAvb1ROoxeiHhQXa057Y9nEaYaXmMKilGEGLKsN7ekhl4IG4ise/yejwGrlEjrX2JqTKYm4a5qHai1prPP19f95uvF4HdFt6+ZqHUxvaXp3V3kjwJfMhnTJb3SKpVO0Qd7KQvbbq5sHNjaFvil5NJpbUjqTMCGoydqirIq3eRJwUOpxlXBFH3+GgfitBeEYI0fSZoW1ztJkBMQruvQz8AMsAkjVoATlZqafTJo4wZMVpFzQC222YdI8dRPS7uDnAnnd8e4F6EewMsnJvuLuK+L4mOdWvUHXbaw7sRPnq5LL68CIvgPhcqwf1AisX9j6OWhP8bWov2jwE/E2tXutFMszvGY4R5XzZ8O8tT7n/pOvplKjCSGh5S43djsn4uV3DJlepLjMOWUOe+8h9jdK+iiqfWyp73u/vtbdTbDHd/6402BjmcSsreDAH6RAOv2StbO/d4m5MLWuDuB0QorvEdmVh3IrzxkWtwd5F8L8mZ3d8jZc1PNC+PO3hlCeU4C0iytLNEY61FUuiV1hmODml6xnsr/tbthWo+8gsVuDJLGsRYW9c9MjfWAuiPV4RZ0DL1qblDgZcRviTFzTh7EAbRvTbpCNMkpB906vo8bwT4yQfAFrYJ6AzM7fqoVn3EtD+Wsh2W4I8W+2pCu1+LI1vrWw5j/ckVCkZgn5Dg67T7pdzaROzt2rX3KInvcv1y93pkLqrAytpH1KjjF7gdLzDB23hUwUrQteOzsmO78XANo0KtE7Y3KB3J7Rz1mo8jRuR0nWq0S97vbcWClo5anLPRi1ZZ0rGdo4Dmb6PRY7Xo2/GOKSV8vzL+dw+7mY7W1zacCqgs9XbMlXR2gN9TO7OrS1GaIMJtNBEt8wmcrZFffRVeeS/hY0lspdALfC218XfQWvNfoJSrMzZvq0eJfxj8s7ugFUVOzlh2fp+UhZ5zHPixuX0wYzyp4ActuH9ohfanrn9nRRcDuiGeQ7XR3tJ+Ld0zxhyNIoaJbAnY+bp1rJiVVmt6JtZEvUBU6BvK38WUaJKJusYfokQ1CUryxByeDvCqRjdK0sQv0xKK6zVnB0ULWDzOJAsNW2MUNBGHr80Z0ZAAs+i2CHtrItxvE4Gh2V4RVQr4clVjk23fjc15TD/bcaMl2w7cfS3PY587R3DgtMcBYAFhEqqNPApjY5wmpctWPDvjf18Uckx7etxiDX2XM6T+tb/810rzB6jQXq2dIS8fXfMDsStlim6KlPUvF4xnJzGBfVdKuJnQ/qnnNFbyu3r4oy/Bp5LrZSdqETsP46SYz0y8UrIpUm35e6vyzrb42aiC5pUk2EsXssBtuNx/zNJwr2lLE9U0+9OWxIEy88SIfOMUXnwyu+dKJ8x6FdoJknMpjFWnGCPGAmwmAquN0/noySr9XghoVLfdy3UOBk9oYH9N1wHVAR0P6ZOE9HtD+e5eVJduS+hma6n0rLjptRbGfL7L3wxUaAB48aAsPC+4d6oI+bP/xV/kIKiwfiDFTX6GLvtvb8b2l9Dln2O7d+y/EZkoM1h7hS83QG+VEgH6wGTVzHtUpnogqrLoeIXMSpth70O2GW675DLFW8QreFrX+JP0eRa29rh5pI1C7l9T8q0TwmaDxMhheoYcR+Swz3gkPERBveqSCISQlFUh778DEb76kQ5O18RvvkF87UZmFN9FeDZNUKWwkGbsWWkdkE0KgzmJcKnPa3kqVvatZt7sfe8dtX/Z/sFXlBX/T//ST+rfPsbBIJ2HGOmXS7q55ER0XVqH3yXws1KYy8pyF4Rw0CMHHWJC+7yDoySwH/TItNvtXfUwYWweBOQwhSBl7yH9wd7TuumbX/NQFG6Pu6V9TECwo5Ws3RIKHN4dE8x2lR2zte6fY3vgkCK021zjrxXU68TKrZrhZO6MLfcxwUaffvy//ItbPPYRRdnk99W+cqJj343FV+sFisyWJjTmG3uXdHKoMuN3oolpx8DaPqUYOXxf/LgU9yt4xxmD5cg4dk2nV0rsEhxba7uVtb47ds9Ifwy2qmG4Y9u/Mffx3A/DlaJ48pIA795jsoDuNZAffwV55V1VQAZ1kRfRCjEe/jKFvm0YEdqbjkZQXgyIhwLHS9azlHfE0M4IezK2vuaMKDqa4wcBH1qh/e6tVyuGxCbex7VDSSAB20y9tLNjjfQCG+/KnogpIOuNCpOJyTkgWdcTwlijCzekhzi8gXjB1q8G2+XvruCpg9xWFkg++hTy9ePMnc5jLCUhjlfc7s0akiu1psy+1oZ93FL17oGZKxmSKyLbsI/Qd2m+MtVJx1V0ma/dzql2TGGiKqHdu8Xbd+sBJspUVUgrIYzB3bCawnSzronbGq3Tnr9wHdnCWs14vffFLmp7QchlzCIpOYo2JgBxhRylhEgC3/X573ZYJRDbDPYY865fDEMS2tNYbgHPSM3E2+dc5NCLWsAnQd/jJCjz9+nr8C98b4mVNKG+v1hyo+KJptcaQdxMIC43SeGvcdexcQYZgANbJ10taGT38dSuEb82Gd1CyLF9lZVGRD1DzpJy7ZWb8NJM2wwk90Jh2cGQSr6BCkuXqec2j9MpFACGrsuhJH5cq5SxfpKWhoC6588aJVrx9QXqpEbtstxQ4r9PkvCehfaoH/v9dCjCedvORdzJ81nLqN9NbNrirLz4XB6Q7LH0O/6X31eE9XSciz5zisa2e/hhisC6q6arH4dniBec4+LsYJzQd0wY3Lxr4/dS9u8ZEc5WhEnCxqGs0zHc2tIlL+tdo1inWuuJF9zfQhkVS7jauojv3JWtsJ6upw+EYcMC+NIA31jrApGDHSXfzt/29wWSQlCkQ2sqB43HXS1WTE9h8jbwF15leO1dVhHuCjzZFbpcKfRb2gcqqGRL+0ZDktJGtYREMc2P3btkuzzS6D7wk2MdmQQI8Ntf/qTjeBskno4CdCdr+mnIxgjLH/ddwM9TMscbHi/vT5BJp5UwDib6mffIQf/BucSPgc3HQaf07nKpA258zgSpSr6NMdCGy/9ByB6/C5e0itZ9wrs/+jKVbZstDjGwZJY5+WqiSZLWqIB6nSwTNjOecDKCz3chsJE+ff//4vu2WE5zj2/H5vOlVLTTnfvfTOHfepiZh4aVtsvtzDoYLBRmSOGHOvacyFUEX7rMx4xbwkfrQzsDh4zHtPv3uGS3wqUdn+3SMff42HyMJtwCXqBY2tvrxgRRqKvC7NpLdjRlUwtRzOqtV94mvaOv3yJEkEnic7/4dhbYA6qs/11NW7/LjSvnaWr567Qmjf/Kuaz6CZytWE2cEquZ233HnRnyYz1/jxo+tEL78uxuxZzY51lKrXYoGiiD1gJW0XIvQG6KVTVbfCG5kJe/58A9KYsnaw2lWTC9ICsn2ELZ2bYi3l3Cs4kcBSklrT5xCF+7jSTBeBZjqhIXYbXiZBI4xBjE4qW8xbD4gc+ddtVgtdl2j2+pgp8ng10C7XIsEZ3UR9/GprFk27yn2G9ZkD0Btuq0Ny51b/QwOV6VtREjIUaYdtubohLed+zyPowUz2yo6/3CmLB/vIZJia28/pHruV+x74mL8XszgltutORbcr2+Kbr+M0GQmqHfB9IlYX2a4iHnnf594FwtZ+kz7/eEVvhGa0WbFyg2fcdyNWwRmaTfACL3gCfWa+iT22uzz8S1Czr2No4uu+MZE4O7f54SNN5dIjcG5IXLemFQ5UQXUsk3N9TbjFnayya0EDuAGLS0YUWIY7K0x4hF6gLKfUwmeYDFTV7ygywR3Rjjt4qlRJoJ7ico43uSBPUcF44Kv1vtUCzTe+PxxpQ1X38HXkkz/1+/AV9/tyCnrp6Y3/SxF+hFOAzFTX4qJb/hZ4HvQeu4/7toJm3vQnc/7vFfQsf7JbYZKH80xm7rtx7CMFSJggaieoGkB8l6lRPx5Nd1jiv52LPM0p7lPHf0QvybqMLa76n2uAvKmrXrBOmFk0HLE365g/98sWIRKXkkjOEPW7P2vsHaFXONF01INxXhE1+7pcrZWaIHX7nJO2kpPYHU45biQbA1uZNOy2uC1nCeFSFyKsIiIQZPV9oKCuP7wH3a9/1U4DfNruIQWu1pRzn2d6GbdvSIuvincX1ShHsifImCc/y8VZ+QsvB/EJb1Fvyi8nCQEOeh4wPSC5tIsXq2+NH+PkVxXsv3NSj5sYJ29ttEdO1xTLiC/YnoWoW8fX9AiWn3eZaqTs0DnCVsdrpKLkhyPoMwArbWPvaxj2z10xLDtuPLJdpGxrYLNwdGkhFTlPJTf7M3UJ0MyKx4EcxEyppr1p5fc22Ndt+XXeEOFSvMdiGlsbYyeqKxtDsxoU1CZ4qs5xmf37E15RVBu/IJ+KP1aVRoj5RwwSAci3ApBOTbn9RQhORGGD73XPYYElH89Fk0bw1o3prPUmh6dOdbHbNxZcFdYDYhDrDo4KhZullRNTI2v1egDnXY4kU/AHhc8dhDgTHm/zk0IY93jx/L7Fy5E7WEpSphVr6WCLIeKqHd4lkyAhKpSpPnhRIElm3JN3LmaEDd45+aVp2TIPDcETIB3rwLMTJNlto1wHrFm9OgFVTEj1M0fqTFu/bFPMC6EdqXQ9Gw+nmRXX/bfIXxWgnLtQrZbR/GsPFEShHu6C6z8xjV0jPRMjhnri+DJHfwAAOqMT3rhG6tcVoCSeGBWtppnr2LNvkLJ52jtI3ixR8vAg4LCJSEdDHCYpWT7Q0IdDoeAKYTOE02dd8Fh+TiaiAmo5G5Sl1L3GQbTnIhMCu7F9YPnMBu8ZKTi5cQUllNCvI2Ytn1nC2LFTp/0n8RTcrVryNimd7TzRar17oJti55YNnjpVwnkH1UDnSO5Wt3ketTZe470QR1IvRBOO1FLe2pvVNqob3eh/57IU765MtdPAmgZEDP/Y8og3HUb20/8t+SifsYDJSY72VUPPX3gP8n8Hcpmdct4YutoRbMorFlZZR6i1Ru7wJ8wfs8AV9406UzF8UbzUKciCZL6qkznwvwfcDLwKepBdZdGvmxerZfAv7T9Pe/mf6uxuQbMBTT/ChT6FcbnRf3yHvAUfpCzgbkoM/x1PtcyX2ptZY+maXMP2pr3KjQ7rNNtMq5nU9Pvxkz1aXzvg/cCAOxgz5G+vWaN66pEByCZMFpSwB4CGBWQFOUSSfEEOg74Qvfdo1wBeIChjkM3/kUtxCeSGEXoWsEd9+94F7orEOSeUzO1jDv8t6dCZxIIzhSC+27O++e0z7zaA53No7uu8b9g2IkrKA/7HWboJYpQRnnzwn8TbYtd/nzkN/HA0HrWWeT+45WwpFbpzoi19dOZNQ93iusjilVFcbYiMdh6B78+7C+WejbLkGq/c7O76HCY0vj2nnwU3gl3bdAlVH+R0nvRGZdMdGebVx2Q3dhi6D2QOYx0rXWX4tpbwWhUUt70147zgNG3MfTeFoFrswFTpLX5dkARyUUpg+wqR62PcBTdlujQd/JmKCHO3qL9ti4xsa3b43459xO3z1D4XXGXPXHjj6mveUz2rV0wI78OUE0vDG99HsT4bAPyEtPs/6nX2Lz+UPkD78Mn3xOc0oFIfSSFW3/eGrn21O/fcjbKE/iOlb1I5W+Pu7aamElh1LYbqKIIOlo8z62Hz8I+NAK7QdHT20J7IJaG95I15jQnuvM2tFw0C4hdBK2OGFtPyrBSdyriHCZ5OqU7l0kRrq9ly6UshMGrWRy40zLvaVOitVGCAE+9iTyjSVEmAza5jJGWMJ7swmXJC1OkewWn5nqMUo+CxrT7pOPLDcqPG9hkxGuT9xJ5+bLM87LDVUax+q+pg0vFFdzlNqzUmd9KC7BxliJ22SiSPZ4GlRot+GvVWEScjm05t3T/t1cM+0eTEDfBT5DvjvKep3K7gkb4Gtf/Vq556jJ+J8wcoW4lpHY6983oxLt5F1a9ok0zOweEElE/bBXof1w5DMN23XEdzbo95+tz2QN6juWJtBSL01TVAwRLq8H6Op60WNWUdiu1Q7OzVXcfdaXWa/ZpL9+D166hpUvEhFigNAJp6njNuc32VPyzfUPUCVHm28xRtbRXOOjy28wlHJvrYdKOqZSqHV7FKHOkrVt0CQv/wbw08C/Rkn6YoJ9u6w9U1W54I4cS8k/yaES20kLn0+/hyyUGQ7+whd/JV8WfHPu2S8Ar/vxxULgx5LW2Ni8gPvXmmv+qhtXtSZtfA4H5tNeWUNjYIa0Ae9GyxyvEyrzSZ4jv07HNl6mYw36vcp29vgYt2PaRy3t1Z7fvT8FVXpN07EHJpOOl27D0Uadyy6vNrwQu6xMsdjEaoAPEZRmavb42ImW2esCX//oMyx/6CWWn7/E+ve/DC8/y41OeLpLiTqTojrPQRgfe46pjhHurSq/4ylGzqTCrW1N49xPfzT3nTYRHcC1OV/4tW+Um7P5zLRLRocH3QOzPitHrEqbiLrI/xqulCfb6+Yhv477h7FN9PV34KdS9ZGfeBteuVH9bvHF+4TYE+pwR9gWYh8X2IUvfT3oPNZzhKuI4rpKUSP1M8aEeROUl7SFXRzdm/dkDeTZRpXwY4L6Dtw1Nu5f/NKvVHMg7HaPX1Arwy6yjqsQFtIWShevRVKd9vTFFGStXpcsBsSSI4vu9YgkflK25hyUn8xlLynOYgY+6/guFnFfaE177sfXgvXLK6Rvo2FUR+j+2LV+xmDN7trxLezzEBmCMPSBoQ/cmgT6qRp75OPPEv7JT8Mnn9N8Un1Ick2gSzT16fQ8b2zNFa6bvht+tUoBMb3nCMRUAWSdl6kUvq6l6yNHo4On7N+Xjxo+tEL77OBazaCk43U0iy4Uof0KI/iHZmGKO+kaV2iz1gKyjsU1EPXyuuMaWuDiaXKLopbIVWkvH4f0WW10tTxzVJBjYjhEgJcPkFfegRjp4kCIsE7xze/NehXa06fipdosrnacOu2qwSbFtFfzMTZHFKwlqa2R5PGcblQAzVSl6YRvY9I5NZ7Oj9gRitDeBWZCHfuWBVf98g4wTDR2OL83O99ylxwhRGMMrrn5t1nf92X52AUtB447LjZq9RGNaX/1G69CSI+Y9kRniTbI9cyBOGwYkn7hdkxJGN08X8j6NgLSpTJCB70S9YMemfcpGdx9sksuxtdbGcNBrwn6YxpTpGSOT9N8EiPzdcwlF+3RXhHnu3OZYqmEol2eV0obd8M0qIvg124jH9PkaWJUOqil/SyE/GDLXF5pdl1ftuSaSZclZE8MNljmeAfrlWbId+9KIOMF2B/T7gl7RAVUDz+B885t7m/j8XwM6SiBF9lOWvjp6/BHXoLvTkkLvzPlQLBa0S6c4iu/8s183iZQs/MX0NCnFbWVeZdGPsfFud9/Z3PND1GE2y0BN73MaswC9NBtBmWqXAK/M5J7/DJZdaZd2muJecgNbe8XGfmArt8toX3k8zalRrunh9kivg+SorlH19MUmPUd11bwx4n8QIT//c3IM2HCVIQZ0Adx6RXuE5mc1x07dkGVyF2ASWAy7bgz7eHjz8IPfQo+/iyxD7wxDVzrA7HrKlnDKymrhkHLnkWUrmxWuZQdaOz82hRz7p69Me1jtLHd/JcnfOXN12uu1Dzt/OJNZakmk5CVIwGdcxH43tT+WDK2x4fhk1pxEQR+7k37Rfv7lXcKbk2C1maElnjc5IV2ayu3+XCX4fuGUTzJuPCD+9sLZfa7WXJ9ybdq7Ol8zLptiegmkCvuVORvlizPq6ihYROnmvLv44KTK8Cv/so3t3hs83prhcid7vF7Hl0Ua80civJN5jCq+DqAJbhduzwxgPmxLQM5say1aZ8Ttl3bfV/njAvLHpaUWPz2/rGj96DbouvN37dROmHhBwbepX6L3XT92udF4GHCdmk7Ow5d0MTFk46b047prNdQ1HmPzDrCTEtRdhMhzDpC8ni1ql4vAq9YW2zT9wqc4SJScHRMyphVp/kx8mDcWtjFv9j50Z4xflDw+ODwhwy33v3Vih4Ykb6OTrpp9HwNZWgYozFCK9RCaBvXPkR1l00QqN1YluLcYLwVbxIgWcjLCnAC2zsnuoKt1EZy98sJeV64rKmgb51AVMS/PlNX6tMuNC5jlo21FmAqV7157xQTqR+bJGT7+bBG23nykEvINMzHel0s7ech/IxI6zbybct1inGsBRXEad1Qwf00Qpj1WU0noDXaw8h7H4Mx7GVjzGETDfa7322dMGhGGBFVUixAphONVRbhH/2Bf6wgjmlHXK23JKwslMRIjEPe9XcQrrhX3iq4HoTBUU+O9xcnqctbtpBoN+k4WNWuZjleOep/Z8B0E9XSbsoxKeve/rbnHFIIqidUlZurx+9zgW/e0b3x/KXSeEqeNgvCaVcscIZnqkR0Juh5xiGPu8sD9ER0FWNxU7OO3lshLtPtWFxWtRcaaAn2Dza/WxKYVrtt99pxwf4ESIDiqWlKVmjHWQefeR7+8Of1OA1JaNePx6N/4Pf9jnweqIVoI+zPpN/fxK2NWJQefgfGGLeI/4C61r+Autn/SeBz9qy0PzxjtTXWzBmDJIWpBRjFIXJjiBwIsFgTpnpD7fEk7Np03sruP1co7o86ru2x25x4S3trbd8LosKoJf6bAwedcLiC7x4i/8dO+MS9DfN5zyz9PvOT8uCoYF+XIAix17UUp4HJrONkHhgSQzjMOoZp4LVp4MpE15bFsGdFTLthDGckOhcWG+RsjaRcKSI6tmPZxugrxtdH1WcoCyqNIb/M0xP+wMnH4Gvv6G9DTEoDanpyqnS9Q7PGa8hCCV14KT3mF4EvM7IX4X3h54cC5i6T+Bg6UU8bKBP7mWc0GXC6NgTJ1Xcy/mnI7DENPyfb43+cYKxvPdtW1Dhy7nG3WXJbL4OKvRv5zYT2FU5RbdfYXjDea7HRRCdHI5njg9HW82c5AP/07/sdo7is9XqD/e7xu2xOo0nRUt+svbz1pwE5tTKqS7UAp8YmiXdsXe0rHRq7lSVQSqEZjLVzXkx7C/vWSFbspL9vobleDij8SHv9ru+8ItLD2Fi9omSsrWEa2Ew7bs06DueBOOuIKYxS5vrpph2S8LR/ty8CrzVjMxq3ZQ80HOGYrAgpZT3c7IOmzGhxg2x7Y7ar2b/LLV7oA5LcP7RCO9TMljEpl9ANa9GUd9i2tNu71pi8ESQ0IoTmlzxE9blLkLPHp6uWaCKl8lX6ow+53rs1XamR3l3As1O8qVy84N538OIV5BsrNBkdbBYbNlMtDzZLK9TixEIoYx0do5X08DVjLXu8h4sQf7OYVX66MWk1x5QADSaGUmpuXebH9J4SE5M80Vt6kcp90W/cmBiuLrmzy2qTjgMyGXnnW7t3nMnbEtrtgf54YfBjpMS0mzfBrGMqI6W8pgFOkojmrDNVfG/cELtARHg7whPi1jrtHvjg2Rwv0BrhNMa663qunGktcXBIMpbEbWfAbCCXEvTjMGYdti0NnoBqdlm9w/aLWUFl3sE9kJePNG6+K4ozgjDtYOFCAYxIbjEdzpsgS26ATLtM+fIrjKnQwmCDTsqckxUcFgYjn7gX2rMjER1FEAddI58BPpV+/7+jAmxmDOO2Br+ar3Z8dqz2cKiTFvpPm7xwulv8EWrcnv9GBe7XqAVxr3QwaJPUeQF3AfxLaNKbSjkgIwTTD9iIflB8AuZVqiENK+CJiMZIT7u8NnVdthzE9mPaD5SYVNhmaKI7voEK7V4h5wX33VDw3Rw4EuEIOAyBw1XkaLnhEDg83nA46zmKyvwH32kefrKzPFV9IKb649NZx8m853TaEec9w6wjznpenfU8Ne9LjXk37tJPh9ftXUZUUDlGs5o7C7aWfNO9tkvZt/N1eibD2vnau/D3ks/Pj70Ov/K20pLloGFkGUFFDVs7Mrd4K/tW1ucvpsfcAf51XEJFGV1a3xIQEfWQMK+bSYBPXYc/+hLyPRP4Iy8jn7yelHfqudSFkGPadwkax4wLUI8jo9suOzvO2I2z/dGfn1emchf+MPf4hd1rXlqNNxGgyqKzQetrw7bEfB+rq0Kb6fwQXbMttEL7Fo0ZeXqrrI6gCSpFKxBM/V3zLms95HQD86L8NipkiSdp2oQ6EZ2/xM7NPd4rWdo22nwYY+TAt92GULSCo6fVdyiW9rZe/ODuG1tnbZ32sfHZcazkmx9zFCHOOl4/6JnPkkfmNOU8mqpnZph3dC6EyXD1S8Cr1Ap4H/5W5asRtjPH28YSWHdSvAfyPNelr8f2Jahi4pQaHpjNf0AYU6J8aCC4o7i/rVb7J6gt7aOIbRQjOAGyJwtXAsgmIoTMjOVEV07Lt4VYIWvycy30GKnSVd5YwdMuR6UlvzJLOyAfuwRfugmfu8oEGBYbNv1E84aIxe9ZX0fKDFVYIfVnuSkCaZuIzsM+DGNC+3rQdjOX4yz3uZ12t6QTLxTPUUY4bzeVaiRZ7XuSe7zD8N616RZwqQs6f8s1Mp9oWMO0dnUdVR7Y37v6uRqJA3gQFVzr/wYlm38XtCyM61cUNPPu2XqLKBiCi0BcR4akeDkRZeTLkGpk+a2CkhjEJ+AS6Htmq5QBNVJc4929iwjzDYhpyynLYAwRXwbeTX97oW2WLsj8iwlk76ktQFIyHl+jnSD0Ipy4bWvhN1ALTK1V3PrUSUcXN0XDndbOCqdYSVK0rFfKYOD61/BbE7ajXAzGhHDT9r9ELfTFkesNWsK+C0RENeudQLcpAeUxFqljopbTfTkQhBS/G52LfOrUixTi3grsPqGQEX9viR9QgvxuGn+26Eux5rfdGu1lEMJmQGKsQhNuR5gSkeWAdH0WGM2KbveOzx3Zm8t/rqD4zJ7h36WN/b303XPuvjbfy15w638u0EdNCDisBjargTBEurtnTI5mTHC4o3UleUiwRWL6wBCEyWbgdD1wHHVfD0HYdMKrfeCZ1IfWmyi0jfr+zlEr+xqYm0Ol0COcpQYGKW1Y/KdvZowcVsJOTsr4Zj3In3kdPv50+dsHHJ8OkJIYdpLi2VPyvw7hp5r5+qvAP0oxbu/zBvhAoQ9K/71G7dPPw3c+r68g5e2Jk/LZUlRTr/sxAaqiA99qD4MLwJxx76gtuu5YBO+ivYsVE6EYAij07wQntLsblLSVvcBirZ/Dfny/XHBuQ+pHa/m3vrRjHbNCj7/bcuMc5+Xk2ouifFOXiKWAuv9H5d1Zr5CZtal7s0uCPrIteEdqS3vFP6bzA4o3VCtcG/gyo+04447x7RWQ3ecWGgZ5qenHRYTNNVnWzf2xY7ue9iVQtM8G9fyddyGHONKhCtUkn3Q42p6e9QKaHNfa3CTxKCvcpZ53e1fgBPgk7d7rA1NxfKXdKwUdt2M1aC3tH7TADo+nAvKhwLMvfG67FmuC5ynJ6NqYdvxxFw4ya/O6vKocX70GQslAPg3CIv0xSBHa851ZpbfdZiVtvXMCT8/rwUhibjt1SebFS8itUzhdMY0QV7A8nHApWxrN5ThZHEJZtFvlZ0w492XflkDXNZPkxyEj31EL7R7OKMJ4hQ3cvfa9zfnSCcWxMOusBwgqqI25DoEK7ohqTTv02bLQ+EA2amn33T5/IbTXUawiUGPm+9nVFXW2zPHA2QpJ1KtDEepf+LH/tvRvBjEl14sAQ6zcZU1oj71kZj7HWifrmOcjv1VgygPBEXYBJsKVYd1YxvV/S/Z1AkyX2BvOyNjasLHa+A4plnaDFRofivteBPjGDeRv3dIvvniMfPNGsrSTYy/7IKVyAdtKQaiZlXaZhwM4XGj9a3t4TMLfgacSoFaPWYe5WePbSydTRmLaIxUh9RZoE/Buu993aeG9kmNXHKk/Wr9k2ml96KOJWtjteDBRZcuI4Pqn/sMfq9uAbGG0dWKW9tcpDEKkxLT7DPI+jt10BxvUSj8FnqBmGkaVWW6uq7H2AsNG8ZCb21Oilhddo3WyTSnlcqBscX3N17Zm7PwKikazxYGabAyoV9m1NC5z8fdjup+9nrYhRxEubSJXzjZcinD03pLZQXBpSaTu9EOGrb0ThDDpOJ33HB/0bOb6OZt03BXhWdjCb5ns7cDzcgByNyUrnWqVE1FyO2oJPa88UvlC6vwOncD3qWv4n7r59/Sa16KWoVpu1Nq/HspGPdtopRA0OWUvQo8epwF+d/PAf4oirKt1fue0fqCQQ2ZSUqqq+khymY0zFdaHqVrgfELMMQHqhJLcvF2KjxvswpMWG2zQ4t8xXHzGeK3wLbaKmq4eoZZYW7tbIWR2PBJdhyer7MWWL3iAff6f/GnF597z7RK1AtLAJ6LbR1s8+DJrLa+9RPdAZlknxUAlZ6Wssf0+bfd7OjFu9oT9lvYZ24no/HmkuKHvem9j49slILdVUW6hdOKQku9lHz33cF5Mu/9uLDlea3uy8IfLJB7FhVL6ZZRpVDqaB53nZTfN3xmCxbKXmPYIxGSIPOm77bUuu8flyYL3nB6bww8CPrRC+423vrKTsbsOvINOsjHVmWmucFDDUbdC6KoRIEElqS7k22bUyGMpKQG7uAUDSKKk4t2rfY3W947h6YnjtlQzlQX2TtRt6elDeP2ESSrufDqbaNxyZhDJ1sOdOFbSf4FSvxKSSc2xeWMNbHFTFMzcxnufodm497Xn+wO10O5hEyGoAFPHM5X4YtvAN9D4V+l7ZJES0G0iIRQXyK2+7KMWTmjWNdFgKgdaxks/O8Fnjk8dF6JmC09utb0IK4Hf/kO/vdw3CUlpUKh8dmtOMbxxAzGt39s2D7Tr/luMGKQsI39kDvPVRrXFjeAJKiANQL9A3SrRPZyXpFnFy2Mq7b7BiqTZN2HY7vnyW/Xr/4W3srAe016c9LU1aCxnhj/qM0r8fpjBnA2n7v2BxrRP03vNyopjkvCX2sraFslOOl6BNUagW+u5EdWb1PO7i1mEkijIDelcpkpSxm+ZdZqQbdpVMewt/KEf+aHq78ptnbJuvdAO2zHt9n0W6CmEH9RK/yI1w9A1x2qg7rtM3DuBYcgxfvYOj2Ni7s5AjiZlnyVUe15cqIx8rqbf7rD9rmxMb6FJ6HwbF1bQ7cB3AoQJdKuNzstiCUdOoesnZe8DHgx2oeO5qNIsJsbNks4+wfa4MyXb4Qsp0x7uJKVuVzCiZmHWcQ3pXs94n9t3XyHB3MM/dR1+9EX+8G/5Lvj91+GJA/ivvgLHaxXYl0Y7gZNBrZ3pedPEU0yDekL81iD8B8APA38a+K3p+6loPP7jxPTJJAnrSVDnMLnJHqQQmVmvOQpSVZgxSzvU+OuI8b3yOI3bwC85O/eJ6OB8gR1UKGwF2+xpKtthYXaN0b8VPjlbvWFFBKa9KonP1loOeGsDXnyfC/DP/sEf2mriUhqPCcg2NvMi2LXnxx7b1jHHzkWNNn6fivHrpytF0vMa0/fAUkSNPr6tdDyloX9Nnw44P3lZ66XjYWy8O2uijxzvovjPlFnG7xh98KyoiRsGlQdG06e2X7sSKHqaZKFcNl9+jbZ42VeIeQF9nzcZ8aBrnuefawI8CNxdwHtrjt65V0IRZDe/MrauTAGzNc9xvA+PAj607vGb9dlo/J6gboJ/h7J4x7LHV25zu1yhneVYINdpl0lxWT0QWEitjW/dmOwvidSKAMscv4mqLnv6sKywtMqzwG6CxSeuwavHTD9+FbkLZ7OJuu64xalDShquirJlrK3HQ7SWeu4PSkjbedgezPj3a8d42IyMtddiPft+SmXJFqdWlBWaSRuzLhZmCnFaN4xACfS9xrLHiKxBQth27Rwb29j4IWX/82N0x81A3EQYhiJQm8WlrWHuMYF/5CqVI0mKiTVw5dpV4moDCHEa4DjFd7t7fcxuXJNi2hUBXnNCbAgXjXN9tCAprk7QjmSGawKzYc2x02XlUcbIKQnZb4Zc8s2/qzEGziwNHs5QDxlJGr+sEf6u6/Czr5Cb/e7rKZ+Elp4iCFORSki+R10OxisiitDgfuxgnizt0SlvNjG5tZoSZ5XW0cFke/u4d2ceGWPQCngRVWgdse1ynT+lS/m4j7A/LHjm6WvV36aMDZEsUAN8BNXIw3iWWVNmDLBV7i2iGWo/6vpelZYb4Uu3UYGoAnYYUj6BaGkIuEuqo3wMdKVUn4DzLhifNY+ivZu8Wc/voIK5vSM/pjcprvG4cXhlx164CL47XsNhqK/z9OUhwhgTa+eH1HV030I96zwPUB3b/vlkrF2H3F3CkXuGqGLgRKgyx0Mp+TbWP23S3TANsAkOMQOfus7Tn3hWadzHn4E//2vwZ34B/rlPweVpMRYsBvVUAYJofOY8dVCCZln/bQK/jVSqT/RzIEloP89z7AMG6QJxLjBVRCcbXeARwaViHRXaW/w0JkD54+MEu/q2r+LHWMZvqOO+x9qWHd+ZddssqjHxiQRqD6DJRIX25UrD8KBmEu5jggV4+qlr3B1q9tOU24YnDYxn9mioYg9Hjm1SNCi8oBrOHCEGOECt7GuQA1dGVbRW+zLd6+fc4IzxSg02Ll+nveqLO/p8GGProv3Oe9C17Tm2GFA+7wrFG+4YFeLH7vPfWb+8pX0X/YNakeDb8pZ/79lchQu677KhNRbvoIPU59dRQ1POSSOFtvfVxKcE1MavvHaDyU9rQdg/8jdf4/RI4GPPNWKGlKN5uFLP/T6F2gcFj6Py8aGBZ7S8a+NzKDE3rc+hux7qkLMt8F96V2j7aROz5g4SMaVs2jMRt7gkHwRS1qihXgEReC8511wpNdozwkmW9pJFfg6v3+bSekCGNSfS8VTmnfRf6MhZdH0/tlbpQVAGwXPr/ciS2XW//61HFRI2NgsDcOU1tjHCGJNY69UE3dwsoyYJQxGyMeMZ0RrDLsJt4KqAHGh5LQFkGZG+I1xk9+0a7zQUi4hBNpUO6rVwsoGTtX5O0+dsowJ9dZ9r2rDeguSZoGt1heTFGoF4MIElRIo0G2N0DhtJoO87LXMmovNA4zJ6gSl41BDcJ09zBwenG26nFxqJxKEItycxEfdhcJZ2NyZxiDm1OZac5ZRkdTBhvUPX/SefhR99ET7bw7/4IvLJ55LHi9aKjl1gFqRq7x7F8uOf2+qE8p8dTBZrx3Ao8dhE6Lyya5HY15QTQpywEd0DprDlUmrH1o3O+v0xxi3tY9njobgvjhE57crDZ5krvJ7OO1Qjf5cS8uATzeUQkbQPNu57+3hLu3cjN+ZB2hcHlTeGQCrbF+kpeURPdVdqAtvVEpn04/vtAlZ2mvOn0pi914RXxLzJiOAqjmk67/3sw3erNMB7wGGq6LvV2Yf//sdIDeg69J4zVurOrq2SF4q7f6SPMuuRmws4CFlgRxQ3rN3TM0ljPF/NWD+lC8mS7BIzWvWEabIy//7fBM9ehv/iF+HWQhUkEd37sy73ZwYcinAQhMMgHAU4El1r/vxAkrDyGIKIxq/LtNNs5ZMuJ6CzHo9VwmjJ9Qm156Rfgo/byHdtKx+P3cIYHgelWUfuutZ6WH3cFj0ixRkD08YLzW9lDpOl/WSjlvZ9A7kAWD98/0w49BnkzYTVumj7+xg57hJqrT1zGM33zQUsFCbtLZuDDnLVgtyeW3h3KQJxK4iC7s97I/f6d+jzwlxkzbaJ6OyY+V73/V3UIyuk+47dtV4JNAYepxmM9UnYnUCx7Ytfp769TA+l5v3s9xdQ+gw1zTYa7luMuSH9xF9+j5jqQU7uwvSrd7LWVpIFpV1bY8ffcI9/hHB05frOer7Po4zMbfQleIHeXk7wf1RvM/0xI7l7x/qSdYRpqDYsFEYi15z0eM4YvkmshVIL1L1xBs+q63eOfZeS/CoL7J3A5TkczfjIG3fplytuXjJXX/3Yc6vMuR48xpgkRB0pQvZkRMi+CLKeonXebWzmKm/tjVnZ2+MslCDR2FyyiDnjtGmMC1IrZd8AjhFV1Ex75Cw9chmRSdgeSsvk7JuvvitMrMfqAyrMn22ykM5ZilU826jL2XJdXOYricrFtJ8OkNxqO1H3+F/4+S8X7J4EelaDTs8Qs5ACEDf6/dCFrH3tE2YsDHwtKH+rIMnL2jfbH50wXa05TgJQqx0+I6311SbH/mtbssXE2HEsjm4DzESIfdBQgpQcjVmHfPp5+Oe/R48zLU9iWeSZaIJALzTcpVgQWlcws+JXBslOmK83LFxG/EiKs/e45kTzGwg2UfVStL/3uZRa2/a5nb57gTphjU9Gx8hxn5XgYa2j//Fvf6H6W3DWdsqatdi916mzzGYBPhbNvBfcbSyvULvH54/sSODVMrokgWxThIwI3BtU6TKLwGZNOCrvLCcl9LhvBHa5uLaJjmyc9vdblHJvNi7PHO2Fffiu6xSPm7X9aDKyCPdwnu8Ddgk8rbWnrU/fzoFYpZeRBSuzDo7PkK6v3nMPnI4IKrti2neClT2cFfzyt37xl5LgnvDO73kZPvYE/Oe/BDdOla6MxBXPRPHM5QCXBa4EPb8iSXAPMPtWuk/dJ/jX4ee9Kinl2aQE+wSox3H0Y/jSx2MbVILZiNB3zHjJsLF59PNhSVLfw5KvNj2yv+e9GnCOSdnjZXtiL6gQEuDv/M8/P/purlErIG0eznOPb7fjaJ12gSXq5l67R4vygreSf2Zf44QZymuZe3zLe5xXrs0njfP3eyg5BUbGtmN85yV9M6H2DjqvUMrq7aLl7dG77e+b77Fxtv2BcxJ/O97T0137fawyTKbh/qEB6DREioDycJ95GrkCnMLyKvSfugYhZNkpBNkiVWPj3Okez/Y7fVTwoRXau25aE2d3bvV8v0GJCYSRRWRfwjZCmqJ1y9v7k6XdL8JAimkRtcJVm8AtFJlSu1fb590VPHlY+uBMBCa4Fxd5gRee4qOvLOlOV5xOdYyC3wDNAq1WpxvnNCFqXL/65rqqkXPmyyeiy5nQ69t3CslZKC5x8eJ3yWbAko9ZF1tNqxG7u5KyffYT5ETbk1XUep1bz7XHe27O98/90XVbSgXrG4tN+ZwUC3sp6zO4sZVOV49aDhBKLOMKOD05LY+aBFVMLMq6rBDcJmrZkyDcg1KjPV3raxh/SxkcW6deIBJgIvTrDXfdFHtN8SIm4hk3yKTsP9w+TB5veX8fofNoM2YC7pSE7Hu1fsk0qCfHXOMumXVay3naEc06FpQZ8Fu3TXRZCFTJ9g4UiawPTDebrbIiJhjnzPGLAY5caEOapJbotxYHD5VuiJKw5gmUibN1A7UXL81xNFHQQ15Dd+/WmQeE2nXdjlC7yLex60bgx9zjN6iw/1FGmAdqb1DfD2h43V4rZMyGIXs53IuRK2lDy72VZiaXej3um7R2/fi+PEEJ8Wit7aBC+3PpvHURv1Am8V34zpSUlvfkoC/XjBLRhwN+qtu5OKJm1i2ev1qg3w/pAAEAAElEQVQnDh9ULbbJWGc9cqO4otvLmgctG2q32Vybe3zVxz37ICdlnJXPncVZEeInSXD/4RfhM8/Af/bLmpD2dK1ecM1m74Nw0AmXQhHaLwU4ClrV4h90sJAwgzF8tGC/Je8fBPBlpfYpSz2LseVCPnL0e8W+N7z9LilB8pgSUtA1ebbWh/o8Krv4onPg+J7a01sFZK62RFHEw+7M+Lsg5xNpvl/aXoGKXtJP4M4ybWBxw5KqUs+YYOa9HCpUmY4WsuPvH1N870r4NnYcU0poRR09NzpwNx1NzplTPBnsPi/wtuPbFfo21q+xBIrWZssP5TYaUmE0qTW0CuPJ6LynnBmnJBlcCELsRRmFjz/L8n/9Mjc/f5V//5/4KHzsOcWvffl4Ht+h9+o4Z9sz84OMZ4cPcUz7nZvfzC+8Kg+ELq6ngK9SZ32smerEIO9S6c/EWVXdfeuIoSK79RDJ7jWarKZeHFlwnzhLLRRO+cYpPHVQsG7mPLQdLZcgyXIHvNzz/E+/zmI65Z1e+HbBCerFqqM5tMydthkfFJcoKAJl385Hw5XsNIGEar5YbpzPMjXsYxKXNSbIm2sxKANEWdQLSW4yYq7ywhrhBBVYpeuRzSq9tw0ysTjoZgxjJGKMCZp2dXiDHVdJaDfB3CSlSSznnUC/UQEwY7tGAbBcw0xR+wRNjvJ9v+23EJMCRGPkIZ6uM2YciC5zvL7D2Ak3KYjcl1ZrXZK+JSBSWRXzup0Eus26EJ0hIcy0NE+IStwXm0oZVC3F5m/T+p5QtNekcxEhTrq01zZaIcI0BRbv1wmx74ipYoQR3lU699mMcx/Yxjek5zERJkMS2qO6/xNTcrwBIHlerAZlNForbSUF6jRUMViRKq5bW1S4jcbfXwN+ie1lPDCu5V0yXhv5Ya6jH/7B76/+9gReSA5ICR+8SCHulUY+lhi4luhH1PsKSvy3MQ5tmEYLW4xa8oY62sRcBcDCJFThskR6yYqWMNZQ+wwRiHGLyRX0nd2hfl/GyFjyHsue7sdkZORCMIbv+oTT7y39Rt1NGx4i7Gp2Ti3wvAl8P6Vbo14GY2MTVCkHhMNJ2lq65w9IIScilZCz4sH2gUy7TIN/+Af+YcVf7U2/43kNTP/PvqovdvE6PCHw6euuIT10/4AL6GOsCChd35GGNoNl8h7Hrw+rhw8HqvXh8JeFNMHFLaI+g3nr0bXrY9ddQXF/W67Q95F5gNeTuDJ3YoNdcB9eHAL8zt/5/dwZmmeg9NgLlUa7euprd3nO2XFKUWTmuRJhgdKArfYOOrh1prEk9oCELKYyLnTb+T3G972dHzRj8gKeF9r3lU1t255RStX6ttqPzYEpPdqyemPj8edWim7XnvT7yyfdtnb8EepEkWPjEhFCjFlmy2FpqND+l12bVsY103FxbF+fcjwNnbLRQYgfv867Lz/HGwhxIirLmMBuFQN29WtkjPuUaI8SPrSWdijE2RNrm/zngK/QWNpbRDC2Qu3CrqvLs0Gy/A6I1G7WPs5uIbUbkl+s0oXSplfj3DiGZ6YO20o+5nj2zgnuTx8xhMCle0vemwaupoGJoEm+KFbVamAjlgaWSX2XE+TtYcQuPF+pvbn7feyeFvowHvMPwAacq2MQyfL9ANk93pDnIai1a20l3yIStpOXbQ1xl1ICktDuOmcZocyavhpUWfGVt+DHfx5+6U2dE0s2aOfUa8DS8bBcIykJTN+VsSEU161DSUJ8LGNPn2G9ISbKcDOWBGljboTf0nq24pa5dx+f9YRV5ARY5xrtlugrFgF5sdEybBRG2xij1sXYXClNu2/EOVuOgyJ/mffpkyzt8w6Z91q/edLltTJv2jH3+K35DeOMFNOefhWbJRBZxFhbRc9IborW0bpOu729Ng60Jcwm4IES+CdQof09d8+Wlb1BUT4J0i5i97DBShR6jbwJ8GZp98KrzzLrS8B5T5RXUMYga/pd+7VlNvciH/yesZwm/WZgkSbpDnBoE7ZeZQVjXtst7h0bM2VfQM10m9DeKireSdc8Zff6djj//ezFd7Ou5Oq4km8ox2phPzywPo0pMExRZlP9LiWmvfUy2FKWNP2UlBeDvuwzfYZw6q4dY7zvdx+IxbFb+bPWdb4P8I89D59KGOsd4M++Br+W8uOP+at+yMBb2ls85i2LlVDw6JbhQwEZObc1ZBxXi3cHauteRHHweQqjXcdLqGJvhs5XdHs43z8PcDepw5Iyq+IXK8bpfKh5jfL9JfQd2nv1lt77GduuhGFrw9Etj3fQw72F5lQwftm1uUCq+bZjRNdkVadd6u1otb33Ccmt0L5vjDBeFcbAe8/dBp529x5Sz2/ePzskTvMMvsh+8qF4Y3yGKRE83wm1csn/3VrbX0Q9p6xsXaWMb+YhIopPJwGmPcO0I8467s074lzPmfVEw7uVPJTG2hyhfpftOIGSPPgRwodWaDfBuSLSbiM9C3yd8aQllQa+wqrujy64Miwxa0lZD7l0kaR7DiFlm9XM0pacbosfshhBgDgk/80Ib2/gqeT85C3tgpZOEpK1HSwr/K3LPby35tqdhXPdqeu059HssDQw7UrCq+XmYr6U++bLl7NbbtxEjFw/umOcpT3/rH/LQtsz2jEVWLk2MtIQTcgTEjaVUxXaZbMh9M37HhuH71Tb71ZoB80Wv3KfX34bfux1+MUN/JnX4KtvJawTa+zpglLzY5JbLaJIexA4Xa5qjDcv82zuUpnIrwaGpGK+h7mNlpJou4WTDx7a2tcC6okyQD/EyoXOYAA6ooatdKFeQiNuf4YXfK12I4R9e+8klSc76OCgJ8yVoTZhy9o0a4UxDPtjuEpJudzGpKMb4KSJaSeSkyQKwPGAXDKfnWJtb/f0hHHrlLXtre23KJb223uuawlV60I3tnXfLywWbbTcuCVcKAlrct8dUTfhvU1AFynx7Nb3sfIzW+DeX/lOL56uN2nuI2cRrhquOgU57LPiIXttWHs7YFS5hiqevXu8V0S8geZw8XPUWtvPh3Pw3ckGDqbjHN0jsra3a8yOB+geHtB1eRf212jfarB8KZZwa1YnbZ0I3Ev03OOf86xl545p2rGQoQjus0aI7wRisw9+9k0nNLWD+gcTdjrrsY3LPD4y5aQpYsde7+MGY+vYFKBjicZozg0vpxxbO9s0NNVuTyieYNN0caYp/u95pwSiqy56IBARFovlKC67RJ20zTKz+3H4sbXjNOgYn7+liOocpK4PTtcjNwckVSDyVH0iwqKZtDbmfpfCBIoiv60I4GHNjmSu7pntGhlL+tYeb1HP3yF1zp22L2NrbSwJYNsf0HHuShTplWqj4YI4IZ6aXpky3sKa36BWxke2y75FgCAMs5446xhmHfGg4868Z3NoQntHnDoerpnrMTzkE9GNjfODgMeBP38k8OwLn9trjXk+XXee1mcneMtxdItvM0BX3z+XgkBOcZpDN/sCailurPfcTdvgyYNtwuws7RJIlnaIb9zkhW+c0AM/8j+9jrzxnlrWhWxtH2dYmjHOQok93wzOnLYDkzDyu0HXjG0ZVQjzO6PFVO3fTfiAWAwLaHz4pFxrWvmIDjqmwR9HJ0RNQE6S0L7c6Dz6Pu+al3acmasY8QRYxyKwbyL8N2/UbfzMG7Wg7rNiQVGvA6zXefH0iXD+pR/7b3R81p++h1NNOBeTNVqZ+EhcD8SJXnsD4cjWumwztY8DBHCKKNSiDTyxGrgTa4tvjOo9cASa6KsviLhiWES29vdlSnKWBbVwRHs0Yi9F2eGvMb2W7fdWaK+ONtduzs1Na7kuihfQtdxbHoeIKqlS3g5pG3T77yLab68Fv0qJkfYCoAm8Y8zBznjKh7iW/r0//ee2vqvKsVHe24uoAO6J+dD87RPQ2XevUuLZPd0wmjHmfbILVdHDlU1RUt6IiXnbRMIG9dCgeV0XELjGktFdoVhPcOOFOp7d9vcD7/V2sOYef7wpcd/VdY8WmYztP+++eKEa7WMN2WcqWg40xY9no5zABsmumQZr6njD88jHGPx//5P/Wt2PLZN8m13++67XN/xDH9GNYJ/HBns/fGgT0RnYOzBhZFed9sdtZkbpC4XN+veBL43cN4aDzyv5ZudbOIfCA2fhLIxcOEsYJ1uAmj1+nxP8H//HPz66f01o9wrhNsnbGJ1pv59RV00xyPlXGtQkNj6Hx0wRPpVEQxv8HylrzgvGdrSPKVPG8hQY7I1pH5nXMQHZt234/zbqZWVg4Qct7TfDjrUBLtP+yHPG1q4laRvrj50fs7s8nm+7VSyb99tY6JtXyLfPJgjDpGOY9WzmE+4eTujmEzbznjjpNAEd20u4PRq9ndMoPUZ4okcNH1qh/e3XvgBsu1jYizFG5jytDzC+a6zcTX5jSYBsLe3ooje37KyNbxCNXujaNEnk3RM1fVnCOePaEsdahPVEtENAfuVm9pfq7wFfveUQmwpAobXutO6ZglptLcnQethOjXs/LnmTZr4WQ/Hx9m1V7TbttzHj7idZavKx/Dhgle73yOmWwFF6y9IJbExoH5DJnjJ4Y+OuvkOZ2HVCdVn97wT2X7ixncr7exIT5tM9O+wpfi2sVkiqVdKnZ/7Aj/ze3FQEmE+IqUyfCeyY4D5EYtA5vwc8lRZ7G/v2rUcK9RrN+zZ19KlVXasdgAiLGDXp4nrQ5HHp5bWucC2CnlO0+xafTXPNLuIydvRJYu6gOGZLKSjbYxNBlVvAcmk2Wv1vE1O8fqaoqxwqkZ/tGC3rS5u8yTfRlny7RXGPhyIIesF9DM6rMfsw4I/9y39w6zsj5oa+bD5NIfsujeAei3beu9aRzr/JduZ4IaHVsU41aKqa+z4wtZh29B08CchCkzlZpYpsbZem0RHwgrrfp5dR91YDYyQG6hrt7R63558LO/Fdp/juZKN1xO3aaoPJxZ5xn7Brb3pLyLk12tsG83n6Y568dQ5C9bx5+n3h7omUPBZb/ZKL74c/9i//QVXcHfQqKJngbsdPPw9/9CX43AT+dy/Dd17X34Io7vjWI++HAmPv1pKvwrYwYAIBjAg/9zH/HzQklJHPAX4lHf828K8CP8/2WFs4Y3dpUb/Px+a1trTL1v36Y+LVDvqRPe4vvBj8K/+nPzDKd5sC0o9rp3v8nkf6kmhQ5k2TRZYJN0NWVkocVD52pa0RXtL6B9sx8v585q6t3qN7kT5B9Ri0Yx9L+tYK7JGSp8bmt80ZYPdWf6ejzd9Fs9rvTKDoxnmXoiSq3r3U9K1SyLtJ9V503lPOPOgMfAhJBPWKCsJxEK2i0SyesaU0xsucV6f9gxDcPyQofhtiyk41RqyhCO3ePd4vGnAMzdjba1yh8yXLQePL3aV+o6xEKqsUjqCIb9NW2ztLuHZYEKUX3IPkclM5nr0T+M4niFeAU1hfAb7jGnRC6K3E1HZ5gwoytgmwSiz/KqbiliPzYYj+vPny8frLoS4fl5+9o1fCiFAcy6OGDeSkpurCuICciC6m8zNSrWRAZgFZpUR0yw0ykfGxtV0aGx8kxYT1L6p3gpVEeu8U/sKr8HtfhO9KZPJHPgIff6Y2ZdIobUCtPQCnZI1wZ5dMXWZjqJMHUgsocR2JIRCBm6LCWRYmg9x/cqpHCKM8gQhM4Gi9TmXaIkOMue72yq5bxxSbVhgWTxw8sQG1Lnv3+APOh11EDEqGUUPuR83v+T7XEd/OpofNap2WuK6B9QBTT+nvreAwFPyRlXBSEdKx2sYwTmxMwTBH18Ut6qW4i+E4pbbyeHhYS2k222ZpDJ8bgTdt/BR1pXudbbd4L8S3x7bcm7Vpx1GwuXaKEn0fgbAZOE3zdCtGdQQ6WyJzCGkhlnDQfQi5tFvtiXS8xnZyIRv3vuzpF8oc7x+0he9EF+bpumSUbmjC/TLzD9olv/dsLt7mgl4GbZ/tT6N3Cefqe1XLm9ESz6SZ0P5+wNa5dEEt7vMmvt0E9z/8vfCZ50uW+al+vqW5SB4SVDi1wWWta6oXOMxFfGyPPK6z0vYvAD/VXPOXqek4bOPgexSL9BYf646evnulHxT3eMNF4vk6E2anPgmdm9WWwJ0Ds9l0tH+H1CXJfGWSsTHtGqtPKuvhLJTM8RUkBbhMmjTRInQBzqQOhYGy5kzpUTkouP4IqUyku49Y4442H8YYX+HP2/F5AdkrFm6j9MHuO6DwOu2nBRPadylNWpixreBv298bLmjfJ1raUYe/BeAliqV9SxkPVUz5mCB9yjlVFtK6GPNog9rDYYuH+iAkdtenDy3sSmpgxPynURekllA0Nqxtwj7p6hJmdu9qQFJstN8oy/TFAphuMerp715qwTYC7y3g2aOa0zDBXSQJ7h30mshOJgIvP8sv/dBL/PT3XOGnfugl5OVnCX1AJEAHoQtkN9/ccTc2Z2lgaUL7oCEBuyzQLQfUzlc/4h5/4AlA287IMyZBY+GB2hod1XW8K29tIuSM/UBOrvIuLrvstEMSJtX3FoowdR6MMXoTUTd9g1UsmeP//Ffh+56C73gSPvUkPCnwsacL1rGp2YzsfMPylnwsva+AVN4EAHHaE1ebTBQ8Eo1DhK7jLkqArOSb2aTrdf8thLS0Sf2RxEAEgK7n6VVsiwgAiSAMEdkAqRJARRBERom8xbRDrdln5NqLfG/1Su+kv/cSKdluJ/aBmDxKTHBX98ekxCEiZys4SJhjj5alrVvtV1fWEyW4Sckn9nT6exdx9+1Yhlk/Rj+eRwUtTveCmC/7Npa0Zmj2xw3UGv4itYXdt70LxsYs0nGw1vdGJMW0U1W5yMqkC7qYjl0WUKb7Rvq7fccW057HYef3u9d34bvlRrPHHzZeUxcYz/uFsXXmLSHn1mgf8+jyG3PaIZGURb4srl6Unpw1jP/7SUQ3Or4uCesHqdSkLzl50G/FvUv3WGDvRwY92xUvcH+fsMOKxyNfig8EFUtHWZe/s7nuhym4yspUwjYO9m7kY+PeNSdGnzIOTz9Ua9d4tSoMJh1zTPDFZzjT9aaPl6kt7UuK6znuHv/4dnwwYolOx1Xpbg5PFch5K2RuYymNesV3Swvb6jC7+nOECozt+rXjmt18R3sOu0u5eqUtlDKu1sYlavfusfvtuFNol/G+2frx4XjtPr3X9Kdt18Ar470y5AVK6BuU/WAC/JYg3RwtYePo85u+jv3uq5MYjO3HRwkfWix/5YmPAtsMnS2A19N1XwX+NYrgvhPBj8XzrWt1mQCyiSpAu+96kbxRzCpllkPjDwSKIsCvvneO4elJjSAz9yHaUBLYc13Xacf649f58d/57Zx8/HrJojgJhElQi/u+sdlx1sFJ6sg67nFnbydrbL6abPvLobhcjT1/F5PoapBXddrXsSpHV8fySi5ztUS4ap4Gsx5ZgcRI2CRL+4XGtqPP01An2zO3+J98DUKA/1WKP7w6h/fSS85u8Y2K1MW5S2pLiUtJPtYLfPF/+ru5LxH0nS3WxTqaTlRoh2ESuI0KEJZ3rzCxI26j3yow13gpCgUBpOu4vBp4i9r6S9Q67YcpjtgzsHlcO5a594TRkozj17U8ya72TFA+RrXFPQ1ukcbVWaTCB8NIZYo19XuR1SqFALjtktspbY9ZpwxaBuIexTX+CiRvht0Cu2eEzos7fL/wV/7a3976zocYtB5VH0Hd6HxStsotnlpD/xpqnZ9RrNCGYu18FFoLu/3RBaaDeoKAzu0hEZYD0qckdOldhV0LrH0U9Rqyq6+kMVhdYhsTqHv89ebe9+VR4++ZBMXHp0s46uqH2HgeETLZhYItuy9ctEY7dR99o2/f0xKuN0/S10XRfQCcyrbgtMtadlFo17kK7n2xuh/0RXhPSTE56HO+jw8LyMi5zW2reLS/T9hTxeKxIGo1GG1rQ3w+C3wOjUX+d4HPUOfmgG3cvWCPMOKW9NiaNKF9q6qRUARx7x7fNrrV4vnwV3/yb4/y26379inj3itbY2x+92XzrC1QN/eZuyEPYxLU+DPrtmxXHbIVCmPg++f70vbngO1SYR4sEd2uMbXfWcy+by/TaWfQuEvJ6QGqPPBKkbYyjG/PlAL7hETfrzYJr++X0V2rppM9PGV7DUDt4WZHKDHtUNNyU8i3c9H2Y9QbZ4RMVe/SLfUZ4+X7PkjB/UMrtG82qidqX7wdWxekv0KzgPZhe2HbFTp9zbBB+nIZ6Ea5l77wlva2fS355rLHxwhvL+GptJ07h028qaQLrryBCu1h3nF20HF53uWyBpKEeunC1iLNENwzZn3BNMtYWbLH+j/6t02EubbbSjf3+Hb32PU7heI6f6wlo+NUEa/d15FiXJJbk31uiCvFaZaU1YAMTmhvx3IePcpchRT3fVOLf+ld+OJN+Gc+of0XgWvpfZ4ktOszx9sH7XAeviUE7EPGMhNgcnSoiMIunIbc7pCE9dz8Bph2Ja5Iiit1U5TgWwvWJ2oBRRDoew43kVWMRFTq8ozLfKPzb14TIbv4kf9uNfw+Y62Pz3ZdufARiqDsheAxhik0WUvz1un6hAfKOtiAZo/P6z2merlSN66cVtUXg4qgOWJtT3qPUgLzCXZb2lvCdL9JdB4ELl8+HP3eXOK967OgQvsb1OOzcyPu3gL/TcYzx/u2t0Ca02qdBqZ5bUbuEjkCwgo4mLj5aXKL7Jkv2fExy8Vt6nd0F2W8nmPce+DCr6YiiO677B6/KpZ2v5jPGc/7gV37z1tC2nj+vV4G7fi+9g7yE1owT/7Sm/DKjWoa5rLtHj9mLbtfGFvnEgSZdXA4USv7YQ9HE7V6zj/8FnYDU6ZulUJLx1OKAAr7cfTjAoa/2n35eeBjwKepQ3y2XOTT+TH7M5hjbTe0T6jd4z1esgYElO8ApTmjPNv9ze7Vy0ej/Wyzx5t7/Hnvsv1+rNY9JAVzy3+LZKWE5Ykp3k/CVGApdVt+zXlL+65+Thm3/PtxTi4wToO2PWuzpc+3KPSB1Nd9dca9i/deA8bId3N3n+9Dm2nfx9hnXqgZy1goU4fS9TOU1rVJ6MYyyLfx+qds5yzy9MGDjJzPqfkJRo6PGj602P74zptAYVS6dJyk8x9urv896ALtRY95Ynbtnl6cgJ0uiRCGqC7ogAlFR+imt8U75kInuU0Xs322VszzzCFb0pUJ7oZUk4V9mATitCMcdBwf9MwOuizIx2mHTEqsb4YxpgySUICu/LVqIat73PFc1yg/X6Cx8tNm+e1qImM+Nz+Qd44AskS1pOmnDmEp6dWIpDrtwilwmC9KlsqzNbKAkJUi7RhHOlbtaCn922x0voZBkwj+xdfg976k1vU+6Dvrg2Ld984KVhkrlFkF7K1hWs9zL8JL3/OZgiwEmAdiKtOn1sVYkNca4iTwXoQn0wCMZnmG4bFgbsQxGd7aPg8cDnVJMp2mqPFKK63RTsN0bMUcu2NWqrEd0z7mjjfS1WqJHKDMwV22s8pmDXMYJ3xiDETmTFXCHGIk65SGCEuQw0nZ/97K7vpsO7ZldA1aguqF9mqO2SZUnhBehLF6P/CPfv/nRr9vGV5bw14j3xL11soeUav8C9T7wMfS7cRvDh1XVvdJoB90HZyhr/ESqHLxsGSOz9buC7qYjjHeHTr/ljjQxvgmuhYtp0IrtD7w+7EbTUl5h+Q223QMxnHnQ4It+kkttF+oRru1ULnjCXzhLf3FXGi/8q5WhRGtRDIJcOo9nNjv4nrRWdi1zrUvmsNGJp0eu0eT5O9xgDFcYgKEdwv2eEm9WVwbI8vxcQOPv0yAPw9/MXLcqtO+g26N7RlTdFRr19/kXXK+9A587Z3xBu8D/pHv/+4tHGihPhZWFqlj2sfWxC5voV0x7Uvxti/J7ci8Vy/Zv/dN+OZ75QFSQm520b7z3PdJ14wJy/79nZcXxh99pvYxumx/36bEtAu1pX2fIj5Se9CN8yr137Y/W0u7ndtzSwnq8aOdj8W0H6FKiNeok9D58DfLcTT2OWM7jKR99q7fxN275U0Qf0Nof2ggopm2J6KLaipasuW3AP8f4AeB/wD4LaJypQn3o+5znkD2jSs0qNV3GOrazaLPPKXEiFQMrndH6qXUfgd450RXybSjxLHjTAWlP4JeF+cT4kFPN59wOu+5Mp8wHPTqVj3pdjNrY6t3nlj+RUqolhPRNbvV37RrF/RSz9fZphbaqzal2cHpD2MSvWcDKLIFV2NT1B0pYZrBtXVbRDOMo3MvU5DTFbIYcmb20f572MWQ+pj7xQb+m1+F3/IMfPuTSWNkkprAkxO4nVaEL/k2gn0lRlhukAP3+CT/rxoNTJwB6xUxRgaBZI9WpLaGiFraD2wp2VzYfHC+4PBBwVaGdYBpz+Eajp0+IyaMeQocrAct5UdicvHjqxkE0vc+zmtXFtd9SL0FKzt1TK3lbl3BskIi/WHthXnHpCxzQNMjzEw5uNQM5Mz7LLD7LeNxShtnZtASs1vpe0vMeY1iaffa7DENsxFCvy0ekJe7b/BaeB8C9QIa07xiO6bdxuTH8xqa5KYS2KUw0vugzcwMwFSF9jPgXiyCNWcDoZvk+2ydst3C9nN2fEDf1x3q9/MWpbZtK7TurDu/7+H53PBx0JwnA2r53eLm7vch99+dtnlLFHRfNdorzY/o+fdd12uHdM9nnkZCIKZrexFOm4evefQeJ78ewabOhMpd9a696ytjx8fwJezKufQiqnQbxV+O9kGZDy9gMXK+K7lWG9Oe7/VeQF9/V4/HwJ99HX7tbdfgg+1z/37sYwKdCck+Vn+MvrTt2NEL7Z7OLajLMmZ4+67u9VeAP/cK8uq7pS0puYM8RHTN7Ups1iryfbJQmnPzVts3Rs8ij3kS+HEOqJLnGAq/S4mtH6PjbVut12E7vrFjoMna72jsPUr42RZfNvKcsXwPUJLRwXj4WzsWD2fsKDl3gTUFZS3u81Z41PChFdq7vuhTJgIzUUHFPpcEvl/g3xH4bUGTR85FPzNxCL7dLXZs4quztX0Vi9Uk/TRHGQhDIrN0eYsGxBL7GLy7hKfnZUVVK3kcUUoQ4qTjV2cdZ/Oe12dqXSfIbqYFqb+0ownpi7Va2i8aNzfGqbRjW2xUm7Fv97SIchqKUiO628yC34VsbZzJiDuSwJ30/jNBmou6xy/ReboI8RlbD5BiPNP5X31V5+u3X1cmcBrq8IJrB3Bz7bBsLEeoJDYBjWlPmVvt8T3w3s3bNfc+7eC0WNe9YDIsgU64Azzn1oK+etmO9fwWgaSXmCtzCBj7EKTn4DRp42OZrjNAIsxWA6SyduLbG1lqNtZLFKvyeW5qLeM3tlwsCc4dai18dY/zHsAdASR0HC1rS4Fa8VJ+g8VavQn8hrZGmg7tYnT9UhvQ8V+hNHeN4m5d3ddQpV3eQ+35+4V33r01+r0n6EIJgXo6/f4mtUY++r8p43oFZQZ8m3td4xkRAvy7lI5uo8qWuxQPBlmsYFbnIhD//vaAXVvdm367RG2himnsH3HXjJU+vRDs6t9EUm4O1HXbrqk69zBXgevSDhRslRusRvs16jGPeRmIiLq+9KFkY0+l1eR7p/CjL8O3XVelbqfa0oMQWDSWdktEtwt3XAR2rfNfT7Br3kzYautv23mbyRsKK/NoVuH7h8qbh4K/TNn2Btv4q8XJvlZ4ixdafNzyf4GS3+nXMNwlSm8d/TXPkww/5/5+gMm98e6t0X6aq75ZZc0CPban2vtboXbMHX0hopZ2U7Sat+pXEsYwL9lfeDfj9wlNeUdnW2ndrXcdzQNon6C8i4aO0VS7dixUxD5GD1qhHcrc5BwJcbtvPrHmGLTvAnQNevd435+KDu74GOzK9yAoTXuFkZh29131fDfZFkbS9t8f/fhaOuPj9tv5qk24jw4eBx79kcBTz31HPg8iHIgK5AeiMc1HAS4HPR6l7w7TNZOLaGQnoiW9HAjAKhK6miE/JGn/DQl4ZsYtRo37Tm0OqND+TGL7nTt8dosPUlmCrNdfBv5UOv/30t9+U1xIOLM+CslNfyhxTbuYOPttl5LDW9rXm1Ibc9d0t7upD4zWuVhu9BJXaq8HNk5SiwjLqAjlquueTHqt0b6JWj4vP9t1at9yEHfSd9q/L96AX7gFv+8TriRPV6vTr83g9qLGML5Wu7WavpOTCN0EL+VNBH7+v/vrbjqEmJIHRlELdJU9fhOh77kZnYuSyHl6oG8ptInomAYmy6TldhjZGJfJOkLXZUcUf++upCc+zmvFfnc8g311b61G7DHb8Vv1R6q+WPx9N+k5PCNnHtd+RWVaI1pi68i2qGtDtreeEd0xQuqaz0K73XuNkpEcaqLu7xv1HmqODwP+zI/9xOj3Qi1cG6E3a5XVdK2E9VgL7vfQ8b8AW8K6UNwpxyGtA6n/RnSdroDTAQ5NybheIYfBCRUeGZ0/D9X6cddfYzum3SehGxNaL2x53CUhe3xplmpPGx4xMhlbb3N0391XjXZIIUuhLq/2mY/Aj3wP8p3XNYN8wuUxJXRtLWfn1Vq+COxa57/eYIyN8EK7gV/vJ4xb0d5XKMgjhoyvRvDXS4zXpIYafxvtaulWq9Nl5PzLqKcpaNK7L4kUQTYhDAkC33O97vj3XS/en/aw+4D/6s/9xM5Qn466mstFhOJ2fLYPPa2D5A2TeWnJY+Szz2kfUtolPvu0hsIEIXQlFMZDpHaPH0N9dvQJMv39UBTquxR+Y9/Z+LxVG2qFwh10HXnabHyflX1j5GhwXky7PxrYOMfavMv5yRI9GC1u8z1YZRjbF2aAaBXxY32wkm/27H28yq530fEblvZHAm+/9oXq716EowCX7CP6uSxFcDehfS9kCiJ1fHX6qVjaJX83B45F8gbLm9pRJYFtRcA7x5qEznNpGUmG3L4t7IAuqJ9suvyT6Obrmuu2xlRhv/THIcnSnoT20dW9Z9I8gzeYlTxqiTZzj28F5FEqI2q5zrulYCdZrMkUIEEQUY28lM+tNPGH6bogqVzeiVowRzPw7lJMtL8L8OYdxRp/+TX4fS/BlVltvfFq/2sTuHlWxuJd5EeEdxaDJiByHZgIfO4P/T4QURusAAd9ymEYc9n3IrgPQMgJ0oxeeaL52CAEaVzbSX3rOrq4Zg7csmkalFG/RFT/wdDl+/PeSm3SjFeoy8y0dWH3dnHH0Uq+WU3S6nnSLB831vx36AhD5MyWeIwMgxHQiCw2MJvU4wt1aEPedum4yz3esM0dStI8KO7Wdi0w6npmjMiWC2NzfL/wx/+VHxn9Xthdmu0FauLeZo6389dQZuYqhVHw7vEXJQkV6krKpTUqTB/ajN1bIcmfUoSaFpzzoCoGs/n4NWzv1uqU+/2T5+mcMZ07WMPH4OpsSTk+7AWwoxu2p+zc3OMvXKPdrukk5X5Jwvu8Q1J2dnGl1WLKGTMNspWIbsvS/gDTsGud/waUOWxLStk7OGZEgGqOjxv49ejxl7BH6QiV2/EpdYUSRo52bjygCcdjvGLXiRqe+kDXiXqYfOo5+EMvwGd7+KMvwXckD0L73GfowR/7P//IVj/t/BpFaPcVGXaNqwVh28PMYBGESUIG0otWXpp0yCeegT/0Inxuivzoy8jHn9UcFkFDYZbNA72lfdTDwb1HSNUmqNfsmOJ735j80a61e1uF/ICGvD3t7svvn9pVf1c89oo6lOAic+9L7bU8hk/MC9u8Z9uudya8aL6HHN/esNB+rnfmGXIdGNtHdm5GHu+l4J/xqGE0vOPDCr0IHZGplBctqPytgu+O5VhhvvTHNJSkYwDRSnMBfahetpUJ8GU58Js6+ztL3eZ7p/DMM9uchgtINIG9i7qwpwK/O9bI+HeTEvBJSbYX2rG2GlP7+TCkmPYNXG7sCLt28dh8TdLYDBaDdpaRa8e+E0rZESgC+wCyHmBWI8weOE5fRNEM8seiyhnJ44+agOTeWjNzTxwrex6Gavv6tXfgJ1yClm6jE20Cex80PMDm94kebp/V1Ncno3NWZAHNAXBQBDXQ9z2kv/OdKVlgXAwMk64m8KsNHHbcIgntprwIlPjxx4W7ye+p9E1A4/pvbDhC49ozMh6iap83IFPnfuzv9URCXz+CIuFj/XM8E7rsWQZNW1Di6e6iZXuqtnACVOO2nx82ES6frmv3+AidxzHJ60Jgm9qk/vjnjsW/eavNLWqvgGtsZ2htmY1IEdrvZ84eJogIEmMh8LEIpUbcTTiPqE6nk/IdKGM85hovXCz2u7iUpr8B6OiHyAYtvHEtgsSIrFYjlQ3cwjzvWWyvOUG9JG5Tv9e3UEu7H5ft8fsS2sfwucfHR32zueyhj3YFyMi5MbOvccEa7b6NPhAPJoq71wMMscS0A7ELxL4jBtkq4WR74lGHifx6gZb85iXF7vrUXoCya+Hx9CAzaPFXiGWNvkSpSe2FEsNfUMbtk3vtm7uL8Ip9F+h6oR+EMNMKOwTRkJFPP1/y8xhfM+lU6XWfEBIOaz1FD6mF9tE8BbJ7nLAt1EKhV9M+ENeB2KedKzqp8qnr8J3XNQSmE2IfiF1g0gfWTSiMHX2ZQeuDkV/frwPqxK6+T9bHXfkwxmCXm7bHRXfYTvoGSiuO2fba8G3AdinXyrbW8Dx27NlOFGnHu5SkqP6e/P4bnOz3g6ftlu9hzXa+h0G2eZVWsXdelQXO+c1CsNrxQWLZHzGy+XUltIMujAlcfGI9lvDgE6u5VaFu1qWsFCIcplV5T5x7SP7dPcJK6IAe7wFPH5WLR9yRRIRJVEXETHQB/8PAfxThL6JZ8X+zqAfBlJKQb3SMY2Oe9CpgLwfwJdFaVeJ50Il6EZhC4oxkqRlh9swE1YIxiZuYByFErX08c92RkZh2EW7i3cLTlB70mogOinv81thGJsjehx1/7s36ki++BZ++XohbFYMscPUgpXuOte/xkDChD8SJIMtNHdMuQoewapQs0cZwtma4NElLU2PcGSJnU33UlXRZZmJ5jKzsoFPcusYLyBQY1inLbMzTlt3oBtQyRoN0TUHhvrOPj/NaUmLA2jbGtsnYdaak8+7x/tnBjSe4Y25vDvN7G3VpTwNcAcZjcAZcdrvYlsAOl/2ObUa3JWi3qbXgT6TjXfaXOcneQzvm4oOA7EIXi2VcUEv7l6i3VpSaCY4oY/yiu89r98feewXNnOevgxCGDSs0zGCWmJywXKeYdilobheN2TFWaT6gjNivpnMb31vU5d5aa/N9wVjfDNfMpuPXnTt57w/G1pvR11eA76bgNT/+fXhOOiHOOxg6VcRvBiTqi4oRTDVjjJutLVMAvd+Sb78B+2GK4jK/pw2OuVhm6scNzPrtFY6C4qS/i1tjDn/hvvdx1QZj4x7jFX8r27ziLAjTaccMZfnEHm6T3YciuE9DHSZzQWjpqgnwUIRK2JGIrrl37DfvPt4Kooed5n2KMSoODgNi1g0RrRgRBPqOOAn0fRiNyjRSPJrYrDnO0fwE/n4Do81mkvLkoCINTkgOzb1jgvst4En3HLv3kLrWOIy7la8YSU44cu6/82EAbXv3KE5ZraJmbH8a7m7DmqwiyFtoWcSc70HOd5HfSlYpu/uwSzGxq9yePz5KeKz49IcJ157+xMNpaFc83yRsBZQkJ+WccMwI/AG6oG6RNoFjbIx5z/ct02t/JzmwHPU1J5mzyJc2ppLi9YMeDwN8f4A/kY6HISXiCxrT3xq4c0e8e6PBpIezQa3Ek5EVPurv27QBKRGdc7BdAtN+9/VjO8nc6bOyROdK1prZXtz1JXtoaeCewNUs4aRfQo/cXujwWy+DXeZCYTvb8G9+vr7mNz+vSgYT2rMlKjV4NaHDO8syljGpyAjlYgXzersGgV/+q/+DrTpimoA4Ac5WlYuQWuA2nPVKFDspS8q69TjG/m31rwNO1lwhlTxJg7wbE3FfAX239Qq9Eq1dWpY99x51XOp5jN+u3y17/G3X9hiRqiy03hw0gemwqQjDCphkyjMg02LTK22RrLZ1rPyMmtGNsSgDbEfepk7aZYTtFo4RiOUIhWlp49QeBfz4n//rO3/LyWrS0Zgfi32D2rW0rdP+Ctvl3iyMKHtE7IK8rtKfdpxCWKriZRnhKZv9U5DD3ulhpWrrPDCUA/Waukpd8s3yEZi1uXWNv+93NbYJsnv8SBI6p1R+FLBv7wF8g/uo0d62LaLl1Fx5NUIpryawZWn31rLz8MY+2LfOf73A2PzZuWXNHmOOjSFv73ncaFoLHm/5tfoCdUy7KeNaOOXiVQtaXvFohFecC8wngdm8YzrrtPTvvNPwvMN0Pu/gQMNGHsTK/uN//q9X78jDISU066QZ29g79WyVfT9WHhCSpV2EOAkw7bUM8rxDZkHx8jyFwsz0tzjtmIiMljGDi4VkCOOx3na+cNftW/vt0Xjciq67v29Tkst6MM/Cth8ttKEJBrvmHkpooG/bPj5c0N+7ix75MDXvAdehe8MnoxsNHXF8CsAX0vEbO8YxNsax9WYlAP0Y/XMeNXxoLe2L01sPv1FxJ13YziyxAYnUCc0oC/8m25ugIFdJLtTpi/cWcH0CEmrrusfq7t55WjIhyf1ryYrDXOrOsuNvZcBO7uOjK/QwCe2bwZV8G5+e1FgzsHT0Y7Pd5Ou++/u32pDSBqirPhNI4qosI4SuGtcUWKdxRYFBhFuieQsql+lZIJwuC+K5COMchNg5bfMQNcbrjwr8zBvwfc/r3y55URa+jXMUUQx26xSenJN93xoskLt1vIaXQoUgp8DBx1/MayKaC9dRYFhuiMQ6Kf164LjTPA719EpxRT9/+B8YZMGGsmZDJ7DacETk3TQ2QRm5I4AzEDFLe4lrTy2W5DexEMSOFE5B7R7vb901L2O/T1I7pxSh3a7xH5r5zucdTM/WWtZupE67ZiDva4LZKoUctNYpT0jt7zvU2eNBMxjfYr97/FZd+z3z8n7gOz750Z2/VW7x6bxDhfZ76TOlTuTknVteA36YstZ8xtoL1cvIUy/2J0yhi0OOaf9YBFkP2s+ZUgFbi3kQF3tU9TFKc5lSti+i7oPPoOt6zDX+/t7LDnxs9OBg2nCXD/vt7+5Vu5dtPm5z0Rrt5z9j7OjrJEOdTGrffefBvnX+6wl2zZsvdWVg+/iMbUu79256XMHcgIXa4v4Cuq5uogooL6C0Qt+lpr0tWpNgF69oUHhF4aBLCqtV1HxE5gUYRPnfPrhylfcHn/r2l7f6aJ/LFKHSJ4bNY7jA0c7bRG1LEk4PQpwG4iAwDFpWF1DDm44vhoCIbO11L5y12ePbPtjfvk67b2OMho7B2NhMQB6j6xHFgVcpOM9o3yVK+MEui7T1a28lnZF++lJ7bZ/uot4jfhxja9SPufJASeewrdDyCek2UjLJW4z7F4F/O7X7/0Zj/f+hc8ZSzbmQJ8e/y13z9yjhQyu0nx7fOP+ii0CN8cp3k87VWzCz1aCXdyWm3XDaIc7Sntra2gSTrmCZd1fwtCsYZdrMHdJVJ8IhmmF6JSW+w1xHJ6QKazstH1J32I6z5B6/3hT3+Itah8SddKFwNhYC4GPURzHvDmZx2eiblxE67y6sZT026V6v6btGEfQA1bDeXeXa3qNjGxujJZjLEjEa7/WdzxdsY4mNJgKLuG3avjrTsm+4NnxQjI9pX63UTcJ1ZybC0Xd8osyHtTvriGfDtkvzauA0FNdnpb8lln0X8vyWQFp/ITQu8tOArNdcFXjVqZhPE2JnFZFpVwnFXklDc7Tzq+j6MCZh69rtLVchc3+9ZY+/w0giOnef9TG7PBtO6GC23LBG3f/XMSJR1D0eYLVCkqdGXrOy3WeDCeNxoN619CalHMsuQXBMqzyWMXvftnlQ+Nx3fXLnbwKjMaFXULz7Gjo226oihdCvUAH3o4y7UZ/Lk6aXWY05dUgSm3SHFHqwWOvvyStIQutlcf6M7YoDtfVLGudbFKHV1pwf3/29m1gWrX+ooe9Dj8f3LMSHCH4v0ZybJelCNdov+Cyohf0DaiuXke0tpfx9PmvfOv8N0CXn83N4V9i77HdVflzB4y9TOAZUKHsaFU6ewQkhxh6k+30Zq7bdMRjlFdnBK6asdXFwq99+ex/wue/6JMdDLLTQKd4uUZJqLtnjHn9OF9o9GtG1k+m7CNKLCufE3A+zYImxqe7+lg4uGE9sNlDjpBkFP0NtBW4r1uxav+1wjc/w4Pt3C1Vct21YzXgbw1iCWbAys+Owq5+t9d/DMbVhYB9vpd/ff76aQfTvVdT+r9PvbU2OnwS+n5rej/Zh5Lsp4+X7YiR5uz5a+NC6xz9UGMMO5qpNMdnIOiGhpuRbRBmJ90QT2NhKkNAgIJ8I7Z0TeGpecxmZ8wijSFNEmAXhSDRD/uX0ORKNU9rv5jnym6DW8OU6Wdpl/B5p7hn7fdoVarswbBi2r9vZv3TsUCHV5jyiMe3zYl0FpTVnnrgJ3ES45K3sAjIPyDHIrEEz5/SpyjZs2YXNZczcxywTcd94Sxg8eQC31g57xm3KEFFssNw4TwfFMr3AyrwJUkcjwKQnLgb9fnBl35ZDScbHjs8jcmd9UKiWP0pkZbNOAmXUTPkUrTJxg0jI91ajERl1LQYlZPc4P4ZuVx/90VzhTqlj2rfkGfvb/SAAfWC62WQ3bt02kd4Wyr1VchmpByl+YA58cphdmuF7FKHd4AngPcaZFQNfy/V+maqHBcJ2WRibhhcodYjbDLOD++1pa8fdH7gYgWyHKWhDISnTbhJV33ammeMFIZhS6r5GWr9yv5avUIcyvElxjYdtJ62tRKT3C5L/gy++CV97t95wH6Bps32SMdHXaMd8/14G2TPHPUuo3eOh7K8Wr4z17zfgfNjlsLcvP8eCJtFVi28fU9hyAXb9NosiNJ5C6RhROrOv5OZFeMUrQY+7eEVJpd/kPD7yPiArq5v+ekuwlejaObaRo523YWGg9Go0S7uFnTahp1DoW1u1gNTPff0zOGBcwLY+7VN879oLE7bdtH0qJFMWZ3qRvr/Edkz7mEJ+NCnvnn6Srq+S/7n+3GY7YWLDwmyB9xLzOWa80A51NZhNEthXURP4boAfaNr9YUoVBVNWeVq8r6RvW77vg7Syw4dYaJ/OL59/0UVhbMVaPN/avap1srSHbSv6BN1EWaPWMtu+zRjh5jE8PXXchrjzc7orQidaqiLIBZHsrl05DVqnfTmolDh2zXYHtr/LIQNRlQD+upbKjvXFrp2R3OOdsmQ1FFf7xCxWLk0iRNGY9mvWlKirNLOEFGzutyne7mFOtSQQqTRQjvc66OvvkxC5pXy5Mk0Z5KlLvrXYF5B7g5ZecZPSAfdefSN/lZHHrCcuYqUDGIgwDNwNmpwkJ8KiZhgeG3BLQ8S5tc96WNaEHXTajgRkuYFZXS4upypolpuXKyz5zSm1ELqP6du1Mqao5Rq2Le3g5tkIgzFptvwngX6zyXF962SF0DrtEVmvSmIKZ+XNccRN//YxuqbQeQ/dG17ouEad8XaMwLcl8s5jXh4Ufu3rr+38zebWiHrn3rMv+2bj9e50r1Cs7JXALhcr91b1IXVEaQCElMNjDVyKEBaKp2qGTLYXyDng35F9rqTvLDmar9Hu3f3f1z5v8fHX39Xz94A/+5pW0PDXPqyXv6s7e5jZ+6rRft5z3NHOrR68wYqRRFLN8SKwb53/BtSWdqg9fmC8/NZjRddGIFduYXudmtBeucY7Ky2MW3svuvaMV7TPB6W0/7Wvv1bRZo/TvFBp2dlbFhHOH2srQMI5SuYd343VRPfrrvLu2MHCtjkwvHV7bz30Pa+jH+mTp823KXTBt2vz29qFWhidq4ZctTjYW//b/pzgqoOm43nhK9mDjkLLYHe+GjNybJLAbtb2l9O1vwX4k8D3UCppTVK7W4qqHcd9yfY+CMH9ccdnDwyXr714/kXvB0yAdUK7JLdvccy4nRyJ8jZbMSIeCZlguxzgRoSnD+pd4gX3hw0VBnU7cR7gdJ2Cgbrte2A/ZjEwK/EGWGwKlhobS4X1Gqwwl+Jeb1+vI9LXzPAUYSXkOG9QQWqe2s5D7LWkSejC9rPacY6AdEFDCI6SoH44cQlbev3dq8+9n+aTE41pN6hc5Mt3QkQWaM1g62IKAXj37/x918f040Ff3ONjsUYzDNzsAle9sNh067ECE9Zxy2HaIxs4GmLlDnyCukZLXCNTv3zqd9oydAaHqEveWMbUvV10RzufAu+6dmGbOHmiVfVJBJLQbon2VonymXu8LNeQQgDy8JrEX358PdtxoFAYB1uBrevaEzSJ6NhmGLdi2keYqocB//3/8DM7fzOljt9mJqh6prf9RJTwv+T6usvitRf8RfZCArAemMaIRLhEhNWA9JMqh8QoN3qBR7XMrlkwTNHzJg+eiG37obL9YAG+8FZ93c++WdOR7tGxF4K+v7G1NmN3jfYLTnP1nLZ92E64dFEX1/Ng3zr/9QL75m7CeEy7CXn/oNVpNzCLX1Xhgdqi2OYWgUL7trzDHkd67uC//x9+Zuc70sowhT7Nmt+3zhuaakfLLePhIkr59jt7vrl9e9oHJWnrLrZR0jWtddvAC+1jz9/1XYuD7Gjntygx7b5/5lXY3tcezdJ+P3vJkrT5Mfr+XGI3LzQGY/S4Q/fFMbpOKmW8E9Y37vN3UTr/bwDfi863Wdp72XYiNqh4rPTdnB3u8Wy/20cBH1qh/cabv/iQWmoxQjqpkqIlSImG8ot2mssDUc3XDBUkqw1gf5si4J20va9ZHTPZFvoeNeQVGmC1TqkknZ1iXx/GdrfN1zplop+390iDRUeeI6LeCJZhP6Lu8asNJfmYXjeDWmgX4Z5IFc8tCCG56IfQxGW2Y9k33CBIFzSWetbpsQu1wOh3v2GrqxN4b8V2rXZndQf18wFVCri5CgJP/TP/hC02mxLifEJM3gxVXPuw4TiICmduSWnX5DFDBtq5rFiwsIZU4/rKesNZLFNzQtQEe4sBJm45JaSPSA5HGftcQpmftjZp6kl1PO97I6ZzasueHYulPR0MV9hXk45+VV7/GtMwpy+OUaVQu57GOkNJRGcttJ/b6TdLZmT9uEqp/d1+rK2xmPYd3Xhf8L/9F/+pvb9vuZimPpil3cC7xkfgm6ilXaiZg+yKd55CMr9D8X9CCDBsshZ/BrCEcDDJ1+UcBvfJYbeWduv3JYrQ/jZ1jXZjdoT7J/oSRMeTuaaEPD5/vb7wN18vXmGd1Hj0EYJHraAM1deBX4BqjxfB/eL92iUQWLyswU632/uE89b5r3fwiehaK55f457k/v/Z+/NwSY7yQBd/I7OWs3a39tbGIiTEIhAGWywGY8PYIAaQt4vxNTY21+MZbP+usT0PXLjMzDMzXi48+LJcG2s8trExsoXGxpJZJEACYxYhs7ZANqK1IaSmW1Krl7OfWuL3R0RkRkZF1ln61Kmsqu99njqZpyoqKzIzMiK++LbdaYWnhjPR9Z9nKLr3uOlBmF/b1/YWplBU99x/+bWvjI7DYBYgl8mfr76m/yVbMG0h1Ih2KA9s5/bDZz6MRO+3OSguFIVtz73vB40Lhb3YnCNWv7CfC7Xabuu0zasUhXZ3jDnKfbLDepUpMMJjuq0fiM6fL7Qw7TbUtIf3PvY7sbF9zh7rQXrd3jKfdp0HpPss8AJyi7qa8jTtKj4mlp1jVNOuxTy+WsSeZPe/0/pqbOoxioK4LdokF9qzr/f0Dnbne6twZhJIVsH+ICj0XvafZmLM2TXGhzs8//B7oVAfLnK0uyZlm0tf1vNURB5hXyhJk2LqOMhMov0a1FQgqChj6TCrsP6cRtvFtI3CHUtbslPX2V9S9G21T5s2T3/bRmbter2m1wOoVTNNcSb8rlp1YM1eLu2OD9BI0Gvt4sq81lbTrtjrTWRMk1KFqlUGlQs2mUWAndnMtDokwEmbv2wVO/CttVGumXpuKsFhex49F/xmjc2nzymb0Lvv+6ZpZROULBiZd0/cfW53TDtfB7KQCx1jNqGmcuEve+Q883i/rrGIy5k3BsXUMP4iw2nkqcP87/i461U6idolwS2c8Lpr7KeG8Qd3yM3j/XRvoeC+IT0LsHa/pqDbpY7XDpaB6XqvQJF1CRtfq2gbsts9mHu5imnLYY525e1vGSeIuwCc9QSeeA78/AXwtBq87kJ40rl5DufQSXAAxNwX7sBYGRwH3mL/d+e8XdeAWNtu0mseX5oZZhu/Oen4185/LHxNu+uOuvSa3qpgv+r3wNci+m31AuBhzDPt92F4W2dC7oj1EVWkR6dhX/PkYzH0phTd7HM1Ta9bWJv+lnSx33D7oSm6s1DrmS94FXPfd0J5uHju3ivcP7W5c3Xm/6HA7i/E7/O+61tlucVdoCdVnG9JUOZKQMn7odDuti6wYGlg3sj5uePGxnYoLshnYzu5wO5M4xeBrwLPxxPaMTJCQ9kMK5Gxt+weuJS+4Tn620EiQvt28O9vFhRNQ6eLKrEgd+aLPavxKp+0Z6WPrMDps56k4j3FqSpv4adCzDQejK/4km2KtUhziU00/ZE26zHsTrtrtKG1tLdM4fslx66luXrVseYHabPFyDtVjZlgdRXstcfOfqJZI9E6jyfg12cLk+n+qFwD5c+aZ+0a7glPZxP6tGtgpW3c4q1ZrTtmHcV6dEaZoJfbRYEd0G1Nq6YyISKh6NdeRVxnnTcHhaoDrQ57yQefVaCJhk4nE15zM6z8hofm6O7lfOSd5nizE4SyCT30poLpHdSLvvfZ/bVuKJ22seJpa2/wXLMLaDYCOYnff8Tbqh89vsxszV9gcNftNPLBtswEzNcwbnVStZO4Ca/fXSYY32Ywiw8aL9IsZoC/n9w8PtTSbyX9sLsH5l4qMyPodqnhaWLWO6h6LbP8SMB78Db3Y+45iE129mDu1xH7/j7vvNx12Y5PN1AU1utJnrf5snPhNd9nMmfUkzzNZS0eLHWncIt5vpCTAjcH5T5OsV1sNV2Of3f84SoMRLddv1ShnNhl84NqQt4XLZHPscLvj8LlD02A3f+nY875EMW0Vn5/7HzaY+2uyudeGIO9Z8v5XLtZUZlfNeH7FJ8136fdXS8/93h4vfrNgWLp1fwAgLGxz3/fjQF+6jjHZvOhh9swvZqrl8bMi+rk7rj+sWYpzo3DMd0RLkSWnZt/7NhCApi5latzeN/7tVFXLhzbFcW0b4WxXRdN42/DWNOdhxXW8UzjKTeND8/ZMUUeO4bYNhYgYAcZW6H9jP1P3pkDxe5apoXGaI3d7eoYTXtRyMgHefeV6APu7nMKHFmAM6aDGajCOUEOXHvlCRU0a/nspI9gu7njYa7XujbCd/a5KpbtN/tvWPN4+6QqsJHVVeEwxp/JXDsNnHRuCsFPqnpiXBpiOeN3itjo5BxaT1dwfLW43FnoRbWJOj2jbL1V9tQ2FDz6dzfm+dndN6YTdKuVvedWIFUHGmla9PG0Vdr2ZH5QePferYK69HSqnkCry6y2QqWGFW3N0TsdIzDY76rCsVR46AxnkmeE//gEIbw+ZRN6J8Tu9cuqoBn4x/CsCQBUYixDOtb1poum7trHags1bduBP+D1Gf1cwJpQ8Hb2KgvYlGRenRL73jGvbGw13g9EVzap2gn+9C//oe/nrs5uTdP5iDYw6ZIeJD8HN7i7sGnn0Ttp3koQOqDg4gCY+CQdI7TPukF8rWWCV9LbHWxl1SzWnUAeQf6wPSd3TfztVs8r+02XLaOe5NkyXMYMF3xzyn7eSOMLvDtMOPlqAC8PyrwCzxSSrS3EOFRk32nO2uTmqDuRP3ejdj7ppBT7MocToKC3n6268ArFZ9N3Y1EYbXtPTmrvAiyzfW30sHDtPHT1UeRuWscpzlOIbCn5H8qF9o0W5Qvjut0vE9pDl7Js35sPuLpAUdhzx3FCe1mdyrZhKld/6ngcs+DjyvvX0Q/053833Drz+J7fV/FzVJjrFFo3dDFC+2leufAal7VTP15NmCHGBaPz3d1c5HjfNP5zlJvG11S5EFx2jrFMACDm8afMwvEHNi60WYJJf0YD6Hg+7R1NYk3cw5s9Y/fKTW9VfsyHu3BWPW/NPYL7ACi0UK/yU95UpBb5vLhT0gvaf2qYGADrXrR3IuX8A4TXvpnahRKyp0S1OigbTTvrJO116tg3jgP7rLY6sRrNzFc6wQSM2+jctou7d/6+u95zUyZXu7+EHvSgarUD00VLAqVMU6k/5/tAgbbnpgHdVOh2h67WuXBmL9msnUz7wRJ9z4tKkQQ52t1lS2rQ6nKagpNd6HZNJzoDRtPeMA9ObMKWeO+FEwWntQ+f0XCfkvfDAbqQfsj7fShef4JyCtB1MiueNnkQOla7RjgqfFlFj+O2sUB0vl/kMXLzeL8O++z/C953wubZs8gRHGOneNELn9X38x4tlXff3eDuLz50Mabx+zGTn1DDvulFLNV77oARWtvm2ru0f2rdLL5l627OSmIrArtSPW3XvZym3UWOd3UqBLc6hedc1ZJcOPeF9emal/KyBo3Batkdfk7ppjJBRq8A3g28FHgv8OzEfF63r+0szcbathOS3Hp2mLYp9p3NsFE7nwT6pVsKA9G5fsw3jzfH2Pq1Hybhc+pnwLiQotAeakbDQHSjcN4veuGzSsdGZzHxCL3+4gTbjdpKGBStx5IuaCdl1y4Wid53SwjPoaee9Fp/OjYy2S/DBX1zx/PbxQl6/cfd/izxMT0UOkOz/Rjh9fLr5OoFZm4Vy2cPGw9/WZ528sV4RR6k0f2O82n3TeMXgK+Rm8a7xduNTONj5+afo7/o4fuz74bgvhOLw5VkfXVh40KbpWxG3FRFU+22zrV8FB8W1/jdw6nd5yrwu21gnuwzbPbHME3YIJdZohX3pjlhyretLmE3MNYI693iYkDwu8oKn9lv+GXqgXm81qhOO4sloGzZBkZb6cwWj2MHA5WXyTS4U+RWBP657RBKKaMNL0Z+Mx+eMQ0nvFzt1kc72wfUWhds1GlTRXN9UqVQF55rhDu/7o2E7nI3t7LXoLtmetOs5Zo+v0n5A1Yl8G67X1elFKqWQltTR3NSa1aMmGt92kHVU0+eVdFj+scG0zZO2P1+gW9KqlnYumc9FnSlcCxVbArK+0entSwzRRuo22FVrXchreeadu8ksn1d/J1QaA8NOk6SWwX4wqoTTI4DZ5APjO4YYJ6vWFqZneaix53f93OlFErrgvAdrsj7Fgaa3J/d1dkPQLelKOtBH64UxpKoC6tacx9wXxeetNiCZn7PC9dpCxctOzdFHviUPHDgKnnkeP/Zzi3Atn+HVC1BJwrqXaPW0HYks37saoAR40NqSjGlNG2gm5hrkWp4noYftPeyrowwP63McL3Vc+83cQMzVM9jnq+N/FI3w0btfNKpYTRoPhobmzNSvlJjWh9c/5UJKDrviy7EBFb0Ne1Q7IOnw+MF26px0ePOp2P7a9ePQd5PuQwsmzmvsmc0FstF039RXtnxMzyWH4neXXeXQ36juvlzjBXi969UmecfJ6hbP5/24xSt5xLvGrvnxP1uQfPv/dPPlUCV7DvxxeEvqu3x3g+9cPu100RBonvHsgsxbiNOo+5evmn8FzGm8ediLa2woVnY2DS+7HzLFib87SCfu7HVtO8Y4dX3n+40DfK0a1SS9GhDUIpZjBCZCwR5q/Un7tho5pl5PBRt+gbmfBw8Re53GsHa4WZ+vtADejSw0eN1LiSHvvQFCSRy3HoK7U5RMFnvZj7tyv5xaazdSusJ4DR7bA0F82I1mxotUuzcdkp4j8UMUMDeBhyz3VzmrKaLPfBKFzWVL5444SxVsOJLfFqbbbNGN0v/brTt2gY1m68VNdDZS+1ejtZN412qxH+mmibt236M2dWyneDUrO1zFrDPe7n7GMsLC0bT/pDdLxtAS6pXOqHvCbqiIhpcZ02QpWyzx0pTGu0ubcwaVXb32xhfYu+8wsctrG8YPd7hBtQT5P7P/qCoMKblx8kFXUdobhhjt1tTLG2SIo/A7Ca9zjzepXsrCPrK+3+rAp7XPao0YQ34ntZ8N4Gru5qldsu449hjK/9LW/gpFXmBaW8nMD7tYbq3U87R7v9+oszC2FQNNV1HTdeyjBm7TUPBjII5ZYKMzimYT+x+Yv6fUUZor2+zf4v1l+55dOauftAm4dQp61vL0leu0BtBPRzfqk4YhM7vv75L3ueGAUGdeXz8vHeh4tuk7F6BGY+O0kdo3MR5hebxrt2UPadlbQ5ytwwf3zze1cn/TljFMFe7o18+dPderG79cqKfpHdMdy9nybAYfC/UEodCe+y69JtrONz8OxZzYjNDXzaGURzbXVrPI3hju+41jf8hek3jU9XfNN4/t3DruwD0COy7oGofW6F9evaMnTtYoZV6/4SRzJ3Q7n1N2Ss8Zd+csh+4YETK/p9N4NLELN3XkqI5vIveO8ipcNjL+/9nUXY28ftllgn1xEggrU4xEv1mvuuoqzzNntNEr+g8x31Q3XWrtT+hrBAVLKgkSplAb994CO59OPuZDSW2rWJ+zOz7Qen21eDkSv60h4HoAFa1yf8eVCgFVr91d/a/tp/p6RpdFLqr0dZkiLbRvM9Hzn9buZsHTDbJSiKLDNM1VMsMKMcxk5Y5DXS75grU0sKkxT1j2bEJbgfFwbfMJGwzgwsUzeP93+sZpFTx/2zfWhM0Opp1rWlhFyQylZI37XBf9vK0h49QGLwJioPNSYrm8f535zHX2JXtBt/1fdr97+10L3XgGwc3LBP6vbnBPUyb5LbfJQ9Cpyj6lG7+efBcbSDr05M04ZEmtLTxa19K4RE6JM0EhfJDlNjDbP6Klbl47KNoHh9ehyo+56eKUoopZQX3xArsSVFwn0+guc3F7vCZ9fdnKZrHx8wWt/qrm2nnk4I//cimEMTTVy4SydGudr4fGiRh3+WbAYcZMHwha5FcaIdega+KuHZeNt2bwmjaN+tyEmsrLlCbu1ZOwN2KJZ3Dj0Tvjue7JfiUHbtBMXilO1a/fOhh3+NvQ42vX7cT9OZoD+cny953iOzHzPY3ul5NitfJSUdLeG5isVef8S+MN5P5uGM06A9QdHtzpvEngAPk/uxbMY2H3jHWnbfL0+4TCu+DZNzG8Izm9L7B/0ioae+Ay3YddijOzCe6cuU3nKW2mXnd94g303KtZ4CzrmhPaP+ZoX8y5thsv6eMyq/XervXLqXfsfzrU09MtHgge0TWMYscgY+vVoqWfes4eeT4JPEexu8cRR3H9Cp/cwjueai3998Jwsjxyv7Z24BH7PmEtsd2X622oFnraTM1Be177s8HcGW3zdS8t97J/W3aHTop7PN+3i1gVHcybyqbr666BYcEVo2QsqzznOgu/aLKAtEVI6uDKlxD/yN/FTjUwveb/PmThfD7oZ949Fjeo13Qmk+l0DGD/HpX59qB9Q6qXs8OpqDXSiXArX77A4uvrTlG0Tzel29OIw9GF1uNd9d+w/M8Re48eP+GZcK0SW6APx9jRbFO0bz0AcyEGIrBnzad7s2hjKtKtoKPWXs9dxn2tTu0gdkOnH8M0plGHjwt4rqxhZ/smVDMYyYqh8iFdvfyJz7jhlKKZqKYVbAngb32tScxwnytz8RsU8cPto4Z8km4i7Tc8xx4ddwMm2nnk4xbgAwnySvEY4iE/X2VcX2XPyYn5BkwHsGcr9Miun0o+rQT2a8adx68v6cP8/umvZgUvb7LQ9liRChUuW2o9XVCez9T9MK+9yOxoHYr9LFwsGX8c/IX+fyx1M/AUkbsvF2AWb9Ovnl8zG3Nn5sskY+FYUYC2JyvfVivsoj2C0SE9k3OERRBgFnve34Eebeo1SaPGv84jEZ+O6bx/u/7IsEUuU+7fx93S3Cv5lx9Bzj+yN0bF9oKsUG3YTXH7s61uyayNcHkVeWdj3s4tco/z8rf+3AeIeLaQ+b/oCcYqJlXWdq3GRVZcgvKFD6LlAMzk211YbVTNLuPHSt8Uty2oTyhHUCjumRCrRPMwFg3uA7kuFJGy2yvYfb6l4dI/Kfs60e8UXMHJQ//fPzre/q06W3WOrk0FdjBqbUONNNMAHWm/U0F+mU/0nudrJlqdz1P+0anS6ummLffLyxcsHOnOQjy6PG2rs0arHez3OrLaPNctTrGsiXUznujQ9kA6/zPN/ItC+lX7mbgmxRNHWPXOhpMp1HjzI6Jit8hz9Ou1lrQSIvHcefm5aX3t76mPbaqvkju/xbW8zRyX/+YCVjfvPbsHK/6yRdvWCY0K3UT4DPt54fJhfYTmIH3AuIT5a0KtzWKk4Emir0afnW9yw93NP+x02FfB2rNNIt2nv3GFn8s5g+oMBPd72HuUyxHe49rxpiRKEWqFHWlqNn9nRgvy7SBvv+miTsRL7eVGmymnU8Cfv/mb8NAdL4BUizFZtXHNh/3jIYa9wbmeXbadr8Pd0JgQdMebKuI385j9Z7FCO0xYbZn/CzZhgKkE3A3m0LOJzyWJhfaY8eKtbspitptX2jfyHc8OhUmWMDyGsYJejXtPrOYcd/VJYaf8q2nXipe1zCHuTv2AsVI+/65bSSEZsolerXtF1B0fXPB6PpFjd+MabxfP/9/MPexLJuOaNorgCobscGYeBcC0YGqeRNnbzI2Yw5mzeMDE1Zlf+fAkeKPf/1wLjwmKhPGBkJpT6igXuvJg174PHq8yPtpYjXtHWgm/XuCsvrVlfFpd29bSwfVyBdL3E/75kMngT2pMh8mClVTUE9ILj8nT7cH8P37vVFTbS9HUNkJFHodu21aN4FHV4rCul+nxXb0et0PHFHwbciunU6U6bRmsLnaNVprum3NepJkHTkUBZxKauA8YbZw6klC0uowr8x9XdD2+Wp3soCEvpDec9j80IUBHvpH4d3MZEFhBHWAO4E3A98oK6/CxQX3mQKV0ljztQPW+WHNpv9zZb0I5KVeKcQD8riB51HMAO9bGLjXPno17eGkMUy15P/2bqIo+oVm/5NHmnXn/QDmnGcpmqP6wei2QoppO1OY6zGFmdA9qd3lP6SKp6y1abZhqpYwjTHXTsBbGNz8L/r3xxfgnWZlj/39mGl8FR/zKtOvD3D5eqE3erwwGHyfds8xsVzT3mdKUTX86UGoUQzTvkFuog2jl/INvPGP3vq6GDP90rPFFuQK03OKfuitSJnYd2PbWCT6zVh3+FtnVh0unPfLh94Pl4bOP5YvJO8L6uPXa5q87UBc2NwoFV12bG8MCiPau+0SeYwfyOcam9WLOcFbeVtFb6523zT+drYXNd6n7D5CxMpBi9BeIcLZsN2ph4HoulBTWURf/yvuRmedUJL0CofP3E+B7z/X5h9S+axrkBSeRu+fes1EQy7Trm92ZHA+7e1OHimu33dj9WkkJgI92B7P+jHXc020+6iB8WkHYy40nybm/tQS86onqEvOQb3uQri8Dr/8GHjKeaaetcQux+3QsBebabvtWSmcsHFANRQiyAO0Wqip4s0/qBXvQ6EV/A5wZzfvsFpAd1ahW92sE1ntaFpJkk3sfb/YynYC3jXzA9ElUwq6bTMIaDiirXn7ejdbNHP5PcFryqp3APPP3wk7YRX8bfhZzGzr5qDcjeRpxHq1uIF23Jm8N1JmVs0A2MHzl11q5VJy2DZLmmpM0+4mfk5T6Ez5w9dezLMTCuxu63K5xqqx2xNG92i5e+pfnvPJhXYwA/2F/vco3p9N1911Y8pch2lgRimzBWZa2uwvtZmuaaZRTCUqv2bbvFixBRb3bJ8VfBZq3IWtUZiMexcwZh5fKC/Xe9uUCQphbmrHArk1o78Y7X+36vg5qUPrGL//8rXtrv35gow51micd3aOwdjstLKh2X/ZPY2dq4v47satzURpj9UP+73AKbMn1V54nPC9aXoFWthEPvSS49Up+sj74/NRIoHovMrNk2va/cUv/xj90uP59QjrFB4TiinotvN8umfCX4yH3rRvzjT+i8BFnJppfNl1d/c8DCoo5vGnyNnnX77zB+2J8JQYQd3dpQ5ZEKxwMj5jv3sdVhOXWNO91AiRNBJ40n74+QvgaTX4pQvh0v25QJ+qgWra/cBfhXMEE606Tf3C3n7JcWJPZMMucrSt5tg/VlmPEK6GNZQJROeE2rW2XQRxQk8u/CQqXw07CexJFN16aoTyekLSSGC6RvLU8+AXngmXnWc033V7PxrpzrkjuFmzI/HOe34KjkdytVsBXq21SaasiVBiTNs/p4yLxdz7/paOUnwO0/mvAy2l6DbqaBt8TqNZanfpJGlhQuBcN5xAXDlsJX2BQylQDWCtTQ2YQfOwth1ZW6OSojdyT3sk3jTBCP5biVbrNAW+L3MDeHlQ7pUUzbOS4Bgoiu1MASplmi7reOuCWqParYJriWvrBKfpV9dNdEO/N00eZM5NkjIBz/5/GmYC4AgjF2fxBCK/vZOePO/8w2s3LOPuRxiFOaZpd+ne3OQhjNq8mVX4/IfNJlXKCOrArDbBEefamjlgdq3NXFMx1/VMWWN97SZ/zu9O3L1y98H5s5s6FSf/lXzOR4DYdWuSa6s2Cia1WTbTzicN//ql9JrHgxGGYunBRq3NxzSKYf/lv1Ypmh3HXlXEtfMywahUaFe95+TmBeFxmhTbyhobW9KVzQ36mce7sqH2OKyTM48PhTrfp73sesTqGEs95hYn2gQL8ap4jBmM9ttfxA+Fzg79M2LE6ubOI+b/74R2//ubbaMFlxFv/3zMgt2idw7ONN5p2f25V02Z12Zj1sTuo1v4cZlD/PMMFysGwdgK7UeP3LlzB4vO2DHCXdu7TR2NSlXxRtun5V5b5CvA/wUcSBXUjbY3206lcNm58Jrvg6ecmwuQ9cRokgduwxz2fHZnYREeWC1GV/c/3+xxatY8fkWXm9v7wmzs81pioqk71rtWYFcFgR3Mw+mCTzlzIVVL0PXUpChqpKhmaoJ+uVfD3ocdTmFkhDKVW034s+7Tpo2mPbQ9tiQLXZJGLfN3qwE/bC/J4o//KABPVNBG0bLRxjv1OnotXwNY7YJOkkwIBtdhmsWNQYZKOFXCgUfVQa2Yde89GPPufWhUu4tK0qysW8E3B1H5sZR3TPKmNUsxAnTZwOlTx6wjNRRZFOsrgHcDLwXeCzw7MfEH6jjjDe9IKqiTa8NTMLXeYREzOCiXKWGtA1MpCmsO751ALHK8Ip6nHXLfbje4h773YJ6Zfr5vPavxfa7VqfCaV790U+VCn1B3LuGk12nas4kAueC+pSB0UOirEsxEbo+Gea2ZX+sy39XsXegwpxKa7vlTwfe3cMHCthue60HgX/AXILzPq/ygV5BovAm7nSKfNIcmrttls+18Eoi11DAQnWOJYraOwnaEmnyoUXQzEGceD0WhfZne/PSD6oN3EtfO/WmQbz3kBLyySO+F7rNkGwq1LXp95GPXyo3D/vt+TnRfEC1tc5Gtn/LNF+781Goxyu5nWXyHE/Z/5wrpXy9/rtMveryzKujNWRQ/nn/Nodei4ASRFLgUr3U/FPHF+D2Y9v8geRC64xiXxOfb7/im8XVl9jc7Dpa1vYR4+r7Y/ztNLEvJrqC15i/+4i/46Ec/ytLSEk984hN5wxvewOMf//iesseOHePqq6/m9ttv5/jx4+zdu5cXv/jFvPa1r6XRiHuSddphcoVToOypqSlYdOnHMIHo0qTol2RfnwoayceV4gX1hISEVGkTQKujrSrLtsyaFdgbaS7kDhJf642pBvc9DA/aZnjtIfj5xCwsuM/p8wD0WCZYTfsqNk978HlpvbydelroidV621umVIV75Xx+XGy/Pa6udWv63u5g4qx7o0ZqtOwDyTmcLcFSvDb76vDt4+Z/3zHGqjWTNWhMpTSUMibwSvH0FH5fKT5yxj5Ornb4qoJnAy0UNTTpnjp6Je8+1rpQ9/z+Eyvg+aZplaRwyeyCWKpQnRZozYyCQ2izgt7FWIQoz887OJa3yW+DvUzzFM3NNtOvm6BjZrDo2rrWFDxPww/aAaKpjEA/bYX3QpX8OvkWDw2o6TZd+7hMY41L1oDpuncS3jNbUt8wiq4/8ThBJMqsvSYJRtP+KL1mmb6JYDP47iAmjWeduW9T5XztlOuDwURgftAr9yDwE17ZrLza4kp2eJKu71eKFGUWFTWw1IGmn6pv4/vWj8S7R64a3zRv8RAmlsK7gOeyzfMSMsomqP4kfKNgUptls+183PH7Zv861skFCij68Lr4FBAMtYOv7o6RKlDaE951rlE8gVmcaFAUHEtNvit84q6dhwKcu39OGN6qebx/v0Pz8TW8zMXh1huHY7/VoFfIXWJzMXDcNpYqDHrN9qN1K3G5jeULP2E/810mwgX5OYqa9lBf5I670YK8P39y5aHo/9/F3IdC9PgtzhPcGOaeDb+tuJSuT8H0DbcCTwDOttegoGlna1Hjw63bd5kA/Km6VmPu0/7BD36QG2+8kbe//e1cf/31XHbZZbzxjW9kZaW3Wa+srHDhhRfyjne8g49+9KP8wR/8AV/84hf5kz/5k92rcKwnrCUmGrqj2yWpqayhJLahNBRcGRzuFUCaJiTNGrVmgmqmRrM+XYNpu51KYapmIofvRqSwHmmGeHA8v2zskSuzTKglxp+9gzmv2DUt7Rnse420OGq3uqhmUijrHhy3OnrcftWZMiVKQS0hma6hpuskMynM1mC6bnKAD8oNwfx4cV8Bp9VgcTUX2P1AdNaSoz5Vp4kZiOqYdYenJvB/KsWvAncAd3Who0zYgFatTrfVzTrj9Q7GsgDIU6d5nWcVR3iXezwJTORrCardQQGn2xOsAaoDairNJ25455bJSCr7DIrNLZbZcKOBJcwTPZuY/NDzCcwp+39iPp9SRpgLfyDT5qm83tSg2eqwCnS0WZRQLdPwVbOW/Xborx+rc4PeQHSu1zqJEcwd4WR3n31/Kfier+0JTfvC/d0kjACvMH3x+ZhzWMBMKB7GaK/8sn4U+S0R66vALCC58WGlC7N5qr6iRLG1KOfhRMxZFoSxFG4iP39/kiNsHb+vdC9/Et6iv5WOsDPEtIsud3kYjC3cHwXc8xpqFPdS1Cj6fsfTwfdj26pSVs8wm0u/smWE8Q/CZ3Qz9XHbJsWgb9j/N7Jy8OcZzjInFOxiVjpl9fC3MZN95/J2mlcu9jzMUO7TDltLj+e/787Xv+5u7jBP+fXZCPd7meuIN40OgzR+nl7T+ExwV1uzpCtrc27B1l/s8LwYB8rQxvEbbriBV73qVVx00UU0m01e97rX0Wq1+OxnP9tT9rzzzuM1r3kN559/PkmScP7553PllVfyta99rfT4s3v2l362ZdyI7fbdtq6K6cfaXUgVNW0auzOdnVLw/cqYzF4J/DHwHKt1a9YSalM1ktm6mdQ5gX26ZnzJm8nuCOyQ25ZmdqIKvi8SHM+PaL+VutWUkR7BCN8hPQJN5Njue07AXe9CQ0VvUR3FGkYwcWmf/EmXUsoIhGliXwO+zn4AurwSsHcKHrWPf5ar3W5XzfWqNVMaGppKUU+U0fAq+PaXvsHpCfxbFNehaGtooWk1a3TXOuZw2lz2NE16zt9NCqpOPmFW0ExIrDA0jYmqPg9mNjdl2oeVhbKtOYbKPvOFM3f+S8C/YhZACr+9Qd0SpZhRubC+JzEC/HwC8/b92QTqJYKZL1Bl3UsKjdVOZiXSBFhr2aXjpHh+oRNdcKwaweDumhg2QKP/u0F93KTkGPkA5QZ5NzCXmTDuJJ+79cCmyrm6hz7q85jV8UOYAb4OnE6xjP+dHcFlywBYbcNUvTjb2eZCmVJmYbiucneZOvBvg3KvwE5SvEmLsHXCeABu62vaXU7jnudAbe1Z2Gw7H3fK+pNYJgwnFJRF8h4lnECS9WMUTeT9oFtgFo02k8u8arh2HnNVUxR92jd6psrON/RpDzM8bKWtuOjxPi7NYFj3sI5u6+dpB08vQx+f9j6V8lNO+sLjAmaRxx0nHNMVuXl8TNOu6RXaY5RdP+eW4I7pFgecVULMGmYjYkEanQB/Pnk6xGMYi7OdMI03vxs/x9CKA8Y8EN3i4iKHDx/myU9+cvZemqZccsklHDx4cFPH+PKXv8wll1xS+nma7kIClrrKI5mD0aqkJjLwFDClFE1FNqH/wQR+J4HnJUaQd69mYiOaN41mXU3XjK91muyuD6IviDvTfBcc77IavPYCExzPCfZuhAkp6wVrChZsd1DI015SPvZ+3QrtNgCgWteQpr0aVKVMR6uMYOL7Hvkd2K6mOnOSQfjD+2yXvWSHGD/a10orK99URlBvKCMA1oHW0jIp8G8S0/l/QZuV+NZsQreb52lfXYcauUCbDZY29VQlfV29KmXR4xXm2bA95mkK0HZAWAGFW5goLuT4B4tNwP8F+DpmsPq/MR1/7wBafo2UMlHBneC+1wrv8wnMJKpXw174rrdVefuotzu0tKYDJi3hShs1FTH99w4de2T86PEO1y5OkmvTQwsFtz0T8wyFOYLdJCaWS3enWVhY3rgQ/Se9zozuu5gJsH+OYfCnLRO7vy5bBpjnOMgAkf3QNjohZ+7n4ilMK/gB8lgKfwRcofL0NnU1GotzVSX2XPmT5lgWhe2w2XY+qaTEA4LBqQkFVcHVN7T6UZg+67v0+rTHBNuqP+uunfv19gX4rUSPLxOsQrewlnc8973o8SLv+cFc3Ri4SDEQXY8BVbDfJHfV9NmKT3vB6JR8UcJvE8fIXd78evnH8vO0Q64Dc+fmrlsafM8/x5662X3fosAJ7c6fPTTT38qzGbNAcc+FW8y6FbgEk0HlVEzjw3Pzt9Cb2m63BHYYkk/78rJ5YOfm5grvz83NZZ/14/3vfz8HDx7k6quvLi1z8tj9p1bJfri7Z/2iM1zKN0zD1UCSKNbt5Enb76XKCut26wemGqrwlCgjFDvf+q427z31XHjKfqM5qikjcLsI62Xaaf8pd9SV0RaCWRRwv+mXDx+R8DjOt3+9a+3fu6hasRkr+zTXlel8jmO0atnnavsdx6nhpIlcMMsWSJrAsRXY4039tDYaumlX3CwIuRXkZgLPf9GzWVnt0FXwvyVwDfB9mID0yVonDyyyBrV6kgnqxfOv8LTGXqtCcJ56zSzYdDRztjk0ANUiawu5INx7bqG/YAp8IijzceB5sGXta6LU1iZMril456kAVVeknbbxldcA2gYmqBe+57el2OACppPvBO+5pcbj5AHZYi8wA+5xu+8PTm6leatpdLbDlT/23E2Vi056rT+gy+maAI/x6heLTLtZlHPHiZ10I82F9qUWPDaN3rftXKgaZuzwYynUFTxXGz92l492ShmBvqmGPLaMMNlkOfArnSGfuG0nnVSMzbbzSSAmEIQLkBqj8WwG5QbRB+0GSikSrfOAmjrvy84Dvk1x8dSPmh8VpCr6zPvtPOaq5iQDXwPd70xi596gGCws1LSH381+J/KsNym2OzeehosKZcd1ZX0fdP8ebug7Htl3gn6Yis4txIfjuL8/S26h4n/XsU78vvTbOvz88U4xEIscH9ZpI/w5m69YcEJ7h/6m8XW19SCzxWeJ7ELNEs9H728HxVAW5GZmjEHP4uJi4f3FxcXsszL+/M//nI985CO8853v5Kyzziot15w5jZ/7+dfxW7/1W/zWb/0WH/nIR3jbO/+KtbXcM+XGT9xaMEd7+JHjPSlXrvvQLRz45l3Z3bvnwcP82Uc/af6pK+h0+LObPsk9h49kQvuBe+/j7z79OePnCswnCdf86XWsHTvOngT2KLj9ttv5p5tvpWY71bW19e3X7xu5dcI99z3In/7lPxTK/Olf/gP33JeHYTrwjYNc96FbCmXe+YfX8sjRE5kw/vkD/8KNt30li6q+lmrefs3fsqa6ZjLaSLjxM1/i81+8vbd+WQuH627+Jw7cdW82q7zn6CP82Ynb8Zf//uzvb+KeBw5n/x/4xkGu+/tbCsd55wev55ETJ7NFgs9/81+58ctfhXUNzZT1Vos//5sPsd7Ku9bVf7yNR/75G5zEmAstHD3O9Vdfm3UUCfChD93C7d+8a0eu38OPHM/+/9ytB7jxE7dm/6+trfP2d3+AtVYrkyZu/OKX+fwd/2rO8fQ6jxw6xjs/9OGCT/t1/3wbB/Qj5h8FDxw6zAev/7iJRp4Ybfsn/vZjPPLgYZ6cwEUo/ubu+/in279Me7WNRtMFvv7PN7Oyupx1Qgdu/1c++7kvZQN7Fdpfz/X75Bez815fb/Hea/6OVquFqhvf/C9/6at8+xv/yjJwVMPJxeP8r69+utDR/t1Nn+HAv96dtaN77nuQ97//w4VO/ePXfJgf/M6h7LebdxzkMTfckplXpQre+0cb399tXb/rP8Ud/3J3Vt8HDx3mYzfdDI2EWqfDkob7b/okS4ePoNoaGnUO3vsdbvr057LFF4B3/sl1PPJoXr8Dt93OP99i6tcAOmvr3PD/fYD1tfVsUPnqLbdy7Lbbs+jxJ44e54Pu+bAH/sINt7D3joOZefyh7xzio9d8GMgH5n+85sMc/s6hrC7fuuMgN/z91p+PnWh/937nEH9l76+Thz95zYd56DuHOA8jtN99x0HqN9xSEO4/cPW1nDh6PLM62Vr9zJk/cvwE7/yb6/OLV0u47ltf5cA998F6G6YT7vneEf7sY5/MT0DBn33gI1t+Pj7/xdv59M23Mq2s60VrnWve8wEarXUTW0HBbbfcyjduu51pZSxzdv35HcD9HUb9XLs+fvQ4f2OfDzDC0tINt3DfHQezIFdHvnOIm675cKEP+ov3f3iir9926udfvxs+8GG+Z/vnOtC94yBfuMHUz2mbz7z6Wk4ePZ6N7V+/7XY+c/Ot2TFG6fo5jeLnbr6Vb952e27xdPQ4h6829XOC+4M33AJ3HMzO89B3DvGhD+TtbxD1c+zE9VPANe//MA/a+5sA995xkAP2/t6IsXr7u6uv5bh3f7/wxduz+rn7+z/f/QFa6+vZe/fecivcls9PF44eZ+3qYv0+fv0t/Ms38/rdd98h/vr9xef35ms+zPp3DmXj3T13HOSfbP2cS8bf2vq5c/jnL97OZ73211pb58D/9wFWvev35Vtu5Vu33Z4J7QtHj/N3V19b0Iz/7Ydu4fZvHMz+P/SdQ3zM9i9uQeNmO/66hYCH7jjIuh3f3OsD3vUDOHbb7bTt/EAD62vrvP89H6Bl5wctYJ+tnzvGsaPHed9781R9SsFH//4Wvv3NvP0d+c4hmtd8uGAN87VrPsyMvb8KM/5+4vpbsmMoNtf+3vFOUz87feZLt9zKv952O86B9+tHj3Po6mt5Hrlp/D9efwt33XEwE9jv/c6hLT+/CvirP87vL4C67Xa+c8ut+cLL2jp/9u4P8PGPfJQ3/raROX/u51/HIFCf/vSnd0Oj38PP/uzP8tM//dP81E/9FACdToef/umf5vWvfz0/9mM/1lNea8273/1uvvSlL/EHf/AH7N9f7rO+tLTEK17xSo4fP8aePXtKy20W3erAchtWOrDSNn7Gq2246xh8/H74D083re/934LLz4DvOysPKjeV0p2u0Z2pmbRuOI3OZteXdh/dsU7Q6x0voj1kOeNdDvOSgG163V0ve61W2sb3/+uPwEcfND3Ubz3dCP8u1dqMDbw3U0clytRhpVW85itt44Lw/9wOv/QEOGcWPnOYpdUWCy97DEv1lOVmwnIjZblZ48+maqxO1WhjtCKvw0y05pT1OVYueNju3AvtNOfL3jVZbhurgevvhTOm4Yf2m7ajyK/Z1x6G1z45S0fXnq6x2ExZaqacaLdp64TVlQ6rq20eWe3w7tUOv374OOf880MkV13Mo0pxxz8f5Tkqpf4D+5hp1JiZSpmdSpmbqTE/Xac+veVEVwPHbwOtlTYnVzssrrRZ6nRZft+/cOdPPZ53zs+wUkuYX+/w1i8c4dy5JjPPPI3ZRsrcVMqemRq1ZgqzdeN+AnS1ZrELixqWtYkRtqrha8DHMHnWr1A2hVuSt5faAJ5Z3emyttBiYa3DwkqH5ZU2y2sdVo4v0f7ovbz3f3syjVrCFVrzzG8fZ+rwErM/fAEz9YS5qRp7plKa0zWYSWk3U05oxWIXFrqwpI1p2jeAdwB/jlkFd764K8D/CfwsZnV6FnOuDWWuy6I2Zd6DWbl/rf1uDbNKfxCTvvKDmAnELOY6zdmFybkkEnhvm6ytrdNsbs4Aea2rOanNNVi012EJk7v1Gswk5eeBH7R1nlV5DII9yrgrbQW9EvR1qx3zuukB01/+m/PgD2+HVzwGLjrNBOGc8oKOztRQ9e09f12tWdNm7bKNmcy7xQgX92KrfnxCkbWuZkHDyS4s2X7Dtae/wTwfvw68hrxNuSCUe+w4s9k2tZV2Ps6sB8+wu+ZfAv4EuJpcc/kF4K+AP8T0TzOYZ3nWuinNqmrPt0JaWnOyWzz3ZeA7wK8Cf4c59zbw/2FMoX+R3rmNc82qIq6dd+xYfFLbc+2ac/0y8Fav/LuB59pzcuNLw55bW2tOeNdqwR7jfuD1wPWYPvGDmGv4Rsz1c/Fm5hN3XFX6rH8G+FtMRo4axs3qV4AP2WPNYdrbnD1el962exB4E3AdZrzUGG3tT2Da9Pl4Y6jK4+MoyNuDvU4uqOrPAH9BHil9BfhvGGvLHydvEzOJGSPctbkL+E1bfzd2N924j1koeTvwPnt+s/b8sjg9icncfLKb37cl+/tvAH4K+GF7724Avgr8Z68+rn90z+dmxifXVhbseSzZ31wF/oO9fovA24I6+/d4q3O4xa5mwZtPLWjze28HHgu8GtPf+MGH9yQwnShOnjzJ3r17+chHPsLs7Gzf39kKQ3N9ueqqq7juuuu49957WVtb433vex+1Wo0XvOAFPWU7nQ6/+7u/y9e//nXe85739BXYHWeff/nOVbbMaaaWFENKdrtRc/EEFwxBUVOq8gOISpURHGdsQLzZWr4/XYPmJiKs+6eYaZ7sdiosG1xffz92nCnARtKm1c00r7gVShtV20X8PE4xrZV7we4+AFmudrdUCLk6cO8UnFgrOidpzKJFkCqqhpkENhP46z/72zyqvILTFfxwAp9OU7qdtsnFrWF+vYtqkKdNs8cymsVdugCngIKsrgmgmvDN1Q6riRUiE/hurUPS8JqOiuTExkzgmsqYDbu4ErOJmRT8dxWJOaEGI7Bn9XGm8Xhts5aSdGFda9ra+jEtgEq8xFKFxqzwU8b52zrFbso3zQuD1kC++u1e+ygGonPHWGVzKW92gne994ObLuseKd+MTkGmaX8Q4xLgm9hlr+1Uum+2DOuIsIgJRNdz30q+v0kSpZhOFHN2ArRHmde8nazU1dYi0wu9lLVnP6J0h40jQG+GrbTzcaZfAKjQ1acnGFvJdlQo9Ekq76fOsZ8foRiIbrNp0aqEa+duKhT212EmjBu9cv70yRGbOrqlL9de/LgTW71WYQDElaC+7hhufuL/7/an6c317uxC6xvUKTyWf37umI5j5HFqeoYau53FLCy4TAShaXfMlaBwnuH/XmWnKboBLBEPEpldp02OT771XOrtY+v6FYwg7awo/QCs2zGN9+sabp3fPuy+efzQ8rT/zM/8DMvLy/z2b/82y8vLXHrppbztbW9jenqaI0eO8Iu/+Iu87W1v4+lPfzrf+MY3uOWWW6jX67zmNa8pHOfGG2+MHv+hBw8MpuLK26kl3p3TJiidE0z9hljl3rMElShIUqhbDbF7/1QmgO7auBRtPU9ESU8cvt8gnwy3OqiZulc8F1zqykSPP4FJgaGC1zbdSU+N2MijgH01+O4J87/W+Tmvds2iCeTSFEYb2gZ+5Vf+N9odRSOBjlJ0gBco+PNGSnfd3LcFYEqbGADZT+MJwAM/6W3i3azERsx22zRNeFa7y6c7sKA0e7pw0Yk2yRnFzlpB4bo5Gio3MUztKnTHlnHf9YX23ThV/3nINK+tLp00NY9Opw3NWl4GvJG8vJJ+9Hg3QLtzP4YR2t0AGstvvA+4j+JaEpiBvWf9LdjuFG/41Z/ZdFk3qLtHzPnBneuV2U/+HISR5rdM2UnXlFl0c/3nTL23T9tqePESnEWDRIjfeWI+rmAmpy4I2nYjQIdspZ1PIjWK/rKQCwWOWECwUaIgsHs+vClm4fG7mEVHt3BaCIYWbKuKa+eJ9eGvY8dtBTUNLwP+0Sv/CnJBrEbv+cXO388Z7gIY9gjtQfdbdv18n3bnkjHnlS27/n47dGNli7yv2EyU9jLcb4S52hfpjR4fLi7MeWWn6RU019k4p30ZYZC2BXKf9tg8Y7P48R4SRZaz/V8wVhVgYhO9GLiCYtT4lO3LLoreMeA4xjLzWZgAsL7APrZCu1KK173udbzudb12/+ecc05BGH/GM57Bpz/96S0dX+vuxoU2S+Gp9gStepAz3BfaY+VHlC039rKn24VurNXKr0vZtfa3zcSYlIPRuNebxSLuZzCdzwnimvahDOpOkvCihAMmV/uJNS+Mp92ueZp2V9nECK5NpZibbrC41KaeQFsZwb2r4IXTNZIurHa6PJokPJYupHkH5FJoVH5iY6+Ty6NdV3YVOE14Qlvz/1Oaz2nF8xM4e7VNvZYL3W6yEz+sYgozANSVEdpdh+ssY1y0/sFqKothAF16R2fJ0m13aFM3Wrz1Fpwxnd8za1Hi3ihMFLxBJsxX6wYVF/JzL8XnIQm2+4BHIt9fJdcunoqgshm2YjLs6u4CObl20LCvdUxqv++nV6O1o5Y3NWXceWzaRqaDxbfKP3yCIzYZnyYP5uR82k/1doppfE7smvuB6Fx/vYzRtJcKTiNmaaII+i67D8UI8mD64Bnve9lLDdGMdhP47dzFjalrM95q4Ae0MUX/GHAV8AMqT9mVBudWdt99wXiGXHtcVh7KF+jCSPShdUd4PEXvMVzAwBWM0KzZXD70fluXq90XFh8hX4gP6+Kum7s2S5jsMKGw2aKomd6oHj4uHZpvzecWyU91/u0Wr5S3/WRQ5mZMEGE/zdtWosb7xO7jv2C0+gBvAf4AE/xV6zzY+CAZmtA+csQ6/ixtmQaUiRQsqo5yYdtFjPf9N8ssEsLL6EsDNS8q82oH1fSKe99zHe1xegWTTEDZ7dvla9f9/Nr7ps2yp9YmhkCmaW+blHCRa1NPE5qJMsI6RtvTUeacL7X57L+82mFxOqHZ6kDqrbhmP61MtP0qEtyburL3VCm6mDbwtFTx1ESRaKi12zRSRROzoNEsOU72tjWTr2vNlApCN7CLfpCKPKUd+f0hhXqrwzJ2sF1poaamzb2zBU1ZlZ1j7BHyzXZ9bfkJ+57TUhXM+rzvn0aeHibUtPvH3syAvhuEK/Fu/w7ySdJbMYPtc1T+TKTqFOrs90+OujKLi8tBxgy/rPLfEKpIYTJu25Ii9yt2vqn9ckALO0Po6gO50A7V6YNOBaUUSuvcBNhbeLwA40/tC0T9XJRGgboy59BRxUXz55BnwnCZltwrXIhxz6YvcLuxybWXFkWLjPD74b6/9SPRg2lzpYK26yOC+rjyvkDrFgJ6tNqqvC379zlMr+aOXZjvqt62oTDPTFmu9nU2l8q17Fr51jAu5VvsO1ttp+6ZSHXeTq4EfJXuv8WztmT7pvFhXd3240GZm7BCu/1/0Jr2qk7XT5k9pz1mZw8Y6w2znOH2NrUwtrax8iO22rtj+NK0uzbNtPfzmPRc6Em9f9LUqEbBBMtrJJH7YwSyFUxHVtaJ7fpdUQQ2yLYGLtXbyWBKstQywaqy7+fSmVLwjzd/0cQFVIq6UtQSs02UoluDA2stbtdwqNbliCfY+X68lca7QQ2lmNJmxXoqUcwsaxMEBDMAzay2mU4UU5jBrAb0LCBFSOy1M3EC8uu3K4Rymz8hqSsarS4LQA1tgvJtw/3GTQj81DBdcgsU1x78ZyILuYDRtB/1vucP7AVf0shEY6fwI8luhLMi8U3eE3pX5G8iF+rdqv22tHL+c+xfgHpiUoKutLwk0pH7NqFDwyjhL2i5rW/u6nIt95t0b4attPNxJlwocfu+b7GvaXc+s/6wWmnXrw3ILIXw+iaMWfwDDMdFaSfx23miVCaMTysTNG02cUGCTWyOGfuaUpuPL+NKOcF4M2kZ+7U7P33cKsU0ZqFbWZmgXcPMSf37R5/vhOcSnnmYXu2E3Z/3yod1UF6ZJeI+7b4JP/T2Z/3q69cJcvP48PpsxxokVeZeOC16QxkT9XcAPwr8v5j/m/azui1/KtY24fm9JPj8pUT82vXgRPex1bR3OuF67ABwE2gXKSoT2jcWFMaaQm/jXQur/c2E9h6BKhI0KWrhkBqzU4B2J4vKn5kW2wPWVW7Wu49Ip8EQbpHr/Xo07somxF6B06fymq21YSqJ9JTmOPvmZ2gqRctq3J2JfEcpuvWUS9a7fBR4aGaKz83BT3U1T7dm1S5NfFXJcmB712oKQEMtTVlfadPSmZ0L9YUujTRhSisaPSNKlU/U3tqs/VrSGnM2dkMKqHYrt+5xg6gf0ND7rr/1NQ7ORA963UagV3hX5EFtXD5kxyob573dKebn+6cCDUmwOVqV8ZGs0esn+XLsyj35yvyO4C5AXRmXqZWOiQznfxbcN6G69JucQu7XHgoE4f5m2Go7H2di1zE2YV0CTg/KlQk5o0JoAuz6pvMxQrsjNI8vbCt88mE7rynFXKKp6Ty+TEfnbksNZZ6vsiwMZffdmY9D0U87VrYfTcyCNeQLReFiSXisUMgFM8ULhfbYcXqOq4ia7fsxHrqYnOhz5ONaNp4rMhcL990muQWdOy9HaEUXnpP/f8yiwGn/oahpP9W5txvXG9rMdV22lGdr48eeunai8jZzKsbPsfN7JmaR4OMYgf1yr/ygtewwxkL70snDO3i0QLh0vaEzd2x1TAqftn0v1kgq3IEOhNiI4a5XIw+mVVY2E9hiPWvT07S329BQxUPZVx14GPPg1gk6DDUkLbMvsIca971NOGb1CM6vfb1lhHYoXie7+4PPvZzOStuYJNm87Z3ErB91kxTd6qJTmO52WOrW+CKKy7OfVCPQLIvPnlKKaQ31WkJjuWuin2qN0pCe7FJPk7yTHhGByI/orzB/lFKQpjTbRrddA9Ra16QH8+IhZGcYOdVMdrTbMGDNSYzpu8P31kDnz4czKTzhlXfahn4+gjvpS/r8516+cSGPuies1+zg/SydD7Yvx/hJutV4V27bFGZrbnzwhPZGPX+/X+hjoZLEJm++XyjszGRqq+180nDCq4vWr8n9i8dFYIc8CJ2bLihtzv18jMB4AmM96AKJjdq5x9p5qhQzaJpWYO963Wg/d7XYubt9X+vrtMexxY2YsO3vuzG0Q64t73fdy+7DFPkin/Np9wNYbuY++u/5QWahN1NSuE1sH4Yt5+La+BZ0rl4xoT2sR+w3mt5xoVdo97dbnaK5WETdBFzYshpGgAeyGEUuO1BTnVra2bBNuXv1HEy2If+z3TKPH1uhfcfJRm16hc22F/Su5omCVV7qHAb1JN9Ge6PwzZLr7WvaV3WuaQ++XrdvOEFDlbx2E6WUCVZRENzt/unTcLxVtFda0mZBCHp7OitlpcqYjbWUXaHGmJJ3ajWe0dH8YwfanS5po8sPqnz12vkHVX6Eh55nr1ZPqa22oQtaaZTW5sSbEX1pOCpXibCJZ/sK6jX2dM2ErdHt2hDVXqaE4LkoG+jd4Ov8b93rOLl5fPg9Vw+3Un8GJtL8Y8ibZptyc8Nh4+cpd71zgvE9e67dd4EGGxjhfdua9rB/ctSVNY/vwnRkClTldikUKBMMUsziF2yctknYGrFr6S9AOg1lLJK3m65V3v2rBNe2wgjysxhh/UFM390mEB7VaLc9pdS2FlDLztmP+h6afG/2WL6wtk6eD93ZCsRcZ/oFtPN942O+42V9SOyS+OnVoLiwDv2jtM9gwyjZ/8NAdP36Mxd3IfZZk2KK2JMY8/h+GWq2QqoU01arkFrLDLfo4PzcnbtFYwceAneIujKv6Figdk9wH1uhPa1txujkFPAbw7rLdkhRaM/KjmL3eYrEeppM055sXLbweSDZ1NJ8oWQVmx4ryFGtVDaol0aOH9acWSVAp2girzCa9kdWbG+Xnx9T5Vq6Rx45zplzc9Tt+baUMgHpAN1MeUwLfi0BHjrJMx6/h4uTfOXaRVivdPuM+aQrTBs6uZZ/5OJKFIIc0vvdKqLIA8v5AvhUylzH7NfW2ubzRu5akgnungQfmzC4KxJGkD9BnhrGH1D9WAfuGHOYgdjHz9MeOaUd5eFHjnPWmfs2Xd6tyHe85lNXRoMDuW/clDI+lLHgRtsm66eUmVGsdEy6N1OxYMYiedSrTpnADkaIWrD7280B7bPVdj5phAuQkGuboXhvRvmpUvQK7O58LsCYyF9k/3fOdP65V32xYqfbeZmQXCfXRPfNdrLB1k8f51I9hpr2cJEouxeeNDdLUTO+2dRq4e+444VB346T+49n5Utes+Qa8VDI3GxO+9h7/jV327ngt+HU2mhNKWYxqQLbygQR1phr7YLPbTb2QT+y+6+KCwBl13c3qPqzvW3OOOfSnTtYtLXaf5oYra+L8lTQtEe+NxEEglboTtD0r1FEKAs/Cw9dT+xCCVb7mOaHsZNiN0mH3CfXHXK3H7IespDWFJcdT6sZn3aHkzCmI2tr9kQ+8EETyzJRpilOqTy1VbORMr2oeWqiuOyk5uJawhQq8/mpMQIdQGEW5t2xZpKn0tLklhfOmiMSL6GqmIE4F8Kz00xTatZborbasrboeZo3U15teGruYz+AE+RCe9mg7q8PnYGZEPia+jUiuak3rs62+MC1N235OzWlTCAjF9RIma2/P5sYM7pTMaEr7cPS1MyoVtrmGY61ZRHYR4KyoXyaXGjfyJx0M2ynnY8jZYKCGwn9Bcg1xit6POTZRLJAmt404XxM2jcncPkLFrFtFdmtdu6nCAzztJddp0ww9j4LI9FvlLGgbI45TdF0vMXmNaex+xn6j7sxHXoX4sNzmqNX0+772m+U076sjr51g+sby8zjT6WNJkoxlShmVXGMn07UjgjsYM65Dswr89qjYG8Ce5J8O++99iSD14SPrab9oQcP7OwBY4IDmJbd6eSa37TKXeUuEuv5nBTQiEjOsR6h7MmuKxNHQEe0q9lv551OP8FkKFqu/MfN/+667K3Do6084eOaFbOmyvI7K37z11+NXjHlajZyetceN0lS6kttOoBaglqaGJNhYEptnBKtEsTakcJo2t31AZPPHrzo6q7sgKTIHcLEbjAVzB8HK8CnKfMroLSmtt6Fei0X1O1WFdpD/8lui+IAfZL82YB4yjf32osR2vGOsUYe4DH8zZ2+5L/566/e1vdq1k8yW5G37zszurra4dR+ytupJ7nQvs8L2TfqNqwTSD9z1xN2Pw0+207Xs912Pu6EQruvaV+g16c9HGJHET9Ipkv75oT228nNrLcjXA2bnWzn/QTBJrm2t03vwtpmu2H3uRNGVyhamcXGvti2SR6ITtFrHh8dS5UCraOfhZr2E8C5BM9AyWsWkz4Q8nHRHccX2svIni9dvH5+HIFFexw/A4L73k4pjJRSOxdENiDFLAZA8RwL+7vcyYyt0L7jxAQHMCrLls6TPKejp+nbFfzT/9Ih2KvgKfvjn8e+5z8YDWW0rFa7qjyh3b/spUL7DnYY2yKMHA+mUqdNm96u3TVaOiuMZwtBZaOyZ1KdZZYC6omitbqOxjj+1GqpMQnGrPhW3jQ+hqvuVGIWbhzZ/gjMWAKUcq9AeK+lNFwTWOtCvU7vwg2F+x9us26KonYKjLm7vyrvyrtVeZePWmH85I5TXI0PNRexbRVIlEn/2CRPxbKjA23kWURhhHaNydM+nfZenGT02uok0q9tO017v4m6sD18ocDhxm0/qOYKeco3GJ81MV9gdwK8wpjHfwxz3j2WTsF2UigKuWRtxh/3+sVgKTNF97dNcmG0NPihNzzHjjFN0ad9o9RqG9UpFNpPAk/yPo/52ztmyFO+Odx+q+z8+tTFbf30eAvklq4qeIX1qSK7lvp3C1TeOrYShPfNf0LT1PjTZpr2SJnq3ffdIZzM3mcTsD0M/M2DcM9D+Wdhefd/bLGknpjrbYV23UjyFUmvqAtEt9c/HL0dx+6j8nxrvuA+a9fQjq/Z2cgm8zt7J6Ssb/u8hrm6Ys/JFvMtzZ71LvNpwrw2E5w0PEZVyc7NtQO7bShotXNri7WON4Ppc62qiC+s+6eZJjR020zW2sBs3etWgsjxG5xfg1zT7vuC+s8GxLXtkGvaQ/N4fzV+NC71gHzIY8d0i4lr68ZxHuLPsVB5eoQCyzRmojwVlBNOnX6CqLOxcgKLEzD8PmvUJ7fZ9CDYvxA4ghGIwgB8RLaTQux8Q//qzWiPw60vtLtj+XEUYmlSs+8G01cXPT628L3RuUDvMOMvJAA8SnwhPlzrVxjfd99U32czOe3D9/zr5IT2RXr7xuz5nLQGukOMer9Wyr4zn7CzBwwFUEeawHrXiyAvLbHYc3nX40CQhu+rh/PyYdmy44IR2Nqd3K/d9wd2x1F5p7OP3g5rqGspYUUgD+N+uoITq1Yq6hgnHfedrFz+/3UfuqVndFAYK/GZumJucZ35lmZ+XTObqkLKk5Gg1MIlhRVvjbjd6Y2K1i9eQpVQwS102ymor3eMSd8aUK+54nlbd/nZS7Ttjjq5xsFFWnWa9p6orpEB/nTMhMDH5ZjtGdQH8Gxd96FbdviIO0zswrsYHse6/TNACCNBbPI6hRGe+i1ebeUOV76dV4AmudDu0u2Nm0875AHonPDlTIzPtJ/fTa+m3e/Lq8xOtvOysU9R1EQ7AXmjNlL2/hT5GBrLrx4KsLHf8TXtfmq1sjr5C8wxYdmdX5ZsiPKFeL9uUIzHAdYr0+63KGZT2Uhg96mTP5++YgB6I8dXvJlWkrEV2tdWju/OD4WadpCWqMhTmSmMWjdV8Ixzi+Wetd/af0GpqWhssaSeGCFttQ01ivncyQV4N6B9EvgmFeos3DVx+760NDdlcrVrbVJF+fmdw2uh4NJLHtP7mRPkphOStRZpu2sGfidEjKrrhl/feponPAWzcOayEsSkyIqTtUuV52ynAU06xodpCVTTi0AOXp52b2AvWeNIKZrHuxX20HUEejUHYBa+FoM6r1G+ir7TVzxr51UmbG/ueWtjUr6FMSyEkcB/JsP2PYV5LjZK27RZRqKd7wKx/sQXVJxPuxsCeqKCD2DhcLdxgnoWSIzcTP5C4C429oeuKrvVzv3F6lUCoV3Fr1XZGOrnRHcuGbFyseP6grI/bXGp1TaibBHAadqd9dtRzFgdS68Wywjjzic0kY+louupU8l18hc3TpJHjvfLjK3guQuM7bVbWTq68weNTf4bifFpb3e93A1euVHoQXcYpRQkSe6UlSgjaD/xbHjN+XBZDX7pQrh0f24mnqre6xtOgrNRW8Fa1/gxTzkfXNVT/KD9/xvAm+22ILgP6Z4oFz2ssOxoK3OGzdUOsNqFRs3/Yr61u5c/7ZLy69RMTLqpVif++SjMbMpG0ym3WmOXh1saarX4Akfs/yqhbPsNb08KqysdHgGOra8XctArv+AmhEA/iq4LWAP5xCM6yKt8sN+H8WrxzetXKE6WB9nVXf60SwZw1J2i5Iz9ZMMzkanZKDx/QobfTfsT1ONEvOLcdov3t9rtvBo4TZ7GaBbn7fsxM+VRfrxcH5xp3L22dwFwD3n/DeVCaBXZ6XZeJiT7Qi30mnyH+/3wx1BnHt9voSQzpvI+m6IY7X27qdWyqTDFlHZgUhyH7T+2nSWfB/jjOuT+//0WJMqO64LtgblO833KSrrTrTO2QvtOosqWlAAaqREYOt2NHWYmiZoV1OuJWdioJybt0VPOhf/9GfDkc40Q4sqkCSoUPqICmDJ52tcwPu1NlQfOwqwVGEFDERpg3UhREBlqFMbQPNb1sPsacMx2eSud3M/dlfG2yhfi/WO4f5p1M6sZdSuQJNIOmva6tKzQvt417cIRWzirMIVbaf/5XgJfPavJegqf2gcPTXuDpucSkh2jZAumrTuTtS7FdG9lk13/tc9+d5nihGOnNIwjT0yi89tgnwwQQvUpmwBPYyamEtF35ynrS3zhyU+9tdH3Rg2niHACu28q7/zaQxNtGP3z3i6xLriOje3r/b/RMWJbyH3atT2eE9rd7/rdelkAuBmKmvZoMFcVv4dl47oz/z9uty7OQWwh3q/nrP2uc5fzhfbN+LQXhe98v0Gv0F6YT6i8HQtbZ2yF9sbU/MaFtkTJhKxuzeM73d6Re1R8ageAShOzoFFPjHA+FXmFQn3fA3rbhs1/3NJQT3EpH1LbGdTs/y8NrvsrMRqRmjKvoTZ+RVFwdz3rvhos2DXTtS5M1fMy/tZekHvuezBY+vTa3EzN9MjrHU8l2kfKqyQlz50zhXdxDdZ1QROdf73SJ2dwA6lvhqvgm4lidr1NHZhbhW/61vGe8L6Z++f7gYIR2sMV8MTbhloCNxE47h2jRR/z+B2+7Pfc9+DOHnDQhOfv3IA2mpkJlaRswjqNeZbqmyi7GUaunQ+QfmbKLqjmEn0iqI/B8+XmNZnwjtm/wH7eT9tbZS3mTrfzskU1p2l3gu1WfdoL666Yduc02htp2gvHsftNcjczP7VaVBAOzy/yPPiB6E5gtOx+O+m3iOCsNJyrnC+0r+IZDpecXxlN8oWABYpuBOFL2DpjK7TP77tg40LbIXxyajaSeVubpL/+Z+M0emyHemI0TM00F9yna0aYdIL7dAqNWq+WHeLCKBihHYxQWzO5q1NtosXXlKKBOewVwLuAlwB/BFyRmFtUwwkmQ7wvYeR4Zf/sbcLDVhBdbZnrFqumrfunPvOV/HjZcSxOG73S7rUCGaUFpdiI5c7X5Wpf7+ZCe8ROsMoTGJQqmkEmpo1eVk/oKkULUHR4aj3JXEFSu3XxC7NDeVv/lH3fPjAD/Gne/7EAMf6AryimfQMzsPuBDbcjpGyWrJ1XkeiMzf7TwJu1lNwoYSSI3TLXrRZyNvd2P5um0u28IqTkC5ArGEHFMW6BrpzA7oLQxYR26J/aq4oMqp2H5+8Cta15/8fKlQnuPi4SvRNy+wU/LDuu7+8NRfP47eAL7cfJn4VsmhSpk3vPtR3fes6v12Z97cN9dz5tcveVmEhU9TZaVcbWquvo4X/d2QPGJv0KI7Svd4zQno7tGsi2UEqhG4kZeWpdE1ytq3NhNU2gFjGL94kJo05oX+5kaZWcJrGtQNuRrabgOQqeh9lvKphWMGX3h4ovVflB6U6byiPHL7fh7GnvO8GMBPjl174S3bFdbqiNd9rohc7ou27498udXw1znbTOrC4KZQOrhCrj3DUSu6hUQ3FRM+Gsu45x/Jn7+TcHj3Ha4+apoczjpPy0fcXzi52tb0bnfNr30DuYOlcTdO9EcB4Tcd6xQlFLUPbbO8Evv/aVAzryDlFyL2gAMxI5ftTJumtdfGbcxH0zE9zNUPl2vkv0E6p8od1PvRX7/qjjD/cuZ3sCnGc/D7W9zvS46ux0Oy+73848vuX975fv8dFWCrSOtj93LKdpr4VlVDAM6N72O0MxT7uLHh/+VnhOZZ81vOOdZIOFeNt+3PcT+32Xq903kfdz2pfVoaxe7ntrmHmGb64/Tgtqw2JshfYdp2z+X1ew5AntoxgIa4AoZSWMWoLuejklEjah/QyuZRiVeamTpVJKMMJ4Fyv4KKinCm2/XsPEr2taob02dM2rCuyQbQ/bTM37j64YTftU0tvLxZYpY/+7covtXoG2TMioGuF5+8wA63b61rILOLHTGYFzTDBdyZRSdIGuAhop9SX4P1JIFqE+3aCpzKDYUCoXFDZxer5JqRPa/XyuENdSJXbyAXAGRU17myB6sVePil/xnafMlrehihkgwjztE3ehRpOySbNr/7GJlNzaweCix4MRWGI52vMhY7TvghOuEitwuejxU5g298/Ac4Af8MpPKrEpeii0R9vIJo/fsMdZphjAtUwQjf2Oi4EBxZRv/c4h9pkvtPua9phWO2aF4fb3UhTaHb7QXjZlLLuOzupoHbOwX+qGN8mN9RQYhUW56hATHmrKBETraGPXSqSMNE4AVKJQqX1tdjB1wqfbhzwq8/J6rnW3QsysglmlmEsUexKy12wCc/bVrEJv0SMZedszUzixDq22sfOH/u2pMGqoYvlZYLE12gtKZaNEMzG+7GCE9kZwIlsdlYeJUjSxViCYgW+mVmO6DTOrbWZaMN2sZZ81lRUUvLbcL1+tnzsVzAAfpnsrNMnIe/vIhXZ3rNCfNNyfeGpJMXJ8NnORqzRqxCa9boK62VzLwuYpXG/vEvquPkv0min7i4+jjiKP1ZMJ78AdmD74e5jMOC6lrfvOpE3sY9NERW6OvpkUZv6xYlsnIPtCe+w74cJAIekN+eI55MFcY4JxvwUAhz+unyAPGNuzEK+K7/v9l7+I4NhKTvue6bl3jGMYoX3U3DeqzNg+22fsf/LOHrCsV6gnxkS3zDxeBuydxb8PC+s9GuSaUswomFOKeUX22pvAjDJ+75XAF9bx9pWCPdNwvA1L3cySoGeyb7d/+pf/kH/PL+e2MymcWIN0RCOrly0wKAX1molrALDaKQYzHCWffczImiizEj+rFLPATC1hdl0zc2yVmZZmpqaYA2YSI+BnI7J3kmWDrD+4uwAxe73Pw0Hez8gQE9qdSd5u+bRn7byK9GujaZoL7T1tcguLl8JQKWvjzjQ7NI/f7rNQ6XY+BGLXz+/LljACVOz+jMOTldj4JVn2XIy2/eag3E0UBfuqT+x3up33E7RbGAHSX2DejjDqhPYVNhf8MPQnd0I75ItOMZ/2WLstm975PvIn6L8QH04hwZiu+9Hs/Xg1m/GoLLuOCWZxo0NuHu+uaVgfYWtU/dneNgvHH9idH6opEzm+rXOzbWFniPWomYk8sLpuBDXV+7Vaomgmiim7rSk13MBzAYVc7WFQutOm4fi66fWmamQnGKn+i174rN4e0F8AqNdgZX20F5QKI6hX55ontK9bTXtsFB2F07TnmGIWl+Y0zKeKPa0u88db7Kl1mdeKWaVyP8YtSAZhILpjFM3j/YG0zORvL7lPuzPJK528bFylLfGiFz5rh4+4w8T6KDDWQN96FO57OD6zE0aC2GRTkQvtsfzP26Hy7bwCpBRTvvkZLGL91qhTIw+gW1emrb08KPMKbJwT8ojzVWbQ7dxfrF6hmOkkLBMV2CNlfKF9Jigfbjda5HOC8hq9Pu3hcfv9TujT3m8hPvZMzGAW8EOfdheILjaN6rd1+zPAo3a/J+VbSV2EzTG2Uub66sJgfyDrFRS0raa9oOkrbkWjsk3KJrpTwMlu0ST6VML2DoMwgSZ2f28NHrExSqfrvdfAO8+LHnd+frxYG2vWYKGdB6Vzv+Ftq9w2VdkSMxgrglUrtLc7+TlW93Q2RYIxf5/VitmWZv7RFrMNxYyXoCIaoJH8rZjJmm+W5zTtfpmCZiAY6BUmyI0T2l003n7BeHaSQjuvKuFzdO/DRv2xCvzNIbjnobj0J1SewsTUe7Z88/hCuW0+ByPRzneBfq4+fp72FYwmr6fcgPqhYVBTpn05gX1Kmcw47wFeCrwXeHZixoymMuUiyU8rxSDaeWyK4DTt60TGKrctaShhORepfZlAaC+ZdsbGYbe45wTtME/7VqavTmh3CwD9FuLLFhJm6U355raxxYSNFhIcU+RC+2bz0AubQwLRbYVC67X/1BV0Osan3WnaI2aQwjYp9WdWsKiNoBZ+loxIr6AoCl+u3qfV4LDt1qc8n/aSHlIphSaUsmyh2brpleujvD4XtgG706yZVG9ghXZV/Nz/TpWJjvgmZ3vaxMQ3qNci/Qo9I2DZ4Ow07W41/ThmgO8XhC4c7PdhhH0wk43SSdAmTnmcKDx/WVJlBbcfKRb8+hG47Dxzz5yFjTAyxCavG/m0yx3eeWoYs1sw/rj9Um+NA6lSTClNB5MZJ9FQ0yYrzg9iBHQTxDR/VXkhfhCU3XM37vlC+2aPFeIysKxgnvueaaf7v08EejcWO0F7O1HaXWR67Hfds9BvId4J8S6wrHt/DvMM+f7sbkFsMz7tIe7zOnCUoo992bxC2BqjPJPvy/TsGTt7wFBgcNSTPBCdmMfvLKXLegpqVph1qsdR7AHCyPGuR943lTvt1YLzC/yYD3zjYPGYoWDncrXX0/jno3ThepatPaF9vdO7MDFKfu1l/cs08OiqsbggKLOFJWs/4rJbWQ/93yDuy67s+6cBD9tyaxQny4OeMPe086qRKut0arf1BJ51brHM9+/vLSeMDLE27oT2ncqoWfl2vouU9Sm+T7tvqjzOQkFDmXS1s8q6TyUwZ/+fTVwA3qpkxtmYnW7npbodTFsJA9FtNF7F3vfN46dLyvXbuv1Z4kJ7z3eCSsWEePfdDmYhfh/xhfiyOs1i4kJALrg717dN+bSXTLFqwCPkAft6FhGq30Qry9hKmc3pfTt7wLJeoZaYVu4Hoit76oStU+ipvH+c0N5Iej8blcueLX1S7MX22uGlYQuFaaK87Z0H7y9+P+zZm/b61Ea4bZadW0PlKd9WyYX2jUa/KuL3L/4CTqMGiysw28jLFWalxWBm/Sa6bjA+Ybd+2hooT/nm9vfZcivEo/EOSmAHr51XlTTJBfJGatrik/fDL10Il9fhlx8DTznPvJ8qsxgnM5eRoey5KvNp3+6zUPl2XgH8+Bwr9AoGo9TtbxalFFNWWJ9PbIBdmw1n3r4/W5XMOJtgEO089uw5n28XpT0rq/oL7LHpftMeJ1woCo9XVh/HFHGf9o2InZ87J2eKXroQH3lhz8OlfIM8DR1s3Kf16+ucefyeDeovbJ2xNY8//sjdgzu48nZqiXnyOl0jSMZa4jiNHsMgdv1CoT0sOxKXXPUK7oltU02KjlMQPbdX/eSLC4crlIM8ZVytN2BfT9kqEzu3RgKrvtCe5gVH5LSA4igKvYtTR9rwxFqwbK56y/bBD950gnxwLxvQs2bpmdK5fKvHsJfbq35hO4BrX2jnFUSlCt1IjcUVmIuRKmMOf9l5nkCf2Fc6cSaso042mdfFxTAo+hCfyqS06u18t4ld8xq5pv0kZpichJRSSpm0tjU0XZULWlkfPkL9yW61cye0lwnH0SlRydb3aT+bXgE4Oozr3uP4weNclPaNBNqyz51g/YjduiljuBBfVp85css7h5snpF459/1+9fLN9qdsnXxbMwnnsjOMrdC+48Qm1QojKHQwk7WmNMWdxPiKEu/JmqGmPSgzCgOYk4z8rev9Tq+bDjAatrik94xpa6ecpl31lve3VSY8N7dt2nSLbqRopvH7PwrnCPE269wapoLQQn3uX+wjf6J7nHwF3JXxB3mXOqggwNvtPvv9cBK00aRjIqgnoGuQdPLFt65tm84k3gnssWwOQqXpN5nfKfN4IScUiNzWBaLrYqZeBfP4CRAMlM0yIuTEhEdF7ha2TnnciX7H8/frGCHbT/mW/Sa97bUwfnoC7Rx5IFeXii42tSud4nmCt+t3HsK4r/ljdb+XG31mMQtfPk5oL3v+QmLvNTA+7Zf0q8cozNEriMwctkKskTmhsd0ZbcGosoTCmt1xQvuoalehKKRD0Vy224LDLROBGtiUEBpbWGpGhPaRskaw+HVNvHNrt/NILI3IVGYEBoa+EfKn7LrqjGcpEcZC8I9FfH3D92k/SW7q7h+mZ5JBrwZrD0bT3qI8gu6kopQVyqdrxsJlOjWLLTM1s52uwXQNFWunQqWJTV7d/gwl2jJ5JgaC82l3GsIZZNFQKBe0wQjt/RbWygRI/13nYrZKSZuLPO+xo05RNEnfTJT2Mly5hyjmQ4cSbXvw/VnyBQQXpDbm+hb97T4ZHlxUe5fZQfrEnWNshfazz798cAcvPMl2ArbcLgYWGkXBqMr05LCy132EtatZrvaClKRMTmcXePraQ3CPl+PZlnMd5jv/8NrC+z3+305DG8lnPzLE7i8YoX29YwJBQjHY3sjN3jZYnJqx21h8g03gC+0nMMJ3eInCSLOhAA9wOkbT7sz6YgzikmftvOIopVC1xCy2TNdhrm6E9uk6aromGvYRpqxLWQc+CXwzUmarz8KotPPdoOxaOk27E9pdXIEwyNXIdP0TyCDaeZnwCEZI3mzcibL33Ri6xMYZC/oJtE3M+OnGY98CoB9lv9XEmKKf7pUNF+LLssPMkmeEgV6hvSBwB9t+dXLXet57v1Cf/qcq9GFsr93RI3fu/EFjT5bTYK63xdlgEMRWQBW5hcOIalcznNms61ljqaIOHDbn5BaFVP7YvubVL+09pi/4OU1tQdPufT4Kl6pME91IYEUbwR02jLQ/EoTn6hYiXGyCYPEmDGbWb6LrAswcp5jP1R0mG1RtHQp52+1rH3nq8ZjQPqgrHW3nFUYphUoVKk3sa4TaoNCDeS56J593YCbxdwNvJi64b4VRa+fDwLn6LNt9t8iItx3bie2YsNPtvJ9ACyatWU8MlpLpz0aR6MPo8ZsV/t12GjN+xqK0b+VYbn8Ko2nvtxBf+J53fi5Pu8a4m0Bv0L5+9YodE+/785G6jEpG5qoytn1bp726caEtET7JdsdF5V5vFYN9jZpgVFXKegsnoI20dpU8QJX/6kkVdW4xTZS3TnHWmfvMTqHn9C6AE9pHOTWej/J2mjUbytwK7aP8rJUtTrmI+NP1vMwGEYJjA3uN3AzuBL1RZt0rFNTDFfp9GPN4txpfNjHZaX+1rJ0LwhBQSmXPR0Ie++GTQbkbvc/c87MVpJ0XiQ3pvtDux+Yo64uE6rFb7dwJ6ouUj1dlgmi49YPahZr2slRmMYF2GjNtceOxr9WObcvq5GhihPa+C/HEF+Fd5gVfWloj1z/GxJnN4M7JmexPQqDI3WJshfaBEHsC3f+LujfcorAzxHoMp2kfde1qosw51BIjoDXTYqqo/+NCePK55rOaTReVlDy2sR4x1LSPmAsBEF+QUOQ56Nfa3jJ65PxG4TwL0nOknc9EYt9uYZGiTu76v0AutEN8BTwWjA77veP0mtDFtoIwTqSYbjRVZlLbAF4RlHkl5jNXRiZYO4Pftzif9iWMltH/XPJATy6x6bmbkvvm8Vs6pj8UY4TbRUy724yQHSvjNO0u4FuPgFwyrJdmnSYX2ssW4svq6oR238e+xeaNhsvOMTSP98uWLZQIm2Nsx5TZPfsH/yN+y1slLhgJp0Z0oQSToxu2JLhUEaWUsRbIUkHZQFZPOw9+4Zlw2fnGL71hhfpGWjC1/dytB9yRiqodt3Ua9i88APc+kn1v5GIuxEbGhhdPYiosP4LnF42Qb/+ZCixKspGveIJlEwg/evwxiqvyscE0ifyUwkSofZQ86m3hNwf4KObtXBCGQ90J68o8ltMKrgDeDbwUeC/w7MR81sBMB7Y6wZJ2nhOuXzp8TftMUD62FarHINp52f2vYYKvlqYo3eA4bt8tFvUEolPl34ltpzBtd6tR2ss+dzEe9nnvly3Eh2N6at8PhfZ+JvubOUf3fT8QXeElD+e2GVuhPU13OAlLtMXaf9zsNYweH5YXTh13PR9ZNNv7HmFktasWVTPCOE37mvK2U977zTQ3l7YsLIRZNj0SBfcdNftHgL9+EO55yP6o+/FRuFChMOueO3stFjv5fs8oMgrnF8FV+6ht5985GozucQm51P2fXk27/3ksiFNMmD/Nfr8nVQ3F7+00fdu5IOwCNaWYUjClYDoxr9kEfjCB30ngeYkR5Ju2TFOxZTcRaec5ZQKBHz1+zi9fIjwJ1WOn23m/cWgKY47eL0Vp2fH8fV+imKZ3rIsJ/7EsLFOY8XOzUdr71dPVBXJXkbKUbxC/PnvpFdp9HchGz1XsM1/TvtHihrA1xlZoP3ns/p0/aJkg4FpoT8q3YAYtbI9woeSeR+ArNubltYc8QXR0r7dq5CmhsvRQU2meOmq6hmqmPZPAK3/sufYAxHO+HwiC2n318LYjkA8Vf3k2fA4X2yabQNn9H6VzzPYj7dxP/xeOxhvgAtFpjHn7Psp932I/oWz5fcDDGG1DaJo6yAE5a+eCMESaCmYUzHqvOfuaTcz/M8oI77VtLBhKO98Y15ctkQtPeNtMQBrVBdsJYBDtvGz8mcLEcYkuMsfXvqNjmi+0+z7tMeG47Bjuu8433h9DNxpHCwK396ET/PcF5cKF+LI0rjOYZ8nhctpvhui0jPy8Qk27//vC9pDrtxVKw0ranbTkcxk8tk8sldmBw8UyXz/SK3GMICpNrKBeh9maSRc1XYepmtHG9/tuosx5J94rVfDMwE3kB84tfj4KEm1sFHPtoQEstvIUgEDU8qLqhLnXFXB70M4PHAmSrsZnHLHBv45ZQXeDs4s0WzaYFiYiXpX2YQT/RYp+b4MU2AWhKiRKMW2F9fkE9iQwZ7fzyuzPJtAQp+odoSCo2H0ntK+Q++TuxsKhMJo4d4rtpnzLpvlemZ5jbUL4d/tTmPFzq1Hay953AvZeyhfi+52zL7RrzGJCTGjf7OIG5OflFjdi9RK2x9gK7Urt8KmVPtkKUiswSA7enUdRFDITBc8Moqs/a39RWFXKCLEjSCxVVD+Nwdraev6PH4HeD2r32gvg6TUT1O7S/Xk0pVSNTg9QtiAzBZxcH/3Uf8pr3+5VlkUgK5dsWptUxwzGJ+3/brJbNpi6/cx4w77vAsscpiQYT8nk5VQptHNBGCJKKZqJMlr2BPYmRoCfS2AmUdvSsDuknW9MDePq42vaB93/CDvLINp5mU6tHmy3i/u+09hvVfh3TGEE9nU2H6W9X953t4AQBqKD3oV4t/WPP0dR096mmDu+t27FysUWJg7Z7R1eHWRBbWcYlSn7ljn7/MsH+wN+w3XCeurFaZSWuTM4YSZVeYT1p+yHX7gAnlaDX/Siq/tC64Twrvd+MP+nluQB63w/+KeeBz//TLOdsn7xDRvUblQE27IReSqF5TVznhAtMxLnmFBccKkn8CSbReDpNbN90n7zfiT1nyM2MCtyP9Dj5AFr+vm+EfncRZTfC3yP3TWPL7RzQagAShkB3b3SHehnpJ3nlPUnvtA+55UJ+yqhuux0O+83BvnCtvtso7EqHD8hb1Nhmyv73bIpi0v5tpUo7bHjuK07L+fbHtW228rEBGinaY8FotvOwsQ3gb+1+2+1//ebZwhbYyttZqR46MEDO3/QspbmNO2FPO1eYWmh20YlCl1LoKahrqGrzfV86rnm5QQYJ+g0bGq0CeENv/oz2b5KFLqRQsd2v5kJPPn/2XVKjTn+KBA+P5mrhIJ6DR5dg/1edPXCd0bj4VNKoev23nXt/UsVPOVc84L83tn7V9bOVWTfdfQnyLXl4WQkDHWQKED3DvR77HH8gX3Qq+h+OxeEcUXaeY6y/U/Yt7j0lSsEAbOCrVBdBtHOexas7TDqhNlQ096vvZQJq3V6s6b0SzMYO840RkheY/NR2v0y4XPRAM706lImIGf1Dcb1OUxQR8c6cfP/GEqBssdKFCQabg7KfBx4nsoX/X0PP2HrjK3QrnV3MAeOtV4X0XuChMVdpZ4YQUbbnqqtioKpE0YbCdTTkTWN3w7NZjFLgkoT9HQd0g60u9BNzLVyPWXdXqP6iLVVf+nbp57a0LBpXo6SshVH1RKz6KLJ23U3WIBJlbEqaGzeNB7yCctR8oA17rBlA7z/cgM9wOnAd+nNezvIKx62c0EYR6Sdb4yLz7FCSUopEQoqz6Daeey+u7GvVHscfCkmPLv9afovFMUWzENB25nHbzVKexlHgUcwpujfb98rXYiP1G0W4zbnNO1lgehidUowQmSqrF5NwSs03OKVeYVfBmMgOBLWjxVlbIX2nUYpZRp17Klqepr23i8OtmITgFIK3Uyt4NKBdpILM2B6g8aIaY8HiEoVeirNBXZ3qawv9KgtavR99qZtF1ZP4qPKiD1/qpGiXTtPVX7vnOTsFl36uIDEJhK+0L4nUiaMuKyUAq2jg7xLF+dPOGK/LwiCcCqU9WUtTOrJMIp3uC8IodC+GcqE5yZbSzPoj5/u5TT/i2xeOC6r178AX7H7/zfwB8Bz+izEx7YzGHc3RwsjyPdbvHAkmBBJdW3icXeAHwDeo+FjwL8FrlDms4YyQn0sM7awecZWwtlz2mMGcFRV2GQCQS2iad/OkplQilLKpkWrw4xNjTadmv2ZGjRrEymw3/iJW6Pvm4B2CaqRmlRxzRRVS0ZOYM8pefZcALr6BsvlI4SqJTBVg9l63r6nazBTh+bWBXbIJwePkAvdG0V0LWjZyU3vTrOfb1ZzsROUtXNBGCeknW+Mix6/Ri60O0a4258odrqdbyZQW6Pk861QI75YHdUXlGyd0L5AMeDbRsQWAD4elLnJO17PQjzxtG/OPD6mad/oeimlaCqYsoL5lDKZNZ6XwH+322n72bT9XDTFp8bYXr9OZ4BRWEO/WWeaK0tIA0elKo8hIDA/H05bxhz/2VNAw3ZhDU/THqYJHEGUM4/fIdwg/ChwIb0r8YreFdzwM1cbX9N+qpOgzTJx7VyYSKSd5xQ0fIrMvNjP0z5DvC8bMQOriWMQ7bxsLIoK7RtoyMviKdQoZizobXfFo4VtF/Kx+ARFTXvv4nfxWFmsWutDngIvA/7RK/Ny+76LU+vPlMPju/F+FrOA4NhKnnaAmlJMK50ds6Ws96r9obon0DdV73kJW2Nshfalk4c3LrRVYo1NkWvYk6RYTvmFBGHnef5zB5wloSok4TNlaajiNqYunjBiEwU3eDtNezhwx4LDuJV5pYsTk9Pt52WTIM3OMzHtXJhopJ1vjJu0LpIL7bCxICZUh0G189jY54T2UHsc7ofvxdpSg1xTHmt3mzmWsnU5gXFV2+g3HU5gT5WZ7rSBZ2l4B0bj/m+BZ2FN0G15X48YLjA4ZjDxIcCM3S36LybEaCSKRGtqGtrahJ3S5AsHDRHYd4yxFdoHQlnrdaa5aViuz9MsCMLW8J8rR9OKnY2k9zN59oDiZThCPlGIRZqNfTf8/Kjd3gs8LvieXHJBEHaKWN/iT1pn+pQTJotYG1D0N4/f6Fj+IgAY646vYnzJvz8s1+cYYRkX/O2MsEwfkSETfjV0FHTt956t4dnYGLVWo+202gVNe7CY4bZhnvYWeS76zdYNsKkvoaM1Lgy4wkWMl6dypxhbJ+C0VhYm6RSJCQ41r3lL2xR2kYcfOT7sKuwO2ehJcTTJhPbgweuxdpkcyiYmbvKyL/i8LGWNG6T91x3AX9nP32H/7/ebO8XEtHNhopF2XiQm+PhaQBcwK/YSqsug2nnsvjeC7Ublyz67AzgMPAS8GZN/3C+3Ga29Yxpjkl7mZx89luc/Pq1gRhn/8fkE5hKYs+/5QrsvLPvPhu/bPodZQHBsJU97jFQp6vZVU0oE9h1mbIX2M865dOcPWiY4lEWuFoQB84Frbxp2FXYP/xlzo44T2ntSvrntZD2Y/SYALr/sXuJB6MIrlXrvOwH+k0GZT0R+cxARJyaqnQsTi7TzjfE17bF80pPV448mg2jnZQJmKLRvJIj6gdsyIZfese9G+ruXmWPFf8uZx2818V1NKWYSmLWvOW/rv6YV1CNzHxXZd+b+LgrYKlvzaRd2l7EV2h968MDu/VhNeQ4z3mMxaPWTMPH85q+/ethV2B3KhHAntNe8UGnyvEVxXZRL+eYL6rGBwAW78YPaXBmUuZL8s0Tlgv5OMzHtXJhopJ3nlAlXrh9zpvGxtJRCtRlUO4+1AddeamGZPgs84Zjmgr75vII897gLEhfWJabdhjxi+3Y02jWlmFEwb7Xse5R5zXva9kYkiG2ZRYpLYedM5MPo8fJcVQvxaT8VXCs+umBa+n2PwBPPsZ+JACEIO0bpkrXV607V4oL9BD5/ZYOsG4hn7TY0iw/L+9Fqa8p4IHy/Nrlgb8QI7FngG5UHvxFzOEEQBoWbtBbyZUdewmSRGcIGftu+YLxZ4bimrECuzbjXIR/7bsII7FdYXZ0vuJfVK8Q572414JsjsabyDa3R3vi9UaC32DVy12cZk861Ta+mXQT36iBC+1Yp2JcouOcR+JJNmHDtIXiNgqecO5SqCcJEkEmZCh62z973TsBZQRqZSRUeIxMXMNqCfeTmfqH5X3i1lFLUtaapzEDetQWereEH7HfqKvefayoxqxMEYeeICRnO/WbKK1PYTmi3LxjC298knlu9HzXMuOaioLtI6M+1rxp5RPQpu6CdhunelAKtowsFrj5Rn/Y+FgAhSqnNl4283ELDHkw2BjALFE3vO2HdhOEytubx+858ws4f1M//7Fr97UFquQNHig4u4mQlDJDrPnTLsKuwO2SzN497H4aPP2L2/+GI+d+V9bcCYCYa83bfXZrMtLTkWjVUHvhmSvX6z80mMJ3kgnt9QNd8Ytq5MNFIOy/STzPqa9r9KVlYTqgeg2jnPYvOdnsI46f9TTavbY8GfbPm53Mq9ymf8ca+fnUKt86PvMnuUnbOM+Tm8WvI4nuVGVuhfW3l+M4fVCkzOvivZwZa9Wfuzx1YEgVKSW5CYWBcesljhl2FXcKblbnn6+vhgtnh3oW1CZu+9ZuQ1DDmb47NTHSVUkzZSct8YqLVziZ235/E2AnOoPq6yWnnwiQj7Xxz1MkFHx+/PxOqy6DauT+WKYyg/vf2vbeyuYjvjppShUXqeeUtWNsxz/mQ93MJ8/UNrlRoHr+ZhYRTxdUj1LaDeZZ8ob0sqr0wfMbWPH5l6ejGhbaKwjp5KhP4qq7hyfvhtcBXD8P3nwuX7jfR5F25MDqFIOwglz/tkmFXYXdwz56/YPasc+GOB/Iyzzw3L5OVH1aFh4dNKVswLQWzqj9P7yCcmcqXTDwSpZhGU1emy9NAV9vbgJl41AcosMMEtXNhopF2nhMTGtx+A6MdLBMsRFFSbQbRzmNt4RNBmY9jcprn7aT/MWtKkaCpY3Kjd8jNyuvKBl7dSGCP1MstOPXztx8EhWfJmxvsIRfaVwmEdrU7dRM2x9gK7YNAJQpdT6CjzatrHa2ecq55JVZIryfm1UhsVGtBEE4FlSi0s3Rxz9iT9sMvKvjK94wA/8Rz8mcvVZAkMnnzOAEcweSb/QH7XlmqmhClVCacd3XuYCpB5wRB2G3q9EaPDy2HhMkiUSZoqh9A9WXAp70yL8MEmXOZURI2HsMSpWhss1GVLSrFAtHFyu0kzsc+lm1hBuPT7hb8QwuAQdVJ2DpjK1E2puY3LrQdagk0UiOQT6UwXctfUyk07auRQD1FRVIvCMJOcc99Dw67CrtHwy6E+c/fU8+F13yf2U6ludBen9wFs9jE9Q6Mb9+jwFso+vdtdaKbKJW9douJaufCxCLtvEiZENPAZMEQE97RZBDt3AniLpNJXcH3A+8AfhT4fzH/u8+c8D5IFJ7HnvdeTNNe2A6oIZc9L7PACsaSAMSnvcqM7ax2ft8FAzmuUsoIDE5Ij72mjTCvJlRoEHaPT33mK8Ouwq6hUk9gd4tjbuHMXzCrm3JqAl1TlFJZrnT3SoBPBuVuIjeLT1T1Ta4mqZ0Lk4u0882RkmvaRXAfPQbRzhOlqKs8k4kLIPcc4D8Dz1E2sFxiAqw2YNsa9M1S1jZd222w+yT0+rbPYjTt61695LmqJlWfq22bo4f/dWDHNoJ7ik4T6HSNqTzkpruJEg27sCv88mtfOewq7CqqkaITBWnHPGtd62TtpE9n4TLBC2ZO2+DyzNaAfwv8o1fm5a6MV77KTFo7FyYTaec5mtzvNhQcloDPAk8lTz8JuVZTqDaDaudN63fetUJpTUHbThGcH3pD5dlQwjRtg6DgR+7qabe7LRzHTOPBCO2PUBTaY+Xk8Ro+Yyu07wYqVZCmGxcUBGHHULXECO4NG1vCCe2yYAZY80CdT1A6wA9oeBfwMeAVwLOVMYFzpoSTu8QhCEIVKRMY7gBO2tebMf3acyPlhMnDBU1VifFpX9dGgHdCe41ibvVBU9Ymo3na1S4J7nYhzBfgZ4FlcqG9J6q9kueqKojQLgjCyKFcBHnpwXpIMZOSNmbC4t57DmZym1qBfToxGoemkoBygiBUC9+9xxlSJTru6vODXrmqWw0JgyVVihkb8b2loIsxyEutZZnxZ9+dRlJmKVLm0x7u7zT9NO1LQGsX6iCcGmOrYDlj/5OHXQVBGDh/+pf/MOwqCBVD2Wi308rkUvdzzbrc6rNJbiK4GxqHU0XauTAJSDvPcfE5UqyrD+b18qDcK/Ay8TLGk9oxYtDtXClFI1HMJopZBfOJyas+nahdE9izukS2LlHt3btak956xIT23cwdL2ydsdVTLRx/YONCgjDivOiFzxp2FYQK4rQNLqJux2ocsPnV6+QC+yikxZN2LkwC0s6L1JR18yHvw67Q8G7gRqyrT2KshZy7jwjt1Wc32/kwrcgKArICpY17xx/Z998OnAlcwe4IxzHTeCiax095n4ngXj3GVmhfX10YdhUEYeBc9Ljzh10FoaIkSjGjoKk1bW2FduXlqR0BYd0h7VyYBKSdF6nR6+pTU/BcbVx9anbh0UULnxqRRchJZ5LaeSggfyL4/BMY1zW/zCBbsDu2L8DPAicwQnuzpLw8VdVgbIV2QRAEwQjnE5j9ThCEEUcpRRNNB1CJCbDZ1kbr7vzXXequqV30VRaEzZDgFshNYLwa8DLgFq/Mla4MNkzPAIO+KeIa9BnMov4qIhRWnbG1JJqePWPYVRCEgXPgGweHXQVBGDjSzoVJQNp5L85iaM6+5hPYk5iti88xl0BzwrOGjBKT0s4VeQC81Lp6PAv4A+BH7fb7MYtOfiaXQZr0x0ze5+z+SXKhvaecPF6VYGyF9ub0vmFXQRAGzp0H7x92FQRh4Eg7FyYBaedxEqWYShTzVljfo2BvkgcYq4tEMVJMSjtXStHAWIG4VHPTCp6j4D9jti6Di3sNMjCs07K79S0nADo/9kfJA9G58rGtMDzG1hLi+CPDiMsoCLvLq37yxcOugiAMHGnnwiQg7bw/iVJG0BDpYaSZpHZeV8ZPvANg88e3NWjPxcMJ9FNq8EJZTBBXGBP5Y+QCPOxe7nhh84yt0C4IgiAIgiAIgjAMlFJMoY2pPCbYW9tmQkgwQpiLydAccCBFVfICYyJ/nDx3vFBNRGgXBEEQBEEQBEHYYRIruNcUrNtMLl2bfjXB+rSzO5kPlI0aH2rQpzBC+1TsOwOvlbBZxtan/ezzLx92FQRh4LzzD68ddhUEYeBIOxcmAWnnwiQwie1cKUVdKWYTxazK4zHMJub9XRHYg5cfu3EPxjy+Trkvu6RTHD5jK7QfPXLnsKsgCAPnNa9+6bCrIAgDR9q5MAlIOxcmgUlv54lS2WsYxH51hmIgOhHPq8nYCu2d9uqwqyAIA+esM/cNuwqCMHCknQuTgLRzYRKQdj4clFKlfu2zmDztzfA7wVYYLmMrtAuCIAiCIAiCIAgGRZ533Qnjs3Ybatr9CPLC8BlboX12z/5hV0EQBs7nbj0w7CoIwsCRdi5MAtLOhUlA2vnwSIhr2ufs5w3K08IJw2dshfY0lcQFwvizsLA87CoIwsCRdi5MAtLOhUlA2vlwiZm8z9htI/KZUB3GVmg/eez+YVdBEAbOlT/23GFXQRAGjrRzYRKQdi5MAtLOh0dCbvIe07TXg/Li014txlZoFwRBEARBEARBEAwxs3enaa+XlBOqwdgK7UqN7akJQsba2vqwqyAIA0fauTAJSDsXJgFp58PD5WZ3EpITyPv6tEswusowVMlWa8373vc+fvqnf5orr7yS3/iN3+Dee+8tLb+wsMDv/M7v8PKXv5yXv/zl/M7v/A6Li4vRsmeff/mgqi0IleFd7/3gsKsgCANH2rkwCUg7FyYBaefDJRZozkWPF5/2ajNUof2DH/wgN954I29/+9u5/vrrueyyy3jjG9/IyspKtPzv/u7vcuzYMa655hquueYajh07xu///u9Hyx554OsDrLkgVIOnXnLasKsgCANH2rkwCUg7FyYBaefDo2Aa7/m2x8zjw/LC8Bmq0H7DDTfwqle9iosuuohms8nrXvc6Wq0Wn/3sZ3vKHj58mNtuu43Xv/717N27l7179/L617+eL3zhCxw5ciRydD34ExCEIfOpT31q2FUQhIEj7VyYBKSdC5OAtPPhEprGl2naRWCvHkMT2hcXFzl8+DBPfvKTs/fSNOWSSy7h4MGDPeXvuusu6vU6F198cfbexRdfTL1e56677tqVOguCIAiCIAiCIIwaoSDuhECnaf8o8M0+5YXhUhvWDy8vmzyNc3Nzhffn5uayz8LyYdmy8lprGs15Tp48uYM1FoTqcfDu+6WdC2OPtHNhEpB2LkwC0s6HR0drFruwqGGpC4tdWAa+jrFP/ibwfwFvA65QoBNsnjhoJCK6bxbXvrXeWavvoQntMzNmXScMJLe4uMiZZ54ZLR8LOre4uJgdy7GyssL62gIXXnjhDtZYEKrJ3r1/N+wqCMLAkXYuTALSzoVJQNp5tXnDsCswJqysrEQVzttlaEL73Nwc+/fv51vf+hZPfepTAeh0Otx111386I/+aE/5iy++mFarxd13380TnvAEAO6++25arVbBZB7gjDPO4LrrrmN6ehqlZGVIEARBEARBEARBGCxaa1ZWVjjjjDN29LhDE9oBrrrqKq677jqe+cxnct555/FXf/VX1Go1XvCCF/SU3b9/P89+9rO5+uqreetb3wrA1VdfzfOe9zzOOeecQtkkSTjrrLN25RwEQRAEQRAEQRAEAXrdv3cC9elPf3poYdZdnvaPfOQjLC8vc+mll/Ibv/EbXHTRRRw5coRf/MVf5G1vextPf/rTAeMj8O53v5vbbrsNgOc85zm84Q1vGMiFEQRBEARBEARBEIRhM1ShXRAEQRAEQRAEQRCEcoaap10QBEEQBEEQBEEQhHKG6tM+CLTW/MVf/AUf/ehHWVpa4olPfCJveMMbePzjHz/sqgnCtviTP/kTvvjFL3LkyBGmpqZ4xjOewb//9/+es88+Oytz5MgR3vWud3HgwAHq9TovetGL+NVf/VXq9foQay4I2+c//af/xOc+9zne8Y538KxnPQuAr3/967z3ve/l/vvv57TTTuPVr341V1111ZBrKghb54477uDP/uzP+Na3vkWSJDzucY/jPe95D0mScPfdd/Oe97yHb3/728zOzvLyl7+c1772tRJYVxgpHn30Uf7oj/6Ir33ta6yvr/PYxz6Wf/fv/h3PeMYzAOnPhdHjU5/6FNdffz133303y8vL3HzzzaRpmn2+Ud99qjLq2GnaP/jBD3LjjTfy9re/neuvv57LLruMN77xjaysrAy7aoKwLZRSvOlNb+L666/nL//yLwF4y1vekn3e7XZ5y1vewvz8PP/rf/0v/sf/+B/cfvvtXH311cOqsiCcEh//+MdZXV0tvHf48GHe/OY3c+WVV/LhD3+YN73pTfzP//k/+exnPzukWgrC9rjjjjt405vexEte8hI+9KEPccMNN/Crv/qrKKVYXl7mjW98I5dddhnXX389b3/72/noRz/K3/7t3w672oKwJd71rnfx8MMP8+d//ufccMMNvPCFL+Qtb3kLJ0+elP5cGEnm5ua46qqr+LVf+7WezzbTd5+qjDp2QvsNN9zAq171Ki666CKazSave93raLVa0hEII8u/+3f/jksvvZR6vc7c3Bw/+7M/y913383CwgIAt99+O9/5znf4tV/7NWZnZ9m/fz+/9Eu/xMc+9jHW19eHXHtB2Bpukvcf/+N/LLz/8Y9/nAsuuICf+ImfoF6v84xnPIMrr7ySv//7vx9STQVhe/yP//E/eNnLXsZLXvISpqamSNOUpzzlKSil+Kd/+ie63S6ve93raDabXHTRRfzMz/wM119//bCrLQhb4sEHH+SHfuiH2LdvH2ma8opXvIKVlRUeeOAB6c+FkeSKK67gxS9+Meedd17PZ5vpu09VRh0roX1xcZHDhw/z5Cc/OXsvTVMuueQSDh48OMSaCcLO8aUvfYlzzjmH+fl5AO666y7OO+889u7dm5V50pOexOrqKt/97neHVU1B2DJaa97+9rfzmte8pieV51133cWTnvSkwnuXXnopd911125WURBOidXVVe644w6SJOH1r389V111Fb/yK7/CZz7zGcCYV1588cUFk8snPelJHDp0iKWlpWFVWxC2zM/+7M/y+c9/nqNHj9Jut7n++us577zzeMITniD9uTB2bNR374SMOlY+7cvLy0Bvbry5ubnsM0EYZb7yla/w/ve/n//6X/9r9t7y8jKzs7OFck6gl3YvjBI33HADWmte8YpX9Hy2tLTEBRdcUHhvfn5eBBlhpFhYWKDb7fKJT3yC3/u93+OSSy7h85//PP/9v/93zjzzTJaWlnrmMH5/Hvb1glBVLrvsMj75yU/y0z/90yRJwp49e/hv/+2/0Ww2pT8Xxo6N+m6tTbK2U5FRx0rTPjMzAxiNu8/i4mL2mSCMKrfeeiv/5b/8F97ylrdwxRVXZO/PzMz0DHTOdF7avTAqPPjgg/zVX/1Vj1m8Y3Z2tqdvX1hYECFGGCmmp6cBeMlLXsKTnvQk0jTlh37oh3jGM57B5z73udJ2DtKfC6NDt9vlt3/7tzn99NO54YYb+MQnPsFv//Zv8+Y3v5m77rpL+nNh7Nio794JGXWshPa5uTn279/Pt771rey9TqfDXXfdxSWXXDLEmgnCqfHJT36S3/3d3+U//+f/zAte8ILCZxdffDHf+973OHHiRPbenXfeydTUFBdeeOFuV1UQtsU3vvENTp48yb//9/+eq666Kosi/F/+y3/hHe94BxdffDF33nln4Tt33nknF1988TCqKwjbYm5ujvPOO680ErwzHe50Otl7d955J+edd54INMLIsLCwwKFDh/jJn/xJ9uzZQ5qmPP/5z+e8887jS1/6kvTnwtixUd+9EzLqWAntAFdddRXXXXcd9957L2tra7zvfe+jVqv1CDqCMCr8/d//Pe95z3v4vd/7vYKG3fH0pz+dxzzmMfzxH/8xy8vLHDlyhPe9731ceeWVNBqNIdRYELbOD//wD/PXf/3X/Omf/mn2Avit3/otfuVXfoWXvOQl3H///dxwww20Wi1uv/12brzxRn78x398uBUXhC3yEz/xE9x0003cdddddLtdPv/5z3PgwAFe8IIX8EM/9EMkScL73vc+1tbWuPfee7nuuuskFZYwUuzdu5fHPvaxXH/99SwtLdHtdrn11lu57777eOITnyj9uTCSdDod1tfXabVaAKyvr7O+vk63291U332qMqr69Kc/rQdyZkNCa8373vc+PvKRj7C8vMyll17Kb/zGb3DRRRcNu2qCsC1+5Ed+hDRNe3Kuv+1tb+PpT386YNJhuTztjUaDF73oRbz+9a8XoV0YaX7kR36kJ0/7H/3RHxXy+sokTxhFrrnmGm644QYWFxe54IIL+IVf+AWe//znAyag0bvf/W6+/e1vMzMzwytf+UrJ0y6MHA888ABXX301d9xxB+vr65x11ln81E/9VBazRPpzYdS46aabeNvb3tbz/jvf+U6e8YxnbNh3n6qMOnZCuyAIgiAIgiAIgiCMC2NnHi8IgiAIgiAIgiAI44II7YIgCIIgCIIgCIJQUURoFwRBEARBEARBEISKIkK7IAiCIAiCIAiCIFQUEdoFQRAEQRAEQRAEoaKI0C4IgiAIgiAIgiAIFUWEdkEQBEEQBEEQBEGoKCK0C4IgCIIgCIIgCEJFEaFdEARBEARBEARBECqKCO2CIAiCIAiCIAiCUFFEaBcEQRAEQRAEQRCEiiJCuyAIgiAIgiAIgiBUFBHaBUEQBEEQBEEQBKGiiNAuCIIgCIIgCIIgCBVFhHZBEARBEARBEARBqCgitAuCIAiCIAiCIAhCRRGhXRAEQRAEQRAEQRAqigjtgiAIgiAIgiAIglBRRGgXBEEQBEEQBEEQhIoiQrsgCIIgCIIgCIIgVBQR2gVBEARBEARBEAShoojQLgiCIAiCIAiCIAgVRYR2QRAEQRAEQRAEQagoIrQLgiAIgiAIgiAIQkURoV0QBEEQBEEQBEEQKooI7YIgCIIgCIIgCIJQUURoFwRBEARBEARBEISKIkK7IAiCIAiCIAiCIFQUEdoFQRAEQRAEQRAEoaKI0C4IgiAIgiAIgiAIFUWEdkEQBEEQBEEQBEGoKCK0C4IgCIIgCIIgCEJFEaFdEARBEARBEARBECqKCO2CIAiCIAiCIAiCUFFEaBcEQRAEQRAEQRCEiiJCuyAIgiAIgiAIgiBUFBHaBUEQBEEQBEEQBKGiiNAuCIIgCIIgCIIgCBVFhHZBEARBEARBEARBqCgitAuCIAiCIAiCIAhCRRGhXRAEQRAEQRAEQRAqigjtgiAIgiAIgiAIglBRRGgXBEEQBEEQBEEQhIoiQrsgCIIgCIIgCIIgVBQR2gVBEARBEARBEAShoojQLgiCIAiCIAiCIAgVRYR2QRAEQRAEQRAEQagoIrQLgiAIgiAIgiAIQkURoV0QBEEQBEEQBEEQKooI7YIgCIIgCIIgCIJQUURoFwRBEARBEARBEISKIkK7IAiCIAiCIAiCIFQUEdoFQRAEQRAEQRAEoaKI0C4IgiAIgiAIgiAIFUWEdkEQBEEQBEEQBEGoKCK0C4IgCIIgCIIgCEJFEaFdEARBEARBEARBECqKCO2CIAiCIAiCIAiCUFFEaBcEQRAEQRAEQRCEiiJCuyAIgiAIgiAIgiBUFBHaBUEQBEEQBEEQBKGiiNAuCIIgCIIgCIIgCBVFhHZBEARBEARBEARBqCgitAuCIAiCIAiCIAhCRRGhXRAEQRAEQRAEQRAqigjtgiAIgiAIgiAIglBRRGgXBEEQBEEQBEEQhIpSG9YPf+pTn+L666/n7rvvZnl5mZtvvpk0TUvLLyws8O53v5svfvGLADznOc/hDW94A3Nzc7tVZUEQBEEQBEEQBEHYVYamaZ+bm+Oqq67i137t1zZV/nd/93c5duwY11xzDddccw3Hjh3j93//9wdcS0EQBEEQBEEQBEEYHkMT2q+44gpe/OIXc955521Y9vDhw9x22228/vWvZ+/evezdu5fXv/71fOELX+DIkSO7UFtBEARBEARBEARB2H1Gwqf9rrvuol6vc/HFF2fvXXzxxdTrde66664h1kwQBEEQBEEQBEEQBsfQfNq3wvLyctR3fW5ujuXl5Z73u90uR48eZXp6GqXUblRREARBEARBEARBmGC01qysrHDGGWeQJDunHx8JoX1mZobFxcWe9xcXF5mZmel5/+jRo/zSL/8GrbVF1tcW7LuKcy54Bg89eACtuwDsOe0xdDrrLJ08DEBam+KMcy7loQcPZMfad+YTWFs5zsrSUQAaU/PM77uAo4f/NStzxv4ns3D8AdZXzW9Nz55Bc3ofxx+5Oytz9vmXc/TInXTaqwDM7tlPmjY4eex+UzuVcPb5l0v9pH5bql9zei9ze8+rbP2qfv2kfqNRv+b0XtqttcrWr+rXT+o3GvWr1ZusrZyobP2qfv2kfqNRv8UTh1hbOVHZ+lX9+kn9qlm/Iw98HdDmt5rzrK8tcN1113HWWWexU4yE0H7xxRfTarW4++67ecITngDA3XffTavVKpjMO6anp1k6+T2++93vsmfPnt2uriDsGm95y1v4vd/7vWFXQ6gIWmtYbcNyG1Y7+evgQ/B334Nn2oI/ez486RyYqUEjhdk6qlmevWPYSDsXJgFp58IkIO1cGHdOnjzJhRdeyPT09I4ed2hCe6fTodPp0Gq1AFhfXydNU2q1Wo8pwf79+3n2s5/N1VdfzVvf+lYArr76ap73vOdxzjnn9BzbmcTv2bNHhHZhrGk0GtLGhQytNdTbkLah3oFaG2odeOos3HzSFLrqPHjSfphKjdDerL7QLu1cmASknQuTgLRzYVLYaRftoQWi++QnP8lLXvIS3vjGNwLwspe9jJe85CXcfvvtHDlyhCuvvJLbb789K/+Wt7yFPXv28HM/93P83M/9HHv37uXNb37zsKovCIJQPXTJ/1rDbAJPPxsef1bk812omyAIgiAIgrAthqZpf+lLX8pLX/rS0s9vvPHGwv979uzhP/2n/7Tp48/uOXfbdROEUWFq9uxhV0GoGtpK4KFA3u5CdzSlc2nnwiQg7VyYBKSdC8L2GImUb9uh21kfdhUEYeD8zKt+athVEEaFdaCj41p1XW1hXtq5MAlIOxcmAWnngrA9RiIQ3XZw0QIFYZy5/GmXDLsKQtXwTeJ9WkC3u9u12RGknQuTgLRzYRLYqJ13vbFLsfN+wYIwqoyt0C4IgjBxxHzU3QRondw8vkywFwRBEIQh0NaadQ0dzFClgFRBXWtqChIR3oUJZ2zN4xtT88OugiAMnHvue3DYVRCqji+Xd0ZT0y7tXJgEpJ0Lk0DYzrXWrHQ1S11Y6MLJLixoOKnz/RUNHVlkFiacsRXa5/ddMOwqCMLA+dRnvjLsKghVQxMJRmd3Orr4v/a/VF2knQuTgLRzYRII2/mahmVthPMlDYtWeF/qmvcX7f6KLprOC8KkMbbm8UcP/+uwqyAIA+eXX/vKYVdBGAU6gdA+Ykg7FyYBaefCJOC387bWrGqy10rXhl+x5vF1BU1rFZ9oqJP/LwiTxtgK7YIgCJNHiYa97bbdnqLZV7SWgD+CIAjCrtHSRkhfswL7qoY1jF+7Aho24YkCatoI7HWtxb9dmEjG1jxeEARhIokFo3PCens0Ne2CIAjCeKG1poMR3Nsa2hiBfRX4MvD7wFeAdftZx5YbzcgsgnDqjK3Qfsb+Jw+7CoIwcP70L/9h2FUQqkbM56/VsZ9Fpjsj4CMo7VyYBKSdC5OAa+ddciG8gxHKO8AB4K3APwL/Efgaxlzelav+iCUIg2FshfaF4w8MuwqCMHBe9MJnDbsKQpUom804TXt3NKc70s6FSUDauTAJuHbetS/tvbrAzUH5j3mfgxiMCZPL2Art66sLw66CIAycix53/rCrIFQVP0J8JrR3ez93ZSqMtHNhEpB2LkwCrp27YcetJbvR6XlB+ZftRqUEYQSQQHSCIAjjiJ/ObcQ17YIgCML4oSOv/fazS4FfBJ7mlRWESWZsNe3Ts2cMuwqCMHAOfOPgsKsgVIme/Ox22/E07T052on/XyGknQuTgLRzYRJw7byrPbN4nZvHH7PlXgpcRtE0vsLDlCAMnLEV2pvT+4ZdhUqjtaajNW376o5AMCqhlzsP3j/sKghVIkz15miNdp52aefCJCDtXJgE/HYeatkBjtvtmlcmthWESWNszeOPP3L3sKtQSbTWtDSsU0ydUQNSpZlSkEr+y5HhVT/54mFXQRgF2oHQ3jMLqvY0SNq5MAlIOxcmAdfONWboCQX3R225deJDlUxRhUllbIV2oRetNasaVjSs2byXXQ0KSBQ0MXP6KaVpJNIrCsJI4svfThh3Qnt712sjCIIgCD3EoscDnLDb9WFUShAqjAjtE4IT2Jet0L6qjcWs6yRrGtrKvDSQai0ad0EYdfwcOQqT5LbweYl/uyAIgiAMkJg/u69pbwVl/a0gTCJj69N+9vmXD7sKlaIDmZZ9uQsrXVjqwkIXFruwZAX6NSvQr2oj6AvV5p1/eO2wqyBUCWdv6PbdttWFaUZW0y7tXJgEpJ0Lk8A7//DabH7pXDT94SrUtItPuyAYxlbTfvTIncOuQqVoWXP4loZ1J6ADXwc+AbxCww8AKVBT1t9dmf+F6vKaV7+09LOu1gWTswRIxHpi/In5qbc1zCjz4IefjcBMqF87F4RxQdq5MAm85tUv7fFj97ORHgXOxsxRYwJ7hYcqQRgoYyu0d9qrw65CZdBa08EI7C1tTI5awFeBN9sytwDv0fA8Zfza28qsgIrQXm3OOnNfz3vdSLBBhXnYa0rTlGCDk0dbQ71G0eBwdIi1c0EYN6SdC5PAWWfuo6N1wSweij7tjyUfrfx1aC1TF2GCGVuhXcjpYoT1LsZMvqPN9uNBuY8Cz9HQsQJ7V2OkPWFk6GqdxSxYD+IWpC7YIDCFpi6C+/hRpjXvaKh5QruoKgRBEIQh0iWPHu+C0nWABXJNuyAIOWPr0z67Z/+wq1AZss7Qdo4d+/8Lg3JXks/l3XeEavO5Ww9k+1pr1mzcgiUbq2BR569lG8dgycY06EjMgvEjdk810O7CVOq9MVr47VwQxhVp58Ik8LlbD/SYx7uX82c/h4imPdgKwqQxtpr2NG0MuwqVwTdB8gX3Ofv5Y4H/AFxm/5eOcXRYWFjO9tsYDftyNw8muGatKhKgrvI4ZAlQ1zAtyvbxJAxG1+7ClO3uO5iev2BzuLvV2yp+OxeEcUXauTAJLCwsF4V1ne8fx1gEzlCSp91ttUaJtaAwYYytpv3ksfuHXYXK4EziffMjgLvt9oXAU+1+Nnev+CReMFz5Y8/N9l2QwRZkGvcV4J+B/wb8sxXi16y/e0sbc3phAmh3oWGF9u7o3XO/nQvCuCLtXJgErvyx5/akeXOvR4HTgQbxCCyjN3oJws4xtkK7YNBaF3zZneDeBe6xZWK5MEHc2UeJrg022MbEHGth/MG+CrwJE2jwDcBXdDGugbhAjBuBht0tyrS60LDdfSeIIC8rdYIgCNtGdzW6Y18juCg6DHqix9v3TwCnYYR236fdNwiTKyxMKmMrtCs1tqe2JTSBlt0zQzqIsZJd88rGtkJ1WVszmUz9YIPuPneJBxv0XSTkHo8POpaf3bHeganEFdzNau0Irp0Lwjgj7Xy00J0uerUDq21YbpnXahu92kF3ZEm8jLW19UKaNz96/KPAXqAOSA4oQSgytpLt2edfPuwqVIJQiMu07sC9wFOQXJijzLve+0EgNzHrevdZA88Lyl9pt25luy03efyICeUdT9Pe9iaTI7JC59q5IIwz0s5HA601er0DK05Yb5v9lbbdb8FK25QRenjXez/YYxbvXsfINe1t7zuiVBKEMQ5E99CDEoUVjBDnNKq+4P6A/fzxwJLdL8SlEtv4keANv/ozQDHYoNvvAHtsuacAPw88zf4vA96Y4t9YX3jvdE0kQsjN4ykpW0FcOxeEcUba+YjQ0bDWMa9W106ubB+aKKglWT+rE4Wqja1+bFv8xutfRRui2vZjwEWYYHROaO8NQof4bwoTydgK7VqLaRJYv2VfcLfbezAd4zTGHClGtafxAkCzabIkZJp28vsMcMhuX0aeHcAhY94E0elCTeX7I4Zr54Iwzkg7rz66q427UatrXut26wvtdQ06MftpxwjuiYy4jmazkbnz+VadGuPTfjrGPD50FhEtuzDpjK3QLhicKbwvuLsgdBdT7BilQxxdnCVFGI31Qfu5n+9Ugg2OKeGD66slfE27M8Vwn5V9XxAEQSjS1bnA3urm2vZvH4GvH4bvPxcu3W8GV6d1b4hq2EdTTPPmD0nHMD7tDYo+7WIeLwhj7NO+57THDLsKQ6erdSasO7NpJ9A5TXuTjXNhCtXlxk/cavzryBdn/AwBzg2iLNigMGaUBaNbt5r2GkWf9hHhxk/cOuwqCMLAkXY+AmSr49qmYdFw5xG45kG4owN/+QAcPJKbzLtyO4zWemTnZzd+8taoPzvAUfKUb05oH82zFISdZ2yF9k5HorC6oHMFwR3TAd4FPIFcaA+RTnI0mJ+f6dGy+xlnnKY9ujCj5T6PHTENOhhTizSBFDuBDIT7ijM/PzPsKgjCwJF2PgI4QVx7+187XCzz5e8Vy+yQ0N7VmrWuZqmrWdKwpGG5q1nvjpYAPzc3a+aiuii0r9vXPszcNBToRekgTDpjK7QvnTy8caExJ9O+UhTcH8JoXh+L6RgLJkhaOsZR4vnPvbwgrPs+7U7TfgHxhRlhzOj34PpC+whN7hzPf+7lw67CQNBa07Gv7gjel43oeuc2jue304xrOx9LfKumy88pfvZ9+4tldoCW1ixrWNBwsgsn7Guha95b1tAZkWfsB5/79Gj0+OP2870Y103I4/OIskEQxKd9rGnrQHC3r7uB8zHmRw1y02mIr2iKJ1a18S0o3P3WwCP288fQP3WKMMa4SVwbqKemx+9a8/iY6YWwK3S1pqXNWopTwiUKUq1pKKip0e51O1qzbheK3fml3vmlI35+wiQTuiBpePxZcPYhoxF59Xnmf7/MKY62ba1Z7sKKhjWv31CY56quoaNM7LsZNEnFny9fUPcz3xzDZLxJMXNTMPPTGUTbLggwxkJ7WpsadhWGjsvD7QvumtyfHYq5MKNz+Gr3/RPPw48cZ8/pews+7W4AfBA4GzPglQUblIFvzPFvcC0xfu0jmDr44UeOc9aZ+4ZdjR2hrTWrGlY1rHvWMYk2A/KUgillhFtV8cl3jPWuOb818vMDc34NBVNAU2saEk27h3Fq5+NIXxP0PXMw3e0V2J2Mr/W2nueu11+sWo26/1zVNDRV3oekwHTFH62HHjlO8/R92Tm4S+WEdsiFdt+1j6C8IEwaY2sef8Y5lw67CkOlq3WmgS34O2OE9ifYclNIWo1R5gPX3hS9xxojtJ+HGfzKgg3KPR4zNJFgdHannhi1TOhfGZavIB+49qZhV2FH6GjNiobFLizZ10LX/L/YNT6qi97EfNRo2fNb0vn5Zefm/b+izeKFUGRc2vnYE5sktbrQ8mzasn711Oy5Oxjt+qo2z82K10+4vsJp4N1CYNXN5P/62puK2nb7/jHgDLvvzOP9+Wm1z0oQBs/YatofevDAsKswVDQ2eClFwR2M0P6TGCV6A1gJvhceR6guv/nrr2apq3t82jUmR7sT2lf6HEMYF0qEdRctvpZAkgwkkvGg+c1ff/Wwq3DKaK2zifWqN9F21lA1P70zRmNW03pkTMm73vmt2O2aLprHtzF9VAKkGmbZnvZxXBmHdj4RxITijhXayxZBt2m52LZ9RBtoaSPErgFfBz4JvAy4QpuMnh0NbWWesXTrP7Vr/NqvvZqFblFg1xif9r32f3ep/HS1RPYFYZIYW6F90vEjx3e9/4/b1+MxEydfoJNOcfTQnkWFE9h9TfsVwAn7giCYi8yVJ4O2veu1xDhOOylKcrTvKl3MpHtNFzVnTpCtaWP5pKyJa11BUxthdxTwNYJrGpa7RrhwuseaNuORsvEQ69q4AsgkRBgLul2jBocdixeitTZxIbACOUaIPQD837bMPwLvAp7rCewdK8RXlWyeootzlmOYdG/K/t/E9CGxeYsMWcIkMrbm8ZOO07KHgvvdGD/nWUzH2LTlfVPpmOWXUE2chl0H+wDfwwQcrCE+7RND7MY6TXsKKJWrNiJfdVG+Ryl90GbRXhTzYZxfFzPpdlqzdW0mpF8G3ma3axjB3p+kjwr+mOOC7Lnz+3+Ar2Dea+s8xsoIGn0Ik05Bu+H90+16GhBvYdS3A9/GT7U8CzqXzvUTQbmPURRsqxy2RGvdEzXevY5hNO1uvcG5b8q8RRAMYyu07zvzCRsXGmPcpM9NolxE8XswWnaHC/YRmiBNSloNbSfwo5qO6LoP3RL1aV/HBLI9H+Mb1m/gG0cBbWKJ3cuWm8Kponm83XQxAuSKzf3rfKtXu7oyvpHXfeiWbX+343Iba/LcxhrWurv73IfuSh1yjdk/Am+2/7vP27gQBdW4BxsRG3MOAG/FnN+bgK9RFNirLFwMg1Np58IuED6KBUm5axv0zk2efIHWzeG6wL8Jyl3J6Ai0GvjQh27Jz82r8KPkmnYwSqVW5PuCMKmMrWXa2srxYVdhaDiT6VDL7jTtF5Gv1jhN+xowx+SsaPopl9w5JlpTg5GK2vzESx6TD+bevf6e/fwMzGp1OPAJY0hMA6QxAZLcA++bx2P6iFVgTWvWu0ZZpDH+xjVrnj2lhh/p+9JLHrOt7/mR2p0GG3Lz8ylgCr0rKdbcBNWfiH88KHMT8OwRNQF15+S0gV16NYI3As8Jygs5223nQgVw/Wpbm5n1DmhA/GfKX5R3reRs4DeBy7zyo8ATLnlMwSze1XsBOM0rVyNPSdyzXqKR7EbCxDG2mvaVpaPDrsLQ8IOS+WnAAO7FCO0Kc/N9oX1SBPb1rmaxCwvaRG4+0YWTLoqz1cRVRcO4EZdddklhMHcD4CHgAvK4BTGhfTTOUNgW2ttpdfNQvLUkM8voYHyqTRRikwfYRflecNG+7fPQGvLzcPnTLtnyd9paF87Fj2Duopu793YrknnYt74k+Dz8f1Rw1gDh+f1oUO7K3arQiLKddi7sMj3ZOey2ZXda3bycv0K3jRG3q+OCu1uU/wHgKUE1qj6ua+Cpdt6SnZvdPoQR2p0sXqNc01718xSEQTC2mvZJRmODG/mCO7AMHMGke3OrNS7CaOjzHO5XCWdJAKZzV2xeM+5SEi1rEyzJ+YuBCfhU1yaYi05ghupHbo5ZU2jgAYzQDkZeW/W+I8FcJoyOJ7SnuU/7OrmW3QVHW3eadmUmS+7ZqGlI0SQVfx4cOshtvKJdKiTzeary3MaK/PwGaWETWxR9KvBc4Fbgd4CnlZQbjave2588FeOicxJj/p9pBL0+SBBGCl+D7uOky9U2zDeKn21zUdCN575pPORCe9StseLPVcwiB/JwAL6m3U9J7GvkZd4iTCpjq2lvTM0PuwpDw/k3+wJdB6Nl34PxGUoormYWfJ51NTvHrtaZ3+1CN38tW03gRr6fXTuRd3lNl60W0eURXu7mqYpcvtMq+5NqrbnnvkOFAHRucD+EmSxD7tOefa9kK4w4ZRqgjjY+H5Bp2jtYod1L07WkYQmzuLesTSBkFwncLXANi3vue3BL5dtQSK/mn98S1mffO7d1PXj/6tikUwP7gHMxAm3P5yP0cPp19+s9AzwdI8BL39OfrbZzoUK4qJGr7fgDvI3G3hNo1h7miP18reyLFUYD9953KNt3r2P2cxckGYo+7dJ3CMIYC+3z+y7YuNCY4gICZYI7Zv9ujJYdikL7DMXOv4qdYlvrTMg+aU3b3dYJ3asbCNkdzOR8XecpicKJvJ9feE2XBtquBBr4zD99peDT7t5/kKKmve19RxhTyiS9dtcI62A17TqLZO4W9JyA+2Xg94Ev0RvJfJhBwz71ma9sqby/WNl2zzP5+X2FXFhvk5/joPEFWvdzq4xWlPgY/SbUK/Q/vyovjO42W23nwi4Ta+Cu/bpGvt7OCxRW6rbWzgvpXD3B3S3Kw2hmhdEaPvdPX8nOC8x5HcPE4HHWk2Bc+1YjxxCESWVszeOPHv7XYVdhKPhB6HzBXWMix7sgdC4PJvTmwqwaXWfS7mn+3DllAbPIBeypEjPXdZ2nW/JTEn0d+CTwMuAKq5Rs6zznadpzpGqggZ/7+VewoIvm8WCE9vPI0/qFk+bCPKLi5nTCFohNJlsaUiu0Jwl0vCjm2IjfGr5JMffvH2CChnU0dJTLqztYE/Iyfvm1r9xS+Ta9kcxvp3h+78ScnyY/x0FSNrFeoWgJEyszCpQZeqyTR8KPfS7kbLWdCxUgbMjr4YOg4+U2cVh//uYvyh8GHsvGWWGqGFBXAz/7C69goVs0+T8G+PaxiogVqNvq6rsBCMIgGFtN+6TiUumEgrvTtD+ePAid6/Pq9Ebo3Obi8EDwzVyX7csFlHJm7b5pe0wj2NW5dtGlU2pRTLn0RowA77SKbjJfVdyA5/u0a0wE1iVyod2/v/53/a0wxnQ0pHbpKTXR42MTvZuDr93kfeYrjEYFp9V2dQ8jtbvcxrtxfk6b7Cao/nVfo7/f5qhc97L6riCBMIVxx7bmOWDVC0QXfLzVI8ZM48H4tD+euAVL1Z8rs/jb2/c6TTsUNe3+OY5anygIO40I7WOGW5kNzePXge+SB6Hzb7xbzQyP42+HRVfrzJzdF9xvA/4rZuv8z1ueFj1Ekwed869PmJLITeTNbw///PtRCEDn3e9DGL+weczg16C4KDNKQoGYzp4C7tK1tNGwg0n51tVRIfXfBNf6JVRj0W47xNr4jwVldjuSuV8X/7quMPomoLHr7fYX6R1fBGFk8R9g18idpmC2Bmvd4mf+97b4MzGf9lVMYMcLCdwa9YiM6ZEXwHHyyPG+T/sougAIwqAYW6H9jP1PHnYVhoLTsjuNuxPk7sdoXPeTa9od01Q3QqcvZDv/1K8A/xG4BfhtjJ9qCyObOB/VUNhzq9S+oNsBnhf83pV4QjvV9mnvANe8/8OFCLNQDEIXE9p9qnCPfbTWtG3AwUUbdHCpq1nvarqjKkHuFrHJpMY8NA3PPL7b7SkC8GTgBXa/XyTzYfCnf/kPmy5bln7sKcDjMItZv0cQyXwnKtmvTiVbMIH/yj4fpRbva9AgFzQ0oylcDIOttHNhGIT9q93p2JlCs26Edn/l399u8Zd803j3PB3GjOvnMJqLfV3gr//qw4V0dhqjaQ+Fdmcl2G9RUBAmibEV2heOPzDsKgwF3zzeCaZg/NkvwXSGKcUb73zaoXqTxoKQbQXyG4MyN5IL9V3y4Fmx44Qp0lxilrMxAaqyiTzVd/XuAs99wbMKk2ONSfd2PkUTMyjey2Hf1xguur+fGWDBukCc1MbCYrfyaY8s4WQSikJ7SqZpJxOecnP5czBuFZdRLV70wmftyHH2Ac9gOJHM+/l8Q8R0fhcWE3aK8JzcubhxpZ+J66ic426wU+1c2GWcH918w+TN9NlmQ4+ZxmuMafz5mHHddzsZhefKLag+5wWmnftC+3FM/+zmLS4eT8y1RhAmlbEV2tdXF4ZdhV1Ha50Jrr7g3qXoz27ymuffc5rYnk6/ApNGv1N3hGau/4ZcYPcHOp9YYCoN3GU/fzZmIu9TZaFdayNonf+483rytPtB6CBP0R3N6bpbFd6Ars0OsOi9MqFdm/gFCzaOgQjuJZTN1to6D0SXqlwrFMEFDYsdbpiX/aLHnb9xoYBYdVsMbxJYdntcfuJRn5zGhAZ3bqMeHX+32E47F3aZ2IPctn3qTAPWOvHOZ4sdaFm6t+9hUkT6/t5V6qv74eZyFz7uvMyCwHGUPEe7r3DoMY+v0LxFEHabsRXaJxHXCfpB1FwneTdwMb3+7KH5tDuOvx0mfvAVdy6XAVfZ934OY/bqFiqc8N72Ku9H1A8F3IO2TIv4pLOquHudDeheZR/ApHtzCzRO015l3zAXs8AFFVyy6fgWtQ02qItxDcRUfgu0NdRsILokD0Tn9Ov5ZEibNG/B16vUTjZLoc/wKu6CopU9A4OKoRD7Pbe/bLejno9YR/ad+W4neL/qwoUglBJrtE5obyY25RsR0/itNfaYIkJjzOOd0F7VWET98NO8QV7Xk+RCu6NvkOTBVE8QKs3YCu3Ts2dsXGjM8AXTTHC3L1/T7szj/WAfZVqeYXeMmmJ6Orfdb7fheTqB3a93WUR9gHsx16XKWugY7pzv+MbBgk97FyO0O017KLRXceDreMEG3SsT2O3+is6zA7iUf0JAbDKpgXanmKe9nfu0hybbLaoZNOzANw5uXMjSr423GF7E5TLB3fU9VX0+N0NskUSTC+2jKFwMg620c6FCOKF9KoFlr4cJGvpmFwWdJV1oGh8K7bFYNVV+ttw5/cs3D2bn487xOEZoDzMbDWORVRgNOlqz1jUxkJa7Zr+t9Vi3i7EV2pvT+4ZdhV3HCeuh1vl7WJMkck27H+wj1vlXpckregULfzL4bYoR1P3zdtrYmJa9g0mN9hAmAFeVtdAx3Hncc9f9mcCuMSZmYAZ193DX7Laq5rcaI0i1tdmuaXN/v4KJM/Bl+57LDtDWRUsKISB8YNpdqNmnPaGQ8o2g6LrVtrv3qvI83Hnw/i2VL/MfbzM8U+2yRRLHqJuQx9pKmdAuxNlqOxd2mYJ07D3M7a7pWxsKWpEl5S1qATS9lnTu64cxSosGuftJWLWq4saUuw/en50bmLkYxH3aY33HKJxrDK01LU/QXLVCplgObg2tzbVb7MKC9mIg2f1lbQT6caS2cZHR5Pgjdw+7CrtOTMuuMVr2x2I07KGW3XWMVY7QGRMY1jHB4+6kuFrrrkFbQ1dlMkpUcL8bOAs4HXh0V85k53CD+Et+/MUsdfNr8CDmujQw567J73VoTRDuD4vQCqINfB14s/38H4E/AJ7jPle2bWuNUlWOPLDbhJKq3el4Qnuq0HbFo+y5KvWT3OnqboFX/eSLd+Q4LSKRzO2lGeT5lV1Lf9Jd1edzM5QtkjjT/youBFWRnWrnwi7gr3x2tFELTyXQaucPRBg13h+Q+xCmcvXnNw9hLOn6PUtVfaZcna/88Rez6M1bjmHmplP0pnyrqrJhq7S0LigftDaxpVJt1nqm0NRkPrMh2gYsXtbG8tIPPK001JVpRx0Ns4kmHbNrOraa9kkkMxH3BHcnnLrI8WAsZKHYMVY12EfZYLQOXAosAUfoFcrdPuTCYBiE7iBwEXkU1tIBsIIrdn5KP9+E7kGMlh2KcwN3j2P3d9hn56eKcufziaDMTeQTGP8lGHSZ1AQmmrEntLuUb/mX8/IxwXEUKWvba/TX+g7yvHuiw5NromsEfVCFns/NUFbXVUzfU+rTPuB6CeOF1pqOfVVKQ9npGqG9mcCqbe29E4lNHy4c1932Ifv5meRubz2LrBWZu8Xwx3n/dQxzTtCb8m0l8n2o7jnGWO9qlq02+GSgFV50MXy6ppzQn3VtXCWXtRf7yAtU7GIiufhHVZy/nwpjq2mfNLrWB8oPXuI6+nsx+cidP3u47tTPPH7Yzb1sNXkVk2/5MRgT+fPxXAOwCxeKvkHo7gKegBkYhuXnul38lXjf582PHB+uWFfZZ9bVwwk2PwZ82vv8JcHn3U1qLASKQntCNnmMPVtOaO8RsnSuka46sTbu9lcpxkPYreegUBdv4rqCGYTHQaMUu95rGJPXI1SnrxFGD2NWbGNS6HwcSIG60jQUu6NRK1sc7WjzINdruXlJ2Xc2Qcw0vgscwqTlTCnGqpmJVKmKz1von+/qeBzTT0Cv0L5RWruqD0ttrTMhc0UbVz/XhhPM0NzG/q8g1eOnHd4putZawcU2cvtuIT4lH98TciuGevxwI8nYatrPPv/yYVdhV9HkAdgywd2+fxdGo6ywDZliR1ea8s1th7xS5Sa6bh9MfZsYf/Q7KZqPOb/2DhEtu7dSey8mov6oTZjdQkQXeP8fX1tYiT9EnqPdf7irfI6xdvdUzEITwO/Qm1fbH/AFj9iz2u0amzHINO3aK689FbDT/FYtkvk7//DaLZUvq3eL4UUyj9VpBZhlY2ufqhNay7jXMkaggNEL9jkMttrOJ4G2TQe6oMl8WH1t5ZI2mrXWbsxTyjqLjoZ6AlNprgHwtaZbfKBjpvGQ+7NDLrTHMv9UFY05r7/442sLAvxRiv7sjiajl9YupGWFylUrtC91i6lt/QC7q9pokoU4bh7fstdpVZsx9EuYeeKXyK9lC+tOOWbXc2w17UeP3DnsKuwqmdAaCO4PYxr148j92VOVd3jOpz0m0FWhrZdNYtcw/ugXYEynXeff0caXPRPeVTwI3UmMqdkTgAPkwgoUtYpVuAYh/oB+5ateWghS4wvt/op1jT7WFENervYFcH97ut2/xCvjFnC0qua92QitdRZMzwmPRltkF9NOZYXdvyD+jKbTyX1iUpUtwsXmkevBdqt0tc4CCnbJF49O9fxe8+qXbrNGXt3sdhgB38oUdKvANKZupQslQ34+N0usPa2Sa9BGLdjnMNiJdj4uOK2am5y7iXhL589yTUNLwZRNMZMwJC1lR0OSQLOW/19j2ytUbp7ihHa39YV2pz30F/scVX2m3Lm84lUvLYzpJ8jTvfkxl9xips8o9RtdayGyrnNBcw0TZPdG4ErgWdqcbw1o6NxCVOL19FJQyNl5xlfpjX/0XIrz/3G6nmOrae+0VzcuNEaE2uQsujjGXLpJr5bdN53uCc7k9gdd8T700/CvYwatJ2J809sULQyyh9u7LrEgdHvZnAlWlXADeEfDvjP2Zee0jlmIOJ88S4AjPEd3HH87TJww7vYhX0g5AYUB3hfyR4mO0xh1469TinhaNmvT2vpbKhv1xmraw9+x/3fs29vR+voaMee7d9JqFRasj9l2fVDPOnPflsrH2pOfWi0s628HQdlvrGImprVIvUaJsrayCszZ/apa+lSJrbbzccRF2F7SeepPl/ZzqVv0X13SeUCqle4u+bDGFkfbGtIEmqn5f71T/FzHvlxyeD/dmy4K7t/DCO3+gny4GLa5XxkObuzee/o+IF98OYYR2v3zculqR3km7xZj3UJ2Sxsh800YAfNNmKC7bhG/Q9H9QygSzgHL4h+59j+O13FshfZJwz3smlx41f9/9v48WrvkLOxDf/udzvRNrW6pWzMStGQkIWFsB8vBxjE2IBsDNkTAtRNiruMY4qxgEvsukqzrO2CywFmBe42x4phrgyXUyEyyJLcY2oAZGgEaujUhtSQ09Dx+3d8555323s/9o+rZ9VTt2u9w5nO6n2+9X+3zvnuoql31zANOaFfX+AIXM5Mr+baodMhpE4AcQzjDZYh8MU4g/SxxuTsbu55LQqchA/jrz1Pdb33HQhzT/rD//Rbi9wvuHVviftYE9lyra/IZEis78RjOA6jAroymunruGle5vdoxpkdeqqSsTZ12gmROe85VsFo3x8NcpEmmo2OKGGzDeB83U921nqZJm9sHJyW4W6F2Gye0p3N+lvboMuiayzEu9wicb/f/5+BkoPLxv4obFafsGwF9H/g94P8J/J6E2NY03v1EQBdwKc7SrrlDppla7SsmGVO6ngru4IR2W871LCeYTcEqIyDu59M4zzrLs6RC+0nj66OAmeU9vWB+Z3LOezHeFBKP8zmIQXlAPQaX/8jC13G298Fh4cIK7TtXblt+0gWB2sQ4pxnFP00Q2ptyb4mXyIiznYgt148pTmjvAX8Ml4xOhdm0Vv2iJHQQj79FFM7KJBiwBP2D77u3OX4AFy6Qy1twVmPau1y1heWW9rP4bnIgJnnKWEJ2Uyus73uBfSyHiGnr8sGeSeQeT+nrtEu6t0KN9nWyyNvkMMpY6/j2kvEdNGbvt+6+Z63zc+tJlVbT9unHDl3M5hjnHm89YXLM6XmAHEOlSglo49j0+DlYf51fFBBfu3q3Dtb1fYNPNJHXPs61+B8CdwHfC/yBeE87CWE5Jw7qHo+3ikyqPBOxwoJXPkbpum1tdRhwPNCifERnCRQ/CPD+990b6TCeJITRpB6C57nyRE1QJKk3aCpk/iXfirnmPIzttCB9/68Fvtof/wDwZZlzLtJ8Xlihvd8fLT/pgoAQW5fTZGtfTJyETl+6CnWbLImnPEWw/bF92SfEdN1OqNduBXYl5LkkdJ/BJaEr/H1Ow2X2oKBKCAF2d/cigv5ic17PSO2ppT3Xnibk+qD9vWHOST/nASpCkplGcBcj1Eo7GU15kI3XtWnnBEt7USC5ikT+DxVoy+R2i9bK3Ixt6seyK96bQIL76qQO56zrJn/jRpqSeTHkBMNl4SHHuZ5yAq3g8NgGccKl8wiLlBKbOLpzFpWGZw3WXecXAUrvCp8q+fSz54X1CW49/Vhy/bsJCnq1TB8bdG3kUkKyz21gZjDomv1RIT11jX/S/34bsaW9a1+dNu+WgqXbezf2Iqv7U8Tu8dYLFDqqmRx7jw8HtUgUpqm86JcS+LS/S0iyex7GdFbhNpwy63W05/Cs7YPDwoUV2p956vOn3YUTg1zMdoWzUD6JE9o1xrlXrBY3dBYEukVM9RxHsCDEtStB0Dr1XfPyDC5B35fgk2Rxei6z64IkXhV/+mve2GjlraU93diaiC6nlDnt8XUpZvZ8e52Y4Ot55yVeSQl3mvH0D4B/jMt4qgmXmti2dV9KbrHqZKrQXuCsQWVbYNe/U0v7KmCtXDq+Cc4i9o9x47Tuq7o314E3fe0b17yiDVYx13LRPOZ9kMMr2ie1tJ9lpdoiWOQtox5RKlysqgh6tsJRrPPzBHOR4HmUxKlbYX0CfBj473F8jYW/zAnTBbuIFUpx2eMBtnowreNza1+St3Y15hcpLVPXeKX3D+Os0RuslmD2LEKNm7Y/8xff2LyzEveer5LnTeF8GVUUUrd4G6KpoYwvIm+MuGiC5lFBF22c0R1edtHgwmaPfzaBIvZUQP0MLtnaJZylQ63sqUC3QYgfPmtCa5fHrwrtPZzQ/iBOyBsRa9xz2eM1Cd0Vfy8rtJ910PdjY9r1+wdxrkFpPLsSv0XJ9k4LFq21Ke4dXQRLe5pX4R7gf/K//zrwo8BX2nOPItFpwzASGMp+0ZnAIVWKrYIHNE5RBffKH38I+J/9Ob8O/H+AN0qo7FALx5YRPacEEmLGb44TJk8KsowZwRI9oGN/Ck0li7MOufUxxRkez3tJu+fg6KESYeyFdPXQmfvjGe4zxwnpPwX8KvB/Af4a8I9wBon/HmOp5BTpQi3Bm2kwgJkK7dIkI5vXUNeuxKbW497IVNXIucaDE/Ssazy08Qac3b1lx2Q/T/nf00R0EAwzuWR7Zx3STOd6/Bkc3/pCYDe55qy+u7MCXfLJnDYPf1Hn8sJa2oviwg6tBSWJ4I5bqJ/GlXqDkISur38X4fuFMd3H2O9VoKsfE4LG+XnAzbg49TSe3c5LLgmdjj+XHCX33NMGIc5bMJnOmr7beLcmf4H/uytvwVmAzlBs4AVkYtrlfMV9NcyKeW+/lJzzHuIxHp21yM/S0O/8QbC0S2LunNNW8LT2QzLpKQOmSqRfSXqRjm/ddzedrpdbvYuwq+XmNOrQp0oEcHhMhXabUOo8QUsZYQaxi5vzXOmm56AN667z8wxa/moqIW59T5wia4z77T8A3w08Dvxz4Ntwa+lLgDcAr/H3svrJY91DXYhCs8eDw7WTuvl6H7cPbog0teWfMUk604z3aW4i3Vc2c7zCJmc3wWwKFkdMJ7Pm+DohGWfqHq8hkFGyvaQ9q6ClXVP+816cceUqwZswp8x4DvKQmxsrtHcJ9hcFLqxk+4IXv+G0u3AioO7SqeAuhLjtHm33eDj7cUO5jafHaqFS+BLace057wObhE4Xv7qbnLXx50AJuY7pZ//FOxAcU7CLi5XSJHRpbNhZdb/t6sc+cCtJ9vj0cw78yHLznSajeVPm/AM9KJUKS3/QuMcXrftbJQm4bN+HFbD+YvL3X06ete4Yf/THf2blcxcpgS6b4655OA7o2nOKx4bESrWzsjdXBTvnFk9rlY8+C/DPeRnkCcA66/w8g4g04TQzCZb23wf+V1wZp/8F+Fe4uN9/hAv9UkX9FRxdgKDgtJm3j40u5O4rOClbhfatAUxqaq+A2KuFvVoYi7BbhTAAW8puovsnKfemPIvgPOlUaM/FtJ81up6CKnRr4O2ebxFCPDvEhgb9G85XWTvojmevgY/hlE3bOJ4thw/P8tjOAqQ0fsb58ZY9LFxYof3RB54dWVgtcrcJyj4M/A7u2GaOT8u9FQQXpK7YqLMmuEOwmikBux2XQd4K54uS0N1OmIfU+naWwZZ4qwX++t95MxWOoG/jmBlL1BU0BGCRIuQ0IGXy7fEeQWhvzpf2NecJtM+vBV6BC135QVwCFTiMAJNKqv5Ag+O1FJHPIi/+P/F/CSGru01MmfY7172ckPw6HF55KY4JTxPErDvM7/2eb1v53K57a3w15AXk44JlFRJSof0s4d9Voauv6h5/3kvanRSss87PM1j6rKE1HyTUr/6nuD3xz3GZoTdwuR/UGnuVoMwlaU9lPVV1ENo3nXv8tPCeBDilhMbra4b8/drVlt/3iovKC+wqtCuNhyC0v5C2Mr6rjvlZ21eWbn/b33lzo2y5jvOWVNAEutbaft7yYdh13bjI++8/DLweR/s17aRkPs9BG7po4yJvk4s2lxdWaBc5L2mqDgdWKys4xHAvTksNcAdOs1fg+HWrydQ2Fdr1vrY9LRDaQoFaxFVoL4jLvuXc49MkdGppzwntZ3nTqxeFtr0N1/sHcElNoFsx0xrfGdHo6ju2BEt37wtIhHb7OSP9XwSpwNZ8j0sq9GWEmEwy7XoPy1xc+pls6rS7VorkCSLMM0J7jgiu8lhwTPZX48aXPGpt2NhYvxpI+pg5wasmV9Lu2IX3zHc25vu8OkYvEpz2yMfsPwd5OMg6P4+Q41vS+tXXCInXtoGtIjCsl4kT0qX1rY+dLrSYEgllNUcD6lnlknIS6siPa9ivhV2c0K6VNObiY/h1LiQR3P0jHiGOaS9oh9VY2n7WwCohBn6dC87SfpWYX7H8yxbnz4qaxrMr//lZnDD/xTihPWtp5wTW7zmERcpvpZ0txfc54BHXhQsrtD+bIF3E701+/xWCIGfrtC+KGzoL0CXIKALfJHgRfDFBILdeB6ng/ilCEjqN77cZSs+ywA7d8W6aOV7faT95xyO6E3WcJix7xxrTrr/lPucBcv2cs3jNre3imTt/7lk+3fS6MKr28zSmfYPOXHVrQZrR9ST3VI4BmuMYwD7d+R2Oq29Rf8xDUqH2vDJwi/axZo+3DNVZxa/PwenB1yV//2WCwL5dOD5F6dlV4gSlELvJHx+0lZ2At7T770YF9bzySgnxlUOEmcAHRfhhXGWNKT5BnfjKIcRJdK1r/C7O1f42wmOgnavmLO8rOx77eYrYPT6FVuWJpD2L0Co3jOvvh3GK+j5BaId8iMdzsDroHjirIaBHCRdWaL9y08tOuwsnBpIcp8TvazFazESYs1rN1D0+PT4NyG0+dQdTD4Eejhl/CW0X+WVJ6CAQwRwjf9rjt5CLd/u9u+5uhPYXEZQYacJpWyc5HdNpjzH3jrWawa04wUbfpT3vvPjSdAlsU05gzZXJLPV6Lht57b4Xw+HOgC2RtcqPLRIyp2vcZxnc+ct3r3zuIgFyxOLyY8cBi8auQq26gEbnnSMrgV3bVkkCYXzPBobqsLDOOj/vkPIZr8Nlgwf4Af/3CFdBbasX3KZ7OKFdE5TmBMFjX1PpA+Z1CEHa6FFPKqrC063aCe4fE/i/A78uwvfjKoiUEgS8eSKoWy+Eh3H76DLt7OrnYV+Jdf0XuPuuu6Ma7ddoW9gVBgSerzXGszRIDxrP3rjHS1DGfITgebaNc4/vem9S10gt7nMWB3pKkJuJWdJeZLiwQntVPRteX14geC0u4yo44vdl/jh1i7fHWyRWPzkbyD+nQNA3q66uiuhfTSy055LQfZqQnC8lEGe9rIgSvGY8AtuXdhDgflwSOh1TmtBlmbb6NIlC7h0rkdZYN7WqpNaUs/quFJYJbEfm9hdNopmceRUX9vQaKsmY0rWM4sLyYwsenbYVR5dH4fLl7ZXPzQmQgtvfQ06n/Nii5HhbnO/s6l3zqIo3Hd+zgyIfDtZZ5+cZuvbaK3Ao6nUE+tWjnVn8iv9NY4JPwlIpXZsYnNCuXkybPWRWxqcI/EbSqTvJ1PGWWBGh43oIp8CGdlWYs5irJgdWobK1s9N8dx1H51OhXdvzVNYO4jxKtj67AB8l5K+xlnYI9FWqGplWyKSC8RwmJUwqZF5FSvZnI+TkHQh81HnzyDgIj0I2fAABAABJREFUXFihfe+Zh0+7CycGuUX6MhxhU+K3SGAHp8XtQv5nDabEQrcm2Hs1cB+B2Fltp45DM+qnydoWWd/Oyhyo1t0S9Vd/5esR4AsE93ibcBDyddrtPU8TckhYCAm6NHHYDT3HXHOeyr7loCROInRka85yilUd4l/AWdoB6rplrSgJQvthQ2WU2TyqNfdVb3zDIXrjYMbplB8T2mtXIRfzfR5wcAq5PluPqE73/w5F0LMVjmKdnydI8b7iIEj4FmNlB9jxbVoOFE7AAyun4C6NpX3Uo66qyDNMavjzIhQCmk7kLxInKcvl4dFxPUTwpIM4ie55UPbpe9bxfJnnW8AJ7eoen7O2p5VvzjpezNVnr4HP45RMt+PWsWaPVxARmFfItEQmFTKuYFzBfgnj0rXTCqnO6siPFxbRRV0fp5Gr5qThwgrtzxboMpBqqR0LXQI7xDHPOcbqNKBLoJvhEB7EVuVXAX9InKmzEeBxBN4mobOCrbqZnWWG2VrYrQD/uP/9hZjcBZmYdmvpOktKiS6GfxvX/5tw7+68xn11GWhKOizaSXuoh1R1SNqgsRMQssobmOKEqzTT97L+pPsTc30Lp5zQS8v1eY7TX5xG+bEIlxHW8j7OEm3d4/P9OrnVLrU4a09ZI5WsZN3JMUljAp5dd009BxcfcvhO92gOUi8yLfuWLfl2HB1eBLUX2osCNnswKylEIrx4ewHf4Ht2O/ClxBb2OaY0WELjrdCes7TrM+BsKsIU5+UUmI/Tdo8vDIOaq2ZyliFXn12zxr+OkJvhEsEbSYDCW9iZ1NTTygnq4wom5jMuYVaea4t7LcJchHEt7NeunYtQH4LGKW0564a3o4ALK7T3B6nIerEhXZzqCgqLrew2GV3qvngWFnyOsE9xjK6CMoYvxY3nC7TLvqlrvE1Cl1rau5JTnRWwhFyPrz9xnQdx4xrhxpSr0z6kuzTMaUKXrDkmWFwuETLI6+8nk3ToaKBrH9mY9mMTHkuBoV3pvk57VbesFnNxaydNbmQh7VaXoiGNMTusMuyxx6+vfO6iPo3IJ6I7blyXU2xohMIGoeTbqeLaShzTuD93Vp29uTsez5FZ1ak4sEy4DVuZ4PYuLF5Tz0GAddb5RYSSoGNUsG7y9m+bQf7E6EKknTJ/1MY9ftin2JPsNbfihNAHabtRW14l3UuaOT61Qp+XXBEWPwjw1BPXERydr3CK+cZ7MrEopZb2XHtWoBaJyr01YZq4ePbXEdbxJZyXAThFKbOKoqypy9pZ1BvB3VnYmdfuM6tDgtlzBnMR9gWeqWHXtzdqeNqXQZwu2biLDCDw7AjBurBC+823vvq0u3AisEggsKGsqVuV/Q7aGtuzgBS7NuiEWCGhgmofV/rtEwThdlESOrv4B5w9T4MUrAZeiftv/Nv3RuXe1MqeelLYOtBwdohf1/PtO75GYM66tPVnFXLzbNfxkSnKuhbrXFyZt4QTsi52VohMrb4H7Y9ef1TZ8d96R1oToxty+EsIQnuuZvhxQtf405jv0wxfkaqGydwxiBPvkmnbcQmTMuuamcPTKrSrcvW8CBenDeus8/MMi3I89DPnQ+xBBo4u2Fwnx04XFt20sjHtA2TqT/cJ2PT6uTjBbYwr/1XRruedusaDS0R3mz+2fIsKtEeBY48bbLjAr/zb9zqjg//usm/TXDzgcEc2dFPOHu6o8Vb2RBEjuNLLGq6q7vEq1FP5pHNljcy8pX2SfKzgPj9/bvLTWtirYdd/VHC/ITTf7wtMFgjui+QdOPveskcBF1Zof/SBe067CycGOYFAyxt1QarR1ER0Xfc9DVhHIaHI/nac0G6Tf+SS0KVae5tdfdnzTwvS5HoC/JW/++3cT6yFz2VgtZaus6aUyK3fGcFKd4UQuwhtd8jzCl2J6A48JnthE6guTW325qceUBvXTX8wA0ayfvmx3Hm6l44qO/7f/3vfvtb5Qntdq9Cu+Sua8w7Rr3X6k7bq+ZJmjwdO1LVPKnEM4dRZeCJXTPv31DGMqSDQ1c8xwWp63kvanRSsu87PK3StmZI4way2qaGhwAl61809TpwuWALauMcDG24E4jsiioxEmIsT1t4AfNDfQgV3K/Dp9zUObz2JE9pT3uW0lX2rglWm1ALf8ne/nZqQOd6GK6bve1no0FmCXDx7hfOseAYXwqmekMrf7AJFJQ4P1+IUQPMamVXwyUfgHffCJx422gDPAJ7JGchDJcJUYCxOMN/3gvqN2rV75vupQJlhShfRDiu0Z889P1O1FAbLTzk+EBH+9b/+17znPe9hb2+PV73qVXzv934vr3jFK7Ln/+Ef/iH/x//xf/CpT32KXq/H61//ev7b//a/5bbbbsue/2yALq3ShOBeDE5Az1nYFXKxUUcFUnlEVOk2K5zKfFBQ9BfrjboEOquQsMnXXgW83ZyfJqH7evJl0VLCsA5kx9cvoN+j6Odm+wDP8G5XVgOvxw8BX0E8D73C/dgV0w5ng/h1rd99wvrV2EXJfM6Dk9giYjPOfJded6iHqqUdcKtBkCFuvSbP0JJoI9OvdR4VPdbcc9k1xw0Wb9zEEgXWMffBHuvc9Ik9fU4cvDsmc9OWXtrweFrRmkOeAxjG9tDc2tZkkrD+mnoOnp0wJ7Yk5QR3/f0q7Vrtx04XulwE5hKVfBOAWY0M+1hr+xwYifB6Cj4EfAshjK8SqIsg2OpYNKXyzbSF2k3Oh0uw9RCEMG3XCZUAcooZOD9l7aDtNWHj2f8YITyrIuDGvTpoarTEWy0Cn3kM7njQnfTxB+Bv9eA1L/Tn+gXT5ZZyxmAm3kghMBEY1+7vGrefR37tFz2fV0egj1CksRIdkArtCmd1nRwGTtXS/jM/8zPceeed/PAP/zC/+Iu/yOte9zr+4T/8h4zHbfJe1zXf//3fzytf+Up+7ud+jre//e30+31+4Ad+4BR6fnZAyNORKfmELl1aa415zmmoDrPgpaxhWobYnLGJ0xmXS2Mlc63WNlboFbHQfj+OQbSJQHJJ6KyrnY1pt4znorGLiNOGjuchw6cd32RxLOg6kCansdaEBwnl3lKNNQSN/KkJBQuga/2OCe/4GrF7PJyvZHS5MS4TGtceV9dEVtKytDMASTT1gos3G9LhytyBByJm2ZygQntXdvzjhK65tO7xJ8no5uZI17gm1Dyt8BVRy04lwfVyUsHHHoK3f8i1GkOpkkUZ96arr5pMEtZbU8/BswNyih6bPT6F1PBwlYwy97TowpwQl6Y5RGZtP6NS3F74Clyd9hmBR7Fx0Fb5kEtCp/Nga5gDJ+qhsw7UhL6p8QGcpf1mc16vaPOnuXxLZxEWxbNrEromUbBvt3EVRLSKvZjFLPc+Ej/g/Q+F47P0cpeAiFDh9Foz8YI77vMHuLLUv497x3MJCRmX8Rtpe5nzlbDwoHCqQvs73/lO3vzmN/PKV76SjY0Nvuu7vov5fM5v/uZvts7d29vj+vXrvOlNb2I0GrG9vc3Xfd3Xcd9992Xvfe2WLz7u7p8ZyCFpZVC7tJc5beZRZ/eVeR1iJPWjwm3igpkTbLvkkAntZDWaWO75OGL+aeL4sE8DLyCfhA4OGHNpx6dJQ6LxGcvVIUGJna3jWgO/+c67eAQntNvM8Tb8QYX2ibnXSQkFy6BLQWKrH1wmlHyz5zVa+zPs+7RI8aTQEuCPUpiZC4wSdXyfJvtsOudDDl9+TMz1R5Ud/x0/f9dK5+layD3Lji8b+3aMQmSuPxNC6SobZ5/r17GBWmwa10yB+x6Btz0AH63grQ/AJx6Jz5E4o3wXnrbJJM97SbuTglXXeQ7EZGXeq4Vdk5n5LONIC2kiOhXUc6Ffl+n2wIJjogtdm7Ik8miSQYFMSid8mfNnwKaEkrxa7UZpuyajtNVvHsKFv7k7x8aG1D3+rO6t9P38xjvvQnCW9mt0v+MCh0POQy16DW9IEwsKcTy7pcaXUaEdjaDwx4K8/tb4AX/8fHoU24TQOi8lLjzk+4FfA74P+ICZN13/KeRojSZ03WF9w9t5hFMT2nd3d3n44Yf50i/90ua7fr/P7bffnhXEL1++zDd/8zfznve8h8lkwu7uLu9973v5s3/2z2bvPx1fP66unynoWphz4nqnts2BIsbcPQ+y6KUSp2lWl8tWYg0v2Kp1p8wLtqsqJPpFWMy344ihCreCS0L3iuR8Czn38bQP8fhqmFUhm2eqnFBBflrBrHLnHwLsWGxM+8aXvAxwygrr9p9TSlTmXrn2NCDHcCnDr0L7FZxGXiEt7XPWkXLXGk6PD/1ecgxlWQfLj9fiSB8X0+6v0bNLYEMkm99hpceaNo1pP6wg+urbX7bW+bnbq0DQlYjuuNaRzQJtWxvzfWrZ1RWhQBDKP/BwfM4HH/JIR8L50r6NbSH2iLJC+3PQDeuuc4XKZ2XWBE+alfmGT/A0FnfOaYGIi9mVyikQunDdnHzMZk6ou0JIZOaeccx0IbfIdU7nwMBQ3U2QeY0kvZiLNLzL64EPEXsEVnab+Uc9TMhZkyZqO8u5aiw04/Fje/GXvAzB0fXnkbzbDG/WUvi1UdCpgxU27fHDuHH+MYLByIY37IGZnGBtl5d6H4TLwHe8CF75grM9AQsgl0T5V5Nz3kMYUpfAnmuVf7KhImeJxz1qODWhfX9/H4BLly5F31+6dKn5LYWv/uqv5gMf+AB/5a/8Fb7xG7+Rhx56iO/5nu/Jnjvee+JoO3xOQBenxqeCEW6LNmK0Mc9Hqs0sa+/rYlwux8YKrS6X2pbLExzZsSkzaOPcrIv8J4ndkz5FnITOIs6Cxda3LMxM36d+PE2W5SCsN2OcHU5oV0HdxrXXQP3a2xsre+p6hWk1VKIluJ8B3C+0tac28/Q1XIy7/d26yZ83sEItHFHYQhd1KiVmJgEZ9JG6HdOuQq0ygl37z+7TzhBP3x5VjNkbvuz2Na9og3pvWAXWQfpyEMgJEzbvyKmV3NQNZDULb0gsOm+4LYMwzBroaMeEPbzOmno2w0HWeSXC2AvsN3xSJxXWb4jL0KyC+2FqIR8EpPZlBCelCyMbuwoFMi5d6BxtZV9XoqXUCnsVl8RLr40+J72chAjPyk4f5lXzm+Vdhr5zXwF8wF+aWhjtWDRzfM4SbeO9bVdse9qgSho7rle89vZGaL/mz7PjgjZvCmdbGOuKZ/8IjvfcJFQ5UrgC7Pv10Bgj/HzJxKtjXv8CeMXz3XFKcM8x/Lnk7zcR86OrDlHX/xVO3oPuNODUhPbtbRfttru7G32/u7vb/Gbh/vvv5x/8g3/AX/trf40777yT97znPfzpP/2n+e/+u/8uGwO/sX0Tf+O/+C6+7/u+j+/7vu/j3e9+Nz/0I/+G6TSguDt/+W5+6+57mr8fe/w6P/Jjd0T3ecfP38U9Hw6W/8989gH+5U/+u+icf/mT/47PfPaB5u97Pnxfy83tR37sjqgG62/dfQ93/vLdzd/T6exA/fu5n7+Lj37E9U+Ahz/3IL/6tncxxSH0Anjv297FQ59zCS0K4OMfuY/3/uJdkWD35FvuYP+J68197n3fvfzmr9wdiM0a/RPNploL73jPr3HPxz7VCK+f+Z2P8hM/+JPw8YcbYf0n7ngPn/mjBxpJTOfPMrh3vOUOnva1PafA/H338sG77m7GUE5n/Ow/fSvldMarcUL6B++6m4+9714A/gh48RPXefdb7ojc43/znXfx2Y/e18SUPvK5B3nv294Vbfx//VPvit7vh+75JO/4xbuCO2kl/MjbfoHH/+DTPtPnI/z2Bz7Cnb/5+43qfDqZ8kP/+8HXn8axf+GzD/LOt76rIYD3Aze97V088rkHG9e5+z5yH3cm7/c/vuUO+k9cb4SpD7/vXn77Vw+//g67P3Sef+qf38F1/34Bnnrfveze5fp3GXhiOuOd//StzKazZl38+q/eze/+7r3NNWdx//723aF/15+4zs++xfVP38Nlv/70nPs/9yD/9t+8KyIyK/XvLT/D408+3fz92x/+GHf+/gfc+hv0mM7n/PDP/DzT+dy5mdTwm7//Ae758McaTmrvyad5/P98RxRf/ZvvvItPGfzy2c8+yE/85LuiZ//0T72LL3z2webvz370Pj72Ttc/ZbZ+8S3u/Sr87u/ey3t/5TjW34P85E+9q+mvCPyS3x9jnEBQf/Q+HnpnvP5+8p/fwZNm/R0Vfn7Hz9/FvR8O8/fA5x7kzre5/ql7/F1vexe7n3uwYT7+6KP38WtJ/370nx0P/XjHL/wH7vnop8P83f8QP/HJD8GXe8f9b3gBP/GHH+IzDzzUrJN7Pvop3vELYf0J8C9+/I6m9jLAx993L4/ddXcjtPemM3b/6VuZm/791q/eze//7r1L5+8s099T79/v3MNEYL+GBx+/zv/543ew6wX3XYF/9/N38cF772MsTmj/xB89yL/81yfTv3//3t/ht3/zg05g3694/MEn+ZEffwfsl8jU5bp578/+Cvd9JMzf9c89yOxt74po18+/1eEXFeo+89H7+J133hV5YP3iW8L6E+Du372XO48Dv3z+QX7i3/77cILAT/zSr/KZ+fXGPf5Df/Q5fuGxP0Q88hMRfu6nf5Fnnny6iWn/w/fdS/+uu/ksLvRrMp3x1n/6VibTWWOV/P277uYP33dvI7TfeOI6v/CWO6Ls8Z98513UHw39e/BzD/ILb43x82nvjw99+L7mvXzhcw/yLtO/J4BH3/YuHv3cg42x4RMfuY//8Iuhf0Pguuf//JTzwffdy695/kVETn3//u8/9nYee+J6I7h/6H338r677m7i2V/r+ZdqOmsMZh+6624G77uXXXF06pknn+an3/YLfkwguzPeceMPuefh+0P/HniYn/jZO2kmYsX+nSb++4mffBef++yDDW341Efv47feeRcawPwG4K+95Q5ebujH+373Xn4p2b//5Efc/tCh/57n77XHG09c55Nvifv33l+8i4995OTw87vf/e5G5vwb/8V3cRxQ/Nqv/dqpKSG+4zu+g2/91m/lW77lWwCoqopv/dZv5bu/+7v52q/92ujc3/iN3+Cf/JN/wrvf/e7mu729Pb7hG76Bf/bP/hmvec1rou//+rd+B489cj9XrlzhIsNeLa7eYe016uIsHD8K3AL8Fzhrx6UCLvXgskcYuxK08vu4jOv3A/8jTiN4uYCdAi733OeSDaRaAlKL16ibOPZp5WIj7wjMPX/rpfDaF8LWADb7sDOkMNrqdGza13+GS+DxXWZsw8LXecQR8r8B/AQujv1J4DuBf4NzxdrBzcUsma+bgf8yM1+Xe7Btxi9VHceuj33ipreFjc/ffLHL9LnZd+Pb6sPW8EDZ5EWksZ40lhRxTP8/+dyDPP/lL+Jv+X7rOxviGbfauV89DXwH8FO4dbGNO2+ngCv+HQ9WzNR5VKDjyq3ff4yLAftm3Pv8r4A7cNpUfX+n2fdVYS7SuKo26xjnCfL9OKH2x3ChG/pOdO1dXWNcYpI7RiEad34BNvrwNS9yTGVZs/dvPsYzf+aF7L3qJvZHA8ajHuONAf98o8+lrQG3DPv8B9w7aPZCATu+TzsFTVbXaS3c8O9wz4zvt4AfwjFhv4BTIOp7u9SDK36M/RXH95nPPsArv+jFS8+r/Zp6ug4lZfZxa+rvAX8T55I6BP5rlu/1o4BxLW7vSlgD+7h5+TDwvwCfA/4+8PMcfq7WAZlUsD9vewn9xkPw24/Cd74SXnLF4S/FZQmu3tXxJbjpfwNeAnwbLm7xl4H/leVr6tkMq65zhVLc3O96wV1LJs0JHmSbBWz5uVb6cNz4UiqBybwpE0hZ++oqQK9g3C+40e+xN+xxY9hnd9Bv+JAvAP+AmA+51HOOe7uGpj0E/G3gZ3G4s9kzfoxXjnjPSCVur1i6Py6dRf2HPgx/70vh6gipYe9n7uOZ1zyP/S+/mb1hn/Goz3ijzw9vDHjt1oCvH/Wpge/G4aQ/h9sXlwuXhF7HOMZlmP9x4OV+nNuFL4+FM06cBt5YB2oJ+E9LfH36cw9y7eUv4v/q+/8GXAm0nQI2ey67+A3PC/w7XMKyf0SMOy75d3wWcIfdhzrGfRwe/K+B/wb4Stz72/Dvbwz8f4Gb5xXfOS7ZnlXszEq2pjWXpiWXP/MU2z/9efjjN8PXv8ThXYuDtwYUW6daAGwlKC0PZPbvg7i5+X8DX054/5d7gf8ZmvdaivC04aOUtn8O+B7gz+LozXfg8UER+KkrPdg6Yrq+DJ555hmuXr3Ku9/9bnZ2dpZfsCKcaiK6b/qmb+Id73gHf/RHf8R0OuVf/at/xWAwyMapv/rVr2Y+n/Oud72LqqqYzWb87M/+LFtbW7z0pS9tnX/52ktOYginDl3uQjZ7fOoqnbb4c62bbtvFZA3djpiPdb+8J4mV/MDDsb/okmfor7aUkHWPVwv6Di7b6idxLkqfwgnvlwnuSekcdNU77YQosFrgQ8nYPvRwPHaxI1gP9DEV8ZQK8Mhvvb/JHF/QLmWnoKESWfehA/Xq6CD3fHWPL3DvDdpJh+D8lnxTT5hWkh05oveiF5dVK4GD9AoTJxHqtU8lJGqLcMGSPtnf9HiOU7Ck7+ugY/sPv/H+lc/tctnXzNRa3jHXp+PaC7lxWzw2pF0O6UT2ZzNZZtIE2PO+FmPv1N56keIb6eyzTRi67pp6tsI66xxCUqdSQmbmMfB+nNLt93HfzcQnyeL4Q4pExIWG2fCxNN/LpHLu8WXthF7fqZLFfIv9qDmmKxndia0rraYwMHh2c4DM6hYumiOMJIzhy3FZ5DWUT+u1qyfd4/66F2BC38xjRpwS3lgDcu/lnt96P4KztN9EEERy2eNzIQB637MCNvmcdZF/FFe16DUE3tNWALiEj2n3EyOen6wB2fdvtgxhFq49SyNfDSRzrO+0M/QhGWZEp82+0gSz56k04GHgVIX2b/u2b+Prvu7r+B/+h/+Bb/qmb+LDH/4wP/RDP8TW1haPPPIIb3rTm7j3Xuc+d9ttt/EDP/ADvPe97+Wbv/mb+ZZv+RY+8IEP8IM/+INcvny5de8nHv74SQ/nxGFZpuQoC6tp03j2Asc8Wkb26DsLpNkwv8LHTnbE6XRtvLScnRKzJms6Ia4dXOb4V9hzi+7s8Ssx8hEG8n98eSYONNf5A4DQTuIhuFip+/7GX23qH9skdL3kHWscVZrQZdWuSS1IVYfPERGOHCKGkIhOFRFbJMzZOWf657jxafKUwxOZVFL1B2UdmMnC/9zrOatR8jxlmLtKoq3TtzkhM/pR5FH429/5jSuf29VPxYnW/f8wfTpof7S1eRsUn7UY8OPsV5PxiHhjATzjWal9ZRgltBmkmOvjlFDyLU1Ed5GZqsPAOuscgsCuAl+JEwK/H/h14B/iPEtsorMqe6cjhJp8GUFbLcZ/L2VNoWUHcWukJbQXobVCuyaVzNGF4xHaO3CsehAY5ahs9p22RE/zHxUwwNHpN+Del56SJqJ7GCewDwh5ayA2NsDZzFWjoGNrbBjAX/obf7XJR3AT+Xh9hZZBScfmeRKquJrFaUCak0DbjwJfhMOD1mCkY9zBeciAUHtc3KDlsacGsxQH61PPyhteDF3Cdq7CTHr+KqC8VJoXZiEPf47hVH0riqLgu77ru/iu72r7/t96663ceeed0Xd/6k/9Kf7Un/pTJ9W9cwO5BakLuaWtzgjscNTaTEmwtG9fcjPwkPND/9oXh+QamQctU0ikYysK6ElAiq8Gftv//ilcRnmbhK5XQCHh+hGO+EfPEpBlHjV68hfdAn9uH/7jU/B1z4/Hpjc7IAjBQqJC+704t1pwYQCvwrlfWYVE+o57rF/vVCpxgl9ZhRSg/QJ6BTLowbB3YNe0RYy7TdIFLunQdRL5AkMIzqhnbZfVd0ZAvoetQStdDwFn7Rqkk1MgdbLlRChx5YjWSdTW9Q5nBIFUhbfTFtQ0OedJ1/21TINtbYUEZeRPNIN8KqhbHLXvZ2ivaktBiUSQY8rAuS7a8R27sPgsA/F7VtGyCnq/lJz3HuA/wQiGx98xY3I0gvunHnXedn/8hcirb0X6BfQLJ3BVggzXyx4PLtztaTg5upBDXloZpt8LitGNAVK1sehMYOQ3SQ/4MuAR/3kJcZlacC7EaupQg4Ol69aDbivTvbMgrOi6TN/Pdf97k/fCt+k7tonoAKSqKWa1F3MLaqDXB+n1YNQ/UAjiYaAWaZRm1squ8eyvx3hCJu9vB0cHBILA7q9lv0KAYmrWUfJiReTUQwNWgXQdCuGdWkv7snXbJQ9sEMoan4U1f5xwqpb25+Dw0LXI1f0W8u7w+rdFjDZn/6EtmbmLFfn8yRfCK29Z6ca5U3STQjw2q8nUsm81Lgnd7ck5JNevxcjnMi4DPN9XQrjtcszgLhrMio9TQq7M2Z3JOb9CopDw39t3vEVi1V3yjqWsXVziuHTxe/tlyFHQlLWrD6XlXiTUbpnzruAS9ug56eesQtf8KnNqrdotgrTuwHIXzGtX8s0uhEEvWIfM86z7+KplhCKZz3w3J4Q1nKRrY46o67G6a59GzfDcPOUs7Sfu3peG8GhHd+e+bINlGO05y/uZuv+fh9JU5wmExAPLz+NfTM77ej1f4v1wbGBLA+rn04+5fDYfr+GnH3B/eyGlqLVz0nj75BTO+rdFZdvEyvZToQtarrbne1jgcOwsUcGJNInowOGhHRxvcg9B2NMqC0J35nhrbIEjqkByTGDXnV2vT5G4/ZPXsVjcwbyiNy3d3E4ql8tlUob8SeM5MjtZ9aDgvF3Uwl6Z8X4UeC0hfDNnad/1EyTiyyEqbp2Uvj5pJgjwnCJN22uldavS4mUGEMvD53jciwIXVmi/+bYvXX7SBYPUymHdzHJCnIU0pvtQTKPlUC1oCYtZRlrM7K6I8Ta/jWkL7T1CrfY+zh2+BD6Giyn6YtpCrZ0HjXNNn2vbbOe07+CS7oAv9SLt8w4I1sou/m9N03jVZ6L+emLil4MNumN5U5BKYFq6MWlMYis2sXTnzA8eWd7VB1suCkJN3hZjJmc/rj0nQKrVN+eKfqSCWlW1LO3S7zXcUyxkCQM5GquoVbrk3P/XhTTj6yLoWt8Vwf3/JMuPdT1HvUkKAq7O7c9jg9yDar9Kd4FbLjmFnV24Gav8MsWbju+wbpDPBlh3nTfCEIE2vNb/vgP8IC6hp54PJ+CUZAm2djDNZ3Pvw07ZK/px51n3+BQagdUM4CacpV0fZR9/LHQhhxsaocq4x2/0XGk7f42I+7UGNvyYlV7/ceCDBKFP+17jku3dSluwtcYGOJu5ahRaNBv41be9i6cIeQl0TJZ/0XYTh6+LsqaYVRSz2hkLLG/S8CMVzCrnNn9C0BXP/gTOgyIS2hPec0eEscWlgOBLvu3NkZv7IaYd4vV3Vl7wEuiiD6mlfel9klbBCu0nrYw/DbiwQvuN6/cvP+mcw6KFqVYzC0XHMQSBLnvfw6z4xhotRmg3CHXNeHbIx+srwrcazVcB/552EjobG6ag1reVGPkcUwIwUaG97roJB4GGmJv2tXh3+K/6E/wgzgVLCULqHq+Q1URmuiYiob68JhKammy5TR16//sBiWRurvV4lyDQFCypybv2k08fbEy73XcHJjL2Avsy69g9XgAGPSQjlWuuiHVrhud+UwEZDp5HwcJf+Oo/sfK56fbU/uD7pDXDTwIUb+SSRWnYQCq0t+5xfL3zEp9/graqfLx1G3b9SmhZ2aUzhElBFW86vpMMSTivsPY6J7ZeCk5YAJf86jXm3Kg9bktdSljeEOezEZ/fRhpS6c7LxrT7Nmdtv4zzwNLHpW7YRwo5HCu0LaEFyGbP0UV7mbgM+DamvaCdjM6i5oegSTSb41t0bo4Cxx4XNI4UhM/rvupP8CRO6aKgOQsgbofArBZ6s6pJXCgzx4PI2Ajts9p8qhOLc19Un/2luGRzlve047uEK8WI2L3g2/05XN5yivcOPvnMvOQFsEjY1jbHj646NMUZOcVw1I9z6p2QwoUV2meTG8tPugCwKFPyKHO+Qooc07ih3D0P3Sl1W5otkdCX3EYFnhTU2q4E/VXA79BOQtc3f2u7wZqMfMqUCEFob42vA+Gu8hifSTSNW6x9f7/x5S/idQQGoN8xPuhOMNbqWo3T7qaJhD72ELz9Q/Cxh53Qrr9VEjLorju+TKuMl60QcIVM7KKEc88q5MYHR5zxtIuQi7h4y5alHZfEx5/b5FMixHwvijPLMYaLxncU2fHXKYOVg6aWK91C+3GtIzveXLJFOCXm2wrs9iE3/GzdNHSlO5vzJbQduNmuF1W8wXpr6tkM66xzdcNV2qB0QW3ap5ZxO/dSX/F8eKUXV7/thfDyW7I9KsmHrzWK+SL++yptDyw4YbpQ1UYSL9xzN3rIPIjfKjDMgA0J41LjwgQXxmcFP8HFtL+QxZboEeuFvZ002OS5+rn15S/iaVxOgpzbv4UNnNBeeH5EyhqZ18i0gk88jPz0Bx1vYnmSuSFsxwiyIJ79I7icBfre1BNU13APuCRw3RNh8fdr2nKO3LQZjFw5yfacQI4+pO7x6Xmr3kflAfUWvui05cIK7c8W6FqYNpFXTnuZthv+Gr3XoRa+laowrVpwyip/wwQJLRqbKiRS93hrSX+1/+0LwMfN97myIl1auuy4c4wuhPE1SNaccEDMYYX1yhwD3A+8DEMUCIxNOj5Y7Ird+jZNJPTJR1wd+o9W8Nb73d8+gZDjGNfPKK/LJJ1OZe6tYiYrtNvPGSVg0TYw36lQm1OWHexBHVLUvIZhwgr1iyzBV0Vfmq33IKDa76PLjr8aLFIiQD4k4TiZ3EXj1kRtloHvshQcy3zZNdPEtAvsTZ0JaLsP41mYoIgwhEmrac+hVbyptawzpv04xvYsACus65yDs87CESrh14UcLhbgqnOGlhc9z7Ue8YuEtdeViA7ywt0VQky7jt/Sk2OjC2IOKmn59MuogLIMY/MwFWGEUEiwvg5w1vYPEu+dp3E0/1aCsJ4qLcDtsUgxmnbxlMHSeTs+tbRHrv9FaCHgjqrhM9x8SyXw6ceQt94PH6ngp+6H+x4x/IhEeVuOC2oWx7N/GbH3Z9+MCxyaLfw97IsTQG5UcGWQ2cgd/OcZhWU0eVWjRdfvymtYb+HcdRcFLqzQvrVz82l34dght4j12MZL0tFaxGiF9q77H7qjjSW6q+6ktC7JjU1j2tMxqcCurc3A+v24+HbromShs6wIC8afusjPjPv/AiZ3HVAip8RAtbgzXLxU76P3RQS9a3ywhiu2EjslfgJ8MIlJ/MDDxtQjsTZhzfHZ/ghhHW4RiPk1AnMGeTnirEJunpXQaP3q1npfdzpbe8nDDJfV2J7a70Mp8dyJ65MKtV19zxHS3Dl6r66qFOvCPR++b+Vzc/1JhfaTTNy0KObbKqZaOScOtqXW6Jh+tIO+3a3g8hC2BibLlznHbLx0TIpzdX7TRHtnfa+eNqyzzq0FUy2zghPat2gnlrVwIu8hXfhzTx/3rfeG+RC8fVr8ShFbKPW3aziPjq51eKTQtZGruq1pGA2833O4VLeOnmpd3t+AqwhjFTAP4ZQSW+a8Lkv0Irfg04Su8KA/+uh9PI3zlLCGF6uMsJ4EPfFl3cxHPvZo/LA/eChOgngCQntXPPt1HN/5GkzYZtHOS7ADFDXsC4DLfSA+r4hMQK4ZoT1nBDoHCNWSGAs6rFVLLUekynxnw/rW5uHPIVxYoX1j69ppd+FEoIup1rhvS/Ry1leLGPX6Qy9wRZppx1Ro1yzyuWzESVKOXKvZ49OxqRVdBdcPJt260/wO7YQuXTUebRv9lQpKNtEeyW8HnNRaTDy70iPgAdwYx5/6vHOLJ29lt0l7bLLBZcJY9IVIqDuv8OW3ht+yN1gNJHOsQrs1XlxmQZbg4xZuDgFd82vLlOTKqx3ZeOa4TMa4hSHgXDhtWgnf2uR4mH4tEyJzxNQqJY4iO/4n7vv8yufm1pSu+x5JNuJcv1bv1lr9Se9r3ePhFNz7Ujytn90KtkdwadQOSIXWQsj1d+yPdXy6plr45wzv3dOAVde5utGmYVOCExZeyeI1flzg6HcXffQYZW/WhOd4WaWxSK+UiI7AuF7GZSFXiIogcEJrq5LgzeSJrox6iJcgdGwlUEg8vgEhrv1eHK5UvPswSbk389Hv9B429CRqT3lzpe9C0c2Dn/o8TxBi2rsE9gLPx3ovjHBjgS99flyS94/fFn47Ieiqz/4RXC6CqwRvChXcIYxvw/d1z7+xJq59WiNFAZdHF0rytEOxQvthQL0Wh7QNjxcRLqzQfv3xT592F04EcgyzIv3UhVyPu9zj4YhKJtidaRHoNBHao2vaT1l3bP3Cl9Eq3AZ+U3K/b8T9bmtlKqSMfBc0SoWci/zY3yHNpn4IpJsmoFPG7PO4JCd/5pu+phHYbTmRnEa+yxV76TsWXIm+L99xf3/7i+I69AccX26ZCO3whwJH/J5Orj1x5uwIQPuZxnzb39aeztwFOqEqtJsFIT3nhxL2uDuaiqshrHN/mGRtOr6jyo7/5r/+NSud17WmNMMsvk0VEscFuXeqx3vEFRLSCh7RdcfR0diPOHy/W8GVDWdphyBsZZLR2T7a41Txpmvq2ZDd9zCwzjqPXOPNq3wQFzZ1LIllV4UcfVS6v1+G5SOmPyLRPs0ZGVKB9QpxglJou8kfGXRNYCmRN5MAbA4ahZeePfcKjc069g4c4N7XVVwYn9L6hwjx7BAr5C2c5coMujaVd9Hv/sw3fQ1PE4R2a20n+U7r2s90vegJL7sZXuD/Vp4kwU/HGTa3LJ79dQT+Jc01ZBVPN4mjvbX2GWA8c8O4NNKH+Zbw92m/3DUgtx6Vv1hH5ui6j4YaLjKAnKPpWggXVmh/NoN1BV3kHm9bZaoOLUBAnisQHNHeYKUSFl3P17HZWNBG41zAyH82gD8J/O+48mg/BvzJwinEbaIbBbvhlzI5OeEInHv8Bk5oz03YAQiIdY237pBfAF6OIf7G26ArC6sKUEvfaSrxaHvVV97+opuPDAPm3vME5zYGgcBdwbl7KlFsaLOc7ZJvVkizrXrCtJIIZa478IMVBgbNFyC9op352x9o6RRYTcDq+s3GtB9JdvxDgnVFT4k7HK9A0/VuS0J2dcjXjz9e8E9Ja7XvTWF7ENbNrlG7JG7y0ZgMykiT7KVC+3NwOFB6ILQVug/hkq/uZ66x7bF2rjk2fyjd3/MYu47XEkJLaC+SY/UmA0frrhIS0aXJzg6NQ3OQG1sp0OtFbm2y4bgM0czy4i3t+Dr0Io0wp9bz1wMfIn6PLyKO+bYx7QpWGX+aOLYLrLOO8jAVLuv/TcRjyxkcnKXdKH+NIkQ2NuDFo2BEyCTLPC5YFM+uSejSePZWiIPAtgg3xIxLBNkvYQdk6LnVpiJRwpedmbfcDV08QmppXyZzLJIJNliSN+XsT9PK8JzQfo5hmWDblYguB3ru0SQ0yTCDANM5XBusXMIi91y14OTGNgA2CtgqYLsHlwr40wX8vwp4Y899t1E44T6dk5XLXKXcqcUKs9KNrzNmfz1QF0hbp10/XyAkobOu8Yti2tOs2Z3vN+J6zK+aYK9M3t1B4/XT2/hWcxYoqKUdzmfZt3TJQIj5VqH9WB6ifw8TNVW/aMX7leKSI2kiOlieQK6r5JcKpAOOKDv+mpB7jhXa1y1pdxT9SV+NVT4q5BLRHVe/mgRZOYvoMzO45EWnS8D+gmR0mT4KbcWbdY8/qXVwkcHSBSsMPYOb45cThPacIHdsc97JaQuUjvrIXhV+8m7yhXEhX+Qer61V5kIIx7BW9hOjC5W08oY0Cq9ZSLqrcpe1uNocPF8BfIDQ74eA28x5UTy0YeZSxWiuPS3I0WkheM1dI36fdmyNQULcnWYtRbMgZQXTshs/HeMEWGHdluv7PVySYFuC2LaRN6QI2/iYdjHDmFbITh8Z+nVkvTfPystdEbrwz7KYdgg8hv0uPbZJfU+Srp8WXFih/QUvfsNpd+FEYNFm6Cr5lkOMuhBSBjs9XtqfLkkMYL+E7Q0T056c0yHcpsw3ZGq5ei3mthfadwrY8YL7pZ77frNwbepip9rvlYWntL/697648c2q/O9rog4hSUBnaNAXgJcA737LHVGsWy5zvLYrC1BdnhI6riPS+nYhVI2thtB3FW6epk0ETow5OwB0zbOO0RKag/MaHWercsVY2gXcpGrmZv+9Mn02pv0w7vFWKXEUSd9+5MfuWOm8RUnfdFwnWTO86/2rkGEt7V2x9sfWMTtZ1uo5mcJlL1rsDGA/DfcJDPKqijddgWe5nvRZgFXXeSSsm+MHcYLsNTIyTNIeG3QtimkNz++5MLJMJwrvbpzmdLN0LE1Gd8m3li7orY/dA0sfVImztCuoN1MfmPpQAISpCMMaeuIsxxALc18GfI6Qu+VhnNCu51mXagtHUe3juCAS1o1c/e/fckeT02WRwG5xY6U3tO1ejdzoxk/HKrSL8Rzwx/cCP+h//2FcuINa2W08e6N0EVf2ba6eS6qYGAOjEaILfpb6htHJL59FSMkNOBq8xXoZ39PvVSZQY8NJ0fXThAsrtD/xyCdOuwsnAjnmxyZdgliwTV3ObHtk9T7tDrUwK+HqxsolLHJjm9KO27aKh42eE9IveYH9shHcL3vBXa+xBGLEiiXvchPSJNrBj8+6/8ftOjFWliCI+bskxC3+Z//517eS1NjyKTo+WJxsL9urFpb148qN74ABhLk+TIBtc46u45txDE2+tM+BHn9qoO7jaf3qXLsy2I0LLqsxtOu0D4sme7ye23jneLdN7WPaj1yfct8ddXb8v/ntX7/SeV1zl8a0n2TNcBvLqZ9cssUN2u59x9GfVmfSPB1PCez4nm2MwFtGI61hxj3egs1LodDjOff4ZbDqOrdZxoU4edltBIXJqST+S/GQwgS4tAX78wb32FaF9pZC3replVL/1iSlOSv7kY41J3kIPqbduMYr4d0pXC1xf3KJfy9mXooiuE/fgnOHvxfnJbGLi2lP3cchbjtDrE7iXS+BNEmifl7+n389z/PntCztyffglPaljscIt4zxi1yOIYnBYkhzdNbALyfn/BLtUsRgxiiwiTQehOCHsV9RXxqFRHs25LIjpPSsQheNmOIUjOsI2rktaA0ER1a2+gzDhRXaq/Li5xGMBB6zkKesV6PdIsYJh1zs6cnWgjMv4dLQ7KwM8snQxHRsKtDlBPcRzsp+pecE9ubjBfe0ZLVCo8ltd6U9/rRT9u9LQ5gfjVZUmTEhTjqkdXhvBa7efM0RhKKDKJg2Je6Ln2xO1L6rsG5c/g5DQLrmeUKcoEvHsENwq9Nz01IyZwkWuY9bQrPIZXhlJU9usTb+mLH2RnoF4gV6PV0JZ9+0q9QMz+1Tvd8qyWFWheffcm3lc3P31vmGNff6IaELj018Pyw6skq1E2E4cnhMMypd9hTk8hD2k/1uuG/LiFtGybrHKywqaXcW9+9pwKrrPHWN17lXl2ql/5aJzbVHDrkH6BqbAc/bhL1ZTD7MwpmLLHWPzyWjs5VF4BiT0eWgBEYmBKnw/RgVDQ4Wv60ahYTGtBPC9QpcFvl7cMqXIW5sOUW8hTQR3VnaUylu0Pcyu/lap9Ceg60aZggSIZ0Q294kOU7zcxzzLKRz/bXJ719P97otcOvgisBuMh4ZV7A9dH9v4A0mCV92TsHyHFsErzNYTBO6cJjNHn9SdP004cIK7c8WyC3OKXESoGWCu8ImC2JC1ln1nT6TdXC7RJbupK6xbSXnpePoFQXDomC7V7DTc+1Gr6DnKV6RuVaJaepS19ZWdwm0/srL/ZUS7a0CqYXdxrO/hKChbyztRX5Dp54Uafdj/soQvbTPmh1/VtKahwNAKjNou0+cRFHhJgJzlks6dFahS4hU98B13MO6H5K5QpMgpZxen+A670GTuei9VqkZvqiPWjv1SLLjHxDsupgTx7SfxPNtP9J2TBzzrf3qsjocfV8lMUn6J2gN7e2BWzfbo053ZmUyW/pL2ono4BRK2l1QSHOdWMH9QVypqaPNUbNuBzN/6yK5NnS5bdKEYb6dS6zMigQcY2nuGZR2lQXlQI9qTHYs2m+FSiJvJsF3djCASgUxoRQYJp1qBHdCvfZ7iDPH98x5OX7uNPKGrAqCkaPNd0+S1Gjv8AIFJ9hGSTp16cyM4nnfUFEd9DFrbHJz/VrgK3HhKT+ISy4IibeIGWshwo7AHL9OvEFd5jPqzX4Q2qv1QkrPCizLe3OVxQqnVUZnvRZh9VK15xUurNC+c+W25Sedc1gUv7mRnJsSv/Q7yFt61u+U/RjCDE4au+ydVJckM+sam1qobL/p+LsLcgyB3jPnntqCbDkbf+WlvrO0d7j8rzOxuQR0QpyE7mPvu7cR1gvicnbpfKxsybN/WKJQqtBex+cdgoDknm8VM3Ysl3DMWUOTtT3DSNmOz06PruOcouzAD4F43ZVGBaVWdvWzrOvospoYZ2jSwlWIaO43tSodVXb837r7npXO6+qvKhGgHbN/nMR9ER6zSegKuqs7HAtfFr1808kbUy9BeESy1YO9eXxebXporUPmljo+i4PSRJjPQRtWWee6dxrXePP6HsRZ2o8qR836kKwRbRUX3TREbvhEdJY9EHetWs1ykLPGFjj3+Ou0BfUjpwtdSDCXiA6QQT8KBZwDQz9ojWlXmm3j2h/FCe4vNPfS7ahCn14Lga7nWI3TpotdGf2/8L57oxrtsDgfz0BgYtaJAOJ5LtnE4ajU4ADHOgHNHpR4aVwD/jyu5BsEnrvtGu+u2hZvaUdHBtwoYdsL7aOer3dnH97BX55RyHVzhlNcr5LxfVWvRbj4IVgXVmjv97vSsF18sAxqCwl2COwQx3oqLGLWVwaPaKmBy/69LElm1vXcHFFPx3YQ0NWyVKjtEpAmpdtNw56nLubcFrO7HLoyxwuuRrsK7ePdvcbKnqvTnrrfLnXFzlF+Hau6/c8Sf4QDEpCUycoJNMqoQKjVnmMCzmLZt66phJCIbsDq7mFrw7wyGf3CqpB+Ea1FwXt4mgd2eQCk0CWU2tqpR5Ec5saNtIBVR386+mSTG55kzfCue+ZivgesWN3hKCDFSYqj90q4ye+4Atjpw54t+Wauz6zV3B5WSHMJRO05YT6PG1ZZ50LshWXx38O4uGjIhLsdJW5Z1sH0IUozrm7AvhdOavHvXRpErlUnLE2PDA60adxVXPkwfaSlKSdCF0oJyT57RRj+1gCZhn0SwhbDi1D6ptb2beBVwF2EePZlMe3W0u7vfiZAeRhNlgjhfdzY3ctmjrcl0RreRXy+jxS5j+du0i73gtHkEDzXupAucx3bHnEIp22jRIrikhJeFmEsYb5EBJnPqbfdmpJBv+UZFz34jIOdp9RwcZn1KqbkvkuF9rPqdXJUcGGF9mee+vxpd+HYYVXBtsvyaq3u4BDN4WsqKzeRcM5zf9AI7d3J2nJf67Et3aRjyLVd0HX+qmWush1EHNHYxpXXajhTaZ+74mTqFDZWdjOdn8e5xxfAV37NG0NpESu4Z5QzqwpirXfXcOKeLM0Shcsa47LQMFgJM5la6ZSgXyXEtJ9KaZ8DQq5vVqhdJKitPS67Jsu6peESgH6B1ElMu8RZm/ssIH4r8A85oT0nPKwKb/raN658bm7u1IUO056URj6Hx9Jki7DYEn3k6zvdNLrnd0vYHAUEst2P3ZkTJjgnCAqxe7xCn/b4LhpDdVhYZZ1bQcgqc3dxzmzqY7jFabnHZ56gSUw1V0JKQ8QJ8IWJaU8t6pBxL8bFfbeUuRLm5cigC/HVdWxpL7zgvjWAqSbbcyyQVYzqmGwN7x4urr3C1Wz/KG3X+JR3OSocexxg34llK6Zf80aeR/xeIa5DHzKsC9s+SaH/091lXiPbvThZ5gklaVtk+R2Tz8nTEuD9FRvA1EyUgMO56h7f7+V5rnMAi3DPFOc9uWr2sYiOmoVe1sJGVbNR1vRqYVa3vb/O16wthgsrtD9bIMcQzlkc990l2KbZF3Pt+p3yf2gSs41+/DfmHENpup5v4/WhrYlfBXJCra0jvBCyFipcTPtWz40vDao5AGjdT5uAriLEtL+UoJm22vice7wl7kvjp3PvzoY3bOMkPEuN9Zw1x5u+WxXELdGzY7iCY0y7rlsnM/9JwSJLtE1Elztn5eF0PaSSljlXAHrgU/r4y4Wp+CR0/stVBayuLtoyLKcV027BJqLTvb6Wgu6A0HX/3Bq3CaWOfY6Ui0656d0KrphAia0BPJOEwyQ4MEIV/hRNJmmFDBuX+hwcHCxN0FdY4azsmzjrFTjrZCc9P66FFSEHsygmpUMqm15U0Qzy5ho9PS35ptBladdEdJL5uPse8WDTxV7WEeHVjN/S70dJW8vaJNkTaXiXQRHnp9H391ng+wmCux2zhRNPYLkiKF7IvZOncEp4yNQuz8AAHwZi2AwpHc8lm0OXL+kIeJJ1IH2cwj5OGG2t1yIzTnEl3/Z8XxteZhfnqQHIsB+MXunDzh7L04Ku7TcnFtqjV5e0WahqetOKYjJne79kNC7Z3p9TT0qKeUVXjffzDhdWaC+KCzu0BroWeOp6aa3piwRcFdpzBH7lRW85OPv1pKQsoCwKyk2opwvivpPb2P7k3EphdYE9BxaJrlRyKceYTGsYDmA0iL8/IAERYiuK5g591P/+Itzmraazxm1OiX4XpPVcV3aXFP9fDVwZhKR7epOlN8jccoGmOn3HupOv4Ii9Qlra5ywi5q75VaFWE76tcs3yhyRXWLdNq6lK3OMhTtQGqwlYuXdncZBa2o8iO/50upqTfddzbJ4PTYV5EuXVuvDYvu+PxT1pbGpuXo+uY4mkpA/ZncPOKHRqZ+glAsnGinbNdy4R3SbxnJ8FweKswSrrPC33pthYM8cr5Op3n+icizmYV35BFG7h75cGX7l2LkIhiXu8aXOCj7W0N09L6MKxQ1VHJd8a2OiDBONEDfSt1OmhhxPc1U3+vuQ2dxLC3xTs0xbhDVgdxx41pLTZvo8np7PG0p66xrdmUlwCv5n3xmjyaExB+gPk0hDGiRHomBdAOscWNe6yYiJov94vI5G1WaoaqYEdnz1+1E9Kvml7vjBn2v0Sp6BaJeN767uyopiW9KYl/XHF1qSkmJZcmZTItHLC/Kw6d3O0ClxYyfYFL37DaXfh2OEwgm0OkaSW2EMTeO+mMhVhd16xe7Xg6R7cuNpjV2rGhCQ6OUSUe77GhXUiwhUC27sUFyvVqU8nvZFSaiewj/yWarn/paNaDKlrvDJnn8fFug1xm/fn/sU7Ggt7Lh7MEg2bydv2ZOkYIcRUbW+EfARdN1oDcpfMcAb9dCxXcfFi9roTLe2zJiwTatPaokfyMAulQL9PmuxB+oDUfoF7hhnYNO88rRne9Yq7vld39KPKjv+jP/4zK52X66sQQobsTJyE1bdr7rTcjUKB61/Lu+EY1rVo5q+Im/YPujFzcewKWq89U1JJfBam3HyrR1QqXJxEHoHzDKus85xrvBAyx1slifVyOZG57vL6mdew6XomV/vO8u5/1+VY4gSZRdmIcpb2q9DUuW4JiXKU403H5g/SOu16yrCHzMI4NTln4a/VRGQqkA8L9/ubkqf+VWjKuibVOylw7/lIKpAcMSjPksrQHwJ2/sU7eJi2MgZywq1TdkRx+wJMamRzABuDUOEifTfHKLR1LXVbllgh5ceaMABPa/cVJYvApHRD2egjRYFsJInozmkSurS7tizoKhnfm2FXtRPIZzXFrGYwqbg0riimFVcnNfWkgmlFUdYwqzuff16hyxPp3MOjD9xz2l04EcgtSHUF7USCHe2RlA4xCKXG5WQbFzArK+ZX/XLbGdCvhVHhCM4WMEgQUdfz1UK5aByLYJlQuxIj3yIMOKF9e+AS0YFzi1OG9wBYw7rGq1u8EOLZte9v/m/e3FjYuwR3hZxQkB1cjvipoH5lwykkcmNZk0BGwqy5VK2QEMbQw1lUnvB/d2WlPS+gQnvNIdzDusC+syjW0t+vX7Q8HWri8HcbX71On+wYjiw7PvC93/NtK59r15PFG1fMOaqUiJiEIr7mKCC3RoXukmhPm+vIHB9tpzKM7f7Mla1UTlqVkPvzDD6L15AFG7OfehI8B92wbJ2LSEuZq15YD+E8sAr/t917R4JXVoF0bSnMxHmiAWwOkT2fU0MTGoo4D2AJTGlbIe+EnJyl/an08cnn0MPqktDAuccPYmorBbDRQ8ZOAEOEmcBWpkONwO4FuD8J/G/AL+EE9j9ZuN/VAyGdl6NK9nkcYOl0DXwY+H8Axd95Mz8M3IIrkZYqYtJW8zNEszytXfjOdh8e8wkcW1Z2QURWMuasAzlaraCJ6NJ1mnoR9Pw+2REQhFKEgYCMZ7CFE9jBuceniejOiSSawzt6PCaEgqgSexGe0n3EvIKyppg74X0wqRgIUAg7FNTDHhRCoYzxsEB6F8c+fWGFdpGzmE/6aOEwgq3yZEiM/LsS16wutNMQ4SmwL8I+MK+EcnNIDRSjAYPKMc2VJ4bbQF/i2+QgZGBNiPmq/aM9FwqqtFjI4OTKvYEjIBuDYNW0ifYUVhRqlTGzdXiVMbsflzle49g3NkZx5viioPCCd464LyyvUdg/kjGqZWRrALuzzMXrwaI5TgUa/VzVrhAEXvBzVKyxRk8QFu2lEYGZ6Tr3UA8tpVWKSHDMQFM/2J9bEhLjQCg/tsqj0uWiK19rp7ay4x9AON7YWK0ayDK8oQLNygq6I4DcHI1xwobFQXbOj13IsnHpVtC6MYcdzxb0/M7bxGWQv2UrulYv0b1n0cAu7bKjGnKRwz2yDgK/wLBsneurUnpgydHDuLrQFt93hrud1HxrB2c1DLwHx7Z3Z046Nie4x0ObvkcfI8Bfwe1vnRO7nOuTGOc8iWn3ZlTZJCTgA6ZIk4iu51sdz6iAyl8/AL5S4I3e8r5RuN9HhsZZATD11jouBeS6YD0EdRm81/8mfp3/CvBGYmt7ypsWImyID+u2nj3TGjYHyFbPZZJP4QRj2i0dt0I7tL0IwifwvgXOWLEJyMQn2MO/x0GcGyHuxFnkemLoomUlLqYd1lA6CVAKRSXOkj6v6M1rth94DO57mlfcfo365S9weXvKHgzEKQZJeNxzDBdH/fAcNLBMsO3SaB6VVQzchpzgLO0zYDKH8daIfWC8OWS/dr9PxTGwuefmNrtmj19kMT8o2DjerFAbdc5wSwLMShd7BE6Cnlb5i1fAscqM5erwfp6QhK6AlpV9EawU42j7Z8c4rbyWoBeSCB7Q9T93e9umiRT1vSqCfzpzzWFUdFILUtbIrHKfeY1U642l894sF2rtdxFjfZiHeOLWeH5AYCr7RXighylxLOmimuFdRNi+PwjjO9Ls+CtCrk82JnRZrP1x9cMK7bmSaIs8YY4sNjU32Nojsj1chQ9LMC73XAyyvUYZISvAE893WuXDusd3deM5WAxKGxphiDB/Nqa9YHk41LF1MIeLpnWgj9sjZFIZnOIGVAn0RDrpeJfl8qr/XelC7nNkkNuDVWxpb545KKAO/jxTNNmnBMW6p9tbBWz3YKcHO4Xbcpf8d1s99/tmx8SkHiwnhWOXQaNY8m0FfG1yztfh3mETz94xxpFATVA0C0BdIoMesrW4wsVxTUBuqet7SJOM6nFLOSEO7w9qGPs4EZnVMBgFS/uogFJ5Ln34+cGai3ggdY9fVuWi+a6qKUSQSpCqhkp4/hce48W/dD+De27wt375C/S/8ChFDUXtfi/Ki2XAvbBC+5WbXnbaXTh2sAQpFWy74r67BHYIlvbofusID3phLZQ4j7gZTjCfzGD/8pCP1sLv3jTgc3P3/QynQZ0DdfKw3GafkFFIJO0y6KpVn7MuthFIypD4g0npBFrwQWZV+9wVQQmcba17vArtfeDuu+4Ogru5R25u0ve7lLiLOZiVjhKNimB1t+c02szVB9v1XBVo7HrVJD3bJJmC5eDMmYggs8q5/u7NnWCyN3d/j+fItGqEkoNA1/zqO9BEdPa7AzNcOWI+F1eCMIXCCe329c4l9m5YJmwvAt1DQ2KLdmtsa0ztnb9899JzFiU3nBNbftdS0B0QliVbTL1JdM6Pn+mWIP1hWi3peMlYe4vCl1RKYtr1Nh0oTrPHW1gtPOfZDcvWudKCVHAf44TWFxJwflq/W6+37bFAbiPNBDYdLpKdvgvDsOeIOB2j/7uLtudKvo389zc4GrqwdFzp2GojtFsGa9hz9MVf6pQS+bFtFLDthfUd87lUuM9OEeh7yucs9aA7JahxY7b8y2txlvVb7rqbHwS+DKJEuq3wPh/7P8TomXXJjEtks++9/xZXuDhq6MLR6lWWzR5PvDyK2lvbRbjkrxVPHOTSMNx3kCn5Zon3GYau3ileUpqc0uLctQKgkZkScqq84VPX3ebfgsEzsPXJp11JW7skTBm48w4XVmivqrMa5XO0kBNss5b2juvt91mhPWlX6ZASqNK4ec8m8OhgwI/XcM/ODj93Cf6wdrU3K5HGFdyOK9dOWa0GfRcsEvT7LHaZbQTSnIv8uGzK2bBZhBjwA1DRXMxiDTyOI84vIRC3y5d3GqHW1jjV1iooVkp61lXSblY7df9GL2h90/GsgRVz71eP98h7U0Co1S7Jx3Z5peeLOOvPuIRJ5T72eFI55cQhBfccKGbSRHTQ9oA4ErCWdr8QBGfakURxnyavXGb1Vci9Ryu05+ItDyI4XL6cpvZZ3icLGjKka2nZXj9KyPVnSiiJptAVm3rkzEZOYIcQ9jJK2IJLQ9ivWhutiUc2t7V7OB3fc4nolsOyda70QF+hCkSP4Nb0NWKhPZcvA45xvrte6LwOCsStvqtSYE8XN56R/yPnOZczPuh3N7PA0n7ci8tmjzd4VkZ9l+Ec1wnB82WSH5ta16/2wudyDy71HEuRS0IH3ck+/aNOBcSPN5c0EeA/ubTD6wiegr2iO5EuwEBs1TN/MK5c3oDtgV/ospiJPGKwYW368ZH1DY/ajKMI44QgeBX+BtsScn3Kbg1bI9ftAupR4fgRhWRcZ7HUbQrpq7BC+0oJoP2xozkSfff+L75GsQGMobwC12+/Gu7j/rtQ9OXCCu17zzx82l04dlhVsLWwSMhdFtO9EnLwG8Raip1AXvHJnSH7fej1oDeD3xYjmOpGFRZaqDq9CIrDu8fbLKyWyYlGHWER88fMWNoH/Tjbpz13hSmMhHXDmN0PvAA3frU8//GvfH0U066QO1ahLDe2pWNsStr1YF52j2cdwTnT6rhzMe3g4hdvJOenDOlKMK9hWjplxNRlG40Fdv+ZVe1s+WtAboyp+zgc0lW764JK4pJvgPRABr3I0i7i5nxkrl9YPz7zaHuswn6fWBF4GPiqN75hpfOitWS3J7FSIie0HweP19UfVUzBKTDfaWiPdm5v6jMDFcH8BbA9imOQTYe6cLUNY2oMj3Sv84vEVB0Glq3znGu8ECehU+FHs8enc3uszqI5HkFweFbLoe70kdnMrEPXlj52Oe2wpfU5xTQEDyz7yAPThhx00TmR2NKuPxW4HDfzsEcq4godtv+u7FvBVq9gx1vWdwrY7hUMi6JJpJa10tMd9nZaIMQhftYG8ADwmq98feRFp0aHyBLtLygENkQYp0i0Kp02Y8tTUZXq03wdxzAbObwuOKFdlZVdCoimNet/2+d+EkCmJbIxCGt3VEB18BxJpw05fG+9DTUs9yD8TynwyAufx/iPPY+yB//2L7yEZ174vGNGcqcLF1Zov+iwTLCN6rRn2pyLeM6dzt57xZ6589UdRfs5LXklUFQw2YB+XfFn/MObhGLm/K7nKjN4GMjNA6yQMTslGpZwz4ylfdA3lvbM+UvAupWlmeNfbPquwroSvFVi2mHN+OmGC69hMHAEpFEJZ260BqQED8L6iyzt5h1dAa7rtfYjq+NpqSQI4750SGNp3y9dO6/DZ1a5+KkDQE6oVcHMEvY0AVl6vPghHYxyWbcS0QFIv2hZ2mvaMe0HFSDLWhiWNcW8YjSvmFV1gw8OQpiPAsYszo6/Tn+kMjkQytrV1c28g0VjzeGxAUkM8qJ9eRiwmwbT7lbOqt74H/t2y7gzJxZ6EWntYV03y2Lan4P1IVXkKm14ACe0Q7elHU6Qz28titLRDnDZvvfaNKQERsmK77KuWwEe4HkEoT2ygK5BF5ZC1+SVwdIe7fWNvkskVrqyUzMJngQQhLaW1b0o6BlBfRkMOYYKJIcEXZ/Kw9i/cwqmqG3xpq4MYBNwKJ7/nZXIqOes7RAno2sI2/GNPjfP+4TcO7k123x8XgP9eyS+7BtAOYftfvMu62E/FtoP6N14WrCMB+qSO3L3SNvmPlcvwbUB1a1Xg7FBrezejf4cTNVKcGGF9v7gsKLd+YDcQtT4zS5rdJfmL5uFdMFzWn0xhNrW5wSgrrhly/XrJWP4hkcrXlEU4f6ZeHZtLY4ac/iY9q5zc4naWpASA/17X2DDu/8NvaXdSpWwEhcuGipAOx7sfkI8uxK5p5+83miqLZHPzY0qchZmqM5J0oJLQLDZd2NLfezX8CJoLiGZGt9qTJhN5GI/VwnMWUtwX/nh4ibXxXB4q3sFH38EfuYe+MOH3d8qtNcSsgGuAbk1LLSVai0PlzX3XTQue5EmSEoXe6/XunEl4pMkxQLWIgawNb5aYFpRT+bcPC7p75dsj0u2xiX9aemYW2nX9V4FHnv8+tJzFvW1oj3n68ZXSyXItHLM4d7cKXc0F8Ikr9jJbSWI67RbRcmJJO3Td6XH+tmtYCfJ+V7g6rbfaDPEYgR32z/dw7k67S3csxwlPqtg2TpXQT2lDQ/j4tmti7GlZychyIkYLGxfMDil6KgHRYHsjGDXKPc94ZmLc4PuAmuVtn8XOEFJc51A23X5SCEnOeQCztXLyVeSmeLKunXxZcugy+hy0PKcxwlCXsH0DG66Lj1xvVmrmnh/kTCy6Uk1ljZOxAntReGQ5968ve60M0cMje4yecQeC/jTVBlhcO9VBK0oLjfm1N5cL+Dq/ZVVN591hhFoFw80JdBjq6xurd/Ma7TD1Up4fX+D4WTuc6rG9O0i0ZkLK7TffOurT7sLxw65DQGLY9qzVnd/vCzb7EqLXgITp1AD7JeUA/eM20dwk7H3il6nf3d4EejYbDm7gwjsOShYUpKoq0MNU4JzhwMn3E7r9jkrTKDi8TRuUYAvEMq9FTg+4V3veG9jbbdjybUrxU9bJj5aVK68CqOB4byXYNQlEK1f/1F9gI0JywntaTdtvNxSaDgJcZ+yhk8+Cm9/AD5WwVsfgPseiWM3DphNvmsNW5Wi7ruDM1wdjHJZB8bRnqnBkUaAHuOtXP6LLCOYIXzNb7VQzEqKaQmTmivjkmJWsTmt2JqU1JOKYlI6RULHvRbBW+947/KTaG81bUvaiejWKa8mlQ+n2J+H0In90rmNq5fGuERMplrp+EA7bwOcYKK2SGA3o92tXOZ48K47xjI6Ne7MxnqlcpqdO93Dacm352Lal8OidW7jhFPa8DDBeqmfLY4g3O0gkMv5Mq0aS7vs+CRb3gKtks8coS9qhXSQE3islV2x21VOIHt8TpIAt2mtR1OBK4PohUmZuV1digSFg+/YuvxLkTk+kgokRwxpuTc9fhDnLfd7//a9wdgArRC/qBV3XuUH5KZOfDZP50bOJXyCXGm/+GNa5yn/Ao6O7phzuvjtnu9Xz/dtCDyt+LicwajX3LceFs5okj7U3+OsQw7/WB4o54GVowtiDgTQ5JVOX+Yy1L1gHCtuVCF4DqZpZbiwQvujD9xz2l04Vli0Bh0D7mCRZT0lFAuZqlUWvSSH1kV+NmfutdGzAUgVsqo2eNa6xnfgqLSU0KLx5KArNgxWLElkGV1J/t70QvtoEOKrFt6sDUJsRdEPOKH9Jf5YCdzf+u5vz7rGp9p4HR8ssaAujEnsB28C5QgOyCFEBM9M58T3065bO4ZLLGbOVmJEI07Ct/ckOTA+4P+uV3xxK4LQzmRucykcKcyqdqwluJh24nm3ij5olxFaCOLKqhTzmt6sgmnJZS+kb01KtiY15ayi0HAEZdZZfVb//t/79tW60nHfNM/HUgWdvWctrt8TE0phkxVOfE6EmRPsbbnArn1mYx8V1AU0e92RMh3+Zmns594Utgdt5LjddwK97ZCGO2TCmcYQMeTWk+A59/jFsGidpwKQRb8PE5d7g+4SrsfKv0ZctvmjVEs7ofTb2HAb4otdmEty/IpdU/ZzBUcXwITbJSTqULAIYc3xQrtXShRFQ3xlA4cXxO3tgd7ggBs6NyeKt7vw9WnIK7lybxA8Qr7h73578z6t4J7yq4VHyAMkxh0ex4rnuWTbJ8sEQ9iOcgHEsAiv21SSaaUD0lacAueSwL5XysmsRDZ7NA70g34maUHCIJ9xSLtp+XibgDViKRfdzI9/7q+ndru+P6mcx4JlCuHA++0swoUV2p8tkFvgLjYshi7XKtseifCgVnJlfrWtKqbDHlIUzHo4d1Ltt4mLJMFFOebbKiSidkV19SJL9GJLV9o5f6BW9c2+68Sw51zicnhiCfJQAmczrta4OO49nHt8mnG1RzCeLgI9ZZXyGu1gc1+HXhkutSi2iMfqyDFH+MYEopdjzq6RJBzK4OflD86c+fpb47+//LZWB9e1THUpnrQmusKq7mH5ZyzYMPO8e7zWf6WuG0tpRQipKbyr/DKraPPoWijmlVvz85p6VrPtk/sNpxUb09IL7U5wL6yr3xGB1OKE67rtqQNtvJEr79gJZe0Ybw2jmCaVBmwoxawOe4OIv2j6owxszhLdmWlfx3bIGM0mDClnDX1mBpcH8XopCpeITtMipyXfiG9X4xRvNq5TQfFr93q6OIzVcYAKQalSd4arLJK6x48Irw2IFFLHMtPpTS2iKMsgtBcFsknjzix+k9TiE7Ut6FzOyq4eWFryzT66cV8+jrWl96xwHk1FZn5H/aZcVynGA7KgM6a9CxbxLdDtOXQakAvhEJyl3ZYltOXecoKtwgY+t69+fMhBw49sDGFc54W143j15F3kU2Vs2lqlU090DQiX8YoOAZngQkj8epJhDzki78aThnTb5Xggq1zspA3N/WKreROZ4tfD5bnyUtbKLmqIvxAwWH7Kc3BWYZE1elnJty6NbStcOWkXd4iGCDeMs2/rsmTiSwlN+iBzh8qVqVXk3jUuPdY67cu8BpZBo7yQ2BK91GU26/rnRX0trzXsOzfa6AaroYwoAZ0Exux+nMC6g8m2StutzI4v12bLaxS2q+nk+4NpBc8rQjmoWR2Ccg9APBYJtGl9Z0vML7Mgpt2PZeW1YDvxiufDix6CBwW+/UXwyue3z1sTuqZlTltoP3Qm81wfyzircXM/1fCYCI6KEJapfVomYDXHpUBVU1SurecVW/MKHnqSwX3XedmrrlG+4gXOGjUUd/4R8VJS1c5EJ7W7L3iOuICeUxJCKGln97rNx9s13yJuTE2IhArusxo+/Rjc+zD8yRfCa17oN2MBVY3UvWRfhdbmbbD7syW0izhOvw65AIp+gfR67r32V09WFQ3UrvsGnwmMp3DJrwKb5cu7MzfhFmnJNxEniPnT0xrtun+73P8vCjN13GAFIJuZ+1H/+83EuC9N8JTby+vSzeWd7ELsdUhEB66W2bQKJwhRyTcgivWOjA7mo4K7JihVqD0tsPTh6MdqjpMwpIbB6A28Ek8aY0oh5hRz+kHBCu2dfMsJwqJybw8ALycW1K3xIcvHiEvU5nCHpzvT0uHXnrdG7xhLu+tE/PKPeowdbWp0SNvAd5oQEPEh+QLMnTELzR5fEPjKoyKaJwhd63BG4IFW9erLhc1WqAedY2a2dmGi0yQxOjpnU9cJF9bSfu2WLz7tLhw7dG0Ia1VKISWEaUIT1czbRb4uAYjOF49mZzAdOkS01+9BVZnfzb074tktQ5hmFj8KwgcBeeSeLfYL008E5yJb+B4UuMQhPo5tXUt0zpICzjX+pf5YmZUe8O9/4a6oOpP+nrZ63OUyGfW1qw79Ri8smGmG/V5DuO1aUzbLdzomtbQ/ba7NfVZ+epBAXXvlEtw2cAK8/T7X0RWhtYYIZQsVLHOd23crPwTiPle1W4sQT6ZfMFIHqX0ugYgqLlgpvlqEoq5D5slKKCvhRfc/wejff4HBPTf43l/6AvKFx5xlvxJnXajqtab0HT9/V/JYQWYhlpy90ifBc+75TCuKWeUs8Lgpsjhx5fhq3ZCVOOZbjz/lcyB8tIKfvB8+8XBIWFgFbiF3b5uoDWKhtvG4qAXmNcWkdCWAJpVLgrfv4+rHrlzh2hbEaLMk+/26eAG9SJCGF+T359F9xM9Pbg+n3lCwuKTdc+AgXecWUgFIacSDuHj2VPDZ4JDhbgeBrgdMaOq0S1HAcIRM/B7xAlYtLqZ9EWLI1rnGWdp3ky5YN/ljAx2nEdrFd1IARoOmUkeJhDr0/jLLx6wCKc8GYS5W8qA7ARBipVJa7u1FwO+8866Ij2nqtCdjKzyeGonLeeBuJA4fbof7sjVyODE34GNY7F388R7OsBIpl4p4vRa4cRXirO2IsIM4g9l4BkOQfvDckJHLJH+QpAVSi6tuMnP0Q+ZVZ7WT44IuHkgVu1oWNoejutBJ4+QiPk/EvKLYLNiYVY6Xahh2QSoulBfXhRXap+Prp92FY4VOwZKQYX1da/SIdjbM9QQIt8tCVmF/nbesTXyd1npQBKG9uTQkpGvGk8hW2rccQ7iOwJ7TcCvT3GJyuvCimINpGQcybfSc22x6bkNzumdTM8dHRA9X7s1mjlci9yW3v8xrq+MZ6Hrnysh1vt8uAbC0dehxVpIcRl0DN+bW7pQkJgyiuLAruPVdmet0raxS2mehO/nYu3h3xYsdEd5fFNO+9r5bdEIdShFRFMHyq1jfcLMl3SXRFj1OXVtFHHFEhFKEL/v0dWrvKzh6BoZ/eB2pnTugCK4Myyrj8/Dq218WfzGvjYu6b8eeMZlUFLMSZhW9aUnlx7nK+LIjTnMgVALvfyg+7f0Pt2PEk/HZNQ5tD5nG+i/iBHY/BpnWPmu9ccef+nEfWHC3iBavbAAub8SSRM97LQyAXZPkR3G84nwzvtTSrrCopN3FYakOB611bsAuQ1sKVF2OIdCHgiPwnFsXcjfXdTajqdMuBS4Z3V4Vkxh8zHfSuZzyVi204MZ7FXiKQC8l8zk05JgSzV9hhXZ7+la/IbglxpvpgG7bXTxdy+BwinvLvgMb2w4hpv3FX/KyVrm3hlRhW4l5Mx3MvIZN791TgGz1Qo6EpCzlccyArqnURd7GtKfvyCrU1C1eYQefa25SIZtGuQWIWtrTMsJZps30UZOn7pVBub3vP9M6yr1yXNDFz1jDxUq5pHI3FvE4A+f5trnFxnTmtmS66Z3774HGcNbgwgrt470nTrsLxw5dG6JV8i1jjc4JvLqJVskavahTStsadxYfbzIZOJfRpwa9pu6katlFr11AYZXhO6x7fNe1Sy1BKTFouPAatnvhZqMixFxZWII0autWRiy4a7k3S+h6BbzudbdHbs3LYGH8dCr12gUwr4Jr/CYuMVdOMlkRutbumKS+cxEzalf89zfMdQdizrLu5NWRZmldRLBSq2/KXB8YbH/LKljao59NTLv/doorq6PXpzHfOSYwnRqNHZuJ8PFXXHNWhDGUV+CZ26+ae7mNvs6MvuHLbg/XVz6hncaQe0FWNIP7VGPQKyiFuc9Yn8senxtT1K9awuCtK/lLb4o7+BW3hXN8G93TLCubYdgqEJuQCV/jvpj7MUxNhnqbBE8T+63FfEmcoUs7plb0Hd+L1PR3pfBMcVgIi0q+WaFdmYxlzNnFYKkOB3adp2DpghWMVBBSuqCwydF4zq0F6U3tGtswlGpnCPuG4IgwE+gLTUbtFp32a7JltcSFTUHAo0efjC6lC/5A9561rhcqauIs7d61Zu7Hp7Au75LjWxpnGNbI0XHMIHSXe5viLO1f/NrbG0HdCu7R2FSIF1cKMKQK8X8MBuGk7b7LkWA7AUG5eIQCW1d1IyHEtCu013Bsbe/51lmbxdGx4cjlnVFL+8DXobc85ZJNLDNb3cQL6mP/t5YtHc+zZUqPElLap61NDJt6Gna2SnrM/JfAQPnTq5tsPePvJILg+BGVKS6IzH5xhfZnA+Q2hG7rLhfj9Ni2Kkgo4VubyPsOtRiEWYkMYbfn0NV04LTPmlSi4R+XPNcK7V1jOAysVAbKTkIT713D0BCQYc8JTOl56fUJKM9vE9Dp6dY93rpB9ov8Ju5KNrg0frrLEj2pg9C+1TNaX/97S7u9GLqQuQrtXdYVFeifpr1mVmLO0pNsf8vqSGrQR4/qIFjWFb0zLENWfGzXO5tLiGlXK7u2fSJNe5q80rpqL312MtBSoHzBFWZbUN4Mb/sLL2H6wltotN3qSn9QKlr6h2h8+byOk8LNKmTuM9qXNfN5TVFLE9Ouc76Spb2RkhImfdOvxCvAd7wIvuj52ReXwyMTYm8STJ8QF15QlC6hnczFew+UQXDXpHj2syrk1r4AN6a+bINa14n9OzedZbQZH+a1C0v3MLTr0D8Hq4OItFzj9WOF9pSen2z97oQGaKvSlnePp8Bl/Z7PGmYcoMK5QS/CC43V0ljZISQ+TMuBwmoeWAcGHaP1aPIdFYD+oNmfc2CkrvFCtrTdMug6X4X2k3nPi2FRubfLONxnBfWucm9AE0YwQuKY9hnIwHtugDOaTOdh7SQJM49jInK3nJBxj4fGRb4ZY+1V53497Ig4BdscuDSM7q8Wd5vgNHSi3YtGqT0zCt9JovidecW2DyE7abCGi5T/UUhfm/KnFkU0sfF1DVubDGczaozC3CMY/eYiuMlfWKF9tHl5+UnnGLqWngqdi6zRXa0tHXJY5G+tMDKpYOjicjaBXSXeqSwr0il/CGFsrezxxepETyFHINQS1DV2UWFDv9QfJnXj+uc6WDgBcE03ayGfOX4Pl2RHLe02Ad3nP/tgK3P8ImVGGgLQer8Nx6N99+0+IVPrwNShP6BrvD3dXjajHetrPwC34CztacziEn7PPDizyERcHoIyOaeroytC7lItU2I9PMol16z2kOSKGdDv8MNwhW+bP0uEgXlwKmDl9oSge4IgiHvyeHl3ClsDuOUaT7zoeZSeQUm9OValoZ/57AP+fHEEWt3Ufew3swruewT5xY/Apx919dIrl219Xrt6uNY9fuVQGGuqswvtcX/1q25xAru9gT83l10YuktyDnExjnM/PtE4+rKG+x5DfvYe+OQjwbqu45c1sspnvYXEuVBeM95CEFvbt0fOMppIRJGnlAdbg9finpMraXd+Qdd5Crr8LI3QKXuI2NJura9wSM+5dSGL1P0OGJmcKNt9eCZO1jrDe/tAK7O6XUeppV1poi0HColDyWHGpJAbmwpSXeVbBn2YuzdQ4XPxiUSM92GNDXC4CiRHDRFJIOz5hwhlCR/93IPZcm8WCtwNCpzCtSd+LQvIFNgZhne72TdKRe1IguuOCCT52NvfIFjaUyWaQrp+we1VESjHwHAUaEZjbWf1kMRGIDeeaBNvedfQKlV2J9VOjgMW8UDQnTBz2T3A2SVGBVBVFDfBcDqn9Pxcw6/LxaIvF1Zov3ztJctPugCQLuZVrdGR+5H/TsXO1NqcHnd3RmwTNsq8hv6AscDlAna1TnRpXOTt+Uj22Tq2HDJch/Dlxp5aJjohRZqCE9q3jdA+7LkUltH5yXUZqKTtAlnhrOw7uLi9NHP87/zH92fHnnvPcICyfsrU14Q69IO+r7/Ciguj47aZ1rrHd73jbUKm4IY+swZz1vUuxuZ7Sc47wDi7LrEEC1ZzD1v6kGjDGC540K4fLOA2e10356rGWgnCgNUELFFBPeJkhMv7fiftTRj42DMxv+eEvUXwH37j/aETKqzaxG+ffgze/iDykTnyti/A5x5DxCW9K2tnzbB4YxWvGnXjb55lJadH9xx3dt27ZqS/q5LC3FOPNZmmglXeuP5CUZtnf/ZxuON++FgNb3/QJcGrkzlYdSLTTaIc524JmxsBWTTWdv/3ztC5Vjb3sWU6JZq3dA9bpcShqyRccGjWeQI51/gat0cfISSis7hSeYADe84dBHL0bebXjXUh3+4js7n/2631soahtzw2idoyCulUiavtFdoeWKli91CQDamq444W8fNlq4C6psSNaRj1W6L+rwKLPOg6y0Wucf+jgNQ1XufDKpfu+a33Nygm5xqfwsgPoqk0O65hY9BcIFtDZ92AvEB7xJPQZVxKc/L47jVtc+zpX+FvtumP63HtytfpPZVej/Dem4v5Llca1Ci11RPrDx+Gn7kHPv5wENiVdh5jbHsXzpkS8FNapx2Ws1xKYhteSmrY6tGvoFCXfzFne77jIsCFFdqfePjjp92FY4fchljVGp0V4nELYiW32K4OCY0rn5b+kLJGhgN2i4LLwLiviTWqsDklPx6LHC1CXIbkV4H0+q6Y9mar57Kqg7M6b1ihvZ93s7aCTQbSOHZlkTWeHWKhvQC+8zv/6lrj10yddhhRm046OFdkCEL7xsBpaNtSzsrEMWJsTKtJrFrr0gzyJkJMeyqsL9UZ54i4jlff2RHUoF/0yFxMezZ76oGf6KHGKZDM3DX39lnPmldMcM+GNRK1GQu7LqAauDIVuOQy+g5FmDca74PVTf3b3/mNyQDMjyJwz8PuK49a5KOPNaeVOLdUCyu5auuGhFhwF4Gn9uH2m+DGJKwTG/Mu6zF22ifwFez8BQLwsUfjubrn4QwuWmPjWQWDfnejgitmVaYbcHvo4t7NohSRVjcUT9s9rLdZOeTiWQzNOk9AiEOmtNVyb8+nbWlXprgLtxw55HCq4GJq1eFHhdpN585slXciugfi3qXrKM1zonCVdq6T9PjIwVopCxW0zN+bwLT0JNR7M0WdW71niwwVlnfJ0daTAuX5coL7A8CLcf1+09/4qw1db2q0F0V7jH5+mtAhfVBVxe7xlzzuUgXmAXiStcaZtAqaiC6rXFJ9KE5ho5nxdd9uAvV0juwUEasoBchmYfiStBOmFyJu8lWxXYnzznrbA/CxyrWffDT21KrqY3OR7+Lzcu7x2aHZ+6RdFKgRhzNKZzirezDcN3HtSoclc/05hQsrtD8bQDLHuvgXCXJdAjs4ZuuwWUhTPlJKYHvAXJw2fAowoElQFyGoxAKXYwaXjWsZdJ2X1ovsHHvqIj8rnet4wy31g8S9BjJUy4mYtibOHK+ErsAQu4775b7vFBAlzH2LGGjMrGYx3egHl0d73hpIMbzv+NIuS7s9vkKIXYQjsKaI7QHJ2JJ2zdsuIlg6Llua6UjAjmfYa/0kAD0aQq3zZnPW5WqnZgmqSEwUxeXy23kKuPUqCFwdz11+P7U8N+eul4wuHkSyB193q/tTX91rb2l+s+VlrIJuWR36BhGpJcJatp8GXrkDT5ThN22FJhFdTnDfJ29p16REVWO59u0fe0GTiwCAN9yW7/QqkLpB6fztzWFnFGvIIvf4HtwIzJB937XnjHTqbTIm2+2opF2m+xeEpzoW6IoTfgi4FUcL0pJvqgRKlbTp8bGAZQLmlUHqztuH7UGQsAFqN56+0C6HRryOIoHI/HAZ54ElyceGEhx+PMR7p6xJM8GK76SAewmTshE2h9btX9Y3PERzYi46K4nomjknRp1CqHKgQmoa065gx6YW6b6ft7m+h7KEYa+Z66Ys5diU2rWL4AhXfLq+dLzglrQK7dBWMKllvXn/Er7bBJjNnaLHaKcEHB23fImOMR2aJTrqrfXBh+PrPvRQuP4EkG+ODqbZ4xeF5EaJ/7TLqTdFCQz6VJsDl2SveZ7SKjk4v3HG4Dmh/ZyCXdipNXqZe3HXd+CYrQNr5oWo3FvTToHBgLKAmwsvoAxcMrPm/rVk+UnbTojLNi0axzLIMQTLs3inHfMHE1MODULCndZAurkHm2go1VBrEjprSdEEdH1osuo2Y/N/597/0vIaOUIw8YRw4BmukXGP77xRN1gknH6s25T22Wqooe0GmSOeiztAe5yl6fisSq+IicQakHtU6h6f9X5Yh9HMPUSHkClFBECvaPaqMpRNSI1I1pW59djIzd29ARFPkKczuDyErT43703D9FrXmgNpWRJmTMd92zW3WG4Dvv2l8OJbmgGX0l5TXYnoJP1D+2i5zyd8HMXLLrubzOv4XGORz22LCXHOEcyxhhJEY3zZ8+A/vcmd8HXPh1c8P+n0avMYKSLS+bsxg0uGdU65ze0+TObJvYidLPwtJ8TrW8dn5/xA9OVZDDnXeAgux5DoW/x3J1oKrItw+/JcTccKkEsjp2CrAg9Qi9BD4nWZgFpjc5+r5KuKwBEnoxNzUNUm668doz/uF1CWlEhDt90pEk5d8/G587Muxml3TwCEYOy2XiEQEiaC4WMIfI1Cw68YBUdROBf5ZozT0iXELXAzq/O9P48Xu7ZHPAlZFsK3acm39LjnLyr8Wte1sCkC+zMYqqW9cHNXFNTDftBY5Nz/m79Np/Tz5bfF57zhtsSDLHejo4GutTgl0IiukE3JHIudeHyuXcUZgx7VaMTO1K08gbAI48vONVxYof3m2770tLtw7JDbELlEXmTaLrCCa+v+yxa9xZHqGg+u5MlowJ7Alkeuda/vhfYYobo9KdFzFWa0s+Jbjeaq0DUXTZ3keDhexlAkkGBqcNrdzZ6hLp75XaOupnWNTxMNPUAstCuh6xfwUz/1rpXGaC2MncJYhCVNn6eVxxT+LqO+r2dOe3GsgRlzZ2q8b67/ljl72n9vrey2O0ufmvbbZuCeHb4GffSIpLUEC1ZzD1v6lLS/GtfVT1C8TmivaNayrgcbUrOSVdQyBk3SF2EO7OxNKHaArS22xjU17rdwHsgaLvL/8if/nelMstYE2J87a/SXvwR52fNMH105u6HEw19a3hHabuS1H+wTE7h1EPJYPD2Nr/HtIuVjaonWdlOckqFRhuj9ru4gPeC2ywdfm837yuzV/akT2iOTEAGx7vQ9QyzRe9d4ZPt8df9Px6a4+4LwTscCzTpPwHphWWFIk3vlhFhw62zCCQly6fpSmIlTZGvdaQg0clI2ip9SYMMfLzM49GjrlbLKXDligT2Fqja1Gh0IhCodI1fedoaPyxaCJ4G1uh8SFnrQHcH9VwVdlzaZruCUKWOc0N4H7nzbu6KY9l7XJJiXOcSHWQHsl84ijbtYwLlajL2Kyi4COFKJrWsvaXnF1D2ebOvfvenjJtCfz2Gz57qrawigZ4X2VTpnTnrFLfDGq+74a03i1CSc6yTB8vJW4bQQzJiU/5gCl8rA69RXRlzRbNKR0ua4EcHJwYUV2m9cv/+0u3Cs0MUQppZK6CB8Rf63pSXBlnQqe25dQdFnCtzkH1T3+411M+CZZFMS413rRZDr+2GJ38ISObYjzRce5omlXUujreFmLcTCeoXDMVNc3GJUo70Igvt/9tV/onM8VuFvhZWVBEQxB7MyljKGPfcdtBfiitg/er/mkpxAA3HG1Ss4JiDtd5NxdRmBzilepl5ds4Wvh7oCgTwgNGVKPKzqHtYJuReolmG1tFuGGZBer9Gwz/0PA3O9VWAtWidCsLbrDzMRtvYnsNWHS5tcuxFd4N+3rMVH/QVd51lBVVzNWYBZ3bImzpBobBBnW9bbtsbXZGcn1go9NoNbfGGfm4CnJ7EwaytnJPcU4pJoKc7aEJini05AJn51H3ZttrwB/OBvlHApqdHedLCAraGLSYHmHaTxyArW/d+OT9f8iWYzP2fwFzL4XNdRzgurK3O8wianmFVc19qsdjW1FZSIbeIsi75XzT6VkDhST7fQpaC4TLvkW/Q5zIC7GK6KyP0vxo0FjHrIvPI5Q3JIZnU4lAfdCYHNyWN5mYdwyXQv4fr7FV/1JxphPU2g2LTNGnCjUJokIlCVTTlTUUZnewDjjAt5yrsdxTj19uajQnuaBNpW0NTvNdmijW3fAfrTyiXVs3XagXrUXz2PULQI/R83+6KIN20TkHZynyOGRfXsbUz7iNjDNUeLhe77bBsDRb0xolCLjj/ptPbCccGFFdpnkxvLTzrH0LUQ0xrQUdshqFuimBL59Ra836SGaQWcK9N2iGPZKApk2G/iPhFTr71jw0LsRaDjOYjA3jUPOZfZCKflBAYRmHpLe/qAWcYBtwM5RgnoDGN2P+593kxsZVdi98Vf9KLOceZgkYDYMDWpUDurYcvM8KhwJUQgPk8vW0IAut4vOMJniZ796AxfBZ4y16SlfRY+PUfQhOASv0G7Bv0BCNsigqU10XVcXTHthyIyPl+ETQCFMgFFAUWv6WNJsFwpKA5Z1AcBl1DOa7KbPSKwMSldcqCdETv7PhGTQONGXwN1vfIYX/lFL447lK5Rvx7FhDlofHtJm5FKlZPtV+07nMsc//gYnucx0aUtuG7i2m3/6oDToq6SLwuE72fLPR4CM1omN1tnbeY2nHoP7OHelyLVXhEjyp1RNMYGVfj/7C1tdnyLY5VJa5Xay3Tr2QrNOjeQ0oRVyr1ZmtbKiZq0Rwa5xS44+uEt6wI0GbF3eq4crISwmtEK6zlnZS+AawQPLL3FSjRh1bHl+lWJUYz6Uwrz98YAmbvTgpegiWkmunQpdPFuh6pAcoRgk+jqegUXz65O2j3gxS9/URTqFxmUTFuY9bQhRuE3r0JMu38WG0PY93QvDb06wkmIeaZwrLzLQgt7UaBKKZJ1MKxqejWwOYzWrBubsbRDe58t66yW6L2RGlvkiDbI8i5YyMW0p+fn2th45rzoKKsmVQajAZc9360evw1vsga/cZbhwgrtz1awbiewyD0ntF0JTdZB/jbGUUhwQV3CRnAL3gCqzT61ltVM6bxkviMfK2nHsg7k5sHGFmehS2DYF4dU7Q37rF5Xk3YCOm2/ALyMmCnrJ23X+LrGuLA+te2b9nnqLSXKKY16h4777jJc2KRhdiy2vQLsJtcdKBmdHfSsdIt/1I9d5XOdPcgjDFiCBUeQRCg3780YAkcUvdqiaL6YiTTMsrpuNpnMia+N9rVITET1HuOZu8/WCK7C9t6EMThlntDUdm+I6trjNcf6wvfVEt1WuFTEyj7ojmmPnmHj2G3m+Cf34Pkeyz5vE54usxPUKC+Tbo/p9obqi7ghiMSKn1np28OsTQljwbRqxb9ksGsjDfmebfkVYRI9RY82XgW5xH8Q6NKRJl18FoAKP5EV038eJC73llrbu1xPj415zdG7qYREYRDW1XBocqM4RZ4re0gs0GaEuvQDztKei2m3/MiRQynQC/XnJcG1MnT7pqpqnwFdf4izh68Ddlta5cxZSESXZo3X9fowbp02eK6I12v0flOjiqFJpa6rWe29G82Vl4aODqR82jFkRs/xxvu4Nah9X8hzi/Ee9GO6bTKnLkAGPla/cGK9APWoF+fdyXVCj9NxC0ZoN2GNqdfVMYDtYoQSiC3tCz1c9e/MzUScsoOhn99LsD2fRtcCQbF87O5Fxw8XVmjf2rn5tLtw7BCtYX88Jy4ntMganSMWKrjmNs/S5e43U+va/QoGMC4c8zwEykEfyozwpox9cg8IG32hFvMQsHIcr4J2foIrg9ao+/Dm09VdWWuCNUWvEmKhHWJi1yvg3g/fl71f1xwtjB9K+9hw4TUMjXvjRs/XDNXzpH3NEsi9X+i20mnMW49gaVfGoMWgLXxwuuB8O6vdg6Ma9OuPK3qUabsIFvgEw0kXu+an8yF6oX5X1m3sbvdH0Wuubcq9YfQy/u8uqygQstMKkUb76t6M2WafogfFVo+d3TEzMXdoJmR1ZuEeXeddTMl+5W5ltOmKiWYCGwmxXuj+r/3TZ6XHj9dwy5abrCsj7x4P1iKvIQB1xuMijfluQCTUtDdjEHAx+7BaMqIuyM0dwK7HCBrWYwNMlfvUDFq7s4DSOhaqZo9Px6drbFEoyLMd7sng8xTPKX14wv/+AowAVMTbfJs8TTsW6HqZ8zokZzVhOrIzgv1weoVmCV+MF3JW9gJHF66bLqxFFxZALdJU0WruofuvknbeEO0kNFZ4mVVNiE6bb1m9L13C4AbHVDZ0DVhW7k2F9h7wqY/c1yr3Bh18i18TqmgVgBnI5jBWkmwNYVzFA9bjIxTcGxSaPCL1EoRAgiOUKoQ67X4dFQIbkzmzjV6EN9VFnmE/JDxNIesBmpyjyt798tjnp6sr9gmWB8p5Gnat35wH41ZZO8UZUAxh68aMxvIngRaf6GY4RriwQvvG1rXT7sKxQteGSAWCHCxCkEutzcs65A8jF/lZSeVkdDaLwmvW+s1OFdqbMQdzVsuMvwwijafR6tq4sOz8NsIGAQHo31rDXG++al1Nuomdlnt7CbFlXYldD/jkp76w0jgVFiY9S8en7VSCJwE49/h5RuMC+b87fs4h5j3aiejSj2qzVdBdKxldxztwmvuBF9qT93bEkFZBSJOiHVigEXMwr01muaJ9Sr9otM+V74N9n9q/Lmt0e1/oHha2xxWzTc++XBqyaUq+aSI6EQnl2VaAT9z3eXeQy0cAMKkdg+Mt7eE1CzNp5YpaGArT/BG5xftfr3vseNOmW4zXBk5oVzDJfaz8YZdbWtYw3Z/z3CIe+xWSehKsAy3c5b/bm/pNVcTl3gpzDM7FZeyy/BieqGGqtUu7xHu4l7SpVeWgw7mI0KxzAznXeE1C93zc3u2Zj4UNFiSWPdKe08ap+pBZDaNBs9gb2/LOEBlXzXm1QM/fIk3SFlli7ccI8FdwY7VKb4t21huKS3q2Vwt7AruVP8bxR42Mo5Z2vU7LdPmPEut6XkY16HNl7Q4DSz3oTgB0vm2Yn36flnv7wqc+H/Ey+RvGvR+KH2PpFbNRyAXOm0MrXLSUk0c7EzneRWu0K3Qal7x3RVFb/C9cntZMBiN3T10/+oxhrymR3MnDdH5H4Gm0bGca8kXw7DpK6LKR2BDBVWWOHP6qgGElLlEf0Nvqc2U+ixJKuxA+jmV8pwEXVmi//vinT7sLxwpd8lWuLBp0W9mXWWLXQnlqZTcXCUBVMh85V6ZNYKOA2UYfJoHp1/F0jQti93irpT4IwUuZAFiS3Tjnww/B7Shy/yucZrRVFi0vcKRWduutdD/wcgKxa+rxemL35r/+NZ1jzIG+3ywD1zDhpq86xi0j9oz6MEnGsqYrWu75gkPm1kpn368iKxXa06RDsCJzFkkL/o9Z7QR2jR1rdXA9DmgRg9wIyR5WcQ9bG6qqpb2L7t3vhZhvaROCVayikhPABfr7UF7xYunOBr0aRp6ZSt3dViWkrXWeCqBeqJWZCu3hvnNcfWSL6xa5kzbL3zI1+uXjY7ilCAvz6hCemsfrozZCrbmnQitRWxFO2hBn2SswcyOCzP0KOczaTPe2truVcy3tMmGqdLQ9hL0Q0yQ6VnNrZZYWKVefc4/vhhw+z7nGQ6jRDu3Xpd9pkqdDorP1IKVz8xKG1tTo240hTEOJrkqEvmcGmrhv8vQ9t0Sv+t8WJaNbrfvCRGC3dp+na7ghzvX+hjil1D5+rSdCO9AIW03s/qhAZlVTwSJidNZ8CYv4ts6Eg+s94sAgLC73ptl3esBf+uavyZZ7g7bCXm8+wLMdGpo3CHXapcCVpbxhsEvCmxyV0NY1v2Ncsj2FLi/XkGTRr3Xfr625sKdJ6Pw1zbrtFyFPTYuPzIwrPWdWOsZpd5o55ziRQR7mBK+EEW7uIN6nbZwVOqn8wwwYzoXCe4L1toZsTyqfQydY2QO/cRyjOVm4sEL7swFySFmzMnZq+YzVTXkx+/uBE5oYylh7hq7JnlyWzIcuTmeAT9BNH6krxVvuFg0ty2dd1uzxubGtK7jn7pHGXLYYnJzQPfXM9DDZSpHF1lyQw6/Egrta2ec4xizNHN9YVRYMOvdulYnrrE+90FJilBLDvsGymbGtgBgj2cF/p/Nuk7mkHx37DqG8D7ST0a384IaoSRDao6z/mXe+IizTMivYPUdy7tLHdj5EAqNctE+RQQEuB5TzgLH3k+VWUYE4ztusgyt7NfONTSgKil7BbLPHpd1pY5UVb/py7eoa/oV1xvfnyFVgWkX7FkymWvOcpaEwkduLhONHZ3DTTthc17bcjco6k4jOzUt67zRvg93GI5wrbsNg6C33Kze+w6xNHYsdtODiHHdMlH0URmGON32ip6hvfoy+WzqnOfd4CK6QLdy6xjCebWBjg60VOS33plmqIabnJ5FVvNmb0UP8wbRqqqtEz9/qBQ8ScfQv0jN24AWrR7K0QelGU+QAw1Ow+pin4tLU7AnsCuzVTle1VwtjcZb3PRwJrCuJFBLZ+R0MkLm40/wPjUAnB4tpty0EL8EWHtP2BKSVhneReM3u4uZLy73ZtdrFxxR6Q/HeFyKMxOFGmc1hRPBqwCtHtvswM5Q05U2OaAosGrUu8nskBgffNrHr6uEq4fei9kcCGzOYbIV0hXUQ7ZFRr1FItzqDe78L6eOkcrRqV13HiefkmOLau/DNhLBfV61UE91UabsIQ5HG0t7fGjIQqFTB0cQV6fjOP5V5Tmg/p9C1uG2Sqy7BfREcNjbKntNouaYwHg0co+oF93IEzKuYYTYcnMU3+rstZ3eQsS2DTqHd/9eMzXZsUgZzWURFbWy0+T6j1bTMmCV4D/rfNWbRaqZz5X0sdM1PTkBsQU5LO+qbm/TbAV1rQNfaVT1ALolVOo6rxDV5YY1kdClTKXhvgn6Hh0TSrghdl02xmYRjAXJtSMeiUEq2Rntz1rDnBFO6k1fCAquoukRbb21/vD2dUF3TmxXMNjfZHLsVbsvDHYiGRojBXDyew6WNONeCP7+U2EOnwOGg7twOQlNEPk3W8+QEbtkON9rxHijqdmhxmCbcS26fusdbGEqUmyuMcU/g8kacQVjPse0iiAR2c8FeBZf9DNn6RFY6AnfOfmAcbck3va3u4dT931oEs94bXslxUVwYjwoWhU5Zod0qdSHM98KSb8fR4Vz4yqRyIVWpln27gD0V2oUSYVgTaldLh6WSeE3Z45txFnFLnlL5ZRGU3so+FlewYb+OhfexwLR2WasneEc7q7BvEa0C+gMo6yavhq3NfRCBPaeM76pAcpKwqNzbFs7Qa/mXtNwbkAndDC9tE/8Op3WjBIrCeLZ7PmZb4hcPq738FWER/6KW9kX8aeEnx2aQL4DtG7C74fCw+IkRf7EMizj576Jx5b6bVvD87VbZzuPUmubmyc7VkGBIgozgnnuNeuz/K8Fl3Pd7cNDvMRlAPZ4259T+fKtXPM9wYYX2F7z4DafdhWOFdCEr2PqHDcIo2sQhJXraZt2sMoxntkceW0fMeOn+no4GTuD2QvtsA5r08QRrVG3+SseXxusfVGDvQqh67+VCrTnw5ezcjUxPNvqOuDQDyzAzHlILuxK+LxCs7JHAXgTC9yM/dkdnN3NMzeKkZ0kfraVklIxNO56evyJSzCF07VfX+rXv+QrtTMHp8UoPVpj7uMth3wl+uZusQfjTM+3fNqGi7rlV3MNWepj2sRTo99scnkK/aKjkVGglSYLFVlEEpPK99RyxWl23r0+pN8KjyyubDHfNjWq9mawcbPojP3ZH96SKwGyOXNtEqsr85P4vcW7nqWWqdRtzuyiOvVnnAo/7zPEFIWv0FeC6qdVei8/pEWeA1/urRaaxwJjWxW026eeavoiAXN1cLRlRJ/hzUkXE3hR2hvEEpSXfCnyip7IZTDMm9Zog7OG07KhCU9LO97mYV07hMp4j+yWMS2RcItWKC+OCQYrPm6VIsGIqPAi8mFgQgjY9z7rHk19Gh4IcHgKHTzXJYYGzkAKy0YNy1qx1m1ujpwJux6NsYlJ73jZxMjptVx3vXJzSbCbOFXsiXmAXZ30fi8OXM9TBRqgHQYAUaGLZm+dvuoQ+A7wQKkEYbayuK2ajW8S7nGiVgAyk3iA2jMOWeyuAn/7ndzhDRAdvCkRJ2mholMCsRgaDINCqcmRzaMrKGJy9zgJYAbpotCbgjMaQGZ+170S4v5xzwyvam257wV2GvYa2ZTuUPbZ7sITnec5qXgXEAlFc+1FDFy9jQwS7+O4WuW9eafilAgYV3qjkZnN3Y0jtS/+JebAg67BwZxYurND+xCOfOO0unDgIoZZ5Dim0lMCZVi3ter9cu6gDqtVqXOS9m8qk32vkvksFTAcgtUkalfDvuSyRaamsw0BOY20t7W1GPmF49Ydp7TS89kbgkMgqJTqgyUybCu33E2eOt8K6Eru/+e1fv3ywBmyyvdz4JKdcGJdOs62TppmAm6RY6TWLV0pKQ7WdYLLJ+u+i9Wvm9wqOOZP0I0ue3hUCoBmOrUZb0mvWx/g5eqq5GSzDlTouHPiJesFcYkt70bCJru0Vzfqc0yrnDmSEdtNGU6IWZf/d1ekE2Rk0d5ptbnJlL8xp48onICtmo2vWeS5zPDjO+vIGUlcta+1cxAsD4TsVKru0+5HJCLzgLvBICTd7DKuL8spmXKsdc1gn80Zcgi5a6xIyJFvBmKkv92Y9CVprczE0Hg65/f3MDC71Y0TTdM5suu1+k2k+8oryC0JEWjXoU2g8HGqBaUkxrVxIw7RGppWzlE0qJ7xP2+/yokOKz832aglFDxCSe6ngrqBzn7W0L8ORB4EWh20eVpZGaC8aIUu2Bsg40JBa/L7MdC6K2Eg+1r36JoIy12bc178XDsG7X5c41Fji5m4GfAj4p8BHSocTS9x7KIUgtKdD1+PNAb0ysx+O8EWociZ365PaQV3l3h6iXe7tG9789dlyby0wgyjwdbkraUrQCgTBfXtoFMIc24LXW6eodA9naU/Xp92bouEQtYZFFI1yYljNecIn7GmS0PmFX496YBWZXXxM7m8RJ6hfTbzC7DnH6B6fsodKc232eGiH5bbuYW7W3Etg6C3tDq0UjEcjZGrMf1rN5XiGeOJwYYX2qpwsP+mcQ25DWGt0l2DOgu81QVOX8LCQiUo2FIDMnIp50nNZ4ymcNny3D0yqIKzopkpcLi10KiRy2swDgN4jdY9vjqMv/B/T2pVDU65COYiRj43ODcTMYer+aInd54lrtNsEdI6fLnj+LdcWjiWdl4VJz2KtSTguy+COBiGGL+uule1OCyytADfmCbF7Wapwsp8rJLGLyWd5B5KNM/PWoFHPeRboOclN1xEiOvcQ7UR0sECAPAhk3OMjPoZeSNCjfUge1pX/QO8QpkcCR1wJm1NBLnlSXEB9E2zvT5pBRetNVpvT599yLb/GvEWbCcjlgSmJFuPEobmoYEnNcLWy25h2CEmObt6KN9ZNm/B0SKil1zkv+xgnKmNi8Zj2CXEeAaX1RADYn7vNv5GszWgulsxhSixMlnvGU7js1TZpgKnddNs92A8MX4SrfTvBOB7RxkN9YF4LvWlJMatc/XkV3FVgn/h2VgXF4LMEUnxuaYMQaMN1f3wb7XwnFqww14WPjgzSNdlswDr21ALX4Z1hlIq9xJV8W5Q5HoJVOudZoHSh2YrarjBYIVaeV+Lm/h7gH4nwawL/GPjYXIL7twgyDEr7ZuhRpwcUE6uca/d7HcgZYtLEmsf+rhNQPka9QexafYDYI6QAbr7lWqvcm4UCTB171/s+zvNBSmBnECtHCkKy3EkX/T78LOSMSfqxYU86BtvaC3r+uDC0r/fMjOnQ7FdTHpEhSFln8D7x3117cOJDCrZxQrs1QqXXHhF0rUFdpyqsH6gUqP+hBAZzCFwx7F/eyNxMBfj1xnAW4cIK7avAedbidy3uVUq+Qd7SXOCQzoHcrCyuaFzkpYlnczUsA5kpe3ihL5yb7LGIzwSHFFdVSCyDrusHdLgEGxfQSPqZ1HENc73ZsGeyfZqbJaCMgiV4+v3nce7xkdDOkjIp2oXMu4UFgtgiIjA37o32btOyPbYVJM1OukKcoEufpGvVyg9XyWQJlsAoLHh6e3wQQgBGRRCMcp1eA1I5CYJgbmPadU0fyMMl9xBdVPadNZp7bYtAt2kLkRD2Qq4vtedsgwZb3B/7U8oe9EYD/84K6o2Cy8+M3R63LwrvRr7y1OpGMQwHBI+Wq4MkUZv72Jh9uw/oGp8EDX2UbO/xfScVDHpx7PeVETwzjfomTQZ5iXBbV96Gwj93KBIr1UScULtTOHfiBYqyxQpV+0nm7ylxVirMmKLCwv54x5dU0vEIzftUAX5Md94RcGtK5jXFvKYoa+fqOjMW9okT4JnVvq2eta7y0HaN1+OHcDhwkzjHSWq5VHrehVOOlAfqonMTXJJPiriuti8DJ76yRCWh5Fv2PgbSZaqY7gpxrhP7WWppN639/CrhGVPg1+35VY30egG/RvfxX270KaZ+X5iHOMF0vfk/kDL+CF9xF+i4bW4e/f4h2h4h+u5yfExO2dfDyZsTgCnIMBTQE71APR72M6rYY7C2p6Ax7S3eskgUtIlSShPt9WZzdoc9JkWYAXWPrwf9UKmo6wXncLy2Y5wn4ZUB7CZeYalnwjGD8jmaiE73bs7SboeU/oZ49/gZFMZAMd4YUTyt9BOCVx+rae/OOFxYoX3nym3Z72sRpnWov7lXC+NaKM+RAJ/T9mlrY9phdSu7tl1C+wqdappmswDMa6Q/ZE6wwGxRMB4UUFWxgG5uldukaSK6oxTY7fi7k2+ZDurfkxq20yrQOKF9ttwq1rjES+z+WBHc43vJp8C5mAH81t33rDXOXE3MFgOXTv6kDgKgckmbeOE2HdtyyCJgupUy6QcWM2dix2Kf2zU+cNa9Uc+9Nxs7Zu+z4hilFhfvbRJr6aUpwdJjOOC+sze3fZ1Lu6KBhX4PZWPn4kqiKShT0Wd5Irooh4UAu3Oub40YGE2LXB5wZTILXU0J6Qrz2qzz3Lsbe/fxnSHSGPQDEtFEdBZPLAyFUTMbxIL7YzN43rbRIPn22hCeatdqlwQnCsGKkioRFAb+0dFSnVXIdt9l/J8fVKGknUgYPDUtXt6IuUxIspoVzpL1TBiTHaNeasty5sa3WQt1VbnnzmuXEXnqBXcrsM8q76Ms4V08CyDF5zY+WGkDuBJaL/THVqmrf2t7YCX8upDbl7pIZsDGIAi2XuElvcJ1cDwDcUngBuo+LItpfKqksMrcp/051sq+qkyS46n+ohnOBsKfx9yvrJHEPT715Zd+n56UJrO4tx4nY1wFupTxUa6IUwCVh3StWuW5XatqD/3g794bCWwWgjDr58jjrU38+t/HKXzATIhvt3FCe6qYPCKI+FRi1HuDoIzNrU97AxXUgzcBMJ9TbvbZx10ghd6/gEGBtIK+V+C99LcK2BzA9oYr8WmZJb3XMaDZ3H7SYdi8Mq3qB5nuWM8upTsl0JvjlYIOdjd69KYmjMvclxXD8c4yZKSNiwH9ftvePPNZP6eeF6jxCroCRgKjQtgooLdiUpDThtwe07jvZdo+knP0eEiwBoHfPFY7vqgznhnXTSXgXHoGA2qKRtDcLOCpfq9JRCdmp4r5It3wc9peBAcV3LtgxJKY9nQSprVjSCC2To0KJwgqJDcUEQofk2UFd2XSHvGnq4ZaLewF1hEIbtzYX3t81l2yPU4wHLlr9/El38z4NsnE1xJftwAiwuePJ3S7l+WYs2fMubpOlzJnKaVV0GRJo8Inout430LnYpOy9onCvNAu/uR+r0lapgTLruMDuYeRnJCeWEogZNbNTtt+0VioJ7QZfsgL7c1j6vYyEQQmNc/sbHCTv1MBFDubLlnMrHLJ8WxWdYnu2gk3buwnQqd5P3tz96CNPlIXQTHgT6iAzeQRSuJbSgkR70ZAnGhRgCem8HwfwNErwn6/OoCn41I6YgR3XQaCm2vNmtvC0eLoUMiw758/BkZDtz4Po1BKa85DsErtGCZYOyfEgvvOyHFJ4jwkwq1Cgh8b4qK3s/3bFKGuoajqoNgqa/j0Y8gHH4I33AavvtWvzxpqF8sp0ls5Wdd5hhSfq/5I6YTO+YME2gCx4wemtUkuYQ16fhDI4UpdGBuJTVXf5WbfKYWJS74VIs21ubde4JemxLhLE5SmaDGE4cnCdRShGP/dq3x/Xg38l8CrBjQlHqSuWyElzT38nmcLek9UjrZJ8o7k8CXfCtox7bb/R/6eMyDkY9r3cO/jhcQW9v3dvfAOM2Bxor6QRsiTEun1o5ObcIRLfZeDRzsFbc+sQ4JVwlp+Y0owTJmuRS24MRUSssarkoo51JtDpgJCYNilABn2kcYtLIP3I4YqWcBKxzb6cMUL7bnBHIMVWjLHygNZfLVFbExK+cMuvmgO9Kgo6AdaswPFEzMjqNNY2ZVenWdacmEt7c889fno75m3rO/WrnTHrj/W9oa4DKFTZZrOOOT2KKwe094l7KrQmnuObRf1K2Ka5yA7Q57BC2SFUypUw8JY2k18bN39LI1pz45tzT3YNX4bG9Yae4oQBVcObaPfntxRzwenJpCsLRvHbhMO/Uf/+8dpW9itVeVNX/vGpeOz2nmbiG7pu7Ucz+YgxrIas58b25JF0vXclOhZRVOqsVbmTK+PPtLRhfRL6x5WVrBRuPfWSkSXjC+9rbowj132a/ZLmFbUU+fiW0wrimmJ1JLVMuuYOnMpLIIuXFVJcBc0THoYUgGVNIJkjoG0uKBFOP26VUt0YzG/Ade3Np2Czi+8waDH/kYBN1yGdc2NHlyrlw3Sr/OcGyAC0zlcBhl5Rq6WaN7mSCs7vratOvSGwOu9muc+5jPHWymhKFz92/0wF3oz8ZvbavvTskAR/hEYIMzt9wIyrpCtocslsUyh1AX2N7vun5l6LUKRFPo2SENh26/aqS/VaZg8xeNpXGcKg1oo7fMrgT96HO64Hz5awU8/APc9aiRVCcfPArD4PI0TtjTiQUK5N1v7GuJ1ZRPLwvr0fHUw+8W2SgOHQcgSFbKKAhkOYVZTewTSJKJb0rFUiWvd46+b8yI91ZLbds3N2D/jzwFfUiS/l4IY05ckXioCMIJ+VcbW1qg9/FtYqow/9BMWg65TIVYyPYRbg1eJ+Zj/7C+9kcQMkNxQ2vMi3tI+q2DbZOdX/4WicMpNLUtphdAjnICuOd0nzucRtcnLV0G9UG+CqaNEsjFg4vdHtGZHPRoq0jmWhC40ni6enxn1nXJ2Lw7lCvN0tKvE3tWSrCltGpEmvV14U3OzEuiVdZShendY0Nd69Mk9NY/OeYYLK7RbqESa8h37gneLN4J77fb5WNwnLdN81mARQp5wOBdyW+9zLdpikEAjNAnOpWcwYB+47DHXsIBnBgO/S4PFpmtslnhaN9d1x2ahy83MxvHG4+tAiJMkSVuTiK7nEril19t7kNdOfwTQwj//C/BR4gR0uTIpOcgpaVShk6oTGqGrS0u7aTiTonBW3KlhvjNj64LcYwRv0O+4JmXSLHOWMmULmbPcg8HHtPecoNsyWSTXpDCv3TrwCbWYuBhdGfvvZiXMa3rTknltiDbxe5kSL68Dk1LBCXf9XmuhNHPTA1/BNMpmbmGhy6XXrjV983NU78/Z3xo65tsz5kPgiY1N2CuduK78WBP3vca47OJR2K+R7YGrPQ8hy64/zSWioxVL2Jm/QhUJNhGdCDw6g+d57No3E3vZC7PPhFrtYl+emacuobbw/esT6E8zykkN20NXq3ea/LgScqbNoOnp+yVcS6pfqPDeBAz7VsMtfG3tBscbE7COrws3b9TCrHn/OIXGJx51lysa/dBDYUxpMsBnEeiwa+IpEJzQrhm5VWjNMXMHpucH7bBtISh2m2RtRaxhvzyCqcNBBb4smkcKPX9pjtZ1lXy7iqn65dt1ktE1FnnTTvxENaXzLG6eiwtbia6J/2YAg8b66zZKoWNb8x10KeNTBWuuPU5IvUG0zZV7s+Vrc+82HZsOoI+4PKPlHPHupAJBUQIuueG+KdnaKmt2OFjEn97AKWR1TVrvFyuzN1Z2S48mMxjBRq9oV60DZ2mHkL8lxyhAG79DyNEzKODSINApe16TPPVoV0tuvmwVKEuLOxNm+iFKsoF1KnpVZawgBbubfQZzr6o09EPSG59TuLBCe1GEoZVC4xY/FSeg70qov6kCvf7uZMmTfbNSOTdBmVXuU9WtRboKlKzmQr4oUVlnzPOiB+vGMhtfAPGu1TWadLxgA9gb9ALDZ+9vGN70eS2GsMiPbRksEvr7ZOpF6nhyHRuXsNkWjhgVvh5mx2DM12mSoV9KTn0vgYdOM65Op92R0LlxdiXgauY95ehUS5vGRw9M0q8DbJUsf8ficoXWc/cqDslrOEHzkSUJh7o4Vk2WNBqYjHCSuS65XVWHLNcqsE8qRNuZK2dVzN055byO4pl1jMsSRi2FdJ2VtSPS9hT7x6BAzCKMPFj8vToT0aVCrWVi9yc8eJVEaC+4cW3TxZsL5lqvNlghzCy7zhU/jitnYVHPglkVdXhOXpFpBZoGRBJNmm8npUOuz98OyFNd5IsCLgFPjxsOQxPsCRIlm7Ix3zmcNaphqpOkl81Lt98G/Qxy7sAvrXEl5zQZ8UvY3IjHpGA7qN9vA3uzFk7UhHtTOpLs+Vbr0EdWkFe/oBGGAOcib02kzyKB3a5zpQdpC3GccON2TFuITS3tel/bHhnkeCalH321hmrn/N/DEdxwISyIr8W9YscahYUR4K8AT/rfbTiB/XR237R2+6kwMTU3aM6tPJ5dxGT1C4bzKqpg4S4WR9PWfBE5ZbzSlJbSQY7hPWcg5w0iOOWSZo6HIMiW01nk2GOhhTf8C2nyM+y7ikSiN4QguG8PYZwQFJ2AI8IjNUaQ9B/lQ3LlLqMxGnxdiL57oRhXMByxDUwpnFK9KEIG+WHP7R31XGnh/eRFR6btMuy5y31XLUR/T7PHH+Fi6bKP5Eo354xlUVdEWvdRg0KPOgr0rreHDCYSpqRpn6vTfqbhBS9+A+CYiTmh7uZMHBEbA+/HlfD4Pf/93J8zl5Dw5bhBanWtnTsLhrrX7s5hUjqmP7PSujZEyqBGbYIhc0zVBiEGzhK5pYTe9DG6TiooBkwJAudmAfsab+utYu2EEfH9FA3nGN51BPZlkFomLD4LHTJ/zI2l3UoEw95Sq5h1f7QE4C8lffor5BkzgB/98Z9ZY3Rh/rIhAAbJNeDdtlIBkC2fzTQliCtotLvW1JjgXma11dC2tF/1v7cyyBO/t4UPhvAup7gwh1FvPa5Wk2XNa6fEmNfBTX5WuTmauUzZRSVUVc12Ym0Ht+4OloguXWP+YN4W2iMEMCjQXZVT9EHGEq1tbei7qMDmnl3cmLA/KhhoBtzCPerJjS2qp+t2V4WVlJM/+uM/QyTAWYvCfu2S0CmDU2quDGlOHWUekc1fUXvnfX2WHxeP7TvNxkbfCOsEbdLVDXg6zsprk+3pM6bEMd+NjCxOuB9hkjjpdftzZMclSWySEa2gUIrAjsfO3W7lst8rWO7atvr9pT7sV8202K4IsSdBl3DReG9of1/6PHiN3/lfdRN80S2hn0ccj3rWweJzpQ2pMPQMTpC8jdg1voue75v7rUzP14UcThWcIlM94wtzauHbjQHMSkrUCus2TJOoKxkT5u+WUhcntEPgYdZNRpfOS02Yv2x1j6pG+vEeEWiUEwIw7DGsynxonxxdTDscIpnpIUC88tUaH1SItTXabfWb/99b3hEZH1JoErR5xQb4DPkiXonZrozimMuBr3BBB/N2yLF2tLpGstnjkxvYmHZ9/8W0huGQnsl7o2EkAkjfhwOk1VFsm+so4oxHqk3YGbpqIRCHSS1knALUIlT+Ux9wXm01FwXL/yzCU9aw5NPPUsxq0AjVAmTT3V1mZcSfBJp1vmnJhRXaH33gHsAjEHFIpElGC9wL/E+48h3/I/ABQqJaNbQcN0gt3jpnyt3se4Zf/56UrixOskG69uuy7L3p98pz6nG6eRY9KxlNGBPQaMamJWy7sIRt84yplmiYVwF31GFjpUoJW9txIVJcEXLj1/u3NH5ixmM7JeJcnzeN65/eddjPu1kb5BjJBYQ191qcUPpq4H8FXo/JRlrEm/Z7v+fblo7Ptpa4R+/VCBbR5E8q/8BELT7qh5rYzXVJ2wFdSFnLReX6npZ8G+G69Yy5fg3ak/TZn73R9wn3iJOQ4YjVvHaukvu1MKmFsq6dpUXjbmtxwnJZw6ceRX7xI/CZR92eqASqmnktbJm9bIWZhbkUcl3v0tyBI9RGaI9qvoJzRfYx7XOgL4mQJdKq/Rs/nGTSPQEdz7m+M2yWDIUT/p+8CkxDrfZ40UsLv6Xwvd/zbXnXP12jm96ONQSZ1dFanolnEpJHZPM7aII97aM+8/EZ3LIZL0Rrlb62CU+FEojW0m5xxz5t9/hmnYtTLtTelKNXyXiObPZMXLC0xrIUchK24BTFl0aJyTLBqI3gXsDGyHk2+DEqE+S8J9weDlmy27h5hN9azdz4oVy57Nbkjp8dq/w7ItfW8wAWn6eu8YLjTR7G0dJLtIWhlJ5vcsBSkocBSyhnpdHiZCj1pR5Uc0px6z/OPeGyrOfou6UFEGjiZd+mylxY7tDThU4nuL4FvsBY/cQI7XqNUcRRFDDqMShLH69vXuoBYBW6nhvDcW4fneOucm9qade1WgB/57vf3Cl8tHCHrg28wq8qQzUbL9jq89juOYMXZBiC5XRmFcjNrQrtutRzLvLNyUorRZUTUMyAK0MuA09ZC3szRv/douohnabtylnKwCWis9ktLZNheaEESs/37Ak8U7vPnsD+gspbXWtvSjsDetbrreN6nUPN/VLMgmKwAIpeQblRuNj95hrDp5xzWnJhs8eLBKtOwx8SkMuvJOe/B/jTxCVWjrd/4q1zXjif14HxB+dOprWWi8pLKv1mTGmrx6ngo9BF+NLjNOY52tMd0nGrtJHdFFUJGxvMgC1//YZ/oPRpMpDbsRTSHqMtlWX7exSCu4UcIx9BKjjsSciMG6m++ybLVTdSS9emzvsc+NvAHzO3tdlXFTY2uqLADQMn4R5p1mzbM+su3RykTFezULx7fG5oKxBGu07sO75m+t6MIfM3wM045izrBilkXrDkH6zKh1Hfl0LD7ceNfkMcJgJzEepaqCmcsbWGjUrYqH2is0rc59OPIXc86Fz4PvYF+K96yJe8wN9WGNXSKlA7IBOWkbRrwbx28SjJBhH8Pu7jsnbj5j3HQA2JPY4CLnDz2GQN13ZWUdQwvqTlw4pmbLubwJPjZu6t9ruRSBZs4o2NETL2qzbdg5M5ctVhBtksvAthYKxLYEOktZZyLnlF7WP1bQK6GnjcZI7XpG0QuLIrG3AjJPgRiBPRiSBF0RnzrS6yQ5HYy0vE5cbY7gU8U3oOtsVw5UEalwaSDYKLb7zZOCvmlBL2vVwewp5RilhrDe2cKiTHA70k8aySydwxpU+WhviYPj9LLO0Wn1t+xdKGXJxwGh+c0nNdU6vQ8wNBp+tfHQQGxUEqaBUgW8AzMyq8lT1dpwugB5F7uSovdghCu3ZtlcoiXfh24r+YpYYTEZc9XmPac1U6AEZ9RvPAbLs+u1+P6hXoe47yoqT9OCbQ7alr1Ook7Fq1seybG6NsjfbWjfVAYCDiWKp5jWy6uwkEwb0AtvvO0t5cavDTEUxEikL1eMyCqiCZG/SEKIM8N4RiMORyESfYBbeuBJARSeiXtO7bZsBxHp9qjNDyxHsz2NhaimPFK701hNh6phXi1t1GAZuFsJEpBWDXYIMSCIZ/BRuWm1u3YUiBrs8FRiKO3jeT7Q5mwxHDcRV4FAgGxXNOSy6spV0hXY9K+L4qOe/rMURSTsA9vpYQC6ufSWJl15q13nrXytabadXV1a7hLsE2h1ws8l8LlHnX4elXYxd/NC1cmDe4knpDQIY9mFeRMBC53Zpba39amfGLoyN84AhrF+GTHBaZ4GvQJr1QJGmRov0bQ+QMwdOx7uOEUiuo55izRdBFPAoyFtRGQEmYr1kN2wnzXuCzrCelVVbUYnetXVunPdfvNF5zm1CTV++zlN/LETfVXg/7wTrtv5vg81/gElY+4/Nh3Khhrxb2RNirnUDv7i9wz8Pu+f5lyUcfc8Jb7RLpjKo2w7bMPWwh5Oa9CsykFdibS7ylHZyb2VCVO5IXaqP+CJFLfDP0GxPqjQLxig/1kKcouL49oD91u7ixQjdC//KBZr0K9LvdOWz7RD0jghLGNzNMgisDrZJ2mnXeZsPX/fDoPtwyMlqkIhZqrw2iWu1qhW4+/nubObetiBKa1+I/Aj5JYj/Ug14U15iDdL3beRhP4bKpDJEwPy3r+9bI4XSLn83BhNjSbvFVIcLIK8FCd/3Fe6Uzkz7ubVbWlX9Fb4yLBrkkpYKztKvLMYTEpDk8r2vt2C2w6RpTmInDqyrQ2v0DLoxsPnc4KLpUQmZt+20tSOXDjcqaopbgauzhCo4uWNSyajK6CL34Y+U99pJzfIdcgkj7W/MydIwDegLDqnbf+BvkxrcK2Olr1oBvD1SB5JAg5NfqGKc8Scu95YwPFqIykebdDgqoa3EPGw3COyoIMe1bfVdNJOd2d4SCe9ruE7w8FgruBgfrWiiAYlbCYEjh7yU+YWP0rBHIXFV4LB+LLvZp7XKiaBLIEU5Zm/J8mXuWOC/ZXfFJvGvH+9yoXVTanoS8YPNk73fhmintmHb16mtdY7tmeA3t2wBcGVQTLtEvCibbI5PRVbKk77zChRXar9z0MiBG2HYPaxKXLeAHcS7JKkA1ya2O8w2rVU7jYTWJ1ccfgbd/CD7+cHC1nde+sHzoT8SD6S19u0rcdxdSORCRT/lp6yLvY9qmwKgoGoS8AdS9PjL3VrEIb0gzOP1a+7OO0NoFGkeVm4Mo5jIaE/GE2xewmXFYUaF93s1g69qU5PO4P+MasaDecrUC7vzluxcP1ozNvuMIQSotszRN+2sRPoR2VJjSaO2xdUETZ5ycKb5PGkKBae24LaG/iSC0R3tcFnjK5Pa0ZlftF2F8s4qSoECZiDA2RGvPf/a9y/xU+yDA6291j1JHhC+9uXm5c6RFsGBJlueusaQ/2rFZod2eZqWpMsS055LjpeUfo+e0EJDAfkm1semT0BUUfShwL2//0hbFHL/faQT3QFAX49o7f+Xu5Jnm/Ok8hKgM+s765e8oPnqhsXKZezbulrmxqbCoz3xiHIR2G0CsC/LaAJ6eNtc7YV38+KTZWyrUpn3RDg/Fx202e1FgF2Sr75MHsnpco4U054SO60YJO/14LF2a3gJnydqbN/RR+yg4IcSWbczh6ZEYpUQYITKbwwsvwzP78TtoiJssH+MFAMXnabk3Sys+BHwK+Bh5YQjTKq6xkVqrLplDga63macfCibXhVDAVh+ZzT0D7hB3D1rJ2YpakJkPF9wvmzDCYjynN60oVCDGhZal5UDT4xx04d19/1dUClfRUAn0i/x9C5ySwufvGXqvwmhsAh1Xd0IX76beWsnto/Y4wK7NtNzbkHa5t14Bv/Yrdy/k4yJPBKEJnehZBbvXXog/USgcL/ZMMtqcAH/QsSasjrZ7tJWxaV4e6/HUE1WQe+G9nFFccSEvu3q+/7/xEtnoZbLHp2PM/D6tAz8KcK3fVABpzstU6ahFoiTdtvLWnrrH+9/H/hwb597VnVktbM1dKdzeeE5/UrI9r5rKOtnh2dbT10ZoryuKfuH1ZAUjYLw5colvm2tCjfbzTkcurNBeVU7Ma+g/sbX9SX/eLcBr/HEuhuz4OqixsCYm9lOPwtsfgI9V8G/uh/seCS7zeg7dC3rduO+cxvbAblYqZEv0J9Qu/mhM4dxCVfkM1P2+K5nib95sKtobfsKCWNBF/eqArvnJCiotzOMPpp553jQI0VoQIAjt0fWuSePZdZ0+DryAmNA1QivxeC9ftpXNu8dnIa2Jaee/1ddZDcNEKVHgLO3jqn1+8/67V0vERJnTckmsUgJov7+MY86apWbvu+jBEL/TaRVjwiHIrGKKW3ezWly6CQnEalcJlRfaJ5gQ/5feHMxcb34JvOT5jQBX10Qx7Qq5qg1LIb2NXZ91HZdZSi/p0SDEEtg0Fg1lKhclomu8avQlCsgE5tc26DVlnQq0iEc97FGPQG6Mo36KuX4RXLm0E7+z5iPOHXLLO9f2+tB4EAZX843M/W1Juwb3qDs7BLw7rxzn/oKdINBGyegKuLrp3DFEms2s97ThPjn3+IIwByPE4XG9QLng7WF4j4viGnOQQ+Dees0ePqbd3zunkLAeBdt9ZG8Wbicag+9O2RWJlMbRPhZvUUkUso4DK5EX7cATEuZQf1s1i9gFAMXnOtw0TvgjwMdx1vbvx5cDxeiSEnquyrhUmDtySAm2trM6qtEOBKtoAWyPkJmzoDZURt1T1Ou1FmRa+wSfPu/PxDH9xaSimJX0ZqWr0IGjC9chRhN62yVDSB3NhFCnXTPcR2ioFOiZ+GpznSVeZQ/6s8p/ZTwD1nwpOb7FKuNzioXjhq5ybw/ijGOWb1EX+SuXdzr5NkuHLOUaAoNZ6TKrR2Z6s552hh6pGxxyhNBaU/57zeXRGkPS2n0SjeCZEoZxDgo9vWmHvUbpHU7ILFj7Pbg9uOV3V1HA5ghueBqyIHt8hTNWq3v8uHY80O8C/0/gff47rbo1k7axJO1WMa+oJyWXxiWDyZzerKI3LbkyLikmc4p5SLydI1sWXEgNntdxyE/ZrunGhnONlMyNnnOPP5uw98zDQHuD6aJ6Escof8F/Z+PGrLX9OECsVkvbWuBDj8Qn/sFDGTfBblBt+mHivvWc1NKeHkfgJ1etS46Z8+WcypLSl6vYMg8YFQX1oN+MKYo9ydF+YgvVQca2CmSTU/n/xH4JIbO6Ckc5hnfWzWDbNWnX5uM413hoC+tpmZSveuMbOsfSNTcjMp4Uli+2A59KiKW1N9voqEO/hDNq0Rbzm03Slb5jHTsEpHWVDuaMhV1IHixOCLIaoQ2QWUXpXXm16sSkFn4f+AHg93FC+4xQcWKua39WOQvLbTvIy24G3NouxCnKh4Zw6/iGdCjKljCanUR7XsW1xPUna5nwC25O2xKtfUot0fEeJ7Iic10oNzajJHQaeDoAys1N2C1pLtB5UPy2AP7Tr3x9fI2FGzhLNDir1txMAzRZ2WMmMLPXa2MVbxIRCjw2duPY6seb0Go9L3us65Mg2czxzTzRnV3d9ikKE5/6HLkj7/4/ZHFcYxYk0Vr7duIXwOVM9ni7ASFsvp0eTJOSb2YdlNKtXAUXtzzVvtqNOq7gVt+PGyZ3QYMkpf3eLyAoPhdiYUg/aS6ephwoecWm/pbWQE6PjwRya3Imbt8opPtmw2OeaenxYnwqtVDMa4fPZj6EcFpRjEuKifuumNb0ZjW9eUWvqrOW9lXogkWh9twpjmbu23MNgnF12pP4aoooZ8B0WDCaJ/tW8dEBX0SKP1TgW0RjjwMUtdgQDqG73FsP+DNvfP1inq0hMM3MeqG90trBjpb5tdSMUWO21aCSehgdcja65nYfZyVXyDorGdrV8zjNeZUIxWwKo4LNomBMESmAan/DemCS/+bwfi5RK7g9aC3tVzdc1ZCUyUg2SClBNirF0co/AP4hcBfw9zEJvP151YLpLeYVvakL+706U6Wb28eXJ67STm9auWzwBtJb6mssxSv6SqEYhPFtAONLwHTur5WGb9GLz3Oo1YUV2hXUqzlF3E/iXOLBCUlCXPNZEdCxgGVSLWPyhlvj8778tnCuZ1q6tFBCEMRcpmSh8Nd0xX13Cb4t5C/t5y0aml4DAjOY+Pgjl4DOPWUDKDe9VSyDf1JZxCY46ur/umB5B2uZ6MqsLmnHJqb+ZUbxSw9nxc0xMxKIna43va0K7Tlit85Y07GlY8yCISyAI35WS2vd48vldeizj0gu0VbrtEdjMG36uULIHm9jFjuZs0UC7qaZ2c2CuqqbOL0S9/mIwP8swq8D/zfgHkLUSkVgWJg6oV12p1j3bxFnZRw2Um6AER1hGblxrAJzOmPaBZylwqdKr7DyfZgj63XS9EOtYIqXLCM0nTC50mtqtBf+H4UrATe7tgkTGut6g8sO6tak1uIS2PLZ4zf6yCzcT/s/ysx5ug+0zFCzTpQDeWIKtw6h6OWtz73CTeAW8NS4NS7B4WKh7THU7HE/lGGtpWz8PcZzZIPAmG7gLe0d+y4Hdk9b5cgNb9OxSkdt05h27ej2AHbrCC+axbHY/R/n8dB0QRkpQPZw7/Ay8FTiIn9BEgitA8qPWGGoxiXLtfCXiV3jczqXbTrCoTjYtuvscO6G1tJetBOHSa9wG3E8o0mzm1jZmVchhHBWNzl/inHphICypjf3n1nFVZFWTLu/5cLxWrph2zEuFGtqv9R1WwK9on1dgnMn/QEbTaicmwut0b3uS+jiAWwy01Z/jmnrHKTcW6iE083NpPlHELdMRibcIlrPiqcUl+3Po2uBI8EfFpXaOd4jXzUjErCSBRkpbGYlxWafDWBP94YQJzfs95vksYsXsumguHsz6geksDNyieiiBa/XBKmnJhbcK+CXkke9m8D7KB9kh9u0lVO8FaXbxzvjKnjLTCuGE+c1w7ymqCpXlScZZlgSjpaGmHZg0GtY8V4BNzaA/Wm43uTROTqkdzpwYYX2/sCxRlb7Z5H2deD5ODfkB+w50nZJO3pQ7GY2Vy3OrVbh218Er3h+m2nJ7Nlm3wP9ymmrepOSYlrSmzrNtNZDV8gJ7FZozyaFWDYezZqsw6pcfyejgSvRZeKit4H5sB/t8gxNbMDWdmz1/QBSe8rgaJsKT6FzKZMsTTm7Vif0eJOFDHazNiVen4/h1qYV1GPjXnjWY49f7xxfrgXnUpRNRJfiM8ExSaqltTcZ9UxMO0m7eON0rScr0LSIn8oQ5vurxO7xDW1uutEm/Nn+TSUkSyoKGAyQWYgl0/PvkngKflnCWlXrswhOmQPI004olmbfClMRRnV7fFnvh6TNQteYZvjkLJ7oJ0wkvaKZHyV+6TbKMoGe0FvBtLnn01Omm0YBYDQsfWC6sQVaq13Xmvh7LkG2jz/xVIyUbZIdgC2PHUa9kICGEALYFdMeuf97zl5qTF4OfLk3U11dB5ha3K+N4JlQq120n4Y5mhKYO/sBacrsqXcnIg532wiYjcIkoiNpO+YwZeL03vszX9i6aMez24myv20PkX13s6isnUde+7SZV3s8FKh9J5r3XwuCuzfXtuCJxNKeHl9gUHyuVvZUcNcyb38e+N+ALycWhqC9j7c4AQtsbu019CMkOoxovLW2T2pXgcPiWPG8TyUhWa+31PHxhynecQ/FJx6mmDlhoKjcHros7ZJv8dJfyMlkDQb/f/L+PGy3tCzsRH/PWu/4TXuquQoQIyiDoLETW40ZNB2bJMaYGJWOCWniyXXSp3MSTRsTTzp9mVzdJ3J1H6KmjacDElCkKAyDgIUIIkiJGASqoJiKGqiqXbV37fkb3nGtdZ8/7me4n/Wu99tD7RLhPFXfXutdw7Oe8Z6Ho7LGAq9GA0S2iZHWJMx6PUofvycya7I6V1dSrkYY/4zMdat+S7tYsGkDJma0DHD+3MVD6419M7CzJ8Jm1dD4GDvSGgBl3J0KNg+WaSIPCbR2taVrPYEKdtqxPDIYGCZNzDVIgRQPwI37bDjdqzUuw9kCNAG3dcF9MRfa+GBRZyny2Co1/op910xeWzFo3Yr/Ums8XkbeHDu82e8Qv6tqYFHTW9Tq0uLdW3YWtTL1XkDnqmbVAMDTHaFbFTDw2V5C3IjAuVcDB1PPxbSH5Sscl3zVMu0nbv56YGU9RuByHjiOmu88Hp4x9z2/+cyUNvEZVuElEy7mjuM5wx4bJPkmCQtShOW85sS0opxVFDM1RXHTGmZL3KzS/MUts1x7DGXIIbld1y12Me2xZsLAtFeoItP/OdTCaU6JeCzT+MozFxvz3XbEycOY0isp697vZJ4sAW5vzBtNxdRuQJR+uOR/2hrIwBRYc7LwdxaNtdAm7K0JZCi/cud7Lt/ZVrG+b3aMFTC2+miltLZvvTV56O27HWVlPZnzLoI/HNvjAMpvXDR1ZzG21jUjwyoBqTUJ6IMGMwu5vpvkd/3nW+//N14rGxBKlA0vjDAnSPx9gyqBsZCneyGtu8PGZ21fOvtE3qd2KSBI1UMe87SEtY6SNQIsv9ktYysiMJ+xGJeUXrse7eQ90z474mA+S1Y4oQ4vCTiMmP7lN/9mt/nf1LdwWCCFQ/ol1EkTPKed+zmdZynfRLKo9hFGC3Bm4nO0kxhYy7iHcnQEF5a+DpIQ0wC1dsCirE0CpSSeXNdSA/1+iibcLzOhRGj7yrhk98Of5M/v1+oDahl1KyXrSvm2oSbsMaCgqVNEXUQyn31TRXBTCL7BGYwBdcO5YQznl1bytorEv4pLgOcNq+bxoO583wj8E38szN86nNZHmQq4Cnx+raW9FpdVMmcOJQPoDvoDWDQp5ZsVanoayIXYPrXAF07DG09S3Ffhfvkx3ENnoPGR5CvhWCN5VpEWXljb9DXHKSogNpEcfF3+3ESujvWHvgEVjsWgpDSkQMaUXkU5jO6x7j5d/XgmStiW1hokfC/4tEOe7q1w8OZD6JYg1AiWT8EioQe4GpqxibHTZYe+7ZLrYmjMdbLWWaGX/HFCB9Pu8vmJRLJvgwvHYIEx7Hk62TFrCbn0vsaAStWZvbbOihAURw4N5bhdwuyQ6PEBB3ZU90LguWhaxf8NeDGpiq79JaDKuxC7q2qQStgJQrhHzyDve4Cjjz5F49Nei4/1JU1HX03FS2AzKD7LEORa0/GeH5ewDHHNJI3RlQCCP+blq5Zpf+rkvVH7ZU2Pw/EiavLUxbQHIPSMpX3rMo0X0ZRBR/0zZ03AJutfGaRhpi9qd9sgi5qj81olz4sKN6uUIJo3yLzxv5Mo4jCJbTso1mURgMgqMFtUSA8qH9ExfVi/tRwq4+dhcjx2fa9tOn1YKrunUw41MQsPBQAybzRIW0aZmgYeQmAH2B3XnXnsDMq0w2rU1faG/bH/8YfX9iWX9KbrnZHKQ7va1Ny8Trn6YsVOCexZ69mswrXNWjuuC1pBFFtIr61JOsJqTlNrJt/54S6tY9AGhdIrNMCQRDkZArwA4Yf96/8zKeOEXbsCsBBkq4QNkN1gIi8gQi0+t2gj2fxYYdHTKrbf/VwDJP5jArqY/Fgs0ajeSL6Eg9VJG9aoVb1ZL0G4OG2YbQ08P+vMBDp6DuYj4MI01igWll1G+v1j//CH0g/LvE80AXIczVIFLqFUkgKjhf5aOBeFEhGpS+pPuHb+AG7sm03YYtiDxv3IEHYXyRohfFMAH9HepnwLxbk0yDEXcWAJFiDDfhqnskgwvGvfdZUwR7Gf/m+vhs1WjvZwjBKyVl99lH6ZLNMn/UmwaghMe1soASE6fnhPcsuUXgHHBhqpHwyADHjvK9sX8UpKgOfW5NQyRF8C7iBngCKOWIMTQxpTW64ATF9xiVGxs4ot/jBYy/ghx8d2+hRLFViZStNeDGsgZNz55KlQla6xT5/GSYo6vy2y3qd9DZg5zO1wjmrapwFuGWSj0eGLtcwczmlMlHGPchWYetjX0aBDyjq8PqY7FtEzWSz9Es9RQcclNEd7V4aDf3II3QLEyOq29IDtBYjB1XE4LdEw6MNBK7ONffhpljYZAYlpdx1/RceLIb6KA5guNJZhWTAAGqcB39K61ZFoBmUe2Ng2oL3vbFl6Gi6M0WYfLraUSSu+//ltW7ZR5v2F0L3uO/aSa4LFoVA3woY0yOPn6P3a4/Q+uc+3/+ZjjB8/k+/5YL24pqtzgTJkZCgTjOkBs/EQ5qiZvRnL6xXb4MtZvmqZdsiBdJsxOkdi2p8gTWo7oEbzTBAJwqppvAAXKtjZgFv6cHamN8NzgXBpVgEGtVAsa+pFzcaixs0r3LxWaeNcTcpcyPe+qJGqWUHubYntVTEQtj3RRF7U92zomAEDz6lHuAFU+PRM0tqQIis+TV0+7e12X21ZR+BY3Arg2kxKuDlr8sjq1ucbVNO5hsAOa9ISFAEcP8Wqpr2dPuRq+2jLilCmLXG1nQ9S2nZFIYCQnbwrLF1ILwgRuoJ0ZeMQeAjyQHRdFgudzepCbgvJMwCMejCX7NFQX9AcPDdUZXBAZCjmDdLvIUcGsF9nzG7dSGSQbT/bedrtd6+6hHb0cvCeIcDCQdPENdelDGtrbrLq45+vcbIAB/ujgdYVCGpPpY2cY7rZg5lfeZ2CyyvoUw4olOHbNpd6Bcbmwaez02+sMJCmfzHKe1sYUYsushs2EpdgI8dbbfSRfszV3tDqlx+rdkDNUII2qe9a7xwAW/30YGmDER0yXrZkDLt56aBOQegyU3/TukxqpjdlhOZVj8SZHmd+DNv9i1UKlCLafDETOa2QTc/EnejDpf//TvvWGGWDZYgEVTA8h9zUuCvdm0VDmxxiWXV9G75a8bzFMGRH/6M/wO35EBy+gXbNuLbw5htu0irCcy+8Uc9F2ZtjddK0d+GEQ8FMx7W5CEfwbpOWVgmpJQ3DsOKGBFQOZq5H6UFf1CC3huRqyjq8fk0uVk+jCLk7aVi3p9E1eYy0TtuM+1V9xHdgewp18Gn38FgcydUC1Bpo2qxO+DUj1PC6rF1PwUowlMvObRDai+AmFWyGLeHYBCbO5f7soBaAngntbmBefyyVNY93sDPwZn2Sw9c1DHsbbUzoznRjP28Zd1dLwqfi0ZcAnz+nqe9GUOzCN3z+0srA2qnLN6/G4unXTZJY+jJ0sDv0LjmzZbSUTLTaVzYS+epn2lt/gUi9gJrH34Ey7bSescjyupcu03gBLizUPPCmLTizWN1MfuGvAOK6gbphsWzYWjQaUXURIqt6H5FFnfzCvLTuSiW2lwX8pg9iHpRlA2UvalADonZO6exFH6jrHKYawGq/GyK4rhM2HBbUpKvYPtu62infVvps52vWpGiltqJQekbT3qoo5PC2iC4A/yXKtKeALTniu6L+XSYXfZcpdidQq4xplf14zENv1nI42kXQKuuIiWC+2ZUOywot7LWd1rtWy95JnK1byNZv3/ctmKFlSIOErGb+ZhivDLHNG+iXyNExciEFInS+bT1kxSzSClKuiuCyHw4PBkFfr0VMxvlzSKHv+VjnGrnZ1xEe60x/GGCWkJuT7y+QcY/KQT9y7CrEcjhKB5e2RuoOs6xXzceDycKh/bR99cdpDaN+Itp6TokU/04tZJp2OwxB0y6QGHYBqVMUec771dXF3IZic7XvzVI9jbdK8P8hyTx+hajz/QmZBWI63mUNvX5az0PPtK8sksOQ1Zo9uj/35vEdfbF9bJvJ75RI0I77hon41FgiK9lLUjPUxLVtfMSiSbalx0ZwXhJBGT6ydlNfe/njqrUXkjdc2+T4UeBZ/tyaxpduPTE3ZDV6/BXBlqttdDw3P5Z1hj/En8QnHNDv06trI5T3Ex0CvrQtXwa6F90G8MN34J59Y6wKlLaYkAcWDq+uU2pLx7Oh7JEMIJf+YYEEv4KrjLFmssTFUmAyLHHT1OVwFgQT16P00Xm+KtDwNEtbwx7G7yQpcrw1jbe/Dyt5nvYk4OjVDXVphJgiEVZFHLDZb6WjlXxyn2bpqmKKCsdW6VLTVwN/HUboNK9xvZR2c+yMO4th3KV0KeVbmzCx53YBiKjyzprHb3pcNqnSe9n4dFjNmr7OUDxmP3soPPE5QYOwat4IpYC78Yg+PwPZgfuffyTrT3AfWEH75pntqo4Ba4IcsOec8i+jwuejz/GfrG3oV0b5qmXaj97wJxIz1FqTS3RTHEUByzn/O5jEC2QB6a5niaZkLUYcULPAo324YQinD9K9cIwEswn+1AiuVl+QZS2Mqkb9Rr50Bt77OXjwjGrZa+MXZgiiLuB5qE97Z6dCl5KWXUDb0etzgGPcZpAdzIb+GVNzghuSfSsy/nQAxq42XWNZl6e9c6PPm6Rx7vL/HHpNe3jPAO24NsmXwhn/aGBILyehvuut77+K3mlZ8X2LsL4N9GVVShsrCXno1+dqX1e61lQ7XWFk0g2P1A5GF0KDtYMOwRrirItIF/JgSaD5UOO6zDs083XMQnVxbUj6xKJBhj01PZ7OUxUiLBCGDbimyeYyzMm6/dbNYHTMF5joay1NeyAAnL9XJ/PwHqvFuoqE6hPylHyfTmvYGCKeQXfOjJpTQq3pl2rKvj9P9VjG7JB1c9fbfjsnSsLftIFhIuJkWMAsCQKX4nO5kgjAcJ5ZFFk4G34jcG4GN/kghYY4j9r2LFf7UG1CRYzpv8LaEJQ35PNdIeq8lrrv2xfzx8+XWcpFGbZMJFfMrvKS+ee3n9tbaFCiNnNuA8/ByjUZ9pHpasyHhWj8AMvvt+HVUPzetNZLS4mCCY6OUtt8/RmefJqMttQNMq+RaQWzSs9NbuAvd7nrre9Xpp1V0/g9FNY9C13TK9G4WR3vIIh+Rpm5diUZ/qgy/KFTqQAiaqW3oTdfpEB0pr4VLbsAj3ts8fxjFM8+oe+gjJ6ThDv3TXPaf53d6AAvoHA51Bll8EISjpZtQ27/jN8/S6CmBKnzfSGJkbnScpgwfp3C4Zlc2WGdBnom0DQhcnwodp0WDt5yCN3SHpvA4AJsz2vqke1bYmrjBhj11ELQTmJb2HuNxY6prWqfpGnvyuSwUgGJKXVTYNgPIhxGOHYdaX8EXDowedpX4L6s9jWUKSaDA0nCtzvvHp/WULXX0YI8nNE6miWe+/0bApZWCEMERgPqIVRf3+Nzf/EOnrzthvRei/5frVl/jmqBMkSOVwVBD+/aPBikmDehW9cptsGXs3zVMu3z6UWg22z2gn/mmP/ro9r28GwWAOZ6z60F9pEQQXfI3hSO9eGmAZztSHtjnw/VeYLQNUJda2RqHj9L752P0/vkFO56DB4+EwO6RJPPQ/p1zTmjSZtUAFkCGyUNXrvkXARgPeCgD0hKcBTrj8e0cW0guk4p5lWWdYx/2zUga1Mbqy8qJahXKCV/YWhMWWOF/tBi3MP5WdQPzEqmDyPKvv55z77qPnal8lr1affHaZNHHg2VBAZmvj4P/bqyAtRRJHBYQKX2eXh2G+WTurTsa1vRxkY2WJJDEdyyXlmLSEJWGRHcxp9zUcLhaB/Oz/0zenfeqDbVEmuO3Dw+a+q6PrQfsA+GSGYx5VvHLimUEqj890MSHTvWXYGNrAm5HWy5BGxqsLbCE+UumK35Yw0wHvo83IHZIzHuhwDbr/+6Z5uJNc9NNZiaoA2XvkN8RHkRzQk+WrMYrE978LeT0J7wzhkfOd6mQLPDGRh2gB0PoSYepgVLBD94tW/3iguI1ST5MY75budL2DRWIJ1xMlrH9j27QK2QZDrXoEShX7ZPVhiRNRbYHCCTOuubAHOELTHDQl4ljboq1Gb+RECmAoOeMjmFUw7p/HQV/8E1I2RpBJnXql2ahr9aNTETz8C3Mqx8OcrXP+/ZK/RHUCY8hg7NNrmWvXAtwRT52Ldhy2HL5ZrLOgp/3qzGRGmXAfQOlqqB9UDBecTo/CA4S/uc3IcNcPsLv85ywmTspYuXyPHA5fDCunGZkZj2ubkZ0m9lwlD/Oz7mPAwd4XGly+B+9xcPL1eC19vlus61KYFRt2tWSEx7OyZP0LJ/w/Ofs77SAA9lld4ZUbHsiuSZmceXXsNKgiFx4q89LkYApbY6S7+MW8+v0GwG/jqjbeegxu30Yz+GDhb+pca8Kj2HLC6jJMnO/Y85nk51Cc4fc0kLHTrSgrHr9sOEK0stmO55obUXutbiafkLtdJJL7id5rbjivMCTQBRWCG+4uxb4mmxWqAos3XSA5bOwfZQeRDI4+ccBgS+AspXLdM+PTiXbSwrDTyPIr4AQG5HzXks0KnN7+tash1vN4nAOVHzwJs2VXS3rFcJFquhAFyIsiiq6R40Al+4QDEFBmj+38+cXuVmWrRYW2J7VUjeD7Al4BBfSb+nm6slId4EmgL1ezdDYc/td2esN4+/Hoy7ZVRW/XXaDfInsyoPstOuOAQO6Ri4aJVAvs7OkYLQZbQzq/wCwEu/8XlrepfqWJeLfqXYNRmOU9+PuGBMIwoOzUO/9hPtT6HzGzTnbSbdXmtf3yblag+ftAx8/G7gEO2DcR5bwZL6Ts2SUYRjX1n6dyYogbmyVgV9d1AiRwqYTqO2U0TNnkcikdAM/bDBAa+qdBEgwTy8NfEWV0mhmvYlmLzqeQnxHfLv+RgUAQmGCveXMB4qPxkWnfMRXZ2jdI6pc8jRMUyTj1sUil3GF+mlL/wTHX1HGa+xCdTWB5o6tmspwrAFwFb2gSfyrYl8bNjZKRwf5xvQatlDhYVT64UByIVpRviIN/ea+WtdGRLC5AThSRUae7BE/AsSBEpV3T1W6yxJOvENcEE0zVqY/NAPwtHlm87fk01N0RXhfRBoCWx0tKGNW1bW1LRRk1bQdXPk+qZ9k0YUTs18+tNppXt+6n/Pal1H0y8/4/7Sb3xeZIKslh3UND6IaB05Q1S61TVlYcs1ud5cTenCAaCAvefxR2Rq8evZM7eDgt7MOmyZSkUSDdSIbqYnJvC8Y7jpMuEFUUY/MHsnULzQxgV2G3Q23xwjaAM2RYN1zvxdAY1w7chcj7J6PNNROTyjaVa+edCRaLorLV14/bC0oc9EsbEXPDiP49ZO95ZFj+fK6Bbb+CAGGUyWLHx+0jDGgSaJ8zAuYNqBTa+Dacm6cQ3m8bHt9hhOOqydHOCmNa7sx65sAAe41bXUL3KmPTZqtd74O9wbWjdO54Xndd4uU4dFG7TO91H6p/2pzqNVSno8WIu6SXHxIH5fM7l4OslXkNFUHfXPgGElaBQ/P85OzeMbgOEA9slojEB3PKMb4xkuX7VMOxhe1/8O83SB5KPkUHOzdWnfrn8EeYuATCP3PUA/OlQ/6RJNNRQ2XZ0WvzQ5s+D8tabxRNPzjqrPqneLdy+4yT8s6dh0ABd/DHnaQ/1dx3aXYrWWGZ2A9HvskfLLKnx1DIHdEp/rO1WgG8xo4fwn2tHjbXuvZ8kiSpOQaTBvzXDrtFK/mRZRGxvXKzpSvkn82fZnF1TTfoJVZjX5t195r9cxv0Hzks2pQbhZe2tUGmo/G9owxqdrWoM0OkrbWCGcr5NUx34Y/sE25Sg5097+WyldZsLtYEkDlWi3piy2E5GocfdsTI5o5pWa2O8MkQv6fDAJrkR89Pi8jzYtU/jmNRNe1ny6RUzG88IhokrbLLODWeB9EvwTf098PzyfS+z7bIYchbny6gp3DN83wo/deBhztWcdtbCwswRg3jpOlzAqk5ar70ASTFnitZAr2i0jlAhERZiXKICUPHJ8m3G3TG5YpMf7sLvMiIRAgM4C/UR6JXTN+e+HfV4FWF8tdS2FHvXcWpiydtzEPBMqClzhznCVuoybzeXXfaNl3IfpIt/DIszEZ0aAFbgD2seemL6Fl+c1MgriCjSuy4XrmPbNB2CNDPrMMO4zf32psWBY1HmqoS9DaUeODzjiUVLk+Cg7IvcR7mLmgk97Fy6/Lj3tAlRhchfkKUOt5Dk0dlTQrxbxvahl91vSWXppd6l1/olNjbrt10Z0p/KEw5aQBaODVTrwct0I41OJwsKRJKEtoJr2/jp8k5iuRlBG05vqBiFD2vdrGnQFxe6vAWssJFfadn1K2I5tf3bI0711BU28bMXhJINdwnBRU5Uev0Bi3iH5tI9LWKzJ057Vf3XlsHHdQ5ntdsDgnFpL7YmCJtDUZKNexJebTs3jkzuJ/xu4GPxQq5OVqlfwY7C6szF7QIPR7Vf5e3ZCSUNv2xDogeDT3mXJ3EZLWV70RvdTTwR2Dwi27D1neS3JDlkxH1ggjBrBlQkChnW2BM0iMGul/msrpb4Cy1ct0z4Yba9EXg3L/QIahA50ku9gfdo3XbjXcYIt02ClUBemStn2CnAF3DyAM14+3k75FpS3knIL0wiLRgNKuVuPU93R1/5+5w244PfVsaPWSWyvCvgbRjS/XEPRYwlsRaTtv+Ec+4VLgeik9Z1WnUHTbtvJmt9XUrqISmiZzMZ+mN92LSyrmAKpsxGDwgsl2pVAg6ysT0F92m8kZ9QPi7j60CMnD+lld+nORW+sSsLFsO6GLYAfpTsuMYgri6V7z3StKfAK/Vb1lpewDLtdr9ukCPJ2fXYKU+0F274qD5YU5m1lu0jSWM09kxWfEYgGXLNafas9QyTTZWxcIz61kYDNkHC5HLvd+66jP4Ii6iBYNwyX2AVUFojTaPbxUfPX1SbEI+CwWa2p9d4MRilTRMiZ6grl4kfOr7mdEpl7fZW0Jd/dposiwkNfeqJb4HKwVM1KaHTpkqUBuqZT//K6Y552YwkRBRMhGN2ZRpnIYFpoGXZrMh/KzgguVonWbEKfJFq1BxJj5c8P7UCM4HDRsgIZuNWMFLFba/BUBmQkjRukQJorUrFDNt1GgewnKBn2xkK8tqnNuIdXRQMQhWRxCfZUapkSvnXMu4fZtkeLs6szbw05fyNTvmxy7fpMA7ZmjPuXkWn/4sMn19IhNnK8NY23jPsK7MRbZvvfFp49o720a23UlaLL7JnxgP5cLZDSg94aKcx/rXuTJ/bhxgK2B7hLOQNcmA8cJwlzuxiLyzU5PBPg35hkDRXfr0WBZLs/ofh9VAGLEphXEQa198bVTIadZ3ut2+3tmZvnuE7DFPnfc5TGvpXVdepQEH0Y3eJ8u4OwMxwBxtWS5UBryvBzeBFg3IO9Fl1ynXyZvbJ4hZGt6cjTbv4ylzLTLge43Qq36eKzPWfwrktrS/oOaeoOuE/+2173rmIZfePQeDsH6/3+19Ef1gq1bj/TWmtiLwahuKib2KCqYSpwbBNXKU2UWX+2KrN7M9AKFdBvyFPfOA23tATYAVkkyBcVgYfQGl8J5cvKtIsIr3vd6/iBH/gBXvayl/GP//E/5uGHHz70nfe85z288pWv5GUvexnf//3fz8/93M91Prd99I5sY1nAfYGUisKR52qHXHp43S0pkiQgfQw0cvzxFEGSm30EeWvfFXwkQ6qRQBR6n695QHQiuLqArR4cU1DizIbMAAbpPBwD0w5XCvyDBq4VnGpewYYirQJi35zzZuj9Auo6Pq/D0g0wbCC6dnuvpXRFjocO8804Vy1AKaJa5si0u/wICkxmqz5IYSxDOkG7Ts+Sp3srWuft8tsf/MP1fVxzXEkN0x7zqCXxbQ9S2iwRsNN0d1lkHtO5QzaN/aZFBtaSoqvt7T9YzdXe3vP5Rzt+i+TBkkADvjS53Dd0b+qPE/M6psuNQ9f9oEj+uT5XOwhLJEYILwzSGNIhLLLfuFwRc1I3LfV5R/GMZtOE9ujlMK6FSLcbRdqoeghm4NMlbPZZep88y/wJkbaFMcj5WQb/cuTe3bcPfPgT5rd5aL6EjTK9WhZIle43KBO8jshNmnZyO0+ASx4KHvMr0/oExk3ZYuSPjpAQRK1FrMyaptMFpN1ZFRyGAH8gkbEG6Rd5HInWYlkhROzPTMgy9/5GRhgR+phtulZ/AdkoYb4wn1aN0VIkix+QKeh9u3rhtp3rg2VOVJ7ow27Lpz08e7Vp3xpRZjwEYQ3ZUz53Ct58rx7t/VpMIvk/+vKBD/7hSgC60JrHWI0cH5igdbFAIAWig5Xlcp1oG8n3TVvL109CX2tOHlN2edPdI/O2VoykZQcdjJNzuO0IbA1wPgdbIYl5D2bywW0qVGXJqDUgpvMYrJ82RCixdJEgtdD4uCHSfjf2Uf1rF70iy2oRHgFop7e9XDlsnp8pNwiRYOGZahK6072d8m06Tk7DWMb9MLqFAK/FCzKNuLVfVyx9ENzYN1+5PurU1Sakd+kw/b7WwbjsGmH93KzgtsavWxHcYm6IW8eOg31r8h9e77mY1aaTSOhaR2FPtQnerVLpkviubaOs0oT+aK0Bpx337TH0M1qweRqoFhhenOLGThUbC2/1ZtDTSl3xmmTXeg0wND7tzind4lCi49Iy1SNXQGt8BZSuoMF/ZOXNb34zd999N6961au4/fbbecMb3sA/+2f/jDe84Q2Mx21jWbjrrrt429vexr/4F/+CF73oRSwWCx577LHOus+d+qylL7M1eZ4EUEAR4WO0gBAeh7vrPLddpvGC5mg/7vvs0Ajyn7vY+Y4IMXBSuqbmiUMRZFnj9mq4aYw7aJKGXUwbZD2AGfkxupJig7PZsQaQuoLhkAPR3Im2jB3slQ4ak8f6EKAazONX2mxozKstXf3vYlRis9qavgNJWuhO6Ycxj7f1SfLlbQuGAtMOLYbddTPtP/qKv3ZYFzuFG+vyb4c1IuH5APB7BuBbSrxXJknuFWwS8WuTGqganMdKrueYFY6xqbvNO0CMZ5ZSpaA88bnU9LQGu/ZtW0Idjq1gSTJwmtWgZe0honm2ncDMpRviPxqfq2oYeiJiPIRJsraoGxg2EvekJbjWrrvVoTy8P9Uq054IHJcda0+Mwuo+agt3gu9yFIaEhbusNZXbllIeAxtVHaCAonBUzsFmD6YzbU9jhH1CihTdUf7+y/+yakbbEz2tVNMOyjoOCiRkyxTNCT4yA9DeB5V/LqWvI2n/z0zhuMujxENyII5/Zn8c6cHnDxKBEfaUaBCrDZFsDzk/ron010CFlaDmtwKM+uCcjv/AZZYEsawj/NuMVHhsUsGRlpXQiiVBu3++lRsFMq0zmC0oETcizz9dkDQyTlSAQqPrrhf2zKxCxmWa+uPj65f2LTDjkSFv4AtPwZt8otfPnoS/4+BFt6ZnpUGkuOo0otej/Pev+F52G1YY9wNU2fAsVgPQBca96cDpsMYdyh5Fnn5fu4BVsAjptwXbeSNd4Vj2oJwtcVtD8Mx3YNpi1huAk5fgJTeoNhVwsxrXLyPjG3DkjgiXaJkXk3BuV7Hm8+FvCiBqjbTpf8et1ohmw7DDYFN0+RtLoO4XULd82leYpSsvV4PXn848S9gzjV+UzucP7zmawiG4FfP4J7h8urfL0S0JN0rWz8EC5jbTS/TBMgPoY5yw1PnJYKCEOq9tvXftoSDAt9HjbZvjlzpgsdJZNcWgDDJuNhzsG/oluX4VmpnG1tmldbfX5nWSmNs4JVslTOYd76Q1mVXpjzZq/HTNeGRHz6yLiPda03gtG3s1bnsTV5S4WYv+6SBrVmgs8HnagdL7tPt/1KfdIaMCFotIt0S+Cb6s1lRPt3xZNe3veMc7+MEf/EG+9mu/luFwyCtf+UqWyyW/+7u/u/LswcEBr3vd6/hH/+gf8ZKXvISyLBmPxzz/+c9fW38A0G2gfRHVtIMCkVv99bOkxWAB/Dogf7UlBsMKRCEkQHJhpuluAqF040CJRgvYo6adSOwqggNqoW6EsYA7M4GdEnd8UyNTEiSXZic2OTC0IMymelq3GfOOhb61nptU0FM/12g65JHGAJj1y/ihhFjS0dKhXebxXW1/uqWtlVhpl/0xQwN8rFPbD4ucwDZj1PZnD8dTJPP4yLCH41V2tM1PhGMwozu0b4JaCRT+ra5vD1op7WyFrYUidQOzimZaq1bWB4Ry8wo3rVguGsYdgDRj2Ft/4BXZrO5xS6ikRrQ6HMoMrw3ytfaKGGirjRODfjFEEW5H3RevuRevOZQTI7iYkE0l+MBoaYzCnKwGQLxMWdefpRhC2T/i0isCcTHVdZO04KY4VgVYzsxzJsDan0MfXK+gJkWyDmmdnHM457R/2yNkhgZxaiPRSFB19DP+GQABGhVn1FdW0YH0S7+49f6MlEatvT1j/xp8UEGJDJ4AnF3A8c0kQbLB58piNRAdwNEezVQtCaz3EyJMSEHxbFtcq48D/24UmvUNmu53w5Q4TuvGLpQw3nsVjIYJQLTjcbSBR2yog40Bsh+svSQCr6nAuNW/eO7nNvi8R6sSEaiX6moDyhAc8Wqn3aeX9k3b1qT3Qj2fPJU/+IlTueT0upvXXXnJAtBJokceRePCHKE7cnzXlIWjjVFjy3XtYtecBEutstWoUMzv+aDPRjsTSdg8nr6haeCJBdy+EdNZFjGCvO5h1V7CUcnN4+FwmY9FYRkKROFEexyDYE+Cpj0wWfboJ2MGHlcKUSCxOgRXXNbN8zrhzLUUEdGgZ9OlCkYn3p0kZF+YVNSziqZOwegCDXOSw9O9XbbPrQeiMLduKAT2B8alxz8vgAQYFqx2bDA6u7fbfW3UakLqRo9r4EsbDYWnpqQUjBlcd4bB6piUovG+7buoMNv3p4fLLWNEbZmkcEg0pVgD9zMCSNSF0+o/w5ht9WC3Sh0JMNKP0br9MCXR8m2rjs5zkYxxR7ws5RxwdFOtNaWh5wLMk9Q9q8ijXbHikGIBjtx9s49aPNZjn/oPua4WF1/u8mVj2vf39zl16hQveMEL4rWyLHne857HAw88sPL8/fffz2w24/HHH+dHfuRH+P7v/35+4id+gi9+8Ytrv2HXr52zMyTz+AIlmG9CTeSthWTd8e7TKm3CszYVX5zCsV7a7TdtKbSf1znBEc6D5sBr2QNTvoHAxQZu2tHgFgtFM5HgbtKKvVrgH49rAIb4+uNmXdTg+fJRphJ3jIBl30cUafL90/jK7LUZeQCnp8uwt4FrOF8xHYcoJAlwMJtD46+3YiLfd2p63eL8IpJr0jko/yGopr2N5Gyfn27pjFQeTYfiBW/+3+6beWfUSj/VJfUFZdhDiqV5TTPXXMksaop5jZvX1LOK7UWdcpeGz/pj1LKT/+2QAg6FJmR4y3RnpW2hvQtMnnYH/RJp9Su0Y+q/qVJmyaqJiHwiyjwCsjFCDhaxQZUIA7+4nXdzCUy7NTdbt/euqNSiEVUzpiuYD/r6/NH6tMdH/bll5iX8azSe4heM7C1hQ9OuVWie9jBZzh97ToV3DDRXO3tGRLHCuHeUNvUQfjdoyrfCvzoo4zoWlLAIgeishQZoM+YiFCG4T3siz83gho18I0atu2F2Lce0M4RzDSE/O0IMHLqUFv3U6luA4SWeqZ35yPGeYAO8FcgV+DXa312WXfs1HDHmGHGj6YmLm60F0xw0m32F2aF/vtIFah7vzH5pg40emtHEoj5mTRJMhPHdQeO8iGn71WpJ7HtC0qS/9Ob8uW/yv5+G5vN6lbYfe2BjHydFjrdMuyM3/KDjGALRhWIZjuvSzS6YKijt0lI7xkctHHKO+aDPeKG9zoK01ek3ZzyEvMHvoi1wk2V0M4r9FmFbhD1W+xm16R3cQBfMnaKm9gA9yZeeNAKuiFHwsxoNrVOBMicNGX4L+/16rbV1Kd+uqfrKx3mYNynjQogB4WNC1HOhmVfUhnEXUuR4u0Yz4dKVaPu7FqgXAjW9JJAWe4QEs3qo202sx06cPzSeRp1VyuBPKpiokELm3QEpu9bThLRG1u/DFgwO66BqNP3bqB+DNG8Du3HfJLwtgxIJiUPWwf32ul7Iqj+7c7A98CYC7UWdjl37IWT5iVYn5rMrz4uNueW77fmD3vQAjpW6KOZVzAwVLN/aK0TMSej/HOiFQJd+rEA17QDVeAA1MTVj6GcKjPdlAvJPs3zZmPbJRI1Ktra2sutbW1vxni2XLilp/uEPf5hXv/rV3HnnnXzd130dP/mTP8n+/v7K8ydueUHmCgVpinbJA9FB7tdupYZB8n1dShcBFTQHZ5dw1BNRhVOGaAicOVghXMS/J54QFR+kJeY5PD/BHRvjtgrYXawiB2ty2FGuWjK/om30z9bq2zvHaXBuQ+v2HNQ9v9nqoNVc9a0Ov5esuuleL8bdngdGJQGJVq/D72AWPjJSvnaD+kUKGd0ChqGvcWpRS49ghhcESnB4ILrXvP7XL9u/lWbR0uqKWVO2rYtGbbXsy6FBoIzusrU7WpBbRBTZ+iBQMlekLz4Fkywq3KKmWdbsLGrcsulsd9cfHO7TvkIPhYtdv42bgwzLmHkhk/Z6RHHUjF9uGeL3wQx1jXAOdkq45EnmRnzkVIzLir4zYBVOddEtK8XeDI1ZSjQZ0z651bq8GqCJmvZETIaHwsqOAWdiFB4dWAnrZSLI9gicU7eBMDsu5WpX/3F/fbOnft+hng5ipt3J177p3auESdDMWcFZcOXwiLqSlsDLzH+0nPSCiJBLNn7m3CRFjof1keOtlvroSN+f1tmeciLMBTatli0wWy2moy9+zOcNDHsZQyA9Z8w8aB07xq5tmRAqO1jC5mBNP8wx23T++rhH40CmywgvRBRGt9PZZTBLtG9OJEaQB5Cp1ik2wF9I+2ZxJlydT3sQ6ljz6lrgOSfSM3/jFviaG/P1F6TGf0RFTUcbZNnwute9g7pqaGpNjRRww6OoaXwY0zBU0fw4xIvxddqxH9LKTLHmeH06Y06W9arQ15+LC+3Tf6dbAwaG6HB+fQQrQhBN9XbbIAkkN3uaLss/7yQFozuCuhOEYrXsdj/F1q7ZUuryoReGhK0X4nkARZExjCLtvuJTNXp4XDWRHstdpK58FtbhdWslGPp0LXMstcfZIetCYNRNxoVm2SBLPbJssvENOdrDGmyne4PD6RY8jLCNdgCLiqoHjXFBCGspMbd+NLbwkcNlddIDM5mlfzRWBNOQHrLSsTDjaccyHA9Iwth1cwPkQtMwFhOPFa15fNH2F/cpzKJAujWbBievNHbeqMCoLT3d9tR0iLnUgn+dlrOkgMErTHvXUXw9gYZq1F3NiVCeP4CtwltYNfTQ/ZsHUrT+6yY9rP+3EujVoERGKiGFbdX3CoKAp+zQfRmtqZ5u+bIx7RsbamTRZrj39/fjva7n//bf/tvceOONDIdDfvRHf5SDgwPuv//+lednkwv8317x9/np/+nH+bc/8eN86DfezVt+/leYzxfRPP4T7/8In/nofTgUyHzp3EXe+Yt3ZuZpv/629/PJTyXN/0OPnFwBOK95/a9n0TDv/dQD3PXW92fPvPrf38nZcxdixfd84n7u/r2P6cJZ1syXFa/63d9iXlWRcLmbx7jnDz+jFTTC2QuXePXr3+oJTCVE3vcbv8NDX3gIqYVKhL1Tp3jvRz8ExwufkmvJm+7+LR558lTcmPd+9kHuescHovbdAW/6xTvZPXcR8Fq/j97HJ97/EUAX+ny+4Bd/9leYzRNmvfu9H+Gej9wXibaz5y/yS3e+PW34quLDH/8Yew8/wtB/58mTp/jN33ivftczFu/5zffxxBOnvUkMfPZzD/Kb7/5ANn7FL95J49vngHs/eh+/+z5tn3Pavp959S8zb7Xvwx+5N/4+c/Yir/73d2b1/sbb388XPp3m99KXnuDIG9+ZRcZ8+5vfzWOPPhE3/L0PPsxdH/qw/vDI+NV3vYOzFy5FoHjP/Z/j7i98JmLR+XLJq37l15jPF1Eg9MH3/z6f/Oh9EZ88eu4it/3inbGPToT3ve19fO5TD1CIahwefPgkr/lPv66Engh/4c9+y6HrL8DoO8389oG5mV+AxWLJL772zcwXyzh/d3/6U9yz/2QE+GcvXeLVb3o7seJ+yV2f/zj3PvhIrOehx5/ktW/+jQQda+G1b3gnDz10Uv2xlg33f/qLvOc3PkgzbxSpLBsefP1/pn/mImWt2vb7PnofH37/R2L7F4sF/+e/+xWW82QO+Yn3f4T7P3ofp4FPAxfPXeSuX7wzw9F3vfX93PupBwgQ+qFHn+S1b3tPQlJVw2sv3cdDF86m8Xvycd526XMJ2QD/+Y1vZffCJSpRgd/FP7iPj//ORyMSXSyW/OKdb2W2XCjHNSz5nf/ycT5x+kGYTUEadi/tMnnL2330eJ3PD77j/Tx8/wNRWPTkl57gt974zgzJ/PIb3snDjzzROb+hvPpX38bZC94gtBLu2T3J3R/7eLw/Xyz5P193F4vFMi6Kj519kEc+9/koDNu9eIk73/DWNL3A9jvezxfvfyA25vFHn+Su//yejIJ55+9+iCeXCsdr57jw0MP87vs+FCPIC/Dxt7yD2e6urqWtMffd/wAf/i8fj1Lv2WLJq37hTcxn3fv3L3zbNyv8+5W3pU5Plty19znufexLoSk8duYMv37qkxpXIIzpr/8mpx5/Mq6bB+9/gHve8f6U0q6Bt77+P3PxwsVIXHzk05/hPQ9+Hk5oJI15XfGq17/FwGe4+wMf5Z5PeNxTOM7u7vLqd78bGYJcUhP53/rt3+XBLzyIALNG6H3pCd7/xndmc/fWX30XTz76JIFDWzz4EPd98MNKNPfUn/31v/brnLu0p24cc7jnM5/l7j/4wzgv88WSV/37N2Xw7zfe+3vc8wf3xc1w9sIlXv2Wd/jJXsBmyV0fuod7v/hwlCA89NiTvPZX350a5+C1v3Y3Dz1+Kvb7Uw9/iXftfha8BYmI8I5ffRt75y6pz7rAZz56Hx8x8GU5X/Br/983UXnLryXwsf/yce771GeUSBz1OHtpl5/7NY9bb9iA80vu+qBvnxesPPTok7z2l/PxWwv/DLP+6l9+K2fPX9SxODfjnunj3H3wEBzZBNH98apfuot5SBUlV4Y/EnzRcrX0gboN1bz6Z9/EU4+f5c/8V99EM634+O9+nN//zd+LmqlH5wtmP/8rVPNFZH5+7/0f4Q9//74oXDt37iL/1y/cmTEK97zj/eze/0Akhk996Qne3YIvr339O6+Ifjlz9mL8/eGP3Mvd7/1IrGS+WPKq//hmP356+e777uWepa/XwZmLl/iFN74tfdvBBz/4YR566BHmvT6DAzj15Gl+492/FXktRHj9u97LQ0+chiemcPsR7n3oEe760D0w7OMOdJ+/4c1v5+LFS97KQ9j96H0sAv0CLOYLfunnfoXFfBFBv51f8eP3n/5DPr/3v+P99D6j1pxj4MwTp3jvu39LbzYgRcmb3vM+Hn7yVGQgP/e5B/mt93wo1iHAw+/8DXariU+RCp+47zP8zj3/JY3fVdIvYY7f//b385CHzwNgYeBLGOc7f/mdPPLIE/H3Zee3brjnI/dx9/t/P2ZbmO/OFP7tTqPQ/b0f+Ch/8NFP0dSqlb547iLv+sU7OUVK9/a773g/X/z0A9GV40uPPMFrXv/rfNef+5b47ZX98ekv8tZ3fSATPL31P/86u2cvUvVLpsD993+OP/joH8Y+zRdLXv0rv8a8WiosG/e5+977uOf+z0Zcdfb8RV79mrfowHhLv7ve9tvc+8kvROb9oS+e5LVvfFdi5BcVr/lP2r5AU3z20w/wW29P4zcFRoa+csAnP3ofH3zfR6Jgdj5b8Kr/8KYEX4Df/IOP81/uux+G4Jzj4u4eb7/rHZpZyff8g7/1IR744sM6n/2SRxYXee3d78NO8GvfcjcPPfpkGr8vPMRdv+3p03kDvZJXv+2dnL20G2H4PQ98QeHf3qIT/onA+39L4Usou+cu8oe/eCdDkmXgPYY+aND5/aXX+/XnhaZv/bXf4ImTT0LjM4d88WHu+eJ9cHyM6wPLine/9Z3IpV2Wft9/6g8/zYc/8FGCQmm+WPBL/9ed2f648LGP8/DjX4CiwDm4dGmXt735HT5tu2MJfOjM53jgsw/Feh557Ele95a7/fhJ9/q7WvhH4j/e9a538eM//uP8+I//OH/777ySZ6K4D3zgA182ecPLX/5yfuAHfoC/+Tf/JgB1XfMDP/AD/MN/+A/5S3/pL2XPPvXUU/zQD/0QP/MzP8Of/tN/Oj7/V/7KX+Gnf/qn+dZv/db47MHBAX/1r/5VHj5/Ebe1w77AfqMSsTPA3wPuRC3w+ihf9S7g94B/gwLnTVQQtFXATgGbLkmzr7VI1aiGY+alenMPGE7uwX96EP75NypRVjrdbO89qUTHf3uHagLHJTIsORj32B0UTJbCZFpxMK+ZT2teM6v41tmCl/7aA4x++OvZPDNh/L7H2P67L2S7VzIalaoZ3ujBqGQx6rHnHLsNHDSwLzpGHwZ+Ffh5PxYbwHYBm4XGLrJjIbXAdEk9rdmdVuzNaibTikldM/nlzzL/61/L/2trzE8NS46Pe4wKx2JWsZhX/O+Lhh//tc/S+8vPZePoJhvDks1xj3JUMhmU7A17HJQFM+C/A/418A2NsNU0bAlsImyXju2eo9+/usBBlQh7Ddp30QwhEzQA34/4/h8FNquGnUXFeF6xPa/ZntX0pjU84efsJ1+ijPtYxxQhSW9PH8B/fAD+ef7MdNxjf1iwN+yzj2NfFAC+E/hY3fC/1MK4EbacsOVU2a1r0NHdRadrpldoii1fFo2w6/u2b+b394H/BPyffn43lzXbi4rxvObIvGZzUlEsavjYU/CZi/Ajz1fN8dibkAfJ+wefhItz+Gtfo/c3erpON3owLnHjvmrUJ8sooT+Y1+zOaw6+dJbJF88xecENzJ9zE2/06/P7RyWjcY+NQcl2oakCtwuNv7Xb+L74/fxR4CfNKLwK+FZ0z276Mdsu1FxK6kZTnETJuj9emsPPfxb+2TdGM6tmf8neL3yGvX/yIg6GPaaDksmwZD4o+QejHs8b9zhwjn81WTKeV2wtajYWDRuzip1Zxeh//zT7/+SF7G32Obg4ZfqWhzh45QuoyoIf6/X4qVHJzaOS8UYPGfWZFI5zwN8B3oRqieKea/Ujgyd2bKe+T/MaPnoaHt6DH/q6OG/TUcleI+zPaiaziknVML3rM3zyu5/NZ45v89+NSoajks1Rj8Wox/6wx8VewcuBNwA3iLA5r9hZ1IwXNVvzmum0YrJsOPjQSSZHNli85Cg/V5R8+6jHnxqXjEeqPZhOKz4/rXnbvOafNTX93zvDZq9g41tvYGNQsjMq2Rr3KEYljHu4cR4ftRtuVvClXXjLw/BjL2F/qP07qBsmr/0MB3/ruSyObvDGouTEqMf3bJSMRj1GGz3mRcE+8EngF6qG/zitGMR5rNmY1+xcnLP185+l+J9erJr8ADeH2kbGPdUkTqq8XfOa6S9/lt1vv5WDrz/GQb/U9TPq8ZZBySMbPf5Jv2QEbDudX+Y1B9Mlk3nNYlrz76cVf7aq+aYvXmT06B6bf/HZbPQLtmph58l9hq/54gpM0TaVMO7jvA+xNKIao0lrzS8aeN398K23wItPpD6FejZ6uEGp70+Xfm3p+zKrOVjW7P7yZ5j8+Ts4+JojTPsls2HJzw16fO2o5GXjHuN+yZbTvbgQ2F82TKcV1aziH09qfmpRc0dVMZos2PxPD7DxD17AVr/kSM/Rmze6hh/chZc/L8Eei7/GvcvCe5nXum7mZn8savjEGf1b1vDnbodvOJ7muDUGa+sW1RrVJAuZHh4MXyEekkWdrJB8TJr9Rth1jqmDg6LgoCyYDkv+flnw/wS+GU+bOMXHO4Wuo2HhWIpwycP6PY/X9oF7gX8HvAbVGlvaZtvD16dD28jCaCk9nGdWwafPwUdPwX//Ig0QOVLaZa9fcLBsmExrJvOK2aLmM39wkePU3PanTzAalGwOS8aDMuLc0aKG134avuM2eNEJHfRff4Tl8SG7f/ZW9j2MngxLDgYlD476/D+GJW9HGYwtdLy2TZ9L0+d5B66cAL8FfHBR879OK948rShnNT9UVYyWDePPXWDzsxfZ/P7nst0vcKMeeyP9/qQRDqY182nFb85rdquav/m2zzH6889i46YdNkYlm6OSnXGPzVEJm31cMPu+TFmH1z8KvBb4D1yebjt0PqcdeHJRw4Nn4N7T8C23UL3wVvZGJXuDgumgx+6gx0FP4eoPAv8RVYTFteZhwZEOPNa1niaTir1pzf6sSuvksYvs/eFZ3v9Xv5a/PlB6YWPUY3NYslE1bM9qNqeV7qc3PQBfdwT+9E0GZpv97WF1TAO5bJTWLjwtNSwVvo5KdTMdlswaYU+I9PKep9vuRmnmf+3Hfcul/RnGnWUTYwGEPVLNKnYfusD+R57k4L97AZNeyXRQcHbY4x8PSl4jwnhRszlXnLuxqNj+d/ez839/AeX2oIWTSlU9zw1Omtfw4VNwagJ/82sVjg41Xg+LGn7hPnjZs+HrjiX458dpPirZ65UrfX0P8CH0/HuB7/LrLMzvdgE7fgh35zV7k4pJoDmmNWcXNb96eo//4Xcepfe3XsDwkUvMP3uJ6i8/h3/hCv7psOSWcY/RuMfmWPmBrdIxnSyZTGsOZhXTWc18XvOzs5pX/v4Zjmz1GX/TMUqPa5dNw/88rflHTcNt73qY0TceY/Nrj7ExUDrjyKikdwUw/umW3d1djhw5wrve9S42Nzcv/8IVli+bph3g+77v+7jrrrt4+OGHmc/nvO51r6PX6/Gd3/mdK8/edNNN/Jk/82d44xvfyPnz51ksFvzSL/0S29vbvPjFL177Da/UilKyCyhyDZHIA/i4A416Gd9hNSDM0y5dpvGIMj43eSOi4C9ZoMHonvKWCJK0BikaotcEevP4SoStcxPY6ivzv9XTIBdI9KWKHTR9b4NQ6/Ms7ePKQPi2tEx/xPsVLH3QkODT7o0Iosls03cxJ3bom+RVAzARYbSs6c2WuGlFMVviZhUy00BmzCplzK6wrDNjChrPPD913jcVTVY2ul73RwJAsAsQDbYR/NnjXyNcmtfcNq3oTSvKeUXhgbseG9y0VsbT/k2Cv5kfgxD855A+27R2Ev5puTioeFPyHO3tbg6Ky6efCh0N8RcqgYfPwpsfp/zElPIdjyGPP8WsETYa77/YrJp5dv29t9Wc3yTfr8GiIbWvYxeH8TLCDgkpZbyJdbA+AyXkjuHztNsuh3Xr65NgyrY11HenSw2+K0T/LTXp1BqCtvuqg9F1FRuIDuJgJg2XNyUsHHUD69CW3QvBCiYejRk55+dKFTuonLdQd2Rm5EXhUirF7T5M51GTFs3j/WJc8Tdtm86H27MKto3PX+jnEI1oLz5cgV0F5rSHpilLpqoh2rsg5yfqqNgr8gB0wVcl+Ku0A7k5p64CF6vcMl003d+GB1HW1ddWA+o+MQdvizjImi2RyLhCpNSOFxD2+m4Fm+VK2zOkaBuWbT6HDHvIIuwPD+sFNqQbr0R3EIgp7QD12y+Ja0VcoS8e78OlSYKdbZ/2y/R9BfbEeoAnZ3DbDmyO4GKHCX7b1LRVKhEV9IoS8EGYuCvKRE0biQGV1ravbhLD7oVQMqmoZzXifWqbeY0sa+bzigt1c2jk+DjOHce2eTxcJ3pmXQnztGigtxrzRUzjQjv2tmA491g3AO7o4C/K9Jxp4HbjTrkxwB1UWayKAFd3/PgHc/FAGdhtkDXZH9v0zgRd06CxJrL7FZo721xboZcKY2Jf9nDBb598T6xzVewqa+Pe8jTThhJoS0njHv4ePAN3PgGfreFXTiJfPK1B6Grvp+zxXwjxeIJkEu9a51fURw+nwhGASqj7PeZt4XXop4VXW/2UtSUMQHiwlvS3bBID/9lT8Kuf1DSQc+8eUCkcse6M4ZvhuE/uFhT7sDK49tyvgalAr++DteqtDRRHT0j7RQBKHzthsZ7mWlnYCzGufxaWO9gaaGyTMD5mnCzNY6ueoutsg8unkZS4j1MwuoUIN+xXsLWpzShQ4alIDMYrvpYuq/9Yv6jAtGhqtVTw/XK+nz2vaZcjAwgZZv2fmH5+JZZrZtq/+MUv8l3f9V1893d/9zV//Id+6If4nu/5Hv7pP/2nfN/3fR+f+tSn+Jmf+RnG4zGnT5/mZS97Gffdl8wz/vk//+fcdtttvOIVr+Bv/a2/xQMPPMCrXvWqTinGePNERriHv3OklFoBkBSoT/s5dCE25EHowvnTLgEJQY49LixhZ7xKAN4whNPzBESFFPzHAx2JwEj9BDfOC9ywrYt3rASfC37HrW8HdNMF/NsBTdbBBHtR3fM9cFvW4GDWUyIsi/zuPzQAmkL9ouN7oUrDFIkIg0XDaFbDvKEIQNYHMbOaxqth3G1pM+0pEF/w907AAlBLiI0if9kSvJDy04ZAGAbwCykoR9MIbl6xO6u4eV7jfIC2wvt7u3lNMW1rMvTv3k9+IQaGCdJV8WnmumLHwSHpxSSNe+xj0Hp2hqEvUoTrrDID7cMmipcF+exTOEAG4KbA5y4ya4SxWcvxM4aPCMRq2LMva332L9pPkm+3NsKM12ZV4lpjZHC/M+ZVtgYCvj+CIupAdNkhk0Ud88YGhlW2gb15DLLSlxR0LARRCvvjsACQnaWLKqtlJc2SjR4fiyuojDAvjrmvKwxLlV0XVhjA+Uwl/ThqfPwK65/sXApE54BtkAvG+7JFMHR1+N77H1x9flLDoG/Wpj/2nHKQ5NGfs3Xlr1eemNCgOfhYIcC5JXJ8nBagTfsWmXjzOxwBOTpC9pemqTpmiwbGrTY4l/odCNQoVJupT3tWAtMek9qaMemkblrjGQTFE2C7FT3ebrpQMsbdperGA41lYOpeiA+y2BK6par04T6iOFVQmOWFnxI3u9O0bxfIcF9sf1h3h5Xgyx7GJZ4LPLELt43g+AguVatjaGBWu1QiHATLNGP1Y48HopH010Wh1sFq0t9Sj8285lOf/iLNvKb2TIMsG04tG47Na47VzdrgXrSOFlwPUU0s5NvriuDLlRQ7H7bSRZPlaE+3W4HbHCyH0J8uzF1wPgKsE4FT+wokt/tpT44L3MEy7m19R4/bfq53O/q5jkLoioFkA+COaSkzaon9E98P7NGXOV5JVKo21PkXnGnv9SAwV2LVcA1z3J7L8HdvnnGh+fipxKx7YWcD3OPvf4aWL3trrVqXkisuFdSbPsee03RzFLR82v3feKD0UlfHQ/q6SpKW/fOn4Y0n4dMVvO4x+IJ3J60D4969d0DXSNTfdP05t3Zc3UGF2+jHd3EuZp/d91dDvwSfbu8QxUxWBGWIAw6xxDdoita9ahXmBR5jTV9H6J6YdIxHhsLN2gh1VgK3nUOzsgCUBa7W/gwk0RqxMnOM7fAnNVBKHRdWRno7z7cNhypVjVVKNv5fieXQPO1vf/vb1947e/bsynN//a//9av6uHOOV77ylbzylau2/zfffDN33313dm1zc5Of/Mmf5Cd/8idXnm+X4fhoNjdh2i6SB6ELSPAYOhgnUaVRxPPOEP8rorOrLNJinkPjLi6USLEEoHNw84au4mkFvUHOuIf3AzHSKCG0eWkCN26Ac7h+oUhhf4kb9tM7pg1dCN9Gsr6yfkm2/gVgUSE9mBYaKV43VW7ePXZQe0QWXhRQgUSfwC6zrBoGy5rNRU2xrDXqduPrDOZMoQFFjYxcZia+riSiOV0LUqy2pUE8D4CkK8CHc3o/Ro/3tS2aFKlE0noMsMwtG9yyYbKsuXneUEiDaxRcu8JlAVza5fMPPMpLv+Y5+q2wLhxIUUDRPb/BJST2K0hXs376dsfInKECAx2H7vD0U21E5YUU8oKbaD79OCyg2QKed5RKoO8HRVO8CM5/KCC/0hGDDRUOvlHgfwV+GvhO4EWsCtyarmVgof+y7gzpLSWqSTTYKCzTY5LWhy4fI4yZ67pP9TkYjWFSU4laEvR946ymJTRz7brrKusoskqg16E/b1uEOEfdyEqAx3g7VGc/Y4VrnmjjkiDbGtRs6aAf3vSbKwTzVQ2JQ8YlzGYkzTYmyqys9kfg8w8+ykuf+5wc4U4bzWFu2icAvVItOnx1VqsdiXsC096Y75pvn1vAzV6rZyPEe0so55wJnGbG1gE7PeTRfSKp4Ru2kMRMBNPusH7sXhmKX8PzJWwPs2kOViAsG6WeVoh+i6hkVVAMKgwA1UaFEl4xzLsLhLGhQGMe6q2BCkpNmcr6DB9RHylKnDXhx6LJicrw0lFf06WFRgtvM9SXJbgkZ9wbSdq10xXctgm7NZzcT2OT1e0DvZo904gwE40tOvV/wUTeia7xgQPxcLeHgsiVljViGIcmatvrLzzFF3/jD3jW920iz72R2sPDUw18HT6tlMdtVsueC0ZWz0MsOANurp6Zu1wxcDKWhawP1GoFNDgu9R296TLHnxEXAE/M4LYNcIXH96KWIgeLpM31HXQCpShY30XNtCN8dvk4rDS/dYxacn88ZfHkUqDnsrriNm4F/xw6pxpPH9gsCz55DZPQhddtloBrnmsLXy3T9NJb4LMprkr9kluiYLxuoKkbPi0Fb/Zz9y+B/wP4r113urfPP/AoL/3G5x3ShiTYjmBhAXXhg2D6TodRFBehrT47KuBMCgCbH0nxLgJc+HjyCQfgY6fghbdluMFmCbB/nYHoWvuya1wd4KYNbrMfGfbC92kHmNl+Brg7QuO1dO03+ztcXtSqUbcNC7Tx9kCtNdsLGCKP0V47M9/XglxAtLLGJKRQJSngRGmJm2dTuEkF4q7noFE80kNJly75nwfJCUWL+JRvDc6SOjqQFPh4NYMesj/PhyaeNKy3M/zjWw5l2n/u537uUL+xcO/nf/7ngatn2p/JcvHsg8oQkUtOz6O+ypFGIQGVO1Cm/fkkpioyAE+zPVHC09ZSAZybwouO5xC4cCrF3URN5LeOpfcjgal1hQ1WizA6swfP2/b0ssNtOZgsccdbgAuP5CzulAT8rzj9lPmRhAmi0ZMHjgUw9h9pK2tHOOqyjBE64xjZqkU8094w8lJRVzcpZ1Dh8pzUpYOeYTYPKV2ID3QbR0sDr4nDEN+AT1PUke4tq8ifGMloWEtBMi2NQF1D1XBp2XCT718IqJMRJB3lB7/j21RbFaIqBy1g1eAGRWyOnd92Lvp4sgLwqxzgt/s6KKJpU16ZqdSs9Qh4n30cBo9TVVD95TvgthMsxeewboQCyYIk6ied5uH1XQzM+4uB7yFpqK0wpHEp8vmKaXU4LpuYIzoAfAGl0FQNmyEsJ5KixxthVUBx4gU0kZhAVKO3rwjLiZo/K3GpTGvoY7CAsPi4U0OOeaBjyKmaFD0+vO9c7EmsvygQz/utjLevu4ffCxHWkAYYkJm3RthQ1r8qHGXhiSeXahw4xyJQMjs6HiGYZuyGYZiyRSfwg3/lz+s6t32eNrBpYt+HvhYlgeOpfB9Cp63wq9/4fOhGexvH6OwBfMOxVgoHl2Bz+J4FaoUGopKjffj8LLY11DkR4YYA4wJR558pfBuV2fPP1EtkY+g1Sb4LITr+8hATSXs9jJfVHId0e/0y70+kqi0sc62jX5ODHuKDaon/zgI1/89SvrXbgzJUwcJDKoGyl4jSSN27lPbtxCjHfe3+dJU2sx7G4vS+l9IP4WgPPmfElxZ/BbhlOlCJegxZpn0ufl/j8wMDzm+/PtAXWfUjFtHKAuNQNfCF0zRvOslfLr+OyZ2PUb8c5Dk3IMATAl/jjMZy1MPhsvzscbo6jkGQsvDnXfDlaZV16y8T+lqNIWkd+XIwLOktF6kegzcQ4OQB3LGdd3ijxM2Xcb05CXhDG3JM4KJrVedfbSth7D17zJh2CXDfP1ODlCF6/KqZvBTa75gPZdxbzSeL6eMVFju3bby+kq6243OXLRZuhM485wTRgfSHb6P52htoaqEJDK3Ae1tj+h7g28iz3wSe4Qf/xiEWupJPc8RNE2iGPRUiu9YQQg6XN0qNZ5E9ANFvPdLRvq+3HIUvXEjP/8lbcuGgSmI6yaQJar3btfficLS0xmFc3XQJW0PzrMK+QaGW6+JaczgokKVx/OuC+fY7swo5McrAWRHHqAenJ2lcwlEUZ4npc6g67IeCdoT7/Bis1gKhG9wuahGOnzuA524ADjcsYwaiHpICQLe7l1WuP5agKYMNqRPGu+e8smELOGt2RRgI42p8NbGw/jiUKzKPTyYwq3/h/h/H0jaNF9TiLmjaPUwFdLKfhTLtQjKvFbyA/no0xm4MCzAuzTRHO3gIVySIfGIDnlpkRIv4OiRuCj32p0t60xp3wkTf3yjVFxpaGIuMYQhjAAmxr0NkWTFStOy4VH+2hXiTcwPJHC52bzEqV0yPwDB4Aota6NVC35srybJRH6t33g9fOK0m8ssm91W6TDkMwAb3AAv/xJ9EmmDWKNBrV9j+XaBMexwfyS08G6HxBNzeUjhaNbhlhXvkKdx7Pot78Axu2VBYc8rw9/nTcNd9elw2SvyFY92kyWg1aUBrPtvMZ3hvXhNttWBV6tIvktZuZaFIe1L1ckDyZQ+2esjNR0A0qNNGk8zFo6S9NZTW5C4cb0PJCbtm7f4ViwHaC3Wu67SthZZhAVWT5psk6NgRYWLWvZXpsGiQcanINjAiwxHsLlmKMpDOL2wn4JqU4m6E9em6CoKrjeGqRrFWm1cIj0TC2SG1RKI0lK69kGmi4z4QDeS3RWS0FmiAp6hJ9t/qFypEaQBGPSXY9+dpfixsand4DcHDrIJRfzXlT1lEKWuFFwaxuuf7EGMoZMhcRHO0n/A2CEH4FrQUcUEaJj4OmoOtPs15zdUuxp+vEtiUVjvEEKV+bOO07VfGr6hI9YPu/3Y5TOsS/wQmC2WIQ5/CsYvTdvbPxerYKJGDRbY/VEDrx7S9f4OkUtSyI5rHz0E2+mmtWw3s0aeR9i3gAYM3EVRje7v3QN3pw/nKAHjznY51uER57QrVsM9FCdePAf+bP84lPWeD1GWlbSkHyCdOKcwqfXM+f1bzXy8bzs5rnr1Qa6xyoW5TZRBgkhihLpwGiWm/nA/qNZd1wsNFo2lBMw7M4hAX193BqEdvnuCLg6hldyIa+PWOYbYOGfdwu00UatsjCNusTwfa2Q3TlfCMNX0uyc13BcGHqk7CVd8fO7aBycT1cDOz39uC5KsoXXTbSrraayrSGqyA/ELsF2i+5gakkah0aAQahP+mVdNfIeHpkqvwxRVZhYUCNBXiSmMl6BeWHYzAuG8UME+R2jMhn93jcZ97QHscePnt8NwbY1sQkGZ1/YTjBJPZsONP2kofu8b3l7iNItsOOLVCDS4tQLIQGZLyjrcb0lpPAswXDQcbBXtOrU72CzhwahEn2yXsG315S2i5bj+M/d+sowmpe76OQCAFHNgIxyYLODrUvvZLnOep+wShU/po3gbJvlWJKJ1buLQE/PiV+Bg6A2B/QYw51CRa91Bg8Me4HKppD2U8HvO93/u9jMfJjvT8+fO8850a2v8Vr3jFM9O6p1ks7g3I8zzwPPJNZTXtXyI9H/jsYI7z9KQyBlDYxjWimOWY9Z8kAZ+bN+HsPC4wAfVl91FRJGiqRLj5/JRqa0CvV6S6+gN1wIMccIVOdiikbQCqy0rmQ7skmc0KHrD0NGiI5fss8h4Bi0EZMWEGFIMWsm5YNELZCEWjjLl79Cy85TFcDe7jj2to+RfdklkhSCNXZCLfVYZ0+BYL+f6eG7NOq6mKJur+2givFfMAJy6D5M+OaNRgaYRjNHDyPOWvPU5Zaf+KE4/jhmPLhcLeDC75tnz2pIa8f+GtLYS0wosCaX7rMM6hf9Kiv2aVzzfuf1viC6daFGtnbzto/0ybBDTwoAPpAxencOM2SxF8hmslZprcrx1Y0bIHIuA2UgCc2HWXn68QDKGfC8lNycNeHxQpEJ3/Z97o2I1JGpfwQBRgLhqkX8b9Jw447pBHZrqf1jFSznXGkrimUjdJIxua2MHA4xwioppdyMz1QxlgBFhhfdi5nFQwGsbnFy65e4u3jnCFY+DHo0IDUMqRQtOOHR1HONalRY0ED5jx9ieTJdzSz+eMseMAAQAASURBVG+B5rP1NGaF7ud2LnSHakHLRhn7gWHe5cFzyIHAZAbuqL5gmfXIxGMWZ7omR0da16JByjLO8wJhJHjNYGK0ZGXjqX84y6XuP8x8gWLtxRoTSVuNXV/2uS9cUArukbPw9Tfn+9r2s91Hv54FkM2kyQrtXzSah71ogcBYjW9TX2LIAXUAj8LP1ljesAEXFnk/r0DTHteMJcrD8ckJ3L6tjTs28hx2owEHW9om/cfFOht0PUXGHY3M/lP+ux8Afhb4NoHaeaY9VWEaSD4vjdC89Baaz52kaaAuoClGaoEmNRcd3F44ikLlUb2loyhqylFJuVI5mfYV8iCX2T4hXy5Pu7Qp/GUF42H+SIujCY/uBTeXZY3rlwr/HTqA00odfG/18xb+NvswB4cG2lWGPbkdHUXdIdvoSDxOyNq15jgFhQ14AabtY9UAxWXHcOa8sHZYwrzJYJC7xolwHUcbF+WaLSrsurRlkoIEyrSi6Q+8T7vfbw28SIQSx4uBHwZeQm4af+UBtFrrCL8W5hXN8Z7CDpceEfQDCiP9K+MSDrqVVZ1w4XHvJvPCm+G5N6R78fm8KnucoQaxK3NiQWkXHAbcdK5WAfZZ59jCMfMXoqWwc1CW6paRDdfq7xqYOpi7msW4R+X3m0Oj9w+B0ZEew8lCFSV2g4Suy2p/QyC6Eo0BZtvXSMIP2dh6/CAC7M9oCig2FC64vsePDZSlsRSxNACJvgolVF00daR1XPxHUXTlHIxKZJEseCR2jkNxyB/ncug++umf/mmOHz/OdDrld37nd3j+85/PK17xCl7xilfwvd/7vfG5cO2PU7np9peu0iyopj1Etoz8sT+/HXicfI9b5v1pTXG2iE2jLnlJ144HuXanF8BNrQjyddJyiSdiglTrtnNCc3wniuscaOCWSZWQQ4sw6QL+QWp4NaZW8V6ofwmMe0zES/p9v5wBHtvAkhJZrL5v5yxEJcabXvL5c5rr2lt3cu+pVSB7BZPV7nsofYxvsUdIFgEiqOn4sFx9uc0lD0lasYAnfBUhkAvAhQa2Gu/v/IXzlDU4r6QoanDPPwrfcBReeAxenFwpXn3hY3ryiVM5IvLmoZdD7rFPpB/x57JS37CsAsOwDJPAZS0ANJXHMdxfehPVMbJbARpVtBfqaSQR/qaqwE+YYNNR037G96dtIRMNydqAIBytCWcoziE97VuY7ka0q5vi94f/besUQBaSIiZHAqKA3SlLxOexDm4PYkw6vd93e6xWh9EObvdDi5xpjxr/7C2nWqLL7JO4F6Jvmg1+CbIrcGwUmcoFGnQuRQPXTd9zIDiWgQkcjzVyF3RrQVrl1a/9tbyvoITkRsceDOvSz1E/LFnJ6+43Ov6VnxNB4NFz8DbN2SpvPQWPnMk16qXlcF0uYPXm8QxLjWtwcZoRLbMGhgbudm0pGhUmzAGpllqXB5hhLbYFgWvn0MLE8PJDZ+APvf7xzif0d5e2PZTIYKVnBJBxgdRJgxH2x9ivkba7hV3APZEEX5c1lF7w0hIQcKwPZ70RpsWd0SR3TceDz2p41hKPT+7C7V5jG4QFlzq0Ta11WOP9LcnpgXYGi3eT07+dFnq2gmCO+twbqF+8wS9d/Bjy3TfTPLKHPHSBZS3s1jU3VzXFsqFcNBSVj+2yqJNlEmnY2sdA5HVaZne17yrKoUK1eR2FTtqYPKiWbeiiLGhKYGqIAT/P7ok95cCHZS5U8r7ALjDCkpvJz0W4G7iffE5Mi00fuumcqGkXGCG5tUItSL8DtvpBD7AvCA6hF91aVmiPdWv5Kop1g1jXn6sqVvM6Xaq0egRybhIZ9ujT3gjzRpnFf0Ri2NdlOQj55tslWcWlgH2xVBUMNUMJkIQ+K0cH476JvmgqsTAhwoYGHj9QAfD+Ml8gZgzsONoq98kD0a0c7QtmAToRzQ40CpanTg2qnMbC2CMwxC4xxpZpXyOsbUQFRVOEAyccjBwT4MA5psDEwb5zHGwNmEdTFNNP376mVbWg9MkGycVy3RqLykRv8CleCtC/tODixijhlZDmsK5V095epO296dsWg+M2TVpYJgtKz7ePzT5MPL5oKy3bgOArpBzKtH/nd34nr3/96/ne7/1ezpw5w7/8l/+Sf/Nv/g2XLl36o2rfNZdzpz/fCaQvokHnYJVpvwN4jIRsA4K2v6+5dEn5RODiTE0VremlhXA3DOHUUgFLYGibxLCHOhuBG/cmNDf7iPGB1xoN1Dy+A1N3aZ8gAf8rksz7fmRwye9uGfRYONgkmcPH7zglppeDUp9tfSRtfpgjUUPpAJ53XH0HPUXkXnJzC9G3G9ld2tbe4djDRFfvkGICSQudVdj+c2oeaExZ1UpIx8v580bgHBLXZfG8Y3p/6av5b+7A/amb4E/dBP/VjfAtN8LLbgfg7+y8UF96yS2rRGoYn1b/MqY9dq+D8KoM0dWlsg+WBivMsP9+Y4xDzdplVmlE9eObcFafXQiMgrbEI7R2u+1eDcy7Q4VwAE+yKmTL9m0G+X2ZN3mwpPBYr1QG3Lw2FzXtHfk2TsnvI+hcj3rpmnOwM1DthHh/5WAq3BJ0WGHRSpPb17sEEKEsVzXtnUU5aWL8Y0lEht0LSxIh3Eai7C1hnAzsG0fUqjsfWAenfRMHy7COdkbIbp32epspswMg8He+7y/6Dxggs1iqQAQ0KFx4vF9G6Ucl6kNtS3sfVBZJfP6MXgxb+5On/W/DuNuFGf4s4w5wvEAmKjnQ/uka37CAMg4amUn5CK+JnqPE58oGdiYjBa1ja+zioPgf957Ov/3JU3k/SK4N+k0DJB2JsR4WcJAEyMtG98TYfD4fJg+/vcAqBHWkUjgam2rH+MQ1pn3zwu0VM9hFDecFbttKSOgoyrRbbdMaTUy4JSQ48xdan/7L5ll7zCsKc5f2cCPQjMb8tT/3F2heejPyF++g+egT7D16kZ1a2Klq3LLGVU0MXFosatwiF150yVygw5xVLtPGqy1WOBRKcK9a4WRcGn+/nmqgGfZws1wY5QR4Yq4p+qwlIkTc5CbLDC84gS8IfAp4CvgXwH2kbWA8gmORjmuQm8ePyLOuCE0Od3yX4nYLAgk8rNkAmmBW2F5jVz4LnYwh18mior32w4uTShNxnxgi5xbUztOhXrCCCKeahI/DNIXtHM5D+ZEf/m/Xt8HgH0sHMKkojJ5Ax9vFdSEWbvlYJymeRXipBRMEtfhaAM87rvS4fc4/q8FC2zFstEw5PHp8zogY/AW43canZHNxOwBsO8ckwFz7zV4Rg6x20fSIzv9UtF1zaZj3C6bAVISJ+FgcDmY7A2Y9x3JZr8C9ANfb6Cr4tG+yamSZNaMO70pSegmUu7B3bDPhldIrF5c1QwmKkBbq6ujjMuCTpoZ+gbVcw6k1wdIBo4G+F2LARGGCpEZ9hZXLWqxsbGzwYz/2Y/zsz/4sz372s/nABz7AK17xCt73vvf9UbTvmktdzSJytRN/BmXaMyBP0tgJcNYfsyjUJMnTNRW7Kez5+SUcaaUWcoZRunFDn99TCWBM+eY5kwA0K4Tbz+5SHEmmuQ40Lcq+RzUd5n9OZIV5DSxMW+vXPo8XItw2JvJToNdDJPEPZlvF78xdGQFrBpx8faBMw8B82N1xAvdiTRnh/vot6n+0YuJz7ZuxR0uLGk5NG5l6LXTkKDsIXVB7xkUi0oxrZ6JBRXP87vhzd9sJuL1Ebgb3Q8+ieP5NuEGpGuHw9/yb4Idv44ZyA75uoCZdbbOvRlaFJXSktQvIqA3Hpo1h2smPkO4tVonQNHBk614AmdUw7CMnBjCZeKMAUWFRY5hDi7BJjLolAoKv3O3kfu1W4x7GeKVtoNzRIHdzEIC+Mu1thNVHfaQdnghurQuZCzI0aYAA2RxqY6YLtaQwbbGMcMhTGt5d1+SsdGloqlol2K05y/zswZsE5xG/26Uk5TKPtLRvswAczNQ3DqgKkMIld3rnUnyOwlE4lzSsmwOYzhJih4yAzbSojXDD8SOrhORBDePSEMsJgsk8wQ4biM6Wnh//pb8vgDxffRkDX8U33dLa2+Tjau+F9eMcbIyRS8l1CdTkfYQiE0uUZkWUKCo9kSF+bUazQ+c0gNw6E0npuGbLS27Of3/zLb4hXbNPvihssLjNATJP35j7vgxb/bPtiBYlYnyDZ5X6n+Ycvn7r2NjbNxu4BrnQu6u0mfXw7JN7Sl1vhrRhDrZHcGmZ3mvXEbrQ+guwxY8edwD/bzQwZlzFHc1bF5C2dtBcnHPk1qOIczS3HYE/cztHP/IE33LyklofVQ1u0VAsRZn2peAWlbphdAg57RyMuYZ0klda1q25TOjb8W1zrQbo95XRhyTYBHhsX6P92/0WpIEjcPuLLBhdAfy2JGsP0KBo4dtp2CVvDzm6AlXWDn3dUZgfkWST0oO2+2auVc7DoCE6X760TeOvJjZUF14PdNtVZSDpKvbhMBiTBoYDuGGD5nwVhR8xba3AKRFuJ+Fly7jbdG8AN95wdP237VqWcBS1/OtrWlFwkXuRDHb4HyOP06dGSGInWEjBKh/bh5tKuKEPBymAaFt4HHQQbQ10m2nPjs48vKJtF9xSKLYGRo6lL2xgMjg50/Shz4yyspn0mohaOyxFWKDgdTpwfLqBX6jg3kpd2BbAYliyKBzLVsA+8X3vQinBf3/kz+NrtknihRzGKjgM2vDigv1tbxof5rEPLGsVOgWFlhjaKhxNa2KLK6BXpLXlx6/v/CdLrV8OFgnHW8HJdQGAf7Tlit1MXvziF/Oa17yGv/f3/h7T6ZS3vOUtz2S7rkuJPCo6NyGv4DFy2iAQ/gPgJjQYnSX4LfP+tBpjNmts2MUKTvhYAW2f9sIpYX0EOJM0DlnUZd+oarpkY9ZQHN9IDLsjpkWJi7q1ydch+oCgWo9nVcQbpK7F+3WNlD12SUyic2GbagM3gHkJNPUK4gwXnKhZ6cDv3gjEx1saxOLoRk7MtRu7phxG4GRRWDPTeFNpl+l4V+n1EoEdEB1hPUUowlMCJ5BEfPSGuG9/NsVzjuMKhxuVas650VPNcOHga2+E77oFFmVaoJnZl3Qu2rDpM62uBGBLWp9TvOl4izoIhFMwbbJ5Q9sTaQUfoS0HDQz66td8/oAlOq9Dw7C71voMny9aWySU2+gOIhn2bzcFjUpgQxRtSIzJKEU1De/adCelSDTlssSf1HUUAgioJqZwypjseaYd2z+JAYlGrBJcnXuOjou2f3VjbMIPedSnSjSJv7Rt5oUeStvEqMxBWBgq2p8h3qGvQgnYvks5dK1Grefw5vHAUYecS2bJcW1YOLluAEIHDlBNNK3I1MOSQCWowM/kRjYEYeH7tAxWIADPOo58847GDHn5bfAnbkzfbTG2Lvj6GAupqHk7rsEHY3P9ehk1unbAvOb769/UqOMzdSGRMv+mgMZgaAvK2mNkL1hhx3NvVE5zI/TvJt+ZMCgdwKyV2k4AGfs17vf+XHQ8A+MQrbgs0eqPfYQmXJguEW+ooUIl81JM+zZPfQ1r4zBNe5eWXYCTc7h1MzHs4AUDJu3RGouPTMNuzkMsjT+HppxsdXW12HpNPxoR6ukM2SlUi1k6eNYR7v/W2/ju3zsJp/agFoq6wS1qyqhpb5QyXwRDWrJjKDaN68rWugyuPLS037WVLiu1yIAEV+NjLq4nUAucZnsQg1I5Gs9UNbgnJnDbyCAAlzq4XeCmVQazEPgucoHY93T0O2u25PfCUQVtWgboOo/3l01mHp9pegMMxAgOS2DarMj9rmUC1tEvBbk1wFUXuz7tOp3UsNGH40PqcwfJYlCg8UqXJxvhdtMXK1xvh8q4bBtgJVCfqyuKfqE4slWZC4+FwQ1wbLLM16RICz7gg1Me0RRoF1oWTFFJJtlli6L2UHC6nqY0MMXjAgBmKn5g1IsMe3hnRB5EMdY2KJG5UR+21k6Nrrel+PgbS3igX/JzAr/r4FVOU9EvC81qUO0U1D5Qm+1vGKuV/UD0ksjTBtujbtuoZY+RgUTYuHjApaM5CPa5VynJaTXp2KnhSswKUxNjEqXxDnG0/N7cKJEDb/Vm56Fj/L4SypXHhgDKsuTv/t2/y2te8xq++7u/m+/4ju/g27/925+ptj2tsrmjMnA7Rxf8vW1/DOa2FqDcRvJr7/KPvZayNjAOwLkJHBuwAsltvvYTm3AmjyCPSIRBiCBnJzy1NYxB6GJE2Y0Ct2hF0QxAsINxD+dBMr/Sl3VXGmMOA8iygpHjANh2nmEP+NavugFwEP0z07uh1mRFkLSBsQETL4jY96yCBbL2eEjJ+m2QwJBkphOATfZtEfVpH+UEyUrFoAy2z/cdYKESflpZ40HTnqS0IQ7BLRYUgyLxPYVTZiT49fn1cc/0MXhiSnSfsGuklrUuECFSZxchE6ehRiXWLYZ2ZdDmhmm3lVjgaJHerEaODOD4GA4qFnWDI0T5lhjRe6XtHqm1fdqDpv0Uad/aPdukL69qaxftCPn+Vj/5jsXhkBQdewsl4GwOUkCZGOtSEMZpPKaY1j6dl+mfGaM+ee7Tay42EJ1znXMMRE17DAPm8iOYvYB4ROxvhHHcr2BTY+JXAIX/tEvCOeeBbK8I5vFOAwW1crWvNX0WuOdjn0qdCJMLSki2qUHnoiCpxssvvAYuPhKGACO8Ct/c3oQXHYWvuTF/OI6P+WCm+fPVOGCzjxwoWRP6Z2MaxLUd1zxYONOfh5gZbpXiLcvk/LcGzHW6T4RrG5vwX9+SIiS3VXZZyZmrGEisLFSw4X2QZ5hAkoKJ4q3fdhFZpZgQiEC1RHqhbiMcCMzZEeD8LMGTtol8u99WWGnhoQBPHCTT+ABYdwawO1+z/pLFRxQCmiOo+TVcRQBJsX8S29wgNOeFP3ziYU3PWBY0hePTzz7Kl/7UbbgPPkb51B6uaiiqhmKuPu4xc8pC04auc/lKkZnzptjjNZd1HO+8yWEr5GstwNpggdMbwCQXYrkLc93EN28leGp8VxkOcBMvsPBC3wLhGwT+hm/H/wp8I2kJhSa2QEx2DCWYAzt/tMtEKtE87bEfpo9mAmp8nI8euKXSYg6tyO6RK52ILuawTbdZUuWq5rnLzQFiek25oU+zO6OREDXef0OEpxBul9yNzfq0W7j54Y/c2/39jsZGWLloKAcFCxceMbjNw6iwngAl9Kd+NLJ9R9Kyi8DJS5pR4sjQc7pNjoMC426E8+HYoK8Epj2ASmd+Z7DX7pX9ha5XbxVXxJcd23hLviAkDd8blEmDnY2Z9iUL59Go1v0PeiWTQoXpM+f4oNN2187RbPVoDiqFZ0bp1aVlh7QfLH/QnrLgzx7WRSB5BBgfTKl3VNAe12+ZFCQryYgMfWX5gwoY1/7hMllqhTrL0D7noD9UWJSNv1kTX2HliqLHt8uznvUsfuqnfuryD34ZS1kO1O854GE0cnxgjIo1xy6mvRHynM9XWzJIT7Y52JvCsWMJwllJciDWbtqEM9P4boQBTSJ43Xk4c3ybWwLDHojmUYm72IqiaRZsGwGEsi79VNYtu6FaD0mtUaWFhOzsdxzKEDQDQOqVpoXiRP0fh9FcziO6AwUZbs+bPx1i2ni1pZPAaVJfAQ1uMQw5aE2n2gzuMBHYOm+S0Z9hLi+ghEVA6MUBMO5RGL/gLOCGB/C7IxSC7S6UCTbE6mFCmbZ/3gqUDkxR6GO7hP4NUAGGRXDtIvmpzGroDVRb14fm0pTh8W3ARwFuoBDJtKKhWILA5im+HfidUL9vhjiiRqARYnC7DInOKhiM7SeQAvWLNhYgiAYHC24aY2kFJcIj0lmFHBnmBKEA2yPKfaPVDvNi5mglT7t5vzNrQ9dvkc7o8d1FqU1Foa0G+/r6ePP4IDkXSUFm6gaZad9wGq1VyAPRKSByvi71XRUH7Aw1grllriBjmAj6E4Hd/cnqvEE0g7T4V4YOZo3mz17pXxo4NefOl6yAAr6hj0uwwpS3mZDWM96nXY6W8NAsjtnCj+GGtKxI7L4zMLm/aGJAw5hOKvavwC3NmK0DnrZ+W+Yt154uZoP2PVNl2PtbDiYVcswTUfHRBKdduwpR8/iYj3dZmVze/p/ou+bUdez8VaR9E3OvbR7/xD78qeM5wj/agwcvn6u9rWEPt0KEgCtPp9YC/o0S2s1MYc2+q/V34aBXcrKp4WuP4ipw73uU4nu+BnfDplr7hHVXuhQksQgJVfOpjBkvTNu723cNxa4/W2Z4LVhaV/HbYX4xyhBrHh/qOzWFW3rat9BP27GtPu6gTkIiX5lDeIGoUcmLzHfjXwAvdM9ZOD8gBaJLgd40tolUTZZ9Z2VM/eJfAAUO1y+gTqlyXPbSdZmJ7sw3XM08m/UffgowW8LWADkxRi42ahbfCFILTU/32VMN/NeimTEsfraZXkLZ25uwtkhi1LMJW0I57Hm6xTPoIeAfrJrJb/RU2LBSv0SlBlUDpyq4fTMFptxbKF4x8DRaFfjfodaw7w/VtHfAeBBVPHkNYqLZ9cUNB/uxAuOCUZbIvFqdUF9v5dvaAFLVNA6+eVDyQdG1PAC+07dMADaGyH6daaDjaQOUrOyHsV7OUtJl3bPwzZ5PFrgG9nbGcW84wBXq7jVA1BrIftCOn/nQUmDofftdr6U8c7rfZk7pG44O4IDYx0zxcH223R9puSpN+1dS2b3waFoz/toFTHpa82cZ92dxeM7n5lqA6wq2wDNFAmcaOOplubFRBjk54KY+nNFVJ+FdIWkVgOLSAU/d5EORFKT6Ngc+Z5PkizQQjmmdZ0er9VtBANmGShcsMSOTCvoqmUtBSByJpFAN2MWCiKgtPEsHYS6STOz999xiidsQ2DdB9jIXhPYkdJcu1qbtGpB31V+dooHYVgaw9bvvpYgG2IchC311IlwQ4YRH5K5ucEsoNgdxXdrAHVbA87Jv/Ra4sVAtkp1jT7A6z3y3+xmQezJF8n0M/Qsm75Gg7iDoIY9kvUIhhE77b0T/uCUy9vHTtzaQ3YqRZ25CEDoA1+REPxjPEdKeBbgV3bfhq3bfJj6wY1EEzXirb9JzUNXZepyRcn730YAubXzMolam0YXXwj4c0juolPAT84Y6BgIpvVpr9NYv5XUaro5AdPGRjFAtoDKadlanOEZ0FTIfUQDZmyvR5AU7KR9x2AMurhtB5y0EopMNHzHcx9uwEelzOKX9fNmf/dP5/IUURKVL2t/wygCo6xjsrN9qtxUGDRtN+Za5vtSVT9vHamlb1dgAdZDiBmz2kL0qrrtFo0KjURjLbCDt0afgWwqM+4SW6mv+raFx3fD1Z/WkF1afgdzXuO2v31Xa0fFDHwd9ZKEQbSFBsJr6t9JH378SNTsW8JG+SkN45+N51WnfurTsjWh6ugkpbVho3U4PLi4SQBby+kXXppBSuAXYIiTz+CsO/mXwZYSLItQXZzRD+PZv/ZYIt5b9gifLkhtLR/H1R3HfcCvFux+huP80xTs+TfG5U7oOlk3MS2+j9tulGoTwXe27QlTZXboqiTgExR+hHZkgz19zTt0BALeD5tZGYT8C7skZ3HokwZJ2pOiNgQ9eR9wpoeptkU7Got3cruthKVQQY5gM/Z0o7K4azRJBG64SNaSgPsQ9B/SLfN/asbrKSVhhDH3JXPvax8t8Q9rIzK7V/SVsFMiRoa7PS7NoMRjeOy1wm3/c4ueudG8v+0vftq4V8eAwtIAft16/F9dLwrE66wI5PBv21awfcm47BqcTOLWvCPDYUNfXJt7yxsCP0KQOTXtYX0lg2XFsj2Uo0wa30U9WqCQya1w4DtprCqVLpEWX2HpFDN2z1NS6z+kVfKu//48c/IkeCd7uDJCDFi4RX6VI534YoUKKIHaxdH8cJyHyJ7GuCzMmGwMGxhJY93SJa8Rr742Wv7U1Qp8DLB7Wfm5DnnY76M4E3hwMVFEUpyHN6dPzef7ylK9aph1asAfNK3jc3M9cyP21ENAqvN9IB/F/LS1p+9kBTP2iOzbKEVthznFw4xhOV7qKg2mMcdptROid3eWpHTWnDGbEAM77HgbEtmIWsgaSZxHUUy+yox0MbVMiQlhU4NN4jz2yjqSSU/Z9CExLPNPe3qkSN+hcPOL0vK8DOGhwxzeiidFKf6SFHFslug+E3+aYRfG2wLYNfEfGUCVz0rGVFcb8H4Po/PR5n5+LopagDnCzpR6HpQfkdvBIWpUA5W89ov6a1pG7MR/omGM7v20JpIBq46AdRdCYJvrfw2I1T4etqGVuJ6BWEps+6veJTdwFUoC2gKRbKetCiTIL0lYJQSQvoOutYTWIZC5oMj8qYx5vkWS/iP66Vk6zgRISm+KDb2GIHdAUVv0iERWhzqMwPJjR841yog11eAsAkcMJLjrKuj28JMUbCN83fYtPOweVURZ1fKQHVIEwC/Mjvs97S9jx5Jlznjj1e71ti144hs6pMMzvFTkK4gmkTDoPh1tsiGgKohj9x+Xj3Qfmtd/DXuAnq0IH54WBCZ75s4XxxbV9sEd7Pex7y7gfHWtWjGXy+XbiGXJJxGghYDXToMxBUeH99VMfc0Fge8+1jrY/GSKUpGnP+tHa11n/TJXWXHPUh0WA0d73NwjfGvt6ChIWyhyi/4oM+6mZRastxwdqZQYd2puOtG9tLXsQbD+xD8edMpHWou3oWDf2IRYf8ZPm06G9T6FxcFb2reRTEUubBgia9v0KOdbTb3jAdqooKPoFO70CCkf5J4/hbuxT/MYpivuWFG94HB44nfe1WYWZcEiKpnXtfDrF4shhL7scj4aprfy+dQOiBV1YR5qib5RbX4TigHGJCzF7RBRXeuHvpkj0C84UCuYP+ztHVVHIEXzag+Y4eqY0jQotIWPSs/H0pv990GCyc7+d/Pw7+8JVTMQ6ZcsV0W2HlWwgzBuzRRSu1TeVyKV50j7Xan282wi3imRup9EqrmtRrithbMT0baGpdHoer0X6rEvLHspWXwPoZXta8r1+cgZ3bBBzre30IVhvtmlRMxzhdBr6RwKVYZkW9mH7ctj7BzXOw77YfP/ypq/b4m8BFVKvCfyrnzHBjuc1zTANyxi4vXRx7wnAuIdMV92DBFb8+MO6GpGsTqLFVDgKSnp7hl88HScAB8KlE5uM2rTyqAd12mdan/92Ey8Q+AEQaoGN2lu6tGh5nNIaITWgjHswnyeGHdPX6w/9nvHyVcu0O1dkiBY0EO1xWpuLnPi/HY0e30X8X3Pat3Wm8ecmik37RSIk8A3xm0sJFy/Hu7SIzLF4H2YRYLqkNxPO+SB0AWI4B5SFEtD7LW0FdJpPh9KWzK9d4mFDJhpHS62pfGY4pa3NgIf9OnKOWeFUs2UYWTGbk0ZTvm2ENof2z4CbtnC7a4IUYTbomtLFsIOPixHGx/Y91Bf8Y2yqsHVEfca0SxZ5tPGEySU/cEf9IBaTJW6kzHph4VuwwDDahnm9hFvH8MSuXgtmX2Ec/JisRe5mYjP/7FmdW2x0DpyDfm/VXyh1MP32xCkiNMsFjEJqrD69g2nUQDvb7sZ6raVP2zgUgSg45s9D2jchDcOKJa3dB8vVtHYCGmBo3mTrvsJrSlEEWHWtj7pCRoFpd8mUeFQw3JtSknSn0WrEz/ta83ha7b9cWaB+XuFLVhgR+ym6jurVyL52rfRRuU/wvY7MNcBeg4xGcdwq53wac29RE9eunvSdNSN2MBrBfhNhmh/EvLP++nwWiHl/fVZHwY8y62mspQQWah6vcD3BDmfn3t9fYbimuiYiIWjN31eIT5ctSAnPDL3P974SRHOEkUhsQ+bzHT7u/3rAaA81Fw5jZeeyV6qwqWtRdFGWbTg4QRn/MCjZMe9g1IgYgUSsenuA7Ot8TcS7jkhCQY6O6v1zS0BCJG1rzRMeDuN4vA+7V5H2rWlaDLtv7BNzuHVntWHbXjCya5lFMviZgSTy/fgUGjn+irXYdv/4SmtALlXU2yPmVeXd8RyPl44bByX0S8pegSsKyn4TmSAH8PFTCVZGeNIac5TInrea0dm+qy6y2idIOf0GOY7MvuvnwoeRo+g7mC083vXzd2qBu9UbH1srs9CxzRL2lmk/BRwiXvspckUCFen4m6J1hTgmYOgiz52I0eyu2461cyo4HPQ0TW0jq7DoKiZiHd0C3a59V1z8+knn5tp0GTN1NEc2kHNNthVPN5o54miz3qfdlvl8TSvF9Mm0xc3UcrNHwsVY6sB/TCCtj3FfFWN2bC0cEeDkAdyxnRq4M4JL1Sot2eRujaCwYEKKkdUJ7+xYYl4WYFLjtvrp2aDccqrwvxReMUMjQ1UmxC6ZDRWmSmGU0CxqZKBjct5/5SB83jdWNnrIrpmLUE+Tp32DFMhyTLIsWAluKQJNk9MJQSh/Ycn+aBx1kVG1OCyj8iATAhhYLOliosWWtcaJSK2PCq5hgDUOHcyLeR91YCW1+SuofNUy7Tfd/tK45wOiPU9i2ttRLQOgOY4ChifMe5EH4hqtKSzww1Rycam5aC0hUZitH6GegxMOzkyS6YngJWECZyfMtkc+IIPDBTeyIIHacl6CbQiSABwNM9w2p7us1s/UFQOrBQmb1zjO3YoiM/4YArN+oRG3bf2tTVShfpARIS980o+b+j4QUmtcbduuoWQaT2kdIWmh+y0TU9c6gnY+M80xOMMD2EsNbKHrzgFuWmsAQaAIVhNZnAMX18XPvu1dyrSfnCvBWqexcH7htgO6QduaoIOEWVRJ9LliQWB+Z5Gs29W05iUA3wOfFs052HT0zx3QD5oVgpYuMbMZUGZ9OpnbySPI22Pd0vjH46zJ09oFpmRYRi1peLhuiFrb4H8V6Mu4PqaS1kVAjM7B9oBBiGQbNJGS+zfbdXfZsrIZSY3waVAsI9a5h0s1jx+YG22iIwiw4uRZCmKvghPeaNSbufaK0Gf9brREdvq5pZWyHx8ju1VaF5lJc97Xn/3lt+p5dLFoNAVR154rHNQ1S2QlMn44BGKqJ375GgGM+KjXEekfVpz904clwPBjylAIyjiMAwwjCaNi0EVzrQSGTa0+7eb7ce76LuWdTUAzb9dh62OBDzDp0njZ/nR2kuSvH/o5GCicQNfIoC1YtW0JsFtUeLEEmFfqyuBcihwf2hPG89joitO+hawqK6bxAjy+B7dutJC+X4tbwKVpCzin74Rlbxn3xg/jRdSl7jA/4nb6wuzoT+v9Ctke86tve5daGwCPO8dN/ULzEPdLip7DfcONFAKFt9Lhm27O2motHOwxukMd0s52EUl+y1J3WDXEBzsqCu5V/VwgahsV9ldgwIpRActlYr7PHKjCIVgitgTWAGyUuPki4ThJLlZbfs0dkJM99q/dBXseBIwDczcE5lR41SRhVntIPNOw9Ou670hRrv3ezfy2O2tZX+z8tuk2m8f8cnOcN9r+hbb54z4w7qmA6fiYZs+n6/SWnqdFuLWBsmk0Hg2reNqWf/cLb17TBjMmsQOiWRIGPe/K5VhEy4u0jrK4Lw5Vqsxa6Rzt/hZRuPCsYc607y/zAQvKMcPAhuOEZPBlP22PKyYc4XxSq3uHGFrd48yxr2FpX3WoeXzbxcJ8JsAp9WkXpFQMeMG/P0fHyYU6twqYr0aPF1+hlWGG/dAnkYZT0y0/VWms/FjHbl+YcPaEGZwA5osyShQrM0b5WOcruAptLVoCX3/ed0kYKAMHi8QniOUTrt18+stWvmqZ9qdO3gvkE3+RlO4NVon+8LuL+K/N76subdP4sAsuLDXlTCitgEZ5BPkteMrnGoy70v+dhckN2940VXeDMnoeGGxosBYdCAOM/WkXnRZ82lcJkA4EZY/+H1kCw57GdCJJwOz3hsCiVAI7VN6GbyIaK6QwRC2ThVoSHOlDO8hee5wvUyzSs4xKCAMA5OY+oEGw4gC3KmsfB0UkYKx5pcXTTwEnIqOK5u7s9XNNe4aliZYY//hvfC/c5NHGuVn6QPBlNyaTncg9AOYWjmbZaDQU25+2aTwo8b+Q9QvFAuFg0joFNvp669iYwWTBVmhE7RmYwMy0CMVAu1kTvHD9DrpztWc8YJvwnNFKa+dXWR+1+5MkcZ6iOXvD+E1Nn6OVwkwQX1/8kgM2hjiBG9saYyESmZ2E9SHLWETncIEiz7kYgrJfrr7QFr74PlsPiPYTPaBuGtNHs0enCxgOIkFR4ygjJk7jGQROBY7GCihHQzjw2LrNzEhDI0LVwLwR/sHf+RssGvGBdlANykYyqw4dEN8haWqf7i3vW/Rn99cHnoFM+1HUSmho2p8P1+oQmkUYU745B+OxCnEElo2PhxCYz7C2JTdndqJjPpgvlZnsKv0iBew6jPCX1n3725gtp493dZCVfR/X5qhQAYe/uAUZ8xT6FtiaCPcDxTivka6UYHb9XE3at4xq9fd82jBOTuHWjrRhzmkE+UutgKZm41k6wJ6f8Z+9hSvLtJJlkfGn4i2Q6kszmp0eP/j9f1W/4RxPOrjBW+EpKeAonnWC8rkDijG4H74NvvamtKZ8+7twWtC0r4DpNe2UqlE8N1mqlnW61CCbi3qVee9i5gPTXrbWjhn3INir8Ets3E+BQgQ4vVCBdFEYdzDyjm2UsO+F+K3OBWZ7kl9ee97eLjNM1hpCnS2BfmlccyC3RPF9E0LKN3/T5GrP6JbrUIIbhK26fTy02EGwvytgs09TOJrjfZqz06jRRYRzDdwSrT1ayjC3Cjr/yf/wQ+u/Dy3YgdIjpcKswiXmTjAwN9zEv7ihQtOs7kCLN6IB5ybAbdvpne0SLhqcFPaph2fttR/ylofXsz8XxrKF26LgeYEbFdleDf3d8icTa/0H0FfcluGreCo5nKoapCypcFxw3rpSMAJSh4xL5GJu7RYVg6b6sB8GJJ4JVtda9n4mBG3g4IDzWz16GPgLag081/ZFa6A2XMe0R5Qf266E4IeX0ch4XZnzWGejRKZVNlxi+bDrs/X+yMo1Me0XLlzgS1/60vVuy3UtIs2KZvw8cNSfG0Fd5IHw589mfdq3q40gL+s2raDA4aghJKClBTDHG8dwdppWrniQKcDFfQ5u7PuozRD82kNxoz4c1CuLNGl5Ut/DccCVmNOlTSnmZ8y11e95oNZO92YCR/TLKBpuA6IgsVuQpwlyk0ptkraHuLnkRFp48Qo2YhcNEPoeibAuAmVeZf60WYXt84FTU1YCPZkkj40ftF2RPEDiBNzGwAB/w0C0XCeGo4GqMG/pazA6pMOvc7Xvdn4zhj20b9Z4TV+L+otHfzIsk3l8qMSus7afVAg6OFYtomz0qUs4sqtrO6aGapLAwZYQr6Ht0+5Qv/Yn/WfbPu3BsiGWaMZJFiwpLqGeg7rO1vWMMO3q0+5DqJlnlLiRUZmIN+PyMh+XDIKbSuhnOG8kjzOw5piaL0wE9hphF9gX2HOwi3DQd1T9HLSL9/W0dTUUgPrS642EoQPz1RehCmMXwyP4Pp+fwZEybqSFC2DMpJwEgrl86dR/NY71sQIuzBJIMmulamDSCHuN+qUu+3120dy1Uwf1vAEfryMyAOGLvQJpaiqSZUSbaAwdHWJgevj+otFAdLEDdAusCHvTJfP4QAwBsjOCS0oQLQQ2PIxyfqxjVZZwEPFMu5pAiP9mxgz0XSvKdn7McI6FiZD2qvXZb+/tdjH4KQklgE2nhC8wFUnm8eEY22cEJRKspkQZu14vfQPycY5+51xZ2rcuLTvABR/v4xaTNsw62R4bJ5PYUI8BHpmG3ZyfAm4mdyXz3e3etxYe+u9EnDCZ0hwp6A/6UbD1pHPc7sAVjiIy7lA89wbKWzY1ZZ8lPhtJAk/yabXm8YehSRHRNTKpVDA2q/PjtNKUncGiS7KX07V5najLFmyNwjW/dSqcMrWjvt5YNtqHpya423fSWrBWZqDnmwPcga/KM40xQ7oomTDp6LPdctmYmOMUtawNn0I0tk4UjNZqHr8OVgsp8GYM9jlEx9I/lAml25NxmdK1Xdelcr0ykqg1p2Gtepgh4x6Ng+bYANlVn/YgEzsncIvHG10+7VmaTGA4HLC2hLHxDXdg8LS6Gsyd82RNHhEkritQpn1hzaIl4lpE4OS+BvHtlylt2E4PDmZpLQdG1rwe9j/oGtlOX8h4UUtfZpr+UA6WsFmm50yGkp7XuO8J2UTLAETqfK+ZYashCgKl0jk7h9J7t+DYD43EWzftaJq7jInFw4Em4JLV/QAqpM3iZIivp071RQZ+XsEMLh4Ze8NGl/rdK0HqXJFkBz18Q1K3ZyJs1aLpT/1g5+PuvFUfyMYAptqW2M/YYL7iylUx7Z/61Kf40R/9UX7gB36AV77ylQD863/9r/nxH/9xPvOZzzwjDXw6JeIy/9uax9sJbvvH3sGatG+hzi7J8mUb0UFknJ+oz54lWGxDbAT5Gwdwdj9tokhBNHBul/2dkmHQsofYUIE53h4o0x7blDZoFuzDHEeszz3bJkQSQNM7jTf/WnoT3ZGF16FLAYj3SlzToeAQFUg4UYJ33JgvLxrcsAfjnrb3YLnSL4LrwDWUaDpugEcA2IAisY080FdmYgqJqe0X3v9UaJylO1VqK8B5geO+rwXgpjVs9v0yyE2MKYq0LgLzDnDbDjw5s4s0Mu+uIxhdjJAfL0s2hCxE/dXb/Wkz8YM8On5nsYhlogFlpKfmxw6YbW5wYnep6FdCkLaQy3YV4Ue5BbnwLQSRtDRHRGSYfWuBduhD7Ke/1S/yPO3iUw/6x0aiebcz4igEifTpwiIBoQueg/GIo5M666fN1X6YTzum/ZUI+41w0Gh05D2BfVHm9qBuOOg59vtFEgC47voaByVNlvezDRsHotHV28gTEWQ2Q0JAQTQQXd+ZiQml0DaMCsfMI2wBZKOAyTxJ5P28z4H9umGvhv1a9M8z7weilpoHy5pqo5cYWsMIyKCAStP8hcBvofF+KmLp+22CXcITvD1ra63Tejn2z2XHKEDY6SNT9fqbi45lDEBHmH/iprP3BtNllpA16+PAqa9Gu7TxUhehuM61x0b27ipmDUXGfeBgvkRE2CfMKhnT6OJL/sT3swIfmrufzO2tYMBame1sXFnat04tu6gw8+ZW2jDb552havK78LQR/scl6j/3FMq0D0i+nV0lA7EZfiIS2M3FBtnoUeNi7ufTDm5z3kXKERn34miPYq/FWMRNTVznZtrUMmhNuzL4smh0jcxr/Zt5Rn2izDozf71T425OlnW3e5Uzy8FbNVV+WigLde2besh1eg9uHST8Z+P+hOKtbUJ08WRyrmOy5demtP7CI9mx1Q2rRQ0XByjDAKjgotRORVhv+oXzmkg/hwBu4FQoQW7xczXlsCC6bRerdp8uW7pgxsSLp32A1fqGMTJTOi/QRacb4TbUPSMw7oFEuSomw8PDMDYxyPAM3KYCxAHOZCrx71nAHo4bha7btqQmbOKTc7jtSM5pb3Vbb1r61o7pPnkAtVDiKrULztel1wXmC9yGZ9p9BHTnXAziuoMKwhuLv8sCCeGpbEOEGIAuHGUJMiq5CJzA6dq17msAo56emwCQYus1nwk52kPZoMs8XpQqMnBYROD8FDZ6HJSF0gh2lHoOFrVxxUvtEGS1ryh97hpRmGFwliXHq9hH7yQX0sSuSO6uYRN+GcsV76eHHnqIn/iJn+Dhhx/OgPVznvMcPvnJT/KBD3zgGWngtZadY8/O5mWJLrBjGP7HGTNbcvP4x8j27LVHkLeERmaSIUqIHPULqjQAxxnGLEiXbxrDmUYXcYi6K8BkgSzg/PENz8MpYnNW9LTRVzO3NRgrg3f+dqaJbR3z/q0CMhYaNGTupdBDX7NrfwRwQaNVN3HT5/UJM5HcBGkKDAYauGOMJ7haxNbaBptvrzlaf++MLglM/LxRhrajPysauYGLAc0iQG2Sn6QInEW40SKq+YJi2MvMv1e+5YnPu//gD3Xh3jbSSLsBi4b0P9LKC00LuYeGtcu8yXO0d9HyjizQ3sraCsWaXU0qZNtU6ByXjm5ywwVSG4P1h2je9nbp8mkHTfv2ZGgCxkomCEja7Qu++K1c9OKcOmcHpbivcEFKHzbEE2RmT8myUem18eN0hhE62BqzcZD3MzAxTrTOLkFZjvOFmagVqf4J00a17lNUOz3pF0x7TjXS1uy4XVcPepVkKd/a0uc+3hRR0r0YS+M8sO3Tkjk/PgGYOJPBwv/WQHSGGTsyQC6hRJGf5wqY1cLMa9onIkwaeN/v/gHTWpiibgrTec1ss5cFGo3N9tY7S4yGq0MzgejayZmP5Noj7b0XB6lVApyGGIhOc9E71fICU4R+YFojHkiLxwpPS2BjuUzrst2OQRGtd/SjHTCvBbfitXWuPYeVDqGEAAxLZKnE3hLYFmJAsLYGsc3I1+GlzdXo4hmCBrUyO3942rcQAEm5CjE4l1YQOmeiuPnvHOnBBZOr3SJ+0T3XdpMTNEf7TSgsNQbPh+BLSUSEr78RqJc1UkFzdMzv/5ePA45TOHoF3BgYdhd4C0exM6B4yrckarwTbdHGZ9CdCmyl1KLWD4smMextZn3ZRKZdhbWtfRWOyzpJ6w0lLUAyjQfxDFgZHhp5RmtZ4842cOsmcQCs6jasDR8M1k2X8VMx0KOHqZdL+7ZuvrrM4/skk2Bq1KrH7s/AYPm9GiLHx2Ho9YyAwd/oUuhcpqyjXdppQ6+q5IjGXxOlHUc6V00BMihpNkDOT6NVzxnUpx0Rep6WaeNnW+5+70cu244MZswacAorosVWeNzDM4kP+5NRX7nq0A9IsAHg8Utw+9gQ/w6ODHWjWBji37dukqEE6zu35g/nOgSB/uW9RrMf+OZm8mBP2obsB1HwXjpYNLnxZFCWkSw5G1BXPUrO4OGUUyEAeC17ocFbZQTNbsvnW5T2tp2dQRYjxgor41JuDCgS0hgeNHB8k8pbSoTF4QA3ciC1z1TDalm5pn0sG6LCJY65r7fnXNoHhfaRvTmxSy3h3ldSuWKm/Q1veAOLxYIjR45k17/jO74DgE9+8pPXtWFPt9T1ImPaL/jrx1jdWG2m3WrarS+7/X3lJRAPZuM2oo7aczQyfNitVrMeEFO4d8yzrednftE1yoicncL2CCkL9RUJKRAsvtwocXsd0XFFQV2XOd3aFDG2/5Yuiyby4qMvO2ZAD6eBrPNmxW6VITXVsjYbKq++9gg4AvP9BnY06qbb6RlNO2mM7ZgfUroInGimHLhqJO/4rOnWQrcrxelzs/R6lIKS+rqLN7HyBFexv8SNyhTAxfoBB6LTEy07Wx5l3LoBp6qYrzdATecFPO05toSmi900CGnepOj4XU5XoRzqX0uGqAR0bYx6iXgD9o/12TrwpFCT6nG1vtjW6HT5yxWoefwuSqRZt5bGDEnWto5gSQHxy6DMbV7RtFYhyv1INGK2djsIczQvt2Q50l0MLHUwHjA8SL4g1rDPNU3m076uLARmrb+pqAZ6IjCtG+YlLHq6/2Z2LbbmrilhUEsnEgiPDkXN4yMTFuYzpJDcCkF8HJVTRiP4zGUCdacM/cIR/VplwwexmyyVKGmEeehXo38HtfatHG0os47CpfmiYrZZsswoJD+9vVL5maZlRRCsOEIR1Wpbl6dg9ithjdrBaGv5MNc9vBZIGuONHkxVIyoCWxbutgRpsfGiQpTRsopMe1yT4bEQiK5rvx36W3TNx6TC5utdgLB9z/RNTZN7SAyjEQSrvl/SIl5JTEr0XZyAFCZCfhfec8CxAZz1nsktc3DEpCO0hHbQsoNm1ritlTbMmlkf7XmCzuCNIAyoJQpbrRxASEy7tUpbwZet9dYWLtcCcmlO3XPIoGC8MaZxGlPnVj8m2lxH6YemPDLUMQ0pYw2+c40JcmimLwSW7cLngKYvCznfqyYx5/Ma7n8SfvWT8Jkns5zw1M2ajqKAypszZ40JxVxvnPFW6A9w8xp3+gC2HW6jb0zjydesXyeuB+5gaQRfQQAuHJHufNIWna87n+PNgc3+ydxpapCygPb74Ydz1BhGxxXql12l9sXetPfsFRQ7HBFec/UBB2NZx1xOa9j2WnY8o7cz1DSFqFJlv4GbRDQIXdMtX7Fle7sdvq3VhnZjl02MwxGZu2Aib+gjsQOy0V8luAIxUDfw5AJu39SHg3p7y89Wi14OFvXt9WMD0VnadmVebX8agYfPqPXAuYOkZffvBvi04VyKxyAKI6WvmvZ40XwneKVGumcJMuxxRuCIUxpzHyMwCzjzSE8FZaadNsWr3Q82zIq13gnj4Xzk+CbCZn//QgUbmyxQhtpZ5VYfWHqm3X8tI7vjksgXxYZn2rPl5WmRgQuueP7uRk/denylUaCAOX6FlCtm2u+77z6cc7zqVa/Krj/72c8G4MyZM12vfdnKwe6pDMleQBdtScufPdFbGfHfoKnfFFAZXA65lOtypWtxCEmyv+HJyk5fdn8ezKBvLJCziQhUykHgxm2NlBiQGLaD4DZMFE0wu8BAoVbpjB4vrUdF7CFuMpYNUvY0R7tvS4KrLpqKgUr/mhKo6qxum59Ro0CbsZtXuL76RLnxEPZqQ8Sta2x3aSM9R2Joxf8WX1+setakeWu/3K50UEK07JTYBaNk40IDJ1DhSeHATRa4zaRhyeq1nGrp+I5vepGeH/dCnacOsNr2NhEaSrCkcLZfZuhYJCS52i/Tv2GRzI6ySsjHPxDBk0ajThtEe27bceT8QfJnB7UUQMhUqWaYAwEb9myBmpMN6E77FvZuVgLTboUi4XMDTW8T4zXgg277Ra4p30jrQkDmlTJUATFCdrxwFDaDcCIwbQ1RK9QXyUxY7RIOw1mhKbqXonTxpFam/TOV8B9r4QvLmkUfFqgGyyLx9hTVPegFz0BJYxsISlD/48pqM0NfL86QISSJHDTOB6ILWotQlzf5K5wJRAc6gVuopYw3E64b8f0TFrUy8ffVwj0veRGfXgrzRliIsKwrluPCm0kmDR4kQrqpJWadMLezIGl9fN7l8BesRrrSkOUnqRjiIPi4inPI0ZEytbWwFB+Izu/zaBrvBWohUwJArxGGFTDqJy1SILTAW4EYeJgdO3CNPS7q9QEm1wkl/D3BtAE0T3sDVI0SY6S1U/ijc8TYKaF90Xpj2cCgH+uFFtEdNvjx/mp0d4tTA0CNG96cN54470obFubtyEilfVaD7+uOnyRH5ULyabfBv0JpD3tsa9ZmaBDqvQVyrKDB8aJvfAGao91xm2+fc47SHwsHRb/E9VGT09Z8O3/eRkltv/t2O/3mS0xNYNy/cBreeBI+XcHrHoPPPan3AuPeNj0MfZw3KV4BpD0afysTAiGApT7DZl8berqCmzdzAi3SRK31u+NgVimzHva6P25IMo/P5qUNW9OUxOvRPF6IQsuxeUYakF5i2mN9himqHCnwFqggrit613UqnT7tIln7Di1dczmtwcdaaPw8NjduIueUQTtTw2YjbOFxcdC0u+50bwB/5tteepl2GMtDUMsLH32/h8YKyOBGeM0yaiHmycwoFcJknzpIdFMkIvw8bQC7q+4nIpKEuv57gWlfIQHjuYFZoa6Hz8CbvU3g3Wdwj5zVdxwxXTwoapz7/kTYOyihVkGXnSvtVisQXVND6c3jnbquTeJ93zrnNJjsfhIAZkyysLoffNmktZQDrWSEiNG8/fwBnIDaZSSD/vV0jnp4gVjH5ox52/3lpUC/Rt1Fw5gb8lT3QZgBB/2BBoWFPHr8M7AHn+lyxUz7/r7amTz3uc/Nri98oIfJZLLyzh+HEubkPHDEn4fFYv1uIiOAIuEbUWl3pq0j339XVLpM4xFl2m/0LchM40lEb4B84d6NW8iZhZcS+arO7yE39jkIj0ZbOghBu9goVBvdljiaAWoDHZvvcwXhYU4CMLP3qwbp91h6iVcqLttYOMcYaHoupteKCNGM8QKfH1v8e/OFWg+A+iPuWaaxo49ryjoS1ZqYhenKkN7cMLSXI3iDiauIiYugaVIaUYnkLnA08DIiuPkSN0wp37SxhsiMUV78vdIp8LpjBE9ODcEqBPP4duyCVeQuoZl6tqjUzLirWwkjqdRlWa8+YwngwPSBcplHBv63IsnzO0PGB3MkIGhvHi9C8vltfd6a3tnft5H82lcYd0xdgmqRou1i6qgA9NXsUYI2SZSWDErKkUgrUKMoJ7KRkGEi3vRk4nO1ryAl/4G+5KaN7f3WkIJh1qIMfA18rhb+D+CeAl7jai6N/DOOyLhbZivMXV16n2/W74WeSFJahiOikvkjZSKcCiVQ20YnqW4NNhUD0QViZHOA7PlAjY36OjdN43lB4T6E/wX4bYH/j8Dna+1bs6ipR2XsZyCSgQhPm0WdguzlXY8DGwJLhR0gXpAjrajXufqko4ceVgezQ0DTGvZADuYcEJhXofBjWaQZ8YyBng5CdOl2MLzQjn7ZwSXm8DyeWwEtJCuhtRrQy/QPUvCtfoHMKvjQQ4xOnmPoAeW6QHSBbRt6OMi8gnFr34Xxs0z18ZEmLQ4wJW4ISX3s0rKLwFOeLrlhnPBpaeoGxSEAwQrG4GoRobHuTGaIz6BM+5BVjRMdxzbeDdZp9W5DszFKDJFznHRwqxd2xbijDspChd7uRA8uLVJ7TbtXBHAoTrMU2ioIEqNBN38ff5KsfCzlhc9M89sdXjQrGSx0fvOsGuI0LVrQl7lhH/Yb3FP7cPOWTlFboWE75hxu1Mf5CPIEgRh63JLVubF/Wdtax+DDa7dEibewqv0CL4usP+36lqTsHABu3FNT74jr8rm70pINgTkGTbur1VLCzSuN+j+vYdkRh8AWuz4tfXjQwEZf17/zdPDOiGYyQdCYPDcJKRCgCKXf89YT5XIlBtDMYIhvx3IZVdql02CkOLOOI541gxOsOCcGq4ZxfmIKd5jMBNYKZ6efaMqWwLq91CcYwyW652VFgPrJU7E5DuBTpyg8znCGzhs52HVp3zQA/VKPrTobaQyr4Zn3pabtPSdqEdQnx7/BJqc5MkRCoGoCzMubHPbD0PQrwL1s73iBah6dXWBvAtslS0KQPROIrnC4ZUWBtFw7WnyF/0dQ9NebA67I0aN/bli0NO1Hh7BvLIOucN9lKS8b8yfp74+6XDHTHsziH3744ez6e97zHgCOHz9+HZv19EvZGyVCHdW0nzD3VyzRzTVQv/Z1EeSflqY9LJILFWx3mMaDApIuZHViDGcnfh80IA1yYR+O9pg6xygwdKEq5xn3cd84x5hFFgGjFrv4gyZ2HQFiF2u8FiRtFTDWdG8jIPn2GlrJJaarKktYpsBsicjRsVo0yiRFE+/9Jc4HgnNbPQgRuVfMXQ7fUF1IL/R9CcYvMwFI1UJ709V1BK+97gkXqZoVf3ZEOO8R1BFvxlUAbl9wox4FrSB0YHz7dADP7u0m5v327cS0B81LLbgaXNNkJvJRMLECdPzveZ3SXsEq0xImtO1f2xaUWNwiKPHQC+bxen1vawgFuD21tS0Mc+M6gGrYElboFq7fToogb33aG/Fm0GlxwbJaiSITg2JZtw3/0ly8NlG8b2Ob8ls2yNA0xo6Tg/Nbfc3VbscmMCJNygFsm5n2m+mThKMi54+ghG/Pv3By01cdEH1XfUBdQE8SNFvZDyIMG9UGZloKAdmtYWNkNrNjXkAZuAu7XDxx3i8cEy+QjLpAmcOHH0UeORvN6kRU494A7/PD079wkRnwYQ8j6gnIqEcTGGRfX9C0SB+kqr1PaktrA8o4o8Hh5nYS5xXiqTCxgrjDKE+7R501kXdI0cBHHuLoyXMxb3QkRoMwLS5x/bc3X7IooTYmhIEYEYdaAcSF0oLn9mhLuLZY1YBeto9hqsIRlIF//AK9OfQ+M+UH3/c4x06eJWPQg9DQtMGhgiLNs7vMuaL2eIe2HfFMdUjF1BbMho3R1rKDEue3DxNxbr8TAEnpdPNdbGmuQ9WNZJ9pUKJxn6RpX7tv7Ti2CNnQTNmraI6NlSzYVUT9hNMgdA4oCm+pUjgNwinAkbHSEHYcoNvtgtV4Ge32NZUk+sQKQ248mlf0J2/JCV0LAzNJuyT3qjDW2TFZxywwy3A4UM3o2X3cLd6aLhPipPdj2RjArDGBHcNjmuWjU9O+5po9zoFxCz/2xEejD0xchD+t4ts3R9dHhIeF8WkPzx62b9eUdbTLsBFkXlNMK7VInFbIrIbZkmZaKwPfFcQSVpnLUKY1bA6onWp4xUFz1CEXdL9cEuEW0vorPVyzFq3tcubsxfWdM3RK7O+BF7B7PBfVNG1GvX19Ax/PSdI+EeDkATxrO8EA+/L2EHbT3gqa2cb3y05XiKjenodIztuxDOP70luy7rqX3OKbrG/7WK1s4gVtznzTBwNsqsBVJ8xhXXgEkKahGWiq6xOlppE78GOTJRod9pGDFMBHfL3KYjTZfrCxpVazZihh0mDGrREVFk0Ejm4wd9Bvr4i+g6ZRK3mzBEM70gfScQ70l+C8a2MWjM6pEHAZGgrIsI9MqqyaBPwO2XiNpJSXIf3lrPJZNLxAbLpEppX+zWpkXufa/Otcrphp/+Zv/mYA/tW/+lfx2k/8xE/wH/7Df8A5F+//cSknbv76TDJ+gVV/dlj1Z7cau5PmfUssX1XatyCyalqr8eJC/dkhZ867zOTD+U0DjTgfAND+XMWqxzZpnEZnpvAB35wJBLXl9U1VkyH4YEa3zgfuckGxImLH7C0BmQGDnkdYCahauUQ49oGqKLVt7Q/4+mtMLmkRqBY4r6Fxm72Uw9e+3zbpXVNse8J5DyXKXLtvofJZhc9b0V0RJKThgUqzbNr0FSJwEeGIeLN453B1g6uh2Bp0BKGLVFxcG7/8ng+khXvrEE7tYglXDeS2GoxuACxs/wQF0qE/oY/tfrXLoFAhxorqxlfc1rZPF8iGF2R4wnzqYL45VqLcv5OC6LECVIOUtm0i71gVtoXXQyoUse1biAY+sv0LCNJ5X/RlSPumjEaQNG96xKG8l+/bUqBXJol/+JSfyIubQ2UWp8usX4HQHEpb0nxlROY3+R814KThljpPQxRzI2f981Gb63xs22XgNe2xn2Ga92o4MvT988NJHoguFv974DQQnXjhojx+Dh6tkQvAm07SPPRU6lej3/sL4uHTe36bMfAdoERnA7LRZ6X14bs9h9RNZrJt8zgHE/loURRg2aJZDQe8jjCM94lzLBZ2P36e8mxD/ws13/m+xzn6xBkiw27WOLZagd68ZjLoKZ4JFhumSIQ9Zs+1i6k7WwwzSWaj9sNW09NVbKC90M8vntd7Y+jtwtHPX4xWMl2MY2hTNIPcXyLe0iUTCFgpXDBZPQpcOMxEvokwzwrCeHKqmTVCH6x5fPiGc3CsD5eWqT60rVa5bxn3075LRyFacwS6wIK/dB42Uaqo8YKpZn+ObKkm832/9TvUOE47x21FsrQq8Kbx3kSeoyPYtZEy8S5FQNOsMnMc4nfvhStx/Bozfku/Vk4AL79d08xlnWutsVAWTaeLSYSt5trSuRR7YqOAs/uqZLh5o5sOin++jq0BRcjVDikQHbApEgPRBVY1M3pkPWydsqpF3QzjGALnek17FPaaIRAHc1SzGCsZlGrqbeqNpaqV8F/USN1clvBfqUOE0aJG5hVuUVPMa9yiVkHk3Mco8Gn71jLuvp5sYKZLjfHhPB51Djk2oNlf0gicEuFGD1MLL2wvkGgF1wVTfuXO93R8l3wAI30KLKsQh44eLoeNZj2J3dcAW6UyWLZ+EXh8Vy0TLYwJ7+6MVNNu2pIszUxAW5QJtmtk5dhlufDcG+DbjujvH74N99wbFYUWgWZ3ca3FuFJ+70jpAx8uzfwZuBSODcCsYlJqt476dh4AmU+7A9nWmB6BzrFbO14j3w/48+hzD7gmRI4nrt0UOd5Bv2DmiNa3cVmUBa6ujCKJOPZxymJ39cYCdSPTdBNmvD2tUTpYRLrH47z5IutPEj4eojEPFkghGOfUB+ecVGqZNTGpMKeVMvaH7a3rUK6Yaf+RH/kRBoMBp0+fjpvw4x//OCLCYDDg5S9/+TPWyGspT528N004yrQfxwORRnB1Q1HVFFWjgAbJGPc7SEx7ezMo3j0coEIictsSdkBzrh/rpxmIZjGsQVQObtpAzjfJ3vfMDDkyxBUaJbqvqzb8n4BAkHgftLR8fiz8W9nR5nWFFgFi6whEjdWSTwV6PQ7IA8iGL9lvbTnHsldmvkLZ0IryVj0xyOmghmGp63CnhGkrenx4/ypNzkJRn8sENSy9BSDTSpm9FsGbOSRFgKQnzaLO1mMIdHwWTfdGIDTmlTJ2Qx+Izq6LML8hEF3h+LG//f0J6dy+BWe8L6LRmIjgsW0ajMCsRMmxGXgBr4VuMbRZX/3vQXF5U137c38BWymPOc4xw7E4ugmXEoxNWkhJWjNTunzaHbl5POSm8XF9hvYtGg1a1pqzaP47RN02JBC8om4aeCK4ZW0iS6IWU3zfAsLFORbOUY1LDXoVdkMQpogwbGRlKLNhJRGedr/djGqMv6mGv7cnbBZqyZCliukolmnvEtwhyrTHQHR+nwOwN0M2QxCx1L9+oUTdCkHp4ZON+ssD5/T94EHyydMx8FeAnS8E/hpQ/dD38/cFnlugsQMcGr08jLMhmgWgKJHlKvPStiwp23u7UvNxgRhAcEUQ1yphj2aR451DHjinr46h3IVnPXApmsg7b1mj+Ii4/0Eo5g0HvX4WkTz7djA7DqF2Y+NbQLqNc8DHqrgKf/1wOfQJkpn81x3Xvk6h2oHZ84/o414gEuI1BFP1CBKBWkRhTK/F9FjLM4v7djbg3Jq0b8FUW+y5/+6Tl7ymnRynhm+EsjOCi6ua62D5YeGHoOnebvNVhgjj67KtJPhq5iKYxjuQPc3R3jj4/r/11zjtlDm/2SPyAO6dcylcxNE+nPOG33bejZbcrv2Y7cIUu2wyH3XjWsWXLupDL7lFmQ0zNmvxq6A4KLhXde0fl+a6wig7x+CemsKNJfTLXMtu/QRCxxxKkM+WRlgkcUwC0945JyR4Zqcm3AtMSuyCqDdHGC8JyCf0x/exMXWpT7sZg9JB3Qrc2oiO18wS/8msvYvBDtvCVl0sGjYXNcWi1mB+i0rdV+aNWrjNa2TZKAxY5NrATKjUXqsHS2SjiDhFgGZrpLcnc85KiMmjFkyFh2XBp72r/Nj/+MPdN7poBxGoll4B4tQiLcBZ0jHCcetSOujDJCiEPF00rVQodNt2orstrN/pwcUQGNcz6eHYYvAmpNzl2VLP+mTOw5jvbKrQ4Lk36nshGJ2h90YOLuHyKgLsXdQr1WozE13QLGoulcr3gAaErvz+iTgKkK0CmS1z2GRwcLgcYlSZrdqZpz3Gbgo0/W4FW5sxiGEvRljWNrhhAZUK0GuMab5ZA3HsTZ9LqVuZQNKo9/DxAPDrYxNkb57G0mrOumBYKOHesvF7s04MvE2HOfVpMp9BDXsoV8y0P/vZz+ZVr3oVd9xxB9ae/4477uDf/tt/GwPS/XEqFv5cAI41gpvXlLMl5bSimFW4yZJyuqSY1xR1EwfkDpT4D/VEk1SughdsIzhrdrbrmXZomcYHIJI2b9Ry7HhfYK9xkDM13LSDOMcCDVaT/OENYeKcqgP2F9nGDKXLB65P7gPX1TVLDGYwtq6RUkNcRetHYyKvtIj+GAPzYU+Da5g6bfTKhdeIReJvigasAdzmAC60+hTf5dCJ6gSwvu+V70wguP5/3P1n0C5bdtcJ/lZmPu5157zHXlu3bt0yKqMqSQgEkkDIIXWIJnCBEPRIQ0P0TPRMxAiYYIIghi/ETIT0QdBBR8dgFBMwzSDRMD0gBJIGhBcIJKHyKqMy15vjX/OYzNxrPqy1TebzvOeeqrqlUc8+8Z58XO7cdu1l/2uQo7O7QKB9yAN00xfTnxt1L8Alb6gAcrZBpsa0DQyWMiJO1ehPgMOJzfOrp3kMgiPIuxZ80EfN8zhgZlTRrs/eBGNhpWTyp00RNFgM9uhEif3Wti00ObZeW6A9nsL9ldda5Gp3T4EtBHlvRhnTDlloh6GlXSkyP8SqNvpwsKQpKVf72p8zxwVsdJjuRIGVovM6j2U8GL27nQjd3ty0s+B9k4Q5MNUhsMtgTopS9kHVhn8CfKMoT6qiUg1+m62YMvi8q6DqMkNY7odksFYHohsMnB+Al3KIiHr/mlJpGOsCqGAmYi7fLtjz7mt+gHodH7xp16il9+c+FmCBcs01TLpqbW58bAdW2kRHa7SNgGjD8Uv50NXWzYAh6EDrwltivL8v2u8REKdydGWAd18zkE0Xak+eu0QSZsuxoaAtQNPBatEYuCjkdRmvMdtBO+JuUj8LTqssigHRXQQweUExJf0IdVgEnr5K+749upvw17/jKarHr1loCwy8CNKj1D6v8SnvWqejUg7GcHAiA359kXO1xz6X9L7MmhHP2i6YEvOJg0wzy3rL66Udlmt3iw9uVS2V9hGEDraFdooqyikZmOyJegalP+3QvcaeJcIrwGNO+801XpKFvXYXeY6bDJZV9hmSgq0c+zL12RZtCZpdWWNdvVpo0KstPLu/ZXncIf0O32+2vdHi+glJQYMJuWKeBIC76gA3jvKZV2RLKRVIqexVVCcb/8r6EL89wNJijouO/nZ1aYl7UfiPBAvdasG07lWmqRfVERjHtFcJqVviDyJSf2nNK4WBpQvvDzMUBaXqe/Y7TVkAdO1/q95c5GMqvyi4jwWMcs+Wz1q16F7t56cQKkErIRxM4N6ae6rc8DbUMIhpf2QBIz0fpxOaxwiQTYCprZKpFHtNJK+nsZIVPN1xX9St8OIJXBEzZu3y4Dhq4KzYze4Rgxo9SHwhOeVb+djYjEoY7PeBtf28h8Npuk9K+uf9OpCIKxXBTb0LjXi6xThuOowOcrqifc9JLVz38dkDTot+JhyjvRrud5nX9ToHV3JMeywLMusXx0eTS3Luq94NcGWPVuzMniTFadzzNWwykGlGt/L7S967aGOzsZjCkhyI/9fUQh/jDBALct9sMr0cbPwhvdwq8btOh/uyTIW56ofGpYcfqV9Rad78J7l87dd+LX/rb/0tXnrpJe7evcvx8TFPPvnkV6ttX3EJmjfQ7aDcWHfUbaAOajG+kFzmqipQ1xV1U1M1NU9iVtAVRrhLELpeHj7HqcSFUW7WqMG+j6VxS5q+4mCqKqjC8LOYnPKxBr29Qa/twasn6Psug8DSY94iGFLB7xkDdSkfFiVTYsyUbq2xMr62vGXYb99MY1f0todLDSuNe1MGe7QURAVoZ1XyLRyeG5m5iRZOcaAo2fPImKMZEcHY8k3lvmVBY/cOEieqJa8IPt+Jgo0PNjWGZL5DoN1BeAGYQ2gDgSG6p6pyDw/bUGMIZNkj+5Ks7BLrkVH9pZtnOngqQ0l+eQXPXEpCb2QrSq+K7C45FNhTd5ehENr9s2o0gUJ2gSxPsrKUxBvgNBDcQhpb0wqEQ+DXz/JhHQrmKzLjxdhW4hp9fx2FgSewg+QEm8do9UjgLGVnS6tj2eR4OE7qJBhFUMZIMGcMD0nArBjzDO2WhsO1Lx3Q7y/ghO0cvShT3eFiW1wHDjtFXza+Vk/ADs26SoLjQKCNV78xCEzKg2ZkqRVVGgzNffDgF27DC0t49yoLk5XRxcl4D8S3lVDFmHZXJOrTV+EPBvgHL6G//zH07dc8VQw5V6wa+rNQaPVXPVoA/hH7meiyoE0NQQ3tP3Zci60U4pjrUDm5IQu13rd0fdhB7MKFxteVoE9fofvdLe2/e5W/9+1P8f4nrxLdxyUKmrHuRIuBFlbzyRAZn8y0JSkgZj+I95XX9LkOP193RjMHdMqv1UM6OHaPj58/dg1ma1544kqOKogeBKojAdJe13hM+0bRYqxTKsC0qQs6czyFT9+z9+VGiNr09Dp+p6a8nGLAUgNaWdlGKeu/3MCnTvOYef2ZbighMs+Ypf2GtztiWZbAnttFt3iBXpW+C+gSwuVZAqx8FeHxQvkeFbhVJcnibu7xROKWHlzSzXi+gSkbIw+zRVsGLvGaeZTnH1hKjqcOMqDf2Mq+ZRn1F+t+KLTHdZwY8LxvNdINBDlZw2mHSOuCTMH/jNdE/PPsOIMl7R1daIbzSc2W7TEIo/eKp3yLZ4y3vcEFlT6gvnSTMJUenl+0ZGuzANw7RT5zD/niAbzjuu3hTobKiRjGUYlpTRtxWtGg0yrzBcWjqmCHRx0C2qmj//fo87fg127Be66j77ph9UalTK/5QBvPZXnIrFp0v7J9UIntCRG4skd3rpwpXMcxaNS8ViWQcKK+3CJAkpKXILMGxMZzXSpLZHQOUDx4f2K8TPxxAF5cWchMyXtHpR7AYeNeN5r5lmhpLyzZYGvrIvR4UvuLG+Lr884UCpCs7HHLR1C6PeCkqDDtmRkG9kw+M0xW1oFiUfueW03Fkd+/R2FfKT2bDqbo2vsWij4XtFvJlvZYovdO/G0+sxmMFffO4O2HlpFJPKa9OE7FU7ROeuPhW3+ODs6OPHZKXLq9ZdGI413w4hNvV4ctcd2r4SQbjyj7N9i8b1KiF2tZKkY8wyPW9WWWR1KEbTYbvuM7voPv/M7v5Atf+AJPPvkkH/jAB35TC+yXrz0H5AW13vRc2wSqTU+16cx9yP+qVY+sA9UmUG/M4n4FIw4vkzfB2NX2TUt5oJZEMeaAjAA7pVDmlqjBAVWgy+v1A7hlGiO9e24ad8w1tfL7xDWHMReiiBjAy1mR19VL3PRjYvNmoFglgR/xItB16DwTtPJZMnrQXKClSWnRrP7cvugBOo3frlobn9rd06Pr/+koD/2on19KmTBKj5OImF/PtXAx9d8MAvaHu9aIbJ8BOshr6JbCjWAingDVRpHpJLlCDgR1KebVD5m/93P/ujh4MAbrlbM0Kcli3cf3NiYleNJOSXCJC+QFkxRL+TqOw8NcdSHFTeoK2Lc1Gw/clQhcniGnHubgG00G+2c4l/GQS9vFPzvA3NVeplC0FddBWMvYVTgKDP5eq9oVUoYUP9U8HQuvpvVOBjD3w8nIihknUUxJovtT5LQdjFUUbKbuF/aw2Njy8/j6pPw8YHFv/j5ZfeP3BYPTCzTRFy2OQVkUJsFc1sCZlhduof/Ti/bJz78OL91JwkUrBkSX6E4xDCrmnreOn0YO5dmr6JUGFrOBoB5j2kUtTzv/7N+wUlAU3QR0Mknp45K1vWz/pEJC9PTRTONGJGFCAYINg5jvOF4U1wtjvqPA7laopPJ/1xU4aLhz4xJT1aG7eDExAzp8CufTKLQPn5/qhaHQnuZsRKy29nVnVodYLvIoGBenMXFNpb2yD3pu8ZAz59iSW3zsk6bdbmtKoY74KrPJoG825tXgmQiW9i0CxcUDJwmQYWgljq9fWpkS0/INDs/Xsn4wof10aLmOL3vVFM4UaUnM0S7F39g9fvB6dEjG8Jb+1OIsw6whCPzrf/lveFngcZ+a2hXeEUcvCWwR8f4k0pI83xLys+LQxrj7rTM9qOVoj6a60qXw80t4+zFc8jz2sZQeDoP3RcfXvZlEt9avr53k52+pmaYAr9yh+devmhz5n+4hz9+GWvJ5N0b9j9f9GjkznigqcgWjq/tY2shBn+N1x+fl8RDR48vmzyXHtFPH9Srb9fv+WIn4MAi8fIfqP95BOpCffBF+/XVk1TugVb9tuVv32aLXBhfwL/CM8rNy2im9pzrUF28jf/9F5FdX6E+8AL/+uilo0jyHQoAp/0ZE8kQJc6O3pqBw1PG9fVb3eg4xo0pU0lUBKg3pTN5V/t7/65/v+HR01se5jPzANJ6twmq0rhJuy9iIMrfQibR5weLZn9wb0pfSIHFpbpu5oCVpaAr5XzFFXRTa4+OHTRvtkXg9by1t8JhtLPqwjwvZBV+iADMxT8hiyJLu0mlLD9D33JpUXPV7t1JTRt5g37FhklFvGLcf34zd4/fK+opzTX0tJjnh/hkcVLTO5dajuYso/42fCbsAM8fvLaY9DOIvBrYkPye7SG/2Z1axZwNK/dvhRbj1wDGh6AJ86jX4ex+xlJhl9MqbeK29FeWRhPbpdMrh4SEATzzxxFe1QW9VWS/v5UO2V87awOW2p2oDrIMDdPTIsqNe90gXqLqAdIHaYyF3xbVHQeBN8JusXOQaf3dp0kXpmgPFazFGQxgg3qoAV+bo7XM7RDvgeB/EXFNnUjDLvrPSEjpwob1crPG6oy+PlHvW+zP+PCw7mNgeOfDPBEkLWsiyzBxYT6rE8Yz3xwZj+JKb2nmHeKURcM9Ukrtd/99McN/FE08oCEfIezq56ZzjmrULGN7xgTIzV91I6KMhA+C+KkflObME2ZsmQfRCS59r4t/z7FPDdfTEDF4+2WZuVVNKFijmN/FfBUMJttDnzehEYfv9LlfdsqPkq27sN7qYOINu87cUqA9m1rZT16E74U+AbaNpjFsjrqW0pjCGd+AiX1jZB2LORguwpNyv9KjacqIqBtqXvD00Cu3DGHSltzRYeVjzazGEd70EcjoOAyC5x6OarPoUdZR1DYZXlaUzN3dxpmJWbT9fGa1TO9DqKEAOHpjfR2+FVNGnblMFIHrGf/pWOsU3YkahMqa9LFOETYr7Lq6X5+gt23HJ0o46sI3jS7ztSU7j/msxYS82KzLNJe2Y10if3flKBqps20QzoCDgucNjdoNhLuCLWVD/rsp56JNCYdbATLh075yJT4QB0fnrkimIpe9ZV/UAITnNSGzTBPNoShNd1LHrs1jWvQntW4RP3rR7STEiRTtmFXq+tpCRYn9Y34brKtKeCdCsvXcxz/WY2R7HtF9ZmGW5PEtht7Aer6+cmxKzrG9X+BliQvAdX+SF51gIQ1IaS3SPjzRnwSiFZtFEhS1eQNUyJOiDDeGYpFx78pmneEWEJ0SyrkEsXKrC2YHYj322wfnU6Eq5h4UsfG7F3ft9yT2+jGd//i48sweHdQ6tG9P2wborXg/Cq4qf+PtyX7Vibv98+i6yAaIe5xOvMxDWt1zk/c1igpyQzw1vo6i7BBfP3vXHjitYOMHc64xdmOMI171m3mx0X6QdYDRxFnmxT9+x9RJlz7/7EvyLl+EL920vR/f1UoB3V/f015lQNN6+5qljZ1QXO/bpO0aroxHww68NF3E5AONOeJ24FNXvTQogOidfV4H75xz7b6OFPQIB1uNzpSjvedcF4bTFxCT6sXHgvoklBpzIaO4KpcmW8nZRQVKSB1PwvbSGJ/czE1HSGYADN9/6fRF8Lo57VPzHsz8KshTX6JmRx5Hh+J5Y2uLIo5cGtkhi95BkGcf7pmAI8u2Q7y4NE7GttHBr0nAd479nIpx4aFogh5ZpXaEN6IN15v80osdnnjHtBy9zcshN9koY0jn6gD4IcLygFZs7qSVtXcHeI0BnwLFtrEvzeKqSweicR6rW/ZYEG2WCiY9XOkMjn3fepv5tyUIXlfF5+rk34Cdehk/28HdftvejBXChcv8tKI8ccvIt3/ItAHz0ox/9qjXmrSzLs9tpY590gToErvQKbUBat7J/+nWqf/ARql97lWpjAnsTXeeD8jRDob30wnskBPnxSR9f3+nMva10zynBcaLENvjMmcDrE7h3jr6+guOZW3WEVQXTgRIgu1YLmJvQecHkxfbBdvwQtiEfmnt2RIcGLvKbDjwrUVMwg0mT6B8I7mJTNXYSjvaOqqXZIkQXRMMkMOtMJnIcNXA6zKs58HC4oJT9HWjpcIKc/KmLzsaO7xJoy1JobrWpCRtP9abZgoNaOP4x5BQpy45qMfFlUTCWcU7js3yeP/S+dw4PnScOjbld9Ylwlkjs0UV+jJo9mN/e3+9wHd8S3qOr7rrb/m2q0F+eOXqng0+ZcAMdwqwSOJghd1a5rXH/jPdRMSQptr1o1hPsSPsWchqxtC7a3oj5mKmM11mNerc6jfGNmrot+PqM87npU0oWcGZCHIUew52QRQWnBaNdWF9nLsRtyjaMh1OLq89bVDCtvMPB523MmI5LW5k75RYDWDxootmJAlX0PVctL3rvDFKMS8eQ4Xe5QwpAJUwr8bg2hoLf9X307iZtteiV4SoeToDquXekseYc9HCS+zfYI97fqjaL1rgdpaCsvg/i+lcMsKne4gSG111FKIDoJL8HONrn4LRn4oKsKWk0r/PYaFWraL2Bg8wgJyGHYi5nDNIRbk3ygM4Xb0qAyXKy3ozH8L4Hf62Rjh9MqFa2AptCGRGFppSysdh4DTBbtymFU3mm6JjmxTG/5Lbi+4V2Ny6Ai9zjX35gIHTlGStQ4g+kvl929c4qe6OZ3rC4xm5g7vFl4qaY/mjrnKR4UdCwhBz/oCfsLQhiAGbPvPMdvCzwpIjFeVfRPd7CS+pyXC7P4N4Q8T4BW4bcNcjKqwFwFBhTvcs9ftXB6z08ewQHMztT0EcT+lRdaH/IvpGYRcIUeZUIvPfYJKDW1/3X3kQaKdzF2d6LAhxMrb/RIhsbo8p+yH3eNTflkT7+fsPQHRgKhX5QVOrhfaVXk6+3dSU5DebXXCGU+cp+65Gt55/8AvzIR+HvfRZ++Q24szIL3k9+GD75ahLWoxBUWvbExzvSlRmaMEj0XceOHeFt+qAHdERerVdCUNZB2YTARg2/RIvfsLaHhf0me65JBDCrmTw455gMqBlj2qv4GbvLh772Xbu/2KVoXHUDfngGW5k1NNLdOCjxb99CJ+xH5DCP655uOSqF4n1RSzYnY0bAwAtMnBbEsKpxTHu6jvdHqehaGyAvFAI7OcVvskX5WKdbRYggq7GuyOMEb58ZKu37203NVSd7ex49mjy4ijNYL9cu0MZ+kvkaH4MNQ6F9QVYCSlL82bpK5+mdpQH6zhtLSxu9gCUL7iAOstRbViOsH6kdsWj6jw6oW4vBkPKc8NJg9KWN34mg+5giZuz1kKvdLluEHFN+leVXX/VBiB+82WH6lZVHjmn/5m/+Zn7hF36Bv/SX/hLf//3fz3PPPcdsNhv85kMf+tBb3sCvpETicz8E9jtDZ5YQLHf1F24hP/GiMXYffoH6v66Qr3kMCe7eE5SnK+F5Ml8QN0aMaVfVh2tUSsGx1Lbday3nOmTBHRJTIVK4WI4tDtf2TdJ7ZQ3XD4k7fCNiXo+FBSERD8FccW4tc7v8moh+/J1mwfXCFDFpgHOfBodf38Gk4jy6hhXtyWeuvZgCZzWW7oTyIHVCESKqvzMla2A28bq8wXvDvJqpgRd4EVxU4nhNoMjRHrvqxNutxQOBtqTWO9aDTmpCtLQnum2o3KcoV4oDTtYtMmuGVe0SGuJhM14ni8bcG145gXceD93jm0wFzS3Y+7TVR2dcp0PX8S1aFAmuYBaCkmmLpVTmnHdwaBVF5nztzNsEgav7cBfk7d7mUmAfubaICJVqRpHXDEr3JAz3rWp2H/O2CJhyKWrVY9MjEwDozABSVM0ov0hNsHYtNOZq9z6e9/BYlQWR0cHYCQYWeN4NXf+dGZ4EH8pyTorr+C+WU/+gBT+RS8UBA8G2vK+vZAgc5teS6YiAhUmx8+RV+J4O/ukr8Eeesrh0+zUdGUeq7H583bhyMcW0xx9cmcKHbwFYTviQAW1UhKU/P7m5rgNau9AemY40Tv7EqkbWxZId04G0D9yVMJGKDp3Mhj8fc2O7ShzfKLjHPgJcPuD4DmaJjvtRNcXVR5qbql91nE7tnNn5HDDz3VZIStG3UhLJRJW+7VB3jxeiHFQwrQ/pX+kWbwI2RnsDHK87mE6HeehjWxha3BpgvgkplGTg2ur1DwTqyEhfxtIHXVtkulD8qZowrEFh1SMPoB4gRI/oJeT3k9oG4+4K9h3wNTjdiHX7/jnDBMGbxZBNeQh6fGxrMf+KK2Ue9ISrcxOuKuENQCu44QsiusZHXX5k8AHDxImI9zA478bZIOJptaUQjCGa8d4I1PGFB3BVLO42elOtggkau7z0xtfo0VGUQVq0GEZSC6umgklA3naD/g9C//HbyNdchedu2hlXi3lk1JVZSgu6CqRwlmrZIdM6AXtWuOuyKisMdTzKu0EL2jgeEy9LhnnahUJo7xWqmPlgNARO27QS2lqom8rOnGduoN8PfOwN5N3X4OmrfkAFePUMfv0MPnILfvbl3IhPvAh/QuADTxRgi2rroGy4KzobhS5KO09cIdx4mf61AH/4KfRt19I9XVBWaiQkTrn0xmtN1QTjBpJlUice0y5CEItp18sLZqueJ/qAaDWIaa9dMSkyUoA+rJQTUPKmq76IUxDmktN5bS2/Ma+0qGEd87QLvHTu2SSqbQ+OOMkiFi7zICvEFNLiic+KRq3oc1mya6nGsYAYbz4JOfWm722qWI+nfPNKLJWqZNyFxowJO6Y/ixoeRrGaVFx28jn33y5F2ItjFfs7m6KeNjGUPFtxlKzZTvmW6EmpOE39VQvfOZiBCB1iNp6BcsVey6SCNpiRgLKo/3CIHN+rUvUhKVwk/Rfpi1U9kGH2GnTlmWdKmllex2WXEumDN+ETxR79elfffhWt62V5ZKH9L/7Fv5gO97/5N//mzt/883++K07l/zdlOj9M83I3wGVnWqL2Xz71RlK6S4Dqo69RveemvXZt2pPAv2M4v0EKrVa5OUdlV17WdL2zhMf3hzs9afsKgLMd7nx60EAD+pnb6O98InFeUaMbtU5CecU0jp8vHG+LTkXiCNmtNYoyO+Nr46KPhCJZqvzammvcCkvPGJtgxEgHMugE0BmOqJ0qTA/bKAO3ZE4ViaibsbGXZnBagjLp9qa8oOyav9j3dGtBbzValCMjUzJ/ZYVFxTqfmNAel4HXdduFx0MfywqQkw08Mc3xYFvWdi8u/HzuxVd4x/Ub29b2l9bwnK31RNFT3vaMWZC0weUwbaLr6rhPowWfDkZ2W/1GB5Uue1jENF0koT2Iu4YfzpGTJXCc5jAJ7uiWkizFtMex878nKPatC+xx3ONrAbOqTbdXQBIxJjW6ssav8HWheQjMFbE4TNoOpmOXanvd+tg1LuSwbJHDOvcTSz8mqkRIpXJKtpiT4otzTJ45UdxKFV30h20Z37uqhDonQE3roFxyjY5zxytcXVgc+lNXBmuiFxNeyi0wUARWxjCMwTL1uIHbK8pYOA0ls6Dsv/wqd69dt7avW7Rwjwe2Y/cnNZUj0u6SomIbK0bn8rKDy4vhmi/G8KIiIsbES5/75ddwXHHzxTPmXC7obR7r2KbUyGXLWSOupxpak2JfaeqIQJhL6Yahw886LAVO1wv93I79WkyYmzkdfjjTIVlwh0TvtBbCBC6frc3iGVddIIFgxv5GWlOrctAFtClRhNge87HC+tIo7VtkLjHr4joovZrQUr12QnW9olk0zCpJFp4s/bJNu6/VcH8DT2lxdMf1qGhFytHeYLrR8rwc4KBQTkFBYL3NvQsCYblCj/aSUeDXXn6Nx5990gT1qjK3eKmoqt6A6GJ7BTv37q62mOWUTnB0pkfFQmpX8Hj2XkexzsAXz+Ftx35Iu8h/sk5ZW7bO1TFzu8TWKDLYD+rzq2CCYF/RTqAONVoLvP0x5NmbUIkx8vGvERPauzBi+m08RICzTYr1j9Rg39fdKYapN5iX0evxZ6eYoJMgEBS3BKqnfMv7ZXyEIkKYVCx75XDijaiheu4mvOOmpx3WbAV66hCePITf+Rj8Tx+Bzxa1/cqr8L7HhwJGLUM6i+23SdCsZFWFTQWLCr1+6NNkPNVScQu70iOE3vjeSmEaTJG5p0pz1qJzCDhqvJAxRKY1qxk8/mAJs8Mc065WV/0Q3utzX3iJd7x9hIm1w+VBwLxjZ9Vgry1L/srHO551SlwiYh6RJ0W9L5/D00d5/0fBXRkK7wdzeNBnljRYDvIQrcnYuXs4noPyb+uwJguzK2wvRR69yrx77OgBNs5n5LRyCuapWChso0Noco0HwqYjVHAoksidw95xjoHnxzWrQLg8hZMuT0EhuMfPont84n8Yucc7TdN4hitwq0evWutbotdJnup0PlQ1dMHTvo32ZUFb4qsOqEM/SM0wOD7EUsxuCmFDZzMHyMn9S5VevFRz/+Jvn70OT74CtxX+wBPw3I3hb7/KwvuXoAaLE7j77zdbObz8FAFjgk8VrkbmODJLb7/qhA6aAPK+6w5ioia0B4tpf9F+vgVqVS6snSUepHFsSteY+0sD1ikOHSAzFMTPh9+b9aZCr8/s9L0amR6zYDXRIiHORMYDDUxoXz8k5ZsWi56s2Bxr5nfRoSF/qBZzOm1YxXoKQhS1iEneE7gzhQh3VVaozoBNExMq5uo0mSZlhAhG/E7XW8xLrOxh63OLXyRa2ilii4sNu+oyiM54b17AfOpUDDzLq4jduadwNZhdNNpGZdlS7dfZE7Csq3hejN35F//hV7fjNB/fh5dP03gM5tct2OYWXDZ37CIcB3jXoEl5o6HzRA+EONQlUYwHwHmPTqfFASusyel3OQZ54ywJVUlgH1ilc9kV0y5YTHvpHp+2YvEeMGCfaRHfWw0PfqQmBlKtgUm5jnQ4hiZw9mjU+MS590nsBBQXHvYq5ME69bNc8NOgD42NHSxx/7zFhPYVmGfANMYJ++/HAq1fN8KWR8lgjQWLMUvgVbGZXbCUa/FzX6c9D9cCN5WkQzSOi4rAtT1Dr1050xDPFH/gKTD9lY8kZ4vQtXAwBNvb6oNUVIRkGSiB0FI31RQ+XdE5XfYehMpAsbBzv4+KunZfkQF4aHdQce3eWQbT1CxYpffeHgHoWvppRScj5UZpqWxyZoOBwLSDMK+BM5RTgZNQcTqvOK2EB8BZJZwqyZvhwpL2BEM8AqCbzThYDZV2A4a1JHq4d0wHYa8Z7ZOi+WXMeRKq9+DuMC2b9sqqtTP+JCgPgqFZn7zRcvLUEWeVcOZK7S0rO8VrEWPU73dpk4XIhJIVrooJ7Y9RMJyQ3DrLLqf+bG1cpRdXIt5bE45zuNDHfuXDPC52ThKb7Od5LSSQWQRLGXu3iHotrZMFzY9t3JVXmT7noR6EFnzxLrx9L/MjxziArg77MyCosVIfjDL0qBznWOqKMK05n1bm1TSrDYtiXiOz2qzmU/98WhdAdEU98XoI1cqhror21Gr8XHRlLpdi+cfoGpUoY/f45FERcDDcsWI00w5tKk6nNTKtYFob+rn3jZn1k0Vjf/PG+tlU8I2PDx/6dTfz2hmEAEThMH+WUnQCnG8sjGkCnKxNb48J6+cKy6Cc9Wb0Pett36x6w2k5U9O7hFWHHnrueckhO86t8MZin6snXXaHVxJ2TqXFXI/Kz/+rX97+sKQVFGu3C0iVMYQEB3WNDNJ4TZQGlH0HV8LPkxfvw5PzIW3ZRRsuzcxKXLIdGqvJ7vFRmI5FBldlvO+BFHJQevlVRfvtpVBjvOg4VaNhJIUBKx+8XWk7tj1hIlyP9ToNmYspbzO99Rbvz9DzLg0TWH0l5squPO3n9sPCKq+DMdL7Szi2HC4W0y5DzJv4orbzrEEzJkPsdz460ucGtBegqZIskMfOXkzEvdXiurg82cb1UnbylsXTB5c0OJcO4RtvmgA/7sub8AlfaXlkS/sP/dAPfTXb8ZaX269+EgANym1Vjgrtc4Uis6mt5X2o/ssnqN9+3fJLQgLReByjzbcw612Z9i1a3HdE/VopT4Sxy8jrvcfQybab3tgtML53ycYOiBZddnC2Rq9ZDtq1iGH6VMIWVQc7GO5vC1bpkB/9fFfu2bJrJUHS4q3FxwGzxtx6GOYbjwQpljmwriF4LGGBNYFgDHUCoQOk7ZCjeW6rAEc1fL5o6XhTXlDGfS4ZMHBADMoq1Nz+IqUuGZByo46E2jCZZIKq+e82cCXeonb4VusNMq92g9CNiUEt/Mkf+D6zDpYHzxMz+MVXScJuYW0v0eMNiG6YwkS9j1q4o+0cMCm+n9RZaB+XpLHF8s8eTQZTshIcQFGQS1O4vzGNfV94gCTmUAeDIGRBvRaSS+ST2Dl93/tZ8qJ9aRnvChfOqBgrx2JaJYTuvA5z62MKlfT7rkMn2ZNAi/GKsdyNCswXKVd7tIxFxmtf2QKii+0aXIu1eaLKdeALqX31oB8Xltos7VtnTUE+ogKrBJm3fCvVoD1gYz4pGKtY0r4Soa+hR5iIJFcJndboPoRbS9if+JLJe3cd4EPf992cb1yxd9qhz1jFYbQvUntmUJ30g3RLkaHP/bQ0e6Ec3b7PCgmntyVT8LCSBfbiA4HN5TmXzztHnK4sVAV3kVdJAnsWeHqYFUB0u5RnpaV9PNHp7DEviXO1v40qXS30CwPaM9AfW5uCW90v7Fweg3JdqwibwxlPeFtSijfN9EZGDayA4zWEaeEtIbm+AfOdXmOK7l+7540wmrBpA+dtYFkJGzWaHQBun9M8cWSAwT4PdbK4X8CoH8/NJTYe19i612AW98gQlznaYyldRctpSNeCB4j0v1NFl2vCXu11C/u/73u44u2KOvyqchfcwioHGBN6N7r+ks7jBAQ4as+coWJB+pDoq5bnxFlroHzPXPJ5FguDOBnhxuwq5TqebbOX43Rr2lSc4fG2nWSvvRpTUEwqE3CntdG8sZXdmXLZm8BZyPxMICkuLmGCTyieO76OvZcjNzH3D+MejYEznUJTj/BLxnWLcDqtgAZtekKnqFbEbBaDszl6OtCbIPDs6/BCB3/4CXjWLXlJaxlAo/kj9tfqnKl5m6DAvTVcru3N0lKYdWrn/qY39/hlUNaVrfE6wFxjLnJlLTBZBZr5lL7KmSPi9Vzg1tEej9/zMVLcRT4L7xeVP/VDv+/C71Lx+2WpCXgUoMaU4Dbu+eclXUplz9fg2s3j9zCvhpIGVDJc04IJ1C8ZhGGMZ8+wHLaBz0QSr7jFSzobvrWwwDxCIHlrxpCXCM4c93kc658E/lAPXxvX/qxGCy+roDqQTVSVsAls6oaj2CZnlPbA0q5GuhfHca+2EA2MBywNy6gaLywyiGmPZ0XvY6KoKYlKhuv+GbznEMQUp018bumFJYI0FfRG57qxpWJ89f5WoTfMizGlE2MGbZ1kTzVmU1jmfPR43wbXogwyK5RXMDlgEAs45Pm/muX/b4V28PkNxtQe+yGfQNfu9VRVhbztAHnmenINstzEOBquMhHhvwP+OPBNZG+mtB8vnCQd+uPG68qPjivzQss0Es6wjatSYck384LQL95Gv9iaW/9PvQh/SOjffoNQOXp8BeJ++4M834fTiPAwJFCRwI7WXCSRu+Jry3szDcuu8QrQ1JyLGa1inQWNSO5LU0ArzLpbPscPnmWIsaDOhDzYIE/sef/8hoMGztaZeSmF9fjZl7CZYkx767ejxd5ug6F+loM1sCKMRkkgzCrCJisljCgqd4BjJYEGmXs8yLwhoohuCchluQj34IkDO5lPW+TyLI1HPNiroAYKNiJUA0vqYrQgqtGzy7Y0hdD+EKufrnojnH6/Al1lAGUE4GhhGBOnG3NRLrwEdilgoqARY9ojfuMCc4V8GbialkRWmoTYTndnH5e0dJoKXUcE2cId1ts016HigzXQJAfhVJeKuWlVUfi6NEfuaaonS9jKQkco1KN2pb84HGrp6K4AnwDQHm2a7d9HZrnY6EEkrb3xuMZr4w0IXqOCzUVVb63HlYgdKJKXbVmX5U4V2so0/iXTzfEC7qxNGA8ZuRZRPGCCz0XmoGvRiQz6EzMRlFrH+n5OizMoUaBkiN0BQN8lhUQekEc8kEUGXjjq1SxnE5opzO8vkWuHJMKJbDMLfYAOuvnEQHSQNH8UAg8zt7RvMTUlM2dLcq3mvbHsAu0EOnd3rgOehs7GuFILh6h3uPdJ6pNfi59s5jP27+c2JHyE0et41gAsziBEoa4UeAQyTHp876+vTOCFJfy/Pwq/5XH6d91ktYFVbYBf617Z9EqvAbl3Rv11V2x7V5Y2rBbYryRFoKW1F18fTeCLJ2nwTJ5SzyjnXoVicecxnj0OQ5ltZZv9Y8DAq7p7vCrhAeilaYqDfhnhvX52R8R4y88uGTk+jtnxwh7amcUpCTklryPDkLcSjZqQPVo0MIxnv2FWbyqPI79U4MaQ++IajeFnKU/rEPdlaxt6P5aTGq0rgoPiqahZsWuoJpUx9EU9W1Z2gPmEyoF2q7TmjPodhKG1cnDV4WfxL45TDs2zF1FQCYEMqBrvl9EVD4ua1YRe0FrBQQQilshAYI88UAW89wasb5kAX/JsSSAqjubCIDVR63enSnMa0Mt7cNahp46j4J5crRpGyLKHX27gnyl8X1A+5HxCrQayOlsF2DMfIXuM7QGtLF3t2aUJzf01gnhYqZ/LwU7BN8V9KkuxR0pFCeuQhW83TrXF5lOyR1IC/4zXGMZ43ppXyhFmwBor7YIOvXsu1fCpdWrWwILs2rulZPf4+MjBsVYujtLT9rx19DpJ7ayGbxHsPD8X+AiGrfXne+WDQHCMhKhEtLkZhgHSKus6g9CVNODMz8q0lQU4qAnLzUChHfuLOnaPDJHyIwDfSg3wMabHRclKwDs9esVi2tfiWSK8w4N1MashmECasEEiX5VsjVmZ0ILxio2D+cWjv6iylgy6pwDzGn3jLNU95r0uXKs7BHo2Yeilma4yaMNXo3xJ7vH/SysBkBC4G+CSuts7LqTe3SBzqO6vcp7n5NZj14+rLY6PAX8e+AjZGywalC9+uObJLjfsnXNbmdF1bMs1vpjxyLy4VlBrgU84cmGDpUf59F3ayojoZOAeT2KeAQOUgXwwFIdAQhf3n5abfBeSdXpdWPvSwbfuoDFC0BI3tqHfpvuKB1Qi9LUYeF1pBcU26RoDi0pPbjcwi4yIa5sPp6ZBLdq05QN3QRnzbZANZW1RVbJIr9Usy7sY+QuYe51UBM/TruQ+PgjKoY97BTYXHVT7k4IIFQzKmBiI7Aajm9QWtOSp38Rd4qNrPL0mpUxB9fPYrQJMmof3sSwTt/qNx7u0LgGcbdBFgbgrwoqIiOz5eK80CUG+iod4qfgqm0LRdbLVHTKCvD1e0+1x71o/NR/qieEqBIipmOUVcwOb6OCnNG65SGUNOm/Y8goUcwtP4VeLGZxt8sHuDBcKkxAuBrQqX0flI8a3X8Y8gcImwGR0r2zXA3BWVVSjNBiDputQgZXubfF41eFdGwYhZlt1zjwmchMZrKSVAm7sE263mYn2eQ9qMsAxxWHedmZtQIaWu7KftSHjF4kZB21JbdJRnvZ18PCCwjW9PJAfUiKAmsIA5Gctwhv7+yb0xAc5c5wY00h/HTOjm9ZGeyXPYZxxW5vVMKZ9h1WgwxjvDf7X9qwa+ERV8dd75aPBhXqsqlbkoWeaSsGkkC0Yy/mEQ293zMkuY/obzcteFtrTSWEz0FQtGUywoG0ilnUB4JMB/seX2Pzaa2zanm7Vs1l2rLvAUuHXzjZ8qoKPX9tjLcJGoK1MWdSXdNKfl55R5GpXSEB0ihavzT0+Cu1lvOhOAMnI+BbCVlQghtPWPPYWUwLKZ1X4jO+P5BCAnZFSOcNb8gz7Pn73s5dZtG6OQ97ABM4MHOXW9Z4RejzwhTN4psCrEAxM6rTdpu/jDoPjm1DQ1uE5Mg5n6TDFhE5qdN7AfGLW9Uk9UBZLydSkP+cEDqawLLyGinbuscPFmN1NT0eDX4cwpdnK1Ssppd3gVBqRiBYX9OsYAtCgiwbZa6hmtQGlzYp+RmXV1Rm87uGMY8PPllEiJMBZy1DhwsrdFj3aN69Oz8HdASGYpbILykeAPwf8S+D/DHy8M76nw86Tdh0Insc7pgkzq65wG+iPgLtnxKSUkXeuhAKP5hHL4KDL5xsb40fi9JfruBQ+txSbVXHDWQsvrOGpo7yud3nbxOvRxACjNXvG5Dhoow9nbIdPpDbnLmxb28+6hByfePQqho3mDCw/7+1sMCyYf+XbM0hN3wY6rzJa2W3Y3NOoV84nNTd8f0RB70Asx33GJnB+Z79JaZOToSodBpqUWKUnVny9THwayUtDAb2/ss7t2y9bZKCLLbcyM0s31TDyWIp1+eDFIewVMzgUmV4k/WcvGpFMkwX0QNDzTa5nl6wwLgPiULzpC0v7w9mCt7w8sqX9z/yZP/Omv/mxH/uxr6gxb2W5+th702ScK1z2BSjB0chvnVO94xLyybsZPAPTWgrmYDqG1ftp4LcxlHMuLOlHPtHxencD15okiANDwlEugCiQ1flPv+4x+PgLaAdhAbzvKptK6OqKqQv4EYAm1i1CPkBPW8vZXrYptnW0BmNKh8H5IPl1vLVUSpg1VXzjSQwPtQ1a2aDFj9J53FRmYfIKS/6uUwcpi9WsuoTcnuL2D518tP3A4pAPt6JzozJm4uO1DgUKa+oopvWdFNtmrPUfMfgK6FQI6wId3+t6HfitkblSj8lTqOaNCawl0zSkSFYq+PGf+Cf8yd//PdsM7uNH8PIavmYoGFp2hMCEGtSYimnRRwXDJJiUVpLiueOBAtNcr4vdsMPargBnLbpXDw7Xc2BWapmO9+BOvxtBfrTh4rBE1PgyMiTmai/3qqoxK8kdehX7mecu0W7BABJXNm/no3UgqiwogBqDH5Yjl1B118NOXKAVkGPglZyrHWIDTTEQXdFGQ1gs6+EBdo6lzLVqcry59UOGfSo+O6+zpT0tsWJsgRSHPUB0bRlYmWLdvWwzuWVdE6CvKlZVn1IipbVwZYp86q5XmGPklr5uv/jTP8f6u77Dvl8rusjKkWT9LcaEGup1n/LlSmxonD9/XxHR431MXfFSjtVWRy4qzghRZYu7ipiL+uV9uAO8g2EqtLgvvT2ybmFmSPvJA6BUbqTBrBlqjIrOq631DeYS32Lzt9l0PFjA/6BwIvCLwJ/thW9ACJUxQp0Ovf4G1YuPk5C5QIHVEezdW3kfckxx5f6kJcmI3+1vOsLVUXCZ5LW0M6b9s7fTTwPQ/tRLbL6npr05o700ZyMVnwnKz71+jw8cKD9/7z5/4uY1PlQJPZYtoa8kpyEtBXcEjqZwy3Z03M85R3Nu5qvAdzNcDhHYc8dUDM/Z6Gqrij5Yo0cQKuFzah59k5/6Wf76938fNyr4BmfgRQvcj7geo0ByReDeCm7spfUtbjAw9O7cmDJFU1TmqrkRDF1av3APvvfprAkFy9X++lm6d0vyLUs0DJQeguD7YXt8Or4ERjSW8rwVYG+CnNuOGSuODnUY037RtSTxS0rX+GH6srm6LreutuoZlw1ZuBFvt7iBRmLsVt+N1qPYfHaYW3szHQrsffTlkqycSUpf63enwL0lvPMIvT01FHhfx+W6/rkoHPsX/xbla9Vc7Hug33T0e00Ryx5pG9wRYXI0gbOV8dBuAKqToeDigfmbf+sfbbvIjyyaiW60PeI8l2DhdKsk7e4og32NZaxZd/DiA3jP8ZC+RGNZPxr/o5kDQCgxpAUft5J92JWjfXAtuxTpwLl7HEaFU+UeNUj22Ae+C/j3mFfBPvAt4mzQtKJfmREoGg/L8J3opr6cNxxjSr/YqgUOBgtDbJL9Bj21BmvIInIU4Ndksh/7F6n3eqS80+jBc29tgLUiae83KRwhDoqPATWsbc8lYxm7i4IhxwM0dT6iyyUhZnPZRNoOBtr5/BK+cBueu573Uzk34wfteq96cUrLN+MR3oLyyLTyV3/1Vy90c/mSXGB+g8rJvRd9oyn3gnI1HmYIogE5WSLvfZzqP981oIumogrGkMSUIb9HlZ8vZuF7/RqUgYVnZ9nlGq/A3Q4u7+XflYRizDlX4qipkoXu9zwGP1QRPvEG4YPX4ZkbrOuKrhbqRtCmQjYmGW9Zaw+weBotDngfo3Gudshxeg874KKgl65tgLpJmuqZ9ynxeO6uVz5HG0FCjDUpYqyd+Zz456IK5yB7k+F6i3mHTzawmAwb+6Vqe2OVkDSZZR9ZB3SvEE0GHCmMhXcVCJMKdeuDFnXdUzjy3gogZxtk4kS8HKQLXG5EhG//1m/Iip3yMHp8Dz51N09WyZSppz9UQ8LdL4Yr9bEUPst27Ho/3RHTXo4/ziS0LbpfdEQM3LaJRFxADvbgvgu0paeKAhpQrdLcx7RvEcqhTPv2BPBZyHnavQ19MQfSYwBAZX9U895uSOnvWmC/YN4Ej2mP/YzzW1iX0piKp0OLdy4qZJVztWehzXK1t0amBjzxzqu/WapFM8yBXgNaZ/qUfr9j/fRSxFMTmd3yKfmASAKJYiEiO1IeWh+tv7tOgwrQKiLpO/MXLdNXp+jd1VBIUktnJ8CHvv6DfFSBLpgFYL4jTzvFNqmg8rmLYxv7l9PbWShUcjaIiqHpSJj0Pr1ZCQhUFVr1RIFdK6Ohd6808MYS0ePUFruWE6Xmr9pMsEjUgnB6UR9DA6Lry6kalB63mKnNS6tKt+558bDmrLY8tkvMwvZ1ZOav312dlYoCQDCPyflUuH6SgRUVBunsSkVtbPBi07KZzQq3Vvu2nL9BzGkt8A2Pwacs1U4LbB5r6H71dbq7Hf0etNf2uX0Q+LbbZ0x6+P2/8Aof+W3CB999k1CLkZFELPxJJYN/PHdtQI82VQKiC0RPHUURXiUD0cUyY9s9vuTxykMzuX2e9ehiDiL8Gxwg6hu/jk6En0f4Rn9GXbm1PbazVM4ezI2nKPkMKFIK7m5j8gRUDIwuWtrvr+EEeFu0SPqzDhs4X+eDf8zklhLvuh8odQZlxzaKeCEy+snOY2/gg5y/lb0aXlkRbd9lWMZClVPNaO9xWMZ8XHldYexSrKM8jqdA6EDT0/KXaZr9WSnryKiO3HDJaz3ObfSW28MUJQeTPL/xPA0g0eEveUtaBhID11Q4PYODY/Moe/XU+2pzHh3rvlOVnym8Qr8Z99bHzsrNecvksVmRox0P5RBeB54+WljGpfMWOaoL9Hg/v0sDUlG+49t+y9ZnaQait0i8rjvYy+DDjVDEtPuJ5V8mvrRcRFMHIHthBd/hmUFKD0WpjBko15SnfeS0JVyp07mEd0lUOUOSi3hc7uXy3CkUKpbp6HDIQ9ZAXYs71wq1wvuAHwR+Avg/CLyjhhCgn1bJ0t5TCOvRcKCW2n7V1Lw9kjfJY3fK9poPh1NbH6tgay8qKrzfK1UOkoCdywEutMeB6SOvBrxhyPExdG2DROeUxCOkLTwzob0p2kRRFcVnPTCNQnuVecGyn4h4ekabEH3pDvJvXrfz6SdfhD+qlpGhHIRdZ+nYaFfye19uGN1XWL4k9/j/pSDHA2xWJ+6WBvdQY7hjnFcfkPuKPOXL8P46E+ZCQ/gBhe/BiO7/BfgAxSL3667+mzbOfzG2+t5fw+X58PB1t71WhbXCKmhOJTWtzQ1rVsOkQuc1+jWPIb//A/COx9BJzWpa001rtK7delWkfCsPuIMmA2Bl1eEw7rAoD8s9Gw/8hBIZ/7qANg0rirhVr32YDzgzIdWkRkaed1F4XwN7zmzT9tbWPYe7qnAQDzHqcfKQuPYdZYtJKF7PyKCjZcd1UwgsY5eqHQyKgqHH96FAMrfK7mFuzTFrgawC1UFcEgW1HXMNRXnHO57MFo3S2v74HF5aIRoyIU1u8gZYI2SYA8rhWgeLZ4zPHw/O+LNpM4yvjaU4qFRAT3uYZpA0FRPgJl6PAFyvkFtnWWBPvsu6UwETY9qjUShqgp/ALO3pVmfAk6Uh1jsS0LTsXyVo6MG12EnV5m1rFM7iPm1d6VQXMciQtNkdhSLmcAr3AylXO5L6txd2h6RAZrTS+Pnta2APtTysbY+OZE5nfUbvIUTXsh37Y7w3BinBN2rgcbF//rnlad9ORVTW01QlOEwRl35tYS4Dbe8ChNGWtRo43zOP3zSXznULYoowAK12eBIA1MKk7ylhD83qOOxrVfatdcYtgQmOXeTf/DTWKvYr93EjwoM9gdtnZE5EM1NajtEmwGSCpA3h9cb1FD+YSnZD3qJzpvhJbq7B3WI75VpXI729nwn8rmLMHnamAYQ413HZeKvvL2oWm3X+MJ4n6XXuc2r+sqPdirCI+w5ScvLoZTat4d034Y8/ib6/pv3jT9F+//vpvv/ddP/Ne2l/7zOE91zimZdPWFUV7aSiR/jmz9w1ZYqA1hCk2i0oCZnm3VsP6EQK21Z4gDGNNxhanaLL7vicVJwVKBT4id7e6+GKISt/q5gHwObpx6gEvrOkiW6dlV0C69VFRrwnCkpkpVAxvIOUb1FQL65mZT+BxydG05N5HxMcxxgRO93j1dblBUCmu1ZWUvY9Sin7Xu7NvRo5H+Z7iXzcgfJIlvbyuoQtkLFYGiC05PhpMg2ETBMhgnPu7kZ6MRbYYx+vLuDWZpufcQ2bALiQnIwaap5zXdvDuaJX9mBf0CJzUE5bprxP4Y9h6+WGwnO4wK5uaV929O4dF8GXI/7C6whXKzFX/7urhAtVBbO628N205JxureHgn6ddWaYkSxvD9OQFvR/7PkIsDeFF93B++Y+SRkVBfeK4ZqKdGeK8euJd4gKZbtG9PjxGZeOi7FbfHy97K1NkHjHOlrb3bsmRsZ+Jwb+drmyW3uBMBF0HVIGisQTFCzSaglaNzT5EYCxySsfH8XPz+LM09N1UZ+m1Ksr3R0KsKfKUksBP8uEerKEg0UakGUl5lVZ5fDW/H8Nap5xdmQYPRpkpPVxbBVqz0Nfpj7E+2XrwJSdfTxXPn0bCSTeSD/y2vDcjOfUuGydrV7WpPCY7QXw5nzCV1Ie2dL+8z//84P3fd/zyiuv8OM//uP84i/+In/1r/7Vt7xxX3EJyioofcCA6PB4mztLU67tN8ixwP0V1Y29bGlSkpbw/cBngPd7lao7GKhxiczKLsJ1+xye3ksTHCoDaGghA59hgtwEcwWaTGvTEIGrQc3aZJuuYtVUtummVXGmZeKfltB8mlMeFMyVNQRkhK9WgkKUXYvjMPgs9rED3WtY425hrjhIPNmIGbEH1Q6mssXbsdacaktWrUlpu4BpDic5V3uhkNjq56iM91ssM1XLqJS0xV427p5/0b4sP3fCGGYVGnpK8JANRvSvWEOtG5uATKZUXABCt+uZBeZBTokj8NiBUfS7a+TGnrlCqjMywXKoimoOiy372IXs5r2LEI3bMRFz44MhQ0f5WtElsNcMDtZzgUUEJRFBjibwhqXuISLIl/GWo7mMFvZSYBcMQf5F71filyFb22O6rGleS1uum41Ab+7xGx1aTMBcxzd+g66NUdUoIBRjphhK/sQ9CmR/ZjTGrROEbMGfasxakAd5fOZ7t4BoOTNX/TmYUqkqSNDo3rKuVZwHzZb+csnFMtWRAqvXQUx7tCytJTO6ZSnrnImlp0yMU3RtXzTm1n9rCU82RLDGZVDm3j8BVquO+cJq1ZIbSWPu16ZiGvrhctHYFk2vJ+potWDAhIJhh5DXw4V7b1TinCe3Q+/bGXB6PDcvpz4gdbXN0EUBvsXz90YQneLZ5R6cVNkNecTw9gHaoIYWry64K/RtQJqGqZ8J/xvgXRWuYCjW7UVFKHI1C1Gpcb4/Y7LxhzTsRo32j6IwuWhbTqal2MtwoUwq6KrkDgzYBn/f4/TvfYy2V1dKKF2vdNcOCVcDH50Fvumfv8h5C8cNzH/nVWjE0h6KGNNW0tYBky9wVeD+Gn1sP9MNVyD1qryOMa97RVMFO+vuD7uaeYWRAj9N1/kadeb92Rp+vwg/gfB/EnhfpIfxGbsUxAJcmsKLp7l+JSlmbZ0rsZYUC1zQ03S8Rfr6xVN45jg/K+7VS55mdqw81fK1X9ve0oDGdnpdvsK3zvgNmRHd4n/ZUUZnLGBpNFftAAxNMD5uH+Wuz0VifdSE0FjGK3bJMH43LU11S3uLGVH8+8Awk1AaCrZpYtk3iULTrnCQm/twaz1qdOQpA1DlUIiQRpa5gt5bontiSvJ5bYIvBUuU2BrlmipPodxX5TZwU11gV6UPLf2+8zG+33un97cEjkWQ4z3kzOLqKzcM1JCNBY9ayoUReT4wnquALa+J+bfNk2mL7o739v7EvA6fmDrAYcEn1ZIZh7Hx5biB0zbztz4PUUA9J2eR2Fq3UTMX7y2vZxsLfyjWX3KqdeG9JusN3i7CZ9UUheYeD33oPdSvdOqN/2DVKvUWSJuwEAPQi55S6QroZUHPTPU4kFFdMN+lxJqpWeENI6PgMVRN1nnuIN209OFGCrIb65wJPLDzbD06Gof0Qi2cpusZp+4aqgJsWkP84D1XCR8+h2gc/NrHhufmrnU6pmuxX2C0sC7Or0fgD96q8mUD0dV1zVNPPcVf+At/AVXlb/yNv/FWtusrLov9q6jCXYUmKHs+8xUKJy1ydWLC0b65lwkkILoUDxUMbPIiEJPyvBqUeAiW13jD3Y2lasEYoHPgTIQTzG3lQbC8mafBcmWeKaybyqwA88ZSVM0adNag84Z+VnM+81ygyZ3NdqltVPIOOXShPbVz28o+2JC8We7ZYbo3E16AaeOxXL6JfKOWHnMl/1lFa2cfnChmsLYl7oSmIOddTrcWY/VjOZjZpo8NHXs4XFC2iIdfGx2BbzkxZNVlF2hGN6UNnCtV3D2+CwPic1uhUk3oo5WCnCmySE7UQ4byAqLw4Y99NqtlS+G9FrjZwMtnCXxuGNtuVXY75lHbzsH2dg3YaODA1uRYgIglMqqeNUH3Pc2T9+lMhKkvEBEcNR5Dvo/3l3M6ql8YxrQLNhyP+y13YjO8acldPlopowKoOLBj7B6TCnUgumV8juYh2KfIYd6GwjRTjI1YXw09njxHB5gWfyQwN6qsgw73GiPeOPE1lltXsEfvoWjvQrszVolRlaI+f72Kfb7AGhJLgzFwsWjXkyG4c39XYrHYu5ZILFOM4RpYsKO78rUpeq/L+yQYTdwHvvDrn2eh0K57tClc4/G1NOqCNtHS7m1JnS/eYwrBLn636aOm8cs6hFNb4iL0QegEdDE1gfbBkqQ8iHuyFOCXJPd4jxLfGQfMRFI6wsGXQemD0a7e+9ap0qJoD7fnDb8Vc+9+rpFEo9I6eQi5HOf2je26N20IFbDcpJsHecLj66Lued/RTavBekzeF5GZnpp3mZ19Mad1zWZWs1k09Iuafmp/YVJxNqn5mbdd55d+z9O88p4j5Pc+A2+7YcqTWgiNoLXbckoGvbRu7s/hXmekJmQguuDWzdeAmJm3VDnsQo+PzKuO5zjS2zsruNSkMTiu4G2f+Rxf420ZnEnJq4yhRfZyAw+WmSgk741seY31zPDY1CixhZDc4i2mPcDnHsCz8+yJEIvTbU79VCwV4mOav9GLwVp3vF8zFNp38SKp7PRuE1hMkJOQP9J8nfMQ9PjRX1RyrnAr6lB6AUx5a95yhXs87DynU6rQHf1K9LGqhnQQr/radIgjUPCUiW6UhgV/3aBUpz164L5hB1M4dTDFMlzNBa17Ck8D7wU+3rueLBjt6M+VbtakPO2Rbj8Qi42+JiB7e8id1vaD+jk5UC5slw9/9DPDD8ZEJ82fQt95ai8bvQj6GGlXeXsZtpMW07yxCX3yko+tjMIJy3EveK79GXo/KztwWiBuAV4yVN6NXeQHfGjZv7PWgOgk3xDd4ivJAntc2u8AvojR3R4IDYQQTLGCrcVi+gFo+56mkXQURWoyETjzPpdjZnHtUzjth3TL9/lGd1va91UtMjLREMx7RxVud+ilKVGhEipTSuziD2QG0DOnCOEpiyYO3MAd+5BQb8tQ2bLuBslGxyevon/wKavh996EZ68N52VMwy4q8Wc9Q+Pdw4xab3H5soX2WO7cuUPXdXzkIx95K9rzlpXZ4jIalAeqHPtAJ+HvVo9c3bM9fWUB97oi3lFTnslKlSMKYPIL/raLbm/YoGbBXAJX9lC3TK0q4RxliXAmwtlIYD9Xc03ZVJUJR4sJumgIi4Z+PiHMG5aT2gWfXMQ15HHjIxiC/PnID10LYY7h2ivzum71MBIxhYGL/LlCY0L7djatkets5JXcTTcJUsVDeo1pp9QEw+kktzMSXTDgkNNuOCEFI/slFTVNcauFgBSrW3XoohoQ3HQddM4fjaCTCl0XY6SmmLlarEsBZNkjBxM3bkiuxydxF27Epz77fBbYhWH6wMeP4NX1cBx8vqsQWDhTnw8+f7Xu0VnxrF3WvrKvU4HVSIAYcf96vrG3TWbUFTOmNWInlYDlsT4W5PZyqPgqXxclHkpx+Gt/P8O8GF4pbs9ALdA72vWY0dKifzqpkh9ei2Zlv9OHORZPrgCbgDpYTpn6JxrNWymR1QVZLLICLTYuWN7wvhy3HddyaM/Jh+k+mBeOr8k07aNTJH6+KYX2xCTlcY3vG4brBIKFfJRt8r83s5jVYsJ9BmsjC4E3DtBbrdMVW6vroCwCvPT8i+yhtK2ik0mat8RIFs9AoG+ESZ/xMJIAWQ4iGXQtgCPHe1siU7O1Dx9eFHLstwhUZqESAfb34L57kYTd3g2yMi+XgSuzCKWgrLHh3XYEuuJeW25l7z3UKhgPxWra8NsqOC8Fb2FrnW3V6+OV5iyNvxAENvMGTjfp/EznSuLZhzVP18pm5oB/WtSH1S8iLrA3xhzNTHDvZzXtoqGd13TTim5Wp7//0DQ8Pq258vYb/KPveje8/YZl7phUaC1oXad4XJDd8dFXzN08uQJrYXVS5VVMIRhLnLcpF7jHK3m/Ov2KzLCuVpag3GvaAPrFF9O6GZJdGZ538WC/PIM3hhlhovGhFNiFHNOeBXUSs60K3F65cHOUH17iCkyBBw+Ja4/vN2GYXWIkIJTjA8b/fknu8bGUY3EwQdbGsxGyyziqHDrbNZ6bjHUy/FwpgOjY3vpTwQA/qbZp4IiJWnNBvP64T0l4LPp1bQpvFCF/8fzza6IfOa7F6LVCfRs43re1vjfJvAskoLHY9hOFywofUvgVpxURsLVfQ78w7zgTDIVQCW+IcNnPNLlSUd0+93HSlKs9tlV38F+f+szzW5/tiv8WBVkGmFRpyc8kp13eqRkezUFK0fvUbGhVH+MACcPxvzSHk67wTtD02mLasw1pa37LhTXok8Jqk9sUY7Kx5kQIq8jHVMA7BH7d+xuAUAu99vSqCYwut9HXddcxWRRr118sMJ5BhRTm5EONHswIJz2RrydFPCorLcIDi3LYKa17RMYsGQrwa2+g5x08WKU90YlQjeWSOFUNSNsZjSqMSHYZrp9WYdErVNXFMrO4/JIUzaBPXTFPzxuHQwJdDsK47CQQ/mJSb/9+13p8i8tXhB6/2Wz43Oc+R9/3HB8fv6UN+0rLvVu/DqrcC3DJV2G0Llb3l3BpbkL80QRePXdBPVvaTWtoKbnWIsO0CrDlXjUokWDB0DoYU7PsGxrnqhKW4il3gHOVnOJUnTCJKWJrLF4Ud2e0XWK/3TBy3S0EDxkTrzc8uqs8CLyvScLw8qYx7bs+Dz3UjaOCx0ZlF3m7ZkIVm9vX5vIy2DdGAxIAGGsQR900GuSDIDamvHpejHlxZXcOxocdpDM1LXk8GFNpO1OejG8Yv4/EQjDGcRPdAo3wvwFcjevSq69WLTKdDBTuQ/fN7fL9f+i7zDVb+qG1vQIenyMfuQU8meKnpdDMz8TX24hY6brbnYOyGrUhcazVUIAYM3WqcN6hh752k4LD0mEdle7xInBpD7nVJgT5wV4aKe4TX6lD93gw5voVha+Ph60fckEhbPoty/jWWp7WhdAeheMcJ9oorH0Taa9QZdf/cUx7qCxezZ6lltLnblfsP/t4gW6hp24xhj6mimnASzAcCWEQVx+vebRyaeOa6nUw1elXPo9TSAA3gDHl+9Wgn5EBfrMDZSLCpqpQ6YmatzRWxzN4/gHKjTTnKzXG6Fu//Vv51VVP1wKHJQjdCEPAW99NamZdBlYrZ1iKMW+cMexUmbYBmmFYyMBF/k2K+n1RMIwI8meI0e4re1S3gWczU5vEcSdjrFvkcGbhlGPms3w/rXLGDUhz1WFrYuOvOyW5Ub56Bkd1bYyb5NvUxy2N5UP76CtE8tisELr5zBQOxLOE1Ld0qsTKu0AFbKbDPO1ACu0AzHV46u6sTYA+0PXQhUAflL6vaIPSdqbc/blG+YNqwJqvK2hjAkZoKsK0NuVpbM+WZc3/Difw2rmTHcvRrmQk+TdUuSnZghVvHaSh2h60AfNnQpPCXdCjrIAKAsff820MLH9x7Mq5H4PnKabQ9swp0aMhKU/8vjkWky9FijftnXapwhdO4cmZMaMx3jc1ALhcF5Z2/2xsSVQsk8h0ByW4YA/tQo/fdSansgtDJuLcrHrkoKZUhu1j2COJCigD5cEW3cd0F/PBIzKNXICN2Xz7vnGdK3aHDA1KmQer9Pq4vm+LalVkxYl8TdB0pich3h88AZrVublgg6HcTwUebNCDWT4/1NbifVWeVvh6lJ/CaG6jStd63PTeJOPxYGP3KnAlcmF7FXJ6Pohply0ebFj+yB/8zu1BGw+mzyHnap6kPgOR121FBsBlWi4IKf4eePhI32b+KDEOsr2v4v2HDeo8ZZmnHYzGnauy8HvLczOfn34d75EHocg7T3p2DVTxilvegXcK/D+wtdRgCunQFQI7TqOUJOBq2zOdEEl1osEHiMe0M1C8KsDhFD3viinIc7dSHYSLAEhQFn3Pule0M+wk7RW+eAv96VeNjP2jF9E/IvDsDVYiHMholOLbGlgFFniY0UBZyuB1Byw6harw5mGbvEyE1NfUoxlmYGE0JzvLmLb5ixhPP8iwNLp+FctXjB4fF/G3f/u3v3WtequKGkE6ckEluozJ3TOqdxgInRxP4FMGUiGQiF8U4I98tT/AY0Z3/G2VC13jV5aiRSxnbIcBVLUYku858KvAzwG/F0sHVosDCokRq5K2JR6a4cEwtrInq/RBbS6MxfhIvEZGlnyNLn9jeqolcYiatagd2/ToJYtp38eYo/R8Cn6kkOIPMEJURwRuMpFs1YUlxaCkj6aFsB/rAI4a+GwRgZ+0Y7sPjTRWxTXKU6gxYePUWqiaa3BEqy8F6tyoQf0BCLPGwYyyzvC+KlfUlQ/qAtdpS/V47t8jW/mEHdZ2gSf24J9uTJDrJWt/XfidVQWgy1gxMX90xYQJ7V0x5sVv4kfLbnBQRQvfGaRcolIBPcjxHtxZD12HEyDdEEG+EktxWCrQo9fM48DLmq0K2UVeCX0YxMml5hbMHBNPT9crbVMqxuwUidY1ax+WhzfeO1gTsI6CW1z/szmyXGdhJtYZTCgZB2zt5GmwLbHwDy8DEgz5uvxt2HGvNxkVbH2MH5Z5XANrC0Uda89RKrlOz9IdP47dHlzBLZJOnxSPMY5x0lcn6MeXrtgSCMpJbUB04PT3HKgneakVbSgR8rumZg40fbDYs4J4xT0H8QD0tG+9onVT7OvRgL3Jgaw4AzRCkD8RuATIlSm8fo5wDM7g5rRI3qC2hf1ZYpAUdgoYCYiu2HOKrcc2aErf1qm9fgDc65TnmoZOslDfSM7NXgozO/vneza7ydpiXgH9wYyUzBdyNpKYQ7o8XzYdAThza+xAwQUjRkzM/NRUhD5YrH5X0XawCYG2V7oGfjkYQvg3BLivcBtoa6jritAIYWoKtbTSS/fv0tJ2uUE/s8xhNOpAdH6Wv67wjTvI8kVCe8rRPvIU0nNT2OnBLIUFLEUsWsfHd7B/xHK1b4HnzWrry52ledJBIcDlcx187wVFCrf4aFRQBT5/As9ezvXXxeYSgcUM3BK3JYyV58dGM6hf6kC5T6WUBwaW9jfnfYv+U4yD0zw5a5GD6WB+Fmoei6mpxXWLt/Hrksh3DERBU/SBhbvFRDWSr+N6Ykx7yR5s91GGaOZRmJzVRvTeOIP9S4NxFzB8DO9FztagTFSZ3D6HZ/dtLSlwJLBqLRNCZEu9kaeqXFKLz35K4eOq/FYgrFv6CjrHfekj6KcIryBcq4ynqK4sqB4o0gequkpplbOSXXnYjA4mZmz5VLUFssgrpHGF6Fosa0oa8+S5VQz252/BL7vQ/o9eMz7xfY8PPUh2rScBLjXw2VVxdFh/1BfORiEmw4m9q8rrgGCT9hobzBV9pCwoMjsnN/lKTGS4DLwAfA2YErLXlO0jLQv3kkChWnUcOGnIPLgwA06LBViubt0zw5cdR5mvt74qc1cAptv7YJb2LpgisPcUkr/2ut3bgHTAp+6i77jJeQ1TyUr6JAfEzrc9VRani3ZIGnPFcEwknuuDwRd/K4B52UXDZ6pvRgpV3SnYjMsuxiviIU3GckD8wSOs9a+gfEnu8WPU+BjX/kM/9EP8qT/1p75abfzyi5pwdC1ZGJ2ZuNUjl2eGyHppArc7Yg5rAUeZN+Z8hk3BSa4yXcd7snzulmu8AndaOFqgIkYMK6EXpReLef1VgT8P/AvgzwL/GTKKJ1tGxlTWbMsf6aD3KwD7tbvH644O6FZnplyQe3bEKA6qaw00RNX4+kiux0xOFOQFOAS6uoZ2lI1ADQAjWTQ2PdJM/P5IXL3GwxpON8PGDLwdLhi8C8qUHOtaEgzOAxpj8Men744TOQgEj93UPguQ94BLAU/35etuuTGtdTE+W/XuKuWBXwrv18w2LLeWee0nYcHSXW3GHhOqBr42HRGkcT8HgyU5T/uYyEWlznmPupeEFpWtKgNHiQy7CHB9gtyKUYhkgb1kfosS3ciStxtZaH+F4RZMB90mGEDPoF8kgVvB418xC58aaJlAUgrsQwKio8VceWPXRwt+IzZMib4fVxbTCiRgNI1AdHmPlV3V0R9qij7LJ6wsxMIeIvDWrulIByC+tysuDB8Rv3GiESTT27Tpkxt5LNFqH93Ny21QLpc5sHZhbwsM59oC7tuhioIGEzImvqcPwXK0TyepL0COIycf0Js4d7tiCmNR2wOCW+Q7YFEPhQt48/1XVhnbINlyDWLM3Z7ArTOSMJWUugXrdNpCY3JqVrbI9hptqi3EnqAmqLeYkqV3GtYD/znAY13PfCbprDiPLL/vv4edaWlfFNaZ2J4N0M/mcBoG+2MnIB3AqqWdRWTf2K84lxeT6r4yL422qWlnNZtpw2Y+oV00/ONFwzfPJ1TzmqNFzdmi5vasIcwbU5q6wJF0JHFvjmOkL03Qu12KE1XFgehsFF7HAKFKOgN2VhY6i6wrLslVEU/M/TW6x4DxPBdhgbhrfGRAydeL2nythvub4cN8bVVReYLnktehWzxq5xIhoJ8/hbcvhoJjuYEvz+Ck4AjKs7Ysm5CzchTrpKStZbkIYb28PX8wuhY/qvaBZVekr7XrgfMRFE0deZQPvlOye/zgGB40JFhK0HjPDoNWfMZYIbFVVxzv8hrH/drcwOhgQC9yRhiIBqn4eqrK9HwDx/M05sxm6IkLK0E91NzquKM2RgBfi/KJ4LRk2dEfmEu8FgK7CrwucDM2ddYgE6juLJPH2yDryyPxXiM6Hd3/E2Bszscdz5itcBRXBA/W7odfHT7mw68Nvx+kfhvtq8MGvd8O3OI10m2UEx6Wpz3OT0GcIfNJ+8WKT8eM0Nj2T6jvkQ68A+F5NfoYJhV9m8ECx3zBOUrd9exHD3x/hmD4kOfOXGba738HNXq2TuOpfgajdtTEMLxI26s2sN8rm96Edu1t4ei1y1ZHB2EC+r6rUIt5RsQwyGIDCBhmQTCjXYlfOOB/nKAGdUV+bWhGgz2a6KZ5LCT/z/iDSZ0tEMOKL+QRtkpMbxz1kvnhj8wnfCXly0aP/81ebjz5IVQtdvhJJbu+n29MO3h5buN7vIAOpA3IxNE40SK2XbmC8IBMhIOSDiH114OyyzVegXstXF0k4hfjcnogiPCzI8L/08BvoxA6JFdVXmPcVCrOFCfBL+6SvWkBcZuJ6kVgdBG4Ztcz1Tuv4++WHToxoJJcX26PaN5kqbcCbWWbaczobLDcowC0LXIwT23M/RMHovObS2Zx1+4flV37rMY0qak98dBfgc6bfNeum+M8+XyGmE6j683io3BL4RtiFXF9rjdUe3UGLIvXwWANy1/+73+CH/5vv3/7AKoF+gqenMIrS3hsPydjdm50EnSQHSCdrysKod2/HLuOletq0gw51lhKgeksoIc5AVe02m0wVHVxRlUAOWqQN9xDIMaglFL3aC6jRjqC4ERm+kng3/jzAyQUaAX6jaKTmjINoVmANFsbaxcou57VdGIKvOJ0nFCkC1uCThoKKKQBQ7eWmKPUFWmLCs6XA1diFGo10DDK/e6vS1KStoRqOkwnQNVj7pDl8y+4bgCtSZZ28zSJ7ck/zIj2XvoePHVwXAIbn9Mx8z1ethNg7WtUS+FDQPcadArcPSfcOAQMAf0K8A///j+i+i+/D1m3cDzNjIY/JMZcJiVJZWMgbUBcShWNnSQx9tEi0qkPyKI4EkcEcZenWSwDXI9SKVGLxfCLwJUZcr91dO+MnZKB2hTpOmIOxN4FuK1BFDHmY5TaY6OWzaDTIke7Go/yHxT+d32HzC0NUCNmcTkWBtvpIWTSxzcT9ijAb8BcCV5P0HkD8LkyHMEsTYG2nmSBoujjRc9XtUwXEQ2/U+hEaAVeQvilGv63QAzUrIFbItxkeH6mfVHSsxJ86niBriH0AQ2VkxslxoC/qspjSGpybO/A66b4PLnVRiEkxhOfdCnMw/aCKfZe+x//Afw337/NB8pD2ny0GORql6C+zHUwoHPc0l6cAxbPrvD6uTEiTxzmh9ZiAxdp/cEE7q23hZGyXYoJWhHItOzIBSUK7WP+48I7doLRWftk2eePfO3tqbMGDGlneR3z7SvgUqHwKL80chJy+qj0vQ7eRy+2N4tp30KQL122b+5b2rdSy+BjvxXy5p8fnHgc8V7mCvXSFHXMn8IoDyhL3EtL4YPA/833WLPu6WcNnTdJ0SQEvV4J3+Z0rRKhOpoi91uqm5aZxoZIh2ulKH/5v/8J/vT//o8OPxxPDCBrA4mmyTHt5gDiGBClEqhyz61orp5U8I2Pw8dfzBV+4+NDk3ZdDdfRYF/N4YzkLRPHKwL4WarV3TKb7FpUYMjxkK20xVquPIQuCuzR2i7Au4CPK3wn0E9qQmfzEZ0ZSrye28Bh39FMKwQpvFutvcvEvxntTSF9h2bUSzQrTocqKwzMO7FLLqgv+kDoCoFdQd9o0edm6JGg77+OPHMNqop1UzEpvd7SmNlcSd/ljFU63v/5pg44DMCsHgjr6fdOmGuRofeTCFrVaEKYLhqy6+AZHIzFm4S9JeNG/oaUR7a0/+zP/iw/93M/t/O71157jddee+0ta9RbUW6/9ikIygOFo8iIqlLdWSPHUNUu1C5ibtaVgZdABtDxXbDPkOjDxS6nGs2ypWt8JFq3l3B5gkp0TZUE5BNE+K5RXd+bm5D/RnRA2QF2UtCd0k2eA2ep+6Jt1ugiZUiuJwHXjPo6Vp4OXOQ3HdTm9nyEDNqiJUEsygRh3dTmXlM+wJm0eXzagw3sD+tM5dAPqKjJ3IqD3t6VO60Zfp0G2JSDFAc/YBbVXYM9sv6r+DKqnGFMMftqlnYg5lsVQB5ANaupIjF4BKbnv/qj35sZrDi+xWt5/AheW2Z3ycJaPcMV4oprVL11q2gpGTFFw8HL381y7PdFLka67mAx9bdxfCwspHa3zxjXzrU9pMOyBcT9E6+lIsxLDOEvY9orTGh/KS4lF6rSIdcqWg/Bkryp3jbv3ATYdIZYyvDZU81KD+0y+FK2FmYws41ATbE+Lk3N3SIyW75GZ6pJkbuLuSyvYOjqnlSFA6DpcQ00+eCVfCVdDaeDSrZi2gdFzc0soeS7+l2bYrwkT/9Y+Tx+bAJYK+MZwPPFViaQn0TEXuUkmHvrt3/X7+YyUPUtWsSSDpi2Yo+0Yu7RhrUgibbtklAbvP1L0OQwL8Mxe8TTOY23uL5JDK23FpA9A0KSB6t0Hg0S0QJsWpibVWlVPHKM/q/TupwUAva2DYaJ0GOyUwA+5nN40HXUrm/cYwh0F2R4zuzql0Jm8kZjzQzkXqFFCIX3QHFgCJjQPikUn4Nn7h7nniJWX00p0WL9+6fANwHXMEYNES6LcHfUn4HSHRlaNSPt3Gts7k42mW548++p8QbR0l62dE4xHeU1RJ6AgZeQ3u/Rw1nmpkVoK3jy9313qrzcNxJ/t8ul93hhlnbvrMTxd01leZ63CbXKsgkksLDnz+Fti5wSa/wMAQ6bjMsz6Ohob7V9FkriT7z5WtDZ+PM1X2qe9uJ9wVPItEHO+9x/P/MWmJC1C5foIto6SPnm8w54CjmQNlDiL6T+RGUdWYnzpjHtgCF0kQX2eIhdm8Jr7nU2DrNw3mEw76o88WDDaj9qKp2OzWeEVZ/77QobAtwJypHa454BDlA+H5TQKv10Sj/ywlGE1yq4UpvALiLItQXVnc4BnBm2s0RW9fJf/dHvHX4QGwaD9SRL4yeHvJohyLdj6UXIQviksr/3PQ7/9dPwoQn8yaftffyuqRxJj+E6j7TNecoU510otFun31FoL5dlVXQhzVu8/2wzyIA0aDt2FsUsdHXsDvA2gS+KEenQVAQxSJNAZok8+RJ3Fea97cGBOzuwEOEkKpUp+QOB/Sl6XxPdQ/O1zNNuyuWAhMBeZyk36T3DxukaPn2Cfucz8N3vgWeuQ1WhjXBWC7XjN1gTijGf1tCpg19r5l3i2ihedrhxYjpaAJJ/quK8hs9nqiJ69I7qfdNSbvQdeEipH+X1q1QeWWj/kR/5EX7kR35k53c/8AM/wB/7Y3/sLWvUW1H6zsTNuxrR452JuNcjh3uICFXcalcFub8ukG+jBcZ2w2Wy0F5qtHYyOBEdAoZEVhVeOIePvYp+4ZbFB4kJ66GyGJ2nvYp94P9Kzg0/CI33z8rnlmlFgO2FFN9HK9L5MG3LwBpS3DZO+VbcskVfEzMSOs9f6i6hxRlUyrXGlNjT9gTW07rwZcn1dXh+SFWzsjmq+SD9jZA38IMh4zho9CMWGQkqiYC07gkwezQACgVnhgWdgG5yDOpdlMvkWGwJStUpHEwzLR9b23eU69cuG/GLaWNK4b0CHp8hrz4YniJO6fc0MrJjpgvzJhi3Y/w6lugKqTsWalTonLUp5tsrcoEGcwlF7HCuxLIJHFXIG2e5zriXvE6GNQ1i2uPrx7B1fQsX2MlrN2yUMLKqDpoeCf1E6DqLyx3gRqgdMGm1tR3U9WCZlVujiwr96AGz7wkRz9sB4zWPPM7IajOmOZHxOicLyos4Lk1haU8H2XDe4toWqZLmZiAkFJNYF7+3m/stK1cb2zFiEsZlglkUVWydqsc1pH7dOEBvxbQzZj2eohwdHbIAmrMWJlkAK0vqr1jsctdIoRXPJY03UColNPSWTrNo/C6314tKZhg8dtoZcIu99D18NIN7axKCvBZCFgpLkFlDhSsSYl0yfMZ4z3XkOPWebGUPqvw7hd8mIOc5t+0Cy3xQMjTFlr2wf4M/X88rhHpRIxtPYVhUVMZUl3EZm8WkEHIlC3TCzrj61vvYqgnvrfd1Bfx/MAyY6GUDljnibmzGqN1pPEtmHdJ8hUugJ2tiPLui7h2lXFILmSuVhDAEbS3HCx2lfIvDcLqx9HKQUJxXCAdXLjmNKIUUv45dp+MXlxuLaY+Vx/M8ne327GlQ2hCSIKXu968AXzxBn72UxySGWcXngoWgnRdo5iVjkjoGrAqwVnJbd/EuYHNZqnAGFsvRb3cCCMZyMEFOLeY+7nHBlJmChRLtasfYAKPYuhq7PsfXM0C6odAef1XS3LgeLkz5Nrx1G5AO4NoMbq2GZ6vvK9WY1i9b20Xh0imcHu8Nz+qDGr2/Jp4qsd1rH6Mjk9AAs+r+qkJoob80yfnAXSFxR6BHuO4TJUC1N0furqiVHSB0o7BHjG+5sGgxmuse2ct8UMw0OpORe7w6/ZjWxmdMqpx14gNPwA9+A7z/ifzZpDIaWkUmleGa8j2gM1DPmKA+cgqc+1iXLuNb13Lfx4ae93DQDBd5wcsOBHbJdOapyubgVUBdaA+dpX0zg0Q2eD1QmLQK08a7IonXnuNu9WlpZDf5cDg1fu2nPwHP386o/25ImEfgU/fmoVMOOmXZhxxq89EH8NwhXFoYH1IE6Z83FXVJw8oyMcPPREu+u8i0weD4oO5ggPuzgxxMxL0Kin4yrS09L2lppmdtEaZdnhKo8T9b8cg7GvBVKl9STPuu0vfbTNFvmqIGsnGIx/ECcm9DddlUXQnNeX+B3LOlUiVGyt3MgsVSPmCbyO8Mle6DB6JrFjSCwmdftxtfg/7/+RL6hVvZrUWEXoSXvIp3Au/LXUjPHB82ifCStcKJaFTF3igP+gaP/Y6VXAxG91D3eEgbKgH2gKVtm1YsGR++kgUWH/boCTADunmdBrYc01YLL4LNBokuMQVPkSq9hGkyLxAed5WLDtK55njl1GdPE6Y7XJsGhKhgsFOs6ALCxoT+lTOdV/1HoiCr1rTUi8b7VzJoZcsuKBGkaBzb/sQ+vNIh//STyBdvQa9UbnE39/h4jHub4zgNBOzYrwu4qShAxPizcvy9hNMW9usBmBVYLPTc2xxxCkQEjufIG5t88MV2lQFPRVPGMe0VJiDeAF4nr1fF99ImEOYj9Gph2xJUN3TuAz9mvmbi/C9ACOiivHc4Vi3RKuEfVZJytSfGS9WFdt1ar2k5F4eYYGv0sv9mHu+ph30opyKOfwIgdO39rtUVP2t0qE+jU0fizs8JsIUuW9ZR0pSNOFibP39wvTSD+8vU6LV6LDuGMzFtW4gYEc5EDtL05SYaTka0LJZFo7LM5zUyChFgb1cHql0jVFRZXgXzKvJ13SLMIv27tmcpuuK+9/UtYPtHgfmEqZj79y66AmRLZpezCJgVWt0Sba6sLwZ4CfhGUeq2pXKQyhnCA9+HaU8U/bioj6XrfwxJWAvU+xM4D9llN66pEIH/NHdhA9208VzLYzrHUNjAFA9RWE/u8dia/NeYgP4BsiupYHvibtGf2L90Zhs3a1+O4rfDpQV6r08McejtekuVGyFPRTktZUx7GkfVoWutZvqq94sc7T6uZ2I0JeF7FPWnF2PBQoDjBk6WicBFoSllhPGHLLwvEk1zgRzP/sIZvH0v1zsYE3/gwdQCoL1vw2sxYeveATyGHRgfY+Utbxr3PSjFvBVX2Zsi6z4/1vs+97E4Ywc9LK4lmYhAdGkd67DF0maiOd4z8f1F3kc7dfB10Zcyxvr6nmkQ1v2WpV2cgRRfXDH129G9lnMPI4wgnxxWsFzn/vvY3FPjBw4gxaP/FuBzCpxC30zdQyErVl8V4XLl8dexuVdrqrunxlvA0GCyk1EelbFCPv5+EywQOw6g/5l31LbCUaOVfValNJHpumjsOq1g1sC0SjzHTs8SgOMaPe3S9McY76WvqS2FTJzbwnNx0K+zHmaFX8nI2h5d4k3W9TAcsfdvE/g8ECq3tLvn5vjv5aDUAWRSDxSLghnIVCxrVTw/E7199b718ZMd+hMvwAu3jD70SugCR21P1QcLOesCEpSpg4ESguFZfep19EOXMy9VV4Ra0KZiXQvTeihypra5l+IkhOT9CXmdUgznBlhsSN4pW3na3XAQMbkGS29mlvZUdgrmDD/b8iTSbCQcE+kvQcn/5ZaHxrT/+q//Op/97GcHn/3sz/7s4P3nP/95ACaTR3Zw+g0p+0eP0fXKsoLLkZEA5NY58p7Ltpjj+rk6h/tFrnaX1GpsYx5iQHS7Nkhp8dHooxKF9vinCv8qA2IEgfCx1wjvewytnCEWktB+t6hzHIu367ApY9oHxKPckJE4HAksW7szdWKYMziWCQ9PYzNg8hQUdSh7S/k2L5/PjvVNZnjWmKYtHp7qVNLSwbiQcg7sN9kKIRVInw+4/Sk86PLAESu7qBNFO4QsvKhtjFDEf5u03ZGo6EV7s5iAuD4ULFewC3/3sPoXfthWYKi3DVmwe+gJn8u//fcf5lt/x4e23Sbj63sn1oCPtfDJF+AHBZ67CWrz6yshzSetHwQlkFBxWI77CGQCtgnDZJ6RQVWFdoPula7Mdv9SjL8r3Avs/+v7cHs9XGTJg2WEIO+3RxT++BrgCVVe08g7aOZ5QiBsAQoKKpoFL4CqomsDFe44HWmEWlpAMIFituksnchojIJblNdiKLAU+1KqHvmXn4dvexp59hoEqN29edea3UV/7iu83b/fjwpUEdsxMqymfB0ZSpFqm1EaPTTGfSfrf4sxRpFpFTFrWSFsDJaI5veJpqRYOhuf4Os1HNfoZ86s/aqsVJkLfOKjn2D/a97DtGs9HaHkBu/oZ4fjZLQh7el4HZeauE87mBdxoF+i9jyd7VGw9dfLSrIMc7hA7pwlejtoz8ppV1OZ9b9cl9EiGpUbTRTazdoS87JHi3uLTesvBPgQZhioutZTJxltHrhzx/YqO1OZlueN9cvGZe30oVlMbRBXXU655ftjENMOyBmE2cTc82VUf2H5j6X1YyVa22M/e+CngO/DU6LG4SJb2ksaHPumGKOX4ojjTT7f4cqccL/L8ob/vQ48VpyRVbG2S6+b1Bd/aKSv5Zmk5yv06EpmbsWUNPd/+ePI7/y61CSfGnu9S0ksYvmk7/pDirM8jnmsZ94r/SjUSFXh1TMbi8f2rb5oaY9nXWzMJVfLtSGnIIvPKgWUrt9maslrpxyjqAzcoSK+uOyysguwqJG7Du45UiosCqE9NVl2twkciC6RlyFfNMUQ+JOlfceaBVuzkcXcxfsMi7AVliBYKN4US9W7d2Q/Hbhe2mtNiwyO7p/x4pOXfW153+Y1nFmGlzg0QS2M8ZKSDFWVKs+Kzctp13M0mRRAyBbO+ZrADbHORY/V6miCvG7o31XpaVpuwKIkvqUsAyLu63cdoG4Gbt5gZ83ah21r/prK/cpdCRt9yCvxROhVch1Pk1FWXoRc6J7lajeBPfMzKzwrFdnjZsAmlYd0eb6e9zmUMz67eKaIAajVkZfBhPcOeBZ4Qe2efgKh69P+KXO1n7vxRJp64OUKnoFFLOXnZbEGRDqon3jNeR5bD/rxN+Bt15DOjIp7FUgVqIIJ7NIFFp3TlKDw6yfo0RweP7Rwt6Ya4AacTiomsZ+p/z6vfp5N256uKQB947V4swGONsCkHuynwV4TC6GI45P2QWFpT2UXARh/V5ZWLRTyIv7gEfmFL7c8VGj/t//23/K3//bfTu9VlR/90R/d+p2I8MQTT7z1rfsKSl1PeaCmPTyI2nFV5GQJl6/lhSzA0RReOnVmvLC0+/tLqrwSD3SvvxSmU3GXEcu3Ewpre3Ejxjj0X/8YWguhqpKl/QUsDneMVF9ikBS8c/p+jVmjBoyyu8TIgDERiys+7XOFDAlNuQmie/x4TSdQtkTE/IsIcDNtLKsFRjGkKsZ6bEUQY7buN7UnVRwJF+q5lKMVylN/SPyv1FQeFSlpYKi93bX5yr6PrlO3VOW+q7nH72fL4KCSVFneyOZF4fPX1Ghv+SEfKByrjUu0+FWrHjlyIDYp5mtwEmyXk5Pz/Nt46BcHv3zkdfvaCbF8/Ba8/aaFAJQCYmQu165VbkYEaWBlHx128f26I9lbR4tUT3qY1Ynhjy6qZ7j8F9sb67wyQb5wN9c1nkvNbRPJad/GB+hj4EL70EW+7wKhzEVPsUTivhZBJzWhj73SARM89T6ugYNVBmcrTqRU56oSM456B+WFW/C605h/8AL8APDsYzn3e8kPxwMnNzW9jukeBZj1wdzCK89f+5D7Snf2Mv54cPW+zlSH7vF+YJalE1ccXrAt4jXhZLhwUCLIq4gpUO/1BmxTCUs16+Pd5ZLLCrM1MJ/6ErCaB9aC1B6hjZb2sj/JsygPRoN5C7HsDAhPslCa9vojHMQDOhljUysDomsqzCp2DHz2LFueQ9GeVZtA8xpxzIHUx6KvgDbO7Kx72kN3F/djp1OlD+YO/J+AHxalBpqV0k+N0SkV0ckFn+Fa2dk/yfnnwcGgEKaVwEKQk7UpT6HYqzqspO/oq6ZwJ7e6Bl4T8eeqtGSBvcxB/2lM0f3t2FpuyEzaZeBFhrzz4E+dADMK9RAIB1PCebRKuuOpKneCC+2q7nKal0VUGGyFbRT0NY6JAtwJcNBkcVA8bOT8PDOyjPZQed6V514Ups86uFTnsAQdXheeMo8+WCYTb5u+sIK3HaBVlYX1QWy1Pytm2zjd5FC7SIczc+BCe3GGxbJjD0Xl4ZcERLdrHARkr0aeb3cKUIdYrvaxJ9UWb+PXNdn1OT4ytmcBlqUjPls1/aCsZ8MIcfth/Yt92roKXJ8ZgvwzFHhEWsxv/lNVDs/OuX94raCPAvsT9MwU1xo9P1DuKRxo0QT/e6fAybrl4Ead3Kkj+OerwE1fI9HIIMcL81I97RBfg6VyyB6Ye5z4lljGjK3/ySokN29ro41NJR6vPKoiXqUWWDTutq3pbuNHhzeKFKjzaeH42B3P0LMcrhXdwJeaEffLKYzXsdIoNey8M4DAnXvZwmJq1eTFkHRnCM8J/COvJkwgtGHLoQHgtPXTunZLfcH/x2iAZVQs10Dv2QE+8Bh85EULCaqAd121A0UsLfWiEqSyNIOW4i2wH9RS1AaFj78Kv+Ux50WNlmgjaG0x7ed1ZbyKj295bIvHNdZJETFaC8VnPTAlpBHf2kdeGrGU2vFzO78qN/qwXXZ+uOP7NuSsHxSd2GrMV6e8qXt8TO9muf4kvR+nfvvBH/zBr35rv4Ty4O7znKIcBrdkKkjbI2cgV/eoyg163MCDZWbokuuRaR6P1ACfxoQ9C9P+ydjCHkE4Vp1BOn7PdfT9NeFPPE147oZtvgr6ukIrc4//ADssBIzW7qjsdI/3/6T8EIyhOutzhc40qo9R+fMLc88WgxCc2AYwK60Ak5q1FOe231cVG7V0aZkDp6OUb9EtZqMWcyqrjcU8RwtTlV2Nc8zdHBwhddhYMkV7lKJmVQ2jQdc2oIuRBWFAeIc7NoE7iaB17fGRcDs4zkLIQoSsAzJphpb2NJlyITH4L37P77Cf7DrwK4EP3fQ17Qz/11wlxtMu1Jjg0hqka4t7Hbh3j0v5eZyEBgPoGBHYOIi6At2bFFRaUpzczIUbcR93Ac9pvcmnUWQAymtRYjxr6r4383FVXonzYS2x5276lIqv7JeWfQJ03tCFEe5IFLgkeokotJ3Fb8GAMYwC4EYMcNEEOeAzt20YayyX6SfvgCozLH6sCgO0gQENKNflEjh09mzeB7o6x27afbsnMaVZqqqhYEumA5GRmlForIOmPV7Wv5GHe5DHryLKtkaBPZrxK7f07k8s//GDJer7fx/4xt/6Dcw7d32d1dhMMlCc2mt7UgemlNkV/B5b7v1rKNzjoxr7SzyIt5j/aH0TOK8sP62FfcyQ22bxkj6vbUGNQZ0Zg1pjYzqgAwUDEl/3bc9Gsmt8j/FZAfhPvfIkpgiugGYN1dSwKmoRTgqlR2l1vGjI0l6JVmoxsLzIWDKbGXAUZK+1wZnibzYt/UHeH8M+Dre2eRHkv05zCtR/DHwX5tzTkOOiBbO03y7brrlvafsMCEYxFpcbwv1Vsd/s5tsK1zX3rbTsxPN3gAGjHhNfCuwKrHsDgbs0zwJCJZxV8Nzv/qZ0bg/O8viqaGui8U1lh+hdc5EveRghZ8KZq7Iu4qET3X/hAfrs4fDciAJjLPF8OwAeFDHWJS2O13VhaY9fyWAFpGsptH9JpdyTcTz2a6Td5DEolBZzhbNCDiiv49dQuMc7RSnnYwLUIQzCkMb1qPdtV8jQzu6M3bPL8b+xG0E+uv+j5JCIdUfTwt2jxVD4PHBQtbVR8hDdvNEUpkfwc1SVrxXoli1MLXVkef68XAnXcKNQZW2v6orqQKhvPxoOTeRbBiUNXnEerQKyt53RY0bG/HizcZW68j/ZEtjzD0s+jjThejCFk0gLMm96rqbMLr1T89VHquQfk3t8C3sjsSve6M+Oad+Sm7wbd94mcAsxj5FJRd8GgvMzsX0rxUJUJ5kHskdkonIgwllVmWAer7Wg77hG+IEnYQ/0sRqeuGzgcl0gtIGDNiB9oOrVrO29Mu0Dfa/wwn3bKc9cshCFFMtusk2oa84qC4XNLKAM+i8TmHT9IKY9y+7D9dP0IYMIjqbRsjEYPsDWGplWKYxTR+ttq+jou/hyo1tGi/Tw34DyUEv7t3zLt3Dz5k0AfvRHfxQR4c/9uT+XvhcRjo6OeNe73sW1a9e+ui39Msq9AJdrW86iitxZUi1AZrXTxApQQ3K+3af81UbwSVrMS5hLcyxj61c8oOkjyEsGeyEofPIu3Kjh6x8nfNNThHltVvZGCHWVmP0Xgd8F/CzGeM8YWvYpnlleNwwnMqJwD6zs6WCbwnnYPmmUrB30MmNH7tnYBtWtdui6M82dmDUtac+LxZxiiMibdibOxPfdYEw1WAqjmQLLzl2vR9JBufEPanhhmQdswFRk5VNZtgmulUZd+IkMDthmrZuL3WbHzKcLpgqEaU41cYohHadbFOQsUM2nuYqxtf1RSuXhAqW1/bnr8NvPkP94H/kjT8HT1xIxjN4ERYuNoC2KZ184UKNGLYDNKIIoemKMcpNGhcAaU2zMk2VJUt/l+sIo7rKDZjqczxT0lNtQusWntG+qPIanfYPkxRkAXXWEG4tci8j2egaYVITOAFLKoYhPXqijcIc+AcBFQT0qAVQsNVWZ2lzefQ39lReQHtsz77mCqDILWSg3a6BsbdXygyUmVKOYq3QjA8ClRJ+EgQCf3NkruXB5xX42uHIHjLYBNMNQh4tcQcd1lyE3ycoe93MtpvU/msH9lvWx0e2FP+hg3dJV0HhKu+ieKoM+Wp1LhX42Are8oDTqOAJ9NwTxg4v3+o5SrhuNNA2L4Z9HD6PDudHaB2vkiseSlBr8xhRbSZGQ2pAnPbVpCl3bJ7T4DotQiQB0/xz4fbjA3gdDdXZL+xFwe3yeFPT9wr7FMcZo21qEuSuj5NLUgPR8nw5B6Ir1sOkI0111b9O6jRbAc5rj2e9j+/q/I1vZG8nhiscMPdaUHWdp+stnpALh0gQ9a90qSbJIv6HKDW9t6dEDWTgbuMjHPawUoE5YPHsNGhVfEu8VJlLML8O9lIS68hrbfzy1lLLPsNtFPijT3gSyvlea3tvUB/SlJfq7ooWsODuqHc85nJg3W1H/VlmRMmmUHYh7s9wnY6H9ovN4UHZY2QFkUcNpn/k3Mm07QqMj33B/X/D6lJynPX3p7ydArSEBaGY6H39qLzZsKyMe3i/3/Ih4NHHcr83g1+7ZbwpPs7zP4mcKd5esFg3LOrqveR11ZefMyZqwNwU3uN0LFjoQjQcNZuR6DuXOsuVBLRwT0xIDIrwi8B1uNKkqcV5aqC7NqW635sddKnN24NBslQtCtGRjikzI/KKKMBPH/GB7Dr+sEtc6DNf8UY0+n01X6oqgVuGweFh5C5CURVuNOtvA/mH+4fiZDAX2+FrEssTeBF5UOKxrQmcCu4TE0vGGwnEboKmdTBTGLb8ugFO3gJtCsrKm9grPXoc/dRn9yU+hn74P7z4GAr0K80aQGLPVmdJ5qoFOFT5+H33/TcOqqSsPURDjEyaSss2kfV5u3fimrpi2mtPo7lo2zsM1nYGNJbpYXr1MKIHoSM/QzYh+pYfsWD3xo3J9bkLGcdrx/Ielhn0rykOF9ne+8528853vBOBnfuZnEBG+93u/92G3/KYpIhVnweNO4uF12sHRzLwGomVPgOM59Jgl3nO1GxGzVXOoikchDhjhtC+F7Bof3eJTPDvwsTvw/uvGFNRCqB0xXip6EfrK3AxfA77G238fc/F72AETr1GjW66d6H46WD8C7NWWaxUGWtB4yJeEZxzTXjJ3qT1l3PKqT+juS8RSo7iANgDGo3gtdjgu59Df7ZnEurDhE4UJVrdMpj63xWYt/w5rSzmRGjza/XGuRmVrzwd75nrMlKzUcpKnGyVfy845IQ5SWHbmnltT4VNYLPLnessQIICc91T705yjvewXciEhWK83zGbOAceDZ+xe98Gb8J9P4IljG9QKc49XHQB1KEBngGqRGSn7MwZNGVznVZbsyoUKlvsTPKsASbpbYRa7udh6FV+zZj2qkT3g9TNLVegMygCQrqCblZCAdOKwVcATwOs6jFJRILh7fJBsRErjIGXza8KmsLRrMS2+TjoF7TqXykfxjT6XrYh593gcIE9fQX7nCvnXb8Affgp58hpoTMPnAzhar4P97+MQUxOJj0kvFWslg7QxvD9ee3z46sIaXVo4ND+61gIZu3MtdXQPi2c4Ri/GIFrj15GmRFfo4OOjEUFeBL22D3dg+YzN6RToNi3zdcdqavHeTbT2IkPLcGyPQKgsLdqAkYJE72I/nVWGrnOQSSmEjHjzmx/EAz7NPSo2YrR+lrAwBLlWwZ0VcnmRUb7BBF63KlUi5tpXzr/k5wCEObR9oMVcyHtXwvXAJzAXzq+LjN+mN3Ai91Q6EPgcBX2SUVqnHQpO9XHQgj5txLH7FLO0P+gz6XK6G4WLVMt5hzYRJCiOtQz76N5bMbVb59eIGv9zGO18BltTE1zW8fm8AtzyZu3yWFMo3EZJNFNFCJdmhJPsSWjenxmILtGY2G8yfVjnj7LAXp4/KHrSwlVXDjlNQCwtZNO2sJhsC6+Dg3MHPT6ew902PWcIRmfvF0Gpe0sLONMYz35qXPy1hVveZJiBZPBwzJvNY3wTTa7TpOVBmNU72rm9h6Jiqhn94qG66vKLMvRvf4qcGwUWX2+x/wvdjUuUMAvKz/x6ETL4RAr3+JEHQdm40phy4XyO+zVGkBcs7dvtDDRYAtIlWh0tvmeB5XHOHl6mZ9RjQZcdEWlcFU4Vrnrj47qusfV8qdvw6VnFZaexcVxeAW5KyaaYG3Z1dY/qzu6c8mNL+4BvKcuAucRC7soYcO9XI+7izW6e+EsuiWgV6wkIhzV6tiGlfvS/pVoqwfEZbXRv1I/Sh321gX1nXHbxU7iSNdJtkUHY31Nice3vqRu0D+kcj+v4HnC5DVDVRByAdPR4/TPgvK4Ik9pWQlC0ASZO82YNfNuT8K9eQp/cg4MZHYFZJ1StIDVukAzMgnLtjVM4PYPnnrLzock0JFQCVcXG+YVhlqth16WqmXZhGwA6Xv3FCqixtGv53u0NVRo9Ux1TMU8nxl/EZ2yfe1ul1QzUvKXUf3M+4Sstb+oeH8tf+St/hb/8l//yV7Mtb2m58eSHuKtwNeQ4VLndI9f3vdOFG7LHasm9deHW5+5lQbmkGRxu1+GvkGPZx8jxJxt4cQXvP05Ce+/uG6E2S3uoJLnwXsesIPcZWgYGzxqVDdsZCKBYPiVzclBbvvNYIuEfaefBFv3O3LOJeo0Y1TZA0yRBcJb538GhlRadf9gAyymM7b4G0Gru8bTAYpo21GCTxtcHDZy0w1P4gkPjzco4NEAVWAX0oADJGJ3EKZcu2TU+uBAXJjW6hs8rfELhC8BfUeWzvRPVTUc1q5HBYA0PkF3lr/wPPzkch7F7PCCXZ6ageuMsIwoHQxjtE5di46MbRZtmBzHaUcp2NjU5wXhJcRXOIgidtSkKWyvva03RbtcMi4hx4v/ki/C5N7Y19/0wjUxcV0lv4Z/d9J/c8oWaGPhQuMcX45stjYaMzaxBVyQQuvStPzu6e9OCzpqBpTL9XISlxHiySHcE3nvFiP+Tx0RXzkbVNNflnDCuMzNdg9REvdJXlcWMFwMzuN+f3eN9aiTRgHLplUUwN3Wjc30R05zr7pCBJ8H4/nidU7isVVXmKPwzBTieo2dLluR4y3/4P/9jpuvAaTMZev9UeS+WfQYX2tfFR4VSMtE6NetSB6Z0mte5wRcwVbvK1pkgOEqvxYBPo8AuApcP4I0MmBkZb856mJvA1uD5z8cDWFz7ec2m06EV2pfOP1PLXT5BqRGaTW/Mlo91TQSRk91rdty/ggdFJFndWiRbT/YmsN4MxnqAl+B1SNeikypZyi5aeFFQj31LQHSYN9p/4f2oyUxurOqy13Hq111nKbBlSVYgHDpmwvkmhX89UGv/dTVr9dirJL6PlmMFR/MeAtGpAvdbdG9R7CG7rkT4pf/7P9givZnMekMjfS/bf2luOdSVJLDGjkuwnMqzoNQhsCnP7xc38LYjVKqha/wOfBQADmfbIWixlMzAbNsepMU8Z7ox7OMjl5GVHXz9gVlnIXlNVmrpTVfFeVHyMyO+PVnkFzt+LGrhNFVQU3jq2HE3l7Gl/aLtnMpFCPI39s3trx0jyIdtrcOdwHJ/32LQ/SBMHk2zGeoxAlGRdKIGtBxTA0YBXIDZJvCpaWMYTFgdbzhduxnd4qOlHaguT5HX3c+r3GjexvK8LvkW1WIWSr4BYNluZwwS2/Mt23O30zr7KKXcdOXYH83RE29/4bV5prAXLp7TRNPH1tz76rhMsn3ORH7NBfUo+9YiKTPGswKfQ2BSFXnaU8I37qtyHBSaxuayyl2Jg3cgpuzXSUWfLOOCTipCY+7s+sxl9O1X4N+/bqkh+8C8Cwbs2ivigNtzhd/x2TP07U/AxDyIqdx7rqnQpkInVeKlp2l0ZGB8ExGoG6pO6cdroRxGNY+Zpgtb6JXi8xjXSIPkLDn4mTwV42HG87/La+gC7w86zUCwmThv3/9VKg+1tI/L888/z0/91E/xwgsvsNlsRzv/2I/92FvWsK+0vP7ShzlX5YoftpWC3D9PQnsSjqKZ7Vpludof23fmQlIs/KGam3YEJkt/6i5D0SW+BJ+L14/fhSdnpi2sXGCvDQAiVELvFqaXsDztFVloh7xeSmtSSQvADpkt9PhCYAYyYdivYb3JFRRMVaw8rr8y5Vv5bIhy+9BFXjsT2qMFNcfZS9pM4oM/yEMr0Negq6HQHjVuE4AzkP3iCIwbPXFPYgzFmd9UMi7lpI1KomU6JLhTtvesboJpIWGH9Xm4aVUM8TMeeFo1hFb59wFobOOt1NCdvx6Q0w3y2L65sMb+JGZyu92x/PB/+/1FZ2RobQeLEQ8VPDZH7nTwOJ6WyfJ6j0EPzTxQ5BsvidG4HeV3TTO0tBdXXXaWcoYsFKtEoB7Jh3H06BOx9HT3vJ6/+zL8YAXvezyDPG7cjdDdlEqBPaHIK9QoN1S5pfA4kYdQQt+jM9naVwN3dAGoUQ0pYmC8iKZA52Z8HcU55fR2pqCYpPn0yg6mtu7ONnC0AFVqtWGMFthyKJP+yT+LzGUC7O+VUFW2BRjF7xZTpeBZGYCmSqmCsjvzkCbUUZ2meErHPD7qLwLDbGlj55N4TUoOKEwAxUEvoEeCfvaMtapnWIDf/we+D144YzOb4HjwmQ6Wp3/sgWJxZ+uCgUo3xR9YacABukieNIMl/IgHcrkyooVrWdloNt5GATha2FkU2xHrX+d0QDVuiR4Jdnn/CJtZRds7krpviw7LJ/4Rhf+VmHDZoExWhqYYGZvIuCUFR8Fjx7+y1wMS6mtYBU7LdX0AfNFODImVYn0UijFvO5g6IyfFuEUrPrZ2NxTu8ZoR438JY9h/Oxk1PoZixeMg7om7mNU9yQ6S90WakEIADL4O9ZKg9zeEwzmqhkNyVWGiShWUqt5e2/G8zGdkAfZWMO/6oIfj2YDeqMCZwHf+yT+cz0bZfsZOQVowXJ7nI9eAewvigqaNfROUqofOeRMFePE++u7jjKQvDM+PchEIphh/2VUhu6wJ0bf1Ie6jZUmAmDt+dvGuG/U/XmeVCZ/nLbIYOqYfKlsp38pml9eoFJz7B7a88+6eAU2PuceXdNXXcsy+0LLbmHJxkd0I8gtnGN44h6eP7KcJsyC20Vf06Tnt2w7S3h4A712aoaf9QLA9Bd4ZXeyx7CU1UPcBDfC52YQT4BhT1L2BpVGtnYdLMe0C1dUaubvDI4D4mjTZA74llhHDJWDZKGbVgJcVTNFfAtGN5/FLLuP9FMftMGIBdMYX+aJZY1grBoBrvx1smdEZk5QrHeY5GNt+gWK4dI8XIgC78HbgpwGd1oRg9LAi0jTlZeCDPcg8p3uryrNHHEMK7LydurUdp1VRdmkD+tuvwz/8DP3n7tO8/bLlae/FmHinIdPTFe958Q7r3/cOJn6O01RI43TUre1Rjpj5WZGO6zI8b1LTOC/SojQjdjKWDTDZ9Cn7Vx42SfUKxmu047N7ggFlxnrLOXqUxaOY8mxaD+YrN+HReIWvpDyy0P6pT32KP/2n/zTr9ViM49FcCn6Di2rgXoB32YmJoMi9M+TdRykWx2Y92EAfmHtZZDay5lG55AvpAZ4yYfwXXeNLgT0J7W/AN9z0nWdCeqjMwt7XkuIeXwSe8rYf+7Ngt2sfDNfXOOVbZMwEtg/fvaaISYsP2U75JhgadR+KFB6VcWga8u2p/4B2wMJQgRugiZpD/2/LgiCkdRMq0E3OO4krSqIwxrpHptE9Psc+DwInoxvVsjdX+R1x7fHplp5PDZU+KFXwesWQyKcBgq+dPE491G+yWQums3Qp6yc1aOBrBf6NGmjUAuV3iq21+myD7B1RxwkcDNKO53kZuJiVDJevt6S9ffwAbq0KRs5cJFflvlVgHYZWkrId474OGuKW9nKBJvCVgM6mgzFSzNK3iIxFXAtxbj/2+rDbv/wKvPummR8rsUDktkcjwAxZYK/JQwCGIH8rTqUzq9oq/aRKKPbgTJfm14ChiZ/3A6BHKRjwGQYGBmRwtvGcCXQVBriHncRSRaurmIXsyGKdp+oxXYVlotzr5eszn8t5/KZXtK5YlcKrj3fZFjDLeAO2RnT4dZpyf3485AGLuy4D0/zHBrS3u5R1TsnKhiikZeWGj92VOZxtWAdlXimoMJlM6boz2n1LQaTx3ireF/trL1ZAcMf3ZOGNzS2ZQh8/dbf/AcBMHJpHONrKZZ/0oZWwEcmMSrxeq+Fz5wkgLImQoQWncRMx1/pSqE0WMzyGvW5oOx2kfAuq/Avgg8BVyQBtdWvhIHEu9jAhcVcfSvyUnf3DFUeVMc6TWOu8QtbrRDNF3SJZVqJqXNescSuIEBUAcaxj/0phvRTa/wnwvbhLvI9VzOwkZEb3Bia073SPj30cWayDr8GwP0XPo4CjvK5wM+R+lWQ6DlVM+xbPr0E8e0EP9f4Kfeowj6tYmEioYD6bxVFJZTAV6aFFuwEuT+DucOwT36OKdOqYGco6evF84Rb6hVN430HyAhxY2uPUld4IRzV8ehSCVi76RAsjR+3nbaKxMjA+tmwbHN60yOiaxkGQuSLnHVwZKor2VHm5eG76anT8QaZPF7m2z4A6QKh3NKQYtpjZI30lu5s+6NdYYI8u+DemhiD/NEPg0KApFAIU7p3RvfeItliZiaubz2CVc46jyokq+5G98zsaBVlbXNGVac3HFL7F+/UqwmPiTxcTCCs/u6vjPaoHDD1NoYhpzwO+5Ro/OOTyG+m6Ik975vsWOFDnW1aK8fa3CGhTEeag99fo3izt6zbAXoHbEZsSsXQGxCaOQzRKuUfIYEGM3Ltrydg8ZbTKdTEwt9WkpnbHi568De8G2O9J3gmlTSuSjD3yGtdaCJPa++W0KnoxagO//XHqX3iJy9cXTJs59MHqcSXE9JNLPvbUFZ7em3OQPHSs3mhpRyQp6sc4r4P9MKupfIhazNMleWEU52SvMGnDoHMj9tvWsVAohv2LRsxzYOwBEcuOs2/rt20P+yPR+aEb+60tj+we/3f+zt9htVqlOK/y7zdrOcdcf1AjbHInIMdzIzBxRcfdcGWBlLnavV/ijLSQBektBqZnCD7n6RC4vYTXe3jvcToUtRJ6d4nX2mLaFXgBo8dg6UnuFc8ZAOiMng/Dgy8WccIqFH0UMSC6pd8d4778rShpQ1brnv1lR73sqNb2J6vW0IE9tVSxj2xdr0FnDSswcCJI6d7GDE5iYL0FWgvS9QOCvSHnSmW9gfkwL2NavfGAa9wX6MF6dDKTqRqgvRoBXXboqjcL/6ZDVh31ukNc25xRLP3WdQezbcTxXdfOmUjLbwphIoRNx0Tghhrg4P8ReE8lVKrIuqVZFMqIeC0H7U2KeR5U+fBJ7lYg12fw2kl2j1cDPeuKziiYhnVRCJ+xT1K8KCcz/mZeEzYhua9GN10U9KyH/elw3YrlCp1CZhbF3LmoBfngzWHnvvamCYyte7S0wTn5kPpexn5J8fpxtTi8ZAAAwhpCU1lMdepaTucX9zZzqPo+ed2ksfaeLBTatk/xoJq/HBzKG8RdpPNQigiyN4PTbDueYoJOcG+IchlrcUXhXOP+8F8FCE29nS+6uMbtEBVrIIbnsfXj3NkJiU+0veMMeeyritGgRzlMxkB0EUE+auUBdN+C1fRkxV6aCOAMutrc43cBppVeHCswhUs3QqIr6Lo3n1qBTZdRdCHPZVVM2JuUrSGshKVguWkjlgECl6fI6xlBPm2vkw7xWIemMhpi8y1bj+8FNvOGrrOx77E9t1H4VwrfpdHTxIX2LkDdJMZ3KiSPDEdvoRzqXbxMUkY4B6j+3KSU2DeF8CCmOPYtvo+pO2eTYRrBUYlI8WVe9hZ4Gfgw8Hu8XxMyCF2598E81u6W7R/9ZULhd1RF7O7xnHAvpHG4Hyz2N+LcVNtTwpxibSfmwGoYYL+cruBynfYOmIJGMeyDC44UK7tinkXgeGEu1IUQJ96QaICgV/aC0mpAX7pD9Q9fsj37j1+F528VbvGjuimuBw08GIWglTygo5MP2un3jzEZlG3e5aF9L8vYyh4vhzWy6pyHIymp97A45Pjcrb+Ct1qSPTUqRl8CjRs52qoqP97aP2t2KzIv7NOO9ZjG/fo+vNEOmcFoaXcBWfoAZz3h0txCa6KkFsf9oCacrQf9PcU8UezROW1qs2yRqfC+Cj6pEVBXeA247hutTkvEz94Dx2K4syyYV83XMVGJZTwB5aSsemRaWGP92RMZZWrYcf2SSsnTFOOvYGkUlxb0uXX2jgxdQFKYWWOK1px6iyOfGm/YccakePa4HSEZdJ4ROKFCuxxFF59yD89hTp2rHVmk98TAahXj8YK7sNOI4Q5NKhO4K4GnLrF+6jp/4JduGY5DidnV9vD5V/gP79o3r4faZJp4NXnHHp6AagsDwtaxOqmpOxu/8mzYlq+Vqu9zpqFBhUV15AwsaW3UYjxuWeEOnmfwxfj7TZ+VkmWf3pxFeEvKIwvtH//4xxERfviHfxiwjfrjP/7jfPM3fzNPPfUUf+2v/bWvVhu/rHJ0/Dbuq3Lkm0pOV2ZhP3SE7rFbyqUJcneZBfZ40Pn7q2quxFsCdFBzGd1K9wZ87D68Yx/mjS3kyuLYzTokA/TLF8iW9kuYe/z4YBkALhWlTC0yICDVjo0RXcwjovcIsIWgVG1Pte6Yr3vmq94s16veYsU2vW1WZdtF/tzioTewFd+aXeS3c9ACtglCkQ8Tx3vw2mXZ2kmaCNEOARfgWAyhM1ZSME4ENaFj3VkavqVdZW19lHWPbHpogxlyx3v4vEPnxUE9jivMnbV82QVjq3NB6Xld4X3AD9bw7goqTEFQ3Vfq+cRcrcoDpOzbjvJPf+7fDz/Y4R4PAjfm8FrBbAVzhTO352IO10UIwMOeXxCqAKzmDacKJ2Jr9wRjCJZAv+5hb+LT4WteTKCJCObUgjTxWiHvvIH8wBPm0w5w9agQ1gvhfeM5vcmHWzzoIuN2E3jN+2ghLopuIMzqhD1QusUPpr0BQp+NywVDIf5133aWo33AmOYxU7dINmlei/G8skDu5xSMU2c0NwX9KUu5P2I6tDgRosCkSrQDJHkPjPu2Ju7RaidhSS30NiWWpVO0chfyohsGunTB3i7KlCEqehr7SAsdOVkPF9T3NykX7i/9x1+BTaBrmhTS4RljBx4S8cFrQGcYI4sLW2VJjJXtP9k5h49exoyFelvOK7Hz3fekCMjlhZ0vJ6MQs3WbCHnU4/fFGWFjls+CblbTt8GEWjW8hv9ZTVCdqg6E9mYFUud8x/uuUIjjFxkb1xXt7mPRhljRUoRFpOn7M0tf2IaBoB5vFIBNCwJVU9EX9UTvlNI9PgrsEYwuAD+OCcevkoX2iZBiPgdbC7jDjnPU+1hikEQGPbjgrgczdLlJXq13VbmCuvdAGJJn8pwN/BCTlmM4Dnqv9RztpLCgldi4/tq/+MVBndv7SYaW7yRMO4W67+EJkYeJXL0L83NP0aSfvksVSFKlfvz1fG5E4T0+eBDjuysErejfui8sYLxp6dhhcHiz22X0ZWGUkOkUOQvDMVDlQA2Y8aI9XfZkBcn1edAe/9HU+90WuZp3KRGjpf2iudzKZBOV7jAcf8EQ5F93NVtUygQToOI5x72lzed84kJ7WTlwWKFnG6/C5u9BgP2R4Nmg1KtA1Ux4r8BnIeHPvCLmuZbc4qNrfG0527lewW1HVRl7OhZeN1t8S5qA0Qyda/Z+KvozJSq6Rrdz8Rw/tMR1HktVnE2LOZzEUBd1oV3ZR1No2WDJX6SAON9YCJHXO3j2qH+VSI5nl6Eu7W0CJ41hJMWQ3aDm6PgA2FtC5bntI7+d8vOIsAeDDDNUQmhqs4o3lfHiEQFehDvfeMzNu6fw+fumEOyMKMpnT+DSPneuHbCufO1GQT0K8D6OFgpJasNo5TtPXyFrxysYOQOX1x6jwWPFYGZJjYeYxN8rWXBvKnQ9wqHYYXXXnQe6l3Vvh872hv4NEdwfWWh/8MDszN/93d+dPnv22Wf5s3/2z/Liiy/y9//+33/rW/cVlL7fcBJM2y6qcHeNXHFLQyWu9SEfSJcbOFlS+WRVzr1Ey+S+blvaA2RBsHQJ6gNogI+/Dh88TrtNa6FvKr+6EO/1le7xl8kx7aWSYNf6ATtkxujxyWVkrJGO+VPPC4gGjcQGqi4gbU+16VlseharjrDuTcjddCYkbUJOYUNBKPse6maYN94Ja7mukZGGDKgaMe0ZJM6xD+oAYArnbda4lnEwY6ZibwYP+jxo40ZuTAHBJsAmIG5xZ93D2gT4qu2ZBU05zNOIbzpDSU+DvKOIWaICZg0LmMtlPwHtAs8rPCEOkAMpzWDTKrI/zbR8bG2/oBwe7g0/GAvscR0cu+/DvWU6RBpVQsFQKpjbSFXvTv1U+lh56bE81KeLhhMNJqyrAdw8UOVUoF126CIrAqLlsBPT+mpB8MU1tdJU8M4b8L/+ELz/EvzMCzaYpdAe/zY9GjRpo9PYEoV25Rapm2jwcIxZkyxr6bviNYDWUK17O3AKQl4y6mGjFtPvY1QKN/H1eVX5GSjDcTyYwNkq7b/GxChTGOnQRT61U02APmEUM9mDTCvznkgCMTuF0J7IrwvSpqkZMqrez0ZhE+/u1b05hutg7W57FMu13OPxOiWDdeW9azfFUCFF4PIek/vZ3XCxt4B1S9iLQHZ5jLektThWrnBJj9PdbQKQ0RzmL3b8eEfZRZtVLKZ96sJhwvOoBK4KcnuZXeRVLce0o9c3GJfWeYOHNN8twvOa0OcwnM/08NO+iH8U+HxwgV2hWgck0S5J2TPPpRivC/qx9XlUbIjlDG4iqWoqe6B7Ogm41bcA21t1MIsx+z7vUTER51Sz3jt5KgEfBX4ZO+/+AvBJf/ZEcsreuPcFCzO7W7S7dJNPiolCAI7rLwjo0YRw362SQXlD4bpXYBg5w0wrYPspCe1a5EP3OizDTEA3gl6a+R619b/ycYj0/EI+MHWyYFjjHjoC7q/Ss5Nw13uIW1DmwZR9PHfZFLYOOM8HHzOFWeH1tDOuvQxBg+EZixq3HYlSsY92Wdn98WM8qUcvO9onexNkmUNiIoM7RzkZMOVDmaps05KLFQlA4hE30TOo6FvcH5AzapT3vyk5EXYD0l2fwp3z3PCSIQz+5ActHCxoxMJyMgid/3RRw2pjAjuGqVOpGYksLSAeow31xoT2qyJcE/ikb5hXRXjM12wlOabdXLkFCPBzLxp4bNnO6IXqZcC37CI60Zi0UmReJ54xjm0jOaY93a7DKr6UkhR4I4WYAnp5hp4MQzdbhX0lo/bnW9w7g4Jf8Ot5ME8VKZ4x5s+LkgA2xcY2KiafBu7Ute1dzfDNt9QE44n2IFWOaSc/TsVCCwZCO9jen9Q5TVtjRhStK9pJwz/5xsfgl16G8w2ilq+dj78K773k680t640Y+JyDbMdnjMGyy32SyIRj0CTcm4L3QfMwtkAd+pQJZXCOF9em2Ifp02lV5OUsCcLoyo7fxNKHDODzJnzBV6M8stA+81ir6XSaXj///PN0nQ3JL/zCL3wVmvfll7MHr1IpHEVt6z2Qy3uFa3xmFkHg0gx5IxSMRrn5HhJn3oV8IEc0oKAG1vIAeOdle06R6i3GtEfh7g62sJ6wlnDkz9oSIC54HQ+ZXQf9gJf1uC/2MFed0hIQd0YIiKeum24C03WgW7uwvurNErsJqZ+RiAFoa/FHKcbeG1JFZtWHOl7Lz+qmphqZtjeYlQ9A2nV2jy/rKK8Al2Y5JU3Zt4JpikAbrM26zqo34X0d3JsgMO91yMiqoqGDmQwIzi6hWomWSRPcFQgNsOp5ESO6UljCqnVHrdAsmmGdiSu8mDJ86+/40PCDeGqUgDZRGL45gdsbxCngRAtQsDhem5y2b6t/JZfq/VphB8D5rGapyjlwhl3jd8tViy6yIiBez3HEcTHkUhzFVKKrVlNZX77rSfj8GXzmjs+hDq3uvh5TGCDedWdAbmDpn4Iz0cHRQ4PHtJcprErGS7HKmk3v6QvLgTJGZx/QNqD1MOeyVnFY7YO1mCU6PicZ+S5NzJ0QbE7cDNgWIE8jtjht2yXDtETSg1BxFvshxb1jbwlxZrmRQVq0reIPS9bxwACoMLpW9xTC2+iR5fIZgFu68iJ6HpUKHT2eMX2w9vAm+MD73wttC/MMFFV6NTiLN6SZNbbHeVj/fL20wfAqvKHDNfBoJ/MWbRazBu0V50wS3C/tIbfaTJsAzjHQJUz2VTLS/pDm+DOa2mix//YXosIZG+N/rTmmXTY9LJqkrI5hogmcq1A27bK0j88esPHfVGVWBIGjCjnriG7kAzA0FFkFaCbUEhGp81iNn1UCLyrwM6M2/QwusDPEsYh/VzChXYs+ldhpcSzj/CpmaVcg7FfoakW0ydxDuYnRlJoilrVo9x6FQioymcpQwf3AV/+iSfTFQDmFRuA93/Shhwt4RXsHQp2I4WLcNdfwAU5NHMxemYbgwJk14Rj6r5ujf+xpeOeNHKYUhffxs4QLQtCKAW37IgaZdO9gPxWl5UtMiwZbHhLlVfYm5jUHWRmmJmC1O9zjd7238L7iebGu+FQPyVpVmX3e5c00jml/pHLR3F7fN/e1yF+GPK9pj91WuLxv3l/xkHEFgIqgBxP0BFvTakqMWi3Eq1SsNQr1EupDs9a+X4SPYxlHXhN4XEjgZoOY9i++YUh15xh47Gdf//9y9+dhl1zlYS/6e1dV7eGbu1ut1iw0MIMncI7nMZ6CYxIbOziecnDuSZzZJDcneRI/5/ic3OuY5B5sYjs41zaBgC0EBgswAiyBZRCyAIElkISQ1FJLrdbQ0zfusarW/eNdU9Wur7sFln2u1/Psr/ZXu2rN650HHUtikeGFWAt0S4rY/OPOioBBvrA3cuGcbmBfVpHmXgoCj+UeTHyaZL2MsPTD/mqZyHvrljAu99mroBGDKKWzaB10T8JJYgCj9PLlAlOEqYuzbq260521yqcwqzADfTZL63eXZVz0eGIXEaEuEi27N5PPDDMjPHXFOlxxGLn9aahrOLal5/DKdUwmzFJz+Eyosyyee1quIm7vtI+3iAHUqjG6prYOllVlmlR1sARIhtfgKXroGqYWzRRZ8Nvs4scbpUF4Jf+UVVR+dgn4n+NywUz7xsYGoBr3I0fU3/T1r389/+Sf/BPAA9L/e5W+Y0wEMNsTZG3oYGBLCy2oJtIC00q1n/4wOqC/am2DkfZa9rqqQ/CGhmn8vdvwsvUovcqc70hg3k3QIBxHU70N0AXZIGoIXDPdRBORIOnTUVpAKGyq1Rz2ylBJitylsohjbIuypphXlI+dhFsexD56EjurNM/hpCIE2vHtlSplH7GIt1OY5HGuuH8EyIsMU8czalHkWfjaJ2gQPWlp29tExUpPx9aYME/92ZZPdK1a9wefgQ/cC0efwc4qZFbSm1UqGPaEFyiB7HONt7FIQtj7iPG6vorsMEI5r9izlss9PeSIv2x3hhjIUqrTT9SzPVZ+Xyfa9hCN+Mga8tQsENHD2i66AIxLbC9xAUjH1xrzTIQJujTTYca4qhmjFm3j2jHu1jKp5lQrxs2N1uPN43u+2szoWcmNSlAL45h3o4FbvudS1bbPKhcm20YhmdO2myr65KUI6yL00bfVcLSGel6pNi1zli5uPCGnrf8fIDeYqkrYQvdxgH8Z1488Dwx6PJ/6fyXaRuHWRpxUQQBZzZz0OtbvI8iDXTjr6baeEmM+CMAcjBjGNq7RfhY6gbnIBEk0IA0C1fXJ8fUE7jx1EXEvVbJ/VNOUeS9ImG5wEePjnvB+xazBytk9Vh1LLlhkbw65j/chgclvEh96T8+cY1Z98TBOSDg5Sx/VRNoiJzD+0sHcnaN0Eo4i7ImQGx2nOGpCADmwDKcnMRCdtbqgQ/Xnzx2QDMGWpAX3BTAGa6N/3je5X2t0X3yHG68BZGoRE6IYABp3ZOTnnW7Goz1Ga+McI5ohY5lgfIkUfWQvEX4ncw9AWSN5jkHUiiAUaQRw7JrPb2j151V4OJqggThdHIDEVaSJuz2x2/BfFYXdtQh2rcBuV4EgPmPhADF9bJdPexpk0QdQsq6xYFq7NcUedBDKxH0/k6YRVxu9RJQgsQPhYff90BA25xGn194awNMlNYPapTc8Nsa++Ar47hfC8y5y1k4SNG3RYTmp318PCuzOsFgqC1NLwAPzuaXuJTna25PU+r+kSYTuN+6F0lW/gCxlmiYMCBDYWUqOWlR6G57664QkI4dN++I2f11Ti4s54dr15z0V9LcDBPtunxOUeAuHIIF21+VcJ+rkqEHPNPynR2PkQI8Mb86eWC5BjCvj8lTvWlizOPhK3NtAtleTGRXyvUjgHlGXFIsGQ0PUNF6bcZmW7n66OZbPPdVwTWwC1LTY5mL48TjYLS4TQcpjFHREBv9KSwOQJLh8NcNuTtz/ephntaYjFduxZ7vGAsq0r7kd0aFtb/NQhkQgSdTF5EDeg9G0asgHzqJ8BLZCeunxbdY7JMYzgQTuG8H2EjP5TBn3SWY0qPQrD8LWLnziOPzhY3BkGYyQG8OuEX3e8TcNn2+a6Q+7QIKAMg3TKmZO8f3Dw1MtJZCVKK0YKonB6Dw957OalL4VAev2kg1BetqTQPN++39rlc8pWqPYD949B+WCmfZrr70WgKNHj/KN3/iNWGs5e/Ysp06dQkR45Stf+Zx18sspWT5g3XpsKcipEXIwCzBR2kCx73O1T+JBtJqCiVpzte/Qgi1VjS0ttWfWQ8q3Gj5/Wpl2Dwhc8LnagDVGiQNXz3FUy+7LOjFac0pouC417nuJ1EIEVon7CEiQvGhaob2meVuK3H3QGmNrrjp+io2bj5P/2S7y3sfhqDLudqbMUtBgAHZUYgul66PxkzKNNqUBaBJXoEw7AFUdNBRz68ZV1mr6O4hhXcQTEylRAZqH3vn1NSQA3jkxFbDMa3j4GeSG43D3FN75ODx6EpnX5LOKuqwdweWRojv0Egn7hSLO5Uek4W9UF0JdVVyMAl1vGm+wmHFFvuyqa2vwZZ92XDl5arPZvAgNv7i0nsN9OBnT9RS1pXJnxLOHdl7BwJxzfMH8TxQYzwVmA2E6qxlZuK+0/PocvjDXDADzaU05yCKB4/ozAwaJpNQ6hl28tj1IfgW+5iI1Jf/4001mvUzWcm41h7JE03gDPFRrCpE/xfLrFo5NSmzP+UQn5xBYsAYgF7KqjhJruzgtUgFLWYQLLeuEOcq0FZIwN7h53Bggu2hUVucW0reWMhD8dl9matd69x/X3AyyXhYZh+TZNP0cqGmknqZuFJAeq8ImypJZRHzhQWJAqUYqx47Sg2DO5wldCzHdm294o8/y3iREH9/e2ob5HOkbp0VKxpT0xa/bxBGVVHoKJZ0Qm+rmVeBpKjS1UqiruYbnK/6cN5pBfb4zT1CEK8jhAk7vRWLZE6geD0EI8NeuM3x6gnXm/7WF6zJd06+3ln+L5UV5MoSyDBGFfV98BPk6EPfdtGa7fcTnaYcdg6ZDFC+MUEunsCfr1tzPgeUi5FkmaXtBMEEThHv3se8A/hPw1cR92oVbNoDTyRi8L3tab0o0p+5qdrWv6zkt2bIKqw9YNY0OQv3mFAXzeAtQ4zTsLluFD0S3NVfmKRVUoQLQPsL2mc1Q377bTxL47h8QlCE4OwkDDAxdadUHtHKC2nkFx8/A9ZoDMAaPcsSR05I1CNFU6zvsU29XTIDdWjW2O9ayI+qZtjso4jwkuHnBjJxmPJ5nVVK8mAgwZJghLuBXmD+rQqwddD4alpK+b8l1j8TCv3UFXGrNGPOmMc7kwQATO+raF6T4DZzsS0ewOku5aeiDeHoG3Y+c3kNWXdRsSVpz9dncYHtgRzOsVYu4NccwezdQb/2XTedkfQ0sd7Woi8/tCBcbx0SaSEcHn/avvqQ5lq85ktBeyZVFuqVT7TlxcMSZcMUhqYVeZ572UF1HfRdSEsQX3LVWM+x0GpRUoIKqoccjdh9Sra1tH5eaoz19UDp3GJAYTLa+C7AxhLHTtHs684S1HBaQyRxTLKIwz/OkPu2+e+Hqosnb3Kh5ey7sZobMGE1zdv1BzKfPks8hv/8MPHWW3AhTbxZvRC3xjDTOV8q0p6NtCBT6ABU5MUCywtKmD3rtYVveTtTedMX1vzZSi2ZK24ZsMW2GKm2p/Zu/Tm2SHWNhQDzX5YKZ9p/+6Z/m3/27f8cll1zCT/3UT/HKV74yHIyv+7qv45/+03/6nHXyyymHjryQ1YC8atiZIGt52LxKNLuHPXA8bJBtNR/2kUd9jvc1a5t+5tZiSxdBP9WyWwvH3JNXrxNMlHy6N9Fc7SmhdBy4nHiW12ma9bUJKpKrNxFaQA7S0kSne2mtB6MqVuIlthAYdh/k5JUPbTrVOZgp2Puejn7E05aJ/KwEdUshc4S1n+fIi7aCVbln+t7/pYwRe2fWmSBN5kqnFCYCn/bYPFGxmsNoGg9cqu1pxx6oLfJnT+lvmaZx4YunoKwo5pWazEYs4LSM+eIBbUBHZdZLCH7tVtT829YVF7tHTa3XDJBxTTbMg8nZAlA/Bxx4+w1to1H3bsKwiwtGJ4cKTfvmUl7kNNzMdC/bEnqLBFejDxL9TStH6M4LmFUVD9WWXwU+IfAr1nJ/bZmPoVouAlD19U5EgiV+2KuF07T7gCjp9QeugjtPqrYhMO2ReZd5hamTeAGi63a7q79A/e/vntcwiAy2TcbVOGOi/cnqUoVQ1jYk67g6ZY7TtDdLiAzt6uq5vRAEToAsuf20O3W91FR8ZeI/G+rzH6tnbgzkXkNvUd9VTKLtozOwmiXGwQDB64eaBEe8pow2U0C8eXx8Y070IUvPd1s454WLvj6fYgtsTGkmaApO4OCemuHe+tHbkHlJ1s8W8i0Hxs/GxuYWlYaHOBn7E8t9C6a1hmndejk3Mm6/5/8fG1hy8EnCphTYKJCn5mBrXeOxM2v22gNR4V7Z7rEnKEHNF53WDHTMOfCzFl4QQIljLsclUjTXZ0mSVH4d4wj33MQ23IXcOk2JOegRkEFf4TU0GHfc/4xBilw1Zb4nLXjXhecsykwdBP4F8HIW91m614SmT3sXHg172K1PDSGLgc0MdgnqnSlnLVxkrVpGoYx7Gh3fX/uk7kZJjvY0bshWBRtD175bS1HhSSbwJ+/+8PnpwLZG0A/4YAFb4/BYiCLvcJfYmr61rJ3YwQ57cGBJiewsZrbxmvZOjb4r1YE+o1HFHsoI71kc4666gN2lnF3jMjiEznSfn4pnmRaN5Me0Tt/P5Uyz3PjHnHBlxcHuWZsOb9PsOAsmSGiiZrNUNWXWZBq76krN4xfW9FzjalnKhXJ4BU7OGodCULiPtcjWHDb69JzlRiONosdzKwbrrCy361S54pvU+comc7KBEzgaTSF5m2gQOm8RZUSzvfgYUXLtYXi1y/ryI5fA8w43Ne11nJ0G3bLfJI5L72fZVDqJWui1wnguVPWsSwc9aY3AcoHd0tp9Vpexo019ILqwbxNGPkHY+tDuDJZTgXey2TtcsESawehSudlqBnNHK1sU1pzBCfGnFZI52jK18HJwYon9XQtqlObxEeXr3FAWhjxXKY1s7upaF2BGwEOb9DNhkinDrsz+4ljSQHQIDR4sXF0EOsV7MVK/LwG/e6I1M+H9BZmZu5EjzX3i+zZLnMC6kF7jfuuHKU5gsAgb/yLKBTPt119/Pd/1Xd/F5ZdfztLSEm94wxt43/vexwc+8AH+03/6T8F8/v8u5Zkn7uaAB2rTEjMBOTiMTKNnalJgsDpEzpbRVygAGctaHTXt4NaxrlXLXluNYO0B0xe24OWH8MG1cBvZZkKdqz+7JRIST6B+zl6Ktu7a8NKw1B/P98hf/YbsjB7fZtz9qR/2YBT9vgOwcZq9NDjSA9esYwA7df14eAYndlRSNauwjrG1AHWJLQxbaFAqZ0UVDpUhOaAtAj83msuaefCeBRzMHs0d5SvRLN6/3CYqVnLYKtMqms6RXtPu1+p5h/Q3F9CJp2ewO6NX1doXb37q00T0oz9vFwb2Omsv/fSBQmxuyMqaK4Xga+217fleien3FgDOhZjH//w/ee3izZY/e9DwHVrSQe5o4LPcWqr2pppVUYLZRigS73lLAs+820yoq5pP1paJQGEtI4E75zWVQLVULMDEsSggb0yj17a7c0PqZ3XJCrziIvjgMQ0G0o4kX9bIrIpmuY5g+zZXf2k1h+nXllZNwPwaublu9M8D6iIjnzdTkwctFooAszHBHzpEM/fViIQot4U/AA2CWJANQbZdjAmrcRyUDvMoudkl//8UTQ8ZCdSaTCQEd04DfNVWH/Rj9RouMaICj2QNwpZz8LNnY7AbvC9ZfATERcenu6R1eyI2INIAGHSfWhekEYHNpQHLWyqAe82rfxBmkPcLBxf1+TT6f1rmglpr1FVLGBE1v96MMRPI9oiuL8kb7f/3K/sxmmMj9FIc44d6aOjOotOlj0tCdDi3P3IRFfq5+WnQtgCFaIwRNy6fydNnFEh7LZMSetKYJvVt1Lb2Ew4352GRCSsl2dcAKxlythnBPC0yqaFXaKR1adbVdi9pCAlQ/JvGcIBFRj3lYQ+ggi3PXKU0dCDZkpd85HgvSLLDAeyVnLGWDfdSKshvg//AtNuYoz2MwWsZt6dYH8xN3JhFmBnoGcMP/sPXNursQDHNwZJc1ws4XTY1sDVOK1s76znYeHwM11yEFRMjPXuGvTAJA9Gq37kQzFb7jKelxiuxanY+dnM9KmG0qmkZxxJzaafwMP1fs058GcXPQYtal0GmmWZSAav1iWcsuyzu8fa1kfLNC0VJ1qCy1MZ0Woq0x9aV8u2cwxJhwZLCb+pDfXhmpA20I7LvzhQRrwzIRZnNKuXy3J6u+31VtmCZWcvBmkDv+fnKgGxnSj6Mwc9ebpQefQzhfiEoGASnafd02Ysv1v6sLS/SXwkLrG1DAAEAAElEQVQ8aNAtbY2059ZmJbIkYf4Dg4fumQnNKvbjvS64pGcqWUu72ld86tIZlq6PSx47JEydhJeSMfsymsFSluxdd7/L18aVmK/dpdUTvR508VpmyZxtWbhILJSl0lBEmjs9JksQMrC0Yb51/fHadnLDTm7oebfFFx3E5sRE6i86QD8z7PkAdk7oSVI/NF1FIlBrwZcMmCjTPndzZ9tIAEJMCTIv4G4Gtg48nihMLhOkZz29MasW90m6Vl2byf8+R60O2uNIx/Yclgtm2n05c+YMH/vYx7jppptYWVlhOBye/6W/pDLwAeXOTmANJM8UuJiEmU0P6oEBZmuebICY83TDWjbTyqsaW+mmsmUdte3zSpn2l65FmxbPsBvny26k4Wv6BNH0T4hE1xbnJ6I88bsQzEWI2qH2RlrOYs7III3XSsWbG7v7g16P8UbG/KuXqV9zBXzTlfD7x+AzJ7FlhZ1XQZNQzzVAQwmsNaxHEr9qEgCSMKcZUBYC86bmKLNWI7vnvXAQgSbznhLFa30n4o9jCOOs64jovFXELEMOgXx1D37kcuTyw/CHDzF4You8siqUAA2yhzLfNm0zANxIjPi0Yt6n3WJVY1vqOvstl3kkuVeTLRXJwhE/ydxdcPF1pAy7Y+Tlop6a2FlLYZ1Pe2JQwARsIZFJkHa9bpwtuq52DNIrRAnF0sJSDV8/nVFmUHpzIm82JepP22trZ512OwSj88y7//4dR+DMDO45nZjF60eCxr1uIKzrBV5u4WoLPyeWyyoNHGfdOGwynoWUbXlGXivj6hGyLo3urR5QlMTI48lceXwzc/VmCUMWTaUFloewF1mWwmosAEmQ1gJytbCFbTJos4rcSe/GLQKyq/Q9hebToiW0kx8nTsAUA9HVwcQsaZm5RE17vMvC/164mOZq96a4gTl1++z0wSVWdt27LgdMr5/p2KSD6E6ASwlkmQn25W1zZmm8CVldg1lcw2eDhBu0mrt3TIS7DDzoxiROiya5QdYtckqJcA0UZ0KzuO3e9O2LZ88KGnuijPByt9a9k0nsTAAj8xLpN89aIaKC6NZeafPa7XmuLfiIdk+KcBtwtHL7eRmYTCIh6/2qA/U21zPl4YbrTe3WLjWHD3Pqvo9RIZUvKQjq+hxwv59N6vGf4BITXnAMu4NPNWAPDbATdUO5KDyqGndjF/jFEGTRBnyqg7G1jXO8PYH1vAlvRAPR+Tgw0Nx6C1swNV1Pcd+BoUtoX8Xgczi859I0rZYVh46fhWv6ARF5zal1bnzSxm3JuaoEJmsFk505U2CCZWwte9ayhwaVn/YK95sGpfWCtcWYH81AdGk577FLJ1+Se0sFsh1hlwdmuWuw7TrU5gksus8GdMy/iNZZWWoxzYCY7TPEYiC6fdezXdqWFH4dDvfgzF4cV1XHYHtnJ7ChjESBE654Zj3pk93QlH3Wasw4H+jXuCr1rFqy2RzTcxpeHH0mwtMCvyBwb9K1zDGSIb3sYQObzkEiHDgbr+2SAp60TGoNQpccBr/sBdJg2heqOt8cdxZp8APWCanIDXYAdkddTyZOmL7kxuMFeB7OSYoEUoQ9TjTtF6iY8anf9Mh7IYowNFDMNbBxjR77M8AhwFQVJpf02DZobq9pb8PZtMsagyuDzLCbG3IXGNhcdRH2R6+k+rolqh++Ern6YqQwjHINQmeLGM8irdMHootnica4xbXJvKSH7bSiCKV0rmQtMz5JvvsbuTh6PJ2MPuoG2rXvzrVxbPJAr4N1frZ0+pdZnhXTfuONN/LjP/7j/If/8B9405veBMDP/uzP8t3f/d3cdtttz0kHv5KiiNbCboUsa+T4oFxPpZCg39cL5EzM1R5SBFkNROcDmVhrVdNcqWm8TU3jH9pUVfllK9pGHiXZtUQtu9dSjlG/u8uJJn5CzNWeatm79tM0eaeNFCQBQA0EvJy5XOauBIbEjaG2wcfpqhMV4+ddhHz7ddirDsFXH8T+8FXw6aewNx3DTktnIm+dOC1njpMwS+JjkuL/9J7bgUtAaTKYxwijY6v+yczRqLAJobJw+P1vyw5Njry23TaBZ6ppt8DDW8jLL4PvfTFyzUXwbUfg6y9j6fYn+P7PblJ5C4pp6aDOuYGsN4mviR8LbOfqmnGpy/Gr/uzOhGk6JxvmiwRIen02RWj6s2dJXRevwEnl0nu15nfWaXLXKdDPE6a8DVmTsSbEmO0ZqCouNho8UCz8feCKcUm5qtFsvZ+TN62dyGKUXgDJTNOn3UeSzwT6OXz/FfCRE6qdLG2TcS9rDRzncym7Q/M8C9dieZ4BW6GRtyWaxOocNDtiIWiVe84kqx14pgfkValazxbhhoB1Wu3MaybcGkuCYWRjqM6gbo8OXIBA2+hUUty9QPCGR2py5zI3btEN4VXXxxCdNVcY2cJ1jWsuiWZyXqnva1KXlZjeqP1uu06veZr5folrPWHYfb0nVwYMz7ggfZM5kkGRmSRdTXzeM2BulSgBKbIYQa8xCY1J0yMyc1GvhUUBzgWcwS7i517gboEnEX5RhAcco+eFNXJgGU668Y0tkhe0gy2V/oV0Yr1ALSf4tHvCaNn90wAl1iKVBs/R17W+dWLKN9vxaYwv2U9+Tu4XjSb9gMCvCjxcgwxzxKXcDCbkbr4FoCph2e1biSntFubTLvZnmyjQhjgtKQrw3z1sXcEHLmzyDv7jI5FbweFogilx3R9ityuegRg53lngtW0yPCyIWNXNVB3N5LEWuz3FriqbqsHf9DqRmH0hLd07TyJjl+L4oWMINmPKvUBsOLx+xRM77C0PYHWgjHqiVPC+7Y3GWybDFVCuZ5SzCXNrmVpl1O8r4XdKywlqZo4GKB1cqNP92yoehrXhRkQ/+7yY4vxUWLjSc65CdbSKQNduw8KujZZLqQLYTxUkWTkSQZ+fS3EvWmPOzVhwDp/2c5MQzXVN6dTDS0oUugjyaVo/NmtkYxlE3VUswlwi7Arm8f0e9UShf2nhsKf3oDFf2W5N3jOqdRe408FF4+r6kDjtukRNexjc+hKcKeOBWzCR7ygpwPHPTzRopZ87jzJFNNNCGsjyXLzWBZc2MIFIs6zm2JGqYyYo/RYDqzlYIHGfBEad5LqNi5vSAlzQaR7vu5SJJMy7E5DkwkpdccKqcuiUVbprBWBWY/oZgjR4A6+B9mrWIDj31wRNepfOujBMegbpZxrLppfB9UeQV70EnneJKqMKw6gwzoo4uqqla+LPgp+oFjrT74WBulaLpfRMepjt5tFUNTbrPkNtcKGm9iS0AdiBQBnjOO27eRpr6O55Z3sfg8sPIr0+x+WCmfZPfOITvPnNb2Y+nzeCPPytv/W3sNZy++23Pycd/HLLxkXXOT9UkDMlZmPZIXOJQeggAkcBDhTI3qSZwsEqwF+1lk2/fg4QWWcWrxp3B5DuOQsvuRgXDjwA3joT6kyBQOU2YY1q2XuoViC1Mlwl5moPSIbFfZT6ijQINfdHGqfCXZczmMzDyYppeazzfbNBCPG8Jzc5e3k/Shxzg718DX7mRdhJif29B7And1WAYYFezp6o1i3Qm63mG1p3198eMMuyYPpirUrFhxb1gxz24judJx4P4Rq5gnXi3JfUp90HMzs2hmuW9F1vGnjNBvPvu5oXPHEKufU4TOZqUhYmuukHnV5LJOAmb2pZA084YiivbAJMVYuZb8006i2x/gWgvk+58T23LtwLJnZ+PkSCwIrDA+SZbe0LusZ1uq8Bm7oApH1KxmmTe1aAIsPOot/pC9A0SdW0our1HPGm70cNtCyax/vh50almUXrYwRedAAuG8LHTsS1dOspjnk38xpJ0h6tkQT1qoBe1O+0GRXrOyPoGQbysmlm7YmcHMjKMuyNLv9xn6O0NiYQHWGcoAH2dsfhhdzC1GEqW7dytSeaihGJKbSA2ApyvefTvrnhN032XZ8EXLSWRRu0dKyGiKuggn7UtKdCgC5T0DYt4hFOSjD4CPJ+3n2dJzYg39Q4t7f9yR1I37CCmnQHWCjNsSW9VKYdQnT8NMBobFwtXjKr+cMbREvHeLpKp8838BHQcRmNlH6bROsKAbhoOQaWGlWaJQE3CaK+pI1cxK1x1i5Ohm9/Yv02tGGejXvBjGukMI0z1hfdQ22T5ZpmOwtnA53z20StI3KEsRE+aYG1PjLBmWTT8AcGkN059KJ2NVhwpMKXjvYg7nfp+LjpWRBgb6AaqHQMbXczb/at0eMTTfuGwGTKpnWpY6HBBKYZH0A17RP3mw2Uq0f2Du/skuRoJ8DQkagbxR033dqoM65XcpAag3f3W1rO1MUtCOKBSx/b44lrD+p7mY+zoPWIz5vnS9v8XnS9yuWcaq+mBKra8qUKfgW43cD7VmueNEbjnfiP38OtfQZa35dlHt9mfPw8+LSwozIyUK4sWRrxMEi+p58Y78O15Okjf6OyWGmSzpEeiPOXBtlbWM9zDk2aDLuf/1UHH06PQ4MBpm1NEZf7PHN7eRbmKM67Xcmx0xkWNaceJDDRANSa0rDY0Tg7hWgslm9FGeXandO/6YQDqoxVhjLS0cMgOFqUkOjpa9AtbaLWX6eqaW9PDaLz2hWkk6SqZ13SuRaimbcIdthXAIsqk5Zdn413m0mqWBiP/79CsxulQDhtu6MYFy8glyinM4Bkhn5V86hr5iyWi3xVc5BelhiB6kvi2vGuH+3YMO35s0ao+xnbPYPpGehlSD9TgUA/Q/oG28soCsNWod/bAm5f54z2WWhaAoA4tXhJTiP8AZ76sf6fssbmcW1SfqB5vnTugkWG/zGXRqyb5rV1o33fWd7GQHRxv7S+PGflgpn2d7/73YgIX/VVX9W4//Vf//UAPPDAA3++PfsKy3S8ybo3D9wcIQeLsEmMB4oNrC+w1kNOVorwahsYdqymd5jjAih5DXut19ozDpMSju7By9cbpvFk6l9k80yvRMLoOInJdNL/A9AIfNdJOBGDpnSWNkPrxznMFWJDckITQsMz4POKi7dG7F6yROC+nZ+xXS7gx67DvvAw/P4x7CceU1/yk9uaMiWeqYaUr824++71RJhkWSMyWmkdkTaqwUUy9QSveBPBFNAGNwcDu86TMUUa6cdaeHwLGQAXDYNVhHH+09nGMv/t+6/BDnrwgYfgvmewz5Tw+JmohW63SyRSasdY+LV7SjRjAPMqJhRwY8/GM0yXr9N5RfLwwudf1f2D339ew+uEBnIwh01NG1M4wi5oXZ0JMr3EhKu9d9z9BUDfy9XboLIMgFday10W7BzK5R6VSPSLdhthT2gGokuvRlSa2WbavX/737gS7j4Lj29H//bSupSFVhl4CAK4AS4mhQU7A+uivdeuUUtkFvHfrVI0pYGBn5sWK9dHGfqGyrtlURCIt8R3uwF/1g2y6cI2WUuOpfbxFxKRdeP8W02tt+zGCGhwFaNzOrEJMk4YUH+ditOMZwSCPp3/9OE82SN2XgX1UToTc5S461zL1lWDkLUYZHeOvYn8RISn1gpyJ8y48qKLIS8YQLDSCH1oMwOivrRZJkpwtyLFesJK3L0+kE2r/cLbnvcMLhD+riPfk47PwHe4MQY8dFEOpzSCPJMaGRahSdAtNaW1L0nGnYkSMO7+DmjwVd911xkBZGRVk0HUciwB266x/eKm7DfGWoRvdf2YiZ6vbzIg/VzndmcWBSSpSnNWQq6wz6IWETGS+j7zmYxvxY/NXxMU4I9TynceZP9gdKlfe4gcL85EXsDuTeDhU/SeOMNBCLFIAsNum1ujwPu0E7TrHqdagB1lllguInxw785EM2lcdv1V52fw0kE2vgusDOGsC8TmtbEuDa2dlhw8scXRKwd4qxZ8buVcNe2STl7asHdrMkK92seOwdYa6+ITqHtMARTTHvf2E/wgsq9yFZqB6M477q55WKBxBClA9maOoY3ClSVrGbU3dkeZ4n3gu5ukttSZ4HZ4clbUvcO/OKaZ5upZjctLn4K/r4AYuESDyYJ1ecwdTDu5BweNs65UZm/m5iOY7wvYZZzpuuYaX8dZjghR4z635BbyYaHuXyK8vIBfFPgegV8Fvl4gN0KOxvvM0nU4mKtgASL+sgSrAGttk27pAp7gYKLPptGEwxpsrzmTbRz3bEugSU2ERwEzrg1gUzMbzWunTHINeRojpTcWxjN2GLTLDXIfLbsvado3lasJUgh5XfGYa+d07dK9VVaDHBd57FOLv/R7Mk29mpZ0Hm1m2O7lmJ5jyvu5Y9gz7CDH9pSJ3+nlGm2exXWwtFxF/Fbx9JC/9NTSNpyq9n5wxVQWTJZW1ThTktzoiUSrPhwuzjLNgtMYdAfi69pQnmnPk/3uB3Deg/3nUy6YaX/ooYcA+Pf//t837h8+fBiA06dPL7zzl1nGe6cV8FqL7OzBhgK0GE2RSDyDTvgBDSktUzUf9tJqYzXlm1jLtrXKJCTB54Km/f6zcCSHg0NlLDzTbtQsPmXYPQHhg9C1N90azRyzdesaiG8WNVzp8BbV3Ki0r6JhKyi+8lSdf2KXzdUBuwMX+duIatl6GRQZdZHBN1yM/boDyGe3yYHercc5cOJMEimymYYhPVBIBJQ9YN7LkjDVKjjIBfWD7LcOafuApITLoA+7Dki2o8enavCHx3D9OiKOWPFpLYoMU2SM+jm733wxXLqO+fyeaq3eeRz7yKnFAypQO611NI+PGsHHgDoHmWseSh/MKLcWM0407el6pZh+n/LVL39+9w8dDDsicNEyMgX2ZhQWTG2jibwPAtgyf24CpIjQ9OpNdRWUzMqagYVXCjxtYW8M1bAfoul7pgNxAqeW1UVjyJnoeuQtpj03Ks3/liPw4WONSPLiNey1u4o2ukIQlKvfvvNf9mRP8G0nIupAUBdCr6wSRo/gPtIDirFmTWjC+Kg5DkFYknmUBFnLSg57kcnpJUQ/SZ3pBxTp9pNtIo5pHxDzsDaTm8Uyxwn7DNFHLBl02IbWmWn7H6a2MVb/8IzFDFS0rv77kBi91v/oGVsv1JgInF11wdpGM66/+AroF/RQ6fnIrxspURqZoDmQG0fEplYSjUXSf3KBYlLGHDFJSf1Vz1VSZtd/XorO3UsN/KIIL8qd9VHmGPdDA+RJJSlkVkLuCTodSw+Xy9wLetJ+IdhcsPN4b2YTbYa1ysA4xsWUQD9PwKSwKk2hQBvXpBYenuZOf7/SKAH5bSL8PPD8zKhwdkUw2zGDhxKzrt1yrvA1EWh1zW/anu/XLnqO27Ai0L5+7Ml1g2ge7/ue8A9aPF6WBBY8cYb8U8+Q78JPf+w4h06cQlzQLkMM2krSlg9EZx1saFjH1ha7OcGuSsiJHrIlGGHizu3zXvr889KB3qS/U1JxcABbaa52VJBpLRzfZbS+xM5KP+mD6Hk2oox7g0huteHPl8t4YcdK+X6L0zbOgSyf8cJ+Ak/D1eGNZH2hO3/zAm7vKo3Fj0BVAFkxGgcnpTysWi+OE6uYBkxNhu2S5WiVDSI+MmQ2M0FT6cfTAtnRTfDZFr+eflyNCPLLcGoeO+0Fu9tTzZyjRBWFgbnfYybBc/0MO9Ogp2ObWGrZ5AyNS/qVpV9k9IChUYu4V2bw7wx8Q6Y+1YMMBkaC12BUmhSwOWHBygQC/dWgW7pU4xZdw34eaEa9Kgzt0YxP0N5XHTVeWEk4XI+/a1AGdTrVblmX7i3sh7YbRXrwXWd2HaDOkvPk2mkSxe3+xLjCaibvGPc8IytVaPYUlhPWxfAoK/Wxz43TEUjrqGg7KzgrK2JX95vHvdxQDArsMKfuZ7qH+hl1Txn3YpAzypusZHv+PdPePuPpqCXPnKVvK51iUmkJ9Ms6WECGOkQWZ1CcRYaHEX49sizEqjqnP3vXvpx5BmUf4PwXUC6YaZ/PddOtr6837p85cwaAsiwX3vnLLptOAy5bFuMjxwshGNCCv3cvU6vizXHiu6oL1681Z/tOrdo8NYsnatwtmpv9JRf5ExZOm3UhICvTMp0GHidq2r00DdTfcJNuYj0tnUjPX1OBRIrcvLTPS/+81sAxOnjTuhNznr7kIFMv3PBBwXru4PYyldTv7GibA6i34fkPbVG49jx90YZRDXmJaLT56SBzEFI1E6WXts1myHJy0NtBWsIY3feNfvQRhkihNfzZLTx6Gq5ZiSarRjQImjPLrnPDLDdQarR1ClflvU8v7h23nl4W4s3iPTt0wgJZpmnJ0L0k1qrP2Kbd39fpgiiYriJR257OlRFFqqfHZA7xaKRONKJmX9+152pWIrMeCH43D/O5pkcbCLxE4NTIUvcLTafuT5TbBFORffPhKs3i9lvhrmn6t0zgGy9W//zf+Dw89Ezwacdp24O1DLCMjZJlFwHda9nr0KdEI+32xAyYmYyiTE9f/D7AUpQVZQfD5wcTIiR7wsbEcSKiSVcnaAAp1GRxnpjWpsxT+GKdpj3VHlfKtK8Ae164kvQj9VwvcTyqQS0Tki57wtR/z7HBNZx51WRuXZUTOX/0eF+8aWOca0kIS/0+wkVdX+7BmQkyAVlWZmEZtdLwDHVtU8ZTwpz3tPPIPAol2mMDFZz1yjKavIWHUwywf+ki3APoAf6eEV5s1BQ5WhwJcpETSowrGM9h0ETHuSSmxTbuyXDueuqSYt0DE9SMu52qyq+vDJzg052/nsBWsjiJUcfCmFNhsf/soIGR/l4G1+UOJIogywWy68yTg7WIW5mpVWof3S8xIKE0YF3XnO7R8mlPrv4TLIrd/weJ5vGpPLrhAuDgWS0Kx2oL9ZdOYyfAEHrbsPKlLXysF6lU2JlmXQBl9JqadqULQsq3rTms9aJlSTifwgSXcWWfsS2UBv5JcOC6wvZgJVjX0Srg4W3OXr/BxCFf6yI+Y0xwUVko6Tlw82NFsKuo5YC1XGPgYixX1vDXH59wJKQMbZ2JcEbjdT/z+PNivRTfpxtARIOXjb2ftgpYBE3tuLfPHk+/+0B0kNArSZ+kBpvHQHRNAifWVdIMRJeO65zoVYnUuKEhbuxDA015aolm+9NKO31giCe4ckSz8ST9syKwkmPHCg93sKyCi88QBdwympFnsCTCUBSXLxnRTwYropaUQyP0xcHp1Pf+4FAlbMGq0XUjfF/gjuLv6c/TUmmxODHhay7dgeiebbFWlRbT2jKqLTMsc6OwIFrMARsZdluh1QSXitjPvzvrilvamnb3z3immrh0HCIXtCGMCN5zxfMIJtd4LZcDj1q1JjoAmFmptLWz6IqC9GYDy0SmvY2zPIz0ZYIKZ2yRwSDHDgrsoECcpr1vpJE6tAuPTNkvw1Xyv3NnW61qXduE4PH9Ka2lX9ugaW/PX3ADdaVIcainP4sMZosp5RqlARySfTmvIsBKG7qQg/3nVC6YaT9yRPMv3nnnneFeVVX81m/9FgCXXHLJn3PXvrLSG6zyuxaOb44wBTBUiZ3xmva2v5DXel2UIVtzfHRola4DFg5Zy16pmnWp0UjK3rd9ZwpPTOGlByKD6642N1QOMXqrV1/a5vEeOazTNI8HFrQ50PQVgQ6k34XcNCSoRpC3RGBjtRFl3Gt48gynLzPJu6oVkJ7RwGPOZIaXHMb2wU7ArMGnXrBOz5vaiWCyJGJ/SyLmvw8EppI1HJXUvMwiezNwAbaCeWn6cls4sdyDvXlzolze+ehbOFeG79r1ZL3QyNgu4IYtMuZ5hn3RAeo+Uav11ZfGFDlOQy+ixJ4PMOgZd0SJRk3tmGEcoWdEfWlNbclKun2d9lO1JOXoo090/5CaxxtR7Z5bQzm8Bs+4fKw2mfJpHfx67XkAkieCgRj5uQezeRUI61cK7E3n1MuGyjF+NhnTyDHtC3s2GYZkombyaSR5r3E/7qx7doAbTsBDz6hWKRE8+b09JKZQtLMSm3lNexxPFEDE9mfAJMsonGQ2MELu9wIYVBVlT0+v941NB+GDLfmxe6ZJjErO6RmkAHY1Om3PWqYeUTiBYEr3AOH3od8q1gUbMzqnadTxRY913adBkFClv6QP2jBGrcdCHQPRQRxrzSLx3d66/v80XU8g7kUi8y7CVEQzCxxcRnYsTz7xTNBEDyRaTXimJ/QFn71BTTcpRK0wwkInRJXrUw4UVRWY9nYguvPJzQJDaJsE0Mz1ZU0Sht0JB8WIEilLqGnr3hyGptFWmqe9weT5NnqZuog6IecmLcLIm23ONJq45FmD1wmEmxcEpJ8W4eU/QWEmyvCvGx/cVUK7stxDdqskVkpSqQt0iSjhXSYarQXCkSbxuIfLQ9z+eFTeug+KR8+2x9ao3wIJwy4uKNuLDiljOoa6Bzx/XTXspcXUNabWa6plC9o/S/Rr93FCALtVYg/EbDsiDtYILpMGPH3sxDnhYXyZRRN5QQWyuzF6v3hkNJnByV12rxgGpp1MsGKcUsE0UjUt1GuaZ8wOC+wkmMWRA9eh0ek9/GzEhdjnDHltdNeYz3PsaGzmdP8NCmQvCu39WVjBLgTobO85SOIEefzRpuxrFFZYbTfCsOZjKdO+ML7zDc770Pm5998PF3B6NxxQqS2cHiFLID4Nlajp+pTWmgH1klpZjmc6P6m7SbDKmZTkSxoDYFmEFWDFCMsCqwLLBlYNrGTCwETFTBiUT2m45eypOkzkPd1iU4bIX/29UQl9k9B70jhr4XEWq7iQUlrLnoWtGrYt7NQaK27HWkai7nwhEN3QwESth0YW+q4V1bYnQavbY/DXXRezpEsKlCh+uopACAjot0PmNNsvsDWPWaUxLwYV/PccLDSywOD5ZvpEesiXrrkEhbtRiBXxl1/vAU3LOdvxvWERnGz+xrq6NHUrZRWi2wOJ1aHSkKYGk5sFXiKMLtmLGYkblC/9rEUTuOt+0b5TemheLfojd5kNPIflgpn2b/qmb8Jayy/+4i+Gez/0Qz/ELbfcgojwzd/8zc9JB7/csrpxBSOxfGmnhNU+gkSzxPYhafiEDTBbGvnSuEX0JM1KZdmpamXSHRMY8rTfvwlXDBRgeSDrtO21cfnZbZTw+yAtx2nmaMdd12nlhd/n6oNc+bIgvGsDVH9dQ/Ofe+GEpcHUyuYY5hXPHFlh7iS/1lsO9IzmK/ef649Q/dhVzF+xwvRVV/Hw1UcYFtE9wDpTloiwpPE/okB4nGeUCTVfWoc854l5vB/GflYEAqxmwW9rAWH4KP9Ht+BIjgxURaRuE7pHcFYEdT9j1svg6oupf/Qq6lcswc9cjX3Bxc63OllnUi27CmecKyFP4ABqlmHmtTOPV//IbFzq3O+b8u3c5aO33dV5vx2MrgEcD/dhS2WjA2sTn/Y68Wd3e6wl1PJ9amhNPOGSZczc+LCWa4Hl2YynBkrkV44Kso7K2ZFWap323vWlMDEonWfeM4F7nm4O+s+e0mnzGvZkKpdFlXwa4KTGDiKj4n1Z/VjCuFBf7XmWqR9VQNSxyQwYVKVaZNA8nz4HczBFT8YZ9qtxPVzNkW09j5l1rlNuq4pjymKzml5JaArsTF1DpgGCNpUX6dBu6Y1goSM430hPuNmF+ffuHCVAXYcc9+lDFdBvnevOtYSYhzWZkGA+64ikEAxqZYicnvK5o/eHSMJ9YMe9s0BoiDOHc+1gvJ9csnYtAtGAuj8UZjFS/AVSgG0mwBKFrmtuFkR84C8fpFPg0BBOzZHZHBn66dC5MOL9UtO5StpzmgnrUvZVNgYZSl+TqZ5wDzMj0y4henx7uOmw22bx/pxsiZrNWonjMQBrfcxumTA97urS7IgLAplaEnTNZbsfu+wfdDV4VtD8HEKzs4S6bXLmff1GmWebVGSvvIj5D1zBySuFUwczuOSAMzMH8YDeCQh9P3q4bC517dqy8WqB7Rms9ROYKW7va3qungif/8Rdcb5g4eyEkjJ0YTJErcxO6eikssGVTx7dg0PLyFJffYGdsDmkWcybcG9hkoln04pgl/sw8mNURkbj/VTYoklWpgHo2jzafinfzleCi0BjwV1nV3rIqEoYKP0so+bx52PyRug+a2hQSYRCNZCZVjrGxeJh2PngYWfpYthFNIL8WQKtJgCbJbKqwQ2N28NGNG5JgGfOVN7mGfRgPJrSB3q4PVzHscqoRgY5mWh6sFVxHyOsGGHNqKa9ZyI8CwPzzNwGcHZ/E/kG3ZJujLTMymh91FhjCUZRIdaKv+7Dd7XL3Fr2asJnp9bUjttW2LWaCnPi8acI9WqB3SvdVrIaO8QLTmzsInXEoQ1kMKpgkDhLXLBiRmGrj6/ste6SG4yFS6uaYxbOWMshATOrkV7M0R5M5CU2Cc5dMJm7dM7Ox2PEnmkZ0hGJvvW9nf6wOQfJ/wZkXrn6FldSaRACnSruvTC2dDrdXAWBgqfx+hl2FtNwdpoGdAmTQF0x9w3ec0En+ysuF8y0/+RP/iSXXnopVVUFpms8HmOt5ZJLLuHHf/zHn7NOfjnl9FP3s1zB15wBuWgYNAEm9e9NAaInaA4Mka1ZAqhtkMAcsmpCI1VNXboc7bXFHjuNvfUpuCgLTFL45AabO8adyLBbNE8mwCVEmJSax59NxrOfECj4y7aKx+H7mpAt9WDPR1B0BG3QsoOcmMGlG+SZYU/EUe5uvnKXkquXRXPya4/A97+YyTVHmA4yBk4banODJEx7Y38nkrI+Gj2+nsdRzrHKWExqZDmmfGsEy2kjDFCmfRJ9Kht5frzk5OEduPZgYNjJkui5hcEWBts3VIXBDjLk2iPwN18KLziiAoRk/GTqCxiC0NnEPxJ43MIRI1BkLl0QZGh+z2x3HnOcticoLOL+5e//zA/t/6PTtoubpyCs2siQ0zuo/7RlXrueVlZ9vfeTHCZAytIcowVsllHNa9bxBI7l0GjGUef1UIkErXztEGLbPL6zWZE419483gh8bcu656suCUjU+5/6KV1yW2Fi0dzWvYSh9Wc/GYufgym4HPStftmInHtzy8RrOZJBeCYyICx/9lLmzY9vbYgEJzOr/bQx4FVCIwBqhdKjRbPXNZIJB3EEG81PWiokBJwWx2R0LrfVQHT6Dhp1NZeFp2ci5zRzTZ/2vr+k/RNppATcFRek8ABwdo+/+cJXIitay1AcwSGJFD1BmGrR4Zl2oy4TvjFfEjPyHOiVJBkFOmDmOUpjnhNQs4Xu78zhGU84pZppjizDman6b3qBmWs7ExpBdEJ7XkiWGyXEXTC6PZJAdH7vW5BphTjpjocBBjV93XTdWPDxTdpt3/Nzvi3CepA2R8JJlnJky7kUpWZlEzXd9ELOHJ9DV8K4fHu+T+n/I2Ke9oif4//tD+j22WmNo225JiLUudEAdMZleRGByw9x7/e+iI25wHju4IrVufUMezK+Ht6txaGeukn72c0JrOVRQOgFBair0BD4np/4m43x7UvTp/guxYEbClHFmUAHM/kHzsL16xTA1O3H2luW5fp/m2/q8p0P4q+VPnZXZ7Ks9MwpfCh1X+Kfbw2mVdJUUG1YcZ5j12R8/AsCpl8gk3myF3RBluoY6+Nc1oteOJT2o9GXCgRh7PGHNOvw+3jCl+nT7seUAvdA27jZOjOObg+n5+rr7t8ToWd0TwWXGo97gHpQMB2XjvGMe8xne5BJjfSLMPZc1HVjKMIgEwojIYVpYw+mwoW1IZyZR5rLT65LnRToljZwS4NWPjOFu04gj55u0IpI3DOeIVvguc4xtZVV/Dq26mK2ZyPjvmcVzkywTE0iFF52caDmNWMLhZ+7AGcdDd1GBr7s1XHtFhQzEniqziK6Bt540qBBVo2Fy6ua0+i9dWthbjEmWlQ19m7SxhCCSft+cN+XCYt0WnptxtDprqOkJcBqodjwQyEMymglY1sKi5mF1Qq1Tmz3pWMKCyEEjAzwKMuiy1K7LDDrredmVi0/96OR/wLKBTPtKysr/Pqv/zo/+IM/yMGDBzHGcOjQIX7wB3+QX/u1X2NlZeX8lfwFl39g4MhojCwPHXxpadrDJy6AbGgQDQMxV7v7LFvYqaLZW11ZeOQU9Q3HFSj+2R4cO5VoYJW5CDnaSdyrUX/2S3ESNGI0cYiadtifiLFExLAfwksjNDZ2tWfaPfBxvvpBsvz4NnLZEgPUjNkaZU5rh0xsL4O+07gPsnDd7edM+hm9njK+UmTgzYDDdEvCk6bm7kJto8ldaaFX1jrwQdE44AL7aoFZKeBsK6WDV31XVk3lH9qB65Yi4nESYmt0rHU/p+zn7PXz4MOPGyf9TLUJPg2GI6KDebwQAtJZER7DWVP0DFnpmsQx7uMZsp+v0wK18CxL25/d7XU5vKzYbjynsAGPurxdWZy2dL+k/fBMQ/JbAIalZcn9aoCl+Zwv9jN2kZj+RxwzIuc3jw/FSDNipxG47mJ47WV676VLcM1FkZAWImNmFXgXWDUJmyrTDiymmZKECBPVkpeD3FGksWdi3fzUkNcwLXyavMQPztUdTMMcQeXn1msnAWRFc7ULGpnWWhtNa1s+7TXKtC/7s+v7VHpNe+IKgBLajb0kLmiU6xJ15C6iFUEktJRpV6GUHsosCdynlc7Q5elawxTEQpNpD605BsYHpJuKsCwC6wWyO1F3FlUmNYPoSBSG+la9Fj9HNI5EHX+VdCbdJfNMfZJ7tW0if67SNov3ny1U4aTd1MkJJvIobJaLenByD9mxLl1VbDBDhSEeHkTm1rXhzZBdIMGR1cCIkjLsWA1QOGwROaKaR8u58/X6+13a9i2BJaQBz0XArOawN43tOQJWRi41ohtThotz0T6Drav/von2OWXU/TXwECRyeNSn/ZQfQ8caades4mj3sUYZWSvCiX7BzkUryBMj54JiMR7G1BaqOhDsA3xqRBsm0abX7Ql2w+0x4+OG6FzsmWebHswPMoHxghNsgpwdB+ECe1Pk9BiuXCEzokx7Jnhfdqu+G92MjsT6Lcm5GBbYqbJME7dSI4CqVks8L9D1ZvWuuvY1xNa4oDEvTsECDQewZDS1IA4au8aWgIm1C/A03Que+lhYi9QCaQ4iRnNJ+/mw3WNrB9+64PE1NrN72ru7HcldBHlXTu/BWj++J0IhonFWJApjPHxl2KOceDxtgwuoP1dmr4Ll/S3/YspS158u4cKhJTg7bwKVNBidLw3gksDlR0/pPD8F3HAcjp1sTJpn2huRwVvX/crMqvDeM+5jq1r2PauxYMbAFGFiNQ4Vgloo9MHuTdhBLRTFquIlDeIXtezJWCwas2SpaOFhaV7PUTx/4LeEQZVMg6pmGaUxHrUofDJ5sHqKe85bWxIY7fE55i6Fu3t0CLEkfh/SHYk+5Xf392mPe0kAsoyBC7DXVUpgdQ4NqJFU6OsUdK/3xAl20jnOTLD62pc5328wc9sIgrdAI18Q4PrKyrOyTNrY2OD1r3/9c9WXP/fyEoHByT3MlUOPG2P0+NREPv1/PUd2Yq52Cxo13Fo2asvEIWrrfdkfeEbhjkEh/t1Pw0svbaZ7yyQw697n2aKm8Ze3uoADnuvEQHRdxIYv5wp24k2JOpHbSk9NdtJ3PONeVvD0LnzTYfqO4bPO15RMI+HbnoHKmajODVWmlgcjYO78+G0vC9pESMzLoBMAMIB6s2oivclMTWacPVQw8TyXi8NqXyn3NBCKiz+AtfDkri7E5at6wD0R4zQO4rQu80wYZVCXEvzTrUFN6HvKvPv+pEHoAuPu1uoEwg8JGjV55nzZrfNTOpev0wUA83OXuAf9nhcvTFrtwakxxRU9vOW3nQPDPMKxrn5Iwjw6IsChfs2pGrKfOd/9ScXaIOfPLHybe87iBEFybgluYyTig5QlRIIRuOYwfP1c92yCQL3Jn3i20lo1j8RSz5Jo75JI05NG/RhnoPnVq9ivhjTd5fuc5VlzzpLSiJwqkgSoTR5ey/XMocTlnl8TB3tUMhwJ610b/S5D10uQ3DCkKfn210B0izePd/shMQFNp0Hcm366S4uLHNVmm9SUsCE8lMU19KXHIqOoTIyPdqwp33IBVofIDNgeYfIDAGSIaohFIiFKlMjPkeivXyQZKRJCKh1j4bMm5EbrMeExdz33OWzDZv/eNknsIUMIgCpCcNXioh7y1FT38rDAM/ZeW1aF8bXadBSYLVCTPavEybJjUhrrOauRnieO4m9LbgZ2iAx81zj2Y3Y3BTY8inEUogCylKmrR9t8dFYrzHT1ZuJS9yVthfm0i8xUTRLtOhlLil/Cb+6z4e7tokRjqmFtZIwwQp05AbvDddYIp4Dd561x4JFt5PkH1K+9iky7eDPlTKJPewhc43GPHmS7DawNkkjqEgYylmZQzv3gYCgpzdJg3AUO5bCVpNx7cA8uW8H0c3IRRp5hz5z/fp4E4Gy3Y5r1BxiybrBPudRhDn5M9fBBkS/wLOLPdtJGACf7jfF8JSUekkU3SwaZzJJbylytWBZSvrXH7VnhNpMCcR8zV3okdfGJODPSA7AYJLj9/Zxj8+spJBHFBC5ahpMuHpG1sDOGAweD9SKimlnN025D3AR/rljuw1hpTD8ucYMTQCYlMuztQ4u0et9WnPhHDhRwdFv/b1s6ooITcXA7KFT8s7WFzz0Zq7MgX3gGeeElAYfmrj8NN6sLKN4isrTKf82sMu1T4B7gFuDVwNcTmeSwpsMC9krKdctBSGCbt4hz1E0DULpx7czgYOLM9iwVM0aStG+OITcZPDGrOI26hP2mhf+1hGv7JtLaXliM3vAw0sczccPY9+qPtD8P7SMHkYbzvEiKO3xZSH8YmHWaV2Mo5rVaYCUwxE9rBU5D4Ebo62nX69oqQDOwpOPKBeaOz2hr1vcT+QSCsIa8I+rwV0yrX3g5p6b9l3/5l3nDG97QuHf77bfzyU9+8jnt1J9HOXTJi1myluWnZwzWehhkMQgdyXe/qzf6mJOVEvveh81p7FZry57Peeq00vaFhxX5+0V9xSUxYJZDit403ms0PRH0BBqELvieJB8PUNvmXO2D1SXBIv1/4VS4zzBXn/YATIlM7RM7LtrIQE00U3M6ZzmAuGiS/ZxqkGOHOeUgZ2spx7jUECH4XNK3BYIk7XQfnOcz4JR6kxIZuNlpI4b2+gWBhAMPew6kp35VFnh4D65fUdNZZ2/kCWURQjociozxoKAe5pryo69Xhrma5yT9icy6UCPRBcJqDt4jAoYMmdiw3sZCdj5fp/PAgt966/v2/9HbU9FkGBBBLlqBs9bl4HYzPrLYQbfGGKIJlxJusWNh7w+UQfImrHlZIzW8bKngTgs1EpCsJ9a70v3sO+SutTbAgRxOxbywxu3pdtC4JevM46sKm5mw7UnG02AeRBFWZTKYuHpsJAQFYFZRA7MsmoSG+kSvZTpOz9wE1aBbkxWBLdWO9bHhFASNe0ILYBXhrrSkw1ICmQmSdy+QiJroWEI6IiNoNLM4tjCMhJnPgbJW5tDmixrpLuFhVxHXbiPQjOurDwZmEc6iOVYlE2Q14wNH/8wFJRI2xCFiR4hiVCiq8x0FEoBaA83ba0faMsWsZLrAOUTNxPlKVxA6iwpdPdNuTfRpT4Nycng5Omb2k4i4EvPZh3EmdQcLgx7Yma7fmCQlmsNbBmBaI1ketRlur+fuPO21iJpGO8n3trZ9S4SlVFMi7rpaYHYcLvFBTUEJniyKdnz0+BA5Xprzl/bJm3Ku0Nqjcbqa/Kv7zfv4n22NIz0X+t1p2F3e8toIR63wgBGevnQIz+xipvOoaa+c1t3G1E99VJPrhXpB4AYwLpVOWOnFcQnBTWgm+v4t73h/WIP2OBtlAQ4mT60PkbNlYBrkodPwfN2JPRHG3pfd43LT2UKzLT9XXnM+NDCdYm0rKwcoXSBxjClcbJcFbbS/ngsPpP1K58BflzJkUoZD6evpW8uOB6Q0eUk/Pj+WNHbCwrUCIyaNmYsXIPrihZKdYzvfuPDMh7Q2tfv/0EDxnY+rcLpGDgzwQjNv2ThNzdWBmPatD3u1ClltxGUBXozmyLDFGvhOt/dKu3++zQOFChPatBdAZfntt7p97mlOd991FK482Gz65Ucc7U6k4ekQ/ra+t4unw0vcx33/M+DfArcK/D9FuLvWeCJB0y4CKwOYagygPJhWeAFexDELQehANe3LWbJn/eDOs9ElXjKRhlVulhvum9dURmHpnsCDE5CBC7qN18oTwhv5PbLEoqbdJkvh7/s93raITL97GJtq29NzBdE8vjGmFuMOAnlGUVkm3hqmMZ9KYxclkEWf9oDTOuaxIAp8w7h6BjuNfEYb2YQYJF1+7c7SMJQLOcx/zuWcTPuHP/xhPvzhDzfu/cIv/AK/8Au/8Jx26s+j7GweZ2lvznBmGW4M6Ykzj28DGP8ddAE2dGt5nzDjTSutZcPimHbV2traYg+uUmfA8w32Jy6H5x+JdXuNs0QmLkUUPghdIDhoSsJAtTVtYjDdQ51mJ+n+TYFEyrgvZxoYB8JpDf7sj8+QSw7ig5nteaIqU2ImNaXT/K6GOlcT8t0io5eZiEBYPOwNk33/u6Daz2n0sy+x9CdVM38xNNewPS4vne6h0UtThOAn/+hZuG4tPh8YWon+0m5e50aFE3WheSkpMg2s15KsNbTsRAb+mFUXiAxnHl/VYZ0zwJzT1ykCtv3Kd337K/b9zSP+NsMOwOEBbI9cDm63p+oadeyHxmZaqDPZi+5nneUMZg7AW5DJnMzCC3oZuwKPuLmpRZiKEpCNplrXxQHRPKvBFK8IDG/IgKDQPk6ljSZh1FUIvBQYBUmJzLi/50BVZK3E4sm8zEvmRUI8WBYEAI0gLK01Frf5Za1AdudB+jsNWLSJOxydwBjb8AX1qajIDH1Bz6wblyc6EpqJWtRlAENn8LlGsdCzUFWOAWkFovMIMW+tZ/o9vdeDBS1VJHx1fipR5lxEYGOZV6w/Dxlq1PElgU1PgDrmNS2lJEKSXNO7BOK9TdFZ6M1qpsFSQsKeOB/D0e5/Gz7voMJXPXbiaPCYdlSMKKM+dM9kJmlL0zbNpdlOYNbDZBqsM+8f2Q7BiQWZ1pgib8JhJwfdwGVncr8tMDJub3QJjXcE1hNcE8xrV3p6Dsdlc/2nwNDDFyFDmCdWDS3aqTGfXnjttTqhLYm4U1off+9ilGnvtBhw462A2rl/1Qa+hOFXjVAZ4cZhj731IfL4bnAji+bxVt1SrFU8XEfza/BphSx2c6rmtQ6/2MCUCRiYOE37y7/lFZ0MbLssMHXpdWMA2zPt6+ZYAx1etQpG6GXCPAPrcXluOgWWoaRadg9LEFjKsc5Sb+bhlEut6H3a2/V2WYykAs1nXdqKCA9LhwVs1w0XR6xq2huMdsfVa9qz9F3iWuj3GsHEAK7JrynMh6/AXx+im2VKpwhwuAdndrWOsy52xEovMOwIGBPHEnCaODy3JpjpjIPQyPAQpnFvDktJjJY2vZWW9t5TYAcHBnDaIa/UT921953f6ugWryzyz3izv/5AieCXZvBTV6pFXaDV9FEftTzCqsX1bBebNBnOPXBzmCsd4C2ie0VDw7p9POzDtgrMvX92MI1PXJJCQymQGc+U5k7auFDFjP89lxhFPgcKMXzt3LLsYkos1/BVY0ueZ/o7MXq8uPZ8U6k1Xgrb2/O3nxALIgzuJ892oFegGbtioaIULvQy8trLsSP942FqCSxRA6Zx/NP+pHAzR5qm9gK2JwFnNjvb6r3tuO+sxRr9TmHPX4DG/YJ92v//rcwmO6yeGrO+BOsirBqh8Oc9DfrVBkhFhsnRQDrBz1OvK5VlXNcuwIwzWX1kD64YYn/k5djrLg7MekwH1tSw+w80zeO9P3tKbKyj2poGQZUQ8BBTvnUhBQlfks3lx7uSaRoY/3ztkZtFnjgNV6p5VCbO3D1zSNv76dM85L6kOU7TfqTd8LSGiGBSBj5Dc466MgV6c5ClXgQ43jw+HU86Lt/GRpZo2gkEFpMSnpwr0+7WyjO1Yc1c6TLj7UIKIQidb0bi/DyCcGkYf4aZVlHLbkFG5/B1ugDUfu3zLj/3Ax2IX8TNz8kdCqt5SgHstAzBuBaQXqpZp7n+gRjr5zCO+9Hszcn6SpS9RIRPWdVoIapp74x0fa6Rd0n0ReDAkkq3vMmqJ0Bsk2lfxWpGhkoBbxiH+PGmJpz6RX2nne9LqNf10VqY1ZR5pqZmInSZgDaCRbo+NzWuaPTfOcisIrPKZ3qEr/1vRj3eRS0awnx54WJqHi94vNfokyc2g6a9rptwI2Hi/f0cqJzvdPusedasK7YGHfc6zePFxZMQsEbYlkQIsLrE5cMNcMGRCpEYgMjPd7I/K2L4A8iQabQYkAQB+3U085px1jJ5kyYReK7iYXtb275FwrRDYNSNNNMkycEBEuJISYCPmagGNvg+J5fo155BqYziFN0TqZ+lADK1GKc5axM2SyQCHnevi4H3n9Qd9YwIy86U3EiELZIblf1tTQNDgAVGlQYUdSWTVqiIBoxpurjuErXsXQx6AxUk90CtHc4m9XaNqUb3XeWynXw8g5FR67y9TPj81QcwD++E82FCfJQo7C6sJa8cPPWV1s5t46HT2DHw2OlEkOZHK+yhcPOSqy9rrM85MUDKKDUUD4UGKgP40i5y1bLCdVGmvTJGM8IYF6OGc+z1BHHH6PFgV/vYOdiyDtHWmVdx8pP5bgj5adHAJGmP97nuW5K+pTSOLBcxwr9bZEF9uPeSmJRtmtziYoUk1ad+yqFfVY3JmkHQbNIfyyLT/mWV/Rjiw0M45YjBsxO42AXGyiQoRPri87S7F03SzwEUO1Ol02wUUYe9PZvDkol98KVrQdK95xUmEJRfuNgC0bxFz8a1z7u0877eA56ZwfUHkB96GVxzWC0ixcNH/T7AM9VaumizrtJmUi3wyuR3awzfaqAUobTOGgY0GN1kztSqAMjPXRp5P1bsN5W7bqPuT6Rr6efwPDvd/Z6j+ylHcWMP4bra8s/E8u01/LyBK8qKAkNODFrXMJF3pUvTns6J/+4FPwsWkcnVH/lGGtdWSWmgBOwtDnOQkVUkArFYocUJ+cq6mTZnoRICXRXiwqSlEIVVof6kx+fbTHMbY9+cF0A9N+UvlWm31vKWt7yF17zmNfzAD/wA//yf/3MeeeSR8763t7fHa1/7Wr7zO7+TqtovZAEsn5yxvNxnGWEVTVlRdBH+LY27HCyQbSVFQ/ooC+u1VTfwug7RB+3Dm9jrDzqGVpppwHIlREMqMKK0fxslRK4gYdibdBlrxLRB7b3j/983wANx43ZWvpTBbmJC5ggM2Z3C2RouW3VI3oRosxpQr8WwEolWiCaavqRa/zaR1aRDHdFXVlhrg4AimwKDXgO+CSwy6Y17AsM+7FRNht1aeGQLDgqsNVPzeWSX5qotWAyYlY47/d7QslsfFRmeBK5yfc5yMCjTnlm37l6q3Z6wdF9+JcUjuzaje2gJRhVr0zmTIHSsoZ8QWO3Fa4+/QYxZwCDWOmbcItOarOhhgG8U+Iy4NCrAGFmAu+cl1kS6CdVVh1K2poHwiD7tBOa9wMHnOZrjWqLQIUVWaUfmgB0AU5dCiAgPAJjXVFkepbnSJMYhSpnFj8Gtgd/HIqif1ADYmTBAI9xGLtBGeOMQTEiJZh2TVtWOMTQsiUaPLxOmK8wfaaA2dO/vB0Jt/JIBdVlh8ziGMAXomPfTmLVBT8q0t5uq3YNjI0lKugmyWyLPqI/kqmhe68Y74V0ltAIj0DdNggoIFhmuZVNaZnlOmT7lz0l6BjpKGt22/dkiiXbuGVr/SQlcM1eYe/xMA0BmaOTbYCUhonsiAYbWZFBbx0BYF+egxWRMa+jnYf+l+3BJZCGKMMkVFs3i/W/BkiAZl/E49EDmCPZYk0wqkKJBUHm/7gWtbKtPnmlPy354JUV3oBHkz7C4Ph4neyu4StQ0vhThm1wwurkISwhXXdVHHt8hm5VNn3Z3NVXNsLbkZU05V3xjPSNy7DT86ZbCm997Ao6d0vEanKuZwsULSn/ZnoAUR/jvBzR6P1h48BS8aF3nIxMKY6gyYeLTsZrueW804uxsa9eGBZc1BRjN2LPOnW+uAU066d59BtFm2s875nbfOhZdhg4STRwN5+D1AMdYtASgbSbFC5OTVpr9KmtMsRi5PP3u4VuWvsd5wcliw21NO8C6w5xnJsipOWwsJxten++JhOjxNhmABegbhtMZaw1mnRCMTnZLdQFMO962Sk07me5D/z03OpFn9zeRt57IW/B5R+O7HB5o9b5qLxQ3aul4TqVKF+dId1M1cJjIfP5PwHUIM9RX3AsW7RownjoG1AvTk2lKFF+hMymgWek1N4K/nmtDpMcb5TcHKO7vY+hX8NWZ8I8KeLkR+vM5/VytdgZ+TAE+x6DPGt+nu6TCZ++L3nU203srtIQALdpjQiuuT1pHOgWS0Zv7gJ5aQajH0dVFVS1Iw/aDl4XETDNBsF+g1pYL/uyxzX0D081rFz2+1fhfYPlLZdrf+c53cvPNN/OGN7yBP/iDP+BlL3sZ//pf/2vG4/22k5Zf+7Vf48orrzznM8PlQ3B2hhxeVpxjxAVMlSgRTLF7wvDJ2gDZnCcaNcBqnvaRy89ua4udldgnRthrl5WwShl2I2CM+sqxaJLzBMqUr0D0caYJEzdQ5h66/VKhifSgY+N2adlFVGq4h9ZaW9W21RaOjeDigebSFbVOmHlzPufv595qaEL8dY9z53TsOrThWgjiA3u5e9muVQ0uBNOT6EvuwEZbEg0q6d1J5HUecD6yB9ccDOsvbq2Ml1Qnkrrgc5mMDxbPczsInV9ja+GYwFXO6tUMBDMuo2m8BUazaIrWgIwXht3v/vyD53lCAsIPzIIRjeq/0uOy0+Po0z4usT1t15Iwny2zOB8wrG06W/aE/rxiyW+zuaXoFRgRrhA4jPAZq+bxE2kGg29c9xu3n58Gw+O+H5QGgRAY64SBWQF26lpv5VlcT2kimDaRaV2shcZtzwhWljLP8LrqsDUCo9U0j2/s/9YYZGkAu2W0fnCH3tZNJOiJy4FN5qysdbyZdPqYkXz3pyJ3bQem3aYaad+Yvp0Bdl5D4ecnrpr3u+4yBe06557YahPOdTB/FMYGVjKBE2fJPnuKo+NnyD5wHE6c0XQ1KUMt0azeopHnI0zMNJ1aqx/pvOQVTId5zPmbCiWETriblnRdUtiwhcLwcLSNUQuLzMEbAR49hTzq8qi/8zg8dgpxOCMXdSMB1fZo3wh7y4L6D1dqESIkAtzEn1dmJVJkCYiM8HfFMe22/Ynbb5HZddfTAmsS4zOkUaVl2IftlgFx7dLaucY1WJZ/IBEAtvY6xAjGvq7GRzruEYnwgzQ17U1f9ihotUDprMquz+AbRDhkhJ8zwtUbQ8yBDHlsh8zGAHTKsKuJ/GBeU1Q1UxeslrLW2Df3PhP3koC9/5lGx0u3l/vAI/c+2KQHOUfZz/JoYwBbIE+PkNM1XLWKOO4nNzrGcaZp7tpa8IXSOMyRca8R7EqG3ZtTW93nvdIGX9NwhmzEI13tfEXm8Um/4ncgE4xYZORpOAvWsuxwwth1IDWQ9X0a0zpDjab8/8q0+/53FZ+dw3er63r+sckivvMR5C/O4ORYzeM3BgSqxe2lzMDE020kOFsElguGkznLbowLlmm7xOC4cG7lQegfi3TYgb5GkIemiXxtufvzDzUZ+TRosLU6tsPK5EaFg159INdzKVX2K20Y5vfAGeAq4JeBPzUK20rUPclbTtI3sD1hbpMsHdbD2qZVXwMZjN0uCYKQFsA6345Ifh6IsGRVHjIQYXmigtollBEf7s0ZZpGx97FGfDW+qjTlGzTlKem1bXmy3x4eojRJCrPTurxyMbwfaCDC3hWAIqeYuHOV9Ml/mQM5dThckp7/jtJHrdV8wxY0zaUzj7cLg25BwTZjX1apGV+z/AUx7xfEtL/1rW8Nn6577d8utNx000382I/9GNdeey39fp/Xve51zOdzPv7xj+/7zic/+UkeeeQRXvva156z7v5wA06N1N+17QDnAYzfMS2Nu6wPkB2X59MdSqkta9ZSVlBbNUe0x3ewhw12Y0CdMuwhR3tTy26JgYyPo1p2fHdoWpYJytRvQoIqtKT7bF/zeEngQZdWetmR2HOtNQgojm0jV23odyP0jUZQD8iiY1+m23yMApAuIkrPV2RYFgBAbjC1BojwJtvZdO5SISXFdyNFZm3ItFzA3qyFEGp46KymevNB2sKaoRLclqY9Rcr7ETcLWnY38U+6+5d4fJODmXhNuyU7n6/TBZQHHnzs3A84JiEgvwDEBQ6tsrEZtQ5Mqg4bpo4iCUOT9LUcwKAugwZYdiFbyclRJuWbBD7p1mcOmtLLdzM5mvs2397LKaG6NoQzGnzJp2QSIkGC1fM0dvu9LiJx6ceijzkix08JqKnvvFromwCUUA3ywPhANJH3jJYGRkteSvqeBjPk0ABGLnhKgq1sohn2NOiO9VpcLzyow/bxwWr2LIkVQSQ5p2i6rdCPJDJ+15SDS/tWWjBpSkA3Pnft0ip1lXae9jBSR5SBmmwPROChTbI5PDY/g5mCefAsfSPs+EBaybiw2vg06Qs9IQhcWtSE3xemhGkvd8HtkvWXxbPeLp42azO2oJpoH4jOVx1Svnn4c89T+ruX2z1wOhCnmfEM3eJchf/7BlspI+KJq2gC73bktFrMa+uqHRCjCKdtpFcPQiHiINVeqAVb1OQo6SUWZL0HO2X0mQXYmyPO7FZEl2a2zx5p92M3mUv/fjqecKxo8Q5Epj0l0hsaN6LQ1Yrza88M41z4XiNcm4umWLryMOahnZBNJkSOd0R7XtXkpWVeqmC/9ubxw2EjtSQvvySkT7WiDDRuLU489Fhco+TaWRowkHjgXPovues0PH8VKXIVSGeaGUWMMMslBONsz3lnGxAzqPi2+n2Y1oxQ66phWVNnzr3Kj9fIOc9QV/T4Cxq7f6A9dk9XrIm6whFh5xCl5XY7NO0p0+7NxhvF00cAtvayiSBUS3k0T5edKxvABaF3oUl3pUqXQxpBXk7tIYd81onYWBCISSLwQ7R3wx55DcNScZo44lQsSKmxAFjqEKV00CXSop0bDP7BJFc7NA7dAw8e0y9prCFPp00rXYgjy1EgaAQfMNhbh2Tsb7G1357bL2joGeAQ8ALglSL8gQiV+IB1iljsSg7TGVNggA2VCbRi6dDcDLuzZC1pIsgL2giE/S0o/lyysIqwPK5YsWquvwys7M5ZcYL71PNUaLa1RHeO+/b8pTnaQ1fSIbhrn6bmvguudJnHt33AxWRkjZRvNjLv1jKxkM8qdaVNpkZBgJAOU0StMapYk15zwU7b5ztZL5s8bVu/zyoXDCjtdHtgz225oGwbb3vb28J3P8npPV9+5md+5oIb3t3d5amnnuLFL35xuJdlGc9//vN58MEH+d7v/d6Fd7a2tnjTm97EL/3SL7G1tXXO+jdPPQxnpnCR2yppyoz9JIPod1nPkUe33b/xUK5gkbpmVFl6FuzxEfaqw3hNT9C0e0bQSaYb2lf0rHt/9kBsSCJbcNd1VFvTRRD64pl21/XGNQ6IRaA6cK3szWFYKAFS1cixXXjloSDByjNh6syRrL+6mrs0MZ5pb/SnDZv8tJu4n0SAIiOb2zAuA0g5g6VeXB6T+Lb7StuIQ4DVHB73dgqus6cnqrK5aj3uA+N92k2MtO5e6RGZ9i5i1pcuLXsNHBPR/Oyg2QtyMPPS/e8itW7jJLDpXkzGdZ7yYz/83ef8XdzeDOa4bl1FgMN91k+O2bQbgMVWZQjQ1gga1OpGU3NiA4MzyxNCAJBJRZb1gmzkazN4G8IJHFPW1d/F5hbG0mkif2gJzs4Cg2BQOJuaQWdAOVO/y1S7XpMw7zQZ9z1Q6mBaJf1KfMBLqHrRp90PIhWwNYKwtDWT7iqgwXd2SvUfRwdgncmdtTWWLIxnZqGf7EIpVQvuz9MyMJZFgtkTlIEkywxUnhjdZ+KtIoq6qhs5Sv26+0CGXevWheBTDUmDYAhw1LCT1/Rqg7z4APW9O3yPfRGTPvCSQyxnmmu6MpBlmmvahRwAXO7nhJqQs020rWONxLyZwMRkTf/qMACJ69o9NZ0fUIHrejoHmWkwT+QWXnkp3Hdc+58DLzscog3lRs2YFwN6Jd/7GXbuzHqT9UtBiUxKpGciHDYexwgrQremnZbbQes3D1mXjQGpIvHlwcxKD7anzQmZlFFdjgtI6DkNae6Fdru7RGEwyTUIKEQwVtMTYlPBhZrHf4Hu+j2vEOC2Y9gxFU+K8NczgVpjr5hr+8iNT2HmlVrs1T5FqkWMEuwrnmkvrUsNW8Pje/DX1mB3hH3FpXDdxTHFaC5M3JkaAN/y6u9+FgxeB97zOG0VuH8L+eErw31xedmLTFMqBjhu2zB9sRl/BmqTWHms97Fj2LRwWCwnK0udZw0aoUGzCAuKq4rutGgXXNrCetdX0y+QcQKna90TPRvNeC2L/Wmbx7fxkQCUNZnDIQ2mUeI+nrO/2+2FD81Rn35d0+uhIZwcIc/M4UBPmTKvhTaaLnOazAeA92uvc0OZwdpoCoMi0riAjJ2gbZAoEhp0SccqiYv5ktKYglo7Pj1qHjJ3/bFXf+dimje/IM/s6eQN8kUrkmQ8Q5p4pIs2a5fURTV95yzKtAP8hMC/EXgVcIVowMxM0FR5pTKNw54JtIbnKqXN+HnmbzxPpLcSr4157S7SUioguo+HFo1PMa4Ub9WQ1WDGc/JeAoubr4bPEjEQnS9d8+bN2ltdaFwhatrTevzVu+M1MinsJ7DIhKwsI92d0G/g4tXM633VzSk4AHUTaVrDiLr2BIlFMuouYql93wnAG8xN2uBfQDmvpt16rfJ5Ps+2jEYq319ZaXqqrayshN/a5Y1vfCOvetWruOaaay6skSlw0VICtJKN4qVeXZq7jRzZmyaRR/Va1JZhDXvWqon8sU3s1X0lorx/WNC0m0C8p6bxHmCkTHsInNM6x+tEn/YG4ZRMd/Bt7SgNGJtuKm9lMED9Dr15z5O7Sp0fVh8pMUJmhEmm7wSGrqMv/t6IbuIqBR7Bz8b/5tenyMjcBM2AgbXaPx883ltC7FdxGBuwmsHYRY/34tWHd+CKgfqktAQskqEa6aS6CzG/SoPQeV/2GpVuHwOuFBB8Xk3BVJVq2XFAvqLb1yntyFda2tL6oJExHDq1o/7ToDnH84gkLHRbaXhGnSZxNsmgF0yRBZnPkGEWgqIsi/BVAn8iylDuF0ARkj3RLg3CIOnbgUJN6iBmQbD+fGkv1wDK0jlpNRlaC1jTJDDBBTwzIHMVySz0agLW5MEXu5Gn3TF8jTztfmxCI7c1AnLAwO5YGWS/Jt5E3hL82mHRXJh5HbS1iDDE5SSWhH5wHajQYG7gzlSiaW8jeT8hOcqckGWNuiw+bVPz7LTnKf3fn6sFwt4ow2QzYTs3DAqDPO8I9Y9dTf2KZexrr4arL2ZYGOa5YTszcc2EwNwGRkBAcoLAJR1Po0xhUuTBj866OUwZyXOVLu1NhcLmdZJ5NaiJfCZIYRT5v+RS5HVXIq8YwN+7GrnuYgefDFkuzLyQpHUeooWBZmxINSICjSCMMitdujwCIadQSSPxpz7tJGNJ18bT2/7eFtG1K/hKOoGqAVjLYVMpI6+JppxDLqF9Iy76c3Ju2sS0v+6RxAc4xzX9eOJmAzidzF1q+ebRQyNYbCbMjeHJXLg496liBXPREmYVzLHtEEXe1m6uHU0wLGsq525GbTWGSg1829Xw6pdhr7tYhfsuenudZUwcTFsIyJbgyM6S+tO1FRCCnlcnUNHMKIrr8kwYd0SN79rrPkq9DxAZzgZg+wPYVcu4AujVUPezjlr2FwqE1JNpm8n4z1nS8SYvCCgzOqpDgyKAtaxiGdeL+9t/95HBF/qSfMcxDX1cbnoW920j+GhHXRdc2oFkfUcuLuCRHahBDg7juXZzkBth6mhQ6971FhIjYLtfMBxXDTyJRWPsZNAgRkn+7yqpeUvax4MxqwuwYCIfYg35CfRE8jNTuHgQ2vQKJPECe1fSLCTtPbwf3E5hWUqPn0YtcgzKqH+7wO+jSrdSHP2dG2wBK6MpA6u1qRUuwR2v6dPurntVdDdYQLLnO+TEh1sHI8szerOaoVVaoGct+axUvOKea7ySVLNEhPv7uUGB4hVvwQVNcjA9n0MW3fHSswDdfErr6CIDMLNK19UurqPFUviAl3j41AIDfqiij02THy2oi5YX8ndulNb6paWsm5r2Z7WOfz7lnEz7z/zMz1zw56d/+qefVcNLSyrP3N3dbdzf3d0Nv6Xlox/9KCdOnODv/t2/e0H195cO8JN3/wqv/6//B6////wCH7jtI7zhv9/ItCydGka4+aN3cvunPx8AzamtLd743verefwpzdX+kY99gocffERJpMoyfOIEt33wj6if2lFsc2SZd33oFh59+umgab/7i0e58X0fbQCHt/3XGzhzajPskSfvvIfq1jsCcVFNZ/zOr76dcqpsogDjW+/gzJ33RGng6U3e/l9vaOyz8qZb2bn3wfDOiWMnePf/eH9j//z2DR/k6ONPhhN399FHuPHjt8OqCf42b/r993P63pNw9RoYw+fv+yKf+fRdZEYYizCr5rz719/B1PXPAn98yx189s57wv/bpzd5+s03NJiJW//gVh74Quzf0Uef4L//jw80ENgH//AjPPXk02Qu7dIjDz3Cp2+7XYmY+QwZZLzzPe/n7NZWQEyf/PTnufmjd4YxTcuSN7z1XUznc611ueDmxx7m9vvuR52C4dR9J3jj1ucicsmEG//oNj7/xaPh0J04doIPuVy5Hinc8o7389SxE2He7/3Cg/z+e24N464s/H9/4wbOnN4MxN/9d32B+z/5ace0QzWf8/ZbP0Q5nap5fA0fuuMubh8fD75Op7a2eeM73quNuHHd+J5bG37rRx99YiE3+2+99X0cffSJ8P/dn3+QG13/fF2//jvv4uzWdjBnu/feL3LXsS+xNCqRecVsPueG+z/BVCpwDMFHPvkZbr/rC26hhJOnNnnjr93QYOr/6JaP89BDj2CBqYGdsyf5ow/douu0MydbMvzhh27hmSefwgDfDnz8i0d59AMfbeyTd775BjZPb4b/P3HH3dz8kTvCEKbTGb/8xv/BdDYLatSb7/gMt3/h/kAgnDp9ije+932KPJ2J/B99+DYe+tJRBEUsoxPP8EfH7gnEpxV453s/xKOPPxnG9OCXHuaPb/24W1/BFIab7vsE21vbQTt7zz338elPfRaZWmyRMZvPefcN72E+m+O1I5/54zv54p33BK3L9ulN3vvmGxwhomN4/y1/whePPqqVDg1Pn3iST334FuYO+Qvw/nd/kOPHTgRm6pH7H2LrI7exhscTlt/78IfZLKOBWv2F+/j8HZ8OCHg6m/F7v/l7zGdzKnRv3/Xpz3LvAw8GJu/M1jZvvuEP3Bpo27fd8nEeefioIooanhpv8cEP3dqAQXe852aGj50IhOPD9z7IR/7g1nDMAG548w1snd5E3FyM77yHz93aXN/f/S9vZ1aXjArDtGd48FN3ce9992OuuwT5Wy9l6+CQ9777JnL3+06R8fE//BgP3ftghKtPPMUXPvDhSCBk8P77PsXxJ58Oe+v+B47yR7d8PPyPLfmzu27l7NZ22Ot/9rl7ue1PPhWQfdh/0yjGu/kjd/CJO+4Jc3z29CbvevMNgakF+OJNt/Ko81MWEY6feIrffdcHVdrfz6Cf8dYv3cNj33wEeeGl0Mt4+OFH+MRHbkOKjJmbwPf+9o1snt0K/bnrC/fxyU9/FtvLYG7Zns85+873MPf9E+ETd97FZ75wH1KWSN9wdmubt73rfYG+sAKb7/8oZ938WeCJYyf4/be/v0Hc/u7b3s+xR0+4naZ+13fddKsKwZzE+Z1vfy+bm1uBcf/kqUe4+Yn7A+Ezn8/5nfs/wUyqQFCd/tPPcPrPInzZPL3J2/7rDdqO2+u33XQrj9z7ILso8fjMsRN8+B3vD0SaAd72tvdz9NEnwl770hce5Ba3/wTVtJdvvoHt05uBQP3cnffwx7fcEQQs0+mMt7zp7UynMyojnMiE/PbP8NQ996n2xwib27v897Ofxzy4E4jzj3zkNh66/2F8ULre4ye446YPa4YKW8Nnn+Fd9cM8+sxJFeTnhi8+/Cgf+cifKBOQq2DwItc/jxfvvvMebrvljvB/1/770B/9aaRfgFPb27zx3e+DR07Cto79D3/nVh644+7AiD114ink9z/IOIuxaW56+/t5zK+v7cYfv/I77+b05lawSLr73vv51JP3wnTG2EI+n/PYLR9ikkfT89vv+Ax3/dm9QThw5vQm73Dr60t2062cTvz4Txw7wbta9Mt++C217njj29/Dqa14Pj61e5zb7v28i/4O5XTOe95yI/3ZPGgY77z1Du5O6Kvt05s85OgXAYyFW2/+Yx544GjYxyeefJoP3/8pkBib40Pv/zAnnngq9OXRex/kvptubQhhbkzxm8Dtd9zTjd9a8OX2T30+0CunNrd447vepxVcNIQZvGf2Re577LGggHjyxNP80Xs/pMpEUfz1od+/meNPPBXG+cWjx7j9yQfIJj7iErzjnTdxdmsLM50jK3D7ffdz86c/i+/wdD7nDb/xe4p/k/594o67E/p5mzf+7nujUmijx40Pf4G7jz4aGPajjz3Jb9/4wSgxA377XTdz9PiTgVu8+4FHuHHvobD3MMLvvP09nD27Febii3feA7feEVK+zacz3vZf3s5sOguwI/TPlZMnz/Lrv35DQwH2cQdfNlE48cyxE3zsd9/PDwt8VuAYwgf/8CM84fBHbS1f+6E7+dP3faTB4b7ld97FmdObYUy3f+5ebv7Tu/T33Yppz/CGd71X6VO3R2/+k0/r+fX9c/RVWm58z63cfe9DYR2OPvEUv/3BP9L/8wzKmt/+0C0cfdLtv0nN3SePc+Ntt4c6RIS3/M672Uzgy4k772H51juC0GM2nfHf36Tz5+fms7fewfE77wnC4K3Tm7zzzTc0aPeP33Qrx+59MLhZPeXo55Rx/+N3vJ/i2IkgxDp674N85P0fTfhd4R3vuomt7W0oIKNifN/93HXnXa4Oy3w2593vfA/VfE5R15AJn/70Z7n78/cFjv30mS3e+t9ubMzf0Zs/xt6XHg7zd+LJp3nPbX+i/XOZPX77fR/h6PGnAtK5+/MPceNNH4uVWMsb3/0+Tm1tq097z3D7vfdz86fuCo9MZ3Pe8KZ38IEPfIDXv/71vP71r+cnfup1PBdFPvaxj+0nlHrOy4//+I/zmte8hh/5kR8BoKoqXvOa1/BzP/dzC+bx//E//kduu+02er1eeHZvb4+1tTV+7ud+ju///u8Pz+7t7fG6f/Dv+NIP/hJr/49XquRpkClzNMhgKVfTG2thVOpnWul1UlFPSvbedC9b//hFjFf67BUZ40HGdF7zplHF99QVL/30aYZlzdI3X8xSYVgd5KwOMvqDTHPRDgsqgZ0atmv1L92tVWOwB/wo8JuoX/sSyj/3BcY17Fp95hPA7wL/BUKwiaHRZ/ZQKdg/BP4X4OtxPi0CK0brWxMnFJqUsKdjY1Ipoz6r4e0PwEsOwisPU1aWrd/7Irtfd4TRSw+yV2RMiowniozXL2W8tZ+TD3JWgGVXvwH2XH93rUra/nfgrwF/0/V5VfT5NaPfB0aYlDU7e3N2xiWjccXepGIyLfnMrOLr3vlF+OHn88iwx3vLmte/636KV13D8sYyS4OMpWHO2iBjZZBhVpyMfq/UMfmxTSo1zXzT/fCvXqbE8bSC//wF+Nnr4ZJlXf9BBoOM0SBnt5+xU2Ts1nEs/x01A/2nbiwrEud3zcCyEUprF9Z4VNbMRnP+8aTif5uUXD2vGMwrlk7ssPyHx1j+2ZeyKkL/qT347Yfg33yVEvF+fw7zsIe89n+/8sZfu4Gf/yfnju9gK8tob87uuGRnUjGaVIwmJdOyYvQHD3LXX7uEb7lslcHb7mf4t69l+cASy/2M1WHOspsjVgrNIw1MpiU7o5KdsdazN66YzCoePL7F4U8/zdqrr6cnwvJ7HmL4dRdRXXuAcZEx6mVM+zn/bJBRDXNeWmT8Q7evl0X31Iq7Lu/jGmDLWl060r08qTR+xZu/BP/ry5kXGdvDnN1BxigzjGYl41HFY7OKTzy2yY997hTFD13LUpGHPbUyyJj0DXtzG+ZnMql4x6Tia5/Z5mWfOM7gR17McpHR7xmmc8verGJy50mO5zkf/NoN/n4/o9/PWR5m1P2M3X7BqJ/xeuBvA9/hz2hVszItWZlVyLRid1yyN60YbY4Y33SUJ/7ui3mzMfzvg5xikLE0yOgPcsaDglFVMx+XvH5S8fOTkutmFYOyYvjYFuWfPsnoNS9kmhnenGe8eJDz7UOFSUv9nOm0ZDIquXdccdOk4t9UJcV4zvLbvsTS617EUi9neZAzGmaMe4ZRadkbV0ynJW+ZVHzXI5tcc2yXwXddybBnmPUy9oqM+/s5/9cw478Mcg2Ok8CInuiZ8OdqBHwE+Cjw/0rOVU8UluwBT9aWfzoteee8pl9Zlm3Ne/7He3jNT/8Iu06D9Pdzw7/oZbzMCCvAoKwYj3XN/mhUcmpS8Xfrkt6jmyzfdYqlH3k+y4Vh0M/Y7WeMZjWjccloXjP/+JN8/NCAa1+8wdX9jOHA74uM1WHB2jALlgntMreW7Vrh/G4Cux8C/iXw+6iQYhmFGysG1qqa5VlFVlkoNXDZtntvT4TdzLCXZ9zSM3xAhP8MLE0rVqZzlmcVw2nFbFKxN6sY33masa35+F+7iMeyjJ8YZvR7GUvziqVpxfK8YvU3v0D2fVeye+0Gu4OcUc+w18sZ9TI+NMy5tcgaa7GSwOwcHdN2HWG9X8NbgV8qa4aTkrVpyXCmba5NKlae2EHe8jD8m69irxB2Ksvef72Pvdc+j/GhFaaF4YYioxzkvHaYMxjmikcNDARGDp7uWMVzvwRcD/xYB7xYMzB0sDisRYJvnwT+PvAutw5hLRwsr1gc3yemFTdP5vzStGIwrXRs84ql49usvfNR5J+9jK1exrifsdfLGBUZs6rm/z2qeM284sV1xeDYFst//ARLP/EiVno5y/2MPff8Xs+w28vZ6WV8QYT/CLwV+NCbb+An/uFrw/lZdeM0++w/O6lgNHd+wJXi+hvupr6vYi+HLQPjVw7Z+6GXMeplTPoZr+/n/K1+xre6s7rSwtH9Fuy1s4p6VLI3Ltma6Dnbm1WMjp5ldu8mv/H9z+M7DJz5wiZfszll/VuPMCgylj1sHeYUfcPOoAiwYA/VwP0o8J/c2i7QL4Z9z13o23gR99tpxe4fP8k2ltF3Xqb0W88w6WX8H/2cbxvmfNsgZ8m1VxNx/m+j++0fWcvKuGRlXrE0qygmJZNpxWhes3fTUeZffYD/fOUGPzzIub6fsTzM6Q0zRv2c3TzjNuDdwK+4c9U4/27vXUhOZ1vVSpeGMbpxziv45c8zAXZ+8gp2rj/M2MHj0SDnQ/2MPxnk/J/TksGsYmVWMh9XjCcVD84ryk88xQsODyhefIDlImPJwNKsYu3e06z86dOYv/eSbrp5mC/021Z1pMESOpq9ObzxXvgXL4WVolHXG9/xXn7+H/yo27NVpMFnNbz1fviai+BrD0MvY3cpZ6evZ2avX7BdZJ0wIewdd2aGrX1cW8tuDds24qQRuu7/CPifgW9ANdazcck7JxXPTEr+xVzXv378FOa9x7E1mDWoX3Uly9de4vZ5xlovY3lek6V0ybSCW0/oufwbVyktOswSOi9HfIC6/faAP+Ptej/6pN5/1VWqyChr+M/3wE9cC1eswTCjHGTsDBTO7A1ydo1hD6VrX4vCnMNEHsTjYQ8HbwQeBv4Nasm1Kgp7hSbd/38BR4CfJMLniavjmJvfP0AFXSvAclmxOisZTCtGno6cVYwfOsv06A7/23deyf/eMwwGOUs9w3xWMZ1U3DKr+Ib3PcjSN17K8NI1hgOlUZdTGGOM9r+q+dy45J2TkjfMKnoTB8Mnc5Z+44us/YMXsbJUYPze7sc9zizZx35vTiv47S/At10OLzrY4CHC2ehFS6Pt7W3W19f5wAc+wPJyaq/wlZXzmsc/l+XVr341N954I4888gjT6ZS3vOUt5HnOt37rty48+4//8T/mbW97G7/1W7/Fb/3Wb/Gv/tW/AuA3f/M3+fZv//aF508//QAcdBr71KwmNd/xqqH0N+OCtfRAzqp5tQjO9lkJyJ3awuMnsVf3VTsnLo95EjVenClZ8GO30VT+SdfHw64bPuVb6ocHalrpfQfbJie+nMunXVLE0GXmvNpT050aGJfIU3Pk6hUQNV3EQJFrwJy5Yx5DP7wFSfIdFBkv+LR3XZO++ft943KLlhWltSyVtZp/DXthqdpmYOGG//hxekC4O3dBBLYV6hwexpgDbr3EfW/3MzW/2q80fNmTNT7h+nep649BMD2DjGO6N0azxOZT4rXdkXOUn3zt95//IaMu+97lIewLEbYvWmVjq1ZjhBroZQ3zqEbfXLEiuuat/o1yoVclUdanM0zPmccbjVycGfgWdH4aKY7OP4r4YFcsCp8GZ2vmtKc+CF30XV7CajTnLGtGCMcLzCXU5++PgKxnND+nq9e/IQLMSmTo8qpLWlcsCyag0v64vbfc19RE45nTtLvmQtM2aAp3bcM9WNNQJedpDQ2E5htMtQupT3twOfF53m3TBSCcTXChnqOGzroHZpIEfmu917WuBa2gNZaGefmuEcp+jh06RDrI+Rs/8n3YfgY9FYhk/YxdE9fKzwsC49Afd7brqgGwxL/kS1Ux7mkAySaclaa7Q0fpCmpkUU2795FsLze5wTiCTQm4XAmHQea07zm2r4KC1D2nuVfd956BWcXMJubVoVNuFCOL6WVEw/QIQ5dFAo6BZoC2MLfun9SM8iw0gtBhWkfSn8d5peajDgHKIHow5wgzp6kPwbLsIq6zKF7xedoh4srU423hWLnPhvv9LN1r1TCNd/cez4TLHB6XTDCZwYhgLl3RWIzHt2mY+Trz+EFtmfuUsJ87g33ZJdhc3bFsJpoKKxc1j3fR21PXhu/80e8PY0mv+5Y84jH1kTfwykv1vdq9/1UXI759UZ/2aQLn9qMtQnETGczp/bkbZjCdMrMugvUEZv08WDGldVrpHolGg27RLBc6dtjHfQtkmCF7M9f1GJB0GRg5gJPuAd/XCT5gnavHn6EANyxSq/92jwQt+DpsHFcas+VZj6v9YhqTxoimEfR13XAceeyUkkLuPPWMNKPHO526FcVps34ftm0yTrfMoxrpFc322wNY7GS3q0Y/U0B8ZhQnxgGTn/rb39MMKuF/szU8OdN0bxDpMmceb5NupDGH4Pz7uOvse7x4BtW0C5CJxgR4lcDDAg/XUBnBPripNNIQ6m2Q+8+6lNDejTbukUaDo7nC+gB4W/N6vrLfxmnkG3dtlui8h+olsj/J3HmeoZ2rvU27tAMq+mtqig6L5vHtOvYLUitJhYI+KM7FUk3kI0Ly5zOra4V1C3PXpOGtSHOP+B9zhz1mMdzd4iS0D7a7TmsX3DZtthsGPVflL5Vp/zt/5+/wfd/3ffzLf/kvefWrX83nP/95fvmXf5nhcMjTTz/ND/zAD3DPPWp+vbq6yuHDh8NnY2MDgMOHDzMcDhfqrsoJHOw3D0oIRmdiIITUFwd9VkTgYI7ZSXO1q/nbqoXe6T1sVWMvXaUWRZq1SXzane93mxjwMOoJCAHKUoY97YZBiY0tmkRpGyA18h92XBv/mdZ1qadSJGvhkS3k4gyWiphiwxj6IlRGAz/B4t5O74Ee3HZqnnZ/GkSVAyqCApKyEJiVzIGNiYu66Q+ZP9gmiYDuK0qlqh7BDYFd59f+8Biev6FYLYxPQo72tgABYsq39rjTa9uXvUIR4yMCVxvfhPq0Z70MU6mPtaZ7q2E5jwgxnbB9NM3tcviijfM+4xl0MoJ/mD/5o40ha6cnUFbKoBQxAI1t9Cn2x6eOCVf3805hyEuXL9xaZA9YyhUJohFtDfCtbq7/FLiX5h7xZ+Ecg1k4r2G91wlp30KEZ3CLpRGOpYbK+V3Wfpz+ESEQNt4JbAqYPINSiT//cJiNqsL0kijY4uuKDF8jEJ37zfuz+yGFgIhLht7u1DGyjrj0SMSbGrtqUuGY1BZMho8RnqPEWUose/w3IQnU5ucxYdb9nKXXzDVsF9hz1ZjlflxpHemQk3ttYVgbluwBa0awRYYd5NhBwcblh7CDQv8vspCqzL+TInCflxXQgG8+OGLSSEM4MSqZZGnE/rSCheE2ShchCCpsbaxPUpURFO701ZrGeOn+oMD2c6yDdwUx8m2jzWTP2j5Y6pATvnGWrMIamVnMIA+0NRLTAK3IYgAhT8imDHwb7vkc7VaiEFCEYB4vPpDVthOiTSudf5/yTdSyLE35tjCnyXpsE/O0e1zZntfwW4oW0L25TMzE4vkE/90HEk3x9KNGuMTFcjGigegkEzJjkBcdhC/txojRISBdTa9yPu1P72J3xvDydRcPxgSG3ebuf+/aRYQPG4c2wvq1pqW7iETGPTcqVHvRJfA/X4l8bQ/+3tVw3RGNoZAbbG4oMtMZOTq9NoqJDJ/3a7eIZqCZVEyt9n9oa2b47BL750Jvt9MViO7CsB8tokkc/QYsGWR3ntSlCz6wLqtGqx9+z49IhaH6a+rzrQ+reW6OxBzQrXH6FFdfcXGwojFWAe5+OtwTgPtP6hl0v2dOGJTGLfBuW1tAuSwwTYQafpyjClZ9ECFJNqK/1bEyab/aMWcO5xogFhrM+UUH1psB6Px1x0WbP5zEosokHuyWT/v56LO0BFq8BddmKAw86KcbyIxhzcD3ivBeERUqvuCAcrBj1bTLCw4QgmK4bDVNZOB6sTvXtL5hvhIAdaEbvQsgFNJIZxrmt9/U3Iv706az+jgaIeluG5eFbAodXUjra6d8S9dhxjl4gvZ+ygRTVoi1TYWZ6+AMyKpa8XpSx0K97lqIpu5rVOPPRNmBXReY9dZOmhLSWi42eMFQ6ysqFxQ9/rkqIsLrXvc6Xve6Rdv/I0eOcPPNN+/77td8zdfwsY997NwNuFQYgUHDf/cd8J/kN//TyhDZWszVvmQtq4+V2EsPgTFBw26NaNo3TQYPRACRMuwWeBw1i0+JuC5CZM39vocesFRb5rfSmHaQq8W91CmNFhSQPK1B/+SRXbjyEF514lNsFEYFEhPTnc+1fW9KM68jNLUivo9p8Yyk5oTPGJRWBYYTDaBEgowaFacT2B6niAZD8rnaHzkN33xZlAh7AYtHLkYWIL1P+bYfQvBB6Hwgo5Toewh4nuuLb1KKTIPQlVYDZO1V0E/YuXRing1Av5Dic9CnDKPAeEO48uEdmB/QMXmLCte2J8rTYtPfXb8tUBY5mWZd02jmNchSzwfDDtO9Kfr+k8C/RU0IvyEZ9jlLmzAIWneBdU0xI+AEbTSY0R4wrKAaxLRlYSzSvb9nQF5kjrq3Mdib7+u4xGStLAMtrFbSle5E+21SQlMEBkPykUKLOZaiJmh7PFLddR0cuhYFkBLERES2hvC0a6wWGhrjNGIzjslqcKwdG17AcRfeEkPCI3Oa5rtt4qC9pgXdAYT8910SJO8tAYzE3PEog9qOep5q90KQw1yQebNfzXNuYV4yy0TTqyHYFBhDp1WJLzWLxA4QfCR9adNpYY5SoJgiCpopJ6MgicYE2wIoa+YWDnsmww1LQCObA/TzFrGk1Xlm1k9LF6zrIui2iJZiYTxOKOeDl6m5x1QJ8PHcUcQx9VyBph/0TE9nu+7/CZFpD3PacfWf1hJyANWmpXWmODkl5gGOGeG7jIGsxuSC1I55FzAvWMa+/3H465epeUaN5mWvLP3KanCy+7bghZdALw8WeCFYrTEacNGtZzuY7H5orqtIpsKtQBwIyry/9FJ42WW67zIvMDDUhaEwEgjsxpxb9rcsSYSzwUpp2AML2WTO0krBpKyYD1ORq6/M6vstetiTzN2h655FSfvsBaFLmcbDsbbxyJq1TBxz1ZU/fr+1aPxva9W0S4d20c3TjG7i+tmidNUum0iveOHM110C9z8ROi8vO6LWHA7HF8bB2LBeUYg8AwZDYG8az4gPXDmpojWM76w5z04MB8/9nrr0bSzB2TI5aDZejSxGjj+5p9JAL9TyloqCpl5NBMM9CD7ttK4tUi6UlIb25/+su7dOhB1FBrUI35MJnzBwH8JLLjvI0W8vufIjT5J99xX0Ljvk0uXZUOFCyjeIaX0XgL9c2IbYB/brIldxQDM3ul48g12v+e+rdGjaW2d0DEnsnP2vA+BkUg/J91RbH/slzf74qcgN1BUZRGvD5L0ZYEqiIo/WFLbmsydesCONJbE9YFYlhpMdO6YxEPfPFLVkoDWxf4HlL1XT/lyW5bVLYDyJByMl8D0h6IkLfy+5mrVWrvZKJeobWA4/cRqu6ru8pS5NUdC0a3Rgb8rqpfiWaEZ9HNW0ewARmDq3AfyieOZ3i0VAlBI1bUnYQknG3GBsVzLNIYmFB7eQawbB1NHPV55BmRmXmqdZbOsDqoHxgVzouIYupVpG93sPmGQaXGNk4fC0gqIXDrV/QdrjSIFaqqFe7ivTvjuHUzVcs67Pecmt17Tn0gnczmce75n1lHG3KLB/GLiaKCDOAJMbjIVs7lLR7O0j1W7sz3OXNNDKuYqaxUtzs4kwOzRkZW+u+6DnRn6eZlNC1/8PcDLPdCmqGibu7PQMGaplz1Efxds8IeHKh4hWJ0bOTcQFq4EuE/lDS3B2HsxCvdmaahy1HJhA2WhBex9yq6d3Beai6waoIIJkeqxFZiV5liCG5F1fvCYtxdVAZNj8egOsDcl2tM+uOa3Pavo3rErHC5+BwH9K1K3HtbFCR7pIN1c1HeZqVcss3hODCdSRyqISn3SONJ/tubRKbRjQh1YalqQ+dHwpgyZoYK60nmWaKWvSNGg1Lp2goJrdoI7Zx5qgKqkL41L/tfoj0oC7XX3u+uwQiZ2UUAry4lTI0QF7gE7TvqAlcOO1GTCr1HrCjRHA+Ou81jPQc2dTomWToBkd5nREELaJxr1jfNtufB44ey2fP56IaFaMbR2BTCpYSo6FKCyYSzfz1MZ3O+iaS9cnmb8ULKSo4CCROO9i1lOBa4Vaw12WCcalOTVGME7wmV2xDnOQJ/eUSPea9rpmua4ZnNnFPr0NX7UWaAJb6IfcuOjxcV9NiUKq++68p1vwfq5SGN3nLrAhg0z9ZAcZpp/p74XRoIW5aWgo2/PeXRKrKhvnEAP0haXRTKNXVxVlQp17S6396vW4tWBxvBc0buimaxBkkGG2Hbx2iy3Wadrp3mMQU76lZzYwtL5vlWrah3TDMWAxY0j7+my0cqkLhLfkfOER+MkrkK8u4GeuhuubaQSLzGjfWsDHIpxENJvEeErqOmAAGc/VZaeBDPz73X1eoKP9swIcGMDmJDLq6PX2z3yhycD770/P4KLlSA85CzTNM96k0zqjx9v991u65qnLzxmUYc+I9HguQpYJA4FXifA+dwaeuu4i7OFcXdmCSxmOYe9oyFo1j1+OFozh2thkz6IEBCGRSACYud3oXNiCwMPzNAmjDFHT7ruclpRp7zKPT68QDBA6BSdTFjNEaAVxMUPPCoGqcoL9uJihf7WzonS0Zqwr1pPukQKYBNxJxOd9wc6TXnYx6GmxyUOFWSTmfIN/AeWvLNOeZT348CmNpJoekFRjC93Ev6Bp386oHNVg8f5r6zsTlkdTuGxVN4CToNeJNB0SWOS+p5ktUk27BxKSXNPvGyjxHZiJBCh5hNF1IBb2T3vMoIBkOlNt+wTk8jWilt1/lMhom1DS+t9v/+AT5pvtIEAi3GpqcYcI0yyD0lJiyeaoCZ4/0unz/pCmCKO9jmt92Kng4S24xAVCaYxNXLq3xNQmue7HtEfmYFHL7tO/PSRwtaKakF0wy0T92afOx3ZcqotCA7E+O7JlZ6c7PWK7iOOGfb52T1jbQcFomMHpSv1joZGzvD0p1lo84xfmQpxENWFuZVRilvTHzKgVRU+EvoHvbw3th4h0iWfcz1k6LSvQtG+nRvqvOyjS2rD5FEqvLRZp4levQUo25RzIjWOGyyjVDkxtVZEXhjH+3Tgvvuk016m+JA2iJNwDWO6R7arAw0eQx1pspd9rCyNs05rF6sPikbWoFijk6aWJh9p54xFUU0iy61IkhSOsba0S7vCQfqmkGTCq88wn1z7RJDttzn98pPC0vtGOsugeYa2gjGM6z6kmKQTTyjPNQ+/3A8mc+UkpKyhMBwF+/jPoGb+2L/YWrRztNFHNfi2lV9VELz6kZ86dUQPMKkbWNszHw+MTZxwYfEPdfbdIfp69AKTNwDXge7KHzqbjS7awGIlExdoAtiu1epmVMIx9QPTMJyRno6Qw1hIFOefGK7I4fiIe3eyoNzDsCa52cZg5khnIwOSOYc+UkDeZgReuIw9rDmqpVcsulSW3cOT+XbjuEmy/iAx6kmLUFlnDbDnV7o52oyjqwjCAw4v9JICpC3IlLuiVDDLqfq7qQ1GB1rMyj3fr1Ugd5s5X1euzMSnpA0VVMXUO6ile8IvVbiNl2r/skk5Sgg9kuQdTolDFwbMBllEqDKW5r0fs48PrHhRQBJ+pELpO60k6k8Yx2Q8WXnAxotrTtnDmZZciP/418KIjGgCr0KAxdZZRGBcPw2vZ8TjO4bSlHKbz4PYZSKedmVpgtumRNt3c1ce2ibwAB3I4k0QwcYzu9s5eZNb9fQucmsDFy7EeSWgXNxbfjbbw6XylnebNr5tn2n2XQWMCFKKxeL4pF2YCd6HWWKc3VlQ5ACFWh3F4ujPl2zZK57XpVKBBAJ+rpI/5dxyDG7XAMd0u0nytLRgGFU6lTHsXLEjjbSx0I7ku0cRVKRxJrU4W+iMRbgNIL4e5JSehvR1ytRAZqZRml3ht9y0j7vtG53s06Lnm1TYRnr/vpzcJNhcbfNan+ssuf2WZ9u2zj+mXu5+OlEVqSutLG8h46dR6zNWuRLoeykNPTjlxZF0RYOC4HVLyiBnHqLeuHlgcp8m0C/sHo1slpg9KCVto5j88J2LYRxrNsIAtC0d3kectQa5WAsG/NhNsphHfG3mV99nTHoCmkur9EFXKq/hD2wfmvSycpbUJ4IKiNA+nNA97W8vuG14pYG+q+dmvOdA0MUtN5Pc5bzktQNQizNtads+4P45WexkQcrSLfs/EYnwAjN1Zt69TOpbzlB/43m+8oOdi/U3Emotw8qJVeHp3MQd3e98kY1ciTBr7cUeE2qAmW9NKCUeUOO8BRaaBQV5hhF8FfgD4DeB/MjD0z8gFmEumZzYlFg4VsD2OGvY6nt1wnqxlIi5YEnYRXrsHnS2EEtSCujPMm77RAlCVZIWhlKZgzlvgQGSSU4QVclt7osR9Z4OQq33uGXZPZLqxeHcZ3wcBZG6hMGF5VyQNRAcpzJuKNGGGwfnkJXWmS24dATqr1KzMzZPfB8/GFFRw0u9Y9QKjMCLCEP/Ot/z1b2zAFG8eT8f7Y0kI5jzT9fKWBG3u01r11e/leA9YSzSRP1cgOtsRzMozoZtE9yZpfS4U6aZMe2hD4v8ANjNQVU1hqSfCLci0RJyXmPc3x8EkJGp4u7SPXf6fNnl+HfBCXm/E49vRReqrlRNoKOE8b2wsAapU6OrH5Ol497/fK21NOyzOZZhjiXMtqKbdm8cHoj0h4uvkt8dQ/JwZQVwwOtW0m+jf/oI1OHoKbO382vV68faIi46fgZeuuA440/RM/cmtk06me9b7Pwvwyu/+xkVcfoEEoeRGIxovFbCUI8u5mjoPcsXt7rk+z9KsWEh82ZN3RCjX+2y40DO9ScU0a9cb/eHbbbWZ9oVxX9CoadE17utSrntjXunV6s9ruDPlXY5aY/bnyFfXCcMq1KJSdFunQmwfUDENEPyVFjGijELP6McLaFzwShlkUGgAZeusKrzpeAp0rDtrW0Cx1FO3IR+DBsUtZjaHpaamNkzGuUo4/O5BbyJ/sAdnZgnRCNSWH/i2v6a/e0IK9JmTu3AkUWQkNLtNGHaI5vG+mq5rWtquTP7Mn0FdfcJQRI9sL9OgjbnA9xnhI2gcld0Da3CqjAy6Fwz5gJS+A+nYlosmAeCvF7LJ2+/5UphmMLVpmUicEjibHI+0imUWNe3tefNWQG2428ZlA5qWb4HJZvEs7DccAeeXoJaEnm9qFB/oOFPlwUIsqmSPCODsdJtuZoDNM2xbI9fWsNvW/bk75UWCdZ41sPrKy19Zpj2Ur72kKSVsM2ltSaLb2bLeR87UQRLp/VUOPrrF0StVP6Em8YbgtJvs4kAMtAiDsyiyuoyEYZfmoUhh5QEi055qJSxNph3OgfS6xiuo+eIceGgTrl+PY/fMrNPKer+Q/ZC8/3gA0BU9vn3goQlMEBeNtZ9590AGI6BfBELTv6TvJYPyXHF7fGuZmmY9tAPXLcXJbTDvZuGg++/nMyPs0rJb1J/9ekCMW1tJgtEVYLxEdDRTBLlAiV4gMH82xQtihEBkY4QMeGplCZ7ZbhDVbSIrZRZS38dUuzABahdIUGYWyXqBOe0boS+wZIRlA9+UwX8w8M0GlkQZ44H7nJdITSX6yZnlwADOKOIM2gOrUd49oz0oS6ZFOjZn+omN+NY1XwNzdF9SCDKrA/HnTeOYQeE0916zkTK0/swuBFsyNARPwVR+KYPdCT0fiCUcsEgQeD+zRqlsNI8XFYIEhCxNJmFB8p2jZnZ+bKkfqLvXR/OnNkwGJMKhc2nL2sRCavbdxTDswqLWuHUkVmgymr4BXbOk+DlJAiRqg15rpuOue9mzCmpE8lubobVuDBskR9pfO452A/Yk4Cv1/Q/n0rfh91ghUFeR8bNpfRaZ1cig1Y47Mx7/DInxAYCGcHK/MZ4m1bRLqFMSWMqqwl8BGMeo1N7UNTMugKOHJbZ77r3wqR0rZQHP0bRcS0HqOt3R4+vWx6JC1yt93ZnTspuoaRcReN4aslkjJ0eJea/l2vv3eOKqw6rpTbXsSbA421rLKRdmgnohRUT7KblBMhMtq5L6PNOe9uFcZsUeRlm3eVMz03m/z/qWPtebV+wGvxsJ8GG/ej0M6NLCXfi4E1xAvIZAVXtOFOcG2Ks1EJ3Ma41SPas0CGulQpd20CxIYJAbiJSAE0B7GETr2sjQ8WWNqzXKzDRTTKUMez9D+rlmnejliNG+jYmwPw0YOxIYFBrZXcYuGJ2H/bulWms0JkCa/3eVDsWX4uShEgZlvahZr2zceP77M5Vm+EmVbF7Y2Ep/6+HjfvDatpiwLjcfULhwgCbMyEQojHFHVvj6TOngzwCjwyBP7xIC+AVLjrRyd2PkIPhSHuekAZwuYEe01eT+WpimVmlWN1PKEM9ul/XRkH32bzJtezRhUxuu+pJa7/i69mXa2+dAkqlw53ZQWUpXiU6nq62sm1rz8O5i7CVEaQ0r0nSjENFgcnOntGkI8fe5QowfkATG9u20vjyn5a8s0y5i4McvV18fD0iMrnaDKWgDfE9Er/V1c06cT15tYVYxOLPH5y5ZcmZiqom2mVEGPkHI3r+5HZn2OCrVG0Azerwsnkkhatq7iFtPZF4Q0mtood13D0iemMJ1qzovnpl1Wtk6NxSyaB7fJuogBmVpB91aPKTS6IYvmcDcZFRzZTh60xkMTUIQJu+0NdENys39s5LDiZl28PLViAiCQILOVG++5OzvswaJObxtEn4PAdcSgZtx480A0zeINyWYdPg6dXXkHGU6vTADsQDYUkQoOsanDrmB9Fta/336kzIOCE4r6faIA4YyAtaK8OpQlNFacky6z5O8ZDRH8LLoM/mFaJX2ObOsK3oJUYO9z5nrtKB+l7O23yWLTBcSI8L3AI02V5Oyv6a2UELhIu5PEyCeRo73dTT2mfF+eiRBFgVZ7cOkpFeri4jDKqrVdU2Pgb6NdQk4n/RoMqaMmATCOR3XhGQ/gAoQWj7t8QXAWvqAKWvImmdfxygNWeh+5ynQGu7aSlYT1mCPqFX1781CpGP9rNC0JAiCJBG1Xm03Oo8aiQbOd5oKm2eUXdTIOfajp818/+tkYjaJgpU2E9lVo3R89/PUFkz4e6CRyKkrl7XDhofDk/MaGXh/dhpX/3eNxaB+KVPbDkI3Q9cu+Owbgt9psBwRNBDoSEk5GVdq+ZQMMCNxk2iNLW1zD4VTjRgO7pU2AZMYvjU+h1CNWmjDJkx7gqs9036Vr8sxviYTp3l3THGRIdeswiPjYMnBaMblx05y7CXLSgcE9ysJ/sbWmXWme35MJGpLB8+/EgbPl/3O44DFjAFdeD0tPvJ42Hfu2Uk/5+BUoVxelW58TXPsdp3+f49bv6JxdgEbvxeXQcZlENxiNYPIfF5jJiUymcOkxLhPNikppxWD1OrICzBt8r8FMUbrSoXcSR8WrKuS65c73mBJ4dNFLulHBpoa0/azIPzt0cTTug56YHYRhgIyyBVXWhus0WQPtcBcYEg4JywE6TaRX3Y05tlJA1BOZ/PwPSC2M25XHvRSRgkMuzgEk85jn3O7L3bdbyvSLCqAPEgTXmTivRGEwqiA8VWZcEaEzx3oM9keBcGDzy5lUosB3+DubBEokfz/bIskX/JskWnvLWYj8rC+vReX6LZ4S+cvFSimXWjXNWRREJjW0Wvda/MAQXnh4OPyvKQMDHvyXllRnyN8ertfhfsyJzZmQa1Kvea8C0B1+bV7GmJBiPLnAKyfRfkry7RffPlXw4uOKCOSApIFs+MWkHHfJTfIwCJnJ87c1iLHdynXlzg9LKhxgefEMeyiUdZ9aQQmo2kafxmNppp+7a4KvzAbLAaU8qUz/2HrGv6zdtF8PInAyOaOmskGLSyBuS1Y9B1qCxQt0aw17X93f5JDGv7Xa5Vl1BOXOm4+Q5aS98NBb9XWZS2BaB5637ljpxcC0AXmfZ/So5uxwI27oWVPiMwHgGsdkPSCGeeWRZajGluAbaumjCk22sckfb/yK7/xzgt6TjwmcpIPr4HJjfD0AReH3OW2bzJ5zX7EfRgJM8+sTABMpszdpEIKp1kT9f9TLbuwZoRVI6wZWHfM+7JRP7ILKxIxq/s3rOkKcGYUpN+pLzMo0z4pIjEZr574in2Yu9890y6lJ+AcUeeDwBQ5PfGmkotnFLqRls9tjRC1lUtqRrcxmirS8v5cDoBYNHr8EjQ14mUNJprALonTOifn018tLRcEgzvI0YQ8Xm14xEwrNbNsjWNOyHK5LxxqE1vp3KT9AmXS2unS3v7mGxvEwgrRPD4dH0ApEvqDCBQE5lzaT88rKHT7BEsmLx00nFMDmfa5EeMBdWNcb4091bZfSPG0SeUqsb6yxKqAIoO5PtOYM7dHzdQGX2a/1xq9El2PdC7TcXRpp7bcbzHQnkTmPXZPmfRNB0FnNRRR2ySo6eJMWNA8p989076Rjq05giZf0fEB1aRtJ3WmRLuH3/63YySBYgWMY9Yzp2kPeOYFa5qVxG+SL+xy8oqDnFhfcvBITa1s7mLfFI5WaJ1Jr90V4L3/7cY/FwYvnY/2HJ0r6jawoKH0Ffj9ZxN78/EqrDhBQ1ZVbBVNM/pQbwfDN+dC6ZfzlA4rOwFYzjQAIoRgYWtlTT0tg5ZdJiVMKhjrvXpasjotVSDb6rZA5PgywxB3BmVxDtOUb1/R2FpFjGhQSce4yyDT2AXujPvi8U3pDr1FLcBKq5r2VQTp95CJt0BCY9FY1AIzNCjxeq6Oe2InBQCZ28EXGWXaE6Hir77195uB6KyFk2O42I0jmJ9KZNhbNGOfbrq0q/g93YbTlpjpw583P4wiEwoR590iAV59Zn3AHdes88SpvYiDq3QsvgGrcYsCImjN5YUe8AaASxBtzzQHNKuVkW8/65s08VWIPu1t2iCdny7Lk65rah7frmchEG/avdQyy9/MYDivnFAvWVELlDbEDWsHc023nv+lQGm4BdVWX5VLaUd1+Wxwe9UlTID1rF5kbP4Syl9Zpv2ZJ+6Ofj+FSRj31oMeM6dXByBkvQe7VTxbj+9hrtmgFmHkBAA2IwSj835fEH2d0wA3FmXaL4cGcDDJp01wrNM0j08PwznzHybX5tgSwPHoqTgN73wSHjsdTOPFmY1bkQZwbB/I9PuIVgCpjk/jvp/npFtlnlHPNeXbYG+emBFIo+uLlFr6o7t3OiFFbzgBj56MghtHVAVT8Y55209Y4a9tLXuFag8eEbgO1bCHIHT+f5PDzCGpEg205xt8Nj5krvyLf/R3LuzBtP4EIWYCW0s97c8jp7CPnyZoVZJ5TgFk1J7EeyUwE0FyDSQo05ma7xHXuxDdH0uZ5kBd9Rp2I2QXomEP46BJqKV7e2MAZ0o9S4nZmjdlG0wqdhIXFoj+6zEehV6n1jclkGWKmNM352UQhvRRzXxKoNYiC0x7Y4/5c+m/i7MCGhas7c6VkbDgTfd93vaJhRW/AmF8NVJEBLjkvu2K9iMdbyXOT9/3xXGs+8IP93Y+rwKVbSWmECqlQyiRlHZ9/tm2Obr/PmIx5/hP/cMfa9ThzeP9O6EOUWagD5Eg6KEaZz9X4Wo19kJuoo3Cs0TGbabWw4IdFHa3zeLboCvp9sLVa9qDaZ97uTHePMNHLm6YWPsHJjVS5AnMTSO86yPrxLlsj8dXlWq+t9H5zX0VDo4j6vutnRBY78NMzyHTOdJPIv6KBnqqhIb7Rhfh6DOSpPOznwDEE28eRPjvB4BTNJl1Py7/v8fZ3jxej6cGKvUm8pkT9ooIXLuGnKxgewLTORx9iidf7Bw7MqdVz50LnfNrT8flrz5tK8AP/y/Nff4st2NzLlgkYgXdJ132WfsxPIDGKoEEN/z/2Pv3YNuS9LAL/H251n6cc+6zqrpeXdVderRb/ZC65ZYsyw+MMbblhxTGAbZwyBgDMcMwzIAjZpgADIQZ5g8imLDNMI6ZCPgD7AAhM2Zs45CQJfBDWDZGg1tSW1K01c/qrq6uqnvvuY/z2HuvlfNH5rfyy1y59nncc07duqovYp+1zt5r5crMlfm9H6HFg7lw/UGwsbmu55FJVKmKXWvhsjywTYh57nGWG8qsP5nP4SBgd0/wFFoebeAgCuuHHf64C1m3Vx3+aMNy1bGz6oIAa/umwpla4aOHXpYoklzYsSFDj/Mep6BMzGaPGY6NtNwLPIobf1eAGwvkEak06mGM014a778MaW0ZRUnLLB64sZPKvkUX+X/tj/7BsZD75go+cC0tWkPXh9A+04sZybsTyIyj5VouH2W9ot4hlee0PPjcSUwjIMxF+DsSeP0W4dFiyT+6swnVgDqP6z1NmSsF4KCDnXllLs38ngZq/NFMiXEc2HG0tBegnp7lp0xEp0eLg9U9vrbGLG4prfYWbMnbfEx5g0OIYCu4TZ/4AxsX3PXBgKK3Ke2pNW/2RqKhERctjKUd2HjPAcEg8qD3POw9D4FDr3oRHxLXDZo488yLQNZngKdWaPe+H8qfsGySlbHmVm1XoPnd3dhB7gVEJusOXt/HfXDBXISHKrQ7N8S2D/FDMUFRmeDGE0rJvEohsEshh5iu3SRlSaY4Trmu2GMajNlh+vnsm/m9P/+NaGmXaBYOyg5L5LcxVwds0S6PmCu76NPm6pzQ+w4PzNZG8NPuVy3RUnBp8fjL38wf+g/eNAK7ZDFSU4Rvyvncvl8V3DuClaYFXjRdGdzjPSHz8DpYooFxrNNobNthsdgmLuVgmY1ACKFFuPXGXeb7He1dcH/ldfjqWwOzVQrnvvzEl6PE0+20IVv3ozVyrUmE1ry3MPVBUHcTCHfrOKR4z3aBPLcLdzSlGNkRHwTPjbp4G8GzJFY9cCSS9tfCwca06QnWmsiZpfg6GdqDtH5GFiVHsq6rsK6M0Y0dXj7q2XiPJywuT17yrSUfn2y6TAGmIbQ1wXZUN7WRvHyNHUAEB7R9l3vnxLnvOFtcqmUoh/k2z9sn99gRwjq3+NEm6LQ0HUIiuizRXiuxXJ8JAVDBfd0H9xdtR7KftwoyZd+1H6oqvMmYT6sR3BrugcT0jxSHwhAO4KNl5VrXh7nyqQ3xhKSXO4mRs2QAwhrcIwjGdu3ruEb7nTDvt01fbfnOjInai542j9bwaIPE6hQioZ2spJ0dH/l6VSWOHUPB7w2gNHXoW/xof/Xd9OaoArsn1Br2pJwzDnBtUO6qe/zg9r5o4dUd5AuHyM/fhxducPDMNVbORUFdc94YK7sZox6tVXa2mFfHdR6YWldl/OnpGkvVCtKeEO7vNuyuA7verOG4bcbXC5OJ6IoUGdXj9m4V/IBlc44PkL//ejBGbHpYd1xbd7hVR3/c4Vcb/HGHP+zgqGO17pkf9+yt+4AXfGzOmzWlVTYkxDsfFuPScdvs8Vl/TzGms8DUnOm8HsdNGWi1cJ8QhuYAFnPkUTJKuYM153XlHqr41Fzkn92Fu6tsUy/atrC0A998BM/t5LTdCu4FrzAjxx+1vWV/GwR2c4QQNvMsYzzdRtf4mRPmDfx2EZYEz7J3bgjf89YRLeB8KL/aWHcd/TzqYuZ4M5ennNMMaptChXb1+Dv2KR9Bce3A85nblyRLe4lz9RjCrqaXgsUpkJfgs/zGVq8TazEHaFpubnpWNSXMxgecSj6VUDeC+8jDbQoellkwLvVxjA+Ahz088D4I7h7u94F/euTjOlv34+ySpVb0CuCpFdqBwKzsRWv7ImZ7L2Z3qsakCHBzgTw4DlrIr91HdmdwY8nSBY1l34QswyGeXQX23MJuY2ggCO2vxHNrXR8lo4vX3CTVlwUyd80jTlcuRV2hMyuzk5Ckz8J3vzRkjx80CdRLNA39Id/gpaV98ijj7wH6BbDq2HiYHXfBDUyMoFnDdSWSdxKEi+9+Kb/ue14cu8gX/bJ7cCrLtZ6XVnYI8ewfJT4iOCsMj2wAN2+Cpf1hZMXVMjFQC0kTdIEgsW0ZGM8w2FaET37hHn0PLEGOgV9+O8fORomQIXfDjD0iJL+RWROE24MVsiQX2LUjFzG0iLhHyqjbc7hzgIuJI4cEO/Hltd2Gu5W4S23Dm7YCUxnXyLLJpEzBB/fKGDQ1R1JMlxnfijExsWs5HUmLb2+H63ciofAMrvEKDzCZybU/q34QqPU5Wss8CbXhF2vZC48VyuzxkD+zIVjShszXxRhnExYfzLAsQwSVGrvxeExep73WpuKZXJkYfh0pEdoU2pBtZAgMT9viRPKYPJGq27YFy/jZfaFu2MrI1KztpwF9R2tybwntHzDESF+L8XZ22wrAyiNztbQX+C62cY3pLMI1hu4+SYgelq4zViqLhxfA/hFoVmqzFhoR1iQ6M/Xc++R0RaE2lwP9LBg5VQLdNe3acm/6Lr8CvEjA/QN9FmKptxSfPmTi/3W3kZ//KvxPryMfmNMKPIzX9DHx3GB1p76WrHs85PvmcVFlRtvi+Yz0viHnKabWei+RzxGil004P96ZMz9miPd8MDMhVid0vmaBq/EEJ4O+bHP80lvI1zy8A/IXX0e+/DZsOnY2PfNNx/EmuMf7L76F/+9/Gb78TY5XHbN1z7wL1QBqa2uIo3DhnQ0KNeMtAlti2i/gnZZQ8i2Qe+n0Rgg/QFJCx90GOT5Oe/hogwwbW9JxuOCEjtSU6A641cI7ccUVWeSTZtDD24/ghVnOx0nEU8344TamfYS3ioU8COs+xy1rwl64bYaow2iBReNChT0nfNdC+DcEfoeHP9Q6Xn5zn4X3zD3Mo7V9GIvCQTcoL2ueC6erDFG8XL1Hs5grbdOYdnuNPtIVuJ+AU62ngs6T9l4VImWSzKJXCMkTqlbK1ca05/sg9Unsj86xs/GJ/7Gt9R7f5KEgqUP1hNIzpyFm5h7X4DcdHeH9PwIOfCgH+bD3HHg47EOlnkeEeerWfSr3NsXkXAE8tUL7jdsfCgLfUAIllj6pjdgiGyMEuBst3DsKt3zlCHnlORBhRxwPRJKF3eUMnicloBvOCQv6bYJ7/KDFl5RgB8YM/k3yWDxrVVpTsXDpsVxDalnWDBszBx99AX7kFfhki/zxV+HXvRCZkmBh940bhNetMXDxaGPatQ9T+D7bXOZHvwAI2VxdDywTWU90JKd8QQh1uQV95kJOgx95Bb6zhT/+KnzHS+H7NlhBTrJoz9gS007uHq/v+PPAt0Xtti0q0BDShMmiCcj1YJUkk8dwtfnxn/zZ012oTeocRQtQ2zr+3rffwt0AjsL8+088z1AiRjUOBnStq4VREfMOgGuRI2C9ClltMYxKaeZ7HLB71Wr3nzFl3yC5yKu3Q9dxOMv36nBeCGmZtUQa5DiV0goXJCvtTCIjLDljsGacfXWYAueSgANJeL/ecOP42GSPDxZ3TzhfkQu1DmDV4WaSPWOHlKzNjnND/kpFHJpNfYRH4o0L1NIuI+SyEZlUHo7ai0cNPakJCw8Yl/f6mZ/62ez/6+baXPESLCHO/I80A7M9tKGeBRtg2ZoSSTluOWmtWv4TAg7YJzGBtZCnWpMWD+rvajPJM+3HNSrx/2jJvKmlcGIIxaAoWG0CoxFfWxBCJXl6MM7Er3xnjcn15En2hilThWq5x2+1wcq+3sA8MWlEuncs+Tzac0tXyvWQfQpLTfnRd/A8QWi37vEWd3uKzPEougw5bpzWaHeSSqPOO+TtQIfbv/8Nbn3jLqsmucP3jQQms1R8mgVvE9H9Lz/9s9n0PQ6qnGqjTOA1Rc/zxopY9djo1xezUObsXmD/D4bMykWbMvYysDHtjwUVuiI//2ZQ2DbgPMhffB3+0ueZ/cSX+Wf/zjeQ//ku/K2vIv/NV2n+wQGzv/ZV+q+8xaLraXo/JOYUX6CErh9ig6cSoUHuzTSFAy8T9BnqHq8pVO9KyHeCEPIF3TNC+2E/GElGyOo0Qomlyfb8mVlQ3A3ZHz0//rf/5/CbCu6bPiDOD+yl50e6LlFzVs7fnPH8b1vDtfwcd+Nviq/tpwGWrbAQYacRdpzwqYXjX545vv0Du+y8sWG+6Vn2PiUvtEyRJ2SP353V5/Isgt42AnEca7WvupjbIH/WYBwg4UNIVUMUylwbR+a6cu5Lpajir0PGc7+iosCqLTH927YxFDG9Tc1J4Hqy8pWYe227w5gib7KRol9zgXWounLkA+0/9J5HPTzsgtX90MffvOdQonOsVRjUOnEFsCUP33sbuk6zsNq3ODGrFsEQzgWQ2w3yMFrav3QHfterIMLcJff4XkjZ48k1+J48Gd3XCIv3NrmVXQ2fve2KD9+p0G4Fdl181q3Ojq5KHGJ8HTNnkqkIfPxF+MSLYSNEgVZaCdapOCclcrSL3/bpgAmLgR4L4VRdowcaoZjyuKM9XAdGfFYKNpJ2p4VybJjxffKlJMgPmXzdiNkrz1UQGSUv8YFRtu7xAL8A/BTwBzHvFkm6BAiW6JWHgz54gVgCWXX93w7Xr++efJEFrXDQCjSOtoWvfPh5Dn+PsPiVu8w+/ix86wthTQ8hJUnEG2hS7LcKukfEtTiLwu1DcLthfK4c00VoJUfuc4Q/txbwVmRRTEb0ITHXpueeibsEyUoYDRbMOKZZ3IvSaPZ4M4zOD0g8q6ktQYOuCVAm6/VaYmo14buw98VD3rQCu2oBgQMPMz/0PhzXfe4zT8AdR5GK9Uq0RAqhPU5e6WOuEPvQAO3GZ3F0+u6PCckEh/7n3ci+0/Myrlbxm+KRLHu8wN61vYzIt3EMtlb7UCNZQhWCoQ+Ng3Vsz5gVxcdOLBrmwENJXgSlBb0GpVu8XreP0cfFo7W212Ab7j6JMe1amMWSfcOzNFni8Qa5vszbLt7VLqCBRDUBrhSiNV5/eB+iaCxfy4jA7gLZ3wQuaJ5KEqrj16Ao2TJGWwLQjmEKizgJ79YqTCAoGpRJt8oJTz1zvKXPjQvx+kMmeD3/4tvhGYswMbd+dZ/Vt7wQE9BF5bep61sTKgbcCezGdW7Hel4QxV1Fe0tOsFAWD9ZwPx8VuWpl1+N62bB41IEQcv1glT2pBGa5j7YmojvL4IUU/qjv59MvIr/0NejAN8Dvfznkj1n13H0E3SOP/9LdIATMwT+A9vP32PvQ84P0IpGXGBTAnuBm34ZHJpw/Tr53RG5Quah3OjX82lFzEaUqL8KhwI3YI1k6ZLWK4xPkoIO5Ub+WxoSTOl9ToouEsm/3QeuZ4+HG7m5Rn/0gbLjrxtI+HKVqKbaekBZq+NriMOtZc4eAFxryPa8Kznn0sDl0QtvIUPbQXZsxd57lmwcsX7lOo8y+0wfFXjxYwQumDttZPBe2gQx/Ulbz1SZl6zfXTT1uh7EnqcUHaoU/KaGikOZN77FtHZMnEi27n5j/+NWyYadX2p6/zbYnq3I0qgRWgYZkdBzCdGYOjjvWAms8q95z7EP/f97D3+7hBzaeT3sf8hYAi42nmzWmMs3Jz74MeGqF9kf3v3H6iyvIRkTg+hJ3t0e+FjKry/PXEIEbjfBQE881ji7e3xthzjIC+v/rBNd4u8gbc1Swm+ymjoeweexmWJOXZRy5RtrfGsHPm+QP6ATWkZoq0XOCzBzSusBwRLAxcDWmQ88PqddoL/szxPLG82G+IWjGjzvc0Zpu4cICNVpCZfhKkNbF8Q3STNKY6PjUw2DR5rG5E/1V8jUVd2nd4z8L/Mn4218CfpMI3xsRvxKEBmK25y7EOi0qsU768FMigd/y/Z863YWY+WsdftPDLMzvSmD9LS+y+JYXQj3yVoajnzeBOS3GPjBuPpw/JFoWnIPD4zApuyY+U08G9//HBCXomKMQarUD8miD3ArrwSJ2t4GHbQs+WR+GmEvLXEqI0x9YmLYZlQ1jTYhrJQiZPZIEuPhI1TKXXY+PGDMoAHstN46OQsk3GBBITPDOI+BaZCbD3vDQ90ihZJ9JiGH0xXx3dlwQLP5azcSnqPyhVBLRkthhstOmRtcyxl/5FeNXrkJ7iU8Uz+yS48Hv+Y3fxaHPx3eLQNiz6AEJ1ts5DFKLLFxI0hMfJBZ5HYFIw4Lco0mPfov0UAq0+u73STHUUHiNVuZiGwyMd+WZCn3juB3jGjM+CJDDDXwghU2ootR6dF1nnEUYM57S2r5PKbQHJZWGA2Vr+dYimC4OCZ5uxsoUEtHJsO/02bUcAa8wnkOloxZG10ga0G0Ck16+NxuK+lXgu8z9A31uhEZdp9RNXgT5jufxv/hVOAa5AQffcYtHbSz/6oS+DVZ2y8eX82ytsp/8vu8axmGP54UaXauFu9XoegmDClTxJSEsarNYsHgH/Cy6Yw/tKCapw4bteOPUY2+Ml13rYOaRj76A/FGH/NKbyMdfQF55Nmb69vy9DXzQwfVXPN1ffh13DP4G7H/bTZaZ9mK8n9gkS/tMxLjH5+Ocimm/aKjNmZ4r36aKFghJ15aKj3Zb5EGqqiEHHXLd8iTxaA0mJ3Wm5iJ/M7a5fxxyznjPb/70JxhqtQO8dQQvzglxNoauC1nWc6uImlMPX8R8p2AFdfvbXepVPnQoC6BtHU3T0zuhiz+0OJpnlixeP8B98Lpx9RcyN5qjVSjrWyL/bVrHEqoENf4zJ/ElR13IvVNcUypp9Vhzj4c0Nzq3tVKbtfV2Pd5Tw29TuSvKRNQCMG9YdPC2acjH46wL/GvWjigNqoxTgpdrZiAQ8DOBmKF+Q4gwWHn4xR7+baDB8/eAP7WGX09YppuNp583Y++gizBCnQGeWqH9TGCZDLOC5MYiaFd/8R586FmcOHCOVoT7Tt3jya3ssclauTdNQqevWF2n1U1eZWl8YkZUCFZGsOA3q1kZJ5dQ61KGpo0P/yuCUVekRvDzYLJT5vYd4O8DvwH4Xh1n7KvdoI9IlvbaBq/1M1/vQaPqNh0c9/SzubmQcWx0CXMHtNB0YXI7M1tOtPBmsPicYqNNZbkuNZI98BPFvT8N/EYSDVPBnbmEOKeDDm4UsU7aT05BIM8ICcHJoNzofciEeuQcK5UIWxcQWhssRBqzrTBymY0/HxKtrUuQbxyGVzYLlrVx8sCLGJtuHtO2i0zbLiGu/cY8xrRHdjOuh6NZE6yxpv+Dg4Zx41wjaX+1LmTE1957Qvz/TggBmBHr1FsqRlg7kyEsQ+kS870IXF+wPOpDptTWJYoVJ/6I6OJo2+qTBUgVYTcI5X3i3cPFxxIYzuHZIiF5YD67w40CtH0/zIMFzzihlIWpN92SM1wR7Q2W89KyCrmgCeE1D7XaJQ20J4X7CYQwjZg9frQC1x3MW7JlPuXNU0BNwPSkmO/yWUP/i709WhfmvIzbHNaoaaJrGna6FN6QtbfqkHkYjwrUEv9RZniPpLAABk8i+8xSaP9g2Vcp3OP1x2szeONhUAAt2/h1uGYm4TmqRLK0zeJXDbuqzVMJIpIsoyT6KoRazPdMu5Y26/ErJPd4q1AXEZrWDXRTZkHgkG/7APxh6D5/h/XHn6N/7XmOYtI5VHivjMmCTSg7GuNjoMpsPcUNJoQ1ZXMYnNQ/xfNqXe91b0TFpr+xQA4PQxgAsEKYK28g42ck/LrFC+ks4Ighbz300dtOBPmOF+CjLwSLeR8sZngf9MoArzxL/4PQ/zevs/6tL3Pw8rMstERo/OQTEoXMkaU9XaOXXly8/skw1e6AOyTt52MRntO9urtANiCbDjdrQ2LVZeRJzkOzFW+WLvISidHdI3h2JyFOizy/uYLnr6V2GvN8ZaJ83pM5FS/I4qhg+Zbe3HcHeM5cN1KwulAWt3WhpLOP43GAvHgNvnGYxjNClh4ebkIuDx2XnaezLIQphGCF9lUU2itIpBRoHTn9tF3W/4/I6fBJ+Fct9+V+rxkuRuMQ217D/Hjsat8DixWIFZuLzojIgOf0+zmhslEGM8Gv+8GwqqGuf8MnnH9M+P/T8dn92tMtGxMyWXn2FcBTG9PetGVe9W1QRzauEWQX5B89RD4csmqJg5uN8CBq3LsYS13uWfVmtYzBV0kWgyY9ZqzJ0t/i8TaBUbIerJ6wqGKV76Hb2bFkDiXU+GRnFpL07TYhe/luCzsNbrcNjJVLrqX/EPg5gkby3yJYlNc+JKq0FgrIE9GVDOjIIqLuq5Jf284E13dcW3v63Rk2lmm4d8JaKyIhZnwn5jHYa8344rEisE/Nn83eXCMK6rQA8DuLvvxOO/aI5IPQHtxyONzEUiDmgecQat96+96prx2YNychYcmiwS0bDuKn32np5w4/a2AxCx4JFX/e2lwMwukcODwM8XKlW9tZCdVJg6m5yIvA7QVyN2aQjy/IeULJDmDVuiH+3I7DCuzqMTOUmpoDfcy0q0ThqMeJJn4J5dXK9qzQbh6ZBB0n2XsRARYtmwbcg6MoqyeBHe954H1ehsX70DfrESEhS7CNVVZQIWG4v7GWdp2A/DjXDLXOjbwSOnJ3dMtfTGn5W+ohN49IXikWF969cy883gzxBkUCNZGYwT/uXX12zBSbgf57nDLia7KaQdiInS8ZQIVajKQKtTfjNdYtftvyn9r5mmFdx6cXDYIUsHENy02yb/q4PsX7EEu+jJYJ47Fk3421uNTGY5k54vhukb8ftXYMoTD6w/UG7hyEcS3bDA+ooF4yVOXzHjBmHvWZNQZG6U3JgD9DsrQrLe3N5w4Bj72CEdjFtNe65K01c6kyzUdeQH7vx5DXnse1jkcxzExj2e36qQmvWnVFgP137l26cLckeQGeJOwwfG8WDAw44AjwiwVy51EIISLmKTA4Ygo6CgtcwQucFkRkUMYHT7om1C/XOubLJlQ1WTYwb2nmLfeb4BbiX3kG//IMbixSmbbBHd4PfRkSfvZ+CBebA0dmnGW+odNW0nlc2IZjk6U9JKS7QyizCiSl+sPoIn+wDtnHbf9GvMm2jpjrShf5mztDVRd6z9t37uWC+5sP4QOLfHMPgnvdyKJrZ5R3yE8oniqfO9Tj2TMFaxyLhsloJAYvL+CN+0Yb4HP3JAha6N0Y0W0fAGdbCFMveSmJtq03ydJu3pfi+gFPx+93yPN5lPNlPWeHtirnepxTt9xriOBoHzjJpkPPZO6YHUeFmHmXG2C5IoXoFTxHltjOdHQhSttNp+bg+z7tWx/K6v5j8eceWHr4bRgvjbWnX6Rn5xNy0dh6Gp5aof3ZFz56+osV2dhjfPPO9XC8wflNFBYde07YdzIk6tJFVbWyG8FWBeDPkeJnXPFoGFuUrpHKG9nNVatzehqiJ00UbpcxUV9M2Ccxztvilp8s7v1rBEJ95GO5cdLnkLyU1La+BOYtfxZAO3O4ruPGIbCY5fhNGKyI20AaNxqf7LTh+wlEaTe6JXpQTzZjx90DnyTEsgP834BPSmKSEVLhgrkEQeHhKihNRpPC6QhkhL/wo6WN/2SQ+Ay/aPA7LQfLlvWyxS9a+p0ZficoN3ylH4OgIqQShwQL1o4ALbiHfmDQh9dVuLw9Lsho00h6gc+Gsm/lPmLdgQuZYPNSaEXpt9jOoQRroAgwBzns0kUQYtpjDexd1Koh8ZJwtIno6gOJtziX0fWjnQWLh4O4NrjGr+OeGxgv7cvGZ0RQ+2RdvlUY3QhD2AkQ8htYr5S8ewC4LhC4gZEyG3Ml2/FQDQ/YcooWfz4id1fUe/7yf/0To2WzR8CLtueruOFy19QG1nl+A31DQjdwJhotZIWNxAiO52fY/z71Hyru4+ZzVoLbYmotA4gMfdH/V03DXs8gaAipaoI7SoxcyV9on66RJyTKxl18YCJ7vK5ja00CuNHC3XhnkX9iHvddLb7azvYjcmXwSTROaaqe67W3yNeLJw9xeh34AGG/WsXRoFhXTx4VDOehKo0swtEvG9y84f7M4WeOfuaqYyqP6h4vwE/9xZ84t/Bag/L+iMqAyrxXhB39XfHiENcekdUxINdcoGdty0yEY2/bDQtjSJxIPu6LcvWURiKtb5IyZdngtOzvooFFi99pcXPHxm6G+QKOOg5iJnAlciWrIRC8K6KLinoTDEFThrfQjNk1fHiZYNsvFaMIHEis0R43rNwAebgO6/x+XuHhrDR7eynWHbi7HpDkn//x/zHXCL51BM8v8vthSIRbm8dtnpD2CEY5V/CsdwjKvAxPS+LNhz5ovwZlhMBL1+COD3zF4B5vHqCK7mvzjF4Ox9Muhtom1jaaQNuA6DVWUBj1qCtvJQnkKmhbJbR+f5J8Ybu2U7SlUM0eb8dSGuakoekLTORjmGoHzuX07KRp1ER0GV1vBd91KV9H/Hy7D1UAPuDh/wJ8pDHlu/s+hDtlD7/sHT2Gp1Zo/+bXPnv6i0sEE5GV++JbcDdavP/y15CvvwNNSE6x38Qyb40bxfwpcrCx7T9PYBh+Gfg3CUnLbOKL1uK51AUgd+uzWrEyEd1ZQdTSJ+HTkBgUZVp+T3HPp+NzDwmCu91aamkfbewKfhqsJBmjF+KH2o2PKXXnpgFrmT9dqQw7vvOA3pVnbw5Q84a6Tggh+IT2UxisT8MczFyw+B6sYc+NX/gZhdo/8a/+8JnHk76IFQIWDQfLlm7Z4mdNqIgwYWW0azz8H67bEK1vMRGLtLOkACqF/4vCc+rfawVJAW7NkTtH0cXRuMquO5iFup1Hw/szce2xDRWGHpmuupagbDGPYbUZ3ts1CVnUw5wkwb90Ac0YcglDkMgA634QEQ5uLVke+Sish85673kY38hOfBHD2I4J1gBtmyCMHZm+KKyLKaORoICI7eUvPcxfs+5Yl8Fcsd0jOZn5ttsc8mRY9pGPGOfFcMC/8K/88EgALkuV9VGBABBtuuHv3EHfJWWLbf9wg8SiIlk9dMld0EtQwbnmnmkTtWn/YfvWnjKkNJh5qnApHjheNCwMl2RrtYfEDDHcacBJxNj2lD1es/BPeQ9YZm6fmqU9pKFzisv0hV8PIWbppSZXzSbevCafv5LpfsTZEvuV60SvvU0I9VKwca6e4Br/imnDSa5YdxAE9WUTrJSLgDtl2eCXwXOpWTTcX7R0i3ZQemZjywTaRFsUR/zT/3LC5xeBJmuMrSoRp/LUTAnuCCO68EjA7RB9V0NuCFuFwcpl5TM21PHGecctjQveYVFJP1jc520Q2BcNtI7rLsTiD1411+f4VViH1wZVQyLwA76HkaUdcqFRx6fleC+K1E2OuThayJN9hvHui1EoiiDzRcgaD8hqnQwJZzAcZDBVivXWHO5Eka73/Ikf/gNJ0D3qwoQ9P84cb5ssx6p7ZghRmIAartbPXeqWdvvOMdb2oW9CCP1ZAm88xHrCDYv9IO7upbHOZo2fYY7tpZaQtrEaEYR05/PxZEm8p5w/9SK0+UwgX8PbjHAlTd+lnhjQhvFme0lyS/vQ3lyYdV3qU5zPNeDoQ5gy+ftRhfFoRiP/XdIYGke/Mq8s/nAvtvshD98mPq800vXBrb722q5QeH9qhfazwGSt9l/4ZhQ6wG2AX7mDOMcNJzyI2rYyM2rvk8uJnnvgrxTP/HHS3h/inc3RLuTrpAzyCp48ViRthPMTCs1w3kjQIi8kJGH4D4F/nHD+54FvkAR363X6gIQIVBkxQoC2v5JvYAA3a2g7uH68QnbGFqLMmnOBUENIkCyCw4avKGj03GptraCemFrCxHZdSlBCMZ5L2vtVhBvPa8mu7FEhs/BBSuDm4CExd3QbEfGNeXqOPuiCrOwDZCY1M9nPzGD/IMv6Cz7UMndN0AhHq1EJypxCsLwuomCDA+m6goHbINH1uCVqmSWfNw1hKUEJKUi+WeJ4jnd2WN4z/YoSxkEHjVc3TpIL5/0N8ne/BF+7M/RvCTwwmn3t15qkJAydlzzTvh4Npz3f9Gza9PJsbXubdGlEhKm/8qHEGjn+tFbVrC+kdaTfWWFTQbMlt/HC8O4EWYd3N1BnhaMNtKH/yfKYHlQTYGyfBzxgLrxL7h6/DQ+WY6S4JhPaR88PV64XjlkkNMNzYgkid0RgGodlIIaRi7xnbHNksfJjfNcR1vkNOybFyy61O4Digb0m/y3SGo9s9WSCwEjtcfpQg5qVXQjM+d34XcaMxaOWexvwN7lH3JAsdRZdr6Ng6Jctft7QL2c0y4ajRTMkp7Vzmf0fj8rkZuEqxfG8sI2m6bNPK7DrPEFQjuFCZQqPMFvGqgCLJpZyLBShE6CW9ql+nkfZLi6EAMpOi9tpkZ0Z7Lb0y5h8VgK921faBfj5fAjunesesnvJPqAnWNol5DvxGBd0UptlTPtFek+MxmyOmVswKaa9jwPZd7CjhhqA63PkQRTaH0X3+KzxEzZbrTM1F/lYinXYCLam+ZsPg8S3aMbCcdTs1fD/SeGLmPMpXP0OgWeD3IimSrrhgVPW9hd34Y3j1LDtwMNVXOBmTMC5mfTafrCW9kNinfZionRc5lUKSe4o81tY3FQr4azt2UcIKVdGuee35XcAUkk/7fYSZptNCAszja097K26rckiarhkJlIodiTwPMeJn9USp+oU9ma8N/wWrfHrjt7kKBk96IrgfaFdwdYxj3W85btfDO+ig74B+eRz0Ai7jXCnkfACRXKEQGJubLzca8XjfpBozZYcWWQ4L157k8C4lJvKutVRHM+zhhxBUF9KOu4IfAb4PwP/DkFw/5OERb0ir98+1Oo2sG1NWySsv7ezoHu/9eCQxmS1G8VGXyBsm79ttVhLt9iaq5W11gAppv2+D2EJ9sGj5C8XC1PvQoX208CwBkUyd8oDgetCyuzZziOhLUu+nd/zYQQ1F3kkxLS/2QXWUcv2QKyr3nBNktt4cveXTEBBgkvVni64VkLcuPdJUD7ohmAtR3Cn90SmVhJDty3vhItjcPE5+v36pmN+HCwTXhOfxxrtN6Ib3mDMeP0O0oH7gkf+66/C194BEfYkuj3LWLC1igRpJOdkNIO8eU/tpmfV5Ayd3lGzmG17w8J0nfaR0F4wGvajQnvZlyY+ZJjruOfCfT71z/vg9dKEWrydvkhyPDsleEyVfHtIPSMxnH1rL+KYKPZb/j4bFtYcH38UDXlYaAK49PGmbzrfqgDZ9tF9c6toT8RY2XWgQqob3LaMmM54rboq27HpR4dVS0w4ReeEnPnW624T+Fq1ulg+2xPc418195aeZxk0EnIlxBAstbQvZqEEZM2KXRMsrNBux3dRvGB4N3lbuotLJU15bqEnNDR47YgEBl1gtqt+Le1IyT20WfHcmrK0XxSIizlVmlARR1woHztHQtWC2H925nC85kDphMXxmO8gJOxUAwMBYw/WxTg16i4/y78enV8k1NodsqtHrdqxD8lVb8QFLoAsF6HSigd5QMgFhNk0w0I8Zc9rYaZIqCLxdqS2nceWf+OtVXCfL63stp0tYy7DPGrnpVeN/n6PJLRP4WpRAb3Wrw9egzcepYcMrrAeDtdwo9h8I2v7ySDlBrb3LVwU2hXXN6N3pq/A3q7nWjmk5jGmuTZG/Zk47pAU8dYjeGPaye4R6rxgC7O+Y+VNn3wU/n0PCzvENMZqvyTm6jOI0AshB0aM1vC9R8X3d4DWB2WOXaI94Fc9/dzkKCnfyxXBUyu033ru2852Q+NywX3eIB97EfljryKf2UF+5MO4154PQvvM8bAV1o3LmZr4gjWm3SZ5cMDHgN8O/N+BT0sS5myyG6l8bpJi2kv3+PPEtE+BiLCQsMFUYNfjIj7rXya4f/87wFsEAq0bXrP8VvtTdMhuNv1dgFn02719eITTRKZDW+pufY7BnQBT87bNCq14Wv+/CzyrbaiwKknLCQR3JuUc9+bpB8vNn+Hl/dhf+ulTXzuF+zVhjY4jO1pZrjyalzq4Us2i4KnJr4aHF524CDCIOPP3fmYnPO6ww3mSxT3WVZ+TSrPZcWT12okRGtps65BNUfLteDNwZgvR2GPTFnl5terIne4FGTTOCKyXsHfvKHo3+JiMDh71nmubPsTLdX0Y22ffiHMArgf55XcQghLlwD5UJBG/2CEBcG6wzI4gTka78Ry7ZvjKMj4bZKT8tvNU21sqtJePUvf48p6/9t/+tE7X8L26x6f1WGT81wtnkkq+QfC8GATbDcwcDUl4PM1arQm0ipvvEnB2zTI81WLGUJmL5lj3eBmereMFOGoaFsf5MxzAugtHkzzHxQeEQzhqzXub5yEboxFs78dr5+TPG3hROwA9PiNIrP+suFFvnEnhuujztaWx9pqNv/apzWXtcyv+fpf8nenK+ArjzPHWNb58BnEOg5UofKNr70SX3eI6FaT/xl/+6djuxfCCU3yBurGX8277VvZ1KGfrwvkBEpT0e5Elj5b2IynanNhHNhHdRfAvJUytk+sCD4TkJXkd/GrNAabqgwrwWG8tkA0QE7hBvRyu7teriGkf8VHmqPkwPKG04r343nYj4neA7LZwcBzwvycI7SX+O8tiFMbGB2Eoxcqj4DL+Yz/9t43QfgQvXEv3iGknCstT8zjlCQn5Oi6r3vSE9feAILTXlHzZkGNJ5OEiPX95AW88SI33fWKaHsVs/DXr1Jk3uGSHoc15E4wRam03NczttVPrb5cimauBk4yCJT+5ZJzxHVKoSG1I1X7Fss8ryF7oGpj5Tst5jKZkCmbCEDY38HrzJtI2nyl19vF8R/xfac+g6Fl39LMm8zIMxwtC1qeEp1ZoPz68d6brpZFgFYhJZpi7EA/1HS/BH/xO3EdeCAlnZg3XWsd61oSyb4yZN80cb5mCLwLfA/wJ4FMkZmDIkhw31lQCndINFCoWs+J4HmhE2HVRUJckuC8JhH4B/KvARwgW93dIcXkPCUhgpKmsPGfY9IpQ4rqfOWHj4PpRh1talTDBunGFmwPyZC4jZtZ8IGUihaSFt25JIGFtqbSya96ejuuMpriPfuRDZ7q+BqOENUwzcIN1MXZTLTCDgDtvg9Z+r0lr+YKT0CWQsYu8k7iHQd45HBJzAbgO2GlZCuz70O8yvEWZTE8gQEN3W0FWw1MDMek6JNLIXZGQNTleoO1p5tSi18NxqC/qzA8Im72Wa4fR0m6kp4NNz61NH+JSOg+9R+7HWzvwDfCJZxERlgh3JVj+hySZaTh5j0ycyzA+w7g2nWflHCPRXoQNY8VE+ZrL76ulzMjjly0e+baPfGjUxjWKUmUScWLByDIH2WzIQBmrdQ+LILRXFTmmj9nt5Eo7vVcT8ZRCph3PFNS2Ru62rw1KNmcP24bZZqx0kaP4tuPLHvSDsR3bt5uEuR9coH0+Tv3sExSTQ1f0XBINy7nfmC/hKw+QL79DwIqpLwsq5XjM85ShPGsYWOkO6gh4bo/ca03p8z6Bfr1KnoDOKtZLqDGuJ7nsqhJE/7d5aQR49dvH6/y8MMVsQ7KK1fpYghW+7fE48gg0LprMG3bFVCIwHkcjHEvOv9j3elEwej9x4e+IcBgXqgf8Erh/zMp79vAES3sYuJgOizJ3rfIlkqo7mH6rEH+ZConTgPYNQv8eIlzDKKEE5LpD7q9CwkoIniOQb55hU58GJG0eSDS5dYGJvBNc5D/66ivplm8+hOfnOcI3AvK2dTzUotdxFkc9r+XquBN/v00+1BE51j4NSCHhNl6+HpDHcTdOdPSoD4aZYWokHc+7CEYIJ7rHr7r0f3GdwChJraXDNuO73ac2e/xUaJI92kR0tp0jJrLHm/4NtCJOfrvqUoJHgnDdA7NVP2g47f7OaFoFJ9s96uM8ecB3/aDQgaDQfZHAW7zjk1Afru3oF6m6zLsFT63QfvjonZMvKmGeBHaWqSSWJpthFrKQNvOGvnV5jcNCSLeCOwQt/mskhKAud07yOs4l4oBY4rLoqmdLKYXHwAkQyjftulALehk/Oy4J7kvgXwc+RBDc75G8CmqWdrvJqf1uKPUSWKmyd2eWb0oCy3cZgvs2K3TNIlgSAoBvYi3t5mis7gNShVRMeiTUnn6An/rOj5zqum2Mg7Xm1Zgriv+Ho2nkkYQEb07HFxfCpSWh07Zq7ngi8OwcubcemC7xwBpk7rgd++vjGOyYlcmEaEHWNucNHGv3o/VlvYlWF8nK/ygoU75N4BgUV8Mx/NhfXzJfA5s+uGnFxbbZeHbWffii98hX9kM2qD/wMvLpBfJHPoT70PPgYK8JtWWPTJ+O4/rKlX1uENBLgqxz4XrYzJpqpuQgKNfXmH0l9resxjGGzyEQzLKtT3zyI6P+XWNsHV4pPtX5hKBYGUIbGNaD4KMZoE2x4yLZWtgGtcRG+6ZvMM3snBastcwqmbSfgdYILSZJosTxHW+iV1J6OVMK1V2SZUHHX+I34vhqiQIRCQmjyoa/+FYgECvgx16Hr74Vfw99momMkgRZRcgDAv3T55Q0sjafJQ21190mlX2z9Pp1gnJcY+eHjyQhvvac8qif0vpqz+3xCFNWEvjIJz5Sbfu8MNXOkDCu1q8C8dv1gDB4JB0CO9qy9/Clr/Dc1+8MilzIaUT5rItORFdrJ1sLw5orcPWygfWKHnIvnKIdIFTpaBPbPJMCj4kM/MKU99FFwxRtz8LeBO4J7IgM3l0CuKVDjo+Rg3V4Zer2WSNWp+3MFE1+Zg53Q48+9a0fji6pPbyxhg9Em25Zn93Vx6awLXxRweJnK1ffI+x39TSyXR0JRiJ1a/tOGxr5hrG2Kxx0SWgfmfAvIExQiEJ7n4T2SnUXg/4zWgxBuVxmjycetRrU1Poqj1Zo1zagIqeUS0okW3K0Drfp2BSJQDYEYX5SapXKOomKtY7ihxib7mOGf5Xh7hIU2M96z1u6VnzwdOx9j59Jht/yh10NPLVC+3lARILQvhNKhww1PpcNfh6zjy4a/NzxjAj3GTNutqyECrKHhBjwbyF3w7GCO/ao/YnHm+SlmxSsFW9qI50XZkZwH9zkXbK2L4H/E/ASyeIOYeOeqi/FxlWhZQGsXCTlyxBfpdm1oxfxhQvt2/o7lQjKMpaeFBdkXa2sy+jQprovaSBpzS3+kpDAFOIuM3lvg9LNDAIyXRHWCq0LwsL/+jrylTtp7OeVWrZB4sbC/3Yun9lB7qzzhEJHAA0i43KFQYAPccPax+AeFv6RtolZJf0g4HLskah4aS3zJmmRalnG2hoTvdaZe3Qos4bjGSF5D+G53nuONz23Oo90ffj83a8jv/El5CMfgN/7cfiW5wNT2Tp2G2HTOh4aQVSZuMzC5QTo62a2CE0Pm0WT4qsxmnSZcH+rjFmPU2EnD8mFGJm4XwgMR1mqbKXDsQS8cSGUAFIdegjJ9zwwb2gkuJAmoWRaiNH+WkYQksX2OknoE8bjKGGbi6taCexzh6MEoW+zgDa6/2soCHjkuMuztuux4OtgrADxxbktZ/eMuS/ny6PbsBYydgI//2Z4ljLfv/R25nHTiGyNSX1InuOgnJ8aKEoo0QOx76oAn3KNF8aC+7Zn6VHPR1ZsP17nw95hXBLyIsnAlDJ6iHc2sE1Zm+HI2MoDolLzjbvM3uqYfQN+30+/jnz97WF9TrUJKYHlJG58TCjbVWXDNYnZ43U8ezM46jj2MGfg1FM73ieebO1H7vGlS7CuZ1XPD/3Yso4eFyxNt+94WIciPBThdsZuCOy1yN1Qo12GuoqSjmddjCfQZO5scgRzP87WczvpGY15vuYymljHVvk7pXyq5R7xBJ71dtltc54N2SKV0tr+0jV4vUhG54HDFey2eUN2bs8CNaQNgfHYdENCVWDSW7P27ZKAY0t8D0SlXH7v1FHbssktIc15Nb9DSYt0ubWC67usapMHNt4z63qGhKe2vS0hFI2E5JgWvIsK8HUXK/WFXt/38Dx5xS5NUuc3HX2bh1ZOvpdLhKdWaJ8vr598UQVCGYyQYEZ2W9xuLCES61gTE83sMK6dbhkcG9f+FQLvdJtkZR/2PrmQPsJ5JKHdMk+Q11G8DNgmuM8Jx3+DYF3+E/GeL5D6Ddtx/vCbWYULQoxmL6QkRnaTir3z8sEKtDVmVj/qajVY2JQRF3WRj31W6/q1i0lC94Uvfe1M19dat/HFU8ylng9zMFiqg8WllygffGOf5hiaL/bwo19FvvhWoZi4uHcXrNIT3gq3lri7R4OgJgCrHlm03CDENOZjygVRCPHgg6Z5FrJfy6ZPa/GYUFZIlAmOjKBP4QPVCg9TRx2OCC2wv7MDDzdBYAekh0ddHwhX75HP7YfssZ+4FYhW66LALkFbPXPQOB7FcU2WRGtliGnP+uTT0XWwbl0mQOoNI+b7FMyprdNumaksrtQcv/rlr2d4UUj1xQe8GK1co+Q5RqOSjWut1okgtK+LTk+VPYTpJHT7JMvwsLXN/1PzMrUmpkJX1IJ54OF4Ac5Y2nV8suqH6gbaYFIk5h5Ldi5rH33ufervxwE0hDAzJ4FTmjn4zEvhujhR8p3PGyuag2acPd4+sywBmH0m1plNFGb7KORJXfVZPePM8ZY2h3WXP2nb+tZSWzVcWq4lW11CgK/HdQ6Pjyqn1hSMLe3bhOtBhlVGVwJ+WwvsicA/uhcu3AF3Hz74j+4nnCpC3yS8aJ9x6YnopL5mdoXBPR4BlnPowa02QUHk49op8nzIMIiEhHKhMXy/piKwF8eLhBHejsfMg07grsRUMyLD/pfrc6TzyP0N7LX5pip5k9P05QSazL1D8PCFr38jzOU3HwXGuHUJL0DK0HzCjJ0mtM8a0iwPfZcU6mO7KeZ8GNe2ZHQv7eXJ6HSh31+FEnpSecBZF8LU9TMJVvZVV9H+heeJIQHlZ5dx/g2dJ3VrL7ug+6hs0yaiU9B3M+kePwKBucN1UWg3yrMNMO+6GJ5CEvRPQJSNqIIyd233DfhVsrTjPXc83PKeF1D3eLNu1tDP3OBxlA/mMnZ2HZ5aof36rVdOvmgLiDLBsyZ8WoczgW23SZmLs3gZn7vIA3yZYGUfGAKS4J6VXqIuwN+K39WsStX6h+cZ8ATMRNiRJLjvSHKV188Pkaw0/y7wOdsnqS8yiZttEG71eQjrpuFoEe5KeFtLb13O5qghJCjiwszREoKeoLV9nvSO7dizNjWYeGESlJTW9jMM8X/4mz93+osnQBmPmqa6ZOLKOfASXM1FQlgFv3o3vLOoYJbPvjl4SFx8TDu5KcwSxWdncC+UfdNOS9cDzWAdUet2Nm4jqK0JNBEI1loYhHaJG13mge1cGjdf6xKqZY2mQGK/xVjcRYRWhAe3lnCUCIr3nqNNz+3ew8EK+ezXke9/CWkcLgrs0ga8xczRzxpuOcnyYayp8EIigyV6EGjjM9Uy7VYhS3mZ6VtPRnHkTDOTkAvtFu5jnFBMG3/nb/1c1qaQFGRWu99Fb52sF60gRyoxpDFxtAlJb1xZD/3kRVoKtcoI3ifha8iVDOextGWx/7GRTHEr4Ftg0ymGTAqYVY+YrO2J0Sr/D8zbI9PulLJun1TneeT6b5O5thKE9o+9CH/8Vfj1C/jnPwzf/kL4vnX4BpybLvkGgebdMN+f1vhXohxdS8+S3ONtotgyc7wV3JtR6/nzy36U5QztUc/1/7Liyv/6M2mdnzTG08AUXdvhdIpa218P+MaF6hiN434rLJzAr7sdFtAh9DfhVz96E1qhj/jMGxxr4TQKzceB0dgjnVogPFI8730QAuYwO1jFkm9R5dCTeWoBsOkRw9G0QE9alJ6UwGt49iWMbWqc9mjXYS/CfYFbsa/D3p9HZfTb6yFZJPBYPMkkTX6mhbshpv1//P/9QpisN1fw3LW0sSuC+7b5myodOoW/LK9+l3E8u3YfGAuDU8noPriAb5ha7QrHa7hWqXt/XpeLYQIM4tZqRKs+MObZden6YYyS/2Txfk2hWPWclXzO9Hu12pdtwMQ+174UyEnaBlknvruPgnsPtH0/NnDpdMrY2q7PXpkfBmX8jtCvezx+8CC9Azzj4TkfEm0PVnbAr8kqhl34Rj4lPLVC+zvf+KXHbmObxr6snd6bo1Z+sEnoPkzOSOQWdxna1d/tc5Wo6/OspnpbkquLgrmTJLBLHuO+BP5Wcf1PUncPLSHzFBrcN6GfNxy2s2EgQmhMLmNwtj+V78rYWwv2XdwhMev2PQppHjJMdd0mKInHwRXs9AP8l/7YD53qum0uuFmGak7HvPVR6+ydcCjCTrSayUefwc9BNnEePvNS0FKr9e2ilS6jTRO/uDXHvRVG5XwUtDcbWIT9NGRMjZf3RlhX4T2rI6zta+zYqg/CX9T6LmJbVhBVBi6r11seVYMf14YukRZ4Z7ED+8Ft3Xtg4/GdZ8d7+Lm78OHb8MEbSJMs7NI4fCMQj5aQqiJxbvedHqPpePLtrOB43oR8deaiNYEIbitrV9u2UyXfytqwet8f+ed+cNROWaoMMYoWK6jG8i4CSWD3BGYnItAWjUVN66B2xPxfs7bvM7ZEb8OB5ThLpiqzJEk60XW68kHpoNnx7XPkqM9zaBjmraQx16mXfCvHuE9ezs5+nJMw1yaZK8sG+fhL8Ic/hXzHi8G1eObwbVAqtU5Gnkx2PqeqCUwy1ub3Gv25Scoejzmqpb28dzD4VeA0LrsKU+updI//wR8Zr/PHhVo76h5/WkXtwOdEPO4FHjUueCB9+AN0/9SrbH79dX7m936I1z/0QqANjYuZ5nMvJsu/WIXIZZD3ch8ioYxnL7BWpQLAfI477ILXgx/3YVhHnQ90Ln5fS+RlhfZ3E8oKHffi2DUvUEhOJrhrgrzxEK5PJ8Y9U/x1lSYTy74FUexf/IHfESbr7UN4frdgmGSg4zW+xXal9ISsHZUPt1ZTTzC0aA4i2+WBXythyj3+xeuByB5ujEnfBy85rXs/DEDMYjwD1IgDBGK36YPQ3jb1a8xjs64w6Noyo6PCAdOlKCuPGDyMFDxjoX08LhmdyqxBPPR9jomOgbbvYgKd8QTWpkgI+6AbLjA3zIFNSESHD/OgIa7PAPfiZAxzswI/D17AyiNmD78iuEzvpKcCMvzjEwG/QS5EW4ajdMf5CvCPk5iBKS1+yQQJCYFojEVv7tka037Bi2juBF9sIlzo0A8C/6P5+vdhDC6orJZ3qOxn2HDhn82i4QhTDs1I61Lfr5cGyjTXCILV2r5DqtEOBjcbZDl0fA7smgQl9niJu7+GtLU7p4lpL90bfevwruf+TGh6B12LvPY8/g8L/nNvw3c+j/y6ZFmjcWcj/qcBZxaENWs+sxMUB0cdaB3hrsMtokZY0pjs/gVSKa3CaisLQr1vD6wC86FJiZQoHSIhtj/2ac3JySLVyp6s7mFrPbwFfMPEtPc9q77nuW8+QL72DvJD3x6G7ATXSrK0zxx+Fhq8Qa79rmVsphFk3Q/Pqa6TjaeTJvc6ERlcyrfGtEfcadsb6o8XYBPRjT5CZvlq4nPV/V8IludhGSjDN2uix4XFXz6MWXMSEEu+SWU9VPpZy0YMgSaoUFvzmppa/5afKBmOTLmR9S/UiBYHrDtsDXrxRPd4Q+IVJ7nUF53Pa4REmna8o/1OEOxvmj6W1nZmDnwL0oUv10HpJPadtA6aBt+6yXWgz3zI+ZL6RXksz2lBsrQr9IT1c5dkaVf6rEr1qczxtSPkCcCydVSZz0O210J+HBCRyf1sLZRln0rIFDhO6NoGZp594IPxAvfai/Dai3QI+zMJpZFah581maLWPufS3ePJ10lYgyF7vM794OWwM6dd9cyIgVL91Dv2Ib9JXIO7kuq0qwWvrOozbuPiodZ+WQ7tPhIsy3FSXESqbneGvHMAz0Zn8cflSao0WUJMe0dQljZt2BBvP4TvuJEz2nosNl6tF7XSoRa8sdKW+PouITm0tm0/VUWdSN3avmyCQPDGQ7h2O2kdHzEu65svxvOD3j6TENO+6qG1uF6ya6fw1Q7w9Xhe7n1NRKfXT7WhR+tqr21tze9gcbNZJrThareJ0k7UJqyAtvOBj6z1S9J39jhHBq9nH3/wgJ85+s4Pfb3jYe7DOD5AqNkeDCYxEZ2AnzVZwr7swVcET62l/aKg1Nbr5yYpOdxgZfcmczwJUXyBYGkHk3yOuha/tIDocrjGOIZeY9q3MRAXCYtocbc13JcC3yfwZ4HfDfzHwG+Iv8+I4bW1xoxlvexv++Ahe9+4C1+/A1ZQl8vZHyclgpqyQtvPHVKCphQHqcyj5GNcAf/wLfjSW6YTevPlIoAMQcbvrKvylLZazzMFlQvC4YOZYzlzqUzit7+A/IFPIh99MVReiL/RXga6kbo73qKBGcjdw7Rvjzpog7Vhg3U7lrwcCGkfL+KECcTSYdFqf9yF9uMsthLaOYpdUtBEdPbr0T5VCWPYDMJM4O2FwN0j8CGDPF3PYe957e+/DZ98GXYXIfHfLLjDawI62iaUYSLgDeseXysTKY2EpGzF9/l/Pb1jlD1+Hcd96rj9eMwyG5Nw6AOCBT0j7tQ/ELxbbNbzIZ7UrvGYj4BNkaxt0yNNwE6t5NlzT0I0mSBj/t8nCbWWIZm03pwAtfAcJCmWHiC0rUBnY9qj8L7q8xJOpPmkwEmaPb7c43aMEBTHW7O5i4S9vtMEZjYmdWURqrCwaOjnIZkrIll1jtqzp6oJ2DVQg6n1cps8qWtHcI3fI7y3UrE+lTl+1BdzUWlx0mfVzicrwOjxMQneVLsn9XH4zlibIOLKmaOfO+7NHPNlg1+2w/uWZcPBooV5FNojzq+1raUix2O+OB5mRO8khk+7UGd+sLTvzrl5CEtD+KxT/+Ch03cMWD/yNtbSDnlIVG1sFw01mi4UyngJMe07MS9B5t25O8M9IuzXGhE4M08yQZOXTfj+Tpyx3sNbfbS0y/j6wspfW8tZsj179CfjsrdJhpbMM0cmBKNyTNba/tJ1+NoQyxaUlQB7Fe+F8y7w7N3Ef2Yu4P4jH+a3vNaluavJFnuMPW4sr2BDd7IhVI5LxslMt+8FLf+Zv2dV1sw3na1ES++h2TB4j2V7quSxTYdn5GVFQ1oKwTcNdFrSzfPAJ2/Z52Lf1Quh3/RBYR5j2lX4zzpyRfDUCu3PvvixC2urttg1c3GJLMrM8XcIL/5D5Jp7K7hj2rUfiytvcwqhXS5/HS2cZInptKb79wv8+wK/yYX494UkoX5W6Yxu1hHj8/U7fNtXjnhuH+Z//XV44+10j1LKS6B8U8jIMs0WbDw7JKE9e4dxfJnC+ktxPI+A/+rr8IVv5prtMw7tP/3P/8rZbqjAlKuyReAwTrrlneDnDfuzhmbR0EdmTRZtENYXSaBk3gTh8KKhQuRV0y/PzpB7SeUixyHD6jKO4QCS66bkYzuO3y3s/pxJqme+6oLlnUhsJDLCks/ZEafIrC7BTVGMFDQT4ZvXZnB4HBXNHnrPx7+0T7NZw8duBPdG54YEdGptp3XDGrRZwSFkUc203kJ4L6qMsJMAyTx43ME85TEgHnXdjAjzCUt5xjh7tQoRKrTb+//L/+Kv5u3H4w4pt4iWWxosl3qRKovWmkQwjmkNzELMdwt4okZelThC3V3YWG+0Nf3cJwi1GV6rjKeEKfyTWZIk6z1IFHzawLhltAPguA85F8zDXdSAlv26QQoZGcbJeM+rpd320VrAQzcFmYVkruzFRK47DbKTJ3OF7Z5MEGjsZCI6pkHXX8ZnE+jo28XYvkqgzzqW0j3+NO/Ngs3MXlN62u+Pya1Zf/Uv/NULp+EDbTVtTvVx6v/h4wnW9kXLneWM2aIJIRHzBh9L4769dHTL8L8m+KzBhstNpDtaL5LcrXcJpTAVl/WLOYuDiO89wTMHu85inohNH8KQzDM6GQs7pWK0drwomGo/U8xIyB6fKxRjdP6NRTiWSdPO29kMERmaDPCBFu6t+M9+/KfgnSi831qka0rB/QS4B/x1Uh6lGh6ZShp6j2Rosbgs49nssNR6VOvnS3vw9UdpIRxEvkMF6RGPd8aJtYTVwlxCaFRFQZseUQ8zgEA/LX9gQT1RpvBuiVd2GOMUm7OjvDc/KaCB2brLeW9VtheWdgsl3YWiso+5wzcNfp1o/B0Pz0WPvF2CAu9tVcp3fXi1bRTaK3N8VfDUCu0P7r1+Ie2UFm/rHn/XXJdlGTQC3ReBFwgIVN3hda+XWvxtMfTWHR9zLN3jy/PLABXcr0mwWu4JXHdwzcX/XfioYF+6xg/9jJzVQEyFkIm2A3bA7wO/fHdAlsl9+HJGOMXc1KzQAwMTz++Qx0clJWyRQO+zb+YP/Qfx/3NqX/+J3/aZU19bQ5rCxBgrwgqMCWDfOO4tW5plCwtHv2wDoVq2uEWDLFtkd5bVtr1QSBxZ+N8qBp7Zwb0Ty755j3TBZddJSEY0xPBGRs3YVQbt/eBKLgKuGQQ/2XiIyRKVBi8k1/rD6ZJFyrBoFAcES/uda4voTrgJa23V8Zl/8Ab3PvN8HsfeOmgE10SLu0tCmc0KjuQhNQM0ZCYIgci42n6G+O9NdlH6f9vbrRHSMhGdJ1nM94rrBfit/9hnRnwgBLxomY51fLf2udo5WaW4bzzIsQ+WYFI2/U28YEqI1PORIBPhLrl7vF2eJ+2A2tpoKS3tkvXnkRDdBLrQvi1VtdqkBAbmISKB6bDvY5dkgYaxB4FaF9T9v+aqPmKgXMix4OZN8HZoXMDfZpw191Y754+oZ6s/CV0KOR3Vz+343SOSN9xXSJnjLe5uqI8rPD9fYyU+rVn/auOzGZoF+Mxv/czFW5orfVxO9LFU1E7uAyfcWTS0Oy39TovfmdEvZzQ7LfvLGX7WZLHstb2y1Qp3nsFWYNRenNyAq9NE93uOm8fHAVfHPlrBfTiue6RN735Xxut3Qx7TfhXGlBqObcmFqLdFuO4Y8qgMvM7uLHgS7F5Q0rRhE0nengjc2oE7a377d30S3j6CF2KizLLM2+B9Nh6fHj8H/ArwBvBvAj9vxgrjPFOKx9SL7j6pRK92cwqXDTCVjO6lRcwgH5/+cBUtajLWAJxnEUz5fjdNWICrPijPsmvyB9XWyC65stbu/4cUddon1rGe65q3OQZq+R1G/TBf2CpL83Wfh21GT7nMY9Msm6k9NgOOKy/VLxr6dRrvfYKlXS97DrhPTFK37kLVDBdwWl+blCuCp1ZoXx09OPmiU4AUH4XrmGRW5MyNzUr7JZIWX/e5rc9evgDLOED6/SapVI0nbYzL1FRvg4WTQThXgf26fiQJ7+02AbuJmzROijgHv+42BzdCfOXqBsjHnw0xt0pornjFqvtmybTYGCkYa23DuBzSSKg60EhANr/+xfwB3/Oicb0QqgGUW+BbX/vgqa+dYoymMnmXUI5Zjw+cMF80dMsZRGua7LbIzixY2y/Dwh5Bhdx804T/5dYS9o/S/u26yHAJ14jaV2XadEzx/6OIjBvjXkYTspqK94F5c01SNhGIw2Hsj7ajLqBZn8tjlOgGMUqCELluXKjRc/8Y+h7+wX2+fvs6vHIzWtlD/Lo04TgI8KZtdY/XLzfAvNyTDmRLIjoB2HT0jXGPR8cnid+aGF+tXVt/fBBAzW8W34rAh197udr+HrkycyWKE1OnBi+GdcxHoBcf+VDek7DPvRReNVtwVynU2jHcNNdN0Y/TgrVED/HsAcHgid5XMdsuMChaHCCHm0GxpOMZGFTTPwjrpLSS9MVRlSq5tS5v76wwJAkyYF1Y71OvJnDSfE7RUbXaa1y7J7jHv4KZNxJKbjCMZOUZteO2xJ5lXLta2vXeD3745az/jwtTfVShPevfKRW1es0hsNeEuHUfLe3LWcNBIaTU2oSx0D7FdJ8X4jbJ14yEX64B9yUpM9c7cO0wZI8v8wBY5aWs+yzeb8nYQ+WYd48vs2DXoZZlvaFURtJ8uL0o7O0Wu9hO3hlgRJPt8fYS7h3zrS++EDLHf2Av4dnGdkpGz1U5Xrv0k8Vzf5xkNOv0nIqSlVSD+zb5vtfzSWjMeKx7/MvXAgJ9tA4PPdzAjYIwnkorcAoQczJzYcGtNqlE8uh6mQy7LePQSyVtmYhOz6U4F5JF3YaLHDOtmNN/BAJ/b39rGhabnrUPPfOQhHbnBpf4zC2+pqSQELo3xLSLGeuywa/8MOb7PlcQ38BzN/7oNz1+ziCw2wouVw1PrdB+UTBC+vFzk2Rpzxa7T4K7J5V7q8XKBSSUL7RqnCBJaNfnqZB1+vqHFw+tyGBlvy4BR92IAvyuE5otTK8K6xIFVYnJyr746vP8Bz/0Kv/db3iB/+sf+BCff/X5mBVbgsDVXM6SrTENQt09vqz56QlKhmfJ3avEBS8DcRLLyrhQAumfewW+q4V/4VX4jpdiHLKLBOFy315tjdgM1ZOWFfN/GS+myaLCu3SBeDTR4nvJ4wHG2m99mc/McLHEjEDI+D4P62cpJlt2RP7KUGsN4qXSXLWqzZrQBgSBL8ZDK3FYSoyBMkO2FR5G60vsefhHItcwl9CvfrmEgw3+3iH86hv8d59+hp24nkJ5Nxn2h1sEt2NLmNU9Xt/jmjzHhBCeR2/qz6uFyZrFjnvWLuE14rwFJUBqqzbG2thtKTNICcFumuumPrad6+RxdGtyD8Th3c0JeQjsil734MJsqOJhNbjGy/Y9UPlASEip7vGjz5atYH/fin9iY6pi6T00syYkzorrfLj/uAtKn2LSnM6N+foaOX3xxbknWeKVOatZqLaNr3a0lnY7z4NehZSIbqqtqeeVH8XNHyDPIP86QbGu15RhbGeFsga6HmsKz9LSXjs+LtTas+Ep23B+7TerqC7zDeyQ55io7R2FmkLzosH2TcxiWIrEdxS+WM2EvcOgnhcINKMftxHyYKTvkseCDEo1K6jU+nLRMLVeLO64Fy/YixMhkREVQO4/CsrMtx4xIIYMkZyj56ULuXbw9gzeiWqONx/BB3byawbBPU9aW4a5OEIOJQu/G+i8saab85JvuUtYqxpeanG04ok6SN3aPmvgGYGvx9JvjzpYFEnohibk7IvBXm8JxTwmajvu8lg+e88EDdb9OoSXkSsTYaLkG+PXCgmP2Rj5NdN7XCJ9ztrXqXEN1zrPymKMrqOX3HEDcpnJ9kdhJpKHYKkH0KwNwjjhlb0DfMCnNp4H3tA1s+7pF3E9iSm7etHI+hTw1ArtO3vPXkg75YbW8+uEBbkhJ8gduRXmS6Ryb2WsXG3y7WawzPct8oRSSnAvm+CfBFpTeuHCZybbhfXs3sYhswYXBXaZOX5m4Xjj5Rf52e/7EF965QX+xtwNdaelaQaN3IWPY+I4xVRCniQUKjHtrcPNJCVii4mY+MRL8CPfDZ94OXw/d0OG9bOO77O/8PkzXV+DMsvs6BizZ04JKw+puzRbRHqpUFIR1dreniNvr4wQQyByoklTwi+9T1ZMFdZsVudhDIsGWUVxadWH/80VC2FUx/yYiWRLZf/js9WcoO7a3Y2dsPH/3ttsvu1l3rq1y7JxQdvcusFNXlRREptS3GETWEKwRGuitkGgbRhZ2vP35mHd0TllAhPTkSzbdagRU2GcvRry+OVyan7xFz8/srQIhft/bDONz7SxcCE8wvZpswnzhjL0EjX7pJg1xvt+WPuF8mpFwAmZ0F70dwq24Z+yskO29wR2WxeY7k2fvX/ZbAJugbQntE+S922P8G67on1rZd0nuQ9OKZe3gT77tOODZGmvPeskMmOZfNu/mySh/ZigcH3FXGdD105Cx7UxaZLFbUofPVqhHeAf/eLns7YeF2r9E1K88zacr1Arl9XFT1mOT0tw1RQUJXSMhdvL4F8y62KcjLmEShNEvH+403BjbSJf4wDEdF4gKDcN4+aATTHBmnx0ak9ftCJ7m2JUeZd94LpIDEU0eOArd5C/fTfc81PvpOS4Q6NyvpdRblLdSLdncHfFZ7/wJXjnETw/TxvN0u+COW5jN2wi5+8E/g/x938f+DgVgd3gL7t+a4mDT4XLHNPW9hevw9fjGnrYhczxdj50bOd9/bV1oy7xh+uA6+1zzPPs2rDrZZckZNuPWsunSr7VjvpeNHkbBPyaVeCxRxl/H/4Jhh/X+YBLtFObnr5AGFKc1Po11GkfzV8TYtVjZx96H5Ksxv+fBx5GvNdv+iGp5rCWyo13RfDUCu2LnVsX0k6VWSBl0FXXzIzRIRG1rzK2tCtD0FZedvkcfUHXyWPoFRlXSymcb6hXDg3QzB2udTTzBrfT8JuWLX6n4VHMSvvbFg1u3uBmDc3cZSXyrgIsU2mZEGttf4fwnpSBGSxQTpB5E6y7Wrt42cBuSM7EMgrxMVGblp86C/zK579y6munGLipZHs1Zqv23XnjTi8MpuLnntmFNbhVF6yQG5A2CNo3RBJxkYLBjFaYgT4oXZ43KQP5cY/EeOghDAtb/z18WTLlNRD1xhg4qcC0OKDzR/AzX4G39rn/6evghLaJnhnR80SiYqjGcFwnEeCaFUggusf3ZL67JcfddXSN0MVx6bzVNOmnYbznpl+q/DpgOunYF+I6L9vO3P8JcarZfOuFcxk28tDGugvCfPxyKPt2Cqgpr+7F325W+r+VEdwCZSI6VRboQA6BefQ+kk6z4xPW+9EmWNotlJaNeFRrtvVaoDjfJ6wne6+1tp8HFL/WhMeesH8Utwzbo+hDDUZzby6+TWDae4KVfUbykrLCutLrk55Bcaxa2n0dd2qGZr3/K/8orvMLwp1TTLZ1j7ewTcFgj7pOyvKM6oWxLUeKHq2l/TLoxMiKpycxtO+h9lrgeGfO8pgsBmAooWjd5Xsfw/rC/zMZj/VUFUMuGGrPmZHe8T7BG9IPizZ6ZP3Sm/ka/+w30uI7L9ICspgpS9ue2YVD+JUvfTUwz8/vpefVrPNmPLW9+Y/H358l4QybDLrGm0PKQaQwhNGb7tZgcP2vJaN7cRe+FqnRoRHay2R8nNMDsbaINL77aJVCoSaatsor/Si9LcMj1ShY7s8a/rXL5Bq50L5me34Hqf4DLBtu9rkbut/09ErrbGclv708byUknQSwNXL6hYuW9tDbe8Az8Qrx1pva4zce3zZRWM8T8l62d2wJT63Qfu/tX72wtmoWnhkBiWRCu89dcjQV3oskpKPIYaqUzFTsyS1yN5YVFYG9OD7p0EiIGXaLlmbeMps3fGKn4d/aafjHdhv+vWXDp3Ya2nlLM29onJw15PtMUMWJbM+srhUCnjf3CkZ72zjc0gjpO20S3vWz04ZyaefY/H/oD/6Oc49Pj2X5LQvleEsLHKQyXVDXWl8+KBXPiagsG6QhlJhRgSZaVufA/oDIx8zqgcBO7P1AAFwD64jU1z7EEsfHCyEB2qHkVlrNJHwS0UMkIzQIvPzGHa798j7tCtqHntVb+yxcENbdTC3s0VvFJJ+zn2vkCcZWaBk7O30ySIK1nwDoO7qZY+XzC9akvBWjcU0QaKGuKFLlj3223v9P/cHfUcWN1v3fS1QimPlPc9ukMjwKh5ssvsiJ8SSgLmjoucX5en6fwKDYBGY67tMQ2hoT1DIWrtS9j/jbUonKusvulQM/lMfRLwf+OE6m9ksZq2EuyXEcJEu7QhmiuW2vZ/0yx5pSVJ+nSp09xveeNJ9DOSHzUdz0DEnBopnj7e9Ncdw2ptrRepFU8adZTKVHzz/5B37HpdFx+w4W5LGnU2sd6lUSVGgvLXFlXGtN+aOwNd/HBQ5e92A4hnWxJCSnUg+ro2Ub+ne8TnkvfOh1UIIRwoV8cI8P7YYSuAe24+TJR68CtuFYfQ/7wC1FRC7m2XGCfOKFfO9+90uJllYSwp2pVzUh/FpQGf+h5z4WkNtem9HsdE/+zMHgJeY8fl4lJHzuzcfGtNskdPpa75InHSvxylZeTHMUZf0FXl7CG1FkPVjl2fjtQ847n7U21NCz3xuhXaZvK466X0u8X9ZoL49TOMpmkIfp6jk5j5H4h+H7tmGnS8V6PEDn6Z0z94U/J83mkD9HCnzcCp5Ojfg8JOU4EIJS5068o+893jX0khLRZfjsopH1FqiW0H4fEmxbsM+Qu6xbJscT4tk/TKHBZ7sWP2MyJDTkSHXh+9jWirFVqtbfJxlaggFs2Qj9wtHPHG7T8+kePk0MA28dCxcS382FS7O0DwTP53O4YNoKre/9LkUSOvJ3GGK9G0Kh66jV0Quay03UVkJtHZflt7wni8tWsGEf9nhIstS9K+twtGnSUZ5tcfc3yI2Y9T2WQ9sVE9MOeaZjETYSiZYlgG2DHEcRY72B5Wx4PCKh5qnkbUHdmjSap8gciUhkCoXv/tV7cAw+UsLZr+7Tfvh5aB1e8zuotd1OhVnHVvPtycssDf1xkuq0x04rozrkA+h7+kZYm0F4YC1y4p6sjVvnZEgQQ3KPrzFS5bqdcv/vxHo2GEtb2yCaj0D3+PEmToYMfeptoNwETNUAvkcSaks8kDEkFZj6zSbRiV2Px3DHAQGHSkvwHIjChUAIB1m2aQ0PLvKBybRzKQThOCtj6nOBbZ9xOTs4HaM7hRfKpG12nBobrXSutOqfhFssvdVkYkLA1V+N11ihHQwvTuLFT3pG2ZepcCMq/5cx7ZeBN2tt1ao3lEcp/reOOBoSZdePtgs5zqkpRaGi0NzS3/NCGRoh8cslwr5xAV+JcLwQlgcr2FswWNmLPrlNnwkKSxhwoo5TQ6Ky+0+xli4a5uQKt2tDMt/4aR3u25+HPwryc2/Ad78IH30h5ddxAu7sIXtAvjAy/CPwrMAv78MLC2LiH8MsUa2zqF87n/am4vHXCBUglPdWgb3zgR7Uwjtsid7Swn7iaBsznsw9/lpAZg/W4fPKnlk45p7zLgQ7l2W7KyqVQvJrS94A8v2q4Al4qQx5tI+t8craXunZN7nHVbGatqH5rcEdxfBj5Uk2QXDWi8QMqkYT9HxGWg8zEm/rF47+TqCu9wk0Yght857n4jwce2g76GdNkvGM4vyqN/ZTa2m/SNiWeXE/nuvLLDPHf6u5vqzPPvWua24sN+N3ylSdVErhvQAiMtRyXzphtxF25w17y/DZnTfsNiFWfinBQnglic3IN3wt5tJqbd8maehgbIECojDmgrv8sgl1zC+rdvkZoRxjjYErz+13+4wTEg2fqxjeQHEtcxAeLrd2kTtrZLUZEp9AKqGISJ5RNDZ5TJ7IXyBojGIGcjnqhqR2CloPVNuwFR62MaaifVZLiARm4Bd+3e3Q0SPw1+HOR28xb10Q1mN5N9omJvyr4w1VpmhN+qo7u4CUKbwVdDDRPayzNxGIalvOE+O1UH6nzIJ1jX7EduVPjaGyWc/B8C5StNG6UKZPGQ3vod+Y/Se0Esaj5Vy2CV21ffCAFDYl5eeUvFp5TS3LPpLOD5Cg6GhdTJIYudM+WAhZ5Hp525faXCp9qX32ycvZwRkY3Qkok2Daz0OCQFsqbezzt8HA3JPvjVskuv0VUuZ4m4BuKlGshYzhNN9NeS6VeBTG7qNlW48LU21p7Lnti1XWYM5ra8HuVW1fP6oErrZnvrfC7WVCbQ6uCTwQ8HFhHAAH8wUcdvE6GTobmPh4Y+8HwiDUPWHWTCcIvixyOKInJBzbERSKNwEf86Awc8jcBT7kO16AP/Jp+PiLKVxPP7UYztN2yEpSVri9sQtfeATPxxUU6R2k60pFgXpI1LxVP0xuaY/ob2sGeRvTbtfuSSExwx01a3vr4AMuJKM7Xk2U0OPiFsGIWLQMhC8jvGm9lmOFIJwfkNO5Wk6fUv6p7SuNkVeoGQmKN5t/pwh13rJ7bA1mHnqPb0JsSnUKS5ofjzMJZ2VCVz8DjkMiuvveD6VMVRzfjX2/48F3UcgnX1NX7RoPT7HQ/vwHP3Uh7YwWunlHt0gu6xYxKPL4MikJ3WkZgvI5+oLUjUXd8Y+YTuLyXoJWhF0XMs7XPlpS7sTycY8JU8xNWUe4DPstCYBlZpOi+fL6/af/kx899bVTY7SuytsYOKux1mt6wvxksY0V5HmZsK3EjNxaIveP4LhDBn+vUAf9UMZ1hHVcB1SsJXOHHG3CGI9COS37am0MoSrW4JSukhKZAOfwsTzg2x96nl/93a+y/u7rbH7wVb75oedpW4efpWvEMJA1vKFWSrVaapml7P00gmj9+XLMEF76hiERi32rg0eCGUbt3ZffKUOgSg4VBEZJx+I++nP/zx8dC8IUlnYRjszYsw4sXVCZw/CiZdUpRYfIdx1LdsmJ+8B+7lGUe6vwT1NQE/4gF9q1P3284EjC/zsArkG6lD3exZr0ecm3eKyEUhDbsTXvBzklHveZjtc/q/u/gi1pR3F8xBYlCKeY04k+3iaVfJvKHK/J6M4yHj1qkrcalAqg0tL+X/2/frTktR8LptbVnJy5tn3zJ3wHqYaztmnfRxnXWt6roJUs7Hgvmm6MQhvjnx2RWLtZYl+Eo705aKLR6K1SKkJZkwRKiWU+4zUaFmXd46fWyEVD7TnahxUmtKV1IWRm5nCtIIsGZ0P3yjw77flEhMnYb4Bnd/jTd/8XeH6RW+MHC3b9mS25wK63vkZQvkEusFvXeP1e4W3GlnZLb7aCWt0gH58IvHgjJKN72AXXf8jwbvb/WaBKVOM/uhEXxh2/cJGv0XaFmtB+RM632Hsn49IZu8eXiejKIdk9OTxHAHEs6HNBu4e+yPuU9aPyHSQHhHWBUP0sJphDa7T74T59Vc/4KHNtwC+ajP7qEbhUHr+Ep9Y9/p03f+VC2pEY71nTMl0nrxGsiEH//zLwQ5yNIZhiiISAZPYJlgF1LbN9Sn0++zjfTZiJ4PCBQZWEXF0kiq1w6oz0jwM1BFC6jkOunFGh/TsYvy9L9C8LfuSHf+DU125zaap5E2w72uRhcL640wuFGnMgIM+0yOf2kfUtmCUN7XXgkXnRvc+FvSMkdw8TQt4BFYZWG2RhCA2hjNAjEtVXAf6kCg8S+yyNw888dA5iXrgH3/ICfOvz4BxHCO3cDZUWQl3WemIxPToCTX9AyK0xdmeX0IEu+yaAxrl38a23zahWs8VDNZjatZahVHgEvDAxlh+O63x4Fz7h4CPCenTAkUhRFzb+bZshQG5o+4hgcYq4ZbD6ilkYFahZHiHM8ZRQG/q9HYfV3l+pNLTI/QjwAgsPiEO0ji2E9elJMY/qGh8F9sw1MQ7gBkm5Y5XQOmb1JCj392ndyGv4p5bbQJ/5kKSsru6ZE8CGlw19IAnta+ANgtBuXWTV2nYar+ApmjGKFzdt2Xk9IE9E93v/mbTOLwpq62pJ7sa6Dd/bj8X7qlAp+2trl5ft2O9ge+jQRUH2juLCmUuovBB+CAt4M5/DI/P83gNGweUJ1UMaQbHuUqLSySzIEieW83/RMIX/rWL0PhE3ieBnLuT4cILrfV7a00mWGPexhJHM5TDRZI4P+aM3Pg7HR8V1stUF1UnuHi/x/DXgTZKgOVjYffKaKunWPmNLexlKMQUigle3fmttF+DFHfiluzGr6iyN2yKT82btnEJ+qoFbVMQ5c+0U/7dgvF+te7zeW95Xk4kW5PHxx1QUWPYVl4oM06n5gy4o5IdavATFRGwku2XLlKpL/Mpc54G+Eeg78D4K7bE9z+BZ8wwh0bQ/Bk8bxyWx9NswO9MPvwR4aoX2blOKWueHYVMXTIC62Fqiphq+RwRt3mvkTEDDyQxBjdmAvJbuii2lFLjqZfT40EhIMue9Hxic0zC6FwVT81aLKfXklrd3CEkrpPgoA3iZ8IHnbp3p+to6qZXfqkEtIdG2uNPTEMALgzJ+LmrC3c1QYsZt+iFzvAA7Yq2KqZc+/rsBFsXakzkp2VfXwVwJRhjsLjG5UbxeFSHbKjzYo5856Dx+1tAjeOd42Mc6ogJ3nGMxc8HiPWuqFtPyAwFP6VirdaGbMGAB40piFrgm8WtdWCeG8K2pK9SkOC8ZBl0n1kX3gFz5Y9fSc8/eGgzldnzKWBwQ8GNHjPEuXAKZNUPMNz6KpEeEmO8IcySUhoEsZMIe9bxmbd8nJTeyvKp17z4rZN4bwsA0eEI5mh3iWJsG6VW48LijLnEz5uH6VY3hGsW0k1un7pG7x9fW2lmhFNqtYFgmJjxL4jvIGXEb136LILCqde4D8Zos78wp2p+CqXhxe25xhA2fuf3crQul4bYtuwetC/+UwK7n1rtMjw/I80/YZ53Giq809bKrwVR5KRGuCRzGHnuBBx42izkcdancm906mttjE/CgguJSrQLgufpEdFDHsao4WBHy7gx710ms7+1wXZd4FA3RmrmgmHhc3ks3nj3/0tvwC494rtmFv3EHPrgDH3sx1/xNhAzqvmziXlZe+lmCouirBOOJJ6YOkoq1PX7uEQSyGr9yKpm6tLar8P7SEv56XP1TJd/OC1NuMwsH9HWvqolbdF9AHmKm82QT0WVdOOG4Q4771oxDJ/U45hESzWYB7X6XaIMnEAqTvwcYJaOr7QPFMSq0D7S9EXwfEtG941O4z0DbvA+GWQ9+7fHzZsgar/Xa3w14at3jLxJqDIqQksPBOHPllwnM8k2M0E4uuNegfIbd47fN88qY9qt2Sb4sEBFc/Fyly8kU1GJKSyvUPql8SG2dPClQ64uQexNMWV2yc8PEqTXMjvVdWYclcwBhUzy7ixwCB55QkDwg+B2iwkFd5CUf46FE101LFFpwXXSPP+5DjgISoTBVxYCwR08ictl3EpmpRRtcsZaO1bLFx8/9ZUO7cPhFE4RQin1vpsC+jx1iGI/EGDNJFw9W/iKmPXufmyAAOic5ox9dTEfu9sVx6reyMoOtQjDVTun+r9erUmIjwmJ4/YYJaB2y7lJ76j0wT3b5RkLiImTaMui9r1raVWi3JdHOggdGTAdpb2YCoDIcwLFISka6cIgtabfqkOFH8/QKndDjHttLvj0kMf4D86fHEwZ40hoYnmVwi10PtbZOgto7EAIdBfh5kpW9TBS7jUaX/Sj7s6QeblQKv2tzfdnOReLOWrsqbNpEkEAW/qTflx8ISrJsrZuH1ISAEnTsl52IrtquCHuinlYhp8kjoLsJcnwcrw0TMSQwtNqGNgkO83i/er1AiuMdjUsufmzbQJ+1Jlnah+9FcK2DnVlwj9+ZwbJFdtqQrPUieC8bp65S8We/kV/z2TdzD7lmGlsK9XrtQiir/KV43eAaTxDercCueBrG7vFwBoGoEYZY/KG8ncALJtODltscJaE7x9yWt9hF1USxtK08z1w8RYt2ScYXXeYqtG/bmyWtgsBrTNVpr9L0GL+i0zK038Js0+XIYwWZmq+ywar9jd53uXI4eJz0XcCABz5UgEr7PSjpXhI1lPb04kZrSfmgq4SnVmjfu/HihbZXS2hznXH2eJuE7jXSPRbBbEtCp8iyZgm5QUI41u0ku/+U43kfctgW+1dz37TvWuOjShfLkpm5DPiZn/3sme8p+7U1pl2Pvs7APeTx4k4vDiRlvNWXICA7DSIeeecYiYIuhEy6xxKJuozHe0QqjTasicbBOlwhR310PU6l2lqi0BMVAVaxdtJcDL85wc8d/bKlW854GGMM+2XL3UVLu5zhzTim5ty+35skolxlKFtnssXn/REI3gVtsqBZQrWR01mVyv7CWCu/rU77z/7dn68TfYxSAlNiprhYZm4o+SaecO4JJQBjQw2mLuyWjZvtAcNU7FOxtMemzhLzbc+tm+2wRiV8DnwoMwggiwbWwX0UwK26UCLBNhaJ2ICfJO9nVj6PMZ67Q1JCaztn2eO1NWA9CcpxarKz6TV+8pPLcTpipSngF8kzx5eu8Se1vo1mTFma7bmO2zLHn/17P5+1dRFQ2zfKSFvheupY+85mjy/7qq73NWFfj0pvLjsRXbbmdB244FVzJCkDdA/0c0LWb70nEr3URrS2D9Y+GXDNkZkE6wVZm/vLgKnnqBedCu21vStOkEbOlyV+a6ckJWxT2vzrXwLgfzqMBZE/82L6bbhuorn4sWGm+t2HSMnoFGdZC7vlX+4Q5mVu2tT2Tu9hI3VreyPp5X/pnVyb+biLICMQ5p82uYyP2lYcZRXYxdHuV4VjtoQmmU/5vQrtCppDpxxCjdZl/zuYHeeWBDlmCPcqx4O4yX5C8JrshCGMxQshN9A6jPsufvAcErPnbxES0bHu8QvJaaIoL8SVwlMrtDfNxTkolQK0dY+/Z67TEjmePAmdMgF5XPv0m7ZIxD7vlnmeCu1TyPpJsFK/16A2lzWmEhJzr54Ptxkjs8dxsTwtPHhwcPJFBmrIUhmnMu6rVru3tJpohmfbXlqDZ+ra40FJfSG6jwvygRbeeBCskbFju/Geh1JhKkWy7KnaPK1DjmLZsKMgKIkZ7I6EmGqdgFpm6KEttqwNEXzr6BYND5Ytm52Wbtlyb9Gw62SEh8o1Vz5D3Z4BVmJyrynhK9wRJc1EOGx6aBwLoCtcejSZVG1cU8RdocyyvS17/MOHj6qCG+Sx2IcYJYJ9YCtgmYCjKDYYpsoRElIh0+u+ZADt2nnA+S3tU6Bz2wGDV0j8ziYDwzVIjB8QgOMeaU25t5J3lPEc75GUH1aYgSTcXa+M6XHHN1VSsyYYnsVamaGEop3bwGdJQrsNW1MafRoaWlvzVmgvLc12HSlza/HnowePHpu3P6l/kNaNrXZRw/EDkxq/1PWg76bsp5DHy9faVYUmVJJ9Vtp8XKjhxGsSmO7juBk2EsrOcrxC8MlF3nRcvZGy5J+SV0CAMHaLEy9jTBam8C6Ed6FJF2+Z30p6cSmgQq0KtDMXXOH/2Cvcf6WDf/5V+OiLKVN9I0EhMrHvJOZjGZolfV4jL/vW+9z71eLqO8Bz2ubE59RjK63tX3o7MYw/+nX4wlvxesmP54Xa3LTOWAdKRJ+O5Tqx3mqWi1TcNKrTXqEZNbxic2WUlRSqw5C0lwZreQPzdcdR9GyDoJAWVxfOt4IEnmc90PVwh583+Eh8HqLesh6HHxRCN4mG0r6jX1iBXQbB/arhqRXa79/9yskXnRKmNvQN8gQO9vNFgsvOYF0nMQQnxXFNueNbS7vGwmn/asf34fGhzAhumfaeQABmJBfxLIaSy38Xv+d3ff+Zrp9iMqFeL1mhZn2DIGjdNNedNe70wmCY9II4iiDXd5G3joP7X7y0jXtxcAszVhdPcLO2CaKEwHTIMUPiHomJX1SM3hGGmGioxzaO5n+LBnxOzHgar3lIXagt46bL43UzzmMqSD9m6x3GlVnbffAuaJpQ/ceHH/T9bzh/TeJSIXY/jq9mDfqB3/n9W93/h/EJNFSS1MwEUaHdE6oARK7ExWsakZhUargsHAvlVe0DKW60ygieYkJq78/GpYYvk+C+BvZ0TlwDm1QBQI49tMbGUSQkqnmOXSPPImzHp3RHlRJntbZP0aap8CMYr3f7Oa3nwlSs6jPxua+a9soQttO0P/TNrM0lOc3QYym86ju1OS9+8z/5/RfuRl32D5JQWfbTnvuID2pCd5l/otyPUxZ8BX3nI4XfJYzdHl18yE7cRwfxgY8AdlrkaA3eI73iQj+4ytL3ATc2LggacdA6Xh2jLXN1VTC1vxZAFBsHy+lV5Z0RkZitPn4WDcwdfOJlfs+/8U/DJ14K2eoLoX0b1AR2CEL7l+K5DVOt8Sz3yJPQlZ6Rp5kPEQFxkbmXhFR//s38wn/wjbG1/RwTLuUGtm0smkrdSBldp3iuFL53yT1jiP/n/M+4+7WuLMn3wlTureHcbnwLraPtuoBHYmOt7xCxcfvGrX6Cj1IYyhqLwUVtyAZP13OPIF85GLwOhbBOHgF930Eb8iTk1vYLRlingKdWaL9IKN0I9XODpMXUl6iI4osELT7U4+W2Po86U3WLZNmtlVJ437h+fphiwGwN85oF4h2mtbZXYWk/C5R90f/LTN5V6yJja4snxZ1WmaMrhKmybyIgt5fIJgo2BFoLsIfwSFJCkeH9SthfbVwMA2GYN9AT4tkhZeYOlw2ZUxWsa9iI0BXEtHYsE1ppSTS9pnbflNuzCrVDqUhLaxoJzGhfsNYDF9oPgn0v+c8r5EQX1yl+w8a06x7bLa6xY80+5oKbmDAlUff4PE5OZg56E9O+6mGZv49WcqXLFNSS0G0IayYT2ov3sA1O2ptWoeZjh9XLRcen2eNDluse2bFCezwW2eMh7dVrJPoC+X7fJylUSqv1qQToiTVQS/Spx6nEhKfFqdtCzVTRmGWON+cTubDGz6icl55LFmxc+xEVa1al3ceFqba1xviUckqPVlmtUFra7XrYoa78se1uzL2XDaWgogL33Cm+lqDM3J2HRHOaeLP32bhEq0+4hFsgKR/V9bYmtF/Ge83an9hfM7aUNyN/b5fSr1kT8rTMXfhoWTn9LJokzC/bkddXCUOydnLv1Q8T1uRdcut6Z3AYJEv7Leo8S8Dbp5wR60mg599dhOV+JibZ0w+Pk6upfMnxJObBqZvCpbx7dLSlPnV/lglrS37D0mD7e1nyzZaOqz5fJG9LjzNH03dRARB6NVv1uJHQkx9r+8CL4DAGAon8bBuULgddT+9N9ngYDBd7+ECjjjpojLBujlcNT63QnmlkHrct8oWq59cJCHpD/hLfIjBZHyKvz241+ad+HnV3/FophfL8fTgbbGPASoFdicBd8iR0ZZWTy34fx8dTFYGnoeyTFdprTNu24zaX5jMRwIuAmllNwN0KwotrUvZ4dZG/Hy8bMaUShXbMGOZNQOaHUYTShERR4T5DArNqYtqtgm4bY14SQUhCu9V+ly6ppdVkaMtcs0tye94w1nwPWmrlcLzPrO3S+5jsRgZcp4LjmuB6Vn33J4xZSw16EtMwFcO8iuu8JoBpIh3dCQvtj5ixzQU2XXrJmz5k4DeNpdwO4YualbBmZfckYXfK0n5aKK+1lnadc4WHIomxEgddsrRz3GflcWzjWrCq7NseuWujPe6T567Q43nGaEEFxxo8YLtnyWnAogOlpUJaK2+Tvi9D2E7bfnm0GcVhWng9ZpzDYXW8qu6V88LUviQ+e5t7vOLE2j6YwvtC3dJecrdrKlU1iuNFwCRNEthFhozSK4Fm1oQFcLiu4y5Vimn5xPh9WeJvqxfkFTNoLfBNxu/K0o1LhyiQW2H9uPHRQtzAThDc5RQ14YV6vfZdQhWIL2Pc4n0e225zc2i1n8fyOmjUO0CSR8FHX4Af+SB8soF/7pXg/m/j+k+rDdwGI7eZJsW162CGa8kGVdtjpaVdFYo1S3vNk9I+wioAYCyn1J4/+k4EZo520w18dg/M6IbG1JW+dn/tGa3AMfm8+SYkkby/7tgjJsX0hmZEpHUT6NYdvYvzIzJY3GuK2cuGp1Zof/6Dn7qwtqYWqTIx98ldJr4EvERYX5YJaOR0DEHNyg55tnp1O9lGlN+HxwMhMc3W2m6ZmDukeHa9xzKHly20/pk/91+f6XqD64Y+K7qf8ijQY83CqC6s2d6Qd8nLYODOdQNFi8itWTi2kvXpulRCH+L/WsJHByWQmIqHMe4xMn9KOnYA75IVaU1ySTyp27V9XJbi2ycIVjXB1Q6//O4mDMqEDkNE9VqN0YxC+9AfdQvtCJpvtGzKMOgQI7+lP+XRboclSbBRQj9V0/X/8ed+bMxAxKOWtFPBdp4NIkJDSkRHvLgJ1gm9bA6sTKIaGGvSS8ujFdobxsmNzrIXtu1NG/fdxwvWwE19FTNBfJfwz3GX6vbayTTHkp7ZMAp9js3dccv8dh7l5NQat8KtnW+1tNf6elrcUnoGCPA54O/F3/894B+a62wyuvOMB/L62DAtFGf5FyL8l//vH8vauggo+6dg3fgVrNXd/l/mO5ny+oEw/pryx7ZpBdvLhio/JUHZ+Cgi8BUScn0sG+ThOuE+jLW9jx5WBU3fQWJsfAC1Lk6tj4uGbc9ZkCztClcdwiYiwUttZxYs7bsz/uyf/0uwN4PdFhZtsMifAso9apXVmoxOeZXSPV4/ammHnFc77b4fxqXu/BqvryEAH38J/sh3h6N6GJzS/X/7AytvSoB7+/C1Y/jiW1uvr3nhCWEfl4kzjxh7vWV0vPhOwdJ0OIXXiaV3kpTJtA2NWggIHhNt39OYUjWVCIBJmIt6dEnIPSZhZ/sZHK27GPblrZPm0O6zeOg6aCSj+T0y0OKrhKdWaP/m1z57oe3VFvyMoPVTob2WOV4XQGlx3wb2GZbg3CJYH3rqlvbLJg5PO9Tmr3RPtcoZT16jfUD+kiO2y4R//V/5w2e6fmqtZO5DBZSKCnusJSR619ZhWfYtShTyzE6IS1wkYQXCu73HWGD3EpiwnXjlSLh91CFRGhcjsSzjUWO6ypj2mvfaNliQLNFd/GSWuQoBznBHvHaPFJO8opKxWedt0j0eWDQx/tjMseSJ6LZBbbzWk8DW5K65cP5r/8ofSnusmMdrBLyoCoVMiaAXzhrkKI1PjjrElHtDBOeIGWbHfbXCTI0R3Ge67OPU+EvYxhyV+McTvESGESwYYvYF4HgTmEX7YH11zljazeu0ddqtBcET9sl1xs2dFs9lYzLPLPMa2H04lcMB08ZJYNeLMuU/WVzz35PHtW6r7nIa0D1fs2JbqNHwH/nf/qHw/wUiz22u07WYdsx3Je63nhc2/4Rte5c8rrXWTmmNvizaMd2ucBMt+xayv88QZD5PCSv75HEEIGs/EhhAgqAiaXwjof2MeP88UNtfkIT264z7MLy7KzL/SxOEd1k2/Ov/x382JHKdNWfKWi/R1Vm90e2+fo2UjE4F9qHkm3mPb5N4tuwj5xCI5tG9XwX2ZTN2/1eBl2qb5QAAroVJREFUft6c6P6/ffDFEYKg/sWo0tXEd8V19v3WaIutvqLwiLF7fHb/BE4p3eM1EV3t2qGNGMaI3Sez4NXo+0CJNkC76obQxnIctf7YZT0nlnOFWH0l5jBqhcO1T3mZvM+UOEoX6Xp8G2zvg5VdVIF+NftH4akV2r2/OMeFbczUbXJLuxXanf3I2bLSWmKoH11Y6gqaCQTF8X04G0wR91EiKPJ3/Q6p7q99V2fV2p4XFovT2yu2reMlSUAEqm6Ro+zyBGuYWtqh7q59ZTBMvgxHAWSvDXGKv/A68vqdoV+3gIP4XznWA1HGy1ADtco+2KQarPEn4vWeZGU6bVnGbWtPmerSfXzbfeXxmunToTKnxYUC0BtLtE9HNoTs8VLWOo1C+5a4uW1gXaOt8qfW1mIxHzNZ8ffSPb4p8KsgwUvCchOrPrhlGnCkUCdN+AZ1waUURO4zHeP7uC6oNoyAyHBATBakD5qBHBpL+2EHC4OBCq6mRl+0/6X3iY7vFuneMcN7vkHOmMYz9wnCRs2F9bRPaySss8ac/77imt8f+9FIPHL68dQYRu1v6blUrhlbVknvn8d1btt7HJjCCbC9NF1pIbd913GdFNM+tFnRCFiPn6m+XhTk6zT9M3fCcdTqHBGEb7kxD5VBzIAHPNj1SONH/WzJ3eM7Lr+UXQ1q8zYnhGveIvElcLWGhRqchW8pwTGu1y6EuPYvkNZu58fZ4yHglWdMWzWaclqQRnJhfaeN3gSV2P3ZY3KEyttAipH/bJH47rPfCIt8KEVX8CmMx6hhMhZsudqp+2vHJXX3+Ol5LX5RDVf0SPCbgHzWQLvqK44KBfKdeJbmz9GXPGzvpuVw0w+5U4b14Blc5T8gQN/hZ0IvRdk3qCO4S4SnVmi/aJhyWd8luazry/wyqdzbUEqG5B5/EgyMV/FM3UT7jEspDEc5O+J5HwLUGDDrHj8wlZeltX0XQctvTVnUSyZOYZ9kDbMEEN6NdSiZhR0Im+7Ld3AduDfB/X++Cl9/JxAYkZAZ1Gi/dWiHBJcqic2muHaQhx1u1gS3P0ssYom5I0mWduPNVdmr6eYpploZZCWEigOqgkxFqBGC4LMf/9dEdPnz4t+NsUSbfsiRB2mCUFu81E6k7go6vAbJvzfHcny2Lmy5lzKmu2jHusfnspZNIuiGjGfiCdnVF036nSS0b9Oc10JE1BJ92z5ZxuPYBrX50XP1uADjBSCSKcykAdkYS/vRJgjtlRczZSXRfTwk9TPj2yfF6w/9k7OFwUjlXD0FSoWgKmCmEhOeFpTBbyXg8qXAbwD+DPC7gP8Y+F4Je31GcJmeneEBU3t7wclJ3mwiOshp90XizvKdKexSD004SUGlIRQ2LMo+Z6rkmz0v831cFlTxjwjEfBAPCXu+i2uA+QK5n5SX6T4PnUdmpt34YyvJs0CTKpYhQ+X5ZUBtLWo/bprv7Oe9xKMoDF6rpDEIgef+MrlrvBXYrXfkM+Q0NIUznr0/0sSYfU2ytxMF9d12+F7mzeN7NAxJ7yTFx3/PS/k13/NSXmav0NuOaCsBD9gqWJBi2mGatut3lp7skCsAyhCgGn7TPSn2B/VqXAczwQbPrOtG+SQCb0YV7LNaJONvkbguXMPhxvMCZGUeZfjfcwtoNx5mTeR/fb62LntjF/Be3LOnghu3P3TyRaeEEaIzL+k2ybWkJzBXXyMv92Yt7qfxjqltLG3rWQIDZbPHTzEO78Pjg85lzT0Vwrsotbal8HqZ8OM/+bNnun5qjVgBamT58nVBBQJSvkYOdt1eKQw+c5GqROLlfiFoo6UB1wG/dAcaYVfgXoyBt5lAleAv4mAyArUEebSCpjVELAlCe5KsV6ct/VMSPj2WQu0uOaNV2/fDxxDoPQKT3MWLZvFqJZLhOh+Ss9Vg42He5DW14wNOE5s6hZ9sPPMjUo4Q0/xw/Y//9Z+dZDivkRSZSyIRLe5nFgV0jVVdd+BMzLdIIOyOvPyfHwsdtX3wIPa/XPtncUE9aW8Oz4sXHAgslIlxQN/hokbNbTbJ0l6a+qUe7qXlSDXzt/1oDfoabTrtPq+tg6nwo5pgeJ5nuqhU2hHYcSFJ4a6D3yjwpyQcdyUI80sJgttphcmp/QcpXnyb8tNmVlb4mZ/62UvBm7U2y3ry24567kkMfs29HQLjPlWJRGHDlkR0FzwBJd/mCHt8zwVPq+OA/YICZdEimgwwWtuGdro+0+io1X6PtD+HZJi1cV3ssEw/plvWd3TLPP9d9YaLcFa+xUIt3NQBH4y/f4OkQLFJ6CAZ2G5Tx9XnnQ9xGrcfYvY1fl922iDUXwSIRO2jiZ//2Ivwx1+FT83gX3wVPvZS+K2NMfQTlnbLb9hEtQqqRN+2hmvnqoRcm+OJoSJSb6ubMSiiN8C872NeIhnasjlpSgWdbbAl5asBXRMSBPHOs4jYLVjXQ5lHW6u97YCm0asGYd3yAFcFpwlHfE9C1509q/YUiAga6wD5ortOco/vgNcJCOV5EiNkE2ecntkIjZbP3CNYdawG6yxMzPswDVMIqqVwHSe5Xd0jKFJqls+ryMx6/fruyRcZkLiuamOc2jFTggqkDM9VxvqKF6WI4J2Dps+0zfLpF3G/9Prgkynf+SwiwrVGOHDQFy8qMLIysoIBwWJ7/xhZao12vSB8dkhWJluj9DTErzyq9wPkMd/mcdnHT7Sl9+2bdkfPbhg4nJEQ0vfgWhpU8E+9tzHyJ42xXHtWaH9IUkrYe3Vf3bi+NxaE4/Ea4Z2NXPpsB+ZRRNj0YV2sNsi1eXbZXE5OHjZo2Asl1j7jzPEX5YKq+Eef7+OLfiTKWEmoZDCUfPOwKtzjYeCYau9Jz2+S4trtPr9LURKH9E4fhyWtJfqEPDGh7d95PMnmkqwi4mDtU3yjEOSwBUGoX8p2IaiE2lqHPCFTablW0PVq29gz6/wiYo2Vd6m9cxXaR2vc5wypJy//95CkYLM8jb6n0j2+BjZ7fNkve7wIyNaPOe4QYtGP4gUtwHWQb67iNX5wkwWie7yM+rYgKT/0nV91vqGp52g/1NL+uO7gFwVn5VssWAOY8+n/FniFEJ76KolHc0ZwvxuvU4F0MLRcEK6W8yCo07btBD9vot9/XJSNwCdfDh8nuVBfiaGv8R1qUd8Q5saTFOA1vDtFP3RPQeCBlC5srXKl7dr5j4K4b9yQPHYNXO+7oaTPwI/FYy0Brz3OxXqSSkJ2i4auD/KatjOsh8ir3Na4+tbR4pPA7v0Q336V8NQK7Y/uf+NC27OMmBWmrdAuBITxLfHcuvGodvA0DE6JVPWZEKy69wmLuBY39W4h4fc6bGNkNd5bQRmZe/H/2+QEAK7OheW3fP+nTn3tNgZiyAxuoLSy2KMywWUt5atIurMVWknZXDUb+sdeRP5YA7/0Tfynnse99gJ+7pi3wjtNciHW93oY/1+UmlsRaBrkcIXcXmS/6XEGHMb7qgLtGWi6tYSViWHKNvX/Go5SQfYd7WO2yOM/LeOY9viyZd3BtSC025h2gCORrBZ97d1PMc3qQgz1cnb2+Fu+/1Osi1J0erxG2Isr8vh6SILPkPl/1Qdm5mADH3RDO57wrtZMg7rF1RRY94CPVPqteOE0sE2hlvoVtPwbHxQogwtjI7CJJd88yEGfFBVFgyLTSmHND0AxPusJUdKn06znKdwzKmlHEgxvmmvP88zh2SIs8QNjv5ZkgXMSvltI+JT5EE5um8l3VsaLK+g4a3Xaf/33fVf2/0XA1NzbsAvbLyu8176v5p8w87BDfQ3Zc5ug6rKhOn4XwqPeEIkeDxExz4GDVVB8wXAEkA0pGanBuTNiFnoSDX23YtprilHIFYqQGxneDTgL31KCEB3qVGCXJGC9RnCR/y0koV3ZZ08IZ3zOtJPx2bwH+GeNoVdCbwV4dYmPAnsthr62F1R9ckCOE1Ron6LfltewOAUCPdc9cFIlhSSAhz04/NY0gdDhg72l75MnZXVUpm+VfbCJnU6028PcsdqkpJoD/STxP9eiMny/kcGTLy8jeLWr5qkV2i8aqsl3CMjw9XiNlnt7jbRYNMOlCu6nYnBOYdlXTVh2X3F8Hy4GskRQpE1/h8CglGWebIzUewV2mC5rp0drbYHElJaWdngX426cBIKlWFUio/WxF4LwLoQkJ61jd+a4P3No0jEd6zEBMQ8MjRHepWmQe8fwmsZDy3BEAiNorS6lJW1op+h27bcZ0+7jtbI9paXdMiLXCOtV27XPBKAhlnyrqWo6WJAs7ebmmvLwtHhoTmLuVRDIxiT5Oip/U+J6LfZD4/URxrGs+jLXMU3UqjNJCwK0InQI3uWjL/d9bZYe8HguqNvYkIZCmRBzMXhMzPfcIcfpXjkgMneSvizarr2n6+TxjTrOd5iuQX9aObfGTCkDUiqDalUpSnp4FhARFgKt93TG0m5zzZzVsr1tHu3etWDX0hEVRdwp18t5oJz7Jdvd46cUVAeM809A3i6MS25ZKBPRXaayV2lypqQSCQk6JSb1DUgcWTZwHC3tntxLofMgboRb5iLBu0rSPh25/l/ie1Worcea0H6ehI5PEogI4n2q1+6Tgew14POYWu3xe+VZ7pFX+ThP6cp3E0QCf+OdBI/Crk+uXxrnPqvXvLfv3+4FK2jfJnkK1mLaa/vdHtXrwSokT/Q2nEiy0jfNELLX+RRXrpDRgy0vTmKIVArtMx5ENMgKbmkXfM5bCBIyxwP3nON5jBeShDrvV12r/amNaW/aUqR9fKglo7tBStzjCUL7h+NvtbibM2WlrTzzFsHFx2aPH22GJx3zPKEwxTRYBswyIXfYnoX0Kl7DW2/fO9P1GQI2HdwW0z4lxGsc1BNT8g0lalHTPHchrmzZhNiypUMWDT7WTt2dNdzRLKXmMyRhMS9xGFPbwJqsrqzd0zuF0F5zDSv/n5ovS2jUfXw03uJ8au1dI+ANT8yrIcV9qrXX7yyXveqRNgqPRcM9jxfTXsseX17nSOu81pbmVLhLVCAM7ywy1/YdrvpAkLsNLJTgh5wEM5IwZyHbB95YhM0c3WPsMnwePFC71u7NPl7wCHBI8BaUuC5X8XlqHVwanbz1JyyY9jI5maVnnpQP4UZxz0XgOb235h6/V7nucZnrRoS5E3biZ+GEVuTcruhT+HSXSh6UwnKtjK1t4+479y6FdpSMnlBJllf2t/I95O7xwEjgti6y9j57rkk6rwKq+EcCrj6QUKNd85dwbY48jHuojwK7vriNR2LNKft+bL17O653gx6Wz1KBqVS4wbvL/J+VbylhENjJQ08/TLC0QzI02PWrNdqzfWvuf6+AtC4mvZvBXgvXYhz9sq0K7MN9laMQHUxI/A9U5AuZXtN2XWm1mqlQkVqHRvyRSFA+RJfODRpXrt5x5kbjLmL7YducieReReoNOWtYHkfeyud7ZBjvumPTBsX1sKaioUcVQ1cJT63Q/uwLH73Q9kotv3WPv2uu+zLJPd6RC+5nyZa6zbJ/n0ot0OL4PpwdJhR+hXtq2qR3SFpbyC3sV5Xk5S/86E+c+Z4pwWCqTjvkjKeeP8KUSCJHdu8mYhGRVH5l2SDLFjdvQl3uZQOLln45Y3fWcMzYInQskiyYJaFahPqhzFxOIOKJEj+o10Svzf3UuluQhHYbhlD9RIt/KUxpW7sEPFVj3oHgjaBSqC9+P+6QJuCwQRDx4de1bIlpl6KdYvzWHb0MsyjdN//Cj/5EYrAkv0bVs3cxLrc1aWoJrLo4pn5gbpSJdzK2+Fqwa6TMdn6f3J27NoaToNZlGLsx9xLicPfi1YIEl39Aeo+s+2Gtbmu8to6ukeLJdaz78f8y0V65xs4yPnssc4ZASnw33Ctnf967CbUkbxT/15LJ/tUf+4ns/4sAKc71fytsDoJNIeSU3lWeev4J264V2qcUvxo/u62vFwVT63Up8FCKhI7LmKYz1moX03HZ9IizQnv4q3XaIfeAzOhDcbxomGpXK4WUrs7vdsm38/AtFqzAbuu1v0ZIRHdMnkVeP5o5Hup5iK6qZv1FgIiEHAuNi5/tysfaWtRz62FlK8xsW79Ta1prtavQPuI5pGjH8gn2n2XLLCKeLobu0TbpmVIct/S3BY4N7RsU0q5hGZsOYRbeWNlj3zc9XSMc+HC/zffxvtB+gfDNr332QtubYlJukDTK9wkWlw9jNICSC+5neV7Nsq9C+yFFhtLKwn0fTg/b5q6M97aW9tuVe60L3mXDn/hXf/jU124rv6U1s0fWFT9muPT4kHFyqlr77waIxGyuyxbZDZ9QgmWGnzeIk0EoeFTce0jQzGbtKZu2iJrehcv2XrgmT0BVCu3b5qU2d5bxf0iyKNf2fK0dO4SbhPW6LO8YqJoMHLoAWV2/dQdNobyKjR9LGONJxL2mmLDC6EmWdl3nJR5WJdn1OL7M5dZQNyH+2EUH/6M+ZNg1PXWEGP2BsPvxurfCiyXaGoNdZQR5PCiVhsTnLcycSuOCgLHpB4FjiGkcuciLYVLzn/YYl3zbJ7wry8jpvaeO168c9TwraRc/B9QTE6a1/+RQuVpPVAk6Za325EK7tvPH/nc/fOF4cwrvWEVtrX+lYsp6QYxwkfmoqqhs28JZymE+LtRwjxdh18EhkuXloHExbud4nD+j8zF7tflegmu99a4qY/Wvih7WnvNNwvz/ImPc+W7uoLPwLTUoBXbNF/Uc4fV9lbzsm+bguUueOd4V5087TJWuXpIs7WV+mek9Wv9+TrK0nyZJbWirUoq0aZhHwtCrF6C+8C2Lt/aMRkIpXoDgPxPy0xw0wrU+KegEguCOOd94aJphL3lhcIsfyr5dYa32Xwvr9EKgZsESgtCusaJfJmjxrpPXZ7eC+6mfV3z0Rd0kWfa3ZmV8Hx4L7DzWmEoV2rVGu7Wwv9dcrSAom34K+Fz8v2TUYMzEPWScSOndTnBTgriojW4drnXgBBepg/Zds2UrHJPcrAdFhxIU1fTOJP4erlO7+9IlJd6GidI/crr1URPaazioVBLVcmHsokJ7+i7rl5MY01787j3SdeACY9tj4v8js3pS0qUpgl2WfCsZhZI21xgIBY3Zz8rZ6T36z8LBKiomjgheF8M7FBqJ/RmIe/1YWh81TOQiXFBr60LDcwLDEK4Yqgnow9q4Atc9cryJAkXB4JiFN+XJdZ26pf226d9FM/+KX0uFoAqGNUXIkwDblKB2bUOu+FQ4ZqKs0inxw5n6WhwhZT2fWudQr5Sge3XbWtijsLT7vN2Oq3WPH3ClWf97BEt7JzE5p3or7TXIQYdmjw8DILjHW1fceDojWSkH2vEuQCn0fI5A0wH+JLngDlfnDXgZIEzXa/8Wkou8ln1T0JDGEQ2Vp18YmqLDkCo+ePIa7SfdW2trN7ah+E1/r90z4q8MwRbXcO0o5KLrY+m3oYSdFMqzE1bygqjEKWj70Rx21l0U0HOS6VSI3/TgGu4ZPJgS0UkVt18mPO3r9MIg2+Tmxd4gMOdrUjy7Xm9j2VVBdFqY0ojdBN6K5++7x18sVBl9tgvtU8zsk7qxauvlc8CvAG8A/ybw8/G30rXRWhfhdMnRngSoMZZK4DUnha3TfkyIdxzut8y5usUvXHjHRkOMJC0znJB3oujf0E/DeNlYZrU81u6pjbXEH9eAt0SVEZJdj8b0dqYhDJcd66NqZvbOvNxjTlGHdQKsUuKQuvUOM5YS99o1tkvIDDwTM6ZyjG0TYtq1qsCizQj+XGKG2QkorY/6UaFdFSLnETK3CYAzktu+KksOkbzkp0j4cd0FS/ugnTFPLxqfYrhKJdZ9kqv6aC+dga5NrQsbJmEVgtcq9zxJeAWm97Ut12jn0hpk1FtuWzsX1ceaVcx6BVnY5h0Ada+YEqzQXmNqN1xtWbQRvhXYQdiIcB/r1SHIbAaHMcTEJqJb+3FYFCaMSWR7TPslLtwyRM0BP1lc89+TcJJV2r0XQWmc9WLV8bxG4MUHKyhp/e2T3ONrfMHTDjVeA8J+VcVTWU46O06QE/u9lr09vddJfeZl1uDWsMHj1z1dXLRibqmF+9VwXUZDJa2JwznMI+MjMBbcBeg80jbcL1zrtV675R2vAp5U2eKx4dZz33ah7dU2uJCYmfvkSeicOSaL++nRQoaAzQK9RV6S4X24WKi9oalSUG+TW9oHQihXt7F+7C/99Jnvscy2MCbuP07SJg4uQBErWQbuAScnR3tSYIoxvEYSuhQOyWWejEnTOqGLQsiKJxrPBWezuoyYSnNvTyCoVUt7sdZKhlKPNwjeFKOsxkP/XUpEV5ZW23TQulDDVYq4b5FqNvpyDdSELpvgcZ+wlqYEXl3nU4yCjm8W+yjFRQKhhMzah8zxkJdEk+g9H9sbCSyFtdFa25URLJnh8zKD5fUt+Zx7iUJtoZiQObjjLgjuu0UrBSfjoKoAucE4e/w9Urw+lftOPa4KMwX18KNSMHySmesao1hL8lYKr2VMuwA//v/96Qsf3xTuewP4BYx3lR+v+5qLvMVFkHuW6dHm9rCg7aypCLeX+GJra2hPwl6652J5T91PNxbwsANPlpBTvB88WiDtvSUhD4qOa1tI1GUNUQ1ETTxvgd9XXPP7i9/PUzHhouA8fIsFERm8WbNEz6RkdFag0uNbBJ6tzD1U0pOnEbZ54u2QPKyO2G4gkBPaUld7y/+M+Y2iXzK+xonD0bMB+q6ja8prtHJPanBqvy0E1mb3Ba81uNcYSzuhYpd4tbIHhZ3roJk77hE9N0hx7dZF/qrgqRXajw/vXXibNUZnRkCAD4AvErR8ihDOWp+99jzIn2ctm1epqf61DC3GPZW0Qe+Ra20hJwZXAR/9yIfOdH2ZuEWA311c87sJ8ptHkdTY2g4ptrHGEFnE/m6D4vQa03+NcU1h1TSXBMYJMI9MW9sEkiF5e3ORTGjPrKHmvNbH8qj3rgj4ZZurGcVv5Vh3CYrF1tyYWXdFEBvTDoOmRjbATEblubp4/0lurlN91ez4usZq1jsdw0c/8qGtjMJeHN+ivNHCrIF1j6zCCMqayw0hsZ436zZzFTaCuv1tn7GXwHnCRGrvEnKPC4UDiYyVmPmYgXQ9cuSDQqK26I1pPGPC4vkOSYml43vAlnJvPP4+L5USEJi+60Ufi+4/EVDbi7p3pxJ76rxqSUgL3/rtH8rauigo3/UvAv9t/O7fJgjv2yzs1kPgPmmvlgpDBau8LOmGp14qsmzjoiCtU/MMEeYi9AJvIdFrKv62mEf3+AI2vpqZe0FSUJSleK8q15Aj7KNWwrwuBL4X+DPA7wT+LPC9Er5viYL7u7iRzsq31KDkZZSfeY1gQIPcO0rp/G3GOOy9GNJ4HpiSFdSlHcbu8VNreKqtHQJuO3WFCG1fk0Hq10vYO+5C6NTGhxJwRR9qHavRtUYiPjbWcoC1g/lxV71PfMRvHbSLBgfci1f1klzt3xfaLwgOH71zoe2NXqj57hkC46ZCu5DH26jgftbnCWM3V7uZ3o1aoE8rnOSeat03NSvpfcK7r2ptr6TX8Knv/MiZri/jwBrgk8D/Jv7+HwCfIAnsNn4Hxpb20yRHexIgFzLS99fJS1xBdOsKnF1k8Ew7s7hOFq1xiw9uUiLCjiTit+F0NcyniJ8V2o84nWCo4yvxlCr7Jr1znLW0kx9XQNsM+GYTB74iEK4TE9FJ/Td1K1VmakoBBGmdT+FFnZtZuY+d6cuiCTHtRyEbfuIWwpuekbJAl1AqrSwzuE8Kk4HHCxOx61PvU6Wh7cchYY1m184lxLSvemgr5d5Mo1PhV9fJS3X5OL6R0C5nY3S3rY+ae3wpGJ53Pi8bpsallnYYbyeFWp32j30yrvMLHGSJL4S66zQYy6Qfe5do/22iKtu+7fMu9ZJvCiq01+bvMt5v+RwNbbomcF9COJTmJ5GdFo6PQ19MRQ3Z+CGmNsXgCnNJY7WK2qsEJ8JCQkb8pQvHXYHvE/hTAt8f/x+ukavLKVCDs/ItNciS0EnyNPgQAX/skxTCPSGcUUihEE9qrozLhhqN2SUpng6o5+KpJViutaWW9lIpuZVHsG0rWV7Agg0rQiK6zlZuKGnfCdDCkIgOSYr5bzhoN11IOBc9bTKvWQ+yBqThFlTj2r1IljfhsuGpFdovA1yxSOyC/zzhBX6QcRx7A2e2vNaYV31Zz/Hu1gJ9WmFqLm29bGCIZ4eJpCY8ue/BJsqz6/O3x99fIXf56QskBXlM+0nJ0Z4EqClk9GMt7QpH2MzckYi4KMDHjNyyyLW+yvBpPBekRHTls4frTwBl/o5J1tyT9rswHickJntufsiIZksW066ZVPE+1EptmyFJzDquCRVwzxq3r0eNaVe3vNFcVZipcnx6VKXEnNr71o6qe/yGUU0/CZYnK2jVhK2atV1jvk/D5GyD2lU6T5qoLXxCHO6gxNEhtA7ZeOSoz2u0Yy6sPM8erxE8iHRsdnx6Tfk5LWTr0txoSxvqXG9TUj1puLW23m3oh10/dl0dEJjamufIRYIVSvT8B4prfie5ktZaj0p+dBve1/4vyBPRld4pUyXfLgMm16yEahp3gR076dcFub8a7h3cDLo+VGnQ2+Minktg3DvqZT6Hdi4Z5hKE8R2BPQfX4ue6C//vuvDbjqjC70nbSWcDoV6v/RrBBf7L5OvuDvC8udfyamfFZe9VmArfskJ7mUCudtTz2u/qZbOmqI4hE+1YOm+JfwOLVRdow8bTuya/2aUyt7ZPZftgQt8kGBoCXyscNI6mi141A88D4n3Cy8dA03BTQl4gyxf3kuLarwqeJN76QmG+vH7yRWeAcpFbIfwWwd3sgwSEbTU1Nt7mrDBlDdnl5KyM78PFgWXAIGzQuwTi0FIgQrnaTfWFL33tTNcLSYk0nBPW023gdZLQ3vu8zinF0WYRhieXqYbxvtU+lpZ2j7GAxZsyYWMe/1s0VSFEmVUYx7Rvmxfbhl6nlu0VgQCqhUCvrTEb2yyoUBewBZKl3Re/d1ofNbTYAuv4o1pHz5st2Qrtuo7KBEl61HU+xYCrDJ4L/slTQiAoXDY9ctzDTmExi88+2vKWatZ2tUSr0uBxrTc1HG6T6OgPxyKFC6OAc8jax/G1+kMxWTJYFGpraZew521Own0CjRvN/QXhupqAu0+OW2p77UmBmieJJqLLXMyLc6vU03Ze/9LXs7YupH9oTp10/p0EryqA/z3wcXJmtBYWpf+rh5Xlr8v3ZN3ja3DaJJ0XBVVvHwlC7n0RFtE/fsDxq1WIYbcvrvNDGUnbjloTVVDZ5nl0mYKyiLArcE0/Dq5L+Njv9hxDUtF3C87Kt9RA6XlpJINgbf8SuUfUXbYkDpbLWXdPItT2mWaPhyKnjx4r8zO1xpexjSmvk9E8T018A+1xFNp7T9+4qkJezBdTXn3zqFSzz3wIHM2EJvI4NYWGg5CAsnWBV1THmxhaY5WcVwVPrdB+/dYrF9retnjK68BnSa7xigTKzJZnel7xsUqCZxm7uV4mwfu1BJYp1LlU901Lv99hTABKN/mrgP/hb/7cma4vCZ0VLF4hCO2QW9s7w7vY2MaqezwXx8xfJExpmFVoh9z9c1kSB10Tbwa7vHwt+FpI4UKzIzIIIJpoaorY1b4rjy1BgIHTWdprv6n1gZi8ZzQmgCYv+TbAJpKjJgrtEoQNFTp8bDN7brH+y7Wh52pBtnWf7T32Y9f5Nvf/Gcn1LZsbISge1h2senDtSPprTedqSqopj5N9pmO+z7IPpt7tSKiVsGYXcUIHRqZpkJUP7vHzwipRYdKz90LaD5BnkL8oS7t9pgWtQ2+tsisKa66c/5mXCVN9qWVmt/RDFV6ld8nf/ds/d+HjE8ZlsTQs6lXCPFvBPBPWk3c4kMY0KvlW0Exl3O299nxDHjJ4mfzLJC8lwrXIfDfDhYLstsh+TEJlCJ50fbaPJP7ZISl7r1oZUYKIsHSSBHZjbb/ugot88wRovc7Kt9TAiYwEdv3/w6RkdPpRnm2gi08oTrlMqO1VIVV7gBTTXlu/U7yM/V4Vdmq0mNoHmZu96dPwrRMWm47Og/TQzxM1HdH2LX2S2I9VkavmHtC2DrouKLJjAl4b+iWA6zqEhpclKH68SMCREpLSXXWt9ieNt74weOcbv3ThbZZIXyfvBuGlvUYiiKrZbvW+MyLKk5QEp8nK+D6cDSzCsMdaIqg7hDAFhXer3Nm/9Md+6EzXuyJux/b7g8BXyTOuWldJy3RCLmw9LjN/FTAQa/O/usfbsQ0a4lJw/8o78DejsP6jb8BX3o6MWxScXM6snrYc2jbiuCSFYqhldZs1t2Sk9bch5rvyfCBwPX2lP+uYpCUivcGLXmSwuE+NwUJtvNqXh4zrx5f4TNe5DT2x16n7f2b1L5gTZlFoP+qRufGUkJANdiaBEI8yyPtcoMx+Iwi1KrRrH+HilHcq1Fo4ELhRrCeZx5J2x+uYiK7SmFnTlpbppSpEPiKN8R4TlvbU3ImwLWdISwpL0EoJcHol1bsJU/2z5QxhLPzqeEvm+J/5oz944WPU9zzgffOAl4GvMRbYbViU/WgoUZk0sqSdGtNe3g9J4XfVMdWjeZVgafcuuMlDtNpdm8OaoMS0BG/dh2SPRYO634/Jy1y9mzxZI8LCCbtO2HPCjgslO58Ul/iz8i1ToHHsYo5C4MW/QPIa8QSB6xlzH+Thgk/K3FwmlHjK5srSvX3aUpSWx7Af6x5/agWWSOSjzO8zYdGFRHTSQT/XkEQZbqm2VYGZJHystdUfethtG9gYemiPPh43HTIPOO8tIi4TW6t9zBtfJjy1QvtlQJVpIVl5XsMQRhKBPO8kl4yVLqhD4OsEl/z34eJgGwNWJoLSGu3lWjhrHOu7AVapZC3ur5AzcJaRg7H1Ud2aoTJ3T9jwHVSF5usEoUvBo3Xaw/V+oEyCfO6beQmgX/wmSPAsJ87lglzgOU05NPtd+duSwGyoxf40QkwNR6mldDF6MZEANi4lotNvPSGxmZGEW1Ic11pOX3ay1m8l6HfJq2LUGAH7G0y7/+s8eXPDcP9c4KiD4x5ZtKP+6DDXE4u3Zm2HvCRazaPjLFB7r9YSrV4Ejwhzn62JRRNi2o97or9v/EGqHarhLiEIy5pnoCMwOzfstZV99DgwI3fHV+bxNEqqJwHsXFiaYbPHl0KrMpBXUqc97gEbFqV4/2XgG+Q4v6u4e1qcLxhjBMUajMcpS7uCJums0Y2Lfr+jcBB9Xgwx8SR8jxCSjHoPj9Z5XzZ9qjhRPGNJsrS/WzHtvxbBJnrWNS6Ma7VDbmmf4tuedpiiTTac5YjtCeTKtsrzJQGHlyUtp2BQHBdHZo5ZH9zjpQPfjC3tJanO+iPpfI5JRBe/vQO0Mwc9SO/TvV7xo4/j6mAR1s5+vMh6Jlkl51XAr5W1emFQixm9F8+PqceyN+fE2DXk8jng78ff/yShVMtlEPr3IUEte/MdUo12y8yeN3/BVULNnUwIrpIaaWZjdWqxjZDcZmtM9ZO2FqtMG7mAohAS0YWXKU7ASWDWPvVCThQ+9UL6XQTvHDsuxE7ZeO/HYchbcqF2G6Oc/S75byog1zx0BMLLG6VA9cGVfLgpuMJvfLjJlm2q9eekoxXadxnPy9Q86fcWF6vySHMRVC27MwfrPoxpSNSWnhLq0Msok/lgZS/c4vV7LYmW9a3o42mg9t6U4bCJMDsRHmFz6UXFRBtL2h2sg9C+RSKaWj8Q9oTmediP390y95yX0Z1aB2X2+IckC/Tj7J2rgKl+LRhnxLfnKtCPPOnkcsaY5dkhze3LhHrtVhlVWo/sun9EvtZL3KOgQkC5hxQ2XH2W9dr+WsZY9kUkXqIK2l3gYYxr1/vXfQgjkrI9YSnhnap1sbZun7S1+zRAGYaq6/yDhDX3Jmkd3yXn2d6NcMZ3G6Zivq17/DE5PZ7CTVO4T0ODbKiIfX5trrO24h6kdbRdqNMuK/A2oKZgAsqM9uX5DKM4jV8+AnZn0Xq/6cO68D7UaPeG1h11uBZuSeD7e4Ln1JCErqLkvEx40uWLc8OzL37swtu0sZu66X8R+PH4/X8E/EPqSOQ8oAgFEoKplWrZZpl6H84GNURkE0FZof0ZxgTgquf/P/3P/8qZ78mS0Jk1+grB/eeYVNZuYOQK904b2wjTzNuTArU9IuQx7QoHwNwFIZxGQm3emUM+8gL8C6/Cp2bwx19FPvoizBukFXwj0MigWdY2F5wOpojpjMBsjBLDxGMpFNbGaMN45vosKZK0lZb2eCqbPow9ft8IHEtycS3Hdxbhygrtdh2NPiLDOi/3mB7V/b/VMQmUbnTMBTZdsETP2qEBZdRjNb8svtoey48KNvcIgsxlKa9seI4nuh0L7BWMijQNbt1Dt7HlD6qgAkeNbuyQvEXux3HNKd/J+can99quleFHj9geQ/8k4ZepfWuFdgWLQ20tZCu4/9if/6uXJ7RL7v4J8BLB0q79st5VVkGr++AhY5xfC+GrJaKzIZ+2hnM5d5cx/ql1tEcKjRG7uPYa5HCTN9IbS/vQyXCilvaadfEyx/VehfPwLTWYimmfEQT3L5GH+ah7/BSN/LUAIx6CIKSrh5N6celvNXoL07hvlzxUpLYPsr1gCYqFWcNsDceeILRrTPuI55Hi//FRS8EOfLzEsK9YDUI23SQv7447aFIY9F1SXHvvcl7gKuCpXasP7r1+8kVnBOtapi/0rxfX/CTjOJvzTnIbiWxLQEoN8HuKa35ffIb+HtyA3ycP54EaQynkiegUbCK6LGmFXO2m+id+22fOfE8Zz67/P0NYa19jIgmd+ahQqqWunmTGGgqCYd7xdZKAou9XS5X08yYkL2sdrnWwbJGPvQQ/8t3IJ18OGeRbGa7xrRsYcXW5P285NAUV2q37eOkmXM71FDN9jW25MKTu49V5aJKG23qdHCNZMqltUNtbeq8K7dmYChpu13ltrZXZ8asvfCbQdbDaIG1B6iXg295Y2ksorY6QrBOZ+3j87iIt0Tap2aM4OUuAmIwJCF4f6w5ZbZJ7vPU5LDZmbYp0LJrnYZ9gnRquK84vYp+X+PUB00qqJ5G01d7bnLQ2SvAka1bZxvf/1s9k/18UZEKNJJz/EoGWrRgraq3Abt3jqzXayYUfGyMLucAOY6F9CpddFFSfITGmXWRI6ggRF84X8DCVggKC0N5K1oYeW0lxvDZW/7LH9V6F8/AtNRDGpZX1XX8Y+AqJl/kmgWerhTA9iXjlMqAcsw57hyDQ9gTcVEt0XcP3Ndy3JOCJMymwtC+WR5iFvDNd3+N6DxKt4vGakr/ZBiFBLayRzPNiV0AcyKYr4tl9WifrDnFhbT2DcI8U1+597iJ/FfDUCu2ro9J+9vigwng0qtEShGYLv5/AG7YSFkoj4M6JEazA3hKMJ99DsOj/TuBPA5+Jz7OC+/twsVCzmpSuVnA+l9jHhW997YNnvkcJnD3auPbXKWIcGVseH8brR7GNcjok+m6ARfL6UQvtAWlsgxXMCcyboOFduiCk77SwbGDZhBjiRYOfNTBrQGQQilVoPymzOuXv5AzEDoGp3h3fMik0TcUcr4G/I8KvjJ5KQB6x9El2b6fEUobxrOND1qTQn5OEqymi3cbxTSU01Hdm17mdI21HhfW/Qggh0h+zbswcrDo43ARuvexchLJmuJ6XQox1H9f+P278dSkEQZ6oTRVmO0Rmw943E9yqhwMPizJ7vB6NYMKY8RHCWtOQkfuMvSDOi+fsmOzRusdD2Is3zf/vVpLP00Bt3wp56Ucr9OrxkIrrKPCh116+lPHpeysND2p5fINxfKbV4Vm8bys9TOGzMnu+nQNIMe1XBTWcISJcB3oZl9CVG3Pcgy7ruHQ+eF6FmxOOkzBetS5etdv/exHOw7fUQEODynrtQohr/yLh9Sk+y7wji73wawVqOFj5C83LMFmnvUI2y71l98KpFFixjqLdl4E5DTSs3/Q43xuCMxR6G7wGt40NNLGw4qTw7QMk0JkZyKpLLvG+p4nnznuk72Ii3nD9m1BNRHdVLvJPrdB+GeCIAjnB03Ih8BuAPwP8LuDPAt8r6RoV3M8LjcjwnKWEZCl7Ar8R+HeB75NQbngZr1nEZ78P54NtgoWNadcyVTUC8KQxlTXQ/tr8C/r9q+RC+1ljG5/UObDvCRLiU2JlS1wdkJJ8+baBRQvzFrdwsNOEGtjLJvw/j7+rmxWBQKjQPiWoTPWxhBl5zeqa8FLGc2Wf+NPnCKEPXwP+PeBXuqI/Nqbdk2I514QkdREahC7euJHtRHnbUc+XcXw1q2NtPmpWEg1T0nH+2yL8ks2EL1F5MnOBmzjeIPMg8ebKBaGVwj2+EFzKfbBPsrLX+nYRUCZqO8DGsyfBSWaCHHfIATBXddp0R6bez3WSlfQeyaNoeB7nG+PU88qY9vtMxFSe4VlXCVI5X5ArdyAXWrUckr0n7efL6WOt7JsQFLVZXDs5A2qVVZpL4aQ9ri6yel8JHePs8Zf5nms4A0JpTy8xh4mY7OqLGRxtUuJR76FL7vHASLlqM2bX3umTun7f61CG+em6/jCh7BsEIwskBeTjKlffqzC1X1VIf0Se5LR2ba09e65WelVMnmYvZPREf3dBoebXHW4VMrhvHYxtqyB9imtWQkwuHGj3NQFxTajFjs+s7U4F964bPPOeE5KlnZBfpvRMumx4aoX2nb1nT77ojCAizElC8o4Ln+8X+FMSjjvxo9e0j4kNFqa9pcCeS3U39yR87O/nteq/DwFqgsWMnAFRAnCLHNlYhuiq4LO/8Pkz31PLJqyE7lVC2TfLvE1ZXKZiG6/S0+AsUCNCjkCwrF+OuocN17UOWQRh3e20sNvidlvYmSHLFpxk62WPQBBOm1l9G8xIQkzW9wlmo3y3ysT8lLnGA3/DvHdHxFNdn18EsPKarQlNRKdErxbTPgVThH8Zx5fV5NaPpDWl69zGL6p3kSvGB/DTIrnbJBK8IY5BNh0sYpx+tJipdn8mY68aC2WM7z55/LX2Ec6e4GhqjkbZ1QV24lV2PTB3yCpaB5dN8SMjbmnAV5LP+x7JMvWA7a7/FxGKVZa0O2A8p/m6eEIRjIGhEkE8lvhzRa6oUpz5y78Y1vlFj1AowqHMA14iVKMpFbW1Up8W75f43r4rzSANdcWFtbRfxduc2ltvSihd+SX9Xcey1yD7keqrAnPTQ5vvgyHyhiCkVEu+TTz71zKch2+ZgjLps67x1wjKqBUhB9Hz5Dxa+fm1AjWcr3zAIQH/ZqUoZXoN1+ZRFQB3GYc5TYI+wySQFaBvgXWHo0fmSahnS58ovte21OAGMf+ExFKtTYNs+ugWP+blZeVxMa/PbRL/Xyaie19of0xY7Ny6lHZnkqzeuxIF5yhI78WPFdwfV4h2IsHCrs8w58MzYz9m7wFm5r0IZSK6dwiM7FA6jbGQcVXwK5//yrnuK7XTOgYrtMP22MbMTXLi+KRAjbhoH2+QsmWrcDQqVSISLM4zF+pht26oXV6OVQXRsvY4lWNoWqq/CcnVshRqy3Yt2JCamYQ2fr/53RHCa5TZaSCUrdNEdJFJFQ+y8SHZXry3kbQX1sDcWvlPQUhrfYVcKVFrQ9e5RMWBHWM5Pi/B88kJOCfDWmfexKC9inu8Yb5Pk4jOVlC4ZZ59Ur6BbTCV2KfMHv9IYo6Dct20gqxW4f+5sWNOdGZqTe6RBK59Ug16/f1xrFO1rtg5V2vuyLPkXcCtp4XaPOretx5a9liWVdL7fvXzX7kU3HnWsm9DnfbkfDO8G81jQnG063eHMPbSLV6h5h4/tHUJE1DzEPkc8F+48OT/UIRf7dO1XGuQw1XexhpwquzL1/BShBXhvW6rqPE+BDgv31KDkodRA8TzBPrwVYLQfiteXwplv6ayx1eOem49rGql2so5srjZ/q547QFb9viJXwbYxIooTdch0XlMzLUCIyvR1LtcIINl/I4PdHWJgGtwkfcRjIXdh5JvbgUyC555NwTeIsXFj6ptlMk7LgFKD6WnBu69/auX0q6IsIxuFOomr7yuk9x1vr0g6tOIsIsPwqOkkgP6vJmEa96Hx4Mp3FEyzSUBgHePAPyhP/g7znVfI5h6lImIaUx7lpSIsdXlAfXYxvMy85cNSlyyUh7xN5s5VeNQT+MeJkJwJS9+V5f2U3pzVX+zApv2MRsL03PdCsx8TJZOcDH7DR7+Y0LizB8CPt3CvA+eQzOgcRIsSWUf1v3gHi+S158+NjH8tbFk322ZK8hj2mFsxbPrvJWIY4FOwnr8vji+H4/j+94GFqG8KjNtL5Z34SFIzB5fos15JRGdVWBBrsTaZ4sQU5mHs4IwDs95QKAvA8MUBTKZAfei2mmUiM62mM5cfC82tv0awdoCYXzfXozJMr1nHUttHVilKHF8NvmdPT5pgvvUvlWmt1b2zDN2HVX4wX/qfPj8NFDien2PLwM/Qx7+0Uvd0v6IQCNgvB7sd8q4a1JPTz5WrWd+Eo69KNAxq5dB4wMu9IQ1eSzwtxx8ug+JHd1ugytKvrEGcW7ULqTs8Vcdq/9ehfPyLTUQTL12nwvurxGS0dka7fDk8yuXCVN7bZfA20JhaZ+4vvabzmdDcCNfFN9va0cAmytCgN41sPE0qx5X5nAhVcA5qT9IoJmqHH5IjGeXIJBLx5CAblgXHhweWYG0wXDxnMgwRxBj2zECvFz+enpqhfbLBInZRlvv6Ql1iz3JPaeN11wkuPjMBdD7gJnkEp7zaxm2CRbW0n4H+IC570lOlDQFlrA5SdrFl+Lv3yRY3VVwLy0m1hpG7fgErssMkcd3DcGSqJZ2K7SX94zaMB9n2rtGsMBOljSamJqaUKNCe5mlX9upNdWIsBRPRyAo4oIQ/5uA39xA2wrzTRB8l3Gs0khW8m2AtUeztoImZQwPLjMlT8E24q8M7ra1VEJLMJR3BOHCSRjfbyZ82qiwmEuonzwoT2aR4V4Twh1kSGcTHyg4qdfX1v/Lzz4pt4MVfIfPGffB1BzZ8JwDopJD8jUgrQsMRhzLSYulXMva/2ukBHtag16vPa/r/zYoS9rp+C7zmRcJtX2rO6a0tGO+38bQXgb+VIHVKmthuuxbbf1r6EJtndpxqJLxkPAuSxpSJqm6bNAQoEYCfmgFftDD3xShj2GP/wQSrxHa3RZ3PzDtw6g2oZGUBivtNRXaNabdwkn47H14PFD6OwjscY0LKRldR0q6WBpYfi3x0YqrasaLBUG5ASfzP1O/6fkegQc6laUdE2JTHPumgU2PW3c0p9TYTj1jTohpR+AdD9eV+s+bwBOQcKOuJemiEB8z2d8mzFEt31Mvda+ii4b3hfbHgCa6al518rf349YvD2qIaE7OfN0haW0zwU3P3wPvJ4sBM0xcS2Divkqoc2o1iJbxslmE3wtJXUQEYhkPyN/vHklo1/d81qzvFjSes5akbbJ/TK89GLuPlwS3hLlEgT32Yy3RUqyMa2Q0d7SfhdA+tNt3sJilMivRDRRgHS3tU4S9TJA39D8KOJDi3zJ3aNk+PhFhgQ+KUhfquG7i+ARoGmHhwhzsYLyQZobqzwvSJ2GNl/HVpK4Oe8F+tw+8SPFO5Hy5LWpzJIyF9gciWXZ1dL7aOL5BGpTsmuzI9BzvkZRX90jlBmuxoGeBqXVSlrTTHAfb7nmSYKqP6iFh14+e2zrtVzVGFdgbcuH9JUKSSs18nlw98zUPedJIux6cWa+Q8NYh+bgVRpZ2udzxOxFa75lLwIUdMYmwwP8g8AMOPj2DeR+9F/fmzHoPxz2DtNCHPZYECxlE+rmEdaueBXYcdozvw8WDiNBE2m75GSEko/tfCGv2W6nzbE+a985lwxQtvkaK11aDzmn5n/K3HcYhgtnR3qD7SYVo0kX9vMH10HbB0j78LsnKfhreCpHMY+2hGB5+3gQXeF03PrjGO0A2PvwfE1DeinzCXUL4RSa4czVC+1O7Xp//4Kfe7S68D08JzAhMFqSYdlvu7XEY9ceFP/2f/Oi57hPq9U0hCOs2g3xHHtsISWgvieB5mPmrgozBJCE/G8t1yOmY6W1x6AuCsFNLRHdWxlQZwLMKMSLCjpMh98UNCckrbzRBCLsuQTibawMN0NtEdFHD3PcZgWwgZY9nSwbsWp8q35Ux+1NtlOt8yPWh44rH6w5uONgVYTcS6qEhm4NAE9GRMxAtuau2hVrJN5uoTdu+6H1QWiseEmJo8+cJ0grO+7SAFUYu8unr2t69RtoP98mrRMA4dOEsUM4T5CXtIOzBsszck4pbamtWz3fIx2WF9yPC3s5xCvxnf+58+Pw0kOVfITHmGorwTUw4lM+FbatssGFRMD0HSjdrSguoJ6K7zPc7l5Swd6jE0wj/loPvbYNXzsIJO8Bi7pj1wMMirl1DhYr+LojJrbhat//3KpyXb5mCQWAn5RoS4FsIGeTvkvNsT7r3zmVDbcxaXnYb7i3vm8rDonxLNXt8rT/mAZaz6pchD82s73Cz8FaVF5kS2CfI3WBw8IT1cE10LTg47kfjdBBqtBP2vUjwxLlBsrZ7kSHvU6ngvCx4ai3t77z5Kydf9D68DwYypkMYLAfW0g5hw3+CYnPz7hCAH/nhHzjXfSKCRG1i6TL5CqE0mNUelp+HBM310J45PqlE0PbNIucbBIYVAtO1LSlajcH8/7d35nFyFGXj/1b3XHslJAESwg3hUgio3MohCAhyiCCiiBwe/AB9QXxfEFQkKCqHcigIqBzKGREI4QxEENGAiJhwmwDhSEyAkJC9Z3emf39UV3d1T8/uJruzc+T5fjLp2emanqru6up66rniW6NpX8suq5KPMdixypmPB69BTnZaKVJ4gemW5yiUH5wtgqPClRmb3gKMs35EhcH67JzEQd1W8eKbB5BZ4ChntZHUz42bUsbzIqZpTgGT+jVS72DrEWrdbXs8pU3qbVeYuMBhNJCG94max9vXZXVWxJP6lzlHBfSEtEtZixxK++CiwDE++9lUqURutzV2/Ph4Z6LHFwnN45Ouy0jd53GfdtuKp+S+qMHBpdx9bXKV23eVed9LNEK++e4RX/h0xcZP86yy3aHsYHSL0ZrJpPHe1LudQdJPWu9b0Ob0ccHfjB8lY1CFcZWiCQ9PaQEv7WnXRrN6kXIUWbTgnvMUqhUttK/bHN70KSd6vf0Gm9zUJWmuBhn311RWd95SDqNhDwLs+vOZjdEL6H2UD0S3Jl0XY3GYNJdoQj/PmuPfiW3LfW7vN8eIu4qUrRNYNvLhPs9xIQ+ZQjHQdgfCunkWRacnZeuUQVvZoBTLgMnmcGkHp+hFxsOgf+QLfrT90CVmbXQwuq1UaaaN0YggXzWh3fM8brjhBu677z46OzvZcsstOf3009l0001Lyi5fvpyrr76aefPmsWLFCsaOHcu+++7LcccdRyaT3C0K/T2JnwvCQAw0aTamcMso9Y+yHwSjyTprr7Xa33UItS22OdRGwEMk+OtYs89OSlNBDUdYGQ2SJpkQmsdDOOmKf8/elhzTEnhAP/yWo1f5k8oPVL94GVOXJPPxwY4XHFeFQroX/5J54rkqomk3Pm/kiyg/b6XCNh9X5FXyA6Tk4Z4wUTBbHcG1dOIfP85A/dxuH4AX94HQhfTWV4kpwpMYTBpUac5wszXvi7G/uyBiql6ujw2VcucItABo0hO2qITyGRfHA9J25PjYjCZWqSQ/fCMwv+dvx1LapuEsSMTPi53SzlgvtFLZhYKRZKBYKLZbQ9w83k6XaNo2fsJaFRXaI+5Q/nsIhXbbuso29zR1Nz7qQxFKc4RuFp6139xf1dBIp5SixfFIe/p+KjpQ9BcyU44Ksm04SkFrGjr7deVNdOmUKqmjIhTaiwxNUFnTGc68JQkzh7EFdhe9MLYWWnAvsY70X7WaorZSRNptjVvNwHwSFuLNNuE8xed+cbe3oS5gxU3jzW95rovqgZRXIOUmXajSz+zfsOuUVYqiv7NDqXARx3FRvf2RObzCHyfzBVQ6KsyPV4p3CV1GbS17cRT6UtXm17fffjsPPPAAF110EXfffTfbbrstZ555Jt3d3SVlu7u72XDDDbnkkku47777+PnPf86TTz7JtddeW4WaC2saRttpJpZGaI8M/P6+enoA2GnfzEMPQvN4sHK1E9UYdTB4mq5aQ6+Ylj60xxCaAxvzRmJloPShVU7QNA+sofp7B8dKEMTiQru9f0QHbxffJtaL1iFfiMxC9Wq13lugvPlb0sQ2aZsh9JlOmlCtdn8qd9FyBB1XKStSrb91iVrVGJK07qDHgrhQG5nEjADm9Bthp8tvgvmN4PcyTiC8l5BQmXLXxJhH/tffmv483NgV5Uwp7ewc5tzHtbl2+XohbvZv8AgD0cXbVMnnh9EWBQI74di/Hvp6xyehEGqPjBok6dqQ8FmGUGi3Mde6WlHWXd91qM2BNhfGuIo2R9GCdjsJxtXmDHQU9Mno98dFNyZc+Nsc4cLvaJv9CwQLUpFYPf6+jf3tOMoEoRvtylaZcvOWFvRCbS5WNmkL4RwmqYxZkFyVeyFyPczDIuWi+iHTB05Kh4+PP1+H+pwNxmOllSpt5lgphfIKlj+7Edo9nIIX5Ic3vzkWWK4SBHZGR9NeNaF9xowZHHXUUWy22WZks1lOPPFE+vr6+Otf/1pSdvLkyXz5y19m/fXXx3Ec1l9/fQ488ECeffbZssdvGTOpktUXGpSkAcjWdPX6r4jQHpsAjSZPzJm72t+N5Gn32+CihfZOdNChuMBuaxgHS9NViyQJlq2EE65eQqEFooJG0iQ1aWv7c61OvZKOZQd/Siq36j8U+2ZM0x5QLFh2rCriKtKrVt2nPS64GU174jGsg6xyPy8nIaYd7dCaWFkVWBLE+7vnhYG5zCuPvjciFifDmAyWO4fmHBuhvV0pmrG0l8Z0z/WF9qbyOdrji0VJC1kueoKziDBYT1IQupG6ze0AQeY+TDKPr8UJ9kD93uQqh1J/bjtPu92ufzw5r6JttK2rbDNQO1d7YGFF9D4w18ZerLXrb9/foK+hbWlgtuacrMrYUQkcpUg5DinfV9WJN6ItA53+Un3BHxuDPO0qUjSjVLBAMVQ/3jWZ4cxbknD8xZYS82bCZ+ibpmzwnerM2apNub7ZhH7GRNLLqsGf6eWOBdGFyQGP4/+QskooAMchVSyQKoITWJAFD7MBM/HEMUJ7vwftCsY5/u2eVZamXQeew1gj9RcDTbvyDzxR6cWNuPvQaOVqr4rQ3tHRwZIlS9hmm22Cz1zXZYsttmD+/PlDOsY///lPtthii7L7XVeMlIRVo9zgYmu6TI5Go10bbkTl4dLe3jV4oTKYCXpEeEdPtsaiJ+2B0O5FJ54riJqw1sPkJB6AztTVDrzVTWkAuYGua7nJOgxgZjbUCqNNVgFejH1/xN0QHBVok8xFVp4HxQLKDU1CU064Wr2qaZuSzsP76EwFL1jVSLqfVqmfx09w8INKr9ynU6Gga3b7f6dUNHp8ok+7/1rh70t0E0moxlCrHl9vMGsmRkO5El9LYDQdpryj9ITDRMYPOnxyz0u6Hub9Wui+N9ILc0m/aUeP7/R/I0XsXI50fx9B4velIUvMPN6ay3VRKrQroKO9s+JCu61lN+fUaNpNXYNAdNa434W+VrYrVbzNNk3+d8wxDaYfl6TEVPEeOkrEVXamYS1p6Mzrk+AL7SZWRvgVXekcYeTtkRj3G53hzFvKYRakHBX20ReBf/j7v0/4HK3mnK3aKJLnQkZYHyiAbrnjxZ9ZttBuf172Xoj5swflctDc5z8d3NLgsSXWjwNo/9MK8ihWoMejIG1qGlSPXpyzF3EcwOnzUK5O96YcPUcYh862oUX8aNBO876SVOU52NWlb9jW1mgc0tbW1mDfQPz+979n/vz5fPWrXy1bZuXyN8vuE4ShEAgq/jaPFjLGE13RNYNgNVZtD9x/t9X+rl1vuz2gg9HFTeTNwNTv/x2JMhoTtmoRu372Q2sMWhAyPpsDrQ7H05glmdvb5vHR7w7+8LPr+Txwp//Z99GC7bAnguU00I6KRgMzT56+otbC+6QJo8f3ETVxHahOSZ+9ADzt/9T30O0tV36V+7l9gEh4eBfSqXC3tcLvqdKgaDZxIWYlfko5Kitgmrr2EQq3ueAyqrAZnl+ZrFPmIpR+WG4hK4cW2sfFyg5nshvp31Y3tH2/O4lGq68XwSepXqZdSZM4O0+7fYx991v98Xwo2BZVtvC+HjoYpxnb47EbPPTCZrlrk3SdsoQp37C2/bGyVSfpwaCAVhc+8O+4fl9oN/db7Os5wsU+URcNznDmLeWIC+wu8HCszEOxMmti9PhyY6ottA9l/mM+TypbVnExlPNtHVRloLnTv7NM6sWSA5TWKWlrFuRXohiDme8qVApUXyFcxPTN6nQgOg9HuQSWNei4vEuV0uOkKg1E15BCe3Oz7h4dHR2Rzzs6OoJ95bjuuuu49957ufTSS1lnnXXKlss2j+OYY0/kjDPO4IwzzuDee+/lwkv/QG9v6LH4wKw5ETOdd99bUZKKYvqds5n7XKj9f23hIn574z2RMr+98R5eW7go+Hvuc/OZfufsSJlLf3Ub7763Ivj7iTlzeWDWnODv3t681K8G6vfmwsX88aaZkTKP3jyT9BuLA0372Bfm8/cZsyMrctdddRvL3698/Uby/D308JPBpK2vN88tv7qJ/t48Ci20Pz97Di8+NS/ULC5bwYyrbwu00m3A32bM5rUX5gcD2psLF3PdjdHzV0vX962Fi/njH2ZG5mn/9q9vL3oyrWLXVwG/veo2li2L1m/Ww3NCgao3z/Rf3kRfbz5Yqe6ePYeXn5oXHGP5shX89qrbIo8YUz8zV1y0cDEzbtL1m+WXGevX7yH/OPOfn899d82OaDtX6/z9/Z/8bd6L+g9X8V5vF5fePTOorwIefOtF5i9eFJyI9sVLWHbXAwD0K52nffbNM/nvG4uDdr34wnzujF3fK6+8jeXLVgTHffGpedw1O6yf6s1zk3/+TJlHHp7D356cF5QZ6v3xO9P//AnG7+55iNf+u0R/lnaZ2/sOdz7+t6BNKLjzxj+x8v0VpP3o8S89NY9/+PXzgHxvnmsvv4ne3nxwP8ydPYfx1vX9YNkKbv71bZG+tar3rwJeen4+D989O/gbYO2rb2PFshV0+L+96J/P8cwT/wgE4Hx/P7/6413kU/2Q0Y/1B556hr/NfTE4yHvvR8+fAu66czYvPz8/mMAueWMxs2+eyRi00N4G/PnmmSyxru/Lz+vra0/ghtL/Lr70pkj/+8fsObz01DzS6MnOymUr+NvVt0XMrx+dMZv5z+vz5yh4beHimnp+/PGuP/Pcc/ODc/PfNxbz0M0zA6E1Dzzi3x+gr93CF+bjzZgd0ULderW+P8zflRr/3li4mFt+H45/rl+/ol+/pcBrL8znzzNmBz7tHjDz6tt4d9mKYGx76al5PDV7TjCB7OvNc/0VN5H371+A4uw5vOPfHx76/rjn6tvoI7QeeWLGbBa8EJ6/N6rx/PA7/3vLP+DSW+4KBfdWl+lv/Zu5ry0MrJBeX7KUWx/QoqDj9/+Hp99H5xuLg+O++cJ8nrCfHwquvuo23pP5VUXr94vLbqLYmyeldHq/Z2bPYbunwueHu2wF466+jRR6HToFzLhzNvOeXzAq9aul8/f0k/P46yNzgnGgrzfPy7+8CdWbDwTuZ2bPYd5TobvOsmWl9bvzztm8+Hx4/y55YzGP3DwzMrY9fPNMFlv3x/PPz+ePsfpdcc3tLH//A/0dBc899yLP/PNfOC409eTpK/bzpztn0NffHyz4Pv74P3jyn88Fv510/mbfreenoBcQVr79Xx676wHWUrp2Crj3H0+wuP29QFCfN/81pv/5CT0s9BVRrsutd87kgw9WglKsrcD91/M88ZenAkG9tzfP1ZfdxAP33sd3fJnzmGNPpBKoRx99tNILA4l88Ytf5Mgjj+SII44AoFAocOSRR3LyySez//77l5T3PI/LL7+cp59+mp///OdMmlTeZ72zs5NDDjmUFSuWM2bMmLLlBMGm4Hl0FGGlBx1F/epEa0uOAH4B/AttYvU99Gpiq/Jfjs4P3aJKVyMrSW9vnmx29df2u4seK4vQ4UF7ETo9bdJ4N/Bv4FzCdub9fQuBU/0yGbSZUYvj58lWeuvWYG6mgqfb2u6311zfbvT1/Q0wE329T0GvPJs84K3+tsWSlPNFj5X+eevwj9kJPAX8GDgS+ApWP7HOT3PMvrjf82i36tZZ1GZ9/2uVuQzYxT9Oi/L72yraKXv9Rejsg54CdPf72wK8tRJufQ2+MxUyLr2ex8pCkY5fv0jX0ZvQOaGVnrTDE2mXv+ZS/F9Tih80pdg15XCQ38Y2pfvBGL+duYRz1eH3sQ6/fWdadbsc2E2FfalVQZN/jFXt5153n25XV79OW9fVD/kiXDcX3oXOo9enfcuJdDa5dGUcOjMpOrMprsylSANfI3r9mxX0eOF17gIeAR4ALvLb34K+NmYsaF3FsaBo+oC5F/3+2QN8mfBe/J+ixz09fWR7CrTkCzTlC7T0FmjLF2j72TzcscCB68PWE6E5BTlX+7k3p1BWkDrP8+j00Pe/uSc8fT/8GPgncBBwEoPfC0Ohv8z9txj4Otqq5C/Ag8CFI3ROR4NOM4bGzuFl6PRAx6LPXxr9eY//2ffRqUNbCMeHdF+edZsypCvURruP2c+4HuBk4ERgV6tOHtH+Pgv4KeGY1uLX26X0GfIbdLDK/+e3P4X+rZeBHwC3ohc2ItfYHG8Ur3FkTDTjRXc/vLESpr8OZ0yFxR1w62v0f2cqK7MuHVmXroxLZ86lM+PyRi7NSY6OiXFHjbSrlhnuvCUJz/Possbo7qIes/8F3AccDOykdEiTnDVnq9S9Vqv0eR4f+Pe+uV87gLnoMelQ9PNvKPOW7mJsPPHHvruBm4DbGdq90JcvsLKjj47uAp29BTq7++nJ97Pi9RWof/6XbJ9H6uhtSKdcWrIuLTmX5qYUY5pcWpvTOkidT6dfp/h49Nu+Ai3d/UzsKfBqTz+n5Atk+wo0v/UBLU8sovnobRiTdmnJOqg+j0JvgY6n32Hl0i66DtmErpRDd8Yln3X5ZjbFyTmXrXMpWpUKn41++zKOYuXKlYwdO5Z7772XlhY7UtLwqJqb2GGHHcb06dN5/fXX6e3t5frrryeVSrHHHnuUlC0UClxwwQX8+9//5oorrhhQYDesu/72lai20MCohK15b8zfllMaOT7yGuUHwGVX3T6s7zuEkVZdQhP5DQnN4z2CjDcU0QN8m/X9pPNQqzhQYtLuoifUHWiBvYmB+4KhnKX56vi0O2jzLVfpumQV7IheKNoPLQB8DK1BSKH9s0Y0X6errLxblmNWAe3IboqhdK5TIK+G3kZjkpjy651VsBPwc3T7LkdPqNIq7Icp6yCr3s/jF0fB6+9qVWIR1K2LUG8YzzQVFLX9q+Mk+bSPtfZX0kUkgx5/QhNlZf4F2nb15jJtIr8CuHWRbu8AKMvkL/4yjmtjy+xf3YlDUj8xLhb9hOnewjrWx7hiroF5D/qaJQVig9Cn3e6eCvjtr6dXvJ5mvLf920EHo7MjyBeI9veVJOdwLvdqJpryzWz7iI4bQxkfK4r9g4F5vIIxGT0YeJ4O0pmOFre/ZjSLScEFq9auGma485YklFJklH5GNilocvQC8G4KfqRgdycU2Jsdva1azusqk9Q3zbylaYAycZLmU6B9vnvRLm9DvRfsqbPjl1KuornXoz8d/54q/ZK1J+n3MkoFc/gJ/lcd0Clt817YBi/8jpP3UBknnOf6BxyHnxLVN5OPm8hXkqr12S984Qt0dXXxne98h66uLrbaaisuvPBCmpqaWLp0KccffzwXXnghU6dO5bnnnmP27Nmk02m+/OUvR47zwAMPJB7/nUVzR6MZwhqCiZq9DJ3H3Ex6FNWNQnr6KV8Y1vdNrl7Xeu+gzePfQbc5Q9RXJz6xhvqYmJSbXIIOvNWOnkyPs8onbePHjG/NxG2o/t6gTS0znkdO6dzBXlGX3RXYBX1NMv6EI6v0NUmtzsm2v2NLGa5T8rRRxj427QZibQYdNd5T+qFsB5MaqI0uuu79hD7xDrCb30bXap9po/1wWuV+bgdhM7OKeUujZV54B7ZZD5QvmCjdvnjwLM8Lc7Lafr4rGSDdG6zWAl65c2jyx/ehtf4oUP7A4/hhr9Vz70S/9OwS2Ha9qDN6md80+WxNEaMXMEH2IBqEbiTvc3Of5ImmsyNpW4NasXKTRBOIzjZlNP2nQGnWBICvn3xURcdQpZROZURYb/N+EqHQbvdzg8kYEh87y937dso3+1gmVWSkXgnfH1UiARv8WjT7PbO7Xweii8+WrfsgF9taRSJbQTPceUs50krR7EtdCj9GifW8SfnPFvOcqcXxpNJE7ltr3DcLctkyZYd0PLSgbgz4vw9cgp7DDHYsBeD4dfILuWm9sNyv3LDMIBOzcrsz6PzsvcDmwbEUKuXg9PiLmEUvchzVX8Tx5z9mkRv0fGW60rned2J0c7VXTWhXSnHiiSdy4omldv8TJ06MCOM77LADjz766Cod3/NGI2Oe0GgMNmleAXzE2m9PZKthtjJcE7N4QD0ToGVt//PFwBSik7hOSnO02/OdWn4MxoUTs21CC+29RCeUAz1oyj38bE17qdBR/vxklJ70eYByIOWFAd0VWgsdTDhG2tTSCjYXnJ++IsrzUFZ+1LQKAy71M/Rcy0opMnjk0A81hZ5AGQsO42NoJlPxCdUq93NjQuIo33zBgY+uBy9q+xEFsP0kLfgqhXIdcFVZTXs8CJ2HTok4jtL+P5wFvHL90+SP7wJalKLoOHgU9DlylM41+5GJqHlvhwfbcZI/MPnnwCkdocpZyhhLmrEDlFvltpXZ2kJ7O1ErHhh0zaFmyRKmSbPHTztgWfxc5EbYZDgJM+Y7ijAnMToY3TMkp3vz0FYedvBRsK5NQr9tIbpoYbZ5rCySNYHdCMIT4o97tOf1QJwO07wp62ugAkFnTdXcriojbRpvk/GHvLSnXfpsSSDt78+qMCbBmogZW+3x3MzpEi0Ny8xbksb0WbEyD6EX5u1jlRzH3FAxXN/Kr+CGz67ovTf054KrtBtQj4IxwZ0LTsaFPEGe9uB3PFB9RZyMGzlPCzzFS0qPY2ejrQV3IxTYG1bTLgi1SLlJs8kl/D6hJnYkJrLVRmFFXfWigruJIL850UlcB1oDFxxjNQbQahC/Vo5/rUELJwOaxw/y0LLfx/O0x79X7hwppWjCC1LXZNBa6SKhaXlW6eNnhjPhSPpuILRbTy0/YrIdtTVDaEXfp1SS8imyjf6EohkPx1qQKCj9iymiWpDUcCdUjhbCg1fagQ9NghMU/GsJ7DgJteVESOmVdhzwfJ9UE906LrTEXx+grW5Meys5Fpj88YFriqvrrYpFlKdQnoPaYmKkfWy9nm63OQdlVhWTrpkRzsbG9tmC9OqQJODZ5vGdwLqUnsdaHl/LLUYkmcdDqH2Oa9pHq42BS5QXXbRdjzDFpNEauSq6WBu/NvFrZG9zhFYrNv2EQnvSODvqRBqjohVZC+3vXvCCcTCpveZVksbObGu18zYgyg+QmsK3XPMFdzMErulxBcrdr6tlHu/PG82Y4nrwGcBWsR6E9SjGLBhGj2bfdsGYosBN+0K744aVUGF+9nLPoaQ6G6uL95VWSin8Rbi0i+N5qKKem9grrE6+gJPV2WYc/zt/9w/s+ZV4EL0oYS92VjJXe9V82ivNmHEbDV5IEIaImcy/i+8PY71sM/nRxo5QujqYesfboNACydtE/XQ8Qk17fGAMVm9r9KFo6mWvMpttK1or1kPyZNreRo6ZsI37tMfLDoSjFDnlB/XzX2OdMMhfs9JBTkYcI5hbmn3yBf/haZmFKej3l7n7GcCnvUwVXaVoVmFgmzF++1qt9iUJ7Kvaz5WrIONqoTXr6ojqORc+tB58+SPw4cmQdlBpBy/l4KVdsIT2uHYwENatZ/EH6Dl9iRBTXj4euM5lthBa+gRWLq7Ccx1I67aprA42p+z25fz2p3W5pPsyySfR3A+ghfZKa7zN8cyiRHNsX1w4rEWSrpkR2uPm8UaQL8lhrGC2lZGiUkTytFvv10eHfChQmvbNaNrj18Zsk943ES5QQNTSwNa0D2WcrSgRYZ2o+UBzFjr69Qqj44R5oIPiKhAwWhjYSquW++9oM9x5y1BQSpFSioyjyDmKtFJrvMBuiHd5CPvug5T3RY9jXA5MrJqM0rF3TKyaS9GxeUwMntQAz0ZlV8r/RSetl8H6XScyD9ElYg0YoG2KMC7Me+j5himnUjr/u+ovhofyH/RaaA8tbBwFH1fRnzyAcGHILHZWTmRvYE17oVAunJAgJDPQQzaDFur60Zp2OzBFNSeVbW0Dp0gcDOPjaLTtjhcNRvcmodBuBtsOwkl9vZmwxq+tqX8bul3dDBxMaKBjmW2Spn1VJm7K12CnVHTFdsQWQ5IqYxYCCp6WED1Q+UJkFqrnszolGkpbngzVPD7y8yZgEGH7BmvbavXzlANZXwxX6Lb5PmvK8U3iHQVpF89/cJfL0x7XsgMsQucBnkjoszfcsSAi/Kjwx3J+vYJ7TylUxsVTWjvgOEVt2lf0wkHJCOxZV1sTDOU3/ffG+38xsFls37DM/8tsjSVBJ6EffeQ1wGSv2tjXym5XltAUHsJ+Y4R2+zyabVvbyEUZLkcgsFvvFWAS6L6DXrCN5xzuovy1Mce1aSJqaWCOZS/21QxGWDfvDa0ZaC9AmxvVtFvaPs/fNhH1aa8XC7RqMNx5izA84mO+gxbUQWd3OBs/mwsD92FHKdKeR1ZpLbbnl9sV2Nm31InH4smUuRniRi4KIKWX94rpcJlPxRswQNvsbVop3kXXcZzfcIUvtHvo9G6xoBRObxHlqsh8/0OuzqBxP7A/MNUvG1/krBS1+hwcNp0rl1S7CkIdUjJp9skSTmSNaXgtBKL7xG7bD/sYgcBOdDK3PvAW4QBkBiUjOCQNjrU+OQkmqbEJVRt6USZPNBCL2W9v4/viCzfm8XIv4YNwsOOUra9SwauiGPN442SOp9+bJ6zfSBcdNR70hDzNwItdgzHUtq1OP1eOgqyj0501uZHUZ2RdVEbh5Vy8tBPc7GY1Pgn7gfw8eoHnBfQE5zmSBZmRIm4er0DftJkUXiaFyrmBtp2m6NZO8xYniNfn/638tplstz/x/46bxa9O8wYaL4yA205pvIzV/b3Rolz/N4HoDKbv9FC+jbvuOpVKY/u02wK8iw5GtxjbzDP83mDXJi7MxzXthn5iwa6qLNwqO/KVE9u2ZnQauAJBTIh4Hc3fGVZvEXNNZCTmLcLqYd+j9rj/SKzcA0TntuWeaUYob/JfLU6YHrRF6ZeJ2p9Tye4JdgYXzG8pFSyUFbJOUCJSJvJmYNLAEgVZtDVjOBf0NenGstCuV18/TtoJFo3TSqfB29FV/NDVmQl0Kjy939a4V4qGFdoFYSRJA0vQ2ojgZk941SORFECUatpN+h9DPCBRPZ2DcvVtYQjm8bHGxY9h3htB3RboBjrO6BKTuuLOYUYTDdqnPW1dU6W1/8aGqURor/LkOwnla6RpSkNLWgvsTSmc5hQ0pVFpF9vszsSuMJjgc+ZhbF73xX7nAUoXb1a7zgmfmXrZJsoKvTChsi4ql9Zt8ttHSwpyqQE17MEx/JcR4h6OlXk4Xm51GzYAZrGkm9CKx5yH4frRjwZJCxF29HSDMY9PSp0W/36lsK+1a70H7ddup32ztUY9lL82Qf+whpccyYH48tSgiWfSapRC308deT0Wuqp0fLPKlxPaa7jbCmsgjlKBf7nrP9Nd4MBYuUMIfdVTlB/3Hd/lrcV3czO53Vt8t75mX3BvVuW17ACohPvKgX4Hik40eryKly89VLC1x+N+pV3aQEWf1yltCq9ianLVX8BJ+WOlgialaFI6L3uz3V6/zSklmvbVxk3Fk28IwtAoN2n+L9HATLbwXq0J5bvvrRj2MczkzbTDCO7r+fvfI+rb24Wl7bO3AwyitUJ8YmleY9CmuSX5k2PbpONBdBGn3Ip1TS9qlGjaQfUVA6HPnLMUJr6Bzk86Wpql4fZz5fiB2zKuFuJTjtbEE70uaaLaUUMRfWqMv288YsrBhNrL1bW6Cfxlzd/W1vi0l7333Gj7lOsMyYJBoa9pMIlDBxKyMYGEUoQTvdWdOJS7n0z7PqC8FU+tUq6OWaKuFrbwWy4WxPvvrxjp6pWglCrJGmLeG017kjvIB+jFzaRrE5d1IVz8NPne8bf9JAvtVb3G9kPcHqzbXGjv9VNl2ObxsXYrRTNlMoYERWq5F48uIzFvEVafFKGfuclrvxPwC7TJ9y+BnXwheyhjvhHcjfA61oExKozL0+JA1hnYqi68X6Jl+lNQ8utKlb2vyo3HZsyZYOZ/yp8XACrjz3dscdvztNCecXDRArtZgGhVOh5Pm4nH48fkGeNoN4BiBaX2hhXaJ0zcqtpVEOqMwSbNJghdWD4q+FXjkXzTbQ8O+xhm0hbXuGfQ/rpvEU1jsZJQ055kcVDLxOtq6tuKnpTmiQntqvxDIL5ibd6XW7F21MAr1qNGfOUC6++idaX7PHBcbNOAtNJRU/vQvpxGaE+atI8kI9HPh0KKqFWJefbaAnsRLXh9CPgkOujOR1QYGXc4Qm050n69RvreM/V1CVMKmsnbfsBl6EBCGeVP8vyyqyuAJAUIAn3ee9GykREMTTet9bGlXJtsn3Z7DtdDVGi1v3f7KPVz20Te7keT0RZlcU17ET02Jl2beBvM1lgT9MR+22jaa064jYyL/rY1BV15P9aHEykaJ8sAgTlHvLL1zWiN50IydvrYwKxdwa4KpinYzQn90M12sPtS+UH/WhxfgPfN45scNXg2mIQBxdxt/a6Ll7Wix5d8sfwh7W0GPZat5X9oP1ucjEL1++bx1kql6i2i0oomTy+WjwHaHEWro2hVoaBuhHfjDpCtoBav5qyURop3Fs2tdhWEOqTcwzaNNvUbT1QzYS/KV2Oy8e1vHj3sYwT+jZ5lLukPWibt206EgnuSCWu9TE5MmjfbrBP0gLzSfx83j4+/twlWrH337yKwk6eFngfRArtZsTYazaoL7QNR8AJHVtXngetGtElGSO/yPxxIszSSjEQ/tylXVzsQXTxyfMHyV3sRrZH4NNp31zYjHJZQW2Zr8scnmSgP57wrpch4OjVSAZ2CT6EDEO2Cv3jnT9oGCyQ0HFz0ohnUn6Y9CYU+V7bAapuH2+Hm7LnqqacePSptDRZpvahL1HroAEumvqbOJnVb0rWJj6Vma7JodKMnysECGDU48bTN44MVIqVdalYQpHxTfqFIW32t30rgNbRb1E5mv6q/vjsajPR4LqwajlLk8Cj6/dMF+lR4jxoNfJCCdTWOvypE76foPdPnuHg4kX1xGT9yLH+OFyfj/8JalB7DSTmofOmXVC/klNJpgFX4HX3SQmu90aTmxk5BqEXMCroR2u2XmfTUK0opHM+LCO9mEmeEdqNtgWQTVnsQrHWCyaYlwLcSFdqHKjSkla9R8wV2hR5Ud0ULPmlf0FmVFetRx66Oyc3uoTXtMZ/oFFrDbibx9Rp4KSnaN0Tz0BsCod1/5YH5wGmEEx5by14+7NsQ65ZQP9t8PG6iPNx7L+MoCkVP918HMp6+9B5+cH2iwYZWN23SQPdUGljuvzeLZrYvu6L8PVgLJLUpS+jTHvcNT3LeG832xcd58xybjHYDi6d96/S/ZwTx+LWB0j5r7oO4pn3AVJHDadRwsG8g23RijB8yr7cQRo8PiqlAiHgBWOAf6hz0ou2uo1FvQVhN0krR4ni4nlY6mEVphX6OpdFjfmaU5izKl8qDIHT+ti/lBu57JYtmCfXySB5X0v4fE0zgOfNSCqXcUGj3QsUFvZBKu+GRauAhJEK7IMQoN2kGWBsikxyITlzqFRM9WFlbBy20P0o0gnyeUGiPr3jW+nmwB2usbZtVpiR/cmxrY69Ym3NoUp/A8FesRxWHwKddAfQVIReNmJxCt60bsDXvNTP5HibxQHQGM6EpoCfnzejsCuaa2z7hbgUab3zty917wxVqc37/TaGzAxS8cPKT8vtvFi3gD4fIYoM/xoI+9nLCBQlbmLS/V4sktUnhBz7y99lWG92MnoVKOcw5Dkzk/Tqv6+9/Dz32m8WGDsLFzIHqHX82NqPba+uw+gjHwdq5rrEbyfTznL/0sLwHxjcFpeOuKbNiR3uQMF2WfT4EoZZIKUUzfso2L0zt6+C7Qo2WgkFZi86x+XRPdxftb7Xz5qQiW266DsouM0D14uNxGq1wGINZkA6FdyftoPqMWsqLDtgZN7Yyaf1AFWjYsWSttTevdhWEOiVpUmI0A+Osz5Iml6PN9Dtnj8hx4v6NRktiNO0QBqGDgc0kaxlV5tVqlXGtshBdlEhCr1iH0VPblJ/yRIV+Tq2+0F51LXviTNv/I0XEp13lPR1dnbDe5hp3+3/HJ9+VMgcdqX5uk3SfGzN0g23SawJqvQhsQ3ifGMHdUXqiM5z7oJxQlKay5uNKKbKO7sd2AKExVn8ersA+EEbT3hr7PH6f1ipxwRXCZ4ax3LDN48stDN515+xRGSNsgd0W4FNowd2kfYNQ025SnZYbQ5OuUQtRod1DC+1xC52aMCO3hXX890rpi9XRrW9uFbrABC4xjuKg2KE+Q3QRrx6ejaNJJcZzYfVwlCKtFE2+P3qTo58FoyawW0SDBCsWLXqfD5oU2X6H955byhtvvTfoQBE3cjfFX0ePaStVdLHbAR2Yts+LftlEk0tKmVrFeVzDjiW93SuqXQWhgTCTjPEkB4CqVvT4rbaIx7FePSJB6FQokGyANhvvINS4QHkzyapPvIaAWYG1r5/RfDVZZZK25Uj5kUXHWMKOEXhahxA5tSZwiYY9LXiQij6wlKMi5vGj1aKR6ucG+7raEwU7erxtXWI07UXgJbTQbgQdOwihvn9W/6yU63e20F7Jey8VCO8mrY3+ezhtipN0JNM++/6LvGr81km6bsYEPp6NoJeEcca/hluMcD8vh3lmxcd8CNO+QSi4G027+W5kq6L3kL21096Z+8kI7UnnrGqX2X6Ix9O/jXVhWTH43BbGTUCvHdEBKfcDLgd2Vn7kbVU565t6ZqTHc6G+UY6Di8J1tHbfUQrHgXfeWEGup0g67dDWXmDJa8txHHBQOI4yHisRkoTa54HL/EHqN8ACL/Z8ybqoXss1ELSlIURdBIc6IawgNW2tORy6O5dVuwpCHTLQpBmiPu2RIHSjVsMo22+3xYgcxwjpxlTSLEy0+a+3/G0HesJpt7kGxrEhE79e9vtxRIMqrWr7HD+VUrrWT4Q927ZJAYXwwaX6CjrXd1Bcv8so6Bpl0/iR6ueDkSaqYYRofnYPeBk4gvCeMcK6iaxeCVJoTfRo3nsjvciklNJpdMzf1ta0b2KkfI0IdINQ7loYTXs8GF03Wnmb9L2po9TPlVIoE8eE6Lg4CS20m/4OUU07lD77kvxIQffXeK76cinfqkq8gwWCu4JcBoq+ph19j+s4JXoB08R+2A39cgndocyrUuNCvTJa47lQPzgpFQjsbkqR6XNYf9Nx/HdFL22dBbpaXDbcYjwpR4VlE1bDIlZE/lw2cF/xn2l/Az6CPw4CTsol1VeMHsj8bbJGxFcmq/REqrmxUxCqTdLkw9wodrolqJ6GfaRRlEYTNm3cAFiE1i52MLiZZK1TLoJ8M6HAZj6Ll2loXIIToAD6C6hMaMiq/P8yaE27beJbrws48ffmPrcf354XmscvRgswU7A161HBfaTqZR8qDbyPn66G+r33ymHatyml7Q/uwRpWtysoGwelj2ggul5grPW9pO1oYPdfOyjdesBzRPO0dxCmcLNJqr8dq6CZ5JRvtRaITik/Q3Mkirz/foxvL+Df3AodUbpoyfUpJwgHgqv8OCaMbiAvQahnUq4i4yqyaUXBc/A82GrKRFKuYvGry9hoiwlstcUkMmmHrKvIpJJN+BW+m5qnn+cpBZ/xwDhkKAV7oUipMAVv2nVweoux4Bu+Y1Pc8qbKvjwNax6fybUNXkgQYniUKiAV8I7//gXCyU1cQ1ENXlu4aESOY9oQBKGzNCnrE/q1x80kIwJbHcxL4kKOvegylqivZXwiWgfNGxplk2VbM0/QEZONaZh1odNEhfbRYKT6eRJx4RiiAcRMADrjzz4FLXS4RE1lUwy/j9iygn15MmhhZyAT5XqgnJBmYgnUayrJROHVf8XN43sIhdb4dxYuXFypKpYQd4UyzzMTQR6iKd8iOdpjL0i+Rjn/u/ZcuJ+o5rl2rrFfg3j6txb/ahkfMv9tM9DiODqWiQrjQJgYEC0ONKtRDOZVR1RyPBfqEzflks245NIO2bRDLuPQnHX48JaT2O+gD/PhLdejKePvSztkMi4qwT4+sHjEz96jdArGy4BPKcWFCrZP6VhEafxnueug+n0h3axU5gu1NDgFNKzQ3rbWBtWuglCH2DeEuU+fBx7y33/f/zsu+FXrnv7zX54ZkeMof6AL8vcSTfv2ll+uk1BLpL9Xn9q+pHq2UD5/cr20a1g4KuLTrvJFSKuSBQsXRbcqNdOq5LkaqX5uE6+nIqodhajQXkQL7R8ivD9MkKlKB5wyQp5978VNlOuljyYtTJj2lQiGKhyHap24wA7aPLyXaCA2s/iStPDyl8dHvp+XwwQeTUr7ZgLRGRP5dhIWVFRpm+OvHNEYER41ah4PpR3P0OIvMcRMcV20UN6mwlgm9ksE9vJUYjwX6p9MxqE549KWcWnJuDQ3pWjOuTTnUjQ1ubTkUrTkUjRnU6TS5Z+2Jr2ucU9pdmA3BT9w4GOOTl2adRQZ9LMnk0IrKQI8rWkPzAmt+7jKk8KaHDtHgmVLXqp2FYQ6JJ72zAUejpV5CNjdmvBYWRxHna8dd+iIHcv4tCsvqnnZAJ3CBvTkrZnScateVv+ML2fSBLMb+A/ammJH+zujXssKkiSpgi8dOZEk5aq/oIV2u6hSuECnJbQnCR8jzUj2cxhY4wuh0A56HcMIHC8DxxG99+10b8M1gy1XL3Ouk+69Ruifpn31qGkfqG5NaCHd1jT3Ut5i4oSvHDKylRsAe2HWTvtm4gq8hxbgQS/WbkCyYO4Q5neOuwjYPu3mHPRTJhBdFRe/gTBaPEQb2Ob3zpS1j/Bt2qlsZoVGZKTHc6ExUK5DplnhpIqk8gUKBY+iP19zHIeUC5mMq1O0DfCsdZUip7zAzS2FTsWLAuX4pvFKj0/NgJt2YkI70F8sNScs8Wsffeplri0Io4Id7dX4vBwcK3MIoa9MSvkTkAZYUbc1L3Zk4Q2BJWhBppOBJ9b1cB6CyaoK52Uvov04+4HvEVpTYG/roG3DwlFR8/hCQduWGVRYrItkE9d6J+6HDKE/+wdos+GSyPGE48VIENde2vVqK1OmXu49SB43TPvsdHbx6Pi1TLnFBTsbgaGTgeNBjBZmHIxkDkHXeR10XzeLVV0MvGCU1A5FKLTHzeNt94CaIlh5IDSTN5r2QGgvHRMFQRgZlFKksy7NLWlaW1K0tqRpaUnT0uKSa0njZtwhPeuyjqLVT8NrUvG2utqVpdlRtKHdWNKg5zn9MaG9z4OM5R4Y2Vbvxm9YTbsgrA4m+nfG0+Y1RQd2LsIVwP3o/Ks7K70v7Qv1jZLOxQ5ApwgtCNbx9y9G+7SbiXUoLNSPCSuUaokUVnRRnwfRkYDjMUgaArsx9sPHCX3aledBoYjyO7cy/6nSQHRJh66H85WkGTSCYtw83qR6m4Q2UXcJg9jY6d4qhR0IM+neqxfKCX22eTyUBoCs9f4U70f2Yks8hWAfoaadWPnRbGc8CJ15D2EEeYMZ900d4/0vHsDTbJvQGnuItr+slc7wmjQ8bC2aHT2+1fi0V6VWgrBGohyFctxhPd/SSuHikfP1EUVHH9c8vwPhP+2EQrsZqPJFnfK2nHa9SoNVPT3vV4kJk7apdhWEOkQpFfjDZJX2fWl1YHcHzld626SgyQn9ZVJVXHX77Y33jNixjKBuNO7B32ht+9uUTt6StrVOSoURv00AsYNiZQ4mFMqMxUXDo1TUp723GA1E55MFupWKBtNSle0HI9nPDQNpDSPm8f7rZbSWPVjwsYT1kfZnT9LYQijU1uu9V464eTxEhcNaZqBrkUWbx9sMFFDwht/PHPH6lSNId0RpUNX1CP3aQY/7dt9LamvSZzlKNe29RIX2murDSZUxQvvf3obX37PK1kSN65JKjOeCkISjFGmlyDmKJkfP79NKRccbo2n3rJGqzwPXWqmrEQubhhXa21e8PXghQUggpZQW1pU2n2m2osO2+EJ8sy/Q56r83N5nr4+N2LGMIBJM5KwFRiO021GEob5MWA3GBNS4NmSV9mH/BbAfcDmwk9LjeIrGsqYISJpwuioMkw7Q6/kmoSpSPqUUHUQj7QeHHfmaAiPbzwcjizbhNabBJhiXCUJnfNmNsJ5iZPzZoXRRP66JLmc+Xk8kyUW20K4SXrXeRrtNdjfIEQrt5rYaKE/73qPYzyGW9o1QeDeadjt6fHyxNj72J/XdZkrdA4xPe80RNExFt4ve19ulwC2L4LV3ouWFVWY0x3NBCBgoc06vP9oF0eOLkE4wr6nyYl3DKpDyPe3VroJQx2Qdhet5uB7kPB3EwsM3i1V+xEk1MhP14bDZJuuP2LFMkLZA227l7jVC+weEkzdbOwP1M4dxlSKjPHJAwbquu/ovF8vSwtHXeY2wjIynfMuDSjnhc85/46In4uNGsWoj2c8hWWCyBWTj024ix+fRQQr/h9ACxRbcK90/6jlQW5wkU3LbkkBZ5eqqXQmfZQjzlJs7y/i0J7Vzs00mM5rYZvHxtG+zrXIfoK9NfKEofv8Eiyz+5zm0lt6mwOhmnhgyjipdgXAVzFsaLfevJfDh9cK/E9JOCQMz0uO5IKwyynqTdsOB2tDnQdYtLR+bD402DSu0D0ZPTw/5fNxwTRCieJ4X8dfz0JOOXqVKNAiNQDGVxs3mQj9HdLs3AOaghbXW2HfsyVq9kDVKZUcvTqS9UF51fC17Bj25ztXA4sxIoZTSwkOiulNBvx8qHX+bKRVHTfT4xAjQ1u/UOuUEhQxhnnbQ/eRVtNZwfZKjxo+UJYaXUK+4UGs+q8f7rhzlUr5B7ZsDKqXAj3AM0euWoTTlm0epeXz8/WgRX5w1AvdkYBHRmA5JrhnxaxVvg21pYLA17TXVdxW+n4uyfF4UfGQ9eMnKK/6xSaGA76qqa94EQRgikQHXWnnMuOFD35jI93na1z1etuRAo0vDCu1NLRPK7uvp6WHTTTdlyZIlo1gjQah9Jk2axNMLXsPN5CLmkkbTnqW8CWs9zV0cpWjGCwKS9KG17hAKYSZmwRqTa9d1Ap925cdkUb7Qbk/KXaVT/8Un3pXUls19bj7bb7dFBY5cSopQ0DCm8S8Q+rMHGnb0vD2lRl6wDO4nLyq02/ce9rZOumi5vmKb/w9UrlYZqF12UEPTr8qZx897bj4fnbplBWsaxR7jjcZdoc3jAZaR3PcS+19CIL5mShVYSebxtdCPlVJ4jgOOH8vDLepJ+1YT4csK5i6BHdeDbdbzV+xUffmF1RCjOZ4LQoSkQcYoJzx/WdUD+orh57UwQPk0rNCebVqr7L58Ps+SJUt46623GDNmzOhVShBqmJUrV7LhhhtSyOdRmZxWInih5qWI9se0/WorHYCskjhKkcMjrfSiqhHQXHRmgJHyU649YqvGdoojY1bSV9SRpC0VsnmXxlfCV7yeIa/Mf3PEJ3nlBA2X0ujxJghdJNWbsn2CK9tPXve3i4Ft/feBJS/1de/FNbWgFwRBR+j/mLWv3qLjx8kRjR7fY30OpX3vP/PfrIrQHjeRzwAT0H7tRv1hp6mDaP8rZyGSQ7sDgBWUmYGtdKpKytGrcEUHin7kaFfBhyfBduvpRqcdPZl3FaQcVK0HXKhBKjGeC8KQSBpwTGq3fi9cUewvQC6VPDBJyreRZ8V7rw5aZsyYMSK0C0KMIId5bBK3LvAO9WnCWg6llA42tybPuwJpNdS00+er2lNR8zAPX2j3z5v99Ur6IB/1uX1H9HgDCQy20G7i8r0EfI5Q027ui5QaeX92FXv/PHCZ//flaBP9ncvUvR55HviT//77wCXALv7f9dS2uHUE6HEzjxXb0d/GBWBz73x+hPv5YBgNe9xEHsJgdDnCMT8eZT7pPrLPQROhe4AttNfqxFO5Ci/jhhV2VBjQBrSgnnZCwT1dr0++6jLS47kgDI0yCgszz+kvguc/0fsK0BZTTdTAQ1dGHEEQIsQjyJvxyYSOadS0U2sc8dViR2nHfs/TDy8I0kLZDzmzwFFOW1bv/cBEjwcttC9GawunEI22bQvuI4VLqVA0K1ZmFtE85oraFYLimHNl1z/evocIxx8IXYxrmXICbJZo9PQeotc2Xn60cay0b0aAN3Uzad86gLbY95Lu9/hiE4QWBXYKxRJNu6ruOSgh7egAVDl/25SCnL/Nuv4+/b4xLbEEoYEJVhYJBxzzYOothOV6C9rkMvhe7DtVotafhYIgjDKO9bIndEaj+BIxwaIOJtWCRdJEU6E17SYaX28B5XqBwK787ynC59tomsdXghLtoE88EN1LaIE9gxV4jjDd20g+w21fefM7B8XKHGT9tqv09agX0cGMI3bU/c/EynyG0P0gxei4HwyXcgK4CUQHWlnbi/bzNmVqQnAnvB72eG807Z1EzfnjY3/i5/7LtDWeqz0pEF2tXGGllI7lkUtDc0oL680paHahxf8sI2bxgtAQ2FqJPktozxf9FFF2OSprUjgEGnauve7621e7CoJQlwQTaxVO4F4E/unv/z46MFctTDiFEcQBir5Te3/Bmqnbq82lPu2j0Q8u/dVtFThqMiYwIWh/dpOf3Qg0ropGkB/Jh6jyj5nGTy2pYCfgF8B+/nZHwv31ItQaApcCv41Zpdtj2ncZ2qc947fNtLEeSOr/cfP4HkJBNul7l105ev3cYMZ607/NmL8+oZWJ7UQY14wnLX6Zz4wbgPHlN1PiekihqVwjvBttewqVdVGuIxr2YTKa47kgBCSaBVlaCFvTXihY0eNHoW5DpF6eh6vMsqWvVLsKglCX6ABsoZ+jCzwcK/MQOqe5bVYp1AnlpGtHhT7t/UVURoXFrIm6eWjYE+9KL9x8+ehPV+S4SfU10eONW+tLwFewNJJE072N5AReKUUWj7zSAk/RP++7of28Hb9+OUcLvDmlt/WCoxQZzyOndKwvr6jbtyth+zJWu7KqPuJNBAJrLLBhlmjKsx4GyLqg4MtfqEw/HwgThM4W2BXaPP5tdKaIZkrrG7g4DJDyTqH7a7f/mVkMq9lAdAmIgD7yVGo8F4RBsQdcmxxaUAffRdAyj48pLqpJw2raC/3xRCONzw033KBNu/xXW1sb22+/Pb/61a/o7+8f/ADDYOHChSiluOGGG4LPjj/+eDbZZJNVOs5jjz3GeeedR9Fo/EaI8847b7Ufvm+//Tbf+ta32G233WhubkYpxcKFC0e0frWELZAYTVeSCavRmNWbtk8og6ug4N93+SKk3RKBHcDx/4qnbaok66y91ogez4wFSYJDGi1cFIGVaBPhksjxhOneRpqUUuQUNClodqDFgWYFrQpaFLQ6ep8RbFN1dt8ZodxuX4vfvla/raZ99ZJysZwAGs9T3kv0vomXH+l+PhQUYSwFW+M+Cb1otYjBU/GVE9hBx0Ax5vFmFjKaY4dQe1SjnwsCUGoOFJgFOZC3nHj6CqWBJmvAr71hhfY1mT/+8Y/MmTOHP/3pT+y8885861vf4vzzzx/1evzgBz/grrvuWqXvPPbYY0ybNm3EhfbhsGDBAqZPn864cePYY489ql2dimNSnpmXMdG9lNCEdScVmrAawV2oI5JWm110yhPQOfBct3Q1Wik/ery2JkvSFta+iDUwaUIz3pfQwstaRKPG24tVlSBnhFhfkG3zhdtWs/X31ZOW3aCUoslfgDDCepvdLtNOBek6ENgNSQJrGuiyyvQSBvKEUlPzamCEdCOwmz6eA8YB8ynN0W7imKjYcaC0HU2E58AsYJS1NhhuYwRBEMoRH2DsiYvramWFoZdS8/hyWvpRpGGF9pYxk6pdhaqxww47sOuuu7L//vvzm9/8hr333pvLL7+8bPm+vj48zyu7f3XZfPPN+chHPjLixx1t9txzT5YuXcr999/P5z//+WpXp+IoXzAz5rdGK7argmkKdotpwnIqGmRTqFMcS9Pe56EcJ/qs8v/ImK29L2E7kjwxZ+6IH7NcvdOEwsVLwNaEwoqdm32k/dkjdVOKrKMCQXaMA2MdvW1TWsDNOqpuTXcd35qgzQlfY817pbXtmQbwuckQjZzeQ+jnbWNa+rc58ypep6TfNvFL4mnfjIm8HTwvaQvlFVgZdLttTftoposUao9KjOeCMCSSBi2AlKuVFXZ+zpS1NFkjA1TDCu2uW++xjUeOnXbaiZUrV/LOO+8EZuxXXXUVZ555JpMnTyabzbJixQoA7rzzTnbddVeam5tZa621+PznP8+bb74ZOV5XVxennHIKEyZMoLW1lUMPPZS333675HeTzOM7Ozv57ne/y+abb042m2XSpEkcccQRLF26lPPOO49p06YBkE6nAzN/+3fPOussNt10UzKZDJtuuikXXHBBiVb+2WefZY899iCXy7H++uvzox/9aFiLEo7TsLdJWTK+YG5MWI32q1WF5rq2GauYxtcRRlVm3putq0JNe76o8xBbRcxs3mjJRtO6or29a/BCq0HSqUgTChcvoYPQBVHdiWrZKy00p5SiyVE0+1rpZgU5R9WdSXwSSqmgfUbr3uLoxYp6MIm3KbdglSPsSx7aTDybUN5s2zsq088HYqC0b0b1YTTtEE3FZ1Cxl72vlTCCfr9VXlhzqdR4LghDIun5ko5p2gvoOVCSdr2KA1jDWrWuXP7m4IXWEF5//XVc16W1tZWuLj1YXnDBBey0005ce+21FAoFcrkcV199NSeffDInnHAC5557Lu3t7Zx33nnstddezJs3j7Y2na31pJNO4vbbb+eHP/whO+20Ew8//DBf+tKXBq1HPp9nv/32Y+7cuXz3u99l11135YMPPuChhx5i+fLlfO1rX+Ptt9/md7/7HU888QSuG4a66u/v54ADDuDFF1/kBz/4Adtttx1PPvkkP/rRj3j//ff5+c9/DsB7773HPvvsw6RJk7jxxhvJZrNcfPHFJQsPoBcVbrzxxopYGdQ7Sily/pJjCsgrP4W3CgNxGU18IwgQAvqiFkPzeJWxQs1ZmrAUBGby/q6Km7ceuP9uFTpyKSZ6fB/wCvBNQrPhuOA+WtSrRn2o1Hv7koLQQahlNuQJNe1Jgvto9nMbI7TbQekUWtMOoUn/YFY1SVcxh45A76HvKSdWttJjh1B7VKufC2s2Sik9q00adLKWpt3IBPYcKDxIRes4GA0rtI8knufRXsHjtzGyk5ZCoUB/fz/t7e1Mnz6dO++8k0MOOYTm5jDZzMSJE7nrrruC3+3o6OCss87ihBNO4LrrrgvK7bzzzmy11Vb87ne/4/TTT+eVV17hlltu4YILLuC73/0uAPvvvz8dHR1cffXVA9brpptuYs6cOcyYMYNDDz00+PzII48M3m+wwQYA7LLLLqRSYfe89dZbeeKJJ/jLX/7CnnvuCcC+++4LwLRp0zjrrLNYd911ufTSS+ns7GTWrFlsuOGGAOy3335svPHGJfVxXTeyMCBEMb6nGc+jz9ORrIuEAep0MC6ZatU95hK6WCnfvDAQHSqikTaLNPFgUvU2+U5abFDodnUCC9D+uBuQHDXerZeGCqNCUl/KEgrtnv8+Fy9XA6bhRmB3vKiJfJLQbr8MA0WQzxGegz6S3QMEQRBGh7iVof8m40Kfmf/427Rb8rVqD9YNa/er1Mg1rR2Y2Fu510gvCGy99dak02nGjx/PKaecwjHHHBMRxAE++9nPRhYK5syZw8qVKznmmGPo7+8PXhtuuCFbb701jz/+OABPPfUUxWKRo446KnK8o48+etB6zZo1i0mTJkUE9qHy4IMPsvHGG7P77rtH6rf//vvT19fHk08+GbRj1113DQR2gJaWFg455JCSY/7ud7+reFT9RsBVipyjaHYUrY42Z00rJQJ7oxHRtBcTgrBo6cI8xkbTAam3Nz94oVWknKbP+CHb+dkDDTtauDF/CwJE+5DtbpElNA33/Pc5kvueojL9fCjYUePt7fr+/pnA8yTMWxMsRuPbJkKhvZ9oLAzRtq+ZVKufC0JAiV+cEwrtZhvMgWJlqzhSNaymfd31tx+xY7UBSyu4PNw2wse766672GCDDWhra2PjjTcml8uVlFlvvfUif7/zzjsAfOpTn0o85rhx4wD473//C2hNvU387ySWLVvG+uuvP2i5JN555x3eeOMN0unkZDHLli0L6rftttuW7B9K/QRhjSGqJtNbR+nE2QB9BVRzyioa/p+OadpLJt4VeJ5ddtXtnPXtY0f+wAkY8/iX0UHoIqneLPcQWbQSbFTCe3OPFNF9qAcYGytjb0ezn9vYQehcy0R+ub9/rv+6HPi4CgXu+AQyWLSwXAVyhHnabaHd/o69FRqfavVzQUicoCi0gN7Vr03jjW+7a+03363yQNWwQvs7i+aO2LGUUowZsaNVnm233ZYpU6YMWCZujj9hwgRA53r/8Ic/XFLe+LMbYX/p0qVsttlmwf6lS5cOWq+1116b559/ftBySUyYMIFNN92U6dOnJ+43Ae/WW2+9xLoMpX6CsEbjEmra+4uolF5ljk+q09Z2tDRlp5/yhYocN6neRmh/Cfgspf7sxjVEEGzKmceD9mU3ZuKZAb5TqX4+GLYVifLC/v54rNyDwCcItfE25TTnzcB7/t955N4RqtfPBaHsZCXtQN5P9tpXCAvV2Gpiwwrtnlc7eb7rgd133522tjYWLFjAcccdV7bcLrvsguM4TJ8+PfBpB7jtttsG/Y3999+f2267jZkzZyaaqwNks3qa093dHSwUAHz605/mT3/6E62trWy99dZlf2O33Xbj4osv5q233gpM5Ds7O5k5c+ag9ROENYJyKnFXhT7tvYVoHj/rrXloJNu8VIZstjLG+EkBxNLAW0AHsAWhsG6bxadq7EEuVJdyi1dGaDdm8Xm0uXiSdYqicv18MILgip6+7VP++4OAx6xyh6Dvf9cvYwvuKuEF+hzYmvYS5ZXZyj21xlCtfi4IQPKgk1Z63gNaeM8klKkBs6CGFdqFVWPMmDFcfPHFnHrqqbz77rsceOCBjB07lkWLFvGXv/yFvffemy996UtstdVWfOlLX+Lcc8+lWCyy0047MWvWLO6///5Bf+PLX/4yv/nNb/jiF7/I2WefzS677EJ7ezsPPfQQp59+OltvvTUf+tCHAPj5z3/OgQceiOu67LjjjhxzzDFcf/317LvvvnznO99h++23J5/P8+qrr3LPPfdw991309zczLe//W2uuuoq9t9/f84777wgenxTU1NJfb761a9y4403Dsmv/Y477gDgmWeeAeCBBx5gnXXWYZ111mGvvfZalVMtCLVJJOWbFtoDV67ApUsFAmtE065q4nm2SpSrZxr4L7A5+rntEg0+lxrgu4JgY+Z9vdbWPIlqyZ9bKUXa80grSHs6M4gH7ORpk/gHgEOBXRydDjSNn/bQmtAmmcYbTbsdiM7WtNfSORAEYQ0gGKiIDjwZJ9Sw9xdKI2aW+LVXh4YV2seM26jaVag7TjrpJDbccEMuvvhibrnlFvr7+1l//fXZY4892GGHHYJy11xzDa2trVxyySXk83n22WcfbrnlFj7xiU8MePx0Os2sWbOYNm0a1157LdOmTWPChAl8/OMfZ/z48QAcfPDBnHLKKVx11VWcf/75eJ6H53mk02keeughfvazn3Httdfy+uuv09LSwuabb85nPvMZMhk9PVp77bWZPXs2p512GscddxwTJkzg//2//0d/fz/nn39+pD6FQoFCoVBSzyQ+//nPR/4+5ZRTANhrr7147LHHhnQMQagJkh5Y5nOzftVfQGWsQHRKBd8zCvi4T3v8/UjywKw5FUsTFD8NRtAyQeiMFtKOIC9B6IQ4SUKr6Sd9/raTgQOxVbKfD0ZaaWuAgi+wO2gBfVcPdkdr1jMqTPWZid3s5QTwJgb2aRfWPKrZzwUhQuD3p7SwDjr1W3aAeVIVaVihvVBY86JTHn/88Rx//PEDltlkk00GzEt+0EEHcdBBBw14jObmZn7961/z61//OvJ5/Lg33HBDyXdbW1u5+OKLufjiixOP7bouV155JVdeeWXJvlwux3nnncd55503YP0++tGP8te//rXk82nTppXUL6mOSUgud6HhcS2hvVAMbcBj5mFGWLc1zpV+jLW1NQ9eaBXx/BeU+rSDFtqDIHSEQegcSmOCCMJAJvIDpTyzy1einw8VRylyeBR9q5mUb3hj/51BC+w5pbOKxLHbYt7ngC7/fT/R9tejhY4wfKrZzwUhMRBvxoGCJbSn3PLadTGPH3k6Vy6pdhUEQRBqG2W9cRwwhid9BcgolNEaWg+pV63tpHKHG2E+sdvIZQMxmGjZBvP+7ViZIHI8vl+7SBdCjCSB3dY0GxVCHwOYx6vK9PNVIaUULY5H2oMeL9S6K3T/N5r21CACu028/Q076RSGTLX7ubAGU05jnlHQa6V8c+0c7VHFRTURKz9BEAQhqmnPe5ByAoHdPKdeAS71H2AXkJy7uV5kWkVUuALdHpOf4kJ0BPkgR7tlIi8Iccr1/yyh0Nrl/13L94yrFE2OYowDYx0Yo/yXA81lBHZI9rpRaKHdaNrLCe211H5BEBqYRPdApYV0YxKV9zXt5b5bRRpWaHdTpbnJBUEQ1niSTMMU4DqhvXgvqJSLo1TERPzR2EPrYax0aL42uhKPtXffWzHix3RUVJOeAh6JlXmIMMWbg3Z7E6FdSKJcqIgU4Vywk5jQHjMPr0Q/X11cpUgrRdZRZByFq9SAbiH2IphjnYscOhMDhEJ7uUULcTtZM6ilfi6swdgDUNa1TIKK+u+kclR3nGpYoX3CxK2qXQVBEIT6wbb77gMn7QZm4S46jekBgGcVOwRfkFWh33clHmc33fbgiB/T9lVPoYXzQ2NlDkX78KeVtp5LIYKFUMpAmvMMei5o1sNyCWXM+0r089EkqU1N6LYX0YY8Yh4v1Hs/F+qYJKUFQNoI6Z7WtAeBeON+7dV9/jfs+PnOornVroIgCEJtkiR4umYNV4sXKuOS9rTQ0acURQd2dOGXwD1ogX1HpYNSZf1XmsoItd/+5tEjfkxHKTLKI4v23S0AOwO/8uA+wvZllS+0UxoxWxAMEbNwRSClN6E1zCbt20Dm8ZXo56NJUruMD38P0ejxtewiIFSWeu/nQp3jxAVxQs16v6dfRogv5wNfJRpWaBcEQRBWAaNp7/ODsaQdHS0aKDi+Bb2CXR2dr1kR5mzOWcJtPZH13fiLfr1dYHcFu/nvU367mnxNe1LEbEEYiAxaYDUm8nFNe6MIreXaY4T2LiQQnSAINUJcGE/5Sov+og7Em3aTB2VJ+SYIgiCMKkmSghHae/wQ8mkdiK7Jf0illCKvIOsqPCPEE+Ztzqn6Mx13lKIJD+WA60Ha02a8RU8vxqfRwrppnyAMRFIXyaC17L3W33ZZ26+93rGtDGyfftDt7yNMGdmI7RcEodZR1kCFNVD5b/K+0N6SKvlaZFslGtanfa21N692FQRBEOoHYzLW44eQ9x9ijoJmoMVRtDqKNgWtSkeUbnOgxddEOxUU2KffObtix04pRbPS7Rjj+G1z0O10dBvrcUFCGD1M30jSNhuf9h7CNIPltNKV7OejQcRFgHCC2Qx0M3AgOrm71hzqvZ8LDYYtxOcL+pWyxONy+dqrQMNq2nu7V1S7CoIgCDVI7AFkHkhxod3K9abQvrgZ5Qei859nDqMjzG61xUYVPb6jFE0KPM8LTOWNICHCujAUygniJuVbL1p4NfuSyle6n1cSFXvZtKCF9n6gdZTrJdQe9dzPhTonSWMemMijBfbegp7slAzS1TcLalihvbtzWbWrIAiCUD/Y5vHmyRATWJWvcR5tQXb77bYYld9RSklKN2G1STIPz6IF9h5C/267vL0drX5eKeJtN9sMoaZdAtEJ9d7PhTonrrAw5NCm8YViGKCnxgamhjWPX5OZM2cORx11FJMnTyaTyTBhwgT2228/brzxRgqFQlXrtnDhQs477zxee+21ihx/zpw57LLLLrS0tKCU4t///veIHXvFihWcd955/Otf/xqxY5bj+OOPZ5NNNlmt7z7//POcdNJJfOxjHyOTyYimUCglyafL/N1bDGfW8e/YW0EQAsppz22f9rICawPcUwMJ4TlCod0d4DuCIAgVp2Tu42+zSgei6y+Upnyzy1WRhhXaM7m2alehKlx22WV8/OMf5/333+fCCy/kkUce4brrrmPLLbfk5JNP5t57761q/RYuXMi0adMqJrR/9atfpb+/n5kzZzJnzhy23HLLETv2ihUrmDZt2qgI7cPhmWee4f7772ejjTZixx13rHZ1hHqjpxhGXYtLFVV6aL22cFF1flgQhkg5oTVHqGnPDFK+3vt5xEfdGiuaCVO+Nax5pzBk6r2fC3VMfA5jz3FSrs7R3l8oTYVTI37tDTt+tq21QbWrMOo8/vjjnHHGGXzzm9/kiiuuiOw77LDDOOOMM+js7KxS7SpHoVDA8zwcx+GVV17he9/7Hvvss0+1q1U1jj32WI477jgAvv/97zNnzpwq10ioeewHUU8xGoTF3l8lleCf//IMm22yflV+WxCGSpLmOEWpTztE3SPNthH6edIIkUOnfOtHR4+vQVdRYRRphH4u1DFJ/uyghfa+IvR64RyoxsyiGlbTvmzJS9Wuwqhz4YUXMn78eC666KLE/ZtvvjlTp04N/v7HP/7Bpz71KVpbW2lpaWHfffflH//4R+Q7e++9N3vvvXfJsTbZZBOOP/744O8bbrgBpRRPPvkkxxxzDGPGjGHy5Mn8z//8Dz09OkPtY489xic/+UkA9ttvv8A39rHHHguOc+2117L99tuTy+VYe+21+epXv8r7778f+W2lFN/73vf42c9+xqabbkomk+GXv/wlrutSLBb50Y9+hFIqMC9/+umnOfLII9lggw1oampiq6224pxzzqG7u7ukXXfddRcf//jHaW1tZcyYMey8887cc889LFy4kE033RSAr3/960Hdb7jhhsTzYdf1vPPOC/5esGABxx57LJtuuilNTU1sttlmnHzyySxfvrzku6uL4zTsbS1UGgdtHp9yy68sV+GZ9bXjDh39HxWEVSTJ6tIEouv235d8x3pfz/18oAj6xtqgn2TPG2HNop77udAgJAnfRtPeC6RNrg9qakVRZvcNQqFQ4NFHH2X//fcnl8sNWn7evHnstddeLF++nBtuuIHf//73rFy5kr322ou5c+eudj2OPfZYNt98c+68805OPvlkrrzySn76058C8NGPfpQrr7wSgCuuuII5c+YwZ84cPvrRjwLw3e9+l1NPPZVPfepT3HPPPVx88cU8+OCDHHjggSW++DfccAP33Xcfl1xyCffddx9f+tKXeOKJJwBtIj9nzhzuuusuAN5880122GEHrr76ah588EFOO+00rrvuOk444YTIMX/5y1/yuc99jnXXXZcbb7yRP/7xjxx++OEsXLiQ9dZbjzvvvBOAs88+O6j7Zz7zmVU6P4sXL2bDDTfksssu46GHHuLcc89l9uzZHHTQQYN+d++9915tP3dBCBgsempPH7hu6b74dwRBCCh3a+QINe1ZkoVaaIwsBcav3ySisFO+dRGmfDNlk7aCIAiVQpXzZwfIun6ediDtJmvXxTy+9vE8D7orGMCtyR32A/u9996ju7ubjTfeeEjlzz//fLLZLLNnz2attdYCtPZ7k002Ydq0aYGAuqp86UtfYtq0aQB86lOf4qmnnuLWW29l2rRpjBkzhg996EMAbLPNNuy6667B9xYuXMjFF1/MD3/4Q84999zg8y233JJPfOITzJw5k89+9rPB557nMWvWLJqawni8EyZMAGCDDTaIHPuII46IfO/jH/84Y8aM4Stf+QpXXnklEyZMYOXKlZxzzjkcfvjhkbYfcMABwfuPfOQjAGy22WaR468Ke+65J3vuuWfw9+67786UKVPYY489ePbZZ4PfSMJ1XVIpuWWFCpJCp3zLJKznNoBQIQiVopwQmkH7c+cJNe2NKrCWC8bXhBbae4kK7Y3WfkEQ6oEyMXuyLvR5+n0mIY9MDcyBGlYCmDBpm5E7WHcBvvLYyB0vzu/3hubRvRSPP/44Bx98cCCwA4wZM4ZDDz2UmTNnrvZx45rn7bbbjkceeWTQ7z388MMUi0WOOeYY+vv7g8932WUX2traePzxxyNC+6c//emIwD4QK1eu5IILLuCOO+7grbfeoq+vL9g3f/58JkyYwN///nc6Ojr4xje+MaRjri75fJ5LLrmE3//+97zxxhuB6wDAK6+8MqDQPnv27IrWTViDKOef5QLd/TAmk1DWfGX0H1y/vfEeMakUap5IIDb/vYkeb5vHl/Plrvd+Xm4xogl4j9CnXVizqfd+LjQIca17ytVKC4gK7TW0utiwQnv7irdH7mBNrhasK0XT8DMDT5gwgaamJt54440hlX///fdZb731Sj6fNGnSsPyrx48fH/k7m83S29s76PfeeecdAKZMmZK4f9myZZG/k+pejhNOOIFHHnmE888/nx122IGWlhb+8Y9/cOqppwZCszn+BhtUNoDh2WefzS9/+UvOPfdcdt99d9ra2nj77bf53Oc+FxHgBaEqpIC+fkj7C2Ilfu3VeWrts9fHqvK7gjBUys3rsmhryzxaeE0SbM37RujniVanaGuDAqWTzhqaDwujRCP0c6GOSVI8KLSF4ft+rKt0LOVbledAhoYV2vM97SN2LKXUqGvCV5VUKsXee+/Nww8/TG9vL9lsUsibkPHjx7NkyZKSz5csWcK4ceOCv3O5HCtXriwpFw8ON1yMafusWbMivx/fbxiqtq+np4cZM2Zw3nnncdpppwWfP/fcc5Fya6+9NgCLFi1i2223XaW6gz5P+Xw+8ll8oQHgtttu4ytf+Qrf//73g886OjpW+fcEYViU8+tyHejt1yvOkf3VfVBJpGGh1lEK8EpvKTsQ3bjYvvi23vu5Ivk8tBAK7Wnrc2HNpN77uVDnlFspTCno9OfxboIJfQ0MWhKIroH47ne/y7JlyzjzzDMT97/++uvMmzcPgL322ov777+f9vZwcaO9vZ2ZM2dGosVvvPHG/Oc//4kIpI8//njke6uCWUyIR27fb7/9cByHN998kx133LHkZSK3ryq9vb0UCgXS6ahRnon6bth9991pbW3l2muvXeW6gz5Pzz//fOSz++67r6RcV1dXSV2uv/76AdsgCKOGo6ATnaM06QFVAz5dglCrJAnjRsvcS9Q0vBE1zPE2mQlmDj2s9FFqHl8j64KCIKxJJA08GUcH4jWf1+CYVNvq42HQ1DJh8EINxp577skvfvELzjjjDF588UWOP/54NtpoI5YvX87s2bP57W9/yy233MLUqVP5wQ9+wL333su+++7LWWedhVKKCy+8kK6urkgguKOPPpprr72WE088keOPP57XX3+dX/ziF4wdO3a16rjllluSSqW47rrrGD9+PNlslq222orNN9+cs846i29+85u88sor7LXXXuRyOd566y0efvhhvva1rwXp4laFsWPHsuuuu/Lzn/+c9dZbj7XXXpvrrruORYsWRcq1tbXx05/+lG9961scccQRHHPMMbS1tfHvf/+bXC7Ht771LSZOnMiECRO47bbbmDp1Ki0tLWy66aZMmDCBo48+mhNPPJFvf/vbHHzwwcydO7dkYQC0L/6NN97Idtttx5QpU7jzzjv5+9//PqS27LvvvrzxxhssWLBgwHJdXV3cf//9ALz88ssA3HHHHYBOTbfjjjsO6feEBiX+ILIfXo4DfYXQNKykTIXrVoa5z81n++22qM6PC8IQiJi7W9rmDFrL3ksZ83hrbljv/VzFXgaT8i1PmTzto1VBoSao934u1DnBIE10EMooWOlZ0TJV9Ds1QMNq2rNNa1W7ClXh9NNP54knnmCttdbif//3f9lnn304/vjjeemll7jmmms45JBDAJg6dSqPPfYYY8aM4bjjjuPYY4+ltbWVv/zlL2y//fbB8T75yU9y9dVX89RTT3HIIYdw/fXXc9NNN0UC2K0KEyZM4Fe/+hVz585lr732YqedduKZZ54B4Cc/+QnXXnstjz/+OEcddRSHHXYYF154IePGjWOLLVZ/gL/11lv52Mc+xqmnnsrxxx/PpEmTuPzyy0vKffOb3+SPf/wjb7/9NscccwxHHHEEd9xxR6DldxyH3/72tyxfvpxPfepT7LTTTkHQvuOOOy6Iun/IIYfw0EMPBSnnbH75y19y6KGH8r3vfY8vfOELtLe3c+uttw6pHYVCIRKkrxzvvPMOn//85/n85z/Pn/70J4Dg71/96ldD+i1hDcXkakrbD6u4T9fo88r8N6v344IwRFTC+yzgobXtTbF98W299/NyXjdNhEJ7w2qKhCFT7/1caDDMQJV2dLTMuHexPbBVWXhXjz76qFfdKow8nZ2dHHzwwXzwwQeMGTOmZP/KlSsZO3Zs2f2CsCYi98Waged5OkJqZz/0FPSru1/nJ/3DK/B2DxwwGXZcR0dQbU5BzoWmFDSnUEmpUARhDaff81hZhPYidHjQUdRpzpYCJwAbAEcDe6F9vFsVtDgwxoE2BVmnRlQ5w6DPPgf+eegEXgG+h164+BWwKTp3e5ujz0OrA2MdSImNvCAIFcbL+3OeLmsO1NMPLy2DO9+G8Qq+sZ1OAZe15kDNKcilUEMYq818+t5776WlpWXE6t6wmnZBEARhFTEPo0z1teuCUG+Ui5wOsBJtJj5Y+XqmxEXAf9+EFtghmqc9/j1BEISKUy6QhnELTLs1YWGYhAjtgiAIayJJWq24eXwN+nQJQi1SzuQ9SWhP8mtvFJKEcXuxQszjBUGoKuX8eIzQ7jqlZU25Ko/VDSu0r7v+9oMXEgRBWMNQ5R5YACknug2/VFp2FLn0V7dV54cFYRVIim9kO5PkKC/cQ2P084i2nVDTbpBAdEIj9HOhQVDWm7Q/WqcSXABrZGW1YYX2ZUtfqXYVBEEQ6ouU0bT7j4YaUQl++ehPV+V3BWFVKCeMGu1yluitFC9X7/3cCOlObOHC1rTHU74Jax713s+FOidiDmQNViZejx23pzZk9YCGFdoL/T2DFxIEQRBCXFvTXjs+XeusvVa1qyAIA5IksNvR0yE0lS/nz90I/bzceTDT4PQA5YQ1g0bo50Kdk6SAMMJ61i0tE3gMVnekalihXRAEQShH3ETefxMEonOTtesysxaEspQTQHPWtpGF1YEWLkz85HggOtviQBAEYVRIGoDTMffAkjLVH6kaVmhvGTOp2lUQBEGoDwIHXP+RkJTWrYorzE/MmVu13xaEoVI2vpG/LRuIzt82Qj8vtxjRXOZzYc2jEfq5UM+UUVrY0eMjxWtn1GrYQJ6umxm0zMqVK0ehJoJQH8j9sAYSfxi55uGV4NNVxedWe3tX9X5cEFaBxPiO/rbENDymZW6Efq4U4JWehwyhlqiRrQ2EwWmEfi7UOUlRQ23hPWlQqgHhvWGF9pXL3yy7L5PJMGnSJDbccMNRrJEg1D6TJk0ikxl8wUuoc5IePgpwjHmYiparsnnYgfvvVpXfFYShMtCd0YT26bbNxZME1nrv53GzeMcX4EGbx2cTvyWsadR7PxcaEDN4OYTzn/i+6svsjSu0D0Qul+P1118nn89XuyqCUFNkMhlyudzgBYXGxKjCUgkr0DXwwBKEWiYitFoCa5bQp3swwb3esdtnk0Nr2+NlGvEcCIJQwyQNOkZBkQOyCXnaa2SAalihXamB3fVzuZwIJ0Ld09ubJ5sVzbiwipSbKTvWjhp5SIH0c6F+SLptMkTTntnl7PL13s+VUuB5iQK5LbSTsF9Yc6j3fi40AEmBdgG6gX/+F9ZxYOuJNae4qGogOs/zuP766znyyCM58MADOe2003j99dfLlm9vb+fHP/4xBx98MAcffDA//vGP6ejoSCy77vrbV6raglAzXHbV7dWugtBIuMpyvE2IGl+lh5b0c6HWMamAkgTWDAOkOrPuqUbo5+U06MZFQBAaoZ8LdY6tQTevhe9p66gVwK2LYOG71apdWaoqtN9+++088MADXHTRRdx9991su+22nHnmmXR3dyeWv+CCC1i+fDk333wzN998M8uXL+enP/1pYtmlb/+7gjUXhNrgw1uMq3YVhHolSWpwKXU8rQHzMOnnQj1QTmDNEr2typVrlH6eFOPJFtoHWrgQGp9G6edCnWIH3TBbR8G8pdFy/1oS7guCdFSXqgrtM2bM4KijjmKzzTYjm81y4okn0tfXx1//+teSskuWLOGpp57i5JNPZuzYsYwdO5aTTz6Zv//97yxdujTh6F7lGyAIVebPf/5ztasgNBKugmzcn91sq/fAkn4u1AtJAmsGLbQGZVTp7QWN0c/L+avHNe3i077m0gj9XKhflFI66K4RyB2l5z4fXS9acKf1QmHdVTWxulg1ob2jo4MlS5awzTbbBJ+5rssWW2zB/PnzS8ovWLCAdDrNlClTgs+mTJlCOp1mwYIFo1JnQRCEhiBJslDAu+2wzNNmYvY++3uCICRSTmBdDvwHeCGhfKOhEl4A7wFvUnoOBEEQRp2UL4inHf3KuvChSXDChrB9Gr62EWyznt7nKnCdKqu5/WpX64e7unSextbW1sjnra2twb54+XjZcuU9zyOTbZO800LDM//VN6WfC6uMly9AVz/09ENPAbr74T/vwr/e0QX+MB++0AXbTIR+F/pc6E9BXyrw3R1NpJ8L9UB30aO9CB0edBShy4N/AU/5+88BLgB2Dswz9avom102Qj/vKXp0eNBehK4idPrn4FF//znAj9HnQCnwHFAOFBVVGVuE0acR+rlQ/3i9BT0Hyheg34P+ImzUAhtP0YJ6bwd4rj9IpVB9Q5faTf/2vJG1+q6a0N7c3AxQEkiuo6ODtddeO7F8UtC5jo6O4FiG7u5u8r3tkoddWCMYO/ZP1a6C0IjcU+0KRJF+LjQC/zvI/jWhn/9ftSsgVJ01oZ8LQnd3d6LCeXWpmtDe2trKpEmTePnll/nwhz8MQKFQYMGCBey3334l5adMmUJfXx+vvvoqm2++OQCvvvoqfX19EZN5gAkTJjB9+nSamppk5VYQBEEQBEEQBEGoOJ7n0d3dzYQJE0b0uFXN037YYYcxffp0PvrRjzJ58mT+8Ic/kEql2GOPPUrKTpo0iV122YWrr76a73//+wBcffXV7L777kycODFS1nEc1llnnVFpgyAIgiAIgiAIgiBAqfv3SKAeffTRqoVZN3na7733Xrq6uthqq6047bTT2GyzzVi6dCnHH388F154IVOnTgW0j8Dll1/OU09pD7Fdd92V008/vSInRhAEQRAEQRAEQRCqTVWFdkEQBEEQBEEQBEEQylMDAewFQRAEQRAEQRAEQUiiqj7tlcDzPG644Qbuu+8+Ojs72XLLLTn99NPZdNNNq101QVgtrr32Wp588kmWLl1KLpdjhx124KSTTmLdddcNyixdupTLLruMuXPnkk6n2WeffTjllFNIp9NVrLkgrD4/+MEPeOKJJ7jkkkv42Mc+BsC///1vrrrqKt58803GjRvH0UcfzWGHHVblmgrCqvPCCy/wu9/9jpdffhnHcdhkk0244oorcByHV199lSuuuIL//Oc/tLS0cPDBB3PcccdJYF2hrnj//fe58sorefbZZ8nn82y88cZ8/etfZ4cddgBkPBfqjz//+c/cfffdvPrqq3R1dfHII4/gum6wf7Cxe7gyasNp2m+//XYeeOABLrroIu6++2623XZbzjzzTLq7u6tdNUFYLZRSnHXWWdx9993ceOONAJxzzjnB/mKxyDnnnENbWxt//OMfueaaa5g3bx5XX311taosCMPioYceoqenJ/LZkiVLOPvssznwwAOZOXMmZ511Fr/5zW/461//WqVaCsLq8cILL3DWWWdxwAEHcOeddzJjxgxOOeUUlFJ0dXVx5plnsu2223L33Xdz0UUXcd9993HHHXdUu9qCsEpcdtllvPvuu1x33XXMmDGDvfbai3POOYeVK1fKeC7UJa2trRx22GGceuqpJfuGMnYPV0ZtOKF9xowZHHXUUWy22WZks1lOPPFE+vr6ZCAQ6pavf/3rbLXVVqTTaVpbW/niF7/Iq6++Snt7OwDz5s3jjTfe4NRTT6WlpYVJkyZxwgkncP/995PP56tce0FYNcwk73//N5rR+qGHHmKDDTbg8MMPJ51Os8MOO3DggQdy1113VammgrB6XHPNNRx00EEccMAB5HI5XNflQx/6EEopHn/8cYrFIieeeCLZbJbNNtuML3zhC9x9993VrrYgrBKLFi1izz33ZK211sJ1XQ455BC6u7t5++23ZTwX6pKdd96Zfffdl8mTJ5fsG8rYPVwZtaGE9o6ODpYsWcI222wTfOa6LltssQXz58+vYs0EYeR4+umnmThxIm1tbQAsWLCAyZMnM3bs2KDM1ltvTU9PD2+99Va1qikIq4zneVx00UV8+ctfLknluWDBArbeeuvIZ1tttRULFiwYzSoKwrDo6enhhRdewHEcTj75ZA477DC+8Y1v8Je//AXQ5pVTpkyJmFxuvfXWLF68mM7OzmpVWxBWmS9+8Yv87W9/Y9myZfT393P33XczefJkNt98cxnPhYZjsLF7JGTUhvJp7+rqAkpz47W2tgb7BKGeeeaZZ/j973/PtGnTgs+6urpoaWmJlDMCvfR7oZ6YMWMGnudxyCGHlOzr7Oxkgw02iHzW1tYmgoxQV7S3t1MsFpk1axY/+clP2GKLLfjb3/7Gj370I9Zee206OztL5jD2eB4f6wWhVtl22215+OGHOfLII3EchzFjxnD++eeTzWZlPBcajsHGbs/TydqGI6M2lKa9ubkZ0Bp3m46OjmCfINQrc+bM4Yc//CHnnHMOO++8c/B5c3NzyYPOmM5LvxfqhUWLFvGHP/yhxCze0NLSUjK2t7e3ixAj1BVNTU0AHHDAAWy99da4rsuee+7JDjvswBNPPFG2n4OM50L9UCwW+c53vsP48eOZMWMGs2bN4jvf+Q5nn302CxYskPFcaDgGG7tHQkZtKKG9tbWVSZMm8fLLLwefFQoFFixYwBZbbFHFmgnC8Hj44Ye54IILOPfcc9ljjz0i+6ZMmcJ///tfPvjgg+CzV155hVwux4YbbjjaVRWE1eK5555j5cqVnHTSSRx22GFBFOEf/vCHXHLJJUyZMoVXXnkl8p1XXnmFKVOmVKO6grBatLa2Mnny5LKR4I3pcKFQCD575ZVXmDx5sgg0Qt3Q3t7O4sWL+dznPseYMWNwXZdPfOITTJ48maefflrGc6HhGGzsHgkZtaGEdoDDDjuM6dOn8/rrr9Pb28v1119PKpUqEXQEoV646667uOKKK/jJT34S0bAbpk6dykYbbcSvf/1rurq6WLp0Kddffz0HHnggmUymCjUWhFVn77335pZbbuG3v/1t8AI444wz+MY3vsEBBxzAm2++yYwZM+jr62PevHk88MADfPazn61uxQVhFTn88MN58MEHWbBgAcVikb/97W/MnTuXPfbYgz333BPHcbj++uvp7e3l9ddfZ/r06ZIKS6grxo4dy8Ybb8zdd99NZ2cnxWKROXPmsHDhQrbccksZz4W6pFAokM/n6evrAyCfz5PP5ykWi0Mau4cro6pHH33Uq0jLqoTneVx//fXce++9dHV1sdVWW3Haaaex2WabVbtqgrBafPKTn8R13ZKc6xdeeCFTp04FdDosk6c9k8mwzz77cPLJJ4vQLtQ1n/zkJ0vytF955ZWRvL4yyRPqkZtvvpkZM2bQ0dHBBhtswFe+8hU+8YlPADqg0eWXX85//vMfmpubOfTQQyVPu1B3vP3221x99dW88MIL5PN51llnHY444oggZomM50K98eCDD3LhhReWfH7ppZeyww47DDp2D1dGbTihXRAEQRAEQRAEQRAahYYzjxcEQRAEQRAEQRCERkGEdkEQBEEQBEEQBEGoUURoFwRBEARBEARBEIQaRYR2QRAEQRAEQRAEQahRRGgXBEEQBEEQBEEQhBpFhHZBEARBEARBEARBqFFEaBcEQRAEQRAEQRCEGkWEdkEQBEEQBEEQBEGoUVLVroAgCIIgCKvP0UcfzdKlSwctN3HiRHbYYQceeughAG699VYmTZpU6eoJgiAIgjBMRNMuCIIgCIIgCIIgCDWKevTRR71qV0IQBEEQhJHhk5/8ZPD+0UcfrWJNBEEQBEEYCcQ8XhAEQRDWEH72s5+VmMcvWbKEL37xiwBsv/32HH744fzud79j6dKlbL311nznO9+hpaWFyy+/nKeffpqxY8dy4IEHcuyxx+I4ocHeG2+8wc0338yzzz7LihUraG1tZerUqXzlK19h8803r0p7BUEQBKEREKFdEARBEAQAXnvtNc4//3yKxSIA8+bN4+yzzyaTybBw4UIAenp6uOGGG1hnnXU46KCDAHjuuef4v//7P3p7e4NjrVixgscff5wnn3ySiy++mKlTp456ewRBEAShERCfdkEQBEEQAGhvb+eb3/wmM2fO5MMf/jAAixcvpqOjgxtvvJGrrroKpRQAf/7zn4PvXXLJJfT29jJx4kSuueYaZs2axW9+8xvWWmst8vk8l19+eVXaIwiCIAiNgGjaBUEQBEEAYJ111uHwww8HYLvttuOFF14A4MADD2SjjTYCYPz48Sxbtox33nkHgLfffps333wTgKVLl3LSSSeVHPe1117j/fffZ/z48aPRDEEQBEFoKETTLgiCIAgCoNPCGbLZbOLnqZRe78/n8wAsX758SMf+4IMPRqKKgiAIgrDGIZp2QRAEQRAAcF13lT4HGDduXPD+Yx/7GJdccklJGc/zArN6QRAEQRBWDdG0C4IgCIKw2mywwQZsuOGGAPzrX//ijjvuoKOjg3w+z4IFC7jxxhs5//zzq1xLQRAEQahfRNMuCIIgCMKwOOOMMzjrrLPI5/NceeWVXHnllZH922+/fZVqJgiCIAj1jwjtgiAIgiAMix122IFrrrmGW2+9lWeffZbly5fT3NzM2muvzfbbb88+++xT7SoKgiAIQt2iHn30Ua/alRAEQRAEQRAEQRAEoRTxaRcEQRAEQRAEQRCEGkWEdkEQBEEQBEEQBEGoUURoFwRBEARBEARBEIQaRYR2QRAEQRAEQRAEQahRRGgXBEEQBEEQBEEQhBpFhHZBEARBEARBEARBqFFEaBcEQRAEQRAEQRCEGkWEdkEQBEEQBEEQBEGoUURoFwRBEARBEARBEIQa5f8DoNhNOSkS7qcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAP8CAYAAAAzzV8tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOz9edxkyVnfiX5P7vlutXZV9apWa19Qi1WAsQELaAkDwoYRsgXjsew7M3i5LDNmLoz9+dzxYPsa+46Mx8zIvsggkJDUQhJCEi2BWotRI4TW7pZ6UW9C6uquqq7l3XM75zz3jyfiRJw4kfm+b9W7ZJXyqU/WyTczMk5EnFie37MmH/vYx4QZzWhGM5rRjGY0oxnNaEYzmtGMZjR1VDvoBsxoRjOa0YxmNKMZzWhGM5rRjGY0ozjNQPuMZjSjGc1oRjOa0YxmNKMZzWhGU0oz0D6jGc1oRjOa0YxmNKMZzWhGM5rRlNIMtM9oRjOa0YxmNKMZzWhGM5rRjGY0pTQD7TOa0YxmNKMZzWhGM5rRjGY0oxlNKc1A+4xmNKMZzWhGM5rRjGY0oxnNaEZTSjPQPqMZzWhGM5rRjGY0oxnNaEYzmtGU0gy0z2hGM5rRjGY0oxnNaEYzmtGMZjSl1DioG3/0ox/lD/7gD3jsscfY3NzkIx/5CPV6fWz5tbU1fv3Xf50///M/B+A7v/M7+fmf/3kWFhb2q8kzmtGMZjSjGc1oRjOa0YxmNKMZ7SsdmKZ9YWGB17zmNfyjf/SPtlX+X/7Lf8mlS5d429vextve9jYuXbrEv/7X/3qPWzmjGc1oRjOa0YxmNKMZzWhGM5rRwdGBgfbv+I7v4JWvfCU33HDDlmXPnDnDpz/9aX72Z3+WQ4cOcejQIX72Z3+WP/uzP+Ps2bP70NoZzWhGM5rRjGY0oxnNaEYzmtGM9p+uCp/2Rx99lGazyXOf+9zis+c+97k0m00effTRA2zZjGY0oxnNaEYzmtGMZjSjGc1oRntHB+bTvhPa3NyM+q4vLCywublZ+TzPcy5cuEC32yVJkv1o4oxmNKMZzWhGM5rRjGY0oxnN6BuYRIRer8exY8eo1XZPP35VgPa5uTnW19crn6+vrzM3N1f5/MKFC/zMf/c/IFnKcLBmPk04edPLOXf6XkRyAJaO3EKWDdlYPQNAvdHh2MkXcO70vUVdh48/h0Fvmd7GBQBanUUWD9/EhTMPFmWOnXoRa8tPMuzrvbrzx2h3D7N8/rGizIkbb+fC2YfJ0j4A80unqNdbrF76mrYuqXHixttn7Zu1b9a+Wftm7Zu1b9a+Wftm7Zu1b9a+Wftm7btK2nf2yS8CovdqLzIcrHHnnXdy3XXXsVt0VYD25z73uYxGIx577DGe85znAPDYY48xGo1KJvOWut0ukqU89ugDLC0t7XdzZzSjfaPX/8wbeNvv/hdklMPmCAYZ9DPop9DP4cEz8IFz7gc/fRO84CR0G9CpQ6dO0t75NiDDDDZTc5/M3feer8GnVqr369Sh04C5BklrfJaI/SDppdBLtc32+vA5ePfTrtBP3QAvPKlt7tahXYe5JkntG8dyR9IcNoI59fA5uPMpV+i1N8ALTug4dcw4LTRJ6rvreWXn+U6olwubAps5DARGQKbnKfUEmkCnBnMJzCfQvgqebS7ap40cNgR6OfQEesC9wL/wyv4L4DsSmK/BYg0WE2hdBX3cDo1EWMth3YzDRg4bwKeBf4eORxv418C3J7BgnvNSDeameAzsPM9F2BBYzXX+bghsCnwR+H+bsgPg3wKvMH1bNM+5ccDWhbFn0wPuAz4K/CDwzeiam6vBgml7N3gukgv0Rrr39Lwz7dFgr/47N8KLTk08Y0YirJo2rec6lp9Bx7JtyvwL4NvR9bLgtasejOcgF9YE1syz2TTr736vf9+KPpMFr6693F96ubCew5q3N3ze9G8dSNC58u1oe+yesJBwINaol7Ofz2hGVxOtrq5y88030+12d7XeAwPtWZaRZRmj0QiA4XBIvV6n0WhUTAlOnTrFK17xCt70pjfxz/7ZPwPgTW96E9/93d/NyZMnK3UnSUIuGUtLSzPQPqNrmua6XZaWlhS0NwyDU0+hkUE9g1MCzQ04AbzyRnjxqQKsM9e4fNDeS6Fm75PqveoZzB+DZgqLwI/cAC885e7VrsN8k6R9wKC9mWobe6b9jQxeMg+fWYWngZ+6Hp53shifQsAx1ySpTy/Dv9skaQ71YE69eA5+sA4fvwivPAYvvlmFGv44zTdJGrsL2u083y5lIkgOI4FmrmA9E8jM9zWgkeirWYOWAbe1HKykXAsmU+Vi1cuFVGCUQyqQ5pCi/XoPypxb+ijw/R5wWLxKBBPboV4u5AJZDnkOuUAOdNExOAH8AvBtKDBZqClIXKzB/BSPgZ3nqQh5rv0TMX0EPkH1GX9fUgZizQOerwPzbHLv2dyHEyh9Evj/At+ZKLCdM22fDwCk5ALNETTNHt3w9qA/XIUl4G+YM6bbcPvQXPWMGeaCCDqIOSA6N34aeBvwv2EAO2XAvhQB7Ru56LwTELO33B/0798DrzB9mzN7y14Ki5p2Adg+igoO/qppz6+a/s3h5sqSGfPaAcyXne7nM5rR1Uq7zT8cWCC6P/mTP+GOO+7gl37plwD44R/+Ye644w7uu+8+zp49y6tf/Wruu+++ovyv/MqvsLS0xOtf/3pe//rXc+jQIX75l395bP3psOrrPqMZXWt04w3G7EbEHNgGcOQCCKwM9e9X3Ai3HddyloTLIhFTd25e9r4CnO1poecdg1s9k6BSuw6apHQpxmRxUa8nDuvV75sdz28kknCczPWUiS9yYl4/tEMTjucuUjHPt0mp0azbq9VG/wXKwP4FTvs+EhjlQtbLVLO3kcL6SC1JeikyzMycP1gaidAX6Iu2fSAwRPuwDjwUlP9hvEdjePprgUSEDH22uRHEZGg/7Ri8AnhJ8LurIequneepOHxphU058PKg/KvN1T7nadhec9xxZDHkHwdlPhSUGdvscXtKE3jZSXj2deXvx1QUbmGWbO6i540pN65ddk3Ztn84+P6DlPu2149lXLuvA04CL42VOcC5stP9fEYzmpHSgWnaX/WqV/GqV71q7Pd33XVX6e+lpSX++T//53vdrBnN6KqiO+64Q98UwBIHNgVYTvWzdBxTcxlSQMtJ+ve1XMy5NbipAxd71bYY4CsiB6a9LMBXHhmPvhmrSz1YarlytkwucLBGAvtL47i7voF/vQAGbsE4XwkV83yblKJTNEVBeYqai1ox78dQbdh3CWRpRp5mpKmoxsrO7QSo16CRQ95AWrUDc4/IRRSkm5d9P0JfbwFegA79JeDncIz6fgGH/SKhDGQzD+A+CLRQYcZ2Adg0kZ3nIVi3V9uHFwJ/F/gm83exRe1bSydTOOY/hK45S3dEygjBaRR7cHaPGaFmJluVH/O1fW9E2gy2X0203T8EfNwrYzlbEZB92DJKMlPv2sf1kcj3B0U73c9nNKMZKV0NwufLonqjc9BNmNGM9py+5VtfoW98YGlJgBV1PylA+66QxIF7msNFgRcegY2+Y7BC4HvQ3HOMCQQYGePpZTNmBbCXMlf0jUSxsRoaZtmC93DO7QEV83wbZDWxGc5sOiOuDctygVFGPszJR7nx3TexDmyshkEGgxRG+YFp3AdCVMs+BL6EajL/MfAc4FuAF1Nl5K+V6WufZwhqM+AB4HYcUPHlTldD/7/lW1+BiJT66IN2a0nwKspCGUvTYPgfA48vAb7L/P2raNtLZbb7cPxyozz+UCOVjRPg9M3VF/JMvL2pO6znxcCzUPeMf0Wkf9uo+0pJqMpNB7g+jgP2B0E72c9nNKMZObpmQfuxky846CbMaEZ7Tm99x4fK5ur2ZLZA6pLReKcSObEv88jOxHHBFriLwLkN3VFunoNnAkC3LVvIfaDw3v5YpKm2/9KoPI72Oi1qrP2ikAu0r6H5bJDH59QePN+3vuND2y4rlFxXiyn4g0G5V4mQjDJklJOnQm4Bet97DTIVUoxyGGZuvu8jpUbLHgPsm8D/Cfy3qKnvAmDzpdjp6m8L1wL5QNYC9wx4HDWEeS4R0B5cp5Xe+o4PlawHbB/t87Mxj8f1bxpoHDg8jLqhvzQo61/jlQVItNC25/HPt1sNZdAetmPSmMa+O4xaQLw4KOOat3dPadw8H6BuQdNGO9nPZzSjGTm6ZkG7H/Z/RjO6VukX/vHrysik9F5g3bAlI49huFIzZgvWQ+B+dgDXt+GwsXIZZOX2FMD3gFnMcb7a/RxOtWB5UG03gBycpvXAKMYQx8zj91go8wv/+HXbLmsZdAvebZOsj/McRhsmQJYjmcAoJxkaTfsDT8PbvwgPnNE5PDKgPc33HbTnxo/dmsOHZvFvRYH6j6Fa1nkUyI9j4q+F+ZvifL59s/EH0Ge8lXn8NI/BL/zj15Hj3Dv8PvaArwE3o2Bzn+Rll0UxkNxDI/wX31P+vtr2MWDdmsVby6jKeRYfhdh9fPP42DjGahr33YCymf3k1uwejdP+i9ee7Y33/tFO9vMZzWhGjq5Z0D6jGX3DkA+WSj7bAudzONWogo3LPLnFhjKGMnDPgXN9uH5Ro8QDLPdd/aHG/aCoxL0EDekBpxaddQLE4wR8o9C4OWI1XIN0DFd7sINkH1PuTU0LegBehGrDkiLismik6jRHvnIW3nYavpzBW5+Er5w10c5M2Xx/BTdDKZvFD8Vp2R8EPgD8PApUa5Q17bDnspR9p3yC6fiD6LPtoKD3aqVSv7z3jwKHgJvYmQ/2fpKIjAWHPVzAwG0DyFiBYv/JxpYL1+i4+9lxvNwYCP5temhASP87v649B++Rz6xQYhSUOehjeEYzmtHl0Qy0z2hGVz1ZQGFRirlajeix+fE+7TsFILZ+C2YtcAc4swYnTdbb62qwYvQXFRQ1BeyC3wTbnhQ40YZLwzLaCcf1G4Vic0NQM3FwgfsqmQEOHrT7pvH277Pm+yIwk3UryVDQLsAXzpQr+/yZsgvIPs4BaxZfmMR7gL0P/Afg9cAtKGgHBe0l4DDmerVSjm5lhVm8uGf9EAraraY9pKul70VkfKqR8Z+PCiVi5tyxvw+KrA2OP+/GmaLvGECOAk27T2POs3GCgrFtGlPdpPWU4sCxf08Z36xdo5JwIBAkwNXrLjKjGc2oTNcsaD98/DkH3YQZzWjP6c733B3RsKOfXerpCp9rQZrtzgltc0eFwD3P4ekRnDCm8QtdjVwfgt1pAL7+eIXc2YmOcjppPqbdB934/aRgTtnrIFXksJFWitoyu62NvvM9d2+7rA/UfcbZwvENr6z4bvkicPupcmUvP2m+vIxGXwFZs/iShl1cire3o1mv/haaAsYmNVigbIIMZd/2q51sirc8eH8OWEZBbQsHxqCq8Zxmese7P1KxJLCvh9AMAW3K/YPpsqTYCkD2IuX8a7myyKcWtKdZvNyYgYht+4PgGlYRq2qcd9WIsjn6VvXsFk26l50ngy3K7TftZD+f0Yxm5OiaBe2D3vJBN2FGM9pzesHzbqlqsC24XB3C8To0EucHOE6FsF3yQbgP3JcNu3J8DpIEjnRgJS3fLwB2B0NjwPrAjM91Xb2uDNz3oYn8NwDJOM4U1O/7cBNGI/8H3vvdb88LnnfLtsv6Rie+z7MF7QWDXshhpFgycttxeNm8fv+6G+C2E6ZsMB57TCNxEeMtWB+gwOAR4L3AL6IAtYWC9hrq076Ca2rsdTVTGHzON42/BY3e3aSsaZ8msLIVPf95t5Tzz4ubv19B3Tqspj3Wn4Pu26Sx3jTXmD9+NMZnqWPe+rMa9iwfvy4l/md4DTXt26Fx82jATn32d48mCRJg54H29pp2sp/PaEYzcnTNgvbexoWDbsKMZrTndPs3Pa8M2P286cspLHQC0B4yOTs8um0o45LJuMDZTThRh3qiEbEONZ1veAXky8EGg4pxUdbku1mDIxh/fHHcV8UE/BuEYs9pmMFSx/i0e/MpJqDZJbr9m5637bKFdtJ7fIKax9+Mx8AKpfZb4M7hBf3s1uNxYcQeT4E0omW3EeP7wK8DPwXcigL2Ni7Vl2k5I/b8kew7+an8Yv7sNip5C+fTXgFOUz4IL33p80r55+37s2isgudQtiSYxuc7DkDadWdBu11+21pW/nmVmbPM7tlbPORJgdpiPt+T2hOrwxcAHISmfdJ9hsF13O/2m3ayn89oRjNydM2C9hnN6BuGYoBSgNWRarwbiWNw7HfedUcA2hcK+KjozBBOLKiWPQEONzRyfWi2DwersS4BNa8RA8vmJ7DYhUtTatq/n1RSy3h/jFJYasNmyJ2HAqH9JxsIyzeNt+/PAc/GafyK3+gPXbOHefDl/pLVsvuA3UaL/31T5idRjXITaJkll+BA+xplgYX/ulrJB7JhKrQvo/7soKB2FK9i6sm3JBDK+dmfhQpofJ/9/QaH26FxbbHrrhcpE233OPRvBdAVH4HJ+0/s49A8fjvtGlfG1lERGO3xsTFJkGDHvGSZ8Q12jM1oRtcSXbOgvdVZPOgmzGhGe06PPXEakDKAtgD5Yl813o3E+QFeAYnVqseA+9PrcKLrVH5LLThvBAWxCOzTwDX4XMwgU7tTgGNdWB5VuRx/bK91Kgk3/JfAMIWlhmOaQ2GRf90levyrp7dVzp+SvrYd4GkU+BQmrCLx0AaDMVYp+8Dt5iKkGN91cX6ynwf+d+CdwM+hU7UFtBNn3AIuIF3o1x6+vxrJpkLzI6rnaF+fREF7DQW2O/FRnhYSER776lMl4O77s9v8322mN6VdTEhkTx4bIHEsQA6bPe4Lm750GPl+zIMuAVrvu753jbVnuyPpl6tYQcSbtKs07l7T6tO+3f18RjOaUZmuWdC+ePimg27CjGa05/SxT3yuqsUG5TjWe6rxbibOpNCny40cb68FCBc4twmn2kbll8CRrnJroynL1T7W+c8D7YdbcHFKTfsvk0QEycxru+0fxzT30HkFXmR1r+weDM9HP/G5bZUTnJYyD65PoSblmDKIkIDTztt2D42ubFzGhT0kMbe1Ps2pwBeBXwbsCAxRDbvVutbRZWcP80MoQPID0E2TrOxyqRRR3Xv/EHAdcBwdhyZl4DRNYGUS5cDHP/G5Uh9t+x9Ag9CBblMHkQ98uxTK+8CsN9QSpBcp71+jX/qUikZfDEPUT2jPuPv00TkTRn2fVG2sf775+bYtCXaRQmEEuOFJ2IGgZJ9ou/v5jGY0ozJds6D9wpkHD7oJM5rRntPf/5kfrWqB7fWZHA61VdPug/bLDRomYrjlAMj2UuVUTnrm8R2ztSwP3D2mIVf7OG5lkEPLxOA+0oC1nitzFZvISyZILzXPaKSvfooMMrWcGPvD4ApuPPrAotHpWreCSkLw3R2kf/B3f2xb5SxIDyPIXzLfP8tcB6Yvuf9DjIl8z4L2XYoDsQPy22wFEHcFZT6KCUCX6Mse4lbbPo/TahbT1l6vornrk/VnL6V7Q/tnU6FZFwHfPP5qAeygbfvb/+2PlgQSGQq4voZaEiSosMYHvtMUHX/ceNv2HmayQGVy5abUKIfF4LMthIaTArUdZfvuBuO+9y31Q017rJ69JHsvC9T9/oVlDmq+bHc/34rUWuqgZ/3e0bXctxldHl2zoH1GM/rGIHEoBRxaGRjdxmHj055vP9LuWBqnZT+7riqUdh1qib5I4Hhiosp7gG4aArrFgOgwh6bRHh9qq8ADqQoahIPjdHZIMswUpA8y2Eyhl2nk9w0D4vspkkYsMMZWWPwH8wa099JIuYMboJhpvA3ktYRqocEzh40BHhv/wR+bfeJy/Slmp94PBmVejSoamwa0gwPsoKB9UhTrq5GEssm4nw7tQdR03I5B01wrucKnXN5WCq7nvX8UnbsnUIatRVnTPm2CiVh7LGg/whWYjxdIW6BjnvJoe4K1cfcYouslZrmwVTP8qwXFHQJT+30QqIwbR9unecpCiWmZJ5dLkgsyypB+Bn1zjvX0LLsWQK7kggwzFbb3U6Q3QvoZkl0b/ZvRldEMtM9oRlczWeAM5ZRvy4Y1atehUXNpcion/A4OgZiWXTBB6Oadlh30/XzXpX2bFm21P14+QhoKNI2m/aixk+9n5bYftGn/DkhGmYL1fmYAurlumvf2u36KZLH+eH3Gu1omuVU3Kr+0Ov/Mzw+CQpN4C9zOAidxgK4vkNhpKBQm8oAG2oMyaLe0x0xTMdz2dmhU9NeZv38V+CZ0mdVxSy7xUPsiGojO/r54iav3aiPfZDzz/0aD0FnQbkEt7CyN1zRQChUtu6BCCWtJAAoMx1oSTMHWJJH3Fqh3GWM+HjsSwr3aXlOBdgDawzKRNvhX+34TFeSNixEwZmesvLdzbZEx/vGRenaTYvezoH2RqzcwY0iS5WrdtZnC5gg2PSH0ZjrhPLs6SNJcBRHWOm4z01dvVJzdEy3kZnTN0zUL2o+detHWhWY0o6uc3vw77y8DS4tCVgZwnVnejeSKT22V8Eo8CN25TTg1b7jmxCGIo2Nytftg8CAoxuEOcug0tO3NuqoyLwYm8vY3U35oSiaqLR7l+hrmBqBnDrAPMvfdMItL8GMcpw3S1q7BfOL8v/cYPfzmW/5wW+VCDbsF72eBU6ZMG8tY62S0U9uC98Lkf5jF+7OHj1+Cl4UkR1GwbtOa1ZKyH3viXedRMLLfwGEvqQRmxYHaJ1DhxS3mCvp8YbojrIeUi5ADv/e77y9ZEeTAw8ALcc96mgPtlQCvh7f7qDGWzTEfKz+5Qq/ESGDOWEX5WVGIlB1zH3vtmXZV5kpMiMD4/tk4E9F0fOa6l8fGOEFJaJkxLWthu/u5T5KJnls97yzreULo4v3VCdwLwN4P+tfzPhtqX2fA/RuXGgfdgL2iteUnD7oJM5rRntP3f8+3lDXspRztXf28Xos4tQUajK3I2qRCJAjdOrxwyTmVYq5LLTi97n7jtw/1RUt8FeF+0DhuZZirVQIocD/WgOWhJvaORb+fZspz1UZZ0G4Beppr3+qJ9sG6MqQ55HWHeizFgLcFtEkC7Qb0QvPUvRmjv/6937plGTHAJ+bT/jQOtM9RNWHF+7uw5Y1p8faYfHmWr22/hJpI+8vLXmuJFrKgboHxKd+uVk17SjkQnX2uDwAvQadu3XxnNe3TFjF7EuVo/17xPd9aCrQnKGh/DW579X3a/aU2DX0MvYjsaxNdd1bTDtto97gv0hwaZrPapmAtNiZ2LSxRjQExaSxj3w3Qvvmg3ZbZ6yNjkiBhDgfaK30TkH0+fi1tZz/3SUQKwFqcaZnoy26CTU8HmSRIp77//MVlkuSmf0P/vDZ8VtE/cYdDLXH8yoy+oeia1bQP+2tbF5rRjK5yuu3m6/VNeGKvpM7Mu1nfUXqcOEkcuKc5nM+Npj1xKsAEE9Atkqt9j4DdtmicRnmYQ6vh0NBhL1d7CUnJ9COfgusXB96HGTxyDt51H3zlrD63NHfPMQ865Q+TP68GmbMxbzagn1fLx/6+Qrrt1hu3LOMDU/+RCZqj3YL2Dh5w8AG7NZG3aqnM1rR/5Aeh818raBAvcIe2XWrgllyCmsOGKd+m3Z97ElktdBg13vqz21Rvdizs+IQm5OH7aSKbLeDGW28o3ufovF0FnovLEuBr2qcJsPv3D9vRQ8Fjxefbu1ZB+5i9OhV1+epgBGv+Ip7QtqCYPRKXuLIUehYgt1ErlyIT5pj69oJibbeChCY7i46/H7Sd/bxEltcYeS/f5cu3HstE9+6rSRs9rm89E4vG71+q/Ztp278x6ZoF7TOa0bVOY03WAS71YKlpzL29ZX65+3wmjvMv0nwJPLPptOrgqf7Q+18wmtlQW31gfu1e270/GaXlqF6HO7AyLHOTRb+nF7WLiLYvFwfcc4HHnoF3PAUPZvC20/DIWaeSjgkiYn7/iI6TMeBgrqmg3Y7PAQcZ9KeVD37B+bSDMrEDbCGd13YplRj0LBBI+Ah4L9ovUrQ51LZfQkF7MuFlqYtqDmPgX9gahOw35SKk3itsn9VCh8AdNHK8jaruA/cG4z2Cpqv3SjF//Rzt3y0oPrW7eMv7DUyfYCYGxPtM0LTLDmW4aa5nWgtIt47VMg6MW3Dtm8fH+lH6LDg27HWAS8O4bZ/9XaJxbep7bbqaXEWiZM+yTMoWZA+fhTvvgwfPlEGvTTNxtZC1GsikbCX38Fm481546IwniDffXaWgXdPP5hpsb5DpNc33zKWhuF+al+41befgdumaBe3d+WMH3YQZzWhvSeDe+x9xf5dytPddLu1GzX1uflf8vd19y4L1ELif7cP1LUhqanZtzdFsrvYUPWBKSMTed383TYkB0SKNWQYtM04JcLjpcrX7fuym7VO74Yfcr233vWfK5b5wpjofwnqgClAHufqzA3Q9TXv4u11mKErzfAxZsG7zW1tT+RFwAQfa54Gh6VexBKyW3ZrEH0J9Z0s3mDBeu0QxgYOg2tYjVLXJvmGLfS3hNO1+vTsCRvtAmQibubCWw1oOK+a6ITDIHVNlNc8F347TQl9Cg7TVKYN26zs9bYA2RjadXQY8cP8jRf+sP7sVSvjm8TCdQGxcW3o4U+0w5Vtprke168G6SzON09KubXuNxtplrRWspn07NG6Mh6igyFoSbFV+N2ncPSxob4mMdRU5qLmynf28RBbQWj4iE3jsXFkQ/ZWzZaXAVQLaxQiOnQDdvB41/Xsgg7caQbsfDPgq6Z9Pkhm/fRs8cMME2NvQdLRFFoBd4h8kE+XtNoN7bY5gsHeCgr2kaxa0t7uHD7oJM5rR3pLAw49+vQqIAc5nqv2u4UD7ZW5QIuLMp33gngNnB3C9SZpr/aWtpr1rfK5WvLBJFeB+ADTOV7tVc1z/0YZG4I8Fz5vmXO22nX57Bbj9VLncy0+57yAOsv2PitR44lLjtes6bmWu+wo7EKeHH/nalmVCwGvfP2O+t2Lcknl8eLWpErtN1XhAuU97DNjHxWq8hEtXZ8Gpr133/55HQb4lfxr414OkkQjrBqCvCawawL5u3q+LRvjPLaC1wB0H2h9AtdBddEx8ZqYC2oPrNJEVNOXA449+rcAmgvbRBqGz/TNOTztKU7ZfZOewfW+vm6iwoUvZv9r/Xbw2qnvLMFfQ3qjre/+7MZVJ5P0AXTNNdpb3PgZ6h+hzsf0Ly42ra7eo1CYRkjRHBhnHeiOW+mo+noyyYjM4aCHWdvbzMgV7sQBfPFsu8vkzFeB7VZiQh00cJ2j/7NNB/6bX4i9GkuZlc3/r1uAH2ut5AH6QXRGA1/uNtE4bwLAUuNDcJ7u6xvGaBe3L5x876CbMaEZ7TMJrf+T7q2BymCkHeMTYMTcMOx+CEHH1bHEbd1CAA+4AZ9fgZLus5gKXq/1oAisTwO9+UwyIgqbEa3tWAoe7xsZYyiDdD8A3rRRyzrnAswxkrQGvuwFuO2G+32Y/Ck43h4YB7Z26Hnx+PQUnu7vmZ6/9W6/cssy4HO02CJ0ffbtvpnDijZUISN+4czTqTou3T49axrwAlimbx4NbcmEE+QWqQgnLlkwDD5uJ0MthU2AjNy8xAN58vmn+7vlgXar+7C/BjYHPzDSYAJ6mYAx8Ely6tx/48VcW/R0CX6UK2m1IiWkMtOfPWb8tA1TT7gvMYDxAlhjytzTM1Dy+vr01Wga07r1tU4vJPt8xwB9erU/7WPP4yU28IirdKxcY5tT6KXl/xFI/Y66fkfRH1HqpClmnAKRsZz+3JNHohgK3nywXfPnJMq+S5dO32MeRfSaTBO23n6pYElwVQgkoB9ob+mloMyqZbeznmyOXxm+wszz1RQadYe6y59h72rS39rurLBr/NRs9fkYzuubJ50L8zX7ZsKsdm/LNXP280zvh8kTK/s9ggHsOTw3hh2yUeqNlF1zy6IWORrK3bQzB735SeD+fi09TZ/YNzkd/ZQjHu1Whw9Tu8Z6QwZ8f64YtvW0Bnn1duT8eyC6i7dp+Qnlu9XNnQdGp6UHo3VqvBzM4IVi3s933Z0/wtGEWrBcvQQbGZ79ec0KufaTCzR7XjwyXT9qCdt8snuC6gIJ8iIOog5y6IkLfgPGBAecDUeyVo2buaQK5eVFTJsUH7rZPDwCvpQxo7Tg0iSTMCK7TQiVhhPf+UfRZWoGTb2GRUBVKhO8PgirYyrx6KGCvgPbItRTvO7aXpEbT3qw716tSJdX9OXYfG6itjQpNouWCBoXA36+rZeq7GGvOHgYxL9okAsOUZKA+z5IKc3nOIvBMklBrJCQiJAiSNKBWO/D5sm1KqM6FZ18Hh57SKJ0/fB3cep0zi/fP6mkPsi4or1RayAK3Hgee0r9/6nr92xdKFA/+KoiQb9PLjhxQLkX/rxv3Svuq2Wuu14b5vpEgzTpJYwt9c+rfzwD0NHcbjM/L1hOo51dNNP4ZaJ/RjK5WCoO6GfDFygCOGxbPgmdQbXJI2wFY/j38zW7ZsMXXzbl71BL93v59ZMpytceAKCiKsAH7bK75RWC5B8c61b5Pq2TWb5Yf48C6KPTTyk/GRmkO6wM9BDtW017TwHTh/ezv9pmfsEBdvKvgcrTbpqim3QV9s8tGABnl0E3UVWIk1XHYQ7vScYBnxXx/mAmB6BK1GkhQ83gLckt1iQHCB0g2qNwIBesWwH8e+BDww8C3euNbFzWA8cFsjgoxvo7TQtvI6pamMWL2OLJadr9/gloSvICyJYHt4xyBpt0Dhgfdxxiw7aFCpy4TfPHD/SIEMZayDJrGp30o1TIhYI+AbFCf7xblPObhrWNjGftsaOoJ0/FtVddukUABTJJRRjLMyUc5R1NhQaBW1z0tAahBMsoQA44OJPXqTmncXOg2YWUE9ZZ+7me38SNWXm0UTpZDC44H8X37rwKhROFe6QfRs4D6sXNw71n45lPw3BMOnFvQXrz3wHsqSLsOzVp03oqIWi74EfkHmcY8+MIZvdfzjRjfpgrMc0Ti9U0bXbPm8SduvP2gmzCjGe0tCbzxN99VvC+A9fJINdzhBpSOOcG24ib8Q6K4CpzdgOu8TTaWg2qpZXzDw9/rjfc1oFuMe7L376Ep33xBx6GOpn2DMiCdZk17zJ8dnKbdB9mhH+g4xsgvM8xVwwXQNZr2mI3rLj/XN/7Hd0z83kZet9pKC9xz4AxwHW5KdlGGPRGroXK/Z5DrPGjWAsuUOCDYTQoBtg/amygoqAB181v/8wXz2U5yT+8X5TiQmqJykc8DvwR8FPifgc/hNPF9UVwWmsc/BBxHn6vN0V7ztrsu8ZRv00ZhOru3v+kdBXB/GAXtIWCHqm/4NDxb//7htUfZfHzSb6p/UN5XMk/THlrDRCobNzYDVGsVC4436XexJlrQ3mHyc9mL807AgLmMJHXAKB3kNIYZjVGmFkQjTRmWpBpd/SBNgrfaz0s0aS6kqUYSPN33JLY+eN++SfWBkt307XtwfVgCTm/qF2EwvqtBKFEE7RCnXbeB9t5uAu297bRGyu+nZR9332Tevh9kqj0fF6OpFI3W3O+Rs3oPey8/qF92FY0l1zBov3D24YNuwoxmtLeUCz/z4z9Y3fBXUufPblm9Bs48CK/8Nu8T1eqfGcKJRYceaonhMD3b3SMNWO2X67L3D4HiQZC9f46aR/mc8bGuCkCKMl6bp1nTHvqzC7BqwPogLY/9VvMhZCSGqYuy32p4CcEjz3UXh+inX/eqid+HU9N/PE8D11OOLD4oulXun9hAe9sEBLtJUddNNAidDaIXatjtcrPfgQtUtkH1URw0X1IEPsZpz+8KynwQBT59gV6uVz8QnaCg/QWmfILKDX0q0voxfcDWJ6Gczu4HfvJVxTP6Ci5yvLUk8M3/faBZuh5QBy04io13HxU0dFErCfv5xGczriNprpr20Dx+wm/9+outDLVYaFOO+D62PRPaa33arQVEpTnxnlTL5aLBt0bbT4OlW74uEMlzIxHLGY1Sbvj6M9z6sUc49rVnTCo0NZu35Q5qLWy1n1dokoXcs4/AUytmA70agW3QpyLgorGMfPYReKrnmY/5fbyKhBL+s8tEtd4+vecpeHJNhUuDTAF8DLgXmvpxvuhS5VnDe33xTHlOiW3Y9NM1C9qzNNyGZzSja4dsjvbjRw5VtavLfTjULJvGtzCaw+CA2Oo+VqseA+5Pr8OJbuBk65mYg2raL44cIoFqPftJ9tCz78FJbK3Zt28lcGlKrAS2SzF/doC1DE42HMdsKaJBtnOrjB5NgX6mZqlJoqaJGa7sHtJ1xw9P/F6omsb7Pu1+SJ82Ctoty+rLGxjmSKdemOFtBxDsFvkm/T64WMFFjh9rHk85V/kCLlc7BNNiT1q/PQr7mAM/FJT5VhQEDdDnNJCypt0GoXsRzjQ+ZGQsaK+ArAPYciZR5vdNYPHY4SKd3TLwXMb3b1p99mP3t3naO6iFhT8Pt2x3BSGLrs9mzbl8hYBnws/ttY/uBS3v863Gbly7rU97G2fhYpuzneciuWjmCht8y756I6SfbgneJZcCuNuz+rrTF/hrH3qSm+5b57UfeRKefAa8cpJroLaDmC9b7eclig2gbyH37Hk4k5a1uBbY5uEPp5RCYQQoUAW4ZQ6eWi0LJSp9nGYaw0u88LpysSPAWx6HN90PH38azm2q4OKhM/D2L+rVmrsba5GJrn1493r5qXIZG+TPPyCvEpr5tM9oRlcjFQDSbDa+Bnu1B4cPl1UzLVyE0hgnu+V9qAZAeWYTvuu4p2VPAtVfoj7tQ0zwoNoY6eZ++REFB2Mo0bY+7XbcjjbhK734GNsDaIpcoAqwDdVxXh/A8Xk4u1L+HqrzwVVYvcnA07RbIcco12jrB/hsLQC02lsLDtdQhvokOjVzFDwUfrVmyIqRGxif/UbNMU34hfe4DyF/QzndGzjDFn9kw1FeQPseBRkHOG9tH8Hxmi8Bvgf4AvAs4E4UuIPZWkQVq4UZOfBl4O/htNB1XP8Sto4IPi1kMZY1ifdN42/GpbMLffbD1GLT0L+wHSWZIS4QHeizaVOek5VgbePOpyEOtK9l5TIS/rjcFr99IWjfVpvG1DdEY0502DoSfaWbmagFk/Xz9QF6PYGGQJYjnQZJvapnE4Dc7f9i9t4bHl2mtgl0obEK6VdW4NknHJD1H9jVRgXYAk7O6SI5sw63LOl3IbCdZr/vGMgU9KwFuHEBzp6u8lBWSDFtjEiMYmfniSXgLLy4BrebQHujDB5dhvsvwf/vXDk4yZefhL+XwIuvL5u2h8825EMErfu71+HPVuD7jpogf8T5oCmna1bTPr90autCM5rR1UpmM7rns1+qmo5dyOCQYUUKe8qaS49T1BEyOrH7iHcA4oB7P1P725OBeXyh8jM3njPAbnVKcrVPkmjb1HjWWuBQC84HPu0HaSWwHSqhIq+BK304bljmLBiDmPoxxkiAS42X4KLt97Pq73Z5bD75qXsnfm9Bu/9oclTL3kFBrF0KbaDn9cm3mJBRpmb/9QTSQIu3xzRJ036ECQHogs8gboYc1nsQZJ9LKJyYB14J/G/m/f+BCVaHWsDa6PIZ8ATKuDwLp4UOXQRC0D6NJCKlqPgZcP+n7yNHzf9fjHum9aQcoqTNdJr/x1w8QJ+FzWMO2wjWFutMIWRFTeObSVmwFvymtK4j1flp2mB74znuO6tptz7t/ndWOBVT5omISYEVpL7aDEyDB3k0NVXUJcE8gweec1gb1YN0CXjeoWBuyF7LIcfSVvt5hYQqv+JbyN3YVRNyn0ex4H0bLgZTQ/4CGGW6YA63VL16Zt0tsCzo4zST3zxf8dEb6YL5sZdqELpWTZ/lS47Ba58Lv/ASDQbs0+eeLgstxnU9tm8cntfr8flymWkPLhzQNQva6/XW1oVmNKOrlnTDWl0zTsV2Ax9lyv0d8QLRJcnlp7Aap2U/u2bsHevlIHSJx13aKOyH0TR0scjx+7lRxjZyQSXaCbggdGi7j3ZNwuSs2uZpNLvz21jinAXWh3Cd2ROHnnaqxF0HTJFfry0/MqnxfNeLzVG5jF/3lXZJBMmE1ZUNZwIaIR+o+9czgMlIXwjkOxgfVjM2PqPLMENaNRXgDK1lSjgue/Pc/aXh92EZl+6tSPuVlIOT+Y8DNHbRtAWis8H+/Jft4yV0m2gC/y/ga8DvoGBviAtGJ6hp/ItxGnbffNwH7WOjlO9+1y6LbLykzHu/ub5R9HFcZHxwEc8rfdudZXfZNG6Me7ic6KDrb8fPxS/QqEHLW6OlciE0jV8HlDXtWwX2m+SzP0TnbgcvzMcW9QEuJZUf5doC9V7qAm/5Ebcj5G9Ndj87f8NRnn7REqMa/Nb33wTXHy0W3D7E1ZxIa2uhn9YkkmAwzRvfQu6mRXhqM9hALc8ypa5slmJmIKD96xqG5MY5DbYX8mJ+0L1ppXHxCAYZLFheEQPa69Cq6/v5JvzQDeW6Xr4Ns/aQV7NzZ8Osnc2s+tspH0KfrlnQvnrpawfdhBnNaO/IbEyv/mvfUd4Mixztgc1QreYO/DBq+CSKadkFE4RuLghCl0S07gksdjQtC5Q3yoPUVvtcjpVoQ1l1afPcW7928LTUB8wdx8g/9Esm/QKrqCAHtpf2bVLgn5Y3t+YxZny7ywWKCDI0wWh6I179V75NhQP9VAM0Be0No8bbc/oMGoTOp64IaYUBN3/3Mn3uzcQxheWCRft2k2x9liX3b7eCS/cG1XzdIWBN0Mey5tXja/sOGtQVL68hy6g1Qd1c/zkaoO4jOP92C24fwPmzWy17yMiMBbVMz7IVqunevvmV38UQeBwXOd4KJvzn62vabV3+9SBo0lhvoFusdWcoRWuX8rwoVVgBNOZNU1M+kflrNH6ujQPP1jze7mahkCd8P4msab3NTBHeK1aXWCs2+7L5pPspPGj8eB94uuzHm+VVbbtW5h1J+v9QIOkskRxucO7UYXNPu9cJEnjL7Se9+oe+a2c/iEkZfAu5m9pwetVNphDYTrPfd2xDBA3mYTO13LQAT22MF0pMu5a4tKjMH70cWs2ykqddV97VpHTjtuvg+W3dOF53Azzb+MEX/Y30O2ZNCQ6sb+bVRXnQB+MO6JoF7TOa0TVNMUkiovm4jxl23s+BVK9XzaK3oMJHOhaE7lwPrl8oA3Sfe/ZVf0e6sJxWN0hb337RJIl2x7OvLcz7EzhRN4IQqbY/YqooWY4MM2RgXqNsWxGAd4fE2R7jXfuGY1lqqTqo5z2LGKMbOw/9wD8+aJ+rOfN4f3z86057kYlL/bKZlk1He1mREsZnVKwfewjcz6Kg3Qe6HdMNn5svumx99hs1FwOi1Li9eZYSvPyhu4iCdij3I1xu9ntQq0Jf4+dfD4p/9bePEKRZFwBQ8HMz8MvAfwS+hAPtoKbjflT1OlTS3/nm8f5Unya+zAfr/vvHUK20nbd1XHR838VjGi0JYm0R9FlYueg8uv5iAqpKTeE+ZdMwNoxgLc3igC7428dExbaP87FvsP3AfrHxDU3ts6BsdO4JFPmrc1FLuDSHR85pWqovZ/CWJ+HhM2VT6NiWbW7gCxNHQNME6msY/2g/hkfxu2mn2DkklC3kblxUwXQ/jWuir4Z+WrKb/yDXTCYAN3Xg9Np4ocQ0dy9cfPbVM65olpJEgXqnUY4v9KyjcHPXAfaAz6jO4YD/KO5nVngvEPSFfMuU0zUL2pPkmu3ajGZUbNaD4ai8cS+nMN8tc7HgfNorXNWEDd/abELVPP7cGpxslRFE6M9u/15qqTDBRyNesLJ9YxyKAyO4n5VoJwFnbK0ELqXlgxIqB6VkRkNio/5ujFwk4EGqQH6v++n3zT+wbDyBZt1EYTOa8RA5bRWQ0P6mbaPsJyop71+GBce42+Si7SsB9ZTBSk8/s+ajxqRUjOmj4IC7361zaBA6XzPdATbs8HiMrgCkGWI17T5o34W+bUVhgDZ7mzUcaA/BeWEyH4BWP3q8P+0PUuEkY14Az+D89uso+Hk58D8C/xI4jYKQc6gp/QtwZvH1oO/gNO32vrHrQVOoZc+B4WDIQ6hpvH229gVl0D6NlgQhfw4ODFuAHAbRK11LAC1yA+vi1UjGRI+vVjTu+dvc8bZNw3HtiDQpPEZ66Jzbts9+UQnlczETTUfl0+fOBOdPuXFVP3ctMgLquYL1dn/o9nB00kl+cFh2MAhFJNsk8d74FnKdhslnPgbYTrMJeWzRCGp1YQXkNyzqht67CoUS43iMfg4LTX3vH2B2s7N85Hwd+sMqbxPWjQfgS4DdvF8dqnTOuvNth++ZQrpmke2JG28/6CbMaEZ7R2bT/vXfeU95w19J4Zhhj3wn11YQiG5bTm0SB+6ZwDM5nDLm8b6mPRaU7kgDVnquWj8YyUFymTGJNlCyUjg6B8vDcjsLdKUQqADsVgtsfRH9wELWL3E/+hNaX6wPnBqz03Ag21JsLsQYCcswtz1Ne9vUF6Kwy1Vr+r6bo7wYv19/y3sKDbvz8cyKXMO+ht2Xp5xBQTs4nqBjh8c7/MW0WVITaK+RxDXte0QSeYX+3j4v4wshwheobGZ9Qt0HoWHz8YnfP6t1PYz2sYECoBbwKjRA3b9AFWkPALdQjqpuQa0vo4xpTqeJcpGolv0D//nOIgd9yfw/EEyE5vFw+Ututyg6z3ABES2+MrHRKr/1r9EvwYF0C9pjg+D9Zis/dOvP3iEA7ZFbT/rO1mUFE70typcqDffZl54ol/mWU0wSGpawh/dHCjTMeM0NctLKbw8O7P37/+ud2y+8LQu5BG5cgic95UDJjHya7eOJA8hBrqbiiTEbP4LmMRdx/bsqhBJj+It+Bm0L2s3n4UYHsNDwskSYz8ZZ84X8pP/9YAQnWqpQse0q8S1THvvA0DUL2s+dvvegmzCjGe0J+Xm0f+71f9MdTADLPVhqely82fkatZ1v7FaC6x8KInDesGGHjJ5iUiA60Jzxl0blTfIgTLtiDJJQlmiD137gcAMuGhYz0n6xvoiD3AFOP/rvoPwSy3TuWf+8v+2cWM1g3rCTTQ+0jw3EEhxmYeCfVt1Dhw31TSt+Gh6EO2i+iAJlPyjTMIcHzvBz8iz187SAvfDz9LTs/uNBQZDN0e5rKjtAgiio8+aBANLPkFZ9R6a3u0H+tAKnEbcm7oeoAvOiT6GBCGoevxlp5kGzJL4VgX0tm89soOAayou3UG+OvwfcAPwacDcOvFstu125Iaj1Ii1UrwfMnAkqAwuB+w//96/lEZym3Zr/WyoET1R9p6eBYiDXttOw55W2jwW1sWdUCD4Tk5YxUjZSYWyMQvP47Wj/x+HHFJ2v9lmFdcXbIMEAmDc3HtXr9cDfuRGecyKoSPwayu0S9+kIqPVU074wyhlZAcYUBKP7+X/4U9svHJ5DlgZiziLDe9wwZ0AtZVBrXlPr9z1uAQzFmY8nCdxwCE4PyodF8ZpmoYQ91IJrP9X4Mb601QfvoP2ebzl/thjPEo5bLB6PCKyncN28Rq0v6vAWzpROj5CuWdAuMs2TeEYzugLyDrF2q1nWXK/24XCzyuE36tXo8WO5Je/zGHA/24MbWhrcru4BdOtkWzKRT+BQR7k0P6gdlEzkfcpFGIkwyIV+ru+z3WKyY5yYlWj7ZNt/pKl5732TO7/9aeY0w37k377zvaaflUHmXgEGv33+gbWWOgFLp6H9jXGmYxjDgmzgn7p3yrabLrp+pT077Ke16vAtOh4+A299kvZDCfzuk/DwWRe4yTArkkvJLN5GGb9gqj1BOWCb1fj1/fPaMrQ91HqgkTjLlElc/C6RMBnQzpnrVtp2+/086iduaZwv+X6Sf29fOLGMCiV8jXkz0cDJNrr3/wz8JXC/Kf8rKHD3/b198n2+wzZMA5XAujjz+OV2i4vA86ma//vdbDJ95v/+/X1AaM3QfSuQLYO1xfYiQfcau1W36lXn8W22C1wgOti+T/tYfEXZ/L8UHV8mPJsYcrbC0e++GZ59vHzexCoJBs1WORKhlmaQQGtkYzzYMroSD4pNbrevILuTbyHXsKAWuKELp3sqlbC+/wWoZU/27V2hssTFbZKjzAnIC6HEarlf3vtpFEpIOL/9Jm6MoOspAPxsR/5mN2fEfYNA2RDjH6OL1vyxARxrO1P78DC8SoD7NQvaZzSja5Zi4MxeL6Sq2YZyIDobWGub4EpEnPTWB+45cHag+dlBN1gfuJcQhPnc+i1Z3+ow+EdxZilQ3xBYzWFN9LWaw3oOvVzIr+TgHctxiZNo+4KHJIHDbUUJ1iQN770d/0w0gJA12e5n8NAZeMe9qh02YF3L5nvnWFyEAw4O//URLBgmqRuYx0cPL8rf28/6qaf2M8+6U3PR6Csmazt8VuG45gJfCPw7v/B0hWEp+DPKptdngeMoQ+6bTzeBJLcmul7KNxFEEgXt9VqEix/DNO8CSdAHcID2OJ7vevCyFOLWBSYAowNiTMb57F9CQTt4MkbUS6GNgqFFNPicTx+imhLNf8al6OqTgNMBULEdQMmn/WHgJiab/1trkUnm3AdlSRBrTx+dj5aseXxsXkZb7YPSLHc27dY6KuyrV9G48cG0wQLtMLBfdCuMtc1QH9esebaZ0i62z4ID7WHKyTGNEPO/28f0OgJqWQbdJsc39JjbRnXTR0J17xXKFnIJcGpBF9Els/ILf2/cmTGVFPbNvBmaoKjghBJP9pUv8/tlzXSmVihBVTABaq7e9foXatlrie6N7Zruj5u+htxcK8/UGxf7veAsdK5raZAYvy1XYB14EHTNgvalI7ccdBNmNKM9Ircx3XXPZ9zGlOZqp3ekW/ZnT1BgbSPvbod7Dw+6XFz5M+twsl0Gt354Y19YYP3cl4CVvodOpLTxigh9gU1RgL6eG+BuXuuiwcM2hcvXusd+J5Ql2pbs+B0ybN26l7LObu65KPedBa9Hz8Hbn4IHMtUOP3JWmU37/V5oav0ALMUBZD671IdFI5RoNXamGfcZ5jA1Hiho34gcpsV5uIO+hsIGAW7XvKx3bTyu391+qnIg5+JM5O0Vqv7sxXQVoQOMLKNrZVlmfUi7rpYpBRcf4XJ3+RFK5AUK2ue9PkBZ2+5rYf3XAk7THqv7IHiTUKhin9Ml4JhXzsrNOokD7i3gx4P6fhRjHu9tPXaMWjihBWwDQO0jiYhq2XF52u2Y/MXdnypM4+22HRNKWNBeqXtPWz6ZxinVNnEabV/gAPHyEytLPdBu02HZc62iiZaJVY2o+rTHykVgQXG1720gOij77FfqGveA/IIWtPeD83rCT8v+7Lq3ASRZCktdGqNcNe2msNhjSORA5sxdf/ypnf0gNoCDXIXQAImx+jvVgNMbWi4GbKeMJmqiexm0PO3zSXMSXOyX+0XwfprI50NKc1Q0+n8B2sta9hRVjK/XE1aThLUjCRubI3pm7xzv2kdkH0CDzwEc7Rq/Kam2ZwqHL0bXLGjPsmkOQzOjGV0B2Q0bWOp23ec2R3vXkz5bavigPc7cVO9BWauZCUgOTw3gpAGzBWow3HPNbCklrXsCSx2NbA/epurqHgkFaN+wLwPe7fuNXNOED2WHYLDUKcqgD8oSbUtW+FBP1J7z0hgTeatlL+xcBT7zVLmuz58p/24vJP5hvf4Y9wawZOZEu2byqhNhhMaMj/16kLvc9fbZdusmGn1Q1+UcggWi9Op49nH4jiWWai2443g1T2suZYWKV81ZnGm8Jd9Ed+h3HWCYaZNbNQ1ytY9MnlWU2LZPArQxbbtdZj5oH+DGA+96ULyrjHmtEPfZbyXK03USlRV9G/DvgB8E/gPwbYmW8UGtpRbKm00jWS+QzHufo6ntPrMwzzxlLfs4ocSmV+c0WBKMu79vhg669raMrh4DaaAHhd2rbVoo3+0r0ohx7fJN2v1sA5Mo1l77sn0MBUZj2xAFbKIuV6Ca5GLRentyrG9FVfrGcr/JCFjscmgwKrBKUe6yz9Erp8XFua0LWRrnFjCUsqa98PvueQeBfzjkBx7LYizF2jVM9bwueJEaXN9UoQRyVQglgNgkVVoXz2fffJXo2tmoJawDqwmsJ7B2pMXqIGM9UX5wCHF+yh9GnwdaH+rCnLem9pn7zl/EVwFyb2xd5OqkjdUzWxea0YyuRvIO8L9y+0vUHFtENdlHDWvnR+EENY/fSfTymKkyaNoMAa6bc9JRH7jbcMdQ1rgf6Whke58JMRtlngmDpoL2vmhcs4GoJkSAuqjGDaAmumk1EhfYaHvdiTFIhvqeRNuSL3A43IJlT9Nux8cfm+LgFJifx4UQA24/WWa69uJw9Q+eEHRfymGxpX3p1OCMBe3hgRUZJ1sOlIlseoF/QJmKYRoRBHntChHVpD7E/j40z1/p3gSH5gJkK4Yvk2iO9qfRSOMJAbATaIsKgPRPfSN9zfsrNl+sLbwP57iMea1SBbTWaoDIe3u12vlNFJjYKZeb53EQrEnxbIJpdxGX7q3oX6LrPEmUkQP9+xUC32XWfttc6wkkpkM+qLWgPVzyspM5uQckVKPG3wv8rwCveBnvA74LeAUOvIdbhp+H3tYZXve7i+HctW3uUbYWaTM+unppXsYmaSoKXsCL+pa5KIbFb6VSd0h+yjfrThGbK+INpMWBfhk7z+x5ZM3j/T4F22z1Jj5ZO/ZB8PmYzlis4evMR0DTusMt1Jlb7Zno8V7j/fsn+ztbvue7bt/5j2I+3+16eVO8sQN/cZbClMACW/s+pxzZ8aApnBT+XEgzPV/BLeYbD8FTfbgdZ/1Y9DFHpEayz89yIsXmbKEsQQPZeoGLh+i5vAkMa4mmxUwSmG/T6GtGhNSc+zWgESoHxikceiks1ZQPBrUOXAjiKlwl2vZrVtN+pSQiSCZIliNpru+nVUp3GSS56V+aax+vsf5d0+QDM//9cgoLHU/l5m34zcSZ3dnfedfKs/cBe3EVOLsJxxPd/GzwOTBadnszysA9weRq75fba645QpoLI1E+ZWA27U8Dvwp8BgXzA1FFS0o1pt72xy7yw2HmJNq2C77A4WjX5WovjY1n8u4H2btoA7YBr7sBbjMpfIoI/HuE2sN5ITiXiSUbiM7TtJd+PmFA7VdDL/CPpW4dNgMzzopv+w4oduja6PSrgaWGabbknmm89zNrHh9qpAE6xh2jYO5FkGEOHdONwvQ2OPz36GC3ICcEtJfQVGgl0J5U/duL5Wbqs3qsDcr1wcEoZMSY4cZeto9Q7lMdDUY3V4P5GswnsFiDBfNZt6bXGA8e05yOwTz7TsWzxvHbdwVlPoILshemswOMe4err3Q9oA56y6nUJt93HFygtlK5rZaVrXiUQz3IFzDK4p2PVOivA99sP7TMiM2Vyjibq51nti4bHT9cd9E+xgCb9WUfbc+NyT+7rZn8UDRiPABz0O2NSL29rnhYskfH0a5SZA8GPceaHo+TJHDDPJxNy9ZvFthm/tOYIoq5hYmULQBtYIsbO/DUiptMYR+n7llG+BJwVp9dp3rJjJZ9YF49ETbRddo73GGzL2ppCfRzPb8l9kj9v+19NzLoGJA+h8nVfgV8ygHSNQva643O1oUiJKJAVvMuj9SXdWOk7/up5mS+ikmZ00z7t2n6tm77l2kKqxlNN3la6vOXlvUzQTXZR425fCht9c3jfRrH4fkg1PeTPjOAE4tOMFAB7p6Wv4ggj0a0X/aMBn3zZhNMzGqfUuALwC8DHwP+qfk7td+bsjsWMsUYJIBR6iTa1ge/eI9GXo8JHAo7V3Ga9t5Ig8V81wm4vqPm3NZqwf5OLqPt26ESYDfv142h5FzDqLlq2t/YgRUyDfYze+1LOcp+kmjQNmune6W+3zEzSAF6GeezzailhhjzeMH5Sdsiz+B82n0DEESYwwM99gejHLE+dg1TuADtYdt27/lNArTLlIO0jdO2h9caCh7WvJYWoEH2X0Br++NbrVq6RFXTbnnwTgJzBqzPe6+FxID3JNJ/EVoipejq4XQ8yFPOn6+2LT9k3tcvLAOan94KLmKpi7dtgr3PFGuDBe2xtseeS3RuFmtUVNNu9+gWZWH0Ntrkj33bu24nGn/sO2uK7tfVm/CbLRtqs1aMdWOK1C0++NZ0lt1RWrgwzY2GpRSIFksdlE/7M+eXt1Vuss936kzw7KZxpK0mOWc2qsAWptfvG6rPt4fntmf4khvn4VymvFzouji1QgnvavtoUhEW/ESSkKFn8kB0TQ1F94kv58LHF1qcHmb00c+GaHaEHKjwHTHB/3rmTOMX6u7+Pj/hX6eYrlnQfuzkC3b8GxFRKWcv1SAQvcylbLJ/b6bIYPIhMa0kIuVUVH5KKvt3b6SgfkZTSX6OdnLhd//oY27jXu4HOdpxnFIj0WBoriLvfeQeFmiGwP3pDTgx50B5Cbj7KsBA436oActBqg2zQRbZu8zHGfDhoN934cr4wGz7A+f1uYSMxASiC7ZC33n4SFN92i0VGzwmGry4Tjy0DCcbcGtHA8BF+rsnJvIxywsRjdg/hxOydGq61m3Z0nXM+Fga5poyzif7t99P/+8dUXBw2mt/xO+uPqACCP8exkwuz/MKcO+jpuU2R7u/FMBoKr2lBKiwtlXXv60JbmnNBNddpHFDvkxE005c2x4u+SU8TbsIMlJhrfRTpGdeo2zfUgX5y8Z/jGsoaCfSjwZOu36o5l6L5tW0PHsuJGlGMkip91Pm+npOJ6OsGNA9fHw7It+iws7Xl6DA/ci7PsS/BL6J8hZEcO1Q9guvLOU97UGcxrWhh7P8SMz7mCl6aUsM92t7TcX5MYMi5DRzhcI9aExVIdC2lhmxPvhjGRtXC/btzthlm+n4xvXRatqLfdrbW0ULVbTrxVX3xBGwNMq0Y90GnWFWmMdL7sDwQa2Ft77jQzv7QUyQM/It5KyyoKZR1p/qubOwAmyniGITw/a1j/H5Ttz5vdTSZ3pm3dtEgj5OE5XmuDfXbcYZLxBLitkPa/p+SMKDGfxGDp851uKDS8LDuab/tSxXGq6HCYJ/5o2mvdXUAEl++fA3U0zXrE/7udP37vxHNmXTwMurbB9kLVHgYx6y1CBpTpNzzGQqBBJDL6+0ldZZ0OUlvJV6QlK/ZmU6Vy8FnP0v/NRrXFCN1R68cKnK3YOZuxOQouC4wpKDsHcgiMC5DfiOY2Wwbt9bTTuUQX2SwOGuamT9+nD3EeNXZ1v4Q6iW3dIdxBkgH4htSQEzV1BPyqlVLNm+HG7CxVEVgPtmd7ZPD1yCFxyDo3OKmPy84+DsYXfe+q375h+Q9n5rqRHkWM1UoxzBCqpM4ThNV5hiB1z03n6mJuUVn8nt9XPiobs24hee/x0qBPHbC07TLkIuSQGEzpq7HsZpnp0mFhoCfRFjXme0TQOQRkN9WO2zH0UEmLuspS6mEwFvjgoexgHaoj+J/iAEd1bTTi4ko4xaliOSI5KQI1DLdc22akirvqf7fdg3+5wEtYg4gntGPljVYzehkVACKtZvMxUhyXIYZNRGObVUSHIFY3O1jKReI8lE521tF9fbFZAvePQFkF3gW//H1/FSxghjvOccpigDMz6ZcXsDN48bui/vta+rP2/9a6hp9wUO2m4Kv/HSyort134gOjCWQ5E9w/wdaw84UO2nfFuP3FYmDJktN6Rs9bJtn/3wZpZCTXupvIz5U0rVpQLNNIdaA9pNGhmkWQ6NWnm+2LN3n+kX/vHrtlcwHDS/raknbPf5jpsX4amN8sZa8B0K8KbK7zuk4tzE+exbU7GkpvnaT/fhlkNVxcq0gXaf/LnaG3mBLty5nSXqw56TkCfwSWCjDrRgfpDwZ7kKODMRw1oJ0U0jFPxvDjWuEmgK4k3P9SSwgpx2mqEyQ5KLMmjDXF8l7bN5+WB+uH8ail2hXBSwj5TBYeBp2DeNxn2Uu/4PpzjS5gGQHIBJabwhlDdp+5kIXExVEgvVQHTNRA+5ipnvmJuE5vG5wFfOKWfTH1TN4wugk5S5bns4LhrTpDXDanpAMc+lghtfjEaLBvVrf6nXffvzHVHIQfmV9HASbfD6Ytp/tKtcnm+SBmUNeyYqPf5aD150yOWmH+MSsOuHgz8ffAS4lsGCF7u50zDOm14/xtYZzJVhWk2NZ83I+x6DebkPaRxzNhzByUXYqKYMVPmSVEDvGeAGIoDd3GcOqQAHBrmme/MZup0Eb7xMkjEvgAvEA9HZpRV+5uPSQ0AvF+r9VDXsgxTpZ6ppL1lY6Tm3l65ftk++th2c/OhwpH+hL3eSJMWroCwn6evZnIwyasOMpJ/S7afM9TLyfqrgZ5iqZcYB82XWFcLKRcEB93NopgC/7+E2bt/bEEpWpCS5kAwyZDPVPvcNz7I5Ks73vXZ9K+ZusG34mnaIgPbYNbZfg+7BDWdSqwFWg0LBQ47Vb0F7Cwe0t4oe7//e7+MQlwkTxmjaY/NuXB/tnuMLDMdYxon5Ltw6R8BcKur/3zTWQ/20+vs80q5po3EWYIMg64tdLDd24PRa+awo8TJ73dyd8IoRXg7cnG57ikHbv5sWTVo74kKJacIlMVN10HNnrqwokVri5mICUoO/QkKSJ1xKoEbGdyRWSO+En/Y5byX4Z8GMZbelZ15p0QTtnWKagXZLuah4MjUaaAtuHzwDb/8iPHTGaahHuZa9Ch5wQTaf9CgvA3fbvwef1r8tMMnyPd/cpp1EhGEubObipSETBrmohO9gWlUFaLmZt0PgaMeBDl8d10iqGolx4Co0tRbg8WfgPSYjwx+cha8+U9Wy+yiionFPNA/VcjV1mp7BUmH2FlAG76VMBjaXTT532PbAqC+QAPUHB2Pu7o2R5bwtcH9kGa6rqUQ3STRg38WIibz//HaLxpmFrY3UJ9+SNWcfG2DNG9lwfgyyskWCFdI0Ucl5bD7tgHcZy5z1R3BdV52fEa+clPkxHAA6g5rGl5pKWds3NH8XzR7mSLfhtr0Guq6upF/boMrUwAGLjADQBkDdUqhlT4A5ETaL88oIYgc5+SBzoH3gC2uzPRNM2n75/RXU/B+c0sXPQR/2sVJnrsEDxZ7bfT3XkmFGa5jR7meko5ya6X8yysfipP2icP/yl+15XIpCC9yhOncTnIZ4gKlkkJIMU3VtG2SIVTQUwhkVXOwVcPfNrcNXmPJtYk70cWeSLZSKiwANCkotyB0zd2O8+YDgeJzUpsjv/esA9zx8TftWdY3t4yjXRe/HHgmLhluR2RYl0z9SEQ5nAs0GSQLDdkIyGBV7aqFlj9U9bTRuTvQpn0d2g7xhUU2MemlcE70He5yIMBKhdzm8oj85bFnrotqMgfb2eKFEYck3ReS3p3B5y9VM3fCqYjY5ISnti89uwA0JHE7grz1xkdtqScErFlff3yp2LxEYDGHOjOVcXfkVv0zuP4TppmsWtB8+/pyd/cCCWruwRzk8cg7edhq+nMHvPAmPnC1rIKfZFMUjEaEU6dr28StnXf/e8qT+7UfDngbN8gFRJhqpckNgLYfVHFZyfb9mPh8dxPj4O1ou3PnRP9X3K0a2bwFmaAparzmupKhrC4bA798XgxSKXzzr7uOrhHyEFGrcD7U1mBiuD85Er8rsrVOOwltqmhFUiAEgMsg0E8JYMGxvEPTZgldfou0PnQWmxxIzxl5Ds7y8H3x5GZ5/3AkpluaMWT1VDf0uTp0wzkFpjqwOYKHhnoHt57g8pbZdMSFA3wT+SaA0SPO2PqnWs901UmqDd9gCrMGdT99n2p2X+pcb8/g8l0qOdhs5PvRpr4nQFn30JbAxyJGW5zHWwgRvHLNOdpEmAdolqv1wyyqpmsub66FcGKaZztNhrgB3aLTqvuWYFUYP8z070wr+krKG+RJV7XL4Gku5kIxc28UTRrf6CtxT07ckzZEsw8ZBOCgqLVHKS+UicP59dwOepp34s7UguC/i+mcFM74VhRXMDHNdO7FgpLvcv5D6mLAa5u9Q0+7/bstnk6qJd1FZs+5SpEXOMb/ekkstZT/7Ni7FaKw9MaGyvQ4opx+1mvZJdZXbGVQ8ymGu5eekVKoADA+wm7/sN5tAklEE+ho1mtSsj7z/YzkYPu/O99y9vYKxiWHb20cDodrJYK3+OnUVelhgm3svYdf3OMsrrhs+MeQVN2ULXjH2nQXtda9vvlBiA7WiqVgRHMzzHEsxnkvQjDDdZqVo0ccamnqVhDqw0G3S7Svf558l/roExmv21zOYN+nlunVVZpRuTJknnWI6UJ92EeG3f/u3+eAHP8jGxgbPf/7z+fmf/3me/exnR8s/9NBD/Kf/9J949NFHqdVqvOxlL+Mf/aN/xKlTpyplB73lHbWjCL3p+6B+IQAqn30aXniqyoRPOxWcgrdp5VIFYp97Gl58/d5pA68Sys0mvJnr4TsUt8/XEmgKjBLIE5ivCY1t+EeJPTx8SajRTif1rX/vNc5dBV5w8036XFcGJm9SEvHdTNSksFAleM91HLcUHpK3n4IHTrvPXn6qylH7nGUsV/vhjqal8zdJcRuvv7+D8zEcoExV0dRhhmQ5eS7U7Fy1h1rT+Oc2IvJIHxGNk2gnAQNgD5HFLlzyALi/B2Si5rdPbMAP3ODUt8fm4FI1eJpec3YtYWzYp9IgDmDpkIdYzZt+WtbA29/5bQ3r8qPsgxubTkMl51vVtZ1+hH+LQAYveM4t8FBf5/mcHvZiAJi/tVkgdBZ4GQ7w1MznBXAQuGhZ3WJi5VCvOz/WArR7bSuuu7c3+tPSB7TLaPppm+3Hl3/5s7sAdwkk4sot5kLPSwmUpwra8yfOI/eegZed1PPM+j3bs2EPuAIJXna2XMKl2C6mqL1utS2aviXmZbXpPHme2qPLPOu5R0hvPWGCcKqvuw7wDvbbPaBSyBDzylBXiNuee0up/6W4nlLWDAOMcqE2ypx14MgIL+yBVU/cpKonak3R2Jt4Nf4S8ZfHJtWUb5t+2cjviydUEbJmTjAN6q4zzKuVhMA2uA5wJu3WciGUafu/idVjaYgD7QnllHbj6ip9Eu4pwwwW2/D0sPx5pBGCZV3LtafAfEpxrg3bTWom8qYvKI+3a+/pBc+75fJ/LMV/ZQu5ErBdgtMDeD7ls1olvOzW2Wt5xZ5ocpVxvGI2jleMnbWCns9BZsOCJ2nV4WgCp9dhsRUXSkxLtLIYzwUGtJtGJgmS4F7eT0ign8DTbQ2wLMMUadTJDc/o9B9CNDBGbmrapOAbmK/D0Fvt4fo6+CNiIh2opv2d73wnd911F7/2a7/GH/zBH/DSl76UX/qlX6LXC+WwkOc5v/zLv8xtt93Gu9/9bt7+9rdTr9f51V/91WjdvY0L229IhWMy19tPlsu9/FT5+wPZ7i6DfG7WTtBMlGnz6ZtPlQ+Qq6R7u00DswFb4L6Rq2Z9XVSauuF93xO2NH+STFzsgE3rZ2jS7fXVpHHb0j1/ngrcftut+n55pMDSN+0u5WmvXb67gwC3HYeXGyPW190Az7mOku+veZsknl6okqu9rZpfrw9igbsJkuePwpq5buJt5KNMgYcfdyLMhNBL4xkQYmM8CCTa/mbtCx+OdXWM/fXhW6Q8sqwH6bEu1Gq6sx5twIVNV97fZ4TdleiGWny71ldHsBhYX7TR8Qp9wGLk9zcW+Aeg2XSRji9b0Be0xV4HOi9uf+FzdHzXnLWDGhApE2r92i1Z83gLaEv+0SLlYFF2q+unSDdxrWnWnCWG91u/ubtBPlD3q75EOd0bxH2dx10Xc1gznI1Y8P6XF+CdTyJfTtXK6pGzAUO7N5u+akWq4P0Sqmm3VDLOYTzvVFiPCRpoLjcB6b5+nuZ7nqRx7zr/zz/5Opw+V85lPA2adqrjcNF8/7KXPC9qdUBwtWWGnuBQMnHWBg+dgXfeq+5v1j3Ct7Lbg37FrqDrzALkGmWt9vjfBeusALS5i6MBCtp8n/ZgTx2nHe9T1o43KQNtn/3xa/Q/s++HuBgDoP3b2KKuianMBiYOSWlzGk+lKryynT5QM6B9oUndS00tprCIHEie9tu/6XnbLClx3ty6RPiWUf7GeMM8PLlaBuze+93y+7a84mZe5RU3PF7RvibyiuK9GaaeVCmmbV/S1LJ2MwmEElOjLY4pEgSNR9BpljY4MbyrgAJ588cGsFJLoAWyOXT7Zu6C0JbWyri5Mt/Se83VlA8PD6SwnVNKBwra3/e+9/Ha176W2267jXa7zRve8AZGoxF/+qd/Wim7sbHB8vIyr371q2m1WszNzXHHHXfwyCOPXHlD7IP2rwLcetyVed0NcNt17uFeJaYUSlLduACuO6zXLvC3b4DbTsQn8jcQ5SKaH1J0Q+6Jmjet2Y1YVEjYM98PxAUDipFkohtUP0ivFwLO7Qb+C0EZ5v1Kqv7s4IC7T4XmeWsmoFK3vR5dhNvmNfe4T6H0eFyu9iMNFwHc9gUFXngHmr2lZXyKYOdpRmJMPa3vZgmw2zgNNlCkz5yWOC+vbzGJNjgfffv5oSZc6Ll2C+VcdQ+uwAuuK6tBjzbLad9CE/ndYpbsfPAZEQtSNlCtjf+M5nAWBiHTmOfjOd1eHo+y323od8HeuGM3gJhJvvU9a9ZgvlNyrxA8Ezlze5v86TQOtJfAjwgJMC9+iAcz73opUvQvUZeSELSH7dsFkuBlp4UfOR7GA1p/mflRrBdEc5VbC1gRkIefITc/FlBrstJ+vzcBN8M+2jusMDkI3ZZRnsM588hFnQRdaK5C8+EV14a8auK83+Rv3762/TwqoGkQWFYkZYGT/9zngNQIDRMR5+L3xHnk7U/BA5kTzPiAfY86P27b8AO1Wa02KHAvlbdNmwRoh0F6zkZMsGaunoAm7LKvHYdqILrwd5PYoSFlS4JQax+ry30ZqXWUuaBZE2OPuPFyHlL6/VCgNQSadRIgbbSor3v3kEpV00vReWBBu7dfFxHW0bRvT/Yp3EL989dKEK+QQl6xL2VecV30WPRBe+U4GWfOPRRNzwrVjT7BRJBfc78N+zg1zzTol+1nb+T6Z762WnbMexIY1lDwDqRNDSCXE5jIg3ueMR5i3ew0Nj1gt6WHq/+7qwj3HBhoX19f58yZM7zoRS8qPqvX6zzvec+LAvHFxUV+/Md/nA9+8IP0+33W19f50Ic+xF/9q381Wn+rsxj9PE5C2dnOTHwbvfNkwwEVnzG+Ch4w4CTrPqcgAhcNHHr+EbjVE0jEpGPfIJSjpmWZKFMxFJXAfw741+Y6wMQstOXGDJPkohLTvvUpNABz0wOZ/dSlGtzC3zDmu/z46acNaO9r5PiYagYU9IAXbrioND6Hw7kA2tGY73dJy07ZjhccojjUUPNmb4O0Js7ibcT2jsvmugkaJdpkP5BRVviyF4DdXq2Pq9UuxUi8N6OsKtH2+2EPySNNWO+XDwd7WI4yeGQdXrjoMQ4JHJlTG3/f7x2CtG+7QcGBUxyMBuAutlx/kkT9AAdjzNnx6gnXfw+T8i0Yp26svuC6jS4UVBy8otYoLXj8zDk43IZV514huUn7gq4Ne4Avm2pOUtZMY94nogx76vVRAFI1/y+aso0gV7tB/iPzte2XcP7seNcCmJvxH6dpX8CkoxW7woAXqCC6eNy3e65le9hHawYe8kYXUcFECbQHQDVKpoKiz3YAn3tUrz1Il2DleYcmg6Z9pmKJelfQtHdHgbN/+VTFqiK2nYPxnS4AmxSATb50tlzw82fczWFPrCkk8rK0Ydpq22+32y2DtcXmY2o07XZgmnXdfyd0KdzWQM9wP6J9EydE2IrCdg4oa9q7bCPQnv9h+EWaaRwS8ISrcVBR/CnFCkfQsW1KVmja83qDRpp5t/XN5Pd/RTz+1dNbF7IUtZAzZ1spSqOniT45bzaYvttgfWC7C9YmGWVecSBxXnEkrlxUwRObB8Nc53aJF8EoE1DQ7gsl8Pq1S0KJK6WJ0dw3UtV4F5tdYuZyQl5PCqDeBySBQ0lC2mmRDzWYaOHbLqLeDuGmU+IhhkaqZm4233Rl/N9dJdbFBwbaNzcVMC4sLJQ+X1hYKL4L6Xu/93v5/Oc/z9/4G3+DH/uxH+Ppp5/mH/7Dfxgtu3j4pu03xmdQfYB7wWgFN9LyAw2lY9NOdqMKF9FFc0xtmGvlYJiSNGf7SHbPy8z7FPgi8CvAx4H/xfydet9b0FChMMiTn2qv54F5LyvBxPEuno3bkD72hfv1/XIfDjccMxPmCrI+jGkAQhyHVL5P8FHRn9D3u7iHd7NxudoPdRXElp2RdAP2FL+CY3oaaBRWhibQXGqiRdvAUw+fVTPQh8+WAXsmkOXVg6Mi0c7jEu2SOjNRwHjenA7WJN5eH1tWNdnJOWdlAC7N3YqXX/xytdCTyJ8Tfv9WBrrD+4GbAJqeD3q4h8XaZMtkqP96OE6dhgqfwgPQv25F457PIIXFhI/de78KpdaGxX6WY+ZOrloPQdfiGRTsdoj4g5t6W1JO+abPM0Paibt9fUIO6F2kmLm0oMIHq2mfFFU9nK4JgIhGjzd/F8Du5mPI9SYFlHVzCU0Xd5nsGoz1c5ymPezjmIoB90wTgeSmo6TH6qQn4ff++k0MbjhuAC2ldXJQx1roz27H4RwaOf5Ln/wc4BkqUd1q7bUpUph02/4JAi85WX6M32wEM3vc6fDYsAKJTcqgvQiiF/lN7DgqtTvLNH2ppWbilCvh3jOh/lhE+3Tcb7wtIGYEYEG7bVWHsnl88VvvVVln/s2yzJ1JgwjMq7gABMG4RMe8MUxJjGQiX4TGwEbMDu8rhXvaftFHP/G57RWMzQNBx8VaxvvpWW0mm0YNTjU1NVpxZrOr1iZWab8TXjFjDK8Y9neQQ8M3/U8gqZlrorwGwPletV975AJzWTRuHY9GRZBE+/xKRRN9bZLQIOEI0J9vwtDBFOfx6/UbqjxEL4NFj8ezGXSsUiOCe6aZDgy0z83ppFtfXy99vr6+Xnzn05NPPsk//af/lL/5N/8md911Fx/84Af5zu/8Tv7JP/knUR/49dUzvP5n3sAv/uIv8ou/+It84AMf4N+88XcZDJzh0l1//Ck++al7i1P0/IVl3vh776UIXrA84M61h7j3wjn9gQiPP3WGN7/3Q6Vd+zff8oclyeG99z9SiY75xv/4Dp45v1z8/clP3ctdf/yp4u/BYDi+fYaeOb/MG//jO0r13vmeu7n3fmeZ8PhXT/Obb/nDUpk3/+77efwvny4m9r2PPsGdn7hHA2sBbA5543vfz/mV1WJh3fPZ+7nr7k/vS/uma/ye4vd+5/2lNfyut72f5l8+VZT5gy8/wt1/cHepzBt/I2jfJ7/IXR/+swJEDtb7/Npv3clgra/+hu+4l7t+/27u+dyXCn/D889cmtw+0fF7851/VMzZv//qH+TNH/oTHj/7jJpwA/c+/lXu/JP/qr8xHN8bP/hHnM82NZI0cM99D3DXJz9T1FsaPzMH7vrTz3DPvQ8UZc6vrfHGhz9p6jXt+/B/5d4HH/PG7zRv/t33l9DFmz/wJzz+9Nkih/y9X35U55847fp/efO7uHT+UjGe9376Pubv/hSnRBgNM9L1Ae/4T29nuDFQsD7K+fAffJR7fvPThRno+S88xhvf9t6SG8id7w7G78mnefMffNgdIIOcN5+7n8fPniv6de/Dj3Pnhz5REj688U8/ouPXUybqnnsf4K4//6wxjV9l8Lwj/Nrvv49Bnqm5fS3hrs99gXsapwsT+fOXVqrt2431kQtv/M13cf7CctHPe778AHd97gtwVLf4QZbya+94D4PRSKO29nPu+ovPc8/9DxR72fnzy7zxTXeWuNM7P/Kn3PvYEwUT8PjyBd5815+U2vfmRz7N494eee8jZvxsY9je+v21//vtDIZOgHjXZz7PPQ8/Au0mf/+OH+B8vc8b7/24323e9+FP8MCDjxl5iHD2L5/ik297PycoHh1/9Lb3c9qs3wR44sFHeeLDn3B4XOCd730/FzfWoKGa9nu+/CB3XXzUhJiHwXDEr73lXdo+M2l3Y/8TEd7yO+/nL7/6VMFrPPrlR/iz993NMi5H+3vf9A5WLiwXYPbTf35fMX5JouP3m7/+VkaDYVHm6Y9/mv7nvlQ830srq/zue96PdLrIyQZy63Hu/PgnufcrTxRlHv/qad78lveX+nCl+7MA/cGQN/36WxkMhkU/v3D3p7jw6fs0fiawdmGZd77pHSVt+9jx8zbft77nLr7+1Bk1EQee2DjHJ9ef4vwNRwtz1Hf97ntYvrhSzOs/88YP9u98y4EvfekR7npv+fx46E3v4MiFZX7g9T9KDbj/0/dxz92fKhi00WDIb/0Hfb6Wmnf/OX/52fsL0+jl5RV++11/CLceQ8yg3vnCp7k3NzyWwONfe5o3v+0DY9sHl3/+/od//1YG/aG9FZ+7+1M88GnN+tABVi8s84fm+dZQ4PzJ993No1924/fVrz7Ffwnm35v/8I95/OkzBtDm3PvMaT0/QC3IBpnyL8srRT/v+eyXuOvuPy+2suFgyO/8nzp+Yu4td3+Kh0z7msDwwjIfeJN7vgJ88L13c/+XXPv+8qtP8e7ffX+Jrf/a295P4u0vl778CA2TBcACi7f+3+/g4oXl4nf3/Pl93HX3nxc3GgxH/Nrbzf48yKGVcFf/ce750oNuf764zBt/+92uccC73/MRHnjg0aLep06f4Y//6E8QgbZk0IQ//vDdnF97hkZvhACPPfY4H/mIuqDaufPG33jnvvKn/+Dv/ljx2cT5Z9brG3/73Zy/ZJ4vwj0PPcRdg8dd+4Yjfu0tdzLI0oLnuUue4p4vPlhIys5fMuMnYP2+r+T89QVwb3/TO1i+sMyHTZmu4V8+ZLowMPtfPxi/e/78vqKP5y+t8MZ3vc8IJQTade78r/fo+WsWzeNPn+HNH/6Ixs25oQWnN5X/+/rTxbl975ce5c73frTUhwPBH6Y9b77zj7z2wb2PPcGdT34Jug5+/vrvvZfzy6tIoo/r/s99ic/c8xn6CcwlMJ+OeN8XPs7w4qjA5//1ns/w6c99SWVQuSh++813ucblwp2fuId7H/tLaLcgSXj86bO8+SNmbm1qjKI3f+CPefzJp02bhXvvf/Sy8ccHPvCBAnO+/mfewF5Q8rGPfezAxAp/+2//bX7yJ3+Sn/iJnwAgyzJ+8id/kp/92Z/lh37oh0plP/GJT/Bv/+2/5QMfcAfOxsYGP/IjP8Jv/MZv8OIXv7jy+crKCktLS1u2Q/qZPsDQP/ZPz8ATK2qG8j+/VCU03YamDGjXNYrpXGNPIrHuFomIasE20ooPNe96TL/bHMB//01q+tqpuz5269BtkmwZxvfaoc1cWMvVH2nNBBL5DPDLXpl/B7wCmK+pAG8x0WvN5pzMRTWEPU+zbjXtXzkL73ACAP7ezRqxvxjzBkkrHtlUstwFsxtkWr9N3fRv74d/8iKNCG6fYYILgJdm8P+5H372BRoszZax13k3j4scv4XpuenHH31N18Arb9D579cx1yQxklPJRH2W7L3tvBtm8B/ugx9/Fjz7MHQajDp1VrsN1ls1NtoN1up1NoHHgJ8T4eXDnFcOM/76IGV+lDOX5nRHGYujnMV330/nAU8T8dI6vO7lui6D9SlD0xbbp81U2/PZZ+CBi/DTL1D/ONsfwwyW2v5/3AevfTY8a0lNzK1f/b+9H/7ubXDToo5Po2byIufw9kfgtiX4zpNuzGz75psk7fiz3gnJwN+/7PrO4C/OwcPL8PrnO9+/YQ4f/JpGUv3r11efY7ehQiQ7x+zzWxvCrz/g9sFO3UTNz+Cz5+CBZfjp55fHsFPXNCudxpa+ydE+DDL487Pw1TV47XPgiWX40NfgZ18GrTqbnTpr3QYbrRrrrTrr7SabtYS3A18DfgkFC4vm4B8JrGdCvz/i0c2M/9TP+LVhSnOUMZflzL35AeZ/9FksnlxgMYfae5/Q/PB/9dTePTsR1kXTBNkgl+ui5q3/K/D9wB2opnIx0T1nyew5HbMvpyKsmN/bfWszF57sp/yzXspvDzOaZv10Rxnz73iYxUtDFv+Hb6Ju93zbN7uWd3HPz0WK9EdrNlgTCpz+HvBPgW9CzfnnzV66UIOlBFpj2iGZwOYI6Wes91JW+xmbvZSNNGPzLQ8yfM4R/q/vvp7vbdb5pm6duW6duXaDuW6dxbkGi7WE9j6fayKaw3nFjMG696z/JfBi4CdQs+2FRMdgIVGl63ruXhvob345F36kn/L9/ZT5QcbcKGNumLEwzFj6rQdoN5pXtCZ3Qql5xqu5S5O6ibo//DTwdlQAZcH6zwD/DHgJmjHSf+6HEBp9c37avdpaqf3n++EHboLnGTeIcI/z97G5Ov1WnVVJSuf5pmnP19G5V0PPm38KvAvVwM9jxt/Mw4Wa4ig7j+1a6wG/jbrI/hNUXvs08P8A3o2u26Iu08elGtQEt9+FZ+T/cR/81LPhvU/Aj94Ctx3R/rT9NarnzEYurG6kbPQyNgcpm72Mfj/lHcOcH/7I1zj0/CWSWw/xyNdXOfKFCxz9sWfTbtaZ6zSY79SZ69Q5NNdgvjudfKxNUVkao34KD12E/3oa/v5LdVzahl9NxZ3t952HT5+BN7zElfH3uW5zZ5l7AtrweEU7Hz5LnFcM51LBK47DHh97WoOu/uitrm+tmp7fdhw+8pS6X/7wLfqdPZvM3N/tNb5TKvjAnte3nnEH/Xf3wetvg5uWoFtn2Kmz2mmw0aqz3qix0U/p9zIe7GW8r5/yHWnG9fcu84LekM53n2SupXN3vlNnsdtgYa6ugoyNUZlvsTjufA9+/NlqhZHm8Bv3wY+YtdXx9oyuzo+keeVn++rqKocOHeIDH/gA8/PzuzCiSge6Sl/zmtdw55138sQTTzAYDPit3/otGo1G1E/9BS94AaPRiPe///1kWcZwOOT3f//36Xa73HzzzZfdhlK6t9B0dXkANy7qZ6EphV9+msmKpSrvBVY2ddGsBv24ioIy7DZJ5PVi4FvN979q/o6VK8g3i/f9q9McPvEUJfqck/BtOdbhs7Ta4tVIjvbQftZ+EPPzrphrSelSfD/KnG98qW6q9xuXq/1wS/2SvXrDFDQ5akV/XZpzaJQxNP7+1jyeUW5M6oO8JtY/N7Y+/fES77NhbnK9BmRN7fy2H23CipFE24Btjy8r2rh+3pnmWb92gONe2jdLu+1eMy444ZqX1s3vT7uhQqVxt4/5oFkzTRu52X/Gnbqau1m6HHPr0mLyftTLnQ/aUlvtqZHCPN5GjRdxQejOANdTKCeKx1eYGYuas/ZLJvyipndtFXYJjIkev8N+bafb3uPzp8QlXPT4kok/VdNxPwCdfS2YRtoAW8VjHWaIcfWMPqtd3vNje6XVQF5CzeNj5v+TMXWwhuzV7m+DlBYwNOVsoELvl/tOlTHwGnIWuI5gzlLNEuDz4G2gb/tn72Gf8cAIagm+8AvvMoXjK7ggokFyySItmsR+57cv/HIoztUL1Dze72fxu2BcwmpwweMSdD+oBMaLXGOfxXzagbLrQniNTcbCnxlVoHRr1Rz04d5csA3mDDV/jRAaw0wTyCQJtGt00qH7rUiF7Z1aio5RrmlsY74jNojsjQtwLitnThBc1pcrXAj+cWXfv9i8QHnFl4Zlw7vGTOUtX2Ij4xd9S8oRR29sw1MrrgF+lgzr5zltZCd/ilr8me6ITfuGN7UTWEugnUA3gQsLQDoyZ4dJ+QbOPSTGtwgK4G26N8sIzJnguaW2SeQBTR8dKGj/qZ/6Ke644w7+p//pf+I1r3kN999/P//m3/wbut0uZ8+e5dWvfjX33afmS6dOneJXf/VX+dCHPsSP//iP8xM/8RN8/vOf51/9q3/F4uJipe5jp15U+SxK4Qnq72AXNuFYU8Wn6x7jvQ8H4K6RzyGV/PYFnsnh5rYuIN/fFtwE/gajcDrYIbByslvN1S73SiyLLFdwGwJ2G2zu6eCGLz+1fT/nMFCioKbKy31jR5tM5nRraDsmzOOJqWiGedmfsOLXjvvb5zDDXO0237lQRI4vgiiZYuuZAvbFUc5glJMYoYdkOeSCfOUSPDaAO0yGh+876rI9hGA9fO/3e5A73yobdd9HRX7bj3ThUurWVA48vAovPK7+ZrVg/BM0gN35IOq8nWCyWzEjgr3L3md9CAtBcEKAVuIC+VT2vWAPsB8NUif8CZ93x1gWxIR9291HxjEvPU0N8+Y/vltBO5gIsriUL5ZVNb7LZ9EgdAXwwQO1pj1tpNj2BDRlFkCn7pobi0y9yxQyc/7QLVP294YyuLUUys3sdR4VUPSKM8D0ccMw7Pu0xxfLxU4187lN6XiEyLLbTsWmwsTrQzI087qX0kKj51s3HN+3/SCOtmLZU/ZnB9VInwA+8rb3l+atfw2piHhe7N3uPtJDAyuG+7nfmF2m2FbbpxpXAhTkhk6NpR0otleDAtqGNztatcLlq1I+PJu9a4+yIMFGks/CslLtVzikNuWb7Z8faC9277Hkd7xVV59mG+BzDM8p5n8JivQF6lnqhOzdBm1TlyvrRZ3f5wURmqBvm2w7oz7fSTlzzeGW+r2fWXcP0o+ufgV+3/bcju3d9vm/hOo6H3vHyqRKdW6XlCFJVSjxjOEtw37tglDiyskbc7yrjfzfdc+vSLFurjnaR409kXAMuNgEVkfF/LVg3b6ifBCoJcNco7wBtZuwkZXLAft1Jl4JRVRM+0dJkvCGN7yBN7yhavt/8uRJ7rrrrtJn3/7t3863f/u3b6vuteUnt9eI0knqM50CF4ZwtKVRjXoppVPAPtirQUzpL2jb3g3D3Nxo3Af6mQYZy8M+CnGW4dojfyO2V/uygWVWUCazNAXs3yZgWknLnopLxfPxMxocpZnD2Qz+1g3wnBOUbjppPknwfS58/+3fBKdTWOy4Td0eXLasBc8tjFZiDCNXHozqZ4NMAV8FJZSBXGJzbPrqsiJXewdWh8UAFuOWg+Q5gs7B4SDjumHOoWHOYJhrULmRgnY5t4780ZPkP34zPPcIfO4CXDcfH8dxwUns+2Gugdli/Qnbfrhjot+jmvYshwdW4O/c6iK71oPfHG3CSq/KNNg2XeHyqgRh8fu3PIAb56v1d+s6Z/xxCH9b+tvMaz/KfpIYtJSoSV4l8pLXnm1tkWOeV28Ei02+/3nfpAxoDVjuIwutcro3T+B1Dk33BvF816BatkRUu9YExASzkma9CIJDo67rJdb+XeRyffwsuOBGm5RBe5jyzSerUEvEfV8XBSbruXAd9lgTJEU1G2nu9nzwhIa7u+f7+6h/vFzCgRwLTgn6ObHS4r3GGk4E2Bzp77LMZQigXPag+DL7bPPgWQ9Ry6LjwLHv+dbKs2bMtY1TxBYCidxch7hgk+H63gOEFj5j0L71UEMkv+2g668f/NZvYuUPXwvdtBksxAWimyCcEKpfD3HxIsABeD89nV9+0ogN0Mj/mPrq3ueVbgRtqzTMTthWXfs5yCM/jLdNvIEcAfVMLeOSBGrtJnVBBd/1eiE5k/CH+0R//Xu/detCEB8jQX0VOp4Jsy9kLxZQDW6cg9N9uOVQlQ++EtAevryqLpmrDXZYUvAk4UiHfTNvBpkGv/XJ5+0SNNBtG3h6Td0Nff5C0P5duZX3lVGML+kb3sO67JnI8ZYEwJzBg0RdZ5aShPOtGgyHiOSI1MpZY3Ip87x+hWtDuGWhvKEutmDTO9tjv5tSmj4nll2iYX9t60IASKAGMJN+lOmue2xO8/ptGqmMb1J5FTzgseneLmyq85zd+DZG1d9eLX3cRRq3EVszv2XiWnYRqmbxqff6+gp89rz6KN16HJ69qGkEIwzzWO1rqKkFbjt1ElZGcNSwGj6ADv2ZWjitxCRGbtwzzzzz+K14+pida4JGuLe52gNJqXqqCMkwY3OUsTDM6ZoUb4WWvT9CPvyXyHechOcf1T62mrA5WSPhPgs251FWlWjbtoZtP9KAiz33+6+u6JjeuEiR17vuHapJos9llfJhCuW1eCUUMjV+vZsDWPIitNo+tWsqya+MiUTmhbkOM+h4Y2EpQc3cRqbwOCuHSV0o/CIiB+fGCObq3Hb9Sf37WA3WRwjihrTYwoURmvM6TPfmm48jzjR2YAV1wxQxAQRtuhkaiZdtoWjs9jq1Taowf+a1Yr4/RBmo++DWUgzQWYuCBYSh3+zU07b5kanD572LFBpgCPq8llGT8KLNjBeyRCvFAHWx2nYhsVqcLHX86pScYbbf/ntB5yuogOb6Z91QNo9nPHDv4NIWmu7rNdW0SAUqLhqwd4zpOAOtHmUQbGmOKqidOAX9D5veft2MmJB7a3Vc3X2cSbsVgEA1VVusCZWtkXLOd9BnU9K0V7bWsM3mjU0x2aypr+3As4yLWORJ0BhrUTICaqPcnNcJtWadPAEGzgmg0LIfgBn1bbfeuL2C4xiyYe6igIcpWn1ge9OCRpD3z0bv4JArULrF9jVQARyoJdGkuT3RqrGfurziUBZGFP2rqVD+dD/oF1cslNgVKnfWfbYx8qTM7mMBpAZSqyHmma6R0AYOJ7Bs3frQs97yjCVZsyXfDXgwhIVAetFtqqKy1Mbgt1NK1yxo3zb5m4EPcC+aE88EY2Mjq67OqwHUFpuVt+GDpns7Yo6qeWBzWC0Du86kTjNN2mCtCOiS953PeMXN4sWZxX/gq/C9JzUI3GJdTZct+RvMmOGu5Gi3vxNU+xvmaA+dIcH4/23xPMOv/eef5Z5Ps8dSx7hrH/DivT/cgNV+0VfNt+leDDOSYUZvlHN8lHNkmJGmRtOe5fChr8PxRfjO44jdvTpNJzUduz7HMEmD1El8/bZb0O23/VATLpk88znw0Bq86JgGQLFadh+wQxExn5VBuU0+E3ElFGNq7PWiqHk8QZs6NRiNMZ2NMUigjHGrQdQlwjJPaVBf9DSd0AdL/noYjjSfK6b93TaspPoIcj9Xq2rcnzFVHMNpvUrLwlTdMO0amvvLIIO2aYrtYyOp5mkP59MVUvj47PtlFFT4Zrf2EcbMpX1XR2xZga5okKSi/mFKboMgDTMqtMdaWP9RX0KN2Ir2eq8tY8SF69jSKCdpUDy33O6ZB2waD+75+tr2HJ2zJ6iakYfCpnDptUQK4Kv1a89kmOkcLvCZf54H112icdX2KINjS21UEF45c/0towJqzJsiSFSi78cIJ2ScfJqyH3rivR+MKT+ONxB0mNuU95l5tkhpN+5Dm76ukei+OgxGNPiNgFqpBZtoKlDLgFZD98EENts1p+UslT7ARbEVxfYjwfh8W7c283loaZgAN3XgqTVv8UnVsvZymjXmBerqAmp8FtvbK3MgPLdBLbzaEQVJyZIANZHfI6HEFVNobWcX9jD1zG/MWWR82vU9RZ8HCTSShFYCebelcz3zcrXjAPxYq8q1XHEcuEXaravZPJHfTe1iULpmQXt3/tj2CoZm47mZXZcGcMKwfAueph0mrMAppIh2FkH9io+b1Hrzdc+SIPK7byAK/S5t93uoL4nVgPm+SpIJecws3uYL/8RZPYC/84Rutgt16A3j82gccPd3f6+h9z7+VVjuqRbY5/Yq6plEzX1HQeVR4BZj8sRopQNuepxfu29aXsrV3lHNsxGRur1cIIckU8uEdJTTGuU0s5x+ZgLPfeYCkqbID9xAXq8X6bmYbzpTUH8MzWuiRLuXlSXaoTAi1JpvYoK85PDAJXjhQtk0vp4Ev01UhXZpgon8FVFk/xIc83eoXZ0LrZoLwlLhKoP22HoHJvCPJT+ym7XW6XvWSDs9/8YduBsZdOs6zwGOdGAtLdafH4hORDiDatnrBFrbYkkIiYjGZsJp+xjmRY724vaNxI2j36aCx7ryzTGmrREUtPsmt7EX3vd+uVpC4ed9SGDD1CoAvRRpgXRB+p7g5jIsJLZLofm/fV3C5aEH94xifYySaWcCrv0jdD9IoS3CwJ9Olrlj17u4LSrmrHcFuIAKmQCe+PIjJQ27b+gTXtvE4yTKILCi2c75sgvkLw/7vo+LB2MpQTXRnti6vLTGgXVr9dLwwEyz7iVYj8/hWHetGXw4rmEwuknv/bqspt7Wo0ECg26EzYztH4X1S6KgdDTePUf8a9DAxIyVjYLdBDYaVrvorQOzbvYb2/lpwrZF4ZwYpvrsw00iPLNvWFTVdy+Na6KvYA+P7WtD3HRcJ/Ls8Z9/2Eevr6NUI7BBnCcphBJtOD3BZ/8gNjpLxcAEjejlJruR41Ot20COmsrnCUiSMEAj7gO0WsZ1rTcqdVdQAX5xT0sWy/WB+Vb5gJkLFGfi/2Z3zva9omsWtLe7h7dXsCT29lbghREcNqC229BFHx5+/nUKqdDOxqSLF3oaqAM0h6EF7eHuPaXdExEjYdu9BkY3WPN+BbjJXCtM9ignH8kYs/hV+Mwz8CPPVmYjAeZasBzMn60EQaUdypV9+MknVQBjcrRPDkTnBdYaw+BMHJCBlBmm0jUE85Q5zkLzbNgbE1NBjLY0N5u7jHKSUc5omHNdmrOY5YwygceW4YlzyB23qMa3aUyoEtQSZqv1GTs8QCXaLb+dtv21qtpvwYzx6gC+tqLf3bJEKQCOjRzvMw5Lc3AxLT872J1D1dZp31taNQdSJ9BGkGj0eOvvUZl/QoVBEhS0hynOfEQM6n9etCuod6s+hO23v98Auk0e/vppvddiC1YHhTm8PnLHwJ4VKfzZC/4mbHKi9+qIMumC6Fo1sQ0KSb+vaS+1d/f2nJLwj/J+c8hvM+XhjvGqpc/Mc2xDYU2AiFoUzIF0a0gaCGrDtbNLZGM2xvp4hEj/7GtSuqJg3icYQUUPkgV1flhKc9V2htM5BDr7RKGG3bbpGZxlyOlHv+aUaQRbUnDtisuAIP56G2SF1qoI+rRHliJhbeE1NI8v2o4LRBf9bax59uxqePOiSI8a32dKZ7n3vfU39skK8fxlEOMFYnX50eNBQXLFAMC/xvY6wWRoMZ+3ai5g6DbWpr91M9LfJXU9x1ok9NpNGBW7ZfmI3OcF8fAjX9tmycri1esgpkBAeRwf2Lbrusk8abTtuVSB7WVQuGfb14r5/kacmby9Q6gIKvWnwmvlEQvApMpb3LCoC2l9VO6b7zs2LWT3617uIuMDYvgrGwep+DuB1SRRr7wk4VgCo04d2RwVe7gNRpfb+kPhv40JYXk3uwPN1dRVZJzQeoqGLaRrFrQvn39syzJbpnuzfsK+VKYCrnYXOO4qBYxNyex0xUTGBw1oseFJdHdNC7i7JCKMRNjIpciNuSHQy4Vsl55BTHqaodLTm1ENWGmjTnPyNCtSkVXM4j/4BPzVk3DdnAHtiQKPHAfaKlxCrC8SfZ6v/e7vVu7gUMeBp5Km3TvY6rWqCXOMxjEIA7wgQO4Sp8QdnrasTYnWAZZ7xbqxEeRJc5JhBqOMzVFOK83pZjlHz63BZ56Cv3aTBtxr1JBG4oauW3OmTjHmNOyrvw5GqWeGFpFoWyppzfvw0Dq8+IgzjW+YawzsX9ctp30rpBRc+RoL17flKNcHsGg6Yttu+9VtmFMuMjbhfLQ0zF2011jchC4mjdw25leMfE64WHjm77kmr/2+79F7LtVhpe+AYC5F9j1E072doAz+QvBj29YWGFrJegbUG4VpvIC6k2QR0L6LVHps3usiOtUsxRIbuO+SsZr4JdH8wfZeMsqRVgNp1ZF+8JD2SA1t++QDVttHC9r91HzjoqVXKjXXRMRNx34GnY4qYYdpSZsLZSC231TM2WAcrHl8Anzva15ZVhZSfp7+uDSkbB5f4JthBodMcKfheEuR3aTwaLLXTUzQR/OZ7Uub8dHVS83z//BNxy3ZGCvhuRaxqvCr8qPHF15WjDePD5vjfxaa2oNa/04MtBcVmov20TasXataLxWVCU7b7i9dLVcbZRqjwzSoCWzON8mHuG3f7Ln2KNhPeu3feuWWZSbGOon5fENcaN4GPvh1ePwZN1GL1+Xt76X92ns0q+hcOIwD7eMEs6U+VbTROF6rdJh5fFUt0TJ14J0PwmPPVE3kD9Kv3d8U/GfYy1wKNlCgDs7dEbA7+jBx0dLngEGzhQyy8nmSB3PY7/KGOQGaAY/XrcN6xLrYv04pXbOgfVvkcxNQflgXNuGomS7z9cvXIh0k+ZyBbbOf7u2ICcc015r6oAyZCJui7inrOazkml5+NacA8IP8ygQo4w5rGxj7JtSks9h8cz1kJTWRza05vL3+17MqUfzuE8Z02iw3m0/dB5rhXIw1zt/4bD9tjvYFT9Me4+yhmsLKPzAmcirmj5SySdokv/bwgCkOnkTToK1o3615nuSC9DOVoA9zRmnOia8/w6mPPcKPfeRr8G03IDccQuo18kbNmcYnlP2T/LbHxivs39DzHSvanpSZAZ8BWOxqPIgHLsKLFh2TUJjHUwXJR1rwzB6mfSv1z1xXUhUOJZH5YPPSWy1ybP8LmzSUapR9//18TQ9j/7fbPgQDhtT2wfpfdpxUnkMNZHVoLG0otEu5CDnCWXHp3nwT42IICtQkdMEFaRuCdBrFnBLQgz7b21zXPkNn34Myf4fZmRbaTlFQrbP6tOu+WWjXRkCjiTTqyDB4/rvYr6I6K5gLqhdUK3UYb6lRfl5bVFxcS4B2kKl2rQWNUWZSeNlJEjRiH8kfh5CBP49Gjg+fccnH3dtO7LWLCpStwKro1lCcD6cfbNA1Zvc6Zqv0ruL9PaCcD922v0skEJ3fh1gbC6sXb4JYZnxM7InifAnuNaKqHS+sUiLlfaVl2LJxdcUsCYppGDujQN3XOqZPvqbdJ29sdCuzA6efp0B7lJfSszYSWG22yNe9KnzBxnSweVWK8SEwwecbIzxHN5KvPqOS3D7w9qfgkXMVi8XL8fsOZSj2tYIKIucZE4iuNMcn9HGEntMhr+UD9gT46nndBJ4B3n4aHj1Xtaw9KIr1D9SVsevypvtnrpDo+jCb3kYCc6bvx5KEtXkNeqvHuJ+r3buNr5TZHCnaJynzcXOtqrXhpDZPEc1Ae8w0XsSle0sSPQB36oM8FSTxBWzTvR3puP7Z6PEVRvvgO5eL0BfYFAXn6wIbub7W7dV8H8Zt2fG9zNV/zBa0n8CZPwEapXeUk6dq1l3kY89yeHIV/uIZ+JFbFSw3a2VA10BTUYSHt715dRDc1deorvQ1mlOYoz2JHGgt49O+0zHyGIKKyRaUwXvxGWVu02/boQ4spwXgklx0LIeZaolGGce+9gwv+pMnOfLlHnNrGXRzdyA3ampCZVOFzNU0YNk4Uyefo41JtBuBCbkP2MN+HOvCl8/roXrLIf3cBqCrJap5t3X4ad9WN91eEZpxXcmc9de1v4etZc4VoeiL6YNldvoTtHCh1juaN9ZeExVObZFTeGIfYtyjFcRYJixJYKmDrBuQXrhW2EA0yp+dogx87BXvc4CWaD5jAOmjFlV+kxuJruVx3PoubI12eItHaP6+hAO029FCh1HXNfWblKJ05wB9kLkG0m4gfmTqPTrPQqbWX5q+NUHY/q0Zk/IzScwzSvIRSacGjTrzozwsVoDn/T7VSqwG5XE4h4J2KAP1WvC8w2vXnnd2/luT0b5AvaFIcpDG975dHoASS+RdN/EyRXrl/Tzt47ae0h+CCljDiWG17rHYE4zv5oiyMAFUGx1aZkyqx36WenXZ+qxPe3G8x+qJVToSdx61k6Bf5Y6J+aw0fmJ87NMcalbYmdAA0nod0mogOjt3po7G7bfWQq5wawsOJcsL1RO492y5ji+eifP9l9G08AUqbF1ELS02tijrvgzOWvt36I4GVaHEfUH/Pn+mvNnuhlLgcik80227Bqm67XmHsXV1FBMrR9DvegnMmcPvcAIbzRb03DCJ0bIXLk+hEGwjdZHj/cN/3ggN0rz8UIr5MIXrwdA1C9pP3Hj7NkpJ+QS1zPQod+neEtQsdNX+xJuI0VU4RTQp3VsXz8d6uoMyDAR6olm9emIAu6jWfUP01fdel2sq7x9+/j6zjkpOD+NAexEt3gB2SQUpzOJz+OBX4XtOwol5B9p9De5ha9ItlfGOSkdDjte8f+OH/1hzn8cip4ZS2mbNBfMh6GR4r/A7q6FvegdJyEV6pJpAr03g2nVIc7UXoF0gHxprBRMp/mUPnVdRdddEwX1sBbHjaLQrub1vp67uHX57Y6A4xgwO0MMxJlzw/7bjeagFT4/gJYddijf/FTPPO9IxfhVSbo+/Ji+XxmnJ10fqShDrg+2rF0m40oaQg45G2ffGqtVQTXu4J24HBEYl3aLWTSasyBvf8359s9jSpdBPzZIQJ/gBzokUoD0K2O0SlMDvdJhD0ihPlVL0+DHjcgU0SQu9SjmP9HZSofllLS0KrIm3nI1posypkKXoxbi94ArJP3rCfq7gAtGFbZ8UmmOi2ex6qmdbvUFrmJNS7VoB3PfxXLP995eHHY9zaOq7BHjPm95RmrOxQHQFyBToeZ0veM1hjnSbJidcRnHGhOtylyl2bPQpB3yzfZjDWLlQLl/Zqv03We7ZoduFbGqOWBT4Apqwt6HZPqgcfRCUk8j7sC7r0+7XFbUkGPN7wM3loRfwsz0hy4f5u/Q4bRUidNOcpOEsoxrA6iLIMLDuK+rdX3D3xv/4ju0VHGchN8jHWMgFPMc3nyqXuf1kYELuV7p9GhdccxndtxeYEIjOdS740psD4MVrwNsATJ8tj/HyoH8vP1lV1O2th1eUStmOipfp3+bIxdqBInJ8qah5jpsktM1jXQIutFuwmTv9Bx5b5T9Gu542M43ZFSqW7P17NmaEtx6mxLp4HF2zoP3C2Ye3LuRPpFK6NyMD7hpp0EKrukqBbTGkB0kFxxQwORdHcLTtNrj5muYyHKepPMA+pkbL3hcPvIvRrKPve7n7fsjWWc3G0TiTpw10Ez6MS+dBKmoW778Ks/gzCtStWXyjpgCg4MAS6LScT812zFNDs2pT9mee9S3OzaHkaxypIzSP9+8XcknhQWLBfugbNIG5jmqqEzTtm0mpKIYZExMPQLIcvrrM854caOqmHgyXYPDCw6phbypQLpqXJCYlY9DesG8S+c7+7Ztfh+23V9uXvtkbFsUzja8F6d6CPh82Gu+VSFyMK9C0Rw9GOzdWBiphDp/PdnzQY9xlJco+5bpjEfzDOsZ2xFxDENbPCin5z/zg9+n9GjWkBfnKwBtG/cFmLgxFNe1R03g8jawIXU9LxShF2k7TLui9ok7R2+3XNrode3QwXgsdBtbDL5ME/RQTXKsAqag/YN34tG+5F+wOhUdnjlp0rqKg3QeoWwkmKm2Fsk/7IIUmJPU6zVwYmjUinu/BQRxntt+hX/8Gqqm9Dh2HH/xvXrVlIDpL5SCDuP4NcujWkU7NWb8UDdmbQQinjr2GmnbbBz8QnV+HbsvhGWSuaV6OHlcIo1HhWnhm+b+lNERs4tK0WepSjh4fWw7hkQLxtHaVPO3h7/zzx/9yJC7Ya6uuDI9fJhDSivedmD+GQD0D2vUi3gUJrDcprJfE/ECF5pd/Bl0u/fTrXrW9grFnCuN9vv1Nv5bAbdfB627Q37zyGNxqbFp8E+rLMY+PvED1DIdwoB0cZvZZuGr/vM9sHIpWhNcqDgHTx9uug9ec1O9/8hTcel2ghAwr32eKCYJ6qbqAeBubACRJoYixsWU2EugkiYYTSmBtDmQwRBD8YHS54NwcfD5iPdOYXbh7FbxZHVVWbrFvTBtds6A9S8PYnREKzcZzs6T8dG8JLmjCpKAg00hjgB6XRmpFYGmuoXbm9nuoHA4HQWIA+9C8BubVBz4H/GvgM6hEeyT6SsVEhL4MqfE4nnUdPYQPoXUPc1Ff11w0Z2Qm5KMcefQc/O698Oln4G/c6rTCzZqzarC0ZEB7bLxDXtoXowfljg8b8RztUAXWjdr4iOXjwK4lq3GsB3Um3s4bki/x9t8fasJar/BJUsCekY9S+NQz8JmneM/33czaj91Eevsi//6Om+k964Qe0s06UlfRa9E8uz7HBvYL+mPHMJ0g0fYPfvv5V8/Dp1f07z9b0b/9/Oy+mbzf5yTRybPbad8cl1uuRwQ2BnCoUWZm/P7NJU47VeEsI+0pBeyDimVC25jHTxrvrfpiqZCS59BqQpJw/NBScS852iDfSBFMELpcf3JOoCPCAoGm3Z+yHsDr4jIgSp6rQKhoShIH7btMvlm8u7fzaTctAbbWQpd5V+3nAqLgqHi2GdKpIbU6MkxLGrqoi8IVUsjYWrBqDdcOU35WsA2mxJ/zgkaNFyOoSEf63Lp1mln4+KR02U8qjYG4sTiP9nce7f+RY4eBsml8zJ8ddK47XYMU9yHNkFZDY1AMI890l/sfuhz4V+vTHrbd5mm3FMrrlK0KGjoSD8h4n7cxZuTV5xtrk3g/88lPATnpd+E1paxpT9iGz374haVB7rSArbrnQ1DtlJhJpMvBfT8EjmYYYbTXqmZC0nfKGSnVNYYv2CO67vjhrQvF+BA7USb5fPubfi2BZ18Hpxow1ynXEUXR26NiL/OqEFzWjwV0foddKPb5SXuttYAL49H4VgT+9UUn9PuFeXejzKv/IHj4cFx93mQ4UpdGKFwci+KJuw5Mx7umm4vApS5kfd3VvfA05OOUD71M/dfNvUob6iJmrIOHaNs5pXTNgvZtUUn07T04m+7NPlwLVGJSmSnVtm+Z7u1Iy2PgmxScXUzre0D9s0C90KKL7tVfBH4F+Djwy+bvVJwG53KVlzEGE1QbcgiXgmkF/VJy0Vcm5I+fg987DU+aQr2eM4tvJC4InT1M5lrqbxNuMlDdZH1uL/x+ua+B3UIpc8jYJ5jo8duwlYptWFb6Oy7fVIxCs3i7YR5qqx0ZYtwMcuTCJrzvMTi/wdoP38aXbz5M++Zj8APP5elnnWC9rlr23ASgkwQ1qwKnKe8Hpk7FS+Jz2WqhYhJtv90WjIf+cfedjZjHe30u5ac3Aez8dQhXlvbNryvkepdTWGiU++Ef/q2G04yP28v8gzbN4nljMfW269C3ppe43+2kH6V7oqZtfpRZc+98vo2spMaIyEnbzyGcNF2ygMcGULZA1jYXoC5OG8JQ8+LadG95DWOZEunLLu2L4X5TMILo8jjM9rXQUcGEKBjc9IZUNkaqgW3XVCPr963oz+5t+LFlaJnbJk7b6W9f4/z2K5V6bS/KD3KSdg1aDeppEHdTHDjZ7yMt1LDb1zlc4MRiDIKrTz4wbIuo0Ck0Ax+kSLOuZtaDQBi/RxTyvJZ6uDztfl/8PO3hcpJYRaAPs16r7tPtxJ1rQWVWMOx/Ze8batqbjIke76+foC5rlL/dQHTFddweMhLngtZuuMJjnp998n6xTKAzABKtxwatHLXrJKORu7/pUDHe+70otkOxQbd/+8J2n0K+HeDonDt/w3NzhxHWizMn8lpBzbjncYJJ2+TKIx931g6yshtI0S/KGyXmmtRUKHHBRFEIhRIHYB5f3B+qHd/MnL++6Ybl5YpXolp2MSnfEhKdx80kmvJNH6VU+YiNobOYtmR5sm7TpboOeaBpXAuGrlnQPr90auL3W6d765iHa4ZoAdj08mVEGIepIrshVd6Lpns72nST10qiYtGkSyfM/lFmtOwDUaA+Ej1sh8AHg7IfNteQIdophUNmr2uoD14d3YxXCrMyUz4X5P6z5Xvef9YD7bXySkuA+YZLR1EJihL4l/kN84VLItzz5OOw5IEzqEpoLTUS4+PI+Lnr/+kflsNMB2AnFB4ulg6pjkM2UxV6PHgJ+f0nkJuOIX/jWazNd2g0aiTNhjLf7QaDdoO8VUdsfnZw+bTt4bw5inBawdWngSfRtu21fyc4YYvVon/79eXff9v1LtWbNZO3QXDCw/WYxzTY9uyGNUvI1Fh3mAEu1gHoPuYzAE0ftAf1xa79MVH2LXVqsDlGaBLO55Bivsmgfi8GtN/zpQeL++VHOuSbedFdG5DuGYEbvfuUHoNtsmlTItBE6FkT+V6KdAIep+n1dw+2QJ9/xLuvFSQcpgrUxx3YFX5O9H1HYBOdE4IooOuCtGvIIK0ykMVy2Z0O58FUsK+LaG7ysO2TBBMVqjC9YpyVG+rT3nMyFx/3hNf9IF8/4M+x82iAU9A+f+kv7itp2H2QXiKRQjOcYLYAC977GXQSpNNQ/9hKx2VXOx9W729nG8Sjx3fYIo956QvzySiHenAIJYkKJ0ZS+c3YrcxrQ1ENipN8y4xYe8LPQgFA2L9xbYhGLBe0jy0TY8UCm0g6O13SZR7BsmojoNEH2g03bxLodxrUhg7shFXuJ33yU/duo1Sk3+B8vjsRC7koqEVdCC/147zUVufTmJZ5bFhBK+i+PY8XnDxSXvz+hJMjzZxPSdE/j0eJCSWOz8P5MUKJg9K022vIg61TtgJJbPEEF4QuoYdZ3qWFVScZDbXavByINg/HEVTR6rsJJt4J2mkpaC/xKuz6/rjbNMaZ8+qnej2UfQZU4Zi8p3RhE24+XtYOzjfUXBPKk9B/2NNEljPwF42f7u2oZ7RmU4xsjFwqhtgJvE8kor6pQ8pm8SP0FQoOf5ByV/OEy6LSPuP9vYnKbEC17SviDauYHJEvPUn++SddZd98ymlfmzUdRx9FLNQ1l7brtLtWuZbyXLXvH3uG1d4QVnuQHNHvwnxJpTztvkYiODBik9j/zvcnjKV6i455Uj1Aa0nhsyfvflBTT20Cd9yEPOuwMhdJjUa97Fqw0qwhrVqV+bFtWcCkZQz75fU17PcgU/WKbVulT+bEsODthafg7wOfPQPfdgpeeH3ZBaLlxQyopH1rwuNG9l5xW1GmIZbGazJJRYgDaBA6cGkAY0KcOQPaw3U+TsgR8yG0fUuAbm18eqLtbiEllRaquZ9Xi6DVXq+4V7bYJL/UN2veapmECwKnREhEqBlfzlriZE2J2Ku+WcTEqBAhT1OPCUq0VqvxqkjydudQt1u032XBBbu0fFtM2x6j4nMxfRRhIdF7pKJ5vSVT83HpgAwjgQj3ANCVjiLzuWVubbtLr2R8H4tavf2weK6Z6PtWAxp1mkNR0C5QQDizTkTYpmRgd8jvv//+PCq8sH3vrWtwDgfcExeHAbOliL5voudiRSDRz5B2TUGfn06lIkzbPRqHP4aUwbHtR5cqqCl+F05B+8dInMWaT426A3IxIBvUb0/dmHZ8xM7I1lVytadsHu9T9WgPBi7NnOWY1SQPzWfB87P7XtFlI6gYAQuSY3c+e6yMOk1dHyMNdie52zulaMT+LIq1tc2tC0H1AYKz+rO+/2G0xliq2aNNeOxiwAtDgfZ20HV71PpLyTbPRo9fxLPiGtcV/zzxaZBXNNFlhYLEhRJnNty+aK9XxF9cIfk8ScijzDWLPhWB6BJ3HuYJbCaJWtGbAINJAt1uk8bA166b8iLktsKS1cKoyApTcRtdaDpMZ8vv0f64m3TNatpXL31tcoFwcvuT6qJJ9wZusbRbnimFX8/uMjm7R1I1jYcg3RtmIid6gm1MSpu1f5TiTOKtWbzVsp8G/gx4gyn7vwAvobqBXk6TLUNl39urDUQHGjhp2TDE/pSRW44hf80A59fdALcZ/YlNCZYEG8Z8XS03YhtFOKdic/SJZ+BdT/Pq+dvgA+f07xI4i2zQzcQxN2EnwVifjOG+RnnVCXCrYHT+wRn6hgNyGjidId93UgF7LUEaNVabdZqtOtKuk7f0/XqrTt5qkGPMqKwvlL33XH18nnC/L8U4i/ppT5JoN2vKOLUMKO824CU3wN/9FnjpjSrp79RduVhf7WfHmipc8U8b276Iibxkoinw+uY1yDR+QmiBYalkSTPQ9Twpk0C7UZ4LRX3h3DN/jPUhNNdObXzavbCtpeo9DjQ82DdGKgwAXv2Kb1WJfAKy1CBf6zsQZMb0YYH7BR4QCu26fwUH2MEw6ba7WYaY9FGFJYdlCrO9MSMvpgJlbfsyLm93GDV+HGgPv7e/mzODVJjqDjOkVYMWSJa6+RR2ZZf2/BJjhXvEFyjnaPe3rm2xlt6aLkCtcY9JWrom63lWFvB6AGe/j2z/Odv3QjlyfAJ81yu/q3ARCI2zSu8F2qbvKpjwAFiaIp267km+pr3UoN0dgfC4sNSjmvItYTvm8ZG9O5Wy9Yules0LThG0K7JdWjAdzrcWO/dpt32wsl9bVwcXG9W2o/z7sH/mzTBzfbRCxEhk/MKqwvxXCC+xedqzqv1/vaZuP4NRtTP7rJx59Q9919aF/HngU+jzbcm3cgst/I624Zz5XdRqcfttlzEvcG5NC7g87aEFaOl2sbN2YDIIxDLahH2070+04NJGmb+wdV+JC95l05j5beeyF/xXgg3f/mQ9MSynWaQJsNTRlWbjsYhIkfYthyrPt5qrgsLW4x+o3aYGxSstbilfp5CuWdC+NUnALYm+RrnaNR3zfNoBlprOlMKWv4wFv2+0nXRvvlZ2KfHSH5jPdsN8d4eUixRgvQDsYqLCA28C7gB+DJUjX0+Z17+SR1Lptvl7nSLzFEsYTZi5ia9tl2MLcKqpgU9CjqD0d6LRtpftjb2NItYBiTzLL5wpN/7es4GkOQDUCQraRwFQ8+v3ByHctNLcaR79OqG8Tnwq+my+t0yI8Q0v0nx87QI0a+qH2Wqw3qrTaNc1wnW7Tr3TYLnTQOrW59iYUNWcKRUtT2oaCpzG9Wko5eBqYZ+SRBnfjveaayh479ZVGt6u6wHUqqkkOyblTxI42oWLZsL47QuC4YgoWKc30vW4OdJXL1WBWz/VOAD+b8ODan0Eh8c9K/NqN/QADeeZzyj5Cwvzm5AKLrWu5ux+OybsH5kIIxEGudDP9H1m22Cpb6Tk3jgKIIsNZCM1B7b+5JEM/lKEryL8CvBlggjy/nIQo6wQT9uXZtCqIXgBDu18jaWj2IUtcRwjdwknJCyWtL1OQLR2qhXDJdBAaOJSg8kAjSzerCED5wtb6tMuMizjGNYVqtHxy0tmQkdLc1SviaDMfB1IEpIuNEZpoWkv/35/D2zrf2nHwl+uFymDdn8sYqDdv7ZNx4qI57ZbqYnP0KprrAZ7s1Kh3aPK9PHer6PsRuGeYq5W/utHa7fNk/ADSyOJ+zFbi4KgIX78gpKBFe4892eZNY+P9ce/+u8taA9nqy+UqNQhY9YdGH9mjy9roPM6Mh6W9yh9Zfa0Vp4Ffgmaqz1r16E3wg+EJrF2TBuFPt8Trf4CfiNJ4HhXF6Ady4pP+846HwtCl6HQYQm3f4dCoNJx709Mv9BQ1H0tpCQZt1nCsQ6c9/gLW7f/fr8p5vZmMUbTCSQECm27fXaSJGzWYM500u4f7XrCsAn0hm4/tbfytoDCTXCIZv+KnSfdepFNocLzcID57begaxa0J8kWXfMn8qR0b/ZZd1vqsxl7jtP4cIuNKWCcLwXp3kDf+5YEB6hlH0k58NxAdONLgU8CTwA/Y8oex6S/jr122O5JOZNDTftaDlL8c5t33svUNNNSJWCXhxwWjSVHmnsbBSU/K9e4oFMicLvGbBiI2QRffqosYS5JoM21nmjU+62oxJ2YP0ai/oTjtOuRPVFBrImab/2+GzX4llPFbXKAl5wgb6pGW5o1ljs1Ehssq12n1qqxXkucBtTcz4J+QIUgvUCoVlwl3qdBrofjhD4l9URBuQXqnbp3bejVAnZbR8l0zbxfMlzGWhDHwFunIqKasX7mXgNz7aXmpe8ly4M54dW5msJcuyypD/vWrjmNxbiAMf442d94Y+PqTBTQrwe/i9QpBqiv5yoEX8thPRdWRH/eEzMnrGmb0bQPRql55gmy1EbWTcoXA9z/XIxZfK7Nuss+Cq+ZBWA3DWolMLING4J4lgQCxpkOE5k66M8uUMj42b1nGTjqlatkEozUVfpOpOgjGM8RIM8EMpBOU4Vk/aAze2Ae6E9xcH28iO6lYb9CDfN2blD0dZCRGDSWNKCWpk4LbY/CYnuV3XyUWzUxGogO1DzeJKGiBowGw7Gp3sKrxWQjr0IB2BQF7M3EyxARMtC72/vK1oEDMjFNu/1sW8HaLKXiCY69vbVdLwdY9foaq3dAxMCKsk+7vwWWjo5y9fQZ77M/0ZKg9MYjq2kvVZRSesDeXmrntF/5SKA5SqERtCmBUaNZimVSWgv7qJwZDLaRlmOc1d9WPt81qi55zbo+4PO9Mk8c8gvbIBnzWjHfH8bxi2tBGb8bpT/8M9ikbHR9C64lxYD50Kb9XTZiAh+w+/3cL/Lv5wtceiPjl5IUzyjk5+xK3kST3JCgruhJwjFgs9VUFyCjZbdrMs+DeWz3Pj+YrT+W8zUXV8pvc7jop4yuWdB+4sbbJxcItVSWuffTvdlFkaDM48bIK+tdp1EqU/GbNe8veunefFA534KN7aUg2yvyg8/50eJTlKH/TdSleNGUX8JTVkdeO6USw+FVsEbZp93eMzf/2fKymTk/YqhqNz1JIl0D7n1J37gDJJynAjz7OLyww69f+pya4z/numoguqId5o9mDfIIc+N3PiT7+VDUZCus0+9njMKUaI0Enn8Sfvom5OVN+O9uQZ5/iqRVU816q85qq067VSdvN5BmnTkTlASoRhktovE3naY3bHvYN/u3NUPbok9JkqjJbaehJlXdpt6vUydp1gOtYOKEFLYe2/dFVCjom7D5zzXN9aAZemB904D1fqaAfpTrdZhVXSYsrWVwuOP65B/2tk1+4LjYWPljNtaH0KuviIUh5QXozWubwnHdvixwF9jIhfVc2MAATNBCxozu13//D4vm5IstvUVvVICx7xAPlIvww0HXiyGAQpc+j2Gsc1F0YSwJbIDDIjncVtYpl0mTmL9DxAEtMFYLXfCptpy5yZwYPn2UKWPUrJN3GjAMTAp3mXwNs2lKcV3FgXa/zTH5UoXC87fYozJnDdKAWj9zwMnTuvpgbj/IjoH/jO3fZ3E52hPgnf/5Tve8g+0olC02BBKBgdkHiuBifTQInS+Ysw3xrrvFs4Rshn3efsC38Dm3vTKVrSfWLkH3R7sH+Wi0Efjum/LjtrQwr7qt5nLN433Qbq+heXylLr+5/h+Z0bRb6ta8tH1BefHeil8AWv1q4NgGCaO5JmIsh4o1IezGdrYj+vf/1zu3LhT219IgdxYXFYlWwlhrt+MtuGiesO/T7m9S26DSfu0dd6vo/G6hQ19H50CsbOlxhWM/zN0+VlEoJOXNwQfvxxInlPAXpb8494vGCVz6mUsnYb9KkqJ8UTyBdRJapv/2/FtMEtZaLaNIENdFkZKOEnB4rRnwLfbarV+WS99B0zUbiO7c6XsnFyg5mHmTPEz3BkYq45lSgHugByHF2oImpnu72IPr56sgcj4IygDlPu5Dm4to8WLyoYseiiPg94AbgO9DJ+0IlWheIsL4CjsORhfbVG2vN3HmdEeAR8XXsHuM6SBHuk3dX8MNItTEJonu7mtDJyUdZ+EQMzMWoDvHz/3Aq9QcPwxMEqNGov65Fa2LPwjEN9xRHvcn3Cq4SS1Rn3A/rUq9Bi+9Hnnp9eQ257pJ55bXa1xo1uk2a0WfbCRWMfcTo4gonlGCgjubkjHC3ET7NMxLvlUhuA3BUZIkW0fQj0n57To73IGLI+Q5KhW2j7OWC7XMGGanHjAf5Q4w1hJo5CCmATbAIVQFOusDONYN1LJmxOzfnZr69FuaxLX5UfYD+URBVjMwMG4UEc3eUBI2RbXpm7kK49IckkwBSCM3JvK5UEuEzgCSec3T/nP/zY+pKZ150QVZHSILbUC4PhEaOXy3CN8vcDtlsJtByZ8doCXG8j3NFag3qoEOVf2ZV+dUqdDlkd03wn1nmWrkeN8yMkYl3lUUzCVm3nfF5GofjJAmOpfade3zHgXZs1X6PLG/fV2kah7vv7ZVefFeA9AlfaBuImY3EpKhulDkwQ/97WA/qMI/454zlAPR/Z3/4bUVCxEIni/uObeRUsAzyaXYD6Vdc9lCoIzwdrn/4boRnBY9pmm3/esHvwvflyg1YC0cmGZd+xnjuSMWFUOcD7rfrq3M42OfDakGoUuIB9oLj9dqpaL98FOQNhpe2r7y3lMIaQLAk4nQGmVQ12CcNohXLYFBu6lWRQTjs8/axZ//hz+1vYLBOgeqFnKxILKxrDXH5uCiZy1bCdi2zSZF+ERBha3HvHKHUWXT2Pk0Tjg1jLkiev2oe33z+Ysj83B+WO5T8X7b3dsdqvCS5trLoNN0vESC0bAnLiCdqaKfwHxxICifeBh4YrFFOlSeITf3KkC7r9XfGDoBgS/ksEPZbaipn20vHIhL8E7pmtW0i4yfpdtO92YXBahv5WDoJt8OpDKSaT5qGWZImuvfe8k12IVaeS+wvKlBsUJpXacBvQD0eJYEY28lmqdcUtO/TPu3U0ox5vB4pvEoOH8C+ADwP6KA3SaLOIwzSQo30MvZo8b11prHJ6h2/1KxaxvgZUH8YKQBgEKmwm5Qoen6IT9Nlvks2DRKAhif+wNYHtA+3C5v7P6mFAJq36e9cpKUGYLKZyNxEU39PhQyiTirndSScjC3tpqWi32160hHI8PnzRp5u86lVo05C5xRgYnVWvjNLvK0Q9kSJmbmG+OYhl6fYhLty6DEf9Y+4gLk+ByjlZQNUan8qgiroufGZp4z8oH6yGjdHzoL77wXHjqjCDMVZV4zqWrqLa30YcmbhyWnbnNtG9A+ToBT8iFMPXVSMC52TlsBQkyzl0shlOuLGkQMBDaMafy6qKZ9IDDMhT7QT3OyhEKD326ZADT2kD/URHppwXCuCCwK/KzAS415uA92oQxoEU35NgI1P62hMRNMwSIrQQsDfMaM02XSpFy/y6im3bbZf006sMtlCzsBusCGgAwy9XUGpFnXrcRaUeyB+XSsb3ZfvkTZPB6257fvKvbaK6aOfkZihXCNGjXjCpSaMo5/lOKn+0G233brtmNxHt3brCa6BrTbrUqu+tjVCqA6eObxQuHKIa26amzTbPwa38UBkMh7C8j9IG3+814g0LRLcCyF7U4z57LiUyNxLixBZeH2D+PN4ydFjx83VAOc5svvmwXydueo9HGcJnKQlzXtzboH2oM2Cfhx3+11A2jmKTRrrk2mykG75RKIF20x130EKu32FtmdILrOFdSKA7U+JcFKCRUZh9vG0o0IYN8+Tx7b10CH1Vcid/E8xszV7n+loQ7nwihVfinkI4s+JWXAbq/H5zRXu+2XvZEAku8t5gjJf3b2b1CTr6ZvjZqU14e9JgnrSeJiTxgWppPAZrPFwMxhhXIm5RtuPgPq7rvQKCsbEk8gNt80m5SUH0jYmCmja1bTPpEKDsKb2Jb8dG9Qlsqs7kwqI5kYzVkWaBoTTbnRrKnP7G6TzyXYheOnezti2AT/1vN1eGq8qXYsZYRkRiOY5uUxqCcaVKxZU9C2BeUeQ28Dz/kp3n4DeA3wLJSHtgfRETT6bokpFNWy73S9xTZiu8HaNB4JcFhEN2J/iOx1I0Wu61alvf4Q+Jr3TgvWx8QRiHEbfjkR2OjD0pHyxm3r9u9rr/VaOTqOrcfeJ3a1NJKyP2GpX5OfcVKvqblmPTN+9WaTTBK9UVIjryfkjTp5vcYGKhwx39JFtTYCSA0jkU2cGXMCyVxdA5dV+iXlw6P4HjWnrZjZ7cJ6rBndrvf8JYH+0Tb90+v0E0itwCcT6pnQzKCVCZ1c6GRCkgk8cg7eflrreOA0/HQCLz5lLCakHIujeIlaHCyZrT2cgwVXWfdSWJrPxvm2D/NI3qbEjavlCuuoz5oYltgb90wgTRRADTHgHfgCcE8Or8rhdsEET4Osl5Il0LB+9IZJEczzn2/Dmkv90s9hwQi4krwKdhXoUOQwr4k4c9hhqhposyeWut/Cix4fjMsVMkHhY7O0TNzf2xdAhJSY55GYdlkBBQILYpj7QY40m9p8K6AYpBqox+/XLjLvMUuCFNVCHvb6FvrtT6TS/uiEE/RzmDea9naNJFMB0ihEb/tMvobdNkFw6d7Aiy9FfBzC5Qs6n9uia6rQJ1urmHqijH8/BLP2unsDUTqqvC1kk6qW3acuVfN4rcPz1fbbOszjoL2VVFO+2UfuadrtdUB1OwMF2jFP6/A49inU2gOFpt3eqxv5vYx7DgPKueg7RtMerk3Ll9kq7AQzVjWNLCNpJqXzrAUMmzWzR/sdtMHoDmBxbEWxcRqMsZAr+JwIoE1QZdXDm66u0Kdd2MbmE9/TBLdvW1qirGworxPzSewQ6GdwnR8/JjjDQ8Buv7uuCV+95H53BWntdoVifEUvVyBtKXF8XQ4K4k3xjSThiE35RlJ0ddSskw1HnsuRs6YquXttZND2VmeIRayvu0mBWHUJ3u8B2x5ds5r2pSO3jP9SiJvGi5TTvfkAa75pODzZllRGMtEDdHPkgkr1vABTvZFG8fQDqOwaSdU8Bly6N2tJAG5DmzeWBEUVQR/D/qW5C4418PpVvGyk660PAt+HvXiPAva7UVPK16GHYxPH2CyhmnZ/3wOPOdohYxIyHeAO8TmcoGBVzKadg++3mQ9HLud9ibtK4gB+qQ3rgbmWvfrzKnyO9rvljLu+9lC53tA83gfWjQhorwxCZMyEsnn8ZQDcpFFTP62uvqTbgE4NaTfIOw2yVqPIwbuCk1gnOPP4sE/it6FbM6lsvDEKD/zKw82q5pbFPa5gs/YPU3PADhPoH2+y0e/RE2FTVLu8mQubImxmQi81kdStsC/MEPCFp43/tV3flCetjcuxCix4wSYrKCDRZ1HYb4ZrPZgD1seuUp+3P4JxEjdBk4JFmeaiwB1t/gj4PPDPBD4K/IscvpyqeXwmkG6OSFtJcc+7PvVZPeAtcF/qIGtZIZNZFWHJ3CvxNe14gnZTuJBbYNxFR3kRrVdM4SINTSuJR4+/QqocPW6oWGVCDvMJdfoAGDGHu0AN0X0yE2g2zL0SpAm5n0Egphm5Agr75jO3EHEBYLILgKs4WMcogE1GGdSMe1KrUex1TpTnonbv/hMdTyVPPNyyPQec8MrVErjnI5+qyGAhwrebdVoXGJjeCOiZa2VmzbpTd1sap3W/QgrZIEFv7e/jIbZqEQlEF1pB+O0cZi7qtKUEPZf8tGj+EWD+C9vVCqoI2wMOmMX6aN+PKGvtbV1WKNAjPjaVvhWm35Qt2jqNqL9+8RPbRq+PGVAfSSkobpIYIck8SDYy1UhlLeyXNvauP/7U1oUqA2ZomE+2kAsBu9VOH+vAOWP7EPNp32bXY3saaOwjq2wAnfursfL+mMfGexBo2n1+y98kLY9hFX9H23B2pIxpyEvuoH+7QiGvat/3jXk8FEJ4akYBQzleUeGW6sueEpBFyEdmDudezvZc3Q6Le21ksGRTd3u8ix03qxDYiFsHTitds6A9yyahE/uUvYmdi0v3drRLyaQCFLSDM1WKSmVM7bko82qDRxVAPXXvhy6g1OWYk0+kceneLvb0NPHTvdnVMFfTyRszLQ4mcCGQGOZlwL6ZVsH7MHN+JhFKRcpgXZxZ/DLwX4B/gG6APmgHZfoueHWNY4K3Q+MYTGveVASiM896w2MuCsZgkCLz4WHizaPQXGsukpHA16TbO4j3t32mmcAQlo4tuXvFrBr8Q61RU9RUqp/44Rg1TQxMtsJ7bEFJTQO6Jd0GSbeu0bo7Dc2H7Zm693DBBkE37jXvXiK4dHHmSqehEc1K/YkzO45BCoL+xCKXXQ4FTEOWQL+W0DvSZrAMfRF6ub42cwPYM2GQ5/RzoZ+LRvp+2YlyvS875QB7JuaU8vYhcJGBlzy2NFzrCS4Qor/e/bHx3w/zeMA+f6ySpJz2LajDByuZef9h831N1Ez949g1LOTDDFk0PuZJwtL8XFGPADLfRPoGkYjedt5bK755eAgYEvObtvlxOsyhXjf38oYjSVTrNQrnUYQh2SGN229ANbCHvbbG5CQxKsrkVnChY3AUNY8nBZlvFGtN5hNNL8iV9ydGPq/oT7NlFEA0I33bHkMSzHl7LZjdpBDCzKW52/Ls/7J/4AS8MQje28jx/hgsLM47bbsXhKlyNe3vouel1ZTKMEe6WlJTvpkfbbXfX0n/wm3XXHt4mbmCK+Y736e99PvY87GB6CroPyn77luKaNnB4OJIm5qMT9MW1mOvA+ICAAuXt+2zL943vul3q67CiolHWdDPXLNo0KyX5lE3gfUmsDZy5XMp+Jf9BHWL/3/y/jtql+s67IN/Z+bpb7sVjQ2E2Ks6Q5WoOYpp2ZZlUZIdSXZCa/mLY33xZzkS5aKsZSV2IiYOQrkptmhalGgWiaAgUARYQJAEITYQIkA0AuRFr7e9/WkzZ39/7HNm9pxnnvdeXFxQXsxZa96ZZ96ZM2efss/ue2107oeWWsh5FUg0ELvdx2mJKUQdOygyaS0m8udTqnUszfmwRTOA6CoHxDWIN9tgnRu6pA3fW3e3Rlq7kda515LW7hnAd1FLuldO5ipwSeCq9ltT9jJYxWkgYCAL504Psu1ZeE8F/WpMYOKXCMpvDXvtEsMoyOkB+0vcnv8Muut8yjct0763/eTyf8aJDM0d52xAsaNOvfDjoo/BQZYFo7OlMIGkImMbGfaomZ6Wtd/qrLy4RES1YBMYz87gqNXARSbF6eSOnFHDtDiBFRYDZaUCiQjbXIUSLLEmEFE/VpvibS4hQBXwu8ArgDeim2APFbTHdXeY8/QZOs/StrFG86ZIYA5CW7ZC90ogAAU0DdUgeNxbSiyWlOpezdtTgMWNODXjipsrqAk08L3f/mr9bc3AlrkkdMxyX9o/KQUWLublYiC6Z8HgVibuLDItW9QxBECZ9hhsyTsqbWgjT/uoGyguWUS8dr1buCdLJNrnFcL6gJIQDd45CmB+aMAsg+l4zljgzpnwb+bw5RKmpTArhHkhzAtPKQK9QGQMUDvaK4/VDHtp1qaFbSf0VLQgaAvAArWmosWstDrHY+KbqQxtsXOtZ9IJJWNQScPjlAZ+NDRJRM18f8BYrshE1BojjPX3vv5VRA24+rRnyNakIvD3EA57cF7IBPVbp7nBNZmeOs91UQK9Tu3Hbhn3PKs17RdRE22nZUUEokS+J4kevwSdpKWNNnEog1KglUunWw9xP4OZbxKQ53D5eibFjrWdTmepzUjbgtAdBKO0zdP4zl6BCykCI64bzktVVIZj2Zb2XJWGJZYZa1CmPeZoj/3wHf/F61rT3tnxtFvIUBK+vPCVNUVlQrygMpaLDnwbHp/QEqTNtN3i9caY2ObZNVf6WtNuK+tmzVSmVlvfMt5tEd/BrJO0PdR7ffq/VGtv64xCiUYdtolphRGEvnHZ6mXBeimpKGlf43bw73cdyxw5MhzzbgazOUJzDkQ8+o1iVL7vja8/j6cSvFvBVzSF7bDIjKWMe0w3OwJO7Tc3pKr/zw18WyySuJ43UU17LKvUKd9Izgvkvh3boqi1wKkwIl60prXLVLt1aq8JX0TEF1s5uKQcaPq/X1RpXIFG8DlLH4D2XT8OZ5WB2zHoZ+TzWe1GA0gptSAlVrI701hktqQb5Jqrc8cv2QO9CF7+88kQ9k3LtB9YUtP4KIU6M2mme4slIoIBGpHwAKmMiOjmEgnrmL5pWsI9T8J7vgx3P1EztdEU9mKaY1gmzxL0p+dqRQCKDGxaqmhJUJp3FaAmcveiG2QpzYBZEbZ7nqitCKqgWu3WBB4TIT6co5b9HuDjwN+mZth7pskZqo06E8FkkXB4Jj3aQMJxeFGhwAb1NwGOe9imztOuxKAgBcio2y79TZknh7ok7LW4JNg+t+NntfDb02Cz3zJXU+oolijBX6A+4vdaqJJYZr5pmrhglvbMS5tvWInOg8i0O9rN4+u0XKEMjX8SLGc+Uol2tTleOByLJYxBmKyFgyJzlJnDH4L55oT7S+FqgU8i/C8evlIIRSlqRu5F+cS7t+E1G/CzL1GTkllpNO2+vq4muyjTHjmihvm62eChFsBEH1hojrftp5m0541Ny6CjTHsyf+LmatcowKuAK7w++FYRXpLXr8nYI72awYyRaCRzSiSNcmSisZ4FFaINJM4ZqUBtMIN2vqN4JQN8CYw6Zh6aAId5VmvaL/Kenfo4C3VgzWhm+Uwiq0f3v0ykET1+QNC0jwXpBzidQ/IOkgptYoMuQklxsSVuD5vn0piN51yKlgg07g5uOld1ImgslRxGsyIEA5P4eEVPfiOKhb3RbNQ83mrardVrWx807oWKc5EQciFUPAPpBFePGK+jSHCi2EqefUm3i3ge0wzMlW5JA0xWkHiWhOSwa7Y05vG2sq5rDbhn0aL9hmW07Zpq82m377Vti3PqODsVnOG8wjlS2iX4qNq7guWZNsrGJWhulpV5u8R5HedAqVXbeEkB0O1+BsW8boeY8zfIhFoCE3SuZ/TCHuHexETYh0VaxC6iFLkc0QwuQNMK1TLv52q/Oey9HZoWUqvUSh+rTKrebVMcgqZX6SV0SWqlac+W5jsyhFPzml6MdZbnD9+zLiLBCNBkJohlMldawmxogrbdB5Dj0xPnWAnadWXX9fneoEN/WtR41QdaPMzl6mv7c83FXiHYdJ44jSu1lwRjtY1At/+9cOx7YeqFuQjleczj56J80zLteact1EgoUewNzVV0Jkn3lg7yWqZ+6VAParrwPE0T1njc/zT8p8fgrhJ+51GNBm0jRc8uTnTHA9O9nZ3A4X6ikgkXy/KG250v3o+Op15UC3XfU/Dux+DuEn7vMfjqk7UgopQ64nVSolZ9LnUAujkanOofAt+HpnnrhaPvmkTsRqjnQMR43v0WzjTPuySEhwirmKj1gUeRuaaNktGSACmWkY7n1bw2zUl3gvReKijansNGl1PbO4tIqRGUzjQ+atqLhFBPO6ptHk7LppmDnT8XwPAuEDLhHMcyBv5zNM3jfaqdj9r2yHyPW5jQdHcFzk+ifYElkYKXTi0EvHOUKyP8vucWEWZO6HqYifCpUvBeszD4UvDew52n4VUbcHyo1MDXN8P6M0cs1bwoYWVQj0sbB2Dn4rhI5lzL5h7NEWFxjtm6Rt2awKzqa1ab0hKgDNxLM/OcgExLZKVTPXdqa6vOFuAcstaH3eDDJsIMOByILyeLjG41XcPcjr8HAn4GkgdGx7RLQN0CikVBxLPVStk5bLeOTZRhj9pW28Xns1m70DbtA614leCrWxYN01sJkakter+YJYUt3jtLTdzGNlum9ZyVtvx2YT27rquXcjdjzZjHk3Jv34CS9oFF8Weofdoj7JunN6u+OGfFiAZttLenaHYOQCLhP/XJe1xU+O32ZKvfpyV+pTn3oZmu7lxNK1LBcTh3nZrqtVQSiXn7rxiILmW0eyyGAEjbk7ZxxqIAwAoBFnz247kN2JjJIQbbcyjzZgWr1ftSvy4KZ3WjKPDduor4Jwd2B12YSs2oV3U8O3x2PqUQdQnbE3j41Ca7wUWsPIjubaVFDvb5dm2MbUQKx0ZK51cIKdmYzlHiXG97ZZNa0x7plpinnbazRQYW1jEBTyf8R6y7TSAR9+VLRnDaZIGKAglQd7rnsIgIMy/seY3Xs4vCP5ZgwSKiViODmuZq0HLmANhxlQw26KaUcR+NenRKoPRBsx5BNbnaRTQb1oK7qrkGVfaM/eLHzXrwaMzeba+Zfnakvt4Tqnk880IRmPnnUiv/Tcu0H7305a33G+neItFbMbVT9XtJFzzoQPeNVGap70OoqzSUaimLQaVufaJJfMc0Ts+2WEzSuBZN93aku7jgK4kdmjYr3VlSzW+8H2FcCJiVCCSWaNsLlJ+PAaoK4Hbgfw7//wxwL2qa3ne1RVSctJGZ3mJxzT1T9LQMcezRZNoBDklIoSTU5lJj9RPzUYOZmi5Bsqs7WOkZ7j/pa3u0CZi2C1gb8Luf+FSo28zTts0MamJgWWCtdBOxpSwXpb/PsrRpGqO7gyX2ovfb3DwPrp6WERF3aJ+/NF401JtvMbNr3yifSbFp3wSCdjhcHxrizwhvdICH0gsDge8PAq6YDlIe2dYOevEGuAxefhzu3a4FjqlQLsK1U8CGMUpN54C9XiEQhOb9tAjLA/a5ZF73Oyrcaen2KHVPGZfToinfvDWNB2Ra4od1wJrfvf6mSpXsQX3aXb3utr0wksi0qrY5vLrYFdTPdQHZB6mCP7lmV3SNpv0iljZmFpShtYQfnFsDG4sGoFv05a80iEWBBLdHDzDo4G0O+hTPPMuyzPppk2aO9tj2WkBxjsXXoqFyAGPBBRzlAPKcfO7rlG9VBYq8v1FKktQ03qOM9llU02774I/ef0OD7IC6PxbQOrAiTX5Vxl4DfTrDqLQwfRcb+BS1wiJznJ5j9PjF92sLtsY/Z1IFK60XglPBmuX+Qcd3Sdus2b5tUxoY73x6yPq0p7O2S0scwKp5LbVHpt3O/76r09npi83K2uqZC9LJA5nhKkOrgYP9fqfG6bE+sdU8F7hOmZqdwPhse3jXe25g28OuwK6HqW9hdOzPBQu5c+zTWUKHReRyuKcZorRh9f4ZrG3PxWy10YjxvE2tSAJVPOyY3226mYXKQRHEoLNk726Br1IyAkd78PRe/cFEcXdQfKlnU0pRYcyOaCrXbRF2vLBlmPcpIHu+ttoLzY5uadU5HHvOaZBHA58D1rq5KkLG6uYRBXNeErp/W0KEeLO5VNeRBupqarhYUmsWkSoGz1h0vm57nbOWed/x+rn4v/FzuLd80zLtTz92e/s/4oC0mc+eGdc5zKEpNgVY7SrTfhCRkxLREQl8y1Ea5XWXhnRwvj7PL4Jve4MyDnXFdG9Pl2oe1JjE1BN4jZA2qwW7pOZKFvbXX9Zsw2svbQokWrTtPkjF4oKIC+4jCTgfpzaNj/nZHTUhewQlAtu07M8EP6XEczzHHO3Eb4tq9M6G/tWTaM7oAQhuCafgkjN1qqWoyVuYT9KcS7EIypyt9/n7P/GXFk2maPkW1OZy1urBApz2l52LpTcagBb4nmGx08uCuEttGh/HODLt0UTex+8myF4T/7ZEL0/ncCxjQsAqyzFEuJ6lZCLkA425vyu/rcN9ZLrPlQ4uEc0t/laEl0nQtId1wT07yGuO6OacAS9fU6Y9Cvfi0cA1wO5c55Wl/NvSw4AGn0xzALfhxlnRNEeMdaRdNMhqSwdTR1wjqcZxH93snVAHdozE9qRABnkVxf3v//W/UvdjIFRkFdidgsTghVpHhuB8EkFeK69N5MOzXUC8BzqNLiAIWehlTSHXMuuUZ1jS6RlX5BYHmI5z7uVmGX08OBGGIso8jOeIseWVYQemCSgpArzAkvpyh+YAizna7XF+GuakfXFM9qUZebvTYb3wFGKYQLloIJ5XaWzH5joGUD1KE9e95e/8tVaLgwXGN8A8QANbVh8oyto8HnTTtIHMlpiAPpuS9mc8j6lxd1tsiQHLo6tL2lZQyVMn6R1HCNYWX5a6rpaxFhaDx8XSN99e2qbkPCMJameatkrTZ791G7L4ZFbWEexshOt50Yp3Fjy/4sXcIyFtnJXd9IBxlgVpwnyR338OtO0ims53zxy7Hn7mv/9r7Hpl8HZFl24jSP5C20wb2yzkUou/dP+LiPRoV5VXEdYLMCFP3fqiIC66Ulql0p55r4HzhaZLg20DNPFYBVMy7617a4T1WC/karcNbIH1IhYvwlgCUxuY2f1StdNjL+wBuyLsO5hN0ejxkXaLio1EWB7XzSiLQxtSvjnHuoNxP2M/pC60eNULKpgQUS3gSq+5OFNFw7BbWxumCzTuYaJ8ShHgi3N219fHToTdK054ltTjgeWblmlfWtomcVw8p6cqiYNEghXOw56ax7chlzb/FOszs2ESg7x2BV54rKmJLnywF3+2JizSroXbb0v3Zvw9YjCv1L/DLn4LV4RVgBcfg1ca+Do9ZfKsQKKI2naFL2obLONeAn8ugeYvogx714X0m7Hp4byKEoGxabFu2+TzLW3ar13qdG/KtAtrKIJqbOizEl9Fu46NTBBERZmG+4OAmHeXBDe0lEc6nlsTWEuksZaya8MasT1tc6xNWGSRmI1omtZ3ARiqzZxSUMn0avJs1IrsQwhEpnGxxanZeTV/B0Zqumz+Qt2Hc5qRTJ8DE3kBfKa+2OJA1hwSNlWP8DyEl4jOKwlmJ1J65J6zyKvXa0flK1Z0Ij64ScNEvoIvwHQ2zIsKDtecDxbWbscw7csoQBTn9W3fmGsrCBhkrYE6xccgMc0gPmci4yHG4CQee3NkVDPtkeiK4+2dQ4YDZKwey3thXUZfbssAVqjc9JULH+sBMi0q7iLOL1xofidftICS5HwBpYFGzb1NmmmDGkw4HKiFVvwU36k17iMHUxEVaOXGJLGT4+eLlhH6+rOn7uxY220xCiZSRv284z/a+R7GGy84T51OCAf9DqtlDC4mlRmlZeae69LQsJvxjhkCcpquENHgra1ENBevEciRpt90WUA/r1HekDoNY3innXu88BLhi9fxPA6fT7elil6mJRCd2fbqD4QfM5qR1WOJvvstA9uq0KbdAiDOnIVgdLbrkn0rMu22nlgONI+n5WJeLvoT9PJabWdpA9MwaexvYQ/pdBq4wjnohICo9DpBuBreD/WJBfYilZlooOGxKBO352vGPZ7Hokz7RNSEvioH+XwvpJ8N52W+33HxHBnAmbBv2n48T59Ki9OgnvdRo75hmrLKYqDkek6lBFCc44F+6RmzbrtoYskNnNan/fiKTrp5aSwIMGrogwGUCzDtjsGk93193hM1kR+b+2MvTDqO0rqQQh1c1tV9G90KVgLQ1tsvA3a7PfYnJQ1f9nD2ULvpxW+5ZB7EMsqqoM6LphBSa9olxFuSRYZ9V3Re74fXHYrXn6vy/z6m3TJBUE/swqst09Fhc4bE4tBIhGMTxMKe7WKw2L1isgp4Xh9+4vnw1b0kqJTUJvLFs/RtP990b20By2JQhhQzWQlsm4WCAIMRfOcx+C+Owycer5n2yLAXEn5L9XrFrJvrw6HK/xJ4G/B6FD/FoFHpsBylzvsbJZ4R5Gci/kgZ/XhONe2g5vFnw0uVZnAq+F7X+N2aF9rmU+QkBijSSOdLbETbXALVMK53qoBsjU2rlWE319YkdoFZSzeTcJ5K7RPfxgA+wyItBzRjCFjQBhj/MIfpYxM0rN+tU44tzN8lm2S/JSr6s9WyQzUOFbPulI3yG13YnzJFfdn34+ZQaBu9CDy8hR8Az1ujChjpMnjlUbh3x5imJLhMBMZTWDeR41NQGgGcOnW094MIllnQbLQRD5jfg6AVisVovVLFhke1jZeKMqn7di0BMiuQYVMIVgtsQlMP9ZEQyWpX1FTYhbHOJGmuNM3G44dUS1ZAP+ET4kWeNX3abXkWePog0/GIA9tMx89VlHGXioFHYBTRRzGHXlb3Xz9D5kWTSbqIjFxKA8Waz1KbkaaM3LlhTCvVWl3M093P6yk+yMlKm6ed+sVnKxs/z5KOc/zsSXTvgvMTXjS2kzDHHUExGyrXfahAwhgDuiajCjMd44sz1IukQfi9T53DPN0yYEme9vCn0TT7o5stdk4VcK8JV8Nv29QRzfbTdvXN/xfatOTelJrZtyXuWW2B6LxfYv5f+MTs2wWmPT5Xt0TsmBuGBVB/34FhGwL90SGshW4XCeulmgptFn3PsohoKs+p6DYzEWVsdkX38j3RexMfsgdhPJFaOz/8GBNirNi+Soqlt6wC7lAY+e2WrD3W9XMZTEuO7fD/OK8y1HA13m/F923rMOKxTgJbpZQxMzZ3i8KJYa4fPzmuYbE56VvMT8ULMiuRcaGC3UmpMWXKcyNJL0JBnbJZmXR1eYsWFFMvTIHpvGCeOeaDJiNdtcjQclFB03H1czH1G84xH/WYVvH2mkHovFAz4p0sQZ7JMcqDdXHsDNNXUvMUcfxKdE3vhTbaeRyrtyGNnovyTcu0Hzr2Le3/qEbVnAWNHA+1ZKbNpHRkUnTF90w9EjnFNl/TrUIRxssPw+EOfP5kMwK7CUhXRRG9kJIin9iGMzM40luU3FnGfbWr1HNVV5NAagS5s4gOYHMC6x144yXw5AxObC0KJEqptO0xlp3VsgtwH3AV8EsEhh2dpLlrX3cbKGJchkyfadelhGZk2qtvelhH2E8ZkrEg/W793dRsqy1vKCiDVQX/C/eq+elb51IhwnivYPdQj9/91C3sZY4xUKaCGIs4rI2c9ZFr6wRY3LymHBgc5ZkWa2JmP7tLM21K/MwawZTS+D0BdZ520PlrLWHE1J7ei1Gz+wYFtlGWF1rCmAtB045qiWVtACXsBNOuPUGFP94Hsy6Qr+4gr7wEybJ6Y86Al6/CPZs6L9I4GHF+nPXB7cIsmGWBCVfSaO9mzO11YeMZmApSl49hCJrUUE1RadlTZcZZgcMIGyJsxvvBRUDmc8O0O97/sU8TrSviHPCjAeyWzLQLWUVMyjf9ig3mBhhNtMI4ANykbIjGo3ZfHEo1VIEbW/rmHKVNc3GQ6fgmy3O0n2uzbqBzM/U7CDng5mUVpAxAupkSahGmBuJ8dsF0DsLHZ1C3phQ2iyYPrrylXeO5City49NOh5WJYcLMtLTn57JU2zFNwv0kdbo3qLeJD3/wxgPlYo2zqEBmDkRTTvbLSsAmzqmlyHOZIcDsg+m5NeWbua5yzKfvioEnXXOdllVQBViV6tn4rtjfoezTrh2P92ZL4Gm7ZwPRWThBGbjUPL5RRzqPZ6LjZffv6INu97BYh+0n6sd6BbgQOLTqc+c0aKFzuj8EhqepZeeilqiQifGKZqL98SXgH117I7eic2RO0OlIoAOX4Z2KPuI8LOTCgkpNyDOnBMaZcY3zUo30AaVVf4VaD0WclsZcqjw3bB32MxYxVfEn3CISsMUy6g3hRAaXdtVqGJr0wYLTN8jcqyJyXOixH9I37+s9mZYH+sFH7XMhzaDSX/Hw/3i4q4B5YOzL/YJ5DkXuGtl/Yto32597wHqM5RFN5B04lHH3/R4+COx1HltcKxrgeS32VUKn2OvItC/sf4BoZo7ItEfviRK4DfjfgVvD77h/5U5JieeQZ//mZdqn4832f6Sm8T6M0lmT7i1PujwuipUcpvNmXbFUA+6b/4v3t2ewFryffvgK+MxTujhS3+9AjF9wwIg2hlrQiJlHgw2oM4wAGKlTVxdwMnGrs62zAaPA3gQOdRSZfv+l8MnHmtp2c8hU81BXQeipj3vR3OyxSdEkvjIjTGQOh1DNjV1vUXZyvj2Ymu1iztE8PnYT4Zvb0nzOTzysdoO/ddLIFAGnwQ13W4Ibpq4b4dbYCzsIu2XG9kaP573weWwDe5ljlzooUeuGBkphlKZ3lm0e6b0CZdoP3CifWbF7cPwdNe0pkdqn9g9rmC+D+jiDmsZOWtxX0kEFE6m3JWBN8+ICi7bRG8adzCF5hh9lTLYmrArMvaZ6kxINQleUyP3byCtWkCy0Lw871guCOOPhbWqTPjNPCq/jtNFvMuwk15W/pDGPj0XSQ5SQ6CdbRVvAw14nSCFo4A+hHmPLuJxCtcprEuatN5/dA+nl+NCPL7/y+VRB6OKxmsN0yr5AJrVGORNtQNQ3RgYn3o+R1R2aq91NCySmm7PBcCLTngq5ZOGiUbzEKLpS+XGOvaaJsUyOdq8org/Cim2akdWfiel4hXJ8hE+qoV4VwRXg+90AJ2pGHdNDNeA7GHOKaITcmdf0NzFqriW245intFBM6xlhjEKGBro88OPm2u4/k7JS68YkQfRzepMQXT3BAZb4fi5Ltbcl/RCZdmgKLF7y0heGPlnsiWq5mbXZF5hgGLdCTayr352OYdovNnR1aat6Qjsuj+cRLdHalzHrUXDWTTTIUGslGwHbFtsUf8c0bVU14RxtrlImK33fljmJT7u5XuqzL0uYtrlXpt2WQbsVAYZmsfcLYG0CzjXrUVTmVMCTdxHTsIpxv8g+zz60J/KKBfBlNDPQnS95If8QDTwclTeWHqxgSmmSyIQOzmEhl2RwaViWHhpq+mOhXpix7nPA30azgDLtjdhH1DxjzNXedjQqQXQOV+YpLTRWOtEijJZnObYCp2amsQb5GBpTZqXu7VOv+HNS1sx7/D0plGZfsifEsY1jF8f4fxbhJoF/gfDVMmjDpwXlaqb7glW+mEUTv7KH4gcxDLeDGCoI+j382Ju+lCCXCObx+16VEq1Kyvg9p1mzthPYzKaV8iglcCfwa8AngX8M3BWGITLr1o33uSjftEz7eO90+z8a6g0zmU/P1e/c+rGnDtTDHPaK5o7fVleDYQ/Xm1PYyLXeFx2C5w/glqdrjVkjIJ2/IN/2A9O9nZnAoSTdG66JGEa5Rt+GRWqL5HcqmTxTwlpP4fuu45p66t6zTW17OHzhKQtZkGAJyrS/jNrPL6deBFZrFlu9AZWWrvV4JlqxlvM+TR/TXIR1H3xwrfZwWmheaUfth5sSXguMIbARmPY2BGvGT0T9Uvcd7O3N2e1m7K90eeG3vJg95zTYBzB2Sa7ZFNl3aSEA4rmlrywFlQYja4PxPMsy8+AYiM42GUzaKiBqXC3jrqqbg9xXkjIp6vbbD6W/L7SEDTUGTrMm8qyNKPc9lwTGalcExCMI8vA2HHLIpSthJ3A1455l8KrD8NXdeuFEzghqk7DUWqiNG3KEAE4tQVjSeVCloGFxPlkBVAhsBjT63aIje5wBjnvYQDjbsFwRZA6y0qvW0utf/i0mCF1YYyOQs1N2ENZDrRVDHj7S1LTLQvMB8qKArjEbt/Oqm9WWT+eBSwpRl4cdoREtOUaY3Q+EgJSiJqrTQrXEkzn5uGA8KTgUzBJTfHc+0zJNaRcBWYsMTTevCaY+GlG+etbAtwRULxpYatcrrbMj4exVODE3dbSt8c3wv40W2M6PaV/EXQ5gVuBGxhrEAVlOr5kQTdlb/8z2hQst1qKiQufhfIr2HO2vfs1LW4myyG/E69gBzbRpAmWhFhTxVj9XiVgbrr9IXWCrtt26R9NcuIIjXPdoBupqwxFViXuWDYaa7rOzpnDNki22zGk3j4/nNBD9Qp2mpKb2tp7W6PgRvbattahptyXi3bZo7+mwisKWzyCzPtGxKoJVhnEjW9j6L1RZtKRYMgbghnB/+uqXVr+r9SFWESzNSVBZyEU8lqx1y4gRhF5ROZUyuMdHcHbWrPs8Ne3L3F22aQYQddSBk9v82itXsHRdzkqT5yzca6EbFb7QB9a/3QFHB3Byv0E/1tYEwZItWL0y82qSPy0TZj0cM18x7m3FCmWi1ezHwlh1RM3GPx2bMPOV9VxlzRYD0SV0ZEwXKZFZR4Wx1fUKZFPNHFOlfPOGHt8r1d237rDFa4dGjy9ozoE4JKHe6NMe+ZU0WPYN1DKiyLifMwPKsyjftEz70pKme6uoiRkcGdaL20EVqA2oArVVK7AF6VqC1y6YqIne6NSimB++Ar54EranlS97FWE9nJ+xtt1iR8y1iEbMjJHxKxgThDcKecOr+sz7Ys6poCJq+A6FIHfdHH7gcvjko4sCicIjhacoPKWXWkqHMpsPUTPtOU3GvU1odpiaEGw01QzL+XRbAxGbF7doatqdCOuAR3NDEzea+RwZZM3vNpCuQazx7IBRT4MEtm1QBoKZF/aBfREmu1PGh2DfOfYzxz7qSzRDmfYJUCwjf7v5okAoncspYRwJpoaWIzlfQGn7VDSPTwn4EcnmF32bM1dHkx9m7UH9UoJERDepykbSIvTkfIEl5lL1UTts075tjOCMahtHAjtBmCUCct828lI1jZc8q/1CohDxFatwz2nFY6UEq4kA0/Y0RE10LRp2twhT30R7P8jKYkowR0zmcFqGQVhgzMkrAkUWzYTPinAIFcjsU6NPmasE3Zvo8dqXeunD92XYQWYTJhK07D5saELt101zSF2EMYDWB7KYzjC14ABlEmZmvSRzyjJ/hWiO2higJgZaitFl9yQEXCq8CvmmgUialTAucZOC+bTg2LQgm5UVDFbbflCJjF0UWDipmfjD0wIf/IwqXNfNkBhDJUWaLUxdTOuzK3W03CiQiMF59n1I32Sqs+O+iWqg0gBszp0nMVJVbNYy4Pa9xmiIJpUAA+hNy8qYrjF0Iil4F70ctK9Y83grnFkWiC5FS/GZXBIZ7LSsGBoB1dQ28rS3rPNzwXGAgCNFsfZJy9DatscyIE3jmY6ReTgyDQu+vuGcsxglvzlFqjJmuXZ8SGIeb5YG5p6ty4Q+bJzPKxCdVfDMfNMXHWqGbNoUSFR1RAFUaNQUyKUkC5p2jWOqxFM3CwL9kavNsCMwvm0En11pka/xo8kzP8riOqla0DZXY7uX+nyb0ubT7tBg0yeTtG8Vojq3W1Dq0iQo077G4hw4hAqmfPJuNb/Tb00lWDQuMuoLMC6zJjjeEiE/fjhqyBpxphJNe2TW4/8CnbHMzcsytTGYtBO9Hgp8fxhAmQt0OkZ73pwb4up+2g/9qQJ6TVuoZvIKY2cA2WQW3pVGv3pQpn2t1+y3lCAAjR4PNY40vI1HU/JaGIX2YNmVktE9t0Ho4JuYae8N1hbuVeY/DaYzXJ82OcyhaU4TS5qiK864NhFxAxmKRqyM5vF5pkGmXrKqZvJRaxZ9VC2j+0xKG4Vg070dDt9PJXcRxpXsQP+Ohb6LZSvIpocB2eQOXn9Mn7/9tD5rBBJlKUjhKUuplIUl8HWU57gcw7S7di27RYox2EfbEJzvFtS2wYAywKvJQ6vhAztByymA7BbIMK8Yi3NGMY1lJVdmK9bfGEM9i9eALjOvgoLppGSy0meM4+uPP8kEjSA8EZjimDnXjMJqxznLGr5/dQeweL1gmpj4NV8gY5u6I9hjh0V3BIcSU5VFXxaRuwn6Byp0mrUEFWnAFM6FMUOL5VnCtVBchnfBRF6ote0bHfLJhEtQ0/BJIBRkVsADu8jLV/S56M9uTeRfdEg74vFdKtVEXIs7Bax3m5tUahKfRnuPTLvtG/s79mGrOSLN+RyD+hmtUKQndak0c2OfAo4KbAhsiW6+AkgIDBM1hpI5Tjz6ZG21gG7kst6HsTDxwoqh0DXlW2Dc7bILj7iwzpwIq0A+90jQTDWICFDisC0gT0LARA10PPbFRJaVEF3Ww34hTMYFxdSrv+C00DgMUw3+U048hyeefFaSlf6ZmY5HGKXpAoDA6qykTCxlpONg39c4y8KVzIWYumnsQwToRCixG6wI9kQFiBHFpGakZ2gGoYOmefg5YWybowBTj+t2KmWbA+hDh6JinNpgei5L3C4NKq/64xS1eXy1VIGHH3x8qXBmgckU6Ir6i8ZxkylNxq/XaQYejQ2DA7WKpajrQ+Xi4TXXdtnSZ21MDCgDmQais9dWE91oWtu+XZm+J5Okwj3xmdAPFTqQqt5YZ/Rpb+vmKEhItwuW3CtY9Nu3dbUFoku316rMxUTCp8bVHVTbmby40DbRKlZnJYwW4euG/accAPPZonwjmslfpHXRtr+/BvirQPehx/lF4NU0+6UapwZwBidNS5qL/IDiWPRpd4S0bwf4tB9Adi+zENxkMbgmKC0TI8uLqQNJll/8MQ3CxwoGA2SbUCLCZfmVoyPlN6yJG9QMu5d219VZCV99Ct53O9zzpAkiHRj8VBNN4t4a/v1KD8fQjf9/AK7Kw//GggybcZ+Wra8qa5OLXeAqwW6GY9Bz9PY1gLOycTFDTQB5PFclqx0Ma50Q11Y3nBvKynCS2oVXqC0JXhYeewPwG8DrqHmUyLg/l+WblmlfO/T8xZuNXVTMqhM4M9VAbdAkbC1RGjfDNHgPsT6pZ2/8BtQRmqN5elQz/NDlcPtZDYpRtC8iSdMNHVikjkhvvz8OG160JIBag1dNaqc+wQf4d+CNNMr23fZUuecoEOgERuMHnwefelyRgRFIFIWnLDwyLynjYkOD0L2cmoCxjHs3aW48DlHnvE0Raaz3PHqt9QBFuNEvzwkhKrWwLrBdmThp4CyGtfa3Kg1KK51XwGoO4yXWDaGvPcH3WYJwdA8mx4Z81Qv//ravcFfhmDqYO1cFAymdgd0i/tww7cs6w56h1nLYDbBR7zPHUo2+Nt/ao6lpjzWvUOdpl/DJOmBYuBhlwWpBFgdyQaLtTVqVBIyLZNokquaoNO0SrhnB6Ow+A4QRwk6pfs3y8A5yvIscGiJ5pkx7enQyeOV600Q+wrlTwqohIdsCsFg426K9p5qXOPa9NiuLZD7E+WEFARgiheaQbAkcFmFNYL8itgXZL5A1EFy1lm764pdr15O42Q86SAaT/RnrYSJFZiau18bQCgvm430Rjbbca+ZprwIcdh2U1lfWzCNzWVKnvok5a6NWOkbRHXthNi2ZzD1+7pGZx0+9CmsmBXvTksG0YGNe4gqv2nbf1LYfVJxzqNDCwBzO67OSeV4Tg9456Of4NEqbhcvcsqmbYpTgaE2wJ0Eg4YPgUILFoTkiHbyJBmyKJfXgOK+VlwqOBdzY44LWpJqWHeiPCw12Fhmd0KBnsqteaIlwp4z7FMVlx1gUWPzJp7/U2gdtmNaJMMREx48MR79T48huVjO8y3ChbXPFrC+6eERriolvxmZIz/F6l/aUb/F6QBOnS7iozpZZm5UHL4KBW4web2Cy3xDaTdpBTfbbose3wQnL/eMdynQ0XNWS9jRvorg2dUMiNDZJ2yehk2zbIKazK7RRVuIHdMNF2QX25vV7dizTCp9FWdZnx4HRZ77EpTQ10G30QONFJJiPh5/nspBb5tN+ZKianmVM7QEdUOGziILC/S2aLj+xrNEyxyOMbZqimW/utRV8LVjBIo54DepyCRqnK36sIZSQmk+w7qtfPwnvfRzuLuH3HoX7nzJcuamDGvZIglTX4dhCtexHI40GyNgjo05I2+oqGq5K9WaY+DFBeRPN453ubxWpN8xZmc8qq5jKSi+uib25KnFs/6WDEy0Qh2jgvYT2sdOjkncAj6BytF8FXsuicvG5Zqq/aZn200/e03JXkhUXRqXwOkuOJOne0t3GOR2h3cQfpvEJSc5oZPWMOpBXninxfWwErz0En3qinv0tQenOuzRsREw7Tu8r4u9mNQKr4DLXq0v8O9qYIPu9rQJWB3XfxbRyrzwCaxnceqqKlC+BYJ0Xgi+CfzsK/n3ASzGT39XmJg1Nu1l/G4TIpDSbaDeB8ynLiI8xzejx8YkNlFitvjkv8CFYV6W5amPSU0ZqNVeT7rY+DkISL80o+8Vewcn+gH8j8NBf+K+42sE93gWE6ShdQKRtiD7P6rwqbZtjG0ERNadtJmgXwN8u28xB99K2lG8jggl1aId6g2tfK/Pu1FcvdV9JzS3i/SjRXmbyfQFwLRQXNpHoh43o99Z7rI4nHAE2pM5EwH3byEuO6+aVOXwVOd4ewMvX4d6TqIm8r2HcKWC9X8OTburp3BtkwafdzId00USzzDR6fOsGSLAJreuMfmZVWhbqDf6sCIeBdVEGoSLYZ2XtahI29L/1k2+qxryOE+Bg2EF2Z3ShMgevz8FEPjCzDbouwNiJ+LWTNyLTV+eoaV+igY6/i4iu0eU1FdWyfQn452iU2amHaekpCqEIbkIyLfFTD7OCnWnJ6szTKzyu8MqwB217xH/nKvGZLPSnC1zqsBBmYb5XRNKgg3gdmwWKMoGzCDDGFE5j0fX4eeB/Ab5AnbJpHs5tGlhL3DbaG3+fS2Dml4zD1NfuGbHkah4/qXCaEJlBkZY6LnKJc12S41T4/yGoBDJxqf7c3/hL7Uy7WXZxLjt0uVW8amDOJdAZArpuU1PoCu7FDphJnZZr1wfXh3DsGcuRiXl1GT6fkDDtrglHGl29OlfCcPOF0tfccRuz1smabixQWXTZqiITnWraq2pMm1L40mvCs1WzkrMNnqrtOQfTNi+bKe3ieZi1pu2LfWStCgqgN66zYVRoOotm/I6in8FcaY5KiFXRHBdvUbSBKGifbP3sX9K4QMn/qmXZ9iIoLTKwi4FWn2/97dqZ2vUwYptLmNolXRCFLalFiaDKnYjXbDNWWJLdSIxC39JcU5+k62ueG/ixwauE+9Ei73gGp401gdDkQO0RGffPPt4E+EtP1I1tRAisuyratljG/QnRDC7rqDtnNZTTEnrdag8HqsjxVuse58hKgDuaxCue1OvBsMvKVNgM7dMhlJomHM/VitUSkbEf0/mymtWKTbMOSsCHs1DD+jDw4vB6bs7Wp/25LN+0THtriRMXmpt/lEitpAGc7C4TFzxBkyTNVWjrbHCMomnijhqzjMycv/8yzb38xG5tstLQuj8DbXsl1g/Px/fa0r1ZZBbLKPh3TJJo5hbOVIsvKNN+2HivZU43nzyDH3oefPpJNe8qBV+qeXxk2L3x3b8fNT2JiyAy6x3XXHv2WA+fPEvLcJxfrzVAs+9Fs8qoac/MC6uimsJq8xyLEsEYH+tl1IplokY9Yz8l9dkAU3oJeDMgpcmUO1cz9jLtm7Fz3OyCdt25BjJdKL1cqbwFSit5OtVyXGRHnWUmlZUvE80uHFETQGX4R9RkS3x4pctCyGr7MfuhtqA/0C6YuMDSFoROEFgd0CtgfTrXDHxekMkceWoXeelIN7I8aJmthj1uyN9ySLmfk+MmkbE9gbVOOzVqr+O5lxMSxS9nYFKBjZ3TjXO4v+IMk5ASKrVVzWZ4/KjoeO9FXIkgc0E63Tonu9ngvbknOGTYJ5t4jkWWPprFQ5WrPTbPWRjD/F6ZFToH83oeNdIIdt05BafRjK6gjoQ8RyMj/yM0yuwvA1/2mkJmHnCgxBgfD53E3/Q1yodPcrhUiyTnQ/q6ctE3/6DiJOKpppBitYTJSrfJgPRCzIA00F71UCBSw7hF+IoA35fRSNCfQFN03ip1+h9rMmnnwBk0DonFp21b0TlLImhykzl08mYd3YxOWVt9NFHec+/TvuAui/bJSeASmgy7S363lcbyDY3vYIL/zQokQ2NhBAEX/azez8178ZzGZIiuHdFSJFqLRFeIfa//m4i6a8WqFvjPcE4DvtnrQfKsooD2qOgUfnluNecUl6cp31raFc3xbco327aeaY99T5Zcx7R2DTxj4LMCgLpN0mhbdRGZ9ghTBZvJ8rGgFdeJFessgP6saO7XoarI2xV9DUDa6O+GRIGLUqTlgJquim6NqQWWb7ycNGYmum+dj893g9ZNOuGI0+DMbUztEsFFCot97Cw1LWotnVZJBDdJXQt9PZOQg55Fl7YUMzgWzf9jPxxegZMmQr6FLdW2l6L9sJL4C37rZTQFGk2/9pSZjeP4sAgvFE2NvCOmi32B7+vErOg+F991jf6JTLtlw+rDQV/tRvamhV0Gtan8ZFZr2tssDm1f9Xuwt5jBqSHTMDCeAK6knl7RaDky7heJfFxa/t/FtLeZxiO6eI+H7TI3g7kQwMDBsKe5DMHsCLE+M8Htd7YKGA0M4sgUOXcyTc/0HcfgE4/rjIj+I5WmXc5f255SCbEdNt0bmAmb+HfE9Fd7ZttqbCxx8ZqzADtT9fePiCMyGpmDqw7BZT343Mk6cvxcmXXvPVIKvvRsAU+TRI53zTztGfWQWPP5NZSHiUgjJRTPp6T7lVArbVfMc1GLd1ikjgzrBT8Hhmr6I9BEFHb+QFOruxbIh3nZHLcKiOhXYyIRb814yQi6ogRGx8H3ONU8Vow7NIJ4VaWbmMenWta0Qwjz7yIGbWvbzOPnzqIbnUVMDmXaW9PnOPM7atqmyfqMxa6JqdcYDEtguRjRPwVXzQfBIbmOzTx3bA9yDm1POSxwxgvyyB5ydISMekju1A8+T9ZSXFu9HK5agXu3650EYHcK650msQLN+dbYrDomvPGSOTEpDtZwWSq1qrMmMHVKG41OqPYMMPLQRSO/jzHylgnIqFuDZhn1AFc1Z1YHdPdNMCiJTZKmebyYs9Rm9IN5wTy+bGGP6zhv03It9pmdx3GafZRm+agXCi+UPjDtXpCHT5N94FE6t+/x4o8/yosfPaXt80IWBRAiC/ToslJZGUBI/RbgnMI079RzEaATrBmmJu1bCqOBKWXEU/j+GCrhRZQLVn0SzpsETyoWmdZzESOSTqK45wKMC9wgq+p1zkE3Iy+Lxla/oMBrsyy6SCWFPS7TGDm+aivn79ffWG6oT/s0fEymRWU6XGcIcIspC2ERN1JbiExFYxeMfdPFIzLr8Zk23+94joxZ1LTbI7Y9sggLEdZD+xotnIux9omVmJ7KbT76pD6L9sM9qx231cRAdPZ9W1I4pxzMtC/m6JZGmxofmZa1j60tXRNMcAkqitczEQaFMv9VTZHRwdEFJoMuMgN80+KkwbhfhGL3dXuO5uLb5n5qJr9QIlKdehVixNK2J9nfbT7tzsGhUTPt23lo2m0zUmVD1LRXnwrXqygdmdI6tbWPGVBB12ovb0cCCU0Sx7Rh/h/Px4ZB084ibEEw3DCNF2CzrCVpf+0KePHxph980jeeGs9HS1ARUU20KOw7Vta0V2j0+EgTxYCypi/jsY+uxZje1zmNHe+ykNAzd8y7sD+eVVp2xe8hK9WOBHow5eHMIMWy0lWerpqMUsFS7XtihBLUTHvE2zY19XMZOR6+iZn2o5e9cvFm7H1oTsIzc13EDWkc7ZvDsKtSGTvDgAXzZrspWk10ZULuajPy77sEHh7DQ5tU5vqNqOsl0hYMyZTzTveWBkiLJd4foUEZxPRT9RHz2yK2zWkdGZ/Qb92s1rb/8BXw2adhb0ZR1Nr2cq4B6Zh77vPCpai00mrZo8lJG3EXP7eOMnu2WXYTOFdJh80ijq79tkh1PRQ4HXHYXIleGXQCs+wWkQSuBghzDoRma9Tz2CYvxgVJ8LMJlw5zXoyDD3+cH8vgJbkhqkMbvLA4hzstPu1pH6U77dw3o+3Y+i4QP7XtV5HASfOdggpOKol1ZOJIYghEodN+0pdtxMjM14HTFmC5OEhXHKoZdk41YOH+Fo6zK0MGeyVDQnCnr20hLz+kcyerNe2SZ4uCsAx41SG471RY48F8e3sOqylMB3ABMXLqgnl0vBYlIgbJe+mmZH9363RCSJO4sZ85DRwN/1sVZTb342t7gqyEfOKopcI7PnhDZb5ux55Bn95+qVoOUWZdmV69bgp/JJzrJvfmnnkgAh00hUDOIZ1s0TE14fxS2OKRRpn9QVFtZkHthST3ncJ5kCG4bfi2+7e0/RIFD03hw7mK86LAJfO9tweTMN+rdInBDaNKf5jCmBBoFazhdwrfj2JkzbYvTD1nqTXt9lgWNb21tDCcbhKYdjPdXS8nn5lAbelAPcfFCjisNvEUOvdjOyt6G/jdd13XWldj/EWqPuhTy5TUHzake4tToBviVizbz+McDsLhObUbxARlvm9FXTy+SG1JEQUz1qLLniPTfpCmPW4prcLYtAMKUVpi2b7Tz5WxNxVIuHDmdlzKyywazuXTbku8l0aPj9dDagY1fadVWDSLWSyS+4Ogaa+IG7EnOx3UPL4sq+jqFSkSFlrXwTRqcmdJbCaL9y9CSdd/rHUf2Hj3dQem6m19UWjGorGlhVFaytSCKrFi2rdYf7RM9e20dls747reQpl2S5s6aqYdEsGEJC4gxlpmIbVuG6MZS+4WGXYHHO+pW2xqdSthU7ZqZC9KMz0+gx97gb5/5VHTH/G5ur3R+ipWFfvCAw8LPA/Y8DAO+7EAfqpxnxoKJajoI1sW3VIJzHttgj7rdpkEs3YBfBBCeS/40tWKRGjOj5QGHxmaJbap6p4azjhUD9Bk2r9R+dljaQkJvFg+97nPccMNN3DvvfeyubkJwKFDh3jFK17Bm970Jt7whjc8l228oLKz+ejizWXp3s62pHtbiJATBnjVaNqhnVpLmebtCVwyas7AyDx1nE6a77kEbnocXrgOc0OgV+axcrCJcvxeLBajb+7DqzaaFJK9xrRrNTeWBEldbQIPEdiZwCHrWhDa3A0z/wUbcOUIPvM05Z9/PkXp8YVqIcvgm3qi9LwkyxvNatWyi2l2aM4RqPyjLHG0bLNd1n3peZdEeipUGrvDwFMBIfrJHHI0eJijkiS6imGylKT5qA2EsTdT6Wijn6l9aiQiJcHvC6z2mDvY+LbX0o/Mqwsa2lBFaedtOu8O6oWUoCj88jzdFyBVXLZRx80tImv7mSEtZmaGN5EogR3QGlRkoQGzNpieOSwHlWpzcgTfe53rO8D++gi2givA7hTO7iEvel7DNL7StMcdofrt4KWH4EOPqV/e0aHCu4f6tDd83UJj2vz+gqma+vfnrcxQIw1ROihtda4ETXtF/8TcqbWlCIQc7QF3dhH6ImyLamFlXiDd2vdNgB96w7fWvwN84oBDMHhiiqfGDU5o+LWDqwPQGe7TAd2ZMM47rMaxIsEFlmlvWCPU55iqJp3PrzHd8l3AK6AKJll6FSj4lx1FvvIojMFvwFMv3eBlftFsWpfyuednhF+vhbAqGErBY1m93UfjeRk5TbEXrQ9a1ovd1qAewxebZ/4p8CrqQESl6FRN8fAWdT7jBfjOBVyK0M0e52ZzGAbtogubQ69D5qEwZtyxoudQwV43D2M9Ypr/NIvm8VFo8QP/5XcsHWeXXkutMS5F6Mw9ktWCGQE1j58l+3l1rjshEt+eYC0her4d+CfhmZuA3wS+JzxbJONr5TwTTM7ipP3VHh9+p0wyYq/D1dw33ZlSYWTfaNqBNPhcvJ6QpHClWbqhPW1dlfKQbf7xceo5dCuKe1ajHbYeOxGLEnoGp8Z5MOgYyUxLHfF3sP7rlmVtQp6YBndAaYQ+MJ7DqB/eN3v/RVgbbcH/4rEPZN/3HQ2aDQJJGeeUobUafTTzzdgVyeRaWDttMV0yNFPUXTt1/Yk2Wrxo2lYLE+14MI7xBotzKiobGvPJWJEINN22xmYOYNq8DDmmwohIUx7pw1NBdFo2YaP0NQ0fGff7NuHSDrx4A+QR2A480YISUPfT+DO1vkLgEYS/IsI2us/HmSBlgQShYu3m5hb6FUwWoTBuLigz4jA65yh7PWYzr7SFCJUSZ1LoPBp16/1g2Sbj0Pm0PW0s0kh3e2+EE+j+tQ28iEXFYiTTnutyoGDAe88/+2f/jH/8j/8xN998MydPnmQ2mzGbzTh58iQ333wz/+gf/SP++T//58+pmdmFlNlkp/H7maZ7Kx1MnfoLj9HrMg7weEle7QZmN/2xHZjaardyKjWOJvK5gzceVx+Ur202F1OlujiHb7vFig0mWxbSvQlQZK6SpI8zxxwoo39HZNrbtOy2CbH+LRaZhYZpL/DDV+BvO43fnITI8b7yaxcvPDD3vMIr4WgXQydex64Ln7a4eh0qqS0km8DyHmuCYd6L78Tot43vBeJ2BdFviiIJP6KBhBYaCYsSvnh/LYfd2g/YNspK/AQox3NEoBh0edrB6553OSfDRhdNsWMQugV5sSP4/vnlHWPvVwSTqPnhsg3kGSIqu3TsJyPT3mMRx67QJO7EECNi27BqfDjtzphSOfNiUauRjtOzLCpBzvAZYUNRifIWsLvegd0pIxGueGQCV2xoID3DsEueqSY0PXKnhNwLhmoi76kjtsfcpCk8Cxs7tSnmZJk7DMqAdw7I0b5gOWL8LzHEvJnDApwRdTGJY7yGmt8KIH4O/ayB0q58weUmymxNCNCHweaEIVKbkoePxsjr2heuOR/CRb8UJjYvbnw2fKeh1VmyZizaFWoGPmobfwm4G/U9jkxtEST4PP8os1evMAc+/YPPw19xpBlITyATOa8lpoy3VEwDUuOr7qxgEvx8GsKJAfh5gnvSOZD8Kx5xhx2hzE4N22L0+Pj+Kdo17ZamPgeQ7W0dWw2Vq3Ed4Cqf/XTbfu5olqhJaxPmnEbN4ytywAtuXuImBVddehyZlMisrGK9xFLvQVRjq7hSU4JSgvQ6jY6UXt6SVy3pw1BSAYMHPpK8+mGMvN48b6vzKGPWZjGV/l6lmRaNtL74I2ra03KABVmropaWTJ/m3KNpWJPOe3svNbVP64uWBFZLF/urwpD2H4Uxj7dCiV7ezEEfX7OKmVBmAp050LXxHWpmtYPTbup1kBCbKRppim3LRSptNY2BYy+6gh3a545etM/Ryqcdzu3zHW9FRZLdA490D/ZpX9IFqcWRUPvmtwXQXaOma6D5uXZri0IFbSlIyyzmLEzWFeBomOU7YW9PYbOadgHu2YSXHQ0Bsh08uRc37cW+Ce0vqBn3aB6/i+K356PpbBupP6dlxbQvCMjjnht+T0x/YpZEZm7Ieg+ZmT6VoGnfnSE5zQxZsYK4N1hadpTXlq6hMg/q9kqTcX8QtZKKLpzVEXiVi0M5HlwOZNqvueYabrzxxtAZ0phk9t6NN97INddc85w39lmVtkUZd50zUzisRk4+UyZ9N2jEtoGdcL3rYLzawe8FtL6gZY8zNKl/cw4bwYiqQjQ0GdteR4PS/eEjcM1X4L6nVLrciPJ4kIl8sgjjOUn3VgL7eYAnwLfrYMvBnoPpRg/ZMxtE6g+TCj9i/evGftpRB8+KJvKXruBfvU75ofvxN9xL+eBJvPf4QOWd8MLLpU5vZLXsHQg+LQnvET53CJaaWh3sVNDoveocr21QNAVLKm3/YWIML0GmHvpNzaC0Meh2RVvf4kG/GQijaoyvkIZ2uSA7M2TF8XTm6OO40sFTQYPrHfgoBV0Gf8cpcdAAeskGGX/PpDY9j22uO+WCit0noUb4h021dt9q5DuNfRwlq1lk3J0yvmnMCfvBihktdXNMYbqIWDcienB1lFQUzmIV2Npn4OAlJ87Ai1Zq8+/MMO4dp2OW+rc71ET+q6cVpq2pLohOtsigL9vsCbtgFELC4lyYSTNvbPX+EgKp31EhQOhvlcIL3jfX5SnUQiYyIKsCuwSmfneOrCzxfXPU5t04ZNRhYzZVBkGk1rLHJpmFHWuJ2hgH9EqYBc2NyCLxIHHepwRWopFqI+Y2w73vRQmQW0VCQpDaekYA6a3CkQ6Pb4zoSv11C8t5T0vnFkzqHdCZFZztxX6jnmudDkwT/+FkDjRwo7kXtSHfgZpOe0KwOpquklaIUaL4urIkMHTVOWFs22vjeQ9cr47d66AiYnOT1jBlUFKUd7FKbGKE36L1kwSfdhHyoiSbzMnGBW5a4iZeLYXGmgYwRoS3YxmFOlCbZheg3ObIpC7MnDI4rXErmue2vVNQrbotbwrnVMCdnmPkeFvaxjjmam+in9R0GBUcd9uY9nDu5o189BWkYSBsu1Im21bTp8UP3Txn703NO7aOeB3hj89VfRa10OkHgnvDQsN6mTFlryoJfdTsKylDSK9u7fIT+RTQrWTuHHR7MPMN5rHyab8Ii2JhLpk6d4DLqfEjJCSzbYJdqEIwHz8/n29guU/7sZESeIXROtuGtHSCbZulW7ao09SmSqUVEqY9/DnQ2iLSJVZAvhQ5upreju9kgfZepzaRj422CsF4PSvhwX3NSgNwyRo8OWsCG89BcdjIXS414/4IcEiUbl4XYQtqXnEMMuxUWY18FaTXGUG8ljpPu2vQ/s5R+bXnvS5u24yNgEeQSYlfMzRhPFu6yCKjlTxRXEgFVwVj+MaDqJY9VhF1kpFxv4jk49JyINN+/fXX45zj277t23j729/Otddey8c//nE+9rGPce211/L2t7+db/3Wb0VE+PCHP/wNaO75l+HK0eSOJKstTNqY7u3oCO8cYwd7mTK1exLSn6AM7a6DvfUO43mxmK5BkvqryS5a/7oNRBcWVvT77gZt+1F0973Xw7sf0zyJlT+JHMyBpt+NbTLp3orMsZ859lCTnT2veGsH2HNO4VvrM5n7Jo2a4i9b/9mJctUps5BnC9p2/+I+5eMeuWOKf98jlA+dAu95ymvU2hdLk1m317DEZBQlAs/Gppkm1hvGwbtQmwmjoAINE75Pvx+wgyLjsNkVoua8LmEiqRvp7NhX98P1Rg92jaDEMARlkPKVkXEfF8hgwGkclzjwX3+ApysEVDPslWlmikVyp+ZR8TuwnCqPZ5s/1pYLNCdfZtlQmUTRzrRH4k7CzZp5M2UY/JMWdv+kTBNNe3W+eJhX0I0pjoNkukE95Zz6nu+P2dgac2xvAs9fC0HWCGbxmfp5dTKzlox/e+bg5YfgibkGjtydw5Fks085Ijvn4nmFOgdwSpEIBwfsS+sEjdEQtP6RCLTEatRAbgocMfNtFVGhjIgyK32qteSB2+/9ekPwIYFYGa/2GE2FUZjT0Zcd0bQzcQLUJuN6K567BYyDRnaBYYeaUbAuVUlZRsydRU0mc+DPifCJcD+mRCsic+ILbdD+vArSllH7tWciB2/UpiEpk+9Cn+bjOfsdwjDXJonS6eCj6W1qWRUvW3CjoOt1HfhOlGmPuMf6OttjM9QXBaHWNLyNoVsG48JvEVwJjDpNi2Cg7EE2LwKhLLED9NXzleheQIl9Yc/xeBLNVZ3NPNm0JJt53Ew17Xfefp8KFM1hGfdUtpijblszASYggVmrUF90gTFwH9Tm9PqF4fwi4H8DXm3hMlWmVY9pT4WWotsetUVKWpe3+/ZcmlYvdrI4gu9+LYzWpb/oBjFjuQ96bE9MH9vWJnsdyfw26z+o/fmX+uynjZtSC8dt42wGgLAYk6lcty/2QScLikVlcHTPdOSoVSVrIRgdzXoulnl8rCq2TUBNzuclTEuO3HYv02mJM9mDLO1WL9Kkslm5KLxJOz79Z5tPe8wUdXZiJ1x9bumDZXTLFiFyvBeyeUk+K8mmBW5Wsl549qJQBPu+VIaqhlBd4tOeLHpb0jhJabC9k7N6sUYArCJQBE5s6kZ1bKDvXzIKmnbTF5WZfHDRZNGXXYCHRHiRqFBxhFrPxW+KoClaI7iRdnPNvhGUL4nR43EOl9dB3iIe6XQ79IJA1tL7fuLxK9322FJtNNAoq10qQ5d4gRKpMzeFuh9EcaG1/m0y7s89234gLfDYY48B8E/+yT/hta99LWtra2RZRp7nrK2t8drXvpZf+7Vfazz7n0vpDw81b8SJhzkLVbo3WekwdrCfOfZRBmEfvR4j7KEa+P1RzmReMrVErsWcdgFCbZ6yFrYKO5EqTXQgxO862WzzbU8ms/EAbFpRBmZhQpXurXSOcQb7rjb533PKvI8D8z4G9lc6TCaFSpvb+is1W9qZwZEWc6WMRCiRUT54RqVWHSWu/T2n8Whgh6tE6Ik0gtBFxt2ut1TL7lDt7HbLMFiztINKOoSxRBO/at0HZOQIOShjd0xB1rqN72rj0gXcxrijMQ3250lDBDw1cow4dgyy0ecpgePOMX70Mc5kKj33LqR9o5bxxM26Kl3XzGe7jDpJCab+EsYNI5B4BiUdK9D+XDfPWHwbmfmpfrDBYNn82hpUpCXmxAJMif/gRS6VeWxoW2TYJeCRfH0IM1i5b8z9zz/MJJigS66SZYmbcRXUwS1Gkl/pwRU9uHcTtgsY9puCwQhXNA+0sMbzMG+Ysy+UgwL2tdU5yKrAZnYNxo0wFjWTrnHJhtS5n6WcI928sbF/9aHHwm+FKwau2e11KTLojOdUM0LA4ZSBNxOtYtjNnMjHsN/pqKbSzIPKzSWa5MYMHgsqWqnpGpr/OksdE+NHgK8IPO1D8F7bN/vaX52pZ0Qwi/exrfr+eXtsSB0ZP55Btc27nYxJIpigr+O/oPUzfSQtByjTvgJ8G/AoqkG2JvJRW0GAdZM6WFMqgI2/zwFcqCw5z4J2cdCJsssKJ0neIZ+37AIX0QR4WUujhh3qsd4L18cLTz4vyeYl2azATUrcpOT++x9WBm0ajrnXc2lS+DVtbCvtsIR0URYyiUHH5mYwYUGj2MDH5tHor/tdKMPeNhfacPmUZtYVi44a/CjN6PFtqBoI8X8iQ9syUzrOMO3SqMPma08tAFJ63mra05L2zbkEAPF/aXR827bGjwlBOG5qcygTNy2wZYFmiTDOS8rMyJ7jOavbNAPodDUlQJwG3mjsL9LSqMdScMGiJB8XuMmc3lcfZB4sTJgWmvoyfl5aLC1iGRfQt/1zjj3cIpf4bB5G/ZIcTgdVwDJL0gQee0R8v+OFS6Yl+UQtZPLpHDct6IznHJoUTKdl1b8LRzrRx7RkSUhgteBFKWVbnKpLV+B0S7A9L8avHbhvB152HFxQYlzWg6f36j3AJ/1TSrV/2fzsgjK1Lwif2qC2MpCQYtAH5U/l006Y/satNK6/Ec09IvqyR/B6a7BazNgNFUXlG/slftCrp03KpNtKcTDoNtIuK5h15Hgrr3+AJN2bOZ+XYP0ilAO/0+uprPTRR1uCuoXyyCOPNJ79z6Vsnvp680abaTyiTPtxJWYmefBfD8ceda7SCcIUx2yQMR4LMzT4C1BP7mo1m/tbk2jnsUhIWwI8c/Ctlzbb/K2XNduMLC5yC1+KcAQ4UyBHR0yc7gmTzDFFGOPYw7EvCucE9dufrnaYTObMXGNPb0rqbJu2ClhNrAhiifChxHf5+ssoHfgSii74Vx7BCzwo8BLMQnA1YWcjMrrkiPc3qDXtdqgjQjjXHrSMENml6adUtUHUnBcJ0WF3QfKYA7nOyx2RgksZKbuBgJrnbC+6XNRGFnV+63LHI/0hTwFXOPhzP/L9ODS4UQx05gVjQp40vuOaTPuyDrFlLiZoW7pJni83UZdllg1bJOn1zHKJ92NQFxtxtILRcY6YE+Z3UdRmaBfB3D8t1RIJ7fS4iuE8heNwJ8MNM/KvP8VXnj9kN0x8yTI1ic8cPuZqz1xtIm+Zdwe8/AjccxZ2Cs0QYTvObuAWLquJ7zZTtC0AMSvVdadB3R5Q5yCD2bza/CRIqjVYTI1CzqI52qNmeIT6uQsgE48M80bqwp980w9UWnYfKFEJllG7gy7sKnFiU7tF/279rdcpHZTPPbO80zSJNXBJiMJc5TKvHqrPdj7XLhEBxnB9VODbgU+HtVwEEzxEkFkJGaxMQiT92KWESAj+PKdl7E8DexbG1JVzpr1M8VXoOwE1V2wI8ZK1Qvt6hVrTvo6m6vwSJhCd6Yf4/FmagT0VxnA+33XX5usahETOauAi7rCpwJL2fCPSvdmt0qPCqlyE9XlJVniyuUcKwc092aTkp77njcE0vtR2z32dApZmv0Uyt09Iv1YUCq+FM/bJrKmprR9o3k6PyLSfboHJCsXT8x6L5vGx/Y2tjyQQndGOV80TVGgWA9G1zZWea+SjX0T5ejWlmQzDBaQU3Q1ao8fbfjLvWv/4Bh9gzj0Wzf9b4avgyBcrSdP2Gc2teJoVzkrKrmtW4WoapOsCfN3eYirANoAvsDRwRREET8GiRPZLfuAHv5+Vcclkqm4hMlPGvUmet7RjXtY+3+me1DYv0j3Q7n027VtjoYrRvDRhWtC2i7A79xyZFmSToGWflOTTEjctWZuUDKYFfjLXvbB6LwHPCm56xjv6fPCitSKoaE3gaBdO7tX1R8vf1OX2ni14+QpVtOdLV5X4DcKGlGEXJGiiA01qxuxhgSsDKCMRdqP2elrAgMparo5PU2fWSXFORXvHduFq0sY5si6s7Mw4G8ahwmH7Hlnr6Rgt87+yNMxKrzH+ETbr1hf3swepmfYGw+4OjhN+McuB0eNf+cpX8sUvfpFf/dVf5Yd+6Ie48sorWV3V8CK7u7s8+OCD3HTTTTjneNWrXvUNafAFl4bY20zE03Omh1eYBO3zzDlmGYxxjMXxVeCzpeMHS8ergGy1R7cMQYUE8sYqpF588VvbwZ+9jZBuLDbgquPwhl34/LbmSbzqeFMAENucLOSG2V8qnDgzZnL5ChOnGvaZwAwNQjcRuM87PuvhhwqNdpyPYD6fV0RlJ5U4WhgF1fAdGjThiTDFd4OJa/miTmnHRAABAABJREFUY/hLHqPsQ/n9L0CuOAoCJ4AfEMOoU2vZbd7DzOk3Uyb+ELXpZRvhca4tyOLs+BsUb11uvuOiya0IHdREfltgoyyQfjD7MchIG5kwhG3SvrUOjI1832gKYvTtinGfTuH4kCcE/ovQN8ec44kMnmekl9ZEvvoeKPNXnl/e3qoz5r4m/lLG7QLKsvFZsGywzQ7n1JQyMiBVGeSV9cyCfZ59cSyLEu2FwDYXXixsPmxUJUAG2w5WncP5EjldUriSPecQl0Eens9DujEXNe8ZZL7JuDsHr9yAm55ULdTlq+3MNWHhtI1Zz0R7b1sEsxJGyTbRtvnFMswqS4dgLGJQoxItM3Ssj4iuKUFqaxkPUoAMY8o3KuYdI/iIzd3H0Rn1OTTx9TCGNerig23Njs8WJQwzNS8O6zOu42rTh1rTboslnluOTRQ3ORRn/TDCe4A3E4K1xSrLAr8yYGUH1uJQ+Vpjni1bm0tKSvM7gBlIr9NIQSWg41+kPu3hbHB/unwExY8x2Fg0kf/z1Jr2SPtGMDephRiQyDBpjk9rsY20a3t/HjeKhbkpvU5geINrRuA0U3gudrGMup0TJ4HL4x4qgiuFbK7MTHb/SdxtT8C3XwYvu1TXeOEU95YeF8Lxu6TVXQk+7WWBjMK6Cf0g0bdsdjDOX9YfkYA+m8ABZo+R+nesY4Iyx+lcTEsfxQUL80uStsQMJrYiy4x1s8YardqZjPUE6IngCo8rg1BMBCeOLHMMuhnTYF1z0BwR6hztabFzeYWEaY9tSjn3qM5rWLSFWvpZM21fBZMstrHw+CC4ceFP4HdwztEnzMlV4HRRMccCJvDhxVkVAki0FAnncu7pFMIRJwzEsdPNWI+4Ny8hd/gsaYLFf0Vp9u2EtmopLli3LZjIO+DIQNMV232v2v88IlnDijBdywJQeCazkktmXq0JSjWPdKKxU1Zzoe8zFWJlJdLPlUYUU0fsLMwcaKOzli0iy7A7an/SYz04NW1+LMIaGfiHt5S4et4alWJx2NHF+9QuvPhQ8x2Uzy9zmox7OD8gwvOjNapTvDQDOpMSP9B22YjxjdRv4Rz3qAUrlsw1Xan6GRuzGQ9bBQHgiwIZdIzizPRjY8MJ92I2gonGS5DA20X8VopGpn8yVPU8mkpFR824fyPKgUz7z//8z3PbbbcxmUy4/vrrW58RETqdDn/jb/yN56SBF60sSfdWbM2YXKKa6JlzzBBmOKYOvgL8r6ig80sOfkWE1w26lM5RTgqK1ZxeY0GEb1hx4WYBG0a2a5m5uNiIZwevOAZf3IYrjzURSbpjNmCjXoTxeQARZttjJq87zNjBLBxT55jguBP4507hu83BW0t43SDHTzyl067q2PratPmbE3j+6pLNtL4ZF7Y/tI7/lg3K5x9R4g71g7kKUZ6EehFExr3qOnNkjkpLdwhd6A2TUwLTcI6FZFOTxHM89jCa30hkGbDWJPirzefIkWH9fjBVX5Tu0UQWlUl3iF5p55JXIrMIbaxMkDanFM8fcsbBpaFzjjnHU7iK0SipmY4FVqPjaAQ0bKgRJDmH+0WpUcHb+vICTeMXiDSUaYv+rpbYi0KaNUz6FEcVdM/6RlX+SfZjbbCNaZoiXmSEKxizMUfFbBbOsYvj8ONn6D1VUgj8N596jBODDLnqEmXOc1f5tftI0LQFo8udBoC8tBMCyRxqCiDsYvHSTkGPOovm8XHxQNjIjM6szSS+mudOmcAqz1EQNFkpOJoGxomwjo6tF6URdgSYKyEpvU61ljTfPbWEPlPBBs6xDfRHg+qbDoLmjMrMPAo1rRa+MiMvC6bDbm3C6kDMnKhWhwlylareqpRvCZo+Swi2F+D8duC9AneX8DqvxEAGUBTMjq9zaDpVP+A4VEFIWKWuO+dak4YLTzxX2SIG3ZDOylXkvnQzZG9GlPsuwEc7sZqu1+8C3oMSaD1qbbt9fpNmWqRqqobzOd1sUiFcJHRnBa5SyzjVzMQy7ND19WtajbSBeVFLZGYtHgBl2i8R9cF3pcYrcF5wJ06RvedRdYu45zH4OeBVlzeyyDSWr1DN5x4hF/20qFJvaMyHMMo5uo6XzN94skdsbxSSnrKwSY1zUxmfmPcWMq+E/9vffWrNdvW+1GPU2IOGLeRqrKzn6gCrAcYU5QPMvbA2K8kLT1Z6conBb5UhWCkz6ORIL6sEeLZ/bJOmLDIW6QwekAiaU0FJ/B0teRJrEYUtr52Dw5yy5ux1uwTmnjLvNN8334uGQwzQdR//Fy98XBty7vV4QKnqLTyu9Kohn5fMpp5+4Rk6OC4w9hnilElVQbXXCONta12kjkVjy7lM5Nt82h0aQf7hrfq5Nnrb1GlIM33Mq8Btf+553rzEzQOsRrnW7Qgjgf0MXOZDjBra53h0YWlzRTyII0yD7cU+ObYSzIZL/a61945c6X17SjcEuqN695IRPDlVtXLiD+9L8Hm9L0Q8fxKl55+PCs6HAUftizCal0inDtbsA0xxj490jke3chv3BEIwukjSZMFyZNhhOC3UylaktszbmeEvX6lp/1TbnjLwEe69Oaz3Q5BYqViqqHx4MMBmM1pZa+D/LMzjX/Oa1/Drv/7rHDlyBBst3h5Hjx7l13/91y9I0y4ivPOd7+TNb34zb3rTm/h7f+/v8cADDxz4zg033MBb3vIW3vSmN/ETP/ET/OZv/mbrc5c87/X1d1JGM4yGByabYyaHu8rQooz7FDU3+yMAHJ2ghb9Z0MBSHfD785qgs4vP7mKC+rSvDZoSvjTMYAORDHWGTMq6vnj2seK0I2nBKEKBMN4smRzqMsOpUMLpOi4cvDcQxB3UzPQzAjLq4PfAI3irZbeftfd3JrCRpLOLMJmdrEQJ73Klg5/W5t6Pim7uUaMdmfWocU9xVeoL6ahNLreSrmjQdgeUZc/F6PHVt6Q+AEaISgXHc2RgmIpI7LdofmJ/NAKGrPaC8480+rZE526NPAQ/m3JqmLGGY9U5rn3fH3KZg6edYR4w+Dn9dtepP1O6YaQdAoageKbBXw4uC1M13I+au5Soj2WFWitj3Q+AOlr/KIfprG57m6VI/KgVRFxkE3mh1tSKyzTWQOY4E8zBRl/fVIn8ADrb0P/aFmRZiKgazOQt05i601jm/WVBf/nlx+GBU81FU61Dsy7tuR+Y9mWLZGrMEW3fNPrLzOtht8JTlVcP9Rh7lGk/ItCRmjndiGtpMkd62j67lv71f7wm9GdgSFC45sC834P9ohFtPQscdK2j1+80h9YpIdmhdgfCnCNcPRZNSWOR5am9NqEKLNdB4f0e4JNh7ykIeHYGk/UBG/vKvmgQOmngm/OeklJr6KtziDydd7IFrZ90s8rfcJnd7rL1ukPNhF8ZYL2TZq522x9nWEz3FsM2nBd8KV6KZexhkGs/mamoQOcMbWSxqq7nNld7JbBLjlPAMdHv59SCleyupwD4v8/eqhV8+UlTWSpwqscWkdpPeVJAx+49oRcGhPm7HOeHqhr/FhQnH6V2P6vmQvJcem5l2pskAVBHj6/el0R7bJnarpklqeC7m6kFWSKQaQhoRPCzko2pBv3LZho3wE1L3LjAzTzrwcTZWXeYBL5YZixqvdK9q2vgS+tpzD8TQG6hxl5uOP/6JTEdVTGAJYhJYVn3twsoU+lbOoQsHzEYprG2OR+i6TyK9wI+BJrTtBlMCs+VD53k+n/xH3nZwyeZFMH9Q/QZCQFFfWsnEUwlzt/nG1ji0w4c6cEpmzOMJr1tPh37t+HyI4J4Yc97jhRqvcG8xJ04CR+9F/fQSZh71ueeWSGIV4Y+dd+sYIzWMM/YFdHQApa2HOQ6AU/umwXhjfLNa/aZl69RBbSL716xAk+Pm4g/IHTvy8ry0wajewC4QtTyxwWB9BoaYNYXQK9bxyLKEnshs/82lGUWbEcViC4DGPbolLBfxUOIwZrn+JVORS80EZBrzoV4XqUKRlftXRL257BGHgRebKq0e1fUuH8jyoGadoA3vvGNvOc97+GLX/wi9957L2fPKvo+fPgwr3jFK/iu7/ouOp1zVtNa3ve+93H99dfztre9jec973m8613v4ld+5Vd417vexXC46BH1/ve/nw9+8IP8w3/4D3n1q1/NbDarfOrTcvqpr9Y/WhajiPqpj3dnTI90g0+3C9pox45z3JUr0VigZovf65wKK9bQKN5h43fVCiRZjWguyJdt1G1JpT7pQuvnOhPOjusIl9ZEvhWZykK6Ny8wmZRMnGN2ZKhwiZrGz4BHMsc9qIB65mADxxsdGsDBgcw90s+bgg5r8h5hPFvUQfaWMOygGsYS8P2csowaOHjU1z4wVQA6ajdeu4XFxepcTcg6lKbuoUTyJaZpDb/uJSUlOBryCAzhUX2vzgN9CNgS0XynXSM1jPWlqziOc/q/1RAPYhb89qIZktQBP9RMXmBScnrU43h4/4f/wg/zJQd/4lyFCCMS9aE9Yj/XydpNfZd1SGxXK8G0vJql1bdtfuG8R820x+otzu1RK3FrZj28Hx8a5JoWwVaeqoPaTBGrai8O6o1L1QNlFnOue7Yzx3qewSsP4+7fhT0oDsFDrzjE86Mve0c17dGSQJuldaik3jc32FGA9yngPz0G/10Gr768uR7bhjzim90YT8E0Phbr+59K0FKiCWpt2MwjnbzKdRol106E0zg2rOUKus72Bc3l2s+rtRTn88/8lT9XCWvssQkcOQw8NiUatVbzphLc0GB0Kg00wLigyGM+WRud3px7hDWTzCMW0b7FHzYneRa05j+A8E9Rq4LDIkjQgu9swNoDSkA2GDRqJvycxeDECLsD1U71YeRMvJ3wsAwyGPuUT69B9Z5a9LHI0K1Q4+jvAG4N5yIcto82qYMUueQ4by2F7YfY2RMPvW6lGXSGYXXdDqtjbUvHbAbn050XWqIbSIPsCL9PAi+KjHocL4HsVZeQ3fYoP78elB+vv6yp8SOOaUjpZyDoisZIoCjqFIUYnDh0tV//kg0vncexjFHt0u2ogKxnn7N7bNKvY+pc9Nizo16L1JponepNhr3Br6V7UFp6rrYYanZbzdAWnnLuGUWtaOGJGS4c4EpPN88QF4Jd5QFvm8/aemck/vEJjLDosy+mfY0SGba4/1jrqH5n4cUF2GIpQYZ1ujeHjpELNzKnLkXSz6GYN6oVS+s9yyKhHilBSgmMOxSPnuQXP/Yoe+VLWfn4o9z9ow6+5RJ8kSHd6MKSBKJTQPU8Cf0Re/t8tutlPu3HRkFTZzTRod21gsxV8KR43pXq3rJfwjAwwu6R07jff4SOQPf+feY/DqsvvFQjyEvAp5Jjt6aqxDmQJ7Clyp+0tPER0Vz+eE9TWr+IWrseeYWn9hWJX7mhz+Zmzl3Whz85U/d7JYEVzZLnCSmGa037Q8CL4p4V2rtKCDA7A1ntVLiw6lPnFtbCPs00ipZRdw6yLGjdezke2J7M1RxewnqYzfHDrKrf2T5stRR0ymuNy2psq1R2UtPSD6KxWxw1r5K5Oj/7s7FMeSblvLjtTqfDG9/4Rt74xjde1I9fe+21/PRP/zRXXXUVAG95y1v44z/+Y26++WZ+9Ed/tPHs3t4e73znO/m1X/s1Xve61wEwHA552cte1lp3WVj5ptQrDT1PvTAuPZOJY3pkwMxpKowZjgL4187xChwvBz7i4O8B35KDlA7pd5Gpr4hRJarCArffEYHxBDaONhcU4TrPwPlF7dfxDmzOdLdMTXbaEKplSgLCm4gwOTtmuuaYdDKmWdSyawC6/yODnxA4i+ME8IsOrsqdmiahlgR+0K3rbfmO5nhEfdpdAkMsYVF6FzRLWQc/LStwHhThxYQFIFIrEeM9sxBSQi8eoGaomywi12rzP2A9tfnkgRIT1ly70oqghFaXgJCKOdLPalNo1CJjsT8MQrX/i0zR3lyjn4dGVOk0A+PjpwVe4JFhj2NOkcTG4Q2OOXjSMBteqKJzRmKx6sbchfxABtCaAkgopVCmpRJMbRTYBeCpZYTZNrWPbBsBtE6tcFC4WvK0D7u1U1QKi7UcgDqFUJsK6FmWhpYtU3cJn2c8nQsrPYEXXcL8r2QU957lky8/xNNXXop0Mnw3w+eZEoskm3pg6hua9jyDh880P37bk/DaK/S6zXHYbi79DE7GHMAL1K4SEv2kU+wGaPEZ1FqQSYkfdeuIrqY/TqEpr4BKk7wO7CP4SQnGjC6upSNHNtjNHL5UICRQofsC0ge3FQ2/UXNjCYygD18Vae7Xgs6eoqDIHdNIPJh1FNE5PbeY8s2g+GX4Ywdl2kHb0nEqVHyZwJcEfgjIZiXiYGuty+WTOq6Fwy1o289ZjJY9i+8huEkJeZcBUEQcFIgR+g4/L2rGRAxgLSDbJbVFne0hQ5n1/0g9zmUcg1DaNO1xGp0X024bYBs19mo1Y0q1nLMcSqkFCInm9Xy69UKKxb122zyF9lMjYKII2YuOkn3nNse+CPzoMbjyeGxwfZYmespCpX0CXixq0+FK+OQcdDqGaV8c39g2Sa6FOq7L7ai2fZT8f2ELCecxCeFNNe0aqHZIbXpf1dFm+DMv67Sy8WV7zvOmnT1UwpNYtys8ZeEZzb1q0udlHYnfAWVGvwNl5nE5uEIq/7w2WGc0fdrbtsNF83hztnN5VtbU+EIloRGFqCVFim9Mw9wMJK/3NWtw4ZxjAEwcmnorBCC1AdIWgHwWJbolSWCARYTu/Zt0dmFjfQTbsHb/Jrz4El2LqtpseHrWlZlGtfl8H0iLuCWa6I4uotPjWthc4fmA2I1cfwHPhzbtBgWOQ3BfPU0m4Hvg9oH7Nhm94BL2fOhns6E3tOyCWsrE7z0TOiQurobSLPISK3By3jR1i5zoV3fgJauq2TdBozUY3QieLms6P+LLkLqtEMEHYW7Ecw8AL6XGSwArEoxI90GyGKemGazZBlAOjzazCDlwWULKBGa8HGT48Rw2hupCB8ieIIO8cq1zllGwG42lzftdjTqPobeDoiGO2UPAj8auZpFx/0aVb5QZ/kLZ3d3lySef5JWvfGV1L89zXvrSl3L//fcvPH/XXXcxmUx49NFH+bmf+zl+4id+gl/+5V/ma1/72rk/ZndOL8xRRDrZnDDtOmZDjR48Qc3Gr8HxmFNG9jucY+TgWzq15ksGPWTP1wRpG1UTv3fKw3pwNFtYXCwyu87BxhDOJFEtY51tGrOKQ9DnZqUwdjDeLpgeHgRffdWoFw5+y8GlON7s4DUOXuAcL642J4esgt8ramSemslHGHfCLhktAlIGAT1HaZwHfC/DU1Z9dwJ4SdjJcqRaCKmWnVhtCw8Caqa5ZZtojgP0yq1ER7zewuSKhFrbHojpSxHOADIr8cNOJaBYMP2xANgzUMUyGKH9GTXRPuSH9CYFxe4UhhlPZI7LXMxX6TiGBqKbuyYSjde1X79TwifNadPGqNtSlouB6C6wxOnTRvjFQHTxM+n4D9ENQKCJ9E0drAShh7XNxT6ACiGgdvCzjKezNy68xGUrKNMp3RzpZpzqZQx7OfQ6ZFddgvsLr2D/qsvZ6XeQbk7ZUW26TYlSFefao8h/+2XNj3/3Fc3/HyRl7mdV9O0FACAE7MsX34vn1K0gfms8N2gpRGENxNgZbOR47aSV8MFZAYy6tQTerKWKWHL1se8c2aiDm050zgRclUWNdThqJimZ62WJ72VVyjfLy1RPtlmnROav5YhwRyY1QwOWdkSvvw/hT8L69rMCurC50qdTAoXXfvHSwG/nNSWXwOjmHjodOgQCKhBKANJzGsAsZYYNmOezXjPgW1Fjj8dQAW2ZPG+FGCkOP68V12iEaei0xA2td3FdW953DOcFJspFpV09B9a74NJY+zT74DRwzOu8VzcII2A5FBJbHg2ssZ2/2nAjcAq/BfqE2CdzgUCsVnjRodZb0/bxTdudToM96gwBpw081gigzQpjSp2yieRsRyhN+dbK1IK6dHXVWm/utP6Ziy4mTnFUpdJuRukGbbArhXkprJbgfPA/PnES95F74MFTuNIzKoW599G8bUGTncKY5kxKSJ9KoNLEKZJMYYF5ifQJ8LkAnyqQJJpLx30rEa7aJmYToBNTH9broPKUCEGBGXTVdKJssUoTe+PCig8TwzLugrD1LYfwoVP8Kjz0ko1F/BKYpgbdC7Xff8+wSG00VVrspEsZ20s6qolOv5dsvm14XkJo8W0RRnG/eekRtb6doQTLSw8xktpdXftCDbnFfBJEBTeVaafhB86BJF3kaqGppXfA0X4dQT64K1S23/efglds1JynZdxjJppT4xoxBAtZX6rLQ9RGx/54CHhhGEzdfzVuzR4gRQn92mQ9WoGCNLTtgu5RwxTc0B+Vlj3yB91eyBpRW2n4AmS1VzHxC6bwrdauXdjX1KfRLVXQuDMexVFPoW5g0SQ+msdnpspvRPkzY9r391UdFqPRx7K6ulr9z5atLWXJPvOZz3D11Vfz3ve+l5e85CW89a1vZXd3d+H5lXVDyBotdSlKh04QprszZsc7wd8bygxuF8cNDv5+pgTJEaeSSdXjhMm23kWmZb2upa6/8b1Z8EvfGLRLBiMjn0oADw9gqyW/ItAQ1Vn4wjfnXlQgITDdKpldsqIMu6iJ+oeBxzLHLzqVDm0ApyLzEzf6YaaMKM1Nr7lbi6azWw2wtPnRhls+msYDfpDh5yWCMBY4LdSadpRxj9edloXQIPTM/w+hRHKKWBPXpNYS4bTvxSB5kWm3wZ1i6aAIjBK1vqCeI0BFPDVKqmWPgKx1YD9uyqENSZf7vQL6fZ4WuDzg6btvv4tjDgSnad8iPFBJQhvwdzIqCtbu9mkntRBM2t6ESXuGxU7p9JM7NGMIQHO8Rxj/QIvo7WSIWolxqj2O64ea+KFlfC5SqQQmcew6GWU356l+zvogV/PEfgf6OYNBzumeatmll+ODiWst0de2u8zp+HXN0c/hlZfB33w+vL4Lf+sF8IrL9LlAmLi2TSreG2YamZjqY83zuQL22b6P5xWQSdEwEwYVPCHCaQLTHv7jUKn1SKCYggzqtRRx0me/dFcV0M9X33TsANnqAKbgCsW3FcO7YF4cYay/zbxEulmdTzYys878zjOT57q5ZuJ6S7Uw2+F8mHr+dlCh5Lc6nccPCPhpiXRznurmlDm48czMf6cM3fkgMdMmRyAsYj/MwQ07bDgN3BfjPwiodcdsSV5kM37pAbWmXWFTQuu1aBR5T2Soanx0klqIYbe7FJcvh619DJgoQdjUKob/D2HkSx2+pBtlmWXRsywWB9s9waOpOaPZeHpkE88t40dh1zBn8Wya2QikSFDOBZtOMXnaq1f6Ie1dy/hG5njZOO+j43qIpl87BsZ4z3ZlfA/aGfd4HlDTVvX4JEHWRPC+ZNzTdbod5nE872cwN8HJFowxzCY688IwMi6PnCb7g0fJvjwhu/YR5NFT9IJJdx1IpjnnbYlBF1O47PWQpoy86mupYQYoC894JWPbwVZGgA92HOx3HIWjkQEg9ksEMLavWwrORo8HqgRwTq0DS9Bge446/7uYGA8XwTw+wkrsxjBZdq44wj2v2OCOnUe5642X8/jlR4FEy25Aa3R8tBZJo8dXHb8EiVTIJvw/N88dGS0qyOK5rD9u/w1xLwvhYCRYZHrBPf8o7nI12y5+7Pm4y4+wBlXqs7jegNodIX5m5jVlqgUl5RuWFcs5Wte5Yz04u19PuDi3t6dw0sNLDlGZxmemf7IMLu/CU0HkVNZtLiWEj6BWxs2Ax4ErRRoxSrqEGIrTOTKKDmzNvT3dV8Y0Uy1HvO7CTI5adjVr78G8DovgJ+ryIYNOLRiwSBbTR/Y87MG4SKLGhzpFeBjFVUeptewudhXfWEb6z4xpH41Uqpwy3Lu7u9X/2p7/2Z/9WY4fP06/3+cXfuEX2Nvb46677lp4vtMZ8rM//xZ+6Zd+iV/6n/4BH7r+w/zGO97H5mTG2AszgZtu/Qq3Tp9mhmOO48TZbf79ez/If+ccL3IagO6OGz6Ju+8Bzgjg4LEnnuKae25FJmW1ab3j2o9w4tEn4ghz+9ce4P2fvAW2ggRvkHH1NX/Eqe3tCoHccutXuP4Tn6sm07QoeNt7PsC0mMPhLpwZc/2tt3HLV+6uMMWpU5tc/f+8vyH9fd8HPs7td92v68oL9zz6JO/80EdVUrs/ZbY24NobPs6jTz3JveL4MI433/d17vzjT5LjOOIcZ4Fr33ctZze3lSju9bj1nvv4+BdvqxDLdDbnbb/9XqazedWe6790O7f4pypp4KmtLa5+9we1YVkGzvH+Gz7Fn95/otL4PrJ3iuvu+BweeFSEY8Bn//AGnn7kiWry33fX/Vz3wRsbk/Pqf/VeTp3eqtbelz9/B5+/8bMVglifzrj3X/4e8+msIpI+/fHP8oXP3VER0idPbXL1v3pvY568/5obufPO+yuE8fhDj/Oxd19X+U6vAh9/93U88dDj1bdP3HeCmz9xM4cF5tMCHFzzx9dzdmtbmUkHn73tTq6/6fNEJDGdznjb//17TGf1Fn7957/ELXfeoz+GPU49vcXV11xHjElQivDHH/009953Qrt8Ao+xy8mP3aiaducYj/e58YPXc+kjj/O4U7i/dtf9fPSPPlEhRu8cV7/vWp1/3QwEbrn7Hq7/wm1VW6azOW/71+/R8UUn9vVf+BK33HW3mib2HKe2trn6/dfq/8Mm8v5rP8HtX6ktY048+Bi//Tt/1Ojj3/6dP+LEg49Vv79y5/186IM3NgjaD/3Wexmf3qx82u/8/B187sbP6qeA+XTG7r/8PXbC+Apwy6c+z5duu0vrcHBqe5urr/2QfmRfN+L3f+Jmbv/q16sd4cQTT/KOT97UkGi/47qPcuLRJyt8fvud9/P+a25swHD1v3ovJ09tVr8/89nbuf6jn637bzrjN67+XabTWUWYfeLjn+W2z98R2ufY3Nnmvt/9ACv9XAnpQYebb7yZ7Yce5MlBjh90eOLxp7ju3R9qbGS//TvX1f3Xybj9vhO8/6OfDnVoXVff/nlO/cWr4NVXQC/jljvu5vrPfLEicKazGW/7t+9hahj06794G7c8fkIJNxFObW5z9Xv+sBp/EN6/cy+3P/1Y1TcnHn+Kd/xByCQSNrx3fPAGTjxu+q88xfu/+IWaBhL4T++6hs0zWwhK/JdfuIMvffoLlV/vfDZn/AcfZLw5rwRgf/L527j19rsRB9t7+5w5u8W7/sPv1wIbB0/ffAtnHn0EcnB7Mx5/4ik+8KGPKgGFNuAdv3sdJx56vGJ07vvaA9z4yVtUADcHeh1u++B1bG1GVhtuu+MePvH5Lylhm+dMJ3Pe9v4P1usDuP6Tn+eWz91RjdOZU5v8wW+9F0FddRzwp9feyIN33U+G0AGefuQJbrruI3ybwBcF/NzzsQdvZ+vJp5j3u7A358TXH+DGT9xcWfRkwNX/5tzz722/+W6mU2X6EfjM57/E7XfeE+x4O/jtbb5+zXX18OL4yJe/yN2nngyEsnDi8Sd5xzXXNyipd73rOh558PEKR564635uufbGyn3IAX/4W+9l9/Qm34Hma7/783fwhRs/W+HeremMI//y91iZ1kKJP/n4Z7ntc3dUOHwZfq7xi3Di4Sd4xwdu0J9hH3rH3Z/lgenZilC8/2sn+MRNn1EUlUN/VnDDB69ja3OrqvdLt97JjZ/4fAWTXb/V+H70s3zms7dXv8/dPsV/7/id6xr0/4fC/hFHb++u+/nM9Z9s0JL/7prrOH12m20/g92SW+68h+s/96UKb02nM/7v33w3s0ltA/6FP7mVu++4W+GelWzN9vnAH1/fGN8PfPoWbh+frBieE48/yTv+8AbMQ7zjd67jQTO+X7vzfm6+VvFftKZY+a338vjpzQpf/+nn7+DTH/9srZ+Yznh32H/jeydv/Cz3fP6OCsazpzd51799b2hZ6NNrb2T/rrr/Hn/4ca75g+sbvNpvf+Tj3D3ZYm/g2HVw69ce4Pc/9ml2RLVyO8D/+bGP8Jjfr5iLz91+Nzfd8kVAwv4x5Zp/9x5ms7lGfBf4wsc+xx07j0IX8ilsfflRbvn9azU+QGBybvqjG/nqnXX7HnvocW54t66hyLTf+O7reOqhxyu4bP9FTft1v/VeNk9vVvV84Utf4aN/okEHC+DMtOBtj3+Bs2XBHrDr4MOfvZVP3X0vuw72Ro7HT5/l6g/o3hppwBtu+BRfu/+Baiz3Tz3Fp+68pcGwX3vNDTz++JM4HDlw9sSDfObmP6kiyCPw2++7ltNnNqt+v+Wzdyzd32I5aH1EgdiH//iT3PfVr6sYRuDxJ5/iy3d/mfGwJF/tMQY++qGP8fhjT1bm4nfdeT8fvO4TjTlw9TV/xKlTZ/VH5sL6CEEbnWM6D/RVS/tcEPCeOrvF1b/3waoOHLz/1D3cfuKBiiM/8diTur+F/U9E+O3f+SMeePDxCpd99c77uenaGwFhO+DoG9/3h2xtbauGOc+4vXiCWx8+AaiV1fZ0zgfe8V5ms3kllPjEzV/kT758VyWhOHV2m6ufuLUhjHj/Rz7F7fd8vfq9lL56+ImKt7j9aw/w/ptu1nqOj2ALrr7mOk6d3VJNuxduufFPub7/iLoF5E75j3f9PtOyqL5/ffEYt9x+byWJPnVmk7f/zgeUmfWeUuCma2/k63fdz6NALoI8/Dgf/YMPV1apx0S44yMf54kzTyN9pUfv/doDXHfjzQ2m+r2/9V62An7ZBeTzd/CnN362Ys7nsxm/9dvvZT6fV1r2W794G/edeoTL9uGswNbWNu//ww9pUOjgkvj7n7iZ2+87UfEoJx5+nHe878MN+c47PvJxTsw21TrQwVe+doIPf/xmhGDxIcJHf+u9vPj0ZiUQv/Pzd/DZj2v7Ok7x329c/bt86EMfUp7zl36Jn/35t/BcFHfTTTfJuR97bspf/+t/nTe/+c385E/+JABlWfLmN7+Zv/N3/s6CT/vTTz/Nz/zMz/Abv/EbfPd3f3f1/I/92I/xT//pP+UNb3hD9eze3h5/8S/+Rba2tlhfX0fGc2RcMtkv2JuW7I9LpvOS8aefZNLvMvvuI+x3cv5FJ+eqYYefGuV0+h2cc8wnc/7xuOS/nZS8qigYzD0rt51m+PQea3/+hax1Mvoj1ZiRO5X6T0o1Ob3vDNz4KPzt16r51iDXRTLM9ehk+uy4VM1gfO/EWbjuYfjF19XvDXJNzzTIYdjVnK0Ead14jh+X7E9K9vYLJrOS8axkcs3XmH77MaYvPsTJTs7/1u3wV4cd3jjI6Q46eO/ZmZT80qTg/wpRVYelZ/TxR1g5NGD1O4+z3svpxG8LdTunJXzqCc2J/eMvVuYg9kNs59zDfsHepGR7UrI/Ldg7cZbx7WeY/vhVfCLLeLSb83OjDr1hh9EgZ2XYYSV3rGew6lgI7rDvhR2vgZx2PeyJEgjvBp4A/gEqEVtzsOJgLdNjdYn9SiHClte6dgV2vNb3MPB3gA+iG+9a4VmdFZTjgvG0YH9ccmJWctPTO/y3Nz1M96dfxSjPGA06rAxz1gYd1oY52ageK0CD1sUjjv20hA89pFLDH74c+jnTQc5OP2dnWjIel+zNS8afP8smnn/3HUf4nwY5vcD8Tfod/tdBh9cMOvxlVCO96j1r04LRrGR9UjKM3zs7gX99L/zqa9VssppTHR3DuW/Ox1kJ/+oO+Msv0pydw2SMV7q4hYi3y0shOn7bYexif28Bfx14F6qJGqHjNhMdl3H43xk0vsTQC2vTOauzktHMsz4uWLHt/UsvgqtMe6FeX/efhY8/snxdDru1dvoCihdhT2DLa0y8COMY+B+BnxbhB0RhmDj4MvD2zPHvg8/hCrAS5u1amMM2toMUXhntqVezbWsSk7mGFt4F03YpvMZMmJSwX+icG5ea8uZ9D8AvGVwT1/m4gH9xJ/z/XqXBEiMeiOPfcbBX1DhvXChz8K578a8/ys63HWenl7M/7LDfzdjtdxgPOvztXs4vTgq+c1KwMiuYT0qm05LfmpT89BdOcWzQYfDth1np5oyGOavDDvkgZ7+Xs1t4xpOSvXFJMS34tf2S/6+UXPGHX2PwXZcyeuEGK/0OqwO1aOjGeTrz7O0XbE8VR+5PS/Yncybv+yrXvPnlHB90+IF+h8EwZ9RxjGaelUnB+swz/L37NZjoGy7RPjJrZj7I2e7m7Bgcsocyrv8G+HcoPlotSnqTgsmkZH+/4Ilpwb+elvyThzfp3bvF//PnXsjPffwR1l6+zuCqw6z0ckbDDqvDnPVBh/5KpxrLZUUmJezPmUxKdsYFOxPdB/a+cIZJWfK5Nxzjy3nO3x7m9AvPqPCMzuwz+o9fZ+N/fDUreYaz+GCYUw467Di3sF7PoFnJ/hOqhe2h1gMPAX8XTf+2Ee5P0SA+f5can662zPH8AG2SiOjabZtv774P/4pD7HzXJez0cvb6uY7vrGT+4FkevXMT9xeu5EWdjOEgZzToMBoqfl5f6dDNLq7uYm72lJ3Qb7vAPcA/Bd47ntOflqzMCkYzz2hSsj4rWb3uQfKvbMEbjsOPXFEL5YY6Jvv9nJ1Oxt5ewd6kYH9SMhkXXDctObS5z/d9+AGGf/2VDDs5K4OclUJYm5asXP+I4vr/arFORl2knx2Ir34G+FPUquK/ReWdqw5Wwx5dEOa+17k/Af4/wP+ApjlcMc8L+o24Tj4F/D7wdhQfrk7mrM6bOH0yL9l7x92M//zzmb1wg/mgU6Vky6cl3WlJfzJn5TfvZuV/eBWdlS67g5ztUYf9XsZ+r8NOnjGblPyfk5L/clLwPfOCwYOnWH3vI2TA/gD2/uoLeOiFl3B1L+f/HOV0Bh2Gww6r3YyVuBf5ej/6D2g//V10v1pxGuxxbPasd6Jj/4uh39aKktVpwWhasj7VfXl/WrJ352km95xl9lMvoQgWVwCdaUl3XjL4j3ez8kPPY+XKQzDssNvP2e7njEvPXqD95kXJPTc/yQuODzj0ikMM+h1WBh18P2M3y5hOSz6zX3DntORvS0nvD+9n5bsuY/TCDUb9DhuB/nJDxXGuezC+OaiMC8/2fsHeWOm//YD7Pj33vPyGhzh+do9H33gF1155iL87yOn3OwwHOSujDqN+znrhWZmWZJZOenQb3n0C/qeELq727iatZYvMwr5X1Rf2wDtOwRefgv/u1Ur/WNrG0AILa7oUJvtzvj4p+bfjgv9jruM0KktGv3UPswz2f+pKpkdW+Eie8/Qg52dHHXqDDiu9TOd4mAMr+4XSLbc+DXdvws+9TNsS1+ggVxfUQWdpsDMpRRUVY4Mf9wtNg/i/fwX+1kvgstXAYeoezSsOwxsuNcL/MMnHsT0n4c7T8Ddeoe0Z5IyHHXZ7GbuDDrtd3RvGwMeBD3vh/5oUDKYF3UnJZFrw6UnJw3PPf3P9g/Rfc4jRVYdZiWM9yJn0c3b7HXY7ebVm/gUaR+NnzbpanxWMZgXziWd/rLhvb1Yy/8IZxU3fdZiXZY7BI1us/MnjDH/6Fax1c9b6OX1L2+VZPf6xj0zf7/78y9jpZez1O4z7Gbu9Dvv9nH876OCd4+9Q4z/LX6y08Crb29tsbGzwoQ99iJWVRjz8Z1X+zDTtAD/+4z/O+9//fh544AGm0ynvfOc76XQ6fP/3f//Cs5dccgnf933fx7vf/W7OnDnDbDbjP/yH/8Da2hqvec1rln4jpnubBbPxsRdmiEaLf+IUs0ceo3j8DH8gMMwcP5mpqV83BPEAx1E0WEqlfFjNqhyXKolJPhrNXrYKWBlUUp5mVHWn2mj9hLEVdHB4qJjemL1X9UryQVHTo6nAxItq2L0we/QMs4f3mU3nTHG8UxzfncEbg2yhE3xdh04Jq2hJIID0usi+NMzfGjZLsSN2NK9h1X7MOZx88LOuzOM7GaUv8CKc8Ooj4lApXRZMa2IexDYEZbUTmbl3iDrlm+2h1MQ4LfZ5C94utU9eNOpxIjV4AqsCbuqh29X6natMeBu5wxsAuOQcjpUe7NUuEZp2IvjVEPJcTydsrmRcHt5xOPLg43PcOZ6gHpposhstHKoSGezCAIsBPr0GpcI6B5hIP8OSjpFQR7W2ZlHxHK8HmBTgUGtcqc2tbCTQxkdsmXk1+W7zFzsvO92DSxDaV+MQxwRUA3s8upN0MlyesZZnnI5m2SRzsgUE18k0iM7QECyRoY6/RwmTZ8Gya3TQqe03bQBNOI8UNLT3V1+DHFVzMfZFMMF8SoSjUvtsR9/zDdCgjmESVGsp9ocQxly/OccxdbCKg1EfN/Fan/UHTzrRpk9zAb5OJ6t9veM5PCSgBEshLRO3mX/ejtVZ6lSU2qYQYkCEjoNLHVwBPDYHRl31+1vpwdhMSeuS046+miW6UZjvArh5AVmHFUJQrGBvKKBjhRJ9ja3FfLPCoeaINgnRYCVH8fbzgEtRQVT0afehP45S41PXcpwbvkVYAQ2EkJiVVvV1HP2ipGAxlVi6lV6ssmztnwSOxjGKJIGA+reD21OrrWgllOLmKnMJNEzkR6BrtacBnar8x/qSMjizorXOKjZDuh2E85TgJoj6tFu4bIidtBvHKL5uoFYWx3nAYogVbY+OT4FuP2MRpp2MMY6xl0qooK6O6P9yx3ReLgRoE/NnKlIHyHveEeQ7DyksP3I57vIj9FD6ML7vJOk2c271aU/m30IguuQ8F3W/nJSOyaDDmFoRMRaNTTQFZoOMSSnaV62oSG92ipI8hLN2piGxXV00rpHGR+kh0U+8Wg8JwBdYQg9WfR/HohBhbTKBUYeVsUk/X52lPjfaIWGdJx86D59vfY52OvVIH55WS7NWn3ZzC5r0pAhsIayG55yAm+g6c2vg9tWqbYhJR1y5R7S4SUylPUf7+dAkEbEuuAE4uCSH0yHZZynKsD42DfnZnQnSlwViPLx/aR+emFKliRO15i0FfCEN/P4AkZZvmsevoz7/zOdVkOtqSJ1rdHM8rGtNBE2cqzNHxbMDVh0b01kIQi2a9arbq2hwn9J2lgcDYx6f4+dzRKTO0+5rN4iHpenGm9FMTf2NihwPF8i0nz17loceeuhZf/xnfuZn+K//6/+af/AP/gE//uM/zle+8hV+4zd+g+FwyFNPPcWb3vQm7rjjjur5X/3VX+WKK67gb/7Nv8lP/dRPcf/99/O2t72tVYrhYmAGgaIUJp7KLH4qMHv0NP6JEveYkH3sUbafOM3fyqGXO7qZ07UTBvyoc2wGDCiA7zmkUMZTwBC7yfV2of7p2qAm4mgsMuqZCLAWtoJoXm8R2IJ/owZXmXhhIsqwTx85zfy6RxEH+eee4KZHTzNwjr+aOzoojBqIWr99GMcWtf+z9Dv4QrfSyr2pgcjCzbMTWDe5rltgqaLGu0DEdZz6gQOPogHynQTcQb0YlkVjTLssTuBD1D53C81l+R7URnQLyhyumeeqdR+QM8AqwmDu8V0NQheZ46qeNm1tg1I1/1/NYWcW2iR1uokyMu4gezNODpXgj9OomM1xOC5z8CSLxGJKOFaBAiqm3VI2SUdVOy1K+LVtIs8QVzX62fT9LkoAmWW3QPCtQp1numKsQr/bvu51NaI0NP3z4vXUQ9cGs0ngeZb4t+p3aY7DHGV2ol9ULOvUfmG2f1ri4dTNzAPjHhn1lW44d9S/N29B7W0bSxo11/bXOVPQuPb5vNJFJr4W+gU86agD+x+JRI6PzIjQdZDtzaG7uB6ns7kGeAzjLk5NSMExcMBogNs0TI0P18ZJ0kGdCk2AWYHrqnYsBjhcEARBbYESi1kz3nzCrrUz1EHXYpd1AsOei47/Gxw8NgFczj6Q9fu4XV8JG1xop0vHZWmRGvYAqwMoCxglDETEVSHApMSxThBiDJhktzaP9lc0jY9ETJwG0UQ++gaC4mabiQPqNXBeRi1230mRyGSuedqBGDG7+kg3Y1gWzeD/1QA/N7na7Zyw8+Ikmj0gEvgagM4IryZzpsfReDahfbbzXbhnY0Eg0BN0fua1P3ssAmp1Y8e3+odeHLRPRuH1YXQM021Cllzv0AwmlYS5qc4jminR0iYWCIWDonTMehlTlNG7o4B/U8CdpeLNuXMUmaMofTPwrNAY46lo7IwKTwxWVMC5pqx8ldKu/lNXlXRdjB6fwmSncwy014DNCIzmKOM+LzyzlQ4T0XhEX4nwFaKBhLtd5rNAS1mBk1kXBdAbF2QJ3+dQVzpx0HPqCgrAereKkhdBjfh6KcF0nkWDggVYQ30iwq4X+uOS+eEVhntehfBSwySeBmNLhBNUCzy8UJ9vR5OZDe8cG+oCDcz2ok+7VE1orJHg97XnYb1CloLbnOJG4IaDkIJQ6CPqnRKCj1axQsTACPr8oEVAHva5AxnDiq8wxGGs5+gKnJzVc+X+TWXk13u1/3tM2WT75pIV7ZsdFSJWwZHjvlfWir2HqBVwVSpLDyuiAjbKAunrLlHt4RDM45twjVlM/YtTxjgDXObqbhnAynSuwh8BmYBf69Z41yrJ7GfSOD+jHNkrNPCj1K7/EvbAB9CseWCixlMz7t/I8owi1X/lK1/h7W9/Ow888AAAN954I7/+67/O5uYmv/ALv8CrXvWqZ/Rx5xxvectbeMtbFm3/L730Uq6//vrGvZWVFd761rfy1re+9Zx1X/K81+uFeKZeU6DNfdBCe2F232mNLjiCbBv+2v1brL/0MjpohE2XOTKvY7rmYMtOtH6OxPQA8YMpcyBosIfDg2S3ipMla1lg1AtvA9icKFKJSCSNpokunCmoFNYrcph+9TTlDIoRyDZsfH2bv3nVpfScCiQGjsBQaj2HnWoAifCt5siT8yrtQWNXtpFC9iawYSLHx2KkWR4oQ73eOcp+DoXnDDBGeD5hAUgz1dsSKydis62WHbS7ovYnNjeOjReaC9aUlAiJZZdaqGuJZ5HIGKjEflBAsdKtN3tnUq21MYCWuanGG2Xax7OqLT5INPU6kFbjCY/2D/FipyE5XAYfePcH+cv//X/DZU7dA6r3jRCmDO1yUGvaS0PaLNugxfyzd55M4DnKMiHJLolm0n4mnEfUGnmc07oi82FfWAlB/aqJIHVbhcC0t5j+XURpaZvg5Ez432FqZsdRpzfZQi0NLKnYIEAXmms223MWQzXbORi18bOyKeUXlJCJO8RBnFWqXup3kFkdqNMGujormq98hDTypTvguAj5dI50Xb2WnPbBv3/nB/ibf+/nkCCkEefYQS2FMgGGPdx4Wq3VDAyelLp5Epspah7ZyRUfxv6Jb0i4BzpXTFAiU2WrcFBQfJqOsyNEkXdKqL/GwefHsNPvMAU6Gw739CQ8K3UU+bAORWS5eaTUDbL4CsCN57jLhvQd7FsYAckDETUtkNVeWmmwbljEk9vUkeNj30YLqe8E/iVUFlaxP46a59syEZ6zVI1IxmIfZdrDflrTaQ66Od2iZA619o5FeC5mWSY0PQUcl0jY1nM/IzDv84K3n/oyv3LJd5rKTAuFRNNu/hEyBABNKxFA+k7T/pnHm2ep5nra7j0UJ0VNu21WlWIpJRHC2e6fttg138dk6GxpmhdlbH0JZUezPNxfwv/edcyd40vAW73wesD3oZiW1b5JOt6iQoAo2nAA0yII8LTVXQR8yK4mjS5aaJvVtLftV46mUMKW2L6SYFVXQNnJFT4P/weanvF2cfyK97yun1POfGDaYx3SaM8coVuUxIxv6Y7tgIHT6PsIkHdhzxsYE2T2LIoypEq7AFVspN7uFMngj+69mR9/9Q+q0MIr7og4zMQArCsDHaNOvrjfWACXFtcerK2b6yCe2q8zz6TWrXlN+oLxRhN101z1tfCNcYFb6cFaH7enz6xKSA2MPufDArHzyUnoiBgZP+UXzlFctECzNGU8Hx2aKPDAvZvw0qOGWQ99kWUKXeybTqaRuJ/cg0N9ZWa9BOZdqn0d1P3ppwMc+tlgBeRinnZJAsw6w7g30dwOwXoIs3cGvF5p2yMD33Gs7M14POAwvyNIv1fTwI0NxjXpGNvHwy5+T3FatAiMwtezooKEF1ErlWzk+GW8ynNVzltIcOLECX75l3+ZBx54oCEdetGLXsSXv/xlbrrppuekgRdann7sdkDXwdx7Zl59zWaijPv8sg3mTqO5Ttbh0CsP0XXQzx09F/zrwuQ47uBpYr5xh6x0kD3wSDPHJTRn32Zgaqvd2TVHPF7H/1kT+fWQ9i3WaZGI+cS81Jzzc1GGfSbC7OVH2B/AUw521+EFL9tgo+PoOhVI9PIgqcrA4TjmHCdDfQL4IchsXptWJ6Z0FcY6I2oebxkCK+FzGjW+DGcBfC/HF/CYV/PQjjOp3qTmQZatA7sGbea8Q9R52i2hdK49KH0mMkkx1U3ju1ITxHHhHB3DPOSV1vqUKpPMQRuRXQGQbDyjHHaKilAuwWTnEBWejAseGXU55iK+dbz55/8qmdMUcI9Ta7d0rpr+SDeBuSHiGp1hqRxqjXw3Ed/b8zMoKeETS9TMpNVbgr4RPR5MpO861R6gudonCbtrCf2ZqAl5LAk8z9bUyWpe7UZ/CiV+o2AqwpajBO4WZi62EInPurTNuyjEWUj7JudvjphSrP0MPymaDHuY16dFuCy+EojHyIh0HHSLOfTzajMHHddfeMtPVvlcJbw7RokCHLhD4LYThhea+DLeC2dXqHYSlJCNAoKKrY9ERZ6Yx9tekmbqHqtZPmK6yQVhRRchF8V3PeAFlDyIaol7PWBrWpsXWuuA8yGkI2EY3q2ux8GiAIxmK77ioAcyLZocirlsw6O7NNMzxnmcA69BcfGDhEjV4fchmlPHYYmyc6y5tsXgQ4tmaMo3Z6dkuOrl9ObQmN3PhXq9qloaa9/uRyeJkeOb+0gW95M9z997449U+0Bjz4ewVuL9+twF7ehhp2a+XVbj/F4WcikuNLa+ND/j3Wi2PkIFLpFpb9tf432ocfTSlG8GBQ3N8409NLRHGSRRYrqT4YGbnaZC66A44DMSaLO+Q7xXuqzRRVIBNwO6BucwnjYa3Q3tmgUaJ03WY6fhLDwfS4oGoSmUAGVerVa72q8Lwec5HuEzqKCi42CcwS0CMuogs1qzGZlgO5XnwKAs6XTDqjILzYWO72SuTh7T69Z4P137z2KNxCB0VsMeqxzuzZgNu/zlH/kROnsqZN2tOPz6s6m1BKDC9s4BFnIHlUgw2nOcjMd6cCbMdpun3RCEqcWihAm2I8JGuJkBbkvg0ADX7+L2CxWUAPuxL8Jno8bdW/hmpa7VNljOhyZpy0XvgGNdOLOnH52X8PU9eNma4UWcCYPumnzIJavw5FT3DC+agjgw7t6r0GkrHFeGPa4SSEqwriq8wtjrLESMxy2i9gm1m2QNvsKfBS171cRRzqCYsRfrnNWBbCuhYqptt79jWe3pWiy88UrWOfywwKUiDKnN4WNXHcSrPFflvJn2d73rXcxmMzY2Nhr3v/d7vxeAL3/5yxe1Yc+2iHi8CLNgOl54z9yLHgiP9Xr80Xet8+HvOM7/9pdewEOXH6MftNCRqc0AHBxycDZQmQIqMXIgM99AoAsm5NuzRU20IXqjZqDVRP7oEDaLGntZ6il8rxRhWvrKeiDCeP9lR3jvd1/Cn35Ll7f92POZXnGMjlNFWs9BL1oSBPg2HGxnSsB5gF6GTOeVxEniN+05MkUb/XrWJv5CQpAiu1rr4ruaiuHJwvM8asIlp17w5zI5sVr2eBwO92IuAqtlr8x0W0obsSIoE9nM0S6G6K+1JOsTmMR0bws+Oi3LOdWyx3tr/bC7B4RIjTRKIUT4hrOjHpeEuegcDPpKrF4SqoqxF1S73iQMGs2ZJ9RI1RnxOlzE/NSRuVsm5T7PkhJ7VkhiMUubQHREUyuDc0hmfseHBx01mbXw2DKzEu0UnmePgpfBeIpmnmrr+3UI1V6m79r5eVGKBS92cgf1c0t3z/MxR2z7Pcw15Ru1ViKijU2CX28gnCs/XdGcrt2ph0FHN1qjoe/1esY0Xpn3sw6GAQO4voPxtIq4XmuoqT6eavYpBNfJ6eIafqcpUdGap910k09+C0rEHDbdEwmZ3KnwNOZsv3Ra8MBQ5/9jgww3nSl+kcDMtVhXtZYEkVW5v0VwxRy6GaNgNz4Jk89HodfQhb0sQYRm/NJ+2aYp1IwETBRGfDua+i0+H90FLM6uNCcHQ1YDaPa+qo1RqDjoNMc2/ujqfQmWRRLox8qK4CIz8HbNp9VH83gHlVDJEeaGAPvQv3RY7QNLtewB+AjiEHAFmkLSfjMKuPqZBqSq6mrW24pzqOOHRE37hHYXngh3PMe1tCzlm72O/uUFOlft9lMJ/Aqv676TIwjfg+KBAug7+J5InPcwPtoJOgsNnnnoGibe7WocAbejL/S89vOs2UWtZc5y8/h4HVPaNeoybavmSVniOypIfi2AU+Z6KAG+bheZN10Z4kWFroF+WUA3a20LTnmzWbyx5pCyCO8nJveB9rjgEszcI/KI+drdRCjWh/RW+jCZsSpSp9skaDmN2XVjEKdSm49H4KDax85pPm5pLktgHDVp36BJ60bhCPUtAcRrTu+xCKtx/Qq4nRlupa9ua7NZJZjap6YhKyFGBC3280THbqHd9nxQSRn2LAB9dABPlzoWD2yptPXSUYumvaWOS0bw1L6iI2se7/W3F+EhFD+sUgsho3XYSGAwnVf7qEBT2eLq37HYeFJ2r3DEHO116jeGXToTz1ZAtlLMkLXad96Hb9QLwS1WDDDIKTKHnxSVhXEc60eoTeNj11jG/RttHn/e37vjjjtwzvG2t72tcf+FL3whACdPnmx77c+0zEWDs6mWHWalUAQm6N5d2Fk9xG3fejlPHD/GZ5yjlytD23XUk8PBEZzJUSpIN1Mpzv58EblAbd+zC6wfEIgOqILRWRN5BxzqwdmxqQ+DRATxnkkpTL1q2wvRHO1zEW7xsOa7PPjKF3Dy2BH+xEE/c/QzhTFzkWFXP5kqyExYQH7YQfYj0WF3L7NDb020ndHX2SLDsBgqRh2qgHS+q5LEp2clVxlwo5lJJPyWIeAF3BvuR4XgJsuJkLay7LnoVxO/GQnpGIwuElAr8zn70S8UoSappCKKFwBI/WmgNs2aqk9eRIjV0O9NKfqO9TxTM9QMMpyOZaaBE4+jJvKVpl3MNdRzrkMt/QywLXRKLJEI6iRtrmA7P5LbVr0Q1AVlAhpCEnOAjvMKtXm8HasYgK5q9iiD3Zi6TprwCCrR7ubND7RJXy+wtGnZBKtpa8IIKpG27h3nM3efUWmDNZYVgiYuUiThi1GzsUxQY/0EG5Rqhp8VteAs/hE1zjkshqGkZmBWC08uQBSChQ02BpSpN2HdiKdo1FYAt9bF7RRE//i4Zu2Eq8CPE7AAhjkjF7SKAU+n04WOq5kes2bs+FqrClAm9VDsJgNnRyAnxBQBpmXBw8dgljv+w1qX6b7CEJn1jBrXnHMihP+7ZD27oMEZoH1Zaf4irP0Mb5gdqIFJc3jHEjXtdp12DDHzncCtpn+2TH+4luO8iu2HitAN47LgC+oqQhHAB5/uRlfKRVpbSRPb1j7oHnsM/UcW52lYC1mE50jYyaZRxSeNcxvu6AL5PpXVSOyDCtZephq2VPoCNVOVwAD1POlSC1TP0IQthR1qzXlkrxZQrLk/TN5J6/RQBUn0ueL4F2XapucBfx94STBflk4HKWQBPK1XaafI6ENYJ8UMjuUaQCw0KhNRTbssMli2RJ/2FCZ7toH2pNEgqawI9KeH4Ba0kekW/TI06vxVmUPyDCnKhXGqTdo1SF1/LoEmM36/ZoF1YnscSJ86jk74U7XxWSwMgcoCVaAykUdgdAaKlYFmqZjOGaKMb/Rlt13k7TqHkMf8woTtqiBLaO1Iqx7qw5lJsnilQWuD1Z/FuQFbAuvheQe4rTFuo4Nby3BnVVwzQunymEvcLsGGLHZSqICtInqSdp6zKM1ZgsZ3cI6Zg+nRIeMcxrszJl/bpXjFMcRltVa90rRnNX0av3lZH57ehcA3VZp2iSbyalH1IqjmTMhXU9H169MC36txUgMFOdMX4bxPQgtG8E3zKnP5vtLN86muX9kpkEGgFwzd0PBpD/RifY3SFB0o9+fGNF4BekTgSqnN4WMbKovJi0AzPpNy3kx7zKf+4he/uHF/FvJO7+/vL7zzZ1nWD79Qo6mXwWy8FOaiQenGAsfP7rFzKJgUAX/OOXqBcc+yrDLDcE7dOubOqT+gc3gcsoYy7dE83i520FQCAOt9PFA4x9wpnVg6R01h0W4if7gDW/sJBqO6LoQQVE9N/tVfXxUPVyH0iylPDWDFO34QRy9TgUQvc9XaDIoXjmRwNsxeAWTUxReExWnwZrXSRK0IjgWCKFNztcI5ChdNIgVxCmtkHiMDTwanZwXPd0q85FBpls7lottG8MWFdBxl2q2WvUIQSzYhMc9bMHepEUfFXLj4u2Y0hn7OZKV+rxlkI/lWYMIjUtW+CA9Fn/HdGYWrteO6dwiyVzDp90PkeB3DLIPPfeYLVf2XocHooEkwVpr2WHoEn/aKolleYgAji/RiuQBcJUvOeyRCEmj0OSiBF30ABZCMoJGl6bs0zFXTXn00WUOzQk1O2mC5CPjXuijY4wyBaCci+/qdDRLzeOp522ITcWGljWp2LlgmmK/EQUl9/9vMEW1/VVLrDJlroE7L1IpIHUVcarPgOGwrUxWCqrZBdHxD1Z/45OeNZF7vbTrHWhCsupW+Rt++4V7cg6eqYGyNGBw0GWA3A3odusCMum8W5mjuauGVEVxGorlBhIV3zpJolgO+yNGAdBps0/GkLxg7bcPpYY/THXAhp3a0FnARgR60UJNGZ/F9wI1RMyuna2gPQ0A5h+QdmJro0aZOSaqOh9W0xymQm+M7gfuoBVGnqM3jLfETte3nLBaJ2zaOwzoPiCKaARPxhoMiB4nm4ebdZ8mbLG2mtU6IuKBA1/cxkQbhF/eWLAgfrj9xj1a0N2tWCpWwqfJnD0x/B+jPSUyHqedyL6vDdFd1JvM4tj2iSprBWHN0/M5w8P4qBLeV8Ixd37ScI9M7pjnPMP0n86BpD86jWyjMr3RwVUBP4hySqeudgifN6SJKGzlRbXqFD/Y87sgKFAEDiAb2q3YPkdoU3cAZ27wQPT6BMWpZ64YYOC2Ms1LN+1HBdMfBG53jqpBpl06OFEXjvbSv5l7oeGorstASFzYb51xIwRha2HUa1Tu2K7XmudDFERi6eiHUbgYr0yl+pcOt99wNczhUeg0CKvFIoqrbtsx8HYOl6uRnsGG3aZIdcLQLZ/eadEL8uG/JEOJBAtc+Fhia0XD7E9xqjhtkuJlaTY0C7h9XfVPPSesXTlEq027hO6CUoha2+14D/O3h2EPYzRw7aByu7dyx3XFsX9Zh5+yYnQe32HnFKnsZFFHLnprVW/P4y1ZgO8xPkYZPexnG90GUac9EXb8sKQawPveUnU6131RMsmviDWi65Ng6CPt8ZrTsDiqGoT9RE3nmM3y/1ujbby4erqpbgHIjw0/KhtuzAA+L8EKphRDRJP7PIggdPINvRrP4GIQulhtuuAGAI0eOXMRmPftSljONyimqXZ/7cA18xAtXnt3jL2UZ3y+OX3GO1/Y1smbPObKoPAYcGuyo62qfLgFk0EGmpUpyzALXBwTOTvB9GHcce7lj2ykBs+0cuwi7OPa9SkcLp4xvQzR6qA8nA8mbmN97r5ZCUy/My+Cr7xVG74V7pyXf/7VNXj4Y8IsZvKobBBKZwphlLkirXOUPftpFpCTqewL4aElgsVZEaFsF5WjAfubYcbCVOUUSopv9HqoJi1Hjo7ZdgLLnWJ17w8BIHYBOmpZLbcVq2e3CXiUE1KOdaWor6dBFgiQy7cT6JRL8rnrTAaPdOTudmpFQht0prNF0W1TSui8hF7wIO6GPxkAZzZhWQXZniA9B6Dw14zOF7fUBVzgXEJeO4erKSmURcik00r5VcQSClUNVutTmvo3dP14bTDorzzPQ2fmVlKiNh41GbXGqJYDieCyk0Kn6PlyMMpjOFz8Sy8RsjrDIzD4b+AwTl2rcTlGnvbJwOUJqFAPX+czdZ1QaOyDNRdbtLGr2IpE0SBgB+25lLdTsPxnkyL6vCUpT5RmEo+G3apFDNGyB1VnBpF/Hv9B3FGeM1kY6nMakbh8NrOQA9/QW2Ryyu+Zk/+lROHGy3bzYEBXsC+TKME9d3Uao55KAIv9Zi1Aj0qW+ybgXKKF+KHa7QLQAiNroDuoSdOXWnKxbMncwlIzjJWS7UzLRZxasBpaWONeb1guu9LgSXNBIjJxjauADkF6ncvVKv5EYK1R4ZIflmvYcFaA+H83vHZ+PFEI1jVicludVqv4X1U6N4rbpFtaVA4pu1DTH16QimC86186iwFSoaYejof1W8JtBpeldXxspxbo7azIRhOVWtbl29egBvaIIKd8CjJap6eYGaTbXhL2VbgUxCF0sG9TBNC186btjWnxS45HQz3FrqSLIh4ob+K8ow16quGArPHsmEv/x+3mGzBZTFwra0GlYg5V2XERV/OsjVUKgxFwPVYq0IV/7c0YzEJ3t8ngvTVNa4UTTfwLItKwc6rfD//cMTvLDDCZl5TbXwKtxmqSubLERpoE9F7WPTmOHzOZVHdpPzTl3IaVmSq0LitY32p7gVmC0tgIZHNqfsR86xY5bDHSGucesqC3k0nI+zPtB5uOR1m7zaZfmtli1MzDLhwh4WgR31uPWu5qRIKSd7SDkojnea5RTCyeq780LYwZi4ElAE1GX312vc2XH67ElsI1jR2DHOXYzx66DXefY+/+z9+fBt2zXXSf4WTszz/Ab73zfpKfhPelpHiyPkmcbY4yNgW6wDcaGxkV0dRMBhga6iw53dPEH2FFhDBUNxeCIwjQNmK5wUS5jy4M8IBuEbU2WJWt4kvykN9z5/sYzZe7Vf6w9ZZ5zhzdIckX0vpE3zzm/c3buce01fNda57c5/ughx43j+GW7nDjhxAmrnqVd1sdoq4Ex6JWTgP609nddmCOvRbo3clYMH5utXF55Vk0TzpzQ7yhvFPtX6bvkxK6XlxMserxkAZ5xw6VZxy3AL1s0xPZIlvZyY0YiNKjcB4SxD1lvfOhj5+Fp3ZDujXzmfaHLfQvtb3vb2wD4oR/6ofTZ3/gbf4N//I//MSKS/v4HpZwcPsfCK8sg1K5UaTt4RpWPrjw7py0vOzflz9eShNqmEiZBI5kOmPDijNiG8ISF1ozwEb0+sIIDdEcrTi81nASh9hjbPMeqHCEcho12hAlyx8CxM9/KlUAXYXLzbiABmHAeUQQrzX3sVHm/wvhgxmhS8V3jiidqZyneXEYSRObGYf9dQEI05tAFJwadOl1lpWPP5A7tUcvppSknAsdIuNt1hHCowklokxexCPLhAF25mkeDj2GZPsFhmrq7LcrhJi5p2znuAI/XzdbKFK00vi/upxRpJzTAFzUHuIoCwHi54rSWQCQG6SwwoXseCPaht2ijh9jYHIqN26kzJAc7DXrahXQTGeWgAAdwazLmfOh4hAi95e1vNOIlwgPQD0Yn2UUhEkogpLAaciMlF5A+NOE+cTkbDpLnQbRKrfLwHmMIbKo63iOU8jT9Lgcl0/RFMUHz+C5MxzDgy5Cov4gyZMZK0nANE2bSAVS83meDT7tuhqG+qLKJuRlXZmkfPmipOaL8JjhiWVUhyOu4RmfZup7mXQNE2Pt+qqvw3Mmi46RuUi7xci996Ze9qTc2CNx2RpcRQT5xg0pBYuTk9z/bp5tsmG7voa4YUeSKjsJ6wTDTDHyCQ1HVjcrBW+HvZ8nzm4QUb4HDGjWG/+xyxZ9bOb5Whb/s4Mykoj5pE6NXl4vovvza7Uqp7QJSRgJiYiI5vV26tipY+jXls0YlcVF9vB9jiqY4lpGGR9i/AF9G9mu/hSkxIm0vddT3UtL2+j50op53sG219pZosTzbqt5A7+L9Jd1ddwxCeY0QhFLtnHPhb9EHlJmlOnzn618HuyH7RdnOFJeh6CP2vgLqrk0EMu6Z+Dr6uidpcVCGtDiWU/pxKC+wnqs9vi5/P+PesHEpXm+H36Tjp7CEq2KW9nF+5i3sbDtNezTGGqrM/33Yp1DXHBuvGDxOAqSWC87iPoRfjSDlak6C54Zxaot+xjLs52QwXmkKNJ+HCvhVh4Zpigqeg/KZY9B51+9bsXZTHQCVs70QEZWhNYIZbSAgCYIbJIVUqum/4h6epQEafU9f99g3JcDeM9T97HxGtV3xxje8FiY15+arILQXvwkP9rmjdl90Lw4hVxKbUtEc0zKfhPUwgMiXUfo1jYX99Egt7oBAztG+N0F2RjAnoWN21TJYxb4E5H1fcF/49Sw9g3PXB+PPidqzj32QHzycqHCKKbNnYvs3vj+5tMPpU8fMXneWmXPMK2Fe292XFvc4RkmAF7g8xV9dhODIStdpWg/eGzz+FQRaJMaVieQzaNTBcqtJY5jGMr4p6FXpklN0O7krJ51C+szBeMSllee487AC3RqloLKRB74zPF5Se7pxg86151b6nDfq8oDPz41+7F+MIHTwPIT27/3e72U0GnHlypWE4X/f+96HqjIajfie7/mez1sjX2iJQu2is4jxXpWfbuFrjmYwhnpc0wg0LuRmd4KrcpA2V0zyWQnMmIRUU2dMwErIxegDE/bl/KRjtr8VNg6cinCKcipilmiNVlezwh8RBHgnHDo4HlWcTIX25iwTSW/RGhfeG+w/9KsNCokZyru88tWnHe7MFrU4C3oU+jhyQlUs/LgIa2e+obeErPnaduiiw4KhFYMarMCz0yWn+6PQN+tPfH2sYkQEYR6IsFnabSPMq4rLrTfmhcy4VERaceetkKJIss4Q75Mt7brh2lQ2EhGyj3WY/nRPfojhs6Zd8czY5TrKS6z/kchGS/spNjYzlBMRjsO4dVsj/HGbGL4IjbfI8UtuTSouFmMU/dmjK8fD5LRvSFyOMetBFHbEcPXDFFabBgQMFrzGmQwFuOdXNgkBEYpZCgHD+XWY9TEK7dFioILl8I5t2mqCFJaZkd7krtpsab8vieH+SzzrN/XzFjnt1dDKuMsd4PHxepHChe0bGQxqePrWpmj7BOXGXVLQyOB9/Om0STQxMSeBYTnyQZjVcPhorEpxS2XeNBySD9K4jyAHlImB6E4CcggRePV5q6oLY/vmy33mC4hW6DQhixZpnFnaQ9+iNR8ocplLP0ViMUSlJTq29zZmLI0p0CT0VzAaNwZGweI3PVZeM6n5gQreVDlG9YjxiWcENF5zTtZ7TX9BwMopZrZCatI6H9O34AGmZFn4/iO0378hfTwgu7NEJkIkowiiX/v7yAiSs8O28TwYkLLBFI2Ze0OKhDmTkjEPt66qArKoH+hsWOVLUZKClCysgfn33wQ+UsxRXP9O1VKyxQNnPILjILSXSqf42+L8McswjBYxPWPaUMX8Bk1WO+h0RBzcoc2nZHi8YEqHW+QqynO1fD2jL+wP5aohxYhp0TS0qazToyaIJy7ehJAx6yledVL1g7VFwT/8fekN3QIhcNhsBRW4aW0ZFsL3RpoywKWyiYe4k097+TqOwyJUElukxXuDknf44A50imUwigKMuQyBdt1636JFWs3KuFoDRhX7gmAZFHPVZNJYZdFCP0B0gqKdNxTAvIXTld3nraX0vOOZFCHgobVBCdN2np25p961UZPRiLNzz20ynD7Ktd6nJuTyon2+o8RX/M6JMcBbWNq3IUHH2lKiAwljvlJLIbgbJlIO5sgOZgkeVYH+mjp4qsoseVhp/x6bNyO4o8k6oYzKFjVPlxMPp96E9aMouKsZzI4xXjPx5sCsm3M6azmdWiDSuQhzJyyqYG2vXOANS+EgvH5wB706S4qsmM1IFa56j2pI3Rxomblm5XPvzAJOYzpKsjIeF/d4Pu9Ll5weDyhZcO/dAXYbdldwPGut7lHMPmMp35LrJEWu+wEf1Aro3oguKsYCHfqcwsvIQnqSVyS//kKX+37mo48+yo/8yI/wyCOPZOuJKo888gh/7+/9vRSQ7g9KqeoJbZcF987D+7xyG+Urjlvq6RaNMyt0FNzHkv0UbC4lLY6LiGlAw2Go1QidDXK1h7JUmJ+0zM5OWQAzhJkqpwgnahqxY8Q2m8/asNMgwB074cgJxw+MODpqmQFtgGAuffBh72ClPuWeb1V5VxtgiTeUaneLRkgIgrFYMLrKkZQSEhYyIpzFgkTFxa5Ng5/7QL8iJTXyshSYHy+Yn22Yi9GaGVEolQSPPwl9ayFbpUQ4GtWcDzxJFNijQHY/SOzkEzmgbWfZIPjEM2NDPWtMafG9GAwDMvEZ0lGAaqEcj+u8LgLBjcqPSGRPI5FV4ViFU83jtkRYCMzPjvGnPsPa1ae11c7mPLODWdrJROPg1mEahweBp8NvY/R4H+6dFIHaqsLSPjx4h+9bn/2a17iv+zopc9WDqzQcDoWAIfMTX+9SWtrZnKd9Gji8ZcGMlIzqqsswtFjKxfQiS1S6RAY4oh1uY9aqZG2kv3aPijqG6/IlLUOly6g2Ab3kluH+UtAMDj8AJpUdljFXe7EHbwPn1IR0W2uFHaiFdscs7Sm9WxisG7duA+GAF1v8txH2A1ROHjmPvnXPoNLf9Qjyiot5kQ2slGGXIr5FpsZ4zwdrW0MfFYzTLYX2AUKnVM4oOVJ6OTzRsloBY4WJwtQr0zlsjWq2ML5xa7dhfNgyUWP4q5KR3gQX2lSS77Miiw4mkWcRtjGGLa5362edLJTDUjKW5VqcsZ4SsyJb2ivgtdi6/y/h79M4FuE3PY+we5W4kIaNmXUwLhJvSVpN6X07rnExOcLAcvpS7i1VU6q3ajrR6Bb2YeB/Dt/5IeDjBUObghTOO5jUXD84hL0GTsr9mIlBLyZDtGQB9dyE9t4Wjus3RqTeEJfBtuFma3KZL1nIad8iXYvba0g2himbhgCm4TEyovD3LeuK3faKrzOM9grwiORMMQnZVlfZzaMYOrtrivaeF3GL7AA7TTb1ByXIXO9tUZ6Htg/7U76OQnv02S9RR+X4ee/R2qEIN0P/DlwQcgCtBPUWJ6T8fdkdv/K0IQJ93O/xjQR62mBCzAoSjF5nbW/MrTK1s3/W2nXSGqrltLU9NwvC+wblf2lhLy3n7cmC1sFo0nBwcAj7I3aWOZumXf383705eJ4+32ulFERL4iNiASCHKZYjz+vXeUoUjsPftiPnd9ohU3OYEBHYATmxqPRT4DCMhK7VF/q4wlAxm/grMR/2uZpr7DxcM80GwGONQrpwIpL4y/kzNzn98A2e2YaTD11l/vRNls4E1ZWY0K4lPL7n1w5cHtFdP0k8vFfwnVndP6vKyzQoajUb4co9MT2BRQguGwX1tNcLS7ey7pKTprpAQDtI6aodQNNQHcJHZytmE1vn3knif/0agjLui7w/vEA7GaGLNsfeUuWzwKs8KVBoyoxHBiZ8oUt976/k8qY3vYl/8S/+BU8//TS3bt3i7NmzPPzww5+vtr2ocv7yE6zUIIattwiV/8HDdwo0N6A6s02DDcCoEGq9K9arZr+JfYEDKfwkJhV6NO8RYlE7YFYC7cGC1Sv2WGL+kksRPtrBLwJfh/AGzf5/MaJwhSZhrAZWF7ZZHXW2l9UsLwsNwed8zMtu/XumU96ryl8RcEfHNI/umjJCgq9+6OPSuZ4iLb7ZdQZzN2uTotsNeppzFsZd5RVaVZanK1bbFQvs8PqIh19W4asVXod9t9IQ2ZbgM4JZnmeTilf4UmslyepeDaO3bSiy4QJjIj/DgCDSJ47DSI/Dgy+WXmA0zX6lAqRIoa1HFG6OIvSngPRKCDhHyFwQiSzwYYT/CPyRVnirZkLQbI2Qo4UJ3SXDooo/WVCNHSKGlpCgfPnZf/8L/LH/+rstfRRGbG4Vr9PZU/axqtatLsOSDhK179/Juv48qdYm5hBsDe1s+H6y4oW7BdIKv41MaST8UYMeD/bT1qzI6eHhPtMNAW3i/cWR4ZKhLa8IeTxHFlzKtbtD9tVcX7e2nl70AbFpDgUbr8NF8fAwUPPW/P3K3/c2XXzfr1dri+nAokW3R0QfzNsYjeyNQRBIBGAGrauZD/sv8FP/0y/wp//ynzFmNRCuEyeWkU5C0x47g7s6h5efs3UzVNYQ/O1iU2cd1Fl/E3M/x77E55vQ3q0t3t78kGXq22T/bTA4dKK5wDgwN9Wyo1l5unGFirWtGTWMD5ZMvFn8iP0o+rCxFMJ9PLsEYOmRUZ2evyUbYieMBT0N0NqinvJsK6/Yx6FPexTWo/K1wlK//QKmTGbw3SH9vmspH16Ow9zDdh3qFkpACUEh1E0rpB8oIVso71cRch/FY3S7JQScDdW/a9CPdwNfHtZEWo9zD03Dv/zlX+UH97/UrJob+ixBEpJiCBqUcdvSNUJKfBfPIciOl/MWdkepHbHeTWcl5IBycY7OYQqITWdm+Vm0hA/LkOzEMiZHj49dje3wYIJhVaWpmmOoso8jfVorFarduiIhvOkUpr74YOlN4TOJSt4Opo46nNcS2xKUi7A+Pj2hvaDR8R5Pn7J/1sdBVoa2Q8M8HQq8CniyqEhHzlxYivEZnt1+5WmrUmgfHGdiwmRFDryp28DpCt2f9Pc/ECCqxiuU2WYilDoI7DqukQKxlgT1QnBHoT1acTQdcRH42V/+Nb7z4a9ickhI15W/G38f+xp5L1ZFANkh4us+igRBri+4hx9fCGnfkgY2L8JezJLYHww1tq3xHAM5ADk7TTymjMfBr12ZagL7pPrjHEbXASC7o/UabvW1anL9KtwXamvwfRiN+UPAG53FrLL86cIRAp844ORSzYSQvuwTt3j08Uv4IO/4aDqOgz30+b+8RXeltSB0nUHifVBofM5bfnYJtNbSvZmqKdKosW+5FQPRAaUr6TDDUkk7hudDNKCmYHRhaG7WDb+70/KMr/nlV57jzV55Y3xWeI5SLJlhDB6CcD91+FtLex/QFc+iPIb1qQryQwyW7UKbvtDlvizty+WSb/zGb+Sbvumb+MxnPsPDDz/MG9/4xj+wAjvA1ac/aBBytTQF/6E1C8+bgOrklOZsYxBEsYia42Bxd5Ijx5eDcxa4XjByfsehR8uerxJew8GtrOZzun3HSmyDfbSD/1aEX0L4Ww5+G9twJyIh6iOcqjCj8EvZnzKbrTjFgpedQiGsW875ZWdw9Z/y8OXAZZTq1gmjnYoGixg/FtP41pUJeyWSIG6Ai8CzxUHvt0bozPeYUdS0aytVuhNo98d0CL/XwY8g/KLAfyPCbzphJsKcAA33BiXzwOcArWpGq6ApU3BeUxq6+1mQm6zsEuboVvG9O1nRi+6sXbGvh+S8k+mZBOIs4R584g6aytAEiQhkmO1SCyKLEdj/G6a8+X8KfKizv7UCq52K7ngVLO2aYVlAPV+xt92kfsfx+nN/8U/hgsZxirkIPEdhCSFD49M81s6sLmvcVzFC8eVSB4Ftnv9hWVZ5JwbxNhsC0W14TBmN14jyoK540NQY/LHHWYY3JQztBfTjbqWESZfW9hvY3ETocKmMEHKe9tTUDdeLLv0TMH8+djnbRU8gCoiE4UQMUQnl+LkQ32EMOmsLtKFy6GFPNcZb6jXJ4KqKHzemvIgCR1CE/YW/9KfzuAbm60BChocgqclZy0crXpGk9dLEiCbmLz47WCdHod556NtQjtOR5MTNxZ7xoV/Qt7bfxuZ6ODwudKABthR2T1t2V8quE/YQ9oCdiWP71szyP6/BLe5h/RusdQFkqUhVJ6aqIgQILX8ydjZXw3pCH4eB9rpQR2+/SrY+lKk7vxyLIh+t8sP9fd/eKUNtX3y9yJb2pDsKlceqO2rcvPi5biB9L0HpAp2PwnpU2r6z+I4ofAvBIqWalPbMTPnwg3/8O2CrSqm47gi5KV43wFbXWsA96KOOxM4jHAM0Ta5AN4yHsm71Oks/GG8J/iibNiejKu5Ez0vys0UWaochCxQsb7dURKvzDQyyCsHQEL83EmjV4LCpT7mmmWrPSiUzkMnIfMArUsaRWi1gcRom7Q9/OR1DeHz5OvY5ut8Mh97IU0AgtphgjilvH6ZIbypiaYbncYzWY8OAQqu0dWX0MK7/IfmWEDQ+/mxkAZVjFWoPsBeWR9iUPYtsXWfe2ucrb37Yqz7FTFb2IJHGeejmytHeFET4k3/yj8GoZnu5CigL+36CyRfjlDq58P0AssBQYXzPcqcUy2dHcOM0DnCxwBXU95UsIUf7EZaj3donyPEC2RnnarfNTU8UdlFOIPQvz188PxIqcFQI7eXEBaSIBdcOhiAyP/krwN8Gvk+Ev+CEH3CO/3sl/I8i/H+f2MeJ0qw8TpRfe905tHKWQrEK6QQT5jsxmOm1npvgHXQ3ZzmbURiPp7zyKq9JqHVxTpQktE9XKw6GGZboX3EFnTJAcJV8fiBjzkXZxb7z0V3YmdecBTwV/1llrf41jVrhIhHRkH6rwp/ENN7W+OfU0r0JWSkdf/4Sxmd+XuW+LO2j0Yjd3V2Oj4956KGHPt9teslKqxYs4RkPv67KXxfFoTTXjxm9ases0MGXfUzwDe5FjidEkhcuiHArUD0FmIBfrtKC02Dh0CC4+4MOv1WnFFW/4aCTsJ5F+LvAnwOeAB4VoUFYAZ/u4Dc65eu98tpzFe3vzlkRs3SZ9iqmd1uqKQje1ypXFP6iKHXraQ49zfkpjVg+4JjqTUIf4/5MkG+BMwjPBgLoBXTcoIsYPd4WvkR4zMnK4K9bDZ3ArzlhFva4ikEAvwV4kwivU7iogWEV+G0PlyYV50/tYErWdg3aq/vgou7EDJyhgMyRiUGkv5sIe3k4xEfHoFSRYXHxS+GenjlfJaHmGAlBZwLBcBkemSCTmEZUHTiEhQi/LDZOHbDcq2iWCwveRwGzXnY4D9PtUU9gdwFqVNKjBzGh/U0iyVqfIPKx0yOXLe2bSnlYrgp4fFleoIaxXE+lELBkYLkbEOvYph36Qnu6l/B/MIliNsg9rsWv7gJDezFlbd2Fz6/Th0zHx8Y9uIetXU+fEVa1/fiSlJJbLg+wiYMYlKksbZsD49ypDRvG0ANsO/zSU8bEuEkQ9OIe0pj+KiBYFivYH7EIe7WHXAkP8uGZJ8FKsFsJtAEivzu2/XFrDhe3SQJ7sTCSBVoV6VqohTpIeRZV3b4X+DC7O1dEqgtFc552r31GJMLj4zmClko/a4xTGM9aRqqo2ggIituq4GiRn1Na2eMDNs3FgJC5wDTJzMM05zY+g/CZYR/HDl31c0DbIzV/r7hHGlvGoIj3mmxpd8DbwuefBX4X83PfpHC9dwlPXwtE11qmlQEPLpA0YzquqYamzkG1L0WJAnuk9y22PlaYYPrlwB9X5Y1SoOzCnbnPFt+dKvnCWhutkRIgNxIaHoOhNoCsPIvRemTtlCVgQkjfORg/Cpo1+NMJdp7EKs9jdKz8jbK+Pkqf9h6tY/NcjylSvhWVReFUWywyfPjTIcIFMQDBEZaSVyHlMo8VlFOrmGVyGhosAMce2Wns9ZYgsxbORCVeue+0Vw+QhPoCx9Xvb/E6Bdob1FFuWb8EakMuLoFHxKKAG3VUGNfoKgq2RT2a9ykdtKOIOinJvfRiPdSh/SoCzSgpJHsKQe+DZBiYzZW3xS2YEj9+tRJDCTQuW9s7n5UdgW6pArfgZDsjt2QHmluLtVRoaV1pfw7vx+f7nmUgsCUh9XwDH7yzT3tm/zQpJY68BZiL6CYO5shj++lcZ2uMu22VVGqR3un1LzxKyKl103nbP6c7JAnrLX1+siwPOeEHKselynO2drgpPPnyy/zLifDKpxZ86tExf+HBy2jtoHZ458wtIz6vFN4BKsG3gn9ghN5c4i9ZyjcfDr6nVflq3xdk0xkbhna0aJkHSEqPXpQuWuHzY3LA4eG0EYT13tkh8OoR3JgtYVlzMvG8M9L9ZGWXdaRi8UaDq4BuCb5dhThSwtwrNxQeUUNsO819jMP0xSj37dP+zneavvh3fud3Pm+NeanLUs0y/O+88hUKD6FUXhndamnOTxhJhsXXYfOm/OwUMHmBPbG0aBAW3sjSZcTc2wqmQVPoOo8uwZ+ZEEW8V2H+mV2wEr0eg8n9FeB7HfywwD9F+LsO3iPCf6/Ck1uO2WrBXC1i5ExjvvkYDd/g8j+F8m0YBKe6NWM0hmZUMwp9mwhUTqAS1iMwWqfOSAxEF/q3VVkeesJBESSJThV/tMDvSYrM+E5skFqxPv6x8Pn/DPw1gb+J8OMd/NsOfh347H7Nz+10fNprWvw5aNO9uahNTJ/DrFvXKOZow1WWO30nMqUpTzt9yGlK4TT3UDfsELTijuxHTsG8ac4v/naMmHSB6fhqgQ7TonbTivaky2dGUABxPGc+gsvB4p01jQE5EaiHQIogr+E5ZVsSFKkZCO1DrUV5eK+0D9kacOnPBx60iWmBDHffJAQMHxnh8YGfCYQ/5uMkb9hJY/Dn2J/EbYUXm/r0ElDhJMTRv66TIcLxUWW/onb5uKgH7rx2X3Apuxj7O3EGPdTBmliVPoTFD3ucacFchMs7wY9yJGcfrCdHCpeKDiVYYfxpt4RpTj+ZD/k+DNaLmL+nmMKVuAdEkIsVcn1uAk5pMSmZq8hUtG3y9x1Jtvb1mGoRY3CiDFUIskPlU2zjLfoKGlfABV2aTIVli2xlC7UDixx+2PbXbOnXfrcy2L8OYO5x0yZN2UTCfgtzp2CRubvSrzU/pxflmD59jOx3QiNJtrRHYfRz4W8LzBL0YXpLJTTj7vtuLfVTHHyAk5Wt31ikXJzh6+Jw2mUhJ0gRGup5sUEewda4p89QR6XtbwHfAPwgdu7XClVhZXeKpbOKNGm7sn5tsLKXsPjys6aDVZODPfVoItjER8GgGMc4372hDdcpfZ/2c5gCIgqgpUK8/F0Jq2dw3/TZhLD30jSHPRa3bRf4LRQQbgG7EvSy5fCMxAKkxfdFu1BYojTlWpq3UAcf5FEDiw4JfNRSSYLnYMiAnKJufIc+lSX1j/54p/4FvpGmshz0IlwSE+bic3ywwEYf8tSN8t6Bn8ZzLR3Q/S0hMEKIYfd0r4FTTX1NW6HDBPU2COzLDj5+BX7yQ/Cx54rADWqvfWxXALZrOMM0fgZuPudwO8P3ZSTUR0vmAdmQBHysPcl+H+nePXy+76vc1add4ac+DE9ezYMagqkmtFFaWJajfSesCEGR0xmy63Lzxg0sVghmUOqCViJWUe47QsrHdRSbvV+R3W6iQrDFFIFl+T7gicZxYeRoRo6mcTyxVfG9jzzAr37Vy/nWlz3IY9MKP3JoEwT3qjjDBwI7Ynx+98AO/soy6cG9V1adcs3DK7xPSuLo5hqrE1WaWcu1sCyzIj7Tp2KbpXSRa2dEbF4U3MO8CfDgxPH1nz7g4u2Wbz6peEWsP9Yt9tx0zrj+vQvf60YVOm8TXXvWw74arRGKoNmSBfcvRrlvn/Z3vOMd/MZv/AZ/5+/8Hb7ru76Lxx57jPG477n0lre85SVv4AstZy48RueV93v4nCr/lSi1QnMwo3bQbDXmzx7g41ETGXOX54Vif7wQJvYIiyTvtyr0JO69vPk6QA8Xlqd7XKXohROB8wivAb5WhNdhv22Bzzjh0yL8rECLtee4gt/YHfPA3LPqlFFlqRYaDbB4b0iCn+mUMx6+UpQKpTlqabbNyt4Egb0pCNXQl9A56+MlkX4O1in4k2U+nCMBA/yh+ap2YWM8VsNXCvwO8H/E+mYWMYtS+jmBp0T4RTAr86SiuQ3vVXgrEXZi83M/pc/wZcb/DJlpGJGJfmkJG5YNPFASIsscrL1nR0vhysOoYSqSgqNp6HeZbq28Zlh8hLkI3y3wqkpYreygbrcbVnOxiLleDQasnu6k5dZowiUJ/jwSgn0CP/8zv8w7/+S3JNjOg8Dvk5mqEhqffHvqaj16/IA5TGWlRSC6grivjcz9lU3C6J2EgKSxLp4UrRapDimvoj3jxiCnwz5FKN/opetTWXrCZfH6BhaETihQPEVfY98PMYtW2exN0/KCyiZmB0zomQ8YerDxG1raBwdef3PYGw/oqEFnfVj1NdWeBdpyVRfIleMW1wwDE9nh/rP/67v5mj/xh6x+gUMR9iX7uNnjBTm7jVxfBSskPYkidT9ypguQsA7GmFyuoU9p7AVbK0PMPP01XMp9t8h++/35HqSznHuYFLEVRGBnnINilUJ6KRltKgMzadpDCw8uZwAYSwi6VzJLtTNr2UBILM+2pDfA1ujeoG/lVRGEdzU3oLK8C3gHpNgt973bykEuB3vZwtQszCLrSxtAt6C62a39VIv/X2zxBCuYBlqvWWj/beCvYsqbOgjrTsRQCRFSerqCM2N+8j/+Bn/6tW8tAg8UfVaISm0JTRcw5RowL+J0aPpSoIujKrt4pAHQNaG0LDMy+smRFYu3wuvhciwZ7wukpvTumz6bUkRXL5VisfsrxQfl4Rwb13OhDbfL7xZCe2qP5iHsCK4I8UxZLeFsUEtMGiRIyDXmVpkUdIOtp2Qd3r3g8WB8hKWby6PV4xs7b8r+ynGE8TFTsS8dY2ee1hb3QhcdOqoTP1ZOgCzA56gGg71gAo5ixoI2/q1qMu0vO9sVAvvKwyevwr8NuWk++jT8eQdveDC3oVOTJiLtSAJ4HsfqcI4+YlExf/VXf52vef2bqZY26KcKk2jRVih92inq6MHHU9eex5kd+GAI9/jbW4EL+ZiHjz0Nf8HBGx+yPnjtrQENBPGWKnvxDFNFDjzsjjJfuuuQ29a/KWpZaDXXkerzii46JDGcRX/EhrglxK/SImYGFpTxMhZH6tuxGCIxen0FaCXMW8eras8elt7Z1+Zu0TXOlGFBgBYR1DmruRDkOwF/cYJ/8gDPZWI8kGcUdrxyQTNtE8zd1fhkq6JqVxyOXBLYifxa6Gu5r07oKwrjcEh40Ttrguwi05rd1YpXHKw4s9+ssbI+TgiDisMa8IRAzdsN/pTUv6cVHkp0N/NrwhcvCB08D6H9h37oh5Km4p//83++8Tu/9Eu/9NK06iUoi9ltlgo/6ZXv9BbhsQJGBytG+w0jhHFlkOYqRUwk+01EYTDs60ZgC+EWYsLhdIR2oJ3HVy7ltO1U8cdL/FlSKgMcXBPhcYH/kzNIlSNDp58Q4XUCjwv8A7GgdY3CJycjugr8yRzfbNF5tSjy3jbvcx5+QZX/K5b3tVFhdL1jdH6LBpgQ0tgROxSEdC3gHaF/e2LRSn1gC7QRtM1IAsiEqzvs8CFwiWJBp5YOvsUJr5ccK0SxQ+21Dp6o4DGBf+Itovx5t+SdYoxshJ4EXTKbAsaVJTHDkvsCOVXEAetMxQaeu7e5S6b0GLPah6mz9BVaWNsTswTsNiGImKQUE6lOsjK6ZOD+MEYIf0/gD4sRjA5otxuD6Sy8+deEg+pkCad7Yx4M6ykK7k6EVz32aE9p/BDwG2W/NbclCpFSuX5gmTsVJUSPHwhuz+eQHFQ3HO9IqEvmsEeYA6cRn7hFaWnvE3wtifNOYWkvS9Rol9rl2KcXSYWTgEN/3MEs7Y8P+0a/z+cwXv1+lE0vqGywioNY9PjT4nuRQbqH77/E8d8U2GWrRue+ZzA+Bs6g5nOumoc+0BdZLalHjoPQOHV5vbzisUdT3YhwIMK4MoEkZvlwAOemuOdO8iJLd81NjIzWAmMCxYJ1JutT0Q/ALBLxk2LdxmqHTMIB69HjS0RBWvwL30tXBti6BXPtaKp1M6btYNZLbJimMRVA2hWyPUnn2J4IR+F5Zf90nh8hoZ60DvtP4JgiSGe4xxGKKUZrtXPu2zB/y1i+nSJQndwnAzLcACUjv8zpG1MAqHCIx+WtI6g0u3+kNZnu+oJpWiwrLZSzmpnqT2N7+g0UygxMoVFr0f9ZC1PHE/sPw07g3lvfgyJLIAhRISVxtpYtnUDrXBLWh/SRurb1Bj1lkNJfw6WeqIweHxnW85j7R/QpH9IoxchGCXGV4r6Jpk/IFvPwJ5I1GvArRYPi+Da2xqYCW2KBbVNfalJaNCg6Fhpm2Utt0wrA0Qp5OKzc3VE6WARyvQMURnwXhfY4f72jUfs7NKa06zWp4De0yK9+gPFiIsbPHAOXAGIQtdVAKVHcZUZK7zfURUvxYiSSFZSjBl0s1/dDjKTYBSL3KymZrJXffhZe90BeNMWB3oXPIk8cES3NfMbJ1nlAeNnLHoatESyUHa8co5wDUvT4yEfF8Y8+35NCaJfB/X5KPOeH1uUPX+l/733PwesfTOhZ79XOo4jQwdwtzkQ6OzNFseyOjf6oIlvAyQJUgwuI/bCnmIqT13bruPAwaZ0EgZ2+pd1jaN0/hbmjTjHjYA24xkElzJceXIfWhgC4DjxeCb5x5tcezu7kPhrHxhhME2oFuotj/G/OLaORF9TD053ycjW6VGl2c43nXUJ8rVpORxWnGF+djzNZA3meYEqIjXySsGZlF4DpCFnB/mzO8sGGkZDTAMd1NFwjLp/1kTf3IVWt7zxaOZ5R46edxv4pDin82l8kw/gCy/Oy8Jep3obXH7QyO7nBz6myq/AOyZHMm2ue5twWjZjA3qTNK8HSXiBoyItEMQv77bgIRqb59CGAj4cEoekOPTqdZCFOhKsCD4iFA3Lx0MGubWDq4E2V8Dec8NUCfwXhKyu4Ph3xnttLnvMh1YPPsP9/rfDVHl4uprEfCTTXj2n2R5YLODJFsY/OrSEJIpjnbPjK7TB+flr1AtFFDWinoKcrdNuEdh9W0FWEy2FT1SJsC2w72HLClhgxeW0Ff9nBGxYtf/ypGa93knwgG0hpFe6nrCEGyNaAWwwEH/pMdSxDglESjk052mEgvJ8ArmZH+i6v8dkdsmZpfz/wVhG+WeD9CLcDs7cC2rqibYQuIhzCWXh6AKup+W1WRZBE5+B1r388CyyYpT0eP76ECJGt7aZq94PO6+AePl91xjhuok/Pk2htGm8lB/3rVX2Ha5uBT3uCWRV52iHD48tJVyygTonfeglLb5zp9/c62dKeaMugGdv0I8hDfx2/6FL2t+TqJnVw0tTCeqP28Mm94Ih97jDOg5/WKf1SvG6pMf1p/6QDPjDRq5Z67CyPeLFuEeGJN766pwQ5cuafHYm1hN/IhRq5eZKDuJX9IQg+gIQUbhIgxSMsXc5wuQAGj4ccFCLSFM0wzpK+XMOsZYlGhefn1+HLM29wz3Ioa2c/PFhs3psb1kEPPh6ulNP7xITBOF0jF5AqSXAXC4A1i7DN4gHF48r+HbOe7i3eG+zcGYfry4EfxZjKfwh8uYRzSUJmkfvdg0MXgUSsvVnaQwN6eyoK8RXUsxRarN+hzUP6vEqZ6i0y1NF7/Lcw69cI40EqNVRZBdTBPcyUDwbzf8tjr8iCyckqPiA1cuNwLVtWI2HQw/59VJngs/bH7Po2/NOcdavXPiRE3nDdx7IgB6IrfyvD+Qn3dfj44KzoFItGZIqE/fD5PnBkE23tqAlBwgZp0QLzEvuTVv5qCdMQI6BpLD0ilrVhVaIQCiRl2cfhMVLeS1IZlRKxKYl+hM9826FBEjglK/y2IoIvnnFT8PN2sC81jZPD4yn3Quhbofwk7L1lpNe7AvNlriseXBH23nqzupf5SAHeOhDYkxyg6eiAIOwC2inNXDndMQXiY4+/EgkxHM4uVgaK0z6J65G76NoRafEa0us+CYlQ8MMFs/+WB/rfe8vlJLCbH3tM15aDsN1C2Qv9lcNFztEeeDTGNbKwsd3B+Pc4EWtuRwuf3WMGC2pFYWHXLLx/GosV8g5yfIwa2HKwI1A7QcYVOmnw05rptObGVoMf13R1ZUIt9NZiEtiFNDadE/zFLfwiyDthTJ5WeDTE2RJfxKeJw0uoeGWxFo5DpzZZ3ON1yp0VfrFiB2ZljwJ8Y4r3S0cnzMogE6pE00BMHdurNfTfh2j72jhDRi9MpruqyiOaz/CKDI3/YgWhg+dhaf/+7//+z2c7Pi/lXR7+Hyg1SqOBobh1QnN+iwkwlr4VGjGhtrSKJASNCHsiFkyCQEinoCdL/N6kD4s9btHz8TNbGM848182PtPyZTaBmHbYwsEJb67h9bWwauE1CKuzU84ulH/UKa/vlG9V2FXlg6p8wit/Sezwr9UE9+bWCc2bzzIGJoGAAD08xxBJ4JylMdhFOEC4KMBWg84ywfKBmHvAHyzwj08TE+1FuCLwkJACRTQE+urs795BK8IbK+GNNTTzlhHGzIxUk0/7/XBQcV7Q9YNzn6x4SIdivGvxRfrEYsiUbuWv5bRUxboAcMsOmoYtTChTyL40Imv+jR/DNvtjGOP6RoFfU+E7XY403O2DO13RqQWoAuhOl8hehl1V0bIoIM6luawwn/Y5JgiP4/yEtsV7KbTHv/sBcUpQvlWX0wSVE1De77PcabyHkKjyGj5mAj1XhDze+RkiGCN/PbBKXsNBrQFOGysuan6BfRqWErFR9vEWGTJaCuxxHYMxaxEVW/5+E2P8gsvQBAMmmIMt1ngiRN//yYYjojdu0rsnV4W6Rtucpx1VbqLse8CZ1tpghRCFTFnAeNIE95RwuDsbi0r6Ft/bTphG/sIFZkkEOTeBayE9W9LYKclCGbseIyYXPu05l/JAgImMYhsYq9IKGOliYKxjHWcpzpDidQmRZeFhqxjfSKvPuSCwFVzdvfza00DbPe2f+QqZShJopxj/bcqGMGeTOjOnxWLzQaAbrsMD+kq2yONFujzGrENgtOSrwlWRhfmJ2JhX96P408Gdoq8zgp9rYJTjMVe0SSpoljllX7Z06Xq9L6B4+sJ6jB7vyf7s5gJm0OvI9PUCr84t3Vgi8iMsgvy54DhTznug1XHfsPIsq5oVpOBO0KeJTAbw+DQWd6bLR2T/0ljOk3O1l98tl3UZTGqoXGfDPQq1MhCO05nVgTYViikM9rEx2sLSo6U2BASZD+PaWzZq1vOmpAHzLsGtZVzB8TztkUXolMbO+UIAwJT06RgZjNGwj2PCmVU2SHPOa110MLaPn9N4Fgq7MuBlRoKuQnDPor6odKkWLeytn9WBtSXCbSpIwT6ZACerYh7D4m0DPN4r/P6BMRVfvgf/5RC++yF45cW+hd1rOrSShb0Hp1vQVuAmRaA8Z8TgzOmKk90Jycru6aGsgHWf79Q/WR/8uxRDh0lfYHcCr7oIT9yEj81z/wLdTYJ62CwaPl94mEaCOeuQ6SQJkk4E2R2ZYUdhggbFTTZyehtwuy881FU+T6O/NSGIv2QasyJb2d+JrZdk/Ip0NcyxpLqEbYwPiWM6RPQRZyYJCCaXqBOD0p8X/LVTuq0RqvCcV96mBod3QWiPVuikNA6uO25cm1I8bJY78TSnZNQl5V2yvNILRidBxhk7duaez44cFyh4wsiPDA2CBW3swPoogm6Dn61gZ8IzwHeEXV+hPYTy/19o/zyU0WSXx1V5ldpBOQIaVZobx4ye2GWEaaL6KQ7CIlDtHTaR3p0XeE6CoIDitxy6MCIag1WYJXpJtxMs0eEQfhbhwVBRrHsS9kcXUi90ErJxCVSVY9kpbjrhDbfgsoOfUfhvW+V1Hfyih29F2cUE9hHQtJ7RTWV8fspYTBDvBZaIVlqBKPBGBgcsCutNAq0aN7bYlx1aW45UAfO3ns3RHQmMmfnCexEeIKeUq8RyAtvGD9q6oNmSSqiWS2pVplhE1150BM1t2lRkcJWCzzmytdIHJjRFkBzUM+QF4/2EDLW35+VIvQ6yZXC5Qs5OOCOm8SQgK5DgZqD9gETvx3z4jWETvlGEfy3wR9U+a0VYjcfUi4hwMIIuswX1Q6PkuiEuBK4S4enPPsPZx16W5nIHI+LPhbFIjI/k1BbUDl15llhwnshs4q0dTVxPgCy9nQRpMCRPwvMsQ5htyRzul+NdMNwM7jtkq0X6MFrZS+371MHxKn8vPmzlg8NgUfHQT/sFljjWJbojusBEn/aoZBr69Aq25g6416H6YspwYMOLqOFfdFlIj77/yTVC+puOwRgWh6ACOnHowbLHXB5RWNrD5aKAueoQha1xzUxCzvTicH/q95/hzCseSWNzILAb6UlgRgWQvbEd7jfncHk9gnwaxmWH1HkMGmz/EWg7kGIkaFUI7bFofz3H61b4LNKPaEktoYPpR4suW9qdBM2ZwHQMR0GpsMmvfVjuQNjEK9K2SBMjjgs72FpaifVZBQgCka48WlfrAp1qRrJgQtmm9IxCgL6HQ9OpQcB96INzkqzwk3C/79KTUkgMNQDTwrxSMPGxz9I4Rm2b+lSOkd5JCXK/zVILCGvKWenlaT/C0t39X6AnqBuNDVHfY4OOgVHNp569wqsuXYJ9F7Jf0JtP4m/KtbT0LOqagtqFtas5zseozhDj9KXerXdX1vO0C3am3Cy+s8naviTH6IhlSMtLZXsvnsSGu287NOyTOXA29GkPeDZUYueaoCvt1xH7qBa8N34oqnCKRY8XgW2BZ8wqOsWiRicBTft91Dv0MfZn2NcpBRKvUEzElmqr+NqQBAuER8MPS1g9gG8qS2kXfzxA3lR0yLR4thRrJMGKDaHn45vGoa0FPYyW7uTX13q7/9oV+MpL8LZzJrQ/cq4vsEctFUpMZxaD6yVl4NGS+XRsdEOE5567wuWLF6EZ89C847AUiON4e02CLUGxEfvSG/Dyfj+lkj7fHyftjRfhxufgFRcGAjtJoanFuB8rwacd5JYi5yZ9BU6gS7JsmVQjTouDQgsaC9i6bdbFsVakL7BrNvD8KhYrI2WikHDR54vjXtsn8xfDK1GGQmAnCOytGD3pLuyiNxV91AbiWYU/6o2zrsTovfHH+S7LFhyMKsdpuY8CnVaRu7rkrJ0xQt/KHtd4bYkVTyd1ENLpRY9fWzPh8pEvDrxGN6lh3nGAKT0eLvi0in4wui9WeV7w+P8tld0zj/B7qnyqU2of4ONeaa55JmdNqJW4sssNDL2JkUD9RISzlNGdBa3H5n9MJjCdgN5aoPtVgMbbb04FHiDnRY/Rgrcc7DnYccK0gqkTu8SE3vFOxWh2wmWB73fwHQq/Fnb6r3j4TKs0WIC60Y1TmkoZTy1yfK9fVcHYUmwIl31E9ihyg9YOX4HGvIU+Q538gcdv10SYy1VMoREFybTIXYTJm1Z8S2xDTivH9lHHNpaveIJp62xg781ERd/FTfC0PeCo8xYJdt6iixaZt/h5h+/6TEvJ95UMeLT8ChCtVpH4RcuIA/NjmthZciAFEQwMbhmQSIHfxFIexTPjLWJKmg+qxQVoFdq9Ef5EsxuuKtPTOdNJdK2Q5NtTCfynX39fL7AZmLU9eqClODGxvwLaCHPvOQ1r80itzyeq9h44EQtYpcvOhPbh4fg8NdyxbBrviGxYe0Rxxb5FS2GqD/oHUKSmW5VBTocPXnjz77yT8uFFEOMhExtf3w5/P8dg74VnlYfq4bA/RV0vSSkfnAY3vI/WDMgp4OrBOK1ZOorfR7gZoNMq0w5VVmqWrrNB2OhFjQdkvgIHW0FATqkbw8H73ve8z96H67YIO6WFPWgKnRPkooNrM3oCe9SmQLDqGxMooU9RcBiOjwIa4ZRFPuLSBaJc07fYMM9B6ScFLUljPF5P08X+KESQjw/T/mLYVAb0M8XdOPXQuMTETwKjdFr2LyAJNEJQQxvLdVcKGkdsENqLZbElsKXKzrJjb7FiZ7FiN1w7bceOKlvhrLi/ov2+R043oiUm0Y83NqK/ZmXkGHX9lIal/H/HMb1bizoLHsW8ZTVr6WYtft7SrbqUsvP9WFrTS6yneEsQy7SIgK2GX/7g79hgjkdwvK646SE1YulgNa5Yhg7rcEEJBiEt87THfpAFknIoorBYWtqFLLTDnZWwm2D1m8hHWi8MMzdob1iUztK5Ya5f0/DjyK+kM7dx6IpEcwoZHcGGcTvui2Vn9yhYjQVZmvDqMGV2+nHRuXJ87pjubUAyY0q7ocCelGKdopWt4Vtx7MTOgxvp+4JWNbrqu7GU/7tFZ/nmw4aUokHlmE8gpRHViUNDILq0NDpvtM4rfO4Qnl7Al1+E3cYquHaaxyXmlVVNr3sW9tjnuXK4bxmbAD7w/g8hCOyM2F0pMXeFjUmB8ImNuovP9/M+s4cCe2T0L07heuhHRAtg/bE0b4p6a5iocqyalVonS5iOB8KlIGOQkwXbwEItXVpaS5GfBuNLUuR/Em2OudlbkZTuLbpZOuAtZLrSSL73aHO49ikMWvE+IK1RAV76s0fBVs9t4Q9PjWfzcOqVh1GcJ8DjM1TeuqCmeBw59sXiPpmCrR85nuL5C7JrajEUoW1kGSbwwEZPBLYNYXIruFwkhbvY1UubW5zxXfhbRAxrM8KvlCteuYQZREXNrUnIMUleBJv4ost9W9r/2l/7a/f8zo/+6I++qMa8lOXGcx/lAW/52b9EAzz+1oxxp4x2R9bxUssWX5dvNVvZEVN+fwRJlnbdrdHTnPLNYnYofj5Ht1yCx18DdsUEcecyM+ckwMMFfG0B6BYiLCpLQVcJ1NvC6vdOw+ZVngobo/YWlO49Ht6mwTJ6q2VydsQYl9KADQlUiSQoffcR02Bfhayl3wE/b1M6GxS6VWcH414ORHcN4bILApNk+IhgAZ6quHHi6NYOd2jKlJEvWIzhDr5LKactaRNVOd96TlYdbhXSLIFBbF2H7yqDkoWcondiOspASzFFU3xOL4DW6QrqmGM7H4teA7qgILIHwGcI0fIlC99fC/xH4EskfHcyoZv7IGOo5S+fr5huNzneQvitQ/ie7/0OjsnobyHnatdAcCNRjlbfZSOcqjITE1RijATUlFs1mag79YyHgeheYNkE+Vay5Q76luhNj9ymCOpDsVRkgKSYBkvVwBrBQvt55zdp7V9gKftUyoo3sP6N6GuPh5rkfXKKrKGV/QXIFetlyC1D7v+IPF6IQUcjYXge46LhoNeJJHg8wEEYkF0wxlhzU0QVOW1h4kyRiQSrfI7J8Cf+7HekAISKwWJ3EoNRKkIEOb8D15b9yYjdjkz7yiMjl8Z+IjAr+lke+qmsslC7aR2DMd1xLUvsa/hBSvcWOdHT1hjFWCJB3hmFlF9FxT0s7ACct4luRlTQqSKTiujfGi0xxwgXYnNEzB943qL7+fca6vThkXFNHrE5Onha050yXXSMWs+qzT6gtQhVZ2lXZVRlhdD9lKFUCVnJVGf6JPEe5k8EqlHFKFpgkzC3LqjeXzM0p8BqFd8pnQ8pWMWiL/tK6UYVv+WELyvGpUYT81cDVRRuojJoUvMXv/WbbaB3R3BSCNml4A59V48VdNPaBN9IB4cM8UjgpO3X5Ysxob+WYwaVMraLYEiZD9Jv1jBt0wkmGA7JzRrfHF6Pw2+iQiLPS3jvPTqy+k8x9zIwwNRJUas2FYRtX+6b+HKJshXfzZZQYUFZBYPHB/9j0cL/OIzPsCzJQvtwDww/mzJw6dJ8LHmw1Jghw8OR5PhCUwfzgt9kXKGLATS+aFs1b61P5H0QRBprS9gTEyTD46dNxu6XlvNoPf+1KyawT4Oo8OAIrs3hkd2cgaZQjvZS0sW9pliO9q1JQn9+27d9C9p6ZDRi5wQ+oXneIjoy8guACbVFdoT+/Xke3CW/XyJR94Mp/8YMHtwhKiIiipYuW9tbNSF8N7RQDmbIq88kYTIFwtyqYdZZjAe1tM2jsl+h6NJn1FUhUK4oBHbNyM1fAr6erASMAnsdeG8t+eLQ5TNYys3hcZH4YA0BoAskgg8IWS/gL1T4Tx+jqjynykVVJmr7NmbBiOdMUsovO6ibgGTLc7bpyIKcLUE2XUK2sodOpSrHIxSYxbSXkSYFeuiHayRUGFMhRxSq3x+hKzNEPhK+agHoTF4RivSsX6Ry30L7Bz7wgbTph+Ve0b6/WGXilW/0BH92ZXRryfhCxRgpokdKgVW1z3rMtEjK3X4RC0QXD0QdjfFB2+9Vg3Cr+Nugew3REv0M8EBYJDFoWCm4jwXECU0l1JXQCCwEaoTlTkN9fUWNCVPfoPCfvHKIWam/2ZtColYYXVumyPFI0cdSOcG64BAJ+wWBT0pxmIxGsOiS5roTzJ+9Ah25hCR4VuBBCl8eMi00Jtzak+xUTY2Lp+Lz4ZiKsgk641rPxXnH76884j3aBZi5wyL8a1ir1BZ8KfZT1xmWM3m4Ahyxz3yLKtIuYeTYEjHLoKPns1NC4z+AEYHzBM1oIIRfI8K7RHjGw8tQVls11ek8HcxXlh0v66DZiVpcU4JYwJOCvmoek4eBpykPvki4rF3zkWOBssAsHCvv6bxDPdSdKVIi41ehNE2I/fASCLg9hiN8dkwO0sbgPrxi9PiyIdGPM+VpRywQXYKNFA8sD8deNS+efpWCesnEXmM9mnhSThSfl5YjivvaoZqep+kg96GuCJO7oxXzTozONjnYD2q+/5MN373jJElqs9FGh7ZtEAiEAyI03iKwxoM9CtGy9EhtbPCWBD5ycPCWvPNtsRgj0aUp0lYB3LkpDCPIq+83t/Xg6sTS1sT85QU8Pr0PXygyLiTXm9CuOOe3yAItFKRX87NTWbSFH3OoQICdGp4Jq7wkToWQtXbeDjZWdOeRjuTyEMdpS0zx1cu2MLV0WSU0PvYzjUW4l/B46CvaJKKclp565albX2gAMQE7WLJ02iD3E4muPCOSFU8tTVp04XXSW9r2OsxtU1FHrqzK9Sn0676f0lr/WHTQKd3KJ8iqF+icRR4WVd4/rvlbToLAXkDjsfM69TwqH0Yuf7g9MiG7aF+5XxICDGAOHXWKI1AOhO2fUHcvtVe+a6gPsuIzBvscRkc/C/3UsP2qUDYEopP+uh/O+ARYFpu7nBcFdKlomOfbGDoRLHXqUahRAW0M3Zj8hMl9U0IyjPChzDqkNOlt1cnvakTf8hvHqOzrgrz0yj7J4DVhLJLFvJjPnPKNkKHC6OR+2JNngI9I8ewtc3Eot0DZx1Hb0taRSwhtkLzF470SOI1vxsEyufJQV0k4pfPwzBE8NYM/8Urbux64tANXl32tcjr4fGpXhpNHS/uc6+cnpgSKbRJgPGK66EKedtD0L9J8+70MM22U+OQ1wnqPEs6NnsBeiUmVD9SG0npwOwRAjH2J0fDt9UmgsVuRzs7myHbgpp0gnYIIbjSGhSFhHcoJsKfaU3R5ML6k6SslViIpiH8ZgO4Y+E/AP8C60ZAF9gYT4LvivIn0eY/svhWnbhgITuLYit3b0tp+aQt/0OI7z3PieDD03QUlvCFRswspgFspjGr2RLhW7iORDF/XvJx6KFf6tEPCoklyhpCVBOOG5cRxTSj4QXNR9a5P5mNcg2iFb8V4ZA/4ukGP4Rk1Pjqia6N4mIEsL55ffKHleSkM/rcSOT6Wv6XwpipYoRXGV5aMz2xlhjYGZ0smTPu4tEC78HcRI6a3RQKNUnRco4u2F+yrm5t1qdseByuN8IwIlwopM9bfSx3gLK/6NgaV3yXADPcmTBfKdN4xAd5cwQ8p/GGv/LeqvLm2NCYjYHLlmPGZUSaIsY9ADLJH0a/U9bAidwUOww8VQScjC0ZH6K9X/MkKPecyxMXBs054UPrjFvuXLP6RTgIu+tDGYFfp1E8cxD3nVsj01qw7nmrZcXHlaRetMUKLzqxHC2/5TeddspJYQJd1pgP6geikvCKjFO8Lj5tUNm5SyAciKY1bFKjeB7ydPD4x7d+2s4jK78E0q+2+0J2sUl3Hx3OWDVCFyP/OCJUL6yYqlEolxoMYPD4ybGlthjYtR46VaLKyz4EPdPDfe/hgZxrkFZa+cOU93dD5VPKc3m/ZZM2JVwx4NBzv9L543Dali0rRv0ik4xe3mizIlJO89EWUVll74IshxkMFUBz365jCLxY3eGwkwrtkhhjWUdHlrlipcqrm2nDk7Tr0cKhworDwG2jzcDCl+GxcpISC+/f9H9SX4keMXC96/E01aHz56Hi4i3UIaSwQzxZlFP0+lC726ASjk4IkBVZ09ZGLNdw8zpMRgySB+XmD5Wivc1CkCovRMaQF6ZkjjJGNAn2aG+216xZZ4Wc0g6BQC777Jce9yunK0hkEsFfBfJG58kEQsnXyOFjjkWGa5yBAiXkXE5KOBmPqJ5KCeKXq0l17TbhNHxmT+urVLCvLAK9ddCYozlq75kHYXXn7zrK9P/5hqOWL90W3hqWUYj2mYz4ywxH5ocOq7o+H0U5z+1ce5h3tosPPWrp5a6+XHl15fn9l99cSzkEKWLwaoik9+rTtQ/oEc+85CZ7QhWVcBuMgCsyVLlnpwp8kVw/YOivdH2IVBV0u3TxOyBkCyjk+j1mhYt1D2hQdkqbFb4ZFBvcU+A2SkBx3mgeLqxOYpSMs9o5g/NFh6qdarBZAU2aUYnbVpixmcmDRIc2IBB2P58XKWyDFwV5isE6HPu13U0zEPO1DBEFch74FphXHGHR4v9in81CZ8Vo1uiFMS3wx9h1V4QoT770GBqPRItK6SmxsZxaMTj3Zyv6eK/D28zY2AZHAxTFcCSdwT2C3e9/CXizUgzmH0yJ2UUTCnIHtxZKjMO8JhZCE/tC/pfYRcoN6nleJzGMpB8S6LgalRJyi6NMe4fqh34demWDoGRTk0CP74wTZTkO/H4LRATtqlnZbgkVgO0Dbtqe085gw2aKskF5u9l8HHgVeTl9gLy3t0DcIgJ1LyY5Bfk7oUjE+dhbFlGlduOukwe+A3jzlGYVHvMWGqDyYMj4K7GT3rCXIds0OmPuOSBKih0jXGPehjKNRTpl1qoDHx7sA8xPkYMnWM7cyvyCZP7QhLzopRX52SGe/H9XQdjynlnoOVfNl91CpJnj8F7Pct9D+7ne/u3f9wi/8Aj/xEz/B133d1zGZTPin//Sffj7b+bzL+Qdexxsqg23UankSx9dOac5OBhJfpm4lw75ujTbYkgochg90x6Gny3y4KPjbc/wE8wnHtO9XRbhECNImfZ/2PAHWDnHCCEuVtivCTu3YrpTpzTlbar6Ab23gb1bwdhdyMypseWVy7Zj6wij3r+xjMdM94VryJrggcDO8UUB3G/xJl9BPHvBHHh/S2UVLzXMClwPDUQbYci5aaGMXw4sIc4pMxNDUfR9FBpfrFGk9+yvPSWAKddmZ4DBv7b7yBkNa+WA1GwaFCTwUA0tSOIBKJlxUcTNgbHnaEUna6yhElvnZ34+l/knMmzNruxPhnQ7eh0HW/Ai62ZKobz486ViOx2nNiJMUoqAS+Nf/8qd7ShIwn/Yy62hch5E4rRpY4VmpslTloy38PeDdqvxd4CNthva3rdIW8NP+/fkdmD0mr5jnyCCuzWlRfcngQWYOM+OiA8thYGLnA0Z1qRtgdsOOvbBSKu9KaF8MQjfs3/CpZyhSAxV1Qv9QXXrlOAjqx94E9+NwnYTPTrUfLDqV3klYvGlqyycZy3xg2RgOzaYhkyKoy7TGz0hc2Ewt6wUaBXUt9hLIDGTXrD77CAskIXlU4Kf+3z/dIw83gb2CxsXDW0SQi1vmm1gylWFQJd5LH0KxAG0pDVLoV48cNfTSJPowJ6U1STGh/SzDec7MTH4AtjYnBWGOY7ndwO2u/90Bc7xWBoKtACxC5vmBNXtfsiXVBkOgqtDBgtlkZQdbo7v0i8Q2tGSBPQrt5etl+FvrTWl7P4HghkQj3uedWQqHyrfB2qwrQ4V1yyIpWhQuiiV/z9J5I4zxfFl0dPOO1bKjW3R0S0+39PjW88GV5+1dR+01p2MKDGBN4SqBwmKVtMQ//nO/aO3eKYR2KBAGYf+U29K3+MoxS1+RNGxxHTN20BZ+/QOBdjjHEaYaS+RVzmFrP8K9h4x3pF/DyOqJ3yg+j/cYXT3OcynwmUDj0RAf8TbhrBBJwUujP7wP8TA0uBv0Vpaa9XwcP10C0yYLtrWzuBjzJY1CW/AkPet4uA8t7bFs6l8KKKdZcChROtqC1pWhJzHBS4AzSI7tATCqjKcp2qFFnU3bUW8KGlvytgJNUm4HlNoWlsY3Sqedh6sn8OQJfOXFzLQIcGkMV+d9nq2kTcH/OwnuEbU3n3Fzq2YUEFH/4Wd+wZo3gvHhwlBOGriepHMpFKIL389kMhjo56NsN8RREJCHaNSLkx5Ky4bE+hcFeLBsnXvR7Wq2QjzI9midrx6PUkDJKTCPYwRh34X1MPdZgYsJkysCPB56iLp3A99MH1kXBfaRFLZI+oatfXIguhINWF5pTKsssHsJMHkR9MwOHHZc9cqDoog3hXQVFIq1kFI3O8Xcs6RhIkX8ibINUdYgG2M2GXASWZfCyh4Vbk/fpPnoLaYn8O3v/hw8c4Ok7I8nsBT9C/VEX/foQtoBuiPoYsl1TGhPsgyB5w+C+xezvGBoflVVPPLII/ztv/23UVX+2T/7Zy9lu150Obr9OUZaWNm9Mr5+glwaCLXxdTETeeNF4dMWShUs4Lc1MJNT0JBLVTHLpM5a/H6dtD04glCb680W9kJrEz8I9wib30bY3q3Zub20wG1e7Y4hK7e8suWVaesZ3QIubBUNH/SxeFS5qaN28JzYIdFixMSPR2hADnjCoj5s0bPjFLhhibkMXA5Mc/TVjn2shHXGP471Yl3zP9Ro36n0FA+qSOcRD3veM2sVOo+uOvQz19Cf+yj6ySsmtEdoZvRPIp83sRyQCUeKbh2v+H4VAtmMayOW4XfJ+qtZM/oZjGC9niIgkZNEYF/uzH3it1TopjVdu7KxVlgtFb83TgSqIgjuCJWDr/7at6/FJ3gQC2g2IytbYj87oK0drfcpUN57sMMhpgn5leKA8Eula4rQGy+QYA2ZwnKWN1nay9flFb+XcrUXUCh7H/4QFQ2nMddxuJatCe2b+vEirOyRwYjCHPQt7TFqeukWE/tI+Hw3fLdsbvk60piZWlC3mZpV/aQQ4E/UBPbT8PfVpv20SRCfBKE9fn1o2SjHZjhMRWfSWpsGGhgghlfVhNkIpTNNfBkfokOcMT2NwA0p+i7Cl33tl6YxiGlvdgLNSVb2qIWPvok355kzTpEdo0DrkUmdGIGJBKZh0+EO5k4ziEztB0o/xYSKM2xYu0oOIhbvJ1hUb6RY9AJ7YxMq1pQOOmhc8fBYSuFu1iITJaERQmdHIiwCXU5rq6nREEsjMZXk4SvX423uED2+C1G5I8S2VRNwP3YFfvJD8PErOSJ13Cjdpg7do8SfzHwYvzx2NowpQzVgDO2igW6Vc1zHflHc71mir2+IrO1X3gT2J6/R/dxH8Z++Std58MqHVfnyLgrqWcmahfeizL1Z1oFv+JI32WfblfldDxXaWtLHsJ5XLX4ru5QkeiiZKWYkFpNhoNwpx6IchhmFdwz5mVFZc3PDb5UsQI+K30JmSVJ9BQmaYvQMCqE21R2CfzlSKsj99DurJAm20SJYxp4ItIawHCdxDI/UYkcQV4uY6X7W0hCUwsUCKcdHyUJ72afhWMV7UkqEz5I1OvZxoairOAL2inHZFjhMA2fB6lTbOypaRiuomjqRkzjOkcbFFo0l+BfH3xaZBTRqnn/9KrzlrNGi2gVLu8Clbev8vF23tCef7wJWDmjbwUK5sjNmJDbeX/K2N1n7JhX1csk8zrvfuOTXEXLlAL8QpsSxOV/75RFcP02NsCB0wSoeX2M52rfTWlrAruQzqBh/tipkacq3LTXFusZ+ln1c9C3tK4mR4iVY3O16Fksd/LX0c7NHgT2mTi6t7PHaD59F98LSIFDSdyn92dM9KOTP7KI3O64DD2g8z80Snc/1Yg+sPIxrdoHjghj4Yt4SOQ/3u9EO4pkfBXcnyCduIMEnpz4EPnFgdC/0Q53gh2tEDNWSAjRjtFPHsJqtGAHnMJ7B+QIlzAtabS9pecFCeyw3b96kbVs+9KEPvRTtecnKcn7EGBPYJ14Zq1Jf7eDClN6uuoNQWwpBGj8UOOvgVmA3fUiXEfPZdoC/3aHbk7DI7brq4MGgYZSiXlc+tqSy5D9UwHR3ws71JTtqKSZ2vbIL7HXKDrDrYXJ9ZospWKvWAm3IoH+UQ2Aszm54/u3wPR1XaGuwKe/Dwp4t8ZNR2mhXEBqEMw7LGV6M38YFnnyIMMJfMqSx3AcTNWQYXSCq+2raTN959HM3kZ/8HPKBOfqvPot/8mpmFAMBLh8X7wv6eYgTo6TFuM1Wdg+Ef0dMUEqR4yUThN8G3oYZ6xJEUiwwk2WdEt7h4L2ATmpWM01WLm6Bm4ZUIs4lFK2rbM5e9cqH++4cGHGugecKptwHS3QLtE7ofFYqPBGIbYcxal8DKVNA1wo6qnL0zbsJb/copTBbjneZYi9WmcZ5cD6Pit+kA0/69aY1NgVmq/7aWnR2OJZlyGW9wFIewoXsxA0MHp/WamwmfVK0T2YIh3XF10s1eW6hJpSfBkH9JDAEp96uudq10MwIR5+w/qkax6rJ8Hjlefj+5wmyuQiRZpvKlFfBujkHzmn+RRTYYxo0WbTIyITos8AsmM5jnQ+9/KE0Bofhycmn3WVLklTh9aUKroes6YXgm7q+sNgWsVQYfK90s4iHuVmiXXLnGTKUpbH2Bjl+QTrk1epIqy5y3R2GCBkO6Xag4SdR4aSDhTUgkANBzOiVmqV96nK/Q+d3ybBioug3rpI7Q6zDDGaaBATFmrwi59KN9QoYPH5gdePJq/BvnoGPdvCvnjbBPf4tCsD3KuWGKjfW3Bt0N/ZkQCskNK4GFlWNL6L/56G6j+dD8mdNbfcWCLb7zA38v/0c+oE5/qc+i//sNY5b5bMdvNlb/uKkqNXMZPf6MvMwMsTAqx58wHqw1Zh1AHrCowznGszNojHI83DYkhKzcRSm+PR8DfWmj8J9Pe1ppskXMaG9VAbHaqPfeI/EFPeyifF1hEwPVfhpj2mHVsJtzH2wdsVaDoaG1IYGc39LXc17f6maBe1FizRNWL+BdjQNLDoaLHVvv3P9ldKy2dJe9i32L8Hci3717q1CU3Gbgu8QYU9sTtvYlKkkI0rqV6ik7bzFTogoMsro8WWjhLHAjKTyQcdjmIX+tR69OYPfO4SvupSF28jUjSuzGF0Zuh/lNdqzsCtwvIAabo1r87gSeOjhBxAE2aqp562d5/G3FC4bsY5lZ8qFTWfXCyk9FKqkseHSji3+ZQdei9R1Ga6vXll6QhA6NYVzkaO9PNRlG7htzh9TlJkawmyNZHedSd2Y9Tcqptvi6oBfxtwsz9AX2DdFji+t7JBdPg/on1/QP8PsR66AxhcIuktCd+0Ip8rFnlBrVveqtLIDsljB2OVYRAmhS/I5j+MwDEg85PEltEsqsasOr99wHtkFZrDcB15/FnWh/pBOe8OpaTG6CG5xEtyeG8HPVlwMDUtLH4P/V/oSCM0vsryo6PHL5ZJPfepTdF3H2bNnN/zqi1umqozUoPGjm4FsnglHhBSbtfBnhz5zbX/OTOEehWZ34vAzn4QiB+hxh+6MA7NnTJwCl8QOh2iJHmptYnCE/m4L7/cnVLcXTH0WplDTHbl4ulyfwwMNKTpZ+fuB9Bw/igHMSs3VWbFNfVlAt0A/s+pt8O72HH10O23i5whB9pA1X/2KfLiuEdgpAR6/gQm5j9LbzBoFAGUnWPKOgXOfuIkIaA0sQD90BX3tA+lx6tU2N30CdkiOYOkiA6yEtBbhebMOtsKBLwavvSEZhtMpKZXE+4GvJM95hDOpGAPSCnyJCD8v8JlJw6sE3LLjdFSxPV8x2WvyNAbmXwScq3rQ+HKqH8ICIL4mClFYW1qErhbzEMDW7dPYIXAd+OuqPOZAO/DYQdWN3Pr0PM8Dc40HKl7fxpiVJMwWBw+Du9CPxmt15TztWv5gx8FswArO2x4M7Y7w7+dZIu8Sx7ns303M0l72YXgoQT6wDrDxGB6qNn9BcA/XArs+CPwC8B3Al2kWECwI54ac2GW/heDTHqJVCwGOeCff/74rUbm/sy+ZoA3oskV1zC1VHmeAWoEkvEvbImeNNk/F1kTP57rgUQ/JDApRGRqEdxfbe2F7cwT5MKCiLUxGafAbJ/0818UYKUBV5SjfqmuKp3g/wCDEcVjQnO7NlV8MVvse5DMykE5MIjhc5PNq6NdelizdpPYByFxNEdIzVVgbPwq8qYM3xDHeqntC+6YYFJB9ItfcWaJAWYw1XuEDpaMO8P7n4A0P0lOk3auUgnpZ5j67wUQ3iYgoKLZ4Bcyqmno5qCdP5/2VksPUwEx/5IoxfyNgAf73bvHhl1/m5aqcxfw9S1/TiLTrLZz5BujvzqjwwcjfT2dR2ejTzs64OwyTipjAk/Kq5W8MLcjxfswgmFzx+gzrweji61Oy4HknGj68Ryj9DGVa1he77hWtTDjfL8m1GM08CX1UFJ2Ab80NoWyXqMVpSRHf2xXsTlI9iMCkQZY2R8sk7PfHP9a5oEgbfod7LDFPu2xA5ngw+H9ds9CA0glGlO1iTCeCRdAfuHvFqWzbzmhiHdMf9ttQCvAjISFtQGHXIpxrbNRvXIU37MPZiTEotQuHsg+0dQrXVvBK+gJ7pwarjsK3YrNwuEInxhNPEFO0+kCTprbOp8uOk5HjTBzuaHmP07DsLFhgr1Ph7oYjfh9FZHO+9mlttPfqCbx8PwnpZhnX1KADNR91UZDbIOcmqUmRzxewDCXLJaIa/LrDnElp6VbzaQ98SSt2FnnNOdlb7Pu/Anw//dzspcAe42wOz9nIb5wlI0IJzxjGi7ExtXZYfCaStVrPjlkenTJX+EynvDaebapUIri0HAKKbtnipqYwSPEnii1VXifcJd1b0S6pHFJ5pBZk5HCvuEz7nY6Tj97mx157hr/+8kvUTRXSVgveuQ39iz7tpLuK4CcVi9XSsj15eK0G3jrcB6LiF6Xct9LgAx/4AB/84Ad710c/+lHmczsJvuEbvuHz1sgXUqbb59lWg8WPvFJdn8FFlzdrJFqlli2UFIWYbKSOXzuL8CxBW7Q1QhfkqPGAP5njdxsjyAI3EC5ICCAmUigC+jAWgJ7Wr8TPnq3hpoFHHJYqplJybnPFGNSLxZIfRscf8Nh9v3bSGJyRIHwSDol2GSIlm/VXZwv8VhTihOsCFwspqyrqjdD79NDyPnUJkpWZKO3f71GGlkow4rWF+fnqo2fM2h2yJ/k3XbZHRR8l+o+PG3tGmZ82BpAKzdfwvEWHjOv03G2B0/AmClhdqOt3Me2oI0cRrsWyBDQi6fXbgfc6hx+Dny25qnBusaDejQcBFnjOiQWyE/jdD39iDXINJrQ/VxDjaD1sBVZNRdeGQHMYEuD7gJHCgy4zEz5Am7umygTvTpzJfZQoV5SEehXuJaNXPmp4Eb6bhHbJApZCztMuYtarKLTHDqyCRntY6UCweSF9G/qJxXVwDfNpX0OhDJpRYQzeYVlPsU49GVnckSPKvh/4bzAt/F/Dgh6u1MY2WuYTcmOIy49lJOY6EDuzLKDH5RgNS7Ee0hgERRFti/7nz8AzN0MKt1LIowelk8NVyhO1I3AS91KY149/+BNpTA4IgnFUpgY6E60cIsD5acjVzhrEXMCUN01OHTNlkPJteC8t7Zqt0Fq896FtZ9msgIoR3YHsGnQnyOeZqrC0h89KK/bdSpzqWYc0dbHGhCfV9vs1hB8DPhFJcNVYDuii6sTEFwJ8FNrXBBZh4AIQ/vCWy/22vfWB/ibheQSzHQjNlue+j1QYkicJjVs1VZi/nL60rPLezy4vq6NVpX3DZXMzWkG7Df6JM3zcw+s17+kYvChGjq/KdQA95cMHn/y0fRYRBKdxT+Y1LKE90cWEtoVajMkOQlEvEJ2AjoucfeUcF1WXjG08A+PzyuV5DlPwDpnu+LsyQFtq713u8fsz0pLo1912UDtu6TpTvy1l0EqgFhOCGcytGi2s4/4/XFoU2N7BMoKZKTqjTi1aWYf8QunTPiSPZf8k9G9GuTe0P+5dh07MAHJG8nhXTphgwUUBS8u4ymk0VfPIt8uOVkz5WDbC9eiifegwFGA6O6sGPQ249IMF/M5teMelzMSVlnaAB3Ys7VtJi2Kqt9JfO/qAz5Xu3BQVYRyMHE9+6tPWxNpBBWdmC04KepBh8tEnvu0j5F6ssj32Z+0ucGkCVxepPz72pUCmnAYhXAA5WSAh7pALCuQ0iTsN7tTmrEIt4B6F8ia88HOFYBxZSbCsu2hxt/n6CLbWv4wBNB4T2Bsyvz20spe80+347HAvBfhUnKV6iwJ7FwxSn9mZ8F8e3YfljP9B4ZMrpdLo2x4EWy2U8ycraGyfegIEXoJ//ED6PKV/rgzZM0L/3Mjh6mBpH1XIpIJXXab5tif41Kse4GBU4RuHHzl8UyUBvV+0F4NIMZ7qqXHNBx/a5XMV/CNVnmxt31ZCgsl/sTOlPS9L/zBqfPRr//7v/35+4Ad+4PPVxhdUxtMzbHvzOxkpcHUF57fz7JeCbCVrm78HHyf/+aJYLk0F/Li2w3HRZt/h4zl+P1smnwMuBalYgsKy9PeWjQ+V3C6AsyO4OfBvS+bT8NnVUzg/CLKXlBNubaGV/SqD0Z2T7Dum4wq/aMPj1Hz2D0D3RrbpxODxlyUKlTndW7Sy9x5b7sC6KoT2ARdxH6Xc1L1olarsqkXW1nNbdGPwF8F/9yPw8guWjxyS9nQI2Y7GiJ2y7vBZsrIDzBWpLWWUYNDmW7FvmB9SB3wIuIQJ0Sntj0S/9mB1F3AOvsIJH1XwowY/a3kGOHs8h4lLB0IS+Jwpgj75iafWfNodRQR5IQWhS8LeyCW41UfUBJa3irIHPKeFUNJ5+23twiH/wg/KIYM3FAJ6cNviYsN9QuHTHv6wFi0ZDPI9K5zHwKCk8fAfWotfREnbUvvbMzKUPYG1eOTws33W4WuFrGAuONpXDP3MoC3/KwNrvA6C0g1PQrCAaCeFrXnZ9VNQlWV4aAV6o66I9P65m8gR1B9rGf38Z9n63DXzg/aarM4xkruoIqsl0tjjdkU4igQpzO3vf/Kp9LhDiuwOERoflJMuboRLI7gxgHAWe1lmLTK2/glmyVqEwSnTNhLGnsYZJ695Luyuac4jbP8MfdqEkvLSpxLTfJWam1LhNBnDYRDs7+XXXjLPPZ92jwvB9gyBAL8exrPGXBD+Y+zHqMKH6Opl3yItALsfhf7FOns0mGK5xHa84kLG8333Q/Cqi5nel+fZHUoSTIYbASxeRS+QXzGW5TkKrKY1vjRSahIHnqfgbl+OLvv+kbN0DazOw/KPPoI+eIHfVeWtGOKrIvu015rztPfqXLSWolLgY599OjMHDjha9Oa+VIyktdytkMbZ+k3rVlL1QFYOpdzascqsqCnXe2n1Ks8/MKH9Fv0piWVGX5gdTkc5LbHeyA+twsM13qNw60FrYSYZxRJ/v00ReR7wdZVSdYUhS6+XGDweVVgukYn06mLUIDPPiMKnfbDmcl1392kvZecJcFIMch7nGAelg7H1Iyklwu+3XYSyG8wXbdO4pPYotKuO1Rpevz/Q0Ve5wtKJxb/puE5BCvU3r8Frdi02UuWM7jWuLwVeGuUI8pDXVDSGaNy3oX23lXY8Mf4nLKKnnvpcULQKTBouzDrj2TaQBoXs1rY24PKCzm7ZJLDHPl7egWuLrDjQviIBhSNV9uJOO5gjZ10hWBa0cWsELUjrOUtwV6PoY0RtzYGmwmOR4lcSlfI5C9G7ga/HBNsotDeSU73VxXSXV2nMOUfmSYZGhrVjpTwHgyLwPym07Yxv/J1nmVy/xa9Hgd0H4Z0+L+7aFTTCRIxTTsHopOCZwvNOyRkr4jhu4pGoBDeqkLFDxpUZF0YVjCvqScXtSWXnWV2hldvYPw0DlfoY5uW944at+YqttuNU4Nc08/2VZPj/F7PcNzz+3e9+9+ezHS95uX39SZyapR0FbszM+rJxo8qaUNuHj0v4mkV0j4teK2faz9MVujUyi/tJi06rZHF6zsFDYWGsWdqg/9yS0pcM3LmpberWm6RXWlzigXLzBN5+bp0AxYcVRUQypFwiv2vf3ybkUxQMMnlqh4tXwc9aEwJDOjsV4YrAE6EOGfSxin3JD86v67rvQ/s8S2ICIrMYhWmKtGDzztLyveIi+rLzeeMWDEv5eCULkUkoCOMbYYmRAZeZR7ayT9w2wo1A2FL6CMzq+bbYXopgRMHUWoskpu6cGJz9cDzizNzzrMKXz5ewVVMFjbmDFJXfOeF//ye/iSMf6i6e8xDwH8ntiEulA7rKWW5KNSL8NWEsH1Z41sOrrcv4lceLwemju4cNyvDkvHfZSDTJriaRARo+YtOTtimirAcIl70mLwww3+DTMjexmjA6XtsQz7c7ayWOc29bYu4xU+ygFfr7Y9OBtEc/Lcumayi4P4HlbY3lGzEGMPnQasjfqproWOpvvMYuW9rBBIkzAy5w02QUjVfAR8H949ftMJyAP4Qv+/gBZ195CWkdrrKDvnfAL1pkXCEIUwlQunSYCt/0x7+J47BoDsh+47gi+E+6xCCcNzTDN9M+Ds1eGqMc3zcC88EZ0FMEJUttrGpgLcMsGDUJMFBEnt2Q7m2+KiJ9lfMRXp8Zw/Eg5kficgYE8w7wcVl4ZBxoFEYz3gn8rAgrsX301XGMR4LeaBOCIFqjNTw7Vn3EOipmaM1Za0+EkLziwjqHeJ+oqo2S9bw1ob04Kgl9je2J52tbV/i2LxRA4TN77wb02t6qmgJ00dKNa7pX7KMPneOpcD68kmB5UqVGqRGLHC+sK1hmLVw0y/qf/oavzlzsPhaTo3h2cu8oOxEyYkThNaGOJL/uZWwZV+m3SafltWeROgEegR6JiNc54FPk8Yt0D9bjwZQyVY++h3tcO1vkYHQw2Fsr0LriOn34OCLska3+IKirzEcckoU89nOlhUJhYQFJe6RsVMPxwtxuNK6NuOf7i2TBwA2muDN4PynGaKO+atFBZfTjXGTbQgUx/oSCpdEMlvbSLxqgXXnE1ebSkNBHuRFl20YSMmXED3ccXF2ipyv4wE30z77KrMUxeqKTBH0HCRHWV1ggp1BJoLMaX2vBXy1mLC9tGbkT4zW/6Zu+Bpbe9upkxOWl51Rz9Hh1BY0FaLvs4/UizulecQ6ky0xwHPhLI/ighYS19uQUdlFoP9Hg1qEKsxmyfc5ofTyLXDCENSErwWzJuKkt4J6SFDZpa3egk9qQkIQAdASLu9h6+zXg75ARm0OBvQp9EDGiPqTLQlhPpG2xBpNPJRxgySIudg6/88otbh4umc49F28/y0NvUeTVl6FTpNZCER+eu2yRxlqyI9GVJT5bUjuU7JIzLJv2lTQV4hyIR503lIK3Kb0hwitHFb5yvZRvXnNliqQ4TQrB6q98WeV4ajJCVyu26oavo0AN+Odp5f48lftuw7ve9S5+/ud/fuPfrly5wpUrVzb+7YtaSgp5/RgujvLJUQruG2L4D93BIz91XgZp0bYd/rRNB5+egN8bB1in8Bwxh7kRv9Lfe33wZTNEfjvoVg4W+asx/GQM6HMbuHjvyPGpfxv6Jph/+s3QNz8Z2eES8vfq4YJuh2RRQ+FZER5kkM4u9rFUHITupTINQnu5a+Nc3Scfl9oehJFo1TqrptmOPpp+YfZzH4luL7hIP4r8KdkiXjIqIH3Yz9wjk5wyZl+y9YEgSCrwAUxoj9Chmiy4jyLRraDGkApf7uDqzgi/hONlR92B2x7ncXVi52iY26hcygKClQcxlEcc2ki8OqCtHJ2DG63nswpvD/MS/eCTBaDt8IFwd8PF+gIOzqHM4TFCfaao8o5X8bwyV3sabxcIcVnRpM7BDiMtmJGjog+5rRcBeyot7GVfr2PQeOjPUfno8rF7BH/u4aUZHh+fExnBEfAwNi5PAK8jwOrUGICVmmUoWdt7h3N4M60MhZDGKfjYxe8O42yknwsRQqRVzO0q6Gsu0lWYsnEXPvTYHmOviPc9q2zaU6cYzE1sDJaIGbYjnS3G9YgcvVwjv+XCngjMUvIFLyPIR4FHFbo2mSYEC1a2jGOj5fPsOzrK8PgkpGh/jm6S57qkTb05jxUvO4tWvTYf4dpu4Hg52DBDYjkopclUwS1WyKjKzJsIr3HCfx3e/xWBV1aBNkwcuuh6661/t7qP6VtDevEnlJzWLrVXjeNMmqiB1HKX7pR96dcZfr9cmZtVbEhsR7lEw4u2rpOmT8tJK+u8WyloiAaBfaXgT1fmF3lkCo+Pe+WNaJ/eYxb3BnNtW+tzRAyUB7GI+fseF2lRyy6F9otXaMGN6hCTQXrVJ8VTNMMVudqHCoxyOk7pM9AlLb5Ajh4ffx9fn7IOj8+tWq8rlii0a9GYuO68ApXjWGHbSW+YtsXgwxBob10ld7iygW2oN4XQPQXZzukCRTBtQ0j5Bmr0UouhL5RXS7J//LB/5XspxmOR1luuSwG/9FAFhVjaT1bDhBw/kJFDF8V+LATAbqUsquzPXu6DZBhyVu9YJOXE1vAQna3gt2+ir9g2+HtpZY/Ce+zQhWDSOAi1FIrRtLUiolEVvTXnZBLjrMV6ikB522O2Fhmp5AsApp11amdTVLaXJu0XfmQXckCoJ/bx4gSeW6Lqs8AeecZA004pUpgeeWR/lPrk4uy5gMPcrpCTFRO1YLFpHelgrMaVRY0nKAUlB6B7L4bWe4IgsNNP9Vauxdi12D3IfOEZ7sBfkHkXCOeuuCCwZzj7I0/e5s2fbjk/97z14yte8fEbljWkMxRQlCuI8Z9OQEKw1R3gkBxc1hQBeZuWbqmbecBM46NihHEF49pyyE9rxpOGm5O6Z2GH/nOsf7nPSg5A+7CD13/6Nn/2N3+fv/rMDV4bWcWUzslz3+5cn6dy30L7D//wD/PDP/zDG//2Pd/zPfyZP/NnXrJGvaSlC8TtmoeLIbTKJmjMoJSLJVqnBIsef0QR0bNpLJWYgj9ahhzFTbL6PScWhM4e2/eVXxv8/gq1zwISgHMCtwf5MePr4O/O7ij/pmz8BmGkB6kOSAINmuuD+PUmLPzZyvp30qLbo8S0HjnzA7V0djn/fOxjwUatC0bjqo/ZXcND3b0kSH94FmoWLRQa1GA4nRphOFxkwjSMcjrgHdeEyCAtJUiihs9XFn029mvLCScFt9hiAvAV4C30BfYKU2g0TnqE1wk8LjAfj7l+ALOTBb4GqZ3NVVD6uGCdB1mLIRCJ5gPA9XA4J4FPLMBJG/IWf6T1vJlAKDX4wQeBvQPLCTspLMj3npY7lqEbQhzzYbo3KCx3xZk8ZILKQHSpznLfgAmiCfIdvr0gQEUH6/JFlsCHrQnU17Boy7H0tibrB9M+d7a0x3pLK7sCT2Fr7EexdDCfJPizsw6RT7b0oSJt5MyVIJa2QCTca4wCVMQ7QWvLqsErztP9yUdY7sLVV19g8cA5CNHFpTMde3RrwSvSgkyM9dgOc3gQBiW6d8TrgJy+xokduDFYqEAgQrIeQT48E7CUb03u3wSLSWEMBSQLZfjMIkZqb16G1rMD7qKAilb+pBQJMQOGqIf4eq8eKGnDvWCG872gncUz5GSFG1d93lTgSwXGIjwUuu/B4pesuqJPBWy6qP6QQWaN2OTYv6GCYVGuqYGrSoL934Pgb5IqweJVTPqnaI6hIuWNtqqzo3JZSTmB99mGToPAjtLNWvM9XVqe648ovIZsZXeq2Zed4swvn7lscz/KvbYzhpOuWHB5/abxbk0Ir0ZVsp7mmq0yE9xDxTHYZGhDmo7BEMSAckNaBYZyuRWrKIeI7NO+iW7DOtmJ97FqjpNX1hmh1yGP+bnwoziO+xKDVgZhYFJZnvZyyajRQqfB0r7qbBxjEMPIqYyA0xV1+HGrecFFGTnWuSKjp8oy3MYQAvpp0BkVgn/cZ6w6OkcItCc9knAO4TjwFTqq0SUoeW8mK2KrrOqCnuRepTeCrYWRwNLlv+nIoSdL+MB1NPqyl1b2iGmPhqAIC7yaU6PF9ZkEXEjCKPM5823L0Y6AJJ15oNfjhjNHIXtAmLCSlCmY5qIZ7JHhonq+JZ4TkXGFcG5sgQc9bpOgrhrWYujrqbegiTJb2lraGqUgqClLVDhHpBnBwrONMkfTpCVhfdlZZp9xZUp2MV/yGLMmRo3/Bgrjj/QF9nowBJt4CyEbBWBgZadYj+G1rwR1zhTx4TVPnIU9uHQrhBN5/Bx0Htd5pPUBSk46C8QDYzvXt0SSsaWE5sfnnVAgXOO94AHL0utXsU53nXCrUPQP0Y9l8RGh6fLfTp+5xQO3Or7kQ0se+9nPIU9dQ9rAt6y8pbBbvRhO+MWXF23t77oNubb/AJRLD78lMw4h5QLnJlkgvoPlKJYeUy2R6ZEQNVc4CD/y2yODkKuiR0t0nxQ8aQEciPCAmP/x0Cq6ZuDvEY+ibSKwO4Wbq7wCI/eOWuT4y4FgD3NPlqdtUUoNnBSPO+Mk+WYroDugJ8GP6tCje5Pgzy5cRdh3MK4kPTrWUw0fW55EYHC9Zbe+k+D+mCiKOdLMxAjmQ34UTla/DcyWPYs6IbgIuh4F+pgCtRpO6nQ2UDzndIWMcyT3fcnKjpjT8n3AG7BDOwYicmRC24hYHBbJwegcsD923Fgs2T1tkckoLAFJa9CJwYAQ+If/r3+zMf5CjFZ+VehZKyPcCoEPrjq+zOXfPKRKxMuoKr5TfAxiLBnKtHZo3mfpMSvh9SnrqYWGVZfjD8ZMJnh8+EKyiJYVbLkAL02dsnsZvOol0toPg5rE/t1g3Z89zlNcO8ND9WBQT1S69K7ioH0aeBS4DHwn8D8SoszTF9jngXldm0fExiQFCtDNlo3eb4pSOQsAFS3t8bB/5Dx8/aNsXZ+xrwqdRzpLg0XYsw7MvxxSyjcRiyAfUzmpCP/mf/g3aa8eUEQvF3r5cV3pVnRhG64u1wZTFOTUmMBk0Qo/W0m/g/Z8LAZH2yX5uMfwBEb8BtmfHcjuVeWwxcFf+LUc4+lHALsVzBZ5zZZcxyYOZCjYxnGdDPIGh75OQnsh0IZaUN9axggKXlzze8hpeTYxhBEa2WvbabH/NgRVu6+geuVGKPt6QmAIrYMSGpK3dJ7LeY0FRiyqHtL++2uHWdm7eF95uhq0XXIMPIvyBgj+7DlQVEUIQLepT4uVKRiBv//v/pcCYddkoT2UiCZL5GvZgkBVuayQA0rhPboPMSG4wATGPA2nJrYilhKqOqRb54Cr9Jni+NP54Hf3cwcTgAsVVV53Ia4KTjiUwhJddOm0qEjHFTENhIb/lKCvUTUr+nxlgmNt9C1Z8MYVrJaWhjXQzKEiLJYlOWhWr0/l+gufRSvoHF2beg/gO2a1ibC74YexjpEUgUlHVRiTwfyBIdWnUZUfGzJsnwmUPVSRiGWpuNHCGQ8P7VrQzcbZ+DQl41oM/oUduFIggaKlfQiRX3WwgJPdSba0i/CT//bfQ6iSrYqtxYIbuk53fFRyzAn0cjC4L6pI7htFH2tnB8zVk5TyrQQ5ea+caKCDhwtkL8SMckXmisKoxH4Di37qvzCDdg8Ip7aWxJ+1atHbPYZ8fT8mtPcC0EnkI0nurUXPNgajOwvJr5ziXrq4xM/VCd5hVuuQOq19+AL/8JseYf7qinZXkAfPZkt7q8md1IGlcVUMyg7siQWYTc+MQnN4H+NolPSGwWugZ7Ar6RLY+RsRG0NyW4ra5r5stNGHNa1O8J+8bV+egpwAH72BtEEhEfrIssvKxC9CuatP+5NPPsknP/nJ3mfvete7eu8//elPA9A0Q4DGF7fcuPKxTBmvz+BCoISlkF5GkR+UuBCioCSQAsmdFUv5cAnMqn4SInqedPjpJAlJVzE3nF0xgpzgsbJBqMWeoxRtLHfehSncXq2vRMUY0wtFkL27RI4f9q/svgDnHczFiHoNFmwvEBV/vMJvT4ywCjyrcDkeB0HDGIWR9NgNY4tgQvvxMvcF1g7Ge5UevQ31CHaYngLMQM/uop85siigZdT4ZGnXNF+wLkQ6yfWixZidrJAtF/nFlKYKpJfq7a2xnWRYfPRhFzHBvRFYBeHdCTy0Ax+/vsQvRxzuTrggLnzflD9VGG8Evve7vjWfqdqf14eBZwRejgm1UWvrAV/BfueD76X1/gExgWihYe5bRZuQdz5O05Ajuc9SWqLLa2i5GwqxSbDV/Ngpgzzt9BnItCimlUFo44JtA9lOuWyLfrwIJqD0vRsGorsOvIz1/bZJEw7GKzy9oW8lkzf0I30K+O5Q/58C/ivgt4CvIMDjCRB5ybDOBvpzOanJDr5iEa1Hg0G5w9yLE7Su8JXinbfDrxK0FfTRPerffoZXXz1CHt4zK3vrkFrynj1dITUhOJBVviViULqgBf+WP/WtxNYdY5b2SF9cGFCXmKawiM5P4bmTYmIkR9xegUyyT+s4WOwjRG9IibSWhETozXGxpm/Tz9Ee78kFoIRGz3xh6SMvDAlvthu4Gb5fQsLLBcHgdfldQFYtbuzC2RWUGmF8d8NeTyiGxqU85sM1XK7v0jUhXQLOF8uibO/Jygiyx+j92claO+8pNa9NBnkzbG1QwKUByC+7LZCTNj27L/+bm9RdowJr+jKt2n7qFLoZ+P0R3cmST3TKy2rzenBoCjyXAo+mugYdOiEFivtzf/jrc9u3arg1T2223/p+hP55i4yMgY+Q5zvS6ClrGVtKwb34mDn9SO3lfJ8rm01/Kc7IqeLKaRmS2cR3hB9vkdvfE0YDzW4r4ZRCKRZ4sjPE/M/xfKpS1pNYhyjMvebxP20NV4+kgGQiYuMd9nhDgMdT5OfW3IE5G6LHc4d+YnOf1FfaXwLedxzVzhSRA5btHPBU3KN1ZQrEmLM8DpaCttA1GTkwHHsRkitR7cz9CAR95gbul57FAXpF4fdvwGsuZUt7tGIO0amXtuD66eDQCyl0faHoO5qjYzioK7Oihp9/67d9Q27jFmw/uzT3gQHCx/g183OXcbV5r7/Qs7sPNx0oJbbRq0v01aFfPmS5UDgNZ8iOaqDjOUd7iWhKyqDRGDmwvTKPfYygIwVdtKgzP/alBLoiQqsmwP8KZvy5RKEEDDTFMhCtd23IW8TzaJeMkoF0LPb3S/ybE6gqtFb8ykHlOXCOZx85T/3QWfj3T+KePEBeEwT3CImPbThdQZ0V6SPgdjD4lYHo4nU3l5xhF2OfhrzhPlmh2OPJij4C1gbn0Kozwd2Z0H791Wc4++ljmkN7gDx2Dtd5WIUgtzFAaNWhk+ruZ8bnqdxVaH/Pe97DT/zET6T3qsqP/MiPrH1PRHjooYde+ta9iNK180xMri7h3E6mYHGDwsbI8bFES4ktDiOEKsI+5teugI5H6ML82Tjo0HOTsEiE50S4FCS2uJGjsH4HA/gAAVAcvvsNfCrokHyg+rF/10/hwe3ct/R7+/GmhRXbEB/jQgO3gArhphrjrM0IvzSLtB7N8Y/up1zMzzjz148EqoRnW1NyJOY15cjI5QjKa1ai+2CiimpdsJ6ZgK2cIfgOLRT2t1CO4GSJnpkmi7tXMuEsrhKuHT9MUF6fmW9ZrpAUyEo4gxHauZgla4UJ7X82tLHnzx7WQV1JyJkqZm0HHML1Bj59tqFrKn7mwTFfp8obo6UdI4JRmXTxwhlONK/TuGbB/Nqj5dyss5ryfS4reLM3OFODQQF3gS2137wSNStHXQdLO3cIRnd/ZTjOcapPuHPk+JLxKe9bGOw81RuVLm6Qp31awXGhX41Q3TXfuPiFF06ASyGnlM1ukgMRQrk3whO1398zZE0xkPQNsf4SGh9jAhxgQaMcdih/F2Zt/xJszS01QOg0pD0Ka603hTFP9Mqbz/8MaIJlY21CNoxTtLQHRk8js1c7fv/lD/GqJ0+Rh/ZMcI3WbsLeWnTIdh4fnCFXjiSP4965MwldcZusWHMQgv7kAECZsRzB717Nwm5sfhsswqM6dEVCzvci7dTwXgnEVFJEptS+EdPp3cIUZJvW8Vr0+KXPYz60sguwP7YJjsFH4+97kPI4QAP6GbhBOW1xIfNEWnOBDl+gTP0jBpGdZToR+zes+hBjHmMz030Ij48/mLWw56yNZVC18rt3tbYPvhPvUfgc5De36cx+z/FzX4ML/ty9qPEFXPmuJRAtixqvSfnZHXvaCzvoyU0+sWh5S10lK3tyhVKlcVlJlUrqC6bAEeHCmX17iAA7NTy17LUhWtqtW2rBvOoaSxNvB3BS6IVz2u5igt7Sl9X1FDIlXT7C6Gy57SPjH8/HG5iSqvzdjP76GF6lUFCWCcGnfdAW33XQGJ0T1nPAT5GCXipaBXg8xfyqsgAmcd8sOqhzPJrUoMko7blx7WKyiCwYF1L7ME+73ON1RIeVwnoK+Nh5TmsxPUL5Owkp3+L3XVBilmnfYmUz8C7Hain1f5H5jEiUBmEZaeTHbyEr0GB+149cgdc/kK3sjcuTVtLWyyP4vYK2Jmu79IXt4xbGkwDLj+nQhLNn9y0uECAjYXK64DjS1agoIazl4JbU2+uxvAihSYIAuVEpcXkbvTHLdF5j/CPhUC0jVQ1wG9x+kaM9Ko7J8yiTGjlZsCXFGk9kUi1m1Jal4+3EMg9FaLzHosb/cViDxkeBvTBBpBKNTaWVHYy/KN3vYIAak+I14BtHtxKoBV85Dmplt3WAIm++AB+4ijy+j7SCW1nedDvvwrk+zWN9VsxlFOlbvWMpXXLKNg9AI/2xHVx7wCdYp2cJVRXkCk/cT6aM0MpBrVx52UU+9s3w7R+9ivvUEtnbMiu7CFIJsgprpfU2Yc2m0f/8lnvC42OwrmhJHaZ9i6nfvu/7vu8L0d7nV+LpdXNulupyUybB/c5CbY/pcpkROC8S0qKBTh2+NR2qLpb46TgdlNcRHiDnyazcIP/7pjYn7op+e882cDTrE8m4+2+e5CB7QwK0IcjesH9JYxWUC2eBIwJscr9BT0JAt9MluhOtrsJ1LJ2dEPLQx8dTEJKSeyp341hgXkb2jnN2XywUlMMUxiRC17cI2vflCh1X6B74I0uZ58F8ieIh7PtM2xpEJ1rJApWN1myZdRCDPIlZ2r0Y4+6Bj2IE6JVs8GcnR/6sRahd8G13Jkx9aFxxZrZg77BjNRnxXs1rJlrjxWVo33BNRcHwAYLWUWx4u0AsrwIrV/FE0IxG+UqABxWuhDHxHtRVCe4fA8Wm8jzOy5KAlvdouSurG1rboX/4bNH3adfwI4VCcJeQ8q1oRIyOvrYe77QZ779vPb+wom0RHh/7UM5PuR3i6xjdNdbbY2DjFZ7VAZ/F1tk+eZ39UUxp9Ets8G1HWKqyKvsOWZER92SLWf+G34sNHhbB/Npr01hHwV1F+MBrxjzwuZvofGVR4wOMzoVL5kU+8VD3lOgmIGtjGi3t8bEqOe1bKZhycWrW6shQhpNbgvAmTRG4SfrWsHJNKdiGTUJff77BaMltjHaWa9boh2TraKxg0WU3jXIhJJRIYFCPI9ZX88OGVup0af4uIMcEGpUh8nHtnRPL1Z6qmMQAXusuQ6XgfkKBcqCPKFgPQodlbxg1MB4Z1HtT++9VNgVviwrf6OdaKKvjeWvCS/i8Apn3AOS5CffThkJBE5npFujaDj8ewwhuzla8UkBQKhTnc9ComA5pTQsS0T/TAqkY+7JTwXyZfxPGwc4j+0hWHqqKhhARPNabFOaFW9OGNKub5lgxS3KPgR6sn8vks67cBzPuABsfvB7ex1qQ6qQ0AlYeX+c4FtHAIJCUe6tglVRAawe+6y2VSCvH4VNZYQJ6VO7EL45CpO/5ihGYq8iQ+ISyYnPwr02vwejZPI2xxm7avYWjqkooneQTjfm4G5Ig0mnQEFy116QltAU9Sy8GjVInjJzgK4ttw+vP4sdAjNf6tgdiKPJ8Rbo0pK3X1RRMhbtOtCdFHotThXNjTsk0ute8gHCol0tO46T7oAiNCrWVDzS4ULb3GIQXcXhvEtgFuDxCr5303YO80fmZKntx/50sYCu7MNrPJVmXRTBc+GzJlgKoBRbUgu6sPDqtLFq8hAw/4f6LwOcwYbuExpcC+73klxKNuo/xF5vc+UpBOn0eUHSdCFo7bjphK4yZvHIfWbS4zx6CKq6zuUs+7SuPCy5vYHvgtsS6JZ2jsURFYWyrDK7etNFfBvEc2qePJNiE7iT2P/AoXe3Q2lwAblSO2csuIH/otcibH0J+5TnwBo9PPu1t8Gtf+Ry34QtY7mppf+c738nly5cB+JEf+RFEhL/5N/9m+ruIsLe3x6tf/WouXLhwp2q+KGV77wF7oQrXT+Dx3f4qjvc7CbUiyecyMoJxc2yLWSMtLRro4dIW/M0F/olp8pe4KhaEzh41yGHO5s22kYCIGKzwRlh2BRwJr/b5xelgFUt/xw77F7+iBNh1QBJgB+H1uLnqEcyDEHe8sjRwoYKrDt4ZnheDowkZQXLHB4MJCW3BRA2Z2vsoxrxor5uCadtOAPwKnY5M0zuzIEsxEJ0viHG5oY8ZBEbTAfEIa0KO1aJdU/i1A0ciXBLhfWRofM/qIgSLujW6wVDIK7E0TCMR3rrV8KQXxsuW603NH5FSwI/QZmvje/7TB3n7V7x5DcHhMEv7B8lMSyTMv+Xha51j0uUox1F98iBwJY5JB10IRthB8kHKg3P/JR0M8XAPnx+R4eMbL6EHfwKbn+h+XdY9hECxFdiq1hhbs7CEv7kX3pc79S2Ob3m/gkVbLi3ssW/K+uG0T86jOqw7nIlpPsAO9JfFLmHd64A/B/wzLJ1f9GFsNNzF0B019IVcMGFoO4zb87BsqAjaOHTp0NrjV0F4d8KV3SmnD+6z9/ET5C0jiyDvXUauzNQsX8lCKpwROBRJqJ7fee+HeNVXvBnFDuV9CoGxQDIlSzuYtRos3ecDOyRrcPC1o2SsMKudgZEljH1grgWDx698bz4YvL7JhhzmSekX/pCCM7WweweXsgh/mgLHCzi/AVLudbOJJTYKWyxu2hSoT0m9i0iGmHFBG6PrvlW0KuliX6l5m2zt7K1dJSsmSiH7pIPtoFA+LvyzS8v53eh9+bdSspy1fc6NgTAo5Xs7512bsyPEIcpuUkUFwyZk02GygLVBAdx1K/zZhtWo4dys4+EwFtEi5rBgdI0IvcUT+xKVZAEe/+sf+gjvfPPr7bNpDQd9OHs8j9JaboGmZhQa34Z9XaYrTEPYVDlji+Y59gH5Emly9LstLe3lBf1gdKWSZ178jvIu/d8P71NgOVQkoOayESLH70RFDJmORuv0sZi1XhuHzqLQntdu643+xUNedps83YFuSCfBmNBSb4egnQltoj1BuaWIfVPc79S/hpCjO/Yx0vLw4riumIqt1XTuYXnaj8u5HDt06XPf4tnoW7Su+2s+Pj8KyiLgHE3lWVWOZQOTl1+m+y6H//A1eP1FePwSGi3s0a9dfR70TbT1QaOtlhaOPnrjsEPHUw7JcUgQ+NAHPsLbXvtae781ol7CovOQnPUKC/AyxKIoE5HH/rzIs3tNKRFp78UperU1WHwXc7QbkTjslK2oADqYIQ+Ns2DsckBUCR+6kcDpghG2Z2de2XOFMnqlaO1oxXKyx8wvH0P4J9gZ+HeA/w5zeUsGHzZD42MpDR3xOhM+i7Gbhlb2cuwTfahMYNdWOawc08rmSRzIax9EfusG7tH9FGQ2uYPNFKqmkJv6CqihcnhB3yUntr28l59voktnIBtU6SsjfEHjjV8UuqZCO6WrFe0cRxU83HlEBfnSs8i/u4p87AD32rMmsCeIfLhXPtHuL1S5q9D++OOP8/jjjwPwcz/3c4gI3/qt3/oFadiLLVU1MiJSK1xp4UKIaTqEj99BqAX6UG9IGvyLAr9H0BQ1goYAN7qYo1txMwrPCbw2WoBcri8K7htL2aaybTGF0UkL+1Ve6dHnLRLRTZrDTY8plBKRoYv3CyKcRP5o3OBPZ2jnDT65Nw7pw4RrCJcdAVqfrexrw9p7Hd6MHKy6PiNWlrswUWVJhEmxSJWq7BIYqpOWugF/boIe+MyoJJ8rI8bl408wC3UkBNlaZlZBlKRRdNOcpx0Rtp1pEhH4beB/RxbaHTlwiO15QTHY5AjzaW/F/OGf2BrxyMePeObMEVsXH+aVVY403wBV4dJxdHTag8XHNUbox88nAST4YgIfVPhm53Cd+fklRkEtgvwnCWdwBzqp1vyon68fT4IRx/fFvUQ29OazuBi8jj7tqX7JfUTsvQBMwi6btSHwYbueCLS0ur9ABiAeDKUvMGSL+Z0C0fn4PsydkBVOnv54qQYXBe0rYD5LX+nRYHP81cBPAf8e+J7w2VLDQR/uI4JVLI7BBMvPHq1xo0L1dqfTsxwDKaLMRshZ5TkUmL1qm73ffA550z7SiUWbDePgZi2yGxlOm7stgSuSD9fTY5vxKFD0/KrFCI8rXYoqMbPFpcoCdT4QPNUVZNHBpPit2HMbgXngUdOaiod8I9D1hfY4L3E93yRb2m0/ZXeaNWj06Qom28XCl/4Yi1gE+aPsh53uPUksSV7974U5dJO6L1yHFxexWAhRKaKN+cv61qPjaOkq9mpgWGesI2Osbxv6CObzGVNrnQ4CjyYOcfij8jvF+ZD6rRa8LWGlJd+L7VzeGTlcDJobzoH7hsaH30QrexsErg5TZPuH4WQ04tHWsiLUmC97hMk3xLNjw9NioMww/4ezWe7Lzoic/kNzf4qxkCWwVQerr2ULmUgxzAWTyrRey9hS0uJ4j7S1VF6nMz3QqbPk/Ohlr6JPe/HojXcp6gKYqFI4AiSh1vykK26FZ5bzG9s0FVP+XgB0TC91YezUQjX7oC8N/WHb3sY9LaFRA/OOBg3B68p2555Gn/ZNZHHTZ9sBoi+hb+lMDC43z9YVDxb9ir/dlkIIUTUf4y4L7HFJyapDd+s7jne8a+NoOsdSlUV4kDx2GX38Mohl/0gC+yjcO98X2CNtfaCGazNzzUzB8QpnbUBnc3hw28JPhIkXJ5yczlI8ATcyFzyZrWBSp+Bvib4uOhKk8QWe0XcsaWGTBXaAcxOL93Frjl7aBg0xkYLguRMbN58hU8PSpdzssRoJp9lWQMwAO6qGKKDYO0vwddMPNCvmy17mTv95zEhWCux3kiOGezae5FHRdIDxJeU+KV+X/J53Bo2n9lyvhDOVQ1DEC/LGPXjvs8hzx8iDu3kMFHN/mEYEnbAnlnEK6fcrlmgwk03X4Pslz1SeQ3sYXSr7s35ma+bTKmfxeGpTzlxv4FXeQQcyqnHveAj5hWdwj+7gtpp1od11aCVIfU/Q+ktW7vtJP/ZjP8bf//t///PZlpe0HN56yl4chaPg3DTPfhlh/S5EoIQc5+jdZaRwgUmFLlZ4FH/bo7tNYrafFYLPt1CmexPuaOAnEaaSkATfUCbArQiR93a/NjPGtOyXSNnwu/ev7GN4/K5kn32/C3qywp8sLWf32A6Ga6Hqi6G9VdG/2MfU/vIe/zByFuwK+lQDNjM3m0cqCKq2HWMfaowJ0OUKGkEnY/Rk1ef7YjCiUiuMEY4I0UnWjPCc+F7mFu2acZ2IM2JavgMs2udn2ZCfnWxpjz1wDiZOGGNK/qnAVuU4B7zxGjy+3TBBmIgdehMX0r2F8fwj3/JVaf4qCn0NJoBfoZ/b+0NqsQpGVRDaJVv+BYM9Xo2HytLmOxFvoefX/nyE997BUEzvIRvg8fT47zW/rB1ypOFUb3DP0FRBUclpCOC41PXUSun+wrmBOLalEOcxaPyIHJipVGiVypWyKXvhdfQ76wnuxRWf91nMnz3WX0nwXwf+IvCToR3LcK00XsrCmWa/xyEuuuxGsAF6nIjEhmIp3wxm5p0zeiGO204YP7JvMO2nDkKe9LxfZeGRcVCAhUfuIxblVoxV/rJv+iqUrAgprb1IFtilJK4i6xHkUWPap32YJmJzVfq0U7zWWpLQHi1kSWBXG9sFFjhquPwSbS0X/mpDmq+S7gNsj01o7xEu+poCuCt8XJoiEB15nM4g3Cz6qNHyM2/7yjXtP+4mtl/X1u4mK7sCs6UJi9MKTpf975Qhme9U7nQmzHxWyhXjZ8tzsD4FaBx1m90bev27RxPi3xIk3pvw3qnSLVpohJu7Ix5dkRSnlUKN0qgJ8D1aWQbqWxSKRBH+yFd9af5eRLxEa3zhEpe6PFOo6mRxW0qmgbmf4Y+jqufTHpsw6CYn5POkt37J836OnKu9HLoyT3v5O7nHZ2Vk7bI92prQfqp2PpZ0NM5zyvEuoMGkPVw2M8wPGYDFMlnHrD0FvZiMYGXK7FUhOepgH8zIgejKMjzDYpmwfmZ5Be1sPo5rO+NL0hqzFSkBWSaCr2to+zE1FHC+xZdaBBfpWt/HGie4ccV85JiNHH5coaMKGVUwcRZ9f1wZEnJUFUagUElJWy/uZNoKBhX2hmZM7bs1g4n1PUU4F+Gd7/yyDI8X0Ilja77K0dUTGVF06dGUC6wcoMH9hZRIpIfp30TQyzV6c5EFdm/tmSnsYO/lWJEz4yQf4HK8oXQG7IyRBeCDmwS94whdenxhHIlnzNsG/fp2gpU93BvuzIPJhivum/OEIKThuz3XvgH5Nuu04GuHrxy3amGndkgVXGLHNfLG87jfupnTtyY+2VtwxzAOU8koQgtGJ1l4Jqd8K8/lO01xr2/FOXsmtDuO8cY+0ufTuirA42vHtVo40zikcqZUesUZ5KFt5FeeMaNgAY3PV/cFhcnf1dI+LE899RQ//dM/zWc/+1mWy+Xa33/0R3/0JWvYS1JU4dqpqWhLx10oAtDdeceXWqpIYATzM7oVfuqnNToDlh714HcsOtmhCEsRHkjEMz9yU+T4VCLjVt7jyjw3glsri3YUd/e1JZwvIseXwvpdguz1HqVkQiMWVC1ZYUagpyv0cImekZAiwfzZL4oFFkn+7KwLJGsPjC9GVT/FVLwPGdS7lDWCpPkRWwBta4fSrsLN03SQdPEADkSYYEWCHD1eMOuIpKuIjHm6wqEp6IiE1uwgHAh8AJuifQb+7JJhk2UHGjFB2gFzCbnVx6CnitsZU4sd+pNglR/CwkqCXL6+EL5zTYRHsCXznxXeLiCVo/FRYI8+xsplMU1lC9QL8FSBuEly+xhM5j1LSSSH03vKukVneDG4T7mD37dkIS/th11gHqxZSw9lLttNJ8ELKCXkv2zPdXKO9iEMPs1VQWMg8+/JckTB5BGsewXz+DTwx8jz3pCFizdgwej+NfB/JqeBG4mwRFK6mCnYmIxqU6SlWBN3px9liQegVi7A6QQqx2GldM4Zk/PEZeTDB8grzpr1OdAema+Q/UmebxGmwE1HD0Wh2KG/Q185mPzZIwGCTAfPT+HZk1SBgAXvGub8xWjGIqjwNQgBxPXUuAA90UHUeJuJ24GE7FPMrw7WcSlJ9HJzDzZzfL83hqMy7kexiTYJ6hvg4y4w7Y58fjmMubk5GFu/hUUyjo/xfcXEKsxxLxiY0EMU5ArD66MVPLBlhO+pMv1iuIff3DXwaNnH5F7gzVe+PPfKduVD2z4c1VSrzWife+qIw3h3mMAeUTUdWKq3ieN63fAlR3FdSorX4ESoy/laC9TXGQY6Njz2RchKs+Ml7AYRsRDYATP7BwHUiUGwbc1KWrspGOyo7qVZLRnYGEzRYzQ5Kg/vRJPPsjng05JC6V3UUdY1/AzsfLsZGlXOh/cKleM2wkNS1hFpuKQ4IApoDdrmPRNV8itPyr/OyQp5YFo0oqhx29JzNRrGMvZtgDxpGVja5c59EwzRNNP+ugMsJVoFB0iKjB95MTBFRYXlat8Diz2xKLeEvapmVk//2cZTdG7weeVYTBrmlYeuC0tSQQSpsXXSmGAGoOJAunVj18UJPHmY6VE5d1Fwny1ht+FExMhdbMtg28pozLl5x7EqO5rXpQK+7dYVnEMj0AstQl9gd3ld6cUd/NUV+hoSOkJVuOXVeJbZwr5eIC4lENikMAEz7iiwWDGZjjktaKqCKSUmVc7sEy6H8UZfJcK3UxiBJKd8u1sZ8hbx69uUQUit9HiX0hIdPwv+37cqxxsqBe+gUpzvkLecwf34J3C353B2gtTOzr5lh9TZDWVPoEVSZqqS7EZpchj8EjZP8RofFT6PBqCD8HrIP1F8li4nhjTrlOuNsq1R8eCM7//6B+Gffxz3mlvw2Fmjuc6vw+RHd8I9vLTlvoX2j33sY/zgD/4gi8Vi7W/3E+n7C11EnM3ItRWc2+5vyp4V+y51UDKGJObnvINZEK7qiVnW9fop2oBvTMi5hh1sdWAmkyVacp13fGhJPErLy9mpCe3lirsxgwtbBbUv7mwOshdLKUgAyTf0goPD8BcdObRdoSceP5ngw7evEYRCyYHoShRBempv9xWENqWY4r4E9Dv2QShy1+Y8kduAW5q/iW616Mk8+1pFRjFQTR8pJP1gGMb62HeTT6qqWdq3s59Y4rHF4PGfAL40jgXrAejSkosLi3A4h2uC0FY1rJa4kaMBxi5E/E5r1n63WCxpRs1GiHwFXBYLPPcQ8IwKnwP+DwJV7aiCi7crCPsZlAlwTeERr+jIJWF9za/9PktJOIdTfUSRc7sYFuLQaDFM4fU2prnv1RsFkLISEbPyzQIqZeH70T43ae1fQBlC4+OyvkEW2qG/951YkzYdPOfYoAmX/Ix4uC+wuX0Z/b03wqzpLfDngb+MCfavwNbEAvMammMpB0fhc5raxmjZFuayDWO0YazKA9Cs7B5fCbecsO3ErOyv3kHe+wxy6xQ5t4WLeZKPVsjFrbSfwNJqHhd1LxdLdDxKOdqHzZEqx5bouQhtiCAvcw9VXezduAclW3okPxvo+7QX8pfNuXILYxKiK0ymrQE2PhTWTrOwlTviMPNN+GyngZuzvpA+tE7fCT4+X0FKKJLPnjid58UQrqdi4+kBHQu68gkan6pVCzgb0R9rKd+UnsK0J3UtlrBdhYW3HlSt1/ZNe7Ac8LLrc99PmReHUGSdjgCEXMF03uJbpDOgfNDdiUB0L4rCe6dKt1R+s6k52u44Om3ZIseKcJjwlyhOSfxin+behKQwMYvVinFTKCN2MYRCobARivuiTUHsxsBShMEKya9HYkqC8IHGdgyGN1q8hqXkFy4A/3nDd2LaJtl0FTQc+qM9gRRMjigggbmvjRyHwGOQ+LhSH7MlMEtSIKjv0u9zF9WUk6rIfAnj7HesqXFYwMQjczFYhu+r5jZBjicyTPlG8X7Yx6kWKfkKC7mucnT8lIOefvaDXckpTpnWaBmXINRXB+HfhiiM0aANZbvGTpiNHK06S4eLBkWrMStS8p1RUoQ+bb08gveepjWkIcZSCkIXcrSzMwkpBO23IrBaraglBs5zsD/i4jL2U/O4gwXIHFV9/jENtqxPwPMoKc1yIpB2VwG9YClDE7eoIJ25TewryOESdiztV0qpyWD+go+7Rc9dsj0dcxxgGylmylLxwUWgw9BvKsKTwFtF+CvY/ohutXE67gaTHu69KMCD8RfR6FEK6733JT+j1hlfO67UynbjQQXnBdSZwv3xXeQ3b8A3P2zBZgEWS2RrO4oibGHjeltgMqBT8ay/mwFnWJJeVvN7hymVoxIPMv807GdpffeVMG8qjjplP0RTNGOWQ3bGuK99EPnZp+Av7WVBvRTeqwCTr+42Ky9Nue8n/Kt/9a+Yz+eUUePj9QexXHr4LUGoncPF7bVNGTmYuwm1QrYexxzkKmICoQRtVe1QB/56i983gV1FeBa4WFj2Swv03XQFIsUSHVqNzozhYFEwaAo3TuBS09+d8X5nDH6v2mSFCQzPHgaPB9Bpjc49PqSzi/17ToSLLjOCER60McjepjGODGs3ZMgyE3Gvkja0EgTsvLnPeo/zoOMGtmpDCxTVx5ztvjhAwWBvpSUJMFgMpLRNbt4hW1UizPHaBW4ivB94O1lwLmHxa9E+i9O5FmFbzV9q73TO/tyz9+kbbItkKNTgJP6xf/Rve9NeQuTBAstdDQPzHg9vxWB4rhLqVW5f/C1Yyp4bgGqHlxyILt7t+c/vpNTBFQ+HY/pRinuuGvS1xPGK1uiegCWGBlBMcExl1GRGdaFrKaLSQ19EGVrY43WdO/uzl4/dBP8vkQTlM0pXh89hayo+Ix7oIzGGcoRB5/8wlgKuIwQ8DMJHCywkwzaTgmPp7+77v2kMykM+QM28E246x06wZMi4QV5zFvc7R6Zc8gYjlvkK2XKJ0XQY8uQWRigV+J/+6U8Ctl72iuemcZXAEA7RSRe3LIJ8GeV4qcio6m8lMcvFqQzITzzsKzHfw2I+yvm5RT+iPRQKmnLYSrzueAPqo7Qg7VZG79Nv+4OtJa0cnsNzD9OCRoV7ZHQmYkLejYL8amPpslLudkhpMcEUbEK2MJbD3MsdXp5PJy1sOYNJHmWBMfWjvG8qw/pS/7occV3ynA/IYyZTUVm3LCKLx8wh9zxvFB9gvx67d0DXeuYe3jUd8cy5mnfveD4dmD2Dx8c9qf32l32aFzm3gX/wk/9Lf2C3Gwvgh/0+jnNiebsW2bJONmKKmNh5DQOQujdyGUUzgHyXvFyZL3lIu+JwRsVi2R2w/TmlP/7lnBTHXa/OLS2E5HLkPTCqOISeJbo0puwLHGoYlcqh2sUuprLC4PECsFwaHDy2r2xjU8FyZYilYm9FSytk4XvMhvW2oY9gQtcw0J5HTRHoKhbAmbCAyz2rBL1NGuc6p7RLUjvUbRv8aiU/t+jXsEwICp7g0uSbyvx7S81eLENXzdjASzsmZS87YlDkEOfdxu5gjk6A2rEQM0yA1fGv/z8/1UOvMh6zdRTQCMWa9AALSz2bykukbE+lROEWfdRLDf7gNLtChbV5gDJBkZlHptNeTCeJQrrLSmQBZDSC05btgPQEjP8E0I6ujojGzMd8ysFrwvgkZbAU7ox3k13C34a8hWDr6YA+bwEbIOTFFVF01ythvzLGXyqX+H6+9Dzut68bwiukEpbjFpm6nr10CziOfFrRhpg5YqgIu5NOZhNdit/bw2Szsv6yj+X71DcRbjaOZSPs1g6qAJGvQ1/fcg7ZaeBXrxgvEaPIR7j80q4vhDx830L77/7u7yIi/NW/+lcBWxQ//uM/zjve8Q4eeeQR/sk/+Sefrza+oHL16Q/ai2sncLFZlwpKi/sdSrkY0iHhrO9nMUiTggWfuz3j/8fen4fbclWHvehvzKpaze5OJ+kcCZCQEI1Ma8DYuImdEAccY5PYDhgb2zHc5LlJXhx8Eycv8b3Xecn9Ym5i3OCY5EJsDDZCYEAGLDCIVhIITKMekFCv0+m0u1tdVc37x5hd1aq9zz5HEsh+b35f7aq9Vq1Zc8yac/RNvTjA22YPIuz3SEmiFq7h0rlVayMRP4g9BZxwPuUhpr125ew6frMD+AJjaeIG2WuEUkS914cF9QzseELd7ytDJ3BYhCd4IiMxc7yHsfGUxs5yY+pFJkrhSRia5sXW4xeJrpn+cIR578z1W2TY5T52hCbTq6MGt3Z/Uq38aRIh0uK0eM0axLJZYXK1hnjNKsAeEW4RmAk8nWYCurRGezr+MD/unYkRsnsepjjifnPlQeTuh5uSeHL9K7/0qqBQSi0hHqlfgFpjpxb+SuBFziMizw3ZTC2unij43x4ATlqw0ypa2vGWdj/4M76e0ALibyFML3S367STwELH2WtjAyPjGVMhnENbKmDTPdF5Xmhn0oJjewXedi0Q20RwtThvlBZsURvfwi/Jo3cTGeJUIVC1zg8AF9N8fz7xVU9ieZifREM2bsG7yAszNGZzigryFahCY1qrtd1b/9ovZgsq2nAZN0IlArlhNRMW1dVIf/rUJbjjGDKrNIu8tci0RPrRdRujpb1LiR4V//CfvhKLCscNoV3ivEoXbt/l2IATmgtEAFyCHDxY7tY+jiH3Xhvh/Yorl0VToLVxTZ8ilvaDBG3XBBw1J3wOWoxoW5uznMPmJE5sGhfRENjTF+H+ce7jHjfEUJ5YEm03Kux4psXmOXWoMKf9e6G2RgWyvX640NiXHvc2Qp1AJf1hTzPIj3xnyYC7YEhbFxPkhd25knnpepW4x90gywyNP0wfmQhj2zUvQPjKgdaCHc84OoTNnmGWw/IYPl97RajGRTdKvaXvzrdxHWPXgX/xk69ojnvBlcpLuNy0moZslkGLUqAeNsC8p4igQvskVmxpD8f/v0F0M4U4nFTJvw/Fbym+8wrdtH45res23vOfa8m3OC9+KdkSzR6PZo9PWQj/2wGaYd0CNhesL6PnYbMa866pX0E2gcWoMEuXD0tAOXUK+jgxknTo1WhtOLc7D5Pf+XFZgNJSGS3ZN3A3B1TggB2QKEj6WSNm348yryuknUrcbwEvGCetR0demGRszX6kmycd5trR0Y2g2KD2v7eaR2igszQSTfTpWZ6f+ukfi3MkQC9n77SMuVwSNGIntcLdbudIr+dal8AuAuctYk9azWWSlAwdW7c/ToMs9x0cEvKGeJYudbWXxT7MdBrXPG71MM40jLNN3+8CLifuudTKvhMX6TZv4fmO3TSF2sCfta7bQvzUCKuFYZdLvCbhbDAHlpCLevDFY8HSLtMZMojjAM0gvwpY01x3G2xRlST57RxsMg8jqIdzlydByod28aTHjbBYZCERY4AtN5jMwA9dAl94GA6uqcfWrFZre2VVeJ9W+tlj3HYstK+u6jT84A/+YPjs0ksv5Vd/9Vd58MEHec973vPoj+4RNM1iWcPhWcwc347JOQP0KX4SaGzKXeKskYDtFdija9ilgW44IxwTOJAgYOM0Un7znfHBKXXyK3J3ASdmEeOfcmh3j/Nl9YJ7CuMOHpN6EoCGDw3E1VTsaSSYPbqG3W2CUHTEwwdz9efn4OuitF56TZiIqBY7MxMVurbE2HMIjPnCZKZMmoDt5+oesz4NSaTqBoMZkWVJksHSEXqBUJ4KC7KZZMUk8oeLooLotxMt2O0EdHNz0xWbdfOR5j03HY7fe+HezWe/r0JJ24vDj20/cBj4Aoqsn+zHJUI+rV32eIJbveBd6cFiqfsJUyZJjORZtjnGgJhsrVFir3XuXDruHFIi+G+FaGX352FiaZ8mcUfhIY+M8KfxX54Q+DGdoCm0p67xQT7zw0jOaYwmNLXCnqBbmkI7xLAUX8O1hzLye4FXAr8F/FfgJhGmovFlan13Frp+ronoJrW6yvu2A8uGDwvQ9eES0hnh4UzYnQliNLGLHFhCdmeYO07HNbdRQT9rvGtPwE+7NZe7dd4Op4hrRBLBXZIJkZhB3oMwqxPrZgxzGYoyl2HOU2VQYUIt41Au0r0UizJBu2i+R3WxIzL9Ht9M3BsdJNigvegRzR5+0n2eCsNtLmQr9/FB3lh36fwisNug3gwi2u0gx06cdSvwqE5AqHVNxtAhbXH9SnMcluhFtVhEwdTDPlfybSucb+fvB020N2gR8Bae8NPohZZZYVxM93zW9DNZ+z04vvJIjcVuzthHhlSwkYOpK75bbIxntw5XNZQtLdDGVVTeGKHfK5ovajmpb+/hCtZ2tHyh+3mBS8CUvOSwfsHVFk3ivT0dpPnq5hJCMc9I73HfeeYYorWss+TbFmff+iSJ6Nz6qQFmUGKY0vRk8XseYpknC9hCsD53YzTZajQKwKxWpcegaGw1Ty+kB6zPAKuJ9oN7fBS0vKXdq1q6SEkbzgGOXrk+PK6sy5oqyxTfSYvfdH3uFgnPtJmhJvJMnjbksxpTZJ4M6poXty9lfjy+DGjaupZo+FGXQUgELhjAUceH1q4ajzeMrKMJoBE2ERbE8y7Q7xcRZwMswcJ0qnkE3HwH6+isxqahMC1gHnForuebW+7x9VIOBdTHvLXdhrW0ALAxQZb7DaHRmDjfxs2/ADLoIWuw28KGJSgKLWiJwp7mDKrcXj1sdb1cSlNYT6/P1LYSfnfRNArAvIA+Z4lGSVGVGZZdvhrJRfMeOA83+c79cOMRrWnulfEuL4ev8LJLWiUMiThnu3JvXeB2wSYo/3SSef6pC8aUZzsBLDgvQckEcoNx1RRMYZALFuG7LoBr7osW9nC2zgJfYYMrxWPTdiy09/uqUer1euH6/vvvp3S1tm+44YbHYHiPsK07s8G+JOlIO8P6Ni1N3BPcqByC2IcwsvqFHfawJyrqxV5w1T0mWq9bBExmGjGnZ5z0VJBLtHXsHap6tHQ+i8dGGoCeWtm9VrTBoW0BHx0b2+jVbtQKYwXsAIVvQYX2McKagf3OFUhMU1g8o7exp5SCCgmBWiSLfYfrXiCphRwF6z3TmmkvhivYFYG1aYzX9AQmiS3ypVWipT0R1JNnqnt84d5j1GKfQGO+z3cKkBDPLjEBnWm/E78o/DvMBL79QPOeF14YvwN1i2i1EMbhr13X+0VDNT4N/C330xwhx1BUVSAC/negguYRgLqiLgjx7PEszQk5Q2vLFymi9vHUbUali+CkY1whWtpB570dt4SgglFIRFeqm2wnBTg3wt+GKeXPjxEtk214Gl4REu+BSFTbslk7bj7NHJ8lfRWirog9iZnkn4oSsk8C/xa4zSqDUOJc5QVs38SSb11JVbaZo/YYNSOrcDw3LBVK3E0miBjkWfsxNx9GaiWbZgQyyKNLn1EF55JoYsd0DlZpJXsj4blSf8StshxbYFph8iwh9vq3JzHrLK2zdcxHgNExXt7qeoqYOT7Fg1GZmEzWeIvs/CnOFjQRHbjSmHQLuu3N5duohmEso5cKAz7G/XySMCjQUKhJ3XSZhpADZJ0oOPlhB7xrCblFYgiAg3OYx/KBm1sno2u3YAHvSrq3OVOh3S9JL3Q5ehTm0H3fA2ZZHvIShKnzXW9Hb7yg7hV0jvzaSU2vKFgEniXC377rJE8zsZSqsTaEVIXBt2GZlOr9095afuwLRax+kawlT5+oSqcAF3KEkftdwINCFOJ7BspYZjXCbpuvjXlFqr/2a3sBxTknicyvF9q76pcHkKT7uwUUD7WXNDMoi4weakhIp8YfQ0RjYgUN8ZhPu0RlrSoTxlMwRGHCe6D4vvsZTKcMiI4h4dRyj2/PTfs6/ayPq9PuO0ss07Nexkpi9Vf2KPIVPYnl9VgQ7LTl/m8hr8AEl/9mZYyu8fQSOFKa2bUNGh5M/uxx1v4leHgSLOyp12K9VsJgwFTUQ2lgPP8cvU+9tyI9WFqdsGZ92G1CV0uovaW9rZQ/G0Zkq+bpRYMYC1YM9rw+9rTisdpaKC3ruJxJqyNYIXgP+LXkryFdVwVMSvqO5gKB72RSUQ+MK+mqn94DPAUt8+sNQKngvhOou3gLQZVca7To2xZHwxINLBtBskyt7MYEum6MwOW7NTHDLcd1HW/USN/gFRdA8BoJ3pGubdD0XElQdyfbEbLzd8C4iy0SFZMYF2zzM+vgO09Eab0X1HPRCiyZE+S/9wJV/H7+4egmnwrvM/3ssXST37HQvnv3bkAt7vv37wfg9a9/Pf/sn/0zAB6xtutRbit7LtYkbStoubQU0QTJ+cxj9oSq4XEumnTsYW95XCz0vFsdsCo0jni/qEgX5DGai2zbp7Y0f0Aon8DJsa6yo9P5JHu+7zNkjg+wSYTRIxxEk58cdx3YgSv7tVJgRQW6IZr0Vi300rCyS/shtD70a2WIs7R3MGU7bMZaBb9OH2NZmNaMssL9J9jBADvyiaS8NSkyK5YotHumwwBpXqiQ8G5zhvR8/Umdg7us8D+MIqMPAXeQxLMTS3XMtTQDZS66Vp+2H17zBHhWDj/3RHjq/lamyjiZ1/zlZ3Ws0hTW/Tt9AnBQ4A6EvUTEnyNkU5skzrLhN+djOQ4wrrCZd5+NrqFn6wDUNg7izmt0WE9oMXnJddoWSKwr6ReSMKmgNVK98m5SKQfUur/zATtsKdJvn4+gCpC5sAXmPSLSIyU6qZa4nTk+tbSn7nO5EDLD99B19+nWuD+KC/MWCR4m9cBoDPKkbib5as1RG9d3ehsYocoyTmTCHucejyhxl6etYI5VmAfWkKmmtpQFb/mKBH5BohvfX1372SC0pyUCwyHulw0q7v7fN9AqIm7izLgMiaj8T3BzNXbXqXuxBXAxh40EV/5/Ox/T7vGF35MNU+a4jPSnjRfT8XtL8lpiE0sF3VTSarwQFK8OikhK/BxJHN8yKohbce/OZNiybu7xZNiniV5IpOcu6dcCG9Mm0Vxwn7WF8RSuLljCdfLPtIShaQ7EX6ZCizv3RRjnedN9cav562iVE9QrJ5jUFuzMMl4oeBLw8qU+wylIVWueButoYZeVPX3uRtNj4JrPfrHJpS5msDqN8FsHk/u5TMug/MklFQj0RVs3CRbmyqw28HFi+fNlT1P827YAgyp9jid9eEt51rqvreOdWz9oidaG+7g76hImxjQt0RIFbUFZvHU3ZzbPQsibhxFHt4YWVSQtOEzjBSs3EhFRRde0ZAiMUit7Mq4J84qJFLYuxcSC9UqJZolZW8O0nyXeQxKq8aSeBDPXUV0Am2XcFhZdnIAp8vl5TsaSLqsh85b2bVsoESSxI4Mm+jzi0oh5A4jHkesj2GX0vYomH8P9/PrrvtBUlgwyBtNp8L5rOO3MSpeIrmNcj4bcEYiz6yuL5cjsgSU4OnOema4kqIVFLIzGMbeRccqHBEZvoDEAKwaZTOhbWLctnqiuqHuOtxKhFrhXhKcka9yLLFlyvVOwUt4DdL+cTO5rF/1I8+akOOIESuNsYRyvqgI7hbqQS2bgRRcinz+kitwx6u0VaKywW7SylsdJHhuP2CLsLTm64GvrZ4Wm+3+Xlb3hFZjAdxLnQZQZNe7kBimMGhuc8E4vUzf5TxyGd94Edx7tLAHHY2ht37HQftlllwFw99138+IXvxhrLSdPnuTYsWOICC984QvP0MM3t1XVFI5NYe9CkxlKGbodQB8Ya4m11kWEXUQXjLrfUy3ZUMnVMYd49zpKl0lz45zxsf7GFNNmrofzjLrFW6tKifOHCTJNYTxzjG6arMILnx7R7MO5L4tgi0LhW+hjgYcR9nvNsBtn6kkw99S2dtTfMJTIRLUZmx26yAvE0ko2zvNCZdl0iZ4sYPcMqE8r51VbgvXEZzq1NN0CjVP1BsKbEG/ZmGEGzZCA66XJX36M+czxnS5NRlRQz0QRQs+odfjbLoSfep6eBzHOhsI0tD7LywthHroEwmOOCAD8gQj31M5NvzDkdaUJ7iCGR1jLXvf7claB8UhOGhb3s2ldPCvEpEV+/Ok5dRzxn6fIu090j/c3+Ldl05uHBiZOaB+XWn82fUj6sHNogQh4OcR97hUKDfd4ab6nlE9Iic8KTff4lLh4glMCh2hmjvfvPSextIsK8C9Nx2zg+9G48xJncRcntM9KTYDgLe07sGz4rRHG6JnlXDiaCcuZQKauZpIJUmTIc/chXz6JjEqdi56vJ+76TAk8MFxS299pOiztOCYpl3k8KChjeWIjcoJj57YXmAn92Ndp9zA1YMzVy8iWUfHXIPjWNmu0g/P8cdbWlMuezBI/c2meffOC7hKwtkVce510vI37eFDmSfM17kM4JjHkxfY1yVXqGukPsZYNtsjcHzydkh9gYTRrcmJLmQqp6QRvl4wuFZgako6bw1CnPZnD8E4l0DTQPTHpZyHwOrWE2Mb76WhWLbXqYWEjwzeF9X6PfULITi/jMtAP4+jRnIIlVRRMZlrD3r3ulcUWPV/KYJyIVz6viqdNE9Q6LLp+a1rrKEyboy+j1ueJi3yKu7bK4pyiyn1E5r9GhfalLX7Xxt9t3D5E3YYVRJtMU8UIw0q4N6l/7fpaNFHhbvNM13IVPSrAx/pbmFRI3gv73q+V0AYFlDCs6hAmAsl6sZoHZKta9G0s6c8DC+OORWZLGGeZwictRSK6fhdIPK/yiIPC8FzIQ+6rcbSWQBcfuG1M+9zdJC9fIqMHWvbt8FS1D857UafaYtfGMBRGqJHAJDAuLg0DzyEiyGKP3qRialPc6pTBs0oTPrfHk54fQVPXbUd4kvJvtQG7p4c97jLI15Y1q/kq+rWFjRqz0g8wBUt7uka9u/wAWJ2yJG4dOJxjrYWypMpj7iAE7hKNZ/e4u81L7sRI2sVbCCrUppZomBdiuyzRJ3HVcIyAt7a7euZqeRd41l5Yt8jXTin+c+XwPD4eCg3vOT+GlBdsvJtt4GvgpeSzXcx7EngY/f8pKfXwnSBJHJypYkK8QsLz6JmAdfzkvcCfPgRfPzJvcZ8+drXbdyy0/+zP/iz/7t/9Ow4cOMDP/MzP8MIXvjAgsuc///n883/+zx+TAZ5r21g9DCcmsP/cMsf7llrZUw3v+UZicpBepokVVlR4Pwbsx1nY3bN8P57B3rb5cc5dCyy7sm8Axzbg/F6HVCA7C3qhydAFpk5gDxIS7dXLBXaojCtoYrMDImEj+pj2toY9jL/rf5FYYgqaDM3ZrPUgQVqCxtzCcAabi7kTyC0M+tjRtLFZrcXl87MBcTQS8Nj0iAK8Gc3IBybs4Vzg+52lzw/n5bgs3hJjjLtyGYhIFNYLo66Sg+ToJ0dPNX1pOZbvffFzw7R6K7q/Nqg7NO7zMXCDdQnKjMbBZRBKvkny+/Ospay0bFcDuYmoEvEsiKVtHR55buluu9WRPHOZyH8GzakwX6d9mLjHl5UK7X7CHoXWgCuZp2Po+/aWSY9ouyxWbcLTpQn3/XtYD7nvLnC/bSeC9MkP/fm5wH90v/kp4KniLO3YILzPhpkT2ktdk11z1IEzU8LXOIxwODfsLnSjSGbAGJ2DZ+/G3HEajm8iuWPGE7wsaI6Ik66vK77zOYAS405LO24vNXC8G2+aQd7H2rl1ENGRsIDG+jeIvWisIbnDhVV3DoNVYpzv3LhSwRMU5y20cysQEXC64Jeb2cPDOX14l/v4RnQfFwj5WESiJW+PuAooDmabiZbLQoVUayPj7Eu+zZV78zStSyjdcBnePXEZJPHZXSXfulp4Ga0bNnBCu8wz8HMbTMuwlYM8KX8BnncOrspbDcG9c7d8NCbZgl2DjX7BRS6cwwzAbEwbVvZONJPCNEss7SJ8z/Oe2YRlIYO1Mrxzcb/38y0zwHl9DUVieEfygsL/qdKiVfIuXaIjmiXf2tPqr3fTtLRvtn7X/m37s/S6cA+vk3FZVECdFC6PRbK9U6F9WWDD79ssKtd8s6iglIPO17AIvF8QqjxNdXgvG8/84gjCv5+jKdGV90xz5K/7JPoSB1ztOptIpuXeJNlPODlSYMnApu8tE2xdNjx+mFVMs8RgIh4XShe6BpwSiw6BfSv2K61lnoYeXbCggKyXgZ9Sg4iF9Rn1csFYtGINrguM8O0veFZTXzkoEAuzNFGiX5OjUstRhsn2P+yG7ZxaAy6lXRZgX4Fd3XQ4wrKBZZcFNqeqYPY12tMwC5GGe7yA4qrJhIG1jFvoup5Z6kI93ipUwXQfcBlqrQ+u8dCdM2obkAJvkUzZLpT3mrM423lvwRQ1n0BpnIAKtM5l3PikdJmohfpF+5HrHtRnF6bBu3mDRO2Vxa5vH5IzRzv90bGQg9ziYSQ+43hyXzuWHZoCvD+fTOEzzriQOTd5bzDLTXfOqZqmu7w/HoO24zrtl19+OZdffnn4/w1veJKUJqUAAQAASURBVAPr6+tkWcZw2KUjOXOz1vJHf/RHfOhDH2JjY4OnPe1p/Mqv/AqXXnrptr/b2Njgda97HUeOHOFjH/sYWbbFMj62CZdfEDd3M7BvR2P0cYmpdQxg2cBJ94/d2MCuldTHN2B5wDGE8xwR8XzYtpboVgu1I7tc5Pf6Wu0Wjlbq+knrvrOBz/8ksbKLg+9OcUh8tAknS+qHTlBffB5HpZlkzz8uKgBaz25Q6eSfQjOh6iTuaLhzrfFurA2ZdQdj2KRgKrrI6xUDd02CBjclwp4TWxeJcTVhPLb5v7XIdEY20Di7UtRi+e0Z/F8CHxS1ar5Q1NrpM3mHkm1dMGSCHeRgKl0glWkytblxkn/myrrMNy+wG5toZS38IHAjapldBn7AfZ6LUExKlz3eNlzkBThfgLoKFsZaIpKvgC25gY5mmZcrLDGxVcrkbHdO2xDn2uv7c+OxEC3tiCZ58j53szK6x6fjfwTEv62t9ccxVKD23Xuikp7bxMYPYxftJHvxGf4596NW9qB5h4Zi0OdQyGxcC89G18PDThAtxdWcFl0fVT+jHtWYaQUrvvhKa3Adc+Vhbs/FSIRRJqwYgzF1IOySGWTfAvLEAXL9UWSxIwZT5mPTYBtLOygT1YXjPSwnRnD+groUB/f4yNgOxDHW0lxPgGalFrC+VjsEC61FM2nvoYkPt6xfPq5VYekf3MbV6dpc6sNq1Zxk/GS3OOxU8kyEwTglUXAXVOgKMe3WYoeG+uEyMjcJswOa9fjChEaEo6a75NtmpZZL33xStcA5pbAw39oSRfiNVclp2KoKQ/cyFXQ/jMlgksCWuIRv1yzWVbRqxrZTzjg2LKKypldovhNswMNzngRtRLhRJx4DTVgQ0az7PoNZYmUHAlPoy5flaAlH3/2cR1Q/b4wh6n6aM+AzObf3lxHt2K/xvSgjb93/IzpKNvlzB7pNz0MHUxCI/bupaka9rcspighLbgwbaHJFv0/9PIAKQkPcIF1SRI9nggxonCGnLyyNS8plv1aayegmRMa5E07bXH+gz+6M2Z/AqGcaCr/0r+DCWPx77RlsWYY1rIqfimlhdO4Tb5Pt6GnPj8e1rq3WbBIJDETeNDf6co5uYHf14lxNazVILvX1nTpG2NPmgIu8MjET6gLM5gSWeo2QK8qK2nvINQCT+Yk+19aqQ1/r4qI+fwG7AXZSYocFo8qyYIG1KbKYOyWo/taE39OADRFksUBGtUu46HadxyNjsL0slHp7wOr+2y/SENbT6522tpVdiM5Pa6jHSKfCnW5L9H4ibOQGsTWm1izyFFYF1xeeh7n+CJJZ5MGTyKXnBfqzjHAqYWH9s3xIjh+rm7ZtX+9W/NNu5vmn1E1eiHClbLZXSvh5U2t7pl5TtePJKwsvuBBufzD+8DsuUmNQ6glrCWErj3bbsaXdtxMnTvCJT3yCq6++mqWlpXMW2AHe9a53cc011/CGN7yB97///TzrWc/iX//rf81oNNr2d29605t40pOetO09WT7QmO/znBjWTkC3Q8j9ovBMoRdu96Klk8YHT1DcfFw304cfpD50gsPABe4+xQHb1DDfqqWqsVSzuKdQt3gf57Z3GO85B3ffOUFCdHznifMkOHSC7BtjlSf/4kE4dJyjiAp1DmEFgV220QJ2wdx3JabaFOMsrO0hCRIJ4gTysbrHrzmOwg7BjieN5EpK82yo2b5Jy/JLM8FdENzXLP2+YWBVMB+IemF/Zwb/uxG+22jY3NB91xeVubeFIzcqYA5ytQ57S/tirvHFgyIwZ2l7+Ngp/b3TyBYSY5r7wPOB/wT8PeDXBJ6Va833PIfeuA7u1GENOKR2kQBVhc1F46xweIjIyOy0pa83FQLS0kIpQxGOLgHBHQs0PD0dg9qysguayKl0T5/U0dLu2yPU2rcJnkfTx1HXeN91qrgL2mFpwg16T6opbvftn/cgKrSH3yX9Bw8QknKDru8XAV9ChVKv2ddDmPUz6hEa95nO0xnmKCXs6XEcl2020/rJQWh3OENecB48NEGO1Zj7TzS05iLCCqIVLIDTx09REfdovC8l8gkiSuITEYH9OTzsVsy4ComogBDiU9AMuWhq473QXs2hq013sYfmGk3DdRoTM66jAJW2VOkQFA59WC9bwnly3tJ9vFQ84uYldY/3u2qf6NbY1H+p+2DHXSXR9H/vGdNes+EdpOMBLbW43Is3L2it4m5YuvCJnYcRNFMvtErmuVPDDBvdjXNg3M8D0gh4yJOabZLhKf+VWNtxgm455eSieiwYEUyvQCY2WNkDtk4EvqRjN0cODrfHjp063dxnS27+pm41esEdEJfQULLoFr3pLkJOBn+GmAxw6l3HW1n03ZjaYUvp+049BVOhHdSTaysLfVdf4WxtqO0eazz4/VeznqvXTWBzkr4E6InQc+MGsD2wZZUI2lbrtANs1kjPKZJEmmPyaygvGIyrKGQne8C7xyeqqDPDh8bsT8P7TxL/1TWrZEFJ4kMwTRbHt0DUO9ueidK2f3/TmnGWNRUmLVzdHk8ob0kH+0VHa+Om1JNp3yIcmYb5thbs6ZFKhLnGtPsa7b4E8slTpwkKUwdn3etRuEovjTjrslZlBTT5yHOk2d1NYt4gQS3tRrBFBrvBHtecKKetj2evYXEQvLvEyHzJt5RsDntIDUvTUulFQAcWW0I1yBwNFe5DeLKJ05sK67nsXGjz6zF1kxfi3j5Fkx/r4mPS706R0DhxyndxMd9pzqXDJyPte9eDyAPHA41dlmSfJv1v0l36N72egy+h/SmMu1CjCWytkOiCteEe7/t11nWThqc+fT+85onwnBxe9yQNYU09YoOH7I5t4mfVzkpov+qqq3j1q1/Nf/yP/5Hf/d3fBeB1r3sdL3nJS/jUpz511g+/+uqreeUrX8lll11Gv9/nta99LbPZjM985jNb/uaGG27gnnvu4Sd/8ie37Xvf/qfr2zhvIW70NKv6DtVV6cIX8XE5asToC5R3ncZOleFhBNx5ikOiSej8zSkzveMJ9z/w1x5J7sk1wcexTdjbRDRzMO7kMR4PEwmGiNZJPi4KD7Vj6DaBr5/msHilhJ+TCOO80chNWLobg2kri+7xMM+c7Wia2pnjnZv8rMQW4mKLBRZz7JoyOV5gTxkgS4fl1+3qAJK38kzALBQMRFxCPmFghKEIS5kyGIsGFoyehwJzWeO7YDGi8YmDXIXNhUITefQ1fqirvePKD4drn3is79bngtE8Rs83wv87g+cV+n1PnDJhUpHZxEMCXPytZR+QlTbEkqWa79pyVnHtQaizTWS5TodFR5qMYXvJ+M8XSeq0+0P0qNOx+eSNk1r3Z5G41Daow7lxAJZua/txmgQgEIEAj8zB7a9XXB8T5olLamm/hGTv4oi6+6wgiYGTKLg/FzgmcL94rwkNd6gEqkHOTHDu8VvMUcc0NeLfkrk4joYRWV8exjQFdymUQRNArnwQue+Ys1YQCPyq6/cT7/5wIPYrNNeH/0mCqPXDVFF73iI8rNyujICey2qbrKuBCFPnO+4xg3VfWtCkjGWSXd0x36dRXOHjgD2OT43+zTjmOib6S198CpC/Xsw1ph06LNOJINgWetetMg7pIxxT6aeob9Rt9YR7qM3AVlUi0FrqZOOu2i1q6XoPp7YCYVQ2reELRt32t4ClM+NuY4O778fOx3supj05+aXq9lkObGDAJpZ+P2/b0RsnsAW8l8S0V2szVgsX5wnISg+zUUfvrzaM7fnx3w+jCPj2az6hF56QeuXZRrSL6pyjuRn6EcYe0e1UBXf3Xr2F03tpuezjacx2ejmhGZsO84KyoPjtWPw5I5pxqV1KyTD+Fj7PHExeaA9rsKwYZ7Qs0Q5mj/zw4VIO9oKo5HCtss46PplBP29sORKUocxdQa+0TFJXGny1GZWZt4MzzJm7MO7+kVsDDQ+HqqLMXdiJxN+l87zLqDffFKCXU08i7gFLNauZZHkQ2kn6CoqJ1nz77PGpUObPXdvBu9vPeX8KGoJ6bNSEa6PEDtVgti6iDm4S5/pDV1/bUF6rNbpHPrPM3Lz7sry2LLG9ZrbxR91FPoXHCezB2r5rCXu6BmspcXvjJMjy0IEk0caWGM6M+18EZ4mGwWiKENd5XVr1YiyyQN/vFHWNT3XQabm3nfCSHqSuAxRnrdK0QHfR8FSXeYy2JdolaMs17jt1H1d64573tWOB31kR4ZRDzuma26C1pzrGvFP4drnv0/DJFMYuXnTq7t+T9GNE35/pOQ9XD2Nh4NsOwE9/OzzzomYoa3Leimd/pG3HMuR1113Hm9/8ZmazWYO4/oN/8A+w1nL99def1YPX19c5fPgwV1xxRfgsyzKe+tSncuedd3b+5vTp0/zu7/4uv/Zrv7a1S7xrRx+6Sbko767QcOuBne52TxcC0+MOjGElEx5+2m7qFbATqBeAZ+zhUGa4MNPSM5m3LLk+dhqPMmc199ht90DjM490ZI5vWJd29piE7kEmGJdYYk8mlJlh42l7YFnhYxlWn7GbaS7sd0mfTBbLCXlPgq0f1qYcLUs7xOsdJHHw6zAwyTbZ5LUmewoZxpcH+o4qx3QnlnZrlfEckTAr3rrulQI+PnEWGa3c3b8oWk1gyWhYwbJRpceSqMCenaVAqGWLJLrrbdP+5T+LyqtclAn3Vv4FdywZWHBKhYEochwY6M2quVhovz32oWVkKIzWJMZb221wld9Ja2fbTs9rzDOHXeeuz3z2+NCftIi63wvOumRHM3XX6+dJR8ncniN+9YS2HTf1MEoYU2KShpDQ+i6F03sfnE76SwmoF9qfQOvdEb1dMnHl3iQK7BnKrL0A+AIx1CHE0g0zKiPY9WkS+3/mOerSZoNqrneDZpt1BF4zsTrt/C1HgQS/fvVhSNDYLuCEe/6P/sJPBlf5RnUHUqOPRE6hjT/PG8BRXTHi1kFERxL6DZY+9511eNcCVV9cfLNtyF+nrQ3vukuYlTZ+m9TRSpyuRX+d4vyVHNaTvNppYe32hkq/n6KKAW+5826oKRMvsFtgzaKumYXBVmUoi9m0tlg2mU9E5xN2Gn9jKpxuTIO1H0E1iBsdmfC3Epwbgm5yw2jWnLNkDlMSEwUX3QM2rVbSco1vu4inraqjZTQwtdZipzMoDIWos6/JCmSzbtLCLmnIwzKZVz78y9f8w/hgbyEYAusx6764DmVaJ3WSFLeX7icBGj+16YRMyuawakKoB2wftpTyC3uJ9Z4tzmmg43dtJrMT11tl13xtdI9TmNacFKWlflunFSbE/VmQRImbZy6mPb7VGVaF2skUcZpicXMsydyIAIs9iml06AjLxS2AMTQE5Hbroll9Z6EnrCHtvCwrNvrERHsyP2++1N0GQKFVLKgibFUN0yLDpfyKPMMWArvQtLTvuHUJ7ALs78HD64oX3YuzqzgvUGGGMHAT7sf2Mz//46EfD2c26HP+hktIWCfoZAp1L8EjjfM5Eu5WCx46iXt8yCC/bxGOaT6k+2rLvRZOjyaYpSIMQXwfbmypBwHOqMWgoDcqEQsjj6fLCmugzjOnJNB49ssdiJnEmHZf/u1sWqo4ckMDdH+fctdt2t0+PB04ScsSLUrLxckBwcXvhRfqPZW795nn69xkwkIGm0YoW/ya5727Xu9WbzjgoxaMnqc83YID5uP4/fVJ9/3upN9wZKJerqm1vWea1vV+pvS2nyO9bGfe1OfYdiy0v+c970FEeM5zntP4/Du+4zsA+NrXvnZWD97cVEfEpaWlxudLS0vhu3Z74xvfyA//8A+fMeY9tD3D+NbbCGeHkKf4yYi+QDLB5sJiYXjo4gsof+RiZi9YYvYPL2Hzkgs4XRguSCxLKbO+43iUxmr0WAAV2gHuOa0JltoDdIR+p4vGE2GvVRIBckORCYPccOySC5j86JOYvWCJySsu4fAl+9mVGXLj6y67JHTStJA2H9LxqaALf+oz47jPz8LtGohJ4hxRDY/aLKFIEi31MjBgVycREVkikbFbWH4hqbVLrD3sGC3jrO1LAitG3KGC/NDIWQvsj7T1RAX2JUks/o6pWRRYFGHRwjATpEoYTOtrC2s/59X63WmnHPOJ3mrUkn12b6nb3cq7x7eZlNRxZA6Bus+HdMR9S4vYGGGCsL4kbIxKNgphs58xozX+c7Wyp3F3NJ/9deDzwG3EPdaGwcOcyh7+fQyJVuZUYKjc8x6gWe4t9ZYI5WEksbRL1NR/hwhfJArttTjBPTfMDFRrnFUYQRBk2MLbwCk5g4XdCe48/4B2aR3sz7ogKKpEYNmYxjs+7foL89ZxbOnG6TPIu1Is0p9nfwaiCa38AxuuxQAFMXt8AvMpYDkRqPw78cOZ8yCabJHoT9J5duflLAps6YNJBjDnPu5W5DDG7qbrLLXU7CIJxSgMdlo31nEqzJ1A8eOcsiQdQ9o2Z64uqPt/MdNM6A3p1z88ue5q6X2Tcj77vge0/Y87FQIn+oCtGl01zx0DsG5N15baxgzyFmA2S0IQQAYZZjp1eNQpedvK5/Rf596uddaT8ZvW/8tZM+u+2y+UNZKU+RqQ4MTW2g1lMPuossBGbzPrJsG/6gmt0n4S11DKIO9F10Sd/G6raiC6tKX7cxvHnxSAVZF7VjEyPixDBzJn1XTPPeV/l2VQJmqYWt3jMyyyMY2+7SaOJ0j/AP0eg9UYVdVo1m4ptHfBBkpbvTJj1vpNaSsodAk0cFkQ+BTeJdG49tobq2ZVWLh1BdNhrmAleNor5rrG1Kcje/wZtmCjlnk4i1YwOurWlHW5BFanwdI+dbxH9I7wSduSmG8E+n2WxnUIBQhrdGw12XMbmEe7JYoIn4jOCnBeRn1ynXtry+et5QEDn1kWDi27vSGEkC8crfPdpQI8/R5MLEvYUCnBusz/lRGs1ez0J4FLiXJDamU/G+NtmzamskeqcOtMRpeQG4uu2006LNG+Kkwq0D7jAPKPn4R8ew9+9hLkKfuDcL9iDFUmjeo4EBWF0E3bt2ptA4jng1YcfF2eBHNkFMVjKyTeDL5PUXopubi8UmY+YfRQBfbtPGIfzbZjof2uu+4C4N//+3/f+Pz889U57Pjx43O/2a4tLOgrWl9fb3y+vr4evkvbxz/+cQ4ePMhP/dRP7aj//sIeXvOZ/8rrf+vXef1/+XU++ImP8IY/vIpJWTrkIVzzl5/lus/eFH7z8LFTvPFNVzb6eff7Ps4tt9zpmB7h4ENH+Mh7r4EiY2+RcaSf8ZFbvsKh5+6hvuwCDhcZvXvu4Usf+7RmWDQGA/zRH1zJyeOnwgK87rM3hRrbAJPJlN9849uZTLz+U7jmEzdy/Zdv8/9ybG2NN37gg7q6HxjDeQVXffp6bvrGPQHh3P3gYd76px9qwPCWt/05d9/7UPj/plvu5Kr3Xuu7xQj84X+7ktMnTyszmRtuu/UOsi9+kWNFBk8+wOzvXs57rvs0D9iKPS7pwl995gvc+le3BKvCyROn+J3fb87fVe+9lptuuyvAcPdDh3nrhz6q/xcGJiVv/cjHuPugy4dt4aY7vsFVV3+80c8b33RliN9O58/TqHI64w/f8R5msxmChfGM+79+Gw/e9lW8q+CJ4Yi3/flfEGq4WsvHPvIp7rrjLrCWdcDcd5CP/ckHQpkmsfDO932Y+w8e1p2+OeOm6VGuuu6GBkb5nT96L6dOnSIXIRfhhs/dfIb3y47W31XvvZabbomeJ3ff+xBvedufb/l+RYSv3XYX17z/WpYN7DKqxX/HH7+XyanTLKEMzmcf/AbXPPx1TbIBlJMZf/S2dzObzBAEU8MXj36DL3zt60FgP3HyNH/4tvc2rL5nGp8F3vbHH+C+ew8GRHn3bXdyw9XXcpqoFX3fm6/ktNsfAnzWzZ9HnNPJlHf83juYTdS9bBFYvfaz3HHjzeE5J0+c5i1v+zNUu69Mzp9cdz035sc4vVGyWgi3nTrGf//wR9kkutG/9coPcfe9B8OY0/3hW+f6++hnA3EbT6a843ffwXQy5VbgIeDYtZ/lP9x4cxDcTx0/xVv+4MoGoXn/+67lq7feGeA+ct9Brv2TD7CbqCn+iz/5AA/edzDkE/jKbXeyfPW1XEQkMO98s+IXvxev/9zNfPyjnw1VC6rJlHf/3juoJ1NeCNxt4LrrvsAtX7k9JKM7trrGHxz/KyoBcmUOr/rEZ7jp63eHdX73fYfm1t8f/vEHuNe9Xwt847Y7uf7qazmOMgcA7//Dd3Pq9Bom12yzN97+VT586kF4zROR5xRMf/JC3nL9pymrCpsp3jz4qRtZd+8X4OjxUyy/+cowdwAfff+13HHrnYEhufv+Q7z1XR9qCOxv/fDHuNuuKze0OeOW0VH+/MYbtR93z/vf/l6mJ067kAThti/dyueu/4IyFgLj2YzfOnwjk+kkMDc33vBX3PblW0Os3+rxU7z/zVcqE2ctxlre/6FPcvNX7w4c0d2Hj/DWOz7XqM391j//S+5+6FBYFDfddQ9XfeIzuvCX+rAKb3z/Bzh28nT4zfV/dSvXfPzGwIFMJjPe8I73MJnNggX3mltv5vpb78DHXZ46eZq3/893B8FdgPLaz3DfXfcoozrIePDUKd7z4Y8FazvAh//sGh68/xCCKtnuue1OPnW12x9WYf29P/wzHZ9DDNffdjvXHPyqCurAZDbjDZ/5KJOTUWy55rN/xfVfujXAcKyN/2rLVR/8BDfdfld41t2HjvDWT31KlQFuvt76gb/k7oOH9X8j3H77XfzFhz4JiZD48fd9gLXxWlC63nTrHVx/wxdcvLJlMp7yhje+Yw4/X/+5m6itCnAnTp7mT698v+KxGvIZrH7pi9x79726D5cNDz14mKs+/DGdYzd/b73yQ9x9/6EA00133cNVn7xelRqaPYw3vu8DGs/u3+8td3DN513N9kGPyekJb7jqfUzG0eL+mZtv4aYTD+F3w+zUaR585/saSRQ/8tFPc/ud94T/75ZTvPW6TzUUge/7s2t48IFD4LzN+rfdyW1XX9tgmv/wD67kRIKf77jxZh68VunbaRQ/3/N776Dv5k+Az137Wb58483hHTx87BS//ftXRt0E8Imrr+Uexx8U1nLwwcN85IN/GRQJdVVz743XsXH4qH+93Pn1b/CXH/pkEG4BTr/7atZPryqtN4av3HUnn/vCl1zcOEymMz7x7vdTTkbQ1/J8n77xi3z+K7eBaIbr06dXefd7PwBFRq+cUQLXffI6vnHn3WHOj9z3EPf+yQfoEXHQB9+h+Nn/f+utd3LN+yN/BfCJt74b4/ALwC233sHnv/Al7Liil8FsNuPd73wvs+ksCLOf+9SN3O74v0Xg4VOrXH31BzWMZarKp09/6nruue8BSqNKwMOHDvPBD/ylPts9/J3v+CAPJvTt3tvu5MTV1zaE9ne9Wd+v/7+LP33D77yDSen2rxGuufGLXH/rHbBXDUkP3/cw//effUDX1voYdmV8+tPXc/837iFzePbQA4f4wJUfCjHOAnzwQx/l8OEjsAt2T6bcc/e9fPqT1zm0YKlr4X9c+5ccXXW+ViJc/8VbueaTnw8T/KjwV0b557e8V0MO60z9LP/8ps9y8MhhPluDNZDffQ/HvnQjXx5kIfncW//0fRw/vRo2zA1fvI1rr/tCCEmazWa8+2ufYbYxY2A1//IXPv8lbr71DuqBCo4nT69y1buv5jwRF1IJn/7za7nL0bccuO/eg9vyfxD5l7Sk89v/oMlfFTfezL3XfjYq6iZT3vI7iv/8Z9d/7LPccuPNwRKdHT/FZ998ZQMvXPPnH+e2r9/j3P8Ndz98lLde81F45oWYf/Rc5On7ef+H/pKDh4+oV1IuFF+9m+uvvrZpAX/zlRi3/gBuuvFmPvMxXX+yxfv9yEc/y+cdfjEof3W14w+WUSXe9Vdfy1236fut3fz9yR9/oGFo+diffIB77zvIbvfZPbfdySeuvrYR8vs7b34Xx1bXnAujUfx8w18F6/q0KvnNN76dD37wg7z+9a/n9a9/PT/9M6/lsWjyiU98Ylvlmm8vfelLKcuSD3/4w7z0pS9FRLj22mt5+OGHedWrXkWv1+PDH/7wmTtK2qtf/Wp+4id+gh//8R8HoKoqfuInfoJf/MVf5O/9vb/XuPc//+f/zKc+9Sl6vV64d2Njg5WVFX7xF3+Rl73sZeHejY0NXvOP/wX3/u9/ysr3XKqC6EIeNSMLRaelZau2WVvWanUjXK9hc1wxnlW8b1ZztKr5hdrSE5ghfEaEawvh3xeG3qBg0QhLRnmMXc4Cu5OYFFtb1cRvlhrDN3LnaQ1vuwMOTuHnnwIXLaump5/AuJAjxc7gs1a1fqdrTWS7Xls2xhXTacVvl5ZnljUvReGbivB2Eerc8JqeYdDPWcyEJVEX7BWj8d1zz5hWCoeHYbNUC/vnj8LXTsFPP02t7kM3/mGupW4G+bYeA7a2sDljY1yxtlmyMa7YnFRszirGf/Y1bvieizi0f4Ufz4V+ZVm4+m4WnrGHxSv2UBcZm8OcUc+w1svZHOT8H72MFwI/CizMKlamJQuTiqVJxfK4YjAu4Rsn4S/uh196jq4rP96h17gVDQvAY92ueu+1vPLHXrLl9/W0wo5KGFUYP//jEu46CR+5H/sLz2Gjn3G6nzEqTJjDyfoY3ncX1/3kFfytQt/1wiBjYZixNMhZXipY2CKTfeP51rJeazzseq3HBupi+E+BX0aT5S1CWEfLTtHQM8KktqxaWHO/Xbeq8f0k8D7gt1AlxKK1LE9LFicVy9OKelSyOamYzmrKd99Ffdke5LOHMb90BXmeMRzkLAwzhoMMM9QcAmerJa1sxAtrfv8AbyCW2gN4GfD/TWEzUIhq1tctrNbNuRkB/xr4IeDvojq6ocDY6vefA/4n8AeodWoRxS/LRuPAl43imNKNb93N/Yaf+9ry6+MZPzyq+P5JxXBaMpzVLMwqFt56G8snahZ/9inIhUtxfXvcuVSExFcQ8cdq8n7WrcLwetSa88+A77CWpVnF8qxkYWZZmVYMZzVUGie4mgnruWEzN6wXhs0i40g/5+eM8E7gK1dfy+lXvIQbgP/g3vmSOI+SBLdSo8JQWOsO38wq+M1b4MeeSPm+B1n9N89mPc/YGCgOWO/lHBlkvK6f866p7vmlSclwWrEwrVie1vT++HbWXnwhG0/fw2YvZ7NnGPVz/qSfcWKY8wtFFseFZWlasjypWPTjGJWKv9/+Na1n+4LzW7QpV7w4qSLe35zBb90G//KZmvXa4ffgjmdthNPDfGgd3noX/JvnqGJ0mLM5yFjvuyPP2ZyUjEclf7FZcXpS8VNVSW99wuI77mLhn1xBkWds+rkpMg4Pcl67UHCV0brRi+h6XrKW5cmM5WlNtpnM+bSC37oZXnUpXLyiEsTJMfz+V+HXnq25JTzeDDi/uQfn6Mao1Ln5yjH48sPwc1co3UjWaDnMWTfC6qhkNKrYGJdsjirWpyXvu/cUr7rlBL2XX8qwl7PYz1gY5iwPMpYXcvJhPoe7bVmxtlGxOi4ZORqzMamYOvx4w6uewff2MgYWhveeZPHGIyy+8umsFBnDlCYXBkbJOxqXcOdJ+Mv74RciLbnq09fzypd9v8I5cmvhA/fCch/+tiY8GgNr04q1m08wemiNjZddwjg3XJdlfG4h41eGOb3CsDLTtTscV+ya6jqU/3kbfM+FlN+2j9VBzvogY7Pn10bOQ0XGPwH+zONV/55FX2GKpybAK4H/jMbgvgm1Vv3jdH8mOGnBbIHzast0POM/jCp+ZFzxollJf1ozm5WM338X7/6O/bz6Sbsoekp/Fgc5+SBjzRhG44rxqOTdmxVmWvITtmbwF/cxfNouqqftYSM3lGL4N5OSf1PXnPendzB8xWUs7F5gsZ+xOMyxuWFjUrExKtmcVmx+/SSbhzZ50/dcxP/az+j1M4bDjEkvZ7Of8UeDnOMi/EoLD3keaGZbNKG2lOOS141K/q9JxUXTkmJaMSlr1j54D19+1h6+99Ld9Hs5i8OMhX6OHWRsirA+rpiNK35vs+TFZcWLqorBO+9g+IMXM9m/zLi2nPriKe6aljzvxedRFBkL/Uz7GeYsDXNmLiFvSj/fB9wM/PoWMCwKc7yX57d0Lyb7cVLB/7yNje+9iNVv28tGbdn8s6+x+R0HmFyyi3eZnOEg40cWcvqDjMV+xnXvv5Yf/bvfx2hcsTkq2ZhWTO8+ycGvrnL0ZRfz/FwT/S5OZwzf/DWW/5ens7xQMEjx30KuvG52Zj5kJ81WNWyW1JslG5OK06OK0bhkY1ax+Y47uOsfXsZ/WRwgtuJVNxziqS+4gG9bHrDQz1h2eKQ/yKCXUY8UV5welYzGFRvTis0bjzHF8N9esIe/VWQ8x9YMH1qluO5BJq+8gnFm+PM84+Qg52eGGb1BxsKwYCmTBo07G9frjbrJA3ja/FaUB/sllL9YTN5/4fb5Wq2hCuuox+D/CfwxTZ5jycAKlsXSkk2rUKe8rrVE6JqFkRHWjbCRK738J5kJfF/hxvHTwP8BXEGTF1xycBcdMKe4ZKPFe/x74PtR3muI4qBFt7atZW4/XA18Gfjf2Ia3AF37s0rpV89su/ZWV1fZtWsXH/zgB1lcXNzyvrNtO05vt3//fh566CFudBYKUMH5LW95CwAHDhw464e/4hWv4KqrruL5z38+F110EW9/+9vJ85zv+77vm7v3l3/5l3nd614X/r/tttv4jd/4Df77f//v7Nq1a+7+yegUjFyEYjtz/FnKVMHj0uq17Rmse5m3lqJuc6iF5r5M2JsbjcEx8/HeO360vzl1kffNOm3T2gbIchPGNLZ9J48RCa7RXnMtvYzaCMtlxZFSQvKdWoT7jPC8QpkQH6vfjtXdEWygLrhlUjg39VfciSrJ3ZPGsoeEdLOKQT9Ty5kIFovd24fTZfTkrJulXOZirJ2lHdcvoFlDXazonP/ON9kVHuDpT7142+/TjKak59zANA4/XZ8GkLKizOAgNNyea4RKvAuVPSMBsVscQLC0S9fht2zHAS6xT/s5okcJjEVrFk+A2UqPekNdanOJSXF0e0kjDvNsmsW5l9vmHH0nTaH975N4FLaeNQezm5xddMS0u+v7gCcmv/dx7EIznUWGEuDMNssAGuAFCF8A/pa4JHQOlmrBUJ2sqQf5fPxcx7uu8fXe41wA3Arc7e75t8Bvi/Di3CDWYMQqisok7DExbq1mmtTGFhnLDo+tAhdefjEP0Ayn8OfguSCC9Ui6neOjFM0g/8AEXF14vwZ8jOzQrZ8xhDJSabOZCXnMbIKjTtsYC5e69nm8pBOV9JbW5m7j6nYsvs/4vToJpaoace3t/r37ePBTljBHPvwp9b7eJXCPg9X2NK7SlrXGBdfRxXgDtYTmzCdQ9F5JjbFYq0Gzi724bnzyvbFjeto+mFgau8PjZmjeN6qgn+TvTmN4k72NEP7PRZnGQG/8eMO5m+CE/CfWVc4ILrszxj24IOQKANPPkE3NExJCqlIfzLY//tiVxEtoydMvfVLzBQku6/4swB/AHdUx0SaK0ptlvFzcqEmqauQZTOqwhttD2oSQrbr9nrvw8HloeMVlKD5Oy1x2ndufpShlAR/TrgOqAeqKLE/WcHtM7p99wBHXcz3MYBZfrXdz75W1vsRBEcfgN20yOCnArE1d9niXING9P7E6xl7yinw/W8GsQ7QNl3Rc31SVc9NPMtm7vmwC37IQ6nvTy7Au0Z4FqDQRXWMcbi+kdCUdT595V/3Q31YtEBiJ1+5Z9vwl7MPTuI9PV9iVAhAmAvv8vnReBJc+5UkhDCp4xPQNK+MJdyd7sXahPnU7e3xYN/M06dxbhKt2/9bGZZFf6XHxyQl7FwZcvjrhO+5fZc/3PUHxvMPVJvHuSvdMGOVCBicnDMVnULcO1+bBi+4+4Hl4WiLBJT7HhzidHbzpniE5LwPON6kzJ007nPEEW5ddNEYwPcDoviMTqLXspfG/yJSmWyPqJZk8G5S+NPJotPDNVi3dvimM3tIe0LA/d5ATaNZoT4+UtwCV/by1/bGMW9+u7VjO+u7v/m6stfzGb/xG+OxHf/RH+djHPoaI8D3f8z1n/fBXvepVvPSlL+VXf/VXecUrXsEtt9zCb/7mbzIcDjly5Ag/9EM/xM03q3vk8vIy559/fjh2794NqHt+V9m50cZxuO4k3Ovym4Z4FTm7wBCaL1BQRt8WGbsGBfcvFFQDPWYLOXcPc/b1M8RIg5H2Qu2OY801UCaO3Z/vfRicpx3vOaz/p8ypx/pn0fzYwhQZgV7G0qDg/mEe4KuGCt/+vlNIJHNyxsz4Dart/umJMrDtmEzfdii4B6WDF7Jri8xg0M9johwB2+9jx2XDNTAks6trNogZoGO5pla5t80tGEYP4zd5Hz/32U/d+c0pocsih+drCou1kVmbabm3EwlfXTkmsJZmOOqZWhojBZEouNyGc4xhOtQ2jfbnRaLQ7om5dTeUonF0E1RwHw37bEwmbC6qQDYRzcQ7dkfZmJudt60yru5x3/8A8F9IiLA0hfa5DPLJsUJS5oeoILCo6/3FNGOvUsE9lMqTZhlAn5BOBL4DuMXNQ2V9vXahygtmRqjS8oLtyU/nAFfjPRHcK6Dtc/Vh0BIx/RzTM+rpFDxrMkxfY8LoZ1iXrdWgwvNp4MnPfGqo0Q4dcdXpWNMcIKnC9vxFeOg0MkjmKZn0PqrgGwlhLTXqtYuhntkGY2Ot5TSwN2GKwzvBV7RIX6RVK+ughS0bY0nGjCjQ7bj2tpCcPmdcNdzHdeg+c7yEeUOE84BT7h7rrAbe9Tbtc51mBu9w+Fj+dh1yXxVkMUm45z1z1qfJnCRSYxf+7xKqJ3XSbzfSaNPZHJgWBqqy0b3P5j03p67putayoIFuWEs9rlgvCs4Tv48Fs1Bg1lRUNqmSZiu6Nqo1GatvIjz36Zc11wBoiMHatDEPAuq1IXlYJkMU5/nf+5rYDf1EkeNrj9nwyvSidhb0lWQ6pXWd8gmg4S8n3fUYQuk2Os5p6/qssFHADlNW1xR5vDviT2kw631JcoDkGXYaFRIzd9EbT8EQyz22Ytq9l4X0DWY6o+xQ5FhsqCW/HZzteQO1UM6sX0M6VlPV9IsmHYisahzfAlHQsVmGTWP2ZxVVan6TFC4/W81xtRUIbfrc1RqVgNrKxfOGcGSD2lrspFLl5lIfK7AhQl+i8UBEeMYVlzfQnIjAQs5gOlPlhFeOTUvl3YyERG3xR1sM9Fybk5AtxJJvfi/tW4JVi1jLj27MGC6oQiKsmRR/+3mBmD1eQBaAzQmLFkIqyMpSZ1lDIf8kNx8+r5sX3M82CR20XhVxiHuhEVfeIC0JL+OF3RPEErYevAYdcMY+hgUsFsiwUA9GfziZAZSOnEqe7R3e23Xa29dzsCX8UwojqBI94IPW4cM7089OuDlpwjRvjJTMPOaJ5s7Udmxpf81rXsNnPvMZDh06FAbs66lfeOGFvPrVrz7rh4sIr33ta3nta187993+/fu55pprtvzt8573PD7xiU+c+SE3HYFnXtjkms9WqBWCEJda3PcZ4aARqjxqq+5H3TICgSP+7qw3XUoh/fmmI/PwPeuiJhI9S2+hNlx+0Z5nhOtNLEUxRrVzaSxtKixsaeBPEW3a+kZrFsM8xdjC8tFsuvOME9ZDxvepMmaDXs56yrisZNjDa+4RkVnzj9qwlsWUyEWuJjLfozpavFLYUuT9eG2pBFxEoT1z8xbeIxYpLRjDCfeDYGmXpgB5ptZ+ralmFbozhraXb9f3DSYm9K9EdoYwswreFBj3e6wdX+XwckG/tlxh/foVCmuZALl1pQLPovk58XPhYTsMPAWC+6THBek2TmFTZR6Jomje0p7qte5DS7f5e9vKwbS1Le25VaT/JNGKkbcDzxeJgns/pxKY9Y0Lt03WTPMC0AzLQVhPri8Drkvu+2E/PmPIMsH0rKY9rm3EO8agSXzim1ghJphaRT0MpONoWtsNSDXPWO4bwq2n4QITGcjGe9D/pu6DNJmXFTQZUlU3hQrgBJZd7oO2NdCkL8+3DZyw1uZ8ksGknMNiD1y5ys7s8b4FC64TBpN3lyqLXFU7BFg2EoQuC9gB1JMywOhLS61bWLBxeI1zF7e/6VgxLyD5saz471pcUzr+NjzpxxZVSvQTZQAkxCdmkA8v2Z3KXoaZeYHVNoawVbNExwFbWyr36eakZlT0eKLrPxOQYaFreVIjw6yVMLCO1wGOWst6+tZGDP5YymAUYzm9gkSqEkmSDfadd9FckwRGV2Y16kps4+wtXulwtjvvAUcjmnXa20u4YbGytnMN9cCVWYvjNSXszrPQR6iL7a59v7sENsX/UIV23yboPszHJQzdTkiYlWiddphnmJPNZi7bu20kqwWlK77CRxfFaMPmW9+6jPQ20g6pKxaKYI+MaMALJO68hCrOrAi2yLFVMk91Sb0Q10H64JTepCimoOmptuOWlhhOLMvs72Fvc2kQT421UoPLizIWFw6WWtaFIKwHuBd65CWsVbUmxQRVAAwIgvRj2UTURNMW2GuAXQOqk2NKdjGYWFgeBk8Bn4ROiHOSwhYUJz0DoykZVsv/AbYE63DZEauejE+UhLf215y1rVGf2XFAtERDt1Db/uwkO7NEi4c/R63tNUhNMKgJTYNETazbvtjRfzrmrjbnfeOO3cCDyTOAUKo49SJI4Xt6C66dPP9b0XYs3i0tLfH7v//7vPzlL2fv3r0YY9i3bx8vf/nLedOb3jSXBf5b3XoDh1afdyAimPR8Fq3rJQpR83SKyKw+hDKWJvldKuCeVUvHnIlaKp7fCkN44YWx1IKzMD0SF5p0I55PJMg1auA3KNzpnJzRPT5l/CNVUq1/m3K03SHP1LygTnytMi2RDAaZKEJw/mF2QbCTcXBx9O6B1nFla1aRmXH9Buu979szjL6u7lzowjd/e6cJSDrbVkNK4tG9G1NjnZeWzGSMcBpLiQJ7bZta2DO1LiTpkbb3kdnKctrYc8nWXSDuudCvJJ4A7rsSOLIIX7hgyDfOW+H3a/hqbZlaS4llYpWpm+xkrXXA1ZU1/QhwIIEhJN2lCdscfMl3y8yXLPHPeIAovGYd57QZWpZ2ISQh+3Y0Vs33XQHVUsEs17rAZ7JsWKtCTGkTa73rbww8DfgB4L8Cz5dEcZAJWWE0http5GXoSqUYaeDJPej6O3LfQdbYutrAHNBdjOUFjrEtYik0/w58J0vQEnziwqgLtXCl7xrmrdCNsaVd1e5XJS7Exv8oAaArHGplAGtVovlKhcEWvvTCYMuCq1MxX/Ztr+hwNt1g6p4yyrV7mH/UprXBAuuHJ7TwY6pQ2Jy52nzJ/IuokLpexfv8uRPfJ3Am/6qnQja/kdzAPHmJZEcvqkK1615+DjqCxE18bgSVdWvaxr1uYX0G5Urhwg3c/BZGcenmLL73tsIhbeM6lv5z7zsk1IMIwGKmddrdPIVlMyrVTdPBmwvM2ns0nN0X/RxmW1cI2CQK3q7bBl/QDvPZR6w+sEYsx9jG4Wlrf+5p6wI2ZL/3uNXUUGQeRr+Om1tGRFiUpARo30SdllUhu8DqfOdFXB+QlOlKOhwUyAyyWvNtaDfRTX5iLYmqZQ6WTu8wp5TYtLax1POZZZhncZt4QdD1I6K0dwUJdeitd//3ncwqRe7t54rMjcW3PlAm/9stznOtC6+KYC9YxK6quzcbJSz0/SAYiY/F9kDBgw8cijA6IZciozZQbU4jf+bKGjbctVseUo9qc3x0KPnmhffdgj2xgQC9E8BSP7h+BweEdG7cMP1aFQRZzJHpVJPMet5zBvUw1yRpCE8Sr9wmhKmk2ePPtnVZ2QVColvf2nzGuVqi05bel/5uF5G3gSgC9JLfkfxuu5ZMd8PzZoWWJ4E7p7Q7dYY6TqsGfdL3ucz7Y9l2bGkH2L17N69//esfq7E8qm159xPhlRfBUy+YE9jPNlFYg2AlAk4fJXDHUUHWOeIHhr2LyJ1VM+IsonW8fsYB+FmBLx9Wgf1p+6PA7mItzuUxaSgoNgrnp1DkblDNVVtYMK3/O1v6RUpF+lmkHNu5E27VbOzK11EXa5HNEukbJ/gIb6/gB6zwzKUce9qxoy2sNHXMULAUJJYsScc3msHufjfD+C2wsn/8U1/ksic/YfubusblhXZvZW8L7mWNZBl70Jrje0gEdi8cW864qOeYQ3ftQxHSNdRgctLhd5z9exqhgr8K7cqcWmupjI+9t9zeh6XxlFP9PuuZ8GmrAuXUqnU1t2p5KKwlP4t36BUXbcH9ME0ckCJ/JWLxGV1Wdk9UQ+mb5FknUCY0VQymSoE2ajMiZNYGgd1b2ksRngu8DeGn0JCCGhVs6oEy/1Viyep6OT6ePcTD2zjOW4G/jVrYF4iWAh+bZxI8YC0NTXz6KG8RuPW6L3LikouC4NheMw2stwVjyflu1eR5smWl0dlAYCTSIPY+NrjuGVenXcdcu2PVva+GN0Vtg/dP6Ahi8edBKlTTbG3BfbmvUmKKF9uCbCp1jqo5b6DAZLUYqIGD+STK6NgixzqhLn3EKpp0rr0MTNs93g9js9TsY234hj3YqJqIwY8/JQHteUsRyGYJB5KQuGQtifu/wfi5YdSeNpaVJn5rWXX1qvkyKpsod20c12wd6kzZTPUSEaQSZBGyjRmy1/XaCKJMr3Gl6/LGIz9x41e47OILk8UtGtMe3IpshG/ThVk4uHPxrqYS8FEaNmRB4Z7WdE2vWBWaU/NLyjh3WZ/2oEpEULw0oNm2w+lOlx72iHfZDsvCzd2SS6rbfrZ3mhS0lGn0vMqw0yiSTqzGk1NaVRr5+TOtOHIPrFN4LY1nlP2stU4VzrTkWxeMc59ZVUp4haD39MhrGPQMqX9RGE8Cb98k4VK9HJv6to+qhrY2uJu3B5X824NEIdE6b0fXPRJpG8GWcmwGHNukPl1j9wxUUSSqbBg64iTuN5/77Je4/Md+qCkEAmU/RzZnsMdNe2WxLmm0L+kaPWl2Tqt33JyQbt1acNiNet+AbGPCSm1hPEH29MMQBDSeHRTZuMXdwEWC7uMp9Ouayrk72RFUJsPSzFWTAZlRA5wX3M8F2sb8SqSxu1AFXUXLsm5pepi54yTw1KSvnViit+Lr0nh6zwsudfxmu7474SPyAbuIYTsQrexBYKe5rU8SK9008AvnYGx9jNu2Et5v/uZv8oY3vKHx2fXXX88NN9zwmA7q0WjHD98BV+yPiTMCI3T2Qm2Km1LBBlSwPQqhdvJ+EsbU3bttDfPtnmtEY4/TGoj9TN39X/Pt8G2aTZa+y07bM+e0wtqbMNWigyolatSL4AkJHKmF/YwODF0I1jOuXQzoTgR37yaYuK8LINMaspyHa41tvt7A71m4a7FPXUJVVoEBsyg3tuGYhyWIbvZ+6DaBbd3V5m0Tjp1gmMeg/S8/96NnvqmLq/DVBUrbDOPwHga13nNAhEPMC+we2Z+pdRkCvRCw3Lq3C1m3z37feZZ9k2TZuB9WiMahujGel8OoV7BucooavktEXeglcaG3enTWau5otbUN5J/qgI4ShfZ0P22V96ELbm9ph0hkPI45H2WOvSbe46etFGdtS3uGCs1XGIX9fsfkl6h7fLkowUtBB9jNAKbx7EFwR/u8HXhWMsZwyLymeLvYtF1uHl7y0z/CiPlkOJ3Eva3a952uOFZ7mHVuX4CeczFu8ekKb2Fg1rSUrbuLPcy/R9NY9O5GV44NnzOgC39I6/OlTBPRwbwJJB2gv+6w4PqkocGSJzEecw8qENQi2KwIigkguAZv2vl8AgHnps/3uHyj1rrEbby/3NO8IGG8HfCksKTWeN8mCQ5uzJtuMHGDa4e7SGaUcZuVW0gqrcfbWJu9crTCD7cqK7I8j0o3t7ezhUyVxmnfc0WC3RebM/UYCAMUXvcTPxQ7dHCw7NZtWQcap/+XSD/+vEATcALd8eyCMwJU6jkVcLMN96zTHZce4GSeR3jY3TNiG9f65FVshd8LFH+EeaqUwiw6v+C5OFp/iOJLH8JHT7DWBzKorN6zwIQQTtAYk0Ss7NcOfRiOZw4HugG5+ZrZLWLaZR42VUxEpURa+71y8K3kUSnRgDHBi7vREqYA1uRJWKHFlKXznRbS2OquefatR9ujqBudzDVPyNLBGheStL+PPTFTHmnRqdJFwxZ6NJPO/aNXv1zHlwjyIkLd71FMFOlYgNJiTYaVmBxubjyPZhPFgwgxCZ0ACz1sDk9a3YTVEbJEFCu88ieYZfX3ae12Ay4WGnaPZoFvsVVN3c+xqFHsKRLfe2pl11w05wZsiq/94XG5t0Z3HY/UEp2S3nQMu1F647tPc0mlv03HvCVsHf3jnuHd7gMa9v8n6NjzMBsofA3F+w6e/61o20qwH/nIR/jIRz7S+OzXf/3X+fVf//XHdFCPWvPJjrzgfo7qqjaRSOXi84lEywu1JPelTPU5uVn0TCwt1k/O6bUX2J176bm0tleAZ7b3ED0IHgSeRPOerSyIc62LevjMyNOWv2JAFjsQoGwyHidwmtJisozPOeRZiLBp4LosoyygWp0kvJpejRzzGVx03K5uWMsApjMXF0dzR+/El+db0qRxCpyKT+5T1U7AcHPn5jOrgJ7hPIGDVjXPaTx7cE0/g5DbRQxgPnayzYSlU2lan/n3nROFds8LWwjZ7ZX0Cxs9w4vuW+VJ5YQCl0wctbRPcUI7wsSGHE1nbKmg3tbaeqE9jL11TptJXk+bqK4m97Vd48M8yPxebDc/V15g9gnpMuAKgVvqJKRgvEZ9qGR2/wlKkzD7QFsAa2eN99d3okT4iTSFdZNct1s6R+mxm6i8OI5ag7uYkMbQGhyF+8IxtQxA7lyD+47RsGy5FhI0ia4dG66BPIuhNQDWcsrC0EKvFaYjQjN7vG/jMo6njT+ge0EsZ7ARY5rnBNk23pzMlC4kD4+umi6BaLJQlpHg4mx7GXbmu439rwNLCTwNGJPcH2EcmxUsJdZ+T1wWcrUQN5QOHYJ5lwDv75mWanr0gAUg6biOH+ZA1QOSRHshtr1DaeCVupWN+z3I35MZ2UocgmeqTa+H2aia87FVG0dLeef4PWxesN+M+b6ltkhZQh5X8UCcx0x7Q6TXPQNjnwYrUc4owGySJGPtOLetZ3uJ+3ODnSWi2+r7AUmGdGwQ2hcyE2iAgiNh/QYlruj3m1Y7spV7x1aF7BxUUuj3GryKpAKXJDxM3mP3uArZ7OOwNLQqDQPY7py2nCZ92XCVDBZdAsguod9/MZTE/b/Q3Bp+u5iqgkK6xyDdn/eJQntjK7bOcy3FreCRCgD1/iXs8Sn21Ah2mYA7J0ZYCNtVEmO0NGAWgJUew6kfgNWY7yJPFPNb7PdHq4mExHfWrQkf2765uMgTVksYj2HReWsl60dSQOK0xPtEYGBY3JyFmHZmFdYYpmilnktNUpHJWdmNRHbtrMEhvq50eH1075xmnn/q4mlOEo14fihnskS3piPcn+apAV3X/eQ3jfMZ4G7075ckyj+d6ICl6/AhwHu3GPNjscweSTsnOfKvTfPZiXsJYTyHbA5e89VljfYlT0A33RNa3/trb+U4l2ergJ7Wmc9jrUqXfZnhuderbC/4NlFOlRIXtWFiJ5ktZR7RQ3TlT1zZdqbuTe5J3Lszq0xkNoZsWPA9AoUVZsDQCi8yUO3KKNdLtZQmuoINa9nlqKBnRNPM8eKx2shZeSDlIpqT9nhu7X0w00kw6Pz5uZQZmMJwPnCMGCvuY5bTWPLtWiMWLTmvE7W9EKcwHWJ6nZ799QptS7u+sRCf7b67t5fRB15gc37EwHuss7AHoV2Y2mhtr3ZgbffEIBXcvdb2YdTjJtXaptdpaxCJZBmtoMSsJlVANOPZU0XAdjgmE2la2sUL0cLzgFtF+y4PnsB+aVXf81UPUt5zjCodcDL51mq8p49nL5P5vhV4ZjK2YC1wzMd23gbQFMq98mLq5mAlvb/N8KWdZSbuT7/W7z2mnGoF8s6H4D7FbKGci2gN8mCtdJ2F9ZUJtUMafu2vEpPQNd6lJeCPRqz3qEw4lNbcpq78EBfLUg6rMaa5YQZpWHHdZ95tOvQtjbltMDmiNGzN3WEXnett2i2whmW5E85Whnx/ParUHTSFA7Ts0XqSCT19CLapBGxnpPdfbdYJDvaASZjSaEHVQ5zElwM2y52SuOkx0bXjLVDXBNf42ntmAdnGlAXnSGAS/sAsFWTriSW/PfZ0LUxn3aX/UsWNF4oKNIN8Gtc+sjETuqjC2RJLeaWVD7wARV9gXAWclSosLBpzPZcQSjrWjYN3H8r4V+65DaF9C5ye/h8+t7BoFef5OS7LitJokrnGdDTGFuO2l1FrdJ0D06alPQeYTpFBtGqHMSY6eBW2BAY9ipnFRVcHjxOsohCvjgq4x1pVpLg8E40xovhgyXpBWSFcm1WUghP4ogBrUmHWvf4VEUZunikMtow8U16VgZdqzGtLYE+FyD4xa/eOBXY330FjkpR/swbY14ejGzAaUw/18zEqBA8TdxRx12F9eIEWyPp9hqeVnlgLdgJ2mEXha26/z9O7R9TcRg6eKn5RAKv7Ftl/rIZRjawMoieESXx6Eh43/c57GdDrMxhXjL3arC6ph8JBq7Rut5smH8P+SOLZ/ci7DlC8f5oOQTYlM+ia83lbzsYSvZUVfBfNyjgj6M6Xcob+w/0dsHre0sfLN5LR0eTbTqK4w89zG+893trjcUyPStt34IpEqM0VqWU7WQLdLbVmpYsjtbQfJGZWl+T+R7LpAFeCzThhvXBCeuaucxicu8BOAku0mMfPVWjTBZ56EgSBPfntWT/Uv4txkmSpnZzoTM0xMIVLDlMA2XpF3s+4zMAvudteIXCJEWYLA6px7RgWT4wtmxaWE39vT2jTTLeAYq9BR+ZnaDLh36T2lrf9+ZlvSl9q+Mz97+qg+jUa1u5UPz1PoqdFw7IsEixQZ2ppqWLwQkCrLqc7BwScjHcr5D8gsT64L2qB2kCNUKOuzve7En0Gw4tF7/1kpTHbUzQJ3RS1yEzsztzkU0HdJuej7vt9NPdHwAcdfbXhSolOGtduUW+Xi2nuv53gmJzoIp+jMq0ReE4mPGjgFIK986TCUug8lrcfpQqD14sg4BLd4n1su5+Ptmu8Zz7m4tlbc9B2vwUl5ieAD//JB8L/2zEikDCWQjPfx83Nyhty+8POwqaHNcKAJDdm0qlFhXZbJjWuUaZnHwThNdAHH3vc5oSnVTPTFzQRrj8HwU00pn0TLzk2BxWuk3/G3e7jxlkovZDg53i3ROatlgzr8KMXViEyVvPzrvV45wTs0awVRuSOxWYm9C3xfZcEEZQSaEK19rw1plDaX6ml3QntqWU97PWWZdxaVeB5F3kP5sRaepMZSz1X6g3CfMqCs7S3YenSEIyq6LXl2lv/7MOt9+++2GVUGQMxf8DIQj8LsBZuPsZekILGHFlQD4Uy8TRwgNUovVtn++zxbV5hj/vO470Bc8tuDi+1eQwffta3SSksC6NZxSyP8a4OAwXWIU6RXiy4KcGA9RnyrWWCVQ+6ctYgOqlXoqSDQmCx4MJpTEERBoWlqqPejdoi0wozLnXNj0pkXCKTKnigGNfH0MK6F9YsjJNSbXPrtsVeLLiLTVDNSKVKiRowMzTcLeFDvDXbsynp3ENUOnSFuJ2Rpnu86q/dPNrzenB8hD1Vwy7VaI1RwXfg5tfD9+4rP9SpdM0GGYuTWUhIaMcW60J9AicWAJqnI4+0iQi1mCS8RFQhAazuzXnCQ8cgA5OEN6nix4cbRaACbF7BAMiuHguzmPjWljW27+h6wNMaz+6V/bk8Mki3EoIXaYbgbXV4S/Qe5vvZzhLduM/DRhTaPc/kQ3K6fn+m1tW/hw1iabkU/bYNSSdQj75Gf0m/j/4qe2Ttb6zQvnbqQRVqF4so7ObmnN9A+gJTbcx5NC3R3nW1IQDJI59oEXF1jjONyxrkyCB7VGoGpp4EKYwQlRKnUbfRJ9AsMZX+busHtM76UD0PcJb2SKx33BIrRo4T2IFiUpOZHIPwtBz+DnBQnAV2ecDsVJ2U8dHzJrbhFjjHqPgflLhkNi042vB9k9rf+f4XnP2P0nHONE6yYa0FZGIxmeECgTVx5WbwgplonCdnfl1buSat00w+Ak3i0h5q1xJagEjck/F5y28tcA8wcIlsTCEUwE8Y+JAIh6yPaVdLu88kP7VndpNvWNiT6yOolb2ttU2t7Wnbiuh498vVBC7QkpJpspp0/20rtEsSIydqfTeZsGCEy4zhVhGqK/ZQLUBdqptt+dwDzLyboBd8PfzE5HNpuEQF3IIK7UJ0j/fMx1aZT1Ni6f8HJaYbwEXf+wL6NJUgjg/shjuXpsCeG03cmfQtz92vlh+n+ZBM5usXu5tVmWFgWgULJbgEbVvAEbxzSM6TGvrFPFeOB6bNmBJjmseJ23UqKCfjwVqYJZb2lvKrjd9FhGWiK6Ht59RVnexrfdaq1UR0KYxBoTkX1oRahRc6cn8sNTOhN4XZDsG9nRTDw5zEJrc9nqJAKA30nItQFpku2vbzOva7D/nwj/VDOAosz6b0B1ljDQqQDQTxoQxzngKt8wa6FhIO/29/1/PiAFLFzaAXs+6DKolqlA9w0BaANVpiSwX25OwnouestHbeNd6iCktvaad19rCmy7aHMty+hsmw43fpuatP456f00yOtlZZKuNwd8MSnfw2QRgLuGoxGVqa0bUx0MfqmvSkOxGk0gEFXqrfI1/zIWBNBVbl4JZZhRnPkEkJkwo7rjVnxahCJiUyniEzfWfijArpch+XlsrFs3vFT5hjD6MbT47ShDXAFmA3S7XX105pVrh1kFrXW6gkPXulw5y1fSf8l6cDCUKxItgLFtQyXoNd0ieMEAr/7txLE+C7v+f5+t6dsBsM8YuwazoJuUKsrbGopd0nEnusjSM2w8XQK9G0ouXqji0ZFjZLZNjXeXbj9mszCOvuH0kWalDGFH36q87YYNFQlQwesHApnmaqAjAziTHlHGFukBeaU7eXbkt7m6c5idI4r3Q/I+1N2nZWcM9Tjti+3Nt28k3X/X6Muxx8qZU9NbL4z08QXf/h7C393+y2o+zxb3vb23b02c/93M898hE9Sm06XkMyQZLSVtbacxZwG4uVplB7Al14J1ChNrXKpwLuo9kebbeghoCRXO9DmfCH0E3gM0GnComtEmA1BxwG3vx8SBLTTut8JgoSmSADIQv4tJxSLA7JRZmA78iE/1nCjwHZQp9qc9Io5YK1jGrYVdcolvbubY5J9UyXH+dCR+bnc8wl8EjbmTPHt84Q30EPzaSMJxbx/RtbI7mhj2pYj1h10WvEs6P871bxVpW16j7NvJfoN9CwktuBF7aG2e5ujui4ThZpCu2IS5Insa78bRae5Khf1td9c4mB7xL4E+D1KONirMKfW2XyctHa7dkW+6zLNR40K+r+ZLxt1/gu2LqIDujeW036XkUJ3ZOYz5VxJhxjcAnprLO0Z4IxKrg/szB8qc743ksuYPJjhuz2Y2TPPI/y8v1UhaEutLZ6+oB21nh//Q20/yfT7eK31RhFCBY3496x18ofB8wlFzXKqnUdTYBFX2JhYjDyFQfg5wW+dBh50UXwtP1IbrDGIEYZsyHehbUVzy5gC8GWtsHgrBKzzhpnXTcJLGFcgVOvtNRlCni4JpkA4oLxyubVCSw5Ab7Ljdx/tFHHOOgEP3kGKAgIrvvzjESLS5bBZNKMabRaV7hdm9on2gsUNlUiTGZqVU/hQOYzoftzW4DHNv8PSg8nuAb4pHMRhGk1jmEWVciUC7nzMW5OWRel8QKbeh2ohdVay6kanjC1MCyaoXMC2TCLQnvjAbb5me+4Vfrvsidd2I2zl5Os+1hNtgpILwuCkBgdRyMruLSmtScwrsMQ0jPYRlKoJuM8zx/4976XKLSnbuMkv0vb/OvSpw9we8+NZ1JaaieVt9kH4/4JNEEUV4wQ9YipK7eDhdI6IXU2RZwCt+maHfsKDysyVkZlTMYZJHc0pr2sMbMKM6tdgkDFMfoeBJsbx3+COBh6uORY7mVsziy1yZpz7PC5TefcAb2I8wLLwLqwNu8pF9zjpT3/zdn3//ncPV5BOcd6sV2TqBANREiwvUxjGQTINKZ9IjBwQq+YOJ6LL71IPRJI14JAISxtTFmzVoXlSQkuUVtjHafAPorNWgtGNBmdccouURf/g7vVB0V29/EKwaBwgCaBd2MzyRoVgH5OPtEAlimWbKaZ/+8HXuT6iuFr3Ylbz6aJSOCP2/Ryha0t7STnc7VEN8hZQidSg8QKW3j3bNNvu7X7979rJ/P15/ZxknkvAmgqth9PbUfr4Y//+I/DtQcg/cy3x5PQ3tUeyeR7RixYld31eehLfxCdzD10W9kfX699vgUru21uSm9pP0grAVZ6nGmDBcpKC3OIlleZtJy0uiw3tG9J7rE67sJp6/P1kuw8tTxMBS4VWBL4qoXn7Ibq6IQQ8eZo8YaFgSW4tPlEdN61TSAmAvIJ9NrM9eP1Lbc5Ht8KHNF3rr0OXgNa676vpH0fcMgKl+OEVC8cW5f0aIs2tWrJnrlz6fjUW1FhHeDfAr8NfBedvHeD6DRAQRH9Bk2E7OPua0do70f4IQFT1WS33k+222KffB4/auDXgU8i/C23R3Orhxfe1brRrejrco23REt7CkvDg6Gjr62ITuq+VqM4ZgXVerf335kUZyKu9Jv42HIhLzJmteVZNbzHWsZWyC+7gPryC7BGqHPDrDCUuSHrZY0QHB/P3s4fcDPwbDeuLD0kauo7x0fz3aaMBSgOWur4vsEQpf0ZwRZZ1K6Ami6efRE86yLInKUkN6rYdUk8B8BIupnYOjeBWfZ2ytMWLrQdY7KEcmgNoXpcq6CWAg5NC3sDX7rzHnGx4IkwW9umsjB1H/chPMkzGhbK5DFLBk66e+wQbFJHvXawnQZWkn0YaIVtx+27cWyU83HnQlQ6lLUqI1Kh1voOJH7mP/LNJ/Lzyvg5Lk86JBc9ZQIzk8dEe+4ZKo/Z5nPQGPZQ8i0ZzulZpXShnzsaLyEOVRYzZDSNN9cpXMk8eQXwVqX/2vlfFnoxgZ8Ak1JplJsHH5c9QNTS7oUNG/u2CBSxXFg69b51JQj111nKH0jsYB/KH/Q7ftMGCwiK1/b3C0TLL7SEdiEomrwY792O/ZosxIUT5QbqKnmdzho9qWAhDzg4dVvG9Y9fRkuwsD5lSlO5ARoeMZxVmGmtpVFnlQrs3oMjE1X055pAz2sqhxaOhiVtmVQ1ZNFbQ9yYDOrNFis9KJCLCBsikAu2coEEs1JpcJJZUtyEtfWBafNCe8j51nHesvkF4M9GQrI2m9VwrMY+dAIuPo+Jey8pfxTG5+BNPQtYyFieTjiCR3MVttdrCpRbLaxHoVlw9dkJ1nYP2/FeRomld+gE8tACcukFUdHiLtJSe9H67uAWYBnyNV3lI2BQlWwWhtNojfbUEypa2R8ZTAHfJ/tXaNZLD4dFK0vwyC3RczSRSHf2uGc/ESVXF3T0t13fWz0jxUt7iPrhhsenbcJ8nPkkdF5uO5MnwbeinXFMWqP0zMfjrQ0X9535prNsXdZo/5RbaCZpExIrO48JfnlUW5frP6jQfhwVGC6kuajT+8/ovpN+nd5bJEL72dZqTympE9gLC9loSt4TLVvvHvddInwRoR4I5XisycasEk8BRtay7BjizDFZxo1J/LNGM2dKkG+ZZb3dbrrlznP/cY8QtOczXRsvwFOR9ZSwnifKlHn3NC8HeYGtq1XWhhjxqVXBfYoK71e17v0wCZGSeaS0FRO4QIw/9gi4JHoDrAKHBS49dJL+8ZreQei/9wGyg8cZAj8lwjuAE6JjmxDH62PbkxSJoXkmvsva7i3tzb2xNQHoJDqupUQHVBt/cfK7VHDfSWGMQpLM8QImN5hexoGeYXmY8ZUioxrklL2cqp9R9/SofLlJ17wwE6zsNsJ/B3BFa1xpIrqt8EQbfv80b9392m13diYu3JZp6GWx0kbf5QFxeU7MIMP0DdI3aiFyws8QdS8Gr8qK694WasELDIC1rFsl+HH/uPH799HGY6nQ3hYu2wJn4I4EFvqw1pGVvCEsE/HhoGnB1ZM09IveSrwPfZebAD2oR2VY06D7QaxzYbS2MedzMPrnrxNqYjeat5CPynh/qoQI/SS/Sd3LN2dR4kg3izQ/C4JZMgUGmPUyGM2Rjrln+trslU3cKq2WkTw9mlIZkMyEPHHav2D6OXK6pWxIYfTNKx9aCuCbvn53IsEksCUJ/MT/Pk8h1OseqqiuJa5d74GEoOt/6t5tbd3U2hDjP2Y+e3yqTOxSnu5B6cNW4WXtUXZ9LmhZthDri2VSWxVqvYAXDpePQfTaf75XnPt4LtTeAo3SnkFVawLKQVJhPewFk8qU2goYrM40qV9iZceNsV9ZpKw1vGxWqwfNpELG7phU2JkT6muLWOdU6HgOC7rpchP2SGrZEwheAIHeiYap2MJA5dbPrKLMW95uqZDo56yFanzi4JC0MPn5mVivkAckdY83gr3/OPZwjVRg/vxB7KHjbIjLHO/u8/B89ba78IoFcYMVEVjoMZhYVn044rjC9iXyHnOGkke/1VbHE2q1uxezfOgkg1MVxcMKnzzwsM6t99Zo4yMjUVh2nk70gNUJC1a9Wuq65kgmHBB1gvEKeAMYI9squnfa0j2b7s0V5mO+u46TzAu1jX634f3b9NzfucR81QmSe85E28O97b2TnFP4oBnLnh6n6I7X38nzvxVtW0v7491yvl3rD3c/qv15guW1VZ4pzVGN1c3EcmjQFGofj8kM2i1dpKlXwXnoproXeB7JPBBdeHaMVLo2dy9Tq0ObceqwfDRa+zs33sJaimnJtC8u+ZaQifBcAx8F1hdydo9LSqxa1Z3L49gmJY1sFNQNuGRSVhmlpdZzdyI9PIbta3fez3Of/dTtb9rC8kRuYnwnLvs+7pjWSE9vPQB8SbxQHJnYGO9p54SxIKTbaG33GcZP0Gw/QgxB9sLdHAgeDBunes7SLlrurRKhErgD4SIRBt84hVjICsinUN5+guqy/Twvg2cK/N8i/Ct0vMF93J0LCxlN+Lx8kca7+nYQ+F6SvUTcU10VFrbzJPDuXZ64PECsTuH7bHr1bL8AjZtndf13CW4KrYH77FnF5zPLiyzMsJSZUBoVcsqeJubxvdd012evUeXlq9x4dhrPno6vgYfcsQwcuut+DjzzqVsS1i0ZB5+AdFprCSmfYc0ok2hzAxItvj1UERTjJwlCjy3AuiQYXqA/CSwn3jnhnVvbrF8O2uG0Uu+iFF+0TWJdce27+rDWykreJSx79/FUMZB0F/C7WzuICnoDD0sOtlHNw4Z6t0u2OSwPYyj55heqF5iWEgEpMPhuIaxPYfegOXbfR/pZmy5Mqo6ivs35ak5rs1r7TPJQ73yu+2Qcfl974b32MeAWNsYVtp+FPWdEtGSmgFnqxdTX6TtqaAlQpUVgKOL4vnb3Azz3WU+Nc+YBWs7g7miHlkkFCzHkwW+eXJyLuZAk00pg7GUB1sbnbqyrbB/TnnrkpYaLW2CuDFqqwEpbo08PolV9+MQrEdAiAVKYJi4VaUybIwmISHSvL7KgbbVWy9jtHc9ACNn2gxDlz97K7gfUNyzOphx27yysjNqS1ZZeVTvreg1OgJe7j8GXDyHffgCuOKDW9gpErQDk1jY8CWwNJuRFaCkmAnxx/a4AM0HzEszc+5vWTPNMvSMS63r7vbU/A1eCjuaWS3N4bNsaCTJc3pPbXTrCAmQCfP0Um08+QD8AI2Hev/GN+3nBUy+NsPqx9wt9p+MSFgvsuML23PaRHYzrETYLoTa7FTTUQgxkNU+5+xTUIH3IRsBXjyPPuFBhaGvNk3XVeJ/DHKZTTeVkgVnNQ0XGgTCV4pLESkjH8kiF9oDzE95JmDcK+PfftkSf4Nws0W0avZUVfISy1XPrtDWlZ3pO22NxF1tkx6fJsx0jGl9Tfkoehbl/LNrfWKH91LFvPKr9pQu/zWDvBb4C/KS/j0jcQuKkM1miv8UtEMXW9W73/U3Ay5Pv0pjaLmGk0Xeq6U/PoMxl6h6/A9f40DpKAhUWio2SrGcS6x7sFuFSga8sDPi+CqpZTZZl4XGrWC52DKhAKPOm1+6mzRoG2ySR+ha84lf+2Eu2v6E9pnS8WRZKvnnBMbzXUYU4UC8y8BfE3/ma3sHS3HpGZW2wVret7HeiwuevAV8AXgG8UKIVuOhYT21hzj9ukRhLWfuxGUMpNTYzfMPUPMUIPH0P5qvrmA1dD8Wz91FlhkqEn82E/5cRbgRejFrbMxuFd+8uP0xgtMy7xvsV7Gu0p3soFdy72lZEZ4WYiM6i3i4vSvr0OMa/tzM1I0LuPFIyiYoJyQ3Py4T/XFv+qYXMWqZG6GVClQmlqFDux5XWZ0+v70V55afQdItPr7dqXfCnzOrRV7yEp9NaBzvYciLK+diBQJ3hEUuooW5FE3q5PmNMO3MCj8bKxnhgUMve7va4UJxhhHkcNVFmdA543ATUybU/CyoAr8/iYgA6Lbjegu1Nb0nf3o0znT8DYGA3wjoSM+QnQt26haG1ihtsgv4ETNvvMB1DGneejmVFXKiRneeitvIc8OdxtX0iP7eGfD1oxzmDqPt22UNd99PWcM2Pj6+cZd0b/So/nkkFRS8Kj6JWdgEyrywZVyo8psrn8K6si/lPxu3Or/zhH5hj/oGYdd9aQDSmfSApeIAqnSatXdEQxFxMt53VUGQNL8kaKK1lgeYaScl2Fx7egzL2T06e2Sb1W5EhICi3hmgZSeu+r2owPTP3Gz/nYQ16S6iICgJ5hi1V0QLC2KrQLn21arfd4kn602uBQcZgOnMx9jYgep9NflChQrkX3O89hlz5oCLC2x9Cft7AMw44xZb+qE+0bGO14p/Js8Z8Gvf8ubkXYSDCccD2cmrvtz+rmWZ5zCUg6XKKs9x+hzrfraSbrfO2LWjZHX7NBPuc/dhbH4AZ2EWw37aXiREK415SFhUQP/IPXoJMSqVbicXdGBj3BTan2MUCW5bY3KEIz0emAD3KLaCjTAV1KwpbKYbPPW0P33fvOpwC2wd59vmqhMhMoDOhJeg7CPAIstiDSa1hWBao4KEs48n6bZQbJEn89ghlh632bTvme6vjBDFJ3lZ9dT53BwYJUB7HW9q34vW2a12/EVRov9/d005G52GGaGlPx3gmnu1b2R6PioTHZQtIlfmXeYE7d9Uw34lQ+3hoYdzShNWgLvIQk+y1v9/Zwk6xWHLuZfOpuv2/9Tbko4vCOMayWIWil5E5K3vuHvcCgS9mBtuD2fokWFKoLbMaVpygTo0jtDYI72odcQxjACkyW98KgX3HrcEhJf9kplHTphHOMaswLvnzflEEO0Kzxgeh3XZnkN/Oyn4lall/MSq4Px8V1AvUPaxHN5HqYv6GOKuo+9/iktAZTSRzc2F4Wi/DXHwB9Y9dDM9fJPuZS+hftp9eYShyYa8RXivwZtSjt4RQBs4fM9us3e6F9EYJPPf7MfM12lO80dW2IzqnE/geJHrzpDjmbLTxwdJOU6B+hghlZvhqbiiLjCozlCLBop6WPtoqnv1WNJ49tbCngvuZtPL+3Mavu9EQnaWt7t0B3Fp9wzFYmQkunu11tQBM3PoL68p92Sj5hisRiL4nX5NdPbGi4q/REajAODAJd+BxSPJ/WATJJCxlcNoHI7eE9VTQ3SqER1rr0Vly/HOXBU5YtAZ0XTZKvk1qP/et+tM2YaxSZev6tGlFTl+oCAxdUrX0d+15ajf/3ahWT4UAVxNGf2q8VzeMATAdgq19RhPb0BvocPQqFdatjW7kpwEpIVsqwvoJMe1CTHy7Pp1XrqRtVHfH/Ptzug4QDTVwbvdigUmNZHkTfjTp19T9pKEv8PcV6jVjp1VjeBCVVV2W9tT61MY/3krVqKIg832krfGdm1tfLm7qP6sSoTbMNZ1CLaLPHwHkrmSX2xeVtaxMaih64V5xgwzro7UNGfTozaBq8CBaPk4s9B33L36S7zga7hKAW44EDz2/T4ZE9/8pkE8glyz8Jlj/Jc51GJtoWospqDJIAYPKMs4z8gSXQUJDt3kPA5qW9rNqQbI0uqb6GfbpB7A/ewnlCxcpX3kJPPkCTheGYW4cITARViKMjdh9oCx6MNL1aetKvaFIBMm5l/Xothoda52pJ5bNhNWe4b4nX8Dshy+mfOEy9tVPxjxFE5lqwkGZY4QbcHlPgmEBNZw3njFzHkn3FTmXOBqeVmTydPORtq4YdEHp6il3T1tQT5e9j/mGs7dEt9F/2woOSkPnnKda5zM9o8sNfxcuXMZ91oCPyL+s4ULckr7SeXq8tUeSmPD/p5qIqPWEpsVdaAq1fsMJzWzcj/cWFmsCl1+wvqxdGqvbds098wM67hJUaB+X8xaknTSb3Ot+L7WlqCzFoNBEdECeCaaCZ4nwF0DZ72M2ZlR74283LQwclxo2rY0MOKCW9qUiwtPa2Y9rb4qusWVGJQ/QubN1XLNVFUpdLyAsChy2cJlEpO6F9zSD/HZW9ruALwK/TCzR1xMV2nsCfenORB8YGNtE5oskNbX1a3XrLjIOVZYjWC4VMLWQP2U/5qkHyI1gcqHMDUVhmPUyflCETwJvQAnZy0HdxMWNX7SGsFekp4K6r1Vfo0noeqgWOcUDfq9stToC0bFNorNCrNM+QonnE+n25NlpdYqMKLB7LwJ/vBD4PPBMopKlcvOgYRFRoPHCvCd8PsHgtyXja8ezn2mIKa5M37NPRrebhAlwnz2S0KP0Gf66hyvH41ojDi4zasFzn63ViiPS0oUBJTjcoT9O8FmjHFs6mJS7TphSD+ByDpuT2JfPiF8lixK7rfu4T1YWxxlrte8B1gVsX5PtWTdua5W5Sl3jw3xZtyFTbgirlnb/0roY7MUkE3rKIbbdybus7+NaBdgAmzunsex+XK2VMRCY5EBLYPWwps0L7DU2KjCA4xYu3ATJe2H+RNRzw3sxsAJstpIG2qRjHBy9JOa/S/Odzt1SL5bhEEHGdahCIB5Wh0enfkk4xGnd1/5/ADsJqVjDecP9s2Wd9oQ/SD/3DH2oXZ6CsM1n7f3XQ/ufWu3LTiAjusen1nXp+P1QtDypz1xOqd4ENdCfWU1CR0e8eKMj96FXDE1K5VHcO5yAusd7jZZ/J5efD19+KI7rmfudJR58Fvu++z1W9S/ZFHJX79uHNgX85pSKKU7piRN0MlcCraygglk/tbRLA540t0Z73nO2yR5vt3h5yXM0tt7GZW4Enn4Anqacos2EUWbIe4a6yKKHgxtT5jZP432KUC/3A19iqwpbaKYd77I+hycfxRa2qxFsnlEXYOuMVStkYpCnHNAjEw3d6BuyQpCeafF/cbFG2NA5GAi7RlPGVt9amRv2u5tSwV2NTo8cprnl7dbCLlRRV6J7LxVo/VzAI7NE78QK7itWtPc07OwVt/tOFQMnk/u8V2iKkv33e7bp5/HWHq/jesTtgic891Hvs8t9XIiCw+nk8x3XMH8ctRSu1ADkN/EdzHsR+P931Hl69q1nYhzmnGv8dsJ7iyFKYjrzGop+plZ3I05oEHKBpxvh+HKfemJdSR/tZ2StxqYmHFpjyBZVLgyK5EMSrPKteclvfNOV5/7jwlnaE4ZcXWAtpqqUMDm4DggcdCCmgmrqbgTanbeylzSt7O8C/j7K5BX+kER4JzIvadsKmS4QhVrwMoxQFYabe4ZLexn5IEf6Gaafk/czskFGMcjoFYZeL6PIDDnwg2iIyyeB/xX4UjL20jYT0rUt7P44grrGQ7fibqsVshOi8yBqGdlDtyfPTlefcfugoCVUA9+JCu0eNg+3t7TXyeeNRHTuN7fRrM/u3fu8ZX/beqsJc9Olld/z5iujHNhxnG3batcOcC6siSum9Xfmgk1iZVdRBU3D+kAHTkw54WkJfS+0J08P3JA0J8F/fmoTjlZw7zGnSXHJr6Yt3DnePoQnKJBM8rUI5wuctGCLnHoCIVkWMLZWEwLa0E38rWVeOTGq1KLUlq6Cq3ehCtCuOeoS1NOWJvJre225BwUG2V34cwZsZIBLtBfGHAT3+JgatbJ62ax2CowjwL4xIfbWSCK4i8NfC8X2ngTWwTGYt5m88Q//rLW4HWxeUeFDD8Y1spCnrxbQfTcmJqJLH+0tlHaAWtqtB1/f9cRaCtvBaMv8Z6kHkRfah8RXPc98N8eTgua/8XhsUisMMoW8yMLvm+X10uzq+vkySntKL+mUCmMJ9CeEJHRhfYR+PFwSPzcwK8CMppG/sOqRZ7zLe2XD55LlcTv/5IXIxep/II5YSK2C0dSth3VgmRrISJPpiUgMqfRz5db3LlyySO/CNC2hhInjdULyRUngY+vmjRppawvv2zUpXGLPnnHJPo07Mup+hu1nnOxnFIUm+kzH85Y/eJeb55Y1GqDoIS6Rhp0C/SwKW/LYusinaKfOVdlQ9zJODpR3sP0MO8iQQYb0jQrrrcoqfmxa4o6gSJEEvqVRxWxWUmVwwOFilRkEg5BlZ/ZOO5vWJTzvct+t0mKlaVqiV1FvmraifCe0t4ueC02DxDpN756ztXRvlexuV/KMdF17/s0L7Qu4hNXpkeC8x1v7Gyu0Hz/ytUe9zy738duAa933/wEtZdWO9348vvh2azPNHr7bAT+T/x6Ft23h2zF8bQ5DUCQ/TkSiFtXYtjJB13ejmQoKuQmCiXcJNkZ4kcDh/oB6tenyPLKulJYjyN61VSDWaR+5MkYpwG2G9JvcXvOTL9v2e2lzRukwi6zh9ywoE67u8TUmM4EhvRCNH69RwhnqtJPGC9ngUj71ByoE3YPGsP8YW1vZiy2msGvo4FyZ3bVHwhWaYfYL/ZzLBznSN5hBjhlmmH5G3s/o9zJ6w5yil9FDmambWn1/iGYIgM8eTfJ5StwscIgotEMLV2yzT8ISav2/QqxD33aNF85xD5JY2omHQUMVDrojtbSXRAVMlcxHev0AqjF/Kkn2W0nc5HcwwDZT4Y89wOo/ellDaIcmE3G2battMURLvkEU1q27oS7U0u7X2hqwu4WD0ncoMC98btadNdTDOYXFf37vMfikS9945UG466gK6xN3JIo3RtW27uMpDfPu8SIwFOGUEBKV2SoK7Zrd1+HExPPI1Mn/Kce3UakL/BZjYCFXS7TnoNJ5aosL7SR3rm5z54JPntMgNRI/tZlAqZHTc7nuEku/GlAtda3Wdi+3HbOwNJnCUK1gwV08sYoG9/8GJ2yb9GpcRUE8UW78zD/8wcg1ekD8JjfA2lQFxmmNuPccHKNFkwqOvXDuYUsFHYA+WFfqM/1iEy3rlz6W1rmL+fdCu7fQd3nLtFtX3xBrta865Jq7gPXQZ8Kn+GkS18Oig9dXQbAzVZyMgd46SWhbKwmd68dvDP/ZtFdgJnWDJZkBA0cAvGu8WODBCfI0xVBy/m79ga/b7tZ2Hxss7evAcFZBP77qhsFE0gz5OuIhsOlGZ3uqeGECE3L1cmgtmQhY97voE4X2sFaY24HbNunFqhx2kGH7OXU/px54YTcn75nGOAT4iVe9jIaygvhu6fcYTHT/2Apskc0JlY+FlZ3WM6wIdWGoBzmnBhm9ocJHP1fvi16O9HMV2ucmJo5RhKSeu8a1755Z7KxmVhiNF5ck8Zynm2dJ17dqYd8m/IigfE9OK1mbbc7BKdfHnrSf5Honz06PtkHCr79hcj8d1zt9RirA7yZmj08NLCTXbdf/Lhz3eGt/Y4X2qhyf+aazbKll2R8fbd3zkfZ9j9LG+2a01DXHK3P/snXPR2gy5B7ZnrF1MSKgEtuso3DYmVzk068bJYFKpKcJ6XITM8jnjgg+SWB9mHN6c6YCl2M8R1gGIZadBiMaoNuYwdCcmdn+Jrbzz9u9g7ukcQrvwVva/cc2ySA/AckluHxehApziDRcw4PQam0jlr1tZX8n8DI01MJb2b3Fdzsrux9uG/kLqp1tuzJ7IfImI3xbL6MeFCq093PMMCdfyFVgLwx9ccoC4KWtZ76UpsCeehSkn6UEoTMJ3Q72SerRmBKdXWhmU4D70HJv/r7gQgdnTVy6LO05ynRfBPyfaDZoL6yXiSJmq6zxt6Gu8T2aLvdnqs/emIcW/P6zFaDat5uV5PNHI+6szcgKKjRswFwWZYsyj9iovDltkzheOz+mRvb4kMwSZfraezIdVVvb85XDzVvedRDWppoRv2FtR2OlF7auAx9jg6Ux3/vEZfPN1KrFLAqdp230du+a/4anE8BmFZPtdfkyL2Y6/mTugIDHbe0e3BZ6QRPYDZLV1OFRIBCsk+k8ZMB6YaBu0ZuW9O7L2KZx7T7/ySkLK+UMWYj73BhP890zlwrYqFv9J/NjcQn15qsInLd3VwKEhM8Bp8XTVGYyLSGPEa9e/OwbmLa9v/xadud6oAlIgxusG94aiWu8tVDVmJkqhkxZYaoaU9vGlBt0fy9BiElPh9+17+f2XbJ2BlaT0a0BK9Qgpmlh9/2mFnLPsxgN5VoHbCGhisHUQn86hUHWUOL4a90L2om4gYkIs6JHMfXKDYutFfcNrY9Tj4oYeeg0XLqMLAAnRzpPCfIQomBSWhWUBrUT2kn2U2s5p4q1ZSFUcrBFrvt/BGv9LFRBFNJOEtfsZO7CXNMU2rvOO2qZgUGGHRTYYU49yKkHBdUgZz03LInMvfN95+2OShL38vzY8t2wMJ1Sly6EoxeF9rrd0aPc5gRXEerccGSQUwwLqoUcO8yxwwL6amHvGoq3rofEn+lN/R6Lm8DMMs4yLpL4rr3s4OnnoxFyKVscoALraZqotm2JHnLulujtrODrRP7NZ4/fapxnam1luRBpln9G6vbvr0+ydQ36x6vs9jdWaH8smidQuTi3XtH417S9PLnH10Q+Yw3zx0krpAUj8/D9CDHT907KODVaOg1+TvpG4zzTWE3fWrxOo82ZSdx5WsJitOZ65JcbHbcIXLALRptj3bjOOkztSr75A1evPGVGpzOtlwvfMsv6I2pt82LeFNpB4c0AmYBJXNr2IxzyTJ9EIdYztj6BW7Cw22hlvxd1u/5xooDYk3hsZ2VPh9vgY1EG0zMxaVK0e1AL/NOAzAiSG7JeRlZkmMzQN6Lx80Th9znAv3J9/W+oAOq9CdKEe2mNdts6vHt8W2N7phCSNoFqE50xasl+ovs8tbAH1+yzwDFeOeet7L6fO1DFzIPAvwW+THyXXiHjBfmuePZnJbC2s8bvhNDMueC6z52NmYeYn6tzJWBbramUkfUfhnecG2rxQqUyA/sg5DppjMkmwkhb8BzO11CPkgfR3OJNLy+8sDn4vcDv3gE3HlHh2lvbQX2LfQhP28UeaSoWRNeNIda0xYDN1Eqpw1YhasHhxcbc2Wh9b8A5Kl2NdppwBvf4DMbTM+P8LsXtuJXIL+2/tQVCzmY3x4XAamHUbdr1H2Pa4/O9Mte7jtc1eL+Dh62lvzFF8kR4RIJlTBFToQkBbbPfBqwejuaAtfl06G0ueaEH62X4vfRj4jJ/f4HzPkrmxbbnqcixLvmrdcKoRff5EJCqRiYV2aRExiUynmE3K9goMdMSKevGXgXd519AlXdzr4b51vmdtfRQmhEs0b35vdpl7fcXi6jXnDVaFg0UXxXlTAmGX/8ty68XHvV//W62UtBLihwAzKzVJHQunl189vhDU+SiIeztIycdBnHSj+ch+ugemqKhKH1bQ54IHEYCLm97FgAsitLeMUCmXnI1FTUm0k+RBJ44u13vQCsNdAjsCbw7bdbtb5sZbOa0WCKssU1mcOMTrTXzCxQ9WFqdMJ5Vin99jgLjSm8m+OzRbl10HWBVhGUjkCQybXh9dNJfV7HD4T3j4ez3GYxqpmXNRpbzBGnSTT1LZ36fc2kB19M8QENKTrnrNrqydFuiu/o54/OZN0icJHoSNpROyXh30rr6h5ja5TTN95m+45PEXDnp89P993hrf2OF9sWVA2e+6Syb31Q+Frcv8CKB30Etc78HfKdE650X7v+6NIMKUblEYepFRPjehMKbWkl3jFjS3Zi2vkli2mmdtyEdbUY4xFPW0C8wIuE9ZcZbFYUM4QlDobcxZs1ZU0bOxXPBmRzazHZgTDdLtbQ34JKdY6/HoF332ZvOfFMX4hHUUpPULAZcKSyLKS2m58vRCAcMPCwwFr29LdC2rbHtjPEvRRM2enf0nVrZ0+G2rz0z4IUsj4y/AjyXqDRrW33bydG8C/d3o3zdYgJf6k0QYvltnIM0d9ZhYiWJIEwTtefbwdZFCL0VdxUVWFP3+HYIztk0cXvDV+3xwnvba+gaXPZ/CMkF2/Hsfs5vQxPY+fkM8y07txh0aeVvBd4NDG+8mf/k/u+09p5D61pTvta049Xdl45ZdMyjdx0/bWMcr0Ao82ZSl3GIuGnq9Pv95I21uAUtHWRCVmYKA992Ifz8k+BZOfzUE+CfPhdeeTF86TC89Ta491Tcx5NS3e8bwIXOw/oJjJzjlPcIzBBlogaCnZQBxZ7AsuJA8KXyfCmrAGeKi9enUbnZeL77fzGH9RbOb7jJt6SG1JNqOos4OFWcti8DJxc/7QNVkbuU2bZBXmwiqXjGrvIKOqtCfGmVyevNZhhXp12CfBIFrYYnQdvf1DfvMRC4RL24/ou3tuYsAWyxFyz4slm6EmYJvEAfYSLeSkgQ2K1I9B4pMmi5fWMtG8CuymImpR7TChlX2EnthPdKY+nHpVYXcf3dhjLGh1Bl3600l3V7f/q1F65trErQR3HNGtCra635TYcXi/+/ZU1eECcIZFmwtJfWkq9PQ19IUs88tfb6cbnrWd4jX22Oe2KhaLjHW+Tohva9bwh7F+DELI4pWdfeOX9irSa+nVRI1o3/xUTdjbfl9lE8vY5oEsLKUk9KpoNYMGJunpPr9jkoeB5h81u/S9idEOl0Oq7Pf+5mvRYS13HlNbJBxvJ0ymhaYou4dkPfZyPRnUNLE0/64zS+SkhzDW5rbTYtBYq/cRcsTCYcq6AuMpaca7wPsckkln57tFp73L7tpruW+XaW6JSvOdMQUxScjsEbJE4Qheu2InCn4HftH9+Xhy+GcDbhPOHgS39zpsTB3+r2NzZ7fJb1znzTWTYRYYClkrgIMpTZfzGRAe6L8hUD+es1wUaEnrUseGJv1F36xTbCV6C8xlBU4Mp2qolqM27+nGfNFODAnBW9q7W/8/8nJYFUaG8mohMRFpZ69MYzPlfD91rLRg2D2lnLLCGLvuBqTPrxrOGsWC0OIoXvm9zW1jbPfNNWLRO1zEHAYgZUYAekyIJguyLKNBxE63B7gdaKCucjm1hkbbSy3wd8DvgfRCu7j2P3x5kUW51MDRHZb6ICric2t6BCuxecQ0lZEiHVveMsuU/QeqT3Ei3tqcBeS3xGivz9PYfR2P8u5L+jLKth3RGE3wVU230YdY9v932uxN1njy/EecxY+GHg48k9LyEK7DkacpIl8+Hn5zCqrX86zRh2f71TxV6D6Lq5+Jj7zqyrk9tHUVzU1vqfS+tiZIcoU+jL0DTQTOaYx7LCkrMGPNXOj10A05VIbeKspEVL6Azcj/s/N5rcyfdhRAX3p+7XBHRlDZfvgUt2weeOwp/eB1echL/7BDh4UvHppQU84wANpaJE5iTNW4Lo4xbQ97hsMuppHQTZqZuLVFAPcLaVpqBW5oVs/oWCjmex5yQrO29l9+etPKmOVvC5B2Fo4YoDsc9k+tLLlEnNBdZ7zsuhrJX2OMHc6wkEi8Xl7LB+n+uXx7D0ATMpYZi7FGLJXgyIKdOa6gGujjmaJgrgZNyrG5sdLifuhqWehh4AUmpCw8Yadsq4sQM6CE/WJtZJNO54pkqe1GV0HctiVWNmNVLqgbUYnRhNTFpbssI4ZxAhMybsUd8+jPJEfk62cpEX3JpKxtazakk+YeFytrBE+//90k6s0UvAKoLN8hBmUQLZbIZ4ZVlYihIXiN+C8YI6zymqKgqlVku+LcSYMJ24IzO4cEH72d2DI5sx/4M/u8f20Lj2k0AxrWJFB6dIcAbqhoClgq1O5hLCBlAvZJgSoGK9n1gqW1tBWtfp2Xs1+NbeamfTtvqtzwzefv762gbGqJdK+hrUoyRnaVxyZFpjC+8pEtezbQOyTaudYcbfvp1Xmvei6zpWUd7A99M+OpuDp3GvLgJ6a1P61RBxSTUNLgGhWwO52RF4O2q+8lXXuHc52NgC7hPEeHaS804t0eF+IfCXEA0Sh2iWivS/OVva3u7f/65di77tSXECuGSL5z5eLdqP13E94rZ68v7HpN9chIGo0LoosGj0WDKq5fX/D909j0f3iu1aT1TZsJgcSw4+D++Cg21wNqCl96YM3CBPAqu2YOC2aluVBHLxlBkujMGIE9w0xl0WeuQV3Oos/BMLi5YGYoNoRWq4gHq3Tz9+f/4WveYf+nsvPvNNWxG5XKBsZjkWIJsps5G5eC1jFMSLUIuvJVqip1aNP5u2uy77u4C/i1qgvZW9XZd9J+EjgeAlYHhGZTMZ0wxNKvc8d18IUSFa932cWZowzTODlwB3k7j+M+8KniJ+f33cjeV8Euagdb0tbB0HKFG93f3v+04z0vvjbJvfGz2i8uT5wG8C3+vuWcN5TTDvPZHGs98KXI5aqc81nh2S9yXR+v/33XcbL9F1/sNE633qLXG2rT3Pfoy+bNVIiNm23WfB4lMpG7hmrfe4bShbGgQ/FT5HZUNI2HJsmWiio35ibe9nakEfuIzN/vjeA/DLz9BF+nt3aG3OdeCdB+Huo3MSTpOBlMZYdwmsWbB5jp3FmOwNm5R8kwTeOfd/B+94poTC/8BPuG8+AZv3PGiXfGv35+fxXpfh4RDwpw9F+Fr4WNx1+khxa2rk66i7mP1UYPetcgKaCu02hAKdsHBeXWv98EHREAIa3iSLmeY/6TI/epgmsyQhYaQjP/S3vzMC1PYkWMhhw9lGpyXiCLAkJr9CkuSc7fXrKdsgg0mirHDjmgArlVX392kVkx2O1Mou44p8WpPNarKypihrenSH0LX3aFdrvB83hgIY4yzRZbREN/CpzMezi+O1QvWHnglEagbq6j/UXBJBOPTPbnQUx2RXoJh6jwk9aSI6GzU6AAfXkCcsa197C+TUZhDUsRZJcuX48Jt1a8nLCrJ2yEqSayJ1k3fnBbwnQa6DGZeMkxQZHiARCQqBrVqfbUq+bf/TRuv6rb/2eRLa3lEv+cEX65Q7BK7T7/bssEdeQz2qIM8bfYbs8WdA+pW1jGrLhtXSnP7YsJrBf6sEx12oB1SZuYsOOi3b0DdB34HENSeADAyTyZS1McxM1lC+G5EY9mbOhbJvOZRoGEjGv4tuS3sq1O5Nf8/Ze7jN6SDdsYQagTzNlfZ5hw9ov5MUbe4hCu2ptd23Y3Qn2dv2vX6L2+N1XI/r1jeiQqyBJYFlE48lUeF2QXYmjDzemjilhBfWlzuOJTlHhUTX/V77nTI46f9btS5LlsXFdLqsusa5yBtNRJcZRYhZZqAHZn3MAxYmWBZ9R3UUXrGJJWnshFtfbihlvP86vOYuTFhIZJyT28ysUhffrGnZ6KGuyrc6wjmxSgTXaxXcQ9Z4lJ94ALgB+Eecu5V9bvjJWcBl1I1C9ddRJuESmkxjm4H0/zes4cBlqHeAX4reJd67wneVu6vRePa9bo5Sy32W9L8dbG1i6u9fQYV27xqfJedHUp1CROP6G+8CVXb8K+AfA39CFNrT2Pat4tn9HIa4vOR6J83XpfWeED3R8JzfRkvy/Q5aS96vm52Uktt2Dpjfxn6sE/ehF3QqcTJA3wntVmXH67HcWUfPgLaLX8RPVi3twewk8dyBRyQ36tUz3EJY90J8z8DuPvz4ZermkbavHGkC62GUyJSYZBwrwAlEM8hXfuiWkVWLhVdMpEM1be4WNPV36pHkm+emfMm7jcTO57uIBdLnhfkvH2o+50uHm/gsmVJ9Ho5R1g9ycaUbc7DTtIgjkUtPHp3qELAqtF841vIB0sucVcy7tvrnisaeB/NVB50CNUG2LL/NhSjNORNgKXG7H9WauTuBV1ChcCJJuUK3yL2gYwHby6irOiG3+ndsYamy6oVQWphpbLu56yjynpvgq4fJZzVFZSkq6FvLwNoQQvcy4L8B32linhKfJydtaTw50EjYuIgqE04BxbQOgmfKkHvho8vqviLCCcD2s8illzVSAYOiyYJIFJL1kLhkBWwBxfrMzZCuy6qG3BECa0FsDYfX4Ql9hWtPH45WCNa50NPYH31izH5WVxinREpLMJrGuJrKpwVxZayKnHoEdlKF+KjG+JO5CfMnzc97uEgR93+X0L3T1uVS7hX7Iblhezw0w3XInHCbG8oMBdTXpJfYb00CTEcrXfjBWg2rybHmPluvda3XLbyVoIDGAfq+djXGPk+r55ok/FNQogj3D3O+sn+Baslww/kZ91qCF4nHyd3p7c69bTXmFbYX2k/SrNEe1ig7o+vps9rnFVRoX0nunwuD2ckz3FpoK7ikBR8d59NE9/8UthQFP97a31ihXc6kZnyELRdhUWDFwC6jmT13OYv00MhfS4HdNxGhZyJ8K+IOZ23vuyQcZ99x6wxqUYIoPM4xOWcgH+37xzMV2t0zQkI6I8ro+3fTG/DsUckXasu61URLvg/jrhvDdVl7yRMuAuZdW7/JbTJpV1rtaF0UW1CJKrGo+Y/NtCKzkXEwwDcquBlNRvf/Af4KFZY3rFrZN6y6yM9stMK+C/g7wH4eBSt7xwEqTPgAAYta2Z9DU2jssvqmFnZ/L8CTUUt7ynS0y9vZ1hlUaN/fGm9bM71jGJObV9CY0UsSmNMKD48kw2lQopAoU4gW7nVU6eIF94YXRcLc3EErCR1NRcnZ4Aqf0X8g6j28YOC7BP7ddMp3if4/kHica86QLkbCXy/STOZlgVJElVEFVGXN7VYJ/k3AfwJurxOGw7v8thWLk3reJTrFI+0xZqK4bJiH+sedAnwvU4n0By5qdvCCAzGpHTimODI4/rUYJzAsiTAC7GLuStvpwNdxGbOdRBvhpJH5OwjcJZpBvQs270M+ADa2SkZn4+dVModP2jsPX9hs3SyeJBc5okJ7kcFUC7lZ9+xIbmzDu8bWytxbLAeB/ZMZ0pcgrAfh0Vv2xcHuxx444BROq9LSQpG8BD1PprN5brWdwA+QDRztlAacfZEYp5wohAJ8gsa0JxVbrIN7o4aFylmGq1qFznuPwTsfRG4u4Y8fJPv6YQa1DQL7UCyLBr5b4D8a+G7nZdiX6I3XheO79h/4Wua65opZBSYRYv26C+em6zGo9W4KYDKYqe5hMHa02/MaSV/+4SLxLO4f2xOGk2nDgFBbKHwsuwVWJ8gmyP5F7XDvUHmHkWq9Qlk4N9F9q2UDKyCrKsglCK8Bp/vXnr5GB+uKg8+aDKoaKauw9iWFI5nXdH7Sc7vkm1sGZy2wbyUQebqc1uD25+lkGsbqvQpSxfWkX5CdnmH7OQ7zYI008jR0Eb7SrWPv/bfhrOvr1hkX3HnTqpGhDUfXAWpx3kVzPrvodaO5LxshDwKfH/RYHE/ZtV5TmZwb66bHjnoFnitV725dVnYhlkXzLXUgAXXcalvaPRw7FtqT56akYDcqtLdzHvjfnU1r9x+8x9g6Zr9y3+1N7m8rDR6P7W+s0H7BE577mD9DRMhEKEToe2vuX2Nhvd2MKEw9o0cuj0QZIY1TwHQ9twSnkYmYw/6tZr0/X2MnuptbJYEUBp+QzgnuCGZXj6fP4HYL49oycH2IY6rEoplhcX2PZjFLVVcCpG/Ra//t//aus/+RH2shUDWFdixk0wpTpC5bcIO3jrjfvgeNPRyhxHndCe9T9HgIuI5Hx8qePrc93X2aJT1uIsazp/HVIUu66yjNvJ4mpLvYjf9hWgK7TQR12xTcLSq0X5CMK40ZPhMBmKs9nBy70HluW9pTK/s5W5pb1navUMnRef1HwJ/SFNinNiYfrNw8HQWuoMOzQc4iUaVrhQhDUYvSgkSPn/f/j6s09Eia4TmPBN9utXWH6LpOmcMZbm0XGXVZc1Wtnxfod59IQmsMdJd7G9eaQKq9mNsDSj8SUYvqoFDhPQjsHUL8Mw7Aa56gCet+/knw9AOEDPS+qDjRmtMYL1r54BhgKbBjnYCpW+DLbWbGxzp7OENWdO+R5NNu0dwA/rySaWJPOvpINxo4wd3CcKBmu2/L4DVPhMv3RwTVcmdpTKUDPcdZ2rMMG5TETXIT9rZzoQ1yt4XjNeyfVEiRuz2YhNl47hSiN5ZX9LYVyz7T/2C+NN/vvPXPYj/t7P8LuZoMvcDYz6PA4C56oqEdvgUhTJIY955ojW+iYgace7xPsFZbzctw8+GQ9wCALx6mV2tYyIK1LKJ70nvgLbg96r3xthM+GsvCzZFBDayr1mqJuSzSHY/rAmMtTdwJ+sxVi3vHUGJZGJcxlk+SJHSuU3FuyHEuXf+DjGGp77B2f8bAgnd3txY5Oob9PaTIwAhSGGQAnBgl5WPjIusBx11YDaWFXhZphGnB5j5LBdtC4JQF2xetulOVkYdK5jXAl/7fOj9a7vFhflq/90J7YJv8WeB//MFVzlMFVVqY+J4RYTroMTi9iR0m7vGeBm+xpiqrXkEjx4uMrArpG3X0Btx0VvaR1XPZsrZ3eQx4+rdCU2ht4MPOliSYE58IGV7Uy9gcFAymM+q+Kro8j2RcKOdcycpH2Lp4C1D+Ys1dp+jcn1eJ2ePb9GKnQ+yaJ0ENLg8RlTqdxw7pe9sF3x+7iEqJOjlbotv8nhZcvr/Ha3s8j+0RtaMP3fStHsL/v7VbythI6/9xOX//dmrfVFBP27hs1FIXiVnuNc5OkaLp99l7WmPZb7SwYonurQ57Ccn5GyeVYt97rCmZpedvQfuVX3rVuf84F6jayhKLKWtM4ZlRdVn+XpTv94j9i6gb9cdRoXmMEukZ0cr+A6jHbo9YccGfd2plh62ZDlDLyhhFxCPga6jQnrWOdnlCz2y3M8j33JjvISL3RgZ5mlnj/T2H3O/aRC24yp8B1vA7mSc60MwcH93ozj5zfLuF8nvMW9t/EGXqPkPT2u7j2mvUC+BilPB2KUrOhcD0RQXzJYkhSL/0i69kWWL+kEWjAv4jaVspgnpEod2/Yx/2UWYZd5ea3GpQ61z00bnKrQ0J/kwqqPljXIUkmc0ByHacn96SiSbSGnrLe4fFfZBpwrrXfLue+1mMiS+ywAgGDw2RxvsZivPq7ufYsY5/w4ExdOeGFTDBkaF5QbWdbM9z6P66HzOhz5d8s6n0HD8/OoWn7IZXPAuecn6MdYncv/7r/qh1Nk5sgathnudBWRmYVPe+/H5P97aWdbecxLJ7ZqHXC3HVmWOwM/9gT9NyNIt+AM0myhuHc4N7fBz4v/gnP06jpXO21NMN6ZKHSlKFwHeRk2QElyjghMzxArZnsOMyTLUf1gi0nFmVZEbfpxjIeI73+QcQq3HdiyIsi1WB3R0rEvP69LehiykTH4VbVZituvnPa3XrSPGiaf3eT7e4TN3B8yrPYOKErUkFea8xT77DYJ0OknpSs31Y0J80eZBpbRk4giAWODSGA7tcl66zvb1Y9q3y9doVCRSo1XYJNDdCnjVhIe7L9uegrrxa4QGoK0xZ614Lyz+ulxQ9dtHOnFZ5y3NsqaCXCrybKC5tvGt3/oVffCXw/7D33vGWVfXd/3vtcsqtM3OnMpQZhqbSoiKgUbCAUUCTWCMaUZMnjy0ak58liQY0xig2bCHEAj4WRMUCSI+gmAGN0cFKKDO0Yfqd2+9pe/3++K6199r77HPLzO2cz+t17t73nF3WWnvttdbnW+04hOPuIM+x3lWkY2wUCGKyhbP+0Do9p0aGsFtSXnHI+13AB5C0s2O6OcuNW4+8z4D5vZfmZ+LWrQlmWPK9RGkQeooneIqnPzbMCQ/v5iXD8ERPSVBn485pj51J5GnZ7fpinznGrbNd7+zn4DTReQoJe61l5l5Z94kpTIfN96FZy67MPYZw5MIkddyHvEZuH7XXyciAFxSWLGnXOpr8oDbmDnmzRqxtRwLe5JlK5iH7czYlUCm9YBQtr0qRt6AcwmiVUzzYpWXBHQePaSTaBhVpeGA3bDZD95Xb4f7dzUR9nt7wYnGKWRLy2t1q2jPCD78aERp/dvEvVpwQwPuBZwP/DPw/JELw14HXA19GiGsFuA34EeIfbUmzaxY/WV72VsV3F2kWNle7RgjkKpII7q382SEhlopEU2avvwGJIK/JiSBPsyJQk5jH20kpS9ynVT+Sx7XfbMfcazr7Bzu5K6VS1g+uf3sJeDmSss9N/ZYNQneiU64Dyc+eV6aip+j0ErecFeWCuOp4QugP1nwwOxy5V5NgUfKNtfauoWloTd33+e+65jVK83bg2Ro+oOGpftK3AxAttL2AxXgk2tIWhZiKVkH5npBzq3V3P0U/rY0vGMJut87tLDmQ1FJCbldgtJSeh9ZCLMV1SCcLKSfAlkdmvNZaTN7tKmyiMbI7hJGGs5pyrmVfLndfAztHYGUpvUKzL7HyUu3XNNwZLWUdRMNtZZUZgYE2/TtqYILR6ZiAjGjoroHXFTYRLDc2ACAdd8xJ8u0OsWO1pH1SjEbJeJ4ScDjndZqxvn9Mvg49U/Xk3kVlBBPgRNlO/tcABQ9dd4S1powjkaZT25Sn9uCi+OL2AX+2HjasiotV0JqyVvF72eMlAWsnez9z3z8tZHY3JvRD1IDAa1rwK4hzX6fMqpWKrWRQHpoGVSCsa4kzoKwLg5sXXKWZhFuoolhU2KCFaEnX5sdrBQ0796MOLaSv0dcB++tJDAhL8BE3vF0aVpq4GAR+ynTaJevW48P2LYUslUQoAVTqeHWIwiTOjkLKocy52TnTbe+JfNohEWRNBXnXGEWEKPZ+7r2LxYIhdBktu2lDXSxQqmgoGp92nOjxqZpIOcc18aeiE226VS7cCvwt8D/IGFDXiSufK7BzhQJ2f5BEkJ1dh0w6v3mKAiLAsvNDSSlWeQWetAcOD+U7NyBs4WB83logW26730sSg8gl7Jpk7ZE1j4fpzevxuSrdB3rNflemfGT2p3qP7DgBYh3R7xznPlcbZA/IFZLN8COYMSymjGRtLHZkFhExOkh87Jpnjvxr5UWOBxG1xlF5ZeN5ijDShJ74pQYK/B7wd4xxIvAtNPdpzf0NOF6DpyNUQ+M1NKqh0wGdALbsgBPWJTOrmtqCe97Qqt0DFeeyBeI29OoRYWDyGisZxJWCk304DvELrQMvAV6MTITXA3+JpEXZai73SeBQJJiYa4I9HS27FFslZIH0wG4D0QHcTXNAtDgaeWaCtWlQ4mB0Ohm4bR0i96OlLeyg75J3SPu0u+Q6ux5shXhS08mE8RtksQHwKaQtT7Xl5cCD0GURa9s11JSkdguRZ/xc4NvA7UgWgDrSVnbi+w3w5zhCEpx25+DeCxuYbraQWiAo4odZVmK9YU2KG1obYYVir+dxuIZjPQh8zYk2HhyJP36YHcPsflVD0ZiNN1npTPN9KPjowAM/Al/ITUx07XVtFPqCnzK39Jx+5vLGHmW0SiXQ/Y24yB2QaEMdNwAFxp3IqetYQwKmuVWyJuxufTsKYh6fbSOAKGom7lrDvlE4dWVScPeamZcsNeSZf0KzExXE3zk2hjC3QGsi499u33nbz3c3ZAEYjIAKQiM4c7Tt9qa2M5VCJxe9Ts9n43VHveQ89+yK1a2fIhG87KvEgoiEjMlOUWVybyvn1qY/R0UFUcP46ie/VzFZAnSS2s/bPgieh3fsSti40jyfpGE8rWNf3Oki1fNNIUItqfUOAYgivNDx+Xb6qttMLhno9kSISwEYblAB1o0jQejc+9k5221Ha5lhvg58j2oAhbEqlEI04i4R2NgNlTrsi2BdZzLOKVDLiolgRScKALQIBPcBxxihibJCCWv1okib/SvbFeT6PZ6S+gUkmQQKSetnidFEsJHss5g6VRe4Xi3u+aMkpvHxUGC3trk8J9Vd/KQRPwsA/Nw+7AoWLEG3WnRr+l5F1iUurgdO0RCpRBCvTZvlBaHTyJi43KlH3icX5sdQSVaDhnmGPhCWA3QNPC9RapRNe80GKWtVbkucB5Ahya13P2JFdrCa6Fb3tgKd8gTHThWemb9dLTs0p7Sz6zaYOAf9gWj75wpLVtPes/zw+S5CG1nkiXvNAjTOF27RKuqu+11qwWf+GSGJXOzcK1SS7s03poxBycMbqbBPa+paIoZ/VMM9dUPUDWFXDQ1HriCFp65LFo3W/mmecP1Nmyc/qJUdsK+M0yrJwhigpiniUUYmG+s/3KFUnNqwg2SSORV4L/DvJP5RFjdx8Fr2vKLbFu8kIe2/JO3Png1AlxUUuNpglwRvQDTttlmsD7em2TQ+QhbJA4hPcFbD7q69p1JH93NT5vebScrqmt4fLFzfdjfuQIhM2K9AtO1WIm9dIPYh1hVPotmywVPT92efCFPq5weAvCIWcfyClWjdG8CdGsZDj6dqI+ggbZ1QMufGgoa8IJlFP/+mByDcUF7GZL7sy6fD/N8hWneVkXwomjULAMs8EcpUi4BuxNqyON2b/Vif6mSJnazcRxti+m7rk6cxVkge95Fq+lx39e9+F2kRLg4CqztdJpMQ2iatfnN72v4YeQGMOdOH1bRph6xrjY6gEYm2fQfQp4Ca69OeECqVvWenMf9PMQyzHW8kpCQe0GTn+tt+ms+67LW7gH01KNN0T6US1w57O/OY0tNowUv79JsfxyJNIZJAdNIIEeweQx3eAcOVZDDE2U6b4iVVi6eluH+JEDUClimkM6Y00YnPN6rZVB5Eyw/Sh3UUUQfCEaRPxozYIe6o1PSo4h3RkI4UgsR1z3TFsiXiO0dQKzzRyHsJ4acvRO1PfNo1ieWNp8W1Zlk9ErLqJeTcg5TQAEjHEzBWDKMo8BXaBqG1Eeid/uL2jWx3sltJr5cgJVtienDPs/sjJLKp7P1vvnmz1NtLzKethYBSEFgmV05rgFFCsiPzvlR1olUfc0zjbWwd9/4gbkz2Wi5BJfO/+/0AzRYD8cd5VlnYgIbKrHs6FXSiJB5EKaSjpikHysSFkO9LHNBUMCW42m77sXP8IM1130dzZPXs50DvC82adtztBO2aB/farpn8MqduLsOw9VuWc++EuM/SgzhILFnS3mjMhLdOGzOG7FvuLrLCoDl6PEw8c7gkU2f+Lwfptx+jdDKB6HylCLoKhEN17ooApQk1jGvN7Vo07H6UbNmvRNRqAyAdvSYJ7mQ/84Tu7uy0NA34vklqm0FV4/keJS2kuEMpyp4ECLP+ijYgmEveDwHekbnUeRyclt1CkW9iZfPWDgIPkYkcT5q4N1VfOYRdJffYSGLqb/3YNfnB6DQSiA2aA5pMRyKdLUuA5CR3cY5znOuPPxPwSfu2W9+6ADjTlOs/Sfuz/xZYj2ggbVu75Z/JyeWg+nkOJgrSVMRq2sW6ogbsQXGLhlUljzCS2BgFJcE5QzRFTDR72yvS6iDZjtdTQTJzVzIHUhffE/JeCiQAXClAlQNU6OcuPGwf9XxpB6vVCzGkwIfIEJUhtGjLtJCrxEyeJHK8q20fiZLo6fZmFi6B7/LF59vCtpV7rThyvIbdo1LoziB5ueKXTKXJq91aAmR+s2NAFPqxijH7iKJIJ0HonN/3aaNtq1TxuhKfY18lmsLUirGrIAIMi8i5yXgksQ2ywlSgp6tDvshq2S1D6AqhfxzVkVgzuNYERVRMxJrytCszdgU+uqJTdY+0EKAuJzK6GqygKqA29aL2O/p791kZAcd04b5viqQv2XhxBSMh9fzEPD4m6Sohep6dFEhISKig6oPWEXUNvdZlzmlKV7turwlyE1u2EMVwWEBXEpuqRqRFM6iBHQ1YsyzpZ765+rIi7K6jEPc6m/ZNaRknFLCs3kAFaeKXqqP9qCTuhIfMdyNgBC/Q8B2hUdyumWB7Oe0N6ejxtkp528nQ6rwxkgyXOPUE6OnuTL5TGOFJkuauUIw7tPQvJf050poqImAajxIte8X9IJ8twA+APzP3fA9iiefO4a61XF4QOo2Qdksw3XpMadg27e954rrRpUQA0BN49NYiej1Fp5ZAnyVILKLmIBCdvcNyxBQ+JRwhrYnOrmemQ6pb3de2qZXP5JmoTwdN745zj2GzdQU2Vihh3zt3WpnZ1p9ZLFnSPjK4Y76L0EYe8ghbaDTtTaJP3WLm0KlNvBiqmEVSTlRehRMIDQg7C4R1OKNWp8MElOrQ8LxIzN+8hiZoRHhRBHfvgjMOhT85Ho5enRD1wDN21/P3iv/h6SdN7wTl7IReQtq1QzZqEYQ+AdImXchE0+kpCRDmEHfrw9iBTNBPAT6KSLQ/BTxNHbyW3S12dltGFjF3IwRyBZko5ioJRJdFlrBb0rkSWdA8RDNhd83i7QSwAxFYpAb/zHYyeCT5yW2kfbctPw48maQtA9OuMyUNzsvbbrXtIfBK4CpkMVQj8We37ggKR8tOszvCwWLa/XwKmKhP2cVsXcvY8I0IjlfQoXz8epLCULTtypgRqmR8y7MUGqtL1PemG09jBTRRfZT4h04WeThvEeUZlV4XMOQjpr9GK9gbj7c6DtJpA+2lo+Qjdexo5QLg7Hf6YNNpQdq3vKGT7y1x3y1RusUJ37lui5dMQRx52zROfHgUeNCQQGyxfMUxFbfWNCCW+pHW7NVaYlaMVFElYqIeW+Zn1ZwdAYxW09ppe4OxRuIm4Z6rFM849YQ0Sc9eu1yAvaMSWJAMWVMSyEorVyup4q3G/F/wYhv6yMyx48gzLcfCb43aPQ5rQtQyX0yxY98gzeRz9ORwy26raBfwh0SRfO/4tLta9qY+7LgKdAHjPlBtUAM66hJnIT43o21PBB8OkTdtOdYV0rBJANBUtZb4N4DaMYBaW0quaa/XV5K88OMNeT+ixLWrU8k701WPEn99VwjhPPKk6ybPuRuoKqibibQRpP30k23r8c3CukBJ3TLbaTxTt4u7JvIjyPPM3t8DTjvtxPiZeeZLS+ABimURStWM+ZvMu5qKNqncSNLNur7sY0jXfgT4F+AtiKVYAZnX47nbduVM3bMfEIVAL62J74RzsDWLQ7Yhslbq6vDprGo6fY9OxAp0NhW7cbfOlB1E6O6akNttPzOjic67ryIh1J3Z4zPbKd2D9Ptj1x52PBkg35JgeeZ8O50sZGK8kMvWxhJCalJztyCacTdp5kSm8RZZX0qQBSMkzDDl8ygDpg0IUvA9igE8YbjC3yl4TqT5JzRP9jQFDYV6RBhp/IcHZYY4ermMPi5h9xX43pQHr3mDWzz3OYReepa1bVnTsZ+ch2g/ujBSYg+6PCWmXoawu/tdSszlL1RwqjL5tL0k2MqBpgzMG5AVMuCPIaT9JJJBVzIFTEwgFYlJvO+cq4AjSUzk3WB0WdN4jZD2tZlyJpq4qU0+nhIrEOsXbdOenQa8D8lVXjZtaS0WZtL8HBJteyrSPyJEeCZyz5tIBBmWtOe5IxysP/tcwS5m7D5AWak4enwDuKMhbh/neJIusjDuEHatpY9D7FeXGpPc1W+tnuRpn0dBn+2jqYWOKc4KpRgNPHQ9QiPppSy99AC0Nj7xOiYk4GxHa2lLJ3vD1Liv5JiBzBju+q9nmcDumpjGQzIOQ9pEPnPLpq15b+ploJ6hK9r6uGqjeRaNux0ed2lYg0aNV/FCLzZltn0/zbgQ8/8h15LA6QeVSCwGbF0yhVX2gaSZgfzYU4BddTAm+phyWNJjFZRxKi+37c3/uhRAlNaQj2mNpyX/ughlgO1VWNcNXQXU3kRwE2+z7GYaiBXblgCb70Nzvc5GJNp+P0Ns47oo3GZKrmmC0XlARUh7abgWd2LbD5Q5QXnJOJUaB5SMgSN+AT2a1LNqBVaNSNK6rREJjvKNsMxTooQogto3jhu4EZDUskBnQ4OXRI63/cktn1tfz/zTYb4YDeQdq/tB4hOc6TbZts6+EyXyDe2miybCb7aupj33fcQSdeWYyUsFwo4CFeA/Pbg/gpqW6PDjiCXJCGLUEwedi0TwVEXI5vuBFyBxWEAC1No0rvZj3213KZmnbR8gh7Q7c/ykcA+yQfe6TKq/UrNVaNM5M4S84QSkbv2k20UDe5kZTXT2vna/x/z+PSQ2Tl7fOKB7ZMq8AnmGroAGJL3pirxz1cImxgu5bAcFPyhNflAbc4zs7GF2Cr5od11kZ4C83yA94o7VjA2kal4UKzFRKgAlTzRj5bJHx0idkzx4W6h4cqAoRZpCPaKsNcUI1N374aQ+h6Sr9P48+rMD7N6zf2oH5o2AgQ1gk2nkmk6CHlnzLmVTcXl0e0Leu1WS6scSd5umy/5f9hKf+MJBTEStJn1rLng3OabxKjHxbmkmrBzi7kwoR5AfjC42rSOZ5Nwc7a6J13Ql0kXTTvbT4aWtGjq8hMwfbI7yPORp213y/mfANxFCMIhoM1x/dtds/0ACU02EKffzacBdfLiTdgkYN5rJhzV8F3iFJ9YXIR6FaiMm7SVkIR5As5oqJdrXor0uZsYLdxUzR7DkoClXu3nH94aiiQZZEC+HVIDE+JMnXB2uSYe19XFVhynz+IIJWawzEdwdwu4S950jsKqUbqs45Vt+5PhY82j3MbE3Q9Cmftopv4506j238caihgRHW6HAq9VQJQ+FiuUFnjvXpCwJnGh3rnXYeAOKlrSnz9uzd8ApvLs1n3IIGlQ5bU1mL1My56SC0bn3AXTBF/LeiOL6j2ooN+SZ2uCCatcgalUJr6coJ1YbGWGKTjfgNKBp7vJKyzsF0GNS8rk+z5bY2uqkFuhOv+hSinFPQUMC0XXWqkku8/h9S6dEc7+3CICRYogeT9YmjchYI+wZkQGhpyineImGG6XEr31AKLEyHSqOJo+msx7heV58uLuN51ynOO7r0wUMmdSRdd+nw2nLZKtS7Zs3fxZI+7RLydLbqcCV27hbV9PuvpMK2LN3f1JOt/5KnvG2Qshd60qM7+znq3v38buGCFLHMBr2KAk4Z03iq6Y+H0ZSpP45iUvMaoSkQVrgHs/pjqVN9jNAQjCbxsDJGifPzQUF/SYSz46B5nNmQdidl3rNfpbRnKtdk/h8kzl+uproVvd92Pz+S+DdyBou5Q00rRrmK3VA3hfbyi5xH6Q5ery7fluoWLKkvW/NsfNdhDayaLUQKQQm5VvOOXl2WtnFol04jDdMAtTMPZ03sOApY/Kt6AiLdPQ36NDQYXzVOiNNV6Qp1zVBtQ6/HoATexM7akvYTQC6bJCnucZXrrxhagdmZ21IiHndXTQjQZ9sRNrUClg2gVJ0eBKUziXulrB3O/93KSGcJTV18jqVKtj9DoQ87gBOoJk42sjxuddTKuWHbScjD9G0P4gjfdaJf3s2R/sOknRv7iJyupObpyRuQFYQ0u057aqEuB+MAGQi+CRWEVlt+zOQ1+t6xJ99La3dEWb6tZhyP58GWi2+rE97A7gCxTOADZ74sYeBEiscEtJu/VSbx6XM2DWKyc2dszKZY6sE20etiapd1K0DhkMPXRNCN44hKUinj819tdNmbsq3SlW0zJArOI3raU3obc5yN0hE/MLZ77SYhK8KnZfLXGeivII5bRsCdR+062/uLNgjLX7t2pjFg45TBi3XwCh45UJzELpswL3OAIaSAGYpZjNel5QDOazq/337JqetMm0GSWT+UpArELSp1ipAZPbj7mj/t+N+LbKPVbIE2Eh8IJrk3VXRJBeEXDLgiAKaiPuBwS6UMf3psUgzDAzXo1gLbh+5Pd5tE3eBbr8uA6OBgkZEBShV61AOUmbxTUsRl8Q7a4ZqB0nANw11rSloDXsbsK6H2F3D7ZOAWt4Be2uxO4nd7teaIaC/Afh+SrvuduOEyGZdIGT8HzPKgkohoOAIMmxd3Lq1avfcoIU528ngvjvueSMky7HsWHuVGc8VIvSSuVLheWIq/tvH+lk3MMpJj4zw4v96jDse20NNy7g8qmEMxYhOR4qvAp9DCOjfksxdCtEY73HL6myzxoZ2yLEYJDETz76Wk87veZ1t2264da/sf28nbN3tPHCcTj6zsO9a9la9JD7trurM1bRPu94593XXRD7ww8xxNzj3mLIVg3OP7PrLYjkJaXefeT+tc9DPoyHcpFiypH3Xo1vmuwhtZKEyW4uCgqpZ4EwlOm12ZI0D/DTEn71pACR+I0WbZIJ/dBXoGahJYBCgR2s6I01HQxNGGn7XD6s8WNcp56cIu0rlPp4v/M1bXnngJ1s228jMtjWTQipv4HJWAr4y+bSV5Ojt9qDXEPleLyGfJXXgZvEWraSoNnr8kWbfmmZbIh4y8SCXJexWQ7wBeID0IB+ndiatHNyBkB3lXMMO/NPtIb4ycQNMm/aopD1tDIGSjVQ8C5gob3sAnA98C0nz9ySSV2w2/dnhIPt5C6TWU853VtP+XSWLxBf7Kk6LF/qKQiOSFG/mk6pr3rBlO0sVMz7ZmznPcI4XCXYRZbVbthBloD8IYh+IYYzADVBaO5oI2W9aqQ83JII9pMdel3Up4ojX6WB0GSJoiXutIQxgdVcytrvXzFlhNU01ZiHsAVVfQa2e5Gd2qtAUs0LDHg0rNXi1htzaEGZ3IZoqh1LQGZq0Fjot1AAYqTUHJDRl/Jv/+wqnnTJtphANPkDRz5hzOz7NOObx5ggNSZ52TxEpha7UTT01I5a0G0272juC5wPLS3goWfkOVUnZDjfN1VNHvCg3pyoN9zY0XzM/Xuc1GM8Eassu5OU31SQv6VAw5CuIGkSNiKCOxAJwjrFtFZsrO21niT0KBsugxqtGLyAuEwHA7hHU6q74YvE7ZFf+vSXUYBwSEIXmvgbcaOp3TQcMF1x//SS4oStYiLfOWNEBjJiOV43T28qVlLlI3tDidikQ0m7ntAMm7E6EfLu1nzGSlG/ZcrzlzWY895URrCs8X0msFk/xh/f1U/E8aqFHQyvW3zvAp1E8BlSVYkw5/uzI0Ho1kpf9fYiwoETSZ1zzeNcsPmU5l5Eb2joN0jp6/ORQzmBrtluyKYR3OmxYTefi00K27PYWPSQ+3zjbAWZGE+0plYotZOP2vDBz3Hm0TtE7Gez7kV0fKhKfffe5DpjfV9DcHvO/qp8YC718bSw15C1Yi16icYGm0WPS6LSxBiOCMCfAj4UzuwcKOsoBnfvG6I6gK9J0AeWGxm+Y0fuXe+D41eB5+YR9IYvjUsisamJbUatpz7gm1BrN6ummVXAC8ccW7XuHEvLeoSRwXahmnmC6RXnU7FtNtyXhWQ16K+RFkPeBw5FFxx7SEeTzTOQfQ7TO7uAfT3IHUHVlhSHWmsGz5vFqxk3i8xBY4o5o2wMS0n6a2d6ELGRiywYWpz973nY3IpS4GvgLlXYTKACFaj02iw8ho1G3K78MmbXvWNkZn+KCzH1b5fVThaTa2lUwWuB6xLiGHkus7HpSJ9sYsU87ku7M1ilF1lVyIZAONFrNXy27RHfXqHQs6yvvLoB9ldt+yr1f/L/EJGiEChqN+PJCyOxtxae9oUGb2Ki7TRA6xmsScd83Pu1GQ6iyrBEkDz0kbl9uW1UdTbu7WnStwuLfMu1oSLsyAuO8YbkDIe25BMwTAi+hwxvxb6Nouhok/ba/DitLKM8TUtpZgsGMYL3p4lOHu/i3wqA7gHFl3ynYUVJNJvGBU+HkGmlrkWXAaODJOzduAg6GfkLMU90wS9STawFUA4UaTdwc6toI9HcOwMpAjjUCJOUQrmC5D/tHkzJqzU+AuhK/fVUJ2Nblx++gbRNXuO12gbhMCnpQYs4cKuq+n2qT+FynDpmf4n3ritBE3PX0H2ve8danfcJurhRh4IsFk68oBB7FwOOw41Zw8mN1Vu+oc8L+Oqc/aRkrPMXfex7f82BUiW+7DYx6J/BVJPXsGpKYI/a+q0g07dBs2NPqA6KFXpapRzx+TjZ0xwsS53PKuvQxp6wz60niMW2yYKIHgjwtuyLRtFu40dWXMzOaaDdOjqQPhqcBlwB/hFhInOqlFQTTXUNky2bLvYzEZx+z7TdlslZy2Xlw7mfkqSMvE1IbbcwOUgs357uiJ/6eWbQi63lSfo1EI+lM+/oBzVqZeLQK8O5zTP5MfnYaEfSPSSCel61IFod2G3hiGr9oSDst2t7sZOMJVKPEB9A9bgrVPViNeiukJhoFaAle8m/m982IyfapZPKFM/Hgr5zjlU7OKSFEfJvZakzXUGmN3CCy6FlD88A/XROvPMxWe04GG+2/CtSURBmuaUmj02+O+S5wOjL5pkzk56PABwh3GFJIcL3vIQu+CFkQSk52iYdR8KBYaVDSSNAucFaszv/xx3xXNUvjgqMZS61m5/Y5W9N4VGLirRT0Kthn43TU6oyHgaQi0k5bmVW9yo7BdhzpyBFMQPNL3BmKcyo0W03ZFw5gdwXWFElporLbzG3irUr79gYKqo7Pvnvf2Je9EaHRsa/rdm1SH43V8UqiHU1Mes14lNX6W036cC32Q4/vV3VS/7WytnDH3JQGv5C+PjhCA2mLMglpj8mHUuluWcaYx1syCkXX93rnOGptd9I9e4ti7p9lPbbRpgArfLfkWoKF6pjXnAn8IpJ3zo8iDql7op3DaulM+jO3aXKaMQD2h74MzGM1akWJ1RG/Zpnr2DLF14m/V0QlD1VPrEEaGopDo1AHtbIzEQL4CtXQ8bPylhXx99TwtKSN9TWc4dQvpM7Ghh/PN6FKOBuA8jyxeLBFjssp7VbRgB9QCUwgOuc1yOv3KmdrIhVQQfpMVsgzFeLeStYGYqZuE3WqnI9FEChKgUcj0OiC1Nk/ag3+yzxKv9tL7fiVBBvWcH7B42QfPuv73Ogp3oYIBr6DaNj/DjgGYiuogkqGkD6EhLplTvm1q3xte8Pco8cte7atJ4BSCu174Eu2AIrAcWvh9cDPd8BT1sKxa4W0O8GNZwOtnsEy0inRNEk0+ZnSRIdK1lR2/aTMd6dreIYitmQrKYmDdCDufylBoPPpBe7P1G8fkk2AnONnYt02m1iymvZlKzfNdxHayIP7NtgZquhBPe1jmOzTPHvkRY4H0bSXMumGUqtyZ3ED0B3AoKvp0SKdj4At+2FjpyxAmwi7mvnQ3QeIq66+9cBOdIuf1bRXGzKiNs30zQvkuYRr+uQh2l4Xt5IItm3atMlSzLmWaz5pDnAEQtpdkp6NIL8DMcUr22vZ8qnETH4xwmrbbWA66x94S+a4W5h9f3Y4iH4+AfIWsm6f0ogGp+AlEfsLPhTHhbR79qDsNk/YaPKeJ8HT7E3n552KFyfKLlakEMsQAY0OgWqdYaATyTFN5CyMIlNst6pjJha1NdnNU1u47KoUwkijWbVlI8CBvGR7qunI8bnBnfIrqcCYDMtBAVArSJ527agUXdIRL+TNl3s09KHxKg2UH8bt5kMShK5pXjOr1JGMJQFI2Os8FwLgqu/9Z/J93rUd0q7c3xySH0JzrnZFvNUABY+ormMrg/EIeuxzRqN2DcLaMCaxqrsAQ7V0PWKBR2vWrrVG1xro8Ya8A+N19FgdVYvwIp2M08AJgfginxHBXw1p+lCxuWyITLmWkNqquyTKMw3Sq2DY90FDMFanGobpZrLadKf9lPsykGjfq8UQ3+a015oo0nTuraH6uoRcmbWBcp4hSuGtKBNUIag0CLRo108I4G8VnKnhlTsi1hpBYIDKpCVN6mctOVxS0Yf4GxP4VHw/zu4Qv8eZISVvnIM0aW96bjnftUJuiCFz3Y7Msfbe33bHc19RKvh0Fjw6Q4+Ook+56FM+ag0d5z2R8lFrKBY8wtDjSaHPxaHHKUhf+UeEsINoha32tKyS/uKRmMfnub+4/2c/lrwuI5/cTQmBZyYR8yn6cPwh8OdPlm3JT74v+LPmdpmnZVcIqTUe9ilSG2Jyx3Pwmmgbr6fDM4F1vXTKYPu/DVp8IBaF7pDprhV7SZvHQ+LP7p6XHU8WKpaspr0ytn++i9BGFtkFhkXBE+1DXhqZiUzjs1GaK3XJj9tqkZh6O5VoD0bMdeJIYxpsbvbnH5oyWUoR9gWiZT/26MMnPyg7W0PSLgFiDu82c73hRI8/+DLOBGIzbAW+lkfwQi1E3eKFJObclrhPNv0ppUQbgjHI0An5PpKEtNu0b25+V5DI8avstcif4BYrQgUFbbZKyNx5mTY/h8R83C7AZ0PTPqV+Pk14pi+5/eocJECOVrIAPgNiV4GCknVVaazRPHHmRVJPWQHVE3tUd+zIezfnALafxn7tYLR4ig6gEfjoqtiHu2mblPF79mK269RxuGbtGjN1zK4WzW/dBSHtFll/aTdy/HHL0ufHKd/yU26q3H8krWIlDFKBKeKU8JFO4t9p0Eh59qFZrYAaqI4w9j+22vYYWZLd7cGoY0FmbzSGRI/PsWA69ugjkkKnVqFmazXsP30U1avg2DXJFGe2ISaVlzPfavO/tv97QaKGRDMIhGaA8+oR7K3D6o7kst0BbB9O6uE+J4ScZ5+DbmgRANejOOgdWsfzacFXlJQSIRHyvp0YKk7QGEKvKCglwR5VknrQFspdmNutQkxvB4y2snMc6qVCTNRN9YEkZZx7TVRC7AEq5VDcQGoN8DxJIfdYFbWyx1xLJcQ90vGgr4o+BaUp7RujUQ7QCjytOdFXnBAp/EqDwPPEzUaZzBSZ9nMJhBuQrqiggYLxMfq2DVNbr1EbVyXCDHNiU9WUNLT93rZnlelp17Node4oxJHt3Q/Ascck47lSCgoepUjSoAWBJqjLuxVoja88fF9J+r+CD57iNcjc/HPnfv+JWH6VlG2jZC62WtV+xHIuRdydfdtFXdLukTa1Tz2XKbSP8hTaRPuPpdv23VMka8uCBwV/1lzLmsqvE1JbR/pBAan3XmZeE+0rRQfaWK6Jq4g21/Ix2nh14Flx8soJafN/Vyix3KnHwdZtLrFkSfvYyN7JD2pjbpFnGg8yWI1ljm2Rq10bTUCuCepoDVYUk4ObTFBJRiyAbnPsSB2W+ULWtYaHBkRMfNTyZIGYSfO2UHx2Tzrh6IO7QIi4A8TDp/nfqqhbmW/OMSSYiSY0hD3UcArwcSSa+QuAp5L2nQqmOAFY0mYJu9WQHwHcToZHqPQk7wahk3KmB/+F0UsODKJt1xQRs7YGYgr/KQ3XIQT3FNWc23023o2D7uc5cAVBgZaF3lM0fAy4RUlgnBMDRRgJ2SsiQQAL9RxXHkiPRamVrCEvTWqnzHg4h0iGxcQ03poadwMNP6BWi1AkwaRc31sFcUTsRF1bk8iJqRupZMx166sQK6bRjPY2FTUeac/dY/DM1c2SMF9N2HZNPr1KFosjoaQ8ox6hC3IPGzjd3trma69qyVW/EvDGwOsI07IDTJmsgME1VS8VRKsOxA7y9jg3toHDJk864SinwKTr5ynYJusatRP42iOo1/tC3J1rlUgHoou7oiHvEaCDAF1Pfq9pyZqiNLBnBNUJqlMEFEpr6AlgtJL0bzdqvN13yqojLYL4SiR937qe2Xr4iiAU/+XIacuauaiqQhCpWNtXonmxKs8gE11eiZBp0JD24oCm3pHooq1ZvGsGr8yJlsyn2t33iDxQ4zUohuLTvnsATlmdXEOpdBYZIwkrLA+J9lWJ1oOKNKHvxQIKr1EjCEIZU0gsteJKkLaEAWJrgC4U/vZ9FHY1ODwCbnmE6ByFOnJt6hnkDcNZkgJC1iC91Joqedc5HyvQHiLxabflsffNjufKU1D2KQaKoBYRNDzChmY8XnL5qMDDVyp2mXgpadJ+HjKG28+YTubiginLHiT9m30VreVJXlgNjQQs68u0WfYzFShfoYuBMZNvJIONqxAKZ3dd2ar8Np3dAMkU1c/saKJ9o3EvmIwd1qMkcTU68Pp7CtDNwrxeEosJl7Rb0/88n/2Fsr7Pw5Il7W0scLgjeTFw7Pmc6WIi8W8rE9SS17zgSdvPJfu+WcUNjENvIWFkW/ZLbnZr/pYi7GrWfI5mFW5buCiQNo/XWrQKWbvyeSQYFjaSuSWRIIHRTjXFCiGVZ7w4xbK6hD3WkgMbge0kEuhY2+5sd5IEobPn20looQ/+U0FRiRQ+MosbD3i6gtPMZGvb3OaWn8wdYSHBU4qi0lRJfO1AtDWnKfADKNStr52ipMWS0cu+L1nonO8rUaJdza745qGPKISkSzFUSjG+XClqQUC1rukyyxxPZ4qcElCY7YhxT2opLCVd104fdo8m13DHe0veKw2ZG1pFjs/xxVBKgdYxUU8FMgMi84Lqah1tAsa5MgIbjy3SsFNrOjDWBmMNvLBgiiDkQWU14W5xrCWBy5wrxrLAjfqdxwCUUzc7V/kK7t6ZOoTf7EQdtwbl+PZkSTsIOUldv+RDJfm9qsU8HpvObFU3Ssm8pyKgK4R9pt+7QQJTghsHtUhio1Qasl+L0uQ+9CDSosFU0v+qyhi6Ad54Q7KTaCjqjBba2Y1JOIlmuQvR4uFDuTJOvVhIzrMHeXKGUkqsBOx1bH8xfbWooF4M8EbrNHo0XWM1/NEarOmSE9wAdJDqj2pFmdKeKl4kQsGa1jSQWAn+SA2/IyHtgVsvpytJKjojWPNkv0vBhgf2E0UI2x8Edc9+OGqtFcEJwXfQaoSxfSXuJ4bIQvMjbYU8WaVxlBF/e5q7dh5E4+7jhx4dDU0BTaChggRg9TWxq0FFi5D+o0hE/nOQ/0tKTKztnO4+8j7ERD4uM83zebY7D5CxNCLVhaYF5Un9dOAlgk7pvHMWHykWBDltEyD9YIAkfs8+EpcASI6dKU20VabMpJep+3xcAr8MESC5z3gf8ETnPFfJstBX9wu9fAeMQql78oPamFu4izZ3Ei6aBcxUwpZmFwjuAqJakygW0GyCaleo2cXVMl989UBWDJU6/HYQTlwmb4dL2D3FQsjN7uKBbY9OfhA0k267Db0kT7u7gsuax88jwbAIlYon5dg3SiWfDs98r4yZ1RSv67kflWjaVyMT2sMk0eMbOq0IdEm7O/jb6y12WF+0skp80bpUkjO+w0ueR1kxa4HzptzPp4mCqVvZy+lTyKKzjKPt85RYorSwBGpKf2X/H4sgdINkZsanOX6tXA2lHZY9s+QvKxgv+9Qa6ZRNlggrG1AM0qvc0UZLDXKTll0hpH0sk/JNuy+Yht0jIjGz0dazkeNbNFx2uEoCjZkvCkrGeoetWG27NlogrTU7taR7A/AqNVTRS1I6khkOswS+oyDm8W6XsLENguz4KvV6YNtjSTmzWUtCD56SjjytTl5rfhctnVbiJz2OaNZj03jsY1JSx5KPHovi74e1BEsDUPvG8PoknVlcx2UlaZx6xmIg1rgnldQ2TZ8l65WGfEbr4iZSaUi2mFqEqkUUdEQnkqWgx27HI7q1pGa1psmpB4oz5sZNKb+VzF4UKMr9Y0Sh75zqatvTfSem/U53DYFqIYRKg5rWHLFnlKi7JM/FIezK5muHpI8uL6H2VyhqyU7TjQgUejR0j9TpVtCpLWHPzM9JlxDBic2S4EHJ9/jvY5bj9SAWir2gnrAClEIFpIVaziWzBEzaKt88Pl9Popsy+bQ6z4jics3jFbB12/acO9h6K1TgEQY+nYFHpy+Cik4lrg/x/K9EYP8+4FTznTWNd13ULLJp32Li7gw3eaR9eapszXWZLpQnz1OZteRcEfa852DvvIy0Cfli1US7Wnb7sZYEQyTPtVUOeqtwWchY6OU7YHQvO3S+i9BGHrIzCID196lnJPk5CwKgecEczxSNdP5byJ0MU7Z0XSUYqCej92/7YbUPazoTTfsCy83u4j9v//nkB2XHV3eh6Duk3aICBE4YtQU0PpfM5N2lHPLoydYSSav1nerEokiC0PnO/4rErx0S4u5O6juRyPGQIeyLYPCfKgKlYjLbraS97adbJSn+ZjMd3ZT6+QFAGaFEl9OvOj0nQI4vPt4dmMBNoRINIuSsWHVm6/xeiSRlWXzjuACzUq+pICaeXsKrlVKsVjAWBtTrUNbJsQqEuFstjatiAxl/u6xWM2d1mxXYdvrGPD6zWnZJ4e4qrC4ZwqKaifsEzefeEqSyCpFJ4geSDoEkGFvD/Of6te+NYC1GWDFWxetUljvhNQUgy9y87EtKO2y9tNR3gtgGP/yx088DZ86xnyeuhdcfhjo5hL/cgDrGRp6WKNXKUxRJBxfTppk0iRYVP0BHEdbbrKqhw2radw7CGpMizTMB72zgvCFXyGK2rqm8/d+aw9v9agT37ISr7pZtPUqO0TLeFrSmjBDZciWi6DsxAzLrBtd6wj5nU1xQQo4jz6erMi7/yEmxSbvKXkslpD7eAj6KamcB6mJxtH63Rq3tTa4VZ5Yh+d8WakUIe4W++kARTac29RurUwiT8mSFN6m6GRKuAgWBR1fB477DVzN+zuHc9ge97D3ncNiw2ggSvNiMPtsd3a1FkWbzeHc4i7SmEmmGI82IhhENo5Gm5hD4yDkvlt8510/d31TvtimO555SlD1JfWrHZUvYbQCzLi8h8zaQWVZzqhAXl71OGSf0azefQTKR42254vosoMXRJHDfk2x9ehFSC2nSbs9bDJrouHymUrbM1tpjkLQwxtbPrZvbJgsVS9Y8fu+O3813EdpoQmZxYwe8ohkGKlHyhrUS+aZG1cwieQQTPV41v4Huos99s3tLSSobrWHLbjhhVdok0SXsCyQAncVfvPZF0z/JnWhc0h6nbkLqmn1OMO8jmjLa9kBrajoh0rLAEgXadMljvPYyZMSmf1OIifxW0mZ09tNAJPdrSUv286T8ix2+UpTRFFUSkC+Ouj8HC5cD6udThKcUJTSBIu5T9r0PlGjbYuOawEtsPy2yATGz4xOYzBZmus1qnVHzsvjzlIqJZ3x3Q3jGPZ/SqAhl0KTMKRUZwh6v1GuSxi077jrXdutMOZTVE6Tbyo32uLsiAlQpcBNhn1RLlWnXIkYL7ftQi2LCroEoctK+mfLsQXOYAhVpvJEaqmj6vNtuqZWi82y7fNia6SyVRmJvmy2jgjf8+XnJ176HLvjJuOwraHgScfr4Q0T7Goi2ThufWFvHmIiZVbo7nWqQY51UnxWgM9JQbaAGG6jVTjozG7GtGxgch5XltIoS0s/PDcHf0ELQ790FVxrt6u8ehVcrOH5dOny3i7qG0HEhsG3q7KS6mfljDy0Dke9RGgNCpxsooeMKUibk2ZRvymE440EIY0Laj9g1gDp+WdL3lGhKlZXU4myXF2BPLbEecYPsN9xgr/l9OH5dfA8VSj9QgRD/Cor+DWu48og1nBgkz1+2ftN7oex7nGpBIQDZ6PH2UTSQYauKjIuRc451QbPmzdnhYJQk8nj2ngp4/WuTfj4VSIBMHefwrikRNNky2UBmVstetfOTM26tAu41x2fTvcXEXafflQGE0Lr1ONAI6gsBqTHc9AkQwUR/8m9K0+5+FrIyIltW9xmtxJlqEOHNctJWBDF5X+APdsmS9jYWKNy3Iruwq9RJZLMGU/EZtf9rRJvVasEIzdqNngAeG5Xz+8fhsRq8fIUjQVeOX/siy83uolWxfc9onCzMfiHHuHwBjWaBEkLlmusdKPFRSuHrJF+w69++Afgvkknd+lxqEv+4lZArjV44rTUzUMaP14clVzmlVBxMT2tZ6VkNZYos+J7DiDJjUCtohKyVJiC08wB3IaZQcZ/tBfrDgFJNFslSSuP36y78s8KJkRqscgzqXbWO+529udXKN7SsRGKpmE6uuWsEnrTCVW055Kj18jE1zTha2RIwrBQUAoluDrE5fKxti+T/extwl4a1hhmoWhWv4KfcaHK17LF5vA/j1TQTGGtAsZXfv6LpvSp4QABegzjgnb2WJ77gKvDQQULUrKY9JfdWaQuhKPTQ1WostKho8SFm9wiqV1JPeWYl69nG7C7AoPHJdwXm7oUh7UNkt1t2pOv1y8fEaiCrpbeo63wXAgcJr04HowPoVIq674tRQ1F6thefRLqDxJe3vuDJMw2BWrEAo5pqPeKQwVFYtS7Rznv2ORgG5FrxregQpl9pJHWxbVZvNCejznn+sXtC6EHkoyPwfY/Ij9inRQBV8IHAQxcMuQ+89CvXYgvy2jm2EylUtARzq2ipRsMRahdIAuil+hkJabcOqhORqelAYpCIwL6uhbjb7uOmBaw5hN2dk1eSzOVA7L+fp2W3woAB4KgW9Vio5LUVlJKgknnPYhlpTfQgEwfgW6hoFYyuEzH/j5g8B/1Crh8svn7XxmJG3qxhJ7mQJh/DGKlJXae/s1qIihlmSzkmqFkJuCsq7QlEewDwy344qmvB52Y/YOSRhMBP/BQh0bq7pD3vuS0QxIF6DpIAxYSd5ANC2reafTfHa4REjl+NMa2nWdveHlwXJ5QhhglXd4hZ6BtVfCuY9yfKbCu1nEW62c6TIFAUhTIW2n2FLLZHfQWNRmJZDIAItpTWsV97apweqwpRbUVGs2Spw4zVo7XkWrGW3ezvGodVBafA5vzJIsc7Ww2xyXBJKRniykFiMaHTi3Wt4fcN+ITWVIAfoNkWgTeqUeVAIqoj2vamBnVv3hHAYMaVYjxK3MFs22QL7dZDKSHu5UBM1Mu++PeXfbyShyoH6GKAMsFRFTSZx2PqpE35tEKI7Li1UxLSXtTg7dGwuid+ZqlxtacEg07IebeP22q62V3c309cQwonrU2CDUZR+jeNkNrAz3/Grl973A3Sucy7gLrR1HslPxa+JVvVPB2mhEyyXwTGO4BKFW/PCKMlX2IVWA27ItHOZ902Sr5MAvvGSAImmHuN5wklzNZT8b/xx1My9pQCdNEjLAfsKPmMlH38YiAWGQVfiLsjpILmW7j1LpN6DVLEe8yQ9lENw5GYxg9riTc5FsFoJNWAtIk8iNFjk2m808wHA18pip6K83x3G3P5oicB67LmznYeXoVokN26xuXOkT1pxGR8mVN2VzO7AJdDk8K2R3ZI7kUEFLYNdpNoot01Tbb/LCSozMcdnleQ1K8fWbOVSfePxWJBsWTXlX1rnzDfRWgjD61G7jISvMZdQeUReEjnP7YYN1NPwXTpPILujjj2954QBowJ29274aTlLPTc7C4+f8X3Jz1GuaTD3UImEJ1O9uMFhWo+ZwkiRdjNvo+Q9mFksndN4yHtz56d2BbrpL5QMZV+PuPIW53EMS1aaAjNT6ktSBCusisIm//3Kl7A4QyNCpYpGC5DVK/To8g1jfcgo57SMFYT0g5O/Vwi49TZ3tAHhqtOWzla2vG6qAFXdWauYw6dJCBoHnmJFamej3bV0ZGOA21FwO1oxhCNYkXBzxsRqgFeh0SP950qpvpJKl5KwUT5coQR45EIhd2H4Jz3hS9fk1sPFXgikC6Hcn45RJWClCm0vVQJJxlLvEKXX+MUV0XQlYZ5dJqqiZJP/zCqr2wejxGI2jbvLkrQVndudgPBQro/QJLmbeOqxPXt1B7YsLI5tZ89H0SQPImQPI6qbruEstRdzKQrRvDsWwsXVCykyq7Ok6WBShF8CcoI1GoEeyK2r+oVwm4tPjxn32UKtr+vDqC/km4jEKlKOHncmFRxPQUFn0YpRJUDHu4IGC0HUA6ISoERcqhcg41WcAU87rDVQEzMx7WQc0vYhw2JH9Wiga/o9Hl2f4y0F0h26fHFK5r7+XQhWQfk4wqX4keB8zgQTft+kiwwKRN5mrs05ngbyGyx+T7nIVt+W4deEg209W1fbJpo2wdcLbv99JDUby8iwHGP8TLbhYwlS9qH9j8y30VoIw+tCGTRS7TlFnkRmnWL38fqid1u3luXhJhNL6x6izLDPLBfRvOjlhFrchZobnYXzznjKVM8MtvuZqfgpQPR1YwaMcgcn73OEoNdiLuE3UPWmWtI+7Xbzw7zW3YSTCTSS7Ot5gNT7+ezDEvarbbdFSw2ERDnvarWZYzLroKms8KeYdih0GqO7SdQEBUgqtYloripmzWHtyaITfUcxATbyyFG8f/O2AvQq2TsjrWzzrV3jcgLWPRjghQXeoLI8elKpgNyocyjKwYwptOEQycL+GdpSS1V05qOCE6t1PAiUKGYHsdB6OKXPme8tOR8vJG00bgTkDBrAYaasJ9bAq2caOLZaRTSJs/a/KiTi8g2BF2vg7EmUFpTQsPuQegLYl/2VOqwHh/2G3GA298j2dEpKwnSmnatpVCrfYiKGcak0+8RyDyUJe05lY3HW8/tWoo+YNwInkNr2WCeVULKVeo6KIe4m20IDAXASJXCnmF2rzbuH0YYooyfhHIEIylh0vIO2OfEzInrh1izZedjp35Nr0/MnBTdgcf20McLJYVYVnCT92bkfReS40qBPJIaQtwriBDov4EPIbnRa1pM5us6iSvjnj9ChrRnhoRnz+J4npqDnX1r7m2D0U1kFm/rMYgQWntdSGtmFxvytOwKqaO1Quhn8Wqi84ZjW7/95pj9pIPspT7zNx1PGfPm06615vLLL+e6665jZGSEY445hre//e1s3Lix6dj+/n4uvfRS7r77bvbv309vby/Pfe5zee1rX0uhUMi5OlTHh3K/b2MekX0b3AkrDERsC+nFrs6ckxf0CS2m9XFCTWdh6I4yKa27+dL6Vf5kJ5y0Ssj9IsrNfuSG9Qd3gWz0+KphI1nCuRhGs4NArGHXCXlXplkOR0j7KaQl9DuQ6PLuwsDV2Lcxczjofn4gyGVE5snWIyGTrVK/ud9pDbV6ktliEpPouYK7SIlTwJnfCj744w164sWPIe4gxD1Psxoh42mWiLiEJrtCKoWSyxwSImhJ3O6qBD1ztexZE+RJ6pauqCLAaKGVj9b1VBWsaXwUaY5W8Fw0P9PwJgUbKnVUmTh4X6yRccfFrHWXFfAMVyXPuUbmqY4wv+xKTaufx3XUpLpqbhovlTFeCzyIpN3HtIx7hZEKVMBb2UGssVU4mvYARitJn3dVku5cHMclcLbjDWF3T1gF9/UDhySB6rKMDyTafOi+J07/STWZaupSII+gis9oEUJLaA0Rt3Vrak/lHBevGxS1og/VKsXd42x/0jJiTbs1t1AK5SMsNtsHlpVE0JFdr8CkcWOUUmBirdiq208PsAfJauH+Rt7WXCfv9wJpn3b7CBqYGIKGlG8B/sH8dhvwSeB0DXUlwi1IE95REtKXV6ZNG2d3PI/JqU7m4wAhb3sAmzjRBqLLRsC38/yQOSePuC7G5VATSTXf9yKCFljcmuhW1hA9wH1mfy8Zl4dF9kznbW35jW98g+uvv56PfOQjfPe73+X444/nne98J2NjY03Hjo2Ncdhhh/HRj36U6667jo997GPceeedXHbZZfNQ8jYOCu7M6s6cQZBo2puIembf1fJYWA1GnvmbUs0OOe4iEGB7FVaYEX6B52Y/KGQXP1mf9mojbV/0OIEyvnCutt1+NiJp3zRpBetjtMjRrtqkffEj857EWjSHtFu4pCPry25/G42SLBl5JG8e4HJfpYwxkmEsnQMVVuwYoOfRfelFkE35lh2Hx82bYbXIeeqcvHG/syCkPavy0jRHjo9fNNmfKCho/IspR2xYhIm7OTYEv9+OfngvOIHoLIc0sQh5moaNCryxRuwbnbznTplSN3Xq2EWS9g3Ef99NS9rCXHsqaEWISjg+7U5bp8i7r9B1Q9qBTq1h77j4rdv5znNSkgF0h9DfcC5GMzl3gwi6pvP7RoU1HdkJj1bEj72h0++Mi5oh7c0MNNVOomXPWBwoISGjBZ/hoEDonJea/pzrKEiC0Dl91VOwuxTI+kLD/uUdcR+0xN2NIh/3T3vRvhD2Zta0cdwYtx9ktm65aCYWPcAumsL2trpMy75SJCcZBkaeQpIl5abMMdeREHvXtNxux0gLFCYq20zDba/sUqaPJIBsVtMeD93m92Gz7aX5FV2s83vusEwizADRRC+3x2c/avaf38HAff1cAr+cxDx+H4nVhSuMWSwWkvOmaf/e977Hy1/+co488kgAXv/613Pdddfx4x//mLPPPjt17CGHHMKrX/3q+P/169fzghe8gOuvv77l9cudfS1/AxgfH6dabRU3s43Zgh6rSQTdsbpEVR1riFTdG4cBBUNlWdzWfKgFUPGhFqKKIpXW1Yb4h47XZaE4Vpfz9w2CrsDwkDH59uVT86ERQCUQLceYc17FpKKpGRnjtSPQWYPj1kDkQ8NcgxBVW5jD9K9+cz8nPGnTpMfp8YYsGCtO21ciqI9IWw4PgQeFsTFKNgB0nkZwYY9nBwWfJN2bG1huA0nUWVdbtQsh7TjHuts2Zg5bfnUvJ51w9NzeNEU0zXdWOeaSdgutiVlR6jtE9VQMkgstgPfI+ixnTUnZvo9n/Hwn3igsu/UR9B8p1JGrY8sThY0k71R02MylgeMCIDdJGJK7+rMrq65ComkH0FFy3V3DcNLKzMrKrsYnf8PcIcvuFxQse2wfhd/3E46B+u4j8FKFPmZtknfacMm9EZyARqHxahoVhMaHNmOdn9W2uyvcrkAENhbjxuKiBRmdbj/Pq2MRIU0WUgOcrqnESsSEEqhqTUkDO0Gt7o77vJjgeygi+a63JAzPjQ4PiYWEdXHIE171V2FlCKsNldszBmu75FwbltztT41Gc6C2FvVPyESide8AhsYHKQyOEm7vh8NXJt3Qasdzrut2VVAUgHpJrPFGV/YQeMYO3zPCAmc/NV5YIf+yAuzNZBCwqfZaxo1JCua+m+4vPYil12GZ793ulNtWipRlRoFmn3ZIE/IIOB643fn9+eb3hsrxFEKGu06n7Pbetj6zOZ67Y1k81JjCrUJIu6tRd7urO8dbkmeXQ4vJTLwVmgi4Tkh7hPSFPQjJzR3S5r7I00KTkMF830NiHr8POLbFsYth3TYvpH14eJgdO3bwhCckweJ83+foo4/m3nvvbSLtefjv//5vjj669UtfLC9r+dv4+DgbN25kx44dLY9pY5Hi3w7y/HmId7Ug8C+yWbtiFQ+cd3k8UQE5i4qlCUvY3WjwVtP+CMYN0Rw7aj42erxdHNiBfzH6uy1k3HPvQ3NP2rNQ8Z9UjusU8qyEppqOch4g/ValF2b39uNZ+9ZBUPf0o45YnUSNdzXtIPUbrZGEmp+gbtnfygEMVppVXjqCnVVYaXSJlgQph7hPUq/4do55fghsun8/UQUogjcG/G4P+qg1RA0xjdee1GkPsMqSnHHwOgvO++2UZ6I6llxLAg3VGpTN0tBrbqeZ6OeuybNW8sEDrYS8Rwp00UebmHIVbYjJ/kHUph7TxNJmifUF0GmWi8NVKJaTfu2ynrx0bxrYV4MVxtXhkAJsH4W1nWnzeBcNxzx+gv6kYhJuiYjJgLB9H5t+N4RXA++WR4heoODINYa0N5NaFV/MuZ+SgHaDgQfjdfTeffQ91gEbV8VkPTaVd7XrbsyclWWT6NwRQlgXtGzcmJy+5JJOV2u8zOwXM8fmbe1+3u+WtGc15bHlifNdJ2JC/S7gCSRp4GxYAki01COk/Yaz29kcz21qMzsPu6nfViGktGm4Uc3a9gGSYGx5ZteLcYrPq4MiCbY3gPi022e32DTRee+KfV8GzHdW0+4SdfuetUl7C4yOjgLQ1dWV+r6rqyv+bSJ8+ctf5t577+XSSy9tecz+Pfe3/K1arbJjxw4efvhhenp6Wh7XRhuPJwwODnLYYYdRDSJZxDXNtgt3sJ4JKBzCrsA3Uug15rtHSXK27kQGzx7yB/6l3VJzj5f/6XPnuwhJ//eRRbhLWl1ktYyW4BcnSEc5T/CUNYsnJh/qmOWMbx1msAbLyxAevTwJMtawxN1RTYFYTHU67kn24nbrrhBdgtPpwyOGYmpn9TxaF8awuiNp92zKt6lW0FwSDwJP8dujlnH61mH0AEQB6GMlknmkNVFDo5UiimCPhj674B+OUKXACPJEyJGs3O1K0a2nKV93xpJgrJE2j8c5Vk2vn+eRMxAC7qbxajoBIPTlt4amEkA5imDfMDxtpRzoJ5poZZ+ZUqLCHqzACiPWdTXuDUODspp2DfSPw3JzziE9sH0MTra/O88djPa9kfZpjwuSrkfyGNLp13ru349XA8oQDQL39MORaxKCn8PcFYjWnEQQECjFiu39FMZgxSj88a2PoM/xYOMalBI3OuV58t5Yd7q4vZC0bwpxPVhvAhNa0m4lDRMgS65sz7Gr1rJ7rGrdJ1qhSGIG7ja/1bBbE/l7gWcDv0TIuv3N/p46n8Q8vpUgYbbH87xAdAoha78hrWV3te62/CAkL53yMk1iFytcf3/bPj7yvAYQUnsM+eR+oZPa7DTjWhKMIP11gAkC0c15iaePeXkGHR1iIjU8PJz6fnh4OP6tFb74xS9y7bXX8olPfIJVq1a1PK7YsZzzX/N63vGOd/COd7yDa6+9lg9/4v9RqSQm8T09Pe1P+9P+OB9A/HaV4vqf/pyf3P3b+H3Zs3c/n/jclan37Kqrb2XLr+6N/39g26NN6bk+f8X3eWDbo/H/W351L1ddfWvqmE985kp279kf/3/H5i1cf9Pm+P9Kpdr0/l5/02bu2Lwl/n/3nv184jMHXj47ed3zm3u55bu3pkj8hkuv5Hd798cT/C/vuptDbt0cT2S1SpUrPvUVapVqvEiY6fIt9PZbSuX7yV13c/1/3hXP4pVqjY9ceTWVWk3UU42I639m3g+zytuzb4BPXHaV/GO+u+r2n7Dlngfkn4LHA4/t5AvX3Sz/m2t/4cvXzlv7ffu7/8lvf38/nicRqHfs3MmVW37Bv55zKHdv8LnyqWv4+pafs2P7DojEn/03v72fb91wu1zAkLNP3HYLe1Ry75/86ndcf8fP4npWajU+8u9XUqkaOukprv/Z//CTPVslhz2wZ2CQT1z5PWENu0egC6668062bN0Wk6AHHt3BF75xHe7yKu/5fvs70n5W0/6tr1zNwOAQvlI8vH4lv9w4zn+NPkB0Sh/60BVUxqp86fJvUqlU0Rr2ak1058/Y+ZvfSXErNQYaFS6/+ppE0a8UV113G1t+ez82zPoDj+7gC9+7MVkBdoR8YctPeOCxnVK4Ediy+zGuuv2/UivFT3z+m+zZNzCt53vTLZv56Z13xy0xuHc/11x6JQWSlG8/vuY/ue9398dEZNtjO/nW9TejA+PnUW/w0xtupuO+h4RD9pa574Gt3PSfd0iUelu+b3+fPYNDkiJ1sMZPfvM7rt/833INralUanzkU1+hMl6NBTrX3/EzfvJraT/2jbGnWOET370G1pfgsUHQmqt+eAdbfv9A/L48sH0HX7jxFglbbjTRX7j2Jh54NLGK3PLr++L3QwHKV1z+pW+xf3DQmKl73Ovt5c7qAzAGXg/Uj+rhq1/7NtV63UR8V9x4c/J+KGDvvv1c8YVvGaEQKE/xux/9hK6f/U66eRl2797Pzd++2cS8kT5w5ZXXsW3b9vhZbrl3K1fd+mNiyc7qgE9c9wP2DAwAGioNflJ7hOv/+39iwUGlWuMj/3EllWo17trX37SZO++8W/ofsH/vfq6+VN5fS9r1925l22+S8e+RB7fzjf+XTqf2+Su+z4Pbtsf1vPfX9/Kj70n7WauMay+9kv1798s1gZ/fdTf/dcvm+P/fV6pUPv0VTqhU2YIQ3Ltu3cwv7ro7zuq3f+9+vmvKN4oQ3p9871Ye+M29cVd/6MHtfPnLzeWb6fHPA267ZTO/MO+HBwzt3c/OS69kl3PdW797K7//9b3xvP7Ig9v5wVelfAOImfitX72GHQ9uj9/73//6Xr5z9a0pgrdY5jf7HH5+pzxfW4dapcrKT3+FvZVqrIn+xa2b+c1dd8frmf59+/nMZxf2+uCSz16Z0rLfZt6PXvPd1ge3U/3qNawgEeZ8/6vX8Mi27bGs9WDKd+2118ac8/zXvJ7ZgPrhD3+YZ5w06/izP/szXvrSl/KSl7wEgEajwUtf+lLe+MY35prHa6255JJL+NnPfsbHPvYx1q5d23SMxcjICOeeey4DAwMJEXEwODhIb29vy9/baOPxCPte7H/jDfS84ckSG6AciLag5IsmrRQsaPOog4HWmhENQ5F8bG7aMeAziFbjDchA/23gt0hE3TLQpeTT6UGvB51Wm9PGooSOtOQdH2skMTjGG6Il+7e74QWHw6blkju75Mt7YvOwjzvHjzXgsWH44n3w7hMlong5c045nLdAlzWtGRytMzxeZ3Ssweh4g38bqXNno8FRO4Y5/sEh9j91LW8oBpSLPp1ln+5iQHcU4Y2aOlYacPtjok198UYZNzoC8ZvuMHX0vaRNRutJbI2t++G7D8Jfn2hC1iOxNu7aCfcOwvlHN49DHZKbeqL3q6Y1gxEMNTQjo3VGxxuMjtd5cLzBF8YbXBg1CH7aT2elQsez1lEIPcYKPqMFn9HQ5+5qg++ONvjHRoOwHtF588OU13TSedIKugs+3eUAr2zLYzSoo7Xkmdu4IZt3wkND8LJNQmY//Ct407FiKm77gK1XV4iaRpaSuI4RDEcyVo0gWtF3AVcBxUjTPV6jq9qgXG0QjjcYHasz0ogYvfy3jL/kSH7cWaL4wH5OuX+Q4vOPoLPg0VHw6SwHdCvocmPHfOt+OKQLnrFGnq99HvZZ16P0+zJWF0uTj94Nr9oIh/ZIP/m3e+Dvjk/en1Ig75Z9xz5xN7xsIxzRI21kr1/yoTOUvPVAQ2uG65rBsRqjYxEjlTqj4xG1WsRnHtzFKfcNcOpxyylsWE1HwaOz5NNR8unpCOgKvdjNoaY1AxEMjzUYGasxNt5gpNLg/vGIWx7cxZtvephoEBq9oF+0gdKmNXSWAjqKHp0dIT0+dFQbMJqpezWCqx8Qi5FnrpXJ44F+uO4heJPp86mxwIwHRpVbt+Uyz3coEkL8EPBG4OnmWZeAbiXzTrcnny5HHTwWaZnXdHKtUVrPY3WSew0DL0c8Dx8GvgD8u7lnBzLn+c7xY8BbgVcBf4iY1du5sceTchZnWVVdc9otnstNXT8AfMUpf5cnZavp5NhR4Oumvv8fk7fvYoHWmmENg7ZPRTJmjAHvAc4CrgTeDDyZ5Nl1mTr3KCgs4Ho3dKafm/pVgD8F/hn4e+CriECmA6lXpzJ90xPrmpmAXU9fe+21dHZ2Tn7CFDFv1g4vfvGLueqqq9i6dSuVSoUvfelLBEHAM5/5zKZjG40GH/zgB/nlL3/Jpz71qQkJu8Xq9SfNRrHbaGPpI5w4Fc1ShVIq1qz7Km1atwF4kMSUbgdJ5Pg80/g2YZ9ZZDUQc4KsOa7dFswKz0XWRF47O5W6E0rZ6RfZ684DPCDwFb5S+J7C9+BZSlHWim19JUrVOs8cr+Jpja81fkPjR1EclA4w5uwN6DARH3Lyj6fsSV2f386CrJCxzrHmensq4vNsj49fMEXsRzwB4jsrhfI9tAkW5nuKcWsafagPj+yDKEI3tPjnRpoo0uyJYCViuq0ANVzF61CJS31yA0dj7vQX++n0hcyDEDgQgpotqGmT6fRzt/u4ty6SydPubCOMjzv2wDpjWrN6bwOW95gFoc0DT3NE9J4SDNfSdvdZR+isT3ulISxwhYm83lsQ36Idw45fvM0cYy5WxaTMy7yDOW2gPIUKfFSghMwX5bNv41puO+tYOHK1XKvgyTb0c4VkCuL0rjr0IPDwCh7bNqymeu4R3PeUXm497wjYsEb6lK8g8OPo8bG5e9ZEfkUZ9leSdqrq5kwSbn/KIOufq0hyhxed3/K2qXbKGc5sekAXNouCNYF/ACH0a4EnIa5hu0jM4+2xkFSxgpOBN2c72+O521ZurJmVCHmvkjGP186++QyQtPNSCEJn4baN2yd6ENP4XYim3V3XZI9fqHDrRma/D+nLimQ6XozPdd6ix7/iFa9gdHSUv/3bv2V0dJRjjz2WD3/4w5TLZXbu3MkFF1zAhz/8YU488UR+9atfceuttxKGYSqKPNAygvzenffMRTXaaGPpYYJUNEudjMaEXSem8QoJRvcNc4xGJran4CwMzNae08bM4tWv/KO5vWHeqheIc6PVdfaMBNl0b+MN6Mgs0uc53ZuFB/iBR+ArAl8Reh7HFyPeFinujAJO7a+zcvsYha4SYUMTRFpiPWT99seqsKoj3W5uXV3i5x7TaYh+LZL0kxa7huHJq/NXVVNsM3uU9oW440UUPUXVU/Js1nRDDfSeUaI1XeiGRvtSn8eQBb680xrVqKKKXhyETkGasNsbphzBEdI+ZmjRuOSFj/O3Z33+UdPu53nNbYNlpqJ6K2zM/zggnQ49dE0zCPTtGkSdsFx4p6mH52UirCugJ4CHjVtjU8A5nZDuVLq3MXmO1r9beXBIB2wfh8N7E2FNXFizDb18MpvZVQoh66Ev5ymF9j0KgZYihUoItq8g9FChuH/ltZ0KPFToSzXqGg/FkOfBpjVs3rgW35dyWVJP6CVdIJXdwOnrywN4cH9ys6rp660CvGbrZy+nk9fB+rI3kXbVfLnU75mtK+BxYX3VNWK5YX2cO4FNwN1IrnNL3APScpxhmn3aXeI32+O5Oye7+8vN73uQusTR42kOprcfEdarnM9ineNtkL68uixDlBGQRI/PHrcYVn/uu+IOz11I6t7VpOvjHrco6jdfN1ZK8frXv56rr76aG264gUsuuSRO/7ZmzRquv/56TjzxRABOPvlkfvjDH3LTTTdx/fXXpz6t0KiPt/xtqeLyyy+P0/gopeju7uakk07iM5/5DPV6fVbvvW3bNpRSXH755fF3F1xwARs2bJjWdW677TYuvPBCoqhFdOYDxIUXXnjAhPORRx7hrW99K6effjodHR0opdi2bduMlm9BYQqpaJYqrIbdzdfuA0cgKWD6zXE7kAB1dtDPatvbmFmsWrls7m+aWtU7//gOaXc17FZFE/9v/qlEUAimtEifayilKCgo+sp8oOQpTgw8/jJQrDukl9LWIYpAQWuKkaaQFUqAaF87/HyhhCGkKTJjtzYo24jRRtvI8TtqzZHjLSma7gtmg9F5IpiIPGiYYHb60B54qCLkzmjZaUTs1LBWEy9wvZEIr+jjkw1CB6lw5KnflJjOD5jjRmtOFKj8ok63n+eRMUvkLBmLWliMaN+HekSjEdE5NAarykkwQvOsYjJq69QTwLCztnLJue3/TeneKrDaBik0RPywLokg75J+C/veTNHiS+QASkzNi2JKrws+ftkn6vDRofxPOZT30FMTvnI69NChmOwHRZ/Bkk9U8BkqeXilAF0w1ywGsRm7tJMtjLm67bcrCrDPSftW0wj7z6lTpmCtCKNCSFaJ/D4wGXG3+yGZ9IA6IbE2cvz/Akc79z0ZCUjnBqKzqzW7HSVD2lX6/rM9nsfzskq3m0eS9s1N95a1SNHAEEmOdmiWHy5WxH0o80x6EU00LF5NdNP74hR4OVK/5S2OXSzPtb2+XIL45je/yebNm/n2t7/N0572NN761rfy/ve/f87L8d73vpfvfOc70zrntttu46KLLppx0n4wuO+++7jqqqtYvnx5rvvGkkPBLCjcGfdxAoVoDVzC7iFS+VWIiXyEaOLWkS/NX8AuX23MBAzZATLhuUlHVY817RGErkm0SrYLoK8UfI+S71HyFCXfoyPw6PAVHQrKhxbouHeQUiOi1NCUGmIiLyGmHcJWqYpjKKRfgDxGYWHZbwljcm1Wz8N12a5yIsdnU75NAfEtPdG8Kk8RKkXkedTMNfShXfBQv9G0aYmSH8EerVlnF6pa442B6gwTmUH2GarMd7YAXQVs1H2q9ea0eKnzp1St5vpltpa0jztfJlp20zWVQgcB1DXd+0ZpFBSqowAKPCMckZhu5gJ22x3A/nryrMAh6VGLdG91WG5ogB0k1xdh+6DDEp3r2chmgbM8zes/EKd4c4m7LoVE5YCBUsiWUsivOgJ0KRDt+ASEPf7eUxB6REWfoOQz0uFTKwUMlgN00Scqy/VShN1tI3cSUAr6OuRh1CKpYzVK5th0ZXLLFT+CTDk1cBcSDX2i12wiFEgyDdhruh4OGrgPIe12jjsJ0bTH5F4nBBgSYZEl7W5Z5nK4c83i3XKsAPaa/axJvO3KIAJ6G/Eqq41dAMP2AaOJ2JpPD7CVtDIi234Lvd5WMdfKpWQrizcHvcWSJe2dPZP7vS9VnHzyyZx22mmcffbZ/Md//Adnnnkml1xyScvja7WaLFZmGJs2beIP/uAPZvy6c41nPetZ7Ny5kx/84Ae87GUvm+/izD4CL38EexyQdyudjwm7w6sORwb9feZ/18wqu0BoY2bhRomdU+T1+dD4tDepZ3R63/42HiU5rqFpZb0QXE5KoaLTU3T5ik5f9juVonNNJx1a0/3oMF2RptBKNTUUSaAwSK+IJtra47o9CdoF0m67RmQFGXiJdt2e57kntkYTifEV2lOEviLyoW7J//oyemcFXa0TNTRRHWqRpl8n5vGqUpd3uxwaPpa30st8Z59p2bTJaA3GIjERzy2g7Ey3n6dkBeY7ExaPKolpfHKCIe8gxLEB3QMNxlf3ILECTFVMuytIE9CeohBQK7RxiXsTiTff9Y/DslK6bQ7pFtOl8UaS6Nu+M1YgZt0IpmDx5WoOlaf4TejzP0WfoaLPe0KfX/te/J4lTZ6+TuqRKAWhj18KGCuFjJUDhsohfikQC4BcwZES4VLWp90GqNw3JnWsaQmsl3vjdLmyxMre9jeIAcdjSACxXzdfpnXdHBSRcAOQjntgNejD5h5W0+4DxyGP7hESbbtraDFirhOH8cj5zPZ43qrdFPJe78Yh6uacrIeG1bTb8yCteV6sSL0rJHXqReq+zPyf14aLodrZ8rqkXZNo2t1nuZhiES1Z0u77hckPepzglFNOYXBwkF27dsVm7J/73Od45zvfySGHHEKxWGT//v0AXH311Zx22ml0dHSwbNkyXvayl/HQQw+lrjc6Osqb3vQm+vr66Orq4kUvehGPPPJI033zzONHRkZ497vfzaZNmygWi6xdu5aXvOQl7Ny5kwsvvJCLLroIgDAMYzN/977vete72LhxI4VCgY0bN/LBD36wSSv/i1/8gmc+85mUSiXWr1/PBz7wgYMSSnjekn1N8hFkBq6JVgNLDEqp2IzOJeIe4te+FfFnX4ZoKfJM4x8HzTTnGBoandP7qSxRcB9qNhBdNmd5dqipREmO9rwgbQsBnkcxFNLe7Sl6fEW3r+hRHj2Hd9Pxv8OEVgXXRNC0ELmOMCFYWW17iuCSJoKlAgwbD2wN7K5CX2eyssz6Ck9xOHYJrdXQ+0rMxavWpL2zCCt8okeH0GjQEbsjjY+m1zARf6yG8kUD7coQEksJ1XxDd+XoAcNVEd4UJm6j6fbzbC9yF+LWiN0SdzcVOiBksgGrd1Wo9HYagu6lgu1ZEp/46Jt11bDRz2YjeGVN4wH2jUJfmFzHUxKMrwfYPpQWdoFopCGxrpgEWWsnD7gpc8wNJI8j2xUhvx0BikoReYpx32PcU6mo57ndINte1ppktS9uArZ+sTVbZpzJlMzVHLp1vDlT/uvdY3JekVbDWQEJGufChhhoAPcjAbxWIITdN+ecgJjIu/na7SO0PdiuwJvaidkfz60Fhp3HIWkfax5vCbs1hNGZ7wYQopdnIr5ARu0DQpaM27osM9sVND+zxVTnVlYR1mpiRc7vtq8sBsxbILrZxmD/Q5MfNEVsaWiujeBcD06awdQ8s3XdLLZu3Yrv+3R1dTE6KoPlBz/4QU455RQuu+wyGo0GpVKJSy+9lDe+8Y287nWv433vex9DQ0NceOGFnHHGGdx99910d3cD8Fd/9Vd84xvf4J/+6Z845ZRTuPnmm3nVq141aTmq1SpnnXUWW7Zs4d3vfjennXYaAwMD3HjjjfT39/MXf/EXPPLII3zhC1/gjjvuwHf8vur1Os9//vP57W9/y3vf+15OOOEE7rzzTj7wgQ+wb98+PvaxjwGwZ88envOc57B27VquuOIKisUiF198cZPgAUSocMUVV8yKlcGiRugMX638cJcwPERukQ1GtwExR9yJmJBB82JxsUijFxtecPbp83DX7ErX7IT+xIHosiby1bpoXPM6xgKR7CtPoT0P34vw49Wp2W7ogp/uAL1OVrcN82JYYmZJVocjKLfVsibEJvhZbjC6rgKMNJL22jMuKbJclhUT98kjx2eLIIRKmfzcHgQRtYaChkIrBYesQD9cQW8UC+89dc063yFLY3W8TrmOnw1Cl71RiribbS9iSTAWJZr31HlJfabTz1vdHkTLWUXM4MEJvaAgwgSiUwFUYOXeQeobV4Np4ridPZVkCbDf+0rY2EAFlhlD/CjT31Mm8hr21mCZk1kg0sTa9kfH4ShzrF0DWU17E9PMH1wDU6zAXCLUcA7wQ+eY80hIZ6DyF77xo9PJbexxNUQIEjrHNm1tGzXtK1jWAfuMoMMNupjTB7KwZbZ1DIAXArc5x5xLkjreJ1/ekVfmAmnhjv1YEn4P8njiKpnPCYiJ/HkkEeTtNUZJIsdnTdPtdi7G85RA3bl3H+lMMPYDibbdWgv00kz+Fgu5awVl1jbZOllSu9z5Lh56se/HwpivJkI8hOn0s7P16nO+c+u48GsmWLKkfaawpaH5k5qYCH2+AV/RmhNy3JGmi1814NV1CWj1hQZ8Bz1jxL3RaFCv1xkaGuKqq67i6quv5rzzzqOjoyM+Zs2aNXznO9+JX8Lh4WHe9a538brXvY4vfvGL8XFPe9rTOPbYY/nCF77A29/+du655x6+9rWv8cEPfpB3v/vdAJx99tkMDw9z6aWXTliur3zlK2zevJnvfe97vOhFL4q/f+lLXxrvH3rooQCceuqpBEHSPb/+9a9zxx13cPvtt/OsZz0LgOc+97kAXHTRRbzrXe9i9erVfOITn2BkZISbbrqJww47DICzzjqLI444oqk8vu+nBANtGIR5C9JFNKodJLKE3dW0Pww8SmIaD61959pYIsiSh8BrJu06Z98ypbF6Qlrs9bLv10KAjbDtfpSCTb1w7aNi4h14SbA4CxtEzqaxamlNoPJ/7yhIG9l22z0Mp6zJecEUKe30dGD82vEaBMpEkPeACPQRRaI7HiGKhLjuizzWOKbUqhrhFcTyy42rl6pDiqy7HwXlgqTEqzSSnO7ZY5m6MMJFq25URjSo2tzLpnlzzeV1wYfROitGauxZKQFWbdR4PBIte1bQsjxwNO3mO5eou//XGiI9WFlO+r1txHWd8MBgcp6vjJCrMa33w0MWsoEh7EUFT9PwSeAHCKE9Rcn3oZoeqbX7FfMp5vyWTJFKYgdkLUMUsLwE+423dy0yVik5lcnpA6FD1gtKSLJbv/OAU5UIFKxAoknT7pZbEQsmXNJuETmfe4FjSeZA31zjJOBbOGnfSMivS9rd+2fJ72wjFqLrNIFfhVjLWUQaIpUm8IPmN1f4AMnjXEjD9nSRHZ4suV1mfl/smujsu2n3u812eea3xVa/xVLOaUOpmanatZEQdhCC/bw6rKkc/Od59SS9wmPAdTMYd+24444jDENWrFjBm970Js4///wUEQf44z/+49QiYfPmzQwODnL++edTr9fjz2GHHcZxxx3Hj370IwDuuusuoiji5S9/eep6r3zlKyct10033cTatWtThH2quOGGGzjiiCN4+tOfnirf2WefTa1W484774zrcdppp8WEHaCzs5Pzzjuv6Zpf+MIXZj2q/qJE7Es4v8WYLygcwq6ShYqNkvFTJAidS9QXmzR6saFSyUtMNE/wPdEG5inb8yKrj9WTdFfQTEYXCnzHh9z9lANYE8D9JnBYKjGzFtJegKYgcdnVbZ6WXSFR50fM89UR7KjDShMX240cP42VVS4B8xV4Hr6vqCuFVsJM9SFd6FGIBsbEpb6hWaU1Hlre6XFQhTAeB1SrOqaIu3NMh7EkGG+YLALuOekOMN1+3srsOcTRoDpCopRm0fNhez/7OkKKRYnurozDq/JUbGIMpLXGnUUYrDcHkLOCHFftumdM7h2neyN5lutLJoJ85KR908Z8PKd9WhB5XylKCkoKyp7ZKjhdwfsVnGb+L5pjSgqCaYzRZUTuUCPRtLcsksvq3P6+IoS9xiS82hAmPuGFnPohZXfr1qGEqH9AwemeqZv5vaiQuAstyuruWyGEq21uOI/0PpJ0b3ZO9BHtu0aicVv/d4tRJLZkXrVsseZiPM+axduP9WmHdAA9N+XbAKJ5VjnnLynSTjKkWlK7mSS4YVZYsRiQp0RRJM98T85v7tC90LFkSfvq9SfNyHXO9WSBDrJovyWAncWD/9wSJCRgHXDODD6J73znO/zsZz/j97//PSMjI3z5y19mxYoVqWPWrVuX+n/XLpE9Pu95zyMMw9TnV7/6FXv3SrzNxx4TEcaaNWtS52f/z8PevXtZv379AdVp165dPPjgg01le9rTnhZf25YvryxTKV8bBnZBkbdgehzADUJnB3drdrgBeIiEtGeJe9tuY3bwyc99Y+5vmjeLK4ym3fHBBsf+OOf/Wi1JbbaQ3yPrF2LJuqttP3KFkHbr1+6u7Mfq0J1lj87/7so9Lxhdp59Ejx80GtyVTs73bMq3KSJLGLSn0MY3vWZfVk9B4BOt70Q/VkVrzW6tWa2Tc/2hCNUlpN3TzgUd038VR3CjeRVozf/HnX6QLaS51oH08zy+F9Dsq6ydAzQIuxutsX1lN0VULHRRPgmBzyOhvUUYajQHYMxq2tGiXV4dyAViR3m5Pmu7hAkPVM355txGIyHtcSUz/SuDgkoIbacHXV6ytfudhtQWWrzW2a3dLyGkvc7kZDQRSmT6+YoC7DNPpNJIF2KSuimlhLRn6tdt62W+6zC/59Uv97okQggbQd71Ud+LRFA/ijRht58TgS2kzelBUsjZJAm2CbLDwFyM5yni5hC5VcjzHCPtw46ztaTdXgfSBHaxw8jmUnX7rdm/n3RwQ9fFYDEg9Q6bOv4G+Hfz/WdwhBKZIXsxYMmax+96dMuMXOckX/EdNNdFQqxnyoT9GQF8V838dQGOP/54jjrqqAmPyWoD+/r6AMn1/qQnPanpeOvPbsn+zp07OfLII+Pfd+7cOWm5Vq5cya9//etJj8tDX18fGzdu5Kqrrsr93Qa8W7duXW5ZplK+NgyaAtFNvKhYarCDuWfM6nxFbE64CdiGmMdDooVfbBPbYsPb3/SKub9pHhsCeT8aNuVbjmY95SypoVJPTMddTewCWykoJX7teI0kCraVXG3qgK/vEqfvhkoC0oGYfpcKaaLishm3ju6+Xf12+jBuNG+7R8RO070/5n+VvcBk9SHln6zMKk55ioqnwPPQxmlbH9GLfngQnrCMfq1Zg47NatV4HS8sCIGfKJBgVstun285gKEKjNZFXZoh6m57TaefZ1vC1hcSn3YAHemElJjYAkLa5btH+0ocbwav2ETeN8IIdLP1RFcIu4zWOGsOrzP7+2qwvNxMYj0lwq/VPmwfgRWlpPB1nTDPluw4W3dFBxofIaI1lRTD+npPpIXOu5WFDdY2bvbzCH4M3ym3GxtiRVlYYj0Sl4HQy69bi+7t2/p5MK7lFWzo5DYhUreial7bTVQ/q2l39d6uafwhSF+yhD1Q4Jv34iTgv4GXmuNt9xtBrBPy7m/vPRfjuZ2PXRN5SMj4brPvdllrMTBIYkYNzeRuAQ3b00be+kZpuCVz3PXAM1Ra8LEY4D53W8ds4MabgdNJ2sKu4xYDlixp13rm7M1P8hUnzYIKbbaueyB4+tOfTnd3N/fddx+vfe1rWx536qmn4nkeV111VezTDnDllVdOeo+zzz6bK6+8kmuuuSbXXB2gWJRpZGxsLBYUAPzRH/0R3/72t+nq6uK4445reY/TTz+diy++mIcffjg2kR8ZGeGaa66ZtHxtGNj8uFNcMC01KKXwtI59H61/uyLRpO8n3zR+KUjhFyKKxXnKBpLX90MluZazcPOWuxjBiRY9wXUXAlyyHKevUrC+W1a024fh8J60amokgnLWcJhmEpKnZQdJFTdo2nNXFVZ2OaqxDHE/QKmYMuWJAo/Aixj3FNoD5QmRjQ4toX++nUq9wbCvJGaFIUWqVsXrLqWFclnibb+zn6wlwaM1CUg4icXFdPt5K6JZJBs9Xsh6zOsV6H1jsK/OeKMqwgxk9WqJu3Lb3mUtvQHc5+jxXbvivHRvy8tpEmsFMErBuh4JRvdEEsZU0xKorZWwuEXbKWMmH2pN3fgpg2NAQmtCa5ooLeQx2xAh7WM0GwDkXCXps24/sCkf+8fFSicrlJgCPKUooSkoUvWLA9BNVLcWW0va4/gHJJrnexEtu9ulrZZdIaT9i4iW3hVmjJLkaM+9t1JzMp6nXsfMdg1C2jeSjhqP2d+PmItny27f/8XsAucpha91HAci0PL8ziEd3PBFCEH0ldnOfVEPCB4yRXs6ETSdmxFKnEMS/8HWcbEoXJYsaW9jeujp6eHiiy/mzW9+M7t37+YFL3gBvb29PProo9x+++2ceeaZvOpVr+LYY4/lVa96Fe973/uIoohTTjmFm266iR/84AeT3uPVr341//Ef/8Gf/dmf8Z73vIdTTz2VoaEhbrzxRt7+9rdz3HHH8cQnPhGAj33sY7zgBS/A932e+tSncv755/OlL32J5z73ufzt3/4tJ510EtVqlfvvv5/vf//7fPe736Wjo4O/+Zu/4XOf+xxnn302F154YRw9vlxulv2+4Q1v4IorrpiSX/u3vvUtAH7+858DcP3117Nq1SpWrVrFGWecMZ2mXvgI7dTGtBYVSwlZwu4hJlU2ldDFiJndaTQT9zaWCFz1grt6C5T4pVpktewWlsBUMdHjM6TVve5CgWsWbzu1r6DhwdHd8MAIHNaTTuk11hATcEjItv3gBFjLI/BKyblVRNixZxxWtYgczwFGjs/UL/AVVZ84erz2QHeXiDoDhh8bpmd9Lx06QmnxafcGa6g1nYk2JkdDHt/MLZ89rsuHSlUsLuI87U7947Y6MOSdarXDGsBX6IYcqW0ZH9lHsGU3Cnjxz3fAqhC1YTUKMY8Xk39i64RUmbsDGKo2m8Vrh7Bb7BuDI7rSQg5N0rfWleHuPcD65N2pa4mvcIDwlZpqtrgYrQgmGM09Yh6f0rSrnONdZmjby1dQV7DKS0h7Ngd99qatyqlUy0B6k55rb+cIJiwBiK0ySGvan0YirLZDgW/mxMMRTfU9CIG317KkHdIm5QfZzaeNeAjR6X0Qv/a95jgrpHA/gyQ52pdSEDoLl7AXlbTBKRouQTTsLwJO9US2ZAMctrJQWWhQRihRUGJx00D68ac0XIcQ9qcqqXdBCcEPWTyCmCVL2nuWHz7fRVh0+Ku/+isOO+wwLr74Yr72ta9Rr9dZv349z3zmMzn55JPj4/793/+drq4uPvrRj1KtVnnOc57D1772Nf7wD/9wwuuHYchNN93ERRddxGWXXcZFF11EX18fz3jGM2Kf+3PPPZc3velNfO5zn+P9738/Wmu01oRhyI033si//uu/ctlll7F161Y6OzvZtGkT55xzDoWCLBpXrlzJrbfeytve9jZe+9rX0tfXx//9v/+Xer3O+9///lR5Go0GjUajqZx5eNnLXpb6/01vehMAZ5xxBrfddtuUrrFokDLdW8AEYxbhEna7UMmaj90MPJ20Fv5x1ERziutv2jxPad8c2IcbqsQ8PousubwNylXKmWoX4CJBxVHWI8c83qxWN3XDL3bDM9cmtrkaGKsJ8XZXtHkB2aBZyw5JRPVKA/aMwFHdafVeirhPoy7O1pIVrRSBp2h4HlpF4ufuKSIUrO9DP9ZgxSFAZBf5Gq9WRXUIWWoKQpe9YYrk2vr5MFwXZlQyo0QTS5Sd6fRzpRRonUs4B4AbkcjfT8OQEXOAVqD/dy+6CnRAMAT1+wZQm1YTM3UflO9JUDj3OSgFPUUYRvq6S9DRadN4rWFvFZab5+uajvumsdZ3wA1VcbuwquOaBjeryxzNQXn9BcTU21otZHOPNxXJtlXTvoLeDthbh0rU7Hg+By5orQQTHglptz7tGiHjryaRQ2SJu0JSv21B/Nst+R1FfNrz7mf352I8V0rFgrfU0ISk/dpDs5bdbgeAQ53zsp/FjlBJfIbIA8wrHio4XcPTDYkNVRK4sbjIKl1UImRrmHJ7SL1OM94+AenAlNm4kAsZS5a0NxoLKNrwHOGCCy7gggsumPCYDRs2TJiX/IUvfCEvfOELJ7xGR0cH//Zv/8a//du/pb7PXvfyyy9vOrerq4uLL76Yiy++OPfavu/z2c9+ls9+9rNNv5VKJS688EIuvPDCCcv35Cc/mR//+MdN31900UVN5csrYx4eV7ncwxxDqAVIMGYTHk4KHS2D+nkabnWOOReTjsdMcv4ikkYvNnR3d0x+0FzB9WmHtDm8S1gg0cgXHQ3rQl/9uSnfXDP5Tb1w/XYYr4sLjSVhQ1VYXUrOb1lHh4BDQgSt1nGoCjudyPHZ4w5Avdh0hqcIfI9RP/Hbj5RooPXagM6f72LFU5ajokjcZAA12sAr+mlFepNvu/Njlqx1FpLEz2Un1VeOAGC6/TyPGP0G+F/z/3uAj3uKU5Wi5kFghB/6CX2wdRSGod4DHNcLyglCZ55hykoi1rQb6jrekLnCJeqQxDuoRaLu7+tIznXJv0JSwYH4yB/SJdeoRUmfSFV2fl6YAkkKsCKtyS9Ie7VM+9ZXhv0VaZNwYuHNTGMiAm2j47ua5seQYm4gQ9ZVYnZs/dpvBs4nnePcxnxp1VZzNZ5bgYPr165M+XbTrGGHRNNuo8dDs7Z9sUMZVwsNKE/WONblQpGsaWxwx+lkW1gI8JSijEarxD2mrkVgaetXICHti2ndtljM+KeNkcEdkx/URhttNKPgajnmrxjzCU+p2GyqYCTNpyj4FPBHwKeBp5nv4xzB81ripY0/PP2k+blxekUu20BJhOu8IHRZjNeTc9zrxba1C/AFy/Nr95QEIFvlwQMDiWk0SFT0DielV1Md7f+ZrT0GRDW33QQ36ysnxC6b8m2KsGQzl6x4UFGiYU8R90O6KYzXOGx4PPFnR6OGwe8IJQ2aLUu2TvHFVfP3nY7/rmtxkUPUptvPLSmJQwDQHHTpOqUYR1FTnmjWfAWHr6J2zmFsO7mHq59/GBy2GhV4KN9D+Ur2s37Z9tkGnrC2/eNpoq5Jp3vbNyb7ZT9NXl0hjOfBIQXYPpYUuKah4CxNMw9xNs1Y864ckshcipnj8rp0bsR9hVgc7B0Thhw6KSDnOBBK9m4lElcKq3X+X4SwF0j82LPR432EtN+L+PtbTfsYaZ/2PMI7V+O5q2V391eS1rRbDw+LfpKAdVlN/VIhTb5SdCjJPtClkowE3SYjgc26UFikgXoCpZJMCyqpW7fzf6e3+AQSS1bT3kYbbRwg4kB0mcXa4ww2jZDVIPgkJlY2OEtRQYe3+Eys2pgCckgVIO9HzUaPJ72FNJkfq5tZVi1sX3YXlswq0sRdKdjYBw8Mw5NWiupKaxitSbA1cMYMlT9u5AU2U0oCdT04DH2OkMCe6wYumwEEvkclUOJnbHzaRR3jsX1VD4fvqkBvWTRztUgiEJdDfPuMW5Itlaj13N+LzjK/yafdXu/A6ua671iroBcAP3SOeY6nqPselSjCDzxJp65BbVzD7w9bzZhSUPDQoYcyFhTK+JSrbIRNu13hSZo+HOFNbGNsaFB/RaLDt7KasN+t74XHxpIQ5HWdWHs1CUFm58WZyNWgAAyZ/8Ps7yqnRLFgItNmy0PYZwztiy2s2WZxXGh1aRtoDxJ/9v9FXCts97SButz+5iMB3VYj6cFOM9cYIfFpn1C4MQdwteyWuENC2iFN2G1XHiHxaXfJ+lJbCnlKSZpArWOZmw03MVngxsUA32jcrd9+pJPpZKLAjQsZS0Vo1AQ/KE1+UBtttNEM1/cwhcU5yB0ofKUoe+n8uJ0qkUTb3L9lQ+4X+wS3kLF7z/65v2leEDoQdlTLO4GMraWWiOGdE1x3AXYZpZQEAmsykQc2leF/B8QH2S5xhzDR410iHl/MuTDp+rq/lQrwwCD0TRA5fppt1YowhAqqSq6tjZo6MmW5/5Au+raPJIvW8Rqe1qiiJ9GTm4LQZeqX+Somb7EztGpuH+f46fZza+ETmlsUFDwZ+BBwqlOcauhR8T2qgScEveSjCz77SgFe2YeCjyr4QtwLvlgVuGTdrbtSUC7BgLEiic3jMz7te2uwLGMab7ex1h1YX4THBhLrjbrOyWAy+y9Kq/5SJCHtKuf4JkyU9s0Yk6Rc0OaI0bYazkLSKd80CWn3nI8dDmy0bduNTwDuJpHZuIHoUl3ducdcjeduN3OHplXADhLLgqxv+16EtLtWApA8yqUGXykCpSh6ilApfDX1oJ8LHcrUJzT1C8z/ixVLlrT3rTl2vovQRhuLE9kBbZY1AAsZoTGxck2q7KdLCXnvUItXartY8JUrb5jfAihnJ/DTq1xwtOsZW/nxSEyi8/y8F3KfSeVpd4jHob1S952j6QTHHWFzvTLjhnLJW9wW5ruegkT7WpVJD3YAkeNduLewZxeUYsz30EqB56EDiSI/ohR3rw4pPTYAjUhuP1JHlcDTauIgdBZZjbQ9rtdzmExroj/dfu4rFbvvxFuEuP898Crgs0DFU1SKAZVCQL0QEBV8olLAcMnHLwVgCDsFH0Lrv28eUt7zWl6EobpjaeJ4Bds+sb8i+dezz9Neywo0DumC3VFivVJvmJRvORWe5Xcmt78gmtcS6e9p8X9Tm9m+0O04UGWjx7vjyyyglUACpH52OGsgAbzuI0n31mQar9Im8ycCvyTpChUSOaW9T5b8ztV47g65LoFfiZR32BxnLQxAzPsh8WnP+7TRxnxhyZL2XY9ume8itNHG4kV7ZooRGBOyLk/W3t0KeoyvVNlTiyqIyWLF37zllfNdhAShl2jas0HoLKy95XgEoevHnCFsC7XrWH/yrLY98ODITrh/WFa5Y0bbaiPANwknWlCcrLWBPX9VIWeVrQ44CF0eWSkA475C+6Jpj4x/+24F1WUdonXeMYynQVUaqE4f3ylyk4933g1TxykoFsQsxy1MTjC7A+nnBSXaYJe4h4hG9E+Qx/Q9oO4pKgWfRtGnUQzQRZ895QCv5NMoBehSGBP2uJiuAMatY1cIQ5W0bbGbpx1g7yisyATeU4gfuysM6gnloewYlvepHiUxIOYQrfpLEYkmXprkuKYLNZnIK1hp+kBejItZDnbrljVl5EKatD+IEPJDSZvEK9KE3SXtDyNtBBLEbaI87TB347kl6fGrZr7rRN6PPTSnfLNBB7tJzrHXWshDdhuPDyxZ0t5GG20cBCbQBj0eYU2sAqUoLAETqzamgBQhcxbZgTNtpnzZc7aVaNGke3OhfCUm8tmAdAo4qgfu7xeSMWKkF669LNDSOif1Hyq/AAEAAElEQVRPawswZHReYxX5PquZPYBgSK1IQwEJRIcn6e0ihMDvxGO5p2D9StSjdUkXVdF4YYCn8oLQpeuYsiRwbwhQHRdt8rY9zb/l/T8N+EolOYdJa9yLwJuArwI7EbeASuCjSwH1UsD+UkChFIiPtQ20h2P979H8DBTQG8BAJSlEKtUb0jf2VWFFIdMmKrlmTNw9OKQDtht/71oOaZ+HOcjeqohoX4stfm8qkmW3dt+1VOkpJwfNYB+YKvJuUSDxaQcJLHccCWFXJMTdmsbH+8ByYD3wK8yQR4a0q3l5fPH9vMzWliEbQR6EwA8gcTG9zDm267bRxnyi3QfbaKON1siLhtxGG48X5JFr64+ajR5vfXJdjdl4BOUguVZKXbPA/QZdLbtL3Df1wPaqpLMbqyYqqTyz+DxiktXabt0DvzVGqTfuhq27E+IO6aB0M4AQGPdEu64VsXn8bgW9Cljr4z2yVxbsIw28jkK86E/q0apMGeLuKanPLvPzldvhgd35bXUQsES95JJ3U9cTgGcA/4FoUmPPDk8x4Ck6TVlaCTlSz8zWqyeA4YrT50m07pHRlo8jftxujAL7zLNCmUO74VETo73aSEf1nKM5qFWXDYH9JFGbm9opK19w3QqyAg9t6PG2PfmC8VnCRNkULGl3I8cfTUJ03SB0nrNvv1dIFPktJOS/TLNmej7IRqqrkR5KViGkHRJtOwhp73HOt9tsfdpoYz6wZEn7spWb5rsIbbSxeDHZyqSNNuYQV1196/zcOG8lbzXt9Sh7dBoaeGQv3LPfEFF7rUXyLsWEnTR57y2Kem3rAIxG0NHCZz9PO+6qrewxWzLpWbfsTI45yMjxeY+vgHg3RL4Q90iJpn2357FWKdQh3ajBGmqkgjcS4ZVDWSh52TrmCF3ytOx370wf88sdLa9zoP1cKUVJZXzbDXn3gdcjwcJ+ivgsN8x54wjBskVuIidZVwD7LLqLxh5aO6G3nYwKNkp6h6G6qRgFnrNvvl9fhO0m3FstEtKeNwfNA3G3/SWc4LjcYmX7+rY9sNW4k1y5HR4wkpwZFuBMFwWkT0AShO4onAB0GJkdJr0p+X7tvyJJjZf1ac9u52o8t+9VNhCdojntmx3NB4Fl7jVIP8pFMnq3sUSxZEl7ZWz/fBehjTYWJ1ppNtqzVRvzhGOPPnwe7pp5D+x7YU1369ngcw6BibQQ9Ycbotq8cjvcvyt9vQMw+Z5TWNLsatrtyvXIlfDACIw0xF/bPSfep3nMcImavfaT16aPecraRI3n3ne6xad5KFMkgbe076F9RcP4Hu/wYJWnUKGP19eB9/AYqlbFK4hPe1Md8wQJbr1s2f8gU7+nrkubhzv94GD6eWDM5FPk3dR3BXABom0fJSEoI0xAsOzzy/G9p8c883FzJdc8Hg3940m6N99pL0XaPN4+pHXdEhVsrA6NRnP0+DlAq/5izeLL7rE5MoUU3JR2tg2zwqlf7ky/I7M8HrQi0EVEQx4hbgCPAMeQkPYscfczWw+x5tiB+LaDEHu3almyO5fjeZK+LOl+ikTT7hJ2jeRo76a57HnDWRttzDWWLGkfG9k730Voo43FjTk032ujjYlw0glHz8+N81byMWl3NO2ueXDDEPcteRrWFgKxBQjlqcSvvSn1Wwfc2y+kvScThA5iAtKkiXYD3HlKyNlxa+E1h8LxAbz2UDh2rXwf2LRz3gFHjs/bljBxBM2zFW077FSKFUrJov7wZagHB/GGanidfrJQmmwF78YBCD35HLcWXu3U75g16RgBTpC9g+3nRdWsbbdm8s9HfHWvItGsDpL470KOMQGW6aj0AdZFZLCSjuFgyfu+GvSWk/7u2iUr53/bViVf1Jvbh6ARJebxc2lC3mJrSXuBaSAruPEVPHld+pinrM349mcyFMwC8oYzN0/7AwhhXUWGrKtkP4SUyXyACH42AptxvGVafGBux/NUWAanbCuR1G7ZUCRDJJr23DosFkupNpYklixpfzxj8+bNvPzlL+eQQw6hUCjQ19fHWWedxRVXXEGj0Zj8ArOIbdu2ceGFF/LAAw/MyvU3b97MqaeeSmdnJ0opfvnLX87Ytffv38+FF17I//zP/8zYNVvhggsuYMOGDQd07n/8x3/wwhe+kPXr19PZ2cnxxx/PxRdfTLWazVM1RbQnqTbacGDeh1pmLHV9ehsanrAq/ftT1iWr5hn20541ZP3abUTsw3tEZfvQAJQL6RV5TDyaKxgLAiyhLXgSBO1J6+BVJ8MT18n/hTRpP1C4JYllLpi0Tjblm1Ls8T3qvqLPl/p56wO8h4ZRoxW8spdoneMLtnh+Hkbg4JD2og9PWgvnu/Xzk/rPIFHzlKJI4tvumsmHwJuBq4GHSIi7m1Ob7H6arSR1B1ihJII8ujnhdX/V+LPTTND9HPN4peCQHnikYjTtmTaZB792l9RCPmlvWRyXrFsBznFrmoVToZccdwAZEqaDVPd1tkWSOAf/i2jZLcF1temBajaNd/3a/wC4i8Ryw72vu51r2Hq7AekgIe2Q7r4DSI72bNe357fRxnxiyZL2Qql78oOWID75yU/yjGc8g3379vHhD3+YW265hS9+8Yscc8wxvPGNb+Taa6+d1/Jt27aNiy66aNZI+xve8Abq9TrXXHMNmzdv5phjjpmxa+/fv5+LLrpoTkj7weD9738/a9eu5ZJLLuHaa6/lFa94Be9973s5//zzp3ehzGzbljC3MV94YNuj810EgftO1KJ0ELoIIesNLf83AlnZPtGDV6+Ho9ckpt7e7C/SZwRZzbgtd+jD4WV4tALlzDJislV6wSHrBU+0rCVf/J+LZt8S2oIvkexnECFJxr4oUES+YqcHKzyF54m201vZiSqAt7MupN22hd26DMiBUkoIedFPCHvJl2CE5UD2bb1t/RzSPhP9PFSJht0S96Kp91HAC4FLSfsf55G5eMclzC7J7izCoBFcRVp82q2rSKt0b8q5TjYY3boOeHQIqjodiG6Okb1zwdm2aqfs3KiUEuGN7ce2Lxy/LhHe2H4eGiHPQQinpoJWZXejx1vS7kZOjz1VkEwFVrue9Ws/CQnYV8hc35VzWczleJ4b/xCxJthFOke7Tfk2kbVAG23MJ3Jy0SwNdC87dL6LMOf40Y9+xDve8Q7e8pa38KlPfSr124tf/GLe8Y53MDIy0uLsxYtGo4HWGs/zuOeee/iHf/gHnvOc58x3seYN//M//8OqVYmW79nPfjZaa/7pn/6JBx54gCOPPHLyizRpNtrTVRvzh/+8/eccuWH93N40j3za96KAkHbL2jUQRYmmPQLuGYCnroLnHCILdtfE3Gh0FzzcIHQueVfA0b3w0JgEWlsfiCYxZUadXz+lFLoQAA05rh4lsQCskCAQ8qsKfu41poJWsoMiTuAtJbnadyjFSlNHr65QysPrALW7gbdnBG/D8uaVe6v6+Qpd9BPG03BiHcRCDyuQSBO1mejnSimKaOpK6lnTQt5rWgLQnY+kgfuB0x7QwkReSYT9dEA6s7+sBIP1tH2xzZ7QX4HlYXJBSCxM3DgFLnlfV4bbdhj764xP+yRtPhNodeWseXxLAUcWoQcNX9rE9mvrOqNISH04O8KpPOSV2cZ4ALgfeK753SXkgSHo2H0FgTbDgZbfnmB+fxj4DfBU0n3Jve9cjueWpGfJd5/5fT+wxjm+HzGPbyLsaglrOdtYNFiyfXDvjt/NdxHmHB/+8IdZsWIFH/nIR3J/37RpEyeeeGL8/09/+lOe97zn0dXVRWdnJ8997nP56U9/mjrnzDPP5Mwzz2y61oYNG7jgggvi/y+//HKUUtx5552cf/759PT0cMghh/DXf/3XjI9LJNnbbruNZz/72QCcddZZKCVRc2+77bb4OpdddhknnXQSpVKJlStX8oY3vIF9+/al7q2U4h/+4R/413/9VzZu3EihUODTn/40vu8TRREf+MAHUErF5uU/+9nPeOlLX8qhhx5KuVzm2GOP5e///u8ZGxtrqtd3vvMdnvGMZ9DV1UVPTw9Pe9rT+P73v8+2bdvYuHEjAH/5l38Zl/3yyy/PbQ+3rBdeeGH8/3333cdrXvMaNm7cSLlc5sgjj+SNb3wj/f39TeceKFzCbnHKKacA8OijU5Rwz8EiqY02poq/eO2L5ufGrd6DAmLG68LVtNcj+P0QHNuVT3x9b9b9V2cCyiValmRZgUPB1H8/8PVHYdtu50QmlPMpXxkNtNFCd9iP1UqHB0XYpexJUdytjQYOiD+75/FooFjly5jueaAe2Yd6qI6nwbt5D8rWbYqRvpXvQSlINOy2frHGPUAFzcuvmernNiid6+NeQLQ03cBfAN8wx/6GSYioMuXMRpLvKsBwtTnlWz0S14m+jqSdXHcQK9DJBjdc2ylShXGMz3zmAc4yJuov7tYdEiYqmlLKWFo4FhbW2iK2uhBLExUeXF8/GNj3YQDRPLuadtc83soUsr/Zz73mehr4B+DXzj2yw8FcjueWtLtadoXEtiiT+LVb2dMI6ZRv2U8bbcwnlixpn0norYPoq+5Hbx1csNdtNBr88Ic/5Oyzz6ZUKk16/N13380ZZ5xBf38/l19+OV/+8pcZHBzkjDPOYMuWLQdcjte85jVs2rSJq6++mje+8Y189rOf5UMf+hAAT37yk/nsZz8LwKc+9Sk2b97M5s2befKTnwzAu9/9bt785jfzvOc9j+9///tcfPHF3HDDDbzgBS9o8sW//PLLue666/joRz/Kddddx6te9SruuOMOQEzkN2/ezHe+8x0AHnroIU4++WQuvfRSbrjhBt72trfxxS9+kde97nWpa37605/mT//0T1m9ejVXXHEF3/zmN/mTP/kTtm3bxrp167j66qsBeM973hOX/ZxzzplW+2zfvp3DDjuMT37yk9x44428733v49Zbb+WFL3zhpOeeeeaZB+znfvvtt+N53tTcBfJmpjZ5b+PxiFYr+VA50ePNd9aXXWvx9S4B67oSLVvWxHyxIPYtd+sAbM0Ee/0fEx07L9p4DpSSSO3KIbKUAlRx5rSOeWTUNQcGSf32mFKsNfVSSuHdu0fIiieaRLbsyInSNoX6FdL1U+VAvpsDgU1B0ZQGrogQ9+XOcf9IQtxzCYr7hUvcewLYb1K7aedd6Dffdeale7OEnUT4Y9+HwIM15pzQyxeYzXKzteovIG2X9/uExN1TQsw7AugIRSiVEt6Ec0bYrWzE7tut9Wm/F1iNEFZXy26jxseWGMjwl/Vrvzlzvxto7kvz4WKX6r7OFsSvPRtBfi85Pu2k26+NNuYLS9Y8fqagtw7Cv/xSAqvc/Cj6b06ADTPgL79tCD7+K9hvrvv3J6M29kx+Xgvs2bOHsbExjjjiiCkd//73v59iscitt97KsmXLANF+b9iwgYsuuigmqNPFq171Ki666CIAnve853HXXXfx9a9/nYsuuoienh6e+MQnAvCEJzyB0047LT5v27ZtXHzxxfzTP/0T73vf++LvjznmGP7wD/+Qa665hj/+4z+Ov9dac9NNN1EuJ4lY+vrE4OnQQw9NXfslL3lJ6rxnPOMZ9PT08Od//ud89rOfpa+vj8HBQf7+7/+eP/mTP0nV/fnPf368/wd/8AcAHHnkkanrTwfPetazeNaznhX///SnP52jjjqKZz7zmfziF7+I75EH3/cJgum/snfffTeXXHIJr3/961mzZs3kJ7jIrlLaaKMNIRg1nfxvfdpj0/hhOG6FsL4sWQ/UjAYfm3XkpX4LPImG/XvHcuepa9Nmz9OooprlBMhKATohYdbGSiOp37Z7itWeQnkeXhDhHbcSfv4wfsOQ9j/IpGmbZhq62a5fHjxjJl9TYiZvzeXrGrJZsm8ETldpcpIi7W5/tfs9PoxUpO/HrMeke1tl6FGrdG/x9yTkXSlY1wM79yXR6bPQ+V/PBFJE3Okv1jy+mDkue17L68ZCOwAfrfW8kde8rRVi3YfEPLC/uWTdEnOQ+vhap8zkAyRWwm3O/c4lkypuNio1BcTDkXa6sulHq0lIO4jwooEILrLvwmQCmjbamAssWdLet/YJkx80FfxstxB2kO37fj4z13XRX4X/3g0HQdqnix/96Eece+65MWEH6Onp4UUvehHXXHPNAV83q3k+4YQTuOWWWyY97+abbyaKIs4//3zq9Xr8/amnnkp3dzc/+tGPUqT9j/7oj1KEfSIMDg7ywQ9+kG9961s8/PDD1Gq1+Ld7772Xvr4+/uu//ovh4WH+z//5P1O65oGiWq3y0Y9+lC9/+cs8+OCDsesAwD333DMhab/11uxSa3I89thjvPjFL2bTpk18/OMfn97Jiyg9VRtLG5+/4vtzbyLfanWuFPh+4p9qtYxW0x5F8Pt98KLDHTtSl/guDtN4C+UptG+iuYemjqGGY9fAq5VooZ+6Do5bl0QHd/NUz1e5M1uLArIwB1ms1xRs9xUrQ4WKFAoPdeRqvPNBbdmJd/xqifSd8umfnfRcM93PA0TbniXt5wI/dI47B5O+S8k5Ho5WNJvuTSF/uouwz3kHIhOYcV8dejuS+SNrGi8XT2vbLaH3zVrr0X5YblKkuc08y10q71ZW0x5OcOy07jGP6tqUYMLsFxCPhHuB4yFJ9YY8rqb+gGjaA50EPawBT9HwUUQAdA7wZHsciazSYi7Hc6UUSutcv/aVwB4SmdOAOaelpn1OStxGG62xZEn70P5HZuZCp6yCmx8VYr28ADOpaf/Er5LrPrXZD3k66Ovro1wu8+CDD07p+H379rFu3bqm79euXXtQ/tUrVqxI/V8sFqlUKi2OTrBr1y4AjjrqqNzf9+5Nm2Lmlb0VXve613HLLbfw/ve/n5NPPpnOzk5++tOf8uY3vzkmzfb6hx46uwEM3/Oe9/DpT3+a973vfTz96U+nu7ubRx55hD/90z9NEfiZwN69eznrrLPQWnPjjTfS3T3Fftskkp97LVEbbbh4zhlPmZ8bp1bxzj++o2m3DpHWNP6xYVkFH9GbmP9mNe2LDTaNWV2J6TJIXZ64ViJix8HVzHHBgeVWn2nkkTBLvhoIOdmhFLXQZ0VDg6/xEE2oOmYt3lFr8Ny0Xe5nFjDT/VwpRQFNQRNr3CMFp2j4JHAdQuBPMeQrJlipi+AIcB1Bbo/RPdca0j/idG+V1unekLgB2giv8HSibd+2B34+LNf87k4xr3+iM897s0+b8rTRWZ/2vOMWAyYSYtWRyPEvwZGfkCbuLnxMnAQNDSWE1wNO1XAq8jhtPAXrouFq2ud6PLd++Fbjbgl8H7DVHGPTvZWQsqbIumr7ErexMLBkSXt1fGhGrqM29qD//mTRhD911UGZsKfwxOUzet0gCDjzzDO5+eabqVQqFIvFCY9fsWIFO3bsaPp+x44dLF++PP6/VCoxONjsc58NDnewsKbtN910U+r+2d8tprogHB8f53vf+x4XXnghb3vb2+Lvf/WrX6WOW7lyJSCB2o4//vhplR2knbJ50LOCBoArr7ySP//zP+cf//Ef4++Gh4enfb/JMDg4yPOf/3z27t3Lj3/8Y9avn2ak1sW0GmljyWPOI8e7yBtrAk9UlrE/O0bLDvzvMBzX3ewLHmtqF9/yT/kKXXAiYVuiZWFN5k0k7NkitdPFRCSsihD4R4G1Jo2dAlQd/HqEFyaL+1goYSN95wSRmwnMRj/3laKkdJzaShv+fJolWIhGtOR80hnXVCaSl/mxZNpgsAplRw+9dwyOX5HWrlv2Y89185JbociWnemCb9kJT1qXHDNPc5JdSZVY3PJs1+Qfkm0R2G72jyTflz0bYsJmKGg43weIQEibc+I4CubjOePoXI/nsfzIIewKSfv2U5JhfACJHI9zTPbTRhvziSVL2mcSamPPrJiuz/R13/3ud3PmmWfyzne+k0suuaTp961btzI0NMSJJ57IGWecwQ9+8AOGhoZiDezQ0BDXXHNNKlr8EUccwbe//W2q1SqFgix3fvSjHzE0dGBCEStMyEZuP+uss/A8j4ceeoizzjrrgK6dh0qlQqPRIAzTxm026rvF05/+dLq6urjssstSfuxTKTtIO/36179OfXfdddc1HTc6OtpUli996UuT1mM6GB0d5ZxzzmHr1q3cdtttLa0XJsQcBv9po42FCKWULObyVFQFP+3TbtO9aQ337oE/XJ+sfFOadm9OUjvNCiwRt4TdWhaAo4mWHOQLScueR1JASHsZeAQ4RCl0QeqnPFCBwovEoEKB1K+Q1G+xoaCSfNTKejmo9O8FEtLu5Y3/VuUIida7FxiqwOoOkQZo49PeKt2by3ZddwNfwVPWwq8dC8mnrmuOpTCLTd+qv7iB6CY6brHC1u9QRDDhatmt1UVeHQOl6PA0SgxU4pSCmOOLpk+VPQjneTzIM40HIe2u+mmQCSLHLyIBTRtLF0uWtJc7+yY/aInhWc96Fh//+Md5xzvewW9/+1suuOACDj/8cPr7+7n11lv5/Oc/z9e+9jVOPPFE3vve93Lttdfy3Oc+l3e9610opfjwhz/M6OhoKhDcK1/5Si677DJe//rXc8EFF7B161Y+/vGP09vbe0BlPOaYYwiCgC9+8YusWLGCYrHIsccey6ZNm3jXu97FW97yFu655x7OOOMMSqUSDz/8MDfffDN/8Rd/EaeLmw56e3s57bTT+NjHPsa6detYuXIlX/ziF5tSn3V3d/OhD32It771rbzkJS/h/PPPp7u7m1/+8peUSiXe+ta3smbNGvr6+rjyyis58cQT6ezsZOPGjfT19fHKV76S17/+9fzN3/wN5557Llu2bGkSDID44l9xxRWccMIJHHXUUVx99dX813/915Tq8tznPpcHH3yQ++67b8LjXvKSl/CTn/yESy65hJGREe688874t02bNuWmhGuJtl97GwsAW351LyedcPQ83DnT/+37EHqS2srCmsf3j8NeDZt608TE/SxSKKWg4It/ez1KfJjBBNxjwZjFTwQrMrV2UY8B6xGiqgoeWitUpPF1JDzT+ukHqimv+kxjtvq5UooS4tcbAlVlZExI1w5UYsrsZ5+fqyHPspiuouRqhyTd2wjGPF6lTeQh7v/KU+jAiZMQaTGFf52SLARPXgvHrU2sG4yFymz3rVgu4WikrVl36B7j7C8m5AkcrDDiWJK62bh5dr9Vrw+UohMtaeNMn7KGGdaEvqk/Mffjuatld/ctaW9IsdmPyKEs2kHo2lhoWHwi4ymiWF4230WYF7z97W/njjvuYNmyZfzd3/0dz3nOc7jgggv43e9+x7//+79z3nnnAXDiiSdy22230dPTw2tf+1pe85rX0NXVxe23385JJ50UX+/Zz342l156KXfddRfnnXceX/rSl/jKV76SCmA3HfT19fGZz3yGLVu2cMYZZ3DKKafw859LcL9/+Zd/4bLLLuNHP/oRL3/5y3nxi1/Mhz/8YZYvX87RRx/4AP/1r3+dpzzlKbz5zW/mggsuYO3atbmWCG95y1v45je/ySOPPML555/PS17yEr71rW/F+dk9z+Pzn/88/f39PO95z+OUU06Jg/a99rWvjaPun3feedx4441xyjkXn/70p3nRi17EP/zDP/CKV7yCoaEhvv71r0+pHo1GIxWkrxVuuOEGtNb89V//Naeffnrqk6f9z0XT7N6estqYP9xz70PzXYQ0rHm8hdU63zMIh5WhGKS1hHGO9sU/5SpfoeL80yaVmck1vdAIu6sctiWzT8CGI92OkHY5VuH7Hqro45UCPJNrXdLQzf6zm81+rpSi6Cm6POhW0O1Blwc95tPRgmApl3zjbAF6izBQN/7sGvab+DVdjqbdMp6sT7pvYiCEnuQwL/pw/CHw6j+Qrf0udI6bZUykRf8BzbnHs8csZNiQA9l3Ypv53dWyZ4n7RO+1Z/pVp5L+1KWgU0HZU7n9CeZnPHe17a5POwhx18AQEwehW2jjWxuPP6gf/vCHs5hEY34wMjLCueeey8DAAD09zebng4OD9Pb2tvy9jTYej7Dvxf4fPUDPqmVQ8k0uWR86w1nz42yjjYUKPVaHsTqMN5LteANuMma8Zx8qeZgjoNqAK34PJ/TBU1cL4Sj5yXtUFqLbXvjNDRpaMxzBoIbhSD4jSHqrlwEXAxuAPwfeDZwAdEFMPro96FFQWESR/mcLue9BpQG3bofxOrzQZEr4/T64/VH4i+PFhSTV933oCFNR93UjkuvVIhF8NRz1v42TUBBSP9tCk0hrhiIY0jAUwYjpL/+N5LK3uARJj7fY+khdawYjqduweSfuAt7lHPMh4DSSd6DTCHjKi6B+EyE7FthnO468/+8BngB8GvFpfy3iOtNln7MRcnUs8nZoY+5g19PXXnstnZ2dM3bd9iq8jTbaSCNPu96eq9p4PCKPYCuMpt2Yx2vELnSsDo9V4Zhljg+uSlKg+QvfdHwpIU9ravfLiHn8GOLHup5E+xZnJWPes9YtHLgac1dN2x1ItHgw6d5q0DOBaXymPZXvSRC7cugIuBxhVymAYjAnVg62SuDkJAeyCWuvp9lLYDEgqzX2gJsyx9xKOi97SDYo4eKE2xXdZwuwAkn7BhKIrtv5Pftpo435Rpu0t9FGGxNjsaxK2mhjptHKBjZQaZ/2SMM9+2FtIKbBKZN4Z7+NOUWrx1dESPujZr+HJC2UXeD7Oec9buFKMNz93gDGxsU0XiMpbPs65LcW6d6aLu0rVMkX4t4ZQkcg23IIxbkL3OgpFZuEe8gr7gN/lDnuPJwQFSyeRbTClNeU21eST93FC0nnVl9M9ZsIWbN4Vxi3Gthl9gcQTXuzWfzSaIc2Fj+WbD9cvf6kyQ9qo402WqO9Ym1jgeATn7ly/m6eZ3kSKDHpBZNHC/j9fji6r5mse0qOb6ttFwwCxEx+O3AI6QW9n/l/LjGv/XwiZP3ZlfnTFcI+R3i1ZxRWhI4609HQT9L/la9QgSexEQIh63NtmWLJeqhMyjLgqcDHgLMQ8+lTVEJsg0VE5qxQwmrPQ+AU4JNI3T5p/g9JAhOGKpNJYIYw1/1cKZXqhu77vRKwyXmHmCB6/JyWuI028rFko8fv3XnPfBehjTaWBtqzVRvzjFe/MqvvmmeEnviwg0RRr9Zh2yictT6tXXRys7dN4+cerXJTB0ggOjcIHSQW3G5a8rnEguvnFq4duEvcl5Uk9HY9EpeR/eOwIkiOsw04H415ACgoCchWVyKLwwS3Px14OtJvbP7xkpKUZovpvS4qifJeByIPVASnAk9DHo+bW302TePno5+7ljTuZyXwO3NMPxMEols8j7mNJYwlS9ob9fH5LkIbbSxepDQqqZ022phzrFq5bH5u7K7WXOaXNY+/f0DsKvvKrTXtbcwpskTdfQIFxDz+ESQ/ddZ0dipRs2cD89bPJ4VKGsfVmpdMQrShKvQUYRhY0ZH2ac+LOr9A4StFEU3dFNVHSK424ZoDo4G3+ewXm793oBRFpYlwQnMg3j2esR4IlWQSKCs5fjYwH/08m+7NkvFVwO1IO1QQTbtL1Nua9jYWEpYsaW+jjTZmAHbWaqONNpJ3IVTQcMzj7x2Co1fJ++J7aU17oNpqmnmCS9it1h1Em1pDSLvVMub5tLdhkMdcPNOvu4DBiknSTet0b4vkHSgohfI0gYaKCWjfUEmAtgKJNnoxadktSrYuiACiZqL1W1lkXL9FIGSZDuKu6GxBNO37kICUMHHKtzbamG8sFnecaaOzZ+18F6GNNhYn2rNTGwsMd2zeMn83d98Hu0j3FTQaooKLIvjdABzbmazsUwHovFSaqzbmFnktX2BqPu1zjXnt55PB1Zi7qsjuAgzVoX8c+gw5jy21VPr4RYJQSd7xHpXksu82qb86PSh5c+9vP1NQJq+6TWUW18383+XNPmGfj37eJENC3vGViC/7Xoz7A+0gdG0sXCxZTbvvFyY9ZnBwcNJj2mjj8YL4fchL9bY41ydtLBEMDY3Oz43j/p95AVxN+0MDMpOu705Iihsxvh01fsEhRBbpVdLp3rI+7XONeevnk8FlMJBunJ4iDNRhVEFPxjTeHpaT7m2hw1OKgtE8L0X4JjBdcR7uPR/93BXMuZ8V5vetzn6ehn2Rdd82liiWLGkf7H+o5W+FQoG1a9dy2GGHzWGJ2mhj4WPtqjUUQmPemPXlbaONecILzj59fm6c588OYkdaNebA/zsCxy0Hz6MpxVs7avy8QSkFWuf6tofIIr0Xydm+UNK9zVs/nwRKKbTr146z7SnBcE32+8rJb/bYCdK9tfH4xHz0c1cYZ/3arZtAH3A/4ulhj3U/7SG8jYWCJUvaJ0KpVGLr1q1Uq9X5LsrjFrqhYawG4w0Yq0OlAWMNSaP0iV/Da46ENV1Q9qDoS8CbmobxOlQiOf7y38AZ6+Go5fJ70YdyIPvlAFVoeyW60JFpv7G60+6mLf/fb0EpCq87kVKpJCe00jK20cbjHb4valo0/H4vvPCwZEXoatq9tmn8fCKPsINoT3+PmMbb77PEvf3UMnCDk7rCrG5fMifUInjCsgNK99ZGG3OBvEB0IBr2e4HlzrFuOJ9F5t3RxhLGkiXtSk3shVIqlRJy0sacQ0cawhoUGhDUIWxA0JA0St2dEJShq0tIeNGHsg/VSI4JGnJ8rQOWL4Ou7uS4DkPaO0NUsPQ9kSqVKsXi1Az4tNZQqDvtbbaFCMo9MiuVjKYkO0O1Z6w25hHT6eezBuXshJ6Q9h2jMAIc0WuC0OVo2tuYV8QcU6dJ+17gZNK8UuFEjp/7oi6Mft4KLvl2G6wngJGKCIFXrJLfF2G6tzbmDvPRz3O152ZMWAlsBp6dd5w9v628aGMBYF5ZjdaaL33pS7z0pS/lBS94AW9729vYunVry+OHhob453/+Z84991zOPfdc/vmf/5nh4eHcY1evP2m2it3GTKGVJrdMkgPZWKDGW0ii1FYQsp7nZ/c4GV8/+blvTO8Et13cdvc90R7m/fY4acs2Fi6m3c9nCnnvi0JIuwb+dwiO7oLQb/ZjN/nZ21gYcLVmli6sIxOETjka93lYpM9bP58KsunebPN0hbCnLuG3V5TTPu2LKN1bG3OH+ejnSqmmeBV2dDaipubI8Y6xSBttLATM64riG9/4Btdffz0f+chH+O53v8vxxx/PO9/5TsbGxnKP/+AHP0h/fz9f/epX+epXv0p/fz8f+tCHco/d+cgvZ7HkbRw0siZ27ihZCCTXiotKQ3Kv2K9tjuSOMOfaj58h9klHL5/8oCzy2sf3IM+d4HHUlm0sXBxQP58p5L0DoXlX7t0Dx/YmK0E3N7tlgG0sONjgW26O9oWQ7m1e+/lkcF8DNzp8bxGMjJ3uQvJ9yoShPY+0kWC++nnqPSfpoivN7/8/e2ceZ0dR7v1vn3XW7CEhgEASVhEQZREFVDZRARUvLugVcbu4XLn6KoIbuF7Eq6KiyEUFReUisiO7AoIBlS0sCiSEnSQQEjLbWbr7ef+oqu7qPn1mJsnMnDND/T6fnj5zurpPVXd1Pfvz9Op9M2u7g0Or0dK5eNlll3H00UezcOFCyuUyxx13HPV6nb/85S8NbVeuXMkdd9zB8ccfz/Tp05k+fTrHH388f/3rX1m1alXG1SXjO4e2QjOrb7GgYq1BWdWrgYrBNoI7qM+gXOLN+fYq+xLRjf7pT38amwsVUkK7l9w71zCHVmLM5vlGQa859itgQm+eC2HxjKRrfLTl3HvTYmgP2IaYdqPqtTPH5+ytRY+ttfN8JHiN5d4grss+SwvnUZtUewcHjVbNc+VB06ioM5b2maTYSFx0h0N7oWVCe39/PytXrmSnnXaKvsvn82y33XY88sgjDe2XLVtGsVhk8eLF0XeLFy+mWCyybNmyCemzwzggi6kdqsBtz8Dy55Sb/JC1VXVt5IefU22fWJNcYT23wjaDZ3s22HuA/gF4eD2seC7pAdHQ0MHBIRGrvnJt0sIeWdqdfaadYK9iq/X+BSwGPq33dWhE2j3etqK/IPDY88l4d3BSj0PbwK7PDo2W9huB+0muA249cGgntCwR3eCgqtPY09OT+L6npyc6lm6fbtusvYhQKve6OuxtDhmqa2Hcyh7/yGpYOaAa/PoR2H8NbDEteeLT6+GWF+I27xqAHedBPQ9BQe394ksia/Mjy5/YoHkuQyZ7vM4gXwng4dXwtHXP3zOo7qev72W9gFefsjkrHSYBNnSejxUkEBisJ9+XoQCWrYZ6xjsT5vVWgLDgLO0txmAoDAj0hzAYwoDAXcAN+vhXgG8Arwa8nNrw1D7fgmfXqnk+GjRUH6n4UAkVzc56F/y8oiFBAc939MMhRqvmuS9Cf6jXA1FrwiDwNMoj537gC8BpwF5aujfrQtWt5Q4bADO/RcbW67tlK2lXVxdAQyK5/v5+5syZk9k+K+lcf39/dC2DoaEhatU+V4d9KuDyMWozhTF9+h/G9oIv8fvp0J4Y83k+lnDvzKTF51rdgRTaep6PBu5dcBgF2nmen9DqDjhMGQwNDWUanDcWLRPae3p6mD9/Pv/61794+ctfDkAQBCxbtoyDDz64of3ixYup1+ssX76cRYsWAbB8+XLq9XrCZR5g9uzZXHjhhXR2djpLh4ODg4ODg4ODg4ODg8O4Q0QYGhpi9uzZY3rdlvosHXnkkVx44YXsscceLFiwgF//+tcUCgX222+/hrbz589n77335qyzzuJLX/oSAGeddRb77rsv8+bNS7TN5XLMnTu34RoODg4ODg4ODg4ODg4ODuOFsbSwG3h//vOfW5Zm3dRpv/LKKxkcHGSHHXbg05/+NAsXLmTVqlUce+yxnHbaaey6666AihE444wzuOOOOwDYZ599OOGEE8blxjg4ODg4ODg4ODg4ODg4tBotFdodHBwcHBwcHBwcHBwcHByaw9WkcXBwcHBwcHBwcHBwcHBoU0y5OhwiwrnnnstVV13FwMAA22+/PSeccALbbrttq7vm4LBROPvss7n99ttZtWoVHR0d7L777nzsYx9js802i9qsWrWKH/zgB9x7770Ui0Xe+MY38vGPf5xisdjCnjs4bDy+/OUvc+utt/Ld736XV73qVQDcc889/OQnP+GJJ55g5syZvPvd7+bII49scU8dHDYcDzzwAD//+c/517/+RS6XY5tttuGHP/whuVyO5cuX88Mf/pCHH36Y7u5u3vrWt/KBD3zAJdZ1mFR44YUXOPPMM7n77rup1WpsvfXWfOQjH2H33XcH3HruMPnwpz/9iUsvvZTly5czODjIDTfcQD6fj46PtHZvqow65Szt//d//8fVV1/Nd77zHS699FJ22WUXPv/5zzM0NNTqrjk4bBQ8z+PEE0/k0ksv5bzzzgPg5JNPjo6HYcjJJ59Mb28vv//97/nZz37G0qVLOeuss1rVZQeHTcK1115LpVJJfLdy5UpOOukkDjvsMK644gpOPPFE/vd//5e//OUvLeqlg8PG4YEHHuDEE0/k0EMP5eKLL+ayyy7j4x//OJ7nMTg4yOc//3l22WUXLr30Ur7zne9w1VVXcdFFF7W62w4OG4Qf/OAHPPfcc/ziF7/gsssu44ADDuDkk09m/fr1bj13mJTo6enhyCOP5BOf+ETDsdGs3Zsqo045of2yyy7j6KOPZuHChZTLZY477jjq9bpbCBwmLT7ykY+www47UCwW6enp4T3veQ/Lly+nr68PgKVLl/L444/ziU98gu7ububPn88HP/hB/vjHP1Kr1VrceweHDYNh8v7f//t/ie+vvfZattxyS97+9rdTLBbZfffdOeyww7jkkkta1FMHh43Dz372M9785jdz6KGH0tHRQT6fZ+edd8bzPG655RbCMOS4446jXC6zcOFC3vWud3HppZe2utsODhuEp59+mv33358ZM2aQz+c5/PDDGRoa4qmnnnLrucOkxF577cWBBx7IggULGo6NZu3eVBl1Sgnt/f39rFy5kp122in6Lp/Ps9122/HII4+0sGcODmOHv//978ybN4/e3l4Ali1bxoIFC5g+fXrUZscdd6RSqfDkk0+2qpsODhsMEeE73/kO73vf+xpKeS5btowdd9wx8d0OO+zAsmXLJrKLDg6bhEqlwgMPPEAul+P444/nyCOP5KMf/Sg333wzoNwrFy9enHC53HHHHXnmmWcYGBhoVbcdHDYY73nPe7jttttYs2YNvu9z6aWXsmDBAhYtWuTWc4cph5HW7rGQUadUTPvg4CDQWBuvp6cnOubgMJlx55138qtf/YpTTz01+m5wcJDu7u5EOyPQu3nvMJlw2WWXISIcfvjhDccGBgbYcsstE9/19vY6QcZhUqGvr48wDLnuuuv41re+xXbbbcdtt93G17/+debMmcPAwEADD2Ov5+m13sGhXbHLLrtw/fXX8853vpNcLse0adP42te+Rrlcduu5w5TDSGu3iCrWtiky6pSytHd1dQHK4m6jv78/OubgMFmxZMkSvvrVr3LyySez1157Rd93dXU1EDrjOu/mvcNkwdNPP82vf/3rBrd4g+7u7oa1va+vzwkxDpMKnZ2dABx66KHsuOOO5PN59t9/f3bffXduvfXWpvMc3HruMHkQhiGf/exnmTVrFpdddhnXXXcdn/3sZznppJNYtmyZW88dphxGWrvHQkadUkJ7T08P8+fP51//+lf0XRAELFu2jO22266FPXNw2DRcf/31fPOb3+QrX/kK++23X+LY4sWLefbZZ3nxxRej7x566CE6OjrYaqutJrqrDg4bhfvuu4/169fzsY99jCOPPDLKIvzVr36V7373uyxevJiHHnoocc5DDz3E4sWLW9FdB4eNQk9PDwsWLGiaCd64DgdBEH330EMPsWDBAifQOEwa9PX18cwzz/COd7yDadOmkc/ned3rXseCBQv4+9//7tZzhymHkdbusZBRp5TQDnDkkUdy4YUXsmLFCqrVKr/85S8pFAoNgo6Dw2TBJZdcwg9/+EO+9a1vJSzsBrvuuisve9nL+OlPf8rg4CCrVq3il7/8JYcddhilUqkFPXZw2HC8/vWv57e//S3nnHNOtAF85jOf4aMf/SiHHnooTzzxBJdddhn1ep2lS5dy9dVX87a3va21HXdw2EC8/e1v55prrmHZsmWEYchtt93Gvffey3777cf+++9PLpfjl7/8JdVqlRUrVnDhhRe6UlgOkwrTp09n66235tJLL2VgYIAwDFmyZAmPPfYY22+/vVvPHSYlgiCgVqtRr9cBqNVq1Go1wjAc1dq9qTKq9+c//1nGZWQtgojwy1/+kiuvvJLBwUF22GEHPv3pT7Nw4cJWd83BYaPwhje8gXw+31Bz/bTTTmPXXXcFVDksU6e9VCrxxje+keOPP94J7Q6TGm94wxsa6rSfeeaZibq+jslzmIz4zW9+w2WXXUZ/fz9bbrkl//7v/87rXvc6QCU0OuOMM3j44Yfp6uriiCOOcHXaHSYdnnrqKc466yweeOABarUac+fO5aijjopylrj13GGy4ZprruG0005r+P773/8+u++++4hr96bKqFNOaHdwcHBwcHBwcHBwcHBwmCqYcu7xDg4ODg4ODg4ODg4ODg5TBU5od3BwcHBwcHBwcHBwcHBoUzih3cHBwcHBwcHBwcHBwcGhTeGEdgcHBwcHBwcHBwcHBweHNoUT2h0cHBwcHBwcHBwcHBwc2hROaHdwcHBwcHBwcHBwcHBwaFM4od3BwcHBwcHBwcHBwcHBoU3hhHYHBwcHBwcHBwcHBwcHhzaFE9odHBwcHBwcHBwcHBwcHNoUTmh3cHBwcHBwcHBwcHBwcGhTOKHdwcHBwcHBwcHBwcHBwaFN4YR2BwcHBwcHBwcHBwcHB4c2hRPaHRwcHBwcHBwcHBwcHBzaFE5od3BwcHBwcHBwcHBwcHBoUzih3cHBwcHBwcHBwcHBwcGhTeGEdgcHBwcHBwcHBwcHBweHNoUT2h0cHBwcHBwcHBwcHBwc2hROaHdwcHBwcHBwcHBwcHBwaFM4od3BwcHBwcHBwcHBwcHBoU3hhHYHBwcHBwcHBwcHBwcHhzaFE9odHBwcHBwcHBwcHBwcHNoUTmh3cHBwcHBwcHBwcHBwcGhTOKHdwcHBwcHBwcHBwcHBwaFN4YR2BwcHBwcHBwcHBwcHB4c2hRPaHRwcHBwcHBwcHBwcHBzaFE5od3BwcHBwcHBwcHBwcHBoUzih3cHBwcHBwcHBwcHBwcGhTeGEdgcHBwcHBwcHBwcHBweHNoUT2h0cHBwcHBwcHBwcHBwc2hROaHdwcHBwcHBwcHBwcHBwaFM4od3BwcHBwcHBwcHBwcHBoU3hhHYHBwcHBwcHBwcHBwcHhzaFE9odHBwcHBwcHBwcHBwcHNoUTmh3cHBwcHBwcHBwcHBwcGhTOKHdwcHBwcHBwcHBwcHBwaFN4YR2BwcHBwcHBwcHBwcHB4c2RaFVP/ynP/2JSy+9lOXLlzM4OMgNN9xAPp9v2r6vr48zzjiD22+/HYB99tmHE044gZ6enonqsoODg4ODg4ODg4ODg4PDhKJllvaenh6OPPJIPvGJT4yq/Te/+U3Wrl3Lb37zG37zm9+wdu1avv3tb49zLx0cHBwcHBwcHBwcHBwcWoeWCe177bUXBx54IAsWLBix7cqVK7njjjs4/vjjmT59OtOnT+f444/nr3/9K6tWrZqA3jo4ODg4ODg4ODg4ODg4TDwmRUz7smXLKBaLLF68OPpu8eLFFItFli1b1sKeOTg4ODg4ODg4ODg4ODiMH1oW074hGBwczIxd7+npYXBwsOH7MAxZs2YNnZ2deJ43EV10cHBwcHBwcHBwcHBweAlDRBgaGmL27NnkcmNnH58UQntXVxf9/f0N3/f399PV1dXw/Zo1a3j/sR9DAp9atU9/6zFvy91Z/fS9iIQATJv5MoKgxsD6lQDkCx3MnrcDq5++N7rWjDmLqA6tY2hgDQCljl56Z2zJmpX/jNrMnr8TfeueolZRv9XZPZty5wzWPb88arPZFruxZtVDBH4FgO5p88nnS6xf+4TqnZdjsy12c/1z/XP9c/1z/XP9c/1z/XP9c/1z/XP9c/2bJP1b9dQ9gKjfKvdSq/Zx4YUXMnfuXMYKk0JoX7x4MfV6neXLl7No0SIAli9fTr1eT7jMG3R2diKBz/JlDzJt2rQRrx+I8GIIAyEMiNoPAvcAX9dtysA3gb086PGgKwe9OejJOUu+Q+twzPuP4ze//kWru+HQIogIhNYXOaakd5Gb5zEkFBiqQyWAoQAqPlRCWLYa/vBs3PA9W8CO86CzAOU8dBbwOicFyX/JYrzmeTUUBgQGRU2VmoCPYi/zQNGDkgddHnTn1D43BdcRh/aAW88dpjrWr1/PVlttRWdn55het2UUPAgCgiCgXq8DUKvVyOfzFAqFBleC+fPns/fee3PWWWfxpS99CYCzzjqLfffdl3nz5jVc2/M8QgmYNm3aqIT2ughBCIQgIYSiiNnLAA/oAr4EvAolsHd70JODaU5od2gxujo7RzXHHaYWRATqIQQhBHrB8oC8B/kcFHJ4U2htcvM8hoQChToUA8j7UAjUtnMXXL5eUfV3LoAd50NnHjqUwO6E9vbHeMxzESEn4Ifg631gCe2gkhuVclp4z0GnB+UptH44tBfceu7wUsFYG1Faloju+uuv59BDD+Xzn/88AG9+85s59NBDWbp0KatWreKwww5j6dKlUfuTTz6ZadOmccwxx3DMMccwffp0TjrppKbX92uNse5N22qeN0AZrcxmnCN2AnbWnyW9F/PJwWHiscWCsXO7cZgckFCgGkLVWFqtbSiAIR+qPhJMnbXJzXMLaSIEYOiQB7ysG7adq74T4g1x9KrNMR7zPADqEm81gSHgH8C39b4CVLUgbwR6B4fxglvPHRw2Di1Tu7/pTW/iTW96U9PjV199deL/adOm8eUvf3lc+hLSKLgLsdBeGZdfdXDYdBx66KGt7oLDBCKysFd9JbQH+n+DQk5Z20NlepdyfkpY3N08HwG2ID9Ys76XeG+E98k/HaYsxmOeB6L4Gh9taQfuBozJ4ybgu8A+ogV2T/NAIlMy1Mah9XDruYPDxmHK+srlCx2jaheKRJb1QBSva1vat0fFtxuIgHjmszpBDM+c88Dz8PKO0DlMDPZ41d6t7oLDRMIPoRZALVRbXW9GGCsKFLUDVS5QAnwp38oejwk2dZ5LaBZ3LcTmPMh5k1ehIVgCuflOf+ivJ4V0M2azd2hbjMd67qMs7MYoEQDXpNpcC+yN5Zih+ZxJ+nY4tDkc3+LgsHGYFHXaNwaz5+0wqnaC0j6HJN3jQQntuwC1VHsA8UOo+ISD2h110IeBOgzVkWqgmEQHh3HG+Rek2S+HKQ1fW9Z9LaxXA7U9+Cz89h61r4VxAGsQTgmX6I2d5yKC1AKVuG1Qr9ND1lpdCybh/WkirBuPi3590KZBWS71Dm2HsV7PRUTpbYhTXwTAIal2xu5ppkeAmyoO4wfHtzg4bBymrKXdTvs/HGwru+0evwZYD+wI/EW3jfieegD1gDCQOBEUKOtN3tPMcg4pF5zV3WFc8V+ffHeru+AwQZBQlIAWaj9W4xr/0Cq44BnV6P4n4UPAyxfE7UJUiuhJjI2Z5xKKUmBU/fheGTNizlMeCb6AFJBSbnK5AmcJ4XaYRDWEQj5pZRdzwiQa50sMY72eCzFvY/gcUDl6ZgJrgW8AL8fpdRyGR6VSoVarjdxwFPjQv7+Z9evXb/T5oYhSLNmOU7iKBw4Ti1KpREfH6Ly6xwpTVmgfLQxPawvuxjV+cxRhS6S0C0KoK/dUCbS1Ky20F01SoADpyE8uZtDBwaE9YVydzd4I5fesTLb7x0rY2RLaX6qCmq8F9poOKTCKDtDK1VCVQvMCdXsmUxhBlndALYg/99egu6jb6u8iwX3qQnS4m2e2lzjtTYT+EXsU+iiBHZQ3oRPYHYZDpVJh2223ZeXKlSM3dnB4iWD+/PmsWLFiQgV3J7TTSNAEeBRYCHQAA7qtSgIV4PkhoXZPlWoQM9DGemPgAQUPipOIGXRwcGhfZMUy77IZ/MtipvaYnxTqXoKcuASihNi6lQPAVrDmU2t1DiSfmxyeUfbztOeCsbT3AP1V2Kwrqeix208xBCLUJKbnHpoci1B8CdccDyXmaWw+5ymrTR0okZoiL83b5dAEtVqNlStX8uSTT7pSbQ4OxHXYa7WaE9rHAjPmLBqxjUlClxbcQ2AZqtRb2bRFETMvFMUQ+iFhVTOFD6+Cu1fCK+fDTvNji7u5aAsQWszZS5VheSngwotv5Oh3HNjqbjhMCJrEMm8xC1gJWwAHbAGLNptygvoGz/MwjC3rJg9ANYBHVivPhFdtHq/VBd1uMkorYn2oBUrL3FOEfm11z8oeP8VQDYWKqNwzNUs/kRdVd7wMdCIUJgEdHOv1PCAluOv9CmBLlPBeAbrJKGc7Zr1wmCqYNm2aE9odHFqIKSu0V4fWjdgmrX0OLIL/KHAEigcCqAKdoagQwUBnjA8FeXgV/OZp1ejBp+H9Hrx8cysVfYjIxMRLigg+inHR3VOxPiKUPPWwX+ruglMNO2z3slZ3wWEiYWKUbY7auEXv9zLYdmYG9z352e8Nnud2ORATz/7wavidWaufgg8AuyxIhhpMBorYkDVe74NAmUy7SkpoN0K6PQ8m/1RIoC7CkMCAxDXIjZ48D5Q8CDyVCb07J+TbnP6N5XouOu43LbjbRgkjtDuB3cHBwaH9MWWzxw8NrBmxTZQxPuUevw54gdg9HmAI7R4vongms0/Hk969MumOOEFxhKFmXvpDtb0YQp/A+jD+riJMwkzJDsNht1ds1+ouOEwUstyiIRba66l3Oy3cTWJs8DxPJGDTa3B6rb7LWqvFOqfd0UwZUxMo52BaGQas+Pas8m9TAKEIQyEMiaJtA3oz9G5AYFDi45VJMPSxXM/N4zbJdY2BwljazS/VrPZkfHZwcHBwaA9MWaF9NDBELO0evxzYDBUaqFP5UNX7hLehCOw2P3nR3eelGo5b9yOICFXNoPTrbSCEPiOwWwyNE9wdHKYAbMGtqgW0Whh/l273kkPaGi2w27xkk9312h0JspPoZmUpcOoh5PPQXYCBWlJIn4xjHAG+qHjsqqhtKFQ0cACVPHZQ07uqKMHUFxX7/lKBbZRIu8cvQxklyqQs7ZaN4aVzpxwcHBwmB6as0F7q6B2xTbMkdMuBbXUbDyW4V7EF9pghlG3nwG7d6v93L4Bt5sY/MEHUr6atCUOacRkwlgZjbQjVZiwO/vh2x2EC8ehjT7e6Cw4ThWZu0b4R2qeOZT2NDZnn0uw+bTsXZuvP714AC+cmPaLscycj6qLKvPXkYX01/n4qjdGCjxbE9b6G8oj7B/Bt4E7UK1ETdWvqul07YyzXcyOkm1A5w9+sRt2rlwFdaN7GOsfeOzg4ODi0D6as0N47Y8thj5vSMGn3eGNpX0R8c7ow7vHqT4KwCTBDKwi2mm0dYEJiCE0ce1UzJxUtvA+gN22BN8dr+vNUYdxe6vjTzXe2ugsOEwV7XbFhLOymDnm67RR41TdqnmetcV2dsFketpmj/rfdxYXJca/SfTT/1wUKOegpQKUWj38yjnEE2PQ7MII7cB/wJeAm4PPA3aYNSmBvd4X1WK7nvqQEd709ikpCVyK2tMOUTIXh4NAU5557Lp7nRVtvby+77bYbP/7xj/H98V0pHnvsMTzP49xzz42+O/bYY9lmm2026Do33XQTp5xyCmE4thmvTznllI3Of/XUU0/xqU99ite85jV0dXXheR6PPfbYmPbvpYwpK7SvWfnPYY8b7bMtuBsatQIltJsp20GKsFlCr0DMNJvY0gbX+PGjfiEpa4MozfldwH+jrA1VLKFdt2tRUnuHMcaHP3BEq7vQ1pBQkCBEfL0FMrkVVllu0bXU3j42iYdqY4PnedZ9ApWsLcqsrr9rcCGfBEgnJBQUHSpr9/h1YfK4IXBTqFa7rX8w++tSbf5IHM9tBPuwjd//sVzPDW9gC+6CEtqNJ6HxIrThrO0OLyX8/ve/Z8mSJfzhD39gr7324lOf+hRf+9rXJrwfX/7yl7nkkks26JybbrqJU089dcyF9k3BsmXLuPDCC5k5cyb77bdfq7sz5TAZcuWOC0IMAbfi2oE+lPvYYmKhvYQS2j3LapXQRpv6uFUfekvJBuPMCBqCbJiSALgXOEkfvwk4DdjLtBHwPUXMJ0NJYgeHjYGIqPeyHsQaOlCTPp9DSjm8/CTXWUYW1jC5Tx9/qXHfzSzRIiqUYFB/mbZAZ53b7rAF0LpAKQ+9ZeULLtJYo32yja8JhFgINboIgINQNM/gEDTd82L6F3pT2FqhYcrZ2lVxbEv7LrpdB1a+Hibva+DgsLHYfffdWbx4MQCHHHIIy5Yt44wzzmgquNfrdQqFwphXYlq0aOQy1ZMB+++/P6tWrQLgnHPO4brr0qpUh03BVKddTZG2stsEbTYwnfjmdJLURhsH+YhfMhb2IT/bt2wcKaCQZFwEuDrV5lpiK4NPHN83qS2ODg5NIKFAJVDv41AAg776vxKo/4d8GPIR895OFgjZce3Gwu6H2WvNS/E9bxbXXk9l2k9kmbcbtjGyyv6B0sQWctCl06cOaBdPO3v8ZBnjaGAenfXvLqhSbwAnADuTkbtmigx/OAjNy9muQBklQPE2Td3jJ6KjDg5thj333JP169ezevXqyI39Jz/5CZ///OdZsGAB5XKZdevWAXDxxRezzz770NXVxYwZM/i3f/s3nnjiicT1BgcH+fjHP87s2bPp6enhiCOO4Kmnnmr43Sz3+IGBAb7whS+waNEiyuUy8+fP56ijjmLVqlWccsopnHrqqQAUi8XIzd/+3RNPPJFtt92WUqnEtttuyze/+c0Gq/zdd9/NfvvtR0dHB1tssQVf//rXN0k2yOVesmLlhGDK3t3Z83ca9njaym609suIXccMOlEx7Q3x7EZ8r2nmqBZER5Jq6/Ejf2GKHxOUdcHGgcTu85FFXpyL/FTAOedd3uoutBUiC3tNC+lVvRnB3fxfCaAWIMEkewuy1pSG8JyMNpMcGzzPm90Do30drDe2nUzu8WkISiFRzCtvkhzQV228D1PE2p4lYJrPHso7zk4wm45/b1eM1XrerJzti6hytobHMV6EDfdzakwThxbg3kD4Zl24d4y1Y+N13TRWrFhBPp+np6cn+u6b3/wmDz/8MGeffTaXXHIJHR0dnHXWWRx11FHsvPPOXHTRRfzsZz/j/vvv54ADDqCvry8692Mf+xjnnHMOn/nMZ7j44ovZYYcdeO973ztiP2q1GgcffDA/+tGPOPbYY7nyyiv58Y9/zKxZs1i7di0f/vCH+dCHPgTArbfeypIlS1iyZAkAvu9z6KGHcs455/DpT3+aq6++mg9/+MN8/etf53Of+1z0G88//zxvfOMbef755znvvPM488wzueaaa/jFL37R0J9jjz12zL0LHDYcU9Y9vm9doybLwCSxSQvugrK0L0bxPEajUQYqlsCuLqIZBQ9lvQOr5FL0Q8n/xwFpgd1YG94GXKrbLMZKxoMuleNc5KcE3njAq1rdhfZCKEp4rYfJzXaPL2lbXM6DfIB0eJODGKU4a0G/1z6EefCCkAKQE1Frl6RPnLzYoHk+3HBNUeqBGszqVJ+z3OQnA9L0xQ9UPDvATE8rJiyt7mSM3R8GIY1OBIbG7QvcT6ywNgK772laL9KW7/xYrefNPAlXAHNR5WxB8TZJL8Lk3sFhQ3BvILy9Ds8C5wRwvgivyI942oi4L4D3+bAS+HkAlyDsNkbMaxAE+L5PX18fF154IRdffDGHH344XV1dUZt58+ZxySWXRGtGf38/J554Ih/84AcTAu5ee+3FDjvswM9//nNOOOEEHnroIX7729/yzW9+ky984QuAcsHv7+/nrLPOGrZf559/PkuWLOGyyy7jiCPiXBfvfOc7o89bbqkSbu+9994UCrE497vf/Y5bb72Vm2++mf333x+AAw88EIBTTz2VE088kc0224zvf//7DAwMcN1117HVVlsBcPDBB7P11ls39Cefz5PPj8HDdNgkTFlLe63S1/RYsyR0RmhfiNLWm61MzOupJHTRRwVTcqky8XWSDS+WFtx7UXHsmxFn0LVL5ATS/pl0HUbGwm22aHUX2gu+KDdxI6wby/o/V8Lv7lF7I9RHQa6t7vQoYa0rPio0ez3QR8j6co6+UHgxB4Ne7P0dCfiT3Oq+UfPcHrIZv1n0hnwigRYmmUCbIkBmbNUAipqkd5ahT9OlyaqUGAbNXLkH9H4v4J8k9RWRxb2NX/mxWs+H8yTcRrfxSIb+NbunDg6jxZWhEthBCdgH+TCvuunbQVpgB3X9q8bwBd5xxx0pFovMmjWLj3/84xxzzDENlua3ve1tCSXfkiVLWL9+Pccccwy+70fbVlttxY477sgtt9wCwB133EEYhhx99NGJ67373e8esV/XXXcd8+fPTwjso8U111zD1ltvzb777pvo3yGHHEK9Xuf222+PxrHPPvtEAjtAd3c3hx9+eMM1f/7zn497Vn2HkTFlLe3DQcgmaoOoBcFY2s0r2okqpeaJZn5Fx81i3HH1RK5alvYJ8jNLJOOxfvZFYCYwD1gC7INV9saytAci5JtYHCQI42A4Qd2UvDf5E3g5TEmICIShFdCphfKHV8HvnlGNHngKPujBLgvi4yLEb3s7Q73d9VAYRHn/1DzwPUHm5gBlaa/rrQsoT3JhfcwgxMJtLzCQqvRh2rQ5mtagB0V/inoe95ZUlvwspcQkGOdoYMeym61ff/dK4AfAOpRl2ScW2H1PfZ6qNiPRXoFZnoQriMvZCsO4xzNlponDBOKtOWUJfxaYD5xfYMwt7ZsDbxlDFvSSSy5hyy23pLe3l6233pqOjo6GNptvvnni/9WrVwNw0EEHZV5z5syZADz7rFJhzJs3L3E8/X8W1qxZwxZbbJwSb/Xq1Tz++OMUi8Wm1zb922WXXRqOj6Z/Dq3BlBXaO7tnNz1m5FDbdSxAEbRpwCxiFwRjaR8CogR0+lgkj9cCTf3C5EG78TjBtiRALLivRdVifQXwNVLu8QzPvEgoceZtY40EHSvpIaU8FHJ4zre+5bj3vkfY7RXbtbob7YH0y2AE93tWJtvd+SzsvHmyDFabwwhroSgme1Dv64Dvh4SdZTwRCsRlrXKod7vQ/sMbERs8z20h3YzfrGPTyjAYJqU9mFwCbZYyJghiob27BAP1lLeB3k+C+T4SEsKl9ZgHgG5UItkFKGv7bKyyb54avi/xrWonjMV6bieeS3sSrgD2J2mQWKc/J/iaNrw3Du2P3fIelyBcFSrBeqxc2F9bgEu9sb8uwC677BJlj2+GdCjN7NlKvjj33HN5+ctf3tC+t7cXiIX9VatWsXDhwui4ya4+HObMmcP9998/YrsszJ49m2233ZYLL7ww87hJeLf55ptn9mU0/XNoDaasybTcOaPpMSO0ZrmOmaILaUt7woVMkrweFWBGPo5px27MuDGCESOf8XPrgBnAjih9wv2kYvuI67o3XLMaQMXKuG1cjIdMUq861PzI28ChdXjokSdGbvRSQpYlcrf5yTavTP0/iVAVoYoK16milImDQcjgzA4GPWHIHBflHRTFq07yV3XD5nl6DugPpiTezI44D4k5PpkE2oQgbv3jB1DSJL2nAH06qKuhRrtM+nCJdCy7bWk38do7Aw+SLOlqaJ+Ja283jMV6boT1hOCOYlOeIQ7/g9jSbs7L2js4bAh2y3ucXPTGVLAez+tuDPbdd196e3tZtmwZr371qxu2HXbYAVCx5rlcrkF4vuCCC0b8jUMOOYSVK1dyxRVXNG1TLpcBGBoaSnz/pje9iSeffJKenp7M/s2ZMweA17zmNdx+++08+eST0bkDAwPD/qZDazFlLe3rnl+e+f1wrmPLiV3HbKG9hCW0p1T8AorqzS+rOu22NG9n7B0H2HxY2mD4AnHZur2BvwK7E1vajYu8MkYKOaNJNJm3q4FSQvhhbKHKeSpmspgDz4NcqOpdt2FCn5cKjn7Hga3uQnsh/e4BbDMHeEa50bxlASzcbMLCV8YSEqq1qi7KRb4OVAVqgfB8V5l1g/0UQ2EXUQt7AZ2/I5RJr53d4HmeJXmYcm89ZZWILmutbneku2n331jaPQ968mqMWMfNfpIMdTiknSQMBlBKdoCXA5db7SJLO3G99nZzkR+L9Tyr1FsAPI4KmZmD4gtC4kR0zQT2dk3Y5+DQSkybNo3TTz+dT3ziEzz33HMcdthhTJ8+naeffpqbb76Z17/+9bz3ve+NMsV/5StfIQxD9txzT6677jr++Mc/jvgb73vf+/jf//1f3vOe93DSSSex995709fXx7XXXssJJ5zAjjvuyM477wzA//zP/3DYYYeRz+d59atfzTHHHMMvf/lLDjzwQD772c+y2267UavVWL58OZdffjmXXnopXV1d/Nd//Rc/+clPOOSQQzjllFMol8ucfvrpdHZ2NvTnQx/6EOedd96o4tovuugiAO68804Arr76aubOncvcuXM54IADNuRWO6QwZYX2ZhjOdWw58BqUsG5ivuxkLTHfI3oPxmnem15Wgi52Q/Or4ye0RwI7SSbmRZSbP6gx/RD4GFbpNy2w13U23RwggcRJumpWIi/bPd5oBnTmbQqeS0Hv0B7IEtRsTdZu82DbubpN+h0dGYGuOiGi5KI8xMqu8YZYggdWfC7CujDk4vkFtq93cFUIJwTCbihh3Rd1Cya70L7ByBLCjSdUVw5W1uJ2CQlQ2l9QaRbXXhG1HkMstDeMj5jotfEQR0JCd07sbdaP0s2BsrSfgdKpl0i9N1M4rt0u6Wo8DASVZHcRMX/jAR1YSXYtTAG9joPDuOJjH/sYW221Faeffjq//e1v8X2fLbbYgv3224/dd989avezn/2Mnp4evvvd71Kr1XjjG9/Ib3/7W173utcNe/1isch1113Hqaeeytlnn82pp57K7Nmzee1rX8usWYq7f+tb38rHP/5xfvKTn/C1r31NGSVFKBaLXHvttfz3f/83Z599NitWrKC7u5tFixbxlre8hVKpBCgX/BtvvJFPf/rTfOADH2D27Nn8x3/8B77v87WvfS3RnyAICILRFcz8t3/7t8T/H//4xwE44IADuOmmm0Z1DYdsvOSE9mauY1XgaZKWdsMIdKLcUhFLYDebSdPcU4S1VvGUFEM1XoxguuyNIdT9KPf4PLArKsnewyjrQ5SQzosT0xU9faHA2qpagH94Ndy7UrkV7zRfCeyFXNxuKnI+DpMTQqNQYwR34x5tt7X3TRCIUNHvic45Tk5P+5InlL2JEd5NqcpISae9ZFYWA6qFAl2BMJCHW0NhV0l537yUuHB7rPZcqAeK4nXnoVrPaDNJrNDNvANqqDrtHiqmfX2qnT2+yTDOYWDPbTs8rB8V0w6qcspM4CFgD1Jx7bRvXPumwKwRaR7HGCW2Ja6KA0poH0qcTxTPPsmniIPDsDj22GM59thjh22zzTbbDBtG8+Y3v5k3v/nNw16jq6uLn/70p/z0pz9NfJ++7rnnnttwbk9PD6effjqnn3565rXz+TxnnnkmZ555ZsOxjo4OTjnlFE455ZRh+7fHHnvwl7/8peH7U089taF/WX3MQjuGHk0VTFkDzGZb7Jb5fUIDbX1egXIdm0uje3yZuJQMaB7IuMbXArWfVgDbbWQCGEFpsq3Tx2egxlFAucjfDlF9+igZHXHiqihxl9kCUQL7756GBwP4zdMqE3e6jUPL8P0fjxwb9dJB2gKpPxgLaz3MfheHITB1EfpDGAihT6A/VFuf/n9AVFK4YCKIlBmeqVyhv14wGLCu6BOEQncAr/VScuv492zcsdHzXKwP9UAt5t15lZcjywrd7oJ7ltAdzXNiob1XWVKoBykJ14xv+EGGIgTSvrHv6dtg9gOomHYjmO5IXPotEdcu7RnXvqnrudDoHm++X46KZzf8DajXoZI6P2vv4ODg4NB6TFmhfc2qhzK/z7KyG4K2mNh1zL4xZVSWZlXyLcXjmTjJrrwq/dbM7XYcqF9CWLf6tU73uYQaTx7lIr+EpMIiim3XRD7pb687fG8q8/bdK+PjmvlrN8bnpYT3vftNre5CeyHMeP+qWplWC5LHRpi3xsI+qLeBEPpFCez9ohKQD4RqX5FxFgDSspb1e131kC4/z+ZrhjheQhbnYqldJH3i5MQGzfNm7uN+CGUPOorNrdD24j5ZYD/fknZ76tD7/nqqHU2T7YkItVDoD4UBo6ASGAgFv83WeKHRy0yILe2GjtvJ6Owa7TYf0E7Y1PU8PU7bRX4FcRI62yBhZkiDwN5uN8fBwcHhJY4pK7QHfqXhu5FcxwxBy6E8wO3s8SbLuvpOIj5Jqr4yZZdzMGTVabf345SROEoKTJJxWUscz27KPu0BrAKeIJmMzrjK143kj70Hdk3Va7QzcTuq3nLMnTOj1V1oH2RZHwVVCQEsoT0t2GfP46qoV7pqCe79obKuD4S67Jq1pSsxjDmkcWkBIICws8CWVdgmNGuTTCnme4PmebOB10RZoruLScWj3X4y3KvEWq2/M6GGRmjHU65j/bW4rU2HUjQpFFHzW8/xF7UnyYuWZ8lQ2D4K2gYBU+/t7PEesAvJyik2/Tf/txM2dT0PJeZpbMH9KX18C5JMXwdWhQmNzDXGYdwhopRj1VAYCtXeF1FekA4ODg5MYaE9Cw0aaIvvMeXeciQt7SZZyyBEjHBM1ARqIdIBlAq6EY3WGxgXCiipzTAg64iFdmNp7wD2RFnbjbIiEtixXOTtvoqoxF2b6f/fvQAWzU0yfJPRMuXQ1ghEqItiXGzmZYMEBlsgN8K6SRRpH49e1UYhJkCXVpNYcP8b8DXUvqK/r6GUXiPnVN0USNTPhFCuF7FKqaiaaXfopA7uJfiCZilwfIF8Drr0vRry4+P2QtrWC1rGGg1xvgaTiM7zoLcA/X6yfVpRgZofQxlKqT7tSTIgcRhIpQ1uzXClTgeJ3ePzwMv0fgVJ93j781SCSa4bCe56vwJllMjrzYT/lbHYFporQxzGF75Wmq3XyrI+gfVaaTYoKkzLwcHBYcoK7d3TGmsxR8KqJN3G6igL9HBCeyW1aEYMsR9CpwcdhdjHfILWV2MsgiQD8wIqg67xFDCEel/gNuKxm8RagYAfKi+ETPficqfihLaZM2FeBA6jw61L7m11F8YMoq0MkaUvtJiYEIZkhNjx9Nw1eyO014P0GU3N0CZRlWHwfYG7gc8DfwY+B9yFEtZNqEkI42oVsfUQojls8dWYqsUcfhHwA6udxHrDSf6abtI8N2Ovh5DPx9UuBuqNwu9ksLZnSVRmbhdylotYSQnthlDYY7XOrYh6t4b0OzagresDlgA/FMYeJa12lU8Ll3Z3XiRORGfo3suBB4gV28nqC+2FTV3PI48CS3APicvZeqnNtrRPFYE91BbrukwOa3VdJH7njOBuKc369LGq47UcHF7ymLJCez5favhuuPqlRWBzYg295yXjvjy0TGCooLG61wQKhTiG0GST38DEPxuDtFu82dahsuZC7B6fA14NPAmsRAvrJJPR+QkLuvW57seZ+KZgJuLJjL6+wZEbTQKIjh/vl9hFt09/Xm9ia2UUSd9sLt7sK1ql5duWdkmek3GZKFO7ZoDTlVWvJl5P0nLRuMByeY++qgeIB0HOI8znkHqY8AiyBZzJjA2a54k5YH1XEyjrdboXGKoRuyXYbdv8jmX1zwjtdhWD6WXoT8351FgDEWqiPEaM58igqOV+APXOVaxjNYlJXCuRHorpUoWke3wO2Ik4rt0W2M3ndhLoNmU9D/V7H48rXpseI5mEzswSwyWZWdJErzMpIFpQHxQl6JoQD1vobTevo1DTvSGJFWRppZkdhtVqhZmDg0NrMWWF9vVrn2j4LitBCygt9PZYArt1jtFGI7o0isTx7ADUBCnm41jCms0kpfZjCOMma4gzxNb2tSih3WjT86iw+15U+TeTkM6ObfdDtY/GFm0ClXr8Oc3cOhrSUhx2yGta3YUxQU0zLibhW9pFd1BvxuI3KuYrekctoX2UiSKz8pIdkjrF/D8huiuxrOt6DALgB4Ta2zvM58EPM/UWbS+IjoANnudZ464LlDTJ6y6oCWW3Sa9v7Qi7b/ZcroUWNdca566izpJP4/0QNfaaxOEddXQoCHAn8N96X8WiE7Q+6/pwCqk+Yvd4I5y+nDiDvC2wmyzy7RTXvinruRDT8Ehw198vQwntEFdo9VD5eiDOIJ9ey9r5VbARKX0tK7XZ1mt60q/pSzsJ7kZZZrZBifvar2mgfbzaPl13cHBoAaas0J6G6BhV2z3ebOkkdHkvqY3uRGWOryBJYiYgtVAJ7DndupLhcDdORMJmXGzP4BeJhXZQXTMa9n1ozCIfYJgydY8a+muU/9U0k2v3xMFh4xCKJCx9VVHylCmpNqAFept5yXRrTUir1ncVUe4y1YxjkPl+ZjGvuwDv0v+fqv+fSP2V3ZdIbK+FSF6x4X4unzCDiu6Y2Ce/FNBM4qiHKhEdQKkEA1Y1gYl8kGMFe/31A61dJnYT68nDi9r52VZIaGLhh2H0vhkrehUVBnIycBNwEnAvScu0oZ+tRPpdMMLpAHH2eFAC6vaoYgHPkl3udarEtWd5EYbAcyiDwzbERgnbixDUc5+sAjuouVuR2DIdVT8I48/GYj3uCUNHCcOTmkTAkeIa+DvwDb037+ZEhGA5ODi0N6as0O55yaEJ2e7xAjxCHM9uW9ttwg/KIgFJuUDqoYpnB+VrVrHKvqUTto0hjHxiC+7mJ9aiarRDXKe9oMexN/AwKu49FtbjTPIJBsbEA5iBV0ZfPshhYlCt1kZu1OYwzLNhXCqimEybcTECfZ3YQtaAxMtgNaiFMD2fLEgM2eb01OVIHTaZMrbLaGPvxxy2dV1/EAF8UcI6UC/k4xruemzpWzFZsUHzPGvAgnInKujVfFoRBoNGYb3JXGgbZCmlQCkkjK+zIVw9eahkZ4+XUOlgjUBgtjpwbeonryGl1xi70UTxx9VQqITKvXm48BfjYWbpHiIFgnm97UR0edRtWUzSRT6dlK5dsCnreZq/MZ8fBRagBHQTLmemiHbSabC0pz+3M0xpzii8w87HILG12s7LMGyI1QTB9vqwq/ncg1KW/Qn4DHCXxZu1m2eIg4PDxGLKCu2bbbFb4v8sYmbXLzVJWtICu9l3obXRhmeKmCVBTJxkFxm1oEmdMDZIC+s2U/UCSfd4j1hon41iYO4gJhYBKp69HqqkKGL325aOhvzs8bSe/iUQaCZwQNcc7tcZyNuBUI8FDJPbHwqnn/l/DOjxTVYNfDqbs4+y9p2EsvZ9Xv+fzvzc4ObYTFirBdBRjs3zo1A0GcYo/Rqb1A6VjGPjevebrSN+SKgF0Vo5D2G2smGy4wc/+b8NPykt4PohFDXJ6ywl17NE+za+a83mQT2MQ7QM0eouwIspehRZ2aXBNd5UEdmMJA5J/exY3B07/jiKPdaf14eqvJxZzyQQpBYgQz5UfGQoQKoBhEnPt34zbOLbYBTxu6CS0WUlomu1u7+NjZrnGllehILib7Yl5gWMU6CZJgXUPMh6xu1xV4aHmce2q/kQjZU+6sRzPVPp2wKY8EYhnpvXpdpcRdKjxMHB4aWLKSu0r346mYW1Wf3SJ1HEawGxFjpvEbWI/xGJvMNthknqQexyWS7ELuSk2o4xkTALeNpAVEMpFxIx7Z7eiF3kbye+ByZW0Wh7lYFdd7iimb4eoOoTm+9ozkC2ECb7uElAsz60kpq1aTKa0cLOrr5ej+d9Hzs6Mb7aJPR8SCueQhqtfVeTZG6GHWX6nav6MKOcfWwYKSSrMoOJFKlntB9vJGRK808AgRbWaqU82HJo1H6MJK0W4oSPv2vkRhEynjEo5U1Rr+idOZU9HpKxRVpj2dZrRJaioS4qM75JROd50FuONc0JK7s0WNiNlb0O3AIcpNueSBwGkt42BTWJ448HwjhjtnFnVt8Lfi1QHl5Dvt4CpOLrrQ7VILK+DxArpyMBlTgZnYlrNzyAEd7byXq5YfM8hog0uP7blnYT/meXe7MNEkNMsBJyjOBbiRSjuYzKxXAiqtLH/yOu9GGq5bSDd0Wz+/3aVLvDmHyKlMmEJUuWcPTRR7NgwQJKpRKzZ8/m4IMP5rzzziMIWjtTHnvsMU455RQeffTRcbn+kiVL2Hvvvenu7sbzPO65554xu/a6des45ZRTuOuuu8bsms1w7LHHss0222zUuf/7v//Lm9/8ZrbYYgu6u7vZZZddOP3006nV2tOLdcoK7SJJMmxb6QxxE1Q8+2JiV7qsZHQAZRHlQhZlcNb7mo8Y602xEGeqHkfXeAMjvNjbOn1sOo2W9gLqge+LilPsJxbWg1BtRoCPMKQZ2+6C8i+z0WaJm6qhstyYesP91t7OQD7qRGZtBDu7uonR6wuhVixFArtxB5xspWFsGdT0PJ307VCGZyolytKGtVmKp27tCOqPLi9Ds98a0vtWuJNm3ScJoa49fQLy0curZE/LEjm5pkQDyuXGaiBZkIYbZB2sWkJ7dx4GLKI8CiVOW8L0tSaq3JsNM+eN4lVrveqilHuV0BJ4UAK7sfL9h95vTeMSv6m3py5xXXgTf2yXvBoIdQ6LekilEiDVUI2hEsCgD5WAsKb9+2sBnk6+2E8cFmYnYTVC+0pU6FhUFo0kT9AOGO08T6PBi9Caxo+heBzb88BGB1boX3rfxu+CWLlQEoI7jUpfY60OrXvUDsiiM9voz68Avq33WWTNYdPxgx/8gNe+9rW88MILnHbaadxwww384he/YPvtt+f444/nyiuvbGn/HnvsMU499dRxE9o/9KEP4fs+V1xxBUuWLGH77bcfs2uvW7eOU089dUKE9k3B1772NebPn88ZZ5zBlVdeybve9S6+/OUvc8wxx7S6a5kotLoDEwGT8CNN2EJUVlVD0IxV2naN99QFKNLoEisAlQCZrc8o5xUjkUX5xnihtRdx2wK5DmUUN8xKFKfvQV7UA18AbAn8AzgQ201elLUlFEqAJ6KslJ1AqZhk/toMJq7NJJsxBFwJL1DyNCOjyxgXvck1+X3iesqDYWwZA5UkseTFzGcOKIiQ99LsWXvCFgrM/uUoi8NtqLj2XVLHRWjkPqMDKVR8Fd8LKr7dpEzOEuyG6ZMQW9ob3Em9ppcaG2hurWH98aGuY9prxRxU4jmfYPDa75UdX2TNg7rlHt+Vh2o9bpcud9lsfrUamZobkkn2QGtq9VjXV6FHCYOhCDXi0m2RuzBqbv8WJbAXUBbYQcZ2ntuClh1nXEetXQWBsofSINcCvHpIsR5SqoVK4SYQaoImhZw6wQPP8+gv5OJcfCTj2qcBW6Cs7XOwBHZPPXpfYn3OZETk9m8L7qhs+s+h3OMNP5DzAEmWfRtKXW8yLBs+jdUPzFzeItXWVvrGDpOC12IamaUMM8/izcR0zz7ezs9kMuGWW27hM5/5DJ/85Cf54Q9/mDh25JFH8pnPfIaBgYEmZ09eBIHyTsrlcjz00EN88Ytf5I1vfGOru9Uy3HXXXcydOzf6/w1veAMiwle/+lUeffRRFi5cOMzZE48pa2mfNvNl0Wcj2Nru8YbpNZb2nLUZwd1ez7v1eUiSH5R6GJcR6ky5xycy1o3p8DJdd0HFs8/Qn6Ps8WhLuxd7EewL/BU7llgUExNKRPwBbaXMQZcukRRRPovZbQMqYhPvihZsB0S5jQ/q/21hviqWVa7NYTO6JtOzqev65xuWqIy5oU7Upu9Du2TIHQ2kyTYLxWyPmnFJcEDWP76vhDRIlmTMapvqU/o9iwopZPRlXG+5pYBKzNsK1AoFuoFqLh/VfGpgBifJXG+Gq69bMvrGzeZBECjtlueptXp9mGzf4CbfprClaIO6xDXoISZeM9BhABJZ2ZVlUqhpS7sRdC5FxbPvqy/Rzdi7Tdux5KYvFVSyyW8Sxx/XfCHwQ/xaiF8NlJdEJVAu8pUAqYVIPUT8EOohnh8yiFovDHKeRcuBnclIRiftFde+QfPcghHW04L7ClQem2k0KvINSiQt7ZNBODQ0sVmIx02AYcO/ibZWS3JsrR6fTetsOpPlzTUZnslkw2mnncasWbP4zne+k3l80aJF7LrrrtH/f/vb3zjooIPo6emhu7ubAw88kL/97W+Jc17/+tfz+te/vuFa22yzDccee2z0/7nnnovnedx+++0cc8wxTJs2jQULFvCf//mfVCrqyd9000284Q1vAODggw/G8zw8z+Omm26KrnP22Wez22670dHRwZw5c/jQhz7ECy+8kPhtz/P44he/yH//93+z7bbbUiqV+NGPfkQ+nycMQ77+9a/jeV7kXv73v/+dd77znWy55ZZ0dnayww47cPLJJzM0lFbtwSWXXMJrX/taenp6mDZtGnvttReXX345jz32GNtuuy0AH/nIR6K+n3vuuZn3w+7rKaecEv2/bNky3v/+97PtttvS2dnJwoULOf7441m7dm3DuRsLW2A32HPPPQF4+umnx+x3xgpTVmgPgtj10SZmkeCuvzeZ421Xuqyb0qGZC6WkVkunAPg+YoT2ckFZ8rLUp2PMEKRd441QsQ4l7BjkNNNiBHYzxtegGKQqjdl0VaIW3d9KCKUCdBYz4vVT+xYhFKEuybi2Kor43Yki2v8gGfNWk/aIaxsNbDdOo3AYQo3p8p5uVRaG5Ph9JldpGKHRgDiEshRFx0keT4wufQH7vasFynyXQ33Oeiftj6lM7fa+mXv8OL3mdqcahoWA1IQgn6cTGMh5IEHqtEYhfjKit7drdA3TA7VvmG+7xxe1pCITEso0Zmi25tal0dLuedBdhn4VMxGIUEW5xtdF6XeMW/wa4PfAccQeSGXixIuRXsPsN/I+hcSJwEwo1l3E8cefB+4SwQ9DAl8lzAsCUcrxWgAPrSK8aCnyyColsAeiKiaEIX2hkJ4lNl3fGbiPeHlotzJ2sAHzPAW13icT7QnKKLGNbmM87nIkDRImyS5MsCJyE2DoYMI1HjW3btT7jwLzUF5bkt7aYGDNInkMjRkk+3g7zNPhICvWIxcuR1asb9vrBkHAn//8Zw455BA6OjpGbL906VIOOOAA1q5dy7nnnsuvfvUr1q9fzwEHHMC999474vnN8P73v59FixZx8cUXc/zxx3PmmWfy7W9/G4A99tiDM888E4Af/vCHLFmyhCVLlrDHHnsA8IUvfIFPfOITHHTQQVx++eWcfvrpXHPNNRx22GENsfjnnnsuV111Fd/97ne56qqreO9738utt94KKBf5JUuWcMkllwDwxBNPsPvuu3PWWWdxzTXX8OlPf5pf/OIXfPCDH0xc80c/+hHveMc72GyzzTjvvPP4/e9/z9vf/nYee+wxNt98cy6++GIATjrppKjvb3nLWzbo/jzzzDNstdVW/OAHP+Daa6/lK1/5CjfeeCNvfvObRzz39a9//UbHud98883kcrkxDRcYK0wmD+ENwsD6ldHnMEWcA1GE/lkUAdvK88jlvISVHay96Gpukq7TLogfIGUttJfy0F+zGjBu1CGtnTXfvUgcz26PIYcS3AuiHvo2KKvKXcDrUPysHwoBEpUWKQl4Rmgv53U5u4yxtZgChsQJZowFp4YqnfJl3ebPwBnAa/TYAu0uX5gELpFCPD7DlN2Dyq7O3rtyB3A6sLeA78V1XwNvcmjlmjGKxsoXpo6JaBfZphdKcUODot7NDqAexAdGmLZZhw1DlU5ENyFMrighPDm8gHquQBfgl4F1Qbw2JfrUBlzqJuB1r9lt9I2bccP1QLmMe8Tx3tVQlYFr8BwS2tI/vlmFBNv1P+fF4+kpQZ9SVNXECOyqzFotjHOa/B/wSpSAk0etMd2MvbXPDuUy2zWpNtcJ7BOoZIASCmEgSCB4y5+DC55BPJB/Pol8MIdsPy+Sviuh0JPzErlcbEX1y1E0YAhFzxNZ5D31OU9rsUHzXMMk4ksL7oJKQmfK2aYT0BmUaVINQ4jCIdoJiRAPGkM8zgc+gkrG22ed1yC4T2ivG9HsfRqy9pnKsjZ8JgayYj186x5YW4Prn0b+6xWwTe+mX/ixPvjefbBOX/fk3fG2nTbyeU3w/PPPMzQ0xNZbbz2q9l/72tcol8vceOONzJgxA1DW72222YZTTz01ElA3FO9973s59dRTATjooIO44447+N3vfsepp57KtGnT2HnnnQHYaaed2GeffaLzHnvsMU4//XS++tWv8pWvfCX6fvvtt+d1r3sdV1xxBW9729ui70WE6667js7Ozui72bNnA7Dlllsmrn3UUUclznvta1/LtGnT+Pd//3fOPPNMZs+ezfr16zn55JN5+9vfnhj7oYceGn1+5StfCcDChQsT198Q7L///uy///7R//vuuy+LFy9mv/324+67745+Iwv5fJ5CYcNF3KVLl3LGGWdw3HHHMW/evI3q93hiygrtNiIreyhQDwnrIV4gPCWwk6e82wv5PLliTgnvnhLUIV4fOxG1mOrVPuILqxIzS+UcPG8yQUmKOsiYxlBFjE/qZ14gzhxvBDbjJlgQrWkXdWxvYAnK6h6ghVlRrpMV1OQoD+kkXh15eGEoHpt1L8Z6bBuKujTW3Q2AP6TaXQXsRVwTvO5BqQ3i2kaC/XzN804zulcDryJWSJh41XaP0xzOqm0EhgpK3k6HgiSYnawvI28RlBdMGeUJk/mD8YkNzJ11TcMEVlNtG/oz5pDU9fX/1ZDaDJjmQbUExn/E9Du5b/+5PibIeKaAemhFLbQb76jBeizARxxyq9n5USCtmPAD6ChYWlr9oacEg75a11G3QCWiUwJ8DXgalbjrh8QCLsQx7fbPbOpcz6JZh6CUqgYHY+ZsXH5UQoG7lSJecvr3H1iNbLdZpMwaDEJ6dBy/uQ0ml0sOpaSeBTwM7EEqrp32jmtX9exj2paudGNC/gyvY+7to6hwB886xxbcPbRBwvqtiVnPNh5pr7p0iMcclCFiFXFOhmFpRwth98d8Hkrtx+rdmxD8/TklsIPaf+XOsf+NtTX4x3OwCUL7huKWW27hrW99aySwA0ybNo0jjjiCK664YqOvm7Y8v+IVr+CGG24Y8bzrr7+eMAw55phj8P04dfTee+9Nb28vt9xyS0Jof9Ob3pQQ2IfD+vXr+eY3v8lFF13Ek08+Sb0emygeeeQRZs+ezV//+lf6+/v56Ec/OqprbixqtRrf/e53+dWvfsXjjz8ehQ4APPTQQ8MK7TfeeOMG/96zzz7LkUceyaJFi/je9763UX0eb0xZoT1fUC4vIqLitOshUg0IA8HzBfGFf4RC1YPlnsfLi0Ih9MhRIFfKKfcxiYlbmbi2pym5JCihPSzpUjvlnLJGp7EBlmgjxAzHXBvNekKY0/u1wI66nSHUkcVBC+5FFAO3L9paC7xNhFdpAhjF9gO5ekixo6BKJA1ZY2vGGE8wTJJB293SWBl6Um0PsdoZS3votd66MhLsUFuzN4xufs06gtkzOIiYofNFWY4UAyfkJoGgljWLjGA8hPIesdtlzrr0l7bEXS4o9+F6RgWEjHPTeilzuJbaTwRD1WBdF/t3AobKivFelwdqIYnwHeI1ZTLjuefXMXfOjJEbDjfUGlaGdU9pggZqMEczM5PCTT69GOgP9QB6U5nHPVQuklWD1DyljFVlPUWvg0Igwnmex0HAy1DzyJzaQTIRnW3t21gLrB3WZT7vDLwaFe5zCvDy0KJvYoX57DQXHlqlBPocyM5zIICwKHgiDIgS2GxLu/Gey+lL7Iiq1/5KUnHtmia0WrGVNc/rOn67KnF5OpNQriDKW8yMIxLcIVLILCSm6XY8u9l3MHnc4wPrXiTC3YhDPL6BGqeh/0Mo/i09f1s9thBLoUrcn0Frn/U8Wt3vYbHnXLj+aSVYzyzBWFrav39ffN1XN8Yhbwhmz55NZ2cnjz/++Kjav/DCC2y++eYN38+fP3+T4qtnzZqV+L9cLlOtVpu0jrF69WoAFi9enHl8zZo1if+z+t4MH/zgB7nhhhv42te+xu677053dzd/+9vf+MQnPhEJzeb6W2655aivuzE46aST+NGPfsRXvvIV9t13X3p7e3nqqad4xzvekRDgxwJr1qzh4IMPRkS49tpr6e0dg3k7DpiyQvvseTso17p6iNQCglpI6AtSCwmDkOV1uC8UxIP/yXt8MRD2IEchH5ArqGRFNnHr1NrciCE2i62Pcr0F6Mhp91uNJjGzaZiYbB+1kHtAToQCSvOfxUQkhHbr2utI1miPmBeLwOdFCapGBL8FuAP4nxBeKUIuFGWN9yDnB+Q6iuQ7clBrlm1Zby3gdYyFxAjrdnWA1Sjr850oN/mdICHg17Ureb51PNoGwZ5CuwBHA9f//hrC/3g3O5MS2A2DNwlc5BMMiTVIE087uvJqqXlp9kZIL+eVG3TdCD3Dv5vNmFaT7Kol7qSStrYDtYBKXgkrz+aJlIZi2hsBv605vZFx/gXX8F+ffPfoT0hMFv2PvVYD9OZgKEi2T8+fNsKoy9lBvPD35vFXVFXOC6AWCHWdtDIQlU3978A5KJpQIM71YRLRZf3kxtwdo2w21naIBSnt68AWxAJVlLfB/N786QiroAxy1Jaw5VxFj0M1zysidItEAduG7uUk6SJ/OzGNMIrbSOj1WkLGIqTneV2EwVAlHq1K7ALv6XEV0N4ExOMxgvvjKGF1MywlvEemQcJOrGnQjgKiyVdjQuCMa3yAqnzwKpQSKA9RfoN+GpW+7RIXnvVeNbW0jzd9GQN4205DTt5dWcJfPXeTXNgT2HnmmF63UCjw+te/nuuvv55qtUq5XB62/axZs1i5cmXD9ytXrmTmzJnR/x0dHaxf3xhzn04Ot6kwru3XXXdd4vfTxw1Gq4isVCpcdtllnHLKKXz605+Ovr/vvvsS7ebMmQOoRG277LILG4qOjo6GOuhpRQPABRdcwL//+7/zpS99Kfquv79/g39vJKxfv55DDz2UNWvW8Je//IUttkjXn2gftDs/v9FY/fS9qlzZkE9Q1Zlmqz5SD6AasqTiU6r6dFcDwkrALdWAXD0kV1dlZtLa6LLAYMqCZTgPMW6JZQ9qfrb61E5daqEuqra4qSW+PoQXQ1WDe0BUOG6QspQJjS6GpsWLKKHd9D0R26eJu0lKFzmPiIAINxIndamiXCeHKgFD3XnCzgwG1x5bixBl/5X4s48i1A8DHwPmowigiX2PNknVpG9jJARb/XlzoPs/3s2LqBrEtuLCjLHeukczKgwnDNiW9qzXqGFozYQZMDEwcTLFYe5LVp/M5z4UA1gbpv24wPqRREhBxYcc5D2Pes4jDMJM4X6yC+4bJLCnYWuDjNDueVAuwUBGGct2v09Z620t1Jnx9f+aSZOeAtWqTxWJy2KJKuvpI5wrcBRK6VNCCc9xSNjYWvvS9Mr2IDLsWh8W+QxjQV+EqOSozC0jW89GUDHvorUAAyL0SqPC2sS1eyih/X5Stdppn3rt9jwPRBgKFQ9g6toPhIpX6A/jzwO6jT0eUK7xdn32Zu7xHTS6xzdhV1oKXyRZj90I7igFxQ3AsSQTCpdRvEA074ajHxOMZrQvS2hv2NrYe8rbdhrevy0aO4F9nK77hS98gTVr1vD5z38+8/iKFStYunQpAAcccAB//OMf6euLsyT09fVxxRVXJLLFb7311jz88MMJgfSWW25JnLchMMqEdOb2gw8+mFwuxxNPPMGrX/3qhs1kbt9QVKtVgiCgWCwmvjdZ3w323Xdfenp6OPvssze476Du0/3335/47qqrrmpoNzg42NCXX/7yl8OOYUMxODjIW97yFlasWMF1113X1HuhXTBlLe0ADAUIARII4oeENVUiRvyQ19WFR55/nu2erLHiZWXesGAeucDD8z1VIzbMYWztnkiSsJmFv66TPhVzSkNfyivqaaOJ+y0oIjSoCa6JyzKMTN6DokCHB5KDLmI358xFXF/zOZpY2lEMWUFft4SqA3qTPs8TlcisFqrPEYH3A/JdefIdRToG4rr10djSHZhg1EnGsRvG5R5UPfrNgH1Qsfuvw2LQJE7aFkh71zRvRtwHUWVtZqLK972TpELCJKNrtcvnSMhy/4dYMB5V2SlbMLNhwlU8T1nb6xlcWwaHmuW6aMIuZpEU2scdGUuIGCncD1if99jKg6G8p8qa6UOS2LcvkzfmsOeCGXagPxQtPXV3UQntpk2blbHMROMkUAiCeGyRVObh9xSp9SsFrK89uup6/fs78AzwVRQjUEQnYtWCbxdKGWj/7KZa++xEdDbZWKv3L5rvG0LABGq+ar+6hkgIoYeIos9o4bWb5C2w3ePzqBCAIkqg3RGLHljW9nZJTmqy+5sSn0Oh+t8I5QWU15zxnit4yQR/j6Lqs0dCu9fcPd4oTUZcZ1sEsQT2uuGXJLaynwu8CeWpUSLu93S0IihrE1rqVmHPf3s/SJxnIH3/2+V5TAXsv//+fO973+Mzn/kMDz74IMceeywve9nLWLt2LTfeeCPnnHMOv/3tb9l111358pe/zJVXXsmBBx7IiSeeiOd5nHbaaQwODiYSwb373e/m7LPP5rjjjuPYY49lxYoVfO9732P69Okb1cftt9+eQqHAL37xC2bNmkW5XGaHHXZg0aJFnHjiiXzyk5/koYce4oADDqCjo4Mnn3yS66+/ng9/+MNRubgNwfTp09lnn334n//5HzbffHPmzJnDL37xi4bSZ729vXz729/mU5/6FEcddRTHHHMMvb293HPPPXR0dPCpT32KefPmMXv2bC644AJ23XVXuru72XbbbZk9ezbvfve7Oe644/iv//ov3vrWt3Lvvfc2KAZAxeKfd955vOIVr2Dx4sVcfPHF/PWvfx3VWA488EAef/xxli1bNmy7o446ittuu40zzjiDgYEBbr/99ujYokWLMkvCtRJT1tIOKCtbNUCqAVLRn3V9162fep4vXvYUb/nHar566ZPs+MxzmqMQPLPXlzHu8b5eZaMFthYgnhdT+XLB8uW1ltcMChiKqBq1ehsUpT3vl1h7PiTxVk1dTmhkgIw1eQZWplgvZmBKXryVPZWM5zTgAFHC7W065rEWxY0JtdCn0pWj0l3QFZIyGNoWUZJQJLaeS1JovwvlKgdxeTtD4BOCLTE/367IkkHM8+5Ajc+4fKaT8Zkkfe0Kezz2BrF7fNpNcMSyU5EWQNQaYDzfyqmY9mbx7E32ph/TmPgY0HTCvvhmBPQXPBWzWchBGCQOG+HnpcPtpV8U/cE8d5M9HqCrpLyHpPH0dnSPb7ruiiTL2RnlrgfVaWVqeNSDUIVgWdnjLwjh3SJ0EwvtNkPQQawwyxZ6NuwepYV1+//nUAL3ej0e7fwVrX0CyktmBoQh0F9Xj0jHv3taqOvVz8084ihhG0kX+fut309kkd+gEY0fRCT2itBCagX1PExN+ztQAt6A6C2M3eMFVe7NZI43HgcmP6Etq5ZoXM/sz+1g1Q2Iy7oZA0cN9bzuRZXyew9akUFSIZF2ph3vtXq0sPk48z+oZzyHmP5Bku1qdb+nEk444QRuvfVWZsyYwf/7f/+PN77xjRx77LH885//5Gc/+xmHH344ALvuuis33XQT06ZN4wMf+ADvf//76enp4eabb2a33XaLrveGN7yBs846izvuuIPDDz+cX/7yl5x//vmJBHYbgtmzZ/PjH/+Ye++9lwMOOIA999yTO+9Uyf2+9a1vcfbZZ3PLLbdw9NFHc+SRR3Laaacxc+ZMtttuu42+J7/73e941atexSc+8QmOPfZY5s+fzxlnnNHQ7pOf/CS///3veeqppzjmmGM46qijuOiiiyIrfy6X45xzzmHt2rUcdNBB7LnnnlHSvg984ANR1v3DDz+ca6+9Nio5Z+NHP/oRRxxxBF/84hd517veRV9fH7/73e9GNY4gCBJJ+prhmmuuQUT4z//8T17zmtcktizrf6sxZS3tM+YsUkK6F2gpJgQ/VDzci4Nw41N0D0B3JxT7gPvXwKJ5IIoB8AQw3oaiq0VFHIRODFULIA+ReN+hb6dtorP/t2CIUCS0h4pwmilWIo5vz4v6v2RZhO1sqGZbp78z6RMMsTa12kuecvM32XJDUYL7zsAahG8AtwRwAKi4dsALA7xyHq+zQK7gkauFFIupEklRTyZWbR1CVG84Hc9+N/CfKAK+HSopzb2ojPmRO72n9nUvTsDUjshimEExcfXLbmTvIw/kbFTlgHlYrv/WGNvFepSF4YTkLhrdBO028UXSwpre1wLl5wsqEV1tBAl9mD6ZBEEzaBLTntWvsYC+sGjzf2KoQUBQyFEEpOiBb9z/43aRonESc3sXXnwjR7/jwNE1znqmJtdIwZJauvKwTosrmetZG6KZ55YfJr0ItOW43pGnlveoD9apFQvKLV7gNi0UvwklrJdQilyJT0/EtCe6sLFdJ1vZ/KI+vhDb0h4PV7RyllqIdJWQcoC8UIFpZXVcS6p9oYppt6umgLa0e3HVlJ1QsfwNAntEF1uXvNPM8yizPUml9D3AF3Xbm1BJ116BLumq90Zhu5zY0p639gGN7vE1Jk4BuaEQbeCwXeOrWnCvAz8H3oVal81cNvN2OrHwm1YYtXJ8WVVTzDYEzEbRc6zj6X0bk/RJhX333Zd99913xHZ77733qDK7f+xjH+NjH/tY4rvHHnss8f+xxx7Lscce23DuKaecwimnnDLi9Qze//738/73v3/Y/jRTuhUKhcxj22yzDVdfffWorvPOd76Td77znU1/+21ve1sii71BLpfjK1/5SsJLIes35syZwwUXXDBiX7Ks9DfddFPTfg13rXZHS4V2EeHcc8/lqquuYmBggO23354TTjihaTzGv/71L372s5+xbNkycrkcu+66K5/4xCeYP39+Q9vq0DplZfNUxngRQfqryF0vwJMv4G/ZTWn9gFohuyG38ywtsMcu4HbsV1EkYtp176EWIB2xy7pX1vGStVAJCA0MVrzUGmHTriteQRHl61Gu63uJMp6YpGmBKAbEXuDthD5ria3sdk1W4x5X8iDMKUtFSPLzXOCTAj8CtgpgsR5/rq7GlSvmGCp45Ko+ue6iyrhuxtUiq5RtXbfjuJ9A3YuXE1ta9kJZo/ckyQiZZHTtnGU9S1g1xL138cuYjbKo/A01b0xsu3GRb/fSdgkmXX9nlFczaUxEl8lURl+m5mItVB4woIX2lGU1Oj/+MsHYSfx5ELVgdhJbb+yfHe8kQQkGL0quJvQV8iqZYiFPzm+My51cJCkbO2z3stE3bhbzDUQroidKaH/SCnRIrWdtGVaSnufm/4qk3OM9gpzeej2C/hr+9A584F+B8L8CbxGhJFrQ8RStMdVDIDnPzU+aOb4xc8oW1O336nmUM8wcjKXdHJNEWyqKrsq0MvJcHdnaCPUQBEKI0BPGtwDUWISkBfblwOVWf6Kyb9L65J1mnguNGeEDVGlPG19CCayvAbYmpvsr9TW2wopnt7zusPadJGPaze+3C4ynQcI1HkUjbkYJ5UegnnEJrayROMRjPY00Y1MqIIwlsu5zBUX3nk21SSxPE9R3U52n2o6eRw4OL0G01D3+//7v/7j66qv5zne+w6WXXsouu+zC5z//+czEBWEYctJJJ7Fw4UL+8Ic/8Lvf/Y58Ps83vvGNzGsPDayBaojUQlXW55aVyG+WAYIcvpDn37CQJ+bl8bfOUX/LVrDFnJiYSWpN1DHtDWWe6gId+n+PmGkyya8Sje3LScKV2UcRoXtRWvSbgM+jBHgjmIYSuznblgr70mtRrrumO5Cq1Y6Kke/U7vFlT/1fRsW5L0Z4l6jkRGtRSfJqPtQ6C1TxqHZ5DFXqVMxvZ4UATBBEJLZASLLU2z9QJX1KxC6R+6LcCW2B1r7/4+1CHopQC4XBUOgPhYFQGAqVm+poNH1Zgm0FmPVy5QZlu8jbGfXNPRrvBEuBCFU9LjO+aigNSRTTaCaIGyZyFk2SYUnGlLO/MExGJYSiEdq92OI6gmW1qZIEJeRMvHu8+mNfX/SiMFTMUwC8olYaBlZ9a33yJFMmN2C3V4zS3S9xg6wXph7EKmojiHfnoRrXoM2siNFOGK4/UTm7mHKZrOhhd56wGhAKLPPhdFE07lKBh0QoYsWzW5fsJJ7n5uejLev9GwG2gtm+1hqUwD4dLWBZc10kbk8tRDoKyNxuWFeJlVciDImQC2FaGCpPOZKJ6Ew8t/G86kfF89tKX5smtwpmntteY7bgvlOq/dtQsesnAP+Bsjo/QJxk9p8kE7OZSikJgwQkDBL2a9Pq1yAUieL668QCex21Hp8PvA81V808tt+CXuKxpcfT6tfb7oe9PvejLO22YrgVfQ9EGBKVFLm/1TfLwcEBaLHQftlll3H00UezcOFCyuUyxx13HPV6nb/85S8NbQcGBli3bh2HHXYYpVKJrq4uDj30UB555JHmP/CvVcjNzyJn/QtZNwRHbQP7L4BpnVTxGJo3E3baEm/BLEXELGHdS2nsY/d49b8AEoRQyKu4doiZwYqfYRGRxLmhxYwYZua6VPevIm5jZ7a1k2SF1vfrUIu9gXGLt7ei59HhQZcR2D3oRChrF/HX5WAXgV8HUKsH1PNQK+VVLFmPR6UeMoSKeZcEFZnYVd12H0y7xt+Dcvu3M+bugiL0DxGfEwm2Mr5Z1n1RFQL6NAE0m8kCXBHiWsQZaCYYDhJ7fu+LGnc/sbCeyKg/juOrhdnj69Pjq4bDKyaaCcigPEfSgoO9TxzIcpGvhnHG8FJuWIVa5LKYcRlQFp0OGkskNezH/F2Q7OsH6s2vFPKU8OIa5Pp7sYT85BVeIhDrQ93KbRCZGHMwYFX7gLYu+RYhSzFhytlF2lpPK5M9pKOMDKrTbkWFfhVE2bH/FCpdVsmzdBp6nw5NydpvCExIVppuGaG9F8s93gxNrIR0VYGOAjK3iKwZiJVYIvSLCukq6WcZ0XEvrppithLKs+y7qFhoO4lpu8S1NygSUPcgh6oa8nrgv4EPoRT9F6Ayp68FTgIu1tf5Eip+P+8lve9sdKBoo0E7zXxfUtniJY5lvxwVwnEAcU6GUorn6SGVPZ6UIqhFGO59qqKU1aPyMBsnBJpnGRDFp/SNt9bfwcFhVGiZ0N7f38/KlSvZaadYd5zP59luu+0yBfHe3l7e9ra3cdVVV1GpVOjv7+eaa65hv/32y7x+qaMXrliFPLgajt4aOWJbZG43ks8hOU/Fj3sqcZxyh9dZaC3YbmSdmlggFtNcBykoVieKa+9ClZqzJfQUDNNihHHz/0Gpdm8yxywi05hVN97WoYQcm2hB/JCNq2dJC+xGaC97Kta9iCJ+7/BUp2+p+Ph5qOVzSmgvl6jVQyoogpJITDfBFDAQ7SInSaZrCMWIvYo4zs8wa3uhssiHxO51tqV9OMF5Y1EXYSDU5XksQb3P+n9AVLLBLGEvK/bN7KtA8Pgz5FCZ8rdAeRkYRs8u++aTff1NRTUURdjDZDmiqCyRJvrVYX5aMj4bhqWLpKUka99wsj3OWgidWhwpeUmhnYz2ZFs2IE78VybJ5GaNYzwgoOLa0V3W8esDBY+SB/mcftP9oDGevZ2F0FHg0ceeHrkRNNe4+KIWOogzdHaVLHOWdX8mkjveVETSLcka9B6IpwX36SWkX82V14pSTgei1sdDabTAmn0XKvN29DPWZ3s/WmTFFAtKaJ+NcgnuQ9Fh+zeiIdYCpJxHZpdhdV2tZ7rkWyUUpmtpLJeytNtW5hzwICrx3QqUgHsvyUR0hs62Ao8+9nSDJ57NJyxH0bH/QtG4Tr1NQ1VH+Sywf+qa15Icf9o93hbaG55xi98BkyjWDiOso+j4b4A3EFvYy56Vi1Gf30NyDmftWwXb8wSStG+W/tzg3Snj32+TQ2BI0/RBvXdwcGg9Wia0Dw4qVrynpyfxfU9PT3QsjQMOOIC77rqLt7zlLRxxxBE8++yzfPzjH89s2ztjS/Vhizyy1TRlhSrm1V4L7UG5EKXHTbjGawE+MqCHUESo2gKUgNRRMXb2D3d5Km42akiD9cYQ4bTVYSvrMt9Axd7ZArudGda2tpttLY3l3tJlXkAJ78Y13rjHl42bPELJg/fn4PEhH7/s4QNVPCqdRWo1JSxWQuW21qq1PLIkkxS8l6Iy4S8gaV3Jo1zI7yDpdpgojzbGfQxFomSD6Tq7RtAdDNUxk2gnC810IhXgxVvvjJ71vihmxvYkiJIZydg/q0AkUf3AjCkS3DWxN+P3s5QS9hgteauCYrhMvGW6XYOlJJ2C16AaQskI7TmVZTv68QxBLfVbEN+3Id2nMqm6xtJ4zlgjLUQIQF3VaBfPo4QKe/GLxCEApp3E+8mKP9185+gaNpM2TJ4RGz06/aQfpqTSNr5h6RcFYn/uYoqce7p5uQjVOiKwMA87i/AyhFND2EVfywi3drWRTiwh1vp5e7+hXU9b2wUV024s7euIleehJGPapeYj5RzM6lS3oL8WWeOHQqErjOm3GRPo9d+L3cSvT/XrGuLwM0NnW0XX/nTznYk+GDqF7tvDxBnhc6h3vgu1GQH+ralrHo4SZgs0Zo/3UOtZmuNKrLdjMrINhzFQ2IK7j6Lx/63bnAf8C+U9YUI8IiMFar3OCq+KBOUWaSWy3ifz2bjHw9h6uowWPjHNNuUG05WMHRwcWoOWCe1dXV2Asrjb6O/vj47ZeOqpp/jc5z7H29/+dq6++mquuuoq9tlnHz71qU9lxsD3r1/J++75AZ+7+zy+8v2vcuNfb+BX/3cJNV0SqR94+LEHefDJhyICtm7di/ziV39IXOfmy25kxYPLIs/Kp59eybVXXa8WzWqIdOQ5/5obWLFyleJ4igXufewJLrz5tgTj+P1zfs/za9YBikG44/al3HzDkoiBqVZrXPyj8/GqSre6M/D3G5ew9I6lEaPz3Jp1fP/MCxKC+o2X3sjyBx6JhPbi489ww2+uSAjuF/z6Cp547JmoL/fe9wgXXfInRfBzUEb43S9+z+C6F1VJOODZB/7JVkvvZX2+wJNApV7j1w/9hb7BeqTxvvrWv3PLXfdHXNhzz6/j+z9OZnq88OIbufe+2HPi0cee5pzzLk+0Oee8yxOWtHvve4QLL74x0eb7P76A554390+47fal3HDDkoiYV/T9+0e1xiv1uO+6cQkP/m1pZG3fbs066mddwGPEDMA1l9zIA/c/EmVbH4v+Ady65F6uvG5JJNS+WKlxzg/PZ12lptzGBW66YQl33L6UihZsn12zju/9OFnO4v8uvpH773sket5PPfYM1/5Glc3oB3Y55nBu+M0VPPf4M+yDKge07IFHuPmyGxMJ9878yQWsSvXv6uuWRP9XqzVO+/6vqVbjxFxXX7eEW5fcG/2ffr41gYsuuZG773skqoCw7LFnuOj8KyLvgYrAb351BctWPKNDKiRx/wxDfu5PL2Ctfj8EWHbHUqbduIROFNNVr9a48EfnU6vWIobluuuT/Xv+hRf5vnl/9Q278OG7uLdPp/Qpejzav4afX3N93Ab4+YV/5NHHn4n+X3rfI1xm+qevfflZqn+d6BJJdyzl7huXRG1q1RpnnXE+Vat/I90/GN378fNfXcGKJ56NBLaHl63gzzffBvVAZYwHrr74CsIX1xPmc4gfcv/9D3Lb7XeCttpVanW+o/s32uc72v5t7PuxIfPvwx84YnT9e/wZfv47q0yLCD+/5gYefe45yOfA87h3+Qq1PndoIX7I5/sXX87za9dF8+a2O5Zy9fVxvdaNeT/G+v49v2atHhPcdvcDXL3kH+r/ekhVfL5z+RVU63XlEg9cd8ed/P2Bf0J3ARmqsu7F9Vx20eVMF2WN3QG4+Yo/sez+uH/PPP4Mf9T0w1Dh635zBSsffyYSdB687xEuueTGhOAw0vOtVKp8/wfnU9H3T4B/3LiEf96xlBdQQkpxzTqCsy6IjgNce8NfeHD5o+qxVHweHXyB315/IzI3h7xQQUS49srrefrplUwTIBRW3P8If77sxjim3YNf//QC1q9ZRw7lwdZ5x1K69ft7MIp+/PKH5zNUqUXCeyvejw9/4AhCYMntS/nT9Usiwb1SrXHJj87nyWotEtr/ceMSHrxjKd056MmB/8I6rjrrAvYCzkB5UXz0shuZ9cAjyovOU/Tjol9fERskgPt+cwX1x5+J7vsjDzzCdZdu2PMdj/dDP07Fvzz+TKSXveKBR+i9LL5/1wMX/+wCBl5Yh1HLPXjHUu66cQk9qJCLerXGRT86n2olTT+WbnT/DDZm/bttyVKuvz5JPy7S9K2G8pjsvnEJD9yxNDbKrFnHL396QUKh1Kx/IoIEggQh5/zyMpYvfzpSUIzUP19gyZKl/PmGJZHQvt56rg4ODkmY9e/KK6/kM5/5DJ/5zGc45v3HjctveX/+859bpkN7z3vewzvf+U6OOuooQNXVe+c738nxxx/PIYcckmh78803c/rpp3PllVdG3w0MDPDWt76VM888k5133rnh+3W/+zvF3RexvphjIJ9j0IPBWkil6nNLNWD6v9bxiucrlPfbnO5Sjq5yge7OPOWOAgOlHP3lAv3iMVgNGKjUOWEw4Ae1gGk1n04/pPuO5+garNP7+gX05nMU/BB+8zDsOAP23Ey5K3YVFHPYWYCuAl4pTyUU+gTWWy7Fg6jkMRejsp+fjXJ37gJ6c9DjKcLcm1Pazxctl+sBlEb2v4B3oOLdukieM82DslGzW6iLMFANGBj0qQwFVKpqP1QLqD+2lv771nL6YduyGDji78+zeS5H196z6Srl6e7IM62zQGdHHrqKeB35huuPB3yRRFz4QKjuXwX4KCrOb1+U1aHHU1b0QX2PvgVsAxyj71G3p7ccTMupz2OVRV4lZYv72C+qj/ei8he8FeXq2K2fb69+VgXr90NR11gvlvVaj/U/9Hj3RFlRzPg/nBp/jzV/ujPmwMZARLnFrw9jN/gBPb77UIzUW1El9tTvqjnYk0ve32rGuzAA/BX4NYqhvg8VmxmNR1/HPC/P85Chuqq5PegrF/hBX1lX//AozO+CfefBY+vgmifgP3ZV76Z5Lzvzeivi5TyGQlHjEjXHBvT8OR9YjXJD/TnwU5RraTfquTUb4ybfaz/EH6izfiigf8hnoBowWPEZemY9tSXP8tXDt+PrpRwX1kMOv3wZXfvMo2PBdLrKBbo68/R0FOjtzNPVXYiT1U1RSE0/+yEfKmYeBPCP1fDgOnjf9srjIhRVu/07S+H9C2HLaWoOmDnRkYfuIp7JE9AGkCBUMfhmbGb/whD85CH4wiugoGiOFDwGqiEvVn0Gl61l8J41DLxjMbW8x08KeXbtKPA6Tet6Ogt0FzwKxN4yhqYcBZyDiqPuJl5LevX7VxjlPB9uHTsetWZvCfyHCJdVfDoqAT01n85aSHfVp6cWMu3XD1F/xSz6dp9D37VPMjS3h4FXzaJSyHFLocA/OvL8Z1eeUrlAd2eBHr2ud3pqXH16jRkA7kStKR9BZR7vQa0lhl72NqGXEwGzJvZZa2s/8AjwOeD3qHWnBzW+bu1RYYd7GQE378XhcF26XSJ8CXgaRTcuTl3X3IfeHFGp2YlE0GTOmGdncAbwGv3swAo7021/CvyMeK3u0UqO8VirR4tAFI3pSz2LPlQ1gPNQc/O/ge1Nv21+LqfyE2VBglDHxAWxS2beU1shB4Vc06oYhq4b/nJAVG6a29av5+R5M3jxxReZNm3aONwRB4fJhfXr1zN9+vSm74Q5fuWVV9Ld3T1mv9vSkm9HHnkkF154IXvssQcLFizg17/+NYVCITNOfYcddqBer3PFFVfw5je/mSAIuOiii+js7GSrrbbKuDqw4zzCjjxSyEHeU5pHfagfmF4Cqr4V822Ve7M00Z4IZX1iBYkytEs1hLx2j48CxAoqY3XkhyXxXn/Mco0XVJmWrVHM0rMoRslomwPPct0zlyTpVtWHco+HxpJvzchS0fPo1NdS9du96LP4EHQWWQ/8LQfB3AJHP1tnS2K3/Sg7+AS6mdmucnYt22dQQtWuKMt6AWVdEFSte+Mi/wfgvVjJ6Dx9TRm7cj/Gtc9mpHwa6+yeAbxGP1/j6p+uqS6pvcEQcSI64y5pStvtQ9JN3pS2C0TGhAEzbpt2AqcApZAwDNWfgR8CryVZBzl9f+3xmc8VFJPVRWM5IvscsFwcs1zkKz6UlYWVQj6jtlHjOc1ib03d+HTipvRPjjmssBzRHwTADwlzebSTN11AkM8jftxenR5nk5/y0N4I0WezrwmULYWFeQemoYRfc1PtSdjqgN4sZPXJLmdn+T1HJa068kjVpE70qAsU9GVyerAeyVJZQGS1TCfESn8eVbexEq+SvM2ribPHgxJiOqChYoL4PtKRV5bGmZ2E/UNRMtRqKHQjKoGsiHKx9zy1LnrKZd7Oor4Lqr65HnK0jkXrmr4JrSj7Z/oQucfr75ejMt+b5Koeset/h6ZhpjRsqOlegTjRYIcX5xZJu8eDCnvrIDn9W10WLSsMcAd9bG+UkWI34jBANcOTiejSeRnSWyvQrC+mpnwnqu86ejM6x95nXrceKKV1PSQIlLUdAA/yhRxeUaAEUsoW3NP9Maf/SR9fv379Bo/VwWEqolXvQkuF9ne9610MDg7y2c9+lsHBQXbYYQdOO+00Ojs7WbVqFcceeyynnXYau+66K/Pnz+cb3/gG5557LmeffTYACxcu5Fvf+ha9vb0N1549fyfFpHUUorhPglDH+XmsB7bIgzdUR30DhGLVaY9j48AQSImIntr5SKmoCJtZ/zoLFhOF3VjxhZoJyYrtexolqL+IEkD3ICnUm9qi6YXVjg2cSbLMWyS8D0N8i3h0ECsGzG+FFXiiJ4+fU/Fi9WKBxwuDbKEHYwsQHjIhDI6IRAnoDEPjoz7fiWLGOonj2O1kdDmUVfoMlFJkK6yYeC9OdpMWmjeqn6nNyJPpeMqrUAJ2MwYii2CbzwPAA7+5glccc3jEjL4G5U1gYvzrYikltNA8VrZWm6Ey8/TaVJs/oqz+6b5jfZe1rxALyAN2e4uRTFxLUo0M6gF06DeiZAntIyQey5L9BlFui+mY9iaXGDuIEdbV1aN++UJYyEfWzm7Po5bPWyXfpK3DszcE55x3OR/+wBGja5wldNdFWdgNzKLYWYTBINm+Rck1R0TWHBeUJ0FRf6/ngkmMKp4HPUX1EomAXj87rSzrtgBnNnOnTMks89NpGrQhXbfXQUOzBlDr1GzUu+4J9CPMthOuCoQI1ALCkqcS7M0twF0voIkqL6JrtIuQ12Oz47cjgd2DnB73QlS5NCEZzx6IEAYhYQCeJ4iX05JyDi8/vvTtnHMv593/fniD4B4Cy3SfzTMyJfpMKVfPi5XQ5tnk0EK7bl+V5PMGdd9h4stYjgSbt7G3dfr451A0Im2Y8Czlkx3T3i7jMpCMz4aulFDPpWkSVsV0Ja8XhFAN8Gsh1WqAHwhBKJGhvVAUioFQCgXPKyQTV9rXSdE9AQ4slbhl/vzmBjIHh5cg5s+fT6lUGrnhGKKlQrvneRx33HEcd1yj7/+8efO4+uqrE9/tueee7LnnnqO6dt+6p5COPFLSVnZfEtYHwSNXyoHvN5R7AyWEgk5Ip1exTuIM8gBSCaC7g+grD5X0qho0kcBiRiTKGm8tkCtRgroR2tOWCXNOmvmBWLCZTnb2+OFYDaNtNwyLj9bkD4a8LCxQDqGah6Dks+2LftTfiCeewMzUCQuvxMJ7CNwF7E4yW3BeD7AgarL3oCzxfwX+jWQt87poxcUYKR/Shl9BVQi4yWrzZuuYiLKQpNFMcPeBnV/3qojJzqPq+HqoDMm7k1JK6DEWN31oTRmg1wF2wcbDSDL6WdfJYhIGUXMyq1Z0eu+lL2xzNr4fC2sRkyLZnRlhbIMopVqJxtq/We3HFLbwbYT3EMKOvJbXPIoItXIewsY+tJpB3VS88YBXja5hs4dQD+NEdJ4XT7rOkhLabakAYsG9XSHWB98qZ2dgMscD0lVU86ceQD5HTaBLVJZ11UDwNIVILw2mekPmPM8QHIbrbkL5rD+v0cd79KVmomu165PstUEqAqWC+jyrA1nrKyW4CL5AZyh4+uKe7lxEC1ACe15ipcRClEu4GU8QCmEYEgaBslJGPEGgpR4PKeah2Ny9eFPx+gNeFdE3IZl8djnwFpKlTO1ydp05j8AYBfR5JjFbzlPHIgW+xe8YlnO4MpatgP1K2nNmHcpdvEDKo1C/1mlLO8T0xPBLw9GkiUCClltzfJBYiWIrhyVjS1xPBGoB1VpIpRpQqYfUayGBrjDi5TyKgdBREkIPyrmAXN7Dyyf93rJ+R4BXdnTg/fNRFtZqfATFp5qwwl5Pue13bkA4yYrHn2HbrReM2C4KFQmEwSGfoWrAUD1kSSXkHj/kP7xQJ5fMsTKf45iOHMViju6OAl3lPD15T4dDtNhlZBQQEWqi8gDVUbyama95lLeMSSC9od6SYl6gHBPuORT1QScuNiUcrRpbqgKEF1e0ygpZkVBgsB6HP1YD5dVcC+Bn96ubtcdm8Jp5yruyrMOTSzrUrZxUUpm5ZSeErqISXf4JlfvkVZ4KK+qyQkzte18qlejo6GAi0VKhfTxRq/RBKY/XWVDCUxDEi5CnFsdcKYcXKEdXI5jnRBqyz4I6sUOU4BO541ZCKHtJF7KSF1tuGmr+JgmqbUUHJbTPRxGl+2lkdIzL23DaZxM5YVvbbQE+EyJKI09KwK8FzCwWeZMHfwrhbRWYVvFjghHGrotRR8Z5PQhpLNUWoJQpdwMfILY+GPd4T9Q+J2p8+6Bct48iFmqNe7oR3Df1xUgQZWvbRX+/OfCf+v8wdU7WtdKCrRFkt9h6QUJoL6DcBv+KUk7YSgkjuIciYxLHZ/fbbFvr73ZB5Q14RWpsmRaC1B7U8+wgKbSb4zbjFV0rS0MCqm5NOac1U3rRDlA3yu6UOd1krs7o2xDq/TLMn9D4c+PCBIomWKku40NQyifqa9fLucifVsy5+gQJx/31HDcs3GaL0TXMch8XVIb4ghHaoz8qg7xZr835zTjjViNLuwVKIVGyzMrmsF78pZBHisBgDTqK1EQo6JOjaikkTzf7MnEG6+i6qf1oEKZuq6FjzwPzrN+LarVb7U0pznAIpJRT9HZaWQldfRWY0UUlVNZ5AM/ymDNroy2wG6v7YuBxYjoigWIAg0C5FoehkAtFn+ypeGCzMDSxUm4qttlmAX1hrJg23mQBSUu77R6f82LvqbzXOA9sZD1ns41FGMRYIqskmqAS7s7Q39nPOG2ogDiZYr91TpqOtApZtMNUTYHYPb5Z2wRC8OtCxRcGfFGW9lqI/9hz8K/nyO00l/riecrbLp/DywsdgWS63WX9lgBeRwev7+jgVcT5gEy+pWkbKLTv9orRxcVX9MIh9ZB8zsfL+eRzIeUwYEYuoBvFu87ycqws5OjuyFMq5ejuLNDVWaCnmEvkvmlnVEMhFM2nWuuyR+xVk/NUkZCuJoKtDRFRtCEI4wU45yntVinXoLAZbwyFEhmOzPggVriZZbaoBeX085JAoKBzF+V9KOp9KYSgGzYvQ9gJ3b0qJ42dn6azgNcZc/UiQk4UW2BuTyAqvPOrus3NqPDOfXOW4D5MLomJQvtk2RkHeJ15pJxXlnb0IqRv+BBQKOW1ellN6GjBT2mizeQqinqxMNeq+4hmliILaTmntEAGqRVQRDJj2odQsVcL9PasdVrTsm/WNdYCc2kkYPbWHIY6ShTTD+CFPvTAlh4swGN+OQdBPbpfaaFgImCyvCdKvgEPoIjy1mhhndgKUfBigTaPEmofAV7AqmcuVs33MRpKM+IHyo395U3apK+R3iAm5iam3WZGXwP8DYvhEyu2nWRpOwlVhlmpB0gtUJ9H4TmRGJMlSxgL9GHECoqRxpe1N/HjnViltJu1z+yM3g+ivF88FNMNipDZbaJOSeJf+3KgvFlM9nhQ8ybRXhrHN1aIf8NSlPkQoIV2raX2yUO9SfuXEtLP1g8VN5CWVjoLKqY9MblSc6hdkO6fQV2UF4ElsEUeZea7nhwyqMZZETWHzVrvkaprbhGLtODQVGgYRdcNrTJ7IMocbzADXRNaRAnrot+rUFkI6dCWds+DmSVkbVUnzxI6QiJLu/EiMHlqzNpoaIKHUpzmgKdQArvUAoJ6iFQDgopPmE74V9PxwnqdHA9klZ4LUaFzoJL12Z5ktuA+EpoJ7KCUkQlLu2z8sx4rpOmeuePriOuYQ9Iw4aVe8RxK8dRvX6sNxtasRrvxCIA4NKyB5mXQGQlCKqFQCYSqH1IJhIHHnqNyyZNU761QuehJKo+uouoLQ4FQCQXfbxy9zVvav2kUOhMdQhHRYF+QUOWskDBEwpDuIIQnn4c/LWPWE6vxjQRmTgonD+2zy+dWJE7smy6da7bqCAOTQOK1ayhQm0nMOuTDoI9UgwkreVjX4xsSZUcxSQ6jJMah+t6UGWxW/rgBhgEMgVmdMKSrHGQYTNOnCbFi1PD+6fDOq4jXZBPS3GpMWaG9s3s2ks8lDSeeeXQeFaBQKkIIXqCZltDa6xc/cr0VSdaMFkFElVwSdUm1deSg5tMAK5lUWgAPUUJ6AZUXaQti93ibybEJur2BEtpNZL+tfYbhCbqdxMvTHYyI+VAdSsoCXwMo5VR2Zus8mUDLlGjX/bTAblzjX0mja3zBszbUd7NRVpY7iIX2SKgVJdhu6mJmMwjmf4iJXiYxJvsWSuqzEBPRZx5Q5V7s2P3dUIzNMlJKCeKQAhFRz7LiQ389XswHfBiqKwF+hHuQ1X8jtDdj9BuYjSbXGUIxLR1sJKNgL+amqoFJVmDVMU9fbLjfGEQpEuzETRvcr42B6Zv1AwJQgbplae8AaoV81LGG9m1AcDYWdlmj4ZF+kPpDLWisYw7QlYf+Wtw2sZbJhDE1o0ZiMdD/1EWVszPQkovJtSKeB8UyVENUTLsoC6RohfQwQ+wkDr1K0B3ZMEtlOoeLud4alABmaM40EV60zzNW9nqoYtnLJvGrh8ztVoRPM3rd+qI5kZiW02iRtoX4Rai4duqh+o16SFAPCWshgS2wV+MEX9RCdc/HAffc90hScNf75Sgru52rxdA583k0SAvuBsajadzXsg2AzSTbc2YtcRggNCoh0oaK6aSEdpLzuFXIoot2clnDb2a1TyMIhHoo1ESohVANhOrDL9Bfh8dnQV8AtX++QC0U/FC1DSXMXN/S/bLpeoXsObKht3H067m6tic6qV4Y4gVqDJs/vYbSFU9RuLefV1z/FLOfei6aNGI0XhvRt1bAGFSqooTyIV8YDIRBP2QgCBkIhKFQouM1sZJAp2BCJZT7uN6byjr2WlbxYwPGOKOm+2z6HykmUIlHTXngqt6yeXBDQMyiYNE/gBll6Kslmtvt0tfLWlsOSv3iYWTzqK3ElBXay50zAGICbx/0oOJBQTNxnhayveiEqJk2Xqgvy6QY9XqAaEHAJP6hnIO6H1MDWzWj1pyE4G72z6Is7B7KXRCU66BNuG1CkyY+a4kzx+shZ7qNZULi8SISE8EhHwrKQFX3gHIRalrgS/HGEwEjWBsXefNZUEnoXoUV60dSULfj/4yL/O3EihEj1NrX3VRkMQlpoTYRY0e2UBtdy7rnQyhr2TPLnoielxlriTiLfBROgM4ujCqZF1bDWAsbaWA1k1oNtWUpm6ib/tr9N60GrX0Wg5Q1vvTYzP3pJGZgaiSPN1wr6yLGklDWYq2xOlZtXwPrgqmxpRfqGo1CexYDM+awrOXR9QXwQ+peIfKMLgLVfF4RseSyoy/TDiRn4/DQI0+M2EbSz98ebjVIJnMwi2J3Xikn44vE+3a/XdHEtFz/rUNi0b1wRgmG1Bz2gLIoRhjtJgjZQlAHG57BullXtQE9QfeeR2WON785jUbPGgHlCQRIMRfT894OpE+tOFWBHh3THivcVS8j93iSrqYeSmhfHgoShsqjLQgJfSGohwSPrEYuXAoPrdJuphKXbwlH55G0QfdIhH898kTkiRflvSHOHB8pIbxkXPsoDO2A5YwRCgQhnvYNLYXS4B5vr7WtgD1P7O0FklVyILa2Q+O+g3hO2de29xONZu+TCcECRfvSuVPMluZPJAzV1AyFIAzxBZYtmsndiwqs7spx5w5FHtl+llXtRbkqZ90Ayfhs+tGgqN7IZXI063n0OzpvhUc8F4cEtl62DtElD7z1sM0jL0YNRK8BrX7Oo0Xs7Sn4tYBaxac2WGfpkM+PBn2WVurUqwF+KImcF5moh7HQXte8XEUL7BVLkK+HUB0/ryGDUCQR1lpHzfMK8A/g23pfk6S3a2avsh6oNiQyqwjVelPZK80T2Ypk878pHL6F7tcu1mnhRs71scaUFdrXPb88sciZDPJGJB1C1WHNFYCa36ittR6yOVaUlGtxXaCQQzkYanTk1EsBjRMswzXe/Iwp8QaK+Z6rv7Nj2rOs7ObS61CELEvbrJQPTch6StiJxi0CgY9XzFHAU4t1uaBdldTrFMXZRrN5fKe07eZtW9pXozwTdicptBuGpmhZ2k3ymn1R8Sv9pMrHSbyAbiqyiN+QtW9GuNPCVVY7E/u275EHJhg5M+59gSXE88y3xlWvhoRVXcc80roagV3vjRV+GE2s3Z80cR9q0i5xvuV9kt4qxIno7Otl3zNJXUAfNYu5HX9a1N9ncaTSOCZ7bH26P8aynVYkZI1xzCA0CglBQL0YKxGKwIDngcq1HffHUrJNVhz9jgNH3zhrsPVQWdqjhV5/6Mopl7osj6F2E9xTa3W096UxxjqytGvaVCpDv0SJVEt6skcCbnxaYt/NMBmsR9ttiSumpN+rNcTu8R4wU1Rd7vTvSMVHIhquxiazcsjzgyBCVYQyJpZdEnHtRmBPW6aNpf0xne8hDEKVbTsUgkefI/ztU8g/A/jt0/DIKktgl9hNbgwhwNvefmCi9Jy5Z4/qvtp9twX30cTreqA86qoBXqVOvurjDfnkB+tMr/j49SDx7mzocx5LmDljeB97/qxDhVGkeRzbQGF7F04n9hbJmoOtQLNXeYA4EV0XMZ8w3JIkomKhRQt0IhCGIbduPotnZnUxWPa49JWb8+fNZ6vxhxJ7MWTwGvZ9B3XPsjzosvajxWjX86iLWnBH1HiHRHhq0QxlnKoA0+CB7aZH98MDjMje7rRPtFAbiBBWAsJqQFgPeKji862Kz20Vn68PBTxY8QmH6gT1IFofsq5FECp6ZzabvxvyLW8hvY0Fszvc+IjXMt/6vBRVHvgm4P+hclLZ4ZyZvcp6mBXt2dxbUC4l5kchw00+PpyY63pvvLz2Jg5fTbx/oxnwOGPKCu0G5qWPCD3qAdXwlItgKYdXCSLGxdMP12jpIyZGVJmcullAQGn5ynkrEZ0HxUK8wkWdiBlCY9m1XeMFlYRuAfEDmY8SRCHlJm+ukeIx15J0MzReAiNljo9ukjXmaNw1H6+UU9YWjzgmuBYno4tOmYBgD1OSLdIW6+1ulBWih1Q8uyWo25b2Aupeb4HS8JnYb9/6jU11kU8wnBZxtt3Mmp2T+C6DsEMy9s083yhLMsrr4BlULGQdSykRCoEfUDeLuVnQ7c0I81pjKxnUoRnRHkrtR0Pcs76rogRkM8Yst7yEOiHrWRmLum2K6kB5wpC6sRn9STxD4jJ0oObQxMWAJmPzImbEDwg6dLUvz6MIBGWicdvx7DJOPWs7JG6U9U9gWdoj1yNPlXzrS7WfwJCfDUbDwot6X02SReNi5aWYjc4CVGtUJa6kgYimNxKf5iVpiC042D8fMvpb08AgWSc+R2xp99Al5gx9tfZhLYAO/Zs5VfaN2R0qtCEUBhG6w5TAbtHwtMBuVBwLUWFE2ulA6apFCP+5msCz1pi7VzYS3TGeHIYOpd3jQ+Bh3VfIdo8fDaSuvauqPl41IFf18Spqm1UNkEpArhqoPCfmnDEb3YYjMW+sjqwjyesYHqeZtb0LqyKBtW+l5ayZIGDoHno/KjoaEgnthFpBK/AaT8iVyvTN6KYyezqv9ZRCKprrNJLNZvyGUXrUhunLeHlyCSCRS59igAMR2Hwm9R6oz4CnDtqSZzaf03CebW1vV6jxCVILVeieNpj8bSigPOTTMxSQrwTcXDHCts49lHWxhHAhsWD+0Cq4aCk8rL2GjOJRe9yMpxdeet03tOPqVLs/MgLptb+w3SErvnIv7SrqF0Yareyp89Nri/m8Vh9Ph6+acLB2mEtTWmhPPCsvjj2vaCtEGSCv6qp7umGm4K6fmr2Imqco2vVWDLfTWYgzVKUE2bTG2OYBjKXdEKIFNC/7Zrskm+1FkuXe0snoRneTUuOvAOU8JS9mKCiDDKlMV4aharjWOMC4c0WaOInvxZ3Aq8mIZ6cxpt0kpfOIrdFG+E9Y8GXTXOSzQhiEWGjvz2gLjbew2fcV4oRoEFvajZKiCxXj/1fieeMDvh9S90WVNAok1sT+cyX87h61t11Bjeo+o19ZbuSGuKcZ/WaLXrqNgSl94+nx2BaHhvtlX9TmOiq+VQZAvwXlXBwDZc5LaWMldRmIrepd1t4uRZcez1jBfr/MWCOCJgH1AtHQSsBAGRJ6akmd1+5mh01B08klqixalGHdEt67S7r2jH1jSU6ydkGzxcAXq5yd1USbG8UDekCGqloosCa3JK3taaHHdtG1Q3myujFct7O8y6AxEV2vSMQ4AbE3ly9Il4pnN0rysLsEeaitH8IT6DLMWqgT0YUSMTgJgV2T6jzwMtQStyryBtBWy502U+U/TUd2n687JPF+jOeHTd9twX0laopuTdLF3x7PiNcORAkDtTBWylYC8rWAXC2kq+LjV328mlbWtti12F7n7Q1ir0Jo7lmIte8l280cWjO2dD/S/EE6pj3d13iJir+R0LqOVrpsHQoHPLSWrVcP8jEPto3cD6w5nNEve2+Qdo/POmc8oGiXUURIgpZRD6BYwJs/k9yCWVR0TyRspN/ttpTbiJ5ZPUB8lRSYasi+1YBSJcCrBUyr+LyhGigvVz9EmoUuiiQ9gkKBZavhgmfgnyH87pmk15BZnMc5tD0dRimoEE4bhzHC88p8qKLmQReKloNa3yDJ16UYxSx6JMQlSA1/ntXvVmPKCu2bbbEboG96ZHVQi9aQqAW9iAeFAjntHuKl3ARVPdOYmSkAg+b5+1rTVcwliEBcVio9wdTC04x5WUXsHu+hLO3PkmxrZ5E3/xusIRnnZbuJjfiQDYWEuAxDECquoVzUvK5HHVSd3Jruhe6IWGMcL9iuNZE7u97fhaobahgxW1g3/xdJuo+buPa/oQhRYF3PJAXZFK+hkYhf0/qrKV4wi7Cb83uAK8+6AFBz1c6Ub7LI/xXLk0AgDARfhHogqoZrPYSHVysX0AcD+PVTShubdgUdZnx2v4xSy3ZHbHY/mjEj5jrGTdBksG7a3l7Mo86ISghppGxzkwp5S2i3fjHjEvZmxmMYqjLZVofxgh1KEKESUMvHeomyBy/mUd4RqX5NdmH9+z++YHQNm3Fr9SD2FLLRpe9eFNIkjfOoXZDJpKHe4YaxaSW1YdRLHjJYo46o9yqiayr2O6vsG8RCe7N3bzTzytCwdPxgDfVezSamUTNQ9NmmKyFALSQs5Qhz2j0+rylcbyf+i3VyInQgscAOiVh9O/7bDqEqAi8TYYXdR4Fgq1nI/rPwPeC102GbOY2Ed4y9y3yBn515QSy46+1RlHKhSJJ+2ZnwR0QtwKspht8zwrvOa+JVfHqqKgEffojnB7GyRFrzBqR5JJvGPE+2e3xkrEh5i/SQkYjO4qVaBYvtStBPQ7K6aSy3GJ2X+sK4yEcZ0wWkb4iiB1tVYBstyRrhPsQ8W8m8tv2emn7Ze0jOjQ29j6NZz+Nkx0R9V4K7MuBM79dcVNWnhKbH1juZvrftjNBXRhTxRckW9ZBFQcCix1fzrpsf5nNPrGZ7UUK9yqQfjjwwc/zulcnv71mZkEvG+wYleEWLBizQ378cFT/+inT7dL+aHaiEKm9RWVORgXrjOaNwj4e4dHYWzYudPVo7o6as0L5m1UMNggVA6MGg59GJXtm7ClAjYWkHE/+VJIhFsR6czkAtBSW0Rw1NbGGtkQlUa6okXOMN8/I8SlA3ArextJv+2wK77lp0DJSl3dY+w+iyx0cdk9jiAkA9UP8X85QA8VRIAQXlmZCY0BOwOhoruB0TEwAPoQSoRWQnnDPx7JEV2rJGL0S5Zt5NUmA3lvaMGgAbhKz5Z4he2j2+GfFLE3azGaF2/397U9TWKC3MthewAuWCGiWfCYUgBD/UiWhCUYu4jTufTXHYjQ/WHpO9t2Pfso5DctFrJmPViAXkDoaJq5X0PxaqYZw53qCQV9/bF0lBMj6b52a8G4o01jVuSmw2BdbakbA2AFILGcrp+xR5DkFo3ON1Z5q5Qk4GiM4E/L6jD1FMzUiDaDoXiLPH2xx9IYvQS7xvx3uWfmnqQTJeHyLPL9EKV+nKQ61GTaCoJZacvkZELywHBLN1M/pQnuFg0ytDx17Q380gFrh6RbsoSsp6WBWkYNXZ1WOU2T2EL0B3RMNUzzztIWRoYDPrtIeiHU+o5oTa9TYE/Jk9BAUPpuvUYFkul2OIAHjbu96UKDEkqCR0i4mfU3ocIzFxol1gCQXPjnNdvgquewh5fDW99RA/7WE1PsMcFWzSY8+ZCurezMQyTnhJPi2tfOrBioBpsp9oNOuHbWlPJ9BLJ6sV64BIch+KwPo6L/bqq2WENDbTAWbRZNOP4bLZb8i9fN+73zRyI3Ndq0OiJ0JNhK4BXykbfZ8OlOLRrOKiNBlR4ud2XMYNRC88YhJc+mpfefJ5PnftUxz8jz4WXf0k8sTzih6GggQQZikN0wpFAXabn2yz2/yEXBJpecZtfMmfMpt5Jw8hTviW3hovZn02Y6yGKiwZT9dJrMWTuMmaHVqHbNpkaFJf3HScQx83HFNWaA/8SjxZLNd4SAoEXrGANxhbGkypGGOJgNj63IXK7ggooV1lgLGYI+KyUpVGkc8knDDEyHxerY/PJmZebPd420U+HVZnjhuhPZ1N1XYXy0SKm4/OGfLxirEnaVT2rbOI6KHZsW/jOZtNbfuRSr3Zlua8p/psvi95VjZ5i+nZm6SLvLFIG0t7s7IaIyHWZCe3AVSSwRFrj9vjz/jeCO3TZ88ALBnEUkrMAHZCZZGP3P9DIdACu2+e327zSOCVGa6gGcgi8IN6fKOO2W9yzC59U8q4XsN59gVMp6qihHTPsyZyXrt/pi+kHpb9tT02O6svqPtrFRcZdiybDMvKbpQUgoDvUyl4dGgFZBHwcx7iqxwdmQxeO1CdUUDF+OlkiEN15nT0qCzvFb95OcLhxlZDC+hGWrPmRDcwWEs+8DSH2xZIc9P6Qz2I6Y7d0kraRk8Zquqdj8JqRGdYD0nEf9s0o4MkA5OmP6O5O7bgZTNKz6Nik42CFWC6QIBEBRAMPym1EDE12u2xzS6SGxjU3gMWDRez1x4FnteQbd1YqReF8DgS0WezdgeVEPEg7LMSVza4XI4NQv2+Tp89I7pPtqV9Eck+24rpEZPQGW8pvXn1EG/Fc3gXPUnx7gFKVz/J/CdXU1UEgig7fpZ3zwQiKwxwnf6uV+/T8exG8WQra3poL8tZ+r7a+wpJ9/imZUWtLouq4ZoU3AHWw7oZ3VQK4Ff96GUSSMS2N/QvtQdF/2ZhC8XN+zMazJ0zY1TtBCBU9ywqL4xQE+gYAro8CILI26wa0cf2ErSGhWgBPNSKSu2SK4+sozAAdIKsB3lwTbJNs5ue5oUWzoFX6TfmkDmw7dz4mNmP401K0wvzU4aujDrRaRbDKSih3RhLe3OqEpLdJsMzyqZH5rOghPYtSaYlS/R9fG/VqDBlhXZIPfyIgfEYxApvLBWUS5hua1vcjdugmSidiLIgCioZhPbfFU00JafZnQKK2UytaFGYCfEkCFHCuUlCZ4iQEaPW6HZ25nh7okE8+WfQyHRt0APWCgtPRPW/TMTcllEZ5KWjABVrvTCTeByzugSkEtBJfD/+jkq6lnYbNO7wOc8j53mRm7wd921cyG8Gvo/KJl+XpBv+JsW1p/agFoOZ6ER3GW3St7DZcZu423PXdgE1SomrgO+hsnUqvk25yPsod3m2tqJK373AWtTjCyet45JcyKzNjG80jH7W3nzuJ+kenw4nsM9LLOb2gWoIpdg6B6jwlZrdNkkEGhTQ1rhsob2LZPb4cWUQIl4lSXQIA8jnKGIYeY9qXjExdnPJOL+dIUEIVZ3pdlBvFVOSME6Y2LTkVpppAfUyl/LZJrnuPAymK36kOL8WY/hydmFM0EDROq1IjmhTuQAehEN1Oqxx2bQiS8GbnueJ/SjvTfrdN2uqHdJlfrtX7+3cgALKPb4zr6/nxTlkenMUnh+gQzOxRglhtFv2eNICu6G1i4DH9SmRezwglQDfAxnyU3NK78fQPV5QSlVD621l/TJioT3KFk8suI8Ii2mNSuL9czV5H5WjRpfL8q17ZyrCtOoVSMwX032UF8YMkryS2WxB3f6/h1jYh8Y1vtXjs98j2z0+kUPJOi+x1/NcTf/knnU1nu8tUS3mqek43yStahx5VkiCoIwN0xi9h+BYIDHGMB4ropbzzvUhzOyFWoiys0pE2rPYgXaFPR9DM0QR1i2eodavIfCmgew0U7eX6LzGi1kH7Ac4s0d9N7urCZMzfncpy4AFKjkkNCZ9w2rfgKz+VsM4zK1cgoFUTLt9HgzLv74AbEXSqJa1byWmrNDePU1ZC6ObbdWsHfC8KCs1uTxeVddpN4yMCIZ9sS0QeWJ+X2phYzy7QScqnpbkTA1RGjWbMAvJcm+G2JRQFstEMjqxhHeJGaC1um8d1vm29nlYPbxN0O17UA/xirHAU0LnayoVYTAWZcV+u8ZpRtvJ4UzpsgA17idIWdpJCucGibJvxuJOXMLvZuDzwD3W74Vkl9UYDZq97EPEiZcMATR3M+3+Zs7LupZxo/vXHUtjptujobTdTFQio5uAE0NhaWxIIQiVZYk+rT/fqrNRYB+GMc06UtHjGy2jnxXzbua7Edqb1qsVS6mS7q+g3eMzhPZ0GTvrx5s9NztbP/pzUysIYwjBsq6b/807G7C+qF5yMwek4Clh3vxvEfHJILNLKCq0yBLOqQTctmSpEuJNzVmdMGtU7vKmjV0WLfIF9xShN0J7er632z3LGm/aPd4I7OZzTilepUOVt1NCgRZw9f2J1n2S+y4yiqGk9iMhy6IhxJnjDTwgL0KPQH8Uv6rb10SVHAVdyg4lks/spDRYZ3oYRguCKcLqaQ8CM5aEwO7FNONlIvQJvKjfLUNjw1pI6HmEJnQiI7HRWFlpjZD+tyVLE+7xz6OY2m1JKqXtz6OC/XxDwdthM7V2VsHrhacXTdNTSwnsngzDOE8AslxXQdH8afpz2jDRjN/JUvo2o0cTgeHohSn55qHonu3Wn3me6DXTCOq2NeXFAdZMh4F8Eb+q3jxDSzBu4xnjt7+36d9sktnsN4Xu3brk3lG1M2MzP2j6XwfKlQr09ETm/w5MWJ6mdxkOde2I0FZKiESZ8gfnTKPeCU/Og9qhW+ItmBMdC41n4LCuEtaxirlomvfJYDrHGM3mSjrkQjK2BLIyoBo+zxhnekowMLxnlPUKNLwDz6PyhxiFQlafWj2XpqzQns+Xsl2UPa2lMzxbl6fqkaM0dQnBVeIkdIjlIo4ohjEfZ+wVm1p0WnGzBpbrXdry+Cwqnt0WuCFORgckNO9pbehaYubHS20bUvLNjBnAqwnki3j67IKnx+4VkJpvhqT30YeRfmmjYFu+bdf4e1Av2AxIWNKj7PHWwBPHid3o/5T6rT+SVJJsrKXdPCfz2ewHiZ/VcAme0tdKE1FjaR/qH0g873Rpu7ut63gi3CBCGGh3TNGL//OaLa9bIR0jqKrt/tpN+/T4RsPoN6yr+n8jDNtJ34ZPRNekn4lSWPq7Qso9PtFJabic+Zx2jzcu+w19kuxLjwWi/pjfqEF/Ia+tbZpjLeTwTJLMhHdEqqPtCruGrJXlev3afiWwVwPruM6mayPrZTGat6JF7uxFsbfYnNC3ExIvj/VPupydaWKs7EaAL5VgKKAQeZBl0zrbxXhUgsMIsGmXvb1AHBJmk88egT5S4R2Bj+Tz8f9GcO8o4Jdgs3VDcZk3zQR7xrWN+NYUSArsOaBLhPkCT2gaHbnJ1+qEs3IEA1YgTMQ4jt2LLoHg1wLCik//2j4V/lEPCENhOcoLr0y2lX1UMrshZvqzB7DVLNhjuvJi238B4YLZ1I11Xd/4VrrHpxU95i1fS7LagC2opy3vZuuh/ZjwZo4zVZSizNP7LH6vQVkdKiU8EtdrFxEYGGJlb5F6qUA9sBRgRhmWmsLNLJCg6Pksxk5R3deX5hCyYRQREhE9NUF9EYprh2Cuns9BSIcQhdXYbmZttoo3wrxrem88JcL+CnQWWL3Ny2DzWQ3PJJPdzhJsIZZHBjKU0+OsnWv2ztnu8VnzqWmX0i9PLYgV8t1FpdxPTGy9t8Zs85z2b61HucdDnGh4Ini7DcGUFdrXr30CsG64FzMxOkxEhTSWwetXqjojnHtglX2zZHGBOtbTLhSwS8mpvacEA6PZsghflmu8oDLHG6Hd3jYnu+wbJCfTOlS5NzKukU7S0gCzeuuxRkS9AnTFtX8jhUUPIL7+fbGHyHhMaZO4r04yAV2AqrG+J43Cah7Fw9qTO+d5iZh2Q+QPSf3eoTQ+q41Bep0wRHaAOB4vncis4bNFcNL7IRQjt8eBrwHiZxzdAz3Gg63reSEcpAlglNBEgOc1U1r3GxfEjI7ZBD9NSKoo4j7amP2sY0abbyztdnm1zGs10zZXA6WBtV+IUi62tGdQvyxFC6jnZtwWPYiy1TYbx5jCEHX7N/QEDYr56D4BUMyT85vc93agOMNARFRMrUmWVdNC+oPPctiKPDy4Uv1ft9oEiSskdtGAzfM2SedMDLCRTjuVMDsSoW8pmr2PIrqcXXJsEU2KspB60FsiVzfWWWNd15bolO4jonn6WnZ4lnn/R6PQtAWBtLV9DXG97UjgEmE6Vl1t7Zkm1QApx55txv3f8zz6e3uY3efrMaXi2UOimG87cZuxthsl9bYCT5m12gjtAz7BjC6CSq1xwTP3fhOmh4jO2zBUJxgK8Cs+r3vNqwgrdaQakKv4PF4PItd4o1BJl30b+YfifaJCTmcPTCvgdZfJCVT0g/XQtN3KWTPhcd9NtnWMHAZo+B7z2a4+Mhwtmkg0+33jQWcs7TBCrXYxsd6WpV1QZXl9WNXbQaWrgG+H+eo/AsNWhrH/N0I7xEvuprwGhx3ymtE3Ti862humUKniTS+qNrUg8gZFMu5VmyzjWTAGFEmwJULYrx5awdxxwwdYz7rpsGw+TlDhZpCkc2nr4TjBXv8hphtGkdYQ0950PjWh7xU/zhzfWYiTyjYo3yX6m1aE2TRpK916INVmAm7VqDBlhXZo1KIoRsbjRQ9yernPFYCaHxMBm6hBRMQ8UXXao0QcOkYyvrYlGpcKyo/eespq0irXl4CEt0aiRrsdq9Ws7Ft6Ar1AHBuoh9hA1IaF9RIYxQVDAV5n7FpcNJb2MoiVaTlaDPWLMdbEPSSZgM5kd78PuA2lrLBL+Bi3eJUjMDl6+96a/S7AQSgh7Jsks1jG7jMbNqbRJJrpJqVhzCA09j3Iuo7RyJPa2899F2BH1Pz6Zhiyo+6fmUshwAs12Lyoay1ZPzSMxXE4pmMOTaxr0sjoS8Zno8wwsdome3zW/Uzc6XR/a9ZiblDwdOgKScJmfchyzbSZKYhLvqX7kx7TpqMJodIW5v5CPhnOXEiWnIzm1WSwOJiEWcZCGogqP3j+0/BAAOc/BQ+tipNqpRJmAdkPIRLaG63RyqSVh8HhCX1boJl5rhbGlnbrkKJ3VvNSiUK/yrQeKaiF2MNMt7P3xrtkWMFhuC6TXkvjY8+jQsCi39YHe0QLkIC2sSGDPtLhEUad8yKF+Yuzupm5xvIasBTuCUu75zVa20WVhtsaWCFECeGMpT2Y20W4XqJ3CLMfCw6uFsKQT1gJCKsBQSUkqPhQDQirKuHik/WAxfUgduvXfS+Y+zZSErp0v1F99iBm5AcDOhBqiOWmq5S8rZr90ZxJ3eq1KF7HpnPmWRq6Tuq4juaNhIPhwtEmAmn+ze5DP8lEdDCCR56e36GlhBcE1lWgq0B/PkeYKxCaPERGQCR77Anaah3sJxbam1ZNGd3wR42IbqkPCcE2X/XJ+eBN68DLA35AEaja9FLGr29jCZNYThlT4vcvpy0VhWrSs9UgTH0RxfyDNXD9wSTGHvSzb8Y4aTUMbc7iYftRMo6Z35mb4aVN/7I8CYZ86NDrYHce+i1zimlnyScRTZJ4nYFYiWDyiaWVCenPrcKUFdo9Tw3NLD4hRC51gWcS3nhQzOEFysLoGSZGYibCZiaKnrb4CVAH6SxkLwpdhdjSrs+PGAFrohir8UriRHS2QDlc2TdbIFpHsmxOo7V9GMKe8RJ4gFcJIFdU4/eghKcYtzxRTWPzUiVctcZ4Vies66L29wJf1sd/AfwTNW7bkl7IGHK6hqu5V69ELR4v1+02JkNyGs3OG0QxEbbQ3rhQJa9Dxvcmu3q9WmsQ2KNMuvr/nYFdQmEnMcQdJBBC9LN7bgAWTLNWqSYdaPKVPdY+YvfFkRj9rLEJyRrtoJQTDYyCIcjNBBlQBKpsCWoeSoivWObZ1HnNFC5GSWJgx7Q3jIWxRZr+IijrqgeVfC5i4AFyxpochLHlJdGndiA7TZCgpKK2u1Q5wqopWXH3s/Exe1GMrpExPlN+Ey9bMu0amdC3BRomgkYVy4uAaC+ep5uqxHSUShRqAT3KlIpOzRrFftunG8bAvIejDeXJQjNXxLXEa0VsaVeK2HV67kZrYhAg2pvAVGox+7Uz8kwfHFD91/NCWdtVzXY7YWGWe7yHsK1IHIom2tru+4RzSyqhuh8mO2/FtW8MxA/jvAy1kGDIJ6z4VPqqBBVVU92rhzxbDdmxHuCFkuizEdxH/B3DyOudFz13oFJXz/tFtZ751oO1yytO9OwfLlHUWhSvAxl8jvU9xHPYrNumVjvWfmPD3zYVaZonxBZsI6ybDBxpOpr4rJ9V9KXxnhsICWYqlZuUC8hQ8rxoWqQyajfzoKsQG4Yyw8JGM2gL1Wq69ko2xIwpVL9i3OS7+quEZQ/yOe32FkRhdLFiQqKp386QUKIEmPY7V1gn+HkoaDeJxHOJHHkzRpcp2NZVMohhlNPjQefsOWTPeVAVrzajMdmiaTvsl/aFfD/2NOvOQXWYkm/p+W3YCNTaUkC9f9NQ60WWgq/V82nKCu2bbbFbckGxE9Ghnu3/Z+/Po23JzsJO8Lcj4ox3eFPOKSk1MkiAZORlbINdprHBYLuwjJgaG2wVXS677MKWDdiu1Wt1uZe7W1p0y5ihaJdBWEhYStCYgpQEiQSSSFJzppSZknJUji/feKczxfT1H9+eIk6ce+/Ld9/LXFq934oXceJG7NjjNw8AppdgFs3o8e30N6DIridRILo5kIZotkAwRRxkSz7tnuGOGHhBtQ2gi7chPUaZ9idpai0d4w9hQW0RzAy7pM+HKpGW3QDUFaaXejp3BNQYpJ8gVREFwmA1MXkExTHrDqnVwIdbz/wBQbsea9rbpc3MurE5RYgu67rTtmy4lNIAUjThhouK7hHMivf2O0NgbD/4n29dIljax0nUGkMkRg62XSLIuQXc5FIhdHS4Cy9Ej8ZER00gxA9D6Hf9fU7Q8Bl0rA5MC9K19opKmfR4E/SN3m+XCFl2fcO71ERtyukcmqMvkZbcn4sKMrX86YPvY5ZawFa2gtHRPUTPq9IOGiPAazSg6C9e/Kz+rZ1zNi5dSF2wKdHs/ViA6eD1IRD9c166NpBrb46mMnR4yDLs3k7Y2NeOQbbIG5s24DdrTt6SazhGsRGA6hIImBhnxbC1QmHSNUTaUdueDZEmYyCCVCX10CjOMy56vJ7PrSesXZj4hjkNu3FDFDWywbCbYH11i8AFUetRbx4/E+rNjCox1LMijLmr71m6ToiIrknr4lEvKqq8pp5XvP0d76W2mvbdvGJS1LykFLKq9sz6swpC1wICBjB7ORzLYG+h6SL95IbF9lww7m0cHMMtZ1W4rJiIcHvHGh4QmPZ4DbvvXc2yCoe5PRZb0G3Y+yuZh1r/Uls/dn//Yk0xHuvYJAnUwT7eW690WF+tGpMpwa2v7arW9fxB5T/+6rsO9ZyPhO8XhPqzn5qWyFBpFpNlUNQa/7kd4uQ5Ejwdtkhd62xEGnbHkGeLOXvrY3pWO94wjWcFPu/CD6Cuj8dGwXQ8fvYKu4CtEgRNUb5nr+PZuHnLP6LfItq3YaIbf5zBbsv9sSWg6AqKKqhpvIs3tcY+EeSf48X0dcu0n3nybiAyy3CaB2CKpgBT29sUYzmCpG7lZpfoGqwJmS1lDZk1j3dEkquzn6oJblSHD/xFc9E8jS5cF+07TkXjyFOX9m2Vb/sWQdMOzWiq+01wWwqvRJyteZrDOPGa9p6B0mkqiyp6PwCboyZwnRa/zbi3/dC/nyYx5lK9tUtbqOEQ+inUNKagtZGlOdaX1nZ7pnl2gWbG7B+J9TD1jIC//T/+SLN/Ub/c3F8DnPNzJJoT1Gqg6kWFLICbLJvsAnvtYyZ8ENGx3vq9Crmv6pvz13d9cj7t7ees8N0juUZ7HTB35vFuOfQSnxKt0QhXl62/LRhrp3wbsI/2/yhLjKBjoqyoIEso0VRvoF3sGSgzlKlvt+2KNPCIS9y+WuAl18Br1/mZE6+FH7pBsxt0RPFeXY9Y4U3r77Gka5zZcOXRe8/XYHRxiTdCnM7OrgdnXeZ70IfBzkLlFw72W4TktNxt4R8osT6l28TxME3siuOyZf/eFjaDsIFq2h3/KAB5jfSskNzQEEycPj5iMCsVdtnN61K1JlUTKXUx7InAGsJJEZ507RShXkC93qceQb2zj1DnUktNcO+ohKqoqfOK+qGz/NjmN1A/epa6rHm6EG6oasa1kBY1qciSefyBxSEyWxoZcqoCc90G7MzoYeP1iNVqRszSc0GkrrLO2CVofFcFnmsfoNYbDaY9Pp6D/nXhUCeYdtHjYZlOaJxd4MCIk/c02d6U/KTRmBRrkBSt4MH2P2FZMBOf3fWObUufFi6W5fcOU/7FP/3RA58RUGbWrUv7gQI4PgVzzNokJBpctu/woxuLjjY+74qlX2rbYF3vOiejrTnTa9bplyVl3AM7zxKNibu/ZL7h7s1LuGZ01YXTnfvN/m0LNUWfr3q+PW9tnOz+OBUNOGyAtb6tULrhtCy3xeG1iwQXkDhryqr2P1fl65ZpF6mbwEfwkHABjB1TN+iBgKl06hpITSLgL6Jpy7HBLsrKR49fmsh+EvzF7Aapo43mNOcQIsdDU0Pu0r5dY59x73TRkhcIJmNdiOwQg9X4aQAzq2DYfH8Cmu937gDplV3Enrahybi/EkXC3wj8P4FXEwgxFxW+q7S17LEmGqw2mmUi81JLPCbtsXEBzdpAoeu86h4E8/j+oL/Un7Zf3zXAhVpz9DqzMW/1cWGG9IDjlqvZx3S83cf22fXHmRftqyHYp/o5Vnsc1RfHml0iFFZx//Mq8mm3K7lvVAvdfsdV00GECMsm+yGTxMH9uawSa9l9xaIpJ9OU0rZFTWIss5YlYCPIS6uO53URuhHz2hoDk8GNJ5rPxmdYvQ5KabpJxBfGwLjn7CpXIvrnRWkTZUS/e+nSo7HKUQCGKeM8Z82+3Ag8GjN2rc+2Uy52fX7fJhOm1sHU86gQrM8yTN6QaDrc+wuQnkvmZu/Zhl7oZ5TDBC5OMTg3NwlCiKrZNxfATRl48fdvBE67NhY1dQL1MKXeTCkdXHRVXZZQR0JchkqoaqF6+Cz1ux5n8KWC5LbHkcfP8WRZ8xKL+Iwsm8cfmniL2uyEM4DCx1MjzGxGhqimvXbrgedMS9lFJMeWiSdYVkx4QXxrm7vzkKZGz30nPl+t0qaZ3PWMprAdDrDIs5tKBGXcPZIVZGvC3jhhYAz0IMkd29cUxrT7vsqCTgh0y1GYxw8G/YMfwq5Br4XWhhXA5qQiGViM3M+g0rmfR53qQPHPu+K7JajbYh0Y8fXFHDmVMS7LZlq0aH6WK4wqjssUONE/UAt9JcqqNbVAeZ9DxUvZD99PCQGH12xgQmfp3CHgb5AZUbXOigdUUP18zdX+dcu0Q2uhRFF19wyMLT1jeqki97zyzHkzZ23Qvg9QhLcAqCpkEEzu47y4DBP1p/UNsYynVwQEE/k43VsXs+0iyEPTTD7etFs0NRbQRGqrB4jmCqwDwUNZYnpuHAxjY5Rw6/d0rxSWKTiM1utZFre52+bxOeoP8y+BbyMmwLT/Xf7srjiCx7TeO4ESkjGTGZvIP5u2t4kOCEx7yClqvxd9dxWQiKfLmdnHyrUG4x79PoXCsFwUsTufdgHqCzlyfT9QO/No3frONLF7e/3FRIcjKkfsA4wjZNrVt9g8HsJYxd/vqm8JUc2wqUCiBdFL4ihXnRV1TbdL+ebGtG0ev1zVEe0DT4BI3ERlRNOUHGV8YuK0TFxau6g/fns+1yhnn9LliyeEHOqLFWszfrZ9D2ygtpYoL7bEGVsCsliN6J/70l6z9sK1OUpn1/b51lguBsYZw3mpAjEJAVZhGWbEuOQwrjyrSjvYj3veRY7333bfEyWYdhp7UZAcZKiEmUDErRnmxlAeX4PdygsgnKbdxAAVtcBqWGShwegMGkH+8drCxUVBnYBkCeVwgEws03MU2qm4itpak913Rr/bB5mBfPUij9fCi2shESGt9YjN4w8XhG75m9YvCrMHnEwxU2FQ1RrES/DKBc8sPctuPtvicabbhvb+xJ6Ps7xGu4TxMe1zLHq/TUM9F7u7q48u3g2Efq2xnMfaXTu87GgwH4yuqmFaMT02VNyQQTZr+UW3tNK0647OTmC3RjOWy0o8fFTFrcO4fbWQC1wzmXsAYoYplNCXMMdeO+9A+hE37ehK7Nbg9hyawm4hmM2UYVHZWFqyjO7auLJ9zy2wHDjZO1ALfdRlFa3oGOLruYyUovEADC1+d77t09VuALECNG5fjJPGNGNgdNHnz1X5umXaN0+8aHniLfGyIDK/tcjfWGYlltC2pbWZo5MEZdot1yTQzNM+TBp+s7Efe9ufoitHe0w8xRHk4/fcdYUCquM0kVUbqa0sLULZCyzyMhC6VsghAL1E+5oHAlpam+KoitOyO427oP39GsqoXI/VnNA0j1/V5xiRt/3aTxDiCxwFUvcIMXrfaWZHHGD2FtXTJaV07RsCn73jzkZ/4/l3fTyGBmS6YBGC1AFh1xcL5FrLIg/QlFpd5lMd/YsfcUSH83uL/dDb78Tndt+EZa32iEMQCl2IqkDjS/gBMrqmY3usqJKltkR17hICBGHb1xVK54oAdIna47TmtUCWUhrTSNG9DlRJ6oMThal0EbCvRAOPqrTWnTtPcm6fPKwCpS5Y00W4QOh8KRqwqK2G8zFILBqcNAWtS995rkvXWm8z7a2Ub9pXK1we9clqGNpo5I4S8VZlEQMf84POr9a9cimwMYZfsdDZRY53xZggMN9EPPGNCFKKCsUHWQsOGkisMHljjeS8SsU94+7c3eomyR4z7Imott0AL0J4zLa3npfIGCoMcqxPtVeHpeCR+LOk4KL17a3JXnk9lYFPnnuYqg+8/ARPinCLCIlj3K1fu4vbcrgStRVCZH27bszJMWQw3Ft4n3ZxEuvo9atZ2nSOO7bs311guVgx0UWvxec1ojSCNLf3Ve9fiy5w5xnNYKegOKedPtXjbjuvAo1gdLIzhwwmox5DA6aX0CtLzwA7PKBm2FGDWBauCU0Luj4d6LN1Pky5/SN3HvhMsCQILhsAOcKxnTkMNRsEvQyTK+5rB4eVaCk/H4vYxR4MCezF3oI8hf7GgH4F84hO90K1rrUbz6f7o1sbJyxVtY8W+kqUBr1nD7emjxOUcUvru11LBMcCjWefGvigNUqcTVa4Abj9Eh3u2xcJFsvrxAKg7vNzVb5umfaqUpK6vWAwMDVGJZDOF3QEzCtPtMQ+cSaeXaN+7XNA5iX0IuIIgl97P2nkvHYL0JklxzTEqnRv7hznam/7tMeI7DgdkuaDBqkxOG6jW0JnAmaQ+DHqE9Ld0bf993s9Mr89whUdm8c7AQXAQ8AriBh2AuPufneVeFy8lqkWTFlzQ1lzLgrmEmvZLxXor9rkjvBdI5jHdz276n13dkhzDIzX13zfYFnjoISpcJ2I+ol6ht2ez02RE1aENSJE2l76eJjYVUSHC9YGCvRWagii0nXfMe2uT7HWvvO9/RDV0AJzZ4rQT61/S7NP7r22FYB7IqdJUPVbbYqNEY4aqEvrhwBUUFvpchyIrm8MeZZAZTMDRNL557OSfd+ULrs5m0nfCkI7BnpVx9ztovZBQwEakaqcTW2f1Yj++TJuXf10wmEngIhwkcE23QGFLKFMoT/LLXyIxrqm4dMelyEhZy3x2Wn29llYq6zDzqMWQEswGYWPMwl7SspKz73E4lvHpRlKA7kBcyqBrUmTYXcA3MI9V9rm8QZl3l9o4IwoeJBFRTXItP3DPuWibGglL2tTRZyiWuAJ9YtOUv/54wzSPsUrN5jfeIILAjejfUkFEqTh135J3yO03UCwqOolMO7T3ytAxOe5dn1z+OJqllh4Gis5LhJSBHZq1lu/ic7rdPuoEp2vVln13RlNtzDDskVe4xytbcGdBbZzZG3EHuoGmvYSemUR3pNm2reudsV/nxKsuYYcDq8fVDY22uKJjhKDetdXUTeOE7MFrPcUFmQZzDTr1yp9w/MFhLeL8gYCVeS2gFDvFlwYDRj2FW+VzrJV2vPUmsEuGOVoumOWzttHC33UJd5rsYJnB1UmXVJK0a6bzm2pHwUc3kyDpXOrf23tejx8FwhBlNfoyNMuAZc9l+Xrlmmf7Jzu1lKKInkfPR5gkGCKupnujfgcUr8N0IAtklfBedpFpncvDBKYBd8RQRGzfl/Pzk/oSTRKfIPJIiCgOO0btv3xwruIAtIeLSRmDhk9vrVyvXl8AWbY8yNgjAbwA5BBCvOKIKnlYAL6EouIqGk8Tb/2GmXaX0o0XqbJuHcFoQN8nl4jQlJWJIuSbFaQTgtunpVMZgVmXiJV3Vwzz6L9scTaHQ4w9VnhJyrLAKELiLl6RsArv+PblqxD2gQMAidFuOCksxZp1yLIzoz6GjvPg6wr/GqzAR1tcmVO0JCPaEoq24BvVd8gBNlzfRqxjwlVW4Ps2uuYmX7LLNr9blMtLcl1u28uT7sr+6V863r/WRc7aM0+AwXUNid7hmls9LyfegnXUruea4yzqsRzARGjIbDI+c7RC5ppNN3foNnJrnu5BLM5V9pAfsNovtf43avg73fo0qDNoj7G+9U0HxWnZY/Wxt4gYzQLQVIVHloGXqQD9+m6bwQLqmpYVCq4nekhsxIpqgYRuSonrqCa9mtowirX+GP2cuqE3nmJOOBOtFQSh5MMvY0UtvdUW28/1mbcXfEMu902zjz+uMA6wlMi1IVQ9/qKq9cyZGehW6pNUPAsUiUZE4hIq22vBeqNdV5184upJwlPC1wrwpoIiajgNambfu2HKh3rxggwLTBD25bNEdlcxyon4IjYvPhq7gDpOEBpnU173VZMxDKrOIK8O9ZRHNKFi56L3d0AWfZ6TrBUc/uhM92pO7tghkLE1IJcFDg+RowhA7JBSlZI+J5ft/h3utrlzpOoXbGF2eXgvO/6S68+8BnxE2Tb7tZiXtKrgHUV7Zs0hVoR3sK9516LcefzEPlJ7aYwBKpGIF8Iu5tDRmlCZaDMC8IM2v/rjjHvoNe8gC4zSrhMivDcFRZOd/mOgzLt6wSa6lApRbvmb2EJHW9FZzRO2aRqNsBVKMu4yD2xTTCP3zd6/HIrrmr5umXaXWkTMFPLYHvzW2MwqaZoc4w5EEwFWwRbX2xqlKpCbG5c0artt4wyP1HOa7dA2ovloj3fQNM0Pma44rRvlTNdK2slnKqaLZGGb2DXceDouC46c8LcjkXE8PSBwlWWZZpnNq6lC1hcRhGWzePd/QeAlxHGKdayrwpC50oiQpLXJItKj3lJkldcPy/ZnVWYvFIgV1QNv/ZLAfgNhBy1e0rQIDvtcReBEn+vQXPZs0PiXmbkzhHh4taS6/OpGi6KSuKlVmKRWqgv1MgpK/XuZYEx2geYt9vqVsKM4JO3r4agVU/7723zeHdd0R4jvDZ5qXIngY1txyG4fLj1G73r1nEXQbWLElAOYMaWJ0t9OGqo3lVxDrVxTLst1oKoHCrTHr8mjYvnYRGaZsfuHsC2nau8NWfxM+3f8TOFaHRZV2ItO+jGGfaD7/x+9T8fikQXeRQZPxJWeoY9iV8x7PQH9BcRq2IXuRNWN+CGrWuMFcCJ/d6ihEWJzCqqRaVajVmp+dLmVTDVpYnv4ml1Wo1YOJDaTd1HNeC79mFZaFBUAU2rakAwYAxTDJmB5MQYpoJZlDZHe8SwtyLIG5R+NUBWW5xg/34T8KSAFCDrPYU5GwnVvKByjY217M2qD1eigSgJOK4uhPr6dWRrwpNVzQtEoNL2pSIktq1O2HCoIsvzrIKwGsbWvHh9QHZB68zbTJJcfU17l7LFrZkT0XONNG806Z0uTfvzhQhf1T9HH8TFCfeXcUzIWV63rOfYWyDHBmyLvp8NMjJLRImtpE1nwGoGK26Xi2/RhfOOHO3VgrcUsxIGEWBnzmxgIFVlEgODWZSa0cVvTY/0npcg3BUXeE4EqOvAS1+Ai2tDUqDoG6pcEbo+KxG9ElcWX0f7flZaIsHAZnJVhdMxeIyvJ6gAzgkhG1Ywrb3RaGvcThGl1QMzp6eNPkzqzv517TuHn87S1LR37Tu/N55DAdDXLdOeZsOlxSLGEh8GjaqJHYBehpnXXutgH2mcE1uRjxpdl5Alvl7PtBvUJDeCjg0/9DoslNOoWfuApj927JPsIstfqGrMooK5aoOZlSSzkum85NpC/ZDjd522/UDk3mGOaiLTOWMrGxmj/XaSLCtudWaHSwDkMkvMrMfm8RXwKMq0O4a9zbjvV5KiJsmVOU/yUhn4ecmpWUm+qHSMixryCinrJWncYUsXYRD7fMcS9K732u82YDDBVHv3/NYSsRKbT7p1e10t7NQEk1ag3p5TG6iPWaO8QarE3AEYud0ed94jSE4P67PfVZeLjO/65Ors1DjETYsrWpS2gtYmcL6/zheq1aAugsoJCw7yab8iRGCEnxr1L6Dup2pOGUHxkYGc4AIg0QA/n4kXoLkYwDLxAjmcO7FQgVIbmy8NDMsdLeooPkdLiOPKuBcQfVz/8yHyDCxvEleq5XR2LrVpDYqXbE7zHJhs9ulFERRNDLjrbqbH7+WyhqIiyWtkXlHnlWfUWVhh56JS2Okty5aJJGgG/QmadvFwa5OIOchrZBAWucOztTHMDAyNgSzBrCVwfqa4UCzj7vBbJEhIrMVVjG+dtv2FAo8LyBSqnvrQ18OEal5SS2RZdgSErsskU9oxqhcFF9cN0jPI+Qm3iBUoiJBUkIoNRsdqa7Llj7gjABIDmHkNWU/HfTODhaZ9y/1j4t+72gTqKpeKLVbkaHeHnde20MkQfFSfL0R4F6iK3cLc0YlHLVisYwGLZ8gFuTCFYzAxakCUeUF1BdEaDvgztKJBc9jrKYHeOMjC7LDl7Lmtgx+y/fQ+37Vt1bRidzjysNz0ASr17mu1zY/JJbbvahTdY3W8NUNbF3PysTWNTzMqK7BurgGhbgiYIxwROq/xp9wE9ntBOH0VXMAc6GnjgG2CgudQKUW7CE5QIbI3y7Qbf9RXQXJcgXs9smwi+qYT6J1A4YazzIk/f0Xou2dRvm6Z9lPXfyMQ4StLyMyN+r6ooN5u+jXVMHpCxQVrsTNlotnqY3O1F6KEhA/8EyFRFxTBMgaxaTyoxhyW073FUmNnAtcHbiwqzjrtRl4heUliCaS9ecW1cyWkPEKGpsnhqtJY1K7PwKzE9AQrh8cKM1k40mrNpn2TxqvNlX2ZpZbALMWM++MEC4SlKMDs7+snleiclDUUNaaoSRYlZlFxXV4xmZcaoKdQxl2KSrXRl9in/STWjr6OA8zAaqDQvieESOYAH/2dDwHLWoaGBkKEEwLnHALEIoztBfV1qRL5xsAoC0FKXKPcR1tj0NXWOQE3rNQQrLgXn+eEcXKR6OFgzX3EvSvTHgNzNzipvXBmVfHrLebWneNYBG5suwLyrGzX5ZQWwRH2XEVJinNgSay0rg/k6XKwvaW92v5MLUhZK3xZqMAq1phe+dLC7G4TWYuJ39r6yuq12b7XqpayhiwE1fRnJ9kEze86jdZEvCGfT+bx7X7nEgLpRX2T+GyvcwNbgz7ptr1lkaNP/ebwHs3qNORLTVJEAs1cGXWx5vHMK1XTWqbdZxexRzseyzOoeXyXlhTRtG97ogyFlDWSpYoDTNR9A3NjLD43mGNrmO2KxK6fJGbYW1OY+kM8w25EuNlYOJnXyKCv31zvUe8IFdLwjX82m10ijsm5utWoK1g9L/nDr94F1x/DXKy43o5eWmvbfBT5w38uIoDwk2EAphVmZIW1I2BrxkBEM4xYE6Z9A15dwRKDgHgNXaSDaTdNWqcLB4IS4dvxN1p1X+3+dZ1j5tj1I7ZYW2qvnSofd6CylnR7c9jsUVorlFFiKFJgEUys4/cPateEpgXdyqCwlzAGb3/nhw58RrwMVYIpuEAyhcmxYJNg+sCspAchn3k0qUeOk4+quPEXWVrryc6cuSXy8l5meYmIPunak20c4cq8VtoOFM9NIjO8pWB0R1s61y1K+zoFVtuVsnGOb8SwzJW8tuneImH8OIWpFd+0hKvWPqUBX2rUiscJyQw2rsqqPlxleNguX7dM+5kn715aKGLTlrVpedOPNO3ub/YlT9fZxdLHmuCUqDlxq34gEFGW4HQa45hoEZpB6GA56rcBTFXzwqLiwqJWQmJWUc8D0TSfV1yfVyR5RWqlcU1t+35cbAvACRgE8gqzZhl2ixUzE5nHJz1kVkUbS5Z35WUW58vu/NgdA/8w8HIC0eUFHOYQvn5VTVILphJMKZiiRooa87Wz3PiHD3Dia2eo8wopaupKmfs60rZfSmnDGmgi5SU/0Y7zKuY/Dljzuv/px4AmTxrPfwKYGk4i7DrAZaXtcr5Gjq95zZz3aY8724EI2loQd8T9c+ZFcfsbiGkFgyx2XGJNuyNS25p215fOinI1/2wMTnzOq86+dVXn+uHIBEMzOv4RLvuVpa0JkqKiHNoc7VE3+8A8S6Ho6EsH0hOx8Tlmhfq6OVPnSQGzQhn4q8G0xm2LG76nyPdfvua7gxowfgeWmep2x8ta3SQaoDAaNIMSNfOihTCeZ+ReVzNs6r+2BYGAd+4Vi+gWAlUvJcnVscNEa8GJnru0lGOgKAUKBzOVQRerYXdnnJVSKVDVXpO8SqsRB6JzzJfr45oQ4FUFpFkjbasAYmDHaPBFAI6tw7nc9s223wme6rqxhzILJ1WTrcx7AtyMChRkUVCPDLUx1Gt9tUiyuOCyoy7btS5AKZH73LTg737PX6c8NebE2Tk3Aoll2FMRTA1JrdeX9q3wTQ8CZ7UG8gLMZg9mczKU6WmYxV9lAtXNUYzz3LFNk2lfZRbfEADZ0hUYtQP8X5XS+HZ0bluYub3XDsIKdpys1RxCYNznJVIAGyP2DAwwymj3EvJF5efT4WAfl4jVNEfbPH5VnvZLGcZ/+c9+7MBnxHLt0lqIvb2Kuc3RbkBNvxcVfWilRuv223/eFAnGZPE8IkI2nzF1mvZhj9pbztnncLTccp2+eMF37XkV1noh3lb7nStkHt9lvbhLiE/RTukLzWc7S1ff3MZfS2GvO9ieE0Q2wCLKtF8XVR9Hj29X81wvpa9bpt2VBlAxhr0ERqpmD3ROmkFVhUjxgNdAuGtbyQgobKAyemmrfpram0XlF4UjXmI/6acI6d6WTOONla7nFS8sas7mQcNRz1XDYfKSaV5xKq9Iioqkqnyam1jKfPDgNJehWdSNdG8GJYw80usFjWygs6WzrmdTXBC6tnl8DTxIMI03RMGECGO3slQClVjGvcaUQvK1c/Q+8Djrd+/yv3z4caaPnVGi02oapay9z9ih27/iHJu1dwWYiZnbrrrcdRzwDboJlljLbuqaa2vYstjLSbDrvTlyYkRt7NrtpyEX9gEUjUR/ck+0zej204zvB5Rjjb3rm5N8xs1qNLG9/hYWmDcc/e31kBCJnOYpom8b85bR1Og4ockqAuwoitPKNcwZHbquK4rBcuqnDJgYg4tE59vXYSIoIircmFc6XvPKBxZjXoXfi/LKM+6rTPsmuWL3QaJmfi0Y3aqkcfJ/z6tGHnNfYoHmWgq7eXivtUCfd0GMfN9qTWfnijHROmwGSF0Y2NkA8kWAGfZhnx5NloPRjUXI69rCjlpTsJXKvMuDZ+DWe+DLz1hgLVDVqvWru7Ua51F47SxXfOBVsfBKhGNYU1cByaEetwXkIImhMEZlcwbMNQZzfmJhoEQMuzTXjf2uj8SORo8HuAZRM/GqREYW7/QSagPVXuEzmDQI3UtFDt7iTi/1LNRVSd0znDuZcMuZbdZR2J3ULoJ8SP92+O8tP2sEyEtM2lOh/PoQCljPK6/Q8zDVnq/W8m8T0zHYOU9IyRQz7C4OEESKmNaxjga/6vrGKjx0pUq7bw7vd2naYy0kRHjJ7S3n7ubm6cIMNhJIDXMMa8bGHkszCh8TJIDXLjzePk8Jln2dmvZL3AKHKV4R5LRdUUP70zmTExFqTxNMWZKhkeWX6uHqzu/hSwgIDFFsgkrI5kK+rvaG9SDFlDRIHPdeY1+umsxFHWK6jDKY5c1FX7dn/Ih612KO4y+4QHTYc1dK0UaL9uvbMGLaQXH5ojsTTGRI1PjORUK8DENIEdlu03MBL9rl65ppj+fWXefAWpuzGySYedA+OAa9S0HXE5DSEsRZSEHjtexe245KPZ22oQ4b1Fg49BTdkeMdI5oIJJVwQyGcsxoOKSp45Az1R76CPHKGaV6zWdRq2lgKadnUth96kAAfiG5WQ68XtPTGNFJ9KJW0bGq1XOGzKw6hxebxbg4fQjXtcZT92Dx+lWWBi4ZrrNmkJxC/eh5jRdz9Hai+vO1Ng+uyttf1JdNl7VABQjMl2pjl/Kvt51ch0XY+19j6u8G4GyXQUhFO1MJuDWUtPoOBnJsgp3rBkqCfhEijbQCJLCHALuTuhAlrHM58vIs4mxDF1orqawsBHBxfQlygwDyLWNp4WQwIPu2tBrX7WNt+OQTjxta1bykY3ZUiYNp1lxVFqhpD3y5jNe8DrPl/GJzQzah1pQoCyR1zXjWZda9BtVY+V5JybxFm/jypVDtwyLW5jO3RPvSiBWB9vBubZZSopt1XGVNIl927yy/tNrjfhQQBa/xn2z8hnAtgr0cQTgCxcFpqmhZm9pGR2EjutWp7vZbv0fPw355E7q/g7U/AA89EUlahrprpM91xjqDVaGtGXU8GokyaACxARpGA3AM7FcKPjcFgYDPD7MxA6mDq75jqlol8AjaNmqZSM6LadoDrUQZdek5YbKiPG6pJEXxIY2b9WWq+q1g4DUheIMOUR0+tMV5UGuEdY6PHO1hO4PIO/UEa1gEGtG5rEWh6KQwMJ3fnmu7ONdDN9VXcAjEuaFuYbROYdrcEuqLHu3Msr3WMwX549WqUgyzM2nhvpUWe3WMeZDrFwm6NbI7BxXtAaaK816MstffOWsThzoNojphpd5r2VX04suLbJm4pevww3JoxHyjUMKCxl6oytM125Lmc50MVUb4AIQjFBZguqBLoDTWlXZ31MJPw50bf2rRPG4+CaqPH1pFunMJOEV72hI6jMY5+lLrmYY+QJcQJppaei+GO0N3pRQ3DFv4bZbDTou9s/5ziFJp46TzBigfCel/KlPA8IAe+bpn249e8bElhIgb2MF475QC7GRjMpAx0vdjJq2kx8Go+KHnViPbliIjGZI5RzTjLvlkO8Z8m+LT76PHROa2V+LihFi7Uqr2oHzuHec/jZF+Y0P/Q42w8foZTleYaT61W1QkeDmTa480d7RiT15hB1qjD5YIuQSP5TsqlKo5q4zsipsG42/sucrzXrtNk3FcWOxEGvOYiETAvt+GQZlCtwbmXbgZtUmXPeUV9Cf69bSTofsfMtguash8RsWJ6Gszxx99/h/9uTMg0iOFa0xmlNhgdItRSI1sFcrynfqIGDfYw97qkJYAHYW67gobEvvaH8dlfxWflNE3RoZkXvfG80M2wLST4cbniK0ubgehsY1a1Jxa2uOKIq6Pw79u3xG2KmHfmFWW6rGkfAtsDgGp5nP3ZmlUWtfVRroPGfVaqibxj2K0PMza+wxUr7cXujr0KRn1uffgLIeqtewY6pGMdbSxq1bS3pbAQKPu1VPPXdmjZnxeYGro3TFE30xoa++eor84CLMeoVsJq2o1YDbPVOHcND+ieLh2TYNUUUgvc+0xzWD77dGhnLT7oqsd79rHzqD+7+1bDncv26wQqjwCoFwJkFocbfwbYMUaDshlIjo9hDmYWIsh7BOzsUFvfdXnaHf4wwE0IFAV1P7F+9IZ61KOeVYqP/JqT5jq5hOLGo7T11QjVHD7++c/yWJow3Rhhzk4tTrdp32qnaT/kN9qaJonmeFJo3lt3YzjixmlJYTk5qQgWPlc5poOzSozXTYVqvk7SZNTbQh+iv8d/c0LX/Vy2rmbp+t4cbWfclxHLOEYZWOsH7Ux+scvxQgnHFAvPbTYRgHKUUUaxuSwm8TjUndx28d9B8V87EN1KmuWQtN+t77lj/wckWn+R4EiAwSyHjZ5a1xijwqdC0zHnBEvCBnN7qFZd5eIYyViAIoLs5MxG/ZApIc1IyjirjZs9LN3SQvBxERR/9515fAp5U2jbePYIB0paRwxGtgl7su0C0jlnS4J6e72oQwwxx9Ct95yfxJLZamzpHB8XoZGFy9Gxex3PPhfwIi5ft0z7Yra1PPlGJ2E90sYagKHBFGX4bRdITES4eyOAokL6LYY9Io4wRjfJovZIp0E7oD4dc9SnvStqvPNFTkQjf59zzNZXLkAOMoR6B17x1W3GohoQY/21Ewn17VsaqzAiaGY1WHNEp7keRNoaMpCWVkradV5Gccy6M493jPvT9t4L6dayp/v117Yrdh8wtWBuPkE1gPIYPHbdkNM3nlThSKm+mY5xr8t6n8o7P+Wv3bnt0w6rTc1WIUUITK0Bbn75i5aIbSdPMrh0RkqcHhPYdojM+b6dGiHGKIIeJFDEjFELoHe0KX4kRu5tM7r2UuvqoyvOpz0uLkVeXF/j3XZj8sgkLLa+MEaDkoUwyaFf0mynK3EKOleTY9pX+fcdSWnhKYk7W1QUidWsW20qQN/AJIW6qJbebRBUIrq5ytoHZmRRqZnzu+6GL58OTH3lnr2CqKoZ8CDcn1aw0ecbb7xh/7XZnrT471W1nPqvQe0bGPUi+9lobTwfsLQrywuhmYPe+Xx7IbKTZBoEjR5fjnoq0IqYWIfzHN5oHyMR5hIxE45JeOk1zaF5zQ2NeZQ6BFhqazVOsjwVzuzbiDASYce9U5XIII2+Zc3+E0NuDMcs8U6WYI4bODezZvY0kW5EwBljvNA3xWqyrf/4CwykRQHDNEQyH/WpJlVIG90G2Icu+nxdixcAVKBxVAzcfMsLOYMhv/4Y5kzttetGhMwx7PUhrV7a67YO40tRwNDNgYFjI8bTRqZaIKQVu1rLv40r3LpxW/M4TeUGNIlYf880/+bwkiPCic6XZLhwBGUV/txj2e0tFn776XRC14jZ8zTY9hQ5rnhv16gVCkDZy6islkDswPpxrgPj14XLYmVDV9aU+PnDlm98xYsOeEJ8pG8HSxCQRUlaQ7E+CPCon0Gu6ZgNzvotEjC26I3nSxEr/LRbzQtfWAjbm8OQIWIIiXVbbDD3ojs0qhH/UPSTRQlDuxPGCUzKbtx2BYRzq6xm2pmUXNDirv3fKO2+5aUKrWPaf81aFbTSF3t3LWniJWhq2g34AL/tAHnt6+eifN0y7bPJ+U7ifmE0LRJJYEhN32DKMgTmEWzeWq2hIbEVlMhNrTGdl/zTZA6s33fbNF5Q+vc0CpCdZNWbeztmy2A15sL1RtfdjgDfcELzxc4h2YRPvWyT4xapm9pqTOrDatqXl5/3d7Omxa4OZ4a7MEaJxKoMEtA2EXOZZZWW/UHgFlS72KVl338xK5Izdm5dZGEzKzCDDF73Ddy4WyIXJ0oUVTV1qSaedSlUxeGjaXug04Ivjml3yNjd6wJW7HOOmf+Xv+oVQCv4XESwJJEN3EmEbQvs6wsz5DjUaYIkLhCd8xtuNTzq2Ko2tfsXR9+k452uety102zH67crBoAnYFrfQbD5q2Nfp6i2LI1yfrfaF/XRAfQ4/7wrbq21zafa15ddIi0K8bmqKbKEkYNhtn8uBZwsIqa9JZgAIv/j6HjwDPz2k3BfBW9/Er76THimlsMzC8+uo3qKNeeC+rSPe7z6lheptn/V2lxRHSKa6qjvmPaIeY+v16xOKvbFce8/h1haRChFyCthjvLbZdQ8SmnEHwGCNjo6MDA1UI16emNRBgG1x3f6uz0041rYcxY2EeHDxtDngefHboKXXItnjq322Pldxm05h2raY+bLWHznqtswMHOdLCukH6C7w7e1gYsJrEV7wBxbw5yPNO2RWXibAvQm8qJ+9A6nXAcMCqCfeaax2hxQ71UeFzU6danEbh3oAF//vEASeOErXsJpYHhtQnJ6W033EdJK8XvmhG2H5TTj/rvBA8yswlgLDWOA0YDje5Va0nlAqN+5VPewyymNdRsN8TZKSA9oCpScP3uMK2JNuzsn9t2G5qwDn13p0u5X/N0FUZBke4wJmu0YJMEKn/bdKawnlEYFdUM7CGU/o564OlpBBlsgt13aPu0NreizHMNXf+sr9n/AW20SBAoisLtgPkzoJSFzk4N/vUolETFOdrDqOQThq0vk3iARnGQL9sZDNh0MHkLmHPGkvQ7cu61JjImGaam0nTEw7odcZm3htHv/iEp7jcfXF1hm2uPPN5rkTS5Y7tu8XM6e4uLXTGKLAnuqI3wUDdlFmoFRQc339+i2ynku19PXLdMOHQDSRo/v0QTo9BLMpA5adQgm5pagcRWmoHZ7iWPam9/zZWiZdvt9r223N+J0b0um8ZYBcxr4HnBChPM1yI0nKb95jQLY+vbrOXvjSdYtIldfbRsdvdm0fUaIJcSezHQj+DEyhsSosioH6CcNpkAB/9GtaJePPWbca9Sf/RVRv2Jm3cUBWFkioiWxwo1EBLO9wKwZkvUBz7zsBm65b0e74gIpFbWm7Kv0+qASS6zbR2zW7szW2ibf8XUb4LlzO7p61zkEorMCChGO17BX21r3auoNjRxfGwuYBmmglN0H20RffKvVtgVNS4Ld6O9d/Vh1ryBYErj+DFmRQk7wBEuzMaUKl7oWRT/VPdyqTM3Gl9vUNo93VfYJLg6+La32XXaJ2ta4VZcsMnX1CbJC/V2laOyLlvakjisQmoR8LfD5081vf+50c/6vELbqMuP187mTq0lfPwlRbzvXpiyvAXcuKsi6AtERBs+5UsR+8w14dvXRdCnCVGC3hl0RdkX31C66JktBBRJZ2oGHxPfPmZIvgCwxalk2XYRHIuLNRN10VY4tDiwts+gf362Q1MA1Bl58TVhHbujqZUJHUK1GI3J81Ab3e4NIy1GWyEDhlIAKpdC+LYzROHwWaZoTa5itubekAiJBTFPoFKd7S00IRne9tei4MMjAWFw06CFF6fESxBeXsDZck1BaQE3BBZmW1CPD06h2dHztELZnpFVNUrlAdBrjxkewO+S34ub5cd4VGKZh2ZyA8d6sOYftoHRXoXStF0GJ/FOuDyuOg/52jH3MXa/i9u7Ce9ARq4aAdxqxU8S6L0QaRGprFbhTw/Gh+u+bQG/UJkXTMLi+Bi22Uya5+mPUADpmrh0uwOxBfbns4tZdZCUjAJOSveHQw21jwFjYnhUlCSrYdDCo3c7nS/GR+13cCL1pCcUF58aZjrmBNINs6txRYxyJp1eiipc/1tC0Wx3yVRJOu70V7zVHMzmm3dF27vmus29juzim3SlmErvjxwR3N4gEJCrgaAei26JpHg8qqDowFd1zUL5umfb+UJdEe7D3jEbUxFjdlDGqaZ0GTQO4iYsoIQvhEizS7GWAadZvCAHpRpr73TFEcaRHQZn2m6IvtE3jnfTfETSngGfcvhqNqU9m1MWATXEaiohhl/rACLOdhLJrz6zEDBOP8YwdL+/PNLB52hXiN8b3ckttTVecRiP2QXkY9Wf3QedQYstpSPZPb4eHIAZL/ADJpMIMFSXtvGqdG5+8iFyYKEEVRZCXsla3iEvQtrdL22fN+fJ0wc0YyLWZ5Dht4emvPQVRne2ouqauvfXFsVo4Z5GhbFXIiXH4hnPp8FKEqAdRo7qAqrveJQgTxgSBy6p3YmLJ/c0RJzHT7n4vot+eeFmSMNvf8ypIYAEffAw0cEkeYbs2Q0xz/lw0+7ZwxAUJupKES7tC39+qZpo1hRIOnkmaqEk4EcKU1vuN+u3Fq69vfv811zcn8Er5tsbfiL8jAvMc1lMe3rl44NpciVEXBOl7l4TLARLQFHPtep4DbXshwqSGvVrzle9agdtuLewBE4GJgaKKrAhcMR1LRwGkCp17mqvX2A3tzMgdrmkzPGNRTLeIhgMBtku4voect0DFc1wSaQCbad9ANe0no2bFQmtEmWclmCxumVUwCDi2dhcG9gysOYbdANekcHbi204VNbpuzqPiWUgw1jVA9HpRUibwdJIE8/iNlGpnYV22ZGlPHNoCxT5fWbN4j+vyCun1uf/pZ7jOAGsDkiGYZyYaNV4gq6Xpp3+Y0gaygkbVF1Tr5uigUcLG7kx92rG4XVy/rn70+DZRvU0zCF3jaAnsTa24OllUmEVJUlSYqmYo0oiz4r4Xn6902Q9/OuY47otj4mPmoaGZjbS1bM+RHjDqMTXQM4bEgj0Zg4kywwQQF1qwSua5IGR6GNARfNXXdchBAB5+9Ml9/y6VVigQGHaAGUw2R5Y3syPlIrAWtaUTIl/9DprleVFc2yws8RZMALtzzq6rS6pBmfbeohk+3u7KMPf74dDCMu2GIJyetoLR+fePbpRkxeGUORtok7qCDEOsZGjh33ihFVUQSEDYPOupugFEFcbZTNpw5gxqHh9b7bSZ9vbxXJWvW6Z94/gLloNlGZgbjR7vCNwEYJTpZEXSJ8fAG1tDTKhTAcM4mq2JItracz/VAGZCI09hZeuNmfbYNL5NxCS2PTcIXHQIdTeHU2PSMztqtmQ17FifPGdmuA8L2xwY2yZXzKKAYdLU1htN+1YCMrAmltbP2weq8UTRs1/S7SB0nmgiBKGDkKfdadmX4yd3VGzbl1gCNREwFyvMiQHGGIbjPne/9Ea4d1uHo7IRkK2JvDgf4ANKAyFHQxEztbAaWMU0Wdff5gRN/d2f+OwSHxJiIgR3ACNwndgo0EC9pZHjnZmpGBCXOqOLSZHlyzbh4TTtsYbAmbS3TYxW1eX4sthM0P1u50X3gPdACWyrsl7k0x41pCtAidAUksTVaeCb7n4cJZHbqNstqkJzbjsnllgmIZmBOgSi84xUXFl7gQG8+Fp4kd1JztzZdeZKUz4rzHjZq2At46MPfcULTjvbsF+7cqym3RF59n4748cmmq/efSPGzldRtF6JMK1hKnrs1TCp9d5MhJnAFGFmVDZVZ03hlG9yoovCuW5NBTJjYH2AyZvjrQy7PVrDNKxrTG1hh0SEz7SgftEJfWjbitTsWlGGokkTOhgQm8d7AaO4a23PBkKBCi8oKmorVKl9VHwtk0SF8MZGkDfHeiRncpDaC2a9X7vb4G6opGlenRijeHRRUfZTTgve1aAaQb0oNOK7CeOmfeaS9oVF1RbPWVP5QpBhjy/d/SVeYIz63F9/nOSMmvqndQhI511WDv5SC5jZd1ygvoEzjzew0Wc8LZgKBF9gO9/1JXXvskqM+9pxEI7T3Lrx+gFLhyxqmFUajHBRkC40hWUyK7kur5nYyrtg/dUqq/BnQaAPPKqy50bke2cJ4faatTSSnRw2+pZGMOoGio6VDCCpIm2t3aPet12WGRrXvl26Y9Ws6s9hyh/98Wf3f8DlaK8D3hIBdit2BwNP/7hiegbyioGixjA2rq+X0LarUlzfJIy99rGG2Zxzo5SxQjR6/YShnbtILqrVXzp9BQABAABJREFUNATYLdzpzrMq0EIO4E2KZdx2xMLpNuhx17sove4snsesSGvoutDoMM1256VKNyBKIWFg0Nd4ONBQLIpA7W7baty34zgr0MzV3h7Sqx0HIy5ft0z7+dP3A835Bg1o4iKhe+LE+XbldjZjbXvd9PHrgzoVWj+aLqUPBs+0C8ESpY4A49NoEDpPtBAUPl6TLJqT1QDXI1ywddR5Di8/zuDiHicrawZbRdr5ipB3d1XZZyOYvIKBCQjSrhJvHp8lSgguquXc4pe56YWmlt1dn0GRxYtpatlj8/iVdToK0ja0oVGaLzCjIQbYMIaPvnIdntxCzuzaKPJ61IfUtrcBVDy0sc8a2Pyp0XuwbHLe9aU5QfL9N3/i73QSMnEgOse8ryNccEhiZ4pspJaYtj6wLnBbGcaqcaaZdzlun0PkcUo7WJHKw9XRcd8x+TFSdkKApZQ9QmP/NX6Uka9TnP/QoObEZdU5uE6DEbcr9tWHJkF1FATMvqWN1AEXgGiRpUsWCQBkCUllBWpecxa9H/5bnuMN673/gpPNiT4CgdzK0jVozuR9Cqz1+B++73v0ftmanFVSIAjroaQZrKbh1+4Oo6aD0yYOaGzmq1RyUTi7EPVWmdWimnX097wW/TswL2sWsXDKMrQu5Vsd3ds1RvdlPsV89jF4/Lx2PZrjOOUbOCEwrEmUesqtxwtz2MyQEwbOz8JYWS17LeI1SI5Jmtt2N5h2tz0l+LSPUKZ6Aho/pRdyzoegr4adBPqJTflmgBNjyCvMu++FR8427a3rFsAQizusu5SmfQMzr5As40kifDRMkYWaxzumu8t16MBi97MTTLtDcmDcY/i9f52bnZHbqTHp6V3rey+kjRfk4KjuDRwf9o2ZForTjbFWdGDGA4xAf5Y3+uRh7FUSWq0SnG4R8ii33Qg9/FtUagqcVz59ZbKoSBd6Pj4vmc1LcLDRfbMFQq50aUyLa7o9x0y7O5xJum9jHQUI9Aw8cL5GrtF0b3MMAx/rAcggnZRNOsNawazi9dzYO7N9w7Ipc9c7hyk//VP//cq/hVhJoWH+ejpn64QNBJtE859mUNT0iGLMxvVF/Xx+lIhhtwNZO8Ayr7i4PvCpqbNBwqAsbbyJAM88c7u0YVp7fkqIHg+q4p5feeF0l6xfUKY9NkU/KHp8g+xYIs4kZE+JCaFNtSaLN7mD5R4V2OuL9pG16HXXrjhw5RKv8xyVr1umHTrWozFMDazZ2fVMTmpU8uz8GWGJeEEsLw4kcxRIRJWIvfbzOUyQeWmRkDQWiRHhtIj3affR42kiI68xFfXnOutohLxETmaU/YQXnZ+EnOMR804l+5uLuwGCJkIHmFaau5VA34JRgOgGpY9GkPeAIwIUl7GoS4kIpeh4CHgBdvxZNo8/WEBB0CrVwRLBnJthTuiAH08MW6MexctvgnsuKsHp0r5VTtMuB2rbVyGwOIAcLAdXW4UA2zRT7BvfZiTjdaRCH9SlA+GkwMSuDZnUyMmh1VzZ6PEu2FNX2jfpvuUOh8gdcneWD+3gcV3XMV80QwMNNogxlqPH48ekaQrn/5C3zeOjyvoqlW9Xtop4iTXtMcB0Pu1XrkRECxHxYdffdi/xfm+OZ3FCiaRYnicIYwZ0a9t3rdncJM4OQfP5Iy/S2J/+vLD7bK0fEPMiYqpXbbSoWj+p/ZYtTpuBBxj2YBqHVXb1XB5Mu5RSi1BiGXcJjPtnBX6xgrtLmIsS+QVqHl8NAkPrim++wbtsVcCxpy7Qf2RO9jQk734C87WzCjOckFekAUuMXS9jEQ0D4TerwHyukaqPj+FcEeYwIpBoDed5W/cxunEeEu5tYImmSuNTCKYxDTWa1mpdc7eptv2piyq0frDGvONJeOhMxOiytIZTsfFQRBljY8CUghn1eNqOhBiQ9T7Vnva/jM1122vloCIxsy4Bx+0JF3o9vgwUomnsklMp5pk9UqlJarE52iVo2g8isNtCeTuXZpbDho1ZY83jTQKLUcZod9HA6Y5hv1pp31qo2hPKF2lGd/bCaXto2soKMw8H9kjyEpNXXLOoKIqKZFH64HoHgZAr1b/24fBnOxAdNHPM65wILu2iwwsCyGSOjEdan3E0gtaUZIasVBPrNi5wsqwYXLpnHH5zeN25SMbPHPkYCsFfPyYQENiacW5g1GII47WrJtU0rn3EZ/syobqjbd9RFNsvJ5v2cHW6gAR2hz2GSprR72cM8rYwoiXIX/UNRAHxKOJXxj1laCGacLcAjraLsKyc2cGuc1FYtiayRCc2GOSuCXTtnqMBhx0ed9r2kRXAS/MVD89sdTUaL+M6mvgI/v+a9uestAd7ZhzjZKXMTkrfBzMLiSxNiyh0BEUfSHIgSxsTjw3oZauGQYIsyobkuBaQWtfZNhqILiZaGv7IWJNBUVLlJHDe7dCFIKMeZ687zg1n64hhFx9F3hwU6blrIzimdob6/TqbW7shekbNrgBkmNiUdjFwdXU++51fs8y4C8q0u/zsbrzaGvd9+9rSJvmxnSxIRikGQ5YZhonh3LeuI+d2kdO7ihidpr2obXqs1dr2LkTmrp2ZmVsmnVEzo3Houg/NlGhtIgYioU+tlhrUen0cYRuQ7SkyAIaZmscnzkTe1hAJr0LHwn5owE57dgx1HORxnVbwOOl+Nz7Hud7dPgAlQPbzH1/K1T6VKBVWqy/9ZIn5E788pEnYRG1qVzNiOVJt3IQjKZF5oCtSVmCgNInPZAb4feoEbu13l/z/fYXRj9wy67t5PCjRs5fTmRUl3p9x/Xt2dAdJQMYr1+YKqtPt016HAMdvHHtjPSJmfL0cOTGzX3HwrxQ1ECgFPg/8rwJ/BLxJ4MtliPtRSU3VSzwOgngdWoGy3duFgRc+tIWUYAaQlsD9Z5Uxt3OQ2M3QiMAtMBCY+UB0+oJcqGGtT33tGlxYNMZJKudz2wzGeh64lpZw0X1LgrARgTHqCiA5GkfFRP0C9hINsjdyc2jAfPWc1uU68NmnI6C6DIBSpCEETgSSBfRHPfaAbZx5vHUlstZldSwEaG/Q/Yq4yPHiX6+B82XFB67NkAR+G3hEIL1unWQKZmtBamF4ZLZ3sIm8X7ut5+aCsfjdRHsgXx9iZhanO4bdwZA4YNYVKo757MJ92wSmHQJe0Lgtor6tNkWlKWrrzx5p3POKUV5TLewzi1Kt6GTJa+KKly4c2LYwi/dFHLHdz4ljau0aEBE4O4WTug+mwCCyMEv6CVlZ+uXgtbtRO7oOx7TEedrBCuSi9h+pXNN+XKpoHTphxSxnZ71HnwC2jTEqlK10/BYRTnf9vJrze6jicbP2S70BBNnNKUc9RsYKIYGs1yMBcu+Oin832IxEcIHoXNjzMNK0D3pBC90gXI52oNpryZuj18K1i4p0XpLOSzbnJfmiwpTdgjQPXpeEkB19A13zozREj3cuMbGQK6LxLtAdL8Mx7Y1+RHvmuSpft0z7qRu+uZNx2gaGQUAXCIZxov4RbvFLIFiMhQAG1QL2pUJD1oYV7r/lKh4kSFFRGbeXQqqBZ0QH3iGhNuPuTeMJ2o7r0P23V1gTp0GPp68fcs05Da3S8F+uNW/7gRuwvRHAEwJm3FvS4vbRlHkApD2NUE2019t1XWKJNQ8+y5T97YLQGZq+7BmHCELXAmhhjASzA+bYwL5vWEsMO/0M+aabkE+fV6KzqsHlaj+Etj2OYeAOJ4BwyM8Q/LTbQMrzL63hdOecwLTf/o7bfH1AI90btR0vC2k27Tpe7JawNqY2iV+vtbMSGaKEThfD1mpL3L4pIS2aa0vss790rOhbV452Q9MqYak9DSpIQkWxBDaurGcC0954VZb6Bvv7tHemoWs16VmXCIc2TPyKCnoEISF2/TuY5hjUyjssHgIB2ntzy7TPmkFcnpUp8GFL3JZ48U9yu2EMv/7hP7QAqIwHpaOu1t9cxgfn920iqNY2kx/1td9tQmbVt65AKSXAispe324/nYpqkf4Ea+YngtQVdb8dENUEYtzbP8Mehu2XH8dYx1TJgG+6NuAOlCBsWJlZQLaOWH9neywqBIMcH8KpDM5Z8aPVntTg8yx7v1RCPlxXfyyYcxZjroxRVwBqkH62BEP20D3gGJ3EGPiGa7Teyrb/NTc0idGWAMrlQU8kYt4nkPR7XAM8bXGQpAl1H+pJ7gUml2pd5oQdTrPprPAEeNwU5L2M5MN/yDSBPzUGkyYk1/ZJnp5pMLo2w34Q9dhuk8N/0xLTV29pE/2fr49Y3ybAnTpq91XQtDsQJPbT8SdjwjoW9hgs0x6lrjS5MvDmoTPwkfvha2ehUE37PFemnqLG5KW3Wro6u3t//NmFY6DFtEeVuH1VW3VkvZMjmyo2L12sB1th2k/pO3oNAk6I93RHO913+7ZdzsLvcvHef/mvH9jnr9Jqn2XcFyXUcG5tYMF55MI5yqCywWH9uNp6WrTG86IIKtiEpvZ3VlOuDxnGdEtPbSUXRRBYx8YHEtXZOEOgcwaRe9hGP2RiiSsTjnSQYnTu3DFYVMzmBSfmJYl1WxnPKrJ5oZbOiyoINHxzWhPoJtQFEx50WNGtR0y7fVcIY96OlxELBN15BD5wZdc6v9JCzFXlspn22WzGm970Jt785jcfRXuOrOxuPbGCcTJN4OgkWv0EMw8L2REsscQTUUK9l1cwbE9k03SPQUJdaC7zpludcBrhZgkMaMy4x/nH1d9OzZszhBPA1ixXYis1PHwiY+Psjpf2mzow70nsrNRZWoNjn3URRoN5fCBsR54rMEpE2T0hLULo2RZBiVYfpIdAlzwEvJwwVm3z+AMrjibBC0R2F0oojnte2zBOEi4YA6/aQHanyBOqba/LmroSZQK8tn2ZalqFxBzyi83jXfRx95y03msfruwRoqv/ue967RKwcWOUIN5fNQEygU2BYgvqkyFyvCTRN0Z0mI67syztKXfEuVxd6RMsCQ4aH1fiIHttbUMc+dcjrbYGKKaGYglsXFk/RFf3/YrqbbcrdmuIx9j5tHcM05ETCKFOQfIaslTjqxEx6/bZxIYMdikKY+QucWMbN2zZQzfUXjOIS+Odoy7ttrhvTCvY0Dn87ld/a7Q2O4iMeNDjNnqmvS2lNRFgt2UcIfolQkauCpL2AksCHPwb2iAqdG98l/7UZhVCnSlR5zXR0VncbwOFgfLmU5R/7UYNKPr3XoB5gSbSctrtmGE3Jgg4RzXk8YDvzNVap5cgJ/twftEYMxc93mmD3JtnCeneoBV7g2haxKboKiptf+acfPQBwVrAJGBSNScHMC88Bd+yhunTDKZYdywOx6jbb3tcXJRgMm40cBq8EKReT6hnJSWisu32+jtMkSCc9oy7wIu3C/JhSfWab2UIfGeiDEly/Sbm9Ewtwxy37yTacoA1XdzvyJLFTATWs7AVLBVYrPdY89opvEYKqwW80oKrLryyn3m8F/bEUv5KMKWQPHwW3vUE2edmZO97HB47x6CsWCwqhSFFDbky7rVj3K8SEd6FA2c0hd4xaFojssjzWmRp0DUyL9Vf5tgIDOzgcrTrOuoNMjLn0IubSvHMVAMtRGB4ErULAtPeifcuYQz+T//da1f/MbIQk2jfyvYchgl5mpDFDDtAmsJC4WPcjiuJky+r1IFh95kABNiG6drIur0FwfKiB2Ve+nkL64DVuBxsYFVbl6MVxj2bDo1l+HWEeyCG+wAUNUlRUcxrrp9XmHmJmZdsLkpG85rCZnuQsla8EaHgzkXm6NTYis5prcYpLJop37yQtEXHXiSkk4wtzDZYoVR79kNyJOWymfY8z/nwhz/Mhz/84aNoz5GVfL67NNgTowTMWhQ12G/8TFO0AUEiHdXn6X0go0IsZ+EC4li0Fj2YUs0DweJc0UAJgZuiupsRbO0hUco324lTwGxaqQYReOrEmr54YRKZxYfjYPO5rk2ukWV94vNIWtsnmMez0dO0b+29fhnQMdayC4FxP4/6wbyESKhhmoz7/hVHhIsValALyXaOOaaCiRQwKRzPDLtJAr0UedVNyKfO+oB0tWPYvf1qd0e7kFnssxZL8jpzj684O2Axi+q58ZabGvxHIGicqwTBfUI0QLbszuFE3xL0SpBqFHmjAUsWLbAUYfFVCHpKMJ1zZY3VPvtdvyGkV3MlZtpj/3HFURHig8gkzLZ/yY/Z1tY3NhBdRJ3E3WzebuSfj5daHD0+fv7I0F6sXbcVC+gaTFIWYgOnBtzuGZ8yBcpqGS976qBVnPNYCVzXh71Iox3vnytB+bQpRfe9vUqjwBrDS2+4XiXqq9Zm+9oVh9gj4Yb7CTRNrtaSkAqn/Y2rQPH59Gg0GfdXAt9un/kHAi+PhGxSSCMyvmfYQYWriY0enxhyYzQ73EtPYTYzuEbTojbSiNXSyJmOKLwciN1Wdq5kUsIx6yJ2zVg3blH5OrzgtYr2KQrLr7F9aZg42+95E3mEHlDlFSRoP2yjHNzSFFlh/rw31wtPYm4YY3z2A/shx+BEG8p9MyMIc5OiwKzr/Q8DD9VQYaj7A+p5bbXAgeFpUqb7TbBthhtqpylFWJ+XvHIGL7ruev45hlc477QX9Eme2vYBAQPDzsHa9i6XEwHmFWbo4pK7QYN6A8a7QafbZhCvBk/bZaVWoDjvONE6ccIeCIEU7do0AF86o+urZ2MQffUix6qasrRaeMu4S14jeYkU1dXY4ku++u6bU7qF1RCCvwnaV0HA5mlXIwhBzs+RTZAsQYxhZjTbj8MLmcOFReUZvRgvxEGS4yMWxhvAicEPilVzUHnpi29e/UffgAjvgEZBH43IjcZXcgvBYOn3md7Ko3qOHCcfQWlY3Hitsm3sZMFknLHeomnLLKNctPC5/X/JCCa2VluUUQAkW+koDTFrrrBw2pMclSq6yCvKRcX6ovQpGYd5xXBRMs8rKGtMWTUtYBr0QdQ25yrXlUpinMGOMxWyVdTS4MPcHrxAUyDo8NIaynf4vrSG6rlaU/sy7fP5/FDH87m0ARBEhK79bQAzzFTTHu0IT7T4yoQ+0J+XVJZjjAkJPGFhYJhRL4xH8DEcOoNGjveB5mgyoSa+j2rNDXAMYZ7X1H0lZPeMobr+OOZcGXLtejN52Z9pj/8Ub/JZCSMHD4Nww518NEWTIbPIo+YITGwaGiZHR6Ja9htRRtVp2R3j7oKW7VscQRr1NwGSrRIzHqmlhdH+HksSLiZK7Nav2kCmC+SxHRuUzo5puVrb3h4Cd55F7XZz7MzH4+faCsM2A+kMpNqB6OJrT/yKxkNwOYgR4QRCdnGKrAfiV4xqsWoD9CKmfYUFRaN9Uf9iiTw0U3m0x2PV2Qkk2n1qB+1bOsdrzpmEeZ/2FsPWT5asCcLylaU5bKfqc+d9U75xBMWthUgTAij3lKUUtAg9+98AqDOjSNJV5QQAUd0rA79du7YUxKWxQI+6NDBhtOAnFRyzPTSmuTaXrCvi+qI6iipQmrHJYbweGtL5Vb78ckSTuroIwSQ+hoGCEg8DgRsNQfgCaubea6JxEZRhdz7uVsviCfnUwJrBbM0Dgx6ZyMeZR4xypmyI+pfj9scuyPpQ4ccoVcB2bubXqvdpFwlm8ijTfpIOPCcBbjmcexKgKJG+8WlVbWt1eSR4f/YG3baWYOateWwBWIn+ltnvewu3Sc7ZPtxlYDuBX8HwiAj18T71biD8llOdHmKOK2nSBBbnURYUg5S/YgwvyxQXJcZgblgjPaNmpEsB9Q4MRtdax04ZMc9hkAbm14DBIOOUzZmdQ7fw7MTJJfTx2Zboc41jy/79OE3aXNeLDU/oxkTs+n3ldXpdOOI8YVzXlA5v28Np3GVRecukK11W4c8utzBD0yLPBaADFzPC1rCtLm9u5y5MU3PfTxJKdYzGYzm3fLrRPKD4uy2MdwGJV9Esl12sVEskOjsguDEkR+FYg4ZPU5CKAbBnN5a4uuweea41pL5EuM710a/7yZzphnVHiKKiLbKMOo/mHXBBPhuC+PZE5BWMY4k+ME5gGpuOt4igo+hiSwhEpbGhqIS9ouKUDRzJQuNNjPOaWRG5rlT1Mt3T6J+oQMKbTceaC6PBa3P7XB1oHwGkbsozLxKsv2KyoEvpdCXJoMOWbL8//sAP/MDBEcifp2W0dqpBzAswMTYNRoN2swzpMNK0QzAXtC874qYP9BeVarLQv4u9aNCNg1S1l5Hpi14LZ2t4DSsYdFtfUmuQHIPTtgs3AvMcONYnFwX05rox5pkp5ptP6LOxpr2ukVowSccctqXw7rwoMWPjtevBBVTHzkcOHfRgUSzRy/rHZ7eiNbBS0zRUUH/2l8bjZZqM+4HmIk3/BMASadsF5uRA37cdXc8MD9YGIUGyDPm2m5BPPUP9ok2kNEhhdDxTe2SyZJ8v0WexfZmi5jbQZPq6AtEJy9MSI3cITORD9z7Aa771FY16jTEYqVXY4y0w9HpNYDCZw/GBatkNuk5tO702c6kBOoZdmhBBkXs7OF6sIXDj4MfF0IlnnMa+LYwY0RQAuL3drgPolsDGA5Qlyw7yEYJoz4XT/rer6bM6ON6RwfQGUIkWVD+lNMb7GrqGGdvWMk3pl7LUL19dlxbO+bEf78PpaXhOojMKw44UL3SZOAiq9bauK3c/9CivdlYgB2FQiS6KapnqbEeadV0ZZbDTGpe61aYrWLq07JU9HhVrLl7HxJBQ1wZ6aRQE1Xhtuw8uaffAzNi8z8ZgRkPYrbTrVYgcr0wPmIyA90QFBnsRMye7BWwMtR0mget6GozuBRsNX1tHJLlyluUc7eFouqP1BYq8htT6s9u+1ehDE2NhaowYMDBMMVu2b7FAegVwVcG4FeSKkMwKvpTBIlH3k2ki/GkJ3zQYIDPVdjkie2md7FfcVnJLWLDaUoG84swgY/TIo5hvfhlJajC1wYx6JBsJyZO78PITYS/G2vYOKi4WSsR9BTC7Jbwwjaxz7BrZGLA+V8JaMrxZvGvrld4A8fTEKHsLJaDjrCJO4JD4l8I8G8C8+BTm2ieoRyCvvgnzpXNc+5ktym8/DlHYCrUwUyszMTq3pm2hdUDxsXjcejKONlmGkfvh9UbKKYN3VWmkOxXxTIcP3Ccg5wvkhHV5Sww7xvCSaKBGBuY9w3hRNtAIIitxOnTTLS5F16q+HKbc/cUHeLWlW5aKBRiNHO0AewXVeICgxnIkJsCugcHslKyjgkGxfXNj9rxh2MEvcB33yDQeQaZzzo9OMLKCVoOAMRT9DLGWnSEHPY1zex8A6rvez2goLtZSjV3TxrfuPaFJgF1GNxX+iwrIasGUNXkhjKpazbCevAAPbvGyV5ygeMl1auouQl0F4UQtlsRuL7S8slLbjvauWUuiRaVWs3WwYvP7yL50keU4KwYVeu01a+3cI1e7HMjv+Eh7+xzPxzIYHQea8+wBkAFjfcb8Wh72NBBCjNxYXgsJQr+qKFNHZoSHJHq4Hqa6QPK6EYzHAM8AN9pxa2vbvSbZ0VpiJ0lUGlTtAb0+eyhz1juZwuktkrrGVBKCrDnKb7/56drk8xpjN3mDSTGKVLxZ19BAXfp3BSLC5dLXhEN8bca9Bh5ETeMNy1r2g4LQOVOkBiXgtEo7c81Pa+swxnAyNZxPE0itaemrNpFJiTyyrXMY+c6p1r2pbV8l8Oxiap0kbxXy6zo7pt1p2p948DFfZ+MsVjAhNLRn107Vj1/Wh0ro2wB0Lp2SjFrm8R2AvWuWXSCdeM8cpB3vqicOshf3yUVqX3ovklb79i6qZZMwX5TJCdKn8PUugXU75U3cpthkv43zjrLEdQNIBQxU055ZCXOMk0cGyiQFG43VLX9pV9SoFGWSe2gQl71FxzNH37nG/mwTHru5ar+BrzzxpJq8LVa0fdWmKcWaVtFNiHjG3Siib0nnl+q/gqWtZXfw7wk0WNpLkKaQzxkd9AMa9923i9W7bxlNj9Z3cP3ECHNRrSk8cysEVxocw27N44nSEwFM5shGLwzLqZD2TcQy7IL3a3fPXaRpHm/82QkO8NHsjyGUhUCaNpaHKztotg8Pv21Xk80BVCgObKwN13h7IxbgEmBlUpS8sp+wVhtyowKL70gUNkqxsCikWcfhFkgwZ64l0rbbiT/d7zF94kkMKhg2Rhk/c+M6yZPzgMMaxwp2pD1Y8Z7Pc8woYkwt7EiHPdXGThd2ziKGot6flDiK0mU6LuiaOW7vNddMwG2+Ar9+BCTDfNdLNNji976Y8RNn+WufvaBwsaw1HkReWzN5q3VfVHp9iCIiLGphIrBbq7xvx15PBPJ6mT6OwVu8clwa1w5sFSzyLFxyAjadG1vL1gw51feDskhsWjRb4RCYZ5kKweI2eAQhS+BUaNItrtg4lkt9iOs9qHzlgcc673uGtCFssvBjb051XGFabEQHWMFsqaeOddSptX3OSuijXw+1aEDBWcX22oDjxoFthWvlWobYONkQ5q22QpyuTwBKy/ViqZ5R4fRuexG2cPDl9zBUGcNKERYirNc1PH6B3u88QXb3Hv/4I4/DE2d9LBRTR++FiuLOKy3gBBK2ax6fO+sz6wbg2xOhANfNszStv1xVawTL4tgCCI5kiJ51OZBpN8ZwzTXXcP3113ce11133dVo5yWXrXMPLfkNTYBeZOodM6ZJz6i5BQQzMn/W254orkrmblEYLEDQv7po3NJLVIKbl36ya1Hz5nMSzOPdOkuj68Tg/ZGdb3KCLqykqCDL2AM2DHBqHVMCWzPPsCeV07TLahP5eBPEgzSroRcixyf+P5Vuzh0hOAKZhg3hN4EzRblEDC90m8cDPAK8goCs24z7gRXHfXWEGmC25yQnNKqm2/cbieFcL1FXh8QgWUr92huRDz1G/YF7ka8+41PLaKhnafi2r4J7MwIf6UqsPYYIoHTU4a7n0TgY4Lt/8HsCsRo9n0hI9+ZiIyDCDdsLdsb9SNBkpfXGfmOQNTXt8cdbWtv4vKQpYH+f/VVHPE6x1NPdK+K6HNHbbmdeLQ22cwHAoNYErUbFyyRuTzt/rqsCrk70eD/mMd4qgCSlJHYPick9Q56lqjFbUVe4536LWiisA+sZzPJuRH7UjHt7f8ZwY5qrAMHAj/zV79QYBUs+7a2LNtzJaxXSxMWsuPbS+ZZ7yGUIIy+ldGnZBXhIhJeha7BwzRA0ZRUW17hKTHN6SRKrnVaf9qGjb8YDmM2tYFg84+7daiRkI0GE9RoWjrhHYHcOx5IgGDg5hPMzj+i8JrB2TKrmn99Bhc8x7vP7XOI9L4yBqhIYZB6/+n4ZwxyFOYITLDsOJdN2d/ltdlmYWfzqx2Fec/Mo4x8nysj/PQMvSYB1kK0mEYgdN+RwOM9p/WItkqM7dvspf/2vfSdYZj2x9Ely4xrmsZ3wQmz9YoncFR+L+hgabaYFDBVbGB9QxzAwcGHUh508ME/2O46Bv5KljQvcmt7CukrYEq8ZpZVoCtlqIakFsyOYjb4ui40h+ffdwiueukB11zmwaVwprGm8NZEnt4z7PtlhQOdxLsqc79XqPrtrj51a701EI5nH66LdR1e64qa4s7NYUxxg92CFNx0XEWR3AhshjJazQnF19DHMsh6lDUzh16+wRCfH7ZrRtDIDlesuGap1vLtf+ZG/9z3df4jmUtz6do2dzMnVH4YsxnoGDTw5V2FLTgvPxe17PigZBe9uUsd4eZqDga1xz/KegT8RMj/oMT0Q/17CV4LS8+NWQN61viKSJeH00eJ2X1Uch6MWZrUoPfWVswp6hpDtwOAr27ZN+nYXSdCoeN4SSLQt6NbQwLKOTnSwUgSXrHqKfu4ELUEggZ5tC6hiK6DnouzL89x4442cPn2af/fv/h2vec1rOp/Z3t7mda973ZVo25GUeHDbfrcNl+1hgpmGlAqNtDfRb4B+VbGXtdPsRJNoQDDUmUHmpV2HuljOWgh5yhIobT/2BAUsLqKtd2sRJXbO5znz60YqATUGUoM5tY55Jic5KVApwkII2uD9Bgeam3xeY8Yhsix+jDRYm/fB7gHzKDBGlwDgEoojUmtpEq3bqLnTS6PxaZvH71scMGsRbEaE5GKOWc98PSaBU4kSg7M0YaO25qcbNTKB+r4S+eKT8JMGXnVjEIrUNc5GvkELEhBiOzosBLO3uKmddcQwmO4os+1zYpUFCYKpXJ9hcyqcP7XGceP8RE0IlmhA+inG5ccOmK45nDThuwN+bW30GHi61adaCFGto6rjPboZ1eGKI2hcarkmwmpJ0fMaBhm10dzUpdE2u/3U66fK7DrTUo8cQqfi9kDTd9wV59u3qhyFGbnEbXP35nif9l7jaf1WBuQ2b238rsWFIa1XGyvOKhj2VBK/vdSAbmrzKErbBN0TaYUy7a5r/VQFC3EburTt8f1SND1nLI13xedHtGcniJ3mmrPd1Ru38QoVEenUstfAAyj8q7H+mrZZUtoUTmlQOzVghjHURgXKudH93XcI5YTBPKqr2zHsEAv4AvOMwEiwKd8sATQtkLUsEPynepgvT/xerGsJuYct4X3BDnOs1YgZduz3vKDOoGt4pJvUT3miMGTXwHqCTXdorU0SQ5IYzEBgZwEnrG9E23LC4NeZIZhZJ7VgFmAGGS9J4GXGcI3RPSN9gxQLr2X3udp1AkO9KyfZK5twZrE1UM9zqgFsGms9pt3BpFbbftMA8+G54pnKAjOPe+y32x9u7yWi8x6YYYozi3cwqo/h3PER18wlMAX2/TpGZleoxCbmMSN5EXUNWcJxtk8mhk1OEz0r9bzWVzP1LGG4NuCX//ot/Ms/egw+WcN3XbeEp/0HkhIxPY3/0FFyux9moox5LoHUSo3yRE5fnxCMfRqgKzq6LPHctacTvCBF33ICFWpBtkFODL07zMSaxHvFlIFymFHGmTydAE5YAu/uaAeig2VNewMXX26J5tHX7SwWJgX5el8TgUTr1gCkYOYlQ6w1kkTMvjRImOe+eMUWTcHLzgJGGTsYNlzfVC5KPcgw83iswx6VWgJ+a/czr5fzmI+bpuPLLjQHAbKDS2MdWWZZLHE/EWFNhGR9E+EszKA8BhdfcYybiGjLqkZIwjzGbRRUuD5sWgw1zuuZxuaxr3e5gVy0jzoXEOeeDIHO3rN/P/K1/izLvpr2b/qmb0JEuO+++65We460tAHQHjBSB2b955AjYIaJDdLhXg7ayVYyN3oFFL0sMOoRYe5+14CMDHVee6lOjZpi3CjSCEoW+2Z7Bl6suZ5YrSlCZmBjUrDb18XmN/Z1m5gzqrP1GhIvkV8hie/wdQNgUWNsdHoPFO05S6BwLcwSpCqaQLFNwFxCccx6m3F/CLgW3TQpy9HjDzQVcZAtlkJa3xozA3N8YBGbmscPE+3o+cyayGcJ9UPndQ05Be3nToc6W5YFq+BLl5nZmA4pXjQe7TqE5ejqsAyrHFJ3Zqaxa/faVsnTA22J0643jkESfMLbHUEa/YzbO+lol8svG9dPx3V87tK0Q2BOnTuBH2eJCC43aPOafNBjYgn7HWPYQbV8uwb2BgmzFCoXeKhlQeD2iyNaXL/itWYIgehW9eWyS4zc43oLgTRjQRAmuDZhND9vMVCmvTFWhLXRyezOahj0YGPQNHe5jH19YGkMvG+knneBcdTDfhKsoZYGZUW9Ra3pgFzZNxidsWqtZqqYpTqvQBFWB6F7CHi5wFh0n/l4w6WmQ5PEWFcXW5fd8OL6aGBmEYx1BsKsZV4LgcUzTtPewH2iOCUToXD9L2tkBmwO8QHvTg1RibT4XLiINfm0fTqPCuScW5PHdwYfLDNm4DeAdAFignl8LBz30eONW/uRbGYzDZkAPLCK5zQMcAjaCeTWF97iwDGOsNNAbVif9uBvG03UQevDCmaEiIAUgUVNkfXVBNwYJdQT47XtyXVrOiZnZ2GftHO2d36P5X0uushcmlO/BRJDZuDceER9wTeXwPywWqN/RMWPS+u4QPA5dTA4dh/0JXKRSnYWMNRxxAVfzFLytT5nv+8W5Pwe8rEnVfBlA9LJogpWdIVAR0pXgMpq2eeiIHNWw8Rq1icCU3tvLsrUL4TgTsHytEAzIww0cV8wj7frrgprRwTkwkwHZtzDIfypFdDp/tKaykFGVS6D2QYz02qXw+sxqByxj3l854hdSpFIu45n3pkViMB8PKDnhBHx+s0SKDUQXSGN2pZolue8SDR/RPTGvIb1ETNjWIOl/plKcV9ATVFQui61tKCM+SBrEVP2wlkiuWe10iMZKD99FtY6AcXcNngNwPSpBlC8OOGD3/MCzt94ypv662PGjlNUYdy/RSSQWIpTY5SWmVimvfZY0wuUHU66lsCHmehw/EVXMOXDgPsrVfbleX7gB36AH/qhH9rXBH44HPJTP/VT/ORP/uQlf1xEeOtb38rrX/96vv/7v5+f+Zmf4ZFHHtn3nQ996EO84Q1v4Pu///t53etex3/6T/+p87nrbn61fiO65/xuiebVSyIHCSaPIVoQxse/qdW/MO+l9m9amUur4wiL2kA1TrwJo5Ownxe4QTuPfWXZVFDcIooi+toFuzHP2e4ZCpQ4N8ZgbkgwT2zb4GMK9Brm8fuJGdtIfV6oeaH9sxNugPXh9eLWxEfp9ov5MrRxJUFx4AhXQYPQvcS3pcmsp+YwQRnoNBsyF+c67iPVtJskrIfNzHAxMdSJxXrfeK0yuHaj85oblon51k+at5bMzAy6Fnc7qmhfx2VGU+t766+9M9RpwktGrNZIsJGhtab+1pSnTllzO0vwu3RKNSDDxJuZNRrgEGlH2wRlpmOfdkMz+mZcViF6V0/bjcDV16cZAEfpbguKo0qKvGYyztgzCnAnAjMRJsYwAXazhEk/YV5W0drtbo/T7LfbAstp6Nr9O6rikLvjM5AKSVUw2I8JGNuwDChMGlINWNgR97X5w/6eVWoi7szppqvMi4+yh7K8RwXNzgCwrqv9Le+9TWHOtGNtthF6fD+X4ADZVdrB6DYSmMbqKJbhxxUosVtQbGlUAQ8L3IJquwtPeqBRr/t4nONK/Lu2C2NmlAhKLSVojg9hAqaoAq6wffSMu4T1vi5C7sZ3slDAO0wDI33SiiR3Cx/DJWiVFQadJ/gmu+a2CSW/v0Th5WgG1cBaMUWWBALMjNHUSLZPgaEzmOEAdivfp06iVGIMbtsyLxQXpAkGOGZg4YQg4z71TOtwffP1HGZp2GF2/v7epz2vyXs9NhPDB979gUALGDQgXZJgbh7Ak2rJEMxNZR9ruhYudo2dVzq/o0DsGtu/PrC9nsBi5vvlt5Qnvq/MHoijTXvDOPt7ixWR41GFRgN+uDW7W2A2owj5qYEsIU1TZoMe8gO3IFsLuPU+5Pb7kAfPaPR4d9Simr6O/laimvRCFP7PRfHSnwH/HviUvbcQfSbWuq/CfXH0+MY+QPHMhDAwHhe4OdnJkVOpt5yrDOSJCRZ5tqIyzagm0XKI1vAq3N62AIB9ArAechsAvOWX39n9h2geg1+7wM4CGScUqaEXS5sc+O4lUJX0CS5EMf3ePj+nxWmebR/dfMgWsDZkBgyMaQaQHkNSlk06ADdv0b5s46x5CYMI/znh9JjVwumj6qZrq0cEMK2UFh0K8MyuwqFvfAHTm04SVKYt5VAXzBHUDXLg4BjNM8BG32fBEQhjHlV5AbXica+2994xdA+sUqY9F2Vf8/jXvva1vPa1r923gsFgwE/91E89q4+/613v4vbbb+fNb34zN998M29729v4uZ/7Od72trcxGrX1knDrrbfy3ve+l3/7b/8tr3rVq8jznMcff7yz7vPPfAWhuXEnwNhCsFggY0Ajhk6dmMcx6IKPLm/vY00SnU97SEOzTCzVWUpdNKNEPgPcIMuSHa95iEx+nKbdBaMwwLjMeWaQ8oyBTRd85/p1zB6YnQXJibEy7m1JfKRs2jf406zEXDsMfY7GaYxRJsWADDQvplhK5HIWsfPzi7XsjnF/CHhZND5tLfuB5sdtZsACObO9wJxUE0GTGC+Rx8ApY9iy0pQakBeeRL57gfzhGeofvxleeu1y3e5ztIbVHrHG1s8lKrH2zYrOdeteF3IH+L4f/pu+Tn8WJZJ1/UjEwAvJ7oTJ2gm2MGwag6g/ho+iKwMDRdPiJFw32xKXmLl1bRnRjL4pQiNYY1c9C5oah7g+p3HoRMS2nRUwL4T5eo85sMBQIlR2D6XGpovJDKaoSOz3mkgw/I7zz7cBuhMidPXvaIB62zfP/s4rqjUF3Vlr+RtLfM9TDbbXHCOa9cWNFFRYM+yFDbaXw/Fh6Bwd7x1F6cKEe1ZgMNSE1f/ge/47eDTH23fGbVqiOKOKCtEYBq54Ds2E7zak831Vm8XtarftChSnZReajPvjtsk3ifAV4DQOXIv63Q7s74ihxUQg3e7xHNNMdTpIMSmwtcBc3/P9TdzZww5dNCNU/oGA7OZwLKXGQKLCI1KjqvHzU+rjA+/TTu2YVOEsEIv/m/7sUeR4e50BmdTkZAxt32oCnN7GaWwgSVzfLP7cHMBe1VwTbaDsSi2hDbNSCWR07PqodZwADDXwnswKpJeq9tTV5YVZq/GR1AHXeV4TkAL21nvcBLz6b3w3zurLpE7bDuaFm/DEFL6dgMsi5n3JFSfG6XGxgjgnlAhFv7M7Bh4KqfsQ5+YQffcAlPtsSxc5AsGnPaaVvGCjjh528yBgdkoYDprWgj1Dr7YyuQT4c8fhPU/CkxXc/QTy4wLffGOwoHMbsRUSwwXLdecc+Bzwb+3fPwr8R+AvibpmubA3mV10XfgrFnq3iwvCGrg78T7RIsC5Eo6vWQsbw8zueUfrukqrLIt89YVY4B1HWG+3ay0ae4MNahe1rwudHFT+/o/9ze4/OBjjmDanhZ5VMBpSYrx5vIPbxhiF8bmmZM4tomvgPBw8bH2uMdcStGhp0p116TKLp70hZNfwwtAcNvtMgLWY0DBAD1JrCSxRpxpbvGsippZp99Ir+8f19IoKp8OYW/hhccBEYMNJcrenmFNj2FWaZVcsv9bC497epY3nFyVsDpY3jUMs4772McKnNWj2DgvfLtCMl2GMfsZV2ZW2uMHAXyFYuF852Lr4Cpb3v//9/MiP/AgvfelLGQwGvOENb6AoCj7+8Y8vPTuZTHjrW9/KP//n/5xv+7ZvI01TRqMR3/AN39BZd1XOG0yGEPxzGr4wWKZ4mEb5tyT8XcI6NwBFRQ1MjGXa3SuOWI/9CvsZMg+m8QDPiKg5hkTMugkMqSs+kq0JzyLQX8DTwx6F4LUMJk0x1wwwT2veXeMAkANGK83nOu7PS3UVcMSdCeOUJZA7RDDIFNi7NBRt5vgSQLjzZYsZd/f2wyjTbohM47EZ1w5TuSNu3LVD6lslZn2gWhnjY/GgudoN5whzWRuD3LJJ3U+QF5/qZmBat7qYvy5NO7SCq7F/9W3z+BPXHO8QMorXrofAUmCKChbC4viYXaMEsGDTKNl5rQfWTaTdAcK0+vUd/W2P5dzxbTO6xhFVH/d3EtXj4znY4gPy+LaExrgqSoFFLeTDHgs7XlOBKYapCDM0bWE+NiyKigInEW4GPnH1tQPsxUUJhNb4dJyfTYkl523iAypKa27RjyY/FiZMs9Tb7gcyobXl20h6FgJUccxYAr9jwo9SKt/VHhEVGPTBhtDmmmObSnwU3Wuz8x6o1swFomv7tbe17KC+7HGO+iW4dmWK07J783j0cw8CLxd1p/LuNK4ppaifdVyRMcvr0Gje5qFFNMZpW07a+BUSXGnamnbHFKqASh+SuSBrI3x6OaOwkhMjOBc07cqzi9UsKYHk8uG2BdZGou8SpmRzUbEYttaw/ePMGNYs/A4uTrbecabmn12LX2RpLfssG7nNnmLbcI0J8LlODIxBJnmksekA1iuKe6ey7/klNYdJ0uOYgWPHNoNPu2XYE4AXDuGJ7VCJw+/+ep8Px/tqVsCaHd/EjZ3bGoatcUYym3smXRyAFpoWOkdcos80Dgiadm1h8/DxeyJEYgCzW6k1CXhLArKEtJ+wnSWQpcjXLiqTYN3e5O5nmvt+RV898R/t1w+3nvk9aLhCxAxxGwdCt1DfHWNgKkLiMgXEAhVAdhbI5kjvGd0X4pnbEMysHuLdi5wZssd9joFvtWuXZfy3b/R4DleuveZ49x/swIqEswgqodsYacYUu2DdmgUwvRRTqqDPi3W9gKO7bVLWOh6TQnHdrNTztIR5ieTVlbEsEZr0su02e3OKDVWerPkwJdq/JINsFgTWsWm8H6O2EBsUX45abJ4zHXdKyisgnPZtq8MciDWPXxNge6Z56K87hikKjmEVMlYAqQJOrFtJGzDYRs6rphVBW4E3TrwLgLdq8lXody6irjdtnOTKGh2phjmyYXpW5Tlj2vf29jh9+jTf/M3f7O+lacorXvEKHnjggaXn7733XubzOU888QR//+//fV73utfxsz/7szz44IMrv9EeYA3eRgQRo3zkzjfCrjbHqId4nLYUFWVPJai+WMwn4DXvFWiKmEXkdwKcAa5HfCo3t1Capt5CKo6YsT7tgprvA+cGPS4ajXTupY03H8c8PfVaVc+s+k3T2pjxqouReq6Ee0DqHqOrBs8JJzKN6oyNju9ebwz4IYuggLatZZ+glglxEDo3Tu76wBJr8WLCfqvAnBja8XfpdbSrJ4CtxHbDCWHWeopPDvDzXYXEXEoXaErxwPmpdhzSrENYzmPu+Q/32xifuzQRfKo3g8DFGYxS1nsJ5y2XV5uwbmug7qfqiBd/OEIwXW2CZvRbV1w+17hIx3V8b0HTPD4Gos4sr1GfHSixFZVGfdXLfkKBSt1zDPdW8H9U8OVKKIByBFUplJHmS6sIxAs0iSlo4oUBHQKXuF1HUSJk4+ufV9QpjYwBxjbOCbcWGALZ6KqK+tap3S59ijVGfe8PdkU1zh2uK4ASUMcc5WLvDRJ1Fo2f22/ABTWzz6JgdtCcxHYwunFf3QS6FuoVMo8/KAjdy+1zI1GzW/9epX2L8Y60+iiWoZ4ZQ2olk06Tm6yN4GKUz9zCCgHN1R7hwrHYbHsCXBRYH9phsT7tANeOkQu5ZdYDwVYDpq45R2DaPdNlLH6zH/bNt/0cUTIbOlhMw1JnF9UmRug8vL+eaSA6HeAAVJ1GvIUDXYYW5kKS9nCszgDDBTuGgsXp80rj1DTq5MD14Rl1Nz62acyE84OeBluze9oH1LO+7dy8qYzLrFxm2Ltc4FbuqwpjOQIvw/J4HqYbI5ICNRV374uFHRJXdLRF6LZSAzhHIKwbh1OJtedAgN05ybgXrQsDqaHXS5n2EzXN+MZTVBlQ2W9/6w3dayVuZ4v4d23/3lZ/nB65IVOIno/PELluRv1z1yNsAErRuRbH2Lo6LkyRa1L/4tTA2Hh5p69HhpDERsgSzt4yptUuZwHg6gDFewu6+3PZq0PCuouXm+wuYG1g05ziF68fq566QgzLysOpxpi3+iZFpabjs0qZv67DxTg4yhKtVZ8W0439bM58lJBi6AdJGgZDkiUMShVYN+nsjphVMU4sisDYxpYD6xa/t3HbEQmn/ZqvAx6ghr1aGIvAxRxzbIw5ZqDM6bEMquJge6sUjN6KAAJCcYtiLYVJ3qCnxeE4W10sSI7xiCtxrvbGOpf95aRXsjxnTPt0qjqz9fX1xv319XX/t7hsb28D8IlPfIK3vOUtvPOd7+TlL385P//zP8/e3t7S82ubNwDNgfaadnsvZniMi0Lo0v1IiKLrihGBvKLOIs2NiQgK9y2jJoP1KKOuln3ar4dlTQPRnpLgz55Emgczy6l7cC5R39wN24QkAXNjhnliK2gsYsQe509zZRX3NatU0+7GJyICB8YEpsmgppmzcnljScf39ikNX/bo+hFUwn6Sbi37QYvXmyK1iRyACzOSzX4DqRu74a9BA1QoU2s3aV+jkTMvQ18b2Dj44XSZmTmNbSxncMHVZq3naf2O77dTw9xz1z1L6xlRZh1LiBrHxO9WsDFmYH27SdpEkqEeZlGDoi+3kWCrre2ANcb+jgFeF3Jvn9t52tsANE6x5gkoCb9roMxL6n7qfYK/UsN/AD6Bmi1+tRaqfkpV1Rp7orU06gjBx/nnfZvstSNe4rJqfJ5VibdRPBeLijLtjmiPUaFHNdDn3Fpt4vl4XqPrvAhS+bW++gRfIaTeKHF97jt7lZqq2wXwyXu/rDlZW9ZQS7CmDdfKWgPvNAYpKqZ1PUo1enzclvpIZ3WpOBDdFYTuQSzTLgrvZw7WoA+LDcaxhINcfyKf9pHrrAOcG2PMTh5Su9m+JgLUaofjtOADuxhLgHmO2FgD3j0sAU724ew07E2B2gbNQuCCiA/6Y6JmLMdysUJGYDAvWdgUK57wtp3bNU4jFXEoVnts1tOQttD2qzHgXj2lv90YmGkNaz2vvT9uYBLtfhkMYBqlEIrrPKAIkascTvsj1Iuc6RBOGrjvS/d7DbsxgXlnmCrn+sQunsuKjy5ruq59NdF91Q4y67vYSygHBnZn0Xjr3MuV2PtRUx0MFgIDP0P3xQmagQsD487SHBvA7CxgM/P9ct0c9xK2kkRx382nkL/3AsXX332tWtG5etpwr6O98fmVhDS+/wH4luhvDS27dL/v3MJcifGMy9/uZTNOy1oLIjVyIYcNNb4Xoy6MA7eAXD0GyCCZuBTEkZtGhJDbtEscPd5VE5vH+35c4tL4xJ13L93zgqGIYfc7bHcBx/S7DZcwq7kxmUKTQVEFK4AVYy2VqD+0Te/HwjLpszIw6+7IKxWOHlWxYy1xH51wc1qyu95nbCc/8tgkHSQMyqJZVdy/VUK6qQT3sJjJGPeuqHDaC21rDQTl+jitbaT2czXm2k1MH8x2YTNTWRo6WoQSn+NOg1oRDDsEEm6zr6UwDynfgpBE4a5I0/UGlgVmTtPetZefq/KcMe3jsbIebYZ7b2/P/63r+Z/4iZ/g2muvZTAY8NM//dNMJhPuvffepeezbMS//kf/A//vn30jv/xzb+Su3/89dn/p7fTzwuJ4w5/+6Wf4/JfuB3TTn6umvOV9t4VKBH7vQ3/MV7/6sCJ24PTpM/zhI18IykgD73/fh3j88ac98fSFhx7hfX/ySSTNkEVFBbz3dz/A41tbCHCdwJc/dQ+fvuNOT7AUi5xfeMvbWSysuSLwsY9/is994V5PxOyc3eK2Rz7DAriAYSOBj3/skzz40KOYG9cxF4THHnqS3/y9jzQQ+q//9gd5+OEnfLfu/uID3Pr+jzawyFt+9/2c297RFTro8ekvfZk/vuuzfgGXRcEf/NatSFFgk6lw59ZDfOHeL+OMq85d3OYtv/luOzBa763vuYO7vxgsJx5+9En+y3/9QGOufv1tt/HoI095Zv3Bex/gE++/w6c6Anj/r72T3QtbnnH/9F338OE/uNPXsVjkvOktv6XjZ8vtH7mTT/7ZPf73uQtbvOV3P6Bt252RHEv54J98kq88/Cgm0QBGpx8/zeO/+3uci7bvB27/Ax4/cwZJoZ4VfOGhR7j1jz7eYBze8ivv4ty5Lb+ZP3fXPdz5h6F9e4uch3/p7RSL3Nf8hTvu5Nhd9/hc5tvnt3jH//7OBpK5/X138MCXHvBEzdbXnmLyDl2jBpjuTXjP22/j8Uefas7vBz+mGQisZPGd776NnSd2McfG3GjgoXu/zGfu+qwKJYxhkRf86q3vYZ6EPt3+qc/xyXtC5ohz57f41f/9XQ1G/0/efweP3vuAZ9qf+dpTfOgdt3kNQQHc8Y7bePprT/k+3f+lB3jfe+9o1PO+X3snO+e3vHn8l++6h0/dcadff8Uip/6lt7O3yD1T8KcfvYvPfeZLfhmf3d7hV997m6ZZtBLYj330E3z4wYcBNZ2bnX6G3/7wHRqRulLC5a0f/AiPPHnaE0MP3vcgf/z+O4AQQ+CDtn2ufPmue3jsjjs98ZIvcn77l95ObtsHcPsf3NkgTs6e21oKwLNyf0RY4bff8yEef/K0Z7gfOvskf/qFz1ihj0abvvUd7/WCzYGBh59+kM88+iU/5vmi4P/7G7cyX4TgM7d//NN88u77PBw4t7vNWz71Uf3ougZxufWPP8ndDz6Cq+jhx57m138rgpHAf/mvH+DhR5/0v+/+4gPc+p47Gs+85ZffydlzYfw+cefd3P6RO7055CIvePNv/g6L3Jo075XcPnmET96r8HlnNuNcMeUt5z9DjMVv/cifcPeXH/K/H378aX79/R8Oe7Oo+PWv3MXDp58J7fvKQ9z6ex9raNnf8jvv59zOjloa7BZ88t77uf1Tn/X1LuY5b/7l32Y+D2Ka2z9yGfPbGL/beOTRp7zw8oF7H+CP338HFRrT46UCt/3m71Jc2PIyi3vvvY87v/glxGra50XBm9/+buZ54ZfOn97xZ3zxrnt0fyeQbG3z/ne9H7B0zfGU3/vCp7j34Uc91f3o40/zjnf9nhdYG4EPv/dDbD/xNKBRsx9+9BH+6JHPBNP4xPCL77mNc8M5sjWjFuHTX7yfj//ppz1zUeQ50196O8csfDbAnXfcyef/7B4rnIatC9v81m+914+LAb74lc/zyGkbt8YYnnzqNB9+74fU4ssoUfWR3/19nnriaR+M8f6HHuV3v/J52Ak+m2955/s45/ZvLXzyrnu4/aOf8mu/yAt+5db3Uu4tMEPV0H7u05/lmS/dx47lFLe2d3jnw3dS79WeSfHrzzJ63fP7AR565ElPON7/5Yf5yB/8SZArlQWf+/QfUm/vMJtOMQa+8Pl7+fidn1Ftu4FFWfLm7S+w+Nqe52hv/8Sn+eRnv2QZnZqzZy+G9WeZn1s/9Mfc/ZWH/L2HT5/hN07fHcviue39H+b06dNgDD3godlFPv4nf6avWEL3P//muzl7ftsT9H7/2rIK/17K/qiBxx99ive+/baA74Bj77iNmcUfCfDAlx7g9vfdEbLkAG9523s4d3Hbz+efPfkQf/zovZbJNxRlwbt/81b6RUFulG771Kc/xxd2ziC3jKk3R5zb3uEt73yfHSudz1vf+0eN/fvQo0/xX98W2icCH37HbTzztafoAzcBa/c+wMfff0dDy/4rv6Lwz8355++6h7vuCOM3WeR8/pfeTmnpA4BP3XEn9991jwrDRTh7bpv3ve3dnnFH4AN3fIL7d84gJ9Rd5emnnuETt33EK1eNgd///T/kmaefwWSGLC955KFH+NjHPun7KQi/9n/8DuctfBbg3rvu4fN33OnN48tFzu9Y+mWAMs+fv+NO7r3rHv/OhfNb/PKvHA7+7e4GxZzHH3bN3n3/Q7z7Q38c+e0Lv3vPR9mqJuRWC33fF+/j03d+xnYS8rLkdx69EzNVjUMuwmf+9DPc/dkvqWa1VvrlP/7KO1WQWwgUNbf+3se4+4sPeob94Qef4Nd/5/agZc9rfv2tl4HfbAn7YwG1Wtz80Sc+zWfuVt5FpgXb+ZSPfOQjNvaI7vuPffQTPPzwo/T7Kf1COH36GW7//T+w069787f+2+/x8GNPeVx19wOPcOvHPqE/psAw4y3vuY1zW9t+vD558TFuf/iL+tvh3//yLsW/tqLLxW9unb7vd36fpx9X+qpCmD38CJ/41Cfg2kSDxBY5977vNna3dvxauvuzX+TjH/0zb520yAve/Bu3slgUfuPd/sxX+eSTD/tvn9va5i2//d4gpRpl3Pr4/Xzh4Uc9vH7iidO8/3dv9++cB56y+9fxFg9+SfkPCEz7bb/2TrbOb/n9/Kk/6+Y/PvjBD/LGN76RN77xjfzEP3gDV6KYj370o8+Z0ODHf/zHef3rX88P/dAPAVBVFa9//ev5J//kn/C939s0ODpz5gw/+qM/ypve9Cb+wl/4C/75v/W3/hb/2//2v/Ed3/Ed/tnJZMLf/tt/m0+f3YL1TaYo8f1PgTfUwl+eF6wtKtYWFeO8Yn1espnX9N98D/yDl8ILNmGUMh2m7PZS9vKK6axiuiiZP3qR7S9u8dEfeDF/t5cwHKaMhxlrw5RxJWzMSrJ5xW5esXvXOWazBZO/djPzNOGrvZT/Mkz5D6OM3iBlPOqxlmjA4g2jOWdTY5C8opqW7M1KduYV01nJNK+YPnyR4v5tfuF7b+FMlvDvhynrBkZ5zVpZMX7nV9h4zXVsfPNJsn6qkRlHqUraxj1vTSCVqG/bLJIuTktNffKmL1L9029k59SI3UHKbJAy6adMjGG2qPi5acn/o6zYLCtG732QtW+/lvFLT7AxyNgYpmTDVKNPjzIN7ndAccEptmuN/7QnesyBX0Aj7f8DlHFaMzpWawY2E1g7IFBIZz9npQLj/9c9FP/oZWzfvMFkqCZzk37GpJ/yQGb4hVnFry0qeouScVEzLivGb72Pze95Aeu3HCMdZXZcM9WCrPWQ1DT6slvj197/DPxD4C+izG2B9vH/AvwM8GpUk+z6uJ4oXtmLxmQG/BKaNukf2jFZt+tmw743MljfrJLZvGJvXrE7L5kVNZM/eJz5Levc9fLjfDZL+Z9GGf1hynpVM1pUjBcVm5OC9f/PvZg3vkqlsW4+BynVKGN3mLJrEm1TrQBtD/gR4DdQKxLn83YO+Engv6FROMeE+VtLVGu46+Yd1bL/XeBXgBfb5/smrIc3o1G0fwwYi7C+KNnIbbvnJf15xV5Rs3PrV5m+9lqmrzjBNEu4P8v4D1lCb1GxmZf8y7rm2257lPE3HGf9lSfY6KXIOGN3kDIdpOwOMvaylCnwq6hG/aejNbgQnddH7by+D9V6r0NjP2/Y/fxsitS6dotZxfasYjIrmSwqpkXF9D1f5Ym/dAO/ff0x/vUopT9MGfdT6kXFdF4yyyve++AWP/T4HoPvfgGjXsraMGM8TNkYpmwMErJFHfbEXDUK/MI98BMvhRvX4RPPwPkZ/N2XKGIdR+t9lGJGvYM7cZh+zsrm3nTt+dDjml/9b9ysJnClwG4Ov3gf/Otv0VQvDr4N7VFIs668hnc9CC/egL94vbY/fseY5jfnJdx7Hu48Df/olfp8vMfHmWbWOOIARYta2LX7abe2qaNQLfu/AN67qBjOC87MK/79rOKXypIsr1i7b4vRYzusff8tbPQSNoYZ+TBlb6DHbj9jD8OsqPjIrOQrs4p/kZcM84pRUbH26Dbjjz7B5k++krVeihmmVMOU3VHG3iBhr4bZvGIyrSgXJf9uVvGvpeK693yF4V++mbWbNxkPMtYNHJtXZFsLql++n52f+xb2BhkThz96KfNhxutGGf8pTfze3kgs/EIYzBXf7c1rJvOS2axkXlbsvv8hvvjnr+Uvv/A4w35Kb5Qy6Wc83U/56VHGrYlhPC1Zz0vW8orRomJjUbF5dkr6a1+Fn/9WjWng5nBkz1mic2/nv5xVbBcVex97mukwY/oXr2WWJZzpZ/zfKuEXy4peWbH2qQuMFiXjv3o9G/2UzWGquMDWbVxU9vY6r4V8WrAzq9h1OH1RMctLpr/3KHd8ywn+1kuO0+/rPl0bZowMbMxKNuYVSV7BZ8/CPefgp75Z92R7PY97fm127qtFBX/4FJJX7P3AC9npK40zTROmecVioTjvx/70NCevGTJ85QnW+injYcr6OGNzkDKI6IijLIUI23VzD+wBXwLeBPwmilfWiGCsCOuzkmSxTMfMfuGL7Pzjb2Byasykr+tw2k/5QJLw1KLkn+QVg0XFuKoZf/hx1o4P2fiOa1nvpw2cx1oPEwWyrEXYq2HH4WaLA+fAP0Zx9Nu62mqsi22tAbe68N4vo5lyxva9uf37HPjRouI/z0puyivW8pLRomZtUdJ/bIfpHz7O7B++kkmaMO+l/Ek/45PDlJ9DGC5K0nnFPK+4++kdXvanT7P2ulcwyJRuHQ9S1sYpw2HK3qDHnjG+TzPgh4D/DNxMCLz6buA+4H8lokEsHbJp8fuBAYI7ilTifctn84qducV7ZcX0v97P/Ideysc3RjyWpfyf1zKGiWGcV/TyillRMf3dL7P4qzfzf71mk383TDk+TBkNM9ZGKeNxj41+wqYR0kWlNOG0DFr2ooaHzsDdz8CfvxFeeWPAK629dTlFCv3uYlaxMyvZmytfMXlyh/mdT3L33/1GPpGk/JNRyqCX0M9rZnnJ1jRn/d0PUP/oN9LvZ6wNMsYj3Zsbo4wNY0jnbr87Olfpef7nb4ITQ+2HszL4zBm4bwv+/jcoLHEwbJjCmsVzz5J2AZjUwm5RM5mWTOYl01nFfFbx3kXJuKz43lu/zOjvvJSkqJj9wde4/4e/mduThH8xzBiMMkbDVOdtmLFZKK+WTFv0ylvugR9+Cdyyqe0fpCqId7Dgwgx+9StUP/+t7PYVr836CZN+yl4/Yzbu8frE8AuoNdsauo5LAr39NtSE/mdYsdb3WRM7OzscO3aMD37wg6ytrYqMdOnlOdO0A/zgD/4gt956K4888giLxYK3vvWtZFnGX/krf2Xp2euuu47v+q7v4h3veAcXLlwgz3N+4zd+g42NDb7lW76ls35pnRvBPqyk3tgfBnTW8hKnyfF5rp1kE9T/aZCq34zW5M0SBYJpPCBDg8xKL+U5XWtOQPuW96NzVit+MiT8Lc7XbhbAep8TaDCOoVUtJC4X6c3HME/MNKKqs8f3fu1x+hLxUk2Izs5/Z5AFPbOzsrJSeEEDeWmY6h7iskI9S7/X2Bw0DkInWC2TGx/UJN6g5lGHW7jiNXm+v4JPaWaOD4NpZhLy457EMEODN/mo6oCMUuq89iY72oHmGPqfraGIA8jFJjh9WsHVonfje+7czmO+dHb9xWrZ6ygY3dYE1hKOG8O2W7fGrlXns9lP9FsLl6QmfLzdlrhN0IwyS9TfVRHflyyZ7bmdp93VNyIyy3PvNkxmrclpWSGZCwhpeEmia+YU8M+M4WXGIIMEKcS7YwTLPPHLBprmge32OPP0JXcIuaQtsLq4etrm7XVFlSU+pkN7HfRAzT+j1H375qp1sKJEBTXGaHTZ3SjMXrzeBY4iQE8ji0UbFk0KNW9rDLglnvPKVRABXsIiiEtRQy/p2Cxu47cGcZyqbz+s3ONHXRwMbAehewh4BcEseA3FA86vvc6BfshhHoKhurPrm2FibPT4OOLysT7mokb8MZFJsLGbwuGRxM7RGGFWCzKtYXPg88H7VKfrmZrLX5g3XFYE2LVwqO0/SNQ/hxPjVHP9qiR3mVqiYwZkxihOMNFh63OpAn36yjYOIFo7AGLjxkwLzCDxuG/TjZ9FOPUoQRYL+0oImOXq3G9fKCqWkObJ492CUd9FV6ERiC5NbI5xDNw8hqdyzR/ufSgk+Jd1fTsGsoIKsUeZp38AzSJgfw8MTAdDtVKItmcISndlPDlX4c2L2DmguV70HO3LGIbYtHaJXQNx3I8NNCipAOLcw8YD6lkR+tpoUHNMpXXEZQ/YsX1o++c37rXwnoPSbbzurhMgrdEc13XLp/1iCZvDaC8q3dJ3+zyqK+slZDZtmGsLHe1ZhdddfT6afascAUaI8Ath7GeFNnisPu2pJdo8feral6akZY2J2ufb5HCoB7YS3EoqgQfPwH97Cu6r4G1PwFdOh78dlDb5EruIgwME+MisQkYjdnBpLC1Nagd+YIOp5kXluhPRB+Ec/ogKrUEZcVcckzlKYbGf+9ARdLPWnOjUAdfnAie2ppgMWB9gxn3IYSgS5sz6bHhQ0yaoXJsXqPDeDZIj5l0Zq2JB5pVvj7O+F3Q/lax2vYHl6PFLx1Gti0soz4ppv3jxIl/72tcu++M/+qM/yvd93/fxr/7Vv+IHf/AH+eIXv8ib3vQmRqMRzzzzDN///d/PPfcE8+Z/82/+DTfddBM/9VM/xQ//8A/zwAMP8OY3v7lTimFME9GDAtQ1wCU7iek3wC7kJlKKgZUBZdp9fto4+FwzR7umz0qoIr/Ss8ANNd4c0K2xsGActRUYdefTngDJjsCgRw/YM/BQjY9+bgyYm4aYJ7d8AKHAsBMQuytt3xdQTRNAPwpEZ/vpFnQPF+QKZC2DWRRoLwYah1zLQkid4q5rlDl7iuV0b86XvZ3qamXlbaAkaEC2BMwg1TlINDhTYnfsplGC97ztu86xQfo96mntiZjGd+Lux5+317s0fb5dGdFk2rvejc9xYBhQs3Ea9Yb5TlACPLFuEmZbI+puGLho+6jr1ljGHR+Yzq+FxnhKM66fPVz7+63Hnc7psD77jiHvSvnmiIVp/F7EiLqpFtD81b3E78eJ0XXzAgMvTizQHqVIXjfSiXSNdywkiYuJ+ttFwFx2ceMcj7f7UQp5L/ExERoBNYmASlEt9cvv0zZR6hD8yPqBRv5gjedco44KV3XtUYC9RWDagUVRhMiTsUCps86onqpSn3ZY3nzuXowIRr0ISy/v8SPrt//EwUHoXPOG9ts+GF0uiCXmxMHkFsPu9sDC2HAFFt4BsKHJDM1O7hoTGGYJgVDd3wYC9TTXbziCyMFHy1jK9Rn1do4gSBWiAF8QGNXi/XO7hNUu+FtMlKRFzTO9NATas8/sGePhtLr16/ddXBLn48pu3sGdSHPdSdSmaYEZJp54y4wun13RBssayE6xTLQdtCfc3ErYfq6OrCjpDzSQVpUXfkkmCZg09IlrRno+bfO1O6YjFtD7NkUfiPs6CXErYprDBaIbAIuTIJOZbbbW49LVKUN1xJuA1tgQSJWLqKDHlWaaQBXyaAURoNyaK1OQ6Txig/mJMQwTDdRGvD+OZcjFuSfsA6etF+3+tuGpYwIc2NiN+uSatgqfQ8CfbfogBk3HRFjYvRQEKMBWjlw79jQKxrCdqNWXm19H16SDjH6wfraMvzSWR9w216528mVnHu/HQ5b7dFCJ3Sh8ieewjtby1gI2dZ9PHK6LR8rNZ5pBIYwQzSNv93Vz7Jf3PrXA559utuVzp5v46KgEtk7gIoS84QKyA6wPqbA52iOaG6CXGIoUitzRZRJP4/IEQqDhes5XgogbTTVuTPzOEQmnfWwnK0gUEaj0/kKEa7ZKzPF1hTn9DCMwWJQhpWgMutzvtvDR/Y7TubrigITFATLJ/R5VX3v9cdFW4YSCsfAYYiHf8ro+egh4+HJJTPsXv/hFfvqnf5rXv/71vOENaq//7//9v+eNb3wj99133wFvLxdjDG94wxt4z3vew4c+9CF+8Rd/kZe+VL2Yr7/+em6//Xa+7du+zT+/trbGz//8z3Pbbbfx/ve/nze/+c285CUv6az7uptf3cBZjjAaGyVsNPCYY9gs0uplapMESsCAsuIiYSJzqEnVL4pAJEEEGIxRbckApNJIszVwEeEaCDlppRkNPVSkNSWRtt0AZl5wIcn4Ahol+z8awwNgY/AYuHmd5Kw1H3E+7Q4oxdJCWf6WciilMrMWyDvg6BgCQSXx3qsz6yF2vDwBEw/6IUochC6+fgRFYtcSMetmxXitKm0JvNj/tnO4RokkP/+JG0dLHxlFvg26Z62nUrsuINeB9IjezQlIOUbMLvf4qnfbJc7naoBb//OtDQlh3F8fOV4g2ZphMjCjHscNzBMNTuW/YwngGpAxyhi1CKJGn6L+usj4Jjrc/KzRZrRXEzBuHFblRW9o2uP6vLZd883LQizTrm/uiu7TPUJlYnpQttrSMeBdeWo9E2XPl5v+ZmWxAy3RbxGBAvJeSkhMpcUJ75RCS6AOSNkt/Ua74gbOrMlM32qlx5n6ecTPxdTnUWCt9kKKEfIsV20/gEn4xfd+UK8zlBjZb9Liv5Ux094i9Px19MNpaMu62c+6NYhHVIT9g9C9AkgdvjCqkZj6IauxevAoerwJjLtrujFME+jH5mU2MrnZTGB7HjZmLT6IpbvnhMBDgXovh3Gq30nst5ym3Rjqk2twvqBRRS2cR7jOWQCxvJ+8NZBtuDunFcyilH1ubHZNi5kwYRoTd3EcTR1INKhdm9PDScEUOWYYMbRGTSGnVrgpA/XBdFp2adQpq5eHfb4C/64jILMCBkMNfveed9+mjFZicZ1DSPoDXjjSfO0OzsdC+TgYXWNvRffnBcZmiPDLwShSNRgyY5gMDWwvcD6zymQs47qjLLLi2EKnsQ17E9sv49rkKkFgr8CciPC77yesGcOenVennZYNA/NFs4+utPrr2tXWecQBSbdX9IUVZ4f3VqU6RYS1WtS6sw75TQSQs1PY7Ddw+MIYDWYWFQP0bCpDyjqs3biNEhQwguLtjGVmZhi1eVWfDir/8VfftXwzgv8Cai4PmqN9MNIsGKggzc1pPFamn0CliqVCQrrChla68R3CIHyDs4G15c9pIOslicvlFqs+ljoKBAiwmyNrA85j6cTIdMgJ1ha9hGJRBXDm+kZMI0STOi+JpPkBQBqjgWadVKbLSvYy+uvaRl2HHO0owNsTOHa+hOOb2q7EYAYwnuVK2zkmP9KyN9Cu17J3WBF04fR1kGkRwWuxXRYuinSmII3p1zG6n11pk0BXABQeWA7NtD/88MP87M/+LI888khD8njLLbfwhS98gY9+9KNXpIHPtpx58m4gDKpbn97Ux0Sb3b00yDSlkJ2NRn52V9Fcn5tJeNFvPEtUeKlOliBlSIn2EPAF4AFR065Y2+CWXiwlT8Ux7JZ5L3Lu34DCmvvODPxJkmDSRKPMDjPMiQTz+A5eEh8fPl95C1q7H/PC2wIHCTzRajYMUCtaAWTQCxGqaS3gQ0rju7TsguZnd1qmWMtusED7MJXH2DUmcLZK2BwpcURA7MZidjGGU6hPdrw561GGLCLtbNzpeDO3EHpbgxyvuyHN6JTu3NBoR0PZzof+Y//jj/hrT8DYfrv0fwaB7ZxkQ6PlD43mcL1gjA1EF5nuGZCRiUyQmw1bSp2CIvCNqE3x3MRM+ypg564d4RNZazZKTCy4cWnMjyj6khwYBrPhqZ3X7fjdLKEu6sZ+9XVGSGyX5ZQ37uw07avS31xesePsxt21yUayzdPU86IQ9qt/u2egCnuzQQzFZmfub9PS2tXbejb6GnjBwZEYaR4ZAUNz4OM2baNabwuof+aH/o7eH9NwYVq5mNy5qIKmwZW2OV1M0DgiYOpM5KP+XgHzeKdVjLXsLuvBg6ilkd8LIqwRrbdF5dP5tIegtvOoeAnmliFzZtf+vDHAXCx9//wat/NgPAEl9BHMrIbRECGMnWPcMVCfGlJvzTxjUVvuYKeGayNOwWnYFb6Lx38JEfNu1/rFXub7EsPUTdzABG1igxEd94OrQx2tr3i9RYDWAGZa+1gsjk7YALaNfW2cIZM6EM2NOlsT0ZiTyCzewhgRNAIycGygfXz9D//3gYB0kePdYYAXbsATkxjgRbhNIk1xC8e7e/MCxs78PyBSn8vcwNZ6P0TerwNDIEfNwDTGhwYT446LLKd782sncgVrjMd2iRkNg7bSddUY1oxaKeLmE6NzuhVMaCGqq6O/MYhxhwunfAIFXV1a9lUC6xnBgrCN8xztOUCYRGvXMyB7M+RE5jspRvO0953LJGCNTsmyRNtVRNpa26B2LnPFm03XBNe2Acvm5zF6OEz5F//0R5dvtkxR/DK+WCPHleoRYxjbfi7JYMcZVNAXVGvr2uWZW9vPNq4R4BpLwYyBH78JXnLtstLrMktXdHw3cvV0DscU5R6za7NNb8zTjDxyz2yc/Ueii0UZ+fa1Vpa1lKK0E7+kgLq8/gbLHEGqcD0XYe3MLlyn69IA9Hv0FzW1BBdJP2/OHaTdpLxlRdBO3eo2/VqGTKvmHrQ/LrK8vtv7b519lDJXAA4ephyaaX/b295GnuccO3ascf87v/M7AfjCF75wpA273CJSN4CqN/WxEixvkmeZNb/p53VcSVN4A5aQSCOT2JCn1kXTVR9oQ91PkFJ9yR+p4KzA/QL/d4H7CcyoQ0Thu/rtFNWypChQz3ZyXtmHNdHNPQS+2ygTmxroGUN60zHMY/PIzlIiirAOgMP2z38PVHo1iqTwvtOBgOkbg7ew6idIFVKgCUSE7cEr2qXoajPuwrI/u0PUjqFL2kCoq7TNfdxi2M7hxMj206XXUcsLp67cSOCiowItU0s/o15UjoZ1nWicpeOIzd9cMdG9GCi0kXqbZshpmmv3B/0mcI9cIkwtwc3iXIW5dg1nUnAcw5ZD9G64jCLFepAtuYkgwTS+DUMnrNaOD+jO1R4DUXdvhgLJrnoMQdPu1ptjS2LkJaVYV4bMEmbaz03UpNYz9mmKSNWg9RxVFY95VyqeuH3Q4T/Xun7WRZbHiLJGDEyyRNdBoLsb7SNLMFWTuaijOpuLS1QqHw++Q+rOJ3iJMTkijNXuoBDg1cbAD/Sgb9szXHZh2leQsKBpHtg+e+2DWi/NjWFvZNib5UzQua1j7HzEiLqWAPNixt3l+ngBNNJ+jlDzeB2qCkmTwCBAw/LLN9cYpgaGjsG2OA/AnBxiLhahX3VsIh8sdcCa3O4B6wECiWUmPe471UMuzDxsd/jmQi2ckKa/OjT9jR2DYoyeEys43E6T0D8URu0Yi8vty4IF1c6lC3T9rExb2Fwzvq+7NWaYeoYPNFXe1G20cR8pQCrVVtaHJHa97MvPtxVozHIWGWymSpMMBj0rVFGGPfFcqv3+C4fw1V143xc1cFZb276EgFrt2RPvB+p59kgD1wem6wMllGeFx+me2K3bGOnySzv3eXxcRDXt0MQJBhVId/Zzt8QcjxJiRsK5kdH4BJrQ0GKQY0PIQZx1zT5z2oWjQXFgggZc3bL32n7t8XsxLp3Sjfc8/yHCRg2l5TacTzu1IBcFTg68mwqJ7g1PazjlCxqkNu8Di7KBE7pwsetTO74M9l7buL09HgeVwaDtTAfLOdptbbMcGWlLSqzFUKRU8uDcZLBwmvYV7esSZiEqzAJ48Sa8+NrONXDZbiES9a2WZgqyyQzGCXvGClcjzsxYPJX3MqpSG+1pUHvU8bp1zVzUIYWrB7j2wgunozRy7cV5Gd0UEc+4C4KUgAhlVdPfnWGuGQXYkynTDsIM8QTm0r5pWBE4F7kWART3EWDQp57WIQWdgIM2F2tN7+xKJLf0xxrB3aWrTUdMDhyqHJppv+eeezDG8OY3v7lx/0UvehEAZ8+ePdqWHUGJ59gxFm46FcmHjQ/AoKcaRvueYwpigEVRklgllCMWooeDj58Bhhn1XJ/5hH2yJxr84A9k2afdN8xpIwR6AplAJkJ/vuDF/YT/xRj+qhj+bQKv6Rt6aUJqmc/sBSN47CIey7Z93rqkVm6Tzmro98K4+IAfQTDRM/h0OzLGb/oGbov9kfYpSxqmaL6clqnhy27wAoyDipPsLYm6QaNiH8uiWFSWODI2RgC6mbdNE6nVw5TaETJdTIxIY1jdtWNanY93vJ6W/LSjsaHjfjugXfNsG2MBeGxyanbnmPHAa6I2E8MWqmlvExd1L2LaW6ZTXUYaM7oFEtj7De04zRL3L+5bXNpjFb8bhl5U6GAtP6Tn4k4o33ajfWfH7dOB0YB1QE3Lnz1at43glR1tG9HStMvynD3r0mHVIEUFCdSJIaO5BjybYYAsJWnFU/PX8V7whFEFw14AhofxCb7s0tpDrn5HSIxbkbiNWXJhiqtaugdKXWYRhI0n0cExa3a5lxh2E9i7JmUnr9hD2BGNZO2JwCPWtjuBZVcQupejQtsYSQ8lioFR1+rOYN9p+LG3zoskYWTdwSAEODIbfcyFWQNmqIm8NsiHcxQlhtNpiawNrHWOVlJbU3kwyMkB9fkCr1m2hNu2wHX1MlPi3b9E/NnDx0KtP0oTMQm24RNjhQiWwfWWA4Szpi0sOzYArT2ggglT2f6Per4ejOGkCSaS0rf+9ZPg134YYleFM5G23d6fLyqm/Uz9tm0/3GpNrRAiMJ0GCjsS99fw9ifhgWea1nSrcK5jtnM0ErYbYzdW9ttjZz4+zpCdBV6rG1vbHIHWMS4e79CcFtDIzSdYJqbV+lCivhFw/e4C1nt4GTz4NbKOUnSOhqkNMLBWWTuLsFTiOW11tz3dNUpfHkNzPm9FfYpBW9e+BN3Pbb/xBq4RjQexcKbGjtnbsn74a8oAOwHaPIH1KFibY/qGwDTLqJ0VnSu1y1vdXJsujWu7XQNWx+GJz5dSlrTQsYXHxTmcALG0Z9+EPmmj7LmfwixEudd6O9rVXmQAU4tTLkQqhtgytYt4ueRO6tGAAc71ZFLBep8Jmm3AKRZjC7pq1KN24MzPVct83LUXFE/2okBtMeNujBKke5HA9giF07Vbp5Vtq4Uj6xdnSB/MWt/zPmz2SUrldRZ+yMWPu18J8QTmZSuqeFTitbHZo55VRMvLd3OLkKO9cUTDFVuKrqLJr3Y5NNPu8qm3fcjzXJHIdDpdeue5LJsnXtQY3IapjzFL69gYYJioSYl9ybiz3RUGoK4wI8u0RxWIvW6YGg8yL51+lX28ADKE77ONi80EfUX2SEToAyPRAD7DbWE4zHh1avhnfcO3Z+pj3k9glGo0+eyFG/CMTffQDkRXhY2wJFYVdJMPm56ypjVIPaJASD1gXkZ7/tI2vbDsy17ZMXqMFUHozOGYdr9D42vX7705WJMyp80wqGbD2Mk4juFsVJWajSfU84hY899ywGWZ/xCa5uPxhjMo3GlHj2/jiDYijQO13Wlzvbq1GkMl59OeiGDOTzCnEg+UThk4Z4F3CPJk1+7IMu0t6CRRP+P2zghWWNCEoZ39s+c2EJwRTM7bvBV0+NI5JBiPkzWbkiRYEGwDx42m6th2zw1AFnE8hlY9dgxdAMGmZU6zTVfEPD7enhIh5qJS0xqJt6Ul0CKMY3qpZcBCfaGuqHI/+LUKLfVtPR0Dpqt8go8AZTU2StSmvTyY19jBvv1Tn9W/91K1fexqTxfhUqLEXAPQh2tBA1NNjJrN7hnD3mjANBcmwET0PBXxsfqOqogIlajGpapU8+oEmHEQOgM+k4larti+zWukh9+/PsuFsW4v0XjsJjC0i6RB657oYXZm4WFnIm+14h7/1WrxNZioGadWoN8ijQKynhxR1waZlw1TxG0RTkkzsKqh5aFARFciav6fpSTAXqRREaNwMFh+hvXvZ9egqYtcBoTY1LUBqAnwclGq4MBmT3F1Do1RFyajwmtZR4MbSWAwwqSunmsPZxwjjLC3qJllGlw2MXDXn30WkzjlehSEzjHv951pVvy5001c55jzpXsEQaxl2nXs8MwdRq0xSgysDZFp1Xhf2ojpCEvMAMef2EWZduiIhdDVR4DtBeZYRMdY6wvBMErs+vHSERur4KTReA0xdd9R937WZmN0a+xEf2sf8TuudOG9eC8Y0SCQswieCwI7C+Q6TV0pSejPjrGZImiCuyEwS3vkuY6yx5/S3b4lvG6PIR2xZVb0bVWJc5j7F1vCF7dXmM0RG0VzTmQR6VvlmK30/8fdfwfdlmWHfdhvnXNu+vILnV73BEzAYAYzGEIUCRAACQIQIyiSsphAUoSrrH8cymWyRLlUtFnlol0mYJukWGXLRYqWBDAJUCQJIRkDBpASYAGYwWRg8nQ3uqdf+uIN55y9/Mfaa+99zr1f93sdIEq73n3n3Pvdu89eO6wcQHv2JHovahEf7QrwMQ73Z171JsTebUnGnmIsu5Q3j9809eOW8QDGQwdgb8ZSTHGGkPIsOYzdpDGlmw+lSLuy04Ng1cO0UHyPhdsjiR4GO+jpG1BOp7FFAqC9fbpS5emzDm4dRWQdE2LWDVzE/Tl0dE5wJVrm13VPStyQiIaM3OOBxdQqeKU+jM6qwn3VJLQn3DKiR+4B4/t9V9jLb3R7ZKHd3eK/+MUvDj7/iZ/4CQBu3rz5Jg7rjbe+N2Ltk3rB0IU3XSW7yjOrtmIZZbQq0vbUDWxk8LWUjMeZJgWz9gmEtucEuKXw3Qr/J+BD1dDtMR8n3w324KnCPMCiV+YrZW9vwkKsFua8qljUYgJ7ZUK7HE0N075wvk2AlB0udAWAq2DZo+PsjPhbEMtv1fmbSYX2LUkbP8D8r43kxlZ2xYT2L2P48+k4Ly6sl4L7a7ZdMDpDc1/hZG5rLxl/VEjKxn9D4DSe4OR6Nhe0axMDNkZsZVxY+SqttbAt9F2XiG78mZLd4/33+4f7BXGHFBIRxya9WSTkboccTyN8wn5VxGlCqoAQMI+CcZiIj2HsgaVkN7rxsjiBL0u+7Qqn9r+tGLr+j8/GHoXFbTAxWagN6x5dFH8WOBdhH2OoLjXCOgFd9cOsoiMGxq2e45j2sr0Z8X2v2bS4aQM0FVeQ4njLls6sZ07tQ2SA8hoOMl77h8se9ie5E5EYE9yPvvsmUqtd8aOoWdpPCq5T4GgvnqAdIUw7W3nupzvUfLHfjQgrLA50he3Vq+MpV2u4UlNQLtXu16qWEfd1NtWYUb0P6KYnLHvCsqNftbBqCatYN7gPKQldmYgUTPGcztCmR+OSbSVEleESXYlYDgTBSny5xf2wgVdGcd/JRV7TmghWF3t2vkLncW85fgRTklViCSAPJZZ908S43Q9wEpnhraQ/LjT7Kw5D2gB1wz5Gv10hDibM5QzZZCt7lb2mOGysCkFegOF1dC+XbXaxT0dLuCHwsMSV8yl4GSGfopK539FclxqisOQC/7KFft88XATY399LIXuVM+2ltf3DTw87/k1PDRnt8h6Gm6BMNhnnKl2Tdc8UPhwu4EExZS5IlcLsm9TG9DLhYyyvzA0yo5qGOuA1ypeapf2wsd+kRHTRi0GEhUhWJEf6zmIGZ/02Xd+B68aPhaxEOmGHpV23lRFjuudKfYdxwKMGOEC5igq1pDz/3H24u0Gfvx/7tB+uRFKtdD8bYGWCN/OGzo97OZ44oFIZ4YqIoXicFQx98V3v41F3xuHhyIafFl7zeOKh0bMARxYq1QlMIpyl4U3ANE7rngnbS5h4VBjSHf/CMlhJxY6YhJfhmR7ERL7ONoItjet0he7Zxr5AIi8lSZnmuChMm6GrYZq3HYnowOhk6a1WIl0R86y7HHmtPc4iXtdUCSGkjPGuOLlUeOcrLdWRicJVEdNO2ydeyn+jxdC2eJbrvAgcNh/Kfo1etnGvDxMtnqtyU3MIdJnguuQ5IdIf73N0/Y1ujyy0f/M3fzMAf/Ev/sX02Z//83+e/+A/+A8QkfT3f1na5dlLA8RYxsviiMytDo4ASks7BT9cLKwsO6pqpGmM1kqBXDoLZ2SAtucUuKPKv1XD18Mgtm9cXrBkYkXNyn5w2XLYBvZnDQdYFtTDyoT3w0rYq8QqIonAO47gy6sC4ZSvsJvRVUwzF7PYZu370CthH+jje51WA2ulz9Xwg+vblnt8/PxnMdz5aXIMe2llf7RNW8BcMlOXcX2PTYVTJqIrEdpt4H58n+jJtEKvtFTcDgjAdYf5im2Fkd979vhdCGE8le7dUWZq/+Zv+abcr+pg7xCiy+l5i/QgR/Okub0twitV/JpkS1kAmDXoJgwBcVzuFqNiXKVGfkzgx+7xCbYdMI/d40uZVBi5x7sW18fmiH0T0EXRr1im6QMRDjB9DYDWoCEnKCnPhN/uqlObxhavDcPyN2M4X3crNMwJRoBW0bpJIQml1XQw9zEOmK6EsTynowHHs587wOLaL/vtBXtTrA47xpHOaA+L6QCob/+mD9jNtGHL5F1ugrJPd28sE9EVkxRUWGOMwkaslOUSWC7mXF4pV5jAvg5KG5Q10D2GwGLugSag66q3vAHL1lwSlx1h1dEte/plT1hb1Y+w6tB1x5fanndHa3ctpMRwNcpDn/6+t30MWVE8mla/Wsm37RKe3FiYK/wqM6qV5qkSd5VXZQ+YrzZwOBkK7JJfQQQ9nqOnLtQagj9T5Qm1vhLd82eIDMp3pc87hUnDXCThSId1SZEh2+m3ZPgAqz5wWVhPX22CVKlWHbJXjCluv7m4pT9aZfcmaEzgnhLKxT6uOxdGinIiSN+y3QrCxN3VhW/+8Adsbqo4hnGyxK97Ap6tjKB83x1415ND+MZnMwkmasqwqU3YIPY/SQam8FiDrfHVKv60UFLHgb+ZZd/KoUMWHL2E2gnFFMTPkndiSShdKX+GJVgslC8CaS73xNyskzIe0Jtz9Kwb0vUd85mUu8XYwZj6A0yp9rCAaeul25959ZWypTGrUoXAXoCOLADpV+/Bxy7QNeiPPo++cDd5gpxXZq2VYsJcwdstGnrPJBzh1Ig7x+izDHsb02F4Y1VTvuO3fXj0iQ4s7Im2p1ApUxVsqsKLgEI+E5AZRD+R7Albjqu0oI/p37Kzkoo15iI/2FNk3uqNtGITeIy1gmXHny/osbCNg8qPo2XbchiD1HhFGOtqlIF+PLyNZu+5ZIEuOJnFxDwMtnDjG6PvKWO8qg03CuFLlDv3zuEJl7/ikI4E1hsT2nV7aQag+c0mQHONF0GBLHSvQq82BY7RQcm3k/iTLS8estzRkJNF7zrDv9HtkYX2P/2n/zTT6ZSXX345ae5+6Zd+CVVlOp3yfd/3fW/ZIF9vKyf2gsLVR0iZC51AAya0b9rBgTVmIv5MFdqeppEoZA6l7YQHAapYPmsOuu64JLp5qeYEdDokRINO4neJ35udb9gPyhHCEebZcggcVhVzF9hTspoD+PLDTHSSZBzvyfANrus2ZSMeCACS52iGWMkhwazyV4Y8SqH1UbG3x3G6IjMAHwd+LP79LwCfJJd5c8F9LEDtbGPXeLD5fBCDnhrzQSxL/nm93wo4EUvo0hLXEUEXTSG0F8DtuC0P9EBhxFDA2orT3sEQlP3AbkIq5RcLZUWlSvVgiZxgVQaiW+ChCK+4iyDExDxxuqZ1cjMvEfl1Yytj8nYJ7bti9hm9935mo7+XCqMFOUvvLgQKELqATpssTGBWuWPgZgXncba0ElRzQp7MsKiDm9ZlXIqn3H9jS/vjMC6v2sp5L9/2Aeqatci2B4BkRrwR6Gqs5FnZpa/h+OwvW0tCWQJ4OMuW9jiWwR57o608m+V5veitJE1qxSaY1TnvyJjJKN+DeSVAjs8faeU7VTZiDF6rto5r4IX5hP9OOj4TlI0qnSqtKl3QWEro1WHXPpiQftWaknDZ2f1VLMe56uGqI6x6+nWPrgP9qrcz1/a8tA7M1z1v70LKpu7DPoJcGicEqKsh6BHG8QivRJhGQUWQbIGc1VbTesSoSjwUJV6ZrDuaHtibpbNF7JNKsuLgiT30fi77tlJlo3AScvm6rXrbFFvPXfR7YFFzQHQ5llzO7kKGtaiduY1Dsb8cTItg9IIGZA6OcrJk2SF7OYTIhZ6bMsw4zv4cveyTBfVRuLgQXWENLeczHa6gmkWhPfIklXuA+XyMXT7f/QS84zAnzFLy1YUftuFj2VmMEMVRkOH7mcT9dQCkKgAMLINvNreqDC3R/noY/+70rrS2i+b8C4O19ARVR0WCViEhbxVhWsEpkuqaK6B7M7jcDL0F0/wNlYTpz8V7t0rfYFgiapeQXvYBRtdLT7WSvjj/OdOIzjTunl+7Z1+oI3/6mfup/8sRbZCi004aelc4aUn3tq8X7C5T6zR6dc3vXlcb8WtJcD9dw2F0/xdTsnoy6XGsmkyAq85i9wultwzGNzobJf2b1/BEA/fX2995M/Z8RAAK2XNFQU+Bk3kswWsGuJFoYWPfA1nHcNRR9KKm/8hjXbVGLwcbinzYD6ZGk9IDXhuPPRKYqsnKjua49lUXeOJiBbf3smeUYBvqss2hX/E3CZ2l8RXXgVcw25PldPDAeNlxOUPUypDeGtGeLZ6a6KE5enx5/Y1ujyy0v/3tb+cHf/AHee6557L7girPPfccf/kv/+WUkO5fllY388GkumCxJYyW11mdgyqckI+uhJ4m+hlu4m8H8U0iAwLEpEbbwD2FRezDUweVZd+S4iCMDp7v3GVHfWjy5jwi5ZkIjScXqiSaZATevg8vbqycg8e1u8BeZnsrr2AM5rxKk5Qs0MW81WJxnwoQhSP6oeAzYCCuaW51cGHdf/JTo+/9BDm81ZPQjctb7Wxp/kbI+bSFm5OE8EUsrt3XwMOljuOpPbVFjbHeE2PU+iKYCBKyK7We5cvj0L2VCGHBo9U8VbJFt4x/e3DvYVYCuOuCw+tWs3sd1eFesh5VlXBSw8M4j+4dksY8q9B1ESYSB2DTqaksjo/tit21zGUE32i6Bp+BCUy7mBe/uvDsbusDPtyF2w1Q1Ul4QYSLOI4DzOquYG68XRjy7pr7gt2leEqa52O6LpPuG27FPCXLe4/hKY3lx0sNUDHAfSA0YonrfEwjBcVgoBedZZotAd1rYukntpmcNwPK66weV4XQHpm1uw9jpOi0Mos1BSDj33tLQvsIiUX81YoJ7p14Lg3lc0H5B7M1F/e/xt++e5/P9tAZD0KnVv+3v0ZoV1V005twtGxNgFh2FnqwjvdXXRLc+2VHv+rpVx1h3dNHa/xX1z3vbwOTtqcp3MnBzlnrZzH0aB2ZE2F4pkaW9wuMbgw8yyoLleHWBB5mRlUg1WbPhwJOLtasZpJi2N0PXaNQGcReejwlnF5F5tKy9DaqHMZ95O7wQ1fnnKleIhCyAZqGfTEvCIcT2aGET3AVa304zftg5x5m8F6WAWmKRKyRsVwgFioVZ1dnE8K6zdMDQ2S0a1+gUYmhAwcw3bRUhaL89OFZcuOunPD5ZDlSvTGB04JqDBBYOSjy52C8TZFscjBnUYE7q4QWgf0a1qvUl8b58+ubybHuchQIWOb4JyLIu+LZZTznCpyuDaZJnUMdkFzvHlN8pfBGbMPpYYM+XOe1dPiScGUf7HJzh+wef8z1Me1jdOfXXZ5qw3tlT5ULXwcFfe+tiAMgVBA+cAsqWFem2NpPZ6JYa6CbNuimTJhbWNhDhhF2Z7WHWBmUbUv7+P7V2it3Hw4/SBOlg7HoRR8zx9vT1xJ1sMlrKJ9TapBNz75aHpIURqAekkLCSVuDvWhhr4Ybe3C/3bEh9Y0nYCxqtJfHVM83MJ9zGWl6A3nd3LgoIDOoQlf0Z51slUTzBV11yQg3aIk5m5gyWXf89jUU068OZlQsFe7xqsD9KzZTsecWuFomFaw27KOWt8GH47xmxJmDMa015d/aipNIm9W8osLFsOQbaqLRhlEiOsm4xruDbWMR5DPyZtguHrc9stAO8KEPfYj/5D/5T/jhH/5h/vpf/+v88A//MD/0Qz/Ehz/84bdqfK+73XrqfcA2UoXoKkSOfYtbxzZBCnYalnuL34Cuo24qVDLSKp+ThJ94DXUDbWCpypNC0pyWe2trEcoN6texy2iJRSuiOTpyQbfmhll//Zq49rCjf7CMjLFEhBTzUgrJ0wgbgMZYUV3lsm87pbEdLQ2JISH810bf+16KZHTyGBu21ASUmtIHHZxkEVoqE9SrKltqRISaqDWXzCh6jgKPhd6W0He7yO9SGPn9uOTb+Fo+Yokta/n7H/+Rn0h9poDbQjEjCtVnX0a+doZ89V5ay5tY8q2VM8P+EgizGl0NiUNCorD1Grv3ledmzvV12ncxL2OrSjlni+J7ZaIT7yQArANhHi3t8ddnlblB3cCyESsQJoK2WXFUwifxsyu268+PccKM7aQ8XPP+cdtgfnwNOmBex1CSTKxScs14bveBrq7Nnd4ZofGYBme/HZaHEYxxPytUEolixf7eAGEfdDgWpi43lkSsmOwf/umftfezyoTf8Zh2DSVlSZathfOEl50IHVbGsgd+5cX7fOvn7/K2c+UP/7e/zq+8cJdelS6Y0O6vna0NJpyvilcprPvflh26MiE9RIE9rHtzo+8Cz7eB97YB6RTpA7Uvs8aEvw5yH2ASXbYjmHaVwbQoFgs6E6J3kX0nCT8nc7jfpS+Le5iFQohGWVx1nM3tpBsaUQv/ArQSQhQY9EYD58ukSLsIyq0YE1phfQ+EsJImFl4F1RXQ1MzIVldvVyIcFMJ1uorhciCXNbrYsYd3FKaWq4AUmdWdkTupTMhrnaYfVnC+jtOVE3r5QR2fi6AusA9IBQBV3zIvXPJ//Cd+tkjS51xkhMevx5O4XrptDUy0LuPFjKhzCIzERSzdixFhiphAezRHLxX6kOLYtXzOG8ZuuV1HFx6wjX+TtZ0R3D6m841lWQWItN2Pv6/nTCxZm8YPAsBBRVitTdgo55HRPXl6y/FeYgLuCUZjdsHFNdclmT8YCxCohZTsq3n5JDp35wbaAF/foH/sbchzt0GECwEVSeUQ0z6KrZ8IGoPaB2Xfiu3i1+vc9sH4kDdSNeVv//2fGH5QJE1OArsCD3u4ubBeRViLeZVKfM4ArU8q6DrDc7490vjsAA6O5pj+7dWW6+jhOu8BiuuOs/2obZAdX/3RTu9WhBsWsrEfF9+9PgetgeayS3hnYCRy3rMc3mpohEsJnLztVXDZ5rl4DTz2yLB2mtzjS4t7c9pz9/YRHoaDe30tKmhb6ggX26h59ACMtnuumoTDJB8e/3x/SmglGZt83u9h5+qIjFfK2S7vD3j1agm/0e2RZKDNZsN3f/d38z3f8z186Utf4tlnn+WDH/wgzz777Fs9vtfdvvbCx7YEC7cGevw5QirxZVJBMzSXUjDq7rK3AZnWCWlRIP/kkuFJ6UTQWQO9MR0Lcp3aVD97LIiWyGJMcPcKl9Hy8LmlPSWsqeAdB/DlXMpnQNTLbEol1t20dsgpGSGbAGf05iIpXkhFIvY2hk+9H7++yq5Wonu8FvdYxniAbwV+APgweY4EEgP7mq2o+ZkeqJgm/mQ2YIaq+IAqKigEoIIbCK9EhjjlKGgEXbYFHs/w7iJ8MNSkj622O12+d/ThxL3UyAvwp/6XfyLvTyd8Drcq8sVXkC93yCnIf/Y81QuvgAj7lRAquAeDMoUKhJlYzdo0l7rrNrUVw7jv8rrPdsz3rjly+MaW9lJQdgZiKwdAqUxYB8t+TybYngH+ELO6I5gHzMZh0p1zPvaQ8FaOb8o12eNfffu/divwgGvmUdAWoDaLw2hQ5Vwh0FW11XUfDCzztwMJYhWZFsi45aCG1SYveqlWLifs9YA37rPs63xjCoPEbMCf/WN/yO7nlZUCyx2NO879tX1RZ7FAHBLj2NV0IB3QVxbu9Js/95BWhHZS0avwLZ97aJZ2xYR3VTpli6HRXo2RaMNQeHcre3SJd2FeVx1h09O3Af3iK4Sf/gz9l++iXeDFTnlHtEh7EjqnEQdAKkzVYorTeG410iJVsgBPPH8izJJiZ3Q9mRtejHsu07vMQInCYg3nx/NEFFJcuxhuDFFgCDdn6MOQGLdPKjxQ82JAGZR1c1dnf8YgBKUPSF1zi1LxZ898iOGWpNwr9E22Z2Ive5jQfu0ezu9l1SMLF2pzqMl+xI/n8QG6AI2lP5Py1q87zsWABMe944J8c9Ga4Sme3z/1p/4NBEm5VtK+LWNSb8TyNbs8CMZEpNynVyElm0wZ99P82ZuJmHKCWQM16EUug6bj57xJ7ToPtfuYctlbaQmTAFKupd+fdbCYF3S8yDYugtYVh1G4zWdE0P0G7sXin2PPBWxA43ryFFd3JT/GcEvL9jL4fZrG+NtXKytaxx9N1PBV8nxYbmDSoH/g/ejbbqWzv8QciwY8ZbHO/R5IX4S+FaBGINPPPKyvpCt+XfDG3OP/7P/mT6R71WIgI4WwrtYwn9lfBdYiKRGdDcj3sZjFtjdFbRthknJsWizpeHGuosHq1gTuFwGLb5aLfEnP47173ujlCubCFRIrfJCwT/aWEKpamLZd4ndy1yVOK+43XeLnt0JsBKOxy832b98A85Lqsvd+rrMnwOzlDZdHlji5zCMliymslbkql5r7STy1FrjHx7WOXgRbkrYzQvaHsIjewLEUsB/vC+AWuaRqmpbhzwFyItTxK5PH39D2SEL7dDrl8NB0nnfu3HlLB/RmN1/jsuZkubbl+WcWObw2C3weOyUAqkgPTJoYy1pYOJTt0lmA7jXQwYVabJx9fdjvAFEPhMzi5MQ6jtZBwaEPhHXydR7gn70MX3glu/aUwvv4WWDpHX0Ods2PFHXFXUGxkJhJt0BIj9DKOfLM8QF4EeOz//fAN0FhddjWhl3bd+ld4HD6wO4v4WSSOnLkYXR9GA5wKLGud4r7Bj2EUMA7xJe6kwEZW9q9Cdcnatt1fTXNt/Qhr3Pxkl9+yRj/CuoA8un7VDVIbcnoHiSm2xhiBXQuFl870kKMiZ+3c7Jw+2quRem3PjejfldFPyWT4K+6+N54ftIrJigJ8cfOWBxXlpDc3VzDpDbXQh3FOhXNlQjjcZTjm3JN0hveYBswU8VHK2BSs1YGCXnGrUZY13Xyusg8meZr+YAL4tkvqVUDZ549Pn52nYvx47bxhJeM8npjCgPYTqAzi0L7ePOU/fpN2+9MkmCu7kpbVbQInVj6oiDw4ntPeN+9jluvdHz9g47b7z2Jx0qTxb0NmpJmptbHUCQX2jdRcP/Ur8Pf/Sh85iX7bGMu8OHLp/T//SuE//QT9D/yPNUvL6l/7KvoV+/yfFDeoUoVLPFcVcA08MzpgabePgcyPBMpF0YUPl2YSVNyYzKoTywDuqApNGxxGrg3sxORLOwuDAkmuAO6PyXUoBcrvhjgp4Nypcr/NcCv9plJ2rJu6NBFXtYdTCtqIZVcg1gaVGTgups8Bwq3WURiBvlRfo7rrNGrjiqWe3OPK6cPBzEfhiJW13u9SUylM+Gp71Ezg3guNeSM3kOUvbZlMTXMUqfnFsp8dzFzIgiWewLg4erVz+UO+Nw1dSz3EOFtpAhF2J/CaYZzwDy/iX6hu+LZwRQzNxji3vQKuSThgI85600pjwk+btGDvCX2BJYVKU5aBfR4ZkqnVeb9Ut/BO8+PGV/dK+u4GPsYJr3mt0uGaGpIY2yD7SmsKPbt6Tpm6MubRRGWIhykFB45bjhNQwNV8lQq3LR1OJVACiszg0Cg6oLhuaAsVK/3EHzcrTFex1Ao0e+t0BsGgIp5DM0TfENhi1mNbEKsIz+mc0PSwJj+nWNn42QK94qybz6u8vp6WrEBkvLHfL7Riw6OppxjSS8dqLGDTTWraAYKFx06DA02mmbBdtyclu7VFsa1ZWUnf/a4LZhNMKhCl93aVZWj++csbzHgsQVSic2bMffXGG0NnHv8j8sRbFvKTXtpU6EVhJivIsTNfi/AUXyAn7exQc2vB0FZFlrX8X7/jW6P7G387d/+7QB8/OMff8sG82a3MVJN1kCRws2KVPrES6F4MpPEpDsz4dbHScWEqM2T4bPK+GAArSawtjinQ90thA69YEZE0Xfu1cY8AQaSQ7xxfyEX3r90Fz4RtYV//0X43Nfy7i9LvqVHxjcr4jMyA+RaP3c1rsXiitJIJ5ZpPB2qcuyvQtjLEm9KJtwvAnd8jsjCWnl9zTYiAANEdrq2Gu2Q4qJEYqm3Oj8XhCcwFz0lr6lOG8KmH9Jx16AWjy+vY4VRuYQupG6VDduBM1fsrudqyiTdEthRRZ44SpYJBPjG29lFXiQzF0quejCtCeuSGpBci8okSj6+NVxb0s418t50dF++VlzPvPj9IVEIiUqvkkEIYEnAJlmQ8cRzczHB/ZJYpSAKO9pnAmrzYIRGVFlxfQJBv3qd9hK2NwWpX0cc+gBVTUdRkaCM74sj2xPYTGtzTyv62xqTL36HZYvPEovFla/il8YWyjcK4JgZKvs7LZLMjA/MVHLJt+sm3K+d7tRsdETX+OLe3OOFj9y5xVd+93PcWMF/9a3PcPnMTfoQBfaeeL8jvLE8dy64f/Zl+DsvwKd6+Hsvwn/8Mfhbn4D/+ycIP/ol+i+eojHRX5iBXsLlr54CajgwWto9GZ1g538Zn6dEpoQhjiqnGPL5awqLI1Lsm+MJPFgPmDdJVnES/WvWK86OkiiRYtlLIhY8Id2NBn2w5l8EU2ROY3jBR+LZSiHaqkjUCrhXQaI22iILc2E8d5oj2epxyHC7lmXfUltMTWgfcH+QJ42EROSipZpXmQZIFmgPkaisBj2YoBcQ4rnYmSipaCUJKq3tDxUOug0yq5PC2MdfUcRhl0yCexDcFDiLPj5l5zBYx/QeLH41CvwlCyFV/mQqlsEaETiew1WOY0+49k22tDv9HzsKPGCH0J74phGP4T++WFsuAymmLP4nVRVdxy0RHbiXJNDU0GDlt8bz5opOdm4bwPi7PYxHWWDJ6MrvvRrK3OWplu5jiMpB0GhLiuf+KhAW8+xdE394LhbioGnvyHD/NFCvcwLWHA5dKGZ8XKoctj31qqNax9eyo161HK57Vv3Qzvi6yUK5d0MeB6qwXEUPsJhroYKJ5+KQ4VwxMa/WhepQkV70qeXCjRdob2IZ5DeYwnc0rjdW9k2T0UwVQuw3rDqj0XszNgLHroRJy2bQiUA1rZjGHDXjCFfHKYN2heW/gR2bSywcOCVg2IE7Xg+oGjJPFRUfQY0v279Ys7y9Z/JFASd1BQ3M1m0MPSuqJMSp2xrKph9a2gfwOV2K3l+HVazVnnmgc+BmYX0qUW1SksQuTzY97aqlWnWm+Fx3FsrW9oQ+wuvhAL8B7ZGF9m/7tm/j8PCQv/SX/hJ/7+/9PX7hF36Bj33sY4PXv0zt5Pa7B0jV3ZfAFkalOBD+ny/2sk27xImDALS9MTF1RSPRjYxiQwkD1/gAMKvorkxQOILEADkzVGp3drqMJk1gO3QZLdWMQEpEVwl87KXhZHz0JeunNGmPEZdzoTG5w+AsiF9NE78p/qrNJPptjZDGa+zf0jW+jGt/AXjbCCxnoh45c/xYbVxySxfA8SLPX+W12rNrvDNqJyLcFQr3cUEnE/Sq1JTmR5bIpby6Bbkcuy+d78lXs7b7/ZqhEFkJ/NR/9TMpi664NrALmcg8UORdDfKhKfJ9b6N+xxO4dv6whq85bDgBF8K0JiRz9ghGtpd27N5XbstdMfuB3dtjPE+71toT22VXxUwgFKDt0Fjiyxn8g7jUh/Gzc7Cs2wIaS6KN6bFSWBqKNh7Tte7x18D4uC25Cfrcdz1MLERlQsZhkIUXi02FblanOorlWJK7ve9fL6FWZmMFOIgph0rrk1/fEAPjA2Gwv9IZ3RAZbye+8CMf+Wd2M22GmRuhYDRG42kDTIY12oO4+6rNYSsW1x5E+FWsbvvXPXsDeccBt+YTPhGZjq6PR0uh7TW6XxZ4zy0zpSLil0d4+D7w7Xfgf/U++j/3Ifo/+h763/WcJXDbQDiCF957zNvU3GIrcrb1OA3sq9WMdzdQotCOjOPYJd0nZVjB7CahtBKLGb0ieWPtii9Hlebhirtzf4b145b2EGmfu8jrjT3CBfw2MQVArzAPyu9i6PKfGJAwsrIDsrTwBq9A4e0iCltJgRkRtsWB+o/jrB1fUwFhx9aVZYvMqy2jDVis6UOf08XEcH0bhnRgYBLKLUCstKpJKajAPYXZGphPE4P+0z/9TwslRDEIv3fYDhaWn0XL5xb3u5D1VWtxrN5l4cXi8zaroPW9dDBHz4oSU+XcvUmW9jLBW3pOfJ0yFNqTkUOLzPFjGB+u4ahJPIsrPjyuW7C1XMVOtco8W7hZW0KyXYqQ0rV5NE5goOA9YdvSXtK8Maq6YHeFEj93gjJRy72VfvxALXeR9xmF95XEAgHFtskvoZ5U1N2250laX/JnYd1zvOqpNr2VQ0yvnuO1CS/S9oN5eNRd8SP/xc8U73Q412lPK5yCHpsSZoPhnZnYVxLfHptEuj/rAm0xqDQ2V76U8wi54sCisTwYAtwrvFhSjiB9dADHrTgvIe0lhdM1ug9SC+eIJZfFhdoIVwSynjVMy3J9WvI/O561wfj5EqGVZu6DKVuuoW8QTi+nFvrshaSqcPeK5bxmusgl6BLfDci04WDV0xWwaBxL8uItcU5bWNpLRO2wxVcQIezXybDoyoAHys7M8Vu5lFQ5VKVbBdv7m948wFadKQKu+ph0tvgs5qZ5q1rz2l+x9hf/4l9MDOJ/+B/+hzu/8zM/8zM7P/8foq2XD/PBZrvm5PiVNvM+sVZ7LneTtsSmT6kzJzgj4RR2iKTTOagb2r5jDzMSlURnUNYFhgcHhidxFeM8YSi9ipiw7gK7AN/8DHzy+fzbb3q6SPShpEKx5Wn3pE1JMzd0FXeGaCHRHVjEOthvYDnUZDqxue7gu4A1FtwV+CpZaC8T0LmV/ZEzx48t7JCTah0PwwwqIdbFLdzkgRsCHxPvUgxBHkyie3wkHCMN8XgJYXcWVodiWnxHd7worpdsu8e/8z1vN9d4t/K5wN6rKZk+eYr8z99F9dwhMmugFqpGkFq4UVU8iPkNXDERBMKsQT04dkz4CiOnf+Yx49cljztn+zfpffHB2B1913UGLEfC2YDXWHboM9n6mBJQiiWwOcSYwZsVJrS3/XZfTsvZThA0HlOZJGtA8x5hm756c8Lu7+JNb8mkOkZJ0UvhHcNPm6pi4McdCgJfTuEy2iWmVe4Acn3zy00W4N8Ewp46Kje6nyNnoPYnxXeF9739ORvX3MKNjDO4FsHYtVXT4heIrMd0jBtMOPFXEPgZhG8VoRGBkwXvvYR/rPAtRMFdo8VdreteIgF1MyEMBfcPPwWffjGP69+4A++2+NO+Mqt0eOdtuj8Q2PzYi2x+13N8+umb3InzU6lmvBdB9trkmy7QCIRR9viyfnr8SbLkqQwFWxfaxNf24Qqe2jdBIajRgGJt6tWKe3sNm6i8dStlACgFdkAPFnB/wzsFnlY4VOUPonwAqEJAtKLyRGGalid5FADGJNXmMuo4BLGa7UfOh/rv3FItpXs8Zj0735FYyieotE7HZFTufWdTafT9iCIsp64INXCxIcwnQzl9hxU6qCb6VurL15vexjprEhzveudz2fvPreq7LO635nDabZ/HMVIt4Vtvct4K97KIIoHG/TCNCpEWmBw16IsXg/49KR2YAuKR6PGrtDG9K4/0PXbXUTbPk6KDUlFxuTKhHXI5V2IIXDxM+2KJ6IjwqwIi6HyOnlqtdhnvEd0ea9nKagYnbNO862g7mNJ3l3JYnKFSmKOsSuvjao16rDfRN0WEiwr2IjNThvt5q6cVTd8O9mJpcLDpVKQNtJuevU2PdMH4VQ3mASLCSVWZ0xeYVb9JqQEfiSy8771vz28Ga2iDUoCLjeEYr9EeFRNNnKBkdPO9HEt7ztqedjoZjCWNaRfN8GRsXhr0ycaUP88ebOOM16usGm3w4LT4qrN9J8I5Oet/YVMigst0EsW1Lth8a+46zZkPzxUNY0V8iUP8b8vOlNtbVnZloBV5FDC7Ilt8yJWGOOv52hOH7Efgqki3xJH1dMLeJnAZN6MWWq4BSvM36yJeP8EmW/cK6GyKXg758wtVjrBkdKXHc8nrOc1dqPKSKtL2aVFUIDQVKgFN8fmxg1q25/1NbI9saQeSpnjX61+2try0OpY+MnePhxGTW8bAgWmiC9fgtA0UZJ2F9ikyiK1NM+BMjDNRC+jXnT1bRxtjZGkHtpFEIkZdkSjKn1Vskqq4f++T8CfumERxR+Cdt3O/XrN9a8KGiCt7mMQ4yPjBnEJLDTCboHG+HHlcS9mK+XJjnTKsQvc8Q/f4Mpyg3tXZrralsY3jeriMmVVkoPhIce2R4aviBNykyARbxe7mE1iFobXY6XtIotVWbNhYGPV7IQqiRX+lPFRaIFZsJ2p73ze+x8I2+pGLvCp87iEcQ/XMvmXHr6PLZSVoVXGjEktEx3C5wixmyS9yO9jFtafZzcgTCA7qwhaEZg/XkO8goKP7XTHk4zkr3e0Tw1HCsOlhmvs9U3M5c+bmGMsvAaBT0E0otkiB2HV3gqASNsiW9hKWx2FedrUyDq+8KkDfwcSY6qaYmMFcScwPWTWwzvC4cVwZTdxVF/FacS5cYDggJ/IqzxMUlPT1AFn8vhyLZ/puqgHX8uH3fJ197mVeutEc7XLfbwPUGWuoWJnOXmMJN8zK3gt8TYXPVsJvqWKZv70Fz5y2fF4tl1yKae+h70N8XzywRGQu2Lztlr3/OuBPPQvvf9rioec1Yd7QR0Y3vPsW4aSB24e8pPB2SG7xCQfGrudxrjZtn9bMFUQJrctwGq4owk7inJYMLyJm0nxoJb5SrHBcGwFLCreBs4O54X8XK+IAVUwJodi93qoJp6bW7lH+CMrXQ1ZYx/5LBkQinE4bpe+QRjgUYYXlHghirvJlOE4B8rZ1+rC2uOxiqVIbWWrlMiDTeoDD/Bjsi/CKkGP4DwW9bJPl/LpzkdyQlQGeCcDpakOoQOqoIKiEb3jfu1OZyXQe00DStMPRFB4sMxxjWrcDPi5Cdo9PtM/nzeCaCiixnO0Cq9Ue+xtYut4kF3kfNgxpHZhy9STe+/qWYY3bOERjyvkpUCS6Su7/BuOBCFcS92lcbAW4MbP44jQ4n888yBIlK5mHKasTHZGrlPh34Ppquyt20BmK86CxXroqsU4P+nAFN4xOB+fHxLxQZlLyb5l3Q6CeNkzWw+dHipDQmASla3umbeCgDcgmWH3wdUBWPWx6ZpuefmNhQNKGgUfYo2yLD3/ovfnNDn5NVa1G+1E+c2swhWqJvxiGhskEJm1H5x0mwjeAdKjMWrbFAohVF7p3Tdm312tAjb9XGLrrnyt608pTtwhHEZ+75yfkMzpvKnoBYrlJ8H40O76NjXDTbITb2lyupLgsggnK8/SY59s9zkLkP4OvowIvb3j+cM+MIFWR8DkOjYMpkzZ6k8QWXL6M4xkM54roRbcDrnQeoiHqaIouhx4hDxVuM8Qru3hOAY6DKekJmpLK6iagyy6XdfWr88xj6/+b2B5ZHfD93//9b9kg3qpWLvIZRbZZX2ffOGWyo0lTxEzaxjVGQqGzbLZg9KyPfflm0Ki1TdYGgCmEvrcEJc6wxMFFtoe0fcfY3McAUZVbuIyOre3OrPjn734Cfl8F//zFfADL7OIwRFxXXebskoY6d+/XKTIsdTet0XVRC7ps1zD1JbEbx7S/ADxLFtqFIqb9Uc9BQrQjBP2gM3fJUnNSSbauS7E2IpxUcIYQkMwPzRrCxcqNDQM4x8vn1+tivh0cLylx3e9L4r6VqC1a1cXd4lPCQeDjD+ADT1JRIVVlDHojVHWF1HCzEl6h3L/xNYmu4+se2ZuUIG6NyT2Vy5i8EkYf7xrbXuWUjfvasG1xAJJTB9g8ruKZTO5uhVKBviMkoV1YRgbf9/ABhZvr1OqYl7FONja7uyLm+hnPeTG2V3OP975erzVKR/sKQFc9VFaCysv/5THl/yfA5aSKgyvZMxIvk96sulHwvr8EDhqrXEHRT8nMvt62pW2Jby43MY6IMedp986EtME0PGPmolyAjWbvAaKVHZu7DiPEbTzf/1jgGwWOKlPe6U2YfuaKp4FPqPItqvS97bE+Pr6tYFoqM2DImXtytz/+IYuZnVQwqQhi8fNh09NLtLjPQa/WvDSb8nYsUWmtMc5bnHk3orEHrLuANnHqklKKRI/KlnJhRO5WkBjjm63THO4N3K3LOtiiWKxwA920jtnoicqCKMQ6zasFbSEcNnB1xVqVFWquiJrhKPG7z52EoXebdB1MKvawZ11hW2OJJdVzkIyGk10tIdP0wwZW621aUNImv7+CatEUYVLxGSIcSVbgBgSmU3RVuFx6P6NzoZASM6nGa/zD5aonzGoahgpqqcwrqKRROEz+2Y0GPrPaDdc4uYH/bQkpVX18jp8tidqSOq5rKwJHk8jQ6zCkZnBm33gbx7MH7KyeYdnjk6Du4OvIPd5/7MaWo1ni8aScs3i7J8J5dOFLyVcB3Z+iL18lK+Ggb1yAkC1diPNDpaU9hQozhEtHn0MO3dyiLwpVFIRm8eys1BR3ulqiezetD3HlmeUj2Cu2C+nebpro1UFvCk2PP6ZUyHfKslcmnbLXxfwcISBfuYv+6n34wE2On3uKthLoBQkB1XowJ9c19zpxOG09fUIivfMJvgjo3iLt11asugGlx5D35Xt6UjHfhCT8JfJQGBe3MpEvO9gvvMxuLK4v+6YB1erxaXrpkVmMS09bdGZcz6kYiRgItAW3MQPWU6HZdDTlMVS28b6X7G0KuMpWMkRXhVK+3JiPq5QP5NxHyasX0AD3znj+HU/wHqc3SXyJ45hM2LuMuZ20eHQcTxpJUkoQXf/j5zvyq7hSTqcTdO1lqa2PByhHgYHh1H+aKnxhf18o5gGgWHK9YOb5FApdWcLSxGs8chzv62v/kxXap/PDtNBuDRy4x1dD2S3/sDGtSUSSFH+XLkBtmQ6nkst6gDFeKTkQGUFrA1x1SaixzPFxUzhzkhCAbiMKJWtvSpfRNCjJwnppJRMx955XQix9VOX++uIU+HXTxyKRRfeJecmPbQRWSWunMcb0MiNGH/eg82FTdse0P8CY6TsUArsUB2hnbzvagAMoEPRpF2t+xubuoWV8jeZn3cIO/ZnA7YgUdV6hX+vMFbRAdE7wiIS9bJ6IbrzX/H7Oo2WQ3+U+/sKXXuAbnnoyW9jdNX7Vwecv4bvvmOt/tLJ7rFSoa25VwoOYnMpj4lLZJhjWavexOEKN8+GxpmVMXjk+n23PrjugCQzbznq1RV8CMTMsjPSumT60PeqECrgncFx0cENsPQC0qc2dixEPHzu8Ap4pnj1mqiTCXSa9GfTxRlrJV5Ra5jZAbTRr6sQvXUmHdQa0VJidc9xXhMCBXsb6zbsQ4rxI5DUm6G8EyBGjlq6XveG50Vi+8Osv8a6T21lzt+qiRW3cbzGoVnO4DzF+HXtt1ASTLipA/lkl/G+jwN4AetjQXVzxTaJ8Mii/JUTrvFpMuwv9QaAau066Ru/uCp6MKkcfd1MRJkLfRgusn7XZhLNlj57A02ScV0eaUOLhPY1Cez30PSqF93KpUrxt4WFk+L2gPbcX8GCTn6WKaHSPR5HzFuYzYxyj0I+P3XGHxwaLoDcW6ApONz3zaZUshV7GrkKtxOYIGTijJICsgWlNjZ2zUzUccimS6nc7WAPPgQibTVZjiQ2LZww0rn4bYxBlrxnisNjPYQWfx5UTih5O0YuQuor6lK1zYdtimKU7OCLd9NBMBu74L7z4Et/wnudyrfmB50txPZ7Cva6Ah+vpHhk+9jIPUcKXaGEtTKNVk4O5lcXcRI8VtxAmi6MyRBaP33T0cr7Jhd4Ttul/VeKNEs6zKD7HBFUp/EOKEodYzPclkpcqMvccN+jnirSpA0UIA+GhHLPTEy+PdgK8VMCTupL827KPllEul4Lnl/jjCSZcrOMg9EzheJbOniOHS5Hkguy/T2cdmDQRZ2x6dDoKeYr3EgLLoNQh0AQ1gf3LryA/+jxTBf3iJc/8fuHyXU9BqNDesstrc73gHlRZawwrAr74pRd51zvvUAtMu8AkDBUxqsDDLsXtqwhtJRaxVWy5rbmqGyZdsP07Wq+BMJgWBSuFOJvmzm428JWH298rz9djbPtU0q60sPvILtfwlNGxK4FDd7WuSMmDfe/OgHt1w3yT8dkArlIRvuySVzBVVkyVpdYQsfDWq5H7wOtVyqvDaO7tnpxNuwCXG758c48DVxJWkg6HADKZMtn0BS9lQJWRvFu4bd6U3059OWzpjO7X6N314KfnGH9vdM4MK2NrO9gPDuLeTYqfrke/ch8+9TL6/ifhXU9kPiMJ7G8ML75aeyz3+P8xtcOT59K9CxZl9vjBQS/nd3+SLe2QEsYB0IM0NcQF9n5T+TPJDEyyPDSCtB230MGGqPz9+GCMiS1YAhmwJBmw7So3Ftx94xxOjdt58SIfxOSnVxAkMMZ91gyY5SQEFPO1EGNyHV4WJJeydLAKOHaFTpT58Jz+Byxz/A3rMjKsmV951MzxmrHiNrI9XZlb4Q4mqKqq7LCQnmmumQ8iWCrEEnfdNk5zTTX55buoFNqBAaGBbaE9EZrRVvC8DKkfVX7hn/6iWajKkm9B4TMPTGC4tUDqylwwPZ69qahqc/8/x4QYZyqSS9E+6DqX1iqzx4/H5JaiEia/d7FqV5m2MbweRnAt88IwsZ3PUTnnugYmVTqHLUOFyRE5SVCoass277/V4ZxfV3++vC+zx79pTYe3+agq9D19bRYi92gv96Hjs5lAN8PCBfy3FPNdTtoywGwYQ54kxMOpCdJpQKMJfyMw7rK2X/SW8TsNRaCCn/3FX8lntsGE9vKg7FIiFInogljiuQ0meHcisT678C8qYa+C91SWtbuuhOp4QbVUPtD2fE7NwtUHq9MeQswiH/vK+UIYMnZ3N3B7P89lxMt9VcWyZcSKDYIuppyuladRKtzKPgyfkjhXU6DvFKo64SUPyUJ14OmlDJV9yZ2owOkmaUzgXna3LpNbCtgEnMyZiLlOj4UFSsG9EqvgsCesHy65ETecEGMI1frdhTOcJgqKrEBiHfoDMRd5MPf4xRg3SLYmlgnWOJrF+JxijSgmx/dg9BaTVPJNBmTiALgsCLjOZrAscUex7oU3W0lyc3lJZaVAB1W0fPszf/4XPpbnpaTvvn8crhvz6C6yI8v1AEan71HAn7t7vCRBLs1hNM1OJSbZbSqYg54u2VLIv1GlXTnEYqh+f4rJHLNyGuIQq6jUGZw11HIX3CyZl2JPZLaGvXjulpWdhTRdB7XVpd+1lkEHY6W4XjLkV47J2eNh93L4Z04Xne4NXnEcfu73g+0bjbW1dT/n5vFxnUssG+YwS45tF8wYuJpgNbzjSLJrdR7kJij7Mei9UoVfvUcVbEH0DN7zqw/NsSFu7jEqL1unVn/7UuFc4SzAR/7JL3IW4KJXLlS5UnKCNr9erWE+tf7EynLW5aYlL2riVeuaSWejaBkORjXzZAM++6ofKLO4OYX7I+vzGL8/Tiv3kcPp+OByic4NjkvEvCSkcI33tYxdrZrGwhKcEyv5zvIsbDp0z/ifK2yPXopwCSxFcqqb2SR70oXRZD0unCMrezJk3b0kLBou5g2LwtAwIB+HMFm3sTLQtkNPwrGQEufqtGYT4boQ4x8vqFjjxqeoBNyv0ctN6qMLyjLAsZaG0x3nD5AA++ol3+z3+vx99Ee+iv7KBv07z6OffyUjp/L6FrVHtrT/uT/3517zO3/lr/yVNzSYN7Pde+nTQDyT8bNhLWkxC6THtDtBnDXmZlVg2lSnfQMSiV4tYtpaSV+zq+SrAkwq6r7LiLTYKGZtKFp5SErieLkxTs2Fc2+llDku++bW9jv78OLK4ipDcRpk9MxVsNCAom8pHuPquVk8ZS22eXRGirFxJLITnhI0Hwr5BRbP/qw/k0KA5jHOQckBwBARPVjCuw6HHIDYHqiq/LwMs2nNLT4tEsapELoYyzjqX8ESaEgG3aMpBzHf3n/80j6FAmgERvlZWRLNEIryR/7Y74dNn+PZfX0/fh8+8ISFOtQx8UctiLuYVMKN2PcDjJEJxXPDos4eHiNGIwQ1az3Zgj6ALb73uVwwcv/X4nz48+JrKxFdnCd/7wqOJKcVSoUQJ0nndYLjAcIzTggx5vurYEJHU6P9kCCUW+eSV68bD8ZYlsnMHbZyvl5Xc3fUYpIUTGi3FLOUdmYZ3UyByxmEIvvzkIEp3iz7UeI3MpD7EwudGWxIHV5fTxtQ5aKfqz5b0Autzf/iX//dRZZfItP5KpyiEhP2GL5uxc6iC8udmszTi/BjFfwezBPFPNiFflJTzYWbp0uevD3hE6r81iiwdxjhN/d6ZaJF5YaSsbu7hCf2BrhGq5iETkyR4F5gYX/OclVY2TWi9CiEO+MOlpSq79XcW32CxKdBKL4KZKHd6JwLbJKSnYkANyZwvkzMmgQbgD9XHigs5mZpd4u+7/MoZYYkyMdxHOzRXfQcP2GH1ZL+RMtGiMtbKpMhKQkk5iyQSJP2gPvxeWViz9J1OjPvZG7QmfHLDk7GyZaK/RMV4znbOIl5lgqOicnLIjOoew3h0kSu5PK+w8Msb4ecjA7gvsLTK6jmkwGd+2P/5u+13CrlgS4JoF9dgf9wbV4y5fO3zinm5h6VNUnQ8amqMt1CzAW5jfSOvRlcdOhTZJw09ix5A20nc47R3Ft5BrYY6YGxw8dx2tt4XTBIa2kbw1mnvco8Ji6I+U4k0oPDKeFC2FLwFINM+SOcvcDoxHEx1mNyKEX6ueyG02nHOKYd4llwBYWam26roOcby8QoUUHm46+Eq8oUXIN+0iQKC2Dd1MzXPWVuGnvlJGJXah49JqiAvOcW+svPwxrkGJ5/z3HmJwGii/w4AWtQZalwGUzvt4l49/f96X+dC4VJsHKQfVTizYPm7fvCPeMvn63Qd97mSlwh4Qc9w5XgnDU0kUyssTkrq3yUivnUlmEktC+M2WpD9lBNCwlDBvoRWjHJZY12Re1sHVmg24UUoXyVUIW4jwtPkW7WJD1dRmG6BVNYBdYHE1aVsKmsvr3P0UTMU3gmMDucIlf9zr3+2AxMKn0W4fMM8g8DmycOmYkpxMWT0FWeLwuYQbXaGE1WzQleMSAH8K06emA1tXCQTmxPGR5VGrHqOROJyVEXFdq2Fj6JcBa/exS1HIOKJRRbSk1BuFDbu/je+dV7tvo1aAf8ykvwoeiTWYbjvEXtkYX2j370o9fGcbwZWUTfiubrfEmUeSmFgeKgexPMzcGTIRWLiYKsFaIm/gB46ExLwagkwScyW0xr6q7nJoBmId37HQjtA/fKAoCrLqfL9QEPYrUkCWJbxP3ZA3jhcshMRoZs8JxVGDDuhQElX+NBpzIXyQWCNmLJsUqEWDINO/Cbx6xFmpCuZTy7g1DG+lWPssfGcJbY7UFrFiWfvwiYT1/5XAf8SEyDR6TlOqvQmIgu8Syh0HoWw4DtmO/yFbvdFmpH4Ph1XBKt8hJNISahc0v7xQaeX8EfOsFLAVZVdI+PMe1VJdSq3EJ4KJLcwBMDMK1yrXYfR6H5L8/WdYKttwNGifaKv/kT3Fq9q+Rbed0jZuYdEGMKQgg6beIzrLbyws8pcCMya4AlBfPqN34UCkb3im1ly7iZG3puYxgfk7xv/XhQVgyg72kbyzngpzUxZcWzJsBVg5WIK7sdMy2KCcNFKZZBPMx+DS9FB9AtC9QbySC9A9cppqA8nG0fkvI6r1KZyeFhGX3WBVg0yePCa7Obxd0s7b8GfBXh2+yY0FTRk12EZm9Bd9HzrzyhfKJX/tVgVqOut/j2DgsNDb1leR8IMqpw/xI+cFwgM0na/949WvDSoFO6C3inkCzNlZr1ro+gu6v6AVZEQGMMnRLPbAm+5Gkos1MngT3Or/jmOZlZDTKydb2s0c56BbcXTBM+jK7iHhvswkNlOQIU0JN9qnuw/3VEZXVOcpespZIHmpTjgLSWWd3LOO1Jzh1xiSWGG2wLiYrXATNPrKyCWWGPo8pzYKGNM7ZsYd/JqfVR5r85EIs5tW8rHFboC5tEuwZML5knGpOgEB2iHgKHl8BsgmU3lxHpts90wFHGAbiG4raY0P70/vBcbnnDKKzaQrsqxV6I8+dxmWJ5azZxc+itOTwM2a235FFGXrXXtZRx3n8rQGXeX2nYDJfklGESuq3XWHGgwFln+5j8wwqiosrgdp5rLrAUkreIgpXAAvSy3VbwBDWmX2QrYV5ZTpg47ovRd8ZTNeYPBricyI/EZ0s0EU9R1qpw1aPzRaoUEXckiJUNyznV4jpXBeoEHtYT9jeBhgyfpgHaZxco+07vFXj6GJ08T7cP7e95jnDnFl38+2BvVEV+DSyx2Ertuoz3nRpOq4FZnNtKlTqYhxEK+uV78LWINv/rr8IfFdbvfIpJab0ZkR0BmNfUnSk9SxIxyA8zdgtYtbb2fsb2olj0YAXzqB7c5cnyyE2TpSoJtACbntABBzNaMZqwX8vWcTfY7E23aOiLqoTlWDSOz0BSrhYTluIhYca1CRb+tYn7WPanzEqhfTDsRwc0hYaGmDG+GJzeXbG8uTCDjJAUofRko+lEqK9aRNXyHyVeOifb8y7DumM5Fy5FWEumw0ZXoFGlFeP7FIFZhcYQAFXlzK3sjOWLEQ+rpjQ7iPR4Fe/De28SfunKDD4C+s1P24+STPE6ch48Rnss9/j/sWSOL5uSE9jADl5QGE7wvMquZHHR0nfXiucwT6XPcCYpWx/8FwowrZm2Od4pbYZ4v7UA5XQ6orjsc8wN7La2lxnkS+H9uRm8sMs9fvTcVcgxIkWstzN1jjRcy+MWZJ3WOSFPgqFAimPwooXahd6SYL/IMHN8AoXHyBxPAScFvF0wqffGYjiPcZqkGsa0OJG/LfCyM6EihEWDXvkjhhizJOb+cgt6qinMNs0pM6L771M/xSMGZQuDWkbnaGH3hHQEhU8+gGdn5hoambFsaZdsQcOUEnfxdSjcapsJ6rFTO1wDyzGVZeh2wTejiCMfzZHfO/PyOCXfyv2mALFmLE2dFGnnYmff1/RILLkgQJjXljRLUzf5Rk1IGFScuGY8AzxQXt8E1JjmyY9sC92kTsa3JIDBgMqLYALVqrS0Zy0/kAFftrk+rQPnr4PGyk2mAY24hNcBY6IZA4E93p/F0pZjmErX4HGy0HI85Wcxl0dPFtg9Fr3HXv9I4HcKLGoT+moRGsQyeB/vIXfh64HPKKxU8eqKVv4NWrUScIOQI6/e8EqwWPFCIxgqy1Yf0EJxqeiBwHrNM5CEdc9/AomaIBgODgFTOpVgy449yNg93l4SvczSZzfiNy5znHRyjQfk4QoW29Ugchy9mmu8knNj3Gio10vD6fEHFtceXf+zpiwNAyJNXHUx74zhqmNMkEOyRaoAZwtvW0fxekNSQrWdEwTR26ROPzOa4GMSDuOHV447ZoJuNgPLWWrFovSYZ5LFZnrKS7PEHvVWammoMM75VRKA1a57gf1FLvs2oOnFXvTrMuQkdOLzFIUBye64KlYreu17ab5AL9pBV/ncvrrUrqoWnrPqzPBQvpYtuu7NQ8rRQTF1Xu6tRAOZf8p0aTDfF4XCLwoDOdlilX6vIuxXMa6dkeJpgWUtH+OoeL+LfpWZ44XSO28IU3oVw/Y8Lv7bwTWeF3/QXCPfdQF6Ms/jcOWZWFz0XkGEx8apOUI7beiiJ8tgfEoqtdUGr1QRz+b5GqYNstcgz9yg0mx9xAW1Yk6sqoKm/CEuvF8p/Dzwl4BfAK6Csg7QBnNn7zSepY+/bB1NsNwWn31Ih5WaTHvY4fJ9DCA1rGOVo/JI+jT60SgX4qKFhSdsi70+UZnQ7jijPGOP62FSPivkcAR9uLKB1hWXGM7ci8rQMSn2D7qqQZcZll1HfaOwbJXl/oQ1tsdWaiEKSwwVrLC9cnXQ0K7aNLbBlceQ7wqlBEEN52mk9XfPODsR5qXCuJLsHQUwr5FuQ8XQqr19DJX1pmN1aG7wa7ESoEuM177CqlutsM9VIBxM0RUJV58BN7zz2G/y2MpTnXJn7EUF5cp/8+xN9AngWdA/8Ry8+8mR7PVoU/Z62yN3/5GPfGTw+umf/ml+6Id+iO/8zu9kPp/zN/7G33grx/nY7dbT708IZFfJLSfu1eBDLInJKAFX+nMXkJlNWYUh6xTPHr9jFnY/T4pOrITMUR+snxDXVzVZVFIrEUJJkC77pAXeAiLtsHLTOEYTuHNoO/qizQJsqfV2hLTuYkz76DGRgchlKKBBUgZhFjXqEldB1LaYohGIyjAZHWxnji+zxj/yRt01hwCn0Za7Xygmivmq4l4YOzAci9dcjRr2+cQsJl0Y4OKUyVyH8V1XDOPVyubv99hdpx2G0+d9QWR+g/Kf/ciPZYHdhfZP3YUP3kyTJ7UJ7nW0tLt7EpgL4j3JDH/yfJg3hHVenAxTzIIcf78kMyyQ+eUS1j3YKo84hs//vmVxGPW1gJRkZsyD66o3OBpJAz4HDsja6+MKLiSW+qZBVwUjVnhK+G/Hlv/xGk4ZKlxKmB6TtG91Ulr9jUgr2pt74zSOqDyjfp88UirM0j5WclAw4GCJ5hbVCND4Zq+OiehGzAs8PvNSwDYYTKk1WbdwMErqIvC3/sFP5u9Pm0FZziFgxf2qh6mwkRjLLpIE9w4TAv+JCL+7qqjF3OInYoxhDTQ3p9SrS54UeELhk70JYC60d6qWRb5gVrKrbsQ3LgxHT6gA5kaOMWl9hO9yDnurDU/GeXD850nboGS8IfSgdTOYAoWdgnuZ4DFLP1mooZIUv8z9ZZE13tZcVGG1gkVNI0LnjInkuPaUvLIqKqfsCQf3rziIHFhKwqo5Id14U5pQhpVXnftQzd3xMo79SrIiLs3L6AwMhNv5zHIlwPaeTYqrANNJ6iO5VmM0b1ZZEtaz+ESd11ZjmYL3G3t4YYpdexWCkcJdhf2uRfYLr/VK+JH/4seTwgBc6JIhYXLYbi7gYVsyH9vI1e8ve5gWLsClYGC8tH1VoKmM4UVAb1RW9s07LHFAiaNGTVVN8lv3UUgvXqs+lUgK6y57SBWvh1h+GxhZwnyP7FL4PVzDUaHwq2SLHvl1hnBWIHT3MOO4Qc93CDGR5hV8/kBoL4tvHMerK+ydVo4dKBU7m/5bKV4AoiHnVFLLIH8FcL6BRfQo8MVLZyMmoiOj8HTeo0JovdfQuV0q/pdc47G1W2m0gvv5v7C9yiXQ9tSqZsmOhjsf5wCtE63qGnGuwi8Dfx74xb/zD/l3sPed5levagq/r7tlfbWgc9D336CPxyDl0ijwWJLZZzUsjY9oy7VyfmEs4YJZ2vfqzHiKwMke3G/zXn8dHiZ5IjJeGMz3VYfGGvSXCAs/5hm0wjU+djVp0I2fxqwGdAFZiaFga2V94EK7xbJfqb1WQhR4YX3QsF62GSQtxvw4TXXLPZ4QlXYXHQ9v7ZvHYzQaeXnluFNNobiOruiZ4cGT2qVHAJtWWR2Y0L6SrJC4ULhUYRlgg7KJ9F4Xk1gNyTb9mRKt577kOjh7pVjljk77QbmMCEBRdNOg/9q70a+7jTo+LmWKt7C9bp1AXdc899xz/IW/8BdQVf7m3/ybb+a43nA7f/j8gGkZCBbxvwEi94meV7Bp06EeWDv6DsQYSncxgW3m3JkngMsYU7nf2oax7Lhxbcc/HGN1v7/qIR5uxhsESS6PO63tk9rc6F48N5hK15WS4C1bg93npHSdi3OU6kVSxLzNJtZPTOg1OPSDD+LH8TVIRoch9ZeA56IwaomKdECwH6mN3ZgcxtNV5AJkyNDFk1o+oyIzgDewMAgvHxGmsYa5J6MrGKWxg4ET5V0x3+W8LtiRPX4HczBwc+0V+sC3/pbfNKzR/mAFL3Xw/hvJNV6KuHapzHXHYbwpYhYsnOGPAsWiJmwydRogz2JcpXu8N0d83vZ2wcdwvrwGvf9+13wJueRbMbC8nded1V6PMHRqmtjkZSPCQXzeBcC0JvRDhpHi3uvnDpjb0fiuTSI4uj5eyxOjEUYAuoAKbCZ1Vm5kNJB4tzS6pkL6fngMx32C4btkaShfYmUmL+IPx9bE1w/gbuUkwHmXFWvFHvquf/XD+c1inHfkmkG0gX5aDVzjzT3ean7/NPANwNvdwi5CXQtNFQX3Q6G+e4Wo8s0ovxIVcp1aTLlVWDSrQhjjm7tLS4pVKlGBvo6CO9lVPiC8MhGOrzaWhE6iYBtGAnukGydAWEH+a7H3xK9ZHbxklAvDGaaSIRSxBEwPzKtCEoK2da8uFA5nUXC1jRZij1q5q7ykBEAqAiczDq7WHGuGR6IrbLYi6gAAy/eiSBuQaZW2wA3J7umnZEt7VcIUmdzx3uFoavtqQJt0uPdiMqox4+bCNMBhZH5VQA8mcOV4sYi5LBB3WaPdrZghMqJnCgdXLTIpZAXgO77lN8UY7GL8Jc33Jlio13W12n0sDt+yh8Pt6jNO07N7vHmcdL4xFhUsV1E4M6XVI7kKu8C+7i1xVKxvPHite8LGGHtPQuYU5wFGe8f4v1Isq7bDVWpDrlZwlJXyeS0FqmL6xDyuVilcJfNxerBAz4ocHiNhLW2hYgjj6jDOa56Su9n1OzAhvDybfnWFWQUxhl/Zx/Jo6NUKbkg2DvmZR3gQaZwrbgdGiNh/VzUEdyZQBkoT9y5dqnIUzyKALBWO9ixO5P6SfaCLG1tCPgclbErm74KawPXfONzf8ZsB+Mmg9MXe8jxBerSAKXT/ypzu33gb8uxtlmKVDbJCi9QSfGIBRVOiB1xUKpRrqeWiuKJ4b0T/bi7g4Wa4eKmc52NK7eWzQ4EvzhS9MUfFkmzuFYxows1xUH7bTwXaUuOSwfD57hS60NM3kxgKpny6g78ZhI8HSyS6ifOz2RdWoWXjnV3jMfSazZV4BS0Mqugrl+jBhPNpbSFN7j1V8N0iIHOrX3rY9qxHZCFd1fZH1yp9M6EToVXjBz8Z4P+pwsfUQnc3GJytYPRpCro0JcxZ0JwYXAt5LM12vBZ0al/NW0TBcFkLnMxzDgc3hI1x91vQ3rAh//79+3Rdx6/8yq+8GeN509pmdZ4W/IJta+AAoZdtUeWER0pC5wLQ9Sk150wiUog/VyW6KEliyMAYjU0DzaYf9oUYARocitHB8evVJmsCExAFMMDOZHR+Ip45hhfWhRl1B7Fddia0F5RDBpOVCVvKLgtozM6carXvkjZHEJbD8PuXgjLd9Dy96qhXHc2qpVp3VG1vQvx2V7tbSWhLWB90cFi4qpYBLFURT0hBACq4hXC/gF1FCBPQq7bwIsouT2MZ5JJriHLx3mPay9/twpfJzTV4tnh427NP466s5hp/Cu/cM82lK3FqoWqsTrs0Mnj+TeCVyGQPaNmsQTdhzFMbYi6EpDKj/fjlsM7jPIy3RXn1TO2Mfj9+P8dlyCGTpyi0wbTyACJcRux2IJDz7wknWBbbILWV79gx113sfwxb7DqNKzEHrwLf62q7OmntjHVVFevV5j/tQg00EoO9RmvnRNGpvVsaYJvouIePJyXcYthfB5S7YAtxQFfkkm+Q4nff9ezT+bNZkzLIbvdZdNr3dBOJ8YI5tq9Te/9TwPdie6KOgnojfmyE+mRGfdYiCu8X5dMKa1VCHzPHB6Xrc0b6QejRKy3c3B/gG60kueWbi3w+Vy/Maw7aTWIkvBya04gU761xStYU7vEFfgIyq23v1xTKJyG5J5YCKWCMaqzVPsCFV2v73XxiSjMh53ERE3qCxDOYcImawkfhxuUqCSJVHJQlpdtet8Q8dYGqanzUgxCbFTKg5/670vUy7R0B9mfm9j846KN9u8rJqFxVMKY5RwJnjifn2Xpjx0gL5Gn9KxCiW3xAB2T3virTVQsTSXhJBN75tme2FdRjmByu4wbOd9Rq941VgjrKWyF+LTdFHMM8rqc9Y4q+vIGf+gx86ZXcZyksj5oGNbzThqHAXlrb1z3aBrTtCW0whWQx3FOy0G5rksEf1/VO13sa8ZXzLCQvuqFngbAQ4RxSXLgL7uF4btVwxvOHCZXlFipp/Jh23cC8BUor+y7aXrrH+++BgVLLz0njsJ6vLbmWT0h0ETQBhWFMe8G7+ST2s4ZwNYRhQBOw+PNpfF8BPOyRkzlysg/nPRNVOhRnfDRE4b2EcXQkFPjd8e/tO+4A8Lvic12Q9TnmvEOf2Yfveh88ewvE8M4izlLJXwyuC4F1t2VpT7CO+BfAmIF5xDVpASdw1ydJt+jeIBzmtVrx28F8nHbo3gLFvP/2I+4sLeu+fP6R7kEVstCej0BWEPYCYdPTTyrL29LD/0OE/6/A/wX4VCBVUtnMa9ZLiyPvHKTX40kXvTyDr6Vv+HsBbh+yxHIqJZyTtmbEtXUFNdxcbdio4UxVoqJM03B6IKwD/bROxr9f7YW/VMHPAv8HgU9ohE1M+aiA7gu6NFx9oYUhTb3kW3ayAKdNeYIXKOs4Jn2wRA8gTGrznhvgZl+1t669oezxm82GL3zhC/R9z40bN97Ugb1ZTckJpQYHXCQhtXxIxFwvr4YdpCW46pFIE+YYEoEs8Pjz7DNzg7xQOG5qppt+R5bCLIzujPP0dt7Cc/sDITNd/XCLoFIlIW0gmN5ZwCfuA3fiztes/rSHm/bOLe0e0+7zVU6c5DquTjS0wbRYh7OIGIt+R+feBXV/KaBd4OVNx7s6pYmWmFqg7oSqCVR9RTWvU/mmV21ji5fP5cOiRnuJBT2uvZLESJYC/LFY1uKB2+k+Zh0orLxEROOW35Iol0lqdhEbdx8f76Gia8CE1QVQuyeChmxl7wJogE99Db79TgYkZteqqljurZJc5gK4LcJHfR9TJAaa1OjVCsUYCJtO3SLEV7CV+XZ8fRT3+F0Wh10axTlZoB7zbNoGNAoyYG5Qs+I4+D4+IIY8zEFP+yGDEWF0AeHaeMN49aAVT/eW4FK2Muk+VitcDdO166E2hZmfBMdllO+9NQLJ0j60pgzO6QUmCDslhaHnEcS4v1Fd39frHk+c7DFz4C7vXsrIASq1JAJMaxMEBgdlhDdVCX3PZlZFjbvQY/HnQeCXsD35rdg0TSrzEG+ii3wA6sMZTQ/V5ZpnjhbcCDEhHUQrO/Qh0PWWTX4KOUHW/RXc3s4cH0QsCV0FPZIyrj8/n/Ida40Ce3SL9+UY+S7aeQvEKu7pLy6AlKgPRnGzIlBVSNUPhDcT0GbmqaMRjkpMcDjdwIHFXh+IxMzYxqy4BxKV00FJyusLEa72ptw628DxIrnDe9m3XQhvUKO9rtPSH4m7M9v1oEDh6eWCWblnwMItvlIw4GMEpFhI3F6TvFWSt1VU9mkU9C79d3WFzkDPN+jeLMouQ7oXec6BfBuCXR8CTddSTS18Tqr8zMr3jLex26UDeTyFuyO3/+uuy9boX9FtpusFH4Tl61m6ovrBFXQgH9+gH30e/ozA+5/J57fX7YQzQU1Yj8J4srr/2tfgoy/Bv/I0fMPTZgGrBJUQ+aVsDr9PTkQ3yDWjRbk3vypJocnxfMAT+VSNHTD2RLiIHSv53HBQo1+8HPZdKCiNPgwV3J49Xor+DyF7sPm0sL3lt/iDAgWXrvEoTFW5UjVe6yjXaHe6fSHm8ZKS3rr3STkXwKaqCH1XjCVbo/2RLcqR5sSRsl4j85nlVnrQMSUKedHCLgqqAbRCtcBDBawAHwT+CPCfAf8O8AElCZzuzQGYt8NJ5CfjAm4qC2HyUE1XMg1yc8wAemYUPEdeviE76oriFvNkTcgDuDmBB+shvtjlzfIarazRni4O7+USbpsf4Dkwd14UwwcSsoyS4KuhXnrJ4cI1XiJ+cTq/6uBJU+z8U0xWaTDe4ecQ3oeFuW72J9RrYSVKo5pLK+/AzdfCWHouuXu8j+PhJfrkvnnO+LoVXj1ZKyEwrVmsupwvy/eDMPDiCJsAe006Tz+Xzrt99yMifEChdjlCBJ3MCOuAotxHuRNIynCHOZKxdO9JEQnKXoCLuF/0qof9OUiuljLKIvqWtke2tH/0ox/lYx/72OD16U9/mtXKjsZ3fdd3vWWDfD1tsX9rIBBslYgpvGEGGH3RxIBX24A5ERDIprPEGBizvh79NiEpyXzWQ6Bv6qTGctQpGjfwmHnwVgrU601KkrPlIldukGRtl6HwfmcvWtpD9kvfoh5ddpEt5qXEF34zj3OaXDD3Mc35mHHe0co49gCEPiCbjlfWgXesemTVUa96qnWPrDvYBKo2wKpH+9dOfDMQCPwK5kZ4PB3OWVJ+VOnAOqxxlbgVx+lCXAB0NkXXO2La2Z7WK3bHfPtzwBjqy+I7u/hKV3IsIArqATrls5/+POKJ6F6+slpCX3+DFC7hCejqWJ9dZADrLWyPIuQQAIBpRVhmgc/HoU6o42cutJf7ZMwgvVp2fG8rdpcwG1+Tq33BCaW5bxWqJinRVhrn3rW58SdHEmu1z4zRsPkdrt8q9lkmEEzwFffu0p8IzTXXx2rlMdJMmNn05jKIEVyf7DTfThR9cE1DPfSkGzJS3nGHWRnLQw7Jym2uEpu82Xe5yT8ufLuUk5dxFmdD5SECH/u1L+TvTatcZ7jsZzTpfRfYTKvCLd6YlgD8OPB7sPWtJFrZo7V9IkTLu1Af1zQP1gjKhxU+HnkTs7IHq9eulnAp9AUwr1zCE5MBrrEyb1lnqpKVPV+Ymf5cVm2RqK0USnPlkQWYMBQVyFskpFAiwygXBn4cCqu0P+TmBO7nAoYeNyxXAZnlUlrnkjvSSGs03gcX3kV4gHB6a4/6SjPdC5p5Nc/EV9ANF+yrdUAWuWb6vpg1SslxwMUwovJhxMD766DOewuGCNaffbmBRb2lACh5yhtCUhwooAcVuuxJVqFyD0arWoqD1ohjFE4xz6xqHWDRmFdFfOanP/v5gewwWrSh4H5jYQ/YjGq1j+OYwBT/e4UnnSvmo2LC8YhWQi2W7A8R+MJ9KkCjeUc/+lIW1v01bp5bpfzer30N/u4L8Kke/vYL8JmXo6U92LmJimdP7vqAbfd4tzhXu/DQWVzf0vAgth+qeC372ouJ6HzzuAAcjhurDz56RlkubIzby+zxPr03iHSVoUcNo+slRTnG8hoflPhPVY6AahmTAsZwySy4W64HlW2aBUO+o98n4c+xxdiF94sABxFgAbi3gpMauV3B3QsTAPPGxoV3dsyPw+7c221g9slf42lwV5Qs5PmXL1or3wdJIeiJ6Dzcwam6nxcBk0yXXQw51DiuYjwuMI8VxZ4x3g/7zT1DnF3Ie9l/l4jnI7QxrQtZQREuV2hknloRDiNs6gZF8pASL95Ave4GPNlYwa9AWHXo3PDUd9gUmtW5gneIeZxtgHYxoatg3QZWwOb1wOlwKQMru6qiXzuH44ouKj1TbiyKM+lrOZlyexO4cAWST5sPyV9rRedNkrW+nby/VIRvFi/xKrTESlX7E2MANCrZxDq2EqQM5O0086pJubzQmIdcgfuK3l7kuR4bUcuD9xa0x3KPH2eN97j27//+7+ff/rf/7bdqjK+rzRYnaVLLmCOKaxEWnptnUG918F0ru9Ej0Uu9qSzBUfqSZMalRNAbhL5poA1Zi+OER0frO9aOeyfn/Xac5644NxfYpbwXeDKSlLvLzKiU2R2IkzQdugglZJEEA0mPKVggmDZodJ9NFp4dLjZl5vjeD/imhzZwvw08t+6p1z3VxtznZBOoN3aV6Gr3qtksHUFueS0onC3hRlNwAMOD5kzBwKghptndE6v3DZFIThp0ZQz4QAMYF76MWysT0fkMli8Yusf779I0xquXRJsHpep7Y36D8oUvPZ9c5fnEGXzDkVkik2t8Ze7xtSB1NQQdC7u9jwxKvKtAmFUEF4zYRqA+vi2BYAec+1wfs+/vy0ztUDDioz4XWDIV66NM7AK6Viv3Ft+fiqRKiSXX4iXoqLEMxv6HwktjCexFYMexTuW9M0ilp4S3RyTrr9rydteklOiICfsis2ZHM09YIviTyiwgo6OuFMzaZsS0eF+QgTyqc1bxVznfjw3UgKFRy/68Fx88Uk5+9ssv5PfzypJbpf52PALjS7voItgXr5eAj4rwuzEt+0RcYBdLRheF90qE+miP+sIE6A9VyseDJ55TlzPo1D7rfD40wEst3IxMZ4x388zxycoeJ/gXA7xcCVczQZabhIdKwT1Nhdp5q/oeZiMGWYbTkWnQsMKDMmIEfa6Pp3CvjcwKOabvYYCYrXqOsE6CDgPJOZWLxP52DlzN9sy1VkleBOYlhGUBH0hBOSEQ64Asal9+9r2/+NWtkm8UnomlFgtMaL9oh0hnvGdWORmj67zFaR929dAc+7lZb3QZosxS7ON42zvjqoUFTOGBwu3WhBWZT9LRrSr4/BefZytkD9kmTkIWUKN3BDC0ApZnc1OEwBSedE7WJa6dVRqJJQkrgffeNMWSRxd86Ol8biOt1RGNt7p2DIX3X35pCNIv/zq0wRK6RuGdrofesogvydnjfUkFcqnAch1VY0k/n6u8/m59G++VA8mJ6DzzOgD7DfqgG8orSQjZPltO4w/LsWKJEs/KLorvj+neLk81q9wQecRkaYf5xdqS/0ZXY/VfVLlGO2RX35y/Is9jmGA8lo+o2CYa13ClOSksKNVqZZqOowY5u2KiakK7C+xqQJbzUqL3Ev4LYPq5r3BWCGdZIeIW2hV6nBMjK9Fa7Ps0gp3JexYAWXVM0WG+OBdytaSpwFUMbpuWVjysagpYcsNdNO9Ryd5onwYi3/v8ffQrK6uigHkvzeLmGbCmkvcUCNWkoumG1RySrSpYEr+gCn1HsOgk3lUL3yl2nr4D4efwEqhKO6nYNNBetZbYjUIP96i0XTWd9VJw13WHXgS4vc8ZMEsWdjLtSXhc4GDKrHNFdtwbcaKT4ktB+x6tstD+rkb4BoS3CbwD+P9BqhizwULSdDFFLYsoFxoTmRa0dWywS27z8f4oaAof0OUa3YvVG1xBnnDOW1vuDR7DPf4jH/nIWzmON709vPv5dK4ugafifXnI7Zo+sOssErZVZ1b3yGwASCwhBGKlpxzpa2Zggt8byuUl4AOLBumKzQCpPmBqY2oAWQpcEi1hxWn2NuDoJFvb/XDUAn0Fd6bw4pXVdHVTT3qe2i4vrW2ldbIkfCJMBsMUy2K8yplHt2Aq3ipFjXbXyrWB+5vA+zY9aECCWqZzMVfuyr0GugChykkfxq1EkGOh4m5vTOkWViS5iforuSlG2I/FXN0s67OiBxPC0qwbIT7DprFw74pDKpMg7mDFgFxGqfydju5d6N3rg9W3jFaM3/9d32HlkUKAT74Cv/9tQ9f4Mq5dMqJyPuVGHMRpZErTFM6F0Bfx3qoD+aocl7vjseMK5rE2jtkfw1gK/+MmxbgXuD6tYBTjmHQT0P2sMV8Ra7T7MmPrfBMLf9QawqYfbBvnYZY6zAhcMo8UyN4Zm1KJ9aj0/NpWMBjllS5AXbPEBM2y7Zz/mASTPqBaZ4+EcoDRcsNkaKEaJGucT3dn334c5mUAH3nR/D1YMrDDJnMqPh7gj/3u32HeQIJZ4guFUu43D6bH9BGbRuiRmO3dzuvPiPBbgSew9ZuIucR7BnmLbbd6tvXRguaeCdJvUzhW5ZNB+WaN1na1ZHRdfD9TsoLjib2Ms2MCOhWP/7ax/JrCD4ugNfzjd93kWy573v1ELIuGWxWH+GkGdPRGvVUHwrKwvSQeHkb8e9JICoVlWuDWInJzRufS31Ybc43FztPGLewQ87fkmu0eFoaYi3N1C/jCVRx7LCOnJIXALrpXAbIOiNSJ/hwKKBIrXcggEV0GaZQ93g/swWw7mWJJI1QtGZUrCUZWdp+4kwo+nxTzip5M4bLPAkcoXLc1M5ql96ii3FV4emPnThpXpNoz/2ff+zsHCvK0aOMB+Ro+UZmV+Y6OBIRiXlVNybUYcByZB4rrL1UF0jMT4aISCII+dwv9nS3hIy+jf/xZeMetbSu6+s6DlAlr/J0PPwWffjE//INPmpU90idN69fzMAqkJ2PQISl/thTzp52tc5LuJeP9+Jkn/hUsvGKVFExFSdfjWUxSEYzX8y1Suv2KDHDoGUMXdzAB6QHXL4lft84mmd4lgT3Gjdco/TJYqT+ya66f/wtkOI50BOJc+N5poIpljR0PEWHzDduqmqe5b+5TkKMp7E2RFhbLDe3ePPM8fV4PjfzZLnjB+PHzP/Q9nLu7sRbCno9juYJD268e9nMlwi3ncX2+ClIBIJMK+pj7pVijSPnsWp77qzZq3mXIM3cCtytTiD21N+QrS9zxmi2unyt+gqJfuov+p89TV1D9k19HTxratz3JkZ/HKisLx0xjNa1oYmiDe/EkPjS+D4BuerTx+TNlx7cJ/JsC/2cR/hnwXWIJ2+oj2w+NWmx7EzQbOR8FzBK24F5HCi9fWmLIpuIqehIg0eszTrnDZ/zKhKNLeHHE92TYooyxsaz75ZmqBP6gwHuAf6+C71ThgyJ0mBJQZxO0bekxUnCCDsqPbuGZCJeHu9Uop9FYzf0r9Ll58kzVkmd6LDP462uP/Iif/Mmf5Kd+6qd2/u3ll1/m5ZdfftMG9WY2ZVuwKF3kB+6kJVGMZd8Gi9gGJB6EKeZymbWv2cKQ6tSKuaDIpBDay1epumWEDMaWsHGcJwyFd//chTRG988ew4vLjEDKZ3iSqXnW4YyNFRJhE4m5+owKGMz7E1iFbRfBAXx2W2aN1xSLDa90gTuqSBeovnwX+YnPUH3hFaouUHtsnJu1rm26DZ9i7oOBWKN9NHdO0Bh6tzgTCEaAH0a+RBV0MkFXIXkNlKCKW38jvJ5dvcBPW1bkBZGnhC0c6e89PmvaKxKsPrsqSG9KDp4/N7X9u05IrvFNld3j3TXeYY2vCcYQn2L6kPTMiaBdDnnI8lWRZITsxeKwMLoXdsfsj5kYzx4vO35f3vt3Ngw7MWSuaBPjfCNMJ96H5OueWBZoahKMA+ZK1ZQIBZNHUFParXuqVYtseqq2T7Ws3ROiXL9HJetbLQ5ER3uJXtGmYYMMM+2XzHd+S13HBe3cCZtEUNU7veqy2X7sWuzt0ISTNJjCI+H1C+3Fwvl5vegtZtLbFn6L72diMI0Z9wLIHuhboZ/WtJKT0H1c4R8A7xOzsteQXOOnlSXZnFRWYqwWqE8aqvuXMTGc8kFVPhpIpd96Vfp+KMBz99I0Pk2M0Y1whMrcx7NXlsUXtmLhDqoNn1mbG3wVcuWMwXKoMVTVOkS30fhxuhZZpeNPShxk02jMRYqXdMQXhVbur4ZhYfcsW7WITf1FHJAx07HaROEWrxUo5h6v+zWcXQ7dEDUL7uWaQRbKpO9gVidaPY+jf1FgFhWqY1xR4uyt/QvZFbbcL357ERL8iQ5UBUsgsEfEGz6/kyl6GYbHoDgjAcvH5u7zjksvgDvrDmaxkkclSd+eaE/Zyg8H92KxlQ+K0lQl7S2v58BilKRNfA9EJroWtKqYNMJlNPNpJfDhJ82Asb8wmu3CeCmUe+sLd+Ly9dSJ/f0d8XtXFdorGi3toQ123wXO2sA+ppMa8EsSBe+x4KTAWWc5Gco5g+Ql6IoY3097IjyQYrr8/CwaOz/nmzx//qXIvIxR34rtsm3H5Jh25xFKJ0D/bZnIlfKqkaOM5wE1HnZ+BuzNMwqNQKnAZTyfZT+Qj4R9HnmBrktCuvelEV7BvNmO4nmVpSXjZH9mCcMOJswerFLW91II9kz0DmMo+vaX8zoP/W+xDyUKfih6L8DBhJT1SSyx2Eyk2LMS97DDKMi0gr7LiSvHRyIUtA+Mzz8sz1YxaUeL68u+PSrdKxbdPVLCp75m/PQUZAV87gGnAocOiJ9LX7tCGVnNGqbron+NvgnOw/h1CTqtUnnRh9iebAS+v4J/hJWd7FTZzKa0654N5gK+wTzH0vhfqxVuml7qLSjoKz36xBGIcCWSY/ZdiYaDG5WkswnzdbAEkXGRxmgsALrsCVEB6aN7gPF6Twr8ceCHxM6lV47R/Qq6lot4ng59b2PnLCVJpfhc8+tELQktYNUbDhosf0thaR/zTW9Re2Sh/Qd+4Af4gR/4gZ1/+77v+z7+5J/8k2/aoN7stivmaMzgDt4ssLrl6kgzMhRLzMojJrQrVgfQGRfvNe1zMVe4qmlgWW4EzZb28kyURMjbZbSEjeM8d/j2e5KhLeG9Au7M4MXTjEFLQuvZ8qfDZ2TBvSDsxJj2coPOGzQyRI74dzH1jsSDxmswQX/ZBS6D8mRQ5Pl71D/6PPVHl1R/76vI579GlZgEILyKi3yiZAV8imlLAeZei7NgVqM5vSTqmUkwgv8Ewt04GSpYZvW+HeXyczfI/FgYxrSPGRD/zOu0JxBGoCiRuIcssNObgiPlXfjUGXzwRnKHH7+qapgh35+NmEXja/78yMiESVW4fmYYx61MpFPCR3HdYztmP93H64rdSd/GfS2w87PlIg9o21voQuzX4gXLZDzW0U2JZauaKiVqGxOHFWrrpias16sWWXWwapGVCe7VqqNedxx1ISdmZMjnPSptv64pZIamI7nETsjEL+OyIcXYE+iiYqIcS2KU0CHTMm6+YfamJtzrqJPy+rhA7drkl+4NA3nRdvx+Vg0qfABbglgnSltBP62jW7zw2R7+stge/yHg07il3bZCqtMOVvoNqI9qmvMlDYazfzPwMY1OP8ES0PVqAnwbBXnLHD+qVOEx7UhS9gWBbxcQtdi780XPN8UyCwK5asZIyJ1j1Ui6KGOXikMoBJD46snKLj8H+VXQE8Qst6frQmBQWC2RhfmpTCphlbktExjAkuzh1naJlj+ojufIMiBdDump1GBLJr7iklwSV70JCMXQDsU8144ivDJ+yY7s8ZDp2sUorr3cNyss0aJb2SvJDGX0xLohcB7hVgH2GrRdD5jlYQz0qEZ7fOwrCifrHmkmA3pTiSRYy33/qrXaby3Mylyey7EvtsM48qQrcaLENZTaBKNVbd4fIqB1BXf20K+av5cWTLoJ7oUjchnrXlriv3AKT9bwfd8Ef+g5+PEXCKsOOo3Z460f7QJnXc+t2GdSZPi0hJDOxADGC0uEy2j9B0JP0Q6AZfRISwkcXVFxKHC2yojcLcDogN548+pE5dLdYOgeP2aH/JoqwjCidTHEIKZ2BDUPm4PL1pRQxeKFuIBXIslaa0s8co2PnzfTwsU6/qejga1Rpo4DztZwQE4edvuA6YXhpNYF/0hUNPJdu2D1qwvtF8VvFXLpuXVvUB/N4lmzvd9GpWoJjKR5iJdpjbTKAVjSvnjoEplIMMdProKVLS5pZzpbe1YCswQmCbMD5/vr2+gMalB4/1PRGg5hD3jvDa6EoiKMJPyMgxvXspk2xr/1MRfAKH1F2qctVp88fn6OhQpWIrxb4Lci/Odq9KhdTNl0moT1FWaEeBR5vUxCN/BGAbh/iT5hu/tMYD+6x2tlYkriXRzufWG2bs1AlXiofObSq+0tXl8yqrsvwglWKeJ3IRyK8I+CKes3QL8H4bzlDDgix7Kn6iwy5P1xIT7u6z2ikbYN6Br0xAyACjlMJe7Tt7q9YWN+3/ev/aX/AdqTz3443V8vOI1i+ny+98WynfpHTm17kIlZo+fxRLmLfHBGKSKZEkE1dW1x2QyFprQp/BneSvedy03E6qMNIaOrNxfWS1cfEXj2AF4J24k1FHMRKrF7ekbOngtZSGiQoeV0MrFEdCMwEgwFWMllsM9C7ssKBwoLVfi1B9QKVQxnqj/6sgmppbvddfhylwYehdO1MaOwZWEfEABK7V8+xEcSkyBFJKF7FXpZZPCMgGftYEYyJVFm+LiBIAqvXjpsCRz1Aek0Mb8E5T/6kf8a+oB8/D5841F2jXcre4xrd5ekMc8HcFMkMRg2hWJZ2GPcPqrbgkF877XMS3hG0zqoQ++/HRP1nczLaG2giCEviYMj+L5H6yp5u5yLWMKR0Zj2JTIOjZjiqBhYyUztg53bdU/V2pVVQNad3W96ZN1zY9XRjUoWldfHbiWjoXkb0wNRCC018TqYM9u8IpZFuG8E2hy3X2bqNUB7yxw/Pg8lE3NQZ4FnSyGXkxI+Onw6upLxkAsW5SYQ+Kt/97/MFH5c4WPQdxSIO6UXIUwqs3gC/2K0l34aY5QmQFMLE8w1nspCgBoRmlsL6nNo2h5R5R2Y8uyTaGFoLAR3gHtreDJSnIiH3f03VJENFwgivKuGrxN4b4DfczHhqXU3EFRcgC/HPUOZdD2bwk30ur2XcmEwPlcjV3L/w9EC7nfGyESGTE7VanyLJyGNMFHUP5Fc81pjv68IHM0aq7jycJncEN2LYLCXikFXAMuOal4NSNI+8DKyMzlkgqv8wOcfsaDjiyIbdHnYO8/rMEk/T12kY2Hn6TT9QdEDQU83A4EcKIS8TO/6yGAryn1VjjpFpg2CpNjVSuD/9R/959t0OMHBNg9wtKNWu+pwQNFrkEWZbCvj1wEuEWFaCZvS0g7oO47QL51lIjGiySkBVSj4C/9uAL5wAV930x7y/htwZ4F+5EVSnfvehHfplasu8PQme9IkXYXGJIZjLQiYYv6oGW6GCOMg3IFMA87iF1K8bIRfD6eWvdznFHtOovMM13YstIMplh4UyzdwgiiuY0u7nwuD1x9ilsApsHe1giPSGSvj8c9FhlZ7x+PFGiMwmdZM2pEgVPAxqFVAnGlUGCx789JwnHGwoL5r5Sk3yZQeE77pULExiMKM10vgqf/33+dMGSYt83l6uDI3i8JrDqyW+SSuUUmiBud12kBvYx/Mt8b64XG4meb0MM/R+6kIfAXcbIZl39LC5zG/ZhtZoVVB334T/fAB/S1ov/c5ePY2FyIcVZiCsBBox7it8QpKm5Kmx7mO3j3aBuPbpk38jvBQzFghGFv4rzfwCsLHgG5/Rru0sMMNloxuDawfxaMgITeye3xQ+Oo9wicfQLdhI1YxZd/hk2wkozibzGGxaaNzgs8xqW/AcoN05h0YImye5PiG2LI1Av+WwD+u4Hkspj1MK9hsuFTlMMIUMVvy/BqIBkEHddqnREPR2RJdAJM6ucar09Aq9/pWtleNaf/85z/P5z73ucFnP/mTPzl4/8UvfhGAyWTCv0zt3suf3WLAYfsQlMQ5/WHSGNYC0ChsR8Iu8dA0GJJ3t2UguSaCMS895pU2mQty2g4Jh45qj4/dUXzwV12K7cmYfQcBL+Fwob0U3o8mJvH8+gW887jg9NW8CtIE5Z1b8g7lAWvE4hoTMzqpUnmwbZfVfOo9lj3FtEeC/VKAJ51Av+cG+kuXSNQj1B98MhNpZxY0DX7Y/Dv+fP9dWaPd562cS//Y32p5/oQbInyBgsAtQFdtkRxjRAyKtivme/xyodeVS2UXaQ+rsu+W9TgPVa/84e/5Tqovn9ravs1ckQZuubVAE5GkDl1uXUFxU+Be4bYbBHTeRP5rHKefiT3Y/t7KHl/cE/++y328fL/CMtmPf7vVnyoLVU8EWowIdNWht6s8NincFgvicIIpYbpGaLqQ1jDpgjTW3m176jYgXTDX+M6123GvVoJMLLNoW3VQTTKT611ds1Vfs+lobwGsQWlYMir5RsHny3Cb91UN7UiwLoghy2hpYNTRgMPdkX3br4/AtwzAGnO+WvR3vsnJ2wZjEf6t7/2eDPDcK3yw0zU+AF1njEtfV8my/duwrPGK4eo/QOQNBaYIk9rqtSOWPX4i5o5Yz6B6sKR+6pAe5TdhLvIfVqUPVqu975UWS0bXv3JJ/Y23Bq6WGi3tfr6CwxIVvL+ngltHgrzitdqzRVpqGbqrA9MQ2MT8KulcxnUvz6crywZeLJFpoioSAzktubkHD826JKrIMtZt3/eYdqETw+G1kOLzVUkl4EI0W5y55U+U6me/iHzbc1TveiIJ7lvr78IKIG0H0+HRORLhJTI5hKHxWSDH4Q/+IHAwyXkZxkJtjO9lXsS0j36OwFElrCsLs2gQdCZou4kWdQZhQ6pqibEDyerua3KqcNQCh5NCt2746U/+4d+1G1+Ua1TS9RsNfGI5pLuq+T1kb726ACrtg9y9iKB1RV0Flk47usjTvG0G/+zKKrhUMlSiu2AixGyPOvy7Bvi1U/g33x7PRAXf+3bC3/gs4cMn8LajmAdBoAqcCtyoKqouwKTOpFqJ1meGtF4VlmsT2su19/1QhjnEYR4Ss61n4DPOPp4PvReisBUd/fDHQ85lMqbxJwxLvu1Cd3BNTLt/yYWG+LcJysHFChbHuQMhebZcVjv43MFy2109b6gDMdyKwmVckxKl1ciXKMgFSAw9EAFugjx/Sa3KZiSwu3Lj1WA+BQ7/6O/dSkRnZEHhokNvFkaWyLQsZTuXSwmsABLzuNRdoGvqIe+SnqOZ/V32sD/xCRrhwgk8HHpcDPlLtssdFm1czcjpuQLazNBvvAF3boDApQj7FKEcyfSby74J5mmwmsB800U4dDC/Cim5rk6qxBs9JCdLbCpTQP7hCv5BB984m1BdxXAxhUZN/KkVml4HVX12ADngtUNQ9Mv30B993iqx/MJLrG416NufMkOnGN8EsaKI5H0pE5hebizrP3EvlHApJih3vXmCxiE8wFDVIi5hXQlvq+C7gB8N8L8DukUNm5aHmKXd8cg4BC3pwJScMDzAYVCrKHTRwd4iV00BPCeHFHjnrWyvKrT/3M/9HD/0Qz+U3qsqP/iDP7j1PRHhzp07b/7o3kDru1Va1DOuiRsqJ7h8M5kYM1t+v41uWTFxDGIWmpRATCQfoPjZuR+0OXDaxY1hG9HdMqBgqEv+05HDZbBEUCUnXg5svElEhnXaE4GvYum3Fbzj2Pr3vlZ9zixbTFI8SjuFsHMphrxXwYuFC26ifvGiikSNdoppT5pr5WVVnnEm8akTZPI8rKH+tpvI228lq/KASdi1c3fF4SjwsLV4dp+/cm7I5TVk9HIXnpvAw7johgwF7dok6GVezd28SAz7OZkoD9xviquLKe69UO4hb2uFueY5kFjw99bREfzTLyHf+IQNeIdrvNc39JAMV0z4WG4AL8OwFv20Noa8DRYn7lrqNK+KYjkb/Gw5YzSGcRyzX8Ln12UxD+N1YHR/QFF+o2i66nMn8ZlWGipnEUYklYtaNjXzLhkzIlh2s1E4CFZar2p7S87VWkhCGlNjZ2NfoasEaYJl7t8B32O14seD368UZlXyShjso4Jx8VYBbV0nS+IYRgWkZFrGHTjOOajhasMWN+ad6uh3jwJfKfh7u7J64FuLD9y+cZyFK08W6nhgNNkWzx5rP9eSlIRHAjXC7xD4HuDDRL0WUbdV4E3T2Ju7/OZoQnPeUT9lRPy3AH81KH9azUux1+jdq5aRt7+/pn4isjrJ0h5jzauIL0QSmnog5votM5AH68Q8ZIubJmHDp2Te95zV2artVyAJIEpWKvsKp69UwzNhYwVOGviMnVZRzFV+Dwu7EUvAqiKssRwAnpAuJeWJcHYinCHcfPE+s5d6Jj3Ij34V+RMg73s6WhF1uP7Fnqq6DpnmUmiICSS/JvB2tls6AyU8JU3fn5nQvgsBeQbp0jobn2tx7fbhQZznC+z86V6TYtpDuZ8jWCVtcHDbYPzI/iVU1SQOObvDPnnrmJImpTZWrjjARzO4O4rVH5/PZbutlC+nqXxOLUxr4bIGeucdBG7toVHpr287svUr3eSLRGQDOq1qpUg3wHPHmT85maPf9QzhZ7+K/qn3R4tVhUrgCniiClQ1VF79pKBZA/zhMMcY6MS4FHNV7aDv+1HQvRILByjzM+jhDL3YbM2jKhAClhIu7wXYHdN+SSxxy3DblTh9LLSn8+n8kBMBVeYKB8sWDqbD84ZdL0SGbvpbShm7bzxBadebNbbYr6hbWDXldOGiRRbzvE9uzOBiyUxhEwUg1K2sJN5gIEgWcK+Ad9464f7aMHPK+eCW6IeFYISJd4iVRZsV2ml1GG2R7Ro9Cg83HauojM48S6Z9aUDLbujdVeKQm3u2wOU+h8zEvhbhS4A7YSo8Fu8t4R37KZnghRgbDVKE5ozWTsQid5uaeVH1prwGQNcd1FF5ivFWvQi3MHzWiL3/xhp+ReDXJhXvX7a0qlFwN+vzRJWNBhrVdIa2WmFQ83h2PvU1q1ozAz0HPnfG/J1PmbDuOFbzWjnOZVYzaVtWJf8TMl+aXis1QyFGayyxnO93YRJDtv5AJfzfRPjnCt+xmCIbyz2zH5V4ZmFXJIy8n3GlclYiz9XYL84x13if95hgdovxfQvba7rHu5bYJ2Rc9s1Lv/2ZP/Nn3vrRPmZTcpmfITLLh31Q19XbfmNJa5Rs4dhELb1vPIxwb8jW9dI9MGAa9UMBaUCuugFOGLjG+2B3Wdsvezi4PgndmLinuKNSG+/X5w7hhYv8LH/OKph3wQ7FgDN2riAHQ5yDutszYN0W9G3IwPhnvh5JBo/ax7uqPEN0UTldIvsN8lufoGonptxw7idp8Lfj2pNWc8wlgdUePtl2nRvDmqYLXydj3g8F7vsaAzqrCZtcp10hx2PpUHFTlnQZrFNxFYypHsyp48L4ftMHTpJrvMW7mbTQI586gw8cRt+gQnAvXOP9WclY42MQ4TaFVUAi4m8qYwiKsIdx/JQLBIMkV8UU+/sFQ4UEO+7X1/VDYbCM15kWOQAKAVS7Dp14v1Zr+KiwsKcjIcIx8HBS2xYJI221mivUvirSK9IpdDER3edfgf/mU/ClV4wD75T9PtBFAX8redzraeO9na6m2m+xeHXIAo0zaWVbIKzr2iwqRdclE8Oqt1heKASCKm9MxP5+WnRQdlQu5CPBxrZw4ZN/1ZrQboDla4m4ISlG2BSW06L1QN/19LUMYsg/h/D1wP9a4JvIieiiM4qB73NQRxd5oLmxR32vt8RYCu9UK7/0qd5iljs118s+KP26p90I3N7PY688OZxYYiCJYSeVsBJL6nlTLImStJvkllfFF74UBZhN6Gkb2XGmhsyyK8NKfsKY3AL1lXDfnMDpMseWX3awP0lM27SysV9K6ikJDSqVlbQTS0KHwP7nH5pVY4JZ9z71tYjTleGhi0PR2OtGU9JXf9SRDBXwW6/CKjUW3DicZqE9T5b9t2pLlxyAQdJOqYQqztc+Et2qQfenaAz+HBi3o4DXR/4o9BFPqXJPbT0mbQ+TZhCO5db2na3c/149RYAb84hAR7Xaizk1a+JIKe9CjgyV8uYe7550kkuLVRW84xD94tWQfyho8sA1vvR0+/wFvHMv06amQmtB/9Xbdv3v70UXeQvfu2iVG12gagPVph+UXqpKGL3/LtLDk/kWAXLBtaR7YHsoiKSwtyQYCISjBu6v0lq6EiYlWStw/GXss2a47U7i3z3sbIwq/bohC+1pqZMEbV+UeD9fbagVwl6R94OIS8QEv10epWX4gwDzWmhrYBNL2yUmze6usHM48zN5ucpeDCLIoQWy3T5bstG8t7N7fIZxF+znwLMwqMed+CdALzpT6kDONwCsBaZxXxboJ8PrZ2QCs66PBrU4ttHRT4O8apOHTWq+WQ4iXTwt9sJ4771a0+J7vndCNNKdbQgHlmpxGRnsg8I7yM8mkDz2wWSOy3pCtykU8eX8qaLrnhAT3iPCA4y/nMd+G8xiXwPfW8FX9uGys8zqXVA2agnq1sEE1U14FUB3uf+//4kUs6+H8OC9xyxciIh8ac63UJR825tQr3vzytScR8In2uWFsBJ0nhVn95FUBUnIeWqmFfzxCn4KeDg1d/aLdccTMPRcExPgEy6O+1mK0JQZ0UB7ukEP895USPQddihb34L2qpb2b//2b+epp6xY2g/+4A8iIvy7/+6/m/4uIhwdHfHe976X27dvv7Ujfcy2f/Q0UNR1ZZdg4Zh8dJ0X7vHEBV51Zgkpfj+RGNstxfmVjGjOMKseNRYHSxSWVAduGFuMrDclagILq015vY7ElyXfSuH9uRn88ssF5x6vyzDIHJ9AkW2NH2IHfhMFeAVoBO27bS0mZKInBf4iH3CC8kqAb43YpzpvqY6mVHcWVP/tr1OFp4bMgZLj2ktcO57Dkim8XMLJrTwfBeMyRvwpnjRzgtyOLpFLTIAPixp13qUgNk6AynbFqyRBLO4PMQa7JCx5CpV1F5h7Arqo+RBVfvFnfonvvrmAZ/azO3xR5i2V8iphGz37pIJ78ZO0HcUShoR1NxxLIDGofrZeCz7/e4sxrGV/3q6LjWd8rxbTuywmWiPjoKEzhjB+fiEWu+g/LmHeAy7raBXvAjqpEzMm2FocF/NMr8gX7yJ//6uG5D/9VfSPAl/3JLO+IsTvjWSQ1y+4w5YHjq57OMzhORTMWHmfBCyBdlIlBtCZq0HfS0+aNnp4qXXx7NujMkiZcfFZexSgiuvY2n5GxHWZefEz+M9/+ZN8+/u/wb7XxGetujy22J/jl27TE2aFpUvgS8C7JZ+BWjLDXVdCJRXQJ/xaVya4V4cz6tOlZZpX6FF+M8pPYDXW/7VO+TAmpLX3lvRzCPM6KwEEc4+vjTbYeOx6T43BmAPs1VTLPgsocW6MrRmGUzUdrBrzSlDNNIcIq0/Jiu18LuC0L7rHJ2ZRTAg8i89VgYcdcjRPv5HKhLqVKyLi84OQ3P+1EqvcIMB7b8AnL2Bl362+4clBgr0sLeWTIkB1GaInS1a67cd5OygUcT7sNDe7QscE8ya5P4r99rYMpqgfKMD8mvtRDJ8sfcgzixkNyxYmtVnbI3ILSZDP9CFgVUhOANYd1c3ZFs35F//9J/jt3/nNbDfJblIOn2BeJ4LFdMeY/IHVG7aTbe1QyicmthJmVcVVHXJiNncDffsh+tFXQJ8e0uQyg/zYZV6Bzz+E99/MQDZVEl70u9+G/pdfQd+3TzjZgypw1QknrdGvqglUnSC1VRKQXXySZ3r36gcjr4RBaTufayyf5VWyspMsuxzX6LLIf+BCCYBa2ANi63lJLA/PEGVNMRx9ipWWTFt8hCa9+spgP4doYS/jtRRm5xvOFzXTSphKTvpoShVYimx7lDoa970thtPWk5rJuk840xPpospSYUrMWKGKnK2Q9xxmBYAIHCx48nxDf3OPUmD3+SqP2JinuQLqn/8YZ9/0Aft8bPA4XaHPHSYgFINxWZnQvos/iEDaZ03FdBPYFHtkMBYtKNZVaybucadu/LopdraeeD1l33TobuPzsu4HycwubaYt83+VFY8VeU/6sKYI7bSh62wwJS+VWN42wCwLtZfEXLMRsYkIUzHaeCzwnimcnm2YqgmvtSptMIVxE2ASoKmUZiSQlknoKPHd226hz/06LT3tb3+OB8/eZr+yc5aVSJq8i+LSwXxieKgNJnGXR92nMOKZUMTrn1PweWJeOZPKSr2+W+CDwD9C+NNTWC83HO8bF+pW9pQl3rtI91lw38MqCnG2hGenEV/YerkC/tpS1G9ye1Wh/T3veQ/vec97APiJn/gJRITf+3t/72/IwN5oq+tpQhAwdFGGbHHbPvgYIVzmbMmiapa2ef4KlTHFV0UHJXFWMUv7iQhMKqTrisQGeWMU6nm7jK3tly08MWKqS8Syq+0S2EXgmUM7wVdtjnsGU1A4wS8sFYlpEYkZFu37DVHrFH+u0zqV0ymtDSVYSmFlJyLqiOy/pnBbDUnIfUVuL6iePUC+1lMvu0Tkh9r9AHUhtaeJL54d4orcVTiZFUCxRdgdnPQnJWne5hhj/QDhEKzmYwDtA1pXecniOIz4WL8e813uO4r3/vQ5OcP6mNihVm5irzfLLxpsT37lHpf/7fPw4Q8gUuXM8aXAPmLQHK4SxlvA3ciEuKuPAroQwrq3UAayoOdXj5d1JFLSPSneuzB+SY7ZH9O8C7bd4wd9SZ6QfWLCLx3pujZKiAKdn/ujgigkHY1Y0pL7nrSu6wlMBvO+VrO0R4CNmHzGSrVIA1UL8tn78I4nrb6pMy7FurlM8vhtlITO39PD3MK5U7cFTOXEiVjCrnZW28Erey/mTC5aeHZ/iFOSVid+6AmsrjpT7pXm+tdkXLZhGyx+aS0D8ypKi58n7+zqKsELYpL2apQ1W90BRQm9mvBMxsefFfh9kMJE3MruFnepGeCFqhJqYHKrYfOlCxo1x1hR5ekA/zAodVB+KcD/cRP4MBAetvS3ZwSR6A5IIuxZYM/74hTLmYGA7M2QJVR9QOrK8CEF2FGAJTJTV6kOr/jMZpwcf3fFIGJkMIWS1rmY66MYu3q2gZMZctnGutAki88MYSmkOOR0ngv4XhHzcuHOTfrv6gg//utUf+Q55G23svBVcpzeokAvG2DeFEydpLOcvEwKeITkCLYtuAvmwfGlIi9DfBZgQvu0KHdauVIgWmmL83AkwgMlxRFzAHq+MZfqos8t1/i4ve+iPAGwaZH5bGjNBy6urnZII+U67YDvdgVna0s2Oz6XiiXb2hEC416GiQ+K+62pY532WnKis0rQt+/Bj6/RTQf1ZCi8uNDejz7b9PDCGv7AIck1vsbibYOizxyiH7wN//hl9A++Azq4qoRbjVD1QtUJVS3IpCoUWeXkqmV6P4yAjZQ1BTuzRZcOxVzKEwMuJiDq/hS9nzSdcTo10vY8rbBdmagq+r+FCe264+XyeCm021qM+UNSGOXkqufF+ZxjJDmG5CNkwsvYTb883iU9vqprDtzFujiDqhYatu9zKxIFW0uaaP8Ebh7w9H3YvINk7XXex/feAM3H/p1nODi/YqlRCIvPch5DL1dwcjJQPiJmkZ5Vo7miOK/+h7ph0oVUFjaDF9cwnQ2FTZtDQ8cKMRFLzHnvdZZ9c6E23ice6kGRzAzzWtqPSgIvQ53gEb+asF0JbPaaVMW1JH9Jad0qWseSZMA9LASyVEo2lbnI9wjvnlWcty0fCcrvwXj7Wk2A36iyUpho1pWX0zlQSBSCO73Ad74T7hxzIabodUWIC+tpHT2MpakIAvVqA/tNViRJ5jlD2xv9nNTp3D4QO2vl0s3EhqAV/MFK+OsdrCcT+lUwpakWy4xlkx/w5EFTqUWCJckWVfTqCg5v2X52ZaZIwh+/Ee013eO9/bW/9tf4q3/1r76VY3lT29mDryQtU7TdjBigIeM7aLMqxU+m73YBPBYofphcJshxRSUfchq/k4T2+Llb2x0pD4VMhsjgYmOubenHI8SyqzlxHAvvs9o0hy9cZMZbMde6mbs/5T5KYxs4YTON4CpLB6bhviQxLWn4mq+JecYOoNf4fKB22N1Po7pcUe0vkHlDfbtCvnJG9DUcMgNbRQt06JKXGLL4xdJ17po5LImugWpzoJh15Dze69SQbVh1CZ5QEp748ljaXaXMyiuY0O7u5uUeUmyvtD0cuNtOD3z5Lvynz/M7996FfGZl70uBvRZzjR8pJUrE5K+b8TOvv5zWaU/QNuYqKOgcEeYrIq+0NW9D+JxddIJdbm+/bxlm2R/PT9lmwNJpZiQSClabNJb1u8CYiyk2IFPAZAvdlDjfRUm0cjxrjHGRqGUSVXjfk/bHDrQGvv4mopaIbu0/Lj0Arhn/q7Ut63rBG+imh5g4faAo2WFJIsJo7vG7iTsAm247n4U3xx0itoiefRuGwvrjAroTz8W44vnIWhZfv+87fmscUxzkgugeP+wrKHRizGCY1AnvrNTyNryPQmgXE9YrIWWNR4bPniI0xzOal3pzoVOoAjwfPO7PYkD/iaOeex39k/uJmDuuKQVaj2cPWNhNKhM8taRbsoxJS+PiJytosmQZC3zZZKXldUuwgkG29RK35bweDOnEIfBgadvhwQo5zMnAiFaaS8n0zp/vFgcFHopwyxm0996i2m+Q24dDgf0aF/mqj4L7rInDsqcvIpPmOSlgWxmaYGH0h8Margrraalh2yHUCqTqqYY3DJZ9gZUUMC8aWPeDvBiEmOskWtY8f4uqWrk3FC43qUJKVeW687/vu75lxyoW6zOGS8SSrD7otgULb6uwHQIzskKX0zarLHu8QuEeL3A4Q08Evhxp8liR3o8+U4Uvn9p+ujEfhGxpLYQ6WvF/2y10dYV+8ZQv9coLvXI3JQANpsRqg1nFKCY6eej0sQxagTMKOF3ZNMaPM4lVYeI8Gg8HHM+s61HIQc5oXbjHq3LcWWURWbZWCnTdI33gUJWH8Xtjmg45l+a4akr5RT8rosAlnB8ujNZEpZEmYSjGRRd9ubBX8nL2PGE1mSRrbSieKaosg7Lw911visTj+RCB3Jrw1OXSYFCSEYZAssCO4VVyDoDf8d3fiqBcxImJrI21Bx26X/CjVeSlxLxbGcPm74n7uamZdkqK+i6V6ZoV4gCch+yhkfqkUIjtwYN2uIBJcM/euDub/8YVeX497+BglvIorDDX9UjMMxwlXOT90VYNYeW0nFxmL9IUVkqYN2lfXyEWphv7NXonNJXlbKnmDftty88r/Ite+f+08PEu1jjXfO0L3iY9cFT+UYPCpiOcg942Y8C6Eo59D1aCRMSaBHfJ8IZZzWTVFTqRUWJD57k9lhxPspdztIgYXNNI1xcC31sLX51OudwEHmr0IomMrtPXRPZdOYgmmjsDFm1A1mqKHMkyX/B9c50R9U1ur2ppH7evfOUr/MN/+A/56le/ymaz2fr7X/krf+VNG9ib0RRjcI/i+3Ljp82ySys/r81ttPzuRqGqB0RuiiXHAAoX+Zj4SKxO7R0BmdXIarghxAfo1/I8lJrA9SbHo41d/q5rzpGWjJhvrDtHlozufcUz151ZokeMj82RbM3Znnh5ssi0zSeGQKLleSAhFMy0Eq3tEbFrUL4W4DaK6QVBXrlEvnlhjPVzN5AvXcE33NrBGARUq7weJaNSzt/9ZQxyqYZMaml2LeAbW6P9wxMR7jryiOZ3vWpTfIvH4JTr6kLqztCM+Cz/7j7bQm26BstceaDOuCvy2bs2xujRy6+8DB98ZsAYjVWjkf7t8CQQFtGCdJMsWGhTE9rRcmpe1tL1v3zGFpwYYzJw/x/zleyuV7urv0UgZhjNxAq1uDUvc3KJeUW4pSwvpSH3p8UyUetECJs+9eEDO4dUp9atO/K2m8j776GfuUK/52nkzi1AmWPuZG6RH4H2+M3hGX3EyhLMdMR6tcXMbM2TRI+Yqk7aoHQc0zqqxfMuqvwjbyU+BDiu4LIrBsO2V9CjwuatPKcXm6hdHRG/sQbIr4sq1hsa9tkRre19INRVco//cjBt/LFAhVnQB4K79z3AD5HBOZlTKdRXLfVhTa3Kb1P4qWCMzIHCbydaOR5cos8epDhTsIcEAa2qaG3XpAB9RcSqJojVmJU9kIuW6sgSP0nwDNLWWQXJK2FVV0nQ8NMgMBCm12Trm0+no72EAsc04niOPOiQrwO5WiGHzmTZd/bFyi+VKn/zKskeBQ8kMooiVHWFHIA8WCH706KcHCNpJlLQdW/fiUoMP7xH8av71yipKoclrR8Z2L2J+aanwRaTMhJqBZL1rnLrVJybI7FSSU7rdTZFL+PaFxZGVaLlqVDkKpwrPCUgXYvM6oSDDZePeJHBusXyeuVa+fduzOGs3UY8/uDlJtcw39HveC5nYqUJ26piWoX0PBVB33EDvnQF7705dI/3s1zWZw/A56/g3TfzxotK5SAVfSwVFyYN4VvvsPzvXuQ/vrNPtRB+tIM764pvagLSCVL1lvNhbOlU4KyDo0LlWwrsxTZIUxa7OBJJyqeg9kcV0Jl5YHG2Th6I2Ypov9c4hnbdcbtX6j4k752KnqqueLqpOJ3WKbxgTNfL8LLBXg4hJaIrVgouOx7OpxxDwh9lIrqlyMDS7lc/Ar7WM2BdWGu9qaploVe1pLdgVUMqUvJPkQoIcCDc/MwlD+OkKLbeKb5dC7xULNUFhub3VGkCnKPcxrzUPK+BboDjWRSM7PC1cZ08LtvGUsBa8KnVrGHWe8WawvqrhZLR99EKO/uS90z6kgA3JvCZhz5BQ0E89nttHPNIoHW6y4MOfWKRcObDSqwiRpVxjfMqWqyb49tu1hC8El2xdvhjViEpPRTzojyOG6GK/dRRqA1Av5gQNvC+oPxdjLf/F6r8e53yW0JMnVQ8K7USNnf9V0W/doUeA9MaFeE+MK1sr1aV7YsS1yUcDzCZcLzu2agydT5FiulfdVa9iXymzkW4QZy3SLPrylLfBBE6EfYUfuEdCy6bhv8qwLO9uc3HdHZZIQgp8bVEbZYng3zybEmYEZPgkUPSJMe0/0a0RxbaP/vZz/Jn/+yfZb1eb/3tVTfu/0BNonrVM73CiLiDJ9XOzTfSvIJ2yKDKWpHoju1IohETRFKN9vhH32T3RHgnIJMG6bBYPiW7PY6RAMXVT8hZKOqrjsZ5jWZnQOBL4V2AZ/bg0w+GzNJla5/vwIYDYhIR45RobYgvjTULWffotBnCpQZMQLKx3EFXeCUoT0TMLqpUpxuqo6kdvrcvqH7qK6DPDZCDSf/xvi4mf9c8nm7gVlGH2uetnJNi3rKWjSTkisBtgTM/oChhYUnaAiNiHm+UTJR9/72aW4u7x/uSFHloALMU3oqTJ6rw3tvwi19l03ZU2sBvenrAFNFIXscCnsS8FFfE4vLuA18nGRmGxnI7OIOSWVK7lK63suMqxfsDhkK795S2ILsT0W31qTosIefD8dJt0eXsCjgoOtGyT7E9vASoa7QrSqfEr6xV2fe51pxFlNkCmW/gYJa0sI2aJtrGM5ilxxfgR8d/4MrX9UloXxTCRLYyMMDDM+BiUlupuGJcWozT4hIsIc7WopXWvPnUkmLCm2NlH+O5ZWeKAUbPj/frTWuZg308kyaF5FDA1quVXQsd9E2Nh6n8GvBeSN4WdZWF9caZGZ+DItFXVQl1LciJIPdXyKHFIb9HlPdiburfp8q7JTKd51eE2zdynFucQ62EUBV8DkbozwSeKad+3iCr3oQ4pz2ahmPXricI3B+db8+mW+7jK7Y9WIjzMBD8Im4D4NYCHpi1n/sBDpqkNEDMQrmO309eORRwVcLXBN6efiLI/gI57ameMzqY1m0cUwIp/0t237bhHUb4xjH6g21bwlFy9UczUvJOrzjgr1U7DMsg4313S/VuDyTWao/KF45n6EWX9QBRuPOQomx4ti/cRfltYIqJRZP6dmv7etMyK63+Zdu1VgIcT+ALZ/a+dNtNZ7yFpwv1aqmIIIPt11kl9HXFsu4tFtW9bQTLeP1Pngd9dkiHIw0f0GhV+OI9+O7nsrY4eoF1tdD3ShcslCW88wa/+utXvP9XL/n5D03YEPjnXeDDHRYq0gQkxF1Y4g4FztuslNjijWzsg4SO8bqHr2Vcz7Sugt6KIQdP76fnGC52i7JSrTrWbc9xGyJvp1CZUrCSwBOT2spEzZqdgrsr6Qf8gRt1Cgt7Et4vV/RvP0ihiYMSj2J5JAYGAlfIVMPPRGDTNHRrkiCpIbFqbDQmoYtzK8eWZs9LWokI3FxwdLlh3cc8Jz2JqUsJ6WQb5guM12jXG25rxWXw5Yw4/Hxtd24pjozKCluf6VjJtGsPzxsmfawwM3h+fIbvHw/J2huFjvg+ElJiznTAd7nID9GwPaPU7hSWdgX0fIUe76VnbRBmif5KUhgO+LdCKdFKhYYuwWWQSYJV24BWTSoregE8U4Dm4E3inu+mVt632bQwq5kClwr/GPjNOC6Liq0S1h1WdlXQV1q4eUiIZ68V4bhyfB7h6yNdiDBXEcZqf0rdmS7lIM5fuX7aKaEkaJW5x98YoEZJKL4XM3D8vELQKYd94KqCn1P4kA754fR7La7OA6I8edXRLvbM28MVmVWmubv2wVvRHtk9/u/8nb/DarViV/b4fxnbk89+GBjWaIdtAuWbZtDmVYyX1CJ7fIC5uwnaAVpIdpXz5kwMYu7UN4Rca7QbJxkqfqij9+5etsayWJaawDEwu5q7SPsGc+H9zgKeX5GKyIK5yM4LhjnxPMKgxmm8Nggr/0A19o9ZnkdgOLJzi5cZyXPSk5fUhFEB6lVn9dlP5sbvPneIPMQSzZRueOV9OfG7tPAPOjgu8rOWgkgBa/ozmb+IKAbBkMjPAV8IkTmeTNA2DJlWHS6juzGXcW4+lyUCdQbC3ePT1HlfAVaoZTP3fp67Cb/pkL/18BfhTzwL735iuEg7YCtpUcnf+E9+TODzXQHHoiFsMoxpTHF+l2T3eIq+/VnldUaR8X3cHxZmMihjVs7RaL7m8ftJYAcrySagMc73NM6pP8c1uz7GG2I5J6hqaENiWLyt8Lg+H1MU3B/aKsmVRvjMZbpzzU3Yhu2xmwuhyvAajEHaIDERXe4/CWF+DzHZjLtijMbl/3WYa/CYC4r9p3Ywyr49PmuPBV9x7/1c9DC7rrSl8O//7WiAHhIAAQAASURBVP9yOLaB0J4vHjmjHYRJk/DOF5CchE7yGU/nU4oP/fluqROhOlggD/vMRCu8NyjvUeVdcR1CH9CHEG4tCIVi0Bn2kKxi/hLuiQmjNt1CNZshVyEx7ol5KBVHXaBvMszW56j8G1kw2CoP6FeJ5UvLbOQCnEzNQ2ndI50i0TXW85s0FZxXMhQaHL7Yx70KbpVzeHMPud9aeIGv+wAR5EWUVYdMdHT2Yz4RgX8EfGIXTBLfDZBr/OtenLDLwkMwCUOFt0nsqFSAOUOJwAmWjTmt4WwalbckBtPCvzK/7qVBUVOMnoRgOTHmk8Qw+uvf/1v/+fV0vUTaJTK/MYHLVYbHeQdv6whfOS8OZ1WQjfjxDOgrWIlnjweNvIS+/dBKzF22Q1d4j/co6fPp2nxX33lsD4leYFoJ3aSinVSEpqJvzCPm8EO3eOr+A37Hz3+JO6/c4ztDoO7U3ON7S5A19NCIMD5cwVGR36YgGFLL7r1PTCoYBQuNP0kW7L1Yqz3OZxnaZwSrR9qebh04WQdY9VTrHla9Kd3awMm653ITEn1J+yE+f8kw6zyQ4tcB3JBhNEjhdMmDecU6GWVIuRVCZah8q/yqDOH3te6mZq0tcQVxr24UDokWyFWIuRck4oDY0WJCN4HZ6TKtRQofcDdpRv1jyvk58GN/80fYVzUarNkarmet1WgvBCNEWAtoVYSFxYFIMaYMaU0dmSlXpvsgtKDPXMX19ZCskvb4ZN1YWGLOUhlFsZDXyT/jPdoXHjcPlujNKuHrh2KWcEGKfBqZbyyPPUC7j/HscRzloxTMgDFrkjB5KsIxef18T7j7+KQSqgl8y7pFArRq3oPfGRh4Vg6mMvE7mhSVRDyn95boTXONV4GHlSUPdfqaUNjIwU8AphPuXFn4Iz59vj8Abfscnhrn+QHmhVWRvaOkMgXPJL5+ewWbPZCLwP7/n7s/j7btOgs70d8319r9aW+v1pLcyI1sgxsIXQgBYkhIDIHCOAWB2IMaj0caYlLwXhIqI2NQr8D1qlyASXCwITbYyLLcyJ1kW7ZxIzfIsi3J6izpXnW3b06727XWnO+Pb8655trn3Kt7BXblZY6xz9pn773mmt9svr6x8IMCGc4n3vNl7jxsEicznD19zv5NmC71mmQr7JOUyf8Wt4sW2u+77z5EhF/7tV8DdOHf9ra38b3f+71ceeWVvOUtb/lWjfEZtVNH7wZUy9QQ2lOavquaTtQVaJTcA+qK2c1iH+DDKv1v0jqfocN1VDMvmU/kNq1qC2fj8CfENr0GpnS3OspPFz8RBHZJ3wsc9LNxblKf9Nl5XGSluQ/D9HSldpeJSZD64GZVrcVsWOPqrM7W/x9i2k/guMwrR2RtjFkCkxmMCKaTwcEcHt/Scc4L7KnQHhQQ4bNwsjZndTz7Dgv7zhINKV8T3OMfRvicqFvkm4FHncN1W7gJdVI9/9CgYLV4a+9cv/H93NbrUZd8m0eQOEfpNHY6upACtAf88o/8GHLNvouDLWFC0zPwgAiPAd8E3iTwcECQ/Rw7tQlRqImWoybA822eOUrhC/em1xCIEoSLdK529Oe0ZuY0duLfTEpsXu/HKb7cW2DAqYmVoOuyLQJ5hk0JqufORg46LsngHeZ+PNWbt2qBse+0TncDNje3hpfSIsGqGR8HUFWQCyV15MM8FpDkTRuo2lDFvATNs+mCe3kvb3YQGCaor4O2MjlzTFDa30W1eeVa6Ge7hKXzlLYU+Fc//1NzG8pX+EjGYF2d7LIqHLZnsKiXz+PANZIY+0jKvYVHBhw5p9kygNnfx6xrDXX1lnIcsI4zTn00rAO3PsbmYBc0qaGb18abUH6uFrDPiOYRi/t0qY3ZrurwFet2WpNKDUMa6aDrZIey82yFUoqN+8M1BPQn8xyEQNkcw/pEf9PKGszxAC1VlybAiy8fi3JWhEXPoAkgy23M2kindM5ltDFgnLdCS1yT8Nxjotvn68D/G7hnbtjp3m9MWrAUt1F6MH84J4XGtSYdCX7+vawblH49gWGinXT9DIZTD3/tdRWV09TM5RaKJ1Zneo6knUWFURjiv/rln04habZ5HB8I8lIbTnvENW+Fdk5D/XpzgkkQwpIpi1MH2MwwzSSW8ovKp24Gh3I4slnT5PlY9vD/o5tweVs9eZIcO5URKiPY3GBzoco1vv3qjSHf/9AWf/sbm/zbDz3F846eUWHdqkeLsQnDmnprjKZakqxB/5owmvrf+FoU0Tw16QvvPbLHC+0JfokWaec0FLB0lIVlYVphChXYmVbITF/7C8t2aZGiUrfvZCktKrTvyh9YosIOR/T2YlwwW2j5cw/BRRgRRn5d03wPks6BP8Bh+WeSYW2tzNW9q+di6DTxGA5kzcFy4qtqwnESNhYHdDeVE0wF9mBtT/FC8BzcRgWsf/C6/4EVp2F/WO+JArihxfZDvHeNY2YiKpTN79kAW3gP0FGhXfB8ggvl1oj8gnPUrv/zRo4Ufyx7mrThfftSCfZCCuv0+0BvnZYIdWsFbtG7r4swMtDd4RofXnOwCbg2iPcEdtRjsIREdCW0a6XAJprKKt37IuLpn+eJOjlXzizPdXCdhV8Hnm/qfRF0crEFOh7gSwR3zmzh9mfJ3lT3eAjeGoEvS3jUgOQ7bdqTxCjj6n4daOhEljdr0IMmc51bypYRWkbDAF5ohH88hZdtDfkXBl5o1EMyE9ErdVlJcXV4iqEGfP9WwfZCJ65HpH/+LH67vM0vWmjf3FT3qx/90R+Nn1177bX8+q//Ok899RQ333zz3/zo/hrNOUWSI85f/zklWs2Y9jyRxnXFpHTIXCK6fBfmJWhkZ2iJsGX/c+mgFgRH3ByNNu8uCrVVIJTtmmewzkfcgaj9mRfeMwOXteDosH7W0MWYpQazTI006icJXcAKzPyHFlShMWsmLQswRZruf2vjgXectWiNdhyybTGDgSIUj6R51io8tt1EEtEtJ7jkNJFjQ8N5dgwrrSZc4VTvovhoWNk9M/Vp//tcYGyELzpwC23syAbjaoOJCI8Oey+dv3naEK67xrR7OMRpBs8sqIQ8EpHxlPZSt+koMrd+u8KXwGiAT6KIJ/d79rMeJmdyFWh34a3FOcbsEo+XwJiO60Ix++Hzi5kr0EyeoxSRO4ebWc3Iip7HM/6Zns+IV/EDWxZdH9vJonU8bJuwV3tx/gHrWaRzDjm4oLkmXD2eKYFpsbvCeNEt4UXjv4HRKC20MgpRQbOem+YZDfPeBoYdcDZJtJf2G/J2zOOXlDMKHfezGh/tsLJfgsdVYwAJzKPqAqUtodNJqluA4qtZg43QrPF4wb1w3j0ejqKo7woPSizxRi24x9YQjCR+ZFZy5PSooVDf42AjuIIGK9HeljL+WbOGq5U54db3fRZhySSKpVYLGfvyoJFW2GStnVruTMYoHsbEw2vuGizt0Nwfkr5pzLdofpNTFbJVIHu8NT64J4jGlQ6lfkbKmDuj+SRmIuz1NEoEzLJBtkYxRn+H1SoZuMwspm124KkvNKCA20hQefhGaK5hestKppmwG5Pk1BLdbyqtU5wBeOFdc5tsJPPrBmD9uQgKad0SLuIT54WSc86xAuRTLR8ba8HHqRU6nURxNd9SpJrCtuJXOCix5pVo23jFXEL7kj2wG77tiZb1ixqu5Ey4a1bhyHlocmqRfGQTrlut7/WCe2WEyieiKzOD9a/JIxt0Z3AA6G6CeegsmXXxlafuC+kanqtgsVUDEebHP3c3+gRKH7a9kslJOingFlq4rWkURCOd8c93pUWsY1RZVioLRYU8fhr52IPw+GkoHf3KMi214ouUzYRa0OQP4hInxDZ1jZex5ixwg44PTQz4RYcdzuOuVZLm4Aao+oAv51qHvgFOy6nGsLfJFHrtRJCs8eJw7wLdMwlKt7XSKpb0TeB1qOJqALRbLRap00z4YeA2S83RAAS/QitQiO7JsF9327vxagzGKQ4NZd8apRc9zWJa1q6CDeGRJg1YQcu+pXzmbsapRnM73ccdmtxwBqz0vOApbCOKfrxnUnh8iqclgd1laFWlMG/+cREXjwpcTwirek4UTCFkoJ/zUBDB5C2YWq4Wx/NwPJuaF0rx+/ngC94VrrS4cw729+vS10bzm2Carv+B3EQjkgB9YXk6a2b+d/XUu6nDduoke2sImfEVRXxfzihubYuGcoXXNV34W6emvNhoMu020HY+5VU8+PoKHj3OeZoLLG2NGC3rc9Kzh6AK+m9Tu2ihvdPRY9xut+P7J554grLUzfOFL3zhWzC8v35LrZ1p3EK87qYdCUlpfMyLOJCigqzOohviJoLQniImJ+qygahVAsC0RTOgRo1O8ryU4U01yMOZz/RVH+adAJynCc0M8kF4B7h8GY5NmlJTd6cL/g6E6N+E2NKY3UAEl7W0Fu88PK4+8DV9VwRWVI41qyVwxIFZK5GVXrRwGANc04PDG4Hz2anRd+l7mkyDcxoKcM8xOHKmOYcpNWPnx5FhFOGHgAzRDOcOvlvQkhredTzksA4EK8CfMsxhHtNXOrddzm+Jxqnltxc0xeGmzSmykCeca7J+59kb84ywAD/ikWsJdEX4fo+UXCfDFqXG+kVewjW2TT/pd/7R6TXANw+bow4LaMTHe2WF+PWNfTmNaS/m+5lZaJtIWGbivVySPhN+gwVUaKs6GiSeyhBTp26Yg2TzCijBBTi4gGyq1RWrCVMmrt72O+LaL1agPV8LlKsAWoYpIWebeKIb4GsuuhGY5sTs+JEA4sc6Lnxq//Pgl1QwWMw0WVxjTNTU9GLACG4oNedUX4dzVTLScUCTmRK0RNesajy7JE1E57CiQvvjwNW+C+WLpFHurUEE03Pk3xtAVtuYrUks22msY59onfWQgMmdcdj9g7q0m9cGhNrlQbC2gBVhXZQhXQ3MEyCDDNmeqcAeFEYB7ABr6SDL6rwO6Rz7SUvP6PmU1hL/0HSR3+Prsp+YIt1ewhzr34637NXJVxPeVIRzRmiJ98gWdVtkuY2cthh/tnSQrsn0+nNippYsy8gSa1AL+LuJZQPgH6LKq5DCIwjajX2TKqK6bdgKtZKSfbvtdlRPqctISaOLgcCmf5AD6BhcMYsCnXOJhT14YfjHnHGw4lAXap9kz0ji0jlPHHY0qRF4gE1QBZYB1sbNcxm8+C4QApMeq7T1RJgYU7uLe4HCCXBtDx69AE0OJVkPD+G6QX2mvOBeGqHI1C3e5ho/b3PDo89boVwCxvrT/Nl71G21suTWkaf7JeCQ0ip8y90d/EvD0h6+qmeSRUJFmOAJE/YwsJzX1lVILIkkjIxlUjpa1sFTZ8ne+xT518dk738SnjrF3sqxbdXH2FkbBcfQxuwscyp+zWKyRhQPsDXV8Mwg6YR1Ec0gPxShQ3P7SOw4JFesP7NdkCpYa1PeRfmzlYBJ1ifIimnuE//4yWpGbzSM8xOF04APU9dtP6YhWgVHnGPFwhCv8AxOU6MpbiH1uFICNzXQmUtCNb+d4x7uCcwqOjRDDuP6hXUYVnUSuvTshb0a8ONSH84VzbWHmufcrc3tU+c/s+e03FvIA+VEQ42WmIvv5ny6R4GWYAqNY0x5jjjPsxLrp3CCt0QnnUh81VUrGLSQAvZRG1Gsl1pd1VzDCHuAM3qhONypoXrd9nxUuUgsaScemHSqJQUUoAf9ovCW9kQJ5NfPTS30WnE8Q1SnUh+JGqZchB7K0/aAfsswGE/pO0ffKU+q36MFf53vyJHEsxOVZ0ujMev9LE5iTNiM4o5vV7voR62srABqcT948CAAb3jDG/jn//yfAzsZxv+729Lq1XFR562BqWa7uYP8r9re6uyZQgGYlYiPl437S5qClqVexC1CbUT/nDz3QnttQdnhyjavQR5VsHhpSehC0xhNj6Ub5d+AyztwbKPJNKUusnUnDUEnIOzc91OEzevvd5Ok7mfCPDhbC7Y2aOQcnHSq6VoKzNraCNnTjnyJEYGrlnSS16e15B8y04b3RSDetqnx/+YpHcNx4F1H4fCphjZztzkMU1Tjb+H5Bn7Dz8c/Ba4VqDo5rixqAYha4xmmNHV/87c3iGrKQPSYy65eTx/gKJ3TEmTUSMRMZnzqifv9ujQZlQsJ7TJ3fQHwepSA/CuB6zK/Vm0TS2zEhHsEBOoYeQG6wSTQfHy4pjH784R8QhLbZx1SVJhJCZNCy+hMS3U5rJT97eA16OnxqSzOqJXToaEpy3FeZG5N9c0SUKAZ8tNJD0Sr4xc3ZA9lY4rJHOzJkPE03iDUJf9SYeB89PxpW8pYhO6Cm0qeMaNZ+ibQGv0/knYAbAZumlraQ4cON6nqemOhRfW+b9E9PtMs1Km1Id2kFwts48AkN21Pa6E95VT89dbP39nsp2PUUuL7CdMTc2eUFtvWZDxPOC2WEVwCUwNixDOhZclzo8uiYPZ0kQ0fX+vda/Y7R2FdLD9oR6NYTSLEr9eWdolZqgORP4fQF4klSY2ADAQZTuv9Ghj4sDyAVA4yjW1tTGsQJIXG2dohGIT/AyGcFwLbGeQgj2/Aajcyi0Go7ArqjjuvrEZxyAnxOQWDZUXQbPgOzFZR0755TjC8n1paWe4tIJ7pyuE7Mvg/BH4M+E/AdxuNy2zhPU8kcVFMOd3w2XKnzssQaZ9T7XM/r3/n7zWeE1SwFd4VP7dj37cdtGCzxomRD7DK7Aa52VnYsI49OJhZJG9FQT0Y9AS49dN/xXlbuoDzNGxfpklXmZvXEGI3HwIDkb43PvLXNjDKBGeM5mcIArsI7vIl3VhnJ006nNTc5uiWLsplAyKQmbeyg8axZ4YyM5S5YEX4yhX7+PKPXEn1/BauC+ayFbJKLex5aTGN0Df/PigSQ86C1JPOMyzpv4HmgVp8N+IX0ihZ6JZyb2lPE836hKUOqFRhMbOORefg4TV1329BNgXz4Bo969iuiHMzH+etybaSZRGS+uxNHGlGFfS7tEWrEsUzLnrug9t5WMMErMgfNNY4AwnVQPyIglA7dFqnG+eQ6RTxoZOpazMiTBYMy+e2G3MUktBZW1tmUxyx7WH+6qe/zIKD7eCpFMawpqEOITdGuE6Qhl6xBrSu9hA+kzbgSjqonrt+fgInwNhCJw09TXEG9dna34O1WdJRwuSdz9JeJ0HQW4ICY1PDwFw4e0a9JDoelvnQRQkwJSCbliGrysZwasHWYW3lFcbCOmqJ7vqb5/TRRN6o3Ua2lQ/dcEm/JLKN7z/CNye4W8CdLnB7+iAmVhPZNsJASBShNHJpQM23kENvOGMUDR/1mXGALSwuz3VsojXoV5I+4ryJ7peeqPFmAaF/ZkT/aEH/iXMMnGMRGDhHt8GQunrjCrUnQWXpTizbS91aWPf0Myjlv13tooX26667DoDDhw/zPd/zPTjnWFtb48yZM4gIr3jFK75lg3wmraoUmQehHXYXLhpEPXwRsEPigiLjCjo14gPd4A2kIH6NRcuDRc8bBDE5xmfFMHOW6AYRgsT6VClSmWdE4rgvOAUk0i9ReBeBKxbgVKVCbmDoo3u8NPpuzlX9YYckgzxoiYlpQpQS36g0tk+ZGI3tOWnhUBDYAdkcqRulQCYGyUQZyMvb6o7n3O5x7WXVLDUTfvOJE835+OqJGlsl7q9pC0Q9Jt33n12fafm+RS/QuoHgRr5mJC4Fl+AuGzKi79bm92LqPp5OX+h06rQEmcS4LAfrjsXlhVr51DBz7745opdr8nMj8F1o2MOVibXBdaVOshSAc/XYUvh2nK25/ZPG7KctxPYNAKks2aRUId0n9GFiNcnPpCCblkjl6DgUqadEcYZWLvBtjLpAgdddzTMt4hUJrQxmNVECGFkVBAR8LDsIDhkWyGqGdLM6iY1ztPAx7XPEDnbC+/St3kgpkXTe66fMVRHXjoDsPveBCFYGdad2yYiCQmBcqYVxXnkJTeYX0Qy7KTVPAU1gf1rQ0oOS4r7xDBbm4m4DUAJLg17z847o+H2zzlvZnRfcK0fl8eVjwDXeYq6yg8Ss8Un6qvqBKc70jIbp58porI290tXRtY4+6vbsnMOdHeL2qgXFGokx7VYk1pVNwT4tsOKRTLS4dgwyKWphPbkhZkyxYDpZVBhbz9XVTHw9xRN2t7RHVDFvzgl4cV+OPDXBLOTxY1AhvGtgPCewB6WJE+GsgX1ewpfArBnNwG/WR0m9+V2YXwdMLK12RtcpnWl7pnMg8F0GfjsTvte7RHZFLfp1CcQEyobgju7h4VzN5ZCpai6DtKCMZWq0RfQ5RoQt/wzXa6uVsKiUtlnXUB5pEjo9b2eAQwJSgOm34rBiXCmwtJhUcZlv6To14BNYTGKwU0HifCEwprbsze8NUHlb3eNpJJAjE1wrgyu7u9Nk65neR0fwnEVFviEprgku8VCJUOQqtFvRbPL3Z4Yrr9qL/MjzMXs6ZE9ukjkV2rNK3cx3eNJtTj3xkJ1zI/VazsMHyp+NG8qnRDGx1NFgYC+g1Ty9axgNplbxAJcvK50swLWA566y7BzWWopoqGhannfLCROTTjpitSFxwCbIQpcBsDkvMIgKfruVTA3XsH9DAjcywZRlpAX1jnFe0efneLtCFtuRRkgSAz5a7dMbV+oS7fc+zkWlFc7Vx9v3vg0sOugt9Fh1GuYWhU7ncOMJbjHzCkAPo9Ew1DSMSeKf5LOw1jkwrsipE8TGIhWBnjr9DQvnyReVMjCrbTjjubOGv7iLvN6Olu5Tf7UA5wrs/r6faX3OtoElE8q7zcEnc+dUwHRych8a1nBZD3zHtML5mPaQrT/gMhGJ/FCylEgnh6Jiyd8T4IpeEyTkPmhnHFFwD8mJOTuBgws6LiNMjHqCLMzR0wCeMbVhUAA6Gf2iqL14Xfyjf6sK28mit9UIYYHESyH05fvriZZBXDhyhqXbTrFUwtK7nmLh0TMMrArsknrtOpXPgqdLHOvWhLIFp9pNI6pWSyGGu3072kUL7f/0n/5T/t2/+3ccOnSIX/iFX+AVr3hF3Kwve9nL+Bf/4l98ywb5TNpw80TUiKdlMHZz420c/oD4O0Sh3TjU0tc2DUNUC41dT+8PmsFtg8/Y6AlyN0PGvpyHS24JAliKCPDvRxUsnic5EzVjft42x3zG9yttRWwntjVLPmjZjvQZ88iCgEPECw2C1+v7Z7VgVjV5d/9P5epEFja49FhN4nRZIFKVRTYsZrWLCYgljPdZKz4ZHU1EOC+8V04VEYVVTfjW3Hx81+VNBcYuuz9MlUB00w9YYA9wyuoauy64cbEzq2wCdxrzPf9i7n0o+ZZOXdrvGHXDDn3LTFXZ3/WKG3bu48bm3gW+ORiNqJa+JcLp5Pm2A66sGgxLKvtNaHqx7Bp+4q99dmaPD11NgIF1mn23UGFdZiVuUmkeiGkFU4uZWaSw9HF1ygn/x00drlcnPxmibsfpeVV5rN7PqwITk+GKeu2c074XPJWqzynIpkV6XS0fNSK6L/bQjKtBGPmbKPuW0Cr9yGfHLzOd5YAVRJprLemm8swZVTPXREQ5u1gaGgxcykEstOssb+mPLtnKHl7pYNB0/z2vKgkwJELJ973shuYB6pg6gy6plT0ITapk3UAzdl8ttcIqJKELgnujxYNfP18ynwRpX47ZLNCKATru/Q7W/bmwmyVutROzqAfLnRVi8jlHItyK1pcNjxURpJ8j64FO6DNqq7tf2groZFi8txM13ZlfijSEZce5jPPpP0mFnpWe/m45bzjxIEIPYTuleQnJUuuHsMfvyzp+UjALXThT7oxpnx/0zGI6GT0HfYQ+ynz1RJm/gcDAC+09UcE9S2lhw9qafL6Yq5CXtkD/Ok2FUWRmE+uN8bRgCdgOc+2Z41A5JVS+muPXAaIiX8YgnVZjmxk/7u/7rhefl65HgWueroNmuV6fq9XunCopOtT3xc7m+p6bqgFa1i9YlJzXZMfaxNcta6K5lBZHa7uDw+fgusU5YqOu8ZUxehWhEqgyw2HRLM9XGE1Cm199gOzhrZjZubUj8ax/v1XC0pyL85wXwrxOMryCpT2WSZQEPS20dSqDYj5Y3AjwqldfYR0d55Aqx12RYXPgpXvg0KrStAo2S1u78icC3q4KtZAEK7rG+y83Z9Dv0Av7TqT25hENV9mtksu8cBbXumPIy7KmM8khnjlfOWVaqpFgoeMFxoSgipC1M0bdDM6NIp/iAOfXyc55FjiUBxgAL3jZi+k7x3Z6n3OwAS5REgQKXIpomdO5lpK76GWWCcxKOp6WxxlPUY5DhfYQCjvvuRL2kQB7ctgc1bRuXtk4h792hIG5ZP9sTqDfifsNrwAcmEDLm54h6XDCAW21c3JL7bkRHhcUJlNw3SyG6a7EyUp4ean3BoAMDDKdMQC2EtKsXTcVTlFYDz8I643Dnd7CHag9JbY8/uga9dqJ8pepV66xfv2ctk/UGT04/Jw6wM3KWCHIiSpCV8PSJX0r7660JzdC7+vHGVjiq/f14+TpWs69l+QqzsFmwaTfowo40SuT8PijXvdvfbvoOu3Pec5zeM5znhP/f+Mb38j29jZZltHrnc+eeOHmnOO//tf/ykc+8hGGwyHPe97z+LVf+zWuvfbaC943HA55/etfz8mTJ7n99tvJsp32ktC2uQhLOzQpFv6mWW3JkaqIfoaBUc5F4zVCH8E90aGM4mKgVYD0tERRTETXiHmJE5JMDmrN67d3JUQ7qO5uTaR2jU+JvBi4vA9HJ3Cl1BLALkR9x9MC4hAoCYgVZV62VJRKM8iHQx/5fQeV//6McxwMWuXNiQrqg1ZNZMKYr+3BXadQP3tpMgmlVTNn6h7vHBxZV7hefRk8cApeeTk876AqJ3IDmdmVOTJS12qPa+eHsd/AhkenLhdsWeCcwtYgPCiyGckue29uXkNr1B5PrwGPWAjFJsQB21O1/OXZzv3R2NjNFmGauyKwV3TfPivs40ywVdm0ELgaxrFT61cDvl1eoEqJNBFdit7GzjHwJXRMkShdwj4yvjSR02zLPUnyKYS+pk7jnNEDtiHNUldReABCGb8OMDUCVdkY0xhHN7HkR2Fps4TVjtbSBhjNkKUubeeSbPa7Tvultd2E/qKEVu3Zo4i7nvwdpX1CX7nB2FqZ1tAtTSz4TOelCIUQa7uK+HIwgbAHS+S4VO+XHVZ2x/n2XBO2Gr5ainX64FBrGZr4OO02fN41Oie+r8q66HrrAFtZbEdd468QNcyL1MJ6yBq/Q28XcWR9nvQjwaz2kTMl8uzAYDv2WceaA+cziNtFZcisSCz7Zk0d/x2VfAJnBfYGN/KwfgtttbAVFZKZmk6E4TmggMyPPMSsN6YzmbC0Tnu6L2omMKULyXWlB2xpzowwDz6GpSV14qvmc5WhOWmE60LXUp83s7ePWd/FzVTmOptV0M7JRPFLDsyMWmMxSr4ydBw7BPYIaIKYAkwLSYhHeNawaCL5ZP8Fl1sz1/eiiBphRTPUOFPiPv4w7nuuwD3vYCxpmsZk4hzrwB6AsUU6rbivBE2MmKzM+VvDeyB5v5xr4jfQOQ2/m5SwOKeQT12Jz/MY9aQTXGawYkEMzmi/Gtc+gM+e9MKrNF1lJyWcLOHZyw0exMV4dlH53ghllmGN5etGeEEmiPNJaJ/bIbvxOObvlOSmpRUHSgsmayoON0r1MojrI/U12d6NKfP4PFjabbSUBQu2qGDQBjYm6s4MPtkWONHQB6wmbesDcngDXnoFPA84tqk73jmWrGXbGg54LwHnaiZ/h0LNhSSNfqwerwog2xP1OATGHpfg8bUVdY/fjQuPhpdw9fdl7YzcVxUJYX2hjNfE+UR021PoEz1l4nz67dQT4ezKgP5WBYf8/YGX9TjdZU22dhNY9HCuOE0ngT8jblyoh99SJyojIk2WpjdNUxlfwwUo4SorWiQheU75UH3vex0V6vreoC80cYaIKsTWqPFVaKnHR9pJoGnhOf4ezRw/xj13Mcazl6hHywCJtCbC5t/Mk8Q8hO8WFa6V677KJOIZWxK9DscIi9T9Bmt7fE54dUG2Zyyj/E/hNLt6wF+BRLswmcE9PihdKqfKmlMlbq9yXk5ElTR+Lk2WKCSSZ0flGkC3RV7BuLK4lol7I0yrG1e4y6X23JCdNegF3bMm9G0EXnYZct9T9Sq95OCcd5BTnhNRS7sQy6wCyBDK5R5DT9RiHoyg1HwatP032S7a0h7auXPn+PSnP80tt9zCwsLCMxbYAd797ndz66238sY3vpEPfOAD3HDDDfzGb/wG4/H4gve9+c1v5qqrrrrgb7JcEXnQ7MFuTAtNwpfuqE5LS3igi0dpGzU/8QzDnN4+liJYA/am3ZsMM7MxezfQZPBTBji6xydZbZPnAk0B+zwtxCDFjZsK71ctwLGhuscP5m9MiHoyPem1Q0I8ANfPcMOiBiscNBdA8i7ytmZkTlg0xg+HbM4wKy0EIcs0w2VciyuWNOPm6XGNQdKU9EFYj67xwJfPwssPwHMOwE+/BK4/pC6CufjX+bd+WCPjn595wPegmTgdqIuO9yyIytbgKuT7GfE02dWTV2qJDi0gyInTWuCdZHJlu4RV4dzG5q6Myvm4sZQepTCC7tc1/yPn0Jj2aciGXK9naCmj0Dhbu+yZAUpA435J3k8dLHrLBYWWyGFaId88idx8N3zzRFTMSGlpV76Op6vd71xpsS3NKlo4JYYrUlv54vQk2+qAwKhDTCgYXAVHqKUhJgJzNeMkg5b2t6hEDudLqzU2fJ1w6JKVr8nvYylBp2Okpd4tGd7ql861P+s7lr4liaW97twBTCqqXouRKPHbQl0vN61q27fQzwuh9kzZmhO6IswXCVyK58L9Hm/EuNRdrGZn1jebXXVMxM/OqYUzuCRr9niLzeAwmjUekqzxUgvu81ggWjOTg1LHZXeQrYkOzTPWyw5OO4dbm+KWW75msreui8Ryb1bqePYg3J5G635HJgYwrUxrmW8XcUwxKZ2fEqYgebYjeaUug8T/QdHmDhfc9Lqb1VaA6UitbNuTmsnzYx2Iuj2mz0l10KdF2G/qPRm7X25hTo/qG+bpXbjOqsihGxTHLIi6eS4aYcmoHNqXXQT2ANM8PAALeV17OxysaZHU3arx6Dwq1S71+754F1LAHT2n/zzhcO96CvfoKV8hpU485qyjRDNlrwqYaYFpZTv6BziztrETnrTNwxWVLC0YjncICowuFGKn9+7mIdXB51gJru0+AYTuZ4FDA73x6HZ9/qOVfUM13INWvb9CPLuoEqtCUbr1cfNfy4XnZiocZkbIVvtkewytRzbJrNN49qC9Ds3hLe2dGrZ0TqhzHKQwhtfAdzHy5z2No3aA25PBZp23Jlo0faK90sep92YFnB0iVw2Qa7vI0W3Eu56vVI7tSi3sLgoG2n+aJFLAK4e1zJTYuia9OAejCdIzdBEdr8ErjPR94HMbZ3uX7RL2Qbudk1cJfYoHGWbOaSjesES6nXge9HY/p0YTMa8vLsA528DpMYt8egZ89yPUq27z7DoDB9teKnPOweYUt0Az6aEXisamzuOS7t9GXir8GW0bqEqtgBDWzMOYCoCRvw7dJp5dDdlg2e+vraR6Soq75mlfSuOCNTzQ8rUCt5ATXONHoh5Zi7KTfYtDSIRs0PJppSF6mrkwh4ArfGlBX8v8hNMa8JBYoqU22IS+TUtgWjDwFGQrKBqoqzPFkzdvZXca7srpETYX3GInrt22aDiVi2cyGInmcE+gtT5BH5NQ5aPmqR2opb1d/78OLHuaLYZoYTcel0Rc8JwD8NrL1aV0Gbhm/+5Wdr9ZJObP8BR1o6Dsd2Muk7AvFV/o4l0qq/dM2yUJ7TfddBOvfe1r+e3f/m1+//d/H4DXv/71/PAP/zCf+cxnLvnht9xyCz/7sz/LddddR6fT4XWvex1FUfC5z33uvPd84Qtf4MiRI/zcz/3cBfvee/B6oHaPh+Rshmty2PUHyT8ttYwHrSwTi/i4sPCzENMeFsyF94J3eZH4e9POoarrtANzTO8uS55mVE6xb3IAnrY1ktAl76/oarKYqa2JeootICLEBiHwZtmeSLOEV5e6hEgCm3OOKoS/QF3Hs3KcclreRTPHg6z2Y3xflhB7cgNXdbX0W0AU4bAFi2wU2q1m0X18BC/fq33kzbg6MnPBnT/n0ReZ1hWU0XYCrpdjR4owazewGsHA7laudC5T4bZHzQim8dXOqYAqTmO5I1s+ttDp8J5Pf7bWVsbOz78/AizzLvKIcBA46Z9tRTR7/IRaoE22K6hA0J/v/zzXHnPu/wmtm1aWxVKZFOOFd3nsNLzrSbinQP78STh8EinUm6Jvm1mZHWheA6Ma6KGHJyoUEpglGVQH2GhDELl3wBXmOwCxOUFCYshuW7NAo1mNiyRgWUjWj0ts8dzUHTgclFrma0YSz95gxqj/SSwPkmeYWv7zfWvn1aRg0s8ZigroQzRXwEh07w7RMIORUWUBy/iSWQnTEpm9i4A0neSUe9qeNTfkLvv4zz54e/KdKH4OYYYEz31XC+4zCwaedPAcCYo4n43c1C7yu7oiz+PMcP/eNnJupJp4NMZ2L06tRUOH3TeIWvcouAMY6pJvCdinTaif65UC3uJu+niFkD/rSWwdgBQOMhXaoyLsPNr+XUu+JdPb5A49vEfOwNe29eNbjiNPnm3gl66o22Pa0q1w1gSFWRI/KSB7cszauD78qZtpun3GpSplIsC6brkow9oStcaeNzws/ThlxBfafsKS546sJmmbo39hSiJTGT43worx8BvBPbyGCLjcz8HXT0TFtE0S0Z2zkONYcsCs0DUOW8xb2DDCn73nY7vDlMKT4vtwHlY66n9Pk/lkbGsX4MYcSbSYplMWrjGJl9QWJRXa8efDwLMX4MiwuZYWOLwN1+wlGgxCqTfx1nURSqdntjTCqUw4agw35Mpsm0xd5LNr95Pdf47cx49HhXwiDLEx0bCH3WhfYsGT+t+4pn2Ulm97+EJsqkPPLwt1noDaFdkvqFWLZGYdnaNDWO4hvRYsdZGVHJ7aAucYOKcFC7wlMuQ8gFqp35j/xINeoM4mv1XCYlsTo4fNGcYtamkPfG7K30Y6kEwPQKuTWGtd80iMnZY7lTGw0q3vTfaeiIaHnt4LrG97UulqN/BwnSMLIab9M7d8QhPFWph47GHHWvazFobqyZlRJ+yM85Ue2USwlU4OM1cr0wPi9fvG+XVnVkAva+wVoFlJI/ChS8C58+CuHbTPNXnUoMSYlrgSWO152IQt0URxuX9Oio6bsNYGiK7AtG00HHVeqJ2WSn98GN1EQkLs+n7xa1mjEdHKBDNlFJadpq8JaCTVUbjwsDnB3QHuzBT2twkJsJ3xmfEDIg18SYAxhTd5lR3BhBKHpI7ImmSPPJALYUPShN9JP5moC34AMhO4bj/81HUaiheMRClu8W56IfTN2ERRvjGCVQ0ZSvdmUE5cDPvzN9UuWmj//Oc/zx/90R9RFEXDYvOTP/mTOOe44447LunB29vbnDhxghe84AXxsyzLeO5zn8vDDz+86z0bGxv8/u//Pr/5m795QZd4gFNH7wbUHed81s4d2ueU2PdzJXjh92N8MpeaELTxiUx8azAuUlvaBZBcNMEWNF3jocnJxe8cTLzQno51fpxP13YT2EXg8kXFoGdm3q049N18TuOQJf+08Ba48ItzY9zjI3j8bH2wCWdas4mGBHTWqXAwcY6DXsiRrQlmoeuH6l1bUub5mmU4ksS1N1zkXe0eb4G71uC5C5oPIJemwJ4baO3uGh+nzEMVy9N6ZexBA2f9fc7XirRl7UEARJdInGvmU3Aat09RITO1JFNUjbhoUAsxpK5IMMWRuYSBdMBmhSy3+ZWf+of1AiXr/XTwRdj8vSJqHDml4og+v5P7DMguItBIiW2zMkP6Ci39P2THn28O1Ya3nD8X1l/vP60WxmBRvv+MCi/W0fPCzDQMB6AocX192paoNSysW03gU0KlsV5FhjIucTRq+W/5f2MiOueQrRksecf0hXbMrKe5LSBa2UPSG5rXi2oJTmjcVzpcllFSuwnWsCWaeGl+Fiy387KyBey4YDzImIjO5ZhaWB8hTHBMRMM8Zkaw/TZsl82OLtrKTpPJSTmAceEzsgUgaFJg4F//0k8n3wHdLNb9s96SGWhw5RyuqigNnACu89b1qLOjNh7u2uYttUZj2s1yS93jqRNE7Xe+7NtagRv0PUOYCO5GfKK4ZiI60Ozx+z08wSlKAFnIMMPaIhyZcA+6uArE0MafgaDll/p9eEZIFrkr/YOdDKoAd59o/uaB09HigxF6plbApTAF5ckp0Zj2yCR6wV1WNAN/w8KxW5uWGv4wj1QuoIzc0Xaj6aGU1CQxMY4raO+SQboGt1bcGs1p0xVh01sC3fP2aJxj6RUzLz6Iqxy2CnGgeo7vs0oPHnNoQsuOVwQZaSjy//WvvObCcM3ty/jZSieBjXpuR5VavANAjTndqfgI/wWFkArqpraUmTrBItctahhaSpOdhUc24Nm9oCmLTHNphMIYjWXHe8cY4WuZ4doMerkhy8STbMFcv0B+ZEQ+LmohKA2bcg6GUw0NSPcvc+/Zue8D7euKMGzsKxf3gFvpwlYZUVwUkLylfVQ6uoA5OoZrVqMVWq7eizw5QRysWsfE2qYLrhccd5SE9Q+KyeeC0DAt9XD1O7TFJwgUv9/8Wg5Rh5EdcErTNT6A2jZmp7UWTdxWoYo5tizS7zb7MRLz/LREOLGQw+YQnK1rs7ukBBg1bnCocnjRwU/+0k/T9R6E2/5Lt6VzHu4RVPDDCDNp0r143eWYSysjuAcmfhlNGugcDEvNYpm2VCZI+eXlHpwNBCfBXbvhsZS/T/aqOzcBX+4tKFknou7rBByZwJbihZT0tYBxloNPRlfvT7TaT5eofFoHFvzNunzKBRnBx5V7MActZKxjXcCx6QEIJDrqyqzufaDpHu/AnZ7iDi5GGogIIwPdhLjtQEH+u6hABqq8TWtqExYhiW0vSlzLxClfE/XCMjT7jSEdgfD78XDIq7ZOhRwFLlGw1HRJUh7FOWQ4xgwy9XIhUWR6ZV9Y7m9Hu2ih/eabb0ZEeMlLXtL4/JWvfCUADz300CU9eDRSN7mFhYXG5wsLC/G7+famN72Jf/AP/sHTxryHFpiIhmAxv2nmT304Hd3U0u5i8p+ap1TiMvT3psgJ9LAMTP1MugYZlbWgNM/Rh1OXfrbhzp+cKdUMXqiJ7G5t72YqtRxZ35E5t9F/gkjS+cnEC5gCHDsHnz+tSPbGp3CHfToz6+ry6ehZDyXfTjpYDm5YCObMENmbxeHGAxfGfW1ftfrzGrIQ6xYs7UUFd52GV+5tMAxBWKclzTSku7TUiBGtIMA+gU0Pt8szJZrTnaU3QouVC6wmWTOTEjMuNeZvWsRM6aao6Psbd+x855hZ6HvMaHz/MimQbkf384498TTwJTAGvkrQGp1n/K0O6lqipY1MS0DiwM6Sb+m8zY1kt5j90GaOWBM9Jt65fp9ew4F63j51WfLZ43HUceSAG5e4jjIxY5d4AEThIYyt1u4OBE5meDdrFwnEyMGiVzPHpEDOIdvUrpj9juc2oG2hCJYF38f88b6klvABDUaxlVMic8Lm7rHs4Zrn/teVrQmf/64oKiYLar2foMqToRO2vEJmDEwRClTDXCx0tKJFRHa+pwsJYLvAVr/3/2xX0GuzC3Kuie18C3W1qzpfhk2v1nIqU4ZoxXcT9npa7m3XFpE2EVcYAdnbw5ROkyN6urCKY9M5WBvi9hAT0LlgaTeywzXeomHA50Rd+8TDqY8VpNPBDH1olsdxks7drIKOMvzbJLxF8pPwvmTOBVfmmV6plZoBT778snoqHMiLD2gOEE9H2l6IC8kgA0wOH/op6kEQ5y0okBbber5D/evIJM0hzrJSF9cwvnRdLqoltC4OgjokKri5OtTSPtid/qlskliDvCV22QhrwSp75V7sq6/Q+f7Jy6metY8qWNYqVVA/bOHdqI7pLdYxKmZIyzRw5byb7yXD1sp0U69NmpthUiovM3+mkqth5zSHGtcONAFdkkHeBSb42kU4NlPBLzC+p8d641XLpFoPdY0XqhDP7upwljtz4UWZid4mJgjvyx3yQy3M/WtNS3tYO4C1ss4AnvIuyRzJeV6gBtQtSWsu10ovt9CCdY2Kji7CITa9golzDMoKjq4hV2vuISPANR3Mk+dwVnOjrFm8a7yOP5QunU/kKoHmxPeoIL8+QbSKFm0JHo41UbMiO6ok7UCjfr2DAN8WmLUkekc6AOuYODAOLYM1niALWb0lG7hKyA0cW+nB1OEmzeRhUXlta1oY6P/ABaWnY8k5hoF8bBW4QTc+q3aPV+NYJxE+/U9qnObxDKBCO7BaWIYeuAY9DvR5G80ZlfLXO17+aft6sFakZt+ddDC0qMn0n1deebBRYFfatfeKUTmhp5Nab99wDdbpsG6+9RDGea5VYTxk4a+dWejUCQo3PC7eMVc09VrSyX2+FMsqGh7nIFZ+CsYoG+C1NWzRNf/kFu5AJ8brOxHWRVgw4Ixp4lIhFTH8VQdX9Vq+0panC6nmZQrW04ZQg36P7zAoIxQ2r1xKZZ/gIXRVF54cKYANr10XDUPhDIr1SbKHlvZSh1HAEynOEGkM8VvdLlpof+SRRwD49//+3zc+379/PwBnz569pAf3+4pitre3G59vb2/H79L2qU99imPHjvFP/sk/uaj+O/1V3vi611P8xhu46TfewJc++hFu/IM/p5gqwRbgtk98kTv+6l69QYQz6xu86eZbPNXKYVpx02fv4J6Hj6ilrZ1z9PhJPvKRT4CoNtIKfOJdH+b448f0oBh48MHD2E98tpEZ+C++fDtrmxsxqdUdX79Paw/7wz+dznjjn97EdFpERubWjcPccfRIPFln1jd50399b90pcNP7Psnd99aeCYcfO8pb3/7BeiIMvO3Gj3L4qeORgN59+Ag3fe4LcPmSEt1uzpve/yHObG7Fvu/4yje47VNfjo+aTWe88w/+nNlsBqKZfB/94l3cf+/9uG+eRYA1N+KPz35FLTX+INz8kb/kG994NB7+Y08c5+PvvZXjlVrZcY6P3fYJjp88iVnMEYT7Dz/GzZ/4bHLghDd9+S85U47gxBCc0/n73J1Rcz0dz3jjje9j+vVTsMfA1Uvc+pWvccf9D0b3+DMbm7zpv7ynYV3Ybf7+9O0fiky9AB9990c4efQECyK0gK8/+hif/dwXcF2wowLn4G3vvoW19Q1fpxQe/PI9TD/5RQbWkU1Kqu0x7/hP76LYnCDTCpla7rj9S9z3xbuRSUVvZsnOrHHbH91YyzXO8bkPfYrHH3xUiShw/NgJPnzb7cjWFBaVoP7JRz7B4WMnI6G5+/5Huel9n2ychze9+UZOn1nXLSFw55fu4fO3fzEKCtWs4Ot/8m7OznwMH44vfv1uvrr1JHaqlui19Q3e/c73A0SG/f5bPsmR+x6OyP/Jx45x4zs+lG5Rbn/nh5g8fiy6/x++72E+dcsnI5wT5zjzp+9l89w6gcJ+bfMUf9l9XMd3w4DiwCLvfNd7KSczjLW0Hdz1xa9w373363hnJeuTLd7/vg+pNh9AhM/e+pc8+sAjntmAY0eP85EPfgwQlkWtPx9/6MscP67WRQecfPgwGx/7TIMg/9lNH2StGIGPaf/6mcf5q4e+DqjHjZsV3Pyn76aYFtGF8i8/8UW+9KV74hqcPrPOm958Y2Ndduy/x4/xths/0lAEfeDW2zl+8jR01dJuDx/h85/6fIP3/pO3vJtz5zbinH/j3vu5686vkns3udlowo3vfp/iF6dE+PZj3+TOpx6lQIW7k+sbvOXP3sfvA/dYzUx+2yc/yzcefYwZUC61OXz8FG+77fYaAAdve/dHOXzkaPzo7nsf3nX/nTmzHufzjq/dx61fukvneLti2jW88T3vZ1oUkZrf+tk7uePOe+O+PrO+wZtuukU79O6dN33m83z98BFKb1V54rieD2ctp3LDNQKf+OgnOHXsRIxhf+j+R/nQ+z/ZIH7p+QDhjq/cq/gF1NJTlfzh+26h6FeYM2MEx1e+dBcnv3G/uhEPR2yYCTe+70Mq2KDM9M0f+TT3PvBI5O+OPn6Mj7/zQ9FjZ6/Ax2+5jRPHTkSF0gPFGW7++lcipynAn/zFB1jfCGkwLfcfe4TJXV+N3iuzWcHb/8uNzGazuHfu/OQX6X35npiQcePsOu/6z7r/Auzv+cCnuPvBw1G5efjUKd72yD3wz65CXpojv3Q177n/6xw7eTLi4zMPPcriLZ9seM7c/Ec3sn52ndOoZefRr97LXV+4MzKcRVXy5ps/wGylgrPqZnrrF+/ijq/dF5nfM+ubvOn9H6wt7cBNn/ocd3/zcOTsDj9+rEnfgLe+/YMcfizZf994mJs+9OkG0/2m932IMxubqqjennHHfQ9w651fVYVdr8W0KHjju9/HdFbvv0986q+488v3REZzY32TD779ZgZG2DYGjPCZz97Bw24Ld1UbJzmPHTvBOz/4caxVr7LKwc233IY7doIcxzCDu9eP8am776qZTIH/6+3v5cy5jTjez3/xbm79+BcjTNPpjN99058xnc3iebj1C1/hjnvuj+M9szTjTR+9lVQzdtNDX+Xu7br06eFjJ3nb+26NfQjwF3/2IZ567FjEHY/d9zBbt3wyClnWCDf+6c2c29iIwvsdDzzIrY/cr4j2iU2msxlvfPf7mX5zHa7uQW649a6vcsc3HgCjpd5Obmzw1rfcRInimwr43C2f5J77H+U7jCC54eSJk3z4wx8nM0IuQva8vfzJx27n8PGTUTF/98NHuOnTn9f/Z8ByR/mX9Y04F3fceS+33v6lCPdsNuMtv6f8X1jPr/nzsW1UVF5f3+Rd7/5AHdu+knPTo1/l7sOPASp4H33qBB/+wG3gLDPreM6JLT5x9F5OjDej0PHI1mn+8sQDyIkt9jlHYS23vPP9rJ1bx1VqYHjwy/ew/ckvRg+7ajrjz//wnRTTIuav+PQXv8Jd33hAvSV6XTY3t/j8+z7IOAAAfOYjf8lj9z3CGLW0n3r8GLe980MNwfZdf/ERnnzyeKQXRx49wjc++4Uo+OEcN910CxtrG0ysxtR/874H+Mr99yDeVbAoS/74He+hKEv9wMA37/waaw99U5Ve58asb2zw5+++RQV1q54mH7/lkzxy38OK5oHWY0f5qxs/HBX0Sw4+/9GPc/zESdxoglvMeeDwY9z26c/Xgjvw5Nvegzm7HuG698v38LlPfTkK68Ws4G3vvJnC0w8ROH3nXTx53wNRsF1bW+cdN34gKtQAbrr7K9x9+EicrMNPHudtN3204cXyto/dzmE2FW8Bdz98mJs+8blEeHX8n2/+i5p+WMcdf3Uvt372zkjvJrOCN3/sVqYr6u3jHHzly3dx+J77Yjm0jXPrvOctNzZ0Bh/80Kd58MFHI5wnjp/kCx+7nWkvp/LOWB/6yCc4etTzL6Xl4e0zfOYz6vm8jlqib3nHe9kI+TIE7vzqfdx+x53RKFW4ipse/yLF1pAOGtN+1x1f4d6vfiPqVM+eXecP/tONDYPZTZ9U/OysxZ6c8aRd55ZbbydYoCdGWL/5Vk49dSzC9M37HuYjH/hk7Ykl8Bc3foCNjU0EcL02xx96hLv+6qsKE4r//stN72cyKnEdVULe8eW7MPfc75UeOn/v/M83Kk71lvabbv2M0g+Ptw6fPMnbtu+HJ7cjf/e2Wz7G4SeORZnlngcf5YMf+4xOlQM2J7z/ib9iMh2DqLLgvrvv40t33KmkS0Tltzf9OR/+8Id5wxvewBve8Ab+x194Hd+KJp/+9Kfd0/8MXvWqV1GWJbfddhuvetWrEBE++clPcvr0aV7zmtfQbre57bbbLunhr33ta/mZn/kZfvqnfxqAqqr4mZ/5GX7lV36Fv/f3/l7jt7/zO7/DZz7zGdrtdvztcDhkaWmJX/mVX+HHfuzH4m+HwyE//0v/it+57y5+bWmJ96FWiQXU+r1oNPHDogEzs5qQYlpptvaJd13+3Ak4PYKfvJZyXLL1Rw+w9WsvYtTOGbUzRp2M9XbG67o5/6XfYsVozM2sqHhyXPLb44o/mpa0ZhWDsqJ3ZJ3BF46z+HPPZ7GdkXUydcHvZmoBnlT6GvsxbM3g9+6Hf3ODasp7ucbfhPv6OZJdnM7Fjcu633EC41+dgtuPw9/aD3/3cu27m+mz/HXUydi0alTcdrBdOWajgj+bVPQnFa+ZlXQeP8Xg3U/SL2BQweLPXkn/+QeglzPsZmy1DcNOiy0jjEcl00nJe0YVblrxmqqkMy7ov/2b9F/3fAadnMVOxkLfWwfCvMws/MXD8KxF+L5D9Vhzo7CMS7Wy/8n98B0H4BUH6t+EazeDXkstRhdo1jm2LWw62C4dw1HBeFpRTCp+d1Ty6qLihVVF773fpP89l9G/aplWR2EdtzK2Oxnjbs7rM8P/PC15yaxiUFj6lWVgHX3rmBjVmA9zwzAzTNsZP9vJ+N9aGc/BJ8mxjsmk5M5xyUcnFf+hKOnMKnqlZXDzN+l95wE+dfR+fv5VP4jpJmvXz5F2dl74SufYsrBpYehhHE8KJqOKfzWp+N1pyZ6ipGcd/bfeT/+nrkEOLDDqZLr32xmnOzm/2Mt5V270XAEL4lhAPc5GVon0ltMMoo8D/0/gA6iQO8C7ZDvHH09K9kwqfm5a0ptW9IuKfmFZeP8R2tsThmIZ/o8vYJRljNsZs07Gb1jhV2clzy4qupWl/d5vMnnlQSbPWuGzWcZ9nYz/qZ/T7mYMejkDgfa0ZDKpGE1KhuOKclbxJ09u8It3nqTzk88hzzOmnYx3tnJaueFni5JuGM9Tmyx85HFav3wD20YYPbTG8MF1xv/wGoaZ4TfyjN/p5yx0c7pd3b8DUyfNynezFu92VqcVjAqmk4qtccXWuGQ0qxjdt8b47JhvfP9l3G4y/mU/o93N6HdzBr2MQTcnHxdsTypGo5LhpGI6LflUYfn+mx4g/wfX0l0Z0G9l9KuKQWnJ3/wNtv6HaxhftsSoZbinlfEfujnTXk5mLb8zrvjOoqI/q+jNKhY/f5LF0yPMq69VS2g/r/FRL9OYzkvFQ5MKPnFUGfAfuzI5pzUOorLc9N5P8rM/9P36+1Gp1tjfuRf7/7ie7f09NjsZYxGG04pRWTG7+QE++LevYs+BRf52J6Pr56rfyxn0cxbbJuYc2TFO69RCOarHWI1LtgvL5nsfZfSCPYxuWGWcG2al5Q/XJ/zqhx7FvOb59Ds5/XZGv5+z0NV1GfUytsSwHc4bcA/w5mnFH08KOtOKwVTneDCrWPzMCRa2Z2Q/fjV0MrZ7GVsOhpOSUWEZfvJJplcvcNN1KxxoZfxQL6fXy+j1cvJuzlauNdxPAv8MuAnqM2qUiVs0sGTUDdlVVtdjZn3Yjo0eDFsCW5lhlAnD3LDdyhh3cn7KCH8EXIVa+CzqJfSXwHud4w8menYG05LBzNKblizPLIN3P4K5ehG+52CNl1P6N6vg/7wHXnMtXL2k65/SykELuUASUfBW0XGyfmGvzSy8/QH4jn3wnft10B96TKsW/NBlO+hf0c3Z7GRsBfpnHeNJyb3jindPS/7XWUV7WtGvLP3PnqDvHP0fvIxhS0thjduGoTE8MK7436cVraJkaVbxO3/2IHt/7jn0FrssdDIWezk9/9ybPv4ZXvMzP3ph2CalCnLpWZpZeM+jcMUCfJ+vklJYeMeD8NK9Cm9n7lz1cya5UfruUA8bp+t4E/Ao8P8CutaxNCsZTCsGRcXipGIhPPOjT6iV/0d9usc/ewietwJ/62BjPsedjO22YauTM3TCtn/O14D/L/COaUV3UrJYVPSKiv60YmFasbQ+Jf+DB+BXnw+rXe0PFO5zY/hPD8FvvljHEHikCJ/SeuetuRsWhoGPcepJ9FvADxQVPzEu6c8qBrOS3syyOClZfGyD7nseY/qvX8JmR+n6qGUYzSzjacXdRUXnC6d5XqtF+7tW6bcMfYGisAzvOMUkN3z5lXv5msn4n/oZ7XZGt+dpaLfFrxjh9cB3+7O5WFQszAoGM8tgVDKaVAxnFcOvnGU0mjD+gcs5nWX8h1bG7/Uy8l6OdDJG3Zx/KcJrgL8dzrkor7uEegZtj0pG04rRWPs9V1o2PvIYV754hdY1K7TbObNWxpHC8qfTkv/FWfJ3P8DgR66mf2CJfjfDBfpfWkaTirOTiv99VvHbXzhOvr9H/wWrivu6iotGHcOw3WKrpfjoEeAN1vGBScGXPvApvu+Hvp83j0peUVR8b1XR/cCjDF62n961K9hOzrhjGLaUB/0/ejmHWhmv9fhmILCIY2Fa0JtaRmOlecNJyai0TG66ny//8NU8tmeR13QzOt2MgRF6HtcubkxZ+P0H4H9+cX0uwt5pZXrGAk6alPDgOfjLp+CXX6zVU7pz9/RbiJHzns9xYdn86OMM9w0Yfvc+xi3DpJ3zkVbGA/2Mf9lt0elkLIrCtuDxczEq2BorzzIaVwwnFZOy4qHPneC5+7v0n79Cr5Nr+ctZxeShNYYPrDH+R9eynRl+M8/53/oZi4Ev6WYMZiWLM0t7XLI9qdieVoyKitHNDzD5gSv5ywNLnGxl/Gw/o9vN6fcyer0Wi23DYlUxCPMyKrUm/KRieHrI1p89yvBfvohRS/fJpJPxB+2MK7o5r+7l9DKj6+Zp0MLU7/FxyXBcMppaxrOSjb86y71kfM93rdBuZ/SNoVdUtGcl4z9+kOE/ex6TXouH8px3tDP+Yz+j1cvpdXMGLRPlu4XCYiZlk9eYlHB4Dd7/BPxagje69dpXk5KtScXWpGI4LRkfWWP4tbOUr76O3zQZv9nJONDL6fYyBt2MQa/FQi4sz/F5m5ubLC8v8+EPf5jBYD7b9zNvF21pP3jwIABf/vKX42dVVfHWt74VgEOHDl3yw1/96ldz0003ceTIEabTKX/6p39Knuf8wA/8wI7f/uqv/irveMc7eOtb38pb3/pW/s2/+TcAvOUtb+EHf/AHd/x+Ol5nhMZ/NGJD5q47XM3CZ12jmxK0TjREV8mwLh1UEzil1m1bfG1EUXem6K6RCTLVYjzRBXheXZK6CG57W2aeBuaS+LRcnBAQx51JDWvo43LvivSN03DEu7Tv4qKaGCz0vRFaRjNYukzgin3Yf3ylZv68vou7Zq9a87zGVUPd1CIessifxnG5d5Mya2NkAUxu1D0urENmmuO9bgkOb9YW0LQuu3Wa/OVUBS/eU7vFh2sm0MqeVmAPMDbcxxMX+RW0NiQiuLyFm9k6LCJ4THlfmZF1mmCt0KznIZZdJhUyKnEzzZQuPiv6amkZ7XCtdnXdVEe9Z4Yl0st57lVX1K5Tc26BF4RvHkZ0qy17+EJMlOuqIFlngfXxeH6vauy3w5QWmZbItEDGBUwKZFpiSo0fDbF7aX1159+MnTKGweU4jJHxFF5yAM455PRIXQWtg1JL0oTy6g5wRYXzblObwJLUWzm4mIXySgFmgG5ucDZNoAgjBwveLSvUypZRpTkSwmR3DTKdgnMaj+9hc07res5HulxSC/cm+MBNHUhGwVzpG2jgsgiv/ygXqFqSxO2HCXNUBbhBK2Y6/4LHZwJYhM/hqzmhHkXlQk6VZDWvkZ7bMd4LAjafwGc4g0GSTCoAllyvv+6que8EDNhpWcey+zFYp3vkaKaWdj0Sddb43Fy41mmacClaJMW7S+/rYc4WPmxCQXrW5pRZv6VuxKCu8eFqkrNE7emnmeP98/xejW6RfYNsBhfuuuRgPOaTCoyWsVuPM+ufIfWZCOWOgiolTqnMTXVmlHFtm6Zg1820vGHHIG2Dyw2unSFG6BBTOvjn6+sUcMC7DAZ3Z3WF9GdvTx/WZk1cFlrYPzO8S/ccXU6BeLqWEq30/sUObFX1s7fnKrSk9M/MJUpSgFjKtMpCsCY5AXdFB3d0XfO3OE1Oan3o/JUCbQffbeFXi5K+A+nk3ptLlK3wr+uf+6wLgyVhQ7IT36/2tJ53RIpOs+OHZFvnCTXYjTfqQF3j2rvFk1Fn9g6H6ZoBPH5On1VU8NQEnr1IGpbnRBPOFbmhQhqVHu4CvhMwuZDlQpb5eHYj5EYwC224ogP3r9c0Hw/b5tTX9Ux4hLDeKXxJGMA8nANg20h9Rv1vrYjGtE9DHG/q9u3AWobWcfXxM3B1FsPUYvLeqzvw5GmWnGPsVAkm8V4Qn+OgkYjO2mjFFKhD4UYz6CgF7fh9PfPPCXG1U3YpAuT/BJf4cAWdtlk3pyzr3zs0VK3n0PFOQRa7c3SUuN86HteUCz04PYuu50CE02kyIyyqrFz1D7ry2ivBOVacGhEA3GiGXcipCRnR0j71Xo4N2KiPeY3bPO3LcwaFiyVAdWiBowJG6lEY+eJ55JjGSIrAnq4mL4k+4tTvU1wWeNOAy/xvrXOwPsbt08TS4ZYtIyx7eBswxUc3XeMRpV3jXBMhxyn3Q7FTh/PhPhtoKF3P32c8LBEXB/zmj7JkbWRa0UbLmJKAF/MDhFCPOfd4To2xh1oxfMZ51/6xiFacnDuDMWxKAlhSw97OGEyLCFuc2sIqrm1pZvw10cz44ftIo33/Jkv/kXotr1hS4rgxa8oSCfMew9IcylDu7YEIfTQHhvWHKy339ox4vWfQLlpo/97v/V6cc/zH//gf42f/6B/9I26//XZEhO/7vu+75Ie/5jWv4VWvehW//uu/zqtf/Wruvfdefvd3f5der8fJkyf58R//ce65R91LFxcX2b9/f3ytrKwA6p6/W9m58fAsIzRmCebO5dy10cKHoQ4wwLT0ZzklBjWxjbUgAUTjOPY0uhOkbZCRr/8dOfpU6khfDkYz7+NLTWwb2Gm3wZ+npUqJLNm8Yz/ybeAvjsHhU03kNc+0oAfdGSHPNDlVPPFX78X97atxE9+B1WyplT/klfXJefxhOGthvwdYtitMv0/IMpzNMyRhzNcswJPjOoY9xol5rv0r5zRjfDtvJp6Lr4ubtEaGdROmQu9dRTgdlq3fws48I27rmOhw9qvK0bFW42JCPflphTx8Cj70DeTRk1BYLWdTWgaVYxwEIP/CQoGj5feKwyOUbWCpzYufc21zjeFp90Zjeud+vk9UoAgChutm2DIQYuLYJqAJ4Xy8vsxKzCxoMy0yqTCTCjOtyKYVAw/XfDI6B8xwSlg80LHM2laBWcnheUvIQ2P9zhOJvnU+EbQfW+FigpJtkozZkUClfHydXT1vCaZwNbxOhZEFl/CADlivMD6eXQAGOeLjjg2K3GdVvUYpfJfUEtTQuL9w0M4YUwucMQ6WZqm3AFsQ3kuTeQ1HohAqrMZed/MYgve9vhNlXuF7PXEKiaPsoqEskjrXaSxfyrjsBtb8Pelvt5IqGRD3sjNC4TR3wfUveDZTvGAe8GEfqllJhfO8bsKkVTDNMy73sxOyxgdZ42l1d6GmnsdxUbBe7iBrw4jHxTmuHFm29mg68BjPZ7RurpM6xDGGOqKKsX1Gxxayx0fZYyFHRnUx0fAc8FNUVIhRoX9GXQMeae6bCcSMy09H+2TeUtnPkV4Q2DNcpwXdVvTuWmR3of0M+OR6SeKrhDmUPS04k3CbAXentA/qnAWNQV48/o5c8LxCfqGjyvgw8GmpMKdELow/0ZdHWd5onfahEUqhjoO+fIA7XWGnlRfYQ9JVxxMWDjjHL2Rwzawky/EZ0pOEiP4BL73huU8P4LxAgX+/nMPZST23oC4Cvbz+TToXybqkX0OSiM4358+BSw+QCFyzBKetVpV4YkMlx73dWiscSr2ZGo+UyZJ/BXgFukdUYW/IcqGVSSzPyA17wScijQHxAJuFlrqbU7Q05igs53mui/hKAFILiAG/uBArvz2rK6gE12AH/dNaYYEDCzqXHl4RQS5fhMKyfG7IJMR2+7EHF/ltkph2F8qLEq9xk54bIyu6GTtGFaiTeOZ1rCF7/A5+bW5axN/TFph0vIt1woZO8TXah1MkQ/M4pfMZDBiiMe1OoFwF1oY1fanqRHRR2YEmoRt4PubZz7sOUGXWhgNbWpiBW+o21iHg0pkQw3wa65gIoMl0IJmhM7PNZLUEFOPU4jpf6jF0nJ6T8N2K5yiC0joV1lMhPeXjG8pphz1b4AZ1uTdnNMlrP8WR1Cx1vV4eTs8fA8yynKqsI6njlplYXFuTJG87bzwML+bekxikRJBeDoUqVoZx0kIS6SDTam6cNK7dWXAnZ7gDqqxzjviQNSP0/fvAa+7AqWFf+S+yBehWKlA7PwYHuGkZ88WAegUthD0wB1eAaYfBMuRtOZR7F3lXC+xBoVb5mHbPA8r6DOmojNmROvmrDfg/KPwumdl7Zu2ihfaf//mf57LLLqOqqqi5HI/HOOc4dOgQr33tay/54SLC6173Ot73vvdx22238Xu/93tcd50e5oMHD3LrrbfuSHwX2nd8x3fw6U9/+oJZ5IfsLHeTanriFw3K5a89owQdlEmK+TEk8gNIUs80vAQf10dkXIygiR5m3h4yv7jpiofryHrr0/xOTAd/kS21NgfOMBP4xqnm775+sn4vjUvjvcs0c+iWqcukgMBlHTg+xXmhOsT1WX8YglBkLZyxjr1OBSI5ZzXJE2iW5kh4acS1s7+nEsvxrRqLBCI+nMGDm/DyPbU5LdRlz0SvlzBvwfoctXcexMsFNvExq70WblRntgxITHBMnSOrLINKkQAhocVjZ+DGp5B7ZshfPAmPnwFrEQd965g2BCHte+Kg44m5ONSKDUhIILiDabkwnOEXzez4ShT24Wu1Aw7BmiwmogMitzVxGo8mhcWUVgX3SQVTi0xKdXOdVZipulB1Z2p2Cox+egRKi1qf/NmICXmGIItt5PolOHIKfN1XSs0gH2tUOwdTcB1NnKcafalhTXB2FIzCOW/lmLmEy4Vz5J5iBK8YGRew2K2J6WJHM0t5wtlxaplKFXIpo3DRLbEGNO6vKhwa096FJqctNaz1Z/q2CxSZ0UR0vjcHuFGhCdJyE/HWszPY54XA70f/r6it7WU3p9qyDX7yopPRzS96aq2YzmChWXpnhuLvbUKYhVolNoGR0fHQM5SzOhFdzE/pmfqDrazW+UmNTjIugvAJjczqsUTOaoZsjRp10/euV6z3BgqiqQV3a9Rit6NGO0oj9vp5D/tSjMc1/UxLPHnEEs69MhIOsRYyIUMayR3T6XXsLHeakrz0GkHOjFq4ffgVvRwzaEEvR9qmZtip6V54VgrXPlCB13irjhCzpLOnBecmCRcYOvFvpp4RbZR8O8+AL9QaUkpy/yBLEtE5tUQHS/uccrzBYIauMsOi0aoAW5khCLKu24I9QnVsS5VH1lH5RHSHcVzrJ8pMKkxHopU9D/1eCowRzyfvBVjJYTvUavevCRpzHGCbU+7OPzbMerq+gGaQ92sZrO0YUYXAgQyObMKjI3jOKtHF0L+qrE5EF0q9VahXxlHgO/xcZD4BXWb0lQfa/4JVOFlqkr201NRmpUqYCE9z/eaFdjP3laBM/zYoH2Nqy5n17+mD3ZxGWhyFb+dYeqLi1GX76n2e1S8yg7liDytPlAy9csr6OO+QjK6yrk4S6elfzCAfPM+cg8kE6avIk6HKpKEX/KzRqRgyV6c9rK3o2Bpr7d+UWU4ZykA4hWnofBK6YaGKO6RW7qTWSgO5H8NspQ3bKgvE8l+uXqegsB3heQZbw7gPfSbbE2wHCMlvg+LEj30isrN05dxZqf8XyHJaVisUgc55PBaAG1fQz+LPgUThw86qGpnoZjk3qvdfanGOfJujkdzMKy3cuMJVwN5eo4TiukHDtM6Db9LkbWmzXWIS5JAk0QFu5nC5Cu3rokZLFxWotZU94mNJhOmBVsQZoAI/YbpcrYSxwdI+B789vg37utHDzKF4cWhg0Vu+5nEMJrxvehNkOfS2C69wcXHd3LTEedcUJ8IptLRo6DMsVTRE7SbzBOn+yhVNRpfE56eJLtOkkKyPkb26QF1RPsTVC/TM+Ly/RrtooX1hYYE//MM/5Cd+4ifYs2cPxhj27t3LT/zET/DmN795Rxb4/7tbu7vYYFrgPEzLvJo5XNuZ+skCMrMas9m4T9/3SLKs+uu6wKpf1JjRsptjKot88D7kyOkms7Kblm5YaS3oOPg5CnQpDIxQC7+pIPydcyENLz9Uf4f+bp4/AEXeHSNMgjY9bOKVLq4DnNius01WwU0wJCeB014Y2uMnwWwOMSvtBv8RMz0G4h/+v24RjoxqpBGs7nedhat6sLfvCzFLDYvXrl2oDNp8a7iPJ0hvj8Bp343ttNRlx9+TLt8IJcK9yHh7RPfAKYXPgFiQ+05Hbcaic5FntRAtzhOn8Vt4oi6bM+jpOjx28mS9NSKlvnDbrVZ7uHWPaCmqyIi3clxISOxqgryNurSbUMKu8DGjMY7L/z+zmKIiKywLpW0ouEDnZQReSKZ2CfQhKTJoI1cvITOQY1ue4FvaVl35dLKcd5tSi9K2CJ05uM73Wm2F7Oq1kD0GerUSW9vaBFnI4/zRUoojYxUAus5RRG8LolfCM24u6QtUEea5lpTRbzAwCWEM164IsyxT85bvFwdMlABalDlVC7UwFHiV0dKGDi90OqcM96BFNfOufqly6ekEdg9HysjEz0CDTRNr4BQYirBtHdto/OsDTxzXeHDxZemMMOu0sIX15d6cL/eGWrKAq1pSG/wgljrMEuHzvC212PlDYkQwqz1kDa3h6vH26tqQ43uJVnUb547aVX7udQbYJ3XJrchMiaigPPQTZJNasc5fbYXk6qK+5b8M1qnwLNhZUgrYsT/mm4ggmUFaGaatHkqSNZkuULoXlGbpVj+FWtqD5TTQQOPnj319vbG0NbOUmih8CSotrzq3DinhfbqWEq7UMr2Yw/a0fua2q636c5MTFD0NHCK6f3pG2PR0NWYRvnIV+9Q0ghXOySMOrkE9csy0wrTymgxDoqQWDj927Olh2w0uBJY7cC5wuGjYGDTrtMtcHzvBBlRonyb/OwFyqd3jU2X6s/bAY0M4cg6uHdSExdPewgiFeMGdWmj/KvA81Nqdo/NqjGjm+Ezd48lEccM1ffjGetMzY6tQmNO5SPZJSu/nYQzXAfgEqRIFxPADJ4JbbsNm6Ul0LXhb59h37DTrV7a8pZBY8Sa6/V7VpfPkWZxzTLxQoNZ2y9Q6jHPNcox+uUxQCAbBYc3BYisajLporfbgGj9LYElpGyQW24Q+hGmZ5HlTIQ9MrdNKLmOLDLoEL6Mwr+KlvABrW2C02FV6tz2NxovA66UC5Sbe0g6cfPI44lTZPXEOtktcvx0Vn0T4FJgh6jUU1i6le/URkBrWXkarilVBAWqlC8DYqqJtV2XWLudLRK3t5zx+Oh/9S2lboph258a4nuDyLHGpFsbU7uMN3iTBQfW4EhTYBVxSuSg8viq1pByK/5fSfk3NxwZFapg3AaTdwowdS6JrZb1nifXrqAa3hIaH+XQWTo1x+9txYYJ7/JoIA5Psw/QalEl+gEGAzzuGQTFjmuxMh8PNLLTrTO1jUff4hv3Cv4LBTWUImvKPAa7uwlPrOxUwziUKM107GY68gkdoI4z8ebBSe7mlPO23ul200A6wsrLCG97wBt7znvfwiU98gve85z284Q1vYHV19Vs1vmfcFleuZMSc0C7Nhd3RonQq0G3V/mEzq8lvROYOkdBBCB7hgcldQ2ODw+ETQE5sIhWY+y288yg8cjJZ6cCZJ8s+9DG08wOPbkC7QrBrE+U0ateQYIW+/iD8/BVwQw7/7Cq4/tAOq/xuxM6J0DFQeqLh/KFwYnBXLMBT6spsE+2yLUN8u+NMBQdwtXZsfYQsq1WsEdPelJz1es0CPLZRHzRPBLnrFHzXvsSc5g9pgPUik/aFlp7v6H4DrBgh1ElweYabFtGDAGoiNQWMhdx574oQq3a9VluQygP/gr1RoO84mjHtXrkxdZD7vSIAk1JdaIHPfe3eesANpuXCLc2OHzWTou7xpwLDAthBjgvB4wmcMxxLwXugsqrYmqkAL5NSBfmZj9e3ukarpWWcwKcdKnzdOIkeYW5OtWRHywsNz9uLHFZljVSOgU2YjUIF/ECstmU+Xlgaior0XPZ8yISrbDyPU6eMZLSmOocZTWC5dhUUBFk06i7n1M2vijC5ZvzcLs1ZdZN0IWQEv3c8LqjfhomvoKNe7sYTivlljoxZgBmNZ56GurVxPEoA7cBE5QwCG6JMzt8DHpS6pIpFCaVdaFEawU48pKmLoKt7P2+bx3FBYJsR8wWUaMbZCTBBVFB38PkvfY0hjgma2HAoMO7llFPXUJZbiN4PB/2ZD+fYiLp0ZlwE/gza+QTvGsAstvSjjUncG93tIUcHStSdx4fBamcTop7yeafQsxb4igbDMfB4f1rH16U0S4oKck3qM6u71OlM4Bqzk9GNfVwk+UjxfnrPgFpoj3sIOAscgGiVVSsk0YuAgReQQ2my2IO/hL0VOdS/RksHHa6LmXplhQfO0JKnuzDvuyr8RLCZoefj2q3UdcvdFT2sj2sPIWHOwRMOrhIfp1xAlrfUsgwqmCbj/fRn77o4uMzceIXahXfs53DsBYzgtbDD+2AnfQ+tSy3wOD8ZTpQBdvMM8HU9uG9dFQbXLuvEeRpcGR9i40u9BUt7iGd/OXU3WaZx7Xkm5LnBpM958So8cFq1oaFO9MYUFlvNwYf3pglRY8qSzxZRelGHtdSKNgC33MFtlskhVtzNxpjuuGDjMnUJFqMlEY3nnwwCVywiwyn7tyZseeNM4A/GlSMrXR3TntAaXHLmR6Uq9xc6kUh3RBibesyhKkvqVdOYisAz+nUMn1cd6pK1HomW+BwYG8CgS7izoc8IyhoDbVQp4xY7tQeNpwsuWLc94hsBC1ZhvPuvvg5OE+VtOdR1b7Fb468g2AbFhKgiaX5N9acSbqm3QjunUyq9hCabjQM3qny5t/nJCrCl/JT/cq8v+5YK6PPIPWpo/f/BGLA2w60mZU09I7IuWsItDCFdO4P+mXeNB1TLNfIn1DMLDnCzEvrKu50kePw2xYfaCJXwQ4C0c5jOWECNJ1uQ8DFud0u7A7YKbAnuQD+pXa7hQzMjmh0/PGN+LAh1yIX/rpezMCtV/Er54dJi81ac8nXS8GdpxsuHeYo4JHmJwFVLmqNgUiUCe7qOdbk3thyyrOWVB6JlcANOtB626G37bWgXlGR+93d/lze+8Y2Nz+644w6+8IUvfEsH9TfRzp54gBFzdTDnr3EH7cIdBMuPdSq0ezf8iPj8LZk0NdIAZwysEKIV/T55+FQkTgDcdTyJzSaR+vxrVHhmojFgf700AVQHmlifQ8KhbgYvvAz+yXfA8w/p563wyuo4ofD48N5orV51jxcQgwu/unIR99R2Q2gPVgfrD8Vp5zjgEZuxDlmrMKsdRGSuRvucpV1Ea8MenaqgFtyQvrmmSOw5Kw2GIbrH56auZX6RLcGrDdeb/QJFIJQLYGelp+WuwZWPnGMluMs7byF3IAt9dR1tAz97JXLlvugG13cwTT0vrCLL0jnajoAqkBHQ0/n6xb//o3Na4mTBLtAasIlE6+NBlPFG/FZstbDT2iU6CJNj0Dj1yiGli3H7Uljk0TPwofswj56CysfsV46udYzntjlO4Vvwn4t/kIwrWDYRmfPcATx6DqnUzb5nqeP/Z6XX7Gof2/g4sXntdaLRDq1vjCYVKUI0tItx4xKkQYD1Chm0aldDEWh3kIlS6RaaMDC4wwk1Ek/lVFdZzaI+KnyG6wLGBW5SNZIsufR+gEmFyzUGrqG1ljr21v8biR+iyXvKjvq5N/uz2HbeECxPO1gV4UqEgwL3I1iESvCMt6E0UA5nO4F7WqqVMDgpcQxCmk+eM0PjNaeoB0YQ2n/kZ/4+YwcTvz4zYDxoURVWdXfoGXQ4RmXJLIOrJNXhSZ1w8ULDDC3lLDzeNT5e1ewzqlRyIIUlnziOLPW8pT24Bvr3JvFaoRZua0t7zXQGy4cJNcqHdXlSqBl75axNTAbnZzeOMyzDlDpsM3zdOA9PNwVhXMmUhGuwtKd7aopaxPYl9xgPnwGfBFTUnfqs90+Lmhbfy6xMsnPN4bX0+nQtFVAjsAKDtgok8LSW6Hkms6Z/6pa5EQRKVElhL+/jTpfYoqLym/JEpXjhShS3mSGYBU1Cl5HkVvDjff0v/sOLAE7qvRnuFTy9A9bGOqfDwiMyac5b8n9qpUqvoU572qz3dnO7McBhDY+vNWojWyOUmVAZE8u8VahCIAjt4uciF3WRzzO1tkvq3vq8FVUKnBrXm257CktJPoIdXhmNGWu8wv4cABsidQI6f2OMp17uwnatmHfBUntsxvErVujkmec5iHMSY9tbOVy+zMuOTxl567NqLSwT68isJff400S6L3WNdutgfapl1zIT3Zk7Iuoeb3ScwcM9eGDFl+xcV0k+sD1QZFJP6dB5Rd9oFpWHsR8RjXP3z0aETIQSgT0LuLMu8gjOK2RDMmKH0uVFD+/f/6kfQzzdHwOsgxt0PY6s3Y+DF0shEoX2GpYaN0ea53luTEZrnFjaPb8Z8dXU1ud+XgEW2jwOWe1oxYJUYI0u4iH0YRcB0IFdr2BPr5bp/aQOjbCY0mzYIXzGUUVaIZCL5hCa4xUYlVifyGSChmCFuUrFndRNPu6VATCdkQELODZCLHsAqXLRYza1TLuTQ9zeDDLjE9HpYLdEwzcW5vkw6nEgKY71/3RbtEuY+pC+6OE5A7I8yhobaO6wNKY95Ws94M1a7QFv9XK17Dy5WQPoaVFDSb6hxqNQGadnRL3bqPdmytZ8O9oFpb+PfexjfOxjH2t89lu/9Vv81m/91rd0UH9TLXWP39U9g10+DEjA1wHG19SmvYt7vGj/zUR0fjMFd6JMkbhcf0BvCSv7kkN19vPdEvFsz+qYG9jJPVxik0zU5b+T6TUV3H38Im1fficI7+ebL6CVCeMoUNfjcpd14MkhzmrMlnVgK1sfduCkcxzwB8NsTzQEbqGtB87UCSlqFXxgElDE2QOeSg7bnafhZQdVyE8TzwWif4lW9gBvMPRjPJLzQtAicA6wLXDDonFog3Z57HwW1oRjF5xmvDUG2d9Grtzjn6ZIfmB9DFbE+TpfY6eJ0WpmpUKWA0FN9oXxqO8izGiplT0SB4E9ImygvIXDYduZZo8n8GWKQEdOY98kuAl732Q5cgbe/RRy7wxu9DH7XmmxYL0rXAIKTpXsbecQmxIfi3RbNUI+NIC+IH7dM2s1FtEBswrXCVOtltjF6M63C+PttdaCZpkvclRo93M8xtFPhFApK18PuNs8CCvtKLm0nLrrO4gCbCrQALhZKANT1iVTxj6UYFTo5wnmdw0mo4LMJwBkjkHxxHwHg4YycrMsi24AgQi7scV1WjUzKsJJgcv8JN0gam23QkwiZYFy1VCOC90F89Qq1U7MtxS3pQrKpEpGJagrLVojXgV44asI/5eFeyo9C1O0XOK032LmY9pTunuysFS5xkCmWeNjPPvF4E9hR1yjnhdBlvvIWauM9toIuoZRO2Pdbzh1j/eCu+yMZ5+gtGkf1MxGg4kSH2yrSf+UbrhaoTUFyQ0dz5ghdVwdUi/HiJ3u8QGci2277Smow8Kg3gJn/P8rHq4AS4hvFz9WVvpwtmjunzDoaUUsvBsedj6m+ukGnljt4mfBe62w57dEmxraHUwmCkvfCOtGNNbbeIvLoE21R7DHt72S2nKkclzjXJ0pflph2i2/H4OAkTzvInB3xPUR54f/BfbmsOFFld2Sbe3CR+y2xl2aCiHnn+H8AYqCeybw1Ll6bDce00o0nmaXRihFrW6Vq4X2+9GhPRsvsOPPZ6Zx7S0jdebITDS57PMW4b6N2sixUcDSLoLXLjzS+fiYU8ATwH3JGYrx1IBbynHrdeaIIIxyZJ3HL+/T93jCGDUMBGt77SI/4LrHN9SDLtxroagcy5VP5OofJlCHwwTBfatURVNioe0K3rtTcfIQ9ewM8Mnce0mstQ39TQ4yDEK7KpuHzrEEyGgCS/W2MXFeFa8FgTkX7+2ztwPDcRSyVB+nOMt6orPlNAQwuh2ThNlMpjgfflYn1pS4HmlSzfmWKj7jeFs5+cyPzSW0NNDlSYHrZ7t3GBk/EuUUsCeHjVFNv+bd4m3ygIb7OLi1sSbZ84NU7zVhzWjMd0h0nG7fgC8jjU/WlZbBlMHSXp9RW6hy3wFrCP2w9iTKgDnPrug23wYzVJqziJa41O5dPYeexqZeBu7EFHdwoVZ0eWF9O/DMczDVwrU0UXR4tXUf2EmiUHLgCnD9zHOgyqcOTE1Dd8PVO7x1U2b3qhV4cpJo1J1n4PV/cQ7ZmsFKFs9PJjA2iXcVcQn+2xDa//+9DdlpaU+1MfHTlPiFL0Km8UkJM4d0agE6patdlLEEv/YinMi0LEwU2DODPGsv8qqD2v1PHYJr9jXdu6HJ9I6KOqNyAxOnWPfSmgShvWPqsj6h/m2sj5xBO9+ZjZPmtWOEmc/KGF1iRODgAFuBPTOOMTDOoZ/5Q3/S+rhH55D1GdlyHq29Jjw0cNo7XFsMXLcMR8Y6d6dHanl/2d464VzDPf7iyrztmCt2EWz9P6uIMugtwZZlrQn09zqnWeC7Xu3cyAp7tkIWBTnrywkG7Z4XgicJAg5JOEaksfEg05lmcm4sjDSvFwNfCqNH7Mv+/bkgV2UZlqqBnHCOqdOyaALepc//4qvH9WpQt777z8TvBs4xioSgpnFDHK0ASpinzTIy2KJcP3LNQXhsiDhYtq4O055ZVTThGQDROp3ze3YeqYsIA4Eiy6JLdem/73mXgtRV33Saiiw6Ha3HiroUTlLXwDnlhCu03F9dLzSpGxrqU89sHIdr3OxwVQlGXUx7HgfME/NA4Ov/vcVMMl+XssYvbmpxi15o98TnGOppAfAihLsTvKYJ6QTba1GOrOoA5q3sF6Ja855EAcDhLPq4WRFvjVPrfoHWcf63wCcF/j8I91fCFMcUmHRazJyN4wu090RhcSaLezzGVFNb3J+uRYtGQuiDq7dZ7iHb3j1+u4LlAUsirEMsARYS8pwvnh0Co+2t0CnzIQILuYZIQUzcpO/9Nc/oo7H/cWrnmIgJuv67nYMaxouYC3bSgT5KXyPPiiahO0DAK15IMPX8x0RWe3qwPm0ytwGIqYVWvvOB6WAudtTzDBvUdb63Z2qJztidpnqgGzjDw+ZEWDTCpqmzW0dm9cpV7Iky5kt70jq1sgOZAzOdYTpZtLQ39uJFrscOzjRVZiwHF16nuKk3l119jo+Y543C+w6KCxt0zf+okUHeCNyTJLAFuPukF/C90G52L/X2Mg9/8DgIFR5yI+oan9JxA9ywDPd5F3nnfNBuZ/d5mFPw7GDqgfuAd/jv/xcDD1InogseMm45x40ntdBnHW5SwMaI+y4b0PX7PGgDo5Xde+VwxYBDa0PGE00s6UqHsxrTvhCttERvO4E6phZgo4Tl2k0dEVoGpqa2RockdGHtLnhN9jWZIDM/LvCCNrRxMJxqMmZIeMHk6t/nHmezKLjTw0gLnPc0SUugjp0vXWudL5fpWMRpacHNsXouxoMWsnLrws0rIOdxWGNroxspt+Uu2eM9XR4WFzCKJTgjdiyw2tVKCbhm6cHAzET6779Lwt7c5gi3R8uaWj/QmVH4+rscz9RtPa5X8j1tQ176sMAAo3NgS1xL794kUQybZr8BH5sU9HYGhSoCBs4nJI4g1Vb2+bh2d3yE299P5lFf25l67s3zJY1r4PlJFEoCkw6Uk6LBNjC22K4K9BPU43VvMk/RayB9hmqPa+VflCWAq/rw5Hq9VjGTrfcAdiBrFbLkpUgRlhDGfo9UfsBplMS3o/13K7TvPfSCKLTD+ZHYrs1bLLUgYqnMtLe0h+MTNkZLJCbXsmgChyoTVhLNaxDczUsOIpfnGkQVN4lLagSGl4NxYmnfTUv+DJu0MyXkvZAhOLG093Lo5juE3N3mriPClqHOuJqh9RkzA5d3cU8N1dpQ1eVvnIfttINDUSByyHK/toilrm3pYQuYxgDPGsDja/qbr5xVYt5rNRPPBff41jObrIgISJhO/90BgU0HrpvhyiSmPcHXU2DJu9qAq+duc4pcuwolGpsahFSnQv7YE++grcapHGcSxlbOTWExRwTe/pFPzGkSLx6+efd/QZH7XtEamA5wfcFNKj+UmvqNSWrHB08C55CDK7quIWb/hXtVeHch6UwTuVlvYdeSb8k8TUpk0PGI3R+B63vw2AauqOg6R+Un3RUWl/kkdKgAHZQAUcssCZzJWi4Dk8xQ+oQ8wXrY9bAJTuPWV71uOGpv0MR0U7XCtF2UtxOFiyfa1qllL7xS4X3sr1P/edRE0LxWlSqJRNR90S/YDnyWMmVoiZJhW030aZduWmEzHx/m1/o4wgFR4eMGgeOihNumDHe/TTWslGdpcPRzCzvfUtxGcn1kTZHmY2fUGhdeCBXCrX48/fd+lInA51DryRSYtg1Ta6MgEATktcJhMhPXPc3UHZWCF9NSzbyprRWyp4U5NdKpPmthacCKwGlJ4tilrtWeyqZBuD1Iyt/UbvJRodzrwHYdSxv3buUdeHND169bIfUUp9fglQE798nFYsXzMVsDmtnjISn3Fu4TiZ5TddIjYG9S9g2I1g3QhBKtJIAhXatLQeW7ARroeh8V2qdPb4muaUCKI4UlI6x7aTOWQxOoLutRHV3XUA3reMw5ngNRCMuGBaZrotAuc89769s/+PSgSTq4uetyV0uhAYwtdFLX/zkYd5miiDf8NZTxdv4+lxmdkDQ3zssvaw7wlZep50xu1EsnU8EuLfWWxrOHuchF+amsZWqhPXjMicCzV1VCfWq7Lr0V8j+k87iLR4akL//TjyffOxE+JdRKTPEeM4tt3DkvHHn3YJ4awp4B652cduDxxNTZ4/2+NwLSyVlf7jM4PqwFOqsx7Z3KYUrrPdVsFBgEoqLfbM+QhU6kzYLGkQ89jkHUs6x3IVgDDTTpGosX/Lw10yl9n+DIHcioQBbbMRwsTSoZlW+ZWlFHIlrHfL0gJKHThG91Qjpxmrx20fMQH/3AbeB81RjncJOJ8qLUSjAgKiZKmpb2eT1bQxmBTojxJZvLiBg9PQbctNCyzulkpR3Pe90IKrQDDJNkdAG5p27x4bPwGxz2TAVLLRwhsZ8mEXVCI+Z7/hrsV0H5iacVtHPyouGBr6+iwnnjwobURsuIj8M1zF8U3AXp58hE6csKjpGreT41QtfhDqmy1Z3ahgPtugSalws2ENpZE7Zo7ZdkDf37QGMBpnk7hs5FlqGwOKO0YRPFGV2P01JPhaZRlqaC0e9btbQvwPGiGWqbEFEB2Johi/04zp5oLpOowPTPrbfYt150/+9WaN9afyq6x++6YcIP5zFc2gbArERmFmnn9QZDIrHtUicDciiTa4zQ9W7ZEZF7LazcsB/unas5mmrnwnUTjWkPxHkesfw1mmSingO9XIXdrq/J2852WF/mEUh43xV1f8HssoGvWsYeG3lrQ1Kzs3JMK8em05h2AczaFFnu1rHVAWHOa/Oj8C5w7RKcKLV0z91rWps9WFXm67LvQsAvao48gssI7kQ1wtsLHBNwnRw78YjNpqVO1H2845GABKstIKeHyMEOkgPnxlEYF+cYWJjZusRF0AIUQM+jBcHBbIIMFK6/8/KX7Fysi4GPRBfiYQwLvAeNb3YCrg0ulD4MzQvfHQ93tBI4kJYm7JA9aMz+FfuiUmKAWuiJ4Gk4gKDZ1/GfRWTZV820ETSmb7mHLHWQJ7bInKsVABVa5sQr0BbDRCSCQli7BrFAidrMZEwK65kWZZi8o57+buSQXjee+XgWBiBrKrR3lUWJBDtV4uwQ2mdeQL/vOLzra3D/cf3ffx+F/nq6vdCucaEk41f4kthoqT8DZb4thoomAWRaYHt5FCQRdY8/KEoAF0R4FurGGgTiCiiX21RjSxkGkFrZk5wOje3inHoTzWnoOXwavrKlv7nxGNVjZ6hEcPgybgI/6vuYfPd3gv+sBGbOMekbpjOFrHLOJ7pybFtHnmVeESgJGpHoQHVRLTVLgMa0A2YlR9Zn+vXmEFYNS2iotDIt6h5ojWkku27Es8d1q5kaEdT9HmCpDdtV/C62otLzZIwmEBa1QjViJf37NHt8SjouZQpklxewI57eocqIPemzTJg+jzuDMni1DWdnzb0TOprZ2hqeDvyZ4PHdGG8Rn0G+9Jbo85RVTc5S6nEVulnMRGOhTc2kWhHsFT3suSmurJg4x0kL14lmCjcCMirIelqjPd/leX/3B19+8bDN8y2Cln0759UpowpCrfF04cPPk703fw37phH6Byq0Zz57fC4qtL/gkCayfWkLfvlZ8ILLIPel3nKjWePdzlJv30lTaA8W9zzNv5O+cgM3rMD9m5qErk2TGW/A2dwvkc4la/ljyfdO4AfDWnp4rYBd6eAqLwwFoe/xbbhmmaGI93oSyKizx+ei9NQL8OeetcLS0ZH2a1VAn1qf88bVNDQKCoGegiZsXMzjXnSi3mETqc/6EA3Zi7DuXOpd11q80J6yG2MHy9NCEUq/GYInjZv1lRthKuD6bWiDW9NksZF9CXlhrGPoHH0Lxjle9sqXxjJ3y9ZhJha32MGhnkMCka8sTU3L5ldWhB35ilSoBWMVf4Ys5GFMOAfTEjc4j1EsbpgEfwTeEuDmB5R2pbQM3+9cuTccWl7OglvtegW54o2RqMdq4MPS45zimt2useJFaaO7ugPsFGhnaokGVk3Nt0a3eGnuh/jqtTAFUGmIxFoEw8+frSsuRiXFpMQNwR0YxDh9668jIywm8oTZBU79aT3vQfky7bSws8BE+WUrK1wrw6FJ8lYi30OtkEhesc0L7OH9akdxyLG0hLQqkGMFhzMjZKX2eG5lut8DACkJ2537+ZtvF5WT5+1vf/tFffaLv/iLf/0R/Q212WTrotyG9B/Z+aWI1qydWChK8Nm6Ze6WjhcUQjsD7DWaYZbMIpVBMlfHOr1wD3z8OJwdw4G+Dxh1uplS5tcCC+2dD7xUrusCTS6yL9nlfUc0uYwVmwjZ3rXsqjb23pNqbXDeRd6qtf2kg74X4AQw54bIi/YEuldrcYN0lQrs4f1iW02kH3wMDrXgsgX1q0vrsgelyV9DwTHvXRkQxJIRDjug09JktqXFZVmM2cc5Rs41LNExjmtjiqy2kb0tH09Wx4R3nRqaFCv6cXtC2odYYko2LdJvIQjXXXFoJ4G5iCYimhWdGsllaEWA/cApvHtgTky2py8dwxC4OnExiGNbn6hy6rp9yFV7a0pplWCn2eODy5w4T5ATSzvDKVy3WAulQalw/V54dJPBdSvMAjEpwfVVAB0h6l0TmIxAACXIYDVyN/6cV3nGqFLGZ+w0IWC8z4FslrDqrf74BEkFqviaTRHnaOOT3sQtkDAKqXIu5LF46CS866j++L6n4JcEXnSZ/iYRvFwCI7mJSfJSDmq38yn+Tws098KoFtod4LYL3OWahC8I5aeBQ6E/EV7kXUa/T6T+XadNuTWJNNtAIqyfh2xZ5xMwuST5poOv1261DqjuPUn1wkMq/KDE/4WiSfH2XXU5Pz4u+RDwuQp+QIAOyMxGgdjhOAq0K8hbWdzTYY8Hi/tF48/EqyIK7iKYPT2NK5+VmPUh8qJlLhfhKZoJ6MKc1eOrhdvg1kdgpiRxVRRUYbs9izfFc1ra6Epv0PUdOs1FMb8KMW7e/98gbxc5BYEURoHCfxZyuaQMyynUPV4g5icxAb4oOIuWfZuhISG5aW6biVW6G36bDpyLjPneDcgUL/baKrQbgfYulujkmQ0vJGpmeskIZ0ydRdh5hGIHHeySwZ4ccvTyJfaJY8l5xZFzZLMZpmPUVX6epgtcd80VFw9fqowI71dy2PIcybhUWBN46nmQxsfz1yAgzZezxYiv0pGci0zghsvhxZcTtBGunVHkhiIzVNIU2u9CS70toLgsxrOL/9/g49k9bxHfAy9agvc9AVd2YXWuVN+818HcdKVrKMBLgN8G/j3wWhGuF+qqKX5tXdfXDd+cwf4cV5RwbJPylXspjNDzAw/Z4/XxiXu8CNtXtLnm3mO48hDWGKigNI5eSOKaxfSVes4SK6aMJshSMJErXG0RRuKr9qDeZY3ScWE60iWP/EttcMo6aq1NjYOFg/72FHrqHRpDg0J/xm8Ejxt7HkGICCz2cOsF7NfSdjbwMp6fHQss+mddcfkhZj6nxIHRVOe414rnCCFa2UP46a6hPskRCPReADIwoxKh5qlSemq3HXQ1qVnw8HIez+WiCfZMupcEeMwHNh1HafcviiZyTr1moanAdg53doTroecmKoaEbYQFQ11HfZdXtKxL4qkEmExpt5mV0G1FhZCrgHaulmiR6IHR0D9Q92WE2q28nSGTEj77CIeev49jzzoYkXsMAbVN7wlObOOWwXYVNhu9juoa9Ofbl2HNwivlz4qFtioQPP/oAFdVuG4HR5I5Plmehus/SRM5TxZ5A1cvaFz7NexQtohzMJwgiyYqFwailvYw4Hmam3Du37J2UUL7O97xjvg+EM30s9D+WxLaQZmW1D1+fvPs+AKaxL3lhfZJhXTMroiigyLNsFhr+IyNuUApmFyQUmpX+V4Oz1mAe9fhh/qeifVcWMCeIUFOL2Femif5mU7JM2q7EfYeYDNhYoSuqRMzIAJXLOK2wW3NqFa6MQ7GOThu4WAgSIBsTci8QiRYsiK80bpOctD89wuih+3li/XvUvd4nzX+r9MCa1LXUNbP94uW6qBllNhMK5x3QwyHd+bQeqd4Lbp1SFkhQ5A9PS3hsh5Senui5BwjvMLG1Ihj5hwt37GUlQqMi+2aQD1DhY4Jr+R2BA4YOKIjx+aCszZ6EAT4CqeZX02ylgByZowcyhGfvEeSm7oONp1TQubHXODInMN4oSAqN0YF0jd+XBIHKtcN4GvH6I2mFL2ufj4B55OXbKCZ4yOM4hkVXIzrSjWzOrCMqV+KgpBAUNdBABnPVEkiCV8vorVzh9af/eBFEAhaoDcawwjUhN0CXzvRXIy7jmsFh0onNfJRzpOsGdDKKahdwiSVKMKw5t5kwLgDdjuJfwNcUeJ6TeuvE+Eg6nXhLLwY+BPfT7B8V4OM6mhBiWrgTegwid/bIVilCov0/Qv2wwM6DxaovvOgCuziazqLutWeEPi3AldnwlUG/hghs/C9GTEfiPV76knn8UsniwxAYMAu3fGm3ncBARgjmHaG9FEX+U2LrPZYEDjlGRYV1iW6yKdek0Fobwi3BPSWMGYLGRz12eO9Ek8cKui2iRtxAEznBPbwPsS0hy7PSwMvPAO7XkNMe/rMs6gwFpkor2yLOCbMYzfTD8+OaxoXOprZmIhoB8G9hCbi42F3s0gvd9SLIZfaEp0+z28SVaS4qDRJf7IkwpYXKK0XLp34vA+HVnEnLMcvh2udA1dXLjAjh2kb8siMP0M4Uy48hW+lWwejjgvY//Ql0eLUJIqZ4OuQehGG5lqmcSbITS2keBpsWwbb8i7ydmept1eE+aCOZ88JZ1TmlO+BDxB41rIO5u41GJwnnn0OJ4aPjBDDFML7G9DXsv9RGtKiV8GtGhgWuH3gntqCxTaTxS5WRHGxSkLR0ig+T0IwQGTLPbZ7bVaObeKetQrOMqsM3crFEm/GHyITlN9WhXg5Y2GxXVtGRSP+1hNiNCKJ8tjlGuCdb51wzioLeQbOMcPRG1XQ6RLreYf59XQTIcLWEmHqn+b2LMDZCvccagHPbx5xjg2neW10TJ5ncLBnu6Do5XHPea4pzmtIA7jDayhcJX0fCJ9AUdFzrlEFwXkBlBLKQZuJ0T1eilpNjdPcE20cbdHEw7Ga0d1zuRvuOqFlkoMGuwxJzPxZ8HHvbn2GW+0kidp08Buys9zbPKqKilwPaIBzIDBrQ3eW1GovKg3raGXeEl3zCELN88T+pQ7HEgE5ukY2hdY3Jrz8yad48FUCzz6IywUK9a5J3eTFAcen2AN1EjoJ8BlhW0RLzrETfwogxovpcQD1D8p2C9msp9MBdlzivOZmRJK3SKRx+/xWF+O9gFMZIlyvXoBHNuD7k3V0YDyPYtYcrHQJ3gA9EUZ+UeqKE9rst0Nip57L87aYgOBpXv+ttd5gL2N2IrOG9jFtuxHMnhfapxXSMnHzxytSZ/BFN9Y5YDU8wDNxkkssFyQGeOkq3HNa45iC9cklAbHbMzy3uZOofxs2Rdp2IwKgCNQaYZwFd5g6o6zLM9zBjOroEOd82Terh/2MdVwWBLRZhRmB7O1FN9ZoaY/aMVML4mFOHzsDR/2eu2tLM5THxHPBNT7b4TZ1qS2ebxT56RjVPf4cPlFPB9x4VntJ+bMwATohpt27jnN2jGQgvQxWe8jWrJ5X5xg4x8yCsYr8w5aYeSIiACO/NzpqSbzn0cdqJBRMyhcLXwJjEGwE3b9nfTeuZXBF2YjbxynD3vIY1QSlhLPI6Rly9R4YT2rru1dc9Jwv+eaXzpEkpwnKDeeZlQ2HLLRrZsErvei14eAiq0+OKYIVeuJwuTIgM0lqtFMT8fTc18jdA9nKqHzFt6lL4+v9+M9OYCnfwQjRb2tCnVlF28PSINrOh4b4+QHqUJiXhpRvvr3kYLRCR+t6QKsh6U3LUOAFManHEq7Bc6BxVgWqFlqH3s+6cw5blNiWiQzSGVQZFbZRZuC5CEMRjkKMa7cDqIoZJerC3nCJTyXG8FFwjQ8JN1OrxMSoqfiFhuoXrsA++6C61Bpf1zkTDqM/KR58lFzgWQZ+OYPbnfBIbihtxdTaqAt50sGhCiST6G5rpLayXxJKSIm7vwYlkFnsIEcmmDbQyVkxcM5vjBCTGax16dQ4avd4ZVyCsF7HfgOahHQyjZvA+DNiCqs4BF3rLhqKgzSn3zFfaSChgZdIRmTuhe93PPe709Qx7ZEZND6+tyFkChxowTnPjqcuprNSk0ruNsBLFd5TZWYKSL+lCRAn9gJln6Rxi6Q/AZa9pR1DzOtSeYVNdXkHd3qDIxauwhEKohrnMGPI+60EXScwCdx978MXCdtuY0YVEqCVKUKyrXThw7X52F2vXYj5eqBmnqPk2A0hduEaktu2cL2MspUpe0Oz1NtXmSv1htexSxLnb+Zc5ENsuzFwwx54fFTDmiJ1b1beEeYXFO/MsVToWTwligdjCSdT56Zwgw5u05fXenIMV+xjjJAbrSuPqS3tJljdc2+kyQx9ER6+fB886RNrWRhby1IQDDy9b1jaQWu0g4aExXkRugaGAddQJ6JrnFNJYA2CdqCFnhi2c6MCxyykHNSwt/4UZCVJ+xYssVILWOI/NyJa5x7gQAt3buj3it8sldLA0jpM5WIiukcfOhzDBvdMLZNBl+Cx4vxCBfF+6hcrqPfi2km9rvOWaGkZqEqlHQG6QAJnmqNn2svZRo1uQzQh7jZaYnQbw1DQZMuB7/zOQ409xUsPzimjaVpr0QfbcyVub68+Rx7OoRGWks3YUD7M7dH4vRcYO8Asa6kSN/AZU1/61ghbpOk6mntfjcxS81Xh+s2zev66IJtw7TfXVdtWWp9AUXmX4I6PA06O4KA3T3lBNoQMbRiJ5d4iTMm+jGOLx9ePCXBZTlY2wzLdtNQQDNSra8lPSlBsNPWXc7QidYtPhfer+vDEuJbFov8/yKY3PPnS2yLiw4LZlb6n129lu6Cl/b81y/mltE5vhS0uXKcdqDXy8xgPavf4soR2Mz42/G1LU2g/i3d9FMHkBqzFWEFyg2RW+372CsyehCc24LrVpFa772VUJDU85k50epq/TS1OiasfnaOWt4kXrl0GVMmhvXIFe2KCe4G3gnk3qQdRN/nHKnj+uRHSB2llWifchCQdUgugmWtmkM0E7pmzUt5zEm64LKnLLlxa8Or54U6JvOcHWDKQoSUnup1Qx1yRWDi0Q+c45CWJGNO+XcI+dWtnOUce2dTnuBDXrQJ6QPpBeJvgVMvsgO0CCYU9jfDwE0/x8hc/Z/fN/TQtWBtS4i6oq+1Z/xvbybTUBkTiAErcB1EFqv3IuIQK5FldzH2KcE3y/cDBjNSKrNbpbiLFCyAzpa6y0I6W3FDjWQCuW2TpvnOUz1nWkdsKMo11OuPUvS0gc4IyIkHukl4ByCj9IR654KofXg4mE2Qhi5MWLGSSGeiCDKf0Oi02/D4XlzAteOVLSuis0+oRHNMf/MBqXU3C75k436BEU4Aso9hla6dWmJSBCT+rDLFsX0zGM3bYjvGMap0cTbXWQuYcLYHnCTyM1jyvHFSdDDspKVFmqE3NZO4a0566xjdyeAD3rsHfOgg/cIiyk1Fmgs0E67NNWyPcD7xQhONHnuSF111DJnCNwC8YuD0zXFMlhL2Cxxz8eAFCFlGGkdoNN52vp2tiardnIDKpAsi+PvLEGWShixFhjwjrAoWossDrgILDRkMujTHteIHdM2Op1wsLOWz5mHa/FwV0/lp1zHcnMBEkJMS3Cc8wEWvSzBzeD9c+O0u+HcdXBWHujIWzmCY43dODc0XznIFWU9iXCAx/HbqX3hfdiYDFDJ7yVQtWOnMMQfLcMAe7dLeCKpaGIrRNkoi1EOyBLnz5GCfKir/Tkohjs8KqJa+Xk7u55/nxPfTwE7z0xc+9OODm9mZUWreBcxOYFuC9lXZYoufBnYMRVDEzYydD6vz8SMvgcgc2S75VYbW0jtJ6gd3tLPV2HbXAHjPHU+eNlZDU1tim8B5c5L92Dr55Dp7fVQ+lFMbzaOZSz7KU7u1Hk0haUZ4mxLXHkJbVLmxXKrQ8voZ91SJjETqezkgYlzEqVGUVdRJGjXt/4KqMV95xDOw+nIWRGNq+5JtYQHxOmMStWtYmSBcN8wtCFkIfYWLUWCKowBnwyfnWsz6TEj/vArMOdENCRqtnurVhkU63IfCrYoJIH0LyxdxoCU71PDOwvl175QVh0jq2cAjCglfOP/H4UZ511dWIg71bsNXrsgI7eHEnamnfIbDvdo23ijLmVUULzXOiNDXQvkJzgbS1lNxMdL86FJFmCGVwWzdClgl5JvDs/fAaC+8+Dt+zrDQ7hnyZOqH0fO6WtQnuCg3UtZ55cCJsGOgZ01iTsE8h8GMu0vPQBJ9TJM9Z8uFh4HCTMrojbCPeeJHwK2FaE+HVeMWSiEWu34d98EnEWzu/ct0y311ZbCm4zGp5y8RrFudwJ7ZwL12NdNL5eXNodY2DyZjnXwpjfU2VFm4RslPq5+OC5aMqsZ6GTNCwuXiv7zOc8R1tPjdWUB4f8gHUp8dwmX/v8JWtJsheE/c8BnqZMBU1LASsF+n8pdKnZ9j+uxXa1888Sof57IlPQ//nNfLdlmaYLSukNee67X/Xw1dT8h+dBWJUmke2wdJgcgOZVTPWS/fCPRtwzWqtrQuMy0WUavl2tvMhyrYIY2NAqh1jtVf2sF89gXOX+QotjocreNCq1fg/O8e/2664zjO94SztcF9JNe65UfPuKy7TOODQfLba2qxmzku4LxXuQOSjNQwFdY/AuhP2t3JcYWuG2eoyzryQGhGxA86WmD0aZSTLOYzG0T0O5+g4GHkB33mEX3qFTifYRCcWup2oofyZH/mB81pQLha+MM1BC7pf1OV2BCy1c2xBjGnSpllmB978Hkq+ydmxFj5f7cHEMyA2uM472jgmUYmhBHLsoO2lmjAXsj1VItM2TSKTCZSCXLVI68vHWNgYwZ6+unovKSor8Na+uaMTiLnyHX4dvUHPdDIqb/QL9WADsOIcsgay2K6VSp6YA4ojhiX9VXX/IznGzjrVfO9GyKe+cPpzF3w1CRLB1tZ9gJaL89SooCl8+pncsa5xo+J56qCRR/Q6A9f3Jd8QTuwggkqoXihwL8LfQV1/q0GO3YYKR2UdFu9KO8/Zh7ZbLHvlVDH55Bj+4dXqEp+pS7wVn8AqM1gjPAhcL/D9f/+HMNOSlofpOgN/r2twheUhB9c7xxnR/CJLMzC58VMmsTZ7FifmEpoYoIoCZ7QULLWRB8BcrWLxkmdczwBXGFU4zMezh+sJauGWONfEEjyIaFbsMcREVWFJS4tIHarVpXYfDUmcwpdDdrrHP4MZ2BX/91ALFR6mLf9+PylO0T3UiGmP7jxdFSzDmQhtUjUt7X8duhfoSGjh/WKuXgxG4LL+Lhxk/VxJu3E1Q9hHLS3rRliGmMm7EnALHapuxmWnh1xx1TKC0xj2SUFmHSbX7PE78bbws//4hy8NthTGSJxy2JhpycBeVn83DyNzX809osPOCgHx6vdZLHeW3G2d02zxNAV2C3yF85R6E+rqDqG1jLpOhcObGRALhd/xQ+AvjsEvZZoPBC5IA+OUJQK7oHv2AcAag6Mi+FhZbxGl38aNp3B8C5cD+wZMBTohDM/zHEF4FzFIbv3/wqKBh/ctKC45uQWXL+GspWeNnu3K/zaEYwVL+2YBy63aUu4H3RbN3RLWI7jHR14jXKXeEukkBBrWFphkLbozpUUhFCKbTuFAL85ZtLCj97kgxIi6C28YpeV2b18TKBeVKlxsUGI7JhWIuOid98N/9/uZTSsEWBgVbA/aure8hV3Di/RcTUXOH+aawpgIt9LOodBcMzPq/eqcw41KqoEwQ5gaLSFaINGhLbe69ibT2PaZUa8KjMB1B+CVpSZCTJLsxVdYlET5YjdHuBtWYpWWIOCOEBYDCphfswCHSWCTmndpizDt5Pj8strvzOLaeTQe9nxHDQt7mMMgixgfwtsyyLX7cK92lHc8RUHGyYMrjKxlqVTXeJeL8vLePZ6ignVwBweNGu0Bvk2jigOZf0mimPCeZnEhw8K2ob1V1EIx+ER0amhYE7hOarIQvUjOd/zDQ+eT0lVG82M8OVQBvqrXUM6WMOg1PEwWUBi3Rdgj51FofovbrkqJ/55amj3+fMSpQfTS1jEqtI8t4utAy1wnXZFGzMwZ6iRDxngtVl67yEdt8YtX4L4NdU1KrU8OjbcLCWTSh/43IrCH9wOIGt94WDP//soF3GmLLVRDbUv4klXNcu7UvevIlkX2DmICimyeiRGUmLWyurxMy2jyj9f5bLWvv0qz1baS79t/vQR0KexBIRc9avzhXQVOOWDQUgGIRLB1Lrq041xdW3lrAks+Vmy5g5xztdBrNUO8dS6E6SJoPWrjtFya7g2QpXa9JuaZ7w2BKNAINTLoGmUCzqLxUQ7q+uF+bBMHbecw3iosDjhXIstdZKGl/28nMblOPQmGCV3TeXLRjSt+MyqR5UBxgqIkqcTQyiiu3MOLH/Vlf6pKE73g48Q8PI4mMTSo8KA915OVkWG975zF15/38y0+c74sdvw01wK7iCC9DsxUqCpROOss8tQeE3OEnNMj5VJfvgfuO9dwz3JeGeLCRBUVznvxBqE9jD/lwaN80qCBfg6rqiYsPkO97eRRkDwucFlCz8Jef6HAw6Il2CyOqtemNGBnVuPaG27/cWU9mK7pdpa6xt+/Bpe1YKmDzTRDsM0Em6Hx7Lkyzg8C13s4M6MMa0e0fNuzui1aFby3dDzi4IiDywFTOkyW1e7xqPfFM8IIqfk7KGABszdHihJ56hRy/BxkwUMl1Hk2ddk3as/MLf9/KtxKOufhuSHW2jO2OF/qraSOBUSTJw6hsRHCCsxo1jb2XzeuT9caWyrZa31qZbVDPTXa1EryyChmtYdLg2vc14Zzo1rDFVpRKgK6lEGer81bXkN//Rw2LMyKWIu6ySnXC7GD4UxgW/ECi8uUs1ZLrbei7V/hRSctxnmBHYcZlZieWvJiuEA6rkuBNw5oDkaApR6sl7oxgvJ/Nxjn3s4Po0UtyIV2McypJdHVsbPUW4hnb5R6I/DTCRxG6tj2ILi3DNx7qvnAr53YKZXs0lJBPaV3e9H9C+wo1ViB1mpfm+IOT3FX7AMRRmKipT1FmhrG5WmD6JgHYnBGmF21D/eklnEsLSxUDqmS6it4BV04VOslslifYPE8VseoS3qAM3iUws41rLdJMy+PoLhhlOUw85VTPC+Sr0/Ug6xBVIjWRonEVL1MJgHndHLcAC3n6Dwd8/btoXPsCTTVb54QPrcwmnB2iVqoDQuFnqcpF8Zj85ZqQPNiVNC1rlZqRsRoqRY01KwQxWMT4B4Lb0S4EyiMUIihyKDwoVrk3h3q+gWtYFAmtC26VicP0kx8uNMVblnLvQVrNKK8ykLkR3a+GnBKcmRFw6LGvRxK6vDk0mIzrYYxIgnBStffvwI/LcmL3GCu2gc//WKk3eH7D2+yGXiSyirfEEP+HJwcanjooJVUkCKGh60baYQn74bmxP+Jcnt40xZ6s1nkgxzAzMVydpvUlUoCT2fmntNowvmzyF+9pEJ7wqOJA1kvkGBk85MfPIyHQeahxoWWb0/7715oj9kTw3WOQMU2T8wEZR5GpTe/ZTWjHH4uWjM5qTjLBrqZYpeZUYHDu6LowRfV6uw38MBazcyGNqo0Q3oYT+Mk74zX+la38/EUHWDsrdrOx5uFuPZq0MKtCu74ts8ib3mlJ1AVsGDhhedGyHK7ybAGF0pJBO9Qvq1loJPp64bL4Z++DF50ef1Zy+g6ZX8z27omdDXDH8a5KBo3ZPM2bkwj3htgaB29EAgebj43Qvb4+JglLwSOiojoe56gTRLZbuy/a/vPzHaplvZkfKml5lL2Rjrv0e3X374qmqGTXLOUaskbj9c8reoHC3sgwusFsm+gnSygMfsuJJzRxHWltxwG+W7mlLCGoHkBGGmsaV2/mkZJHQR4VpcXHT2lGdvHVZBkY4ISxFdrSI+PqWHUz/T/VhvVGqNKha4fnDinGvUePkNw0llogw6yrfhllnC0dY12GqEO8Zyfm8L+tiZWssCTm7rgPu67trQ7tcr7pIpTpK5XKzUsugBz8exhOC0Ty984gInXYOcmJsXR5GjamZE6e+5VKIPwuL/XtgzWQDn6/7H353G3XGd9L/h9VlXt8R3PrNmWNViSZ2MIEEIScplDEkKABBMSQ9/+JN23OyG3czu3c7uTfC65H2iIGQLtDGTCCcZAbGMbY2PZzLYxnmRLsi1Z1nB0dOZ33nPV6j+eNVXt/Z5J50jHQuvz2W/td+/aVWutWuuZn98zUeE8XJR6DLj/fxbHVFPeHzwH9x0Cp6yXmfNOi2Em+v4MugbvIgobuSSKe56Bhb9iK36pgvutMvONaqb9p64cBC/25bRG5I+IM8bujTFTyE9C8Z7jcOIc6wbOGw0NTFH5kywSzqIKSlBu3RoP+8/fz4fA76hFMKzhKZBngZ8VOAGeKPT6NuQCddovYxqCVyR5+et6xd2D6/nzw7l+y9YUaIG1Fpx2ubSpMWs605j/tJPpJr6clp6fGjdX2qqN7k0TT/T+9wpdb1y27zzt1qAgTaKl/izw1A1tbju7rc/YapUOMy7JeuLytpv9usyhpd6pxhplvaOlwgD6F67TPrcuknt0mU+BgPoaW9RS73r6/vfQhKAW9X2ZetprYzQCWZZ42t3rdY268F99Y4y083nvC1pqnPaP2KDr9hS4yg9OcRdCXjsrmdYRf/oMvETTKXYFWpnKPWJc+qPjT+K97g7HyGQKjrp7Q4E9fgZrLSNbUXiDfVkhLkLPQDQYb09gtVPjVRpur5Fw/nkOqFdJSl/+Q+9siIqRgqCNOzmV2hEYYjUyZzyCfk6IAHK/8dcQwIextwUG/toIZBb7oS9jnzwfFffKl3tTecFAlBuspbM7YqOtvw8eWzxG0kXC44MB3Q/a9dPxy6VZqTIUCU8eW8pWi5kIMwtThIcr+H+L8GHgRwX+xDplXUwwKAdL9s1LSsCf2HQ8O+FrjYg6O9DJrQ50wdNnp+ztGaEnC8ZUe3bzofF+3ofkVC4UxoJGRHbU074B9Lwxw/FyJO4BMaJKe26Un+UGk+n/kht4w2H+3GdOMBpPsWVFNbMhr10rQQEnx3C0G0DeKjf/3tNey6t3x6YepuOTQMqCAbuT0ZpMk5G76MCW0uttCPny6e8kvXY6b+LogpchG7IkTzr5K4mYkPMDWCnCnKsTVugbLXcd6KG9dNp4NdoLVmk/ctOrKYgEGuYXTmiB6FDfMR2jnvAZWt7Jb7CE6bUlWqNLVMg8mNzDZOpl92HypIr7K47AZ87pk0697YOps5CnnZf68Tls+1niW2i90OiOJqDIWxHsTavYZ6ZBoV0XS4Hl60rL3xfLwc0BsmqiIJwKdslDUgCyXMMmW0bBbtpZBMIJ/+equF/F5oX9pnB9oygYHSGnXZv3sk6BJZevJh6k7dwU1mLdXFkR2BgFhOKWVVC3gY2EY+TC5sO8j8fIUh7+/5lffmeysC9vbaSCSyB8jvsdRg1QQKjV7lgeI0eleoBHWhOAM3vIASVyslQgSZkxqVQZHiXSn7UqKNQYsgXZLRVdn/p+k0xzihEhu2mFzmxGeXoXpjPFVEBzuTyqaHBCNcYbx6rv2x00Lx4N+c0hGBtkOEOWI+GWpE8C0C5gOFNgGDco6xOZbRWVdc/I/ftzUy19JQL3rsPDu7UQeUtU3JlZFV5RJbltYl+az5KEkYXvCvW0h3uPZtg+GoKIrtXzIq5Ge1SOM7c4Xi7CFyyuFJtQrkA1mDGzCkZnU2U99ZwuymWvrCqiJyZw75oa+JLQeA2TN1QiPAzcikYzves//SqZqMLTMQrE086FvIL7ZiVvAJ4CnjLw/hXLmVzC3vVKgX+Gl9UCfdNjMOQ9fk73TQHZHvCFTQ6JIt17YLKQE5u8fFk0aO67xDjoF+4KCjyJW4sWmFTKi9C92kMjiFOF3R/3WAxEdzlTsN9vvWdvQFTaDye/q0W2GBfOHwyywCEXGjMs6xrh0EKrGdLtj1fA+1JDm/99z9HgbVx5ufSc+r2k8UpJ7AFgw6Ga69qNnvbPHWixdn5XQ58rx0dGliwryMJzTvrpiNGb//Xbnt3YBFjNNQwbP754/YRQxFsnx3SKfeofzK+tCwmn3rseFHfgAeBfue//JRqOPlfqbdHjLUR5vo+ia2dwb7Mu/LEoU2VmX6k25XW1oA/3/ZbbiGHfOjmmWm7Beaj2wN64DCJMM0PPySzeURHm0IMOi8p+iKFthM0bltQAuzFgUikwKzOLmVWquHtl3dFQOTdCVvKokLpOKxhWnKym0p4eU5tQzR4laowddXNmznY2stCbVTC2dQ+/SRT2QAf1aIzieGAEe+IcPFMiJ4FfeQr75Bmso/3DmdVyb05Rf/vb3hUf8XDKWVfeOJCChDCOUUNn+hxrR9834vi88bM1KUnrplgLDCrKfhGMzhXwW4ZgwAZ4L8Q9bVwps1DFwMA9B+HhnXqIfFNxtxbOD7E9IDd12ViEDUOoY17ruzRkFqmHxoNGHuy1c6pRMq4x2J7u9x3EYWvF5z7niXYKuhQuijHVU25c4dSxNZYe2FYZZlYFZd172zk1xN64FMPivQHTKe5bRlihrqg3yazxskx4hnqS6RZ0HIKgtWgJQYAiZyyKQ7BukvlacO255oWAVGEXHSsDYDuWWBVrka0Rsp5Hdc+d3xFhz8zzdv/Ir3V7wSrt5059gWX3vsaLG8fQmgwUVDoeqbVHWnntNE9IU8a25Y7rJJvECS1ZsAInx1esw9Nj2BrVPe07E+inWuulrMhr0y40b10UiM6Hw9SJEthjfeyJbV3MlWWntNxo4QeM1XyUjRmy3qbmUU29Bmk/MqOGjF7hEGrzBLnWKfAt86wR45stRMc6a6V/v46CntEV7HhakzuxllGl+VQh1G1cIlOQg90goLPURvYc6BqqsHcqy9iHBFWWmXX57D4pa2sMyxFc5I3f8RddR+Wy10YtZEriUVCgpRNOqbNtwY49tFb0vrQsUBHLvm2OkHXHXpc7sDWrgWi1rWXPGSgsShgV0C4RVAD2SqTvUgC8tzxgGwDGkGWGz918BJ6YwGymZYiQCD7phZVUUDGxxIkPu0c0ki6flUwdv11NKe8OyJKuUWOJln3/Z9XAaEwbF0UAgYJbtxbsAgs8ZwdwwAlGL1+Gh8/VQ8mTLtiyApNptQJpCDBS749xx5C3L2DyDJPgtdlxRdXJwi3OoALzuvvfhJfO110CnxdnW0SoWm3KcRlyVis3znQT2Mqqh72Zy15Z+Nym5pH1W1insHu0eB8aX6GC/b1ubH/pr36zC3XXXMyOQAehnUE+mSntNTo3nXGLL+RRYTcirrY9l9+8BOU3fyaYzGBeeVTndwr0QO5d54AxPONoYWkkMHHvcQf1tB9JLq/GfxVWvO0zPLh+oalSEEpVydQirnIEaFTJtn+urr/+McyISru/5L7870JTQLKf3Gd+DXp08bM0QOjwZFw0L7NmkBWNJGgD5wbB8Aeo8NTO452eFTmX+c4LkY6A8pEaU08GTdxfTS+7oDaVTZPwP6e8jwQ+v9JFWgZzZk9D4y1kgwrTSUHoGkQKeOP3f+tlDa+mlfn3awWccSuuGR2ULoLGpZqtRQM93h/r5KnWKmsjYryNnvb3N857P/ExhFJvi4aYGV0raZRdJ420u0GNPN6gf4HUuJTX+feC7pEOcFacot4QyFlpY8sZ2Bmc3ARR0Ml2ps/euHz7MNWZ8ipV2HWQXRH2skzlug9+ifWnz9EvK5hWiHvh0gc94ZC9Eaw6A12I9FEAvN1ksrZRpX2/aNKUF6STkQuMRL21Fo0UOzoY60NpZdGI7/mJ0YuEMYqmHY39wB/ZcKHXegv7+bMBcXxkLSsOt0aAb/3mP680bTzDVHC6p/zeI/hjovLuSGzseoOOpS//oYhACw5MZ7W1agGGJeVSKyjslugR9tgU34rS8MoYrIFZEwzx7iV4aJNaBaiUbzsDvT0/wa7Vy71Vro97zIePz43FP7/G/s0BMqF0COsWsAOLFZ38bdGlFml/YnBOaJu0nJfdp/AWsQLC5161zvpjp7DndrUC1LSCyuM3WTi1g72hHQxcGAkGiaGLdlleMKb6Ppc6b3HPtmg5DuMrG0xdel+ese3G0HXj9hF0wVDMPk2SZ+gnwqfcHM3hqR2Ct91aZKvSSGCvnwSjmdSMZn7+0+O1bC9Ypb2cjebqOs6FZtD4oEntOhmcd4+hZWqEwh/bxPD4cyhx8eGr4eU3QlNxX2rBrV14YJNQswjUUOBLtVwCw73WrUYgk/t3UAXOutBWnAJP5kJEb2xjz4w0H8ZazltY9aEnu2rqMMvtRLhLNtMiwSIT9TL1ChW2+rkq8p0caWX7Mutn0xaF1AmwZlz4eBeqchoUtMoJ1wPrLOmO9cv5oS6OIkmzWO/AVhmUWtAa4SPrlB5wFnnfG4uMxloyDiUih9ZW47q4guF7Ba02RlGgvfOu91WeU7k8aGwcmyEp0zYrYc8ih3tK5JbbwdMubm56Lr9/5r3RLvffF0Pxuf8Mx9DN54m586R4QJ5HbmvRevI0dqZloiZAKSSe9pgu4OSN+DmRHrQyKMYlOyi6vUePF4uCAS11gqIf+uGV9w6wPaawVkP1rTdKuKMPyUsVdmthcwCHCr3OS1bVTf+0Mg1bVjWzrS2BImPqHrAHY1uU164Ci/vfj73IFHvA335aYYucClWOT1uHHG+0pKG3XGdOobzHwOMII1xe+3KLaqDDmVY22htTaT5FjW+Gxj98Rss2iXoxQmi8cbntTuF9CLjHPaf1A6tB4G6hQDwdnBw/rvhzQLfSZ2DMhPtasYRUIZGxX+4e0WdtIs3OFLjHvOww8rduwb62R/ndtyG3HGE1E864kFkkkvRUAaiVeyPuN9N4ZoDWod4t41oEKK3LaScIbyPqCjvE6K8OcciLhaZLmIPkmO6bPpH3nUnGlXozo9GTec/wwRacdz214Y8q7SnP88fLpW/NSYY40evu2C3q56fnNMftL+H+Xwc2gocpRoo8hWFdBDmyjpwsXU47mL0ZWb9VX4uBbiutOnxo7dLHl8ot6Th9KbRY8ykeG4uhmQ+cHkP0kGuXIphWqJJVC5EH/mLjvO9kn1Jvi1phNGKgGV3nX20fgZdfMDUune6U54Gu3TMSPYWIo0MC1YlN7AzMDmTvPU516hxjY8i9pz1RqgKfcciu4sL1V4xQnjhP/syE/BR8328fp//UWeWbk1IjaDyWjcuF5lylfNRpMt6g13GKkS+lV7HY056KBHNl39wX41bObOxkDWBldwodVxc+OFOEhOTUBto2wsAIiIG7D1AVaJ41YO88pKCqM/W096uYKre+pgCNsjOm6gjbmQngc36w3hA2IgJqXujhzpWky3LMrIo4Ov44m1E6PJdS1KN+GqFnoC/Cv0SNxRVQZoaZUVBU65miCNyyoov2ya2o6C0ApLPnp9iDvcgDJIaPb4ni9tbIlH8lW6G2N5MtPO2jxiTXqqqEVs4YdSSupc97wZoAkDzDFEaBW125ZHEpr7LS5fHbb8T+sWLu2LLCzlCvd2nhdAlHeir7J4ZLBLZcVJUnQYuMnrUxeaOC+6KTCaMCGI5VrJjMsLka1HasFtfyivSi+VvYDE5hl8jP3Trn5jUFxvVpmltjlW1XfFlJ4x8pS+JSQpjn7y8q7c+y1axz+xznmiRvfGgZaJ4HEEKD3KldkeBpP0fMZ68pQkZc+IlJrHWiX772IHz2FA6WUQnAYAq+xFST4V6u4HKVWvO2nqkPIYaHOQnNGs3tY61D1QV7eleVvcpy0OLKKYwxa5ljCIklMQ1b2a8vxueNmRCKdq1afIZoWTrHEA66jTvJgN0yqdhnmboxxnrfeo7WW02I03Ib2R3p945YtLEhhNxaDZXv+OtYCzsWWSoiY0oNHFcQZZA6ETX3Sa9xBBc5IoLNCw1zQ5XRKdBzSqj4jp4bIgUqOAHSz2FLx+a96F6BGPrwKqvW/bzy57gw4O0JZimLy8DEsfpnjwgnDy+rJXwMtDJ2iXvSjw2hJtM2w6gEXbftackOlj3qaOgyGMFyvkAIcu+7OUzG5KiOGgxvXmGvlMnFxGY/XxYOdvQimYH71mK4XQCjc92Y6n0crJ96OSUKcYs8D2nLc0dLvDFgBFWvCIreOYRDJl5PZRPxQQ0cEDgk8GU3vLLTptqrgkA+S73snms167L7/88Pldnfsw5GIgide1/mGho/BJ4kKu1G1OufGR1/R1R5b2cZnUnFvRn8I4FvquCvfHmPl+SqFBTiQK54Fs2H5jrwnqydIe0Mc+dR5DvvJbv9CBSGo4VwKjdUbgzplHj6MKfcOmElRvEQad9SK3ra/WtSASac0hMYJpKcn36P+r1vTvslDv1CwlA/uY8Pjw/7zH3u7R11BdO9P9jTNBFvoJq6zdNOntbldrjZ+UWeaBHoOGGsHfl67F/9hk2B13+zAmwEfqdRIojwpMDNAtzQxpzcjpEr0xl5O4vRFL4v6fFKx5fOq1fa+/k8cUjH2vi4eaxXJlh8bLapM1Q189n9OvxG4CeA15AETnHhCq1iJKbFpZF1vTypFV9EGW2/6zDPC3w7iq5hRS4neEWtEXjotM5JgS74L2yxm0HfedolN0EuAKcoJeHGGGgZw/qXtpRXdSHfgwMPn0act51phVSVptKBpo0A4koS6pLUe/Rc3wbECg7NOu00jsHb7vvnWpmLRqqhYHHrEwsryqm9Zz1OYCqnGciFdiaM/YO8+RDVX72Zcg3sy9rYmw4EUNVhadVhY1HjhB/nYIa01b02cIQjANKpdBEqujSXSPg/UdxIuixZRm9qNYXHy1SAHUwpO1nwtO8Cjwr8AOoZvpfIqkuThMjXvO0G7j0wl9Y2F1F3fki1pvvRG4MwwsMCO8bwdG3d7LMXpfH83GeTAhjHSAI7nUHbsG31cfTcwjGOp+zniTaFB8uOOe2SqaHpE69ehsGQ6vEtl89eaQnnswOdSz82t5ms0fefcjd5iOY6bCidyf+BLjqD/F5RMBspT7DjUtM0gW0RF0UtYc5SQ/F+LeS1C3UgOgPc0oHjm9Gyc34E6yY4ExXFX9+3jfZhjiba/eni1WwvWKW9v3JsYUjNIuGjJiilGnmitAero/vSI2l6C+AMBX84mFw26p+iG8Pns4cQDYE71zS+6fhOfOLbQM+RqTlKfAXM/Vm01BLf7EoHV05DYlgMiRBTicEeW1b0TGs5XVlWnHfW7FpY7dVCT0IIZUhAff6b39M1Zc9oaO4SwnYhVLNpzPNBmYxY52n3XrKNGRzsht8LIKu5euABr/z2KzVuAIjVOuY+px1XmoV+K0zPH336QX1zBQq7/1kYYxJOdcAI53G8p5MpyIn7zci6de+UbQHMzgwOJuBxKxmyNw5ziNV0AVOpUcIr6WNv3HBzhrXIeAxLJggq3jPlS+h472duhMGhNmzMqM4N2EVzxJrKrH95JckzsLCWC0O3LNmxMLYxV1+wsD1GVkx9jXojggiy1IKhJbeWwD5dFEFQvIP25r7fcqLwWidysXuW4aEYIm/LGNlgHfhYQI6fk14i7Zpj9kDhvE/Wge3ZQRXLvQmcFjXSxLWuCntmYom8u0X4nGNKZbtgNp5GlGg0LNaPPYTGz6HGoxUzXtpX2upz2TOnsIt7AV9EPZlH3Bp96E8+GxV30WfUEaFrDd2JpQe8OhP+xwyOzaYufF7PCXU4rpSmZBJDcNsZ0skw3VwVd6fAS2FYLzLOFYZBboKi7lMe3aMM4fHpmsQJAwE523/ZzzWn3dEQAKlKxCmagoLx7Llupmi2PoXF+5EXCYaX2tJupcdmlJnPaa8ZrEUwYuI8puM70IZzw0hYxk5pb3m3XuPGl9nzoJyY5nWAlRYhZ+IitDMVBlMF/gBq2KxcpEgpaqz+ogg3G0EOtchO7WJKRZHPd6aYTgQRXCSU/MFHPnM5I6x3zr/PnWDSSqII0jEuEIJqIpD7rE0SxdE4LhJOrcO4SJHjfVLVp4A3AP8QeDXzAHQXM6ppKK/DrenmWl2hl0OvQDq58oZLuQaLjTCHgNM+ysfRJJs5A9wrjzowVqj6wH0H2MkMfRc9abMYhRkUI5djrxVPVAH64t1ryCowhKoFveNTOL6lCuy01HKHnjduDJEcV0MbR9tVxmq7aIAhcf/NRZVK/THXeEZCA2wfcN7aCbC+BXTbiZxL8LbHfviBGlq5MAwgxMCtB+FbXoI9X6p31uXtT0tLzxmvxcIDn31IadoAZLVLR4Rtx7StUe+3H8CEuqd9jsfJonEKFDnd0rq0NcWJAae09yTQ589auEWE1yCcEMUC8YanAI7qI6hSh9vLl+Ch8/W0thrBt9jtIfZAUUNV/6IV/jk6zjcDD1J/Vk2lLOAquoF6ulZmwHAWqhbZ6Yyqq0YIX3ynSWIWbH3lPa1Moxid8k4u9IxhM8/gdUexn3hGwYhLd69TI7ixpU6TLKm4YIQHDbzF9fGfNsbX7EOQo/zY3OcthEGrYOZ5wqTSPEZg1ybjIx73G199MplHkReBW5fhbKV7sAI5P9WKQWm/3PrvI+y5m9gFr2vdXrBKe5a1AkIvi45Nybd5AqgVF/BSXzN/FCIxGaHhxAeYXzwGYh3PpuJeZPCqdfjslm54V1qLfjFPia5E4roKba4b7v+ALmtiiKAfePA03bCMPbOLRT2sq174PDfBrPacnCHRG+PcTc81Qv5+Le7raOn0HrEVge1WBrNp4mlX8HNBS9uF0PfNoXraUyazkoNDWLdOyu9a77HViZphKbzyvztCOpGRixF2BoOF3qFLbd4LlI5NRMP/QTQFoJOr4uiUtj20LFoCcQ5nZ8jBflz7SwXsTGPtdffqWBgRPe0DC/0kNUSwsAXSc9EECfNJFXeMcOyZ8xx4dFvDLH/nacoT5+ilxJx6WFYwUPjvvfKdCa2qZBMVEGp0Y2+COHCXml3P/9NVkLr2aKph4olkKxAU+Fpo/LmhggbEEAd4yZq6tZ7ecR56G6aWscWajAmKnJ62ECJPXALNkNeW0XKkzEoqLIxLqqIITOYUcIwoEHgjVS6xXNfLDTwmzomwKlSTqfNUKO5CFcbuhJdpI5e9dJFED53WcpfuJrNMmLma7DOnxFtiqTf/DEd7g1q/OlaxEHrG0BlW9NHojz7QG5d0M6HnDDB57eFx2U1EXE6teva8sm46qsBLK8O2c/rtjGkr45Qkpd5snZmfJwJfhT1HmI66AraUKTgOxJz2WYUXnEV0PQyTMfl7DamnabHgeEljv8Bvvae9dOPyZewgUV5Ac3tTj7DfgAcL2ErKvrnyijVJM/3/ilpyX38UYDhQrfLxs8mpyX2lfgX/nNKvlnHRSG5MvuTbE0a4zYCsdjEFZKd3VVYcTMg7smBS42c7O2ktmksYWpOo+YWRoeGeXz5Tv5ebh5S/7rdGFnra7f6CaXA4Ej3tXjH6DKqsG6KyHnLaBcwl8nuRNMru8jFs0r2WPtNDqEHN5oYyM6EudVUYuPMI/O1bmb2+z+x7boPbjrCXG4pcFfY5BRnlzSZ3yPeFYalleOTWI0y+4xYmr17mZ7/9ZsZ//hb4vaeRL2yo4j6r1PMOsDWFg3nkUwkfFNSoOqQONrnfXvVLopnTjODya1xetIWl4VQNIeky9XzYAUqGR5UJhQh7RiJAmwj2pmXIwD69o95ZW7FbWVbKyCgGe0O91k4J7Q5dIn5CMD46YWlMlLMXjrHBl8NcdDNaZTQc6RgtZTmlbInjX8KDwCvRjJlVgceIaQeVhTJTY0npaZdX9G5b1ROPu1zoUnO+AbwwUJ0uqdZaAfTVGvhdIYaSAx+gTjf3fZaSzD0alWZm8dnZgVbR2SVFbY+RnbVnnzRvZDK5hBLV5IblXNjOBF6yim134ZMb7nlCdWaMvWGZShTnxmbR2PJB8WkO2t7PPHlKhhFk4mShYgSGyy1mUx2cnVXYTHF4zhPTQaJhOL3+BWjCIgR5I5pyuwo8va2TuTGBg70kGi72s2ukjh6fHF9U2p9F29548oK1K+utsaL90SORdxq/SRadt3AOieHxKd/3wosRfJJoXXE3wCtX4YENLTs1dIJL9+Kor89V88wtvbuQhMeD5rE7BSTk/wjYIzn2tG6ELWs56Ja1bA6RtSwSk/3i1p7nlnbJ53Z55ncYON3OsOOYo41VxPd+CeBC2q1FtgeBCWuUhiDrHWQAzMoA2FZYy9BbhK16fpcsSvL3SqSXANMA3/Znv3qhoHk541MvuwPDguD8XReNHqmyXEFOdEiMK2j7MPDK3XZjAGudxCDR0rF5UA8dET0sw8QDPUM98J7iKSAPCv7m++jWhkc49ZbSVzy2rVJLB9iB9qPbdD3hNzEfT5IxNRmicQpZUZYMrOa0t1znpKzUE7DWjsJAolSJW+/SFTp7E1fyzQbGFpDkoQ5Gd3YK6/24tx2QEfeuhnA7j2kAqOe9yChJPKfJHkkfezQs1BfDrCCUtbPVFNvO1fMgcEqEG3xXnCHDh8bnzgN8pyjy+RZg21DuToJAXjoPW5Dom+Bz/v3JgS6oO9eVTngPe/C4G4dQryB0PjQ+E+Hr/sLXkBkPLOfKplnoZxnLwxl9q4JKH1janbEkhj4aHl+bpCs0BooRDaXu5kgnI2sbpKsKvHUKvG1nHDPCSeat795z48Pj03A+l/4an6N/tks5jMaE1BiAUfS0A3Qlhsim+XVD5stAseB4SWNPX8kPu6in75z7/6AfU3J+iLANRNTfXLQ02ZkqKu2jWSKdJze6kk77lhpB/DW/fAa+7Pjs207AY2cakyS1e9UEwuS1hi5nn6daGeGECFOBG0T3jblhBfP0VNftZErmHQFNz7dr3/bNX3vpY2s+FJOMz+v+bzsRFXezeCL3Wxve0w6Lve3NVrEYOX6EetteS6K0u/eFzJd6u5YtXYbpOj2M0rcqE2xuqDKDLQxVK8N2c+wdx+C77sW+9Bi2lXG+ZegUeo6f//RxCGiIfGGwuaFoZey0MrjtKKO/dCfHbzlI9pI1+Iu3wB+fQD56RuWAmUth2pwqgrskUV3eSyjQF33EezAHuNx8+S/9dZCEP2Qgo5nKZ0B/MILluEXnkOOTe9lMDRcTF2livXHOGOzth+HLe7q1S8u4rOhWsQrG133N6/Q6gxGsORYuUWH3hMNCLad9ny0a+Hwqm0ue0Zr6qi6RzFSjirKdBZr8oMBr3Y9uF+ER6jS7ygxV1gCjCyHya/D5mNZW87TvzTRn/kBHIzVQBfcbTPS6A3wrcV94caA5ttQYEb5rG0zIabcwnWJz5dHrbiIEvC1lXzHRy0kUmSuvrAaxfm4475Rc+7WHsA+eotoeqmf/9A72WNthAqjxwzvq/oKJewLg24j7Lew5v2ekblTw+xNgnLWwnrnNoGrHGvQHSX8f5buLKrTJHqoZkEXgllV40lG8s0PMqkpbcf/5vSc1ngvzxvlr2V6wSjtEj1lKTP2iuWjzFMAQPO6BUIRNJSGsa4wy8KbSHu8tsY6SV9w9qMXNy5og98gm7E5iDGxwCaY3f+7bfkzdA9EBEYwiw1nd3CY+1Fcgra0hu06wFmuR3T1kRUMFJYsh0LUxXwetibAeiYtwQGCjXbiSFC73xjq0U5fPDG68Z0pkuRWIFALSyZRp7vgwcsuKtYxcHhjWMrRQeEPH2EK7HYWEdK6ucN487fJjDAQcDU8+B5Dn2KoMFKl0efZiE6PE1gA5GEtRiasPbIYT9RI6qubLvokLk5tWODRld/HBRIfRcSGHjoLH9WGC0evhl69RrYAdASvw5N1r9DyISkKQA6NKCHsorwVIkZHNFFhwRALe5fvSdsYWfz3TEBBabYphycSFIlj33P2wPB5AoOrnx1ruzY/PW/buWYGHz2KtC5H3Cv9kBsaE8PjUa7wfkFT4R7Q82sxkMHOGl70pVU+t/UNUWDoiuqb9Fgzl0hyp6hq4DeFRK1Q7E6ondimfOhdDYb2CPq3mc9lnlQuN31ak/FYGPqQ4M2qtz7TUm/dwPEREjveKu8EBV7k5MEC3yFjerVixsGJhtYLlHUsvE3JkwaRcedMSTgbTzTG9Aun4V44tMhDhGCr8e6EvPW646zSVWz+W1CAEaPjvlhcL0OoF41JL+LlzvGF6kkqr6HONRZvql72c6bgQUJlX2s+iCmxOUzBLlPamQVyAAy4xZtfl3kzLmPwcO3D5na79vnFPI/CZU/VzPnMyOWeejjZlCP9+FaUXMyNYY6gy4XERbjMGkzml/cgS2XHNa892SoxX2lO6nR4vZ2jeGtKc3wca4/v0yfq4Ftxr0dpooXLNfgp7KGfpWqjwSN3j/iBqqLqRxWHxlxDZftVaMzTeC8CHcSVcRahamSrrrUwNZB61vpVjWwbbMmy2Dd3ChRQn1yO9bmY0pLdlWG4bzrYzaGWMioxJnlEYA8eWMX/5pfCl08gHnkImrvTb1hTWulFh8IsPVWy7TnnxNmuYf4ZNA25z/QoCLUPmvLUDa+nvjZCOCb8L8oDMb0UxQssYZrkwccJRcNbc3cV+aQPKEqxlUsGSK3/ofZSKbTSEjnq4d/HpPS7d0j2cCYsBNSWMramwuzPynHykVSR9lKDFUg2h7OVUol71NsKtjlDdLvAlvILtdHCRCEbn5XbPs33lF+tD5Kskom5A1RMqV+6tNDquO0T4GqOpfP8S9fJ7Gcwr7vEZSpBbavxeQIqcbGKjcbgssa2MLQRX9n6fQJz6hgufZ4IUWTA2reWa6jURA4eWqO44CH94WpX2kxOqYz2tmJFFAMeZEV5udK/fBvwfwKuI8rM3TjTvH8aW0Km9IteQfNAa7T1fg17o+1Ml7uFLEYHDPULERNKxm/vw1JaeuD2AA0WIfpP4AOiaWOqURccGXbza7QWrtIuYSwfhaXJlkmMfyFUgaxIG/78PEz9LzGlPhRe/JsjMvOKeGxADrzwKnzoPw6nGXdcHU+/j89D2Y+rBEi8peqR77/K97MElqrMT9irLunVhYHsgB7rRE5ruuOeSi19CS5U8k6yDZYEzuaL8V+NZcDTuuTB3n7/FcKrHA10nwOIUP0EOZLA9xbgfdypXyxzw4eMhzH4bWG1HhiswnkyDEHYlKQW1PD/HpP37dYFtC7Yl2KQW/R6wkoa0V1aRbtc7MedbBOkDW1pnWsdj6VtNkwhGCaDnOKpgVYBfdeMziWLt136ungtyw+i2o/z+d9zK7PUrTL/rNp6+7Si9QpX6ED6ZWKiRCPrln6sA4tDVdyvLBKc3WJCdCay5sTQF3aC4C6y0yScglvm8dpcDFgDoQMu9HSwi9fXhdi9ZgwHYp3f1t37mrCozUxJPe1OAksYeTYSsDjA1WSgraYczbFuvfdoZ0nomhk56RSsTCbXRAe4WOHfiHPnHT2Is2Hcep3ryrCLIl64kzKRSNKo5T3sFD55RwD3HwX2ZN2t8PrsuqadQQe2lRCG/nEycfcP1xw+2lWEmJYWFlq0oQJ9FK5uXXtPfPYvm14NxxiGfUiBovvop6h52fzyD2mZbNLzRBoznJ6nyuNxyoCEekgmYlZBkTnVRmrsLtZDEEfV89rogeJnj3efYQ40DZ4gArGFM/iiRVgW67g1VmejiOz/QSRpVDjl+Ab+7AtoGJDmoEi1Qr7uhfs5X3RC/17CjGi2VfV5r7vstXAgtwiNGuDnTNZIB5liBnBiQVZZsQEj7CfOQ3gQYj1O89kscXzPt7nXH6ue8/oaGs6A+l8ICekK9nG3aFomkPp+9iRxfAZ/GKSZEQ6Cv0b5fqbdr1VIDdcoHDqNGNZ/HXLZyqlZO5RR228moOhlVJ8e2Ms60crpFVluezfVhBOVVrZylluGZtqEqDHuFUfpUZAqqutZDvvtO2Bghb39Eoy3PjxTzxl83MTJbkSB7pZ72dHzz2yd6NGutZTClljW2VtO8WI5lrrzBIPBPfz13bOeG0hhG/mE6em6P9LFLGfb4tlPaK5acFVssTMdqEJfhBPo5hdEc/QBEJ4TwcQ9El963eUwVWv88yDLaU0vAV7fArKIUxWWxwKes8GqJ6+F2otJucSwMF4EhNOq1R57NCeXZqafdbkyxB9uKdeHGVLn1NUP4LuAV1D3sQW9o0J+Un/vvsk6ucqXj69W0hJZhFzhaWweRRy3aa2E/GAGHJG8zQ9cZKLbdWO1XH8Q+vYt9YEM964e6ISXIinrcPa0dAz/sxpfqQn6Mtfs36KD/b7YMMp7osxhZrPE16BUct77XpLbeL9jS5+efJwK3LcGJiToZNsCsd8L6DxMlQk+ipx1igGGQ165xe8Eq7UduenVA1IRLsMYs4lqgSKV5SpwlbiD3YQ8lLBtEL8rC+xpRA8BcmI3Aq9bgyQGcmkCn2F9wuaRVeXXbfky9h5Mp3Qc+PD4o7KKhrhxdYfbMhAyXa7M1xHRAWlraJ6DHpxvoOmrBy27qBOIwaqihLdjR1OmwGt7eDaZdCxsaAhYVWtT7LKLlxLad5RlLYWFq6+HVS7gZGUyQtgaK+aXwM//1Ha6XVz5n0fschQ2AG3Bl37pQEXOndizk3sNugR2HEr+c9E1EwYIGpfbMMbSuVcR4T+EmVj8L1vdRhXQa+exG3xiXZ2hyoyUYO4YTLz0G3/5y7O1H2e0YiraBIir2wQjhZ0nieg7r2gG1bU/VSt72CdrDCum0a31J8wvDVTstsi196yEpLIAPTqhiDj/WwtkxHHJiSKpQ5AbuW4Uv7AaMAwDrFLUZdZTlRQJMEzgStDzaOMsCOrctZ1Qtg0U4i3DY+HmO6yFz0+KjAI0R7jTCyqNbVHtQdoAplA+foZpWzMalKu3j0nnWbeJ5sFrObgTcvoazCDDLTQCiKzOjwg2xPrv3xBngl3/x12plcsMg28bVcvXNsc1iAbTVlSp+C1pzz/hXqrRXyQuUVqwnXffCkoB6OcIXnrE4tXuoNZQMKMJ0qAYqQQHyJWi80DAm5jXCPDu53Jlo8gAhetrPEMH10nuFsdU0JEkmTTRE/txU18ikgqIO/lrvwGV22l/DG8oz0ZS3e4/BD90Mr8zh794CLz+mn6d7sdFCFFLSlQIN292CAF72+QxeJtHQlx3oYTLIju+QVRbptZK++YvH+/30L/zK5Y3Pb1L/amc6nh+6GV6Vw5tugXtvqJ+zwNO26JiGx0MUTmFeOK2YR473BqtPMR8a79etN4g/V622LpP33tlyzvW5MkLVzrCdAtvJqdzLdnKGnZxZbuYiOdPrk36eG5baOUPnZR+1DMbxKWm5kOReC/meO6CVI//lQZUFP/sM8vi5sF98Wh1GFfUhmhqTAi6n46z9L5Flpd5aWjmFs8zIeIqp0DXqz/PLxcstUr9+boRZBiNjkipCzhF12xHsk3tgYVRZus7TTgVv+/V3I7MSGYEsd7QSgziZ0dEGjyI/Jirt6b3DGBvGhPB5YWiVZShbaAFGM43sKhQs9AsC97lrGOAO0fSmAUl4PFCZBhhdaii7dwU+v1vHpLJgz08pD/YdLxC3rrSDTwvc4g3lRMXdR7k1H15tnblnWbhqCXbiwOgm+jy30OoqInpP7yTeT/ep8QUjakzKlVb2c2ErUyXedgrsG27Afug4dlZRPXXe5fsTcv4rgYEI54CbqfPJ1DhRu7fra+pQUd4OMnAGpSlYV1VkS7TsGmEdN/CmLtaCIbfxfr2tRP0LG3pdV446GLzcs+sJAfwV6jTxQpgfV6u9YJX2009/5tJz2psCQertKPKAIh8iJNLrOKvnrnutJ5drCnSAEyBM3eqdCax24KY2fPwU9FPGnvTlueNttbbf/AUgOtD++dBlE9HkrUB11GDObLLiFb2dGfQ7+HJvITQ0nbTrqKXP0dklEAPrIgpElBfYcRV27Az1mGugF8hOhfQiUj4SPbey3NVQOKfULVvLIAEuUzRzRwaGY1g2yZIQ/u9/+7svg1rtM75kXKnFclVUICcHO5ip8uE8wP2KiPa+OYbDWfA6+iZLbWSncl50bYW1DLABkGZiLYW7n1hg1yJ9p/xDYFhheEUaupgz6moucdXKONPO6bvQRlpZjZi72Y4ewOTavrbvbKY53233LMymVaXCjyf1rrsOCkCnIHeeg0mg3B4DwIMMujFPSpVCDvbink4Zx8tX4PNnCCUgQRFNM/1Zmv+ZRqckPCwIW/7zFjBpZZor765nHUL3OQvHwu/Vs+7nJxcJCrsR4dYM/uSuNViBagxTgerAKuWsopxVzFzpogBClyLqPritXnbnDbQ+n91oWZ0yMwEw6GHg5clzygR+8Ef+RhD4axElbQODRGmfub3SSljbvoT/ylvNyEUU/o8BJ5PzUiv8GbS0VLhGIHlOIDbpw8RFYaFgle5iUs6C1OONRz2JQqZvA+bD4/2lr2Ss0nhBrNPuy72l54aIDXA1q2kwRHeVQz04r4IZo0pTJ+Y6feUPTg3lRq/bzlQ5bxlVZN/4Wj36zwsTUjdq19jnBa5WO+pt2jZwUoTb82TfGEN2rEf26K5GTDVLzEl6F/gHf//7Lm+ABjVQ+XEVRtP5XnEj/ODr4L4bHYhiFsa3CGk93SL+/ZzSvs8Rkjx2W0eO3wCOE0NkM+YV9+e6Ldq7Gfosz1DPU9VcbYMtMqo8o8oMu249Xqg2eurFB+hnhnE753w7Y7uVaRhyyxmfC+P+z5Dvfin03a9OAb98HHnibDRgO825g+49j12x3xrdNzTee2tbLomorGB3zKxj8JFynr/VwuSb4zUCWcbYgY14QGIrYO/qwBNbVJOSSeXqtLsysX/rr/1l2BkjGVBkLIkD1JToYff7ft/weM/mhMb8eL4M2WzGNHn21XDKrKdr9xQqv70806gYMRoxtMICMDqjmCsBjC68qPPsBLumOj90IHQxcsCKRpQ9bUxQalN6mdo3fTOub2luO0DHCLMcmMxitZlWzjZwwE2CTy9PafiiVluvmYFMHR/9wnDeAzOKYFe1Ko4F7Nuepnr8LNbxcR2b8LSozLEONd6Y8oRaS55jeIYI5EI2ciaX6QwcGK/WoE/wl+bkvIs05zSg+SzFwK19+PQ5xXVw59RkdqMVWzxkiKeBVeP/a9lesEq7tVUtPL654Re2RcLBaAyP7iBfPgNI/ffu/BZwwn20ntwvEPD0vkZcYmZDcRfg1QeVEn95V8Fj5rT+ulL0XLZFTL1F3eJUekU9JdwIHOmTjWbcPHBIyOdADnbjZk7DJi955z13LRAciWBtAGuOEM+KHCY+fNwyrhQR3YPLabm3XlRCU+a3ViA7iqRKZenYmIMFMHCKP9Yie2NMT3/rgfvareJZGzrS1B496pt1440SUI3LcP4Q6wQWZ5Q4b5Fm+T5QIJ3daVzC1rJiVTYPHkELrcQ8KbszWGpFgaDJkDMD7ZyqnZN1Ms539L3t5JzuGDqdHNvOYx+ITMtNf1TmJX6PgXxaqqLjp3MwQVz5m+ANMnUFSwR1e4wm5MAkAM+5G1oiqJy1GhqfoUCTcWFFD9jta9gBcHIvRNMzqYLSHkOexb+pCTHpRvVMPgemrczB6FrsGKqulqE5I8Ih96PMz5Wbr8yoJyUTjXLIM0PrlsN87H+4mclrlpi94SCzB85RnRswm1bMJiXWe9t9LrsPjf/ceXjFSpBKqsxQBsVdvex+2X8BVdpTgbrTaZGLhD76MaqnvQxzHWp9+5rNTdfQVSIuixR2QZVyD0SXAsNZ1NNeq9FOg8SHP8lxFdibxp5PwOQxjxZUudp1v/H3qmEzLDpeJh9ZxD87qNKQjisdm38PEOoWNQ0T6y3dE6AIl93U014/XjHvS5VWX9e7l8c6322nQLVNMPY1x15TeJKuraIVWisjfNEYDhphySvrTrA0Ny+Tff6cTkHT+N74v91OfYoXbyLilD83Dj++TlZ/+XOKeZFv0bMFl1bj3s8p7A3pdEYDOZ6IGn8LmkqQEcPiMyEgxz+Xze85mFdkDuCM1MzvXZKjl3kKGmtiwRpJ98OKEc61MnbbWi6y8iHyieIuRaYoc0m/5LOnlJ67C4lEh8kuC4wHC8SBudB4977rI5ImJd1ByazdqXnYazyY+lrx7zuZMMqcpz08XINd7cJKh5mLMul5UFoL7SLH7ExhyVVfQdhyk+jDyH3zSnvz/uHoftf8zBSQlaWuYZ+SN640YgJ4xMIdohU4vF0R4A6YB6PDhbWnUXEJz2YbODWoVYmx20PKg4ULHfch8sJJtDSkj04KXvZkrTTbfuOdFJny24nmfpMbtkWXUE0caDo/Gteu0W0XkWRzQzc3bLuoRXLBPqawo1Xm9shDp4PcXwHWGI6LcHPjmlnjGO7dMESkR9vJyKfO017NoCdsWx1Dzz9jd/6+BoFFcxk9VKnQq8dbl+GpkQNVjhHAxnlsDUJPXNUQ5ulD+v+1ai9YpR3miVn6gNNWA3RJKfCXz2i8VAW87QTy+JlwfkoA+8AzqIXOh3M2rUu1e/mQtlRxNwJdR6pmej++dNr/qH58jtt+TL1Ng6kbBx4ialmsvDaYGfZWutxybqjgI8MBstxx09xE5TZXLpxdoxYIqsSloWXqhFVgslxQJc6+Pety2h1aKlsDWM3DtXBeGBG0BvhewOAnxzpnofPaW+h4CWk4gW6GzxE1kEggVz5nKXFNL3cQBYeZ5AJVia90OsCFxzvJRnZGsN5tPEeQpQzZdb4at7TbWM2TtGqxnWHpCNEbPxlr3d20g26urCfuRrDtDOnkbHVzBZXp5pzpFCy1Mj2fxUJ2GGug1e6bQujMnKHPWj1zewTLWdx+XoAh+R+gLbA7pmVtFBBAQ9Z8fpsHozs/gSNFZBp+spNwO3vPKvYRDSvU8m8lNhdKhE7CqeYEKT8/Uh9vCxjnqrTbqRqXFD1enTkH03Xt5ke7o6kImctzk8Lw8iLj47ccwf75l1F+/c1ULz9G+ZtfptydUE4rDZGfVlFhtxYe33IMcRVv5a7VZc8kCPqbqNLrlfaMODVGEs9cmHujVnjfgtI+NzmXxtEvsTX3jP//KEq+d4gM3CsAHjm+uS794w8XTnlQr6VVI9z+kJF1Y4uDWQaGDZo5hEvHdLmEsS4S2vuo4nCaKIDuy/uaxMVPmi/7Bhqm4mrxztO1Z0HfRFRZTZVZDy7mP+sW0Cn2rffdfCy+rRIBBj+fCS81Du8gw0WogLmxTTYAE+owJfy8SaCudHztTCMCO4ni3m383543SNS6Q/3Y9LTDYi97Ze1C5Hifz/464trwynqGIsc/1wJo2HPMr+sj6B5t7lsfKIX7bBd97un1atf2Szf5HHSfbhpht2XIXbSYbWnJSHGREpIb5PURk0AAXnvM1X03GKcg9Yjo8Us01mcyxtq4xcuuMQy5LTApgMmM9SHY1STKzc+PeOyO+nh8K4wwMopf5POX1GkjcNcB5PFdcjTKzudfAyGqTkRYERj4K7sx+n8HzONzNPtR20b+pzmY4UzXsAWL4q7MWi0qER5Ac64FnEFY5+UO4FH9Sc3bPvMe5yZORpHBXcsRRb7SlVOeKbG+3JvgSqJpaPxNzgBdU9gT/ps2fQTJ5Lu3PWCc5TCtFKy2gIk4TzQQctnNhclMMyJR504V9dVCOJebgE9V3XtIjQ+lM2i8+liYkzIzWKORNbcm9wpOIRb7l/y69EZNbzSqugX52EUqjmZULeWra/4Zu981VbdLav4ZBkbl3t/iuOYzI3j8DB6c19/PiqLHW5TepYr6cxEaDy9gpX1l/dYL1mmfa03FWJhHYX3gZGPz6Ps2qrSvNe6RGglq901z7FLF/aEz1NqnTy7wtj/3bT+mPgdUI0Qvu0n+F+HMkTVuPqMeMXN2gKw70DOTMISmheM6aQbXTzyhiHOyLjCUAkZx846AzHuhscjOAFnLlVEmz1NEYKUF50tENTS6wMRba0mA0SqQEbDSjkzJCO/7vT+Owt8VtkBQTQJKhzKFLrBdGGwZFSPNQ3cKGRbO7CHreSBsgYgu57DrQntRpPlW5cbnrkMFnQSkTTYnqiiHyffzHomz73PXCHs+3yoznDfCCosFmFq/xAsv7loikGUcKCsNjff9HY4QF6oYPOv6g8SrLUg/h/FYPdqoMYL4CBNPO1ru7WCSheil2Fq43Sr2i4pIawFblsFzXIQ+03iT9C0ZN+KFb+eqH0/VSu5SAk6KA61xgpyRmEKQi3p1veIuheH2tuGLhWGWGyoD5VevU962RvXuLzEbzagmZR1BvgIe3IJXHCRF/p9l6m3wnnaf+/15FEvBG0C9EfQPPvRRN02Nhd42Wt/bG7amPiLk2e2Ji7WmEOLnrI96hU5Tz2eHunKb/sY/+vAsUwPcUht2Z9GoNUU9chKfd0ec908iDUrR49OlciVT0txLnkR3USGq6WmnMbYwpnSwfrwHuq5umlVsgrZZ3MlnacgVI5o/3C1Uge0XihngPe5ts7/CvkCo9a811MkG8AUj3OXGZkRCWkl+pI8pLbKJ1oWf4+fxwbzvAx+58vG13fj8mPw4u4Uqhhcw7DZ5uxAjKWCxx9kfK1RZT0Pk/dp/gEZ9dmJY/Fyqy3PQ5qrBENdzqNVOAiBp58e7x/4Oobm9kgzvAOqhG4iQtYyC3BUaek9Ly0fSyeCeY4q18OoC+ZHbMHcd1bXpFCcxEuqa+zrtJPdPj/t+7mh+BxjnOYxLst0KaXciH0llHqTOA5NjboSBS/m0jsYHfKNbexQntzk0mIC1AXD3j/74k8juDOkpleqIuJJv8eX3/JRY8u2C40nGBUAmmGmJWAdGZzWty660GFh4HOFVmUS/mSM9t6Ph8anBpsSVNpMGGJ3n2feswhfORM1tT3Pnq7WOK4kW89qfNsKNyQNKvcRewa2NNZBLqa3XjgjDIteNNy6hbdgGMtQb7K/dvMeiFvhRINMChWEpN5xzXnfbMnD7UewP3op9fYfqh2+jvOuoGiMcun6ZGZ6C4Glv5uob5vd8yvrCMwSMc97YaYkdzRbXoKfOWi65NQ0vvhNDZ6acgfzyCeSJ6KjVm5hwfw9G96Kn/Sq1spzUgUIkeb/oB9G9FB/k6xoWz9fcEPMc3DmeuZ0g5vXBvK5du6eReXCcxv0ARX01jcX1PLX9mHqa26HWURPKP4QQeYGnjwiHT27pb7cnmNU23opVU2afhcf4WrUYWuT7G/NploG9doEdWJ+mzcxaVr3prbKwUYVa3144D/O40lZwltEMQWtPDxMqMKmsKpJDl1rgyo95xXFlqRcp3ZWOj1TIdmN1z2NVYKswwUOLtQHkShyqtWxOkLUCj/juFW2WMmRvGkLisFpzfs9JRSOrho2ADGstTMbQ15C9uqLcIOxEICxQxj6FutK+aM8771eTSWEyVma+ZrwrZbddIstFUPC9YSl4H9zv6bdhCt2yUkeCs+rjkeO94m6BcwPNk0/XuphauJ19yQrsVthTLhCzLKEQhtIk2PNhZSbMVVwPLYFhO6MaAeMZ1mlzOwgT4KiP+iBuwxjKKphWhikMpjDcWKiX6AmTaT1jk1F9/Q3M2m3Kd3x5Pq99VsHnthSsx9FYtcq7lzgwOqLS7vPZU2a/vNx30S2NARdZ1CxAQ+W9Oz4VDpq/e5attmeSI6hi3gyRBwV1POTe134rgkSUS3eCOy45TzsAFlNZBbBKxtcV2JW6sDBC98ciun25U7Df1HmlfYjyvvSZpfMSflxjiu6bNSeOb43V+NJqiCRX+7llqrxLO0M6zsuZXTy6q0kv/GsNjQ4pgc+JcIdRupUZ0YC6TMie2iD3tqRQF97v/fqmXl5eBCt2meMrsjjGfH9jRDo2f0xpbJtolN9PYYdGWHzy/ml0zd/HAoVdnvvQeN9q0SDEZ+mBZS3zAnj6fo86+Nui+Wt62QXlTVu4vSkChXraQ267S3GQbq5YCz/4WuTeG1Sh9+CqLr3B874hKoNI8yX1LRO8ktTXcCEwyHKqScXaeKw5f34c3lAu7KuwgzMK5+JK/aLar3Pe0GsxOrTEa0/40HHlrb1eF9kbK1I9WolnR7QCg0XDrP18T7lIWTsvbySLV0CR0J2zIazjPajygkeBm0QLNXkeo4Zr4Q7UCTcHRoeCp86B0YnAHatw3sLZoWLHnBtQLQmlK/cWSiCLcNzAzRLR3L0BySu4i5TaIP8k3ugWMO7lMAM7qaiynF2rMhtmnlZdiPYvMmKRGZaLjPOF0TKIDgDY3nWM6m+8CnvPsRAtUhZaGQEjHIdaeHxzjM0W0zEaaywzzDJgONFydpmwhbCG0kyBAA59sfEtuGnU+VL96nOn66d99nQIpxf3Gy+v7rGYTlzr9oJV2ve2T+4rtCxsqbLuQV1SFNa/ewtyzzFV1L0l0RGyDsqc1plfQDEMK965FiLvve2tDO4+Cj/YQLW9AOrrc9X2Y+ppnfZgdXdERYmUV+SFLx/u0dsZIZsDKEFWOlEBTgXV54mRX6wp0ZEA7OENDjcI7LQEO52GzbtnY0i77I11SI45ee0vIMlnBpZANtVV38IyxgYGN8GFhu1NtISa/62bqq9/wyuf9Zw5vhcVt8xfUtT7kOfYGaH+5ARouQcuw5l6/w50cbRUPxfBLLdhF1U00MnpWcvIRRUMLYj1Je1cKsGOVWE65TjG2VQTjxfU19+WO66ymFEFxtf83D1LsoystJzA8ngFTCuk1Ofm58jv95jn5/4vMjBwYDBhGrR0otaW5rRvDuBwESfdm8AT+mOLDHvnKjw61H01BVtkDHFML6UliWPSr69aBAHKZCoMFaUDodNyN2fRSJGWRB4WukViVzSCaecBPOlAy/CfC8MjYqhyFUyqv3wrs2pG+ZtPYqelQklbC1/aUAvPzUt6k9w477rLZc9NDWna12f3njk/NX/mz7wq5sMFY4doSHAa7jMtF7hlrj5RSefJv/ftBupKe4XumR1UaU9/E9ZhGFPjJv0c9tRLJQ5kT1weql/TS9Q9orCPp71xvOSxNrrmjz00ewzivmuuIUkvkk5USnTWgPNDGJR1T/t1xBf2oymrKO15EvXA3WKchz2Lnnbz0Km6sPrpk3NSpt+rf/ZrX/3cDKjRmssO4jby9oYgmNq6cDqjgRyPvv8UWuqtzWIAuudL+Kx5FInr9DCaLuRbZRcL5M0ya6mCnD7WsHzdd2uogWdAVPqlyLCtXI0sLYP4dAYfKdHJMIVEkER3Ue9p306vxXw/0j7qsZ7a2UMYtXJmM8vK5oi8TeDj4giMcYOoXTu5RhcYGoklfjOc8q5zdub2Fe54dFNpmAuPf9199yAbI8RZ2ZcMDnkcVdyT64/QNXQxOpb2SxCV4Ut1hnismXI2oyoKHraN0HiJ/OYQ+4DRQR2MLgWUbuXw0j48vAXWYs9PqdY7sRwa1uV8C8eROaVWCJkFc60ZIeP/awGjLIcJmn5X5OyIJJ5onYfobFpw8dq5ydp1n68UhhMOe8F2khKIbX1vW4aqyCjzTHk5aqy7JRlXU3FfdO/I0uPiy4FRO4dRSVWW2MIEZHxIjAwmyoWXHLkTJty9FpTLFEBeo1Eukulz8NEny0SlHSJNfNHT/izbE+7oB7lILvJNMhOBWjyBbGdq8fyB18J9N6iHw73IY7iZZ24HqQsuqSA811K019wRmE6u9/mB186j2haLUV+fq3bJTD0zwcuuXncVzE62C2b9Ah4ZY1azWOfYM7wQF/Q8S2f7NE9w0mcLyog3ehCS2q1D+fae9o2x1mKXJA3AyarBY9vruNJolo5VIDtJvNEFFhmW0G4HCUHgqgm1PpLAR2mnxHtNYKOl+c++nMnQam66WGBjqOZqF7bnBXEB6CvIDMOIjl9YB/BtNZS866iduOvLFFhpR6HAWaSR+f3bhVDOZQc1buTU+99wZEXLrJ979PudVsbDfdgy8JYKjm8PoQOSZ8Gar79P5t9fyCmP3cGUKT5SW0m3N3RYn999poKD3SjpBS4ptTwr+/Jl7OMabmenQJ4FD42/d6pMpYJMbSmIczwXuHxzC0XhAHFiqaM01zFd6wU+dFDDbz9fGD5dGL7cyvjJIuMLYqjyjLKVU/61l1Ge3KH68MkYI/u5LbjvsE68G581CuhTGlV0vKA/Bb4I3OPGkIbH+xz7ueYqewSuObOaqJkulGQurlbbL8xW0Lz2NDfWG0hAQ2RrPMK/TyWXdKH3M9hxUTbTCmPRUobue0Hp8B4KduTvN6YORJfywCuZBmkcDVFZONoYUzo2SS+Qji8QGoHVnqaNzGbQMfUbXSet6WX387mKGi4+j1u3jg6KCFmmynv2yqN1QeurGhF0pvbt89Kaz1eIRp+mYT49VtbOIcen+eweNT7sYaLi/rwp7VJ/hv6ZhhKuJOHxyf+4z3yZtUV7wh9lwWsVVdo93kT4fa6yn3EAdSmAoLQzpFtgO4WuLfc7X2Z4zGIU+/TomySdSVHoR72cyQzWxyPyvuOg/rysrvAt2pYdFFPDGkOlbnk1Prsfnr15icNbA9gbYx2vF2thOMZ01RTbQh0iW26T+XJvoEaOmtK+D11PeTqgMvxE++ftutVkRrWsIHR3GXXEBHu5iSDDL2MfMDqgjAypnht97xp8UVeQ3ZxSHta6PyVJKTvguMBNpp6KmAK1NZsOK0Z7+rF2gJ12rsR/CnYpZ8uinmgRhzg/L2osaqmBKT13XYRnWoayk1EVmYL4tTNoG2wno2pnzJyn3YoEo5evSJPKEvvpQkLy3BL+1BdhULQ09H+qBt09FtSgJ17/Utu841RUcb+r7jiVu4+p0yjRZUD33C77ROVcY639+ecW16hleYf/HXjQ/d8krAubV6RT8JY0P6yjYaIUWcgxTZmbV9r9fbycsnChiihRaZkIirMQ8TVR7p/HdiGmXvPyCIFg20yF8gphS4Tq6Brm8ZPISi+GxJiGp/06XZEGnMLnEOTdc10VOJUDu1NwHuSJtfSdt1V2LSzVkdX9wghE9FAH2dDzO07wqRKvdtcS8tnDWnK/P7uxfWFqfBnjMwlj8PL0msA5l//MVAuPa+itjlW2q7nnGcZnRKnbzhivTnSxDBxRm7jx6soR8NUFOkl4vL9WgyH79efzirZQhch/t+gVp05qypYATy4bimlODuwZy+d3Z0gvD/2QpD+eyeh37o7dNkfGFTOX529Lp7BbYk77tjMxrLmd46Uh8YzDxHzAW1fUjfLMrnodnHe144WpZKz7HpPzpm2oqlLrnfZzp0gKR9xJXndImWsIY8UJ2pnh/a2cadtQtgw7LcPvFuptt7nB9lqUf+MO7KfPwMdOaY7yF3e09rwhjC+gxmdZqM1eAl9yz/Qm14cAQgdsntusg7X55ktojZ1YPa1cqbTkpPC7Z7lJGi2dq1TYSWu1gwp6Z1GlwDTODYbA+UWqx+VMSz0C4kD20soIoN6yXfePv+eISxfmL9Zq+yhZUz6X9nByXrqnUt7nlYS5EwAO92BjooCCPjx+0fN7Htt+9GQNlZl9mUKTCVmuL5MJWWHI7jyKvPFmeEWukXt3Ha0L+4kx/szZzedwVNr2Wx+ev4/ZPzy+pI4c70u9lShy/GuJykgaFp/DpXvFrnJL92u6HA+h+8bDwjYV91SJ9N7MRQ6hdGmnhoE1lKQPWAASaQTaGaabw5LDJVgqMN1cPfCNPe953zax5Ft6f79Xw5iTKLX0Om2BkcmZbENvbGG5U/ewCzXv/KK10sKtER+albvc9lz3/F4r5+RNa/D4SEu+VRWbG1vINrDSCrLDEsKeeKT1aIAsuXhOe632vO93katMVVZM3LWq8ZSzhaYF3GKStelkDE+f70D5kb9/AKMTx+uaqbRG4K41NcpvjqjOj6hW2/Vyb0Y4b7Smvedxfvv7NbmfNzx4oJOxdgQmZFhbqrfdFOy4Z+qvh79PkOkW36DGw5I9sQ6MRBgXGWUnp2znlB2t1lN1tXJPVWQBPf4p4EaisT3dZ/sq1kKU7yTyihYwXCpi7mMrZxPN5b/UGvQXbD7dxL+83nWflgOVe29InLQSDLKg+7dZq/1FT/uzbAeP3g3AB7h0oUUJp6vL3s6gm9UUas05ykOYUlN4WXfHprVqv0mWzDiU14ay3vX3d31p5RcEkbnWbb/58+MekTBziQq7D43fzpRw5UcLGKLlwSB49oKXyW3G67GlwrUxBAX+kAi7uWAn02BiG6HKqABsTJG1blD0JFkQgdF02jBQwbztPPQjC1On9LUE2LZIp12bNwR+6V2/DTz7eQtKrPFEVtf3YVwZnBbYySygo/tCB2xMkfWem6NIOQMR7ucaJQCay2a1zJsPj2+7lSPWIntTZBkdT7LeQ3SCf6//0iMajLagERY2r2j4OWoqhEbgJbOMdjljZqFfwuuGkPU7ZKJhWibdf1LvjAD023RGiQHL+qNT3K2Fc0N1t6QCO5Ba7H3ZHFtkcMcK9kvOLJEZZsR8qnDfhiHDC1npPCBQFigK/QBsoeHx59H0Dj8n4sbZnJ/gVAC+OTfMioxJYZi1Mr6uiCFytjBUB7pU3/9S+NBJ+CVnMt3bi8JNpl72SpziznxovBekfD+MwK/96gd0zTe90d6YOVGwNqYW8sRf0dwWV5G8NL3sqafdexw8XTxHEtXAAsXB9yvVIhAFS9tye2RaOiElFaKFZXxYaWy7REE3XI4rH/4iHuA97Ycan9cFwOSOiREuDMAABwot+zasohEmnY/0+Dw1SZ9z0vU19Nl+EbgbXMSR0fB4h/+QtTPkvmPwt14TI+h8VF/L1Mb21rf91nM6Lt+atBUiNETT056+n9noiUzffxGN0rmdunfdv3++8tmh/hzTtbrqvk/z2j1GaiqQ+zJrzT2xn4c9jcrYpJ66kv5e0E5J5sq/eSUh9R675kGAvXEuXEPm+xXu47yv6YPOgGE7xwwGzAy6LhMvbYwwmcdP8ccO6lxIc7fVcaNG2oHAqVt78KVzGFfk+z0f+DDGgvRaQVZYEthMmTZqBIIE92bBvPl3cQ5cX52huzerNG3NWqrhjCdzeKkbk9qRpRbVJain3Svtfh14XlX6iIJUYc9EZfVbu/DwFtX2AHswDymi/vgMwkGjc+b5myeJGfPPrDlWST5oA8MelOOplolt5+zQ9EQ7eZELK3uL1q0QwbU30OdbZQqcaIuMyqj32UcgWAggdP6a6bgWgez556VHopyHiyDLWrE8R6E16NfdxS+1Bv2+YzYy7zj1FTe8ztfOQjnGFG9lhai0N416LyrtV9hOP/0ZAL7F/d+0iO7X9EEaFZY8+mpf30tPrZ6pwg6RoHhP+yKhbN/7ubrTEe01h14W7995fsPiQz+ZZ+peNG6C1VSZBGtpZWALYUUEc6iNjGbI408jT50PymFNmLtOm+9rjTGLMs9pO8POpmH8YwvtgIY+gLU8zp262+s5rAcy5Lyqexp2bgNDNtatr/EY6fnCJ+6nRviHb/qeqzJvizxk6mkXNgHyDDsuGQNiXW11QDYGWrYpXRuJV0CWOmpwcEaMFjG/bGihVxE13FGJdBLgN98xP28k9yAKPjPU47CWzk2DcSXfqKfHEfsCtegeQfgbpy3faOH/ZuDmnZK833aMXGKVLe9tD4qTu3q7zfJuRKn1URdUWvbNApydwFov0QCkrpQk2BVWgDuW4NGNwPUmYQTEzZiMNf24acQpjc4vk4qqrevoNHDYjwUVXkK3qAsV/vgq4J8VGdN2xne2DC9rG2XkLrfd5oby5hX4ulW9AcCvPANPnIVMNPImgNBJLfTQg9CFe0sU9P+nv/9988s8nf+RS9KZVpClSrs0zr96rSn0+/fHUCCj1Ft3mkYk1pxglVw4JbRLLV3glUUmJbTi8/dR1S2JCOa+pbWNw2Ubx8ttzd+nnvYmvzMsuE9K49P3BwvYcBavVh5/eR2xAz8+/96/vKJ3ElXaDShwYyvDtAymZcjTqD1vkA9RdHVU93/4f/3+525QSWs+W38saHjabV049cp6WurNoqHxryYxkBIV9+cznx32kdHc8Rix8sNc2Ks7pkB0TR6TLuvmelkjAtEtrGwk80t+Pw93jxjK75X2tB/N+VUaU8/99f2ciaFzdpfdbhF/64lSKhAkH6d9aeOM1d4LnXvjsyqqmyIMblpGhmPYGCAW/vY3fBOsxD4h0BNh4LSwIEsl99hvjfp/5sDyHCFancyCp53plMcKw6slhv2H1GYTlVsPRjekER5vYSZJVMFciPw6fP4c1ZmScrWFRSLqvMAJgWOJUT3ltfsFmvo5T0PjQWWprTaaVmRLyDK2rDPWOoeZMfoMLsUTHQ00df6/ghr4Q6pIYsQqbaQDlno+e8oPvPywX8nJWB0ojrEFbLYLGDlXiKtBv5TwTohr6ErEYMm9wm5olssUp8ibdq6lGZPn1iOGx7Ngbq5le8Eq7QA/jtYITeWE9LhfE5E6ymzbedmNzBMGovBygLoQli6sC97POMRX71nv5ArGlV8/Ncv3I5geDKzG1E2Sw2OE8+JKUOwMKUaQPw3mV59CnjrrnC7CJVGV57EF3hUIYAwf67ZzZOyRwi1jazWf1FrY20NWYri3JIvCuOoD0s+Qoathj4K8DUrLpLQYrObH74zVC+3XVarsXYV5SwWXQABFgcpKoHT1QIfOiGDc+GR7D1ay2Cev1Ibw3jayPdX3VgH6Bo7iT62thb3JHtBL6sSGjZtgAST99fvOA/LsV+5NLxEnyQCFCG1U4WkDXTHcMiv5kUx4pRE6O0Pa3Zw2Gm6Wuf7E6yVHAVaE3ngcxqlh8e5fz+HOT+CIC1pODVWpwp4q7reu6HWcrWaEL/km8+Nr9Mt/6MdtMzS9YTzFdrTE2hngoInRLiFtoNk9d31vO3wF8LW5UXCaIqN03vaAIpsLbOxSa585BU5h13x2BfRJQeg+T93T7j0fuUQDYW2t+8H2cJ5262p9L2Br14COpnsmVcKPuu83qNdov6ByK6ahybv+9t3DH8yQaYm06mGyiEaY1EpvEtHj4SJr5BJbKtD5l38mH0fT0BbNR/0iCc1KLYMHeioBlajQtKijzzNvqNFFouDko3uO4YJo0NxYaWVkrYy8ZTDNtLfwytVo/zy3Rbzdv+/S4O/J0eexz5L33uv2KTQ0vha1IzFEfq5043PYmvs1XauHiOCK+ynuPjy+OW9zhrjGZ6voMt8h7s1F3vlF/a3dx/3ee6F7+5zXvFbt8/TLPnQGM3b7nbDJUyXK6X+L+Q0xZ9yCAtEZBaWrXPm3mYhGP910AHl07KLqSo0clHj9ZYENSRDkiVEe7QX3vZQxUwjZtGSKe56TGafbOS+ThLcI5CS4PlwYjM66KDGH0lrX/O9eg1MzrYiSlHuzbr0/ZbTcW41WJq99w9fFH6X2DKsc7GCGHU/BkdF1f93GfS6045rnp3O5SnR2p0qq3x+ljd95T3vKI4QLY1iIG6BfB36xKd4CsDHEZs0a9NScOxcb34WaFFksBdr1TtMM+oXS7paZ0/t20SjuB1lMG69le/45xjVsXy1qlSm4wKa+jLYfgTjpjk9xCYLLxe4h11+I+IWYugdESResetgdkqgIuwhrxsCXNnVuWmAqMJ87HYBOgFpu3/XWwvMUr+BEAlp0CsRCNasCFlYHC6VFdoADneiZbSi1IqIlwHYIsXh9p3sMSXK+R2PomKDMekJ3tYRZ3zUNi4+WyxxYFWGaZ1SlIr/3fI32soIdkIPdSEATc6eA1jAfOQR964UVS1VZxURzpkkBBeNb9nn7kRp7S6wPUfdEK8VU2GYBcnxD0HATHgSNbnLsZtCfzuj7/88PaS9ndNDcsRR3IezPlJC3obc7diXfLNZ52q2rA2gBzuxpKLCJfYnSHUEI8CHy5Bl2WeDsDE5sMENimGDiylxIlzwDdJ9URmBWwmyK7WmYphU46Bm160tqIV8EUOiZ8M0iPNYylEFRd952V3fYvr5RvvINN6in3Xvbc6mBVp12z/AOouDkLfR+auZCpf34uqJgNaDh8e0F4fENoedqtCBwJcKOQY1aK8S8dosqAmlZtPSxm/SCqRvLjzlDjXYOZC88X3eKguLo71Jv4GVVT7lAawpx/r6fc/8/DvwTouK+rxCVGmfT57mURBC18+R834Hnny80x5XyeVAh7iGSR5YZTDsn6+Uq+AVsnJj2Jvn1I37ttz58GDYsEE6tppp6Zd3ntA/Q8PjX0PCyE/PZn8+Wgkim61RQZS0FkQyhr4kkvk3Ei1i0N5qf+5ePyjhDvbb6ot+nnzf5GURF3c9r87yFnnYT6V8YtxBCRceuZnpNUXchyGmIfvNYqyLkNoCmSGpu+5YROgJyWxeePK3OjI0SWW+H+yFC32jpyip5KD66LG/csyb6uPNThS/IIVnG+qxi4KLepIQjncIp64JBSzN6nNRUuXwZi8HoSguzprHdv+8VVKtgS0t1YtOlDMQ8/adNLPeW8o8Lha/P8fXwHN09ZzMoZ1DAjigSf5iWRLG9YMRv45Weewj1tENdWfdzkkaUpeHxzSi9hCvP3z8sxsgCOwJnO8BwhG1JowZ96myo0+IraeIMrTXHqSuZaaRuHHgI+Cwqs/wT4AE3dps4IK5lu364xlVua4deRt8QXj4cFq5ccGsSeC+4vNN99r8RGXfK2F8Ik7wfUwmhUSSL1WjuSyVgc8MzhdDODLx8HemCTPRC8tpjull8mb3rzFiRthq6tkSgNgFWCx0rkxljC2KtKts7I8hBOhHQLJUWguLeyVUJ2/N57ZapVaW243O+BzP1uqVeZ4G3v+fDV0Wo9YQ6dYB5Nr0GTLtaD3TqPO1YYHOoz7Odx/H4C3mmupwh246lW6tpAxWMLIywGtrnJCQZj7VOreuQHj0hj8KGP3pGMESV0DSnPT2ntv88LxcVnPru1TNCdzClB/StpX9+zFI/o4eC1OD7Eua+AY7XMXRHY4Y2qc3ujxaX0z7WUGCoT7QRtdgLAeDGisBT55GnpxQltD54nAPPnFNDRSK5zAlSTaHMf14YTFXC3hSbwzmblB/zQoTMCxBeYa8p8yhjPi5C5ZT0Mo/e9qplsPfcoGUrX13AD98Cdx+DwpV4cyXfUkHoIeAlqACYetm9d+7X33E/tZZKb0UegehmVchlnIvjfFZsfb4lS31OAWiWjzpNvUZ709s+J3VD3NdrAoMpMqnmclwFhyLs/vfKhq9tnE7TfjT8csfp33+wcd77iDYGYUHecioRpmMUgcNuxbWem2d3Ja3pZff8H1Rp/19RQLqwbo1gigwTUt1ypFuocLgPzX77f79/4efXujWn2x8LokLmW+ptC3XZEwPcZ9Fok6Mszme/HmzzcxFF6NFjuKSKSOpxB+U3/eRass+r6Xn3pe+GXMA7vmBu5s4hKv2ryWeLzqtdJ7CxRm6704gnPVftxRAUaeVxZiH/9c0D0QFOWdeynl6RHRpD3wjctIJMKji1y2999o+RrsPocUroEuJy2p3SD7Hk7cXG1+B7gd5lOd2pS1sba2zCS9pZ3KPpujR1JPJ9weggRBPMhcg/fga75c59+3GqJ89G448RTiBBqU35wMWqKXinwdzYWwaZzbDDklmue3U1iBaLoyQWtRTvp7mO13A57Y2XD433ivwWug5uZj6P3e+1hfeG2E+/5lAHxawQrUOfF+zh1rupjyl9XY2WOk4Xrbn3N873KCQvetqfZRsPN1k2sGJg2ajHPZdn92DTBegXyW83znk/dcvPdR71fcntQky9GZpprctrdyib5wrDgbbBvOQIs++5jer1feRNL8HcdUzR+HMDCTLj9drqYcMRjXNFYNISGE2DgNOyFrYnmOUW4NIt8MRRouBtnF97LUe2tB5zx2qt96l19dBnlda277fi/Lu5uvuOW6/KAguCBk5584TRjW+vUKV9TPT+y/YMltTLHr3/sX8CSD+D4RTjXBVtC8bCwAPROROlgCJILzsDAHGya6jtSV9BhachqrSsJ597wrZw/3lZRYQ+sGRhxVhWd2csV1ZfGxX95TZFTblI7u/+hGO/oD2aqQErIBe5fPbKamj6CDjcZybCWGBgFKRn7C33Hj3eK+6PnMFYsB2otuFlj26pASGVShY8+0X5/yYXTFVipyW2ZTiFcBglVMY970WAMTWmS6RrN6FW9coIs1ZG5b3thVC2M2wnU9CtN74W7rsROgpUV+aGssgomc9n96Hxvg+p4v7yO2+rjzWVbovcoRvi0OO94rfg3KvYanuGqIwIGi59iuipO828pz1do3FR+S/9e4FuG3ZLmFnEZIlgquf03HEiUWGH6GlPl8mVMHxv1MmJntIW8B2N876L+YoD9QtRn6R0La86NSb93o//OmALYV0Sh2GYN1z8FvMGJ3CC4CXwt7vvvPWq9flSW5Onp71sU/e0p4LpIuR4X+rt1dT3coocfz0InenyS+U5X/YtHWdTCN8jhsfPzZ3U91xz/3kwykuNgtnvHK/0N1NgajRlv+ulfAwJlZAmLr9M3IXEDagW/NPcniRAdO4z60LGveK+a6AtRp0ztxxCHhnyUrMKq3mtnyuinuLK3cQyn+azcD5kMTsUBIqM3GmXo/GEUQH3ZBL2p5Z8U0A6v7/9erggGB3qmAqeDu9pf+CU7o3M/e6LZwNg2wg4Y4SbTD0NLaUpF3pmzbxvBGhlmGmFncwYZqKeaMfXA5+RS/NEB/7eWMMHWKC02zgnXmk/jspgXXedSwXZA0L0S3rjXIRdB0xq85xthH5t7UY5/FqpDum1/d76lsY538J8bru1Tapx9dr1QD+vSRvunWNZiC+nuF8oRONizS/END/rOxvnfCd14UY9VdeB1PEsWkogmxukTwxhqm1qEWyuOa9nWxk9h7xvbj+K+auvQO46hmm5cgpt87yXtLuUlhKioNiiHrRBXsC4YmS9UovG0R3qRatdIqRq6Fmq9HUUmc0qGN0I9US3APbGSA4UJv4OwAivvu8OroZUq1EE/pXQToEbBYaZmnFHOMR3C5y1yEFlqQIu1UHCAhEjsNzSFAGrAHugkQRjZ5QQH0mAhckY6cexxc7NCwu+eQT5LWDZfbbIWpxeK72YoDnr/UxY2puyZGFpe0q7AuPDdlMuZiQaEdIL91pkFQoWBg0J12LPDSkNDHsZuwa2jbAjLsfRwJ4IQ6MAbdaVIrGvOELVBkZgVuET96yRp3l0JvGA1Ji6n7P4nckzzBQNj28bTgscSJiRIAGIR0h+S535esZ+gxvaWdTrMGvlVK1MX+2Myuft9iIaa+W88KVDjfeWeot62u8hXr/pnXv1q+50nV2wELo5jFJPu8wvFD8RV7FdqFa7V9otoYxuKPnml2B6fhjTovEttWC3VE97gozvT+mhYakeRWDgjvvmtF/BWAsiT2uLhi6+AfgZ4FuBXwC+2ujU+3ObfC8YLNOQHn+snGr4+NlrJ4E9iyYiMbzbzUPBPP//LhQnI3jwLnMor37lnVeju5fdajw+6XOPOn9Pj03keL+XP4OGxod9TN2Qcz3IQ00e4aWPg0SAN6+UBKXNfb5DHbG96VGXfT6DyKNqBjW58N5ssCwgyrFNj/+iIxC8h4v61NoewfkZrcGY1MMunh+YC1/f4x6EZqJCazNhJzMelB55WRceO8u9xRri4rh9alZXFLQu1UrGXCKgpp8f1+/wUTenX8HIWp4eVkyKgmV3T+P3qdTXqedBLwNOsA8YHckP0rJhX3VDOMcKVK84ovn9mXAiE4pMWKNuAL8kpdb98R7psCDaOaYEphN2WkY90dJYf8lzv1Brrg3/Wmexpz31ssM8cnzgjVzceZk6QVK8qFnHyWBdrUG/TnLeZUQSXGlrrjWDYnX8JPA/AD+FGiibAJ3Xsj3f6UXXtLWM0L6KAoDBMWyrjHkm8AYLPw38Jup5eIOoUOMV9+L5509Xpe03jA7z4fFeaa9ahhI4KbCWC7ZUiBExWsPW5EK2AEH3em3GLGZ+6yLsFQUHJhVjbBSWN8fQcXliXqFKzZ4SCSpLXWRTyV/PQllahpVjWIOZolkmmmIMz+aqUatAXFPCiYYk7eUZjC0DYNk9aBkO4GC/puRhRHPHfD/7LmFuOIWljua1W+ddtnDAEpR52StdeHwyttQAwDwRbaECwzb1UEE/Ht+lfZv/rhBkVuq/WyMH7yt1buPf23htb3iRzDAtoLM3hl6hllbPvQE2JgxvbjE0hrER9VC5Z59ZtSp3MkMns5A77/zLjlJ9vzB5+Dyz+w7w2E1HksgUCRpBTThzf6KjVt/kRYap0InvFGxYuMdILZddJHoa0ut5r4TYyIRbaPjrcVSBt0Yoi5zKVFCVVBX1ectVkJtlhqqqC0EDlOF7pT1Ljl6g0rqsEjsFieCSwcTXaS9hOS2Mx/yiuYqtJnwRt+NR4AvunLPus7S2s1/aqZEkjM80jkst2JtBUSg4aToUIXiJ9oi1pmFBWOlFBKcLtUKUFpUGqPQ6hcDXWvha974lCi/QcTxwYUtplh/fl8/CYy4+4G0n4I2iURpNl8/z3IoG77fAV1s1XLwPVdi94aKFnvdsnATPdVs0xS1i3XKo2SGpxOX32ogcfwZVdF5F3MOpAeN6EThNQs/CcgSOoBhFXiFJFRSIBowUsd235vvwkniBNff9Ik/7IreFLHj583xqVzj3YtvFyxue2AP2mfP8mY+exAD3ffwU9nALue1wUIyQOsZS2ueUB9dqVlsUv8QYrFQMjNAzBqRCblhCBjNkD8zuuMbrV0WN14iE+R5zgfD4hMdZElkqoXOSZXQm2r9nxhWHC61Oo+xTAg3O3GdC5D+HUCPLl4FXkoDRub1fGkPWwhmKjX557w2UPyzYz52hfN0x7EsPB8yX47lwQ2ZqvGJRdNvCJlEe82tKIKaCjS17LePyveNcXA6yevCyJ3we1NN+LjkvGCRsPYXkOBqBl5L3unFicSfSfSLpP0DplfZWxi7Qaoynvs+uPpNo7r3Cvb4G+DNQ23O1KIRryK+uFxp61Vurs3zxky6ziQhtLFPxOSoqcH+t1QdocGjUTnDpfIUx7f2aiIC1NaLhjy1U6G6Gk1k0zGnWMjyVCavTEnH5vmKcspMbTNtcFwi6l9I8sRCiAo+o5fTcUsFopgByIQ99c4Dctx4JTOKOm1NC1wo4t4fglFoA60DfRpXWck8si/6Hjz35DLe//OqEVCrRrqOJi6ig8UQmMJ1hccCO1mp/X7pENEYkoILpZ32Q7TH024Clg2UIDK2NuX1lBWOQlXZkuomBImXEJhGC0vD4VeqK+r4CTE26cv+0DJTOS749hdWiTpETRUqsDdaNlE/MWi36g1ki2NqQ016emzE53GeIPlulIRaLguG0LJSZgazUspL+vi87BrcfBYRtIxROabd5FhS4dEipUJd+ljnmbgHaOedwKOcy7/hMd2Mw5NiY3y5ugDeijPqr8PVrNbqmtAbrZyFc1CHFW2pI0yWq3B5yr5DPLokHROCxx5/mpUeP1p+ZH2A7Bx/hMC7rltL9QjSuUkvnJ537o8SKd2dQz3sqrDWPerEFfRUUyfbkQEuOeswHarKNIlO7f0ZE8NVF6+NKmojQcU/VGFVep4lwkovygrao4p7vJ0CFxea+zwQeOFk/59On4L4b6tL5NRSCLrVlKE8vUcFd0HF/rYWvd2u1abi4XEHyscef5vaX3HQNer9/8/x90VpJw+OhER5vE+R4Yj77S1EDVUYs75aGyF8PrbYHk/3rcSe23fu0BrMlRrP0k+vMvURCJZjma8397lIR3y/0XZ99Ssf5Y2PtzYU+iyBf3MA41EqzB9UXN+ClR4LyaxICtV8/2kQke4gKLVnJ0AizTOhVoha/p84hQ3hqssnN7wNZL+D2Ixgj9AycEacQumuNiSWVLzxfTXwXT5gyWiO9zvYMWsuFo9muNrsIBQ6MTlSeTxXNO1AwulewAIxOoJWLKux+Yxihuu9GyvtudBWUXJpobni8yLjJxH6mRoKFcoofjwiCdTJQbXSQGSoDpoLzrdytL6ewZ5FHXOj6vqWGrPQe6yhmECwIAycq7sfR6Cu/tzxv9Ma7C7UgG/vxuZub3I0v1xrtx9L1G+4hNZnlajZvcPO03uO0NOco9e1ca0/7V4a2dAVtee3mi590Ba0QRcLsuVdfFK3Rv/pGP/eM+3oIBbsabT9i6fOZfEvDZiywKcIsN6x2cqpOAeGVY9rZpZkAr5Pmczt9WLwnTLnAzOSMhjoXbY+uPhhC34HQ+Zz2kMBKrUQay4I5P3TCk2XPWiqcVW2Alk7z/Ui8zx/+w09dtfGlim7K4NcFdrpQTacMLeTWYi2Y7VkNGT8FogvMQkTry4+cF9ta+hUMK8vIQuZzf4ZTjEXXBcm1vMCwT4hXF1WKYL7kGywgcFGiqX/ekghmtjmD1SQoL7qt8UpuegnvkZj128hUd4DPabLOUFVtDBmvdxkDIxFGCAMrDIABwhBhLMKoncdQu3aO7WTYVsasnbHXzchcmHmaTpKOZA5AxTMZLy0bmGWG86I12j3TEyHUaU8F67DmaawNNBTuaer7vbKa517mRgG3igzJNIzfh9EG8Cr3m88DdyVjSWs5exySD/3uJ/ZXalsmgAwxqfT/eQn2mih+fpmmCPuGqLR77+PhpDt1D3vSLf9lemEBljLYHcO00nQiwJtr/G+7Iuyh85kCZaV7oXm83JaAhTHOAAEAAElEQVSJRJ4nLuXMxNQzzwNbF6LpKdKyf/+6G+rnvP5YkgIiNL19z1cTkWCUCPzezYOXA/ru+wsaLi7QPvS7n7gGPb9422+NNHPa02MTOb4EPomW2fV7Ig09vl7y2SEV+Os0zVcUSRHk09BX71GeM4rJPFmaU5KJSvsF0dCbfW2QPX9sUY/egTrZWHQh72UXH5N99zrVCjAEu4KCBbuJkcDv5IL9SGXAsEaMQ47PNTS84/ayeeQ8Bvjo4Ent5xfPuPB7YRXBCgwTT/uEaOBoztPcGKXO/wQgy8lnli9bWNmDTqZgezkKPJeJ8kavwHuS5Hney4BHiRgONTA6P+HdmAJmuzm2m1O1FZi1ahvKlmHWyng8N8ET3cTG8A6TC7XosPEPWVgGps5IPShyRelnn9fFrp+8AhtCPe3b6fhJQuOTvXECrdEe9lZjjBe6rx9fMEy48bWBsp1Bpkp7KBHsnEv+eK24g5+PTCKNX3Z6nucBgf9JNDBdS8X9BetpP3fy4Wt2be9Bz0U9q97q5DdjR1xo3HUgaFzN5umFtzxBo9yHO/qNXKFhNUtoWEtgKEYV35qX6SugKTFL8mkg5HvRLpgMNXy8CwqINQRZ7wZuJ6m257zSxhEpWSlgoKxv2Vp2LAycd5NBibTb8bfJtX74B77zqgm0nlgHkD33+RIwbMFsWrKLK622O4KMEP7erEHvFXcA+m0kKdvdRpnxDEvLrSd2J7DsGEv6WyMXzKlrE1G609q37qfzAsxCyUMUvMwv5J0pLHcWK1EIao5OuaOeM+u0KXYIG8H60HhrKbf3mN23ylR07CMLD1vhtxH+vAivt974Yyg7gjUVNquwpcVWMDIwNEZz2nN1C+wnvHjGXvvcCKWBrGU4CxQowCBcvHSKt5QbAZN4lG8C/pA6UE+oSwtU1gaBr7K2BuSTAth8HvXWh/u4e+XhvfAjP/Rd2HHZ4PCutQ2MnKe9TDztzwFx8XMhjffeY3fWvQ4m54Qt4v9Px5Ksp3BcymE4QWaVGkHceeLPERVsU6X9kvJAr6AZEbqiQJv+OaaGi4vSojSRNDdQWLjnGPwQ8MmT8FU3aKWBkGwq1497Fh1/D0uOAv9NE6E1Q5deW65MYQf4kR/6rqvV1ctu+/F3X4Ob5JgixvujRcsf/T+Ie7mZz349GF+goaAkR4hl3+6mnsteQeB/zWs09/Z+n2+54+dQmrfonGY/Fx1Bn8unUDyQr2L+3s1mxPFpHwFnDHLrER76Fjj3xS1uuGuVO245okZWhxoo3nh2gf60iTgakMiBuWE4NbTzCipBZgIvP4j91IDvXXuVnnTP4ZAy2DOKGr9FzP0fUfe0N/sRP5AQxen+VRrZElqDKbvADRMLrZwMCZ52I0KBGkFzx9qbYHR/RJ3HhfB4x++yzGDbAnmFnVWh9G9VQSkKvmozw3Hgm5hXar395EKttk4kkH1V2vOC9mTCGWO0BrwXTURUzr4MT3TqQfb9W3efbaH0wM8FRH4+QvfMzcnY/Lj8GC8+vihTezLREyjLGcXjT9G/0XLgtsO1aFAv51xLqpKhCjlSly19v2P/6/N2rdoLVmm/lk1EFGzGWroSrc0hrJPrhzldrdZkSP7YZT7nLd3UZ1FLXXqNWljate32VW1KUCQhRJFgmLYw25kwxlmGt4dIB/U2OmYZtWJ3Pe8xF2C5rVx4UrLcNmyiQngfYDxBDieAb6n5/ipGKggxZMsbJwJITAbVcKZlsMXC5lhzbcWV7Av9MiBl4C4CyFIHdmahtFu7skysZVJpKgBYZFxCu4jzQTI2M6+g+mMPzUFcp762LiYM1a4vaKkp7y7YGMGdq/G85nxXKaaBhA6XnRZLCRCddZzdWsv0XEW51qJE89k/D/wzgbHA+4zwk8DXuJC7UgRaGTYzlC7/ewiMjARL837z4Zl6fSLVMzTLIcs1n/2Qm6ymp2kRIE4Ic0tCB8GVfSMMtwZM4/PefAveuMTL7l8PAj+Y3H8R+vbc4NIBtw2MnKd9lirtUv/tNWhBAHMCX4i+QYX/06gwcwP19Zh6c0JblKiHaKnHTdTT3s3jKYlhZsl52qEu6M6tj6s0D5kTei93XkW0JBSFjdZdQSsM3HtD9ML7aJKWCejW10vzHvfCWi1rSoO3fQXy/v34e5voXQ483g3Y72cfIv8Emqb0cub3sEeOv15akD9sfO8HeJT5sm+ppz2NYll0hMTLbuPcPkisNvBPUTCrr2n8ftEUzdF2q9fyEWb/BMVVal5r/kKakkhukcIibv/NbjvCr956hP/JoGC3bs+JMZDJYgXF9UNQRc4r7an8VxlhO9Nyv9ZolJC85DDy/SAPnsbedwS5/SjijAOSQTczbBsJ1/C0bF9+l/CDrPkZQBeGOyXbQDGeYtZaNVtg4Y55Zmo4Kp7X3UEEo2sxHx7v14VkAlmmoHNFpgq7pVYlxXuiUyNRquBeqKWyRu1UEcZ5zlJryo7UPdGefVyqnN3kZX49ttBnfB7FfPDRJ6nH/Wl0nx9IxrQvn2ve120UcR0OR+DoMxssnS6hgu+//zhnv03g9mMLdYlr0Qz1uvcLj88xvb++uOFXWDMi5KJgd10jtIz+/5XItC/W9luwi4Do0hCas8TQUGg4KLk0YnK9tDm0aBMZWN4DypkDKbOqpPacl92Hi6fe6CTEHSNIniE9tLa71fDx0lqWrHWAdgTlP4SIXSim7krGR/J8JLUvCMuZYGczZlhV7HZADvWDJ9Wk2l9TyV7KkOFIr2u1xNrAKkPuWKvK/BCk147hbSkVdnMWhAWorb/TzNdob1pE69daMGltz/ItDEawmtcnhPi+hh6f9M2uQnekwaTWcTYLsDelQrDrXRXyjfBHIlg3V1bgvSTeat8TtzasEcZuIBcDF5tnKPqnB0yzDNoF5xCOJPswrRqwiME3a616JnwTiiqbousGbwT1ELG0jnMaUns/KvTvURf00/e1lv7vH27HwNQr7dV8JYrmormKLV0iqcEIVMA5hUYbHUq+29doWVvgSZ+XWyogD6aQ1wGJ/NrrEvNtR8T9ANchzS1MVMrbJoaXpq+WU9ivY5BSz/8Ld8y+gnn/fvw9RQZPDfOex6dpLp9CUeMLkpB46uku10tLeXlzb3hPu228QOlULVw7fUl9/mp7HfhAow/vX/D7S+mnYb7U8PuoezUXzbWAi27JYgpWJ6PdzRl3cvJOriHeRaZpOIXipsxdo/HeK4pe5gvNCNuFIcud4S13+/nOo/BXX4ncdTQYCMjVmNfLJUQjgPKG/QyQcx1rKLQicCqDj68ZbAYfX4cz7RQrRZwxKaaALQKjW0LB6NIoMb/my9qAlWdX/iUS5sSjdhxlMS+9GNXw/pA4AfqLNjDq5pDl7FhYE41MvBKa3zw//d0BFiPIp/nsaWi8n8P0eOHxqUAVIiTcQn7Zlzb1Jl0otmH1ke0Y6eqiMK8lT/M03tP3LMhKDpD6eaD31xMdvart4LF7nu8uvODaIqLZYr6Oa8rkmgJrk5l9pQk5mfEe9npYTqsAsztlG0V/ZwtkXdm7QPBGJzHxsXSbI0J0u8jujB6WsbXKEAQthdaph8V6xfEX3/qeqzY2T4QWCTK0DDIrGVinEJyfQK+OjG8aCm4I41rOYGusX1lLjmVgkzr0gGxXsOTz9pvGjYjY7+fTH3uogLWWjOOiDGvRQvYorDMLZytYcfb9Wj8InkDfT7yAJGDb0Nkae43dedstnB9h15WRW1El/c+IY+oGrAjfQr0Emm/+vd9j6Xj2E2LC55754TztJoN+zgngsH/Wpi7oLdqTQYiRROBA57yNWtlTISYI9clAmuBzJRoi+gvu+/8PGuaZejtSJPt//59/oz6wtLUMTJzSPrJRaZ+bqKtPa0KdWOrLRIhK+1liuHwqxPtjbM2F6y7mvOtsD5EayF78fZ/o7RowHx7v+3Q9NBHRZ9ZU1pPcULr6/1cKSOnVav/+P//G83bvhWSROhCdb8HLbqMC/xkiaryhUU5Lrj9hM/VypnvyELHsW+qAAFXaU4jjpqIerp2M2xstvqNx/+9ofK99md+lvhKRP2/Rtb6TZK5ZnFESlJ3CQCvHOiX9eDtjs5vxVNvlZbczaOV6XlMRXnD0SnsqB4byeE4Rt4Ve17QzpJPx9vf9NtLVe5iWGgqqVsZyZthO7jci0rL9+Jxvi4ynD2XQH2sI/PIIHizqz8WXpxQT8VNCipa7xh3EvPY5MLpGH9K0r9QT/RRq5E6v3VTcL9SaPN3nc/cExq0c8ixEgdRZyKWjx3uWE3h8sra90k5jXP7900SlHeYN/Re7vQAmE1c2WCM8xBiO3xUxFyar0Hr5qvtOO2uyKK/+aWnXGx29am1n8/jFT3qxXXJLZciUYHtLfMPgWPO0+3zOZsjMV+JG82FvPqcmcwp8uyUU0ym71mrO984IVp0S6sPEUze2/yxLlNEDHdhTJjW1rk57ZZGhlrFKvdD+N3/hG19/1cdnJOZC+e6utAz5rFQ0V2thaw85GJWM5thq/exlyEgzIwUNiS+tGiY8oA/jiaKAk+hWidcxXXP+BVFgWKa+Lv1Y9OcLxI7mPbyitzvRhbvamT/HcbQwREO0DCNIN2NlojH21ivsFuzGjGq5S+UU9lKEOzKdX4vwLwTuJYLdBMOX21QWFYiadbcXtXS9pZ8VwCjLwIXHH0imIVjGzeLct9o5jf9vIobI+z1fJkedC81/nhGV+hL1NKXt/UTh3gtWfhx/8Rtfv5gAgXptfbjPBBdO3Tj3Grb9hP9jwDOo4n6EOv2T5H2tNQmtJzQt4EypQq40T1PhLfW0t1ksYENzPzw/TUSQVgbdQpX1XnLsF9D+06ewg1vnz0O7EH9flNPuwbi8AW4KfBqtYSwkNdlxpW+5PtZd2tK9mCp6h9HorTDmhA7vshixvclrPOZRjo69JYqs/a/Q+s4/jeaht6QejbCo+e88XkLHXeungW8Gfg74GtFrFbJ/VEPosxFoGWwr48F2zs91MybdjH/VzXmonUMrV6Nagx/sR088X2oadyywbYSsnTtDgDPItTO+/s++DtMyiANa9d7/Zeoe3TFJyHeY4wVkXbw9XSPGMiPkwCszQaRkCpiq5JWF0UgQieBzPsIs5TupMn0xMDoPOov/foHifpx6DfNUBr5ouTcIDpUaXxedGzvYxW7ssvrMBmtuI4v/zX7ztd89SNZyclwjPheoj68CnnTjq8kIEt9fCgie4ixIxFIoDNPbjvCb33ILp1+7wr/59lvhpUe1ak5mXO77tc9pv97a85bTbq3lP/2n/8R73/te9vb2uOuuu/gH/+Af8NKXvnTu3I2NDd7ylrfwwAMPsLm5yerqKt/0Td/ED/3QD9FqLYKpgMlo51oP4U9V249gp0B0QA1p1aKe9hRwxROE/UK4rvdmjPOyiyekOq6VVkY1m1ICgoXNIXJrJ3qbfWh8IrHHnHZHjNsd2J4GoLaxheXxVCey2wrnesURI9z+khuv7vikqVRoH/vtnHym/eoA7A6RlSMIoh52vOIugWKLdhhZbmmyo0PVXwLOWVcy3DO8vQlyKCrKNfT4eMmQR4f7yocqrvr+J+PYl5gvklB9wuVZp/11TP1CYcEKItYdE2YkkPVb9EZl9LBbh4K7NcYe6qt12p2/QXyGx0Rqym7AryMeJ0ThKO323DFKj7XPWyJUowE8tUN+c8bBlxwOiroaoSQw3EXT5XPavZDhn0MTQT4o7lZBeiB6JfwY/fu/BPxOcp/vIHr0fW1nP7+3v+Qm7KyKJweXtqgg6InQDBUOw4QkK+AacfagsNu6h+YocXxNIDpJzqv1L11vaZ9XDZypgqc9VdhB0crTnPamgad5vF6azwV9sWl7rsu9+XYh/t5UxipgaBWE1yvt73Xf7VL39l7I8/t8t2ZEmSedh9H8XZiPHBwwj9i+aG+JCC1raQvMDNhKv/9atDywV+p9aeC21CtVps2DG8+INLUQLTX4tUSjSHqt/aoWpcYFyTN+M4dxpcZ0C/ymEb7KDaZJgvx7afBhn7K1yLizB/SNULUzyARrDVJV3HanqniChsV7A90aKiqQXHONxeuzTjslGIi8gaMEXtoyHPjSJoPXHOWbv7jB2stWyBEKUSNHy5Hb9PdNMLo7gI+ShITbBWB0ROO0V9xTnu7Dx5te9ktWamsTEJX33onz3PzYADODv/+h45hvFbj9aABzu6ActOg+1GUtPwcH0D3h+Xwqp+DG943EfdQc4yXd22hEBpXFlr56kvD5249x4GXH2DWC9SX2CoMUmRqWrkPaci3b86Y3/cqv/Arve9/7+Imf+Ane+c538opXvIJ//I//McPhcO7c4XDILbfcwk/+5E/y3ve+l5/6qZ/iox/9KP/23/7b56Hnf3rbIoLZJjq5YJ7JnecCQHTXsrPXqIl4b3sSliPQ6+T0JpZnLLQtyN4Qlgslr0lOe9SAohLvryEHBHaGtIAJlqmF3t4UutTKw3kmE354FVuqd6fPa7lQ+56dVrRHE2QKrHajkp3FccSX+6zfUmCT4RRQJr8NCB493iKDMfSSeap1aH+h0isna81bJ6+LtnQez0ydGzqVWmTugml+WfCudLQGLKNp/fpnhlQHCq0/K6q4nxHhgIFDIhynzgjTfPA0PL5pnlwkLPruhqN7Bt0T57n1dEl+Cv7uh45z9Jmz0bJu4npexAD9d2mIvBc2PBhdqrSnY/Al77yXPQ0vvNNd/2uAHwdeTfR2CAuAq4LE2GgdZ3v2BqBigZhwDb18+4W8H0FzGXuo8lM7R1istKcfpOuv44x2ubcdSU2QWyKGxw9ZoLTL/Dp5sb3Y0raIv7doIINbjQIbVIpLMkYR4/+T+/6fAg9TD4u/3vLZfaul+7gBG1Rp3yDSqVSm2SWGIEMkSYsiB1sSy//1TCwJuCRaMsqXB/TK9n6Ktgc+7rrf9dxv+yZep2/ivVr7bPTUk+yNBt9OzMO2Rvh26s/Mh4yHviw4+jlMsQ/S+VpyY6Bw3vZugekUmE6uKTAub15Q4/sWke/5qKH97l2bJ3duR3TdthG6ueHwoOL/ZODQLnQ7hRo2gLZo2LwnjovC472n/WnXl0Xh8Smv9l52r9D7z58ieqJTPnA5aSM1h42j/6tf2sTMgC60toFHtubSA71B/lJaashK1/Q6UWlPX95olxolwp5KxnhJ9zUudcNhH9DOkU7GXidjs5NTdDNN6XCRGZKbWn//tLTnjZa+613v4nu/93u5/fbbabfbvOlNb2I6nfL7v//7c+feeOONvPGNb+Smm27CGMNNN93Et33bt/GpT31q3+t3+wevZff/1LX9COXCGp1EwnUazRFbFBp6nUXLXVKLSo4fi8tubxcYC6Nppd7xRKkViHnQjQnwnwlAz2B2h7TQGuZTLK3hDAplW0HwThT+z3zukas8PgkeTiNROV13jLWazljaHCP9HDITjQlQD5H3Q3UhT9IHdjT0vIVlx5mivaddRlOko+paWBdpHjmLhUqf75aGxze97Y0B1o/E/tIGzo+g34mTnV4kMZREhTiOuTDCbluYDSbO2w5Yi90eYVfzmBtp4LSoh/0Gowzd75k0PD5tYxaA0DW6r+8ldjWZx6VHNwOgS2sbOo9s1Zj6xUowesE2FWaEutIOdaEleBsSr4P/vgQeQwXg/yeaCxuqb0g9nx3gM599ZPHgIYIIDlyGYQpEtx/huoqtKfz790fc954TNZX7prARvC2LXFwrjgYUpvaV/0kPQi6o97TvJ2C/2K7fFtb5c9z22yZtlJX5ZlHYiBGu2Anwbxq/eT9OQRQHSif7K6TPZ2vuRf/e79dzzDshUiC6iyqRolUG+gLLktR0NlFx9zWfi4vMTyaaApNea8W9/PWWRBXW/by2RqSWx11QD9n/V2hUpP++mWd/IXrSZ7Gn3Svt4Xei8sBDDz0a0ufS6yzjgvKIEWapsXpfcu4+yIGOCH20XFi3ldPdhd64pDe1tDs5XaAn4uYq/jY1angPsTfi9Lk4GF0q95aN/9Pw+CZA26V4ogViOLgRRIU07J1rTFzO92wFePlaDKU3gDGX5YlOeVj6OoDuB9/S8fsqBseY54OXAkKXjhEjmp7RzqFtyDoZZ7o5pzsZS21N2xAHYpqGxl9vqTfXsj0vSvvu7i4nT57knnsiWFyWZdx555088silMa0/+ZM/4c4779z3+3Z37dl288WWtEX5brB/+Jwl1iS9pNDQr5CmofEJWFvmFLjcUAl0xlP6WyPo+bwbicwpSPRO8BYSRHlBVjuwV9J1JdHGQHeC5sZ7xpkqsAJfePTJqzy+1AsYc6MKgXEOrcmM1l4F671o+fW5SOmDDaH/7sLdFjJUu3TfwrYLr8sBKpABLm+fOFdJp/Zj1t6juOKOTcvrQgLX1Hh8awNn9mC9E78PF3JjlVRh1xv4yxTAdqtNOdBxWmthVmH3wB7suJx2BaB72igY3A1Gap7qZnj8fp72CwmMooAEYKJRpbo7Ye6rwD3rmFyBXLwgcKHcuhqwDHGOb0aNDjX0eOpMvZnL7sf5KOptT6+betnTvnzhkSfjKNNnAlFJ3x7X/28SrWtEcdJln773wv+R5NxmPvt8jySemP6g5z3tJtjF0t/2RULEUwpEd6F18mK7/pqu8+e+XYi/p0b5Ga78JKrA/gyaz5q27yQCpl0oV/t6aE1Dm6dB66gykoLQWWJ4fJO/LN7LqvB2jaiCLqqkL3uFW1SxvJjC3ryWV9iXRV9ecW+bi6NZ+5Bw793vCnytwD9zx65A18Tc+Xbjchfiwx7bqDlfaWSCn6/HHn1yLoBNUE/7RnJdn443R8cWzbeTszqihpUloF9kLE8r+psjlqaWZWPou3nPaxeSGt+5FDA6r7AH7BbqofE+8mwD5d8eiE6YB2q7lObTD8V7U3JDftthfvabb+Gx16zwjm+5BW49rDJprkBuJru8nO/m8/C/O0A0CtdkFZT/30Bi5EnG6P+/lPuGoxFsK6PsFLR6BZvdnKd7Od1eTtUp1MvunEqXev0XUnte6OlgoAFXS0tLtc+XlpbCdxdq/+W//BceeeQR3vKWt+x7zubZLz27Tr7Y5toiAbBDvY5r+jrrvr+k0NCvlJYQC6/UekI8bQmd8YzeoIKV/lz+uT+mEntNAewVINAejJF+j12rXlHTcijtxN94pfb7/vpfutrDq+Xq+9A/gGmR0Z5W5BsV9HvRwpn2KREaajn7S20YgFhoW8sQh7IPIZxcukU4v6bZIHN5dP6YhsennzeZztwgmyeDlp86NYWXFQ3N359vwvl+nsIkoflXe8ttDgQp12I3hpBB1c2xgtYuFzghwh2igtjvUs+Xq5I591M0l9Mu890P33lFPENDzUpLfusRfvpbhL/26BZfvHuNb7n1CGSCcYAumbkwc0/Xuc9vNyizBt3rN9FQ3JlX3NPPHkGFoeC9l7qXPfXOfe93fxO2tLX5Dh3z/w+cTzBvPt9FEt7Va6nwFeo+u1cX+BKKjP8G4rIKSn5TyK4t4OS7JfXHSOGiUWqnCUtEOjymLuia5NwX2/Xdvve7v+l5u/d+/D1Nf/Pe9VPAj7nP/h26/z+EKuxvEAewJtFrez22wF7svLH3ANGDmCBpsE2s097cVxcappaN0vfW2mflGfQgaleyoQsRuqL5whgorGIT+MsVoi+vsOeNfu7Hh9MqA2mU2BZ1DAA/x9/1175poXK4SgTUhMsJj480X3Ch7xY6ecZsUsHmFGlV5BayhH6mFzMiGGvrYHRubaRKe7NWe4U+00URZb6G+UGUF6SG6TSn/WJN0B9IbqB0ZU2tpYXw+EuO8Hu3HaFlJMn1NioHmOh4uZQmjoel/Myg++EskbdDVNx96L/vZzquSwHZS+9bWxNG6Bhhw937FcRrXcxY9kJuz4uRotfTAKPd3d3a57u7u+G7/dp/+A//gfe85z28+c1v5vDhw/ue1+6t8wM/+CZ+9Ed/lB/90R/lPe95Dz/+5l9iPJ6Ec973gY/wBx/5TPj/zNlN3vyv31a7ztv/+/21kLXHHn96rizLv//Pv8Fjjz8d/v/MZx/h7f/9/to5b/7Xb+PM2c3w/x985DO87wMfCf+Px5Prun+T8YR//dNvZTqeBFnyk/d/hGc+9kCwxG+d2+Ttb3lbTWk/8q77efzBRwLBfvqJE7z9l95dI9RfUfMn8LmHHuW9v/W7tZrp73rHe9gsJ/THJd1z8PDOM3zs45/EcQMmkyk/+e9+hfFkEpSI9//+x/nYpx4MlG5re4d3HP8TWjvTMD9//MDHeGz7GW8M5vjTJ/lv//23XF/MVZ+/yXgSjBJ/+JGP89nPPhzGuDUbc/4D78ds78FBgwh84MN/wOcf+XLwtD/21DP84q++Lyi2iPBrv/VBnp7uILslApx99MvY+39PQ+MtyN6EXzn5x2xs74Tr/NGnHuR9v/fxsEjG4wk//9NvDf0D+NT9H+GTH3sA0Nzh3XOb/Ppb3lYj/L/+jsbzfeIEv/jf3hv+R+AXf/O3eezUacgzsPCZ4Une/nt/qN+7/rz5P/4aZzfc/InwsT/+LL/7+38cLjMtZ/z6r76DjTzDbgMWPvrxT/LpzzyMPZhjETa2d/i1X30XiHBS4IiBnd+4n5MPav8scPyJE/z6W99de3Yf/K/v5twTJ4Kn/bEHH+FD77zfd1+f78/r8xWATPjEpx/kD//wT5TJFxlQ8dgf/T6//o23Iy89ihSGP/noJ/jMpx9E8gxjhPPnNvnpn/+V2r39/vCK5tNPnOCdb313UEoL4Ob/+m4+98SJwMS/8NlHeO8774+eCAv//hfextlzm8EL8fDHHuCx+z/CHW4M5XjCf/s5pS+5W3/N/Xv2/CZv/ne/WuPSb//dP+Qzjz2uEtFOyWPTTX7x/ffXzvnFX/1NHnvyRPj/atMXL6hsnNvkv/3/3hYEiQeB/F33M3zwEf5XtMTdM0+c4B3J/ME8ffnM5x/j7b/1uzUJ5s0P/A5nywFS6L77xAMP8ZGPfCIKqZMJhZu/Eepp+uT9H+FBtz8EOH9+k5//+Rf524v9m+/f44/r/hDgkQcf4Xfedb+uK9Rb+p63vI3z5zYZAZ8F/pePPcCR+z/CT6Bhsa8cT3jZz72V104mdJ3C90cf/Aif+NgDZE5guN7m77d++yN87KMPBNlk6/wm73T84wiqtP/Bu+7n0QcfiTnWT5zg8f8a6bMAv/5L7+bJx08EknOx/onI87r+Pv+5R/itd9xfC9H/lbe8jcnGJn0Xav/Axx7gQx+s9+//++a3Mh5Pwjg/dv9HeMjRlxaweW6Td79F++fna+ron29PP3GCX0/kPwF+463v5uQTOn+rwO6Dj/BH79L5G6Jr8N1veRvb5zbDvT/+0Qd4/2/X+/cTv/DLjKcuRUrg/R//JH/8hc/TLaF7bspuNubn3vnuWtrY23/zd/jMw9HB9+TjUT71xuP7/+u7OfzEiaC0P/bgI9z/zvtr3vY3//zbOH1uMyjun/rYA3zsfu3fceDG8YR3/dxbmSXy1e998CP88cceCGO62PM1Ihx/5iTv+LX3ubJ9GdI2lO//IF86d5Z+V5H5v/TYl7n/A7+LtDIHnHyZ8p/77I8+qPxD0MiT7Nwm70iebwn84bvu50sPPsLNbq5OP3GC97z13TXF/Rf/y7svun9/9uffxjn3fEXgcx97gE/e/xF6qBHn/HjCY46/+f36Bx/8CB//6KXPH1x7+vKe97wn6Jw/8INv4lo0+fCHP9xMn3xO2t/8m3+T7/me7+Gv//W/DkBZlnzP93wPf+/v/T2++Zu/ee58ay0/8zM/w8c//nF+6qd+imPHju177b29Pb7zO7+Tra0tVlZW9j3vxXbpbWYt2xXsVLBrYbdSz85J4IeBX0MFxR4xhO43gD9BazB3iXlXfaNgyH25dAvg9dKstYz2puwMS3ZHJYPhjMG4ZDgtOfm+J3jP3at819NDjh3u0r1nnV4ro9/J6PdyltsZrX6h5VSGM8rBjJ1Ryc6oZDCaMZhW7H3gCWa3r/DPXrrGzMI//53jtG9bonvXOv0io9fNWe5mLHdz8m6O+Hzeqzi+wd6UnUHJ7tiNbzRjPKt46r2Pc/+9a3zPJ0+x8vU30r9xhV47p9fJWOnmLHUzslYGwxmMS2aDGVujkt1JyeCT59jbGTH6czdyIsv4l3nG0VnFP6lmFI9v0v/EGXrffSe9VsZKK2Opl2M6GfRy6OSUwtz6+xjwvyR9/3EU1Mzn+PkwxNRbYK2F0Qz2ZjAq9TWcwaSCt34BnhrB37wVbl9XgDNfP9rXjW5llNayOyzZHk4ZDEv2hvr8ptOSP/jEJq8fT1n+usN0ROh97CzdnSHjv3QLw9yw18qYtDJ+qJPzY52Mbifnh0R4K2rN7rn+twX23FgHwNtRS/8/Qb1fy+LyG43Pk9QxltayW8H2rGJvOGNvUjGYWqZlxf/FJd/9nczw1bnQLQz9dka/nbGcC8sCnX1i9ay17Fp9Br5fu1b3+b8AXgP8Vdd/3y//DIbuefnnNkA9MH8T9dLd6H63bOJvV8x82KitLAynMCzdS9cZ4xL+7Wfh3iPw0VPwP79KwWp8/e+ee469op52cRXbXqX0cc/TRqueyA8n53wr8C8SQXlFNKS1NsaxW5d+fKNS1+vvPgl/sMHsu46w/eob2W1nDNoZe+2MvVbOqU7OD+WGtwP/M/B9wJ9DvYKe5vqQ2uY9X2wvtv34+9PA/wj8d1RQ/k10z/4I6lUv8KBf0Tvblgi+1pPrM5/dt73KhjHvuH07AP49GlHw91F6a1Gv7w8C/xtaorNPQuucTHOpoe7XQ5tZyyxJY/KKaiEEQ0varLXsWdhawAP+X8BfAL4FlfVm6Hz9LeCfA/cQaZHP7Yc6X9hDIzjehPK7FvD3UPnyaxb8fkVQ7zJoFFbgDQlvn5Twkw/AKw7A2QH84N0qf3XzyB/6KmOICFNr2apcvxL+6/fBr6B5901+tWy0Gs5O8ju/ljzmw/+ZyB/TcSxdAj2urK7THQs704rBqGQwq5iUln9QWnaBvyPCn8uEdiEstZSve5q/H19vtjK9j3vOe2gUxV9Dywze4Z7xFH32/xj4NrQaTBcnm5iYDtK9hHvvR3/8egB4M5pON7cOrtN9t729zerqKu95z3vo9/sX/8EltuctHeCv/JW/wtvf/na+/OUvMx6P+Y//8T+S5znf8A3fMHduWZb82I/9GJ/+9Kf52Z/92Qsq7L4duenV16Lbf6qbLDj6kN1a2Tf3Osf++ezwlaewh+Zyx9Iw/8cr+L1buozbOR/vGU701AXmc4oNBC9yLRdcfBSszoUsdWFDa5mLtWS7Y+g0QOzwXmzmLItXo4nU8/z8+D56a49RlvOJo32eWOsSSt8lEQcx5tDPk+vrikE2dJV0sIi1tJ09XiZAdz5vH389qb/1/fpAo9+/nfQ3zR3ed5DN5lHHV/YBomsC4vn+SnweoxWQ8TiGCO6NsMtdtUy7E8+JUBnNaV8VBc05Tr3kW5pLCcogLyVMMHyWGWyncIAuGbadIZ2crW7O0XaGtDKknSNFtMZfCOU1oMszvzZuol72LR1DWrO9CUK3QgSpTMPpUi+0b2/+128jmOH9QOODUPCavenior7PQfNlhnwub4GWsEvbXyYCPPl837nWHJ8Aj5+FP9BMT/mN08jjZ8Op/hI+Pm0XXStpKoW/XHp8sV2f7VrQ80tti+iK3067wM8Cvwz876jCHpR1Yi50z0SE8+51rrBDPQc3Dd8+TAwHhhgSvEMjR1vqW/UrqeWi4cce4K7nlLtFCnvaFn3bpo4e7/lAEwPA06x/8wtvmwPkFCI2zZY7zrgAPkeT8YVXo4cd4PxQ0w+bg2golJ4XLQKj66F8Kw2PT9+naWHpHDwNwRPt15mXHS/H5VLj7e3cvTLoZux0MzrdjKqTI50CKbIrWpdNGSv9/RE0P79KXqCyiy9UmVEf4xWNL3mlcdcH0j59Be+7Z9ueN4yQ7/u+72MwGPCP/tE/YjAYcPfdd/PjP/7jdLtdTp06xd/5O3+HH//xH+dVr3oVn/3sZ7n//vspioI3vvGNteu8733vW3j9c6e+8FwM409N209R8Ex9SJ3B+fD4G2kQgH2E8q+UJiIKuOGJhlN4PmqhrFoszywHdgb8yctWuNPFrvr8Z5MqtGKAMsn7dnO6WsC5ES3c5hyPoZ8jjWuBXuuN3/+tV32MmRuXT1E3IvyRhaxscePGDLElHy0y7nN9CfnsNQnGjcuPr5vpWKyl46w6bW/d2QKWHNCWHydxrsTlmuXicp6tHr/DQhrE9O3UUW99mHXaRFzt9EVaTMcr7W1/8rx05n9m4vXS8W60BLOt47QA5wfY2/ohn70CzohwCCE32hdf6/w+6uXeSN6PWaC017sU+xb6qIAuVW4oZ5bSYQkc9MnjRgJQjWHxtdKWKtepAHIz8PvM5+V7Bb1Z6i3NZ/fXSHPZmyB0QFznNUEt+afItDqBR05qXuAac/ZcND80F83ntcDXWAXqeh+qsH+1+87njS4UaDKJ4/K04tMna6fI504h96jh2m+3wp074CJ12v+0SThfYe1a0PNLafvxd7+O/jYaIvtm4CiqsLeI3nV/7CXvr3eFHRwdE2IeL1FpP9041weue6W9RoqudUevYbv0fGcBa/c17nggOt88FoJX2tM5+97v+9ba3PvvcnRd7aDPwIfH77c+Gx1cfFLXwO4IDqzr/6ZxHhHAT5iv1e7XxJ1otNt9LACjk3oeu08Dg6i007jeZZV7ozFXRqCVUVpD6Tz6q25sfi5TB8alNn9+M78cFDdow733Rokt9N4pyF4KEHfJIHtpX+28fgHzYMMXdcy8QNvzprSLCG9605t405vm4/6PHj1aU8Zf85rX8OEPf3juvAu1cja6+EkvtstqQTdJNpUXPJsgJBat6/hKEr2H+qb+Sm0Gr7iLq3cqfL2B+7uWlfMlk7zg1UttB6wlGIfMbWpKIIHABpA6QUujPTakbS39WQVTkJ4r9wQgEb0cgcOH1q7q2NS4YMioAhhYJsI3GPid9pQjG2M2lrt8nRGyTEuF5T7qIBMUGb/UsQTmKLDcwuwoJ2u5VRKU0NEEabuMbT9FDfA3DxLjPZotq8BePw28F/Vqvp56uZqc/QSSJnN3b4pMJQZvZg/Pyr+P15KU8YdTBdvNMFPvabfYjSl2tUWFKujWwCmBY24jCFrf1Jd9815pa+t7KVXaL9rSPSqCZILNlMn20SEK80z2YswveAgSAReip933NbXEW6vekqbn/VHqIHSpEOPXXdoOH1rT1AY3prnWzmFvosB76ffPkbaaidAWq3V7jc5RZuHrLHy9xLBTj9rcln3WprdqBlePwOtugAePh+HIq4/FqhS+QgAq1Oy6134l315s13e72vT8ctoi/v7F5PsN1BB/KzEcvhkS7+uEf6VE0aVgWxCVgMPUgegsESCt3zi3qdy8kNt+NKVNvcpAOl+LSuQdPLi27/ytEz3tAyK/AmqG6tp8Nyc//UGRw5kJ3J03LC1SP6J8RxwYXZPfvQwFFQ2RY0QwujSaLP1+hO4Z72lPPdCe511qS8ft9ykiLLn7Xy1PdO2ZJPRgnXoZxAr1sq+he8KweIxXMr60H22i4acZnXEpcssLrV3P1ThebNdZa24qz+ia5T68snGW+RrFLwQGZzJFgi0EJu54rxFWd2DriRPcUGUcyA2FkaBAZpmrm5l40SRR3PQosJTDaKSC0HCiE9fKaqjuiEc/vTaz6BWMwkUVtIB7jLC2Yxg+sc3SzYc4ZkQVZGeQyEM4OTVLtnF9lX5LF8ZkBnmLjrX0vNV+PEYOtiJS/T4cpy3KIGdAZVTY+hoLX+1OayXCY8c9lwu2Zijy5rZKHo+fhbuP6nchFjxKC+L+iNN2NTpAv5/2W+RjoLKanzwDu9ahErAiWCM8Y+Cwf/6o0vs56qF1qcIO2q0e83uwuZcCL2+cB+q12EAB0r6K5HHVh7dvyxIBNxVmbnbXHaJrJQ2RLyXxsts4ti+hOdeCC0dk/+iIMDYRrLeQ1KQKNEfx9G6I2Jgb/KL/r3JrSyz/40PkrbtnJs47KRcu8yRGsJkBU7l6WQZefkyTaT91El57DLnrKDhkYGvAuiiXPjE8vlYmaT9B98X2YnMtFYD9XsyADzbO+xDw/2fvzOPmKOrE/VTP9d5JSEJCEq4QTiOwIKcCyo1cKi6ieCBeC+hPxF0RvABFF3FVVFxkVUBFEV0OAbkFEQ3oIiSKikkgHIEECAnvPe/MdP3+qKru6p6e98r7vj0zbz2fT78970xNT3V3dVV963u9nqiw3iKUOXzLMO26XrHP29YwzkHNaUyfBkqABPVc2/1uLYunZiUuzEHUPB71EX2oa2WEN7vLTtKym2N1ooR2IxjGzePjrxPftNthVquWWr3o5zUmo0oRowVPGbaPHYA/ErUoq4hQ227GPdtU/jlU+5lFdIF6tAvlw52iwVyfidBEC71oYT8P5qrNQo3z9vzEzj8fmU8wujlF8LsJe7s9dMbeN3WajuFZGlnhOSztXSP7vTtGT9JDZWgjFNptwWM9oc+q/bCZDqGRyQktJHoi0Dps2ypY+jLMbWulIAQtQgVKafGEGvjtXkyPXgICE3sEiK5WGJR0lip09peCACmBhh2tzNYX1I4uO1EIoQMMedbEDNgGwU49sPXMPC2otCoFoJBRedz1qkRwg4NzMqbzbSB6iiCVz34WlLlddzG0w4z4x0d7/ay+pm16axdh0LkOz/LL01s8XU31iVqvn3oJntYi13XPw5MvWYsP1aNfaE4XWkkADBVySlAbGIJNgzBTCWHSU37sIHgBwTw9axEoTXtEUy1DfzEzOI4+9U1VEwOUoL4BddzPoBYJbDM2dcuGv17BhN7cYr3N0HVbS9Rk0NY+2ObxfcALhJp2QVTLnpQiqqqdx00h81mVjymTqS5jl5tEhFD+oaY9mvzJnZ4VnMcbRSC4rFApfcyW9+A1W8G79kS8ZisVQV5/JrJqA9UPv6oPYYR2u9k2eJc7LZiM/nw0KIuq0J83J5SwcVys3Fuo9l9v98aWb7yeCPoxq08TaFNjommueq33RY2t2UnqTwRq+C4SXWzuJZqK1d4e0lG/g826eDNQ/ZhO4BnVtNeqV9ylyC7YqnWTbZmETlFUHTQpV7uHGq+e0+cZN48vE453pr1IQqHWbluZ2H40CCFqtrk2wthRE6GJtucE9jYLZT0L0UWJhfbvjXFOEfldcwvNOet9ASVHGGz90HR57myaVmjPZPIjF3KMCfNwJD1UcWeEPtSDPYfoAz3ejqSu0BOUNtRg1SJUx9lagPYhaOtooQ1U9HAjQGoH8dBsUGvePUt7LlAm2gWY2zPIgqIPLdqjK5AftbCoe7ienn4mHKE1gkCrELSgX+ehrQQtM0QQtKbFU5979tKxpZ0WhNUXLXnoV8NbgdC1QpSG1OIE1uBta7gtjKbSCEb2vt0Lhff8cA3MmB6b3/EELF8fLbN8XfRcsO+drrdli2buYUFAqSWjgqL1+NDRpjTsKE07Al7wBPO1sO+hhPZ1qElKLW37EGohxbpFkb2Nl/D53bEyd1I9yI6EIMy7GvdtX4QawLHqbwT2pCB0M1HmfLaWvVYQOrDaeaJJOUqwxdpHPp+63kYIQcETQVThGVp4N5GGR1xIAqVdz2eUwF6wouDriMeiJYPIe0E6P6mF9k6UkAHJPu3TcYLTaExKfz5Ksqh+M0+oQd8XFYDuGOC7wP5eGGTODmA2UvCyeiVJwDH7+Si/drOA2kvUND5p3+zUOu8CoQ+7Gbd6qR1Erq+3r6YQOgO1/mpcLs0xkuqR+G7wY/pFwQjtXvT9GiYSxsrENvP2UIHYAL4MLEe1i7IW2EsyORjdWpQ7ifkZM36OVRNtn2F8vbobtSD/ONG2DONTjtnTLlswng1sYvhFicAKj/EHobP3oOY+K4G/xeoTbA3a94yXphXauzc+k3YVmgrTWSQ9VDmiQruPmjxmCU167U6kKSaPAvJCmaR26n1HVtBe8mnvyigtMNAmRJCWJHLS+iLY/umBkNvSSntfmfwA0KH92a1yYfAzOObIAybn9LQWvV0oYaBdQMcr3bT3l+noHaRNCK09FCoIln0e1nmGgfYEdBYQ2iSjRUo6jeN2H4jOPLblQeQ6xevliSCliBGITGqTdqGsG4btyDPh9VbqJQF7bxUts/dW4Wdms+qgqmbOjWBhIotgqFBADlRgUxk5q00NckKoQR5YJ2C+JwLXgbn6uM8TDWRjM0TM5DmoS6xZCREMmEYIzqBS8dgci3bb0OVG4ycVn9yaSyIIg+nFJy3mtR2E7p8oU0Os49ha9qQ7F7Tz6GgdFmjRPYydAjF2saZycPeEICsEOb1lxAht0kIIoQR2k3LQCO6tSmCnkMHLZ5R1gRbYBaqvNUK7WbKu1U4c9clk9eejIS9CK6UW3Ze2e3CgB1/y4PVao95qPtPlGiHgXC3MMCBir0EpHDZYZfuJRrOOd0WNexXGRtIcME8oZBt6CU22IXqdjzxCtfPATJ5w60IJomZOWdWXJfx+tIKx+VZejwkt2rEhfoCYZCuwzOMJx6a/6c+Xo1KvPgoMSbUVY4vTZnuGUKi1Y8iY445lTLKnVmb/N10PCC3oNlcTHR/nzfdnEgaiM6xFKR1M+bjl3Fh/N/h9/c/jqNgSm4Dz0efH+N0LmgHn0+4YNVUPlRYs2okGopOoyeOWdnmqV7IbFiO0CaWRyAooSEH5xT7koI/oGyArQ39vIBQUg2OAnTrOmMgLBGJmC6IPNg1KXikU2Ep/wfi1q+OMXggYM3p09VAau5wnyD+5Af+P3UjAu3k92Y4s2d22UuOdtQV+x8bMXVjCbUsBXlWNZkjCYxJ2HSixkwRac/q0LHPzYZaJM0KMKYhLBKFvWtZTy+M5CbvOh/cL+PM62Hs+7LqV+jwQ2mNDkHW+2hE/aBf9XQU6iyA3DSC36dRCu/rdDUL5IW+pBXYzeJtgdIuJplMxGKHd/HTS3mDSiWWkMnMtSOXDfikqTd6xwOuETlEmdNC+UVxLE8U/MJGX4URkEcpP3Z6wBD7tMfP41cBORE0PhwtCF60E1ZMyQahhN2n74mUarMcRnlCp+rIChvRyR0VCRuBJPaP0POVXqvvhDlS/W+VzG9s7HEkIIWhBObFmJAxa2kMzEbf92BvRHD6O8eGNCygCJbS/RHj+fYS+teq70+/Zsud+9rm3osYoO66RSY+XdAxI1pqCEtqfJwxsl4l9r+YCSS3liBkb2nLJgnrsYHYwOjP8e7LaWu3XwL+gtOwlXad45PjngDcRFWptDf5YMFMiO9NBPO3tHcCBEFkgGes80Y7tYG+ziQZnHEJZoiwkamRpL06M+twSnkOP6mtuzs8cv2m1zsPQtOcsRNOeWqokPYdJplEmR7v5jr0y1vCr0nbTEiqCfGHNS7Tf9TLtPrTf/wqFNS8rodKYX4OaZAdf0yK6viBCC+II2FBo5e/ZCpsygpvmC56UsirQqdASa7E4xIRjj44oga71sRfUufnQJiH/2PowaJwnYucZ3Qf3uzOHKA7ytISngWc8+HF5iIEWrBz21m8LuzITeHqeUMKd8Rc2mszdtoJ3/wssXRCaJueUCbKIrRCYOAPh/6qqWQHFQkE55fX0QZenBHZU8LwXhWCuUFH3bTeTbajOdW6CpYPS8uSs8sNNFu3JdUEo/9N2AfsBnwf2E0pbVhDqmLkxDH62+Zu9sm6bx0M017wdhA6U0L6D/p6tycgOM5Gp2c5NWzOadhN0KNaGGxWR8RCtWaV1b8spN5KWDF7Wq9JQtaMmUfHo1iTsHfXJpPTnYyAjwrgMxorJjsvQIVRf0gwCu8EWpIywIAgjyBshtJfkYKBBP95E16QWtfqTFqJ52iGaoz2+DRWHInNBe5tFaB4/2jgu1RW0ShSM0J6tLldDsjTjoslCk0OllLU5DOXSZrTtJhidbV1mNNG2wspub2PBBGk1i/I51AK8zfGELmem/mMlcj+sZ2KWPieT3nmt/h3jApuU8m0smACAGeu6x8/vOMJ5gik/3WhayXbLhXukXYWmws5jGd/bOTrNZoR2uwMAW3Bv8KctblOncykHZ7V8XXWZeC/taVNmjzAQkIC/z4SZfYI55RIb81ke0hpNzxN69VcEP/TN7/58cs4tcEzSr/cK80IDShsdqEdF1JJAn68wddaHyHQKMhuLPOSDFJKclGQG4NkZOX0dRLCvajgTjRHKjcBeCH2Gg/fynjKtS/KTRq8OZwgldqEmL/1tHrI4AD0+covWwDReCsGLHszXAr89QdwaZUoXNy83lKhO+VZrApMRIpKSyQ7aZ4JGmQj7Zj/a5zHik0d4ixaihHY7QI/ROgT52lET3/VE073ZWvZa1hNBO7dnEzZmYpYTyW2mwfsbIXSKNyES+2BQwvoGqn1AncDeOExKfz5GjAuSEdxNXIYOT8UxaWRz+CTM8Gz3x0ZoN4HoQGnaO/Rre8HV3k8H7HM2r/OE0fXjmna7nJm6fPe/r69aVDSvTfT4IlHrshEFd3tcsAtt7FGv1+owarZSQSQeScUC1fu83vYCvgIYyWIeSts8hBLaSzK6WG2i5MzHGjNFdOwcC0Zgz4ow7sS+qLS3R6JiT+wn9GK8EWzH0TDtKaupN4SuDhsJg9DFTf/HE2TPYKz+TJDnFhGm9T0S+LY+Pzutb9MKsMPQtObxL65dnnYVmo5anaYxjYKww36JaBC6QG6lCR40IUJh1gise4e5lIHQJ9ouE+/FhEoFZ8yNM55KsbZbm+CRTUVyQ2X8fIGDPUFGC78ZTyg3Vn2ss898x+SfX87TaaeESju193zYeb4yHw9MyL1Q8LMEK7PIkAGyLRnygwO8QUge8dWK7exSma1lXuV6JxTcAWtQnYxTFMi8Z6l5vahqOyuUNj7rJQq04fwgGmyvVUB/G/CPTcgc0JrV+dkFUsA6IdhSPwxxTfUfCCeIxqfd/F9mGK1DwjXKCaUV8oCiUBMK82xmCNPjtYixBZGyB2RPEKR9MxEBXtLnEkTWJerntxq1mDeTqJbdRK6u1TcE7TxpUgbhwko2wY3B3jcB5tprS+bgvXbUMzXXei+yb6Jr0KxMSn8+ToTut5uduJm2eaZmE8aI0KFXAs0xhGPAeASwRqVWd9pCGO3d0IuyIDPl7e2jZ5wc6cPsz0z0eNslbKTfT8QT8OTL8Fif+v/nL8C7PWVRN8LBMkKQFypgblmocytLZQ6/K0p4/xnwUcJAdCZfux1ZfQHRcW5z5sEZIWgRMkh5K3VW0AMkHKCPZ4/rLWLsJvgQPgPxZ0Kggse+os/rOSY2yF4GVecyBNaJWWB/1PkZ64JWL7QUbLYFxNHQtEK7lHGvUMdEEAgrlk9T3Dxeoh7snah+6M3WyKj8yJ7qmYxf9C7z4TQBj7wAr9sKdpoXpmzKekqoTdC0Z1A+4wVPqJyfQrDDjAJb3rmWF1vgtUvnsFNGqNVeT+0zEMzAC4WJz5IgPKEiUuf0uRles5Xy/c6IaEqquM+3JVhldZ1LQlDpyOG/Ilkq4N+RLPPhzS/4zO/MUSDMY53R10YdavJaiwr4lVF5saUMzzWjWmncJD7yXf0ncG9QvgLkEPTlPRiUyA4V+V9mdLo3IXhBwC5e9XNhNO22ptr+9UGiqW9Gc24FARkpyWnf8ooMJw051LUe66Bn6hzJ2Y463jzCiYpEC+si1LJLVBTYxdax4lr2WrVJbOe2NGoiBOesI1T5tTcHVcK43hstoO1HGnfzbLJL0XRMRn/uGB7bT9jul7dEZfUwI2Avqo+D2s9gs5Pkzw7VQrskah4P0QXGQiEfFeT1PTBCez/VLmGRfdIFtw9mWL4uWuax9UpoT/J/j5EXkJcwJFTYm5yArLZ6fC9wFnAisB3aHF03FKNpfxZlgWZ+xvb3Hm6sG468CBcyPE9HrdcHMubiRmAviPHPn5IWhUFp200wumdQ5y6oDrKnbsMY5xZCUEBSAYSn4mqUdYA/CK0MjIXgsBmCmpimFdodE48tcNv7FsIUb2aAM5p2iA2Gogk07aBtePSZSD3aGKHWaNYDoV1UawBBCX2eyj1eESrCuAdk2wvkh2D2EGQ6Csq/Ct0Zo0zOJ32WkPOg4qkbas7HFuCNsJ5TJuQRAdfcaIx/tVAa1448ogy5wTK7t+fZXQiyxSFymRx5VIq8AliLG1PTKwsTTW+My9JBXILgDbVtMr5zs9tVujeJCs4nVLq3NwoR0dDYmuqXUQN9BVUdc8UHiGodRnuFskKQFSClxBf2vGacgznhJNcOSAehX/s+WIHnYn5+q4AdCQX1uJZ9xEUEe1Jml23R1zwvEjqpKXhephCRsEEY2bp1mPIOhyOK6YPNsGWERzN/6SYUJI25N4TzmKkYjuuJpDlggdA83tBNuJBolw1it5LsZmDMsDcQRo6v9bsRPBH29cbXcK/58Le1YZm95kezxwxz82xte0lYqd1QY/SRwI9QUdvNZxkRLlAbTXRcyz5eoRb9nTZk4PNdEmH8G3sxfnO00PGxxQjwoKxPTEaF54CD7HKE84PxWuh4+vyMz3pF6KC81vm1aIG94V1sx0lTyE9JdM3aZuRCjjFRq9NspToISaJ5PFYn0OCIjBfNpWz8oNssv+iC9oduydbQ2qoBI+sJWtE5bz1Bqydob4V2X9Ka9WgV0OGpvPDZmB/W7Xctm5zzE0KllGrJRs/PnKPlCy7y8S5aRG60yq0u6PA82oRP66tF2lEToNYNA7S1CTpQ7ShrR6ap44YiIMzTrrXooCwn+tsKMFCGF16E5zYon3YhKCNY58ECEaZ7MwNdHqXFMdp2Oz4EKC2GrWkfa+RiIVTaMU9sXtYBk1LONoEzl2EBKuqvHUzPJ4xADSpH+xLC1fm44F6LSDtPOnHTBnNe9WdNRi0PATNBLiR8FrabJr4wTcBk9eeO2gT9cKw/a0UtlJqI2T04n/a48G1eG8UNRAPRxYNimu2uu5dVDfOedSxQ191egBxxzBPCynWqhfad58O7F8HSDLx3kbKItF3/vGT3N4MJ5pq3BGIjMJ8CPIJKu1ZC+eAbvYYR2o3PtxnvzHrC5gheQcwJT8Wb6BA67a1QcSdaNzPuhBDReDv2tgUq/ZqPsiSoytFOeI7jxRNqDmzOyaT2neGp8yt4k5g5qQFoWk17pZJuFNZmJXG+TDQQXT+qE5uN9eCL6MPfDIh8BukJyFRUL2VCZJuRKO+pyONJWnYIZwoo03fjs1NG4A+VkT2QeXoDmR22JE9MoNUXsbOzLfnYE3F+Ge0GkAEqGfC1y4lA2WZlveTFCHP+ei9Am2pDrt2j0l2ishUIX+L1FMm2zSSPFYAOqHftqFo3saL/6zfzAnjxVfIDkO0HbnwO/xQPtpvHiyiN+xZemO7NmJlDqKneFzUomlZjzMPi+Wrjr6cKD8scztpvDfwWy69PhivlFZTm5UVU5PgkLftwA33YzuMSq34RpHwT0fftsk2C3QXYZoxGoGi1yiXtHfXLZPbnjmQiz5O1hzDt2xKUtVPNPO1TVdk6IGn8MfFW7OCpdoq8eB/U1dledf3s6zgHNVbEg6/Gfz/yvieQ2YyyUzfSsxCw23y1GUHeKFuyYsTw454Q5KXULn568Vwqzfps4O3AVcBXUZ9lCNO1GqEdkgO1bS4mVlBuEhpf8Czo+Ynt0/4C4ULWVlC1iD+eIHRJZOt8DpgWTatp7+teN3Ihx5gwwrd5bfZ2IDoIzWdMh21r2D2a6zkUWaVJpz2ntrZc+LolW1tghzDnujEl9wStQtD+5Et0vAydPrRfu5a2J1+yNOxEBNo3HDC5WRKEEIhcBtFioqtnEa05RKE6DVr4JaI3WZ9fVgja8nnaN5bolNAhof3lIVrbMtpP3yrfADMhI6gL1IQBT5n47/LUJjV5KYAogfz7K/gerPcE80QYbC8+UTRCu9FQG4p630L0ubP3U4kZoO3VdVAmg8YQMR493pjGz0WZmtpadmNON9xgFGnn8Y7I/n/Zc/DUy1bZWIfVJCRNnI1A0RJ73819GofJ7s8d1dhrzNZwDCjrJyOg2IHoqvrhafSAJY1BRrguEgruxjw+7kYggNcfsHvwHlYZuy9bT8y6LL5PjMDqaWWJ3ox1oL0FWWEyymJyBHIi1LabLYfSeL4FJcQ+jBLky6ixbhNqkWcR1X7slq6mbrGfCfvezEKd27OoqPg5qjXszTbHrzeaVmh3TDy1Os8WooHoXkYNdvGV62ZdlRaeQGQ9RF4JtyKvtOujMuER+hG0AqN4K9YHPj0eqGAqMYE2DfMgk3ZqNOXUiVijtKnvzBa87goZqYKkeQNARyH83D5+HY9sgcAuBCbavvA8sp7gb0tmImYARZAFkEtnIz2PdZ5gnrl/RBexjKba5Gq3NyO0xzXtaQnu8cmHGbQXogb0fqJp64yP3yqqg9DZWvZRDUZJJy0ErNGC+jrgp2vhyRdj5eu3LY0VUWMzpqitJLeR5rkCDsfEMZw58BzCCPJGCI0NxdPq2RpuDgihxaUZs+yUb7X6pKTFki1Q132sedqFJ5RbX2vMnc92WzT73OjEH0/H2jHCes4S2tuBdwDXoCPME0aOn4Xqi2v5tNcz8WfBXKlZKKXccEH2miZuVZ3StNc2k40ni3BMBEmTQDt6PKiHek6snN0x13uHNaUEEosIzbf+ZX60zOu2Cj8TKNN0zUsvb5rK2o6euBBuGkBnDnqKKnLKQFl91pELv2PPiOodoaPsZ4UKOJcVZDMeT24zl6E3b83QXh34p2yL3GZLZEawPiPYUt9rW1g3pnILUYMhRPO0GyuWqki6KT1LAisIHeGkZAZq8raWWMo3va2kOgidrWUfbiEqaOdG2ofwmRHA8vXRL/x5XbRcAzSnsWCvg5lTM4s6VZr22N5Rv9Rtf97k1IrTYczjTR/cRrWQPt2eq+H6HiOs68zoyYHogA0vbwr6+6T4AJ2oRZLxWA2JjFDZRFq18N5qC+85aM0qS8ExLOQabbsJglYQ6pxzwDGo8e0ewgj6tmm8PUbabayeSbKAEKjFlI2oMX5rqhckgv+baJG83mhaoX32vJ3TrkLTUWvy10I0T/sG1MMdX5EO/dvdAx2Q8UKB3KSH22meDp6Shfctgh3nVQv2mp9cd0eKlR8G2wbMVkl0ZaFbhy3sHlLvZb3oTCgWbK8eCSYtGQ/pCUROxS/wChl6C1nYbh7imF1h8ZZU8h5+zuPZnMeWWS8ahE6EQvDWqLRC3YSCLqiJkL3wRcJ+KjFys6m3/WzbJvIVokHonkIJ7eZ7tpZ9pOAqpp0LIdSilXkOzHOz91bRL+y7ICxjnPOahPhCqLn+ht8Bj+vX8Qmxo76p2/68ybEVCraWcS7Kt7pXl6sVWG06PV9JY5C5bkbT3qf/zxK7Tro7vvbnd0S/GxMSZ+j9WNKcRuroCRUgtyULrdptsSWrLCFHYRJfdTydQjUvqs3k88C7gZ+ilFcVlNC+MHZ+UQG3vltMZGyxpm8zUZZ0T6HmK+Z921e/aYXKOqFpr++La5enXYWmo1bU4hai0ePtyPH2Ktx0G9xGhYfO4y5Cf6yWjAqc8q49VU7Rlkw0L7qlhf7ER09JrerDYo/SWPuujBLWAfqGYFbs8waKWChA3Yt8FqnvjdeSobeQQRYy+IUMlXwWP5+BXIZncxnm6RgHXsLWgUp38xyhwG5MDe0wbGkL7vYkzQjw5v2tCf3yzVZBmc2/TDQIna1lH8mwItLO7QUuk71ht/nw/q1hjxx8aFuVetGUyWZG5dbRSCTd+7/q/TPAedb/9mTZUd/UbX/e5NQyB54LvEKYzixPrA8WdT9MTSi1BHZQY5Txae9FCXjxMmZ/9lmqnSe5JAjCtG92ILrxjHfGpc9sm0MWLawTmsgbM/k3oM73V7qsHTneHu9sy7p6Jr54ZbYt9OerCc3j7YX7zUn35hgdTRs93jE5JHXaLYSDmtG0b0eyNshNHKMIIZB5KzI7KKHESDyCUFjPKwGlIQQQe4UnWLER0NWiRnQpoacCbYVw5tNo0eP1XuQ8pMwiRYWsJ9iQkyo3uwDfE/gZwWAmw3N5T6V7I1mzA6HQ+1rCJjBENEe7/ftpIITAkzKSp90M3AtRA7of21ah4lx0ENWye0INQmPqF0wEYF+qzWjUly6A12oNu/3MDBMMshExj5LJJ222e2LlbgcOtL7jcDiSMf1YsICoX89FmQN3EwqSSULmdHq+agnPrYRCew/RhWYI+/j49MW+3qb8TP26XuK4gNa2IxkSygw+nrv9A8BFwFEoa7O3Ep33mgXuRhmNjIGaGWfMgkMHagpnB9mLBKadTg9DCjih3TFqIoKK7miN0F4ilDGNph2SfV4cUURGIFuyIHTquIqnhBHABDkjJ0Yd7bQuMDfcvDZ06mF4oAw9ZejKR78DgTRb724UkdplPXxP4GV9+nwo+z5ZoQT2csbjeX0tZuvvxVenzcC4COXXbvu0DxJOXoatwxRiBHZPRp/xRai0b4Yy6jxWEw1CF9eyj6VVCyGUZYOv1/TLUqXuMRcsI5SgrqME18xy0KCYRZMsoYdARqrJ4v1WuePM54RuCA6Ho5q4ZtG8nq0/f4bQNN7+jr2fLthzPwj3JvUvKDPxDvs7Nfa1LBwmStM+0WSFoCAkJalTwEl13mVgd2Ap8BPUHHgR1VZl9rSongmUCjJ6j0AtqBjLwLivvq2AcEwODSIBjJ2Zc3ZIuwpNiUh4bTpWE4TDBKKzH/Raq6wOhch42v8qHjzFpFrLIXLVhkfX33BvCrUdDSI6Qhm1ctZTS4WvFqGvDO2F6nLm+3VO1UTEE+RzGYYKGQZac/gtWfxcBukJnkdpoSOLWEQjsRtNtW1eDkrTno3/ltmndJniQejMa5O2zuRmN6nf/onKdWxW6+Na9pEWaOLtXHhCPR/meTHRgdvM85OFwvApFxsZI7Abk80CsA/wNeAI4DLgdSJarv6fKEf99ufNjx1jxPRrGVTE7KeodlEKNjF9nq3hNN45wkB03UQXOeJeb6adB/FqY8czPu2JaU5TvtgFobac0H7tQp17BngfcLcu9wLRsd3WRtc78TZuz9uNJcXjVM8BMtPoWUiLRmg/46I4sCntKjQlSZ12q349iOq0Bwg1isGKHW4VbiRqBk8ZJif6zjtuM8W1HCVJPb7Zz/KgZwi6i9BhLUTYI3udr+7UmrzY+Woh1JivBRZYZe1V6SB6OmHaNwiF9iJR8/jhJk5Thal3/FxMOLiXiC48PAnsRNgPxAX3kUhq50Lo56VVL3Z15LTQnhv2mWkGskJpeMwEstWDNgH7ARcI2F9AqwgjHucEZNKe7TpGpG778yYnMkwRVThsgdK0d9rlRbr9b5rY5213Ke2E4148p338Wu2y07aR48WvvxHax5rybSrICBFGkBeWnzuhmyjAZ4G/ER0rGyHdG4SL6PZiikCdj0lL+xlU3BQ7mK66j41who1L0wrtA30b0q5C0zGSoDKI0rKD6nTjq4x25+2oTSR4yggd4B6v3XGKajVG4oJ3YCovoK0FuivQX4TOTMLI3hjLtfakxVTXpGUzvn1me4EETbuI7VGa6hdR2nUT5SDu014PE8ZA+Lbq7qEE8PmEJv4VVCCnjSjzeFtYH20QOhi+nQshEBkv3Op8wWciyOhoxi1aOG/XW6enX3vq/VZdptD8l6QpqNv+vMkJBEeq+/UtUYuOJt0b1j4QaqaZoJJ0tnbq316q073Zc0DTzs01N6/NFjePTxL806QqIJ1efI7HFbmTaKaVRkj3ZgisTUT4+u5YmTvRMWpEuBjvmFyaVmh3TA5mQLM7WNOIiqgI0XOJCifxAdHR/KhJjIiO1GZiM7MA3WW1dWg9qy3UN8jqTtIiltmGrHJGaF9gfR6svMdWqefo13au8yLJPu1pXiLblDQ+GTFp34xp/CqUIN9ObfN4x9jJC6Vd79BCeoe96feM8O60Hw5HbURCGk7TL81B9cFJOcft/XTALE4kXQPbp70HZZkgErZ4f2+v75vPjGn9rYRZMOzfS5uMEMFiqNG4F4DjY+WOR41xWaG2DI2zwBPETCG07DouVuZ4/Zl9jo7JpWnnS/mWzpELOcZEXJay/28n1LRvEfs8rll0TBxPrlk7cqG0CBzWLLWFQAWj6y4qW7LOQrScvSzfQNjPgh1F15iHG6Edoj7gRoi1BXcTjM5ghPZak8U0JgFCR8GPT3IFUaFdooT2HbD6AzH2IHR13c5TQghBwRNKYBfQ5UGn3nfo123CmcU3Eq6dp0dSIDqBUkKAmuNEBFAxPRURtcahFsLF6n5iPu2xvWnnccWOufaP63KPo9JX/iX2/XoQDnO2wK63fVDxRI4Cvg3sZ5XJ6u80ChkRWhHkURZb+6LO72jgO6jzy6Huh/Hrd0wuTSu0d85clHYVmhK7c7UxOTpfIvRnh5iidaoqOY34zW8fSbsKtbFtn23BvSsDL/Wo/ztqRI+vc4bTsrSiJi9G01xEmYhvBRFB156w2LnOtyEMRoc+Vj369iUtOBgT/7imfYlVbqxB6KDO23nKZISg1RO0CyWsK/N4QX4U7jWO+sK18/RICkQXF9qhvvrgtDCLFuY1qDHKaNqNeXxcIDcLHaad17LYSkpfGbdKSxtPa9vN1qYtmw4Q8EUBB3pEPm8RjSXUZqzza/V03BR9fhcJOMCz3teLE86ia/Jp2pRvG9b9Pe0qNCW10n3kUP5MduR4O2J86CvmHuqJ5IPvOyHtKtTGHqkhFMZnZGGDFklzXsw+To/MdTEsD0+tSVuOcPLio7TsHsoCxdbiBNFkBZFc51ujohWbFIpFEoR2kf4VChYfZPR5NxHkDauAkwjLjDUIHdR5O68TjImvo3Fx7Tw97BRXUFvTDtG5zXR75mwFjL1vISq0tw9T3rRzIQRZK31lTqqx7jii6StPIPSdNuNHPZATgjah5jIZ1NjvCzV2eygNdEGEQUEbbf6bF2EsB3N+Up9fhtDaoEWoso7Jp2mFdsfEM9wKs/FnehmVr9J8HjcFdkwj7KX4wORCQJcOqzYzXk6EI3wDDADDLWAZM0ETOX4h1RppgRrUTa5zc9qLgAeIRo+vZR6f5mXKWJNcO2f7QuBVlIlkPyr9T60gdE0c4N3hcDQQ8QVVIaNC+2+A7VAmwqa8vZ8u1JoHtgCb9GsTPd7+3F7osMmKMLBbRQuE+0llhn0Hym96fy+aaq2eNLp5oc4pJ1Xe9op+3wRmrcc6jxYhBC1IPNQ5lGPnlxNqkSXXgAsSjYoT2h1jIiIwaKEFwnQfLxHVtNvKVie0TzNsDbrdn3dqk/j2QrKgXg9q5BEYbgGrhTD1jQSeJ/Rnh2rTeC+2bY3SVFdQwm2RMN1QPV0Wswhha6hMup5W1GLFBtS5t5KsZa+n83E4HNOXoC+2+jNBGF9kJcq/+jLgABpqfXnCSRr3bAuzTSihPS6oJ12rLEpTW0FpcY0A/HrgDfrzvAhNzOtNoyuEUH7dyGDRwZdW1PUGF2aFzlSSkxJfqHMD21Kwsc+v0WhaOWr2/F3TrkLTkvSItqDM4zeihHZTLr567ZhYvn/Nr9KuwjCIZNP3rKcaRaflz15lHl//VC1gaeyAPEZoT0r3lon9b16bXOcv6v0QYSq5pN9OC0G1n6EZUBaiFh6GC0JnJjWjob7bucMxMbh2nh62EG764gzJ/tV22ekms9jnbI9DJpZLSb+XFG3fbHY7N0Jhq9AZL4TaOkSYvtLOhFGvgTWFEGSFIKcDhGaFaCqB1tPnl9fxUprt/BqFphXaezY9N3Ihx5gYKd1HPyrVx2xiZmZM3xXpyebQQ/ZOuwq1icyCLKEc1GzoyR546qXqz2icAFpJtbRT3wyX7i2YGIrwf2NStxWhX7jt027/ZtpXKH4+djA9E4xuFbCjVS6uZR/tfa7rdu5wTBCunaeH6cMyhGmuMsAxsXLHm3Kivvyrp4qk+R+EWVN0iNnkQHR6i7dzT4ggfWWHF2bAMBkxOoQKdpZtkHmBwzFZNG1/MzTYM3Ihx5ip1WG3EAoZs6jupKdjapSpYPF2C9OuQm3i5hXm9ZqX1XL8EHDd8/Dki2F5Yt+pU0ZawDIp3yBqHm8L7J5QE8NAoLWMDBYBz+jXJZTQXvVbKRslJKV9i6etW0kotNvm8RkxNt+sum7nDscE4dp5ehgz55zQaa6E6nf3Bv4LOAKVxmsf/bnJTd20k+hhiGvPQY17fSjljfk/UtYar5LauUlhaQT3GR50auG91RN1q2F3OKYS59PuGDOBeZQVhKsF+AcqQnagUSNq+uuYXgghkAjdAETYGFasjxZ8bD0sXaAaVSZlSXQM1FrAKqAEbR/lMtJNmO7Nfh4igqwg4he+NUpTDUprX48p3yCsuyejz/xC4EbUJG57qApCZ2vmHQ6Hox7ICshLFTzMB/CUf/UBwIFU+1fnGL21ULNQa+wx414P0KXfi8Q1Iirk1zy+EE4wcThq0LSyVGv77LSr0JTYna69b0EJGbNi5aZzapSpYPlfVqZdheEJ7AiF8mXPebD3VtEyr5sflvFEQ0lzwQIWUaHdBKJ7HjXRm0myT7tthWL+Fyih3QRAGiCqtagXgR2stRiiCxFbowT2hai+IUnLPpb61307dzgmANfO0yUjBK06v3arsHyq9esOnau6VdRnULSpIMmfHZR5fIkwR7v9mRf737Vzh2N8NK3QXmidmXYVmpJamj4TfGuOXVZEhZJpOL5NOk+sfGbkQmmS8SyhXSihfdf58P6tYY8cfHAb2G2Bet+UaQDz+Dj282DM4yE0jU8Szm3T8oz1GYTm5RIoE/Vpj/9emkTOx7IgmK8/7wb+Zn1ua9nHMvjUfTt3OCYA187TJydEIKC3a59qY6Zt/m/XQvt007IbkuaBBdQCcx9hjvZ4GTMndO3c4RgfTWuFsunl1WlXoWlJEhiMUBFP9xZJbzVNB7jJ5OS3HZZ2FYZFZAQyn4GKlSckI5Q5/GsXhP/nPb1lGqad1FqIKqAmLqCE9kVWuYhm2hgXyPBZEVIJtgtRZvGvorQXLdZvRvYpXypzLpGc7ShXGVCmkucD3wT2I9Sye4ytP6j3du5wTASundcHeU+QlTLIHe4TLlBmxfQOiBYXwo2bpBn3eghTlEIoqNvjpWvnDsf4aFqh3TF5xP3ZBco0ClTkeFFjc0xTch7ILHgVHX3NC5N9GpN4I7BnGsf4p5bVSVzTvpBqzXqST7vtF96GcjV5DiW854f5vTSx8xrb5xFPk3QHyifUaNkz8QM5HA5HHeHpVGQAUsqGWUyeCkTC6xaUZZjRtNcar9x1dDjGT+PMkB11RbwjNpr2uUT92W1tu2N6IoQWyluz0JpRW0tG/W/2rVlEvvFEuVpWJyZPu20eHzGRF9XPh+0XDqGJfD+x6PGiPgR2CIMG5VDnlNOvj42VOx7tHaEF9gYKW+BwOKY5TtCMUss8HmAjoXl8PKaRu4oOx+bRtLLUlgv3SLsKTUvEPEq/Nua7JvyfrUl0HfXk8Y3vXJd2FUaFEAKR9aAlC6056MhBexbactDSWBp2Q2AeSPXkxQjtL6Aix0Ny4DlPiCotvHmuFqKE9gphILqkOqSNSZGUQwVmahWwD3AZcDRwOSpNUl6o8zCC+1holHbucGwOrp076p1aGnQzB3wZZR6fVM68du3c4RgfTWsev2H9E2lXoamJCwvP6/3LJK+uNmBssYbg3accnXYVxoQQRmJr/AZRa/Jiosf36m0BNdK96S/Y6dCMibxARWBfZh3T/o346zTJoFIklT2QvqpXVsD+OlVSVoRpkozgPlbNVaO1c4djPLh27mgEggVry03SLCy/BCy1y8U2cO3c4RgvTSu0V8qDaVehKfFiHbUA/gr8SP//dVTk6P2ImgQ7Joe5c2amXYVpTZIWIY8yaX8BpX3oImr+bkdRh+RAbgJlHr/SOmY9+rSDEsBbkCpYkwdZCSUJvq5gFqVdbxHQJlSQp7Hi2rljOuDauaMRqKVFFyjz+C6qBXXbrcu1c4djfDSt0O6YHOxc0iYA1d2xMnejNGxmNdYE23I4molawnMBlaZtLaFpfNxdJGNNYJICuZlc5yagXc3o8RN1MpuJJwRtSDIoM/mSVbEMSmgvCDfgOBwORyMznNl7Oyp6fHvss7gA73A4xkfTKkHbu+aPXMgxZgRq4p2xhPF40Kk3E0aItss6Jp4Hly1PuwrTliR/dlBCewmlaV9ovW8E9SAFon4/7s9u/p9FaHJohF1ba1FveELQ6gk6PJih8xl3CZXjuF2o/MfjDejk2rljOuDauaMRqLVobLIIdcQ+t10mwbVzh2O8NK3iI5OpFbrJsTkYU96MVP6pZQH7SGUWfztKgN8bHUVaKH/WDC766mTR09OfdhWmNUlaB+PTvpZoujdjnRJYq+hnQhC+Fw9Wtwh4usZv1SsZISY8bIFr547pgGvnjkYgKe0vqHkfKKF9OKsw184djvHRtEJ798Zn0q5CUyKEIC8lLUJFta5o7eD+KD92j9B/tUUoTWG+3qWMBuaYIw9IuwoOopOYAsqnfS3wOqLac1twD75LaCJvTOfNsbYBXrTK1at5/GTj2rljOuDauaPeGW4MMqoyk6fduEjGzeNdO3c4xkfTCu2OySMnlI+tD+BBTgeeAtUpG//VFqHSP2Wclt3RhNQSnPMon3ZjHg/RNG9GiA+OIwRCytBEXoblJCoC/V9RCwBJv+dwOBwOx1QR8Wc3AxXQpt8fSdPucDjGR9O6GgvRtKeWOkIIWoTyU+0U0OEpv1V73+GNP1K0Y/QUi0MjF3JMGiLhtUnPNogKRBcI6rbPeuyxMBp2O8r848Bv9eefRQnu9u9kp9Gj5dq5Yzrg2rmjUUgafszYZwKnJqX/BdfOHY7xkqpkK6Xkqquu4u1vfzvHHHMMH//4x3nqqadqlu/p6eFLX/oSxx13HMcddxxf+tKX6O3tTSy75cI9JqvaDrTg7gnaTcApT22d+v92AQUnsE863/zuz9OugoOoNsE2ETQaBzvYnEf1hCenTeYzhEEc74mVuZMwmJ2dxWE64Nq5Yzrg2rmj3rFjscT3BaJjXpJLF7h27nCMl1SF9p///OfcfvvtfPWrX+Wmm25i6dKlfOpTn2JgYCCx/MUXX8zGjRu59tprufbaa9m4cSNf+cpXEsuuf+6xSay5w5ANhHdBu4B2T1DwBJ4ziZ8SXrPjrLSrMG2pZf5ntAyjSfdmMKnSsiIM4nh8rMwJKH+mrJh+AR5dO3dMB1w7dzQCtcY+I7THy8Z92l07dzjGR6pC+80338zJJ5/M4sWLKRQKnH766ZRKJX73u99VlV23bh0PP/wwZ5xxBjNmzGDGjBmcccYZ/OEPf2D9+vUJR5eTfwKOCNNFgKgnfvOb36RdhWlPPPWbCRSywHqvVro3gycEOS2w53U8iP0EfBs4Gvgu6v+C3oxgP11w7dwxHXDt3NEoBP7sRBesW+3P7c1arHbt3OEYH6kJ7b29vaxbt45dd901eC+TybDjjjuycuXKqvKrVq0il8uxZMmS4L0lS5aQy+VYtWrVlNTZ4XA4DJLhg+2sBP5G1Kc9nu7NJi+g1VPBG1uFignxeg8u9uAAD9r01qIF96xbJHM4HA7HFJNk9i6AjcAzqHgsEBXU3WjlcGw+qUWP7+9XeRo7OqLGNB0dHcFn8fLxsrXKSynJFzrp7u6ewBo7HPXHytXPuHaeEhUp6fGhT0KvD32+SvX2KEqgfx74NPCfwL4ChAeeB1JApUa8h7KUlCVICb7eQH3HR6VYLAsYElCaRkK7a+eO6YBr545GYMBXY1+vHvv6JfwZeFh/fj5wMWrcMyZmwgNfj3uunTuaHdO+pZxYq+/UhPa2NpUcIh5Irre3lzlz5iSWTwo619vbGxzLMDAwwFCxh6233noCa+xw1CczZvxv2lVwDMMn0q5Ak+DauWM64Nq5oxn49xE+d+3cMR0YGBhIVDiPl9SE9o6ODubPn88//vEPXvOa1wBQqVRYtWoVRxxxRFX5JUuWUCqVWL16NTvssAMAq1evplQqRUzmAWbPns31119Pa2ur87N2OBwOh8PhcDgcDsekI6VkYGCA2bNnT+hxUxPaAU488USuv/569tprLxYsWMCPf/xjstksBx10UFXZ+fPns99++3HFFVfw2c9+FoArrriCAw88kHnz5kXKep7H3Llzp+QcHA6Hw+FwOBwOh8PhgGr374lA3HfffamFWTd52m+99Vb6+/vZeeed+fjHP87ixYtZv349p512Gpdccgm77747oHwELrvsMh5+WHnO7L///px99tmTcmEcDofD4XA4HA6Hw+FIm1SFdofD4XA4HA6Hw+FwOBy1STVPu8PhcDgcDofD4XA4HI7apOrTPhlIKbn66qu57bbb6OvrY6edduLss89m++23T7tqDse4uPLKK3nooYdYv349LS0t7LnnnnzkIx9hyy23DMqsX7+eb37zmyxfvpxcLsehhx7KmWeeSS6XS7HmDsf4+dznPseDDz7I1772Nfbee28AHnvsMb773e/yzDPPMGvWLE455RROPPHElGvqcIydxx9/nB/84Af84x//wPM8tttuO771rW/heR6rV6/mW9/6Fv/85z9pb2/nuOOO433ve58LrOtoKF555RUuv/xyHn30UYaGhth222350Ic+xJ577gm4/tzRePzmN7/hpptuYvXq1fT393PPPfeQyWSCz0fquzdXRm06TfvPf/5zbr/9dr761a9y0003sXTpUj71qU8xMDCQdtUcjnEhhODcc8/lpptu4pprrgHg/PPPDz73fZ/zzz+fzs5OfvGLX/C9732PFStWcMUVV6RVZYdjs7jzzjsZHByMvLdu3TrOO+88jjnmGG655RbOPfdc/ud//off/e53KdXS4Rgfjz/+OOeeey5HHXUUN9xwAzfffDNnnnkmQgj6+/v51Kc+xdKlS7npppv46le/ym233cYvf/nLtKvtcIyJb37zm7z00kv88Ic/5Oabb+aQQw7h/PPPp7u72/Xnjoako6ODE088kbPOOqvqs9H03Zsrozad0H7zzTdz8skns3jxYgqFAqeffjqlUsl1BI6G5UMf+hA777wzuVyOjo4O3vnOd7J69Wp6enoAWLFiBU8//TRnnXUW7e3tzJ8/n/e///38+te/ZmhoKOXaOxxjw0zy/v3fo5l+77zzThYtWsRb3/pWcrkce+65J8cccww33nhjSjV1OMbH9773Pd785jdz1FFH0dLSQiaTYbfddkMIwQMPPIDv+5x++ukUCgUWL17MO97xDm666aa0q+1wjIm1a9dy8MEHM3PmTDKZDMcffzwDAwM899xzrj93NCT77rsvhx12GAsWLKj6bDR99+bKqE0ltPf29rJu3Tp23XXX4L1MJsOOO+7IypUrU6yZwzFx/OlPf2LevHl0dnYCsGrVKhYsWMCMGTOCMrvssguDg4M8++yzaVXT4RgzUkq++tWv8u53v7sqleeqVavYZZddIu/tvPPOrFq1aiqr6HBsFoODgzz++ON4nscZZ5zBiSeeyIc//GF++9vfAsq8csmSJRGTy1122YXnn3+evr6+tKrtcIyZd77znfz+979nw4YNlMtlbrrpJhYsWMAOO+zg+nNH0zFS3z0RMmpT+bT39/cD1bnxOjo6gs8cjkbmkUce4Uc/+hEXXnhh8F5/fz/t7e2Rckagd+3e0UjcfPPNSCk5/vjjqz7r6+tj0aJFkfc6OzudIONoKHp6evB9n7vuuosvf/nL7Ljjjvz+97/ni1/8InPmzKGvr69qDmP35/G+3uGoV5YuXcrdd9/N29/+djzPo6uri4suuohCoeD6c0fTMVLfLaVK1rY5MmpTadrb2toApXG36e3tDT5zOBqVZcuW8YUvfIHzzz+ffffdN3i/ra2taqAzpvOu3TsahbVr1/LjH/+4yize0N7eXtW39/T0OCHG0VC0trYCcNRRR7HLLruQyWQ4+OCD2XPPPXnwwQdrtnNw/bmjcfB9n09+8pNsscUW3Hzzzdx111188pOf5LzzzmPVqlWuP3c0HSP13RMhozaV0N7R0cH8+fP5xz/+EbxXqVRYtWoVO+64Y4o1czg2j7vvvpuLL76Yz3/+8xx00EGRz5YsWcILL7zAq6++Grz3xBNP0NLSwtZbbz3VVXU4xsVf/vIXuru7+chHPsKJJ54YRBH+whe+wNe+9jWWLFnCE088EfnOE088wZIlS9KorsMxLjo6OliwYEHNSPDGdLhSqQTvPfHEEyxYsMAJNI6Goaenh+eff563ve1tdHV1kclkeMMb3sCCBQv405/+5PpzR9MxUt89ETJqUwntACeeeCLXX389Tz31FMVikauuuopsNlsl6DgcjcKNN97It771Lb785S9HNOyG3XffnW222Yb//u//pr+/n/Xr13PVVVdxzDHHkM/nU6ixwzF23vjGN/LTn/6U73//+8EGcM455/DhD3+Yo446imeeeYabb76ZUqnEihUruP3223nLW96SbsUdjjHy1re+lTvuuINVq1bh+z6///3vWb58OQcddBAHH3wwnudx1VVXUSwWeeqpp7j++utdKixHQzFjxgy23XZbbrrpJvr6+vB9n2XLlrFmzRp22mkn1587GpJKpcLQ0BClUgmAoaEhhoaG8H1/VH335sqo4r777pOTcmYpIaXkqquu4tZbb6W/v5+dd96Zj3/84yxevDjtqjkc4+JNb3oTmUymKuf6JZdcwu677w6odFgmT3s+n+fQQw/ljDPOcEK7o6F505veVJWn/fLLL4/k9XWTPEcjcu2113LzzTfT29vLokWLeO9738sb3vAGQAU0uuyyy/jnP/9JW1sbJ5xwgsvT7mg4nnvuOa644goef/xxhoaGmDt3LieddFIQs8T1545G44477uCSSy6pev8b3/gGe+6554h99+bKqE0ntDscDofD4XA4HA6Hw9EsNJ15vMPhcDgcDofD4XA4HM2CE9odDofD4XA4HA6Hw+GoU5zQ7nA4HA6Hw+FwOBwOR53ihHaHw+FwOBwOh8PhcDjqFCe0OxwOh8PhcDgcDofDUac4od3hcDgcDofD4XA4HI46xQntDofD4XA4HA6Hw+Fw1ClOaHc4HA6Hw+FwOBwOh6NOcUK7w+FwOBwOh8PhcDgcdYoT2h0Oh8PhcDgcDofD4ahTnNDucDgcDofD4XA4HA5HneKEdofD4XA4HA6Hw+FwOOoUJ7Q7HA6Hw+FwOBwOh8NRpzih3eFwOBwOh8PhcDgcjjrFCe0Oh8PhcDgcDofD4XDUKU5odzgcDofD4XA4HA6Ho05xQrvD4XA4HA6Hw+FwOBx1ihPaHQ6Hw+FwOBwOh8PhqFOc0O5wOBwOh8PhcDgcDked4oR2h8PhcDgcDofD4XA46hQntDscDofD4XA4HA6Hw1GnOKHd4XA4HA6Hw+FwOByOOsUJ7Q6Hw+FwOBwOh8PhcNQpTmh3OBwOh8PhcDgcDoejTnFCu8PhcDgcDofD4XA4HHWKE9odDofD4XA4HA6Hw+GoU5zQ7nA4HA6Hw+FwOBwOR53ihHaHw+FwOBwOh8PhcDjqFCe0OxwOh8PhcDgcDofDUac4od3hcDgcDofD4XA4HI46xQntDofD4XA4HA6Hw+Fw1ClOaHc4HA6Hw+FwOBwOh6NOcUK7w+FwOBwOh8PhcDgcdYoT2h0Oh8PhcDgcDofD4ahTnNDucDgcDofD4XA4HA5HneKEdofD4XA4HA6Hw+FwOOqUbFo//Jvf/IabbrqJ1atX09/fzz333EMmk6lZvqenh8suu4yHHnoIgP3335+zzz6bjo6Oqaqyw+FwOBwOh8PhcDgcU0pqmvaOjg5OPPFEzjrrrFGVv/jii9m4cSPXXnst1157LRs3buQrX/nKJNfS4XA4HA6Hw+FwOByO9EhNaN9333057LDDWLBgwYhl161bx8MPP8wZZ5zBjBkzmDFjBmeccQZ/+MMfWL9+/RTU1uFwOBwOh8PhcDgcjqmnIXzaV61aRS6XY8mSJcF7S5YsIZfLsWrVqhRr5nA4HA6Hw+FwOBwOx+SRmk/7WOjv70/0Xe/o6KC/v7/qfd/32bBhA62trQghpqKKDofD4XA4HA6Hw+GYxkgpGRgYYPbs2XjexOnHG0Job2tro7e3t+r93t5e2traqt7fsGED7zntI8hKmaFij35XMG/Rnry4djlS+gB0zdqGSmWIvu51AGSyLcyetzMvrl0eHGvmnB0oDmxioG8DAPmWTjpnLmLDur8HZWbP35WeTc8xNKh+q7V9NoXWmWx6eXVQZsuFe7Bh/RNUyoMAtHfNJ5PJ073xGVU74bHlwj1c/Vz9XP1c/Vz9XP1c/Vz9XP1c/Vz9XP1c/RqkfuufewyQ6rcKnQwVe7j++uuZO3cuE0VDCO1LliyhVCqxevVqdthhBwBWr15NqVSKmMwbWltbkZUyq1f9ja6urqmursMxZZz6ntO59sc/TLsaDsek4tq5Yzrg2rljOuDauaPZ6e7uZuutt6a1tXVCj5ua0F6pVKhUKpRKJQCGhobIZDJks9kqU4L58+ez3377ccUVV/DZz34WgCuuuIIDDzyQefPmVR1bCIEvK3R1dTmh3dHUtLW2ujbuaHpcO3dMB1w7d0wHXDt3TBcm2kU7tUB0d999N0cddRSf+tSnAHjzm9/MUUcdxYoVK1i/fj3HHHMMK1asCMqff/75dHV1ceqpp3LqqacyY8YMzjvvvJrHLw9V+7o7HM3GwgUTZ3bjcNQrrp07pgOunTumA66dOxzjIzVN+9FHH83RRx9d8/Pbb7898n9XVxef+9znJrtaDkeq+FJSAXypPGMyQq2sZWqs1h111FFTWT2HIxVcO3dMB1w7d0wHXDt3OMZHQ/i0j4dMtiXtKjgco0ZKyZCEIWBIC+wS8KR6SAtCUhDVpjZ77b1fCrV1OKYW184d0wHXzh3TAdfOHY7x0RB52sfD7Hk7p10Fh2NUSCkZlNAroceHXh+6ffW6x1fv90rol0oTb/OT6+5IqdYOx9Th2rljOuDauWM64Nq5wzE+xH333SdHLtZY9PX1cdxxx/Hqq6+6YBeOuqfoS3olDEgYlErTXtHa9qwwmnZo96BdQKs3sYEtHA6Hw+FwOGoxODjI0NBQ2tVwOOqGfD5PS0uyVXd3dzczZszg1ltvpb29fcJ+s2nN4x2ORsCXkiGUsD7gq31RQkl/npVKYAfISMgAOSnJTnBESofD4XA4HI44g4ODbL/99qxbty7tqjgcdcP8+fN56qmnagruk4ET2h2OFClrzXpZC+qDEgaAPwN3AccCr5PKjyUnoSKUFj7rZHaHw+FwOByTzNDQEOvWrePZZ5911qsOB2Ee9qGhISe0TwQz5+yQdhUcjhGpoAT2MqHg/mfAJDO8D/gmsJ8uW5FQFlDQn19/w72c/LbDprjWDsfU4tq5Yzrg2rmjnunq6nJCu8ORIk0biK44sCntKjgcwyKlpEwojFf06ztj5W5D+bf7Enz92rDzjttMSV0djjRx7dwxHZiu7dyXkqIv6fclfXo/5EsqsulCLjkcDse4aVqhfaBvQ9pVcDiGRaK06z5qM8HnDo+VO5pQUDdCu9STmT1eu+PUVNbhSBHXzh3TgenYzou+pNeHHp09xWRO6dYZU4Z8J7g7HA4HNLF5vMNR7xgBvGIL7sAu+nMBfAlYmk71HA6Hw+GYNIq+pF+GAVgrKIsyT6ggrCWh3MGkLym4rCkOh2Oa07Sa9nxLZ9pVcDiGpRLTshuh/Rn9+XbAa/RrKaNm8YYn16yd9Ho6HGnj2rljOjCd2nlZSga0Nt1sPT70Suj1oU+/N6g3ZyrvcDimO00rtHfOXJR2FRyOYTG+7LaWHWCV3tsZUWWN/W9++8ik1tHhqAdcO3dMB6ZTOx/SmVOKOt1pvxbUe/XW74cCe1FvDsdEcfXVVyOECLbOzk722GMPvvOd71Aulyf1t9esWYMQgquvvjp477TTTmO77bYb03Huv/9+LrjgAnzfn9D6XXDBBYhxphV+7rnn+NjHPsYBBxxAW1sbQgjWrFkzofWbzjSt0L5h3d/TroLDURMpZSCo21p2H1gJbEsotFcJ7Nbk5YPvO2EqqutwpIpr547pwHRp5xUpKUk1xpn9IPAn4Mt6P4gS6ks6q0qFMJaLwzFR/OIXv2DZsmX87//+L/vuuy8f+9jHuOiii6a8Hp/73Oe48cYbx/Sd+++/nwsvvHDChfbNYdWqVVx//fXMmjWLgw46KO3qNB3Op93hSAHbJN68BiWYPwHsCdwb+05ceHc4HA6Ho9HwUWlOKzrdaUnCo4SpTu8HLgX2k1AR1ngpIJNKjR3Nyp577smSJUsAOPLII1m1ahWXXXZZTcG9VCqRzWbHrYmuxQ47NEea6oMPPpj169cD8P3vf5+77ror5Ro1F02raXc46hlJtZa9gtI4PAO8FuizysrYaye4OxwOh6MRKWlh3R4Db4+VuZMwWKsv3bjXKCyvSC4uSZZXJvZuTdZx4+yzzz50d3fz4osvBmbs3/3ud/nUpz7FggULKBQKbNq0CYAbbriB/fffn7a2NmbOnMm//uu/8swzz0SO19/fz5lnnsns2bPp6OjghBNO4Lnnnqv63STz+L6+Pj796U+zww47UCgUmD9/PieddBLr16/nggsu4MILLwQgl8sFZv7275577rlsv/325PN5tt9+ey6++OIqrfyjjz7KQQcdREtLCwsXLuSLX/ziZlm0eJ4TKyeTpr26s+fvmnYVHI6aRIR1GQrxTwMFlHk8WCnezBYLSPf9a341dZV2OFLCtXPHdGA6tPPANUzqDbUdGSt3hCmv9/VjAOyoxfKK5K0l+FIF3lKC35cl3XLzt9+XJW/Rx31riUkV3J966ikymQwdHR3BexdffDH//Oc/ufLKK7nxxhtpaWnhiiuu4KSTTmK33Xbjl7/8Jd/73vf461//yiGHHEJPT0/w3Y985CN8//vf55xzzuGGG25g55135l3veteI9RgaGuKII47g29/+Nqeddhq33nor3/nOd9hiiy3YuHEjH/zgB/nABz4AwIMPPsiyZctYtmwZAOVymaOOOorvf//7fPzjH+f222/ngx/8IF/84hf5j//4j+A3Xn75ZQ499FBefvllrrnmGi6//HLuuOMOfvjDH1bV57TTTptw6wLH2Gla8/ieTdUrWQ5HvRAX1iuo1yuBnYAWXa6oX9cKRHfoIXtPSX0djjRx7dwxHZgO7TyeLcW83hWYB6wHPoFKdeo0643FrT68oF+vAw4vo0wqJpAXgNt82GOC/CQqlQrlcpmenh6uv/56brjhBo4//nja2tqCMvPmzePGG28MhNbe3l7OPfdc3v/+90cE3H333Zedd96ZH/zgB5x99tk88cQT/PSnP+Xiiy/m05/+NKBM8Ht7e7niiiuGrddPfvITli1bxs0338wJJ4SxLt7+9rcHrxctUgG399tvP7LZUJz72c9+xoMPPshvf/tbDj74YAAOO+wwAC688ELOPfdcttxyS77xjW/Q19fHXXfdxdZbbw3AEUccwbbbbkucTCZDJuOcU9KmaTXtQ4M9IxdyOFLAaBqMT58R3I3QvgRo1WUHqC2wAyzebuHkV9jhSBnXzh3TgenQzu2xzyxYG9ew9brMdulUzbGZHOfBVvr1fOCeLKwvbP52T1YdD9Txj51AyWWXXXYhl8uxxRZbcOaZZ3LqqadWaZrf8pa3RLTMy5Yto7u7m1NPPZVyuRxsW2+9NbvssgsPPPAAAA8//DC+73PyySdHjnfKKaeMWK+77rqL+fPnRwT20XLHHXew7bbbcuCBB0bqd+SRR1IqlXjooYeC89h///0DgR2gvb2d448/vuqYP/jBDyY9qr5jZJpW0+5w1CtG02D7tRvz95XAO4GcLjuo97ag7rQPDofD4WhEygla9grwT6CLUIC3s6VILS81+thn+wo3o6nxHhnBjUhu85VgvUdmYs7x9Vm4SUz8cQFuvPFGFi1aRGdnJ9tuuy0tLS1VZbbaaqvI/y+++CIAhx9+eOIxZ82aBcALLyi7g3nz5kU+j/+fxIYNG1i4cHyLeC+++CJPP/00uVwu8fMNGzYE9Vu6dGnV56OpnyMdmlZob22fnXYVHI5EJNVadh9lCv8csKMul9PvDTd5Wf6XlezxWvMNh6M5ce3cMR1o9nYupaSCEtxtTbsE/gK8BrVwHRn3YvtGQ0pJGZW+zizOCyArJTkBmToX3n0pKY0hMNkeGTFhputTcdylS5cG0eNrEV9gmT1byRdXX301r3nNa6rKd3Z2AqGwv379ehYvXhx8bqKrD8ecOXP461//OmK5JGbPns3222/P9ddfn/i5CXi31VZbJdZlNPVzpEPTmscXWmemXQWHI5G4lt1oGp4E2oG5ulw7StM+3OTliZXRSKUORzPi2rmjWfGlZMiXDPiSvzzxNAO+pCwlfhPmJA8C0BEd/3zgr6isKTmqLczshetGwpeSfgk9PvT68KoP3b76v0eq94q+rMv8876UDPpS1dVFAYxw4IEH0tnZyapVq3jd615Xte28886A8jX3PK9KeL7uuutG/I0jjzySdevWccstt9QsUygUABgYGIi8f/TRR/Pss8/S0dGRWL85c+YAcMABB/DQQw/x7LPPBt/t6+sb9jcd6dK0mvZNL69OuwoORyJGy26EdRMhfhVKy27WdFtQPu1QY/Ii4OS3HTYldXY40sS1c0czUvQlRQkl1JhwxFsOo1dCRkJeQAuSbJ1rYsfCcP7sjwP/Btyh/7dpRG27LyUDkmAbkuGCvUDd35IIo+IX6ug2V3TdByUU9eKCI6Srq4tLL72Us846i5deeoljjjmGGTNmsHbtWn7729/yxje+kXe9611BpPjPf/7z+L7PPvvsw1133cWvf/3rEX/j3e9+N//zP//DO9/5Ts477zz2228/enp6uPPOOzn77LPZZZdd2G233QD4r//6L4455hgymQyve93rOPXUU7nqqqs47LDD+OQnP8kee+zB0NAQq1ev5le/+hU33XQTbW1tfOITn+C73/0uRx55JBdccAGFQoFLL72U1tbWqvp84AMf4JprrhmVX/svf/lLAB555BEAbr/9dubOncvcuXM55JBDxnKpHTGaVmh3OOoRKWVgHu9bgrsdhM5DvZ9HmQlGvh/bOxwOh6OxkFIyJKFfC0ZDOm+5BIRU2uaCgIqANk+SaxLBvZY/+0qgE1iEWqw2456dm73RxrySFtb7/FD4NeN+RuiFGpQAn0GZy9eDqbxpmwMS+n1V775Gu/hTwEc+8hG23nprLr30Un76059SLpdZuHAhBx10EHvuuWdQ7nvf+x4dHR187WtfY2hoiEMPPZSf/vSnvOENbxj2+LlcjrvuuosLL7yQK6+8kgsvvJDZs2fz+te/ni222AKA4447jjPPPJPvfve7XHTRRWp+KSW5XI4777yT//zP/+TKK6/kqaeeor29nR122IFjjz2WfD4PKBP8e++9l49//OO8733vY/bs2fzbv/0b5XKZiy66KFKfSqVCpVIZ1bX513/918j/Z555JgCHHHII999//6iO4UhG3HfffU33OPb19XHcccfx6quv0tXVlXZ1HI6AipT0+tCtV6/7fOhDmQOeCbwXeD1qMD8XOBo4HGgDOgR0eNDpQZeAgpf+AO9wOByOsVH0ldl0v6XNNAJtBsgKJbS3CWj3oF2AVwcC3eYgpaTPMhXv1cLgAPAzlHvYecDnUWPgm1FZVDr1Nejy1OuWBhj3/Ni5Btp2/XkGKACt+t52eGp8r4dzK+k5Sq+EAV33V17t5tB5M92c2uHQdHd3M2PGjJrPhPn81ltvpb29fcJ+t2l92rdcuEfaVXA4qkjSsvuoicvzKE27bR5f07dP77/xnZF9oxyORse1c0ezUJKSQctsut9XW6+EH//3dUpY0oK8EeiHmkC1Yvuz27nabX92CH3ak1zCGuUyVFD3rKS160NSWQ88AnwF+BPqf/N5SV+XeqBs19m007Qr5XA4gCYW2jesfyLtKjg0UkcfHfQl/TrgzpDfnIF2RiLiyx4LQtcFzEEJ7YLQp324ycu7Tzl6qqrucKSGa+eOZqBiCexGIC9K6Af+CPzlX4/mT4RCuxHoylCXwcrGQi1/9hIqcrwR2gtEfdob0Ty+LEPht6xjFjwKnA/cj7IoeIxoFH0fUp8TxaP7l1Hb8lRr5XA4DE3r014pD45cyDHplKUMNAZ2EBZPQF5CQUjyojlzliaRpGWXqBy1JtGPWUkbzeRl7pyZk1ZXR33jS6kmV6h2FPhGNkAaobHi2rmj0TGByfotH+dBX2mV/4wS5Jg9k98BXwP204JfReixU4RWWI2IvWAd92dvA7bR5exxLy7CNoLg7usUb2aBoow6zztj5e4E9iM8J99MjlLExBAwcXbMffpNqrVyOByGptW0O9KnLCV9fui73SvV1iOj/xcbYSSeAKSUgbYhHoRuFWEQOvNQtjJM9PgpqbGjXinpVELd2m/STiPUV8dphByO6Yi0Fq8DgV0qgX0IuD1W/g5UH28Wdc3WqJhc5bYG14x9fwWWElqY5QndwoLvT2VlNxOf2Hnqsf7wWLkjid7bernHZtiw5xpvTKkuDocjStMK7e1d89OuwrTG12aAxhSwTyrhvccEX5NhEJ4BCUN+PQxXk4syf4uax5uBejVRf3ZjHl8rT7t5/eAyZ7g23Sj6MvIs9ejnywjs5tlqpsUw184djYyJxl3lq44ynX5Vl2t9eAUQCnTQWL7ctTBa2yR/9sdRQrtHOO4NMfy4V88EZvGE51wGtrDKfAl4jX5dbwvxSfXZNY2KOByOKppWaM9k8mlXYVpTsgRys/XJULve56vIpIHmgfT9uSabJC27D/QC64AdCCcuUCMQXWwC19PTP9nVdtQRFUtj16+fqT4/jFLcJ6NCe7lJninXzh2NSsnK12182M2YZ7TsK4GzAa+3j/9ACXT1qIUdL7X82cvACmB3wnGvQDTlGzTOwkWSRUEZdf5/ArbW5YwrnH1+9UC8rTV6u3M4mo2mFdq7Nz6TdhWmNXYAHTsC6f+hVpn/j3ACY6KUlpp8dIhr2c3r1ahV+C1QPslm8mKbCcYHUYmaIBxz5AFTVHtHPTAkYwGsrNRJffr/AT+qzWsGM3nXzh2NSFlK9Uzq53HQjwrsfwW+h/JnfyPQf9gBLNLfTerzG5Va+dlXoYT0bVBjH6hxr0poj+3rFTtCvm0a76Mixx+iy/WRvChTD+en5hbROvnpVsnhcGiaVmh3pIcvZbiiLgmCZT2GmpzcB5yDGsRKWmgf0qaCzaxttwdxOwjdSpSWHUK/PoEKzlOkMSYuUkoVdNBXWQKKvvq/GQTGeiGI7Eu40FVELYb9CbhY702qoRJh8EeHwzG12C5iSRr2daj0Xx8ijJw+EyXQ+cEx1L7Rn2GjfQ407kT92e1YLnlqm8dDfS9CVnS/ay9SlFF99ArgQF0uvhgff50Wta65s3NyOOqDphXahWjaU6t7zMpsfH93rNxtaAEDSwiph5FrEjBB6OJadp/qIHS2efxA5BjVg2mxaMeXT4eKDopmAqEFmzbXLtXxJKuRsLU4wYIYajHsfMLFsEetz00ba3TqoZ07HKNFxlK7BYI7autDWZwdAByLyk0O0FYcosccQ+/jAnyjEV/Ej+dnt/3ZbZ/2OI1w+mah1KRNM6bxjwHzgQWoxfh+kk3/6+EckwR3l4vJ4agPmlay3XLhHmlXYdoSmFTJqOB+UKzcoajB2Wjajal8pQmFPDv4jh2EDlSOdhOEzjaPLxAT2hP23/zuzyez2iNSkiooWq820zaRzE008z5fmWwXG3XGWWf4hJM8M/FNWgyLT/gbnbTbucMxFoxLWCRSvAwDz30LJZx+BCWwG9Pw1iuvD7Satrl0I/eetll8xf6fMD+7IKppt4XEehNqa2EWJ4ym3Zyj8WffW5frIBTaq7aUTzBeF/PaadodjvqgaYX2F9e6aMNpYQQK89psJp5/F7AYFZHU+L6X9N4I8c1Gkpa9AnQDL1Kd7g2iGodqE0G1P/vMd0xmtYfFjwVF67fS+5ko5iYo2nTJEDCZ1DJdfEOs3DE0zkR3tKTZzh2OsWAHnjPBVo2WfQj4X+AfwKdRfXyecKG268Mn002yMFdvC3BSShUY05cM6K2k37OxBVjbUmg1kAW2p3qxOiK019jXGxWimnZ7keL/gH11uQLVQnA9ndt007QvW7aMk08+mQULFpDP55k9ezZHHHEE11xzDZVKJdW6rVmzhgsuuIAnn3xyUo6/bNky9ttvP9rb2xFC8Nhjj03YsTdt2sQFF1zAn//85wk7Zi1OO+00tttuu3F993/+539485vfzMKFC2lvb2fp0qVceumlDA3Vp3Vf0wrtUtbbEDd9iGgCrdevAHOB/0Jpl/+JNo2nWtveLFGvDbaW3TYPXIW6JjNQE5da0eMN8QG1UEgvS4IJimY0SkZI75FK624CMBmhfaAJ7+tUkzSh2k6/3gPlI7t7QrlGJ8127nCMFpOPvWpDjXN/Aq5FubPMQQnsBULT8M5Cnj77eNa+np5l468fuET5oZVVrw+DfhjPxJiK24vVEuXjbUzjzdgH6pqU9etai9X1SMSPXYa++6tR7hC76XLthBZ09WZNkZSjHYi0yWbim9/8Jq9//et55ZVXuOSSS7jnnnv44Q9/yE477cQZZ5zBrbfemmr91qxZw4UXXjhpQvsHPvAByuUyt9xyC8uWLWOnnXaasGNv2rSJCy+8cEqE9s3hoosuYv78+Vx22WXceuutvOMd7+Bzn/scp556atpVSySbdgUczUeS2RfABpRwOhd4C3ANyq9vCMhKZSaY0xOcnIQMEiEEzUBcWDcTl1VEg9BlhCongFYY1lQyzUHepLYxgQSNOegQsBxlsn0csI8PwgutCDwJbUgyTXJfpxqZ8NpEWj4eNQlOnOi6y+1wTDoVqrOiDAJ/RmnY/w+V2m1HlHDagurzhX5YO1ApQJPG0HoQ6kC5r9kp7IYsq56MhJwIfbnz1PZn/xvRIHS2pr2WjqterkEcEyS0JKOWBRJ1z/fGiltAdFy392mrmmrNLYrxgk3AAw88wDnnnMNHP/pRvvWtb0U+O/HEEznnnHPo62u+5YpKpYKUEs/zeOKJJ/jMZz7DoYcemna1UuPPf/4zc+fODf5/05vehJSSL3zhCzz55JMsXrw4xdpV07Sa9q5Z26RdhWlLXMNuJhwbgNm6zNtRAuuf0SbyhAHphlCTgXQNkyYO3wpCZ09afFTkeNs03jyQgujkpZbAfvtdyya38jWIB0UzE5VHURkCfoMKivZ/hP6cA5b2vZmzBEwWEa2bpREx1hjxiW49LO5MFGm1c4djLNgWVWWpxjTTJ/6fLjMXJcAVgBYRDcJWvHdZEIjODkBXL0K7lJIhqy83MUtM/JI+GVpX9WuBPik/e4Vofnbj02/GvVoWZvWKEdjjbgA+8BDKNN7cZ7MYHxfU68F7LL5IZOo2UPMbCcd4qht5/WrkU90TW7cJPu4ll1zCFltswVe/+tXEz3fYYQd233334P8//vGPHH744XR0dNDe3s5hhx3GH//4x8h33vjGN/LGN76x6ljbbbcdp512WvD/1VdfjRCChx56iFNPPZWuri4WLFjA//t//4/BQdX677//ft70pjcBcMQRRyCEQAjB/fffHxznyiuvZI899qClpYU5c+bwgQ98gFdeeSXy20IIPvOZz/Cf//mfbL/99uTzeb797W+TyWTwfZ8vfvGLCCEC8/I//elPvP3tb2fRokW0tray8847c/755zMwUN0KbrzxRl7/+tfT0dFBV1cX++67L7/61a9Ys2YN22+/PQAf+tCHgrpfffXVidfDrusFF1wQ/L9q1Sre8573sP3229Pa2srixYs544wz2LhxY9V3x4stsBv22WcfANauXTthvzNRNK3QXqnUpz/CdMAW1O1tIyoXuQA6gX8FriYU2oPUb5aWop7Tu4wWSUzLbmkmnkRpXewgdLZ5PKhrY44DUX/lzs62yaz6sMQXZyrAnbEyt1IdkMloaZrh3k41SYs3ZoJr5zZuJoEd0m3nDsdosftEI7TdHivzG5RgWhCQF1EjmI6O9mhk8fg+5T6zQrgIa/py2y2qXwvxA37Yzyf5sz+FOm/jzx5frK5XC7NaxFPcGtP4jcAaYC/Cc2wlah6ftE+L+IKw2Y82EJ18qhu+/Bhc/xR8+THk3zYi+8ubv/1tI1xsHXczBfdKpcJ9993HkUceSUtLy4jlV6xYwSGHHMLGjRu5+uqr+dGPfkR3dzeHHHIIy5ePP37We97zHnbYYQduuOEGzjjjDC6//HK+8pWvALDXXntx+eWXA/Ctb32LZcuWsWzZMvbaay8APv3pT3PWWWdx+OGH86tf/YpLL72UO+64g2OOOabKF//qq6/mtttu42tf+xq33XYb73rXu3jwwQcBZSK/bNkybrzxRgCeeeYZ9txzT6644gruuOMOPv7xj/PDH/6Q97///ZFjfvvb3+Ztb3sbW265Jddccw2/+MUveOtb38qaNWvYaqutuOGGGwA477zzgrofe+yxY7o+zz//PFtvvTXf/OY3ufPOO/n85z/Pvffey5vf/OYRv/vGN75x3H7uv/3tb/E8b0LdBSaKpjWP7+tel3YVpiVSyog/O4SrtRtQAehMpNjjUZGuH0BFkjfa9pKEIaEE97wIzcoalSQtuxnQN6DM4wNNuwBkuCIPSihrJ3mAf8MBe0zFKVSRtCgjgf1R99NgMgR40spBb5nMtzSRC8RkE8/ZbPZmAhjP/VsvE8GJIK127nCMhaRn7yjgfqvMm1Ea9hYBWT3Omb5x2/125+/28SRIUT+adiOQGreoQan6n+XAXaj0da+zVMjCU0J5LX/2jLUZMaNAtUtAvfdl5poYYd1sfwa2RSkrPNR1aEP5iCedWz2cX9K1HrV5/J9ego1aYbZxCD7/yMRVzLBxCP7vJdi+a9yHePnllxkYGGDbbbcdVfmLLrqIQqHAvffey8yZMwGl/d5uu+248MILAwF1rLzrXe/iwgsvBODwww/n4Ycf5mc/+xkXXnghXV1d7LabioSw6667sv/++wffW7NmDZdeeilf+MIX+PznPx+8v9NOO/GGN7yBW265hbe85S3B+1JK7rrrLlpbW4P3Zs9Wdq+LFi2KHPukk06KfO/1r389XV1dvPe97+Xyyy9n9uzZdHd3c/755/PWt741cu5HHXVU8Ppf/uVfAFi8eHHk+GPh4IMP5uCDDw7+P/DAA1myZAkHHXQQjz76aPAbSWQyGbLZsYu4K1as4LLLLuP0009n3rx546r3ZNK0QrsjPSLmVZagsREVfEegBPFW4F3AT4HXoxrjkFSfZWVoJp9tcMEurmW3g9DNR/kxmokLRH37QAlj9TZ5iQjrluZ/od7vgwq69DTwGvSkVIbaBk+GCxWFxr21U058MguhsJ7YTvSk3+FwTD5JguZuwJ7Ac8AnUSbhHsr32zaNB7U42xs7Xnyf5uNcRrtCaQG1jBLYz9Of3wd8DdhXL0R4euE97s/+OGpcMGNA1orlYkJOlggFeKjfvqwiZejHLqOm8X9ELWSbYHtl1D3eqL8bcYEQ9TGuJ+1HnfJtn7lw91olWM/KwydeC9t1bn7F1vTAN/4SHvd11SbNk8kDDzzAcccdFwjsAF1dXZxwwgnccsst4z5uXPP82te+lnvuuWfE79199934vs+pp55KuVwO3t9vv/3o7OzkgQceiAjtRx99dERgH47u7m4uvvhifvnLX/Lss89SKpWCz1auXMns2bP5wx/+QG9vLx/+8IdHdczxMjQ0xNe+9jV+9KMf8fTTTweuAwBPPPHEsEL7vffeO+bfe+GFFzjxxBPZYYcd+PrXvz6uOk82TSu0Z7Ijm7w4Jh4jqMc1sKAGqln6dQbV+A4FbgDuAE4w70u1FfXrPGrgb1RqRc9djdKym0mbF5vEGQE3rkG1X7/08ibmzpk5qfVPQsrq++ujUtjNBT6Dmph9Rv9vfPqMxt3WvONLCl4D3+ApIj6RMhO+JJ/2elncmSjSaucOx1iwFzLN/6DSnB5OuIAJUWHd7L0Nm+ibPTPy3YjPc4rdpDHNt93ffKpdom5D5V4PCnhR7bMP/BV4B6FbmO2naRari6gF7XpbsI7jE/rtm4WMit4/gorfE3d7G24hXsr0lBTmlsXH99H6tIvtu5Dn76k04a+bi9gMbXiE3WZN6HFnz55Na2srTz/99KjKv/LKK2y11VZV78+fP3+z/Ku32GKLyP+FQoFicWS7hhdffBGAJUuWJH6+YcOGyP9Jda/F+9//fu655x4uuugi9txzT9rb2/njH//IWWedFQjN5viLFi0a9XHHw3nnnce3v/1tPv/5z3PggQfS2dnJc889x9ve9raIAD8RbNiwgSOOOAIpJXfeeSednROw2DQJNK3QPnvezmlXYVoS0bLH/l9PaCaWQWnUy8B7gctRk5osoYl8SZsODgnISonXgNp2E4TO9mW3g9AtJTpxSdK8RAZ4S9sggZ9cdwef+OgpU3IuNrUmHN2EZv1LgU8A/wlcigq4BzpSclVUeUmuAe/vVJIkDEhCLUgzm8en1c4djtFihNqkBesioQYZosK6cYnygH/+4g42/dspiceJW9hMNfF6GCu6w4ma/++DdolCW1dJVdb2Zy+jFqyNhZmwIujbQnsj9GVlafmxW+f5OMoU3pynGdftlG829XButa73WALRie27Nst0fSqOm81meeMb38jdd99NsVikUCgMW36LLbZg3bpql9t169Yxa9as4P+Wlha6u6v97ePB4TYXY9p+1113RX4//rlhtItAg4OD3HzzzVxwwQV8/OMfD97/y1/+Eik3Z84cQAVqW7p06ZjqDuo6xfOgxxcaAK677jre+9738tnPfjZ4r7e3t6rc5tLd3c1RRx3Fhg0b+N3vfsfChQtH/lJKNG0guhfXjj84hGP8xAd0I7gbwcIEojMm8lmU+dh84CaSg9IVpRLiGxFJTMsuQ83JSsIgdGYhI04bw6/KpyXIVE3g9Ps9wEz9OgscApwMXIRatBlCTcbiQekGfJfDfTQkTV6L1j6pnTTDVXUCu6NRiD9vEtWHt1KtWY/vj9YCe4mYqb2sj+c4HqdGEvqm7w7sBFyHMvEf1NuAH7Uw+wtKE28E9vhCtRkH45lT4q/rAV+nPo1r2n2Ue9jeRP32QWnae6xjxLXaaZ2jvegU30+sTrM++PSnP82GDRv41Kc+lfj5U089xYoVKwA45JBD+PWvf01PT3jnenp6uOWWWyLR4rfddlv++c9/RgTSBx54IPK9sWAWE+KR24844gg8z+OZZ57hda97XdVmIrePlWKxSKVSIZeLRpIyUd8NBx54IB0dHVx55ZVjrjuo6/TXv/418t5tt91WVa6/v7+qLlddddWw5zBW+vv7OfbYY3nqqae46667alov1AtNq2l3pEOShl0CZp2xXe+NH5tJk3Ia8AXgGJTfe5K2PdeA2va4lt2YB76M0kqbVXgThC4+icsxjAZVkpq5ZHxhxrzXjcoMIFCdi0AJ7euACwGTXCUekM6YzLfRePd4qqi1cDMY2ydZZTgcjsknslhmSV8DhNlA4ubx9tahP+tBLdjWm6Y9vrdfn46KaXIhyrrqc4R9u5ThWPhXov7sGRGNHg9q3IssQlp9WT0J7j5RH38zzktUir/3Ur0g30Z1po96GNPt+sQZi6a9UTj44IP5+te/zjnnnMPf/vY3TjvtNLbZZhs2btzIvffey/e//31++tOfsvvuu/O5z32OW2+9lcMOO4xzzz0XIQSXXHIJ/f39kUBwp5xyCldeeSWnn346p512Gk899RRf//rXmTFjxrjquNNOO5HNZvnhD3/IFltsQaFQYOedd2aHHXbg3HPP5aMf/ShPPPEEhxxyCC0tLTz77LPcfffdfPCDHwzSxY2FGTNmsP/++/Nf//VfbLXVVsyZM4cf/vCHVanPOjs7+cpXvsLHPvYxTjrpJE499VQ6Ozt57LHHaGlp4WMf+xjz5s1j9uzZXHfddey+++60t7ez/fbbM3v2bE455RROP/10PvGJT3DcccexfPnyqoUBUL7411xzDa997WtZsmQJN9xwA3/4wx9GdS6HHXYYTz/9NKtWrRq23EknncTvf/97LrvsMvr6+njooYeCz3bYYYfElHBp0rSadkc62KvGdjqwV4AtCbXKAiW051HC3VLUSv31hNr2Ykzb3ogp4JK07CYI3QKU9sUM6nGNA9TOWZv2BK5WWr8elNAO6nzyejsLFc/gEkJt+yChxt1sxca6vVNKfJJs9mZCVUz4zN47JoaKlJSkZMhX+4qUDdcvOSae4Z67uNAeCO4ifA9CE/q+hGPUQwtL8ncu6fe7UOPVeaisKN8i7OuHiPqzv5bQLcws7trXpZXGMI83ZvG2aXwZeB61UL0nWkFBeG5tVAd2q4fziy/G2Hnj+xLKNwNnn302Dz74IDNnzuTf//3fOfTQQznttNP4+9//zve+9z2OP/54AHbffXfuv/9+urq6eN/73sd73vMeOjo6+O1vf8see+wRHO9Nb3oTV1xxBQ8//DDHH388V111FT/5yU8iAezGwuzZs/nOd77D8uXLOeSQQ9hnn3145BEVkf/LX/4yV155JQ888AAnn3wyJ554IpdccgmzZs1ixx13HPc1+dnPfsbee+/NWWedxWmnncb8+fO57LLLqsp99KMf5Re/+AXPPfccp556KieddBK//OUvAy2/53l8//vfZ+PGjRx++OHss88+QdC+973vfUHU/eOPP54777wzSDln8+1vf5sTTjiBz3zmM7zjHe+gp6eHn/3sZ6M6j0qlEgnSV4s77rgDKSX/7//9Pw444IDIlqT9Txtx33331Vs/uNn09fXx7tM+ztOr/0xX18T71jhqM+hLeiR0+9DnQ69UA9Q9qGBzl6AG5HagzVOCWr9Uk5rVwNnAFagV+1agXUCbUGVb9esWMXofnbTp86W6FhJ69H4A+BHKXPzfUZO5DqE2UNesV5f7DPBG4GjU9egU0O5Bl6de/+qm33Dy2w6b8vPq9SU9fnhOpr5fB+YB70ZNTsyiwyDwKvAplJblTP1ZC+F9bdPn1OFBpkHu71Ri2lKvH20j3wSWoRa+PotqJ6Y9dei20t5Az0wS199wbyrt3KYiZeCqU0ZNbM0iZF6oLAjZBr7Gjs3Dl5JeH7qlfkZ9JewMAh8BzkCZS7cTPps5oftQXfY3N9/L9048jE+jnucO1LPb6anyMzxSi/1Rlqr/6TH9j67zOuADwC/0uVVQY9ungYNR2ua8fn81Ks7JL1DjQxvq3AThNRgEPoxa6N2L8HqZa9AlIF8HgUullMG4bvpkM77fgApC90VUf9yG6jP6Udfg48CNqDGwHXVe5tzSGv+Ga78f6u7m2XkzefXVV92c2uFA+cHPmDGj5jNhPr/11ltpb29POML4SNU8XkrJ1VdfzW233UZfXx877bQTZ599dk1/jH/84x9873vfY9WqVXiex+67785ZZ53F/Pnzq8oWBzZNcu0dScTNps2q7QZCf3ZQpuAZ1GTXrFZvBxwEfAPYCjgOlTqmaA5m2YU0Qn5vE4Qu0LLHNO17EQtCJ6Kr2zBMpFltLrjzjttM+nnESfJ9M1svYcA5UNYULdY5fQH4D5R2BlRe332kmryWJZSFuj5J/v3TnVpapwGUFUNSzNlmWZFNo53blKWk3w/jMZRlKLSbXNtlAW2eC6g4namlMR0kDLAWd4GyTcMXLNkmkvbNHKceIshHrKosbXsPYWBZgRLQtyTs67dAjeUeKj/7a1ETz7ivN0TN46NhquqvLzNub7am3Yzvj6AWaGwXgIo+gVZCV7n4NfVT7jpqtd9Rp3xzOByTSqrm8T//+c+5/fbb+epXv8pNN93E0qVL+dSnPpUYuMD3fc477zwWL17M//7v//Kzn/2MTCbDl770pcRjD/RVRyJsZHxtkjnoS/p9SZ8vGfAl5TozzTSDVtxs+hXU4A1Wrm6hBuecCAfx1wFPoKLR/jsqmIsxm+73VdCyfm1KXU/nnYQknNwb00BzbZKC0MX9+gTV5vHxQXWP147fDGpziE82DJtQZpLG1NHkYS+gJnNbAaeg7u/9qEndY0Rz25br8LZWpKQYe/aGfIk/RW1wuCBBRWAGsXYi68PkcqJIq52D6ntN0MQ+oxU1mkYZ/j+g+6VKnfdLjskh6dk0r/sYXSC67V6zI+1EzePr5TlOSvMpUXFMzNhuhPYCsA3weeAHwB8ITeOXMrw/O6j5QHwRsl6ug6Ei1eKzEdaNaXw/KtieSXNq5jagzrFNvzaz3FqLsVNN0r01ryc+XrfD4RgPqQrtN998MyeffDKLFy+mUChw+umnUyqV+N3vfldVtq+vj02bNnHMMceQz+dpa2vjqKOOYuXKlSnUfPLxpRLIi74MTJG7fejR5ljGRK3bV0JsPUwUpZSJ/uygNO2zqA68UxDatBQ12D8aO+atqMHNFtz7G0Rwj2vZjVD6EmpStj1RLbvxacfaG0071NngHpvA2ZNT49Me3GNPuTSYe/zP2PF+TVSTVE93VAbPYPTZ69H/90soTZXgTvRaGwZJENpr7B1jpySjcRf6ZWgOa9xDzGcDvtK6O6YntQT3Mqovt33ZIwHpLIm1E6W9jvevJphbWtTqU+w0nwIlpBb09hqUS9SlwM3AHwkXL4w/e0ZUX4M2otHj67EfMwJ7hdBa0EctQs9HxawxAruwFifMteqn/vrppLG9km6VHA6HRWpCe29vL+vWrWPXXXcN3stkMuy4446JgnhnZydvectbuO222xgcHKS3t5c77riDgw46KPH4+ZbOxPfrFWkJ6X1aSOjW/kVGQOi1hAV7wtirtT9pp8xKmmSY919BRYW3NbACpWXP6y2Hih5v8y+oFXdbcB9oEME9Sctu8rMvQk3ibC27J6oDE9U0j9fbk2uiUT2ngqr7bNXrVaKadoG6r2ZxJgMcGTve0dYxfNKfuNgMytBXsdd+9qznsc+ffME9fv/jQYJmErocVLWVerqg4ySNdg6qbwkyWRCmKewHHga+BPxJhkEzS+jJezNcdMeYiY97ED6XRmi3A67F9y8+/TztRM2R60qgI9pXg1pgmGWV80S4SJsDDgCOAq7Sn/8A+DvVmnabAvUdWNOXMtC0l2WY0s6kensd4X2OWxOYMd/WtCdZMUw1ta5zM0aOdzgaldSE9v5+NSx1dHRE3u/o6Ag+i3PIIYfw5z//mWOPPZYTTjiBF154gTPPPDOxbOfMRRNb4UlC6ijEJqCJ0eYFwnrMBNMECDHCgjEZH5D1EV3d1rDbA9AmoiZ09oBmTOQLQvmBXYIKvrY78GPgBaKCu9Fo9ctQy5X2eceRUgYr8LaW3Qd+hxJu/0Z4DWqZx5souhAVwszr3/z2kck9kRrYUYQhXJwYICa0i/AczXtLUfnbW4Evo7QxEAqiahKT/v0sabPowdjzFwSOkuGzNxVm0XFhwOyHUEJ7UpYBe9/IpNXOJTFtmlRC+aOoKNn3ooJnPiKtXM0yXY2oIx1GEnpsbbS9NzHVPOCvDz5CBzU07aSvaU9K89mDCphnn1deC+4tKOuqeN90N6E/e1IICJPqNGkBsh76swpRTXuwR/mz70NoGp+lOjNMJ2phxr6O9j4tktqw82d3OOqH1IT2tjbl2dPbG/WW6e3tDT6zee655/iP//gP3vrWt3L77bdz2223sf/++/Oxj30s0Qe+t3sdp77ndM455xzOOeccbr31Vi75xo8pFsPwJrfftYwHly0P/n/p5U184zvXRY5z/Q33svwvoeb/yTVr+f41v4qU+f41v4pogpb/ZSXX33BvpMw3vnMdL728Kfj/wWXL+fVdf1ACgYRXBob4r2/8hA0DQ0qz58Nddy/jD8tWBILCcy9t4kf/fV2g+euTcMuN97LiLysD4WLlmucnrH6337Us+L9YHBrV9fvud6+LTDIeuPle1jy+kpeA2ShNwu3X3hLkJM8CN/7kFl56+vlgkJ/1+EoOuPleLkQFazsf+NkV1/HShk2B4P7wQyu4+65lys9UwqbBIf7z6/Vzf3+3bAV33rUsGMgHBoe4/ts/4bHiEA+hJjoX37uMOx5eEQi1mzao+wvh4L7p5nt59XFVPwk8//Tz/O9Pbgn+/+D7TpjS+/uN71wXGdDvvuleVur69QK5p5/n0WtviUzgfvnjW3huzfNBZ/P04yvpuvleFgO76feuu+I6Nm7YFCz2/H7ZinHXz2a89/fn/3tPJB3dVf99Hc+/tCl47h56aAX33b0ssP54dXCI//zGTyaxfs8H1/2Jv67kvpvD+zsIvHTFdRQ3bAJ9/VY8vILf37Ms+M7gFF+/iW5/H3zfCanUzwhKg4ND/PBb6v5WgLuA9nuX0frwCgBuAzZu2MQP//u6iGBVL9cP6vv+Nkv91qx5nl/8+JZIH3n/tbeQe/r5IJ3b6sdXcvdN90ZM5H9+xXW8umETh596PJ3ASw+v4NF7w+e3ODjEdy+bzP5l5Ov34oZNwbi+/OEV/FHXrxtoLw5x07d/QkXXLyvgkXuX8c8/riCPsqDLbNjErCtU/Y7VZe6+6V7++VdVPwGse/p5fnPtLRQIzePvuPYW1j79fHA9/1IH7c9O5XrDj2/h2aefD6Ljlx9fSffN94aB9gRc+9/XsWlDWL/2h1fwt3uXBec0VBziSn1/zeJsGs+Hub+PPrSCh3X9BoBMMR4W0OFwGEz/cuuttwYy56nvOX1SfivVlG/vfOc7efvb385JJ50EqLx6b3/72znjjDM48sioEe1vf/tbLr30Um699dbgvb6+Po477jguv/xydtttt6r36z09xaDWsBst+ZAMTa3syKTB/3r7K3An8GaUGVa7UGnAOoVKi9KaUjoUOyWMsRzoB15GpX35KUojaNK8tAuVjspDp32ztOiDhPld/weV0upLwNaE/nKtejW/1UoH1yrqI7VVUae+67U0tH0ozfLvrXJHAxfp+9cqov6y/cBNwHLgc9RPKq+ylLzqR/16+4E1qDQ9N6LuTwe6XXrKvNikAOxDBSb6EXA5YUqcTk+ns9Pn56V4Hysy9GM37id9wJ9Rz94x6PRNQm0dXtimJ+N+mPrE0/EUgX9FaXsvRbWXPNFrb/oFl0Zv7JRlGE/E7tMeAP7TKncZcICoj9RcjnQoyWhKRtNWVgHnAP9LdYqvHJYFne7zb0CN8fWWvrFWms//QvlwmzSfpj/MErVEepSw79wHleKzXSgrOzM2mGN+CzVXeJ99Day+rC3FlG8m1Zu512YhdwC4FjUOnkeY2rZDr1abPnsA1V+/HWVxZlLa2alcCymcX8ka14N7jGqLX+7u5qV5M3n22Wfrek7tcEwV3d3dbL311tMr5duJJ57I9ddfz1577cWCBQv48Y9/TDabTfRT33nnnSmVStxyyy28+c1vplKp8Mtf/pLW1la23nrrFGq/eZicv7a5d9ES0u3NaHsqqKBdP9DHuB81YB6AFvCFLi/TSYcWMeOTYb1fQa04txH1Zzfa9oJH1O7PA2EOBHxIf/984GJUVNrgByFIB2eO3VIHc2VjKhsPUrMgVu5YLPN4Achq8/ikNe40zeji9xnUuXWjAqLZ91hY/0N4bjN0eXM8cwz7+Gkiid1D1OLJefrz+4GvAftJqIjQRFJa2rPJqFN8L1FmmsantBIvo+vkGD/xdilRi4egXD1ORaWxMmVAuzK46z7tiPeLErUAbaZstol0MAbKaF/ZRRg9Pn7ctPrFkdJ82hGEzHnkrfbvofrK/VDjXV4od7iccZuKjX0ma0qtPi9NKqhF6GCOZilaHiZMb2e07Bmh2oM5R1DXy9iH2q6E6d5jvSe67wfa8nlmz5/fkHNth2OymD9/Pvl8fuSCE0iqQvs73vEO+vv7+eQnP0l/fz8777wzl1xyCa2traxfv57TTjuNSy65hN1335358+fzpS99iauvvporr7wSgMWLF/PlL3+Zzs7qoHOz5+9a9V49UZYEAY4GfS24oyKP3g4cAewKPK3fW6G3eCTPO1CDoRTpD2hGUI9vG4C5uoygWpjLAxlLcI/MdfUJnU4ouH8JldPd/hwfhKcj0kpJNkUtl4r8nxyk5kWUlqEDNbjvJbTfm4hGjzdCboHoBM4WwiTwg2tu4YOnnTDJZxQlya8RlJ++HTkeYgF49KTFQ2lRekhOEVgP/sBJC1C3x8rcgUrrE6//pNYpNrEyQa5m6P0gYR5gEvaNyvev+RUffN/UtnOovUDVoz8/BiW42+XtvWP6kCT0GKG9NVZWJOwFcM+1t9B26vFB+4IwN7t93DRGt8i4bjXwV6kOPipQAnmG0A3OF+rZyRDGsGkRag4E1alO47nq62UB0vZjNwvyFZT12BqUciIT2+JjWgvq/Kr66RTPsVbfNQC0tLTw7b8/SWloiK+iFimPJbSsMJaeHaO09Lzmp7/mfe9680RWPzVkxYehCgz5euXeNGih8xoLyGUQ+czwB3I0HPl8npaWlin9zVSFdiEEp59+OqefXm37P2/ePG6/PTpN3meffdhnn31GdeyeTc9NSB0niyBokX49hDK9tTV5oAawPVCd5LtRq56fs45zFLFJwiRr+4bDFrps4Wsjyp8dqgd249eXE4I2TyZLbPoETyMU3N8HPI4SfPfRK/RZqa5jSSohOC2MZtbWtJv3/oSq/x6oAc+kvMlSPZEDNbjb+WrjA+sbD9l7Us5hOJIWZkBNQmZY5czYHZ+YCqtcL+oczW33rQWoNEmagB8J3GeVOZKpm2zVEsKNtsZcz+IwZRuZQ1No51Bb+2QEChOkqV60ZY70GE7oyenXScK6vbD52jfszXrCdmWtSat9ShJ7MLeguo0npfk0W5sHGQl5GSocBGFGkawW2uPXpYByqzO/Ha9LmthzN7MgvwL4qv78q8CWKKuCrEi2pmhj+BSdaRC/t6bNDaDub76lhUJLC7NQ86x2ou4QHWL0rgvHHn1QU5jZS19CsQxSq2VMfl/znOa8cGvNIrKpZtl2NAGpCu2TydBgz8iFUsLkM6+gnm9j+n5nrNweKL+2HFEt7AdQJvJfItTyxLWeaRDXRpn3NqA0q4H2VURNqA1xwT1J4/4eYD3KFxrU4sbXgf3RwrFI10UAUw+zICPDgf0J1GnsCpEgNUbTLqk2I28hmq82speweLu4wf3kY99ne5B/lWgUYYjec6NlB3Ve6O/MJjoJrAehJ0n4WgqchPJNPVf/H6/zZNY7SRg3Ez9jfjsYKxN/3ags3m5hKr873AKV2deTtsyRLkl9WFzTHl/EtN+bv+0C+lDZVuLHmWrBTvoykNQlEikFUoiqZ2ETyZp2YyKfB0pCjYlmoT6rPxtKENhBzXnibmH10I+Ndu52J3CgiEXIt861jTBPey1heaoxCzPmtdn3EY7XoAT4bqr7xLGMf2n15xNOyYeir/ZDel/x1YXIiFCIB/DKSJFDZNzg4Bg/TSu01ztJk/wjCDXsAKegJuNBHm/UBGBP/bkRGqZScBgOY+ocN5N/BSWY2VoFI7irQTzsxGzBvWowl6Gpnc3tKG27NAI74ULnVONLSZloOhjjz/5HVOBAM5CbdDBGcC/rY9jn3UJ1ntS0V+Vrtbce1OQNkidwZjOLNbNRQnuSlj1tn+D4OZo6ztP7bak+/8kW2CNCoX49SHg986iJbpLwWA8T3kbETm1ob2ZJuN60ZY70qCVcD6KENIMdNR4sizMZamGNMBhpd1KZmE820pdK+ChVggdACoGPRHoZZFb1OEZ4HUQJcnHrOdDjnCfISxlZyDJBRoWUVQKtgCB6fK1rmmbcnoqMznUADic6dzuWcFE+KZVrG2rsM8eE+ljsS+rDiqhFJ3N/O1Fum1B/FnJTiaxI9YyUjdCuTeTL+qp4AnIy9A3MCPB9yDgzecf4aVpbjdb22SMXSol4x2g6/tegzFx3Bb6CjrBKaIJkHnWjVStRPainJsjpFej4irER2mfpcrbQZgvxNkpwt6LDW1se5RJgY/6PmBCmhE+1pt1ch4fRgXiIBqnJEZrzm0mPed1C6NOeJCA+ZqV7mSqCexsTZozQHhHSrXYbn7y0E9UoAREz4zQZTusAoZYEos/dVAju9rUaQFk3gJpYDVBdl7Sv5USwPIV2bki6jn3WPt7v2Ys8julDrT5jAEgKVRTXtAtgzeMrA1PzKp9uJr9vlBWpzH0HyzBYgQG1lwNlZNFHFkuIwRJ+xY/U0fT7WHt7bBdC4FkbsbLxvW1hFqnf5p3eZmOEdVtwr6DmbKDmbJegrCRNMLoki4pWouN60n6qqVWPPsJFJyO09yWUC6wr5chnkGZ/PmFIPdEzW8mHYgWeWA/Xr1D7kq8ngWZSmHYLdjQ6TSu0F1pnpl2FYanlK5kH3onSomdQacw6PWVKZjp/M0lP6vTTEnjigrrdb78MzCFB4ypqN8CcEEEatBa95VHX5LXAmbrcl1CLHfUy8JVkGKfA1rSvBV5A5Z33CLXsRtMedxWwJy/2dSW2/+fKZybvZBJIWpwxWzdh26ypZbdOcgvCCPJxYT1toSd+bgZj9VBLWBvFfGV89anRX9imtyO5UjQyT0xxOzck+aqbtg4JfXCKC6eOdLCFlKTxZwj1bNYSUO3YH2tXPUNBv29cL5IWaycDKaXSFg5UlMA+WFFCSH8ZihX8oqVJHKogfRkI7cZ8OsmSbiyY8nmiFmZTtTA6EpLQAsIW3E0W9E+j5ice4fzG3F970dr4tG+O4DvR1FqMHyDUtIMa4zfZ34vdm9HUPK3+fEIJUiTJcFv9Elz3PPy9Aj9dC6teDAV2X12dNO6to3loWqF908ur065CTWoJPaC0lSY1GoR+YfYAaFbt44IDpDug2f7sdp1eRQloUJ0KbLhBPas17jkj1FrXYQ9dpp4EdillGHjOEt5NKpg9sILPEdW0m0kOVJvHQxiMLhjc9Xjx9rcdNqnnlEQtIdUEoqsS1muYCNq+cRAztZu86o+K+DNlNlvTHi9v7yejPknHHyTsD3LUnyvFRHFyCu0crMVIq28D1dazRAOGVS/gNPpVnxikL5XJdRMhfYkcqiAHKzBYRg6UkMUKVPyqZ84IPZDcD9rbwSceFvSNvVT3iaMVisaFMfEt+aHWcEAJ7rK/jCxWkEM+ftFHlH1kyR82zedohfb4uAehq4+hXsb4sowK7mau8zQqFa2xojPujEZwj59jGwlZYczrST2D2tS6xv1E3TvsdHXjXbROqz+fUCIDg76By9dFyzy6Lmr6OakPsGM64HzaUyKpg5SEOV2DTt42myYc9KtMlCSppn2zBzBp/W/ytG9BdBXeztU+HPY52wOfmQQNovzf6sG3yqda026uwZ+A1xMO5lkR1bQbE/IkM0FQ59lF+gs0ZmBOqsOrVEcRtl/Hg9HNRGUWiA/8tlVBmtiTEHsCY++ThPvJrE/8d4bTtKc9CWx0knJTG5PIIV+ynS+pCL3yZnwWcdcblFBLOZoCSZprlfUQo4gwXa/Isvb3jqR4EvhCID0gm0FmPNBB2wao1rTbC5lQLdx2EMZNqJoryIQvTAQVPzT1NVr1kg+rX8RfsR5etxX+LvNVxSseXsXnVd+jQ9/LuFn8aG5xksAO6nqZdJZTdv6jwLi/GcHdjFVrgMVWtYz1XFxgt83j7YXfpPngVJ5iYl9HOCe1Ne2dRP3xk7ZpgR2N17D7PPjb8+H/e86Llq0HjYSjoWlaTXs9E9fe2BNwCDXtw61Yt1NtPhcZ1KYY+5xswct07ltQfS6jaXy1TArNym/Etzi2n2qCSPEyqml/Ffg7Kqe3CUAXRI7XmnZbKw3heZpUQfUUFdz8bjxjQS/D52mPbzOImsdDLCp9SprKuAsA1t5MtBLN4ydxPK7Vxm0tXivVFhlpPxONTuT+lnzEYJnMQJnKQIltimUqgyUy/SXEYBlZqlRNfqcjsuwrv+gBvfXrzfxfLKvcxg2ILPvK39s2IR+ohOdVrECxjLDagr2wFh/HIgFZiY5v8VgmkykUSdvEN/C/9eGf6+Hatci/lJE/fha5+kVkWar750v6pWSmdZy4WfxIgmd8vLOtCYuxsmn3ZVLKqmC75v81qOCkgtCP3RO147m0MUxfndIJ1mpbA4RxlIwVyCDVLntSpu/WNlWoZ9s0Amu//VzlCwrwjq1gu7nWl5jeA4NjQmhaoX3LhXukXYVhiWvNJKFAYHeQWK/jK7UR8yomd1AfiSThRaK07AW92SZ0cbOx4UgSZo2JSD0Js2VimnbUIPZnYGtU7tYgcnxM0w7JCxQCJbhH8m9bwuFll183eSeUQNIE0gze3ShrgCS/xiS/PiO0xyct9aRpj++NWeDAMOUmqy61glwZa4w8yX6SzeBn/Y3vTG07h9hCTNlHDJURQxVEsUx5oMKi/gpyoIIYqkBJ7WXZn/QFnHpGVmJCrQ5kFtkGtEl5pbGukPRlGCG6qP299TnJojKVlyUfWaogTAoooi4skKx5NWPcTVeodt5FciA6mCTByO7IzcppRcJjytxXevr3//pi0LilL+mW1Wk+g/MZ5U8njXsFomN7PSxCGmHdBJ+zlabPANsRznECE3mRfH6tRO/vVCzMDEd8PmpbdPcSjjFGaDfvQ/Xi/WjqnkZ/PuFEBmXrrHNa1bKVdgqt0rI3Vr/nqC+aVmjfsP6JtKswLElCphHas8QGdBEVXEEN6kZoH0+nOdHENey20G7i+I/H5y2pvGm0HaQTxTuJipRVmnaTn/1h4ADCVfisiGrazco8sb29Kl8rKvi73nH0ZJ5WFfFB3bQ9I8TGo8dD7fvXRTSgTcRvM2WhJ65BMBhrgloTrsnUNCS17SIEgasKRLVTafYHE827T5nadm6QAL5EDpUDQUwM+cjBCgu1wCaGzKbNpi2/5ulEEMjMmFUXLcHdCO/FSpjbeKiSmjXNuDCpnSI+39Fz881nZR9R8ZG+pEh1nBoIx3V7IfNN/3o0Qpc3lnQwBZlRzH3wY/vdtgw+loDcba56LUFIGCj7VS5RkW2EtGzxRQvzOi60J+2nGomOUWML7qg5yEsood32ZTeCO1Sfnz2m1835JSwKA0H7BVV3I8AnBUoc7fiXVn8+YUQmQbGJS6927OgbipaH9Cc2joanaYX2Snlw5EIpEZnkW8JPH8l5rrHeM/vhBvU0+oRawosttENUwx7PV1uLWqZ27YRCe9U2xRfBJ0zxZmvaSyh/9n0JV+CNwJ5DL9CYnLX6WPHzbKH2BGb27JkTfCYjYy8Smc2YuRsrkbi23X7P/D/T+l68HaehbTDYiwbxegyg0hf2xz6b7LG41sTONo+3hfZ6mQhOFHPnzJzy3wzuv/bNNlpUimXKxQpzhsr4xbISVItKy24CdKXZflPDl9rUyA99om0NuxHYS35ofj0GKVRKia+3VDCrsSaPuVmceGI9/Hw5cuWLUPKRFWU+LqVESMkgUU2lvTevjSXSLN2fd5DCwmBSZ7GVqo+cAf47FyG3noP00S5Esmaaz9Fa0UHyHMdYJtSTuXVFhtffFtyfRt2vWUT92I3gnrR4bYTgKr/9FGW6WmNFP6FPuzm3LlTMhfEGSkyjP0/Clyo+yYAv6dP7IV9SGamPSbpYOjp8EIyidyi6GGbfZIdjnLhAdClQa0XTzodpSNJaQiiwJh0njS4h7udl6vEKajCL1z8U3Ece2oVQB4sfI8/kR/GWFakC9JiTCpbRRaTuJRnzaUdtf0FpZncg9Gc3pvFG024Y7jzjS1Bp3eukhRGJGqdMAMW4cO6hLl8wOZXqvRmEA39SEMM0GU5IXsTU59iNLBBY+yLRQHSJ5vGTWK9mRrVxGQjt+EpIK1V8vLLPnOc3cPyqTfi7zkJuPw/KPrIilMDmy9FF4momjEBr5y0u+Srt0fL1sNd82HW+ui5ZLyybqX1Ik5HDuB1JqfrJjJTkRHTRczKRRr1s6ixRr1e9CNc9r56vfzyLPF3ATvORfng9+jNRoT1JiCO27wQ2kLAwOJmnGjf1lSg3BkBuPwu5zWzQwrqUEimhW0rm6JsyVis6Q9L5G+shky5vyq7BMAS3lHADJbRvp18bod0I6xmh26z+3LaeAzWOtJOseJhK4r9rv7YzGpn6d1C94G72vmT0Nz9FSlJSlFCU4X019ywvoSCkytyU2L9YfQDWvqhbxUygvxL9zNYEOBzjpGk17e1d89OuQk1qdcz9VA/u9uq1/X8HsejxEAQCSaNPMIKW6ZdMPTagNO32Ku1YcrjGJzj2PLiD4f3eNgcpVUofBko6mFJJb6E5pPHJ9E2qN6Kadh9lGh/Rsouopr1W1Hj72sQDjNnn+YeHVkzA2Y6eSKA4a3uV0EoEapvE2+/N0O+ZhemkVfs0GE7o7UHFmUlyVwgWqyZhJT1YzDBzBP2+0YJAsqY9/rpReXDZ8lR+V0qClGVSr8gNlCWLntvAwluf45AVveRvfxaefSkQ7KTuCJvhuo8JI7SbhupLWP1imLf42rUqsJkd7GyY1TkpJYMSevxw65bQrV/3+jAomRrNe/wnzINopXiSAH9dr2Re3RZERQaCp02S4C6Avz2s+nMTiC5JmDOLSZOGtF4Uy+rVhoHIYq3Uq/T9EmbJ2vOVkag17hmhvV4sh8ziUZLg/hQq3ZsZ54w1oRHczfWAaksCO3UaCa+nkuDeEm5a7Kxqv8O5iI2GtPpzQ9GX9Fr9SI+EXr31+dAnoV8L9InYg7FdplebxM9og75KwmqIbI4B2ZEaTSu0ZzL5kQulRFwYsP2CO61ycUEda2/M47G+n+aAZgvq9raRMEd7XIgbbeOrJeDb1yA6odk8Ta2UsjqIku2fafZFFUzJp1rTbgb0/wP2IRzEjaY9h8kUFZ5ZZCJnnXAr1YN7IET22OEIp4akQbqH6nRv8QlcPBidmQh0U33MNIV2iC5A2ROYCmoRqtcqO9mxFEZKx2N6ulaqLTKS5hWNSE9P3KZm8pEYgV33cfpG90nJPitfwR9CXfRu4O+vqDK6E2yytOSjxKwoWfvH1keLPKqF3KQATvaRtMDer7deqSbXfXoLJtgSBuQkC7GGuFZNAnuEygEJsOuWVXUZzjw+LtD19/YFmvaknn3SzjLeUZh9saKeg1eK6rz0ApbQZXqlpIOw/vHFiNEwnFAbCcAa208l9hhg5DXz3jPA9lhKCaI+7bUWJkzatyR5bsrncDX2Zt5hx2SAMCVh1Zg9yrnXRPTnvlRm7JUxusxUtIZ9UPcdfVpQNwK8EdiN0F5OOrZtjRI0Bgm9RXVxuvJKaLfL18PExtHwNK15fPfGZ9KuQk3M821em30v1ebxEDUzNv93kpzuzNb2TYXZoPlte7MnrC8RmsdHAtGJUaZ8E8q+LGnga6F2gLbNouRHowQb81hQo3FOQs4LKlLKZ6gglLZdhpr2p1DuAXtgpXqLadqrzjfhPROUp+o8JRxxxAGbe7ZjIkmYlSi5ZbgFpyTNu0AJwK8SC7QkrGdkappwhJEmMFtSO3q8Md+cjGontWs7SJDJMhAv2wxzhGOOnNp2blCpybQwjjINLkrYsGUX3uP9+ANAF8id1dKkejakDkbXtGviVQSCalz422Me/N3OWzw/NnmViWNVBTVhHpDQ76vXJX140wVXdEfiofrWwmT2FUmDi5Sw3RxAm8e/cyFy2zlgFhEkCCnpk5JWbT4OtbXsAtjvsAPoI2p+DFouENFLN+GnG5mY6P2gD7MFsgcYquBnPNCLWEJKBiR06o46Pk8Zr3eIbZllQnml3Z9JqvOzGyXFU4Tm8UHUeJLT+dmLGR1M0vxlnCTVw4jWrVY5M/8cLvr9SGxOf16WkiEZKklAB/SVypw9O8K8d0iqcdII7v2+amfGPL4gwRcgPK1kkVE3RiC6SoG1761AZw7acsoy074gIyxURg4vZcRqVrWnFCZDjrqjaYX2eqZWJzdA7Rzt8QG/neigbvt6TXWnbwvqca3/q4SB6OIC22gH9Vor1SYCq/17mzvwSV+qCNBGcLejBYOStq1VCZkRVDIeJU+Emnb9+38EXofSGgSp3ohq2oNzHGZxop6igtdqu70kBCSyNtuXHaLteJN1bIhabKTFcBOY2VTHk4i3+8msjz3m9xOakraiJh+12sdULuQ1AyaukDF3Nhr3ASnpaM0z1Apr5ntk/2UB2y6YHZYF5HS8znGBFlTe4vbnldr4lAWweG508lpDAjW+pkMynFwXUX2rkKrNS8CTqk/NC8hPdvuOTNJj/8/LKJ9vtMDuq7FEauGiYC3kJZmOx/vFuOsXVC9sTirmR4s+sr0FOTiIfGUAuSCLROLrc+v2JV2+xNN+XnFBdTTExzxDVYyOFOc4Rkg34QyM4L5B13Fron7sgW+7UAv4yGQXgHhslCm9xxbx8dyek9rB9UyVOklO1zqZ47bUwvqg3swiHqh2lxdK4G4RkkKNyaVxcyhbfUsRtS0H7gaOB/aVamGwJIzXj4wKzfak1754vRVoL0B7Bl7qNz86qoVKU78yoZ99BXXNswKyelEiMx3HFkdA06oChKjfU0vqHCXRQHT2AG/+tzvNNqJB2CKClExpUNO/GwxwKKF9C5Jzd49lUPeo1t5WmZdZ+3Gfv5RE8raZ1D7/UBGC+fu6MGqwL6n4klJZBsK6Edx94A/A/lim8SKqaY+30IiAS/i5bfYcP9fBopVWZAow9zduymdytEeEdRGdqMTPD1TbMItPEfcKmV4wuqRnyQjtWULTQLssCfuJrE+t49umt3aWgaTvNzLFKW7nYLcBJaD4uoH2AzM3Aq1ZnttlEX0LtkAF51LfkvqL08pEPkmgRb9XEGqWv92c8LO4qbmFSZ9ZQrkdGc3YIMrd6Ct6PyTV57ZL0uQhI7vgXHUudl7RZuSxMNolZGAVBtExL6mPLBWHEKg+ZpP1y5PdxyTeEwkM+sjWLHJOHtldDj/2lV+wkNDlV4/pY3F9i+/N61qLkGk8ViZafHyeswaYh7q/8QB08ZRv9h7UgrWtdEjz/OzftRUw/UTd3sy+k82LRTOe/rxM6CpjTNojfuh+6C5TqqHNNgsvJruPef0ocD5wH3CO/t8OKlzVt0QEdut1bwU680poH7BTvslwX+MiGZegXm2m361f9/gqjoc5z6FpNbA44tSvZLuZbLlwj7SrUBNbIDD/QxhJdDSadhOIzv5+Wp2+rLFt0p/PIqphN69HSy1Nux1Bf8KCmFUkkSjBFQkrX4SfrYW/xYIpVSSViqTi+5R9GdG0v4zyddsbK80bSujLaU17fKU16T6bCV8tM7rL//v68Z7pmDGxC+w6mOtum8fHJ2DBgk3C552ohZ348TbrHk4ASdfaTGDaiFpU2M/zZAkOSe40oCa1xnQxnk0hLR9JWVER12WpghyqBOmvNodvfvfnE1S70aN81M1NlcEFHQBmDqjlkUzRcknwzXWehkHooFqgDQY2aa1yyYTy0cNUtMBuuxqVgD8DnwXuB/4dNbG2J+GTfs2T6msCtZWBciXoCCTKfLzoKxP5FmqP5fYi5w1XXo9AjW0lprCPqdVRFH1ozeLPbkO+UgoWpEAJFEJKOvQ9jZvFb66mPc8wgeim+AFLys8uUUL7trqMWZDOWK/jPu32kD8ZloLjpdb4Ygc6hfB8TMyFWvOBkfr7sfbnvhZozWb7otuB48znRVk7QGU8YLKP0rDb3JZwTlGkqVh031uE9hx0ZKCvFBXSgwMm16uoz6FP1l6UMOc4Ykq6OkZKnRLTzA9KEzNHmC40rdD+4trlaVchETuoVHyLd5DxVXlbAxtPuZG0bS6+lJSlpOirrVwj4Ifp/CRRofkV1MCUp1oDO5Y8rpA8sI/k0z6uTsBENjYH8iU8ti5a5tF1Km8zWhvky0iatwoqN/tOqMwftlm8rWkf6RzNPjFPu77OZ55x8tjPcTNJCnxom8dDbcuKuBXBTNTiTrzt2v5cU02tCUwf6vk01jBTOeGqdWyTp12gzC1Lw3xnsq+n9CWyWIHBkpqwmEwL/WWVOqo8fnHj7DPfMYE1HR1SEgSgUwK5EtwrvmTGxn5o8ejq04un+nk0+zQtRVIhqZEFaZD0/2U/7FPN5zL+pVBgtzVhFSC+PPlrpnBhytxUiHYQA+WwyKai1Q7U+DAgQ3N+sPrHBIszAZz04ZMDoQimcGE+MdgWMFRBFrLImS3QPagvg3oO+pF0SeVL7Onvj1XTDlQFoTN7O0aHXSV7PxWYxeq44C4J07159iaqg9AlLVi3ELUUjCseppLhxhe77dpKo03292PP4Uj1H2t/XkFZ1hiT9gEtwD4EXAj8Ub9nBPahGv1vrefo9bFyxxCdy9rnIwOJPzZRAOguKoG9LW9N0K1+o8aFLksrOJ6v/OyNlj1pUWJQjnN+mzKyIlUg5/5y9TZY1jFkHMPRtEK7lPV985MetwFUZxgfvGxzYvPSCA7GfCwuzG1W3aRkyJf0SZ1eR6rtVd15FH0Z6TCS/Nklyt/LRI63I6vGJysjYa9Q299tY5LMge2LCSqYks2e6n/fl1R0jLqyjJrG/5HkVG9G014rNXHS4oQJRBepmt7nC1OXJaFKsLYu9CbCiWb8Hifdd7PNIGoeD7HBMoWBKX6epgZGQDYLa8NpGia6PvG9ed0LgRavhVBor/rOJF9G6UudYaEMA5VwYDaZFgbUXg5VRj5YAoUpbOcGiTKJl5JA4y6lZCPQ3j8IW86gzS9Tsb4hCctNOyKCrX7PXqjpK0XLQpXWSUWEjqbPNH1qfLJyDLX7o0lFWi+KZTUQzfaQvUN6YYdAIz0kpRJqGUbDTjjGm3ZuzOl7qe6HJmdmYwbx2L5YRuY9mJ1DbuwPFiOklPT40OHLYNJRyzpwOGotVINa7LcD0aUhsJvfM77sxjzevL8GpWk3Y5y5z2a8FzUCEEK1eXzSfqoYbszrsMqZundRbdofjtkj/95Y+/OyFsJNv1BCuch8CrgX+ATKEieiPKlRj6RrvZ1+vRTlfvPaeJmI1G69YToe897AEHRmoEOfn1motPs7aR9ZUZKqrRvBfVCqBZ0/Ei5KBHE+rOvRSMiKH6ZQLlZii/qVcI6wGYv704GmFdrrleEEn25CgSAe+CM+GJqOdLhcruOqnzZD6pPhSl/gU2P51thpdmw/LzOwgUr3Nts6tq1dMK9HQ63JQCuh1aWq+wRcg6RRc/u5sFjHen/bfNhuLmhz+JKUOrh86Nc+gDLd3F/X1da0Z63BPPE8E7QOtXz7RmuKNpHUCjjYR5invZa2Pa5lt4X24QTTqabWBKof9dx5KC2QsfIw4/VkTriSrBuMNYKZ4BeImsfHy08WUspQYDcpEgdjgntRb9pcvhEwGpXAOsq0/YES2QqwRSv5UplB3Qgi8qqU00xwj3e+RujTSxoeKodxcBFl5KuGCtosXEZjhFRQWk2AnUmeWE8qSf7eoMzH2zxkRwtsUubxxq9dBc6SdOrmHh/Pa71nxv52YguDsUs8Ucj4Qot98P4yskUgZ+SQr1TUspROg9jrK007fsIYPcbx3ezjqU7jmvY0sIPQ2fF6ysCzVGvabb92g31NzNZK8sJvGmNfXA41W5L1p5l/vkp1+clon6AFdqm9ElHbnbEyt2JF9peQtDwcr5t5bRYgjkUJ7vHPI+eT1M+Z/UYJ7Xlo0WqZ/lL4eTBxq746QV8nVbsqohYhzKLE2cD/6c9MmTRGUamtbf0xjm/Sl2FGppIfTaMcpFDWnzuN+7A0rdDeNWubtKtQk1pjZBE1UNvYg6D5H8I8pvEo1vHXY8VE5+yztiA/rgz9aoypjvk9W2A3r19BadrjwnYgtI0yCmbSKjwoBYft82Z3yJs9X477XnZpPXJnW/AjZW0W72vB3WiFHkMFp1mEFtap1rQnUWtF3s7TbqpmanfX3cvGdXrjYbjB+RWUpr2WX2OS5h2U0L7J+g1jfhgXhKeS+ATG7I1WG9QCRa0J12TUB6oXTEzbtzXtdn8wFXULKlb2tQrED1Ml2gNzsRJ+NlQZs0B7+11T185BCzK+dgfSApgJSNfRPUixNQut0DpQUvmKLcFe+umYuKZO0j0d1Objsz21gAMJDTr8nrFYMho1M0F/AtXeXwO8CTWxtseaKRF0IoOs/qfoQy6L3KIF2VMOlWi6AQxKaItdl1p9ogD+eG/Yzk1araRznPD1ILvTsylV8AsZ5BatyArIwXJQkSEJHVIFo0PKKqF0LCSVt7OmTFlfloARACVRwX2t/nw+4eK88WM3gjskK2AgGpPHvq9T0pYTSLq2g4TuVxCeR6f+bLwxF8ban8fr5gNHxsoEljfWHKLWscwjao5l5lejCwwoowcwhY1WvSuvJuw5RrVQ6WvrFdOuzBwovihxG9HAeFMZj87XbrK2z32/VFa3tWIHRCj7ocBetOYF/eXwf/NZSc8lHIk0rdBeqUx9tOHRUqszGCkQXVzg6UIN6olmxeOoly8lQ6iHccC3fGtkGAzD+NwM6kG7ImWYszT2+8Y8PlJ3MQ5/9gQBEKqFWZiIQT0mrVlmggC8qnTeZiAvaY27rzXtPvAwyjTe3KuMiGrah3vokjQwcQ2qfY6dne1TNsDbA7P9v3nSagWiq6VlByW02yv2kd9hc+7j+In/vqnDIOGiWgsjpOuZhDrF96btG02ISYOVNOGY1OtoBuOyH6ZKHCirTAs/ewz+YWVcML4kY1xI7+xsG7nQBCIhSPEmfakjx6sr29bvU5rRBllBfrAURCoOTKP11Z5uivaAYDIrlTlkC1DIQ18l+nnse76UQeA5o00qoZrKMlSfasa8pGduUi93/OBBp6CF9q48vKp9vglNyItSpaJDJqTzNEKuJey2dbQHn7cQ5sI2Pzkp/WL8YPb9K5WRLR4y6yE7Qb4yGPi0dyOZoQcEz5dVAvtoFuVNmaQF6xyxlG9mP9n3OkYgsOu9EQifRpnGmyCzZry3fdoNSYoHOyZP0r2dSkudWuNFP6Erpj12b27MhbH057ZFp33s3YCFqDH5y6gFvZHqUEthZsZS+3zs+U7VcJUUPd64/7TqTNozPOgbeaHS1CveBg6P/eQxozi/yaAslbDeI5Wlrb31SCUvlIdpq1JKAj9Sk5HJaNj/sT6cI5SsMuWK0s47qmhaob2ve93IhVIgqYM2HUIvodAO0cEcqBJ02wkH9aSBbayYYB/GZ6goVaf9MPBFlH+NyY9pp+SBZK3HRqqF9vjCw2hJEv7amNjUWyOZCQLwqtI0VHxJyQ9Nhcp+aDL3J2A/XUdb025eezUmM7Xusx1gLF61/fbbfWwnuZkktV8jdHcx8oJT/B7OJFx4stsQpOezVast2RMYO+ViUvnJqFP8tYlzoB03goBBQ7FykznJVb7eWrVsD8orX4SfroXHK/Cj52Dl+jDIo/nOGHjDAXtM0hnURtqSoK9FcQmFV8DvbIUWj3y5FEYul/akUL2YNibyNc3HK9AulI9nXyV58mqNISVp+bLLsF94GDiAUPts/8SUTWKTzrHoQ1sWZmaRPWGEFak10EVf0mZ1EEnCqf16j/3D/nwG4bkmucdMKDWlmQqy4Knf72xB6oUXiaTfh3ZfBaETxgUgNmcZC/FrU0DnOI9VaaqfKGOaLYlGjn8aWExYXzs/u+3+ZxZmIPpeO/WTotPMQ+PCozGPj9+bzY25MNb+3L73dpdaAHZBCfDxclDd/9ZqQ7amfcR+xX7DXuDqKWqzN6G2lpEXKoerlzHTX4RyB1oaOa+paSdlKenzowHxTEo6O3p/vz+M4B74lki0L6l6vUpnZXq8Atc8B0+ss+YRjE+I2QwqUlKSksERAm+nTdMK7ZuLSkugUxOUffV6gm6g3fGYI5qJttGa2YNekuBjysYFh3gHOhZsn5qyVHX6M3AeKn/lv+v/S7qM2du/afdNLxMNRBcEoxtB2xwnPgkwr9uoFvbMtR23wBe5OdbJlMrKJ2HTEMjQFL4sVaYf49P+hH5/V6xUbzFNe83zHMaiID64pzGBiV9j87oHdWmMtiHYYvfZXqk3W5d+z875atrReNvxRJD0jBpLGJjalItJExaJahN2ZF8zkaoVtHBSrqUvw47DCOQVWZ1x4ZEX6uPGjpJI1HgTfEt3KjMH+2FmBgpZskMVevWNUQpIs6/7U5x47BM2DXXQh3xOpUHqLyevPulBI8i5jjUOoVJnrgf2oobJuBzeHHZCqPUQFX1oySI7c7CpFMZB0BUqS2izvhTPy25eJ0UXb2OKrAriF9OmH2Re+efKuW2wsRJkQBzwJR36e0JGNe3jSeka/3+4AKxT9WxJy5IwEowOFYRuG0LTeEE0P7ttRZB0bWrF5IGp7yJrXV97odpuq2bs7mbiLD2Hq1uSJhqUkD3WhY+kazwY2w/b3syJxhcoe8vQZYUYHsVCZa3fMq+zwIEkWxFMdvsw8a1MRH5bYDcus/1Sxbca0GVqykjx61WRKguTzSPrwuiB2j1tKvClZMCXQcwuE3i7Wy9MlOosPk3TCu2ZbMvIhRKQUuUYZrCsgkj06vRFA6XNTlsE1Z2O3TlCGD0+SUi3V2xh4rUOPlFTsCS/ml8TKtQqhPN0M5jZ57aRMBBdfHLixUfqEUjSUJgFjgmLwBr/QnAgqYT2eS2wYVCvvEtKUj3wPsq//S9S8g2iJnNxTXutqPGGpPMczld5w4ZNUziBqR44JWriMdOq72i17BDew1epPrepnriAJaAlbP2EgrFZMJv0CbWpV8LeNtcXhHEuijXKTwp2Gi/TMUgJC2dFy/3L/OjzNMYKvfTypgmo7BiQ4PvqzkutgjJmwV2v9OO1CShk8SpQtqwGpP4bX/BpeszMOnit3x/woZBV2mhjPlplIiqRvk+Z0NLLLIpKVFqnvVHPXpJ1VWSbrMlVfCHX/GCxDIWM8mkvAhU/DESHZBBJi6+EWpukRWgBbNqwKfjf5MI2P5e0nzRM268AhSy+EMjOPLK7P1iU6pEwIxgUwrRvYwkyaxDoa1TxEWUfUfFp8WXNvmyqnivbx9i8Nr/9DKGm3fZjN+bxhloWdHagvep2PMEnMgx2GuL43vi0G+z5aAfRZxFG7yI21v68VrvvJeZCkjBHsallsdJv7Udsb/G+zjSK3gq0FMJJ+igWKmudn/nNMrVdKCa7iZj+uCiVUB7EukJtJq5VENVeJgf/051hdePeZW602L/MV3tboJhkfBn66ffK6sDbZivW0UDetEL77Hk7j/k7Ukrle2lSFMWjIJuUBMWxB1KK/I61N5vpNIypa9DRx4Sc+Eq8HQxrcwQHe0XZfmaOiJU7glC4N37dcbMqH/XA9wKziGrY4wsRoyFJkIVwMKnV0Y6LmmaCPszvhN4BpNR+7DrlW1lKHpeSz0h4CaVt/ztWqjeh7mtW1DaNj5+frXVvoXZAnp///I7xnumYqTVgdBNdjY8sNInq9+MahzlUr9gHv5dSZ5n0s4OEWRvi5vFJ+wmrS40m2U+oaYfwusa1BZNRJ1UvPXs3wrq9gjeop62twDsXwOItY53E2Gr0k+umrp2DOTctuMtQcB+UMLt/iHxXHpFXvotCR0jXLu9hfzzKczRa/YYnaKBWgx3U5uPtGRWUKV5Wt5d49GQ7febvUdomqA4AGT/c5BF/CPWLYhnyHrRl1UfdRbXXmqKiDy0SFayNhLFMpwRTmlm48xd3BM9xB1NoVRAXRADKegGzRZ/brAzyVS1CSLUg0aq/l9HuAOMa332JKFYQgyUyg2XEYJnMQJmuwTL+UCV0TSHsQqYKIzgZwd20yX7UWL8tyfnZI2l6a1jQ2WOI/Xv2fipJ+s0BVD2T7mtcaTSWuo+lP4/PO2x5roexByNOyoCTFIjOHCM+36m5utJbhhl66Vww8kKl9d2kx8+cV61ghZONmd+b/rgoVZ3+D2Wu/39EhfWaafYiJ2ed5BZ6NmXmCNvPjVoxTLKm3VgSDMjQzD8eeNsE3R6QBLFr0iabdgUmixfXLh/7l0wQJRPBsOSHDc4TkLMakgfkRtKbVmN3bHb77SPsHJME9KT9RJro2sJ6xXr9GpTQOAh8DOU7ZB5OX6jXAqo61Vf0cZN82scaiA7CSY09MTAr27Ui6I/5EUvqjM1+AJiXhz9JfCQVXy9y6Ajy98jwOgDcg/LBjGvaRyJJA2MEszJKm2p33v925iljPctxE1+lNv93oxZnDPEowua6ePpFvH23EUaQtwflcd3DzaRqgmBVwE7JaCL/xp+3yZhQ13qmB6le5DMZFSIDvEj+/mZjTONts/jAX+0V1Vh32UKlSNxMPvHRqWvngBbYMfJJMMEq9hXJAfmOAkJAJQeiWAJZ0FYaanYfF+CrDh9Z7FBPkhSeDoThIcZqijRByEjcgf/P3p9Hy5KdhZ3ob0fOmWe48626NaiqVJpLA8KAbLBpAzbImAaMzPAQ7W4Z9/OwsNvYTO62V8N79jNqL9RgbHC3ZRkNqFQCCVGySkgqBBrQWKKqVPN4q+48nyGnyIjY3/vj2ztiR2Tkuefce24Vj/W+teJEnswY9vjNA0UmzchsnVis6irqP08z6LZUaJ8uyqQsmsfQFLHsngk8i1o0/wKFILtRea2Y8p7d7ZGTapvDPo5T6EYIBvZFyOYM9juHeFFLVM8pty5Hzw3wY3//RzXcAt3LPkN5iW/wh8i2K7Bcpof1SM8po2y7AQbsnjaylubKuonAHhEVutH7Iteb7bZKMouJU4gtJhVMZokyJ/NEEdK0RK0I6TShYV5wobZan90L7s+hQuseyuXe6pLQQcXTTK5NTp4rhSrNC7fmkHLIpgmYHG9pr6OZtmYBiI9pFvhf/u5bkDgrcMsW+G6OJXPfexXgTpIRLxpjr+i+XGJAYwx5nFQ1e/woUZd4P9mDBjy7WFE517/KEVr/t2r7tYIwr4j3fHoQ+F/d738EvAMtbexlgqxuGqveSTlydAqNm5bzMsplgV12EcfNQ4pz7bfkwnsshUzTEqVJOLLcEmhy7dqzXfhzK7TvFHKEktcTdkJ7LqSbQo3kgrKlsXPmapGLsa8B7aGq2awTWsM6rlWEudMN7QmTJ1JeozxDEdqB4Dr/m9+oDVPsNf+ci6hVJNc8UyD9K0lCVz37z8sooi15GVxB/xeCRzAZcEjJVzrNkFajJLh/h4V7pGAZ30y9pf1yUNdXTzSnKKF/sYg71GuphxRhHVBes4AjdJWYx4D476NIZhc+dxHxv9ZQS2NQYThMRHfefS55COzm2gvbFJzD9ixVrpsT2ivnXYVqHLv/PE7gTArfeABGzl5QY2n4swzW7Xsf0+4HPlmPWeu32e8spLQ0rl2vpjhvYT0Xn6wvyeYVww0D7QhpNTDNF84RTkSK7P+e7gmO1hloGaTdwDQu06Y5c1GqjGy/qT6H4W/ejdzWWNrR776IKo5XUXzi8X34mPBxuy6x5/0KPwf/JF5oR2u1b9pg/tULqyeaqK2wrs8rZz0+DHHoCrvsRbYV1K3VqZawEy8sL3d1vsYzWO4yskJXHJ6XsjfBdvhaX7tZYgszzR1kEqtKAGNYNhZslMfLS7ciuF8lQx/ua0+Yqs/zPFHuhei+P4rWZ4ey0G7QLVyd3zplfC94Zh0P90LCIm+umHr3eEO9pb1KM/XZAb7zm9yDx3eXwS11z/fv3sraX13Vi64ZU1QrqHt3qS9Q7w64HsN1vWKCL6OozNdd9R3uHMbZz+G6oD3XSogM16P/vy5c9lsq11/+Qe48dr1YG5fHqEIfrhVO90vRJ92eio71/cAngO8DvkmgKdA2mnPFmsuHuF5r+HPrHr9j8AxLmAE5zspli5KAqfEWph3CImQyooiXnRN+TP333n2u7rk7bZkQlDSRQvg+5d73JuAxyi5ieZJH5q2wFynHOcO8m/xOoNp3D1u6Ke94emQeS0FRM3K5DS2wF6ekLvbZOubsFSL8RSssoeVHXktZ6+4zy24Fiyww3tK+rcym1xDmmAt3rFOUgAlzFoTMiicsdV4kK6j1LCRIdcT/hYJFY1vNHl9bjsifd9GValEc3oQCZ3gIGY+r3w+XgTy5hZQF96fW4XATDrQL98CwIQ5v/pl2Cc+kJLird7xgx8LG3j54ob3ZYmlmmTkmzFvYF3mKqKCSas4UX79+kpZDsSaZCkzZCxDU5yEsw+MP37Y4K0LDatokoVtBlUEbJ9CNFHfO3PcV5jWTIqlpXdZ4X4kDlOat+VsrB8yP965AHefv2k6SQkdbJ3u7yHoRw2pcGFVbmEvUVsKNlcP3dUChzISCLu86bixLJcV3cQod9y4DEhlkTwPWYq0eI7Ds1r32b77s25aQqLBuEo1jz40l0wwzzehOrVrgHV9m3Nq72n6LCDLLirxFE5+zKNPEwz7GW6TE64SC+1GKJHTewl6Oay+PQB1t97Rk13LyXAUseqd3j4f5dbtMmW6H59JzPC9dDTmNA3w3WZwvqvo8/9nzvlnlmsuNXx2LN0ENU6PwOql5VrUxYfb4SQzLgUg3WKyoDJ9TGrf8cZocrZFZJoGreG2brgGEeQ7Coxou+z3uvGV+2eqA+4tGmSL0s24GwyR0wjWKA/KvkNz138sxCfCnFIm3fxpNvO2F+4Xu/y8w/LkV2vcceOnObggZUC+YP3kW3heULXrizLx1aRsgNsxCb/P6g+H6nVAIPjAf/11X5zq0tBOcQy3cttrnGCe/T0Lt7zHgJrSsxmNBm/NEdMxnVQWt0X4geEe1PzsW2gPFRXh/m12u1V7HeDo3QdoN7IEmdnOmfbdav9nn3ooFfhgtzREK603K2WS3gtBK4a/2ZKAa1w7wex++90p6mUNeJcGvzS2qJPhhqVrbN1FLWB1TWq1VW13Lxt27xvzQX0OcvRCqDHH4eYOiJGMYmgIFndlVZjqAOg8Hnz0+XFUtinVCcG143g2QTLT2asmd2g3CExtw+z7oRRAnxT4qCWs7a9BdH7q6db5TEGtz+VLcBwGiNcuw52xPxhD1W0SpV5Ro//MM4nX9c4JK7tEVMq/+88xdM3thatVKGoSFhe0aO2XCJC3aFG/RpgXWWnoR9F0gx9Th0oDLU7KrNMgnoUtRgfVhVGHs8ekAZa5CRj3EF9cMqp4ivqtj0UR04LJF6+7zHrQj1BpNjYt8nSD3qd8r1vkSL5ACbpH76ixDBt6ybRBjkJU+jCwTJ6QPcAK7FSK7ffque8oJ406oM3EGT5+BTzwGR8/STbPckGIyq/jmKjsumRRr2guRk0JwZKxr3Sck9XG9nufxw/MccCuBdZ1CSV+1xC1Sxl+TnDxXAHXvDmlej/rKL8uUq77AvPAmVe9Vh+fuuvvTBb7zv8Wpzs+CNlZ5j5D++n2yqB1APqd1fZ6gHn+hpb32Wt+IsDH+gnVb4DljFB+Eispw81a6WfwkmohxmpJOE/qTFBm7XA8B7n2h1kn1+a8BbkD57n9NpQydP1f3aBVR++/GGdzopJ7NIPbfj61dRESvHvL1RHlvf6Jy3X+rXPdC7stF8OfWPT6erG37WvGLI2Q8rdSUJDgFr7puHoNs9dzEak0wFxRlMYgRJGogjUgJIao1rMt3v4i4Qzl7J7Dt+NU8FCArlmGGwUYGawwWky/SE6jQ/gpUgJ+gGzYU2L17fHhcYut49p249MwJg6boYOguWWcJ3jHUIYnYVYttGGS1R7qe4UNSdcno254V+EGKflbLwGwHqkydJ5Zzll0317e/7OYrRiSSOpc1r6wC5TyaBmk1oFHEsXpEXGf13UTnIfSo8I8KIZ97yut6FXjKfS65x/vjGrqA1UHOYwdtcKJGzmj1qGStrTnvVosXMRphZl//rj7lOu3XjLiHMdmlw8JTQ/jWQyoIjrNyA+bc5LcHr3jZzbvX9suAiLOyWyli0936b43GbN64pAMuQLvF4anGw+m97ozM8WZKD4J8KU4w1yLQohum4zCFRxwt2XmpjZ2Cb4u3iM1sURUgMtCKym1qWmgHGK2KbEPrk3Mfx7v6D2fKzLrfBU3wk1hIG0FCI+A+1Jp5CMWflkKx7WNtF+2NXYW6h+eeBGi8tTHIahOen+LZanH9WrJC5Mao8DyqfHa/veT2m3PcGMbvV+na1TKQPvGsULy7muGeqUU6TbWwG6Nrek8fWbOMBHoCDcc3RQJGLMY0tmcJyl319H6TCTx7DnPXMY0lfWbMnjdD9pJDmCzKr61aSHfaZ/VycWvc4yu/zhum4AFpIi1Dhsnxf8i8P4smoYPAus7icraLcvJE7GJOnqsA9STamuZVeVHvHl/dHjkNt7bsnRrkinrFdderksTjFj/+mYVGmVuqU1jj3n0dcBodw5XK74vGr46HmaJ5eU5XfguVAHnnPYPgP3v5YQasBNnjQ0VlqzE/wI5LCK3rxoURRIklTYQ+omunEUHDYjKjYSLt6NqGA1EenxA19IHbKcrQVa+ff1DNL4LO/3IXljbhwhj2dMoCO1yRN/N2oW5dfRcaq+/hbxDyoS982Eod/Lm1tE9GF7Z/sRCYi6UQ3F9/uHzdGyolCbhM3GLs3CAngdVimiJTl3xlmiiSYnGWzjrrZcigh65VpUPqN1Fezm7ijnGGTDLsJCWbpEhs1YLsnvM8yjgdRN3dn6IQ2EMtdOhSL6ilfU5oN1eWhM5D3X096r0NFvV/S6hjygQdL4d/7d4udjjLiZwVQaxwwcLIWm6lnEE2FNwvB3VWGA+L3LFffcfLdtBB3zXRJDCT6tosu6uRFLaruvXlYY159/iqAO+/q/MY2UOR0KbuXS8kLBICvFbfW9oHLM7ov9t0JhyH8FznHu+TRta1a1ebVc0Y7xmXY+uq1btuoExLHr8TvP0KGvT61+58nV8xOIOet7DbYNF31sbYfoTxu7TTpDUuDCowb4ApnivlcUudsPz4abjrQfXk8iFa/tp0lxdTBUoeE6GX2WNn4AMPaFiYZ7ZDxUxd38JO+/M4g65jwpeB8Ux/dGPqlZ6ZcyUPs8b/CfCtFPHCUIQKVXO5wDW2tFeRXvh/t6nu48sNjfeWQtnj3eNhe4noXvHal5WE9illj6Or7Wtek1iK8kbDTBhZ9WAQvUgvji3S0szx4holexrIcMwEWHL9NxIeUurTYpCciTCOgTAPnyXKgA6YTVh9Yg3r3NiMV6DZeWvptiFXlNl5l+0wRMUlJPZ8UDXPz3kU999Mmb77dVql9XXz7D8vowLnVhbiaw2L6ITnLT1f6iEMVVkPnyPlPSmWMm7JxOG7M7z+vg14/EwxFwFuqeOpq7wBKA7wgvp2K6aUnhNcMEbLE18+Pr7aSffr2Bl2Bt7STllRmT9EinOAMgWQMBF2nDGLMwaTDDPJiOIUZpkK9bN0zuK+27AV7zChbCzcKmwnD53yF4bnUaJeWHt7cCEpCxJQbLxrANX2CroHvSLiejRDfp0nwYsNf26F9h1BaGUPj4OrxTU/egRuO1i2IiyYRdXoZlruJnR7HKfYOMPOMo2pSgsXyBHlmstQExdcOVdddGHrBZYL7JWYRSm1K9W2OSvIMdQdBuDlFC7y3hpiKTSy4bsvURbaryqe3Wku68ahx9YuTTuCLdwEfWBXuqeFvTh1fZdcVnlW4AbRTMHeyh66x2+3z4vyF4RhAHMIdaed9QxL6Ao7qawLd8gsy2+rHR7KWm7f5qqCqe57j3xW0PXioUQErh3eXgh1mng/9l207VvViw7v3S0I+QP/bG9pD8fUr5O6NbJbbRIrZWbMShEb8+QYXrEHjMH2W/rO0K90txtzTUBKuts8xM5CZ5wiK050NECrwapNCwWOZ1KcVq+0N0MvrkwU/z91Ft5/Eh7NNBTLh2D5cZV6Jnb3uirz3hJPnIHfPgGPuDY9eXYud0HJRT5cbCFTCsoFd5xD36ClcYzB76mIxrNL2co+RUsKvYmyVdKg+GKTekHn2oxUZeP5vs+0BeK8I2S1C0M0zMhdPxOh5daDj2uHeXpQl+vD8wPeEluy+rHzvqYiWmdZNNR2UwrBfWQtQzQZk2+7WtobudAuAIMI1sdMxJV7s+LaLiqwyzYdQ2rWinnVIawBEwMdmL50Vcss+ZAtr+gKbt0u5IkWU5mnfxPNXl+qGpRabFKUwQ1DAI+iFt4O9R51dd1fNO89dpGuXwXMvZti3dVZ2kH3YZ3RCFzbq7gltfDkAtySBvSk0u/QCyBso0+A6/Ma1ZGX8FF1ffQwQS3tPonrwmvrcJwAG3GRedhbqPwgVRSV1QlWGukE9iRT4XyWkU1TjkwzbDU5tpcbrvECqfIb/jxjscFiYZPqkNY4gX4DDvbhYkWxcY0t7X4aqtZ2L0t8A1opSyrHNVUMbxP+3Art7e7y5S/yUK0xnFuNHFu+B7jlQP2mq1tTXmM2ywoCkQvJmdZ5jy3GbUKT2Fxo30oLX7VUhu5zda7hJYRlxbUpIFjOwipxRjbNyGKLTVSZYFObC+03ume8HK1BboOjlKAleKG3tPu21glrO4G6/sMu18tehHmmNndbtXuapJM4zwNgUcb8qAi3UtSqrVrZt9PnRXMPKozVxSo/d/TkjvopmRTrMogxK+L80sLa4AiEOOvGovV1CaVNtV4hQSfqrOze0h66gfpz3Tq+1lB6f0Bnx+gc+O4MKDwfrnrd7aBN4dnHtBO0q4NazBbduzsNkvncHg5nZs+cZ/KyZYYNw7DXZNQyjOLUWaKrjMv2W/XM0ROXv2i3wNEAEfLQKRFgOCVrgOm1i3Xdh36iQrtIec3M1V8PuQR/0f2VEKw/PV1GpNd6A4TMkad/1bCw+0+5tizghv3/c1o99793E+21YZiV1oAmAhLNA+v/RxMCHUatmU3K4UUDygqz0vlajVVdv/NcJ5Faon2t9tEsF1qmAj1HnBfWaqegGSeeO1mibbA7XgWZSF6P2NchHloYiiZxHuPrEktBZ2KL9JpFt41B9nZhlDKywiAXRIRIXIZ8kTnhrhaCfWB8x27aB99+SHMavGoVjuxzEXy6No11JRW5gi2RMysBznJWX37nQfV2qSivktRiMynxO4LGs7/EPbZK6xe5x9eVQQXF1y92rfbq2vLnCZXKP+770BNkreYZ/vAlM+twyzOJu9PjFtjSzaC67oWiTPKAeUV1FQXlzwlQVHiOKXIwJZXfSmx+iC9DOjZKYI9ncALBfdBSnFd6ebmfAohPbO0VGDOLTSy3Hz3DD33qSbKjZ1z2ffVK0ISJ8+O0m7BoHY4phwZWr5XqD+EXodEznmmG/X1tODsufs8XkKe916aj4Vryh+dDh5VrXgwPmEXw51ZoX95z4+UvwjGS1ups5MwnOlsnYri+FWCmmk1XN4t1Se2mGfLoaeSu++Hx02r1tqpdjDLLWGROo7mVxRIKoh7GsIbNK0FYzsdnCnZaZuu0eZJYJFFkYRLLeSesHUEXyquAJyiGJ88eL8rcihWs25R17vGLYp23A4s8DnoUWtYQUYcuhTuC8CY/3zMLraYS7j1d7JrkbvG6dITnRXipLVuFosDKvt2Y7BJhDG7xQqJvom/m5z5z38766QWu1BZrYqsqCUHZw1Dj7Y8MJXK+5Jtv9+Us7aFHwSqKJEPGKJzHFxqqxMozCF4N6NcdbC8BzlW1JdTGV85hTLuHLi9ANuKqZdYxG/HalNHQMHzpChsGNpuG9U7EcJowNLpPsxr3wO3AH/7xfbvV+suClAR2Clf59Zhhv4txAaoGoAWdScLILVjPw3mDe6mLJYHdfZ4LwTpcvvYaxvTlbQnbZQVef135mtdfN8+slhFl6ZT3LXa7ottQpLDcLnIcQO4SnxB40KLHFyiyxoeCAygu3E6pqV2DcL5Crn/qXGKNce7jBtlnkI1Zvr5nCAN3f5HSLb8tB//xK5+9L/8/QvdzKXQoWFM76etMyvWIx+KEdgubVtRL3AoTFH+kggrt3WaB2wDptZAG2M0py+KEdCewq/Du+7ZNIl91p9/XheUmpA1aqHcAEpRetHJlrsF13pRPn4U7T8KjVr1dnjiT/+ZxQCqSOxL5UMCjaLm3RfXZq32fE3iDn3c9J88Vgn9XaHkcU6Z5Vdq+jAq7flzm6HaJn3afHb779Ph5fbDHLaVOl3sejkv4qzd0hYqPrWjeVmM7ojAy1T2rdE94sx+wzQx6nfLkgioqR9n8Q0obWYVwXXc+VMDSPHaOH/3kcb79gQ06HzsGz59zXm6CZOTGlGsBc80NPg8pe/9cds1WaZm/aNNCrwEHWnBpUoyJXyv+nmvABFbXq//OC+21Ibf+/EK6wNTAn1uh/cLpR7d3YaiBleAzwPE1eOV+/ZxkZQanlnmh7DpqpRB8njij7kBfT7HvPYY8cxZJJc8mP7NSW+u6Lmu6P7z7nE8GsoiBEXFtyt2UJIinPIP94IPIk2exqcWmijisFU6IcBi1MEbAS9FFfTYfNi2dIlONzzfTxGW9TEkyy75A6+6R/ZXGtC+yQu+6pb3OB3xqoaNWlHSlgzWQTRKdYoe1jgvcLhBJvXv8TqBufBYJYz/2E9+3s35WS3RdrkqCTwBE/frySG6VrRVNHuqy0K6478JMtC8W81J1l/LvHlMuyej33lbIfTeh7pmhe7xvV4fFddp3o105LgmZ30yYiTB+Zsjolj7jdpOxMYyB8T7DKM4YijBGBYYrocE/+Xf++11o/TYh034K5MpIARjD2t4ey2G4TtPQnybMwpF2eMRb3guoYV5uOai+tgA/cr3+X7n8mm6AaiwKqFfZLQ5rfe9BuPVguR11ioQ698eps1n5ZFP9pnp3ufdZVCjKrJ69lT0Dvoy6xkdoOpGQF15hgdB+bfi7MkjwIU6h77/SZG10u67+sLZqZqHlLNHYei+qEBf+rbd+Xwl3rjBvaa9O1+XAuhCEGSq8T0Wt6l8Gfgm4T7TyyUyEBOdBboBZivXu8YA0jComBl1aGzO6bq0b190ISiEA2x1Lo43Uzw6pmfMbtEXUPd5ri60K77lybCdQ9XARajxKThdCu4B11VS8F6G/7Shqaff8TBjLvlXC2bpx2dWcPFcIi6zPY+aVwh680A5FiGbpfm8hrXqw3nIQDsDfXX0dfOf+At9dRpkrwU/+GLo2hCGSIZ2rG78qPfT4Igzxm1B+T+lZ4WII19QwhZV2MEButpfbRUhQ2L/gfu+VI05A9eN25Kk1ok3XwQ3g0Qu5MulaWqDzplaaK1awmaWVZLSSjMQrGipdm3tIeAbXb9FJG7Rhf18nMw34CghCJXa/n3XoQChyNJSSDMv8engx4c+t0L59kEKQ8UjGWyJPJXC7Q03DBfWGq7MYbshQEeAIhPgRf+gcIpIncBlKuR5m9RxqaP33HkUsyj6aQ9U1zGeOf0o1zfbhlOx9x5BnzzoLsm7QE1byeHav9b8Z5yJvRa3zscbe5PHP05S1OKU3Sdk7sxgnxF5OmNsOLLK072q97BADeYgt9JqaWb9hsCsGWYvJUHe9dStsCtwiQsPKFSWhA7aM3ffu8fnSqzR327Add9j7ThX7APLkMHVEbDNoX8miYObnumpl9+vCMwbrzBPKFwNRVt8P5RrtUChiLrv3drs9wcNHlBUJsCAR3W4ygCVcop8zK0yB6dF1JrfvVWHdGEbAuN9mkmbEqMA+BeIXyop8BaAu7ep5NRe3vZFxrtPTkARvae9EdNKkzHPmRF7m8VCdtb3tVtb1+8rX5FaGazNORfy9zDOixgVeHFiux4mLFnwoAUxSt1EcMhg0YHOWXzeTIJZdNBldBjyECuqvpCih5YUhrzB7oZRlwGJLUZxBX3ee+Cob+7uwZnNPi5n4RHSASDlrfPCKKm0P93OY9Cl8/Xb7a3Fl8kTDDxLR+sP/HLhXhJ8V4QHr5sFCgs6DTFKkE+lSdQ20GNjbpzP0nnQ+JMzVabfbpO/hWrNOuS/A2GKOrMIM2sOpU4xLLrAbcSVKt9n34n1SPsO8R8nrrssFBWs1/C2ruMenwHFqLO0spvV1dN0fu5qT5wph0Tt9pSCoeMm57zztqRqNwE1t1crucZ53Dd3X1ztCnhlKdCHkO6rv8O7x1YTMW/UpRLv+Ny9Sd1Gld8nVXirPqvO4EWCUwqBTMDh+sPotjd2WykODFoRdFyEX3J9/6R5dMxNgBeSVe4MxUdpwrdbJXJ/TjGiakIxT+hM9ppOUaJpAms3NU+lJdXPrkxz3W7DswqcuTSsLiHoZa5egbk15XHu5ykAvJvz/hfYwa3yeMEng1FBHZ3/XBdHFxQ4OF9KcUBgiqOD3lx3Qf91GkzsOFJYYEaYiJaG9KuBWvwuTeHnXYqi8muDLarbnQJGQRWAN2IfP5XoLBE6iSehCC/mrgMdENBHGLMPOXBK7qWa5JM6YTDKOxBmtWUbDCe4el13pgstLplTGZcB8TBjV/m8X6qxF4DivJqlBBfelNnacuaUgPGfhsNV6vJHUu8dvFxZ5FOxaVvA5tbrMu+jWucMGSz60Rm9QuJXVWdoXWZSqvx9wz6pdxy8gllw0tmM0BADKVrBFmX93q8lbzfWM+ezx3tJ+uXuvGHL3vQKXpJkwS1Jmp6bMbusTG8MUYYxhPGgzSXTtzqzGy3p36D+T4CbPusm0VnKGhLUR5/ZD1zhcZAx0m7RmmSqcHH3IQxpCfqO6KMIBiB0XO5oV39VxjbsNQqGYC+maCGw4rDpJKTHWdXSvzjsJyS3RQCG0T7SP3lPLO335zPGWwjXeC+vNQMkHRX3oKtMlXENLezgHvr+xhk3hyrYKQK+DxLoDM2cV7rnxM4HrxVZ4MQwfW6WwZF6pB1KY/dyHINxTuebT4hxo3HsywMaplpYyfgi88qVLZyPV+XBzbbwngbXzpePqoEJrc3o3tdDpwGqPzoWYSITECSieYRJbunWbYOb3320H4A3OZ+rWpnqYuN+80F7krtHDZ9a4zrXZ12cPE9IteHtpbv11Prwv7M81X8sVqNtHoDg7zAwV8l9hUshaup1bjqXALVb5RjaAAxFsZMVNYWMWtLH6v3ff77I9b4WtaDsoqlpiQSJX/8AqLvRrfSOGpRo/i4qisphcTyMkpxvWr2/3yFMHVkl68PxheO67boTrDzj6QonOXCvI+zyzGJcIbxanDCYZ/WlGPE3zsqVmZlnoAVPHV4+cEbTjVtLBCC4481u4ZoKx2k2oC/UUdGlWPbn89WFXXkz4cyu077/uVdu7sC7uRoATE7jRFbtYbqn7CwQMSjDjIVQJg792jxIHOQj8yE3IDQcK5kaEqZ3PHu/PYcb1KlGoxveVzvmKC/oXKiau25Mv3syAvPqAM+6oJu9UJtxEWZv8SuCpVGPeJcnIZhY7s5pcb6ZlKdZmGYdcJkyTZmAlX2hXkj3eQ1WBAYV7mQdbmZYr2mNVJjROoaPMSwrY/T2yNZsrN45buFUKq0MY37bdJHQhGOYtL4s8Cn77PXdvu4+11j5Q99dV9/lHrodbD5SRZmYXuo1vMu8hslXugrpkdLhnrAXPrmMiXggIaUTYV+8eH3apzwLXQMoyzdXCorGPma/TvpV7vLbrKhuWylzoRCpC9vwm6f6IZKXLzECM4QkRvrK3zYmJE8qAzKoLrheKtwv/+bd+/+ravV0Qiph2z0AJIBaGE073G/Qwxf7sNGlmMK6UQbMyX6e91mIrolYacKWBKgwL7O5iCiFkIEPcIAIXRJHYZOskSvlz6to5VQ+lfLAGDWXWnCCU+KWEE5LQNR66xjcI8oK4Y4kamreAHF8T8C+ZqtAuUEgxeyPkotr9EifMdgDj5rOajC6ECPjQe+8u0TmfdK+6j3eyfaq41AJ/PfjdCPwVcAr7wLKcZkjX5YaPTJFBfg/0NsZKMmwosDvl/LYaVqw3E3YsnWFaDTi8TOOcJRJnlAsFdnuFFRXq9t+yU8UmzeI3L7DbIndNXTx7tT67p/l1UDXA+LM3OpTmaGeo8arBvzP/7I7Qk8tDtQ9LzCeFtKCKD49bQmXg2RG04Z2bjypPXV3QuXfRfHtC2gzqmect7fGC66vjWEcXw8owW8XH54n16rw2xjEsN+Y1cIGicu6eAM+XXOMd7egOp9Brsnn9dQyP7MtpEhQu8tdSiBRQgd1ntI8zkmlGP07ZP01JXF4s45Jui6/sMPcQB6E8NEqcG4fTgO8dFGXfQvpXWQ+72be6dbKJlntb903e4toXC7YlTzz99NM899xzpe8+97nPceedd/KZz3yGLMsW3Pniweba8cte4zMDz7kHCnB8CDc7PWO/rYkmqrNWRzmr2iH/+zDRjy87jNy8L3+/1xoPnaW9KvDk+9/M4wOYj+meO0TwCe9KhwCZlmSye0B+9EbsTQdLXTpBkTneC+2vEOF4YkmDpHXire5uE09mltXEYjLBpJaGldq27wQWKS2qCLt03vHuqsyZf8A0xXaigpkZdJFJnMsuz0mROb5h7RUnoYPFxH2R2/Nf+svfuNNOFhAOUM+5KB3aM480HVEpEU932yaa/d1DtGCdwvz3oVC/nzKixL/r2uDshVBH1EEJ+6BybZf6zL+7idjr2uM/j1Emo7pOAhZh7jlX1RYb4BK3+MUxZ+lzY+xN+8mMITOGpyz8moWvD7p8pAePe3dT3O2wI7X1d3z7VazzHYFb71IwRiIuUdAk49xK13lEO8G97Zj9WTbHcAvF/XMT6X4DCgl0vA0BeTfB076QUYIiFOxI7/JJlPJnBZ/9cya2GB9wdFQ/pqKCUOqt7eiaeAq1dryeQmD3VZQ8eEFhETO16xaocGxCuj61GqcfvrvXgOkU9Z5Tgdi7xzcqVvb87EMtgG9x+DwUikLFYKmf22x+KQzXffca4NvQ9v00wssI8Ls4xX2SIp3Ai8AL7UsNVodjelK4tfuqKduJac/nJ+iIutcDwwSzZOBgk+jchlracz7NNe5KpNpFXnRTC9e14MQUxJbc41PHn2VSjM1R4FaK+Qnrs29lkKij6bDY0l7X1GsJde+cUq7RXkfTl1lQ29wvOijznKdjONzjr97yKsUzVbwSnqtfV9o4RfdHmIy4el0J3Vbb6M5hlvxq7qA5el7jgYgIbKaw5HBdZArmpt9QpWyNlT0UYiVokLi/K84a3Z/NlKZ7RbB7jqcv1wLEtU8yTVBtEuXtkzhj7yRjzyQjjYsSdZJaSLIi5t5DHd4ETeK5Egg5+3twcTo/PgLXouypx4VVa/sGKrTDNhN8vwiwZY6szc1N/tk/+2c8/fTTALzxjW/kX//rf82//Jf/kq9+9av5dXfccQf/7t/9O1qt1rVt7Q5gNq1GgtWAUHaPz5GLqND+F5zj70qnKNsA5dmrMp5+E/vPfuFtqDXFbsSFMO2eZZ2GrS8CAQGvE35yK6y7fZktrH3AwkR7AhxdRwxkrzmM3LS/0CpZRYLrqHt8XmMduF5gSYTnrfByCzbT8nD2mXPIUxeRV+xn/YYDHDQG07JErQiTWYyNiCKzYyHWgzEBYxAcIdHzcCVEb6EVGrSWfTdSK7sBu6eBMnRLjQABAABJREFUfSzOkeZJEf6aY1wi0Lj2yOSC+05gEXH3sVZh0wS4+ZYj2+9ndW2GRGfmrH3nRppQJdwTouNTZ/Fdh9oEivVlbwyIzFnZDbqO14O+VTWcLxTUEXVBGRPPwPh2L1OfRTW8d7faVHeeUE5EB/MlhETQzNa70SaRwsfWrQ3JNAZcnllDvudGZewj+LyFJAIGEa0Ny58I3IHHLzu3ENx2yw2Xv2g3wK11ces/3zLrE6QNw06TXrAIjIGkBcQJSCe3lKjVhGDQAzoDBQ72sX3XtwrLU2khXUNOoY6pFoGLY9VQ7emo4J13Qebb57o2hzcFrVDSC3iCJY2QtaklbUUkzpJpneAuInwRwzehMe250I4uOz/sIc3Lm2WuIa5YtKlnNq9BL6Bx33s6iItXmzXEJXHVcmXghFpj5vCjp6833XKEoS17FcwlohOlQ9vta5VB9bjKKyFXKaYwnOJsAtJuur6BiJNKV3ssTS0bmcU0o7zUG+Jj2rfRshItCurXTxJFYvs7sDGma0WTPLrkkMXeEq5I/V+lf9MEbt4Dp8/BpRgO9jVfj8NRmVdMRjpuzwGvc2+u1mevyxzvwaBJasmEyOo3BuhHZrE7NtrPK+GXdgKL3h3mcSklkA34T192uLw+VclphSL8xuOXs1O4fonbllbhWcejz+EVyfst1WcH7dtE13APuFjtQ0D36voa8jJh6JsvH7fVuJSWt3e3HAHLlezxxijOG4bXzj80T67oPUnceDSmYCMYjGacdOtWHB3JKylcK9oAqqjORAVyF8eUJhm3P3+e1z69Bq/YC7cc0g2QWSSLtE3VxA4lWuH+GWXQaRfWyAMtePZScV0ethWsjV3aBlvlSVhHE26DTtug5rprOOTbgi0t7e973/t46qmn8HEXX/va1/jFX/xFvvKVr+TfiQgPPfQQH/nIR16oNu8eLLJAb8505x5ZdhuvBaN4nukC5qawqoHzsJkhTWBjkn/lLTBTq1bagdQLbVVBKPytT5EIBAqBKreYO0IxF8+eWjg+xd7UV6HbXSqi7nGnRRHZKoUrWAREVnilhWesyzKfCtlz5zG/e5zGA2Naf3CM9onz7Bd1m4usOygS0l0JzCktgv5vlXV8RxusDrkApM7SbpzVYqlBFk8QsQwFNkU9EiIRGiJz7vE7heoaANUA74rbc0jVQhiJuiudmRXrPFjrNiuPZ0g4V9znuvW5qPxNNRndHsqJ6Pz28XP6QoF/d1VBMaYcvuLX3lwsnRVXOjHLPVDyI3FHaovDVY/Yav5CVOKvciqWuUR0PmFheG/d+YrA15L1OMQl75QzI5gIcmRZBZco4i8ZMBaGUUSrMeNbjLPeuTn1jnQvdvmUObAV13jrkv5spmS9Ph2gYQwGk69taTU15s8/goB59VYU92y9IXifj+07MFicZfhaDVG40MP2XUxhbxe6LY1pr8OL4byFiyv83rvHg3MD0ZhPO0qKTPFSJA0WNJ79LxEkoDNl7x0o12mvvj487xpU++znJM60qkiA4qTXUsXVOCYW6AWua74eeR1+X6SsrXM/3kk/FzGoggo6BjhPGddaf0+MZo93whORu7fdYNKGlY2J648E/ZPLu0ZVEFo+LiKQJtCKMMtdaMKRS2Nm1l0ogqSBwLKN/vsxgMp+yoWHRGORDzXg9Fjfkbkyb7YQpPy7nqewtIcu8ltljpdMFD9MU6JJSjRNaUwTGtOUlThjlm8A2fVtn1e/uAx9qbM6VpXCVYNJVYEWDm0Yq10SwM5swuG2lvUbB5QqdJ2udL5u3fv2eUv7dhLRbWWx92Fm3ntu7jni1x3MyQBTt+CXaoyWA5fKL6nE73tjCFKyTofJTwfrMFvp05/Fee34kCG6lryRV7jkey0TsJbo2Hl+4hPH+QsPDnn5HxyD4+e0CpYVEK22UIKQxoSLa2zLCt19HTibkHt/+UZIcN5FqNtjgspSrl5YbdjxtSTH24UthfYvfvGLADSbTV72spfRaDTy7/bv388P/dAPcfDgQUSEz3zmM9e+tTuA3mD/5S+qs0J7K/uhBrQaOkJLDdioSRIUWCEhIA7+t+AahjHc2MOuJwVD6J41coTPI45q/HfV0h6eL2tpX5hobxOakN20jE3SHAFkrh+nhFLm+PB4qQhPUiB7+/h5jAXpgGzADU+s0ReXVda62q326hLRhX0OP/sx8+xuCcnu5OHVi8MHzVKyrnOPNwa72kY2lbCfEOEQ0EWVFA1c2Tez8yR0MK+U8OceZWHMwyMPPbn9h29FyWLg5iU4X3FRyvwat/m6DZGXF9qrSpVFCppFlQRWWOAe74+rEO7EW4QzKRHFuetybTZz5wnzAnIpa60VTbIzTZBJih1nWt5qnKrgM0mL/0dJcKSaXXaaqWa72qYFZx8qUbW09yAn8HWMx5VCHmZTUQCKAE+PkVuXoBGBi329rQE9A4Mk5buPTbnNW02cBSu3KmwTHvj6Dtb51UAW9Cu3fIDdgHi1T1cz0Lla7Tr2ttmiOdMLBUqUXaqTAGUGdThTTcug7eK9mZ+wnQzUTiBUMIeM1cVE3RX7ka5NKr+7D6G3WPnsDifU6kaPFDG0IRnNcvd4n4wus8IJ0eSnb6Qcz15VBtbRvGubKKjSd9/PqeY6yacs0rXBSoQMZ6QCHbeOjLvPJ2mr4kavyHzsoSdL/Q1jnsMm5DjyMps6n17/Obj8Ajq2ZwNLn7e2W+9l0i18xXwt+gmG870+3U1NUijiBG9P6y83B2XEXh6HsWA6bq3sX+HW9VSVCCJqbffCe1U4uByE7yoplhKtFX39CpyM8Rm5U29ht5BZNWoMUQXHLczXZw8V0aXXphbiFJlm6nkSp5g4JYrV3XhpmpBNVIg30xTSLK/W4pu9UxBxpXgnCUwSR19SzTtUM26LaMyI+Zwp1RLEyxSW9vxer+jw/LRQ8NZnUriuzwPrp9T7NGTU5gxi8+jJr3tPd5dQOlyX76e6R+pQsX+Wq5WRP4vKtQVer7RR0CTVoPKCXwh+MXTcbh7lYne5v+Jpa9BOrwOIJyQHV+nEUih1XH/ye7hGUNlzPpS3+9QaTbcwzAbIY5dy5YyvOlWiViWBPWjtJMs9rwClN5ZCSRwK7Nl2kMoOulY52+DDMLOsJhkHUsvIeYJVu/Fiw5Yy1JkzZzDG8L/9b/8b/+k//Sf+xb/4F7nbys///M/zj/7RP+IXfuEXAOZi3l9s6PT2bPl7zoR6hJIvEuD4BI6sFhhquaFaQZHygtIH5QlLSr9DmYPYiJGblhVD2GITCMIUoWdV2FsknHvNbjW23Seiq9JBG/axzpvg6ARuWcL2IuzUOoG9EMpOADcETEZuPc4sL0PdxHDDZV9xQBPZxWD68MBLVzWjeCZ57dYos3PxUDuFujHx7lu7EhdWnTd/80TIOk11jwdsv42NQMYzzgjc4sY0ckdDCoJ+JUno6s61bs/A008+v3PlRJW59v29aQnODYvfHYHPrQ1SWWcowfYZZus08XX9q0tGt4d54h8eVwKSWmSSKuPij2mqDM1WwnvNd16rH/Ypt7RbwcSpJiycZloKcVojrE8yPabBMUmL80Tbtqg94dkzLZ3KtW3KTEfd/VcElnpLuxXs0UvIrSs6V5FBIoPF0MBwsGVYjhMl/NX1swPN2uNPPn81rd8WeKWrdXvCi+ECsD5jvNIu5c7xniTSb9FO84cUjFjx7xa4JYWVSBXDl8kyfC36WqIJ/nxxDHs7KsyMFzCb5aeVf8+F2qRgWv1PKxHZNMtLkPkcBxb4kgjfgNK0JkU8u8/QDU6HTpG08lonCqqLv85h7IR2J8xag1qlez0YWxIR2mjnjJvTyHG0VY9n/+/Rp3Sd+1FbolBmanvmceTlIBR4wns2gNeIcCp8nhMMssSqS3xYp90prMbA2mqfpkPYkVs7PrDPbEegrlxivJvxBC0DhYG9Sxw6k6gS0gs1TpDwfNe2YMFy9Qp5ehFc14WTG4Bzic9c1njrkiRa4XlUubxKxZBh6pPQSSY5TTAzFdKJLUwzomlKFKfsmWQ0pylm6pJ9BXRDphmkO4vnlcyqMmlSoTcj/11SojFbKap9TLuHqsUdikoOECjOnHJcoBDWBZcdHNjX5fG18y5Nu5TxSc0mrmubt4L2mQ+RrO6R0vhUXoPrp/eiq+YYCA9b5ZvE/TOaFe6G4cb2SrwuRZJRKCsl3N4J3d79Oh+sTbGHdFfJNMlfV+rDLtOFuXblygFt08WX7tHJn4BdAV6+x7UpoFN1baqO3ThxSUqBKIJ2Q5mZC+NiAkM5a6dKustASQkkAklGY5pgJyn7JikHJimTcUI0TXNjyrVVDG8ftpQpfIK5N73pTaUzwKtf/WoAXvUqzdI+HtcV3nrxYO3801tf4K3sHmnkyEXg+Drc2CtGZ9CGNb/oisUZC4ysWsqHVj9PMrUgzEnRwxiOdHQNDuP8WSIwFVhx1y6yqi8S5i6bwXqrePZblpF2RJZkZYIucFLgiHuPd1VUAmV4qcBFgQ2nD8hu2If9iweZAbOX7+Xp6/exbAuB3WeVXaSN3g5U7/dT462fW1kjtgV1WN5r2SZgOw0sBhsZrDFkyw1kM+a4aO16I+KsQhoK4C1EVxS/H5z9Z+8eX23u9/7gd841ezFImVrlVnZHxG/qwWmn/Q5j0UKX4eA2KEpkzAnsCxQW1ev8NasUjLh/bbh9doInRQSJC0E4Z14moaCczlm254l08dsmZauDV5iNRIhmRXZVmWVq0ZhWhPNAMC9Z4GNvgSnOPgtr2K7qZy+YeyuPP+qYDmrOO4YsUP6FlvZJCqdncOtS4Bpk8vZdbEeQJvk8emWiDRu3Dfjhv/WdV9ry7YNrU+7SniutgPUx4xWKePYg90jUbtJ1sSslN1OpxByGn/3iGmXQbc9nGa5jZHcTwgVe+iwawrWvqW2K65nNcKxKv4XtHKVqrQ/GLOu3ScbW1QQXMgspwiMCv+1ojheGmgZaZp7m+fjTFyxRUIj0wglNUvDZ1QM0Lysd2ND2dYKNl8d9u69CyuCH6G/8wHeWvvclqPJmhMc2Ojt3D4Xwfh6tBnOhhGt17dtpqkJ7y7j+qQAixuW7WW7DxkwFdfEJ6YqY9q2FicqacfwBM1Xs02mq7HPAcPjCOmkgyOSx7Va21f8cFinNhlbDNq7rqaVdLNbxcN6tXNxgHwVe4m6reh9WkyUC6nk1s5BoySwTZyqcOzwfxRm9WYZM9LPxNGCm9MNOU+xE3eqrNKF2VK0oHZlTDAc0xh3i3bX9vTXPm1DO45LjO3f2lvYwPFMAY52AGwruCJwZw2GtJvHD3/WX9YZp4DYuwdkLgZTXu/88RvNeRNQI7QvOIW4Ovw89Crz3XJVNyptUhws2ndU4tKgRnJcjpfelxrj++TEScq8uv3f2xhMaS02SjsHktd51H3ir9rVBeOSGmlw+cp8vXr+XuA8bq/CZ77wRc/1+FdidUaekVAi/qI7dMFFlmR8nY+BAB87PSuOTv38X+1lqjvOQlGmGmVpm05TVacbhSUrqlG0mTvPwhms03DuCLYX25WW1oU0mSja63aIARK+nyzxJktL//78DEsRlUjCjqVUXnhsHbhMaTcxl0d/cZWNgaIXNTFjPhA1RIXZohaGF2DN+njtdB7vcgdUIuzErEYOxQKdC0OuyyNdZKJfYQmAV50a2IJ5dXjIgaxskS3OEZt0TTgE3SGDhpxDcB8BhEZ5111sBu68He5pY02SKyyjuBXbHsGwns+xWsEiZ0aSMaLfStG4J1Yvdw0Qg6zY0pt2ANQZZ6sHEclyE61FmJRLRJHSWK0pCV9dHD2FW8DmitJNOVi1HoJp5gMOOHV4PEKdnjrL6eLsh5frll7O0161hgwrtG0G/6o5tQ6IuiTmTUhWYA8ap6i64yLAWM1/argfErvwhPkY99tb9ND/PCe9hu7zw7pg7EqtExBP1cEyCtoXWgXC822zhHr+TMayCxyNhuTcReHode7iJ9FtqZXfc6xTdK2c6TYh9aIUUPEDICP1ZAUcHRApmShz+lvGEjaUmS949nkIhF3VadEYuz4CUHyeVZwNlwWGUaSzkoOES0QXIq85ja1f7Snlheeb6nNWY9l5DhZqwX3VtCptXEmqTPI7db5rZSofZNFOXePfKxzP4JZRO/DfgUYoEdFWllBcUoMbDDHaOKy4HdTQBtJ9J4R6vAq3r5KADwxkxhXs84uggZTrvoa46jKfv1fj9nfTVT3PVvdg/85UCZ/MuSZFpPk7JmgAmT3ongBiltZNVYH2Mz/oeeW8zZHtMdrAHcprnvTqajjoc7LN3NCNLreNlyIV3ydj+vqhDgP7eKRpbe2ig8sWlmMwUFnZr9bNY4TlUaPc8kfekyxP1Bgp6saKKzkxUaE/Uws5TZzAfexh59izEWj5L4qxwoZ/p2St/1Wqe5R5iC7so4mhHQUMKpXVAC4PfJZvPdxAO6ZB5RXWVP/UJZIt2kON5H0+v443myzns8kT5Od6I5xmZivatjo4NKarU9tg+b5SjseD/MPStmj1+7lkh/vODtpnCUuDzZkzAuBvodtSiB/N4U3BejO4fd1maWnoxRMtdklZbw+cI5su/Xi6nILtCcOQ9F8Jdu80optFpwkqfc9fvrfAnkuetKfcxmFcP05nSvHBRHegXZd/8O+sW5tV3TR9pJS9dHcUpszilN8nYE6csTTVTvtahdzmKMpsbHl5M2FKuOHLkCGtrazz77LO84Q1vAOBXfuVXStccP66l1fbv30YM+Z8lqGaN94vr1FBVeHs6upiEIpnOMCHtNpk4QXsmKv8mVolZlAltCzNH/LBao5XYTfNKBxm0c0bIu55MrLDsqSvbs7TnTgAUwg6uC3m26MvEs9sDPexohnUxVJ5gp8BZEZdcTfFOw7gMvo7xeDnwjMAb3BBJAnRALgxpisuEbyXPLBshefb3K4GtxmSZxSU/tg8BMg7PqcVGkHWaRck3QJZ6zNZgXYoM+7nWXSQn6juFrbLkTyrX7rifJWRaME1M08IXdb+Bc2PY3w2Iik/II0hUfswGSjzrhPU6J4Pwmijo6ypKiP34+qaJqPC37S5mtrBwzKwyKmkQ/NUwxdwa1DWrUaQQWjSmI3SvhetvCUhdghavDFPBPYNnzsOfnoLXXwe3Hahv7NHzcP9p+Mbr4ZXXFYPSMI7bN7VtEuZdFz145iNFBfiQ4ajLprsdUMVfTZiNBXlqE27ZXwgtRt3jRxgN6ei0tBGZRZqNnMHwdcz1x6tR5e0mKJ7M67T78yyFmbC+0nMWNVPyoImaDVpxSoyOf66gcMxYyPSU9yBa5q3fdjHt7ss6gXjX+TIp0z7/zqFT4O3twnpcIJ2t2hTikpCrnBaWaBz9SJbaJHFGitZpT0X4rLvHh2J9Ck1G1zR6QBkn+lwhm8DhSnOEyw9VHpbhlp65HKJeZKUd2yKm3dNcA+wxyLkJU4GeF9KtW+VCXqs9hBJdc3xHVSkf4sXwvGVfgyOfauCSe9ctwIYIiUArHxZNpmkHLg+F0yhYtHGbxrC+1ISxurJ61//ifJnGhb95YcCKCpd93V8YoNNk1GvSPjeCG1fLArvswD3eSx5Vjay3XvdbinMPNZBTI+yBHplTUmdOeBer5d7+OhUjhimUSyXwPJc/Eot5+izmzuNKch49Bj8g9I7so4kltYZmw0JqkIYgmeJRGkYnxvekEWHqstta1BroGVJP/zzta5jCe84/11qIoi0V1VVTXFUZv0zFEyR0qfaLzs/TqSG8Yk/BV+9F3cbz+WFur1WVTb5toUIh9Dalcl0V3S7qp6elPerj4z0OFyr7V1CPomUXn11X9285qAxS6lTgwSiORruxSIdT0ia02w0mSx0VNghxV5A/5RpAvtds+C6htxZjI2jPZmocyK9hztI+t+dC2jBJtBweFItqXwee26wgK79+dF3tViUFC0rr3Z6R1DKaWdqJpYdwwELcMGiQH46xz5BGXpzyRYMtLe3f/u3fzute9zqef76IJ3zDG96QC/AAn/3sZ4HCXX4nICK8613v4i1veQtvfvOb+Sf/5J/w7LPPbnnPxz/+cd72trfx5je/mR/8wR/k137t12qvO3TD67d+eSmOPfh8fAI3DcBERUIJF5eSDmMV2NGM71MrjEUYZpK7x48tzKwwscIUlyBtQx2bbSdC9nWQjbS0uGeeuDuoat2h/H+4ZKolKop9ISpAVBltIY9nF2PIWg3EZY/3uOScYxgOuuWZu8ZTWD5eChxzj8sAmQr20AqNUcK+VHdx5Ai5QTBZOWb/SqCqsPD/b1nrdCdIrQ7TTzONu2xFJaHdrraIRzP2o4x6hGgCOtHPTZGtN9cCmGPe3OcO81laAd75H++ca/JCqEOgiFqlPdXavwRnZ3P7IoPC3Y1iHEZUEtHVrN0q1GWZ9yFhW1UC2BZ4JikVFd49A/PwKfjt++HR04VFOxNIC2t79X1CwSzUlXzrW2EYMGc2dRb3Z88j7z+OPJLB+0/AJ5+FRy/A4xfhqUvwzCX43DF43wl4OIN3H4cnz5RxUro10zJBhXIoj7fX908r19ct7W2DSJkBzQ+LPLmB3NYvFA4uEd3MwMBAs+UyhsdpwZh4tLsD7fk7fv3OK2n5zsB7NwiFp4MIrE2RXsTFZqSKG78v3TlagpU0ZVplWvz9npsJ3pGfJzOt9e2T8vgScFWLzm5zZ3lG5+AdIhrP3kctYX2X3dcLN/nmD9oUbs4qsh0BHU8xIDWQDJpkk5QUFdgTgb+IFJnHgTdTKaPlHhfuvb3u8X5f1OlEqiCZJuhSj5sgx8WCJJClB5YnVc9jXMk3n13dCbm9BoxiBKEjgcLBW9x9fyoMaAS86zfunLO0Q6A7Cfq7HbxY9Y7yx0XgELDX0akzAeNtQS1LvcgJ6uT9Aw19sSs9iNFYbU/nxQnf9jItW6AEMXGKcS6zkQ4QFw6u0LlkC8ThBXbZYTK60gD4vecUVN2GbubrV5DTs9y+kXkBVMBYyzMiuXt8nnyOQnBf2EfvbfjgGe1nExox8MfH6ZzcoDtzGeRnGXbmreTqiaXW97IXVn3/ZE5JQJzB42fggw/oObFKV0IaSf0ShyJ7PCzmQ8P8Evnwhkr+HL8InJnAdWoMe8fvfRT6HXUtD8er0pASegk+jyk8bnoUvFEd31B3f3geUyi7Q346BFW+esJVWb+bDodXGR6vDBx0VDlbwiHFBx2jYomDkG6mXOp2aQJZu00riEHIqxl4gfkaQO7VQqAkE+iOhLW9SzQTVL5wfcmvFX9tFfH4xrvzBtB16lfPNO5vwVolpt2Psd+Uu9E33Hy6Sj7G7a1RYjmQZPD8Od5075MsPXdWa8/76g5eybI7zbhi2NLS/pa3vIW3vOUtWz7gr/7Vv8o3fdM3ceTIkR2//AMf+AD33HMPb3/727nhhht497vfzc/+7M/y7ne/u9bd/q677uLDH/4wv/ALv8BrXvMaZrMZx44dq332hTOPL3yveCRStTQIcGwINy4VTKhbNOneJuNJxsRoDPpUFJdOLcSO0DUDLWMkzhIvQmM4c748Bhl0YBQ7SzwgwhiXiM5a8JodKBF34xBGFXn6Oq6l/rk/EvYvFAieW4dX7FU375bBToqFbK0S8OulzDR54b2BEvmXCHzYXW9FsCmw1CftDjlyaQy9lZLAjqhQe6XghViv5QzxY7WGeR3CviyEiCWEaUoWGbLI5K7xamkHeX7CjZD3TRPRecH9yjPlm5rPXcoEyTf5B37ke3bWR9feEoSlmQ724NyktCfECabW7RsXeZivu2XmBfVFfffXRE7b7teX3+1rwAGK6dhx/WXvkuiF6cTCY2dUeAZ46Bj8T8Brrocsctfa3Npeoi/ukd7dvIqRBqA1hIMJESvw6Jlye7+8AUdHrk1WzeCblYd99ZRa26vEivJ8+89TCkYDyusEti4PuGOohtj4QTq2gbSA6weKS7x7vJhcqdA2kHYM7WmCXe657gXEb5uNeuuPfs+Vtn77kAsuzg3RCQV2mMKgzxTDEecTWxK8mtCfJKoocYsnlNXz7VYnWW7ONAGkT9g2TIpSONX7dhPy/S3ld1xMNAkdFK7tk1QZrJBjqbYp/NcLbQnaF6PeMjMDs0GT5ORQS76JendNBLoCbwK+S4Q3GkMLjWdvG6WvVUVfn3I4DVQE+AoDLZkTYryyzgt8BtUQpBHSbmi5sctZc0Ik0WuWrew+nG6SKr6MHN32Aruj+abSQP/fD/zw95T+9yEwoTvwTvazpxlV2rGGhrAZ4LBoJvmXSHD9DGyzBWGtbIe8h8bQakbQa2DWJpieetPkoXCg47uoBlql8XlG/SnQbOn4O55nY3+X6y9MtLVeGBRK1vbLekqUkHqwB73Q7oWG67rYRy4pnZcie7y1wjnRKgc3mXKZtzAZ3VZ9xArmNYcxjxyHFKQB7O3T/OIp/sUsw9ywB67vI0f6SL+NHLuIffgMvPYwvOp6p8Uyi/tcNUBZgafPwZ0n9fdHT8BbDdxxfYDHvWu1Ka0p/3kT3WdhqGbIhxmU9sc4XUrQjjxviW/XOFEf9sO6on/iO74dPn0BhoEwW1J0lKcuX4Pu8G2DguZ5dUbeF8c/VKekSt8nqALLP2sYXG8DHsT3y4RtBc1Rdftymbnxvxs0r8ep6XwfhVwA17jwIL49FoZ7tGe206bvlTWuDV6I9lbwy+yAHYHuMYtYr1gvlAP9SwmbB1bYe3GImWgyuZKnQEAifHvnjUVufpfawYIymkH+onuIDR4U8hy70FMrlHga0fIlTFPL7c+fp/3J47x0BLcc3US+N0JeegiySBMsOo/BFxOuVK7I4fbbb+cNb3gDhw4duvzFFfjIRz7CD//wD3PbbbfR6XR429veRpIkufU+hNFoxLve9S5+6qd+ite97nU0Gg16vR4vf/nLa5+dpdUcygGIlJnQHIlZOD6CG7uBZAGpMYyXu0wmVgV2K8ysMBW1qP+phX8L3CfqCe8tCKkVEkBczIsArDaRS2p59xkZh1YT0fnYbygL5/5cEnjc57BmbUnLKC4GrBrPnlk4NoWbB2QR2G4TmxSWU1DX+Ou0gfn78pq5aDuPoMjrlN9bSYo0Iob7lrh5mOHd5kymfYr858WzclkojUXwoGqynrrzjiBnrgUbp9iBy3JsNCu2BaTXoDWZcMQ4V3jHn0VA0yk2rtSVp27uQ2EMin7t3bdnZ32sMBL6UAstJ7QfbsOFYYF9HcK0kBOKkHACW5YqrOtb3QEqrG9QtiqHeP6yXatjXKyoC3oI952qXFcemurZe3FU3eMHIhr5ElArEeAVh8pz8qNH4G2vgZ+8A/6fr4N/9Dr9LoQ3XKdnW377ojYtco/35KS6Tqqftwt5bKbHH/kZeGoML9+DRFGOHASd/CHQwbDPQNpsIbGaEkpTBNubWODggT1X0PodgpV8DeUlrwTkIrCnT2wgCiwD+fpuGnrThJkX9isM1VzCoAC/aGyfU1310UzEVUG6+nmX+ppvrlCZcCmB/f2CkYpwmY8p2uwh5zArz4DciueVgRmGmYF0yZBmWvItRYWjPxL4PhH+scDrRYV1f4RlM0N8ssLihIvVkZJM1FXf55TweS2q+Sa8UO/alYmQiSWzBLG57uw9IlyddoFcwKXfRoBoPFOhO2BaDdS6x4MO9f4De8q0HlV+leL3g6m73KoIpybkDy6g3gpYuA64GK5dVGiwrWa5FrQxSKQ4eq8xmOUeZphpW22ReJbqeq9rVIWRN6DWSLdejCPy63sjls+ulwSDXOAsNW6r91XXrPswScoJWa7rkZ2aYl0yOn2NKquPWTgiGu4Yehx6j5A5WlcaeD2bW/bDHQNkBexbbsR8z+3wgy/nt77zZuJ9feSJdXj/U8h/fRA+cBweTJDfOg5PnA74N6EWZ1bfJ8ADFbp3/+myQjig7dU15YXwRZZ2/9lbuwsvQDc3LueAx4OcHummbTUgijiwZ0XjwIdJeQ5D3Bi0B8qXjSkUWtupIJSv65rfw5JvYWnd0nUS4IDwQSIwnmndeSgY05AJGjQUr9f1MacV5NZpAeQSbPaU6zOr0I1n4bDkbcqrVu0m2CK0i3y56Pj1L42Z7dccT0yKufNeCHmSSN/K6lhBkXzQG4r8gtrjZmGtSNQ9Z1TdDRDvhezCGVOtLz+2lm986iLWZSZsbACPXaRUji+ful0e8x3AVQvtVwrD4ZDTp0/n2ecBGo0GL3vZy3jyyfmavA8//DDT6ZTjx4/z1re+lR/8wR/kZ37mZ3jqqad2/vJFFui1mWoDjyznjFliDCMD431dpkPLFNX8T6zKOg8D/0qEPwL+pcAjoqVCxGoGUgvIRqbx7IBdaSLjabFBHR7uirNKe8JuKLkGUvPZC+1Qk4gjlXwDleLZT25CA+RgTxPo+5IuVnICfRa4nrLFOC9rIpKHRN0MPOeH0aZIDy4Nljh8MXWEHNcnH9t+9b48dYKgd4+aQ9Y72edV9av/d2bJBo3ANV6wxsBql97UcoO1Tinhrez6uXmFm7pOYIeCeNa5PYeEaEsIEWf4gKl1bqzAwb4mogr2SO7qlmtedSzCzPGhR0ZVGK9CXTI60LW8XtOvbfcP5hkXAV5/uHzNG64r7wtblNWpUxh4ZqDqjj4ANt1+9QyeALJvSWP/XxXBj98Arzis49tpaGmTdgNuOwivdbv3R4/o/76T1hMIWThloUtf2CZQBqRkaRfm9sa2oargzPGlwNPnsbcvq9Diku9IUwWXFOgbGBjDtNVCZrZgntxYeYPsnwUIS6DlQrYbfyYTWG2yKeryjzFEjcJARzeinyalWEjPr+RMWVXo8xduWnWtBGX8fEx5uBZ2eZy2LPd2YQJ728ViWkHDZ6oMmOtbqa3hYvVWTEdfZsaoS3y3STbNnKUdzmfwuMB3iCo7W7hyb8Zlhw5431AH6nO5zOGJOpyfWA2g9y7DcUVg98J6YrFxRpxaRqJTs2k1uewIpfv5s33FjbbPHq9hIRoeYpQhHc5YEnLXfxXW6xOy1inn/XerzNO3sL9bwSJ34UugZVmBwwhngmdbATu12EGzeKdTTIgxxMZoroHVPuaCLXgWK0U8+1ZKpgUdMOMMM2gVI2Fgc/+A9tQWAoIt55zYnjbXD0ZlvU6zclztoQEZBrumnpA+GR3AcSu8xAvfFPyQF9znGOnKu4z7bHoDzCuvx9y4H9OIoBGxvn+ZC6/eA2++GX7iFbkUKv6h952ep2uXeZ8A2esPk6C8YQrYkA7mtL08JP7sjSA+JMz3wX+uVu/ZdPdK5l2j3dj59p6O4dBSgDTRMpcudLSE59w+qQra4bFJoW/xbfDJiOv6w4LvhbIC/LK5g8I1689raE4STHmQPMJacpVBarRtJSFXyPmQKJ4wXnahIm3obszy60PZIZzDXYPwuV6x4/q9OhqRLTfJ2m2asap2BAi1exIOWHWswOUxQEOwcu2kUxLvM3BxUh6rkEbtAlirOTvEhYqIy0k0FME2urq2J5CuAK/YE3gR/Nlwj3/RhHZfIm5paan0/dLSUm35uPV1Zec/97nP8Y53vIM777yT22+/nZ/7uZ9jOBzOXT9YuW7xyy3zpdBE4MRQS1I01XKURDA2MDEQ99tMrTJmUyvMREhF+K9eTYlqmf/I/a9WJDfZo6SwtK+0VTIJrpmI0BMBu1hoWyQQhe5zBR1UNw7rCVuIPJ+bwC0DJIqwEdh2AzFg0yxfnKfQ5GoGJ4gGn71mGeBWgePunTa10IJTB2Hf+WHuGo+AEaOW9u1qxmvA+IzNNYdPHuJhEcLeEmqYCAA7s2TtSK3sTjgRhHGnSRrBkVGcj42e0ezxV9JJByGD6ufZszJeMPDHfV98cPv9XMAsMbUav2pMoe28kMdMYDNPJNzZ3bZBuUY7zAvitX2jjKs97GNB/WUphOnL9i88426+JUgE96NH4NaD81UjpHx7yMz4kjDVvdcT3fNphTjJcIYsG/j+O+ClhwqBvdNQl2NPrG7bq/jm1oNFW8O+BG2oditGhfM6pd6WyXR2CtU4dj9ea7G6st2yokJKwzgm07gM04YuRnMNLbUgCeZUvHVn+zF5n/vCA1fS+u2DWwu+fUUpHkEujGEAU6OKCAVTWKM7TbqzTC00Uk5AF0xjeQK8xmKKY/iATluzyfvf84nbZU4hZIBKnwXWx7CvVSChbqtoU8iA1eGSEk4pXI8zo4LDzBjSpRbJRL3RvJX9jSKsospO7xbvz3XZ4w3lsDCpOfKuZhbSIEGXF9y9pT3IEJwllnEmbKaWodVqMJuZKuY2BYai+WwyKfdPQqRgQDAw6NKYWHyVc5+Q1Qu1dfgxMvDVLz5Yq7D1HM5O9nRevo2ytR00pn2P+3wQOFud0sRiuyq0izHFEjSGDTf+ZrUJk4nzHpiPaV9ojaquF1HFhpll6h7vOm+ModmIGC53kXNjt7ccrvbKte3Gtc/tPdTy0nZ0D4NtGOx1TdKz09zCbt3gPSDCSauVDaqGDN0qxYyWSl0FAkcEMJphBspBmYaBVhPTajBpNjRRZ7eF/KUbNfmqdfP1xuvKC7t2XIsxTdEyxBu3HmTjJQ02mrD5A9cxvO0gcW79ppinyhAJhaK6amn3nw2Fon4FFaK91ddmBVrIFaBnJ3C4n9/4+UceheUGjINCtjX4ZQ7FuEtHuDUYzEedt6VU/s+/D4YwpO99Cg/C8pAX6w4o5tV73CwHis5S6TejIULr1TXvnlfpsn9Xc33KtKfPanQjBrOYXIkMjm5eq8zxgWJMKHilOKWVgF3tISsdlnwOwdy4ECRgLfWV8todhx4uwVgZA3v6cL5Q0NWFTFxd10QNCJkK7f6MVTrxknNDZtc1GB6AO7/jRjiiwZp5ckVrX3TB/UUT2vt91W1VBe7hcJj/Vnf9j//4j3Pw4EE6nQ4/+ZM/yWg04uGHH567vtns8eM/8TZ++qd/mp/+6Z/mox/9KL/8jvcwncY6QQL3/PGX+fz9D+cL4vxT53nH2gNgDIkxjE3EXZ/+HA88c5TJnibTYcLRU2e4+2OfIAU+buG4wNIH/hvtZ0+ACN8u8OQTz/AHn/qsWmUB1qa84/HPcGFjE1lWoeiBP32Ir3z5a4gogu3HCR/6T+8nmcb5pPzRp77AF774YN6nixfWeNdvaEImv86/8pF76Tz8ZM7AnHzuJL/33rtLBO6dv/cHPHPCuQQfXeeB/gZ3ffbzZGgMambgzg9/lDWnGDklkPzpQ3ztj76UI+YsnvGuf/9esniWu4LbL3+Vxx96RBfwNGVjuslnv/CHDDbH+Ua991Of5bHHn3au//DMsyf4z7/1+6W5+s+/9fs8c/RE/v8DX3+Suz50b+mad/z6nZy/sJbv7Qe/9CBfvfcLujaAYTzjw//+vcziWY4j/vBTX+DzwfidO782l9Dqrg/dywNfLzw7njl+inf+3h/kyCKLLe878SDPnTqjzI+Bp585yh985k/Y6LXpDBOMwAfv+gjrl9YxohajP/nig9zziS/kz43jGb/8jvcQx4Wb1D2f+EJJGDl3fo1f/Q93lpi2T3/kXo4+/CQGtUCdfO4kn3jf3YDiv+FwxPvefTfPHD15+fE7fyn///MPPMI9X7pPB2qWETfg7R/8MHGaqiB5fso9X7mPzz/wcI6QL11Y5/3/6QM5whoCA9c+397jz53krvfcXVKoV+f36w8+ycd+91OQWWedEf7bb97J4MJabj17+EsP8if3fiGfy+k2xu/8hUu84//6YEkgueuPPs8DTz5TzG875Z0f/URBuTPhne/7bzzz7IkcGT/20JN88vfu9Y9gAuz7zTvZ8OsPePRLD/LUH34BIxqTm0wT3vvbv8ssSWCSIcstPv7Vr/H5hx/VF3cbnI9HvOODHykGph9x17GHeODpZ/P98szzp3jnXR8rrO3A+99zN8fc/Apw9OEnOfGRe0sM1e/85p2sX1jTVwHPfOlBvubGD3T9/fr/+V6m063XX7g/RET3x8NP5UT0mWOneOc9n4SnNuCGDrbb5P0f/xTHTp/RTMSR4dknnuHRP/osxsBeA+OoxUf+8FOsrW/kGusvf+0hPvlHX87p+uX2x+bmeHv79+gV4pf/cCfnz6/l7fvqg4/wuS/chyDIOCbpGc78zu/RzFKM07l88Yv38fBDj0KnSTODC5fW+b0P3R0I6cJHfv/TPPj1YPyOn+adv/8HrtPKhbzzC5/lmdNnYKUFw4wHnj7KXZ/+XIl5fcdvfIBz59fy9n7uCw9cEX55x6/fSS7JCdz1B3/MA08+m5d7e+bkRd750JeKgem2eOcXP8czp87kbXngsae56+5PlziXd/zX3+X8pfW8359/5FHuSXXfJcYwThN+8wMfYtyENIJslvGlr3yNL3/9Ef4qKvyMLq7zO//XnblrfNvAhz90L48+9GSuxDzz3Enufd/deSk0AT7+vrs58VyxPx4M59cpm97xzt/h/LlLeWLKz3/8T7jn3384T9A1Gcf82//7TtanM0aJhqx94pNf4HNfepCxFcZWOHZpnV/9wEeYIkicQg8+8NnP89AzR3UoIsOJU6e55+OfgqUeSxvar0/8t09y6sRpz8ny6MNP8aHK+vs//8OdXLywxmg4wgAPfbmgb8vAuqNvcUDf7v3k5enbhz50L4889GTOA59+7iSfet/drAH7UWH79Ac/xtkTp/BeIU8+c5SPP/pVpNHIp/jOD3yE9TWd34kxnH/4Ub569GHMBbWKzWYJ//HdH2QWJ/m4162/X/n19xNKY3d96rM88JTDz+OEE9OL/P7HP5W7x3eN4Z7TD3H6iXO5sPnY409z9z1/5Naxekm949fvXLw/BOLpjLe/8wPEHv8J3PPI1/n82NFNYzizscmvX7if7MyM1MkLn/7UZ/jjR5/mcQunrOVfHT3Bb73v7lJ99ve8++55/PKRT5cksl/9nd/nwvoGZhjDUsSDDz/KV750n+ZQ6Da4hOV3Pvh7JFkCN+2HfXBv4xn+5E1TuE1DT89fXOMd//mDpX1314fu5f4Hn8j79NixU/zmR/6AEcLQwHB5wH8dfp1HkiEjEYYCX3rsaT7wsT8GclaYd/3GnaxdWMsf/diXHmTp3i/k/F8Sz/itX3svyWyW86f33fsFvQ7dixvn1/id/3wXuaLfCh/89OeUvp3dhOs6PHP6DO/82CfZGE9gqQkbKe/8+Cd55uTpHEc+8OjT3PV7f5iPnwDv/o07ueTaJ8ClLz3I8N4vFEb7eMa9bn/g1vpnPvUFvuT2hwAXLqzNJe79k4/cS/zwkzktHT93kpX33V0yGnz4vXfz/NGTqsABHnj8Ge76QxfC66zG7/iDezi/vpG7Bn3+gUe454v3OQ1jmzhNlb+aFS7l9/zxl/iTL389V26sXVrngx/8CADN6ZSNfpPPfebznDh3kuU4JQFOnzzN3Xd/AihCzd5Zt/5q+L/t0g/PPv3RH3+ZP73/4dxzYuP5s/zOsa/QakSYTpv+OnzuM5/n6aeezbf0sWOneM9vfzRfjwDv/J2P8UyO/+CBZ57jrpFbs46hesfv/j7nNza07NvFmM8/9KiOH0AmxLOEtwfzC5fnX6CGP3jmBP/1vR8t4tNT4WMf/QSnTp5m9egmabPNs4ctXxgd4/kj+/IQjw+898NcvKj4T0T4/Bfq+fuPfvSjucz54z/xNq4FmE9/+tMvmtLgx37sx3jLW97CD/3QDwGQZRlvectb+Af/4B/w1//6Xy9de/bsWX7kR36EX/7lX+abv/mb8+u/93u/l1/8xV/kW77lW/JrR6MRf/Nv/k3W19dZWVkpPUcycVljg9i2aaZZOf/Lw/Cm60hee4Bxu8G42yCeWaZxSnx0jfi+c8x+4KWkzQafbDa4p9vkp7oNLvYa/O+dJv8izvi2acpgltF3x1KcsfKuh2m86XqGr9nPhgjj9zzC6K/dxPj6FWbtBr/SavCmbpO/1G3Q7TUZtBssRbAcwYqBTmSwIuquJ+qyN7KqIZwCfwf4eeAOVIE1sJblacogyViNM1q+n7MM3v51eNvtpNcPWG8Yhqll/M5HGP+tW5jsG3Cp1eDn2w1+pdek123S6zVZakcMjCKW8TRlNEmZTjLWpim/NM34JZsxuPtZsjfs41evX+Gnfucxmt97K709AwadBv1ug6Vek+Vug85ANctXAmNbjMHQwlBUoPot1EL7j1GN6ZLxh7BioB+ZyyarkThTDeDUZW51VpjRl8+yeXrM6PtvYdyKGDcj4jjjM4nltj8+wZGbBnRetpd+u0G/26Tfa7DSbbDUbxF1d97Preb5fwB+gWCeja6RpQhWI2hdJoZeJipQMnYWpolzDb37KKx24NuvV8R691FY7sBfvR46DSbdBpvdJqNOxLDdZLPdZAz8LvAI8L9Wxz2ClUjb5y0Q4gRkkoxRKgxTdTndBEYmYtKK+L8bETHwD1FFzKD6vMvNYWY1Rs7vae8Ce3EK//Exveh/fCncsKTuq52Gnnt6njUjNkUtbCO3vkbA54H3Ar/u+tlBLRGzOON/nCb8yiTjxllGN8l07//peZae2WD1B2+j2Y70Hd2G+vyGMbSnhvDOp+DnXwet4Lq8TS3Gxrno+vUg+u7fQK2Rfy9o08QdPwX8OPCtqCfOktGw6ZUIlh0+2Q6Ildo9weNnNMHRq3uMfvDlbLQbjDoNJp2IYVNx5gdGKauzjFdnGSe/ssabEFrfvM/tkwb9XlP3Sa9J07uHv4jg1042zdicZmxOUkZxxmQYM7rrSdIffwU/32zys+0mh/oNegZasWUUp8RJBu9/lM/9wO38leUO3bbigUGvwaCr/ezG2fy6PDuC/+tJ+PnXgongD0+qBfdv3OzWZiNYD01Mb3fGaeE+2Yjh1x6Ff36HvjdDccFKB/676wtPEb9O+y1n4krLtHSaaizgZ06Q/d07GHYbDJsRk1nGOLVM3vsI0795C1/YM+BPmg3+aa9Bq6e0ptdrMmhFSv+MC8OpWf/vB54HfhZVUi2bAh8qTjSKc3yd69Ad/rHT8P5CyclbbyS+43qG3QajdoO422DabhJjkDSjOU1pxxntWUZnmjGIU5aeuEjn3uPI33sto26D9XaDcWQYTzNGScbs/ks8OUwY/6WDfEOrQa/b0DXRbbLUa7DSb5X2oYioddQWtM3Tt38DvBJ4C1qxwuPE5QiWG4begv1sRZUPG55eBrTk76O445snCSemGb88TfkPs4xmnDHILL17jzNY6mC+5SCjdoOJ2+PJLON/H2e8Lcu4ZX1M/0PP0v87r2LQbDDoNVntNmj5NdJvzZUny+dklJbW3ySxbNz1FKPX7mf0mr1MmhFT4DNxRvvpNb75mU06f/1mBu2IflvftdxrsOTw5Fb0XaYhbU+LkIh7T+r5zTdBO2KcWjYfuMDoqUtMfuh2xs2IaSvi37eafLbbYNZrMO22+O7I8P9yc1BHe8U6HnNS4E1x62L9vY8w/vYbGd+yyqTVYNpp8I5Gg2+ywl9JM7pxyiATeh96huXbVlh+wwG67YaG0IS4oFPwFiICk5R0nDKcZowmKXGckSaW9HeegnMx0XceofmKvbRbDfr9JgPHa6bdJhutiKEt9tcQeAj4/wDvdvtrgNKQfqSOeX4tTYCfA74H+GuZZTBNWZql9GeWpUnKyjSjM03h3z0E//CVsK+r4WGzTEvL/qcnFP81q31sQLfJMDL5nhgFe+IX0PJ734Wiqb8P/M/AN1HQvJCHbhoW7oW/h9LMN6Deg28F3ofmfOijzxikGStxylJsaXo6OEnh2TX4vefgH79O+9VtBAk8A5r5f3wdfupVymcFOHTSbrA5yxhOM8bjlHGcMZklyAce566/9XJ+uN/CxgnRB59g+LdfwZ5uk367Sb+vdHS512Rl0KS5i8nRsmnGcJywMc0YTzLl+WcZyZOXePbYiOi/O8IN969z/zjlDd96gG6roXx+T3ng5V6D5UGLxsxq//2eG6c67185C4+twY+/XMOLuk1XpjeD+87B1y/A//BK91tIb5rQbV4+8eQWYCcZo4nrW5wxmmaMZxlxkjH8yJOcesMhXtYypPed59987238q06DZkfxtqfpy70Wy01D4zL89sbGBqurq3z0ox9lMBhsee1O4EWztAN8//d/P3fddRfPPvsscRzzrne9i2azyV/+y3957tpDhw7xbd/2bbzvfe/j4sWLzGYz/st/+S8sLy9zxx13bP+lXnio1mlPLJzNmN20rMS3YZgadYmMMcS9BrN0Rgp8ysJnBP4pWuf0DagV+QbCeovubEDWM2RJGS6Nd2tr0hXXnqmFnlOb5V41wZnK/3WxwKGroPGxXlaKWu0icHKoqv+DPTJXV9kC0gEbZ+rFhLopt40rY0bhxtwwzkXefbdk4IDACQHJUmhFbBqDXe5hLsbqHu/i3HwyuqtxcamOiz/PlXzLrGPWUuwk1bI+k1RLPCx02QsPvcYCNrZkA1+jXeN1bWQ0LGDQxVykSESH0BCfrO/KdWGL5n9hkpSiyQsh73d4o/9unBbZqw1woAdnRvn+8NZHsRR1WFGBe5V691U1lAQCe47AM6JYEbSJUxpxRiNOieKUvUnGWjD2Uj0u28ngc+j+O5ypm8INHTjlvEDC2GyfWK06PO7zhMKbyw+RzrmwLBrr6m8SUO5n1YXDVGvglTIoOrdoX0s3nEwpWhNOlb9kijLwJrVEsY6liTNMktGzUlon1bWybfDt8OFDVuCps0VG4kcmyPMXiszGJsprOo+NYWCUYZp2QOJErdaBK529slZdG/Bl/4TcNRAR7KUJLDWIGxGCoe9CAHwtaU04CWkLmCbFXpGCFthw3Yau6KPE+Z+6NdJvaDb5vCEEE7iLrpCLXOMvTJRDb0aqRAClVZOsfpqqizL8bmqh1SQ1hgRX7s3FtSf9JjJJ+bKFv4jSlhbQQmiJ5O7xvkZ7XQ6MZYr65WETPHnx7oy14R33+whud+39p0ms5NVeYqulW78M/BuBr2W+WoyQiDADkplAu+nCpcj3d56tehm6o6nmwZAirwtCqbydh63Cv5ZEmKaWaJJgpolmbZ4myNTRtAWxnkI9HgU4B+wXpe8HcQUtpBhDmaRINwpi2T0/Y9iIdG9Hgy5kYMZqXZ+Laa9br2EjoLT+zGwGPe9VbNAM8oZze5pwaRPE5vyMVwL7LPJbQuiDHLbBV0Uw6kGXAsmhNtmFmFSsq9GuvJmfv0iE76NAeU1qmOgaXsLzA9G6xfQbhNUD2pFhmD9EeTJWWthJVgxVNSdG5X1itcTwRLRqUSwwFmFMyngfTNaEWDRMZWqFqWhJO7IyFg5pXtXfNeRLqomAN6AIWfB8Ag73nR3rIK20ikUNsOSC/iaVkCD/jID+Vbu+SbmaS5utY9Hr9oCH0D0+t7jXjIkE85k3ZpRpLpLQtTDMFG1wtJH6hJ5+m/jQLIBhrPTEGbeiVoM0gmQSJrB2915FyOkiyF3AbUHHEOCi5cxgoGt+GVaSuFTm1A+PhP2rrltBx8zPPRQCBsCBNpyPy/QvXBdX0VcfKiVOLipi2gWeW8dimNy8CoMmjThWuuXpSDDedWvohYQrEtovXbrEc889d9Uv/5Ef+RG++7u/m3/2z/4Z3//938/Xv/51fvmXf5ler8eZM2d485vfzIMPFu5fP//zP8+RI0f4O3/n7/C3//bf5sknn+Ttb397rRbDmAVdKyEGKVbayQ3SPkxW1Lo1jQwz1IMxBmaDNukM/jATvizCPzRwsxGa6KQeElh3sYwQCDhWkBhY6WqcEmD3dZH1Ij5lKj4+xyerKWfihgJR1gl0fQKhXZzbh393KZ59DLcMIIqwDZNnCLWdSOM7gNNWibgHL7jn7mDBYUSVFqcAay2zplFh4eAy5pz2xQuwOUG/imQS4d4OGbg+LobXigou0xRmKdZp8mUcaPtiW8/k1BB+EcgSi217oR1NQmc0LKKz3MDEEzc2GpPZEKGpWOuKmexqPLs/tynH7gO5u9C23hQSndJDUugGSUEOteHCKEecWvrGI/AiGYePaa/KpNUEiqUEUHGGmWRE0wyJrRM0LSa2HIoz4lmRFG5Obrkc1BEIRK0eKwZuXIGTQTk7CIR3S6kUWfDOEWUGJp8XEQaCustKMd8yi5F+sxLr6v4JOZ6wpFa1w4F7fN15llqWpinRJCWaJkRxipkmNKYZe6YJaZJRioGrnLcNpbGklIlfAL5+GutcAqVBLsSMjOKIFeBSHzKrjL313RSCDO2Xb1XoFndNIGcKJM8FIoCMLKz0maCxy52aaTRA2mzO1VD2Avwc1+n/H6ca1+kf4hMWhQ/IH7SLffVBzv75Pi740gz2tfFx2taAdKOiTXOCQ0A/fb/8McmQTovEkAvtqYEUg223ORtbNhD+QiQ0rEs+Jyqot93RMGZOQZ3z+xRJK4HafVsq/+iPTODVIYUD+4bDOYOWAokV7gP+OfCHAv8C+HqqFWGsqGUviy3WVdwQKBLR+ff3I1ZHE9oSJJ0TitJvC+YziWdlPZ8Ie2eWZJpiZhnGKTyZZthphp1kEKe1NcvneF4/NWgf9qLK5g6wYuGCx/GAxJkK7W7QBSAyTJ2if+A0VmY1wlya5slY5+JQ66AGTxsBM86g3Qhoh6ERwcU9fV1q6xO8wF4yRmwR116KL88Pd/04AVcXPjWQRIbs0IA0g2wjJhXln54R4S0WvssKv2KFN5qiskHT1DHR9fvCZKKaAVfqype2WzIwdL32yeek3VZeRcqPrR1XKexOqajyKXaK20tZxhdv3sOpacwUNBcTWtlIh1BKdMLDmHLiVX+uO1Zw/KfDK0VZPvfcs1O4vqOKQEcr4jTJhVI264RZyfvlHx0OwRSnSHfK5GoFIVnwOfzOP3NMQd+9vbqa8DfPLxA+QIDNVOvNe8gZ9sp5FV1vlbUorpOSP1dgI2Ha6dIxxe2jbpN0khb3eWEa2a38bNo1hyzKZ9F2bow4tU/xRdSGweaMqV8/Oe9SzZlAmXYJyof32sV4hczj/r4KXElWltGcIueqCGFaCOuSWsg0th1r4cELPPjag/Qigxl0MQl0E6vGQDdPanTYHr9yLWFH/nZf//rX+dVf/VWeffZZAO69915+6Zd+ibW1NX7yJ3+SV7/61Tt6uTGGt73tbbztbfO+/4cPH+aee+4pfTcYDPi5n/s5fu7nfu6yzz50w+vrf8iqC8EtzuMx05uXmUYRcaQZUmMMsdFazKlLyvL4OOF/Xm1wCLUGWEdwBiJshPjGE79Roucl1TKKAIOuK3Wh756K0PGE3FqMQx2m0vQ5Tad73zKh0K6Nyjdd2N+jG/CyVTBo3XHRTOi20VRBH+GkwHWuT75Oe+3h2nvECEcFvi2xDFsNWsbQ3NeE54dE7FMGxSpB9x4A26qtWgNVxs2fe8DECtEs082eqUY+TybltZ2pY+JoIp0F9XgDQmuBLEmx/W6QPV6R/EUDK32ILk3zZH2RlXxscsS8w24u6iOoESwkJgK8+zfv4p/+07de/sFVPBNa2BIntIMurEMD5YhTizSjQoDxQrxoxzaB64N2Vg9w68+7Ps1UeDeJi2UHTGSImpao0WDVChNx97Y0Pjrks8RsYzhLBML9M8o0odaRDnz2QsHh+70Bc8noQiZhTKGJ92DcM7qirnYlhmB9Bof6hdXNE6aqBj4sqeVqspa4NCvQMHMMC0mGmWXsmVmizObZqNXqa1lqRN6AAq0iLtWP4bYhHEs/Tq+/Dh4u4ufk9de5S01uZccYpkAvMkQWbBOyYRK0I0jS5nHTZdr1f/7HD/Bz//QndtD4HYLHl36x+dMli6z2VXFjXJhN0FaPQtJWy8WoS2m8/VkkuC200nTaxUOWGmp9r9NWbXOcdtLXKmMlFxOyA1raTiK335abNJ5PaeMY2rA94bPCDgPElnS5qVZpDCkGL7PY1TYnZvCNqGDQNFptQy3typS0qluFMl5ZYr7k2xyuqFrZvcdIGrA9P3I99paDuR7DujZ+3P3sM75/Fi1Hl/nrYsH2m0R+SPx+9uelNoNJyiU3Lr4+u5/bummMgHf+5l38D//4rUXfZ5bVWcbpWYZxdA2UbkvTFEp5QDrzrqMh7vDHJffdim+HCAeAcwK3odZRsSlZRzkRr5AQXB4BY+i6fkZLfdiwuUI+V0Z4oboKUjn78QEYgemq1dIANKBrDBMTwd4luDBD9kmBq73Avh3vvTpGe6JCuxi3RhuQZQZ7sE16YYpd7fKsqOfF3xShK0LPrU+/RltQz0eEeyxQEhgB0wlKXRn1Ak6sjms+NN0Gci7Wz3XKsgqo0VDyZZ4Cj6eW546s8PiRFZ69OOaNVngtkGaaPDVxBoaqzg2Uz1gOnj9XxUGK/5eADdXCuqGWXHgTAc5M4Trnq+Zo3q9+6KP87N/6fs2GOPQZzSjhpKrMl7fPCuPMsicTGu6ivZEhbhikUc83QHkq/DOdupwuxZ5cppyJ3rq1lvcnXEvDTJNL+76FSCocsH6QZDQgDJ4WFnwVSCxs7u0qvXF0ddRuE02UR/eopEqvdgXc+IsUtDl/x/qIs4M9dIyBboPV2SzHJUBhhQ4UCvkAhudxot6c4bbxC6zXVER4fgI3Nsv3OQUNVxAJIC40E1fiDat5F8QK8vw6ZClfunmFHzYG04qQJuwbTRn3l9iHm6eshMJfNNi2pf2ZZ57hZ37mZ3j22WdLmoaXvOQl3H///Xz605++Jg28Ujh74oG575TA2bLm3S3M7Pgms5uXicEJ7HrWchmGD4th3I34iXjmBHahg8sIKsI+0ZIBQO4OKSLI5gzbw5WCUWumLDdhOM0RUCzOLUecxhkp7XsoCEOd5aFPkT1ehWI9Wy+85/XZJ/CSgVpQIlN4fTSbZM4D8iLCESHPBhtp0/OkK3lpM7fHXmLghDM/bLYaqv1caWAuDUsW9pKl/SpWfBUfAvQzSxqn6iY8yxAnJIqLOxJvZZ9ZZ/VNi6yfeGQZElkdvwywscV2GnkSOgFOYNiHoT1oYiaTksDesIHF4Qr7OaeccRBmyfeP/om//8Ol/7eEKsXy50lWdo9fcojTZ+wFpwQBr4QRdM3tqbQXCtoFFNYuL7wn6s7NE2eIfv8hePoMZmYxScbeWUbi3OWZZYWyIDi27h9lSu+PsVWieWQJzrs1EGpxXftyolkZnrAmbFlhJqyI5FnDc+tlHCPLzkoVMtHhhPrzCs7SLnMdDYlDTputECUZMrP0Zlatb1P1LjFTXf/LcUY6c+Oc2Vo+eVtQ57lw6wH4i6v6748eQW496Prp2ug25ijy1gtDsxVhZgl56cCgb9tN/vy//MMf2Wnrtw3Vcm+hNl2GY2RPgxhyQcU0TK5vAf3O9luQVZgWCUIA6sZyFDB8oGt0I29Ucb7iCdyiryGOsmqtma7HbB7oMTKqs9swsL7cYEjGEF3nJS+lsD3Vz9OMWU8t7alRC2BiDBYhabcZrcO3OHrihaCmUSG+bQq+LPRmCI9liozq4Wvzw9O8Kq23wOMb8Pq9etON+0iMen2oN72uz++qMMLfGmxPQEsG9XxJNFN875FDr4MR6E1muWCc48cFFiMD/L1/oPg8AsgsjSRj3ywjnTlPpVmKnVlklmFdqTpJrCqMkrL0GlrYQ4vlJTQEzouIBucpGIyjTVOkFRV9drRvZFzZw8iFiKz0MRdmRZs9HiR4aXWWcmRGMaiZE/z76jbrrdAtF17B3hU4m+T35u7xAohlofWrSjhCAWCWQE9pexrpezJjSA4tk53TPfGVDP6CFdoiukatpYXkJQl9CMfcO+feB9FmjOlo30zkwyEMbUy5XKQBGTSQ8Wz+mV5BU+qvhFsZX07zvllGb5ZwsQt7xjFftJInnvNeZZ5kVensiHJJ0aBpcwq0ZTTW3Igv8+b4BZxAemYIhzslF7x/8pbv08096BRlLqu4xW3XsH2kyr81pxnLE+X5ojhjZZKSTjOiOK2leYvOYWk7gs9eaM9b5OlBVVk5mqmrd0lYr9B4KIT2Ohov5AKyFeCSMO526QXPjFc6yKzYNrqNHC29ipDTeZDcul7aa6mFqeXCak89MPpt+nGmyiYJaGbJsEO9tX0401CwKuPoy74dasHFuHx/iMyuBFJbWNozcSXfrOKO+y/CHYdZb0QMIufd1e2wf5xqmU9PMsWNz24qSa4Ati20v/vd72Y2m7G6ulr6/lu/9VsBuP/++3e1YVcLUreSRSip1AWntbWkp8ZkR7pkBo3Da2hs0GMW/t8Cjwh02m2WJxlNFKF5F3FQrfW6n1gbKFpHKbLqSqc4xpYlgx1PQdSVySAM8ILyvIu8h3Bth7+H5W+8NUEyAqImGs8e4SyARsu94Y5eE3FywwXgeucp7V2+DS4sR6QQ3l3fj0DOLAxbTQbGwL4+ZqjI1VvYc0t7lq/+HUOda7xJLauxcx1Msrx8j7jET/4c1uL1Soy5zVf5PzOQzVJsN8IaR+iM4QSGGwyw0iWaQJRmrtSbxvtHu+DKU8cL+GRjIeFpd9rb0/yVqHJAMUAXT7upb40MmAiua8M5p1jybm7WZ4XV29YoYr09Pa4S9DlLV2IxT57F/PZxuD/GvP8YHD2LmVlWEkuSqNJFHIMqmc237WWhJLAHIzLK1CVxua2DeGqzIEqht42VOau2UMT3lfrlfmyLloAmiHWSdUH6LWWH/U1zVnaUQFXyW+RnKbfBn01iMYmQJJZe7sHgQw10HyzPNAmRyQpGvvqsbUN4gx/flQHc1INcYPeuwSZnVCY4IRfodSOitHCPzy0X3hNmG43qdNqXv+hKwdMBCgYqZ0LWJtA32h83nwYTRDs40afdJIopmDHvfZFbHSj3U1D3+H5QKqia42DOmr0LzIJ/bsBUCRAjjMYThgdbDI2WOR0Dk16DUWYZuv9nvj35uZ45y+KUtNNUQQgVhjJUEXqy2eRwmrLPCecN0TAzdZMX2qZQUle3i/9uQKGoDuO28yaIzOMeL8g/vgGv3aMXO084b0EXd8lrgG9Dad7ft3B7FDCnoDiq7bznXLvEaXL8ebPXoLcZlxqXC+w1CM2g6zyn8y7mspcKaV6uziJPnYG7H4YnzyieTKyumVmm7p7BOISH/+UiqivMx1fUVf6CW/MWkBikHeFVDeIuHhpDNzC7mr1NzPrYPWc+pr2Wwa2hRcaFCJmOc493a6BtIDHAYZAzm8V+ygLh4nLW9jqFGWi20V5DQyKME9gNZNd1yC5ukgo8LMI3OT6oaTXnQpNCYK9NRlX7PoFxhllxXpTKYIHRMpKbTtOd50jogXhFZ/iscPxK/zs3aT9/wDfFM4bdNmdW22ANb9JalHlYks0tqVIaFihql1flqnxtBv8vo/HzpZBQwZWKtcjJGRxy0eINA1FEp+Vimpc7sBHkzAjGbs7GkFnMLGU6y+jFKcuxV1an7Jtm2Dgl8iEknraE99ecvdAelk9tU3jx6IXFHMyh4Y1YPaRKgifzdH+prVb58Jk5uff03n0Rx2wsl7n/uNPGrFfu9Wi8Vjl2hRDQwbzfInBxjO1GTNoN2sZAt0UkkM5SNzauaQTtquMdRCBOcMlhCkE9TFi5Pyj7luMSCl5th1CysjthXZwcYo9vQjwlvm2ZWWS0pKsxsNLhyEyYSuEWjxfY7e4O+U5h20L7gw8+iDGGt7/97aXvb775ZgDOnTu3uy27FlCtze4/X4rJUkN6eIA1WgItw/C4wP+B4ZRDqpOlNu0YekY3tgq0mmBtrwhDt1p1vTvENcyQQQfyhDVGXeU3lUhNHHfedW1ZhCT95zpLuxfa83j2TBBrC0u7UIpn92Xe8j3RbSBTjT28KHBQinf5OHaDWkO8wB4Jec32l6SKjC41IvYYMM0Is9zAnBvP12+9SiQT9tukGY1ZytLMqtDiLOkyy3RzJhny1Fnkgw/CY2cCgb1C6OeIoORMTpam2I5jDF0831HgpghMq0HUgmgj1vFABXbjnnElPHbIrFbPXRzTHDQ7PO8YPIa1qFtSuNgOLcE5La5twRFRnUtP5IeUmT8o52IILZilub//tO6dBjQs8OgFSDJWEksrtowTS5Q4gTROFcluq581zJKgMbk+8/aRAZyMy0TAfZZUSrf75eET1YT9xI3FEsI4ELIltZCipR3zyaswdiX3iVatBt5rKkqMi+i+RoQ0syylFuPqT5tnzsInn0CeO0szEawjTMYWORy2N4aV4VxkIV5uFU01xdm3d+IsSBjod1o0Z2W6LSK5oPSiQ6DAKdXjFUE2EljtsJG7BOst+RQ6ixmdFq3A9BvuTfHzWB3LURFTi3M5BDR0qvqg3RqocJ25Z86sMDbCZM0Sr7aYYhi5Y9xrMI6ViR+LJrtKw3bNddY9c5ox60cqELl7/HF0Ca5PtXRUU1QAaqDnNkKjIuiVlLQUggIUnkd+r+bbOWU+nl0Enl9X4n3DErTBjhKs9WtRBZ/MnaeoV9lBKBhYfMx3qi4BwXCG+NNiWOt2aU28CFWMTy7YVqCkoBDBiIYRrVjLJBXILPbYOczvHsN8bYK8+3nkiTNqafdHkBOkaqX0x0W03FvY5IMinMubKNgZiEvSpvcp/7LpYrBzddVyhNmoofN+MqrCdLBGQuRmxgk0HP0rdH80I8PMGHWn3ZiWvSeEgpYvwmx1RNK/dwzSbZE4K3vi8vxke5vY9SGPW2FZhFtF10FL1J28KYWlfSGE73PjYUYppq3hMCGV7xvDzE183txOA/EJ2qo4oIoLAkE9HwkRbowtrzs9Im20+KZjG7xkPCvWg1dMesG90uwwEV1I00vyqPt+Gc3K7r0pc/d4QNa1RCEH+2WtWyjMjpLa8SJUoouo4JVYJrGlO7V0XQLWyFV1kKmjhYkLk/RtqI5NpZ+ez/UwoBKG6P7kTQwJ2WSmnol+gDyENN6gmc8ns3maagt6qO8TWJsw6qkiwT8naTeIZi5/kVP8WdcGu2jtXwkEdDBXjgEMM7KVPi3jFNYNw6wFdhw7Fi/IZSAL6J1v5jDT8fBj48EvsH1dTYrqn+HPTkm8Y0t3Wub783JvVpCvXYBXHmHUaCBRpIp5gF6X5TWn1JGAhkOhSHuRYNtCu6+nfuutt5a+n7mFNB6P5+55MWFl783zX6r/WxnhI8ixIXKkpfG7Da1dbo3hcxFYp00dRfDcUovuJaEtSveNJbeKLwusOaxQxHSADDNkpVNGGitdtYTPMiaicbF5wjZ/Nost7SHiBBUohpBjGBNuOI+lj27ALctgwEYGa1SLbgGJmkisMW19VBDLk8gRuMcDDdF++0zyBrgxSUmb6l7XBzCGaP8S5qK6vEW2kohuuz6xi/ovgknVFdjMLL3YksWKqMW5YEtq4UsnkPefgEcyeO9xePJMsfmrhD6UjvJLBJtm2GaUeyUAPG/gsEuSFPXaRJtJnjm+UUU0V9PPyrlHOdkKaC3S8P/FUGmTPyfu3HUsiJ/0Ax04PSwpoPLDKYPW0bWyiKiX3heMi3ndYWXwMh3T6Lo9mMzSSjOWZhmbs4IBZWaRmcuSvFXvpNKvnNoCmwkMnEB0wxKcHFElCLmQFgi4/hxa2nHnhlsnffFZlx3zM56p8NpraOLJMJ69xJW7py0HlnaY47JLTIbo2icT0kwtP2SCOXae6IPHaf7piPZHj3Hk+Fls5sIYnGn7inRIVWLrP3sLMWhsLRSVKFCrZWLUggRonCpAkhVWdgmmaIF/n2Z5VSXcxz72eV0DdR4yVwvBWhDHgADYkauJPeiQGViOjArpRkUWQ5ED2jQadDJVxOZMXmhBqZqNwLlWNor1YIxyasPAD7JqYduNzgY0UKyQ4IRsDPGeLhPjhHRg0m8TG4gzy0zU+yzxnczXac7NaJOBNEmZ9Zou+ZzeY4FHBYZtWNpMcq8tFdiNCu0CYWbtRbjQh6v4Wu3h8FgrkGUFng+VtI8P4ZV7dayXDTJJizj1kDSJcDRQTobvENCwq15UTElgKcUJYWvLPZqj4iaTe0xQb2k38Ief/EKOOyOrtLxvVbGCFXjiIiYBceha/vS0CwVwR563hZxmBegEUPf4vRR5aSIRrjOOfwGX3wZsuzkn8IwMamkzKmCbvR3MJSewhf3LY9ori7ZCZ/NrpglmEGjEnGDQ8AJtvw1dg5wblRVrJV5uAZTWKKXrs34zVyplxpAZQ7pvgM3gsY0p34IaZlqi9L0p4vIvLHCN9++oEVjMpoWVVskoixP+xwFNEIwKNUM3PHU4oIKTFY0WFlgLmj+m1WIFaPfbsDHDUtDyHM9JmT4I83lcqrxnCMtAHOQZ8BZ3RJCzYzgUOYbR5ILtPV+6z2nfmkXFDD+X4vvkngFOAS2QWKaJZU+cai6eWQbTlH1JhvW8X6ZVVWxWCO3hkIVK+TGFt2DIZ40q9/hlaqvzumZh0NK7w4kNFRMG5T825sMdSi7lfg3HU072m/QDBdZ0CZqzWX6zn2dPOnezsojkcxC85wLMVgeqSHAdnbbbhWIp6Jd440LQT/9swGX+axU8kF8XfnHtb8HauEwDw8nbQVfFCqSFl604aztWkNObsD7BvnKZUWTo5S7EBgZNViazXK7yKyn3Jtl+E3Ydti20e7d4n4TOw8c/rilb9u3bt4vNunrIsnK2Yd0ctqDMIoWm68QEuWHVETjHhEbwF92OSYGBhdukRTuO6eCEVyRPSLUPXPmDwNIOyCRGBq08kQsGpBlBD+zmlJlA321cQ0HYq8jSfw7xgD/78jd4hOn6Zh1xkiCeHQNZQ91ZvbXdthqIZFwADuho6R4SdV00FEnpGiIlgd0I3JBa4mbECE0IYkBj3QK3uXJm2SuPCzEiMNOs45GL6V1KMpqzTDNmu5IOPH0J+cz5cuKtr50uEIF2c/5zwHhmBk041C6E9jFwAcMNxmCMIVrpEG3Ywj3+CpHLXD8peBd/dKAU+ybAYGlQIkxbQh3Bn7p4sjym3cVGHGrD+UkhYLm9Yh0W95roavZ4CJBKyJgFCNjcsl9fc2uEeXUf8+WzcHoTMsu+NGOaK180dtuHO8hsGyX78v+Df+KZEk1j4MYOnKx3j/fxftU3VAm7cc83ogq8jGLPM0yQFcd41cWzV4N0u02NaS9xF+JOknfN/y9W90AsQkfcfnjivI55B2QTbn5inTQQyswVxLXnXhIwz4COZ9BrzCW18/9P3ErooWthbyMijYA4KeHGUICfe7+LXWSsx0qro59dforQDfiqIbTs5MK7wKUYVpoYAxsYlxwtSEbnDgNES9BKC6G9NJX+fwneJQLTWaFM8ptmJXJZhqnhMneBVago0TI0W3p6cUK6BEmzwQx4NIN3WeHxRsSsAWmswm0imsQqXB45uP8TEWaSkvWcMIR6rlkMnxfDLZ0IE8+KWHYKS3ujpouejwrxTITTb1BGMeL6mAuyoTQuFh6/CK9wu7nbxk4yxfPiEzxp3O+mwHngJaJ03Ugh5AioAqnjctS4dS8B0p4Bm902TRevW9oqAqZGUWWA5eVBic4jmuR2hHZQXrpP3+9Rxh2HVFD3LvKJVbwphcCS6ybd/xcpYtr9sc99nwmKZw1FTLspYvYvRbDXC+wGjFPemXWlCMbzVVBPA6v0wPd9oq7qeEueG8qm0dxCGIMcXIYLWY7XcgFjS0OA1NMhR/eSXlM9QJyHZRoZrIFspUd2KeYO1POj4XihBkLLahK6qM413vfb9zVohhknmF7bjblxfTQqJLqJ8Mk8NbyK3MtsfkyLh4eCeohfSWHkQm6SPT1kXNDyXOfmeWDfdHf2QjssFtz9sQRsOh62KAvr9uOZBDm4VGxghztXBi4R2VIDhr5AaTA/UsyvgONj9Z9ZZln2CqrnzyN/+BR7nz9L7DKC5x5TgXBVnRJ/rpa2MxTGkdKY2GL/52vJZ/xbDkKcqgmW/f+DhuL7gA/y2ETCfqcZxMLaUlcNg+72tAXtTb0/XM6g+Go3pMjcQyI3YvjOgoxHTPc0NHO52//TXpto5glcEYqb3xbSO39O3QrrV/xUcqRnYH8XzrraVn5fB/LajvrqYtk9LbD+LCD3XUJecR2m3WBiDL0wyewABpO4pID31nY9dmHArxC2LbR/wzd8AwD/6l/9q/y7n/mZn+E3fuM3MMbkv/9ZgdHG6fIX3soeInk/IafWsUe6WubGZV6TyPCyhlqL3gj8wwgOrUaYjZlmDMW5g6EEfUkkt7T7RSWAbMTISlOtbkafCyC9DoxSYtGMpHirvZDX9KyShCrS9JM3wOUvcgtSMgoLmxUkiGfHGGxUuMdb0Ni1OGNN4Dr/fPH12CVPRtdwZ61JXgjyhzPLuNHkvGjtdgyY/YbozGYusJfc5rab8bXafyuatGyWESV6mFlGN8loJZZZokhb7r8E956Ev7w/nwcA3nhdaX4WYnIKJs5OjUtEp4zLCQx7jYbkGAzRoEe0lhTjUWVargC88sZn2/fzXpeI7hu+5XXbF9grFjGgENpLXLFR9/gJEGd5mEWuFc4ckaYc0+7bXpzdPFc9D6YZUWTgv38V0ffcDt9yBHPvMXhujaVMmCQZkvgkSyqs25nFxmX3zzkoWdmDPo9SP2Fw/bJy+pO0JLDnTKB7Rjh1Q4qkPCWGRWBJYOL8UAUdL3pF2awyBx6Mr4d+w2XPpZA68jVaKLfEvc9fkgh03cybG5WRNzGYZTj70hWmzkptpPwMfc0212U4Z+EtwyS3EPuwEXFnImVAxcWjYgzLBqbtBkzTQmDPp2deay0zTSDJxJ9TvvWOV7n/s90X3D0D5j5bzyxuWmSP5gAZAv1cQndJpLyC0kCzBd1JUiLofvnZ8J9wLNdFwyP8rjEGup0iy3DVwrYbfEIx8PrYTFRo3cjIlrukxvCkhXcYwxcM/AaGYQ+yaaLGXArcSA2uE1Evi1lsSdqN3CU+A04AJwy8tN+gMU00NlgkP7dwoY1BP6sCgj9Aqyh5S3vp8Ax+aGkXgVMjlUZeskcf0Gthx7ZAA9a7GWtFlAOi1TE2gzWau6RmKeLCGYpyb8Wej4Fze4HxNKenRihcyBcwfm960+u03w7vRyIqVIjynhxcIfXhWm9cQW7cX3aP9y7yLpdF7l4cnNdQS3veHjeWkQhroMnu2kW/vDJCjJZ8a0Um1+1iDOZAhLkUF5Z2jzdC/LEIckVgBu2CkTcuaUQnMkw8vty7BBfGuZCTC+zeqlur/aOe7o2TPAHdzPi8C441MYZzh1Z49XnnkYAmmG2Ky7sgmoyuDhYlegQwowR6zRxn+FCAfqTrBfe9AOLKocnk8qEyHueI+y3v5hQmTR3TSa+HrEmBk7wyvoKv/HlCuQ66qXwO2YVlEWbWCY85HnB4/uwIDvdLAjvG8K2ve40+bKlRqqQUjleJ9IjzHMsso0zoW4ETF2h9+DitB4Z84yePMzh+Dl8jHiuYTEp9Cs8eJhSl7Tz4EsLhu/NpDdeTV676muPhoFSta0vNIqY9mEfr+utphAxjaMJGu0Er0gcYDLbXpJXEuUDs136u1Ngt2hAownI6KAKXRoyXIlqB4SHpdzCTYOq80cPThzreYez4TR8KVueVsM+tvM0kH6cyXtleZ9XK7oR2p9CUxJV5OzOEk0PkdcuIMWw0IrqNIFNiN2JpPGUtwP2FUqLe0PBCwbaF9re+9a20223OnDmTx91+7WtfQ0Rot9v82I/92DVr5K6ASNk13iP7WYacs9gblpRIRcaVu3Flagz87YbhtghMF8wkBpFCSBElsHsERuKRTbHYZTpDlrXsUl6Kwhhkbwemiqw7AUoxIkS2jBg9VJkWDwO0bFyU2Zx45QlBYC6eXRyREtw+7YKQcUo0sZyhiGP31vXcPR7vQW3cWegnQtJocNIYVlFiZA70MOe1TI2xosnZIBDYd7bqtd69S7bl451d4rlWYummljjN4MsXkUdPIt9/M/ItN2D3ooXnf+wGuPVgsRaqry8Rd8doOmTqs8cLhqPADW5iIgPRSpNoc5qPUykRDwsYia36OMswk8QlWHH1t2Mdx7bInNC+iBht/SJ/Flej3f0fasO7DeiCnAvqtTsJREQYWsktqSVlkqla2t3LAgujuTTFNMG0GioAvWIv5q/cAF86yTc/scZGplYj63ITaLZk/d9noF/cp+Cd/rxJkfCr09CU93XWdsfkV8c0ppw9XvujVyyJMPavBWQEstQpmOXQbBQQJl8H2w4aWnoo70fQdqG6LEHU0mkQdVUTNJlPC9IVSL/7RpIj+4ndWpSgbzteI+HarVqI+66UnK/R7gRaMZoJueOQh0EZ341Wi2zqfBI8s5hJKbM1oATVz7FPIjkNhPU4+M1VGLhq8KWKbBDLB8jFBFnqI6i1b8UrJPGsVLEemk3oTBMcW0WpPKI/+3H1jEdKkXnYw4pLWBQwdiUB4Kr7WqaBKY40rqfIwR5W4LNoqdMmhlEDji03sW7uPBktobXgcybqbp9ODGm3QYrJhfbPi+EOA91ehyiGZmady7HLGl9jRYRCx1VWCCramssgb0UVt15gz9c/8MQQXrYEzQhfli2NbZGQNRiaZ0W4BVhFAhfJ4ixTi20XdczzVjtGO8Yw60SwMSl+FMmF8br5LPVPyEPvek66GoN6uSw1kbe8BJ4YaWx9TcI9ScruweE2uYDuSW2uLxcp7AcuCYp3OyZXyOV9M7CW7wPjrO0Gs9TDXEq166Fy3o97aYIo/+6/G1vMoFXaChhoRcbxYsDBCDmzkQtRUlnLlzUEhHRvkpAtowK7MS6Mw5C5kMin9jW4ZW0jF9h9aKCPa4+22ot1NAhgGGMG81mzu8bgfBL1cu9Z0AXGSfGI8Fnh+20gVIaXjoTNTosGsLkaQTxxjwgt7oEyPoApSvOqyrJaT09Hj8ahMsqPwcUhcrhd3FxyhTZKu/wGqygpi8coL+tYKi0GIwJPrhGlQBeiDbj9yXW8JkIFSPfZT0k4Pe5zTL17/JjKWOKeE9LBjdjX/Cv6BAXCCmu2D9rkRb+9YiPop86daA6VXocEyFNSGqDfohNLSQmcJ43cDbrgW+QFdyj4hszCKGW02i2V4sw6bRqjMiGoVSKEtG80U9eqqnADxdpoGJ2UC+N5Hs23azsQeiB5vOiSc8ufXkReeQC6bYgMk8hoehmnTDNLLbqThIlbx3lFLqFIMvsiwbaF9ptvvpm3v/3t3HjjjflGFxFuvPFG/u2//bd5Qro/K9BoVgpWZJXJ90jl5CYsgV1qqVBtNN7bGqM1CI1PtmUw3aYKVFCysiNqcRuJs9I4wUYQZE2wS+3C7clv6H4P1q2W1vBtsZIrAdyrS1D1rPXHEvru3PIRZFYVAXmuiGeXyJA5TwIlymBbQJJxFtjvlmMUHqbIlN9wwnoovJNB5GqP5oh+0Ma0wZwfF4xK4N2wk7h2EcmZ9NyKkIi6yacWsow9s5Ten5xGTl2C73spcnhZB+zgMvK667RUVQlzBxTOf5DifRbIEsfQtRs5Y/esgZdEELlxiJYgGk5yxUYUMmM7YLQlc+7AkxSmhcASTTXZSmOSsjpNyZJCUBHg0oW1oEtbvKyq9cypVuZq+FBZWAYOdpGzcUHgfeiFCJtWrTNztwXHnLXFWxzWZ7CvoeunEWkJrZv2wHfezB2PnObGr17KY49k5s/OVT6xLktyta+Vd3lCmFoyIF1qa41oY5AjK3C8nIzOb53QrdSDWlkrygk31i1x8ab+fcNUy9hAUbc8cKe2RjORj5z1drjcYJhlxFIwJeE6LDFi7lPsrnFv0Wy53aZWALh+Lz0Rl7KhwHV1GYK3hHAQqmtnw0Lfxbt6gSUQXCamyMJqgAGGuNsidkr2LH+UzCvOXTiE7nebC+3nT1/U7/zhcx54d7srhJzBDOfQj/TGGNmrmodNJ0CE1nUl8PpPs9NgkCa5Ug3I4w2tFM/OOzt1VhfvJug3Tb+t1ohapufqWIU6K6AVJ7hvTsgG6m32rY4rSAz0rOGQbanSzHXBu5GXFBDojxr3LioA9VpOYDeMga8Y+LYIolaDpoWms7Y3ReuzN2COIVskNIDiHx97WvLccArrOUv7U+fhlau5plF6TWSS5IoLi2jJN4FngZei9Gzi92BO10EmogpAwnJv2mIxOnbDpZYq5Lyw7i7M87vUTOelC2vKz7p7QHnYrsBYQMaplgO7eQU52EW+fF5xYcVFXlw94ny+gtddQhPR5Tl03Pd7RfPakAjSCuLZTfGMsYGlXChxDOSePtFa7GrRu4flniuV/VlnfRNgmmG6Qbk3/UDb8SqpMXBwgGw4Ohng7cJzsmZA6xQE6PtmK941PrC0G8MZMTy00mRpbUgkkiuW/Lkp87xZqS+hkBLsezOeYfqBl06k5w4QG1wp3qCZS5GWq/V7tg4nU+CrfG36fT5LGHcMh4CNLsilKYIT9JwQ7PeyJxUeNpn3LvOfq1V8eiI0MopEzBm5AcJuGvXaq9DC82vrevOys3NPc2SZn3PFjKdfDuekCEsCvHSPtmkKrMCjt6/6jRzg8vK0hP9DubSd72c1d5DPESXVNTRKYE9U3AwV4b0YT417R0szBv3MUbKnP1OBvT0mRtdFnpjY5xyaJsF4eLwk8/vsSsDLDFAYLwStoNKCzW7L597UyweGZhwmx6Nk2MHfn69bUf7WZxGtGjRCZc7eXpFBPuSjs+DzFpBb2fNcH+LyHVjk4hh5ahN546ri7IbhYiNi2bg8NQZMv0Nk0UTIruluxnJvqxfLRX7bQjvAa1/7Wn7rt36L97znPfzar/0a73nPe3j3u9/N61//+mvVviuG/YdfUf7C12f3i8B/PjbF3rRSdgWLQCLDJQMrfhKd9sUMCxfovKa6aPZ4Q1krrwkPyDNJl1zVlhtIPCERFfi9AiByV0RecA9caasylf9ugGb2JS/zJrklS6yF54t4dttQ93gLWG/5bwCTlPNoTHueoCZ4n09GF4nkAnueWT6DWa/BBnBJjNPCR5qk5kKi7vFVgX0n690JasZZ4Ezi6lM7d3gmCf+PTx3T5EB/41ZY7kLDjeSgVRAEKDB3SAChRNRzy0ucamm8ZuTCG+AYcKP7HBlDtNQiupDRQGiE8Td171gAkom6qU9UQDFeMJlZmKU03P8r04zGJKUxTfSazPLRuz6+3ddUGAp3nloV9sIF5any4SXkwqwgeJ4hFhhZy1KgXKquTePfFzJNvqHrqVpnfPxiq4FpaPLCr/61W9h78iLy+dOanyB17vG+HnFQsm8OgjkUEWbAaJqy2Tas9xpsRIbNCCY3DshObJZxQcDo5y7yrrljKkK72+s+e/zU9xVgNisEWv+1u3Em6jo+ckLghjFs9JpsxsJmBGNkLslXCWc4be/UjWVeJToGDvWVaV6f0BH1EvE4qmpp3/bWC+cvn0PRgF2viEQVEV4hKQaGhoK4uzlOey3lN3zXbOEmnzMwzkqaM+F+vh87zXt+9QPw6GndFz5Gza2DqyKeoUunLdY3IshwAgPFglOM+1gI7rm3lQG6TXqzzGWbDTyt3DiK+z4HHxLRjMpc8aCxMDETXCWjkDNARX+1+4JdmyL7lC7c0oDbjRLD7wGWlluaTRzyclGZ70+AfDIREgPJLCONNONx6oSRL2O4AThiDI3I0OpBc5jQEqENtGwRBlS3QKt8sKd7G8HlFiD12YGlsLRnAmsxnLNw+578mXYQkeUl3wIhBnhOhNtEhYN116gCfYrGlHdc2Bu4vWByV/IZEA/Uj91MVQnj898YP3aVjhrgrg98PMeduQLfwgAhRr3NaLX16m87jHzlnGZVz+PZi8MmmauXTb7XUhSf7XHvi8RZja3GtW/iKk80m6rgNAEDbgwXI+dF46zsGDB7W1opxvergvPL3jDBb8HZTBJoN4qxcM9uuRjzmTHQimC1gZwZ5XusxMstMgTU0PlsaknbbRLjMsbj49kN9wP79vYhhWgYO4FdaFq1sreqEm71XflRobXrgulrOEyJf3O402dhykMp2y1k4nFI8Kzg1XmlAC/khigjTTjThwPGcGnQRKbTAveK7ntxC75KG2aUY719W6tHhCqh9ogwzbyC0uGps2NkANJrloUy4D2f+CP97MIA8KURgzkq1//260gYetp3/V7SDiRteO67buTY9fuDsZFcWVqVtUOaqqU8yyi4S1loD3G5Hz9tc6bhTFXLevjZn9uOWozL4Q55/3z71iy208UCneB5/cgw7RiYzEpzJdWJuxrwayGwtAsCGwky6BMb9QoxudIT2uPYjUthdPBnCRvoz+MifLB+Qbk+H+rDpVmwMGUOZ2wJWYALU3f4dX/fReQ1q8hSFxoGaUSMGxqKk/OuDUPaMZpvwc+/3y+eR3iRYFtC+2w24zu+4zv4zu/8To4ePcoNN9zAHXfcwQ033HCt23fFcPbEA/nn0EW0dAjw/Cb2BnWBFOMt7UqszhvYlxMoML22ErhJWljbHBFuC7QtbPqM9AIynKmrfbdwoxNX01j6aKk50Rq1eE28yFwyuhBCpsUfAyDKhKSilBAR5PQIaZLHs0tksA2TI6AMoGlIUy2Rsd/jGpzrnNM0+/fmZd9EcsH9wgQ+v7+JRPB/A8+KWqE5sIy5EOexcyULu90esy0iBUMys0TONda4zWjWx3DPUUarPY59x42YThNpNnJPAnot7CQoqQXziKTEUygjm4oT2jtoPLsIU4HzxnBTw6il3UC00iVKhWhq5zPH2+rDF/RvlqkG1rv9TlKMS7plphkmSYnijO40w04zTGxV4zpN+Yn/6Yc0/jsQyrYF/uKphVaz+N44lBABB9vYc8McKau2Wfu2KbAneGEVBwP1SFaAtYRotesEfEPUMOoq34hgucvHvvsWGCXY330U+cSj8Mz5cn3NTOYZtAojM0Yt5JvjGRtLEaPIMHTC8vBIj+H5KTOfmNLNl2Yrd0yHe5YnsWGddt37+s6+aGiKv0cuxdjlIEGVI0JpZJiKtmnkLI8TA5PlNmMiRqLMyFgKgaikrA4Yq6l47xzXjg3B7O3A3j5cmNESIcktDuKS0XlGqLoQFoGUGVA/h3HZQpzjNeM/m9y1EvcbQNZqMXN6Et+3qiNGjh/CTNhPnIH3neCfZt8I7zsBT5wtEeErzY8x10+fcds1yFpB1i2ypwtGLYwDr2QKJPbcSb7TpJ3BLLBQ5H31A5Ufom7OJYuD20BLDf0tb16Aq66WUajMp0WZfQvY9QQ7aDoFjK7Pw6icJI02MpJivqzMoza3bhPQGu0RpA1DKsKTFt4L3G502Jrw/+Xuz4Ou286DPvD37H32md75m+8g6WoejC3hALZlE2MgYLqMk0BCG+jEnTRdXV38kUBVk6pON1XdVHWVnYqdVKXSkEB12l0U0FBAsLuDDXaCEeDg2EiWZEmWZA13/MZ3PPPe6+k/nmcN+7znu7pXupJJr1vn7vOe75y917PWs555oB4OGCw7aox3Nmnx6dELEblGV+L1gK0qz6rJON/ztKvCb5zD82OLSKn9fE5rutUmRxC4ULYJ8KrCuxSOFKKYnLaiDSYrjPve6BiCoa5kVpVYcbWLXD60x9t3CJ9/+k//CBC7UxT1TNQL3S5BT0Ymp9w7gA8eEv7Ra6SaPUUYaGgtTL7c9lO/3w1Inv8YIv8syhMFWqwNbJy1SIqkmYtw5Bb8aNSvjms4XyV5KB3q8kpWTq5piABXG2RaZd7h61m7/LWJIeN3D+G1Nns+tx0x2yOet63ntsvAZm9gynrxCgK/IsJvr4XqcMLg0ZIaZdDl2gt14u27hl5/ptMX6egVLYvF6Ma+vnNf6zTVSYPOC9mlpJMFLL0/E71RwtWadgDPVvDK/gTWWOqD2vdCwVi2ZbGnFaKL73s1bIIVS7xSRUIWe8KjDdyaJqNuVtyFP/Mj/0ZWdo9wI2af56jDE2GM6V5XQa0A7tXSol/3B8gzJ5aa5LBsF9h72jX2o49DyDnt29iUjETxBlcdHHmkQBnu3ROCyAXWpvQ6g2j0kPs+KMBqRXtk+sIoET7zus8a7zQT4fP1KKf1DY3iPOUIB9DHarKFiOW0RwCHwmSxzgiYZJYCt+Jaxdesy52K4rrFNSotWTeG8GCe59WjK2/AeN0z7DtNbAN6vkI/dQofuWEyS2VK+6NBxZHz9WhbakdjJh7pksCJU3mz8vZbON6Q0j4cDjk4MAnj2Wef/aZO6JsyogC73e4tBHhpgT479dAkQWtS25YnCIel0FCJhXxfrHJ4PLkv9zGeC6O+zbMNemzfiKH3CPaL/QZdLrnA8nMkPP3Ms/X5tvCyp8qgC8wKxSMdupcWKZ+d2qzWQbI3WYHQVNB13CB70CN8qS879mUrtpbz2wdY/l8IQ2tdUsHHnDbXt4fIq5epnV1W2LXHzF93hHzoYssP2QT40kP4e5+Ev/l5ePtt/vvvucN8UFtl/joTUB3VRTXmLSLCjsOvcW3Uip+NSbl9L2MeigMRKhdaqqamGkB9tsh5bomwvwEYAzmMxy2DsuxyZMHKQoRl3XKw9pD5VWsF+WLO76JF5xsT0F7PA7AtFCumtE9LpR2XlIDbIw+PDz0PJArzyDjZjZN5MbcILsDpAjmsC0+lIMMKmppxXXM2auDb9qhf7ag+uUb/5ovolx5ueVa29q6AbakW0jpDma87FifW2WAuVtRodnfKHGFxsbLiToWHNUUT+JSjUhAZu8R1UzNoxYr+Bm6AzRqm0UhnxrHgiuwSCx1eocwRZsBsPGDewHLVssIMAAstULW0wjtTXKOME+xiIbijIXL3EF6zQpmhVNhD4QHZxounjZLpliP2EG+qTDMjrK64X1WejyeF5bqqCUVLtBTSGdwjUu5hiSv/Yqug6Mdfzf/2tLZSb2YUz0opRQDnSxiATkzAuKi8Tzsk/Trp2kIyfHXrou1bMbNcedivsw72BlnYK6sMz0tBqLjJN6y4a48HarA0Cl216BrC8QRFWSM8EviAmPKqoyYpfykKaXsewcLsO4Vu0dLuW1j8F1X4Sf/NzyF8OcBAhEE9ZDAzL/sg5Boxu+CLNpJtw+A+W4XoFHSXp12Bz516qzeS1NPt1YR1R+zPHuF7WZUJ1p99ihVuo9y+lbefHFXZK0r+PWKeupEITMYw73pKek+53YIzXd0oHgFLIbtXAR2aoqAC+r330F8/tzS/6F3y1KLQKdp25jn3uZ36ukU+Lv4cAY4FHinQYqkDZBlBfWKnIkzEosxSN4wbE2SG8eVSed5luC7pSklfVhtkXOXzBMnJMKisxgIAtyfog6v0+55DJv5djvIMFbR0swpsPGWqw3LmA8IXEDqEd1dCdWuf+mFnIfFYNEgTYvTS1yiIuvVMZkY3q/EgGavjhkdZKjZNTnUE9rdaau2iCWQFIqXNxeXdbFgPK24CDwcVjAUuFvnfI8+L9KC47SWG+/FcXmvnSoGnIXAS4Cry5Gi4PF2gd/YyfZMdNxKxfO/LNsPoV2dZ3tGj78k9UIXzNRzUiMLecpPSxnrbUvC8XdfSOBFH2fItrVPkp/GHismVe8Mta0aBwNsFAA4GVhS3mETQvH+owumCjbv+G18vwdosXu2NYL0jYu6NytKvM1JKRSh0h7iQ8wXcHDJXEqwCVJOaSewd79NP6x8V+PIMgEWT7m8ZOkqEivhxq4HTosrdTrryFFhiJGbUHaK3/YsP0f/ms+htQU+maFWhdQUDYV4bXesx9eMRh6sChrgmbtz9rRpvODz+e7/3ewH45Cc/+U2bzDdtXFPW/f2jheHpvT2CWNi4ilhIdCWciTGy0voiBxXVoiVVj9dssT4KVkE+eSUXAR0Pe6H3kfmFgzGsYb0JlhvsDDRXmdWdmxPxqqR7lmdlhUDEPezJ8/fVC/QdB+lAdFXs0R4FMEGHFXQtdwQjwkqqEh91uFKQaMgKew186GpDN7bQ3qnC91di/3YyoHl1Ra2Balthj9LAm9w76RS+9Aj+xksMvhAYLIBnAk1dMasraPwgYuvNtEJ7nqt4LQjdljLb+vRCGwijQZrqS8Bz8UxXUNWe135cU59vkMhR4r20uPdT4bseDiybAJ9/iPzMp+FLD1KO72jdUq0tVF7WXkHbc73DKnihrnZHvncJ99bn6wBej6BvLRbLIWwF9RzbkrlcquE7bPGr+HcJe++9wmyJHDX2uEqQGqSpYFhx0FRcDCr40rndZwgSQH/9QTYcbO9fAWOLKcdLVVOC18piPGbm3sN5LazqivWzQ5b3F6xUUyuZeG6ksNBHQSpWmI3nLwrUe6qs/bcK6KxDpwOP2LEfBLESDCuBFcJChYWqz6diMYHlYsNSrTDORq0VVylMlUaKNdnTDiAra8HGvRp5cM6A6GlXzzN1ZvxmGLs+be/WReUe2YlWVxQ92uPrAHTdZv7naxYSvdTrgm5Q+PC9/rzi39v05OsdWx7BEPfyfIUemcIexCpM73mv4ViAC3KYKxWsB9CucgX5CNO1VkGKVVMaF3WLxf83bVxLLNbhKcL61wVr8T5Vgn+yJOyBNuZdfRWYivB28dDwPSFEj7QWObHxXqVchRk7dVzRAR9Ty+8eiEWW/FOMNzQHAwZXrUWolXPbIYDKU6575EJ0CtbaMAr70XDdqdHFl1fwvqNCqBbCpKG7DClFoHNC/xW1fHZRONSchpoqYq9aqCjSQnwSMYdMhDVu5NmfIG5ZSJXjI5w7BD+BlH4TZQKwYl9XgK7W4Ao1VYUejdDvugP/8OVeSGiIyntndV8i7XiCGZ7js6rieqy+3wsIEqMIJM1t4/R1P4bFez0/GddWcPZvfsqM6VDktBf7WZ7tEp9VkeUGoqfdQ3DFZZZBDZu4bycDeDQDNyT3BPpdee3bBgL/arvqaJvsae8wev3PRfiQ2/3rWw2DVy9NllGl6Sw8/nWdDuVnJd28WiHDCJv4+ktimtMK1ki/8F8zMINaee53wKO69bHjabVuacc1+2L1UxhP0FmLoinNpQxBj4+JNUe2Pe0Ufyf9xp83CWrnRDXRc314hd4dJT7Yy/cuQ8kPRhZqHidQyBlBnf8njdBy52tAForc2IeJMPIw5rZUqpy3Pw39IFfJL3XHMqc98d243Uo6S5yvLDIqLcyWElrCKQKjptcZpNzXZHhZLlnuDRgXRm9EGAJXo2ESSEpji6WY8Y0NJZ1ZDVuV4x/P0D2LVJziJVgFqr0Row3ZSBOcl1Mcw+3zvmhhMthS1qWPHyJwY2oEL0bUvSlDvfadtEHhCw/Qv/4KugB9tUNffOKHvEIr4UllXW4EkqGE0Zj63O5YGlfSuflG1vsbGG9Yaf/oRz/KwcEBf+Ev/AX+2l/7a/zzf/7P+cQnPtF7/cs0jm+9O/8RN1AL4o7Cy3P02SFaW1V1BAurduR5KMJNIYXoVSLIcEh1GQy3QizkYog0JTN4AL1Q9GicN9oZjwoWdziE4dWSRKY1C9myAyNKRb33tyo3OryYlSGseiSBFv3ZNeazV4WXHRPWqo2FQ1bFPSshhcaLU+gKszgPsVCxEfBcaPljZ/B7Ff4PAh8eCEMRBremDDpoLooczZ6Q/AbQvmTsfo/q0/dtng1UHfCFM4aDivWgRoe11SSIzG9aoZtNXxHYvn9xtamZ1yhslFAPCFio/VeAd/rCp0J0ItR7E6qz1jztWjzjjVhAt4lLp/CbD5C/8RL82hr+xkvwmw+RLjDadLBurRDbskPXLT/7M/8D6jnvusxh9tcjCK4zexQLdx5vEdEYxtZUFinyaJ4Zl8N0GZQD1R5OJt7c2ze21l7hYaA6tLzMxNNq97Q3FReVwPtOCCPQNXQV6LfdScRypwLj697iNUfUcsiXK5jfGPHrnfIXW/hUB0sR1s8csXmwNgNNhKtT7zMbkuAzJ4d6x7MR4alUGWPGrRWYkNxiQkicViUWMiz2arEQ4rXAbwT4qVY5ndZsFm3Kq021s/xZiUf5kVkEb/cWz8TVGtkD7u4hlxvG6y6Fx8fIm5TbvrVsTx3be5eknOwhDlVB1yAJ+CukX21fYDCEauF92gvGnshAaVGPuKJYAckPjvl/X34WftcBvHBrh2HsjQD0lFG4jcv+tHqm6A0LCZybidaKbMbIq8jgRRITXTdWZb1crp7sUp7JWZeLMJVhgfGzNtDD8aT8fAOiwhZ9SqHxVy1hf2QGXI8ougfcrdx+MAZdbdJSJ5tr8ihmBaADtA2EeogifFTsKxuxftS/u4rh8Q3NwryYdTk/uEajozwH/bDcQ8wjls5JZxFLsRdv4vmfP4M7tVXmd9qmAt20MZtpKD3tyldR3hmMB+6pcun3Dz5JXXXopIgwidNPiGEKYA2Wv3m1SYbMyMPs7z7iigh/52//vPPfmC9s8xjiQv58he7bs7S2s6ffcxvurwxOhzvE8HhvdxQNuadYETocppKm3RJTVtp1gOEgRQ0oxk/PncDvO5zR6MqLpzbPr2IpLF94kPexPNO7eEK8XoKMB/QMYf78gVgnHxXg1tSsshf9QqK99wm8SDShPEct0C4tHaQsRLdC+OUKfpenv9XHAwZP5tQhmMIOHhofD8COs7jlAEjPnbVwXCV6WEYZq1hR0WVaa//p1OpbRPzu8z1N8MV/D+XXgnpl9SFHApciJovGZjDO8+IdSkN1VFi3i6/Ga+/lMuuJWti6FSHzez/s0DtjbwWaFVqthL/xD/9x4hvsW/vjbX6eDBAaUv931CLp9gHOOtibwmhMMzdTwzJpsVvoVi5dcV3SL0QX4Y4t+LRYb9S9/vEfFmvznm8bJCK8acH8/eHQ6H6BiwoZf9sOXcH8YOw1YWI9LTNsno6GxvwLvLvWneTrHRFxygJ0vt7hcgPHI1q8rouPZug1PbxYjaLFvhVrV573K+s8k0ZS2Ks+oT/wEPrT5XW+8LXk6lK3iL/5F6+5rOLgfuGh5bMPBAYVV7W4MVLSNlaHFSerpXWuKPYsuBHpt6oQ3eBrf8XGn//zfz4VRfvLf/kv7/zOz//8z781s3oLxmpxBkSkLryZibgDn3gFPQX9yiPC++6awu5ERSsLETyIZ0/ERLejEdVVm3DBmKrh2w1VzjUjrs436GSUmF4iyDFUfjRib9ayd9N+k/q0Y4aAp3naYSunqLO+lfNYiM6RVu/PoIZwO+eza+092qWQA5sBlcItDZg6GkPkNfVkL/PRhsAo00aqy5YXjuF/Vwv1QKgrGFbCtK6YHEPz6gyOx9e8Wm/IQ7bFlAXgQ3fQT71k2s8e8IET6kHN+ai2lnbapagGHdfojv6YvWv5ODJ6hBWEcRRehK8g/HY34tSF4l6fjKlj0Yw38Iw4Em5q//vy8fv2vvbcxr/7MvwrHfvvmxBu7gNqDC9UvOOZZ0xhr0smAdSDXOSlBL4gPoAR3IMixwgSA1K3eIZHLfoOJ1ROsJYoR+E6PmbepXkxyz33ooByNM5RZO6hEoT9SrgSQZ+5weYPBpq/+zLDP/Ic+vzNvJSJaCtpBi6AtGrW9pSrOFMeDIf8lwoXFfxPwH8UlG+/N2L48Uds5B6htMiHIlRe+kp7HKKkVIiRM6Slwv5iDTWoNVg1459fTTDMRY8+38FPAloL++864ftWgXdjxbw6DIZBwZs07plaBEHeMbXid6MKGQ3goGHycEb77BFoQLuK5C3oFN3a6qeOktGW+HnV9TzEJnhpiiwIlTATOHGhvvJNHjbQJOZuhjE7LrmCvOw6MwqMp7x/eAPqST5jTxHU38xI5w+ylyGu+eUKnZqvaY4Z5QcRTwukT9F0wKaxKutx1wyfyF0X0rpioZXT5rpnZuIsed6aMa0U1r9OONMoo5aCJuNQOG0Jt3Ndl5dEeFbghghPgG4Ag3mb5a+gZCgzWIm9LvF8b+WdlTBB+Dbgh0V4fy1IgHo0oH44o9mifflueWwrCpHW7BGLxNlPNBZhDTlFTALw2TN4701SOyHnDd20sQi7VUsY1Mmm+GXgBzD+t4+RsY2Sz+MmJKU9d09wquf3nuO4cQLyxaKsVeTz0Tik2is2+973vj0VuE1GOcz7d65qfbtTq7kKrQM6HsDveQZ+4UUrtLcxPq+1ta+1Gj3GI05FUhG66ByIVeTHYgrLZtMx2m/yfrujYSFWGK6OoXfRgPWZh/0WaL/6KnzwXt7TbUQphd34dwsyadJZSlykssKFG3+e1hXcHqL3l3A8SVFSvQi+7VGcPcUiPzarjs208t7sRnN/BaNbbxMzJjc39qhXMDhfMri5Zy0Jt59X73pe8b6km6Nh2utYhFVcURhhfC/dQkD3KnBjWR+O/pomEuH/U4XYqqMZ1SkwajUe01y0PeU+JEU7ABZpE7F1V057vEYvexUsunMarBhyUiLPF+Y8ORql3OGustoEnShvf8dzzLDyEs3BgMFLV3m9lF66WqZ/9pW1G8u5mCPvOIDVmHplslKsOZyqzRfGiF3XJdnTHmErW0lGvqvxnsU2cN5a//VycXZFE0TCVXYGiVtY1kC5tB7t66ZmkPiC3W8icHEAPFqlufTt3HqNlryp4TcynpUVUr1Y2jz2RmwEy2mvDG/HArNRzcF8jR6Y6SOk22kfX+NYbCwFrCTokPOfwGh0K2ZofbyEe3tvTnfY5pdBLULv1182XlyBvv+2t901XeysEqZRYfd5NWM4uFgxVxg7bmtcp/iM34Lxhj3tEBFl9+tftrGYPbY3UZqAvgL4pYfwKugSwl97Gf3qoxQeH6E5E7hF0Y8UqJohMt8Ued8e0h6MkMy0IKKLFXpQJwHHGK334kTgZMJw5QSI0mvvwsbWiMRym4hWXeAoKDOHLx3oV1bo2/ZTPrsK1u7NBYsgfrgGhgY3W4sgiN71mMte95ishSZN/TUBprM109qqoE6AvapiKjBGGN3YR+6v+wcpXr9G2zctT0Zh4ZS330TePqC7Bd0PPY88d4uqEhYevpq8HyLe1sc5zLYyEK/FAQ8h9y4Oq0DYM+Hzsx18VcxDWol5GGI0ZLU/oH68SPPrw/o65yNJRf7vcT0+fNdwq4NQgfyhZ2A04OAXX+R//zNfRH/jDJYb9MsPed/nF+jn7+fK6rEAR5ufmZ6/bf0HVw6q60wn4sndKXpqWduxeqsE5SrAoXukU3RG8erBVT73bGmLNqrTOgqSmM2BmMAyF+CFG+jhAL25n+BIS3mNaG95+4xf0602fHYyYOYevnklfAxBbw0J99do57mfiRjngpBgwve2JT65KrAiThP1tlCzDbpvZZ2y95mcGiMk5fZjmBDTAC0Nn13lJctHZIfQoVYZPhoLBJBZyMrerSOGDwyGTSjm2pkn8g3Tai1fxf7NumTkSb3Zi69SWSjmXsGQK4TxqGa82aStUyhq8MR9LYAvme7Zig8f34GH8+s0xHHy6+JBW88xz5O/fzSHm5UpKxWM/VwYDS5aw0QwRdhMGrMUkYXNbe9DWsvLbY8DOXS7wavWbp2fOOevY2y3e4uh7h2gVyvCdJSMua+J8Gxl9aEGCFfDCtoNvdxvv5Zrl87dMhD2B64AGB3531bw3prkOZK9iupyfT2XPd6v2M9tfhfHAUU9iTLNKBSh8ZsOvjiD9x0Ua2y8L9RCqCEsNh7wZGGhLwV4QY1MHajx+Znjp4J5r5tBT1FPRk6H9xJhisC4Qq6WJAW5VGJ3eIw+/O3vdQ9mQU8DHON92tdrwp63mqtABx4l+J3e0vRfPEpFl6zjhtraeGHHJ8QidH26HaOjjoE2tOiELLf4wl/g7W8T3faz8IHb/f35SKGwl9cI7DYNX5ncwWTQc1ZGgWdYwcIdKYigdw7R12JVZ7YcMgWNU/rr6zi6UWXTtXRjM6DGwsO/VAnfXQlVbQa6uhIGtxrq+yuGoegO87oGgh1wO92Ug2FBL0hVuMGiF9ZpI/xnY7GUolKmSEuZPyuLyqU9W25oh5YLXYnx1fkJhLnz8mt0KZ+5ORknenxdtv6GFAlyENQUZvVoz9M1envoecPW5vSyEi4FzhXe9v53cyFWGHZ2NGC1zFXRI93rpRcVtHCpHml2MbfuHqMRnHvdh0hjVa31XLxXsT0lq5jRz2kXciG63u/K+0Qr8xLLz07ehy0KFRctjr06dw2JPC8p3wqXG5gO3SjvyrH/dARcjSBc5hzy0lrzDSuRW4Q9GUzOVqgXT5whqaYemFx0PhzSLizKIbGYLhsUruGsp8HY+sjWtVhDES+su+nz6fK8PxWW6/DwzlvoB8boCPR/+Ty841aqMTZzZ+2BKzzGIgSZ1pwsl8yjTMAumeVbP96wp/1Hf/RHv5nz+OaNcsPjCAoffy39cxDQTz9AP3AvVY9fe067t+nNBOugQh6uk4IdmSvAzQBfdgFSUfRqDe85KFrJWRXypFSOx4zOvOVEgWCpivwOcLaJaAwBnAb1ftEusLz4GP3Yy+j79wmVP9utnUru0a6YIjMSuLXpElwp100LWlQs4UCVqZr3YbNqaQcGU1UJAzFmMQTk9hRevLx+6AqF9qnWwe29C8V6VyPke56F506slolYtf9y0RTQqXsFNwEGdZ+hRqpSUHQrSOPMvA0EBvymwl90OvMXgRsqfEQM1kqgPqqprraKZsR7xve7QNxek/j9d9xCqlfgBUG+53l42w0Iyvo7j/hHX7nk3/rCBfwPX0XmWC/JX30R/gToB+711zZoyp/rEfSS2mxcaaeYYxHKFm4O4dceZs+ow7gIypG/L2luum7DFdf6YgU3LZoj9byOuZGVp1UAVwhHYKGgl2v00NNMdigwiaGG7LUNUcDu1rxrMkSCGW/HCN9TYUW3agiP5oS7+1SqnlLi93MvyoKcwp2WRkkeKgJMUdYougwwHCVioUJqqxiIV/v8owK/FCxYZDFq+barppBLNKGlljD6BytgL56DtkM2IPsjO0f3htRfuUQ4Zq3KRIv8vuK+X3NsW8njWVy0MB0mRSVGoahbylVgJcKekM+1wP64pll3tBjtiIJKlH0TfHEURjpmS/MgvnTWP2PxO7GC/C6v1+vCSA9Po6c1qKLzJerK0QIxOSOGVhOVihjKa3jcjgawLpbMhfqIi1/T4xAP0FF1rWDRG4nc+ZqwFgilnabc1XA6R9+5Z7MUeFXgWQOLGwJno5qTTaxHULSJK+hnL91qE9DKPLUPMOV6KuTinYDsCdVmnXK2rxkmCpop8cxtLdU+Rfq/e9aTl9297nzp3L54d5o97Zii1gnosRAWLcHheM2f84zmtqdjtVaut+LU1qCDwZaX3dfVJ6diMMtBAzOrgUNwI9suJawYqStNVFZ8HtoF78U1Ss8OgypVi5ff+zz89Evot99AB40ZI4OHyFcB2QhndcXbU071lnKmyi2gW7boIO9n3JJLcjFGcXlGAN5xk+o7zuDjV/Ajz8I7b2/BVxjVdhmOF7m4Zby5xIdUJkusYvQXwL0hfOIhyj2iQbInzJf8duvcbNQ87d26oxvWns9uePRp4H9decqbCAMR6jv7NPeXDN7v+nTp+AkB1aovv+yCT7Hz7LJIdABFuqGVyUoLymUTGNXoZbC9Lulxuba6FRbv/9Nlx7ppTCEVsaKNY+HW+cLom5qDQt1QHRymIDaP1NiiWMqEL47uth6mxRyq8qXkHcdC4+/uuywlLGsrxtoitE4PxXn95nBAWLeg0RhNL3Q/8mR1frtAmXSBatYhx2Pkcg4P5gw5oc0ol2huT+beRj2uRxTEv9fASDX/LobogxUAhlxUrbxBT/ksXrHIaLyfKqqSU7IWCscTVoiFxzv+gzAS4WJYwWqVNluB0jv+DY2tAqXp/ROFm3sgwlqEcVKELDpkfjCkjXWeiWhadBcp5QeAC/Xq8bIbscrrjQk8WeazHeEsaMq27tCLntv+zXBM+B3H6Ntvpk5hKsKFGA0fR56Or/3eiL1lx5OQcS/VC/sGl/sbGf9/q7QPx5HsFES23Pz33oLPWu5VENDvuGtCqAtnj10YO4zhTDij2q+RxapPzNzaONVokffHLVfoxEKOorCX+JgAhxWHD5em3CahJDNs2dL2RIRSmRewv4MVxFq4BKwvPUb/9kvIBvQTV/CBx/CBu9nLLqQ8bQUeAncbGLcdXmbCX2IFPwoGkYEzj/wkKMOrteXXaT5zVTx494bwqzGRii2mp68vbO84rCmcb75CpnVifpPKLLlpfaOnc2jeMl20Fn4X70tx78KKmgvTQLcOhFHDPwlWZGogwgzhY8C/IlGGF+qjEfJYM67Fe/Y2/CkAboWsolj1+Erghz8Ek8byvYMyFOETLxzzh951xPDnF1SfWvFiOOO9HKOffA3ed/e6hTHtl/Yem+a4LpX2ggC6cYfbY/SRMVSCWa9R5VKVgxCjMPptmZIMWwowcT6nLRxMcm5wFT2WWTI/EO/CAOhwnKo1J71ul0EgognODOPHly23G6vEek/hj1fw7trMUnp3jL62ItzdT2klKbzWLarblnjw0PjiHI4Uq1y7wNox+TyoJBV7RCBoDKkV3l0bnBLgD1w13NS2hy7Ol/oWfodxoSZMANbfWECGla37rQb51UvqENjYQc+CSwrT7jO67XEtF7TEn6s1vG0/z8mFIbut3fdS+n3aASbjBgI87gLjuupZrKOhZbehB3jS8ZsfWPKuT9Kv/wBbhWleH64dkGarPHbVoPClx3C/RRdr7zvvXlOHRwqlpwARHTVUl/2pR0OAbq/lYm1CXLyBVECw9+Nhr2BROd2ve2ytb8AiNoJazqJ5xoUrhMsKnnGXym3gwajhhQ1bRrFoXDKe1JHJua47wsiU9vvAbXevS6SZgIwG1GdeVX2bHpe0C67Rlsgr9zHBugtK2eotdSQIwG9cwvtv2vrGWh2qdOKK+2hghTz96y8qvEONt9mOKHvY+U5otgzoXm73lpRJTJbAw4AbAaYjs8wtW2SvTobnMkqkxNuvfPkVbj5/r5cqB9YvXuYbCzke1omOUGOedq8Dwq0H6D95iP7eZyyyps0pfyLCWRe4UdU5Z16jIdzo2S0UCqVdRZJh7kpweche0esmAvKuE+TVpSns5V4+jQ/2jHIbGDkPSAbjKNRb67w2fSZwZ2RdcX7m19FvvwMffIakvKdc82JTCt7QYgVzuzm0k9oK0AG/rPBBgZPanjeoLAWuvjmm+cRDGn2mbxQo5Zh4/ku6uU3LZmvkmb2+rlLodWMRiy5zGFWAvQZdF2sYR/m3n8fk+YtK5jqwaIac+EOOBZ7sD3lh4SlKIfNIHAfiLefs7tG+fZWgyZAxDt761OHVh1fwriMUM5YvRFhhdWY6hZdeeo3nbt2mESHsNzATKrF2elEpUSXJG1Fh7lRpFaZXS6hBpg0yBs6WjFRZl0pVYajeZinxut2PXoq/F1ikjfEmEg9UxZwPYFGqUeiFHo255kne6gyytY1w3qGTMXOBSdQ7qtxmdD0ZIMvYnUQziy5p09cxSrzNHQj8ZldLODAJaCUwqSxNOJ77eTMieKFNLSZzLQI7Mo4W2G8yIpWe9biOkcTcauBLp/ke28Ut+6QzL2R57gr+qU8W6Dv3M2lwXehKzEEUpxNTV3B9oV1srEhrKYsF53+/BeNNhcf/z2kcHD9vb3YpDqoJEcNvq9E/+Tb0hdsuXFuBpceYl6GqoKoLI9CkprrcFFXeHccUjt0in4jFDPRwmEPuU4gXKApjmJ4vTSlwYlOG0L1eMbqI67Uj6YGaEQtV+NwTqo5sLf/0a6ZAxEJ0cTkwpvxIoa0HsA4pbC55RAom01P2ilHPYdBUNFiV4CqZ7gXu7Vv/kHV3XWGPBQFfb5QH0NdGgsI5yOEwTXCIWCGXaEGD3GavwQSDXfMvqF0IxtBjTnTQjnZknlmc3gwFvt+t8WmdDkd2kKJ3rGeUeB0Yt3Ezzu3RHBmBDM0TJwOBYYUMa7qmZlnX8G136Ibwy6dfNVi/7W4fvu1Hxr+3uddMYRSVB/+slrSu4cbEGObVOgkHm84qLe87aKWMFV99hbp4f7GBEws4r/xHLpsR2+DsYcYRFYHDBp07SKGwcO4QZNKjIkNUhc2a5ahihPACwruaInT93gHh0TILPfH3AfcgaBJgesKKas+QNcYL11wFdORF6Iozby0WJYXG2yOszdBN4OYh6DqGjmdc1AhXwQiBFK6FuiC/V2ze0RQEnjud52q+qpCEnzfIaHr7VvxmbspmGfJPslrb+Ut1ACQzwdgSbbbMxokS5UN5Zii+0AZo4b9//GX7/Mki7/s3WkG+hLFzj9VXHqF/+2VLC/rZl9FXnrDEzr1KrmotMQKrkMK1qqlCmw0ujohpH8u1PMd73RcHJ479rYJFT1Fm3zSwRdhgrA4c1h1hiUWeCLyGcOxGUBE4FHg48vZfXv0/etkTaYu3Nojp2tbycYFHwF2Hr5KcalbvNcgSj1YpgHoKjLuUhmiWnwfD715v9k6toORnz+B9e57nJYmpdeLRVKMR3TKCoXxV4YVoMPd5HShcRZoC6NrzyIFoWvcVJkrYMzHckFqQKVRn5iHr0cbt98A/+sVfKdLusjI9BfNIj3OOgeUKV2hjL+oKft9z8EsPCJcraGMVeU1tRZebwA1/ZsxlL6K0ORCo29ZaOiaY7Jyf410hJE3B0sQA9gfIeduny9t4uy1Ix+8t21Q8qNDV7VpZjZxNeiDoxcL2+9Mb9K++DF+4n5XpbXwqzninrjQGU/y6SUOLEhB+CeG7K4OnrszpUAPNrSHNKyvqEK7Tm0KR2/W83r9dWaXxxCuj4S8aNcVTwiQvS2w3GYtbXjdSF1FU/nn6pw3MDxp31Fok5en+yAy3ng6S8sa35r2g3y2lvJY6FWReeBwsbN34TYCzGXrDirStKuu+sRZruXoF/LP/6RMs1Du97A9Z18JqHdg4nHYr7aGTedntmaOLDUxHRn/3B7BaMcQMB1ZDhN653H7FEY3yJUwR9kWaw/X8cWZrOImL4PKE05WNmp2uFXLlfMTo/XmclOZLlD0WKzgyg9yIjBvxup6OrH1ra57knoKdNvHrGBGwKHt0xX0fztFjm/7KxFCQXEB4NhwQVm0hevblMLuhv4lVuqPzDApEkr7hA+DGCB5s+md6l1NqJyzF1ScUTldw3BjuVx4dWFmBzbG/l8jjfW6LSU24WvdkSnM4vAlZ6i0eb9jT/mf/7J/9mt/5iZ/4iW9oMm/lePzaZ+xNsWlA3vyzDTw7JPzhD6KjKnugnek+qiuOPbG8Vz1+r6G+svy3WDgpsu0pWC9DjDCqgE6G9vgoxBeHuN2rOVkt8bIyrrDj758uvPQIqXq/aDUrsiro+27Q/YsZ2rpQ/R33TAHDiEhQu8bw+McK1DVsgjNwh1eL5/Ukk/je/1jibcMKyTNaHCcDo0D3Z/DCUT5MpafsqWGteu3gCVi1bCh6ZEpqKZSZXp6oHlQW1ltytW2CoqQ+wzE8vl136MSEzoHA7xD4PcCHBkLVWc5bUwmDuvLynkurEFreN77fBWNKQCvWAuB0hdywMGuJubSNh/aLsgwKz90g/JDyw38L+KFnLUdHt+HTckFef++iNbgI64oFGbldoU+W6NEY1HC8Umv5ljsoFK9IsbeNNPgaveMgK/lSEEr3vk4Eq1QM6GiEXnWFolfAuCXEGG0vGD6g65bLsSmZTySfwyCgzzToP3uE6rO2HLG/8yBSaBOkouW98nWLgnQM7Z2q93VdreBk0ltqlXjWJBnJFPNGI3AlwBB0tu6RKvVnJV6avAf297463Vl2yKhxkiJIVcHNQ9511rK57V/uSFEEqfDN640SJ0t8UjUPsedib+f0xuM/r3DPtPSE8FUDi9UG1bHtUwGfsr2f/t5z+P43P/SvwaPPwMNFLkwTf6PwdVWQ38JNVdBPPUAAHWJn4wtnzN5xh6Mqw5JeUYHx28kBDB4UvejT7bNQjeMZiudDxh+Tz95eUbAojm169XXBmtfMapYq+mTRa/f2GnC3iCS4IfBlERhCWG7Q6SjBlJQ6EprZZ7OWMDK8fwQ8X4AouKFz0lgRq2VnBTN7dD4CLP3fiX0cPQ2x1sSsU267UhXcIxdU4eVLm9Tbj7JQWFcEtb7lHaCHDWEWUqrAqwofKeYJdv6vChxhFdDKPe2RvEZDsU92JTCKSDIew7w1OArv5DUNAvj3f/QPc77K7a/EF3nkZ53hsP9cz2unsbPN2w7R9x8Q/tvfINxp0G+/g777DtoJdIGLruJGF6jqKq1p0Ky43wTqzpT2GPYfpzgHjmLUhMOcaPjhyM5LFLBLfN2Fx2kxsT72wybfN+68H7hGhEUK0QD9wmM7o7Vv4q+8Ch96Jh84LR5W4NRavXL8uqWroPUK+S8CDwV+B97KtrLQ+IEIze0pTavI6RJu72WjUKQbJW9/Pbrpxs64Xmb4iFfjeWuyjKiA1pUpffNNDsMuD1zkB/HPUsmdw7xuOPQFvSfCKyLotCZcrGB/lAzhsVVXhKUMj4cdinp8hVzIcAQmlwC6bNEl6K0pKhYl0WJnYiHwGRVe/qE/yK+vOj4E1E1FV0N7uaKbNokXlAb6aLBeBKVRqBfATY9/OhjDUjnsAotB5TzS6F00anjVhIyWfo192rdhS+kKiefmPVewwoLTnArXVuY0iu2C1c/UQCz1YSgg+8NM/73GaLqfqvUlf2HKytc8oXGcXFMRKqgWa3TUJDQg7uPXyRoS/wxZEU1FPS9X6LF1+lmKXFMY9QjkNc+zT84FEl725jTz1IBmS9aMZxtS+hIicMsLayxaaz+z0+En9EfxHchntA3W7u1kXLRVtPO2EDG6VkxXnHbPR2PrmEN2nkQYt+1136rxhpX2j3/840/NPf6GqhZ+s8d2+DHY+7MWTiakCFK3vEQh+6HASUmsIoPaHxqhWnbIft3rq36EMndBlNkanZIUn1AsTyzgtNofsb8MdF2AunKFXXsha9vjuoJkrwOFl/z3+uwN9Lvm6C89Rv/t59F33U6VnWNubTynCjxCYFAjrfarxqsmT/7OUZ7KUV1Qvgqky5Lt3Ym1pHkH1xX21xO2d0RJiCpyvkYOCoVPrHfsVbTGx1m5ssRogC5iKGa857YwoSksPl7DoiMM4AsKLwD/fgVNLV5J2nh1LVCLwI0GzovWdvH6euu3S6lVkMcbuDHNyylihQSbmorAJlo2334DTl6zKrolM98JX/lvW3+Pt8hAzN0Vx98b++ijDn3BfnOpMA5KzZbSHmlvCU+5HqpwuYCTk5QTWfkPU3cGEY5FzGoP6HSIzhY+3e38reKqZC91JKpB0Q1ceqjuRWERB0HvTNGH5o2qBpVX0o0h8jbfOZYPmPbCz5sJ3oaPU8xzo1dr9PlJ7s9e9dtBqZK80adAhbAG2kYYLNs0/17oIrolOCgbhb145xWWKymxf6rCzX2eu7+mfS/9fPbojVTNRppdQ7mOI/F6jveJFj9fEb7cY/gcq0RdScYJwaqrr4qemPH25rm9ftZRhYulxUGLmND88CmFab5eT3tx7jQo+m13CJ9+CfXOFPq+Y86R5GGIr+wFiZ+DNDBYbtLNe1jq+ydgQjjk4oHlXghmFHngDXmvedm/Rh2Q14PV4VUguOIerlp0f0SHt3sTuBf5XgV3RPhlBZoGXXQoOYe2lBO7Amd13RLcmfIA4SPuwayCeTBFoGoq4y1X69zm7mm0i+tCdcSpg6AsupAlZS+6pgr6+Rl88IhYiDV62hVoXcnuhkNr4abGi16plD/sZzzy1z2UddxDINDCaNg3WkCqW4MrYJNodLg5hrPg/GtrT7f4nylDxvuTMR8rdrm/Bo5GBU3xCJcYIl+LnfH3jtH/7hJeW6G//iLhfyXwwl2uaqUKgRuhRuoMX0WWYU4Ehhv1EHzfU8e1CxFuUhwDyA6NPd/wqw2c1HkPE7zFmS7xUbE2VpMmi99ONKJRbFQJi1gzA4H33iT86ksGK1jhu2vnhN7zIl/fAN2ipR2aovXFAD+l8Ha8aFsFdSvG32ux93cG8Oocbk93e9spn8cWnAXd3GuIkTklb9eqYiiBB+K7HfGoAw5AF22+Ty+KoPACa0FvFFgFLpqGG45UY4ELBPYn6LzLnnbI93CjeVl8tRzXZU9NivuBqhVjDQqP5+hxjQ4qgtdRasVen0T4v/qe/rLAnwvwbQjdse2LpeyU6KOEGCWmylzdiH7WIqOx0eKmhgEczFZWVyRqVX5AvTB+D/Ug1QztFZqN+7JPqbRvR0thfeWdbq0wY8QKr5fgOCCqNGJ4NRaYTAcmN8w3Vq9A1c5WVNyXK3R/wAWWw25RXeIFC4UR0I4HDGYbOM77nmD6erXIkpjHPQR0vrEDczABgbkI40psz50ArIZQX6x68yhfPdlvsfHNk6ywlwu/nWLQ1LY5j+cWUl/yfNjt8Numr/Gz06XJXlOPkIqptGK1y6b+/LTmdlJZHo6oPFdTIXvZ9bcur/1Nhcf/z6VyfBw7q4/HTT9fwdHIlFkR/zhvZOzRrskT6MLGwHJHxfuEuviPqHu/1FpfMG+Tlz1ZTmNovK/6YtTQVlCn4hQRESRZ2LdHlBHj+0hF9iPR9I90OkW/7Qb6DuvKGiQXn7NQRoMXzLtSTwamZxdCdowmjHPbeSA2zrWGheIXD2A00T6zD/cX/d93+RS84erqriBysUH2XFHxAz+prAAWkIpiRX4axkW4aYESJbGK3vVNyIWWurYlDOAzCh9wTltj1tNKoKrN8lgDHE8sX7sUVOJ1h2Ei4ea24q7A4wVyYgyhikqCG38GYnQ0hV9PK+vTXih3fe5N/mD786hAjbeqWEvEUz8PJ1O4WKatWHXKgS+aGZg0/RQoQse5ji+PAxyOgOy5rKqM04h5qB5HhfAA9GLtwnIBUvJ8ZdgSs48MxBWos+GAI7FuEGUod9hrzLB2f5aLwSi9UNsZ2dOe2Iwrz/FsVFhFYhbWeg0ovNDS87YbfbHCR3fEFPfFqIJ2ndZXIfWDLXdQ/N/n6tZWBblQK0LnExGAW8Izj85tTqrJm0L6m689ynNXnsNA8hBHGhKNnSrR2yq94j6GwkJoGhbrkJUBzbcM21En8XrR5eiVm+O3toL8lmdfwYrUvG9MdxPW3pliI54iIdFQGI+IIXAq2jmAYcwZjTCkY148a7Zxd7MZc7v4wq7hoDYDULkX5f2+nrFVaCiRnScd4VZu9/ayCM9XiQRwAzgVsWrp6y4r7GRve0h/22caNhayjfAAuE1co9wGsAKqA3o5nrtp13VloRyH6l1TuuDF6LCweFX084/gvQdpraMVKfK/AIRxRResrdaZmsLyHNl4DeZ1PCvXfd6iXgckrltvm0RYiTmUBGA0RmZt4tcCBe5dP4wljJGWTgUOLyAMh+kZSa4YiBVxayoYVOiXTol93CWA/vpjUOUswFitsJ6kPfH3Pp2joAwCXA49moYM25WYcTwqEclTHNd2hMlVOxXM7Vfxb4vOoktwHIklVrDnNGIFzBSbtL7tJrxvjB6A/vHn4N138jO2n+tjHczw0qmyWba0e/CFoPwXCC8DnxHhixhvH9SmsA8QGhGqe4fw6irz8Z63vZRftA9bhLV1bdircEe4YvV4EYtMWkagI+8DdDKARU656cGnuAJRLqu/W21YTd2LLHCMcAFwMEHPiqkmvqdp3rE4W8GSd14rJyIS1AqjqhoMp4reOUhEpBVr2bcR4ecddwZYYMY/xvniaITOQq8mTQYsG9HXal59zudwq2ibNx5yPNtkGShtQ+YLJS8FO+uQ099K+jLGoufKopE90nTVwv6IFlhWlhK2wOrNzLEUgAXCPMBMXKmvxBh3DLf29VfFerQvgIOxdTKOFu9ijEVYD0cW6RPXxfeuhPtNjy1emmSox0v0uIbKeHor3kUlKQXCalRTrd3TXvCX9HdvwVvY30rF3C7YV4Z1iMDNETzacoZtW4yfBktaEzWl/U5t8kqdU/kQawV8KAUuOXEUoB2NGcxCgTtxfQr4vsXjDSvtv/ALv9B7/YN/8A/4qZ/6Kb7/+7+f8XjMf/Vf/VffzHm+6XHz3gfzpm0rDgCnC/R4kJSB6FnsxPK+H2HFO9IeRoENkGOhmm+Ssg72nAEwQblQ0BXo/qiXXw2kolSIsBC4mDRwtennxwc3H+zAiW0BpvLvDRVWJYG5bKHsES/m+YttfYIL3S3m9WuammpD8iJWW/ePMPauAOuotBfFzOKCxQnfHcKDq8zMyvyzbjecvli7PdHnrfV9j2sipszOIsNLt3RGv99YZe84toVEja1gXHlXF6BDhzYVX0D4kNc1iIaMWsRz+N1wcDRygaVYn9cRzLZhKgmSnM2RG03yRhvttnUdk4u0IcLfffHXEmxZgdX+PHpzKT6LXsFYtTdZOkn1F1RAb9fo4yuitftSlUNnopGpJQU2SqZx7+KzFVh19vnxOCs7BXzijOpEYOVUPYwEXZpgn5hcCVOxh7aMmpZT52t0ZKGVz2NFZxYC6rUdkAq9s2ftg/ze0dMujpsL+jntqVxD3KtgXoYLMCPBfpOYQYjrR85nj5EulwgHWKufy0lDsITAzPDiNhaSQhRkVpqL9bDcIB4qlxjdnX2O5hvLNUsMzu8dDRKvO66fD8CYLkAMYYxnPX5NLJdXBfaSZTGHvIb9hm5Db59iNfIS9t6+nrdwOOav/Ow/hDtDcDwshQzga0ftbEMYpRy/TxKCAIYT9CNvg+duWi6vCAfZtZi93EXumyAMRjUTL6WbjqDnV5L2UmG+oTsyXJxVJuBdYIU0r4CrwwFXXccMq5EyC+ZhWgDrTj0f/Y0LDLvavXW+7t1ihU7GRLHkZRGeJ+/diSuG7f4QNvRyYbMdSHvCdrcOMKo4w4wQtwuWEAMWKizVjHmIk8zXLdoV0Xqb9wEctso8etaD5iryjxfomcK7j+zHMTxKhNbrugQB3a+sEB/wqirPqIXGJgVFYRKw7hARZ5ctOqpSihlJAMzhzctKjKwKyHEF54uk/iajZqkw+fh//D9/GgkhFbeNhoMJMFlvaIcxl75gx3VlIfJekC58+E7CvVCBfuAGClygnGi+b1pLjbKHUHm+7JNBLHaXn3WG0SvIxvK4N5UCxwPztMN12h8tqr299teitXZvhZ6S66ub8SMVooswv+0W+vwRvHDruqAeFTWfQ6xVs1bPNV4H2mbIPw3WznEghqcfw8oCpNB4ccPLvTG8cpHh2dVCOI4tngRkujkZOP5LAaf9b08s59sxxPBZBB01aDwj20aQCJ8WikTEi9WaV8bewQArGXABVtxuturzSux/UXFf4DVJ2Obr23KnR2IGZajKQD099GyJHpohsBWr3dJ5McGPuiwqf+/vM0T43uhMOhqhV22qOt6LAvCl1GCK/lgVrhaIp2kJAodjjlbKlalVfY9oKM5KcY396K+1dMXsT8to5CbeK8+HyxW6N2BZmTy2wuY2U7hUu86BpZjcsay8ev5xBfMN6vQ4sgS9XKEN0NTe5QY3iDl8Yobw1eEQXW3BEmnIG2cJ/VHIamXleM469HgKYjUJ1L39OT0G1pOGwbK7rhpsy2kAswCeBgNsedul72mP37nlbd9Kg1lJP7dH+XkJy5MWPZpae8f41cpgOheTxRKfKWWWYxisYstjEr0u8etbPd6Up70cdV3z/PPP8x//x/8xqsp//V//12/lvL7hcXn2Up+QbxPTszV6bMJnVE6sWBQgcF+sRzvuVU3MSQQZD5GrLivYgRTKdqAeVnMOOraiVEqu2h4ZvGIhdJf7EwsP81EaAXYJoVJenagIcIh6j0o/OMsVepgZfGpxI309+SFWp21Q1WAFOd3y7gXpSpzchaBezbJH1eOoHeC7U7jvIV67FPanIf6O1g2imKVyb5Qs1kbQhHnSqFyAigrFuDHBoCfp9BmgtTfPIfIdELqWVxsTzt6BK+sYk68F6+MaYT5uLF877Qt57pGo9mCjMEr4v3n7Ph4G5HhMlIqkgGsYIwrEGPvveMf7YB4tr1vwXaOkBdyKrUlFek4aCU/tmXpjbETP5zpTmLqFHfXwyvyzXp/znrHgzNfH+8LHXvfbZyzmtCuWg6eLTWbcxZpuE+9CPzWCugzosOGhwi1/xmnCDTemPXNAuD/rWayjUiJBman2Pe1JMnIflJonrl2bQSJ4Wx/1HyTlIAq/vs4PBE5ELF92ZKFfujbVKZQMNM7HPxPMuDSNe7rJOeZJGGwqzveHDB9a14b0++Bh6K/X4zROfpeAHXvM1rZZsaheilDCQugg5vPGPbXPqtqKCkZ89G5BpvRFwarn/cZy2g9H/MCHv93CU0/ppzzBVgX5NzhKXuBwpo8uV+hBZu4LgZFrKaVSUcKGwHBUM153fjvNtDjOzJ+1WXTMDsfMKms3cyFwKdbD+EKEi+mAi6VyLnCpyiV2verMYHYRTDju3qjAsAWrdjkfPTxa0N2wjXoilnd6r8qO6UqEY2BZN4ReV8tsHEtea8WK0S0hjBoeqbVJG1SxU4StVzQKV6PGPFavR7tIy5uuSXdT5SQE65rinvZkgPniFeGdexYBVksBkBurXXHvRoKuLDriPvB2f3Dkf6hyCFylKSradjCKZ3wrBcbpy1LcoItYbPI892rv4e6W0vcD/+p3ZkU6whxsLkfrNWuXLnMBSFKkSySi+s7b6HcdmcL+bz2PPnsTVeU8wC1f50pJxgPDbKdnnu/9uKoSi4pwzsWUP3XaLZ72kM7B3gguXm8/t+h2UmqtwF5PtnHaoQIDhFWxzgiwX8FslRfuaUYfNUV9jRWYbYGuVdpJw3d54vAGU0Z+QMTS3ypLgWs8ko57E3hlDX/nk/CFB3nfyggm6O1jzyt4tTIhyxWTbM+09yqW93xeMtE4fS9KmY76lgOqd1QKw26Yb2gbzyxCOKqtD/zmADhfJtEyK2leQV5353lDVhYSfrrxJ50TVeYo4dEl3CgcRZU5hwLCQ+CmwOZ3foQ/JvBOd7zqaAiLro9zyrV2pVdBOe4CzLtUPwZAJiP2z61gZIljSaGNHxXrtSDLu1vLnsLj45rkziv++9mKcFCngnNrEZZYe9BfRvgxhI8HYaWOexjN6ab9ziBRVuFyg+6b8X1G4fUlibNUAvPREM6L46N6HTfexOi1SEsF6PzfzldwaOabldOaYSGoCaDTxnSEddeTnRJZK/n5vNvdIq9U0lNOu79ujCw8Pt4rMR2nxts8MGzpDBEPztboySTTbD93WhnPnbquEqPBUrTpCMZnMfw/t7ILePTHb4G3/etW2uN48uQJbdvya7/2a2/FfN6ysV7GPgRc92h2Rpn0ZFJ4wzIjpDLv803HpVgxOHmfD0bIZdfLe4uKyp4TPZYrdK/pCepAWnGtLJ91MR3DRVQIyJXjYSdC9DwO/lwJlvO2jFSKQvB0Jts5jNEwEVu+PcIEK5oB1bpfTbYu51FOpWRSqy5XRigtZ0UFcm64LfNxLNOrX7Pyc1n4I30vPubxAjnsW+YnFSjWVqTH9ACdVpafsz135wyqHhrvj+ncGxU28JuDmvf5ukdmbv3ZPTQ+wnwysPzbct7b3oY+gLuthtFTcTIuwnUkwTTAc7H87+fu3UM9zD3E+5aMaxfMkSOu22xSLzyjuACoLthyOCLUWNVetVDw4+ipCTnaJBGTEqbyeRdruO3YVQh7SUjzzw4RZpFo7o2slZornln+03zf+KdqWgMFdBNgPGSJcCBwjDH14M9TAb3XWHh8ZH6hIMZqFXFLpT0JuklYM6Glma/MRTeos0ANWwZBSWHycyySZ0/gvK4s7HO5zsun+Up+lAuZysiFbLnYIFN6giAiPL59xPA+iQSawu5/h9dJSXk9fFlsiL1RtMCX8mszXMGNLlWyolaPGqqV3Tv4fvVQZZeX6nQFhwPe9ey9nPscK8hv05E3wz+3aIvbP21OyzXEVp0iXFW2T9GAluhOosUG53A8YNhZik1exgJvfbrLRWB2MGSGCYZzhIWv3VxgfjBkjjAPZiCbqeHtlSpXnb8P9tq8EcW9PIvBc9ndgKNzy6MMCPdFuFu5kl3lc3lTrC4Ei75AZl3WnFa6ZyW0ZnjS4aBo95aFTpP5DB9kf2jelzTPHbSLwugT//ZrFZT9TpnFKItolFIlfPEU3necaFnMaY8RZvGqo4quM0/7i8Fym0XJrU4xBWZWLCVthw6qHm/v9WwX28foLeNoiJx5qbsQjX0Fvhawvusdz+Z6NuqKkdj39y/XzD21UwCV+I4e/VYgvPME7gwIz99I978A9jVH8VVk40A8o6xb2kZM+Uln2+59JnAgkmh2lm0dV45Glutb8p1t/rYLX+cbmFZ5b6NC4Adt6OtJVdCdaW0ey13PKOS9oOZl36gZ5jcKmxV0e0MGAiOE3w38RxX8thoaLJ+9qb1PuwjMXGn4bIC/+jJ8/v51ZxC7nw9YV5njqr9NLjfEr0wLb2akOwoW1bTqejjSw5vokU6eaf+3zYb5sE6RgGOEIcLVtEZXC3pFQKOe4zeOSnvaj61rxN+qjLYLMFFl3Qa42qC3JuCOohge31XC/7cS/g2B9zz/DAeJN4LuN4T5OsOipfE6Ama0687FAoYgwzqHM+81TPz3ht72/Z7SXyxdwGjv/hZ8cYwxw6hGmTryzvjZ1Yb2sM6tIzGD0CeB/2MFvyDwfxL4lJrs3eI1FfaHVsQuok00zM8UDm3NVmKh8JrwxGAcAutRDat14sm2587b3xQD9LHj7MT0NR7O0VvmYFm6/Bs9/xGPR3VF24AusuwS17t31BVLg5l6VGDpVYecwhQ/i8aBWw2czfMelHL1VpRuT2dIfMS/8GiOnjSFrpedehfirb3jUidxW5C9AXvuaQ/xvEWPewL4Wzu+oerx6/Wa3/zN36TrOk5OTt7Sib0lo8csyBvoPRZ1vyj/70J8wKxKlyKcSLZ4ScGsqr0m5ajZK/dsPsLD45creGaUkSQ+QyWFyM+Aam9gykxk1NArRLdddKhHPIUUPjdWD01SUA2wsh7xxGdjxKUMjUeET6nVSHlCxTPBYKqcoVea4XqqIL9przeyLrxP1GKmyLsDuD83r/vrFXPZtXfFIRRVmK/g0GCr/H9jX9+5WuGwXNUXW4fFpn/vAqZOcy579LK3/szPNwN+u1g4Z42Fz1mkpfVyjZ5ijsz40jcz9ufeG7tCeFTh8Rw5tHVLleMLC/0ISWF0COiwgdWmv4Q9Te86vGmsAky2coyipC4etlYL2gl6MrTolJMpT4IycSG5UlPcy1Ska+cuwne2gb1xwo+qgE8qSbi8X3l1dYDxwPay6JWZFNjiGb0wuvhaAXsNZ8C3IxwiPHZlUlv3tt/bQy8CYdnCoEpCP8EiaDZBLb+MqLRnoTfCug9cztpc2Zl+zlQsQpmOjsBjEd4lcIAxaR3X6LwlHBtMISnZmvA+MqU13pZGFdmsUh694YkJ+Q/vNHzoixfAcfY+KtAFQqhIkv+usc3w4nXmTFcyvSTB6ecPE+yBoqiLjeFYmJyvWeMF+nGBI+T9uybgL5ZwdDMTvLsDeLTcXUHeq/K+4VE8K3oJUEUvQQ+GCU9nbvTJBrSMD+Q/GXpbu9W6ZdLUSciDDN9KYL5S1ocjC3dHPLw1EiyQSQMNyKpNXSOqkFuMDjq1NC4irVZTLl4P0MIr0AW1YIVNR1hAOLZCQ68iPOsCmXnD7f0hMB8J4TLWlvAweC2K0uHC96ozw1RT8RpWfR6iR0sKDz4WHr8oCgvGjSivPiJtqcS+W2HwHAbrpqEh5ND4xQZ9bU344cMip0lyClwKjxfCtEEX9qxXUD6K8d0Kx2+1WjWr4jzoOsAwxhcVU/c96Pzeo4gne9ZqS5Zd6tWeBdB4h0wkEil2oh6NBwebFY/HdaIvQK7fkrRv826GvQa9IAngGuAiKDd9rSsvIlHFpzuNkXVAazO4qN8/ykVJyUmGGEnHUgQrFvXw6QUUezywPOPrDUy9snpkJEg6WyNXaONBUxEL877w8xpKOaX/6nzvNq68d0A7hzAc8k8Vvkfg3x5Ydt8Ai6JrKmEo1iaNWuBT93u4yK++ZtXqy30sn78N41UHo1gslF50QkwPy33aDfYEwqhGLxZZwSuv9BV19T8CIOuOMB4UyGQ07Hx/xM15QL34cTIsFlbiBdIT6WT7KrhzSXvG66nC4POP4bxFn1yhh2NT2DHF/fMCrwAfRfh18Rz7CMmBoF9YZTri80lXf85SlaNZC5NJlouCIvuw9+rSCsJqxAv6NHhri2Lu/i44J3gbVyXPA+cRKFxC2LP01+wQg58XSfywA/4RwofVcNaME0N03l2bExct7Jtzay3CRNIxi0eBQ4HZHuijotNMjFCL89vSF77miPjr1z4fXMKBdYVaiZiYYUqHpYaJcAgsh0P25y16oumYRwcIFNfFBo5HfblDijeRwJdhlzcm8ESTTHZdri5oZ+n53pKr9XyJngyyLuZOPkQ4rzztJxolkr4H1d6I8coIiQ4cD3HnkBs43sRqvyXjDXvaP/7xj/OJT3yi9/rMZz7DcmlWiB/4gR/4pk3y6xmTvZtPV4zOluYxEkkVnhXPc63gid/jpLQo+2cVIHsD5HKVLI5lqNAIC8NitkbHVUYSICGm32wJLA6A+bJg1Jq89juVPbbClPw3sZp066dGr4DDfk59LBIVPQ2f76wQyCsV/N17cL5pU3Ga6GlIYsm2UBXHWr3JYbFIcWJl+4Z7B3B/nRX0ck9iSEs5IuwlQ4yM4lSRKFT74R648rDwv2O4oAI6rcBDINN9iufkHHYXaAHdWAjTS4OK91WFs8bBGvgrSexH3p/7qvDo92DYWjclGy9Kwvl4A8eTbEEuBCTEctQWvsYK/MbZK+i8KARSrl1kxvGz9Gz/Yxmsf3aEoSr2SzCFHReSbu8RHtl9WrW+rKgbdrQfHr/TUKZYfnIMaauKgl6FAIgI+57bm8Ku90Av19mTvi0k+SsquTG8Ti8URubR3BM4Eg+7FyPaoRJ0WBNOKvS1q0JAyF73Wac7+rTbGRFf45Eq043CvhXYi/uWj7GkVovxTo/FIlwmAqcK2jSw6tJvUtQEWGGttIfKWmEQN3QWYK/p4wnC8qRh7/Qqe3mTJxKSpvW0sb1v8TXrYFKG/+euGFGJmGGRoAlS58EINFPYC20q6lVOJct+W2f0cYD9hk/85pcNxlt78GDdP1vxGl4Hpl1AblnkFdCZpWIwGbpILFyJhfuXx6SsMpvkjUpYDWCz3DjJLAxJ2HFvFTbrDevp0HIdUT7RCf9FEH6tM6PHrBLmBzCbr5iptTmaBWXWWX77LFjBo5XCUo0Ev+6ILjUwxdbnoqcLwgTC0KIKXgGe9VDFJJ9hOemPpkBo89kKec9yTjuE5YbggVVPgLuY8h87RYiY8bMC85Z6S7/rXvZ+6GPJgxMv7pT9oKy7QnkIiv7yK2gb4OFFFgKjpx0v9oe/Jo3ZhtrAqcKzFAZrp2v7aPa0q4f/TwaJBid6if14haSQZwAGFTIGzpapTWxPaS3279c+9YXeGoimt0yWgfm0sWcpvWJ0tiCFsncwNIF+ExL7OcOcCoV+f62GjawDDAYmJ5PvPfOVP3RwKei1xJsdDpJDZCeMT/NEXz3NeGz3H4pV5U4GQjDlR8Ta4MV7lvQAU+ZXagb42M51g9WqWVU1n1L4AfH6NGI1CAapAF0RRffhe/TGR+7uMErwdBhnuZhmpImlsU9EmIrVOYHoUHGaOqnR2Q6Hg9+/x/Pc207nNRHGsdaJ4cmBwOm4sUrqnteeI8wi/TW5dLs4WyGKuMxJMmDHs/fcK49598deow5Q/8xLhJce06K0zif+fiX8nsoU0tHnv8h9T81TIIwqdLXu0xIyfYki6JnCjUuQ4wmlx5dJxWi+tCLQZFiS37h/zIDd/eijbD0BFqXhgCxfhVjA92CY0wxc5vx+3zd1y+fvLnEW0Mkgy2vRuAAwW6EHZvRdYtX1U99wR5ohcNEIXK1JGePF2rzpaLM4q60ipSjosrUIR++wtcEiNeJI70SYjYdWHI/+XkXel8alp/KlxS4ZanEt5epjl6v/+ifhSw8Tje+f9QKWyNziggeDTy8jLNHgGVOhLaf9SApDGqRe7YPRgLbCHIWJL/mjwhZ836LxpsLjt6vGx7z2H/3RH+VP/ak/9c2a49c1RpPjPhEt359t4HCcPM+xJZtiXvBHYv1Kq9Lq4kJHBVT7NTJbJUYXhwQ4UeUhoMs1umetkZJXKoZ3JWIl6KSC2bJQAshKkG4j5RZP08yAJ2oMeKHAMvaI916OTjRjDmrE9X/qc2qAtQx4sdrkfEP1qujl83vv/Y/VluIXJ1hvHcjbY3j1yj4L1w/e9eJYxXfKvbva2CMOR+mQxbO/J94qNjL4eKtxjV51fRgK5tqqtdFKuewK3bolCNyuK6YOhinsFjLXy2ePguEU67Wpfdh6z+P683sK0pO15e46bOIbUhLuWQHbVy7vw8yqy0bPUNqfUpjYpYQtg/Vo3x4VuXBiZDgnE5jNTAZRy6lOqRzRmAKv36P9bGm5/8WhqfxQlQLgge/f3L+n4yG6Kvpfp3XL62dvtzwPmw00NReYt3BPhLN0Hovr3QP05XXGw+K11i2lXaOYQTp7I0BmwKhsx2Q/ShE2/llIjMIqxJ6IVZllb0iI9p6gva3rMWVMWRspSBegBZkW7NTP28XR1Lxwp7MEi0YGpvr6ee0ljpRcaZbb3CTDWPqqSaELYqSrLYCU7wYwvdpwScFL3FOggRQOmfZ245rh8ZjPvfiy3ejWW1RBfssYqHHdL1ZwgBcq9CgIEQ6Q5F0o9Il0jd6NVTNgvSoK82iclwmQG4HuasNmr2Yj8NkO/hOBXwD+U4Hf8JD39WTEetmxVkvR+FQH/2UHHw/WD3mpHurrdOv10x1I6xSI7dmU7qpF90YmHIvwoli7N8ToXKSrt4HzAXCZOxzE4lfRuWFKsKKrgHrl8ScI92I2TAyrJKWWw15t1ePTPDVfd/C93kutpsZBgPOES4q++Bh++dzm+ddfRr/8MHvaBW97Wly99/HDxZobWCHZyP9QU94neBQbWN68gI4GWamN/N1p9MLPeWwTKAAHjYVJQ19xL+kj8LnPf6WXdof6dW0G9VNXxCJ9TltbCMAqoMPKWsHNoldOuVLlOJDbVvpzLL/doqXogPGAc8fnWDjzws/72OGsfCN7BtdDN8JcM1gX13JfkwcOa/nmzyz7mKtYHZd10nT9FnVlyufliuKw9fCnQ4t8djtXrUK3avnqFD4gcKvOdWriq6mFYcw9rwTeeRteGJgr/keehXfe6c9/Vx5tHIrt+94o7U+BKgnmiW/fJloA48+nFbp+usNhOyxeFVi2qEDdZEOIVFZBfiZYG9XzdTrDkV27hswl/fD4UuZMxp3krMrvv+2LZ+aengBL0M89pnNP9KUI/1jgDzhd7b78EjMiTxTYG+TIkMj/okIbFW9nB3vnGzgY94we7A9pFq111vH9j1Fz24Xo4vslOTze7pPhnGIG0az8OzpDqu0SRn2nnIrwAYGP+Fn5PyO815PmkyFmv3alu2Sxip4tUBc0luKtzCUXtrQzJ1xOasvvoJhbcjYUwL3RsRX1Gg3n+niBHuLpflajY+R7J5G/i0WjLPaGUB7DQn7pyQ+rjdF86KfSFjD2amNVAl95bH9/BUtN+eKD67w/PYs+vYnPLiKroZD9MAPuReWF6CrymfT13xM4H1ux8GjgSsakqMB/i8cbDib8hV/4hW/mPN7ycfboi9c8KeDvz1q4MXGvQb+Yiwo8ErH+lhD5RPISVAD7NXK1LsLYM4OdAKcbE6Z1b1SEsWXlPSLNmcDJ3hAWrTHykO/XCyujj+DJCxJyddka8/jNFU4uV+adrHIFcFdZvRidtbj7HuCfqluxhy3vOu16hNmU9h3MIk4LTGkflC3DirmWoS73RvCLiyjxXT9428i/y9iiipwvkQleCEfSYqgI4woWGoUZv4qYdXPhN9vlZdeorFtOZAvoumU9FH5bZcQy9mOvMBmwkRzenSyDx0MzCNGfc6b28SPtr0MJ48M5vO+4CI0qqlX7HIJzfAV+3+/8negvvZaF9qft07ZgA7Z306JX9JZkrEVIqR5X6G9YYbMZygRN9RTSORAXdrcUovTciwUcHaf7xzDByo1isf/nECs+dKlwJILuDdEZWbEqYfEzEpc0EtMA0G5Y7w/pMHnypsDnIjOMLyDcm8IXz1Hu5psEZR0sLHkSNIc0qiYvQzSaDYHxMsB4aHORzMRNmcn57GDCwkrgpILXsAJkDIdoYe/ZVT0XTD5sVS1fdrGx4+adG8Rjh0Wsn+qTW4fcedLCLce5UIS/va7SrltXf8031ppJsgEQSFVYFbgkt2IViYzQhfphxcFmw2vRyBJvrZr3rMSd6LWb1Pyx3/N9Np87Q/jkg+JcFWc65jZv927dCSPXmLyCFX2a5ND4qIBN/MwlATYqGFuJ1oumoVsZZL1ldA9SALr1GvUsoV8UqyocWyD9p8C7g/DHxg1fWiqvdMplpfyzYN1B/juF/4vC71TLOuowhSTI64AdNWvf+2RPexIIt63Kc4fwGsJzTu9Akcq85EciPGwq2GwIGlCt0t6VtUQVCJsOHTRssMJ2dyR7cqsq89EarP3PfFMgPRmpIm30dS0jMyO/FZSDoNZ1NOL25x/ZmtegHfCJ+/Dtz8bKobRdyF72SgidoOOK80XL8we+lWqRZp0//gDPSVUYbNwgk6qrF4XoMP6+9DDLKgq5IhDWyD/+KjLo4H1P8dQCf+zf/H1ceTeZiFYCMF+zbqCrs58lp6WI5bdHeibmEAhHwGyTwlbPsRZ+qPpauqeUvKbVBgbjAZeYojxwmOZCkomq6MiAFN4tInA4NgKwg8/29pXib69WH3Nd8/nKQvQAcuh4RARAT8TgY6sivz9no8qmM0U9edtRwmbDZ0cjvrey2w2cn8eK8UPZiqKrgPfehu7MFPhto0SkqVG721Yorlbw7H4CLt66NHhMIu6IRdOlOkhjz90v12yLZpXedlTR5YbNqGI/yqxiOLEv8BBBjyfoPPOCSJ+i9W3NjozH8qo5CiXCLAovv/uY937qithypfvQTVqsT/svVvCequIFh/vDP/j9/PKiI0bThf2RTWET0LpGQhGCHEhG3qXC/sUcee4oz0eA6chqUSw2MBwlhTZOMQTNyrW/ytz9bTgnwOOo9DvMkdDpbI3um4yZomgjfxe/p5hRKOsXMWqw7nXDSXxnsYY9C0WfixVGFMf3GD03BV6cNLDUXOMnwrPD0PmGRiTi8X2cz2kL+9MkR8+xaLPonfYpeSHdkaeGFuJlfJ8naMaryZafuFCQe46+KFt/Yis15VdehQ/cy+erlGO2aWp87ukCvel00u+rbnmceabgYeLvkp1IwAThtb0xR8vAgFyIzuoCVRneb+F4w572n/3Zn+Xnfu7ndv7b/fv3uX///s5/+60dO4ioYlW+D4cWIiuR2TrxqCoeYqGrZW5DIrSVIPsjqnMTGmI4uzjRPgALpRjgvWrzvbW0orpXiuglW6wLgkiuMrs1ZPuavgt7qixRwqKD8SgdCINLUv5+LIZ1p7LCK98d4I8u4HjTFUXotvLEoH8o4uerAOOtHu1AKiwRF+7unnGD+eb6nsSq6Vtb19dW/Hq+QY6KHu3Fc5toSfa/E92OLao2W/dyAbbF2ijFELqgSlgHFvWAdzoI0VkTGXwdFZHSYnhS9GqPz4kw9hTZrbVMREbhbAG3mnRviVzJnzMWPL/PHzOqrcBHsVTX9ulpHoDS015KS9Az+KgI3JxYG8HOcOzQpQhBk6cmCZilQFM+/0kHR8MEj6FGXke7GmM4EKtEroBORnDVFXxT+89QCuW2YGSXGxaNrVmDRWJcOuHWWLVWQO+O0FfnoKEnxMzVlPZ9X9gYRZDgdFinwP5qBUcF7sWzJ+X5t/ePfU/3MDivFBg1sAg9oSLaDyB7kNd+HYKdpX1nNTHvXmxtJ8DpyT68tsrWcxd+UnTCDvrSaw+2fQYv17C3rTT00WoBTKJESimgCowqxu3Gu1xoCi9L27jNbC9XFiIR8V/EWsA80W+8gvwWfiaUugjo4SgJYpdYLl/lFfOlfBE/y6HC60lDVzaq0LyP6rRFVy1haLzh+wCtTAEfivAnEX64gv3pkHes4FmBB07jYy+Qn1M3MpLk7KdC3asOHHK7NwXCYkWYWCz7faxOxy2HJVZVRuCWwOmwssgVyF72kA0R6u+1BZ0MeIgwJtc3qCi87HHtpkNSYmtp4YjAbAFV8r5U/Ao7p0Rv2rtu2trHjJLvvJfz2V1Aa5Ny63NvGs6XgbdjRsfyBS6Eq7XCYt1abmMU/iRO1emmWP712P+uKuClx8iLHTwC+WvuLfL96F39vYC3fbU1sDouLevh0OrliGQnA/ma6Y1/ZzyyDhqOjRcB9kOfXkN+XwEsrJPMGCtSG/H4PK5DYdyNSnWiCDEKZ/GUkPVyX+N+L7z7TKwev83X6ddxiTKUisB4hF4Uz4pDoevMmLPBI+nwGgyqLOYbhgPrCFPjYfFiKXbDyrzsKVgo8veTxozOu4yF0atXwlXKM7O1Gagi3Yi0rIB15MaXhZKML7aHNeFKrt/T1zPn1pLINsuO9aDJod/+88PKe8FPJ+h5Ec1V3FdUmdMvvtq7CqnzQOycJJHIPXuDR3dqNu+sWP/htxGev23FfRF+HuEPRlop5vU/9RurAE1leHu57lePj+TL3ZtzVcbzOezHQsRVikhsxxV7s1WxDzGvPfO6bV41LmArx/Wcdr8PmGH3oEmKejqDbiy78L2LRZHLyE+dDNDLkLZTlV6P9lgPYxL5edw/MaX58dgjFZebBGdi2T1LxRscZZSIFnh0uoYbXqW4spz2qpDp4z6OgLOJWA0t8hqlSLoIKFgLjqnLf1GIiosfc+hKhb0SS0Upx4cLhd11rl4K6K6U0yctHBZFxxP9NP6ukouGxmnE+jVjgfPJiDa3D0lyip29N7fcb8V4w0r7j/3Yj/FjP/ZjO//tj//xP86f+BN/4i2b1Fs2SiJaEvXzBdxochXZaJkW28BUUT3iT2WENoUGHZiiLauQGawYIdsH68s5jv2ad4Tj+vs2PmAyQC4Kz33IofK7FPfIR2onSNHWP8bzG1dY30scp6KVr5Is5Im1e7sL/MlaeHZQUYU2zSG1hIHXFaRYF0p75A4CKSkkHsKmNgH8tdl1xhffl6PwDpVMX05bOBoXTESSgWAqHh4ftz2GEHq45q5idG3wkDk1YdSEYeXBOrCsBzzn4MQQuki3mpKhRyJzNDLvYAlPyAuXmaPuJjCdmhB7c5oZujMkCiJyFXdcBN0bwAwTzEJmxDv3qyRuYNXjh0WOURxCVtjjdTJAR8D5nKULy4lpqyYhMxZpu2b13HTmrjoZ9wh1L8yyqpLgtieS2yyNh+hqR9u3tJZFHlzBwHSz5mJYse8zuynm/YtCX3rdnaIbExgSUQ7KIsAgKIMIW+SJ0VDnXHcE7J2vaD2lPYXCxeWu8jJ0IpyJVY5HDGfnAFMhrGL4cQ7XzgKDXdd+LoeqsOyQwSjtWdKyHHce3hZ4dI6WexKNEluVVzOOxFecfPGlpYe3CUUbO6dxzkmuDJQ0pehlrwAZNzQr5dWSnLggHelSwhmwGggH2fgIpNzQb7iC/JYhK4E938BklASxFbDnDy+LkaalJpI9+043GphxMuJgMaVYaV0vIUwHBBHeOYAPAG+rhD8LfN8A3idwMhryjivlXxX4Eawyc+eT/P1R6Y7byuuAXeAs5M4YHaCPFoQbJni+JvCM87qqInnZK1dmqnGDrAsjgeblV40h+hBWRitOiS1TY2h8Tjer45rF9j9tyPPs7WOGKpHa+Lcf9sOA57G652k6IjTAtzeEf+d5eO/dxIeCZLTvRGy+COwNaVvltk/CDBb9KLYxZlzTVYeOyUpVsczxupTY8tDx5vNPrBNLLP3yq6/190X7aR0xbD3RGEDWymZvxFU0Dvg1doNJebOFN5HDEcGJ6NJp4w2JsNGrHh9lm2qt0DQcY4p65DNzsagn/O9otDJW77xq4K7r86eFrG/RFMUMj5LvGc9UpBta9XPak/Lj8OlVdx1vgrIJltrUam7nunHc7TYb3jOqEm6nsHiix52+8iBifOuczGSuPXMLrpKOztc5LLgw8G3TkLHAsoq3dtza8xoiO8+IPbvM/VZAN8pi3HCjoL2IcITZOzmq0OU88Zqk8Dkvv1RLCUlnTdLS+8xILY6lmNMQZVgP4He9A332hslSFfw6FinxXWKGx0qsvsxpYfRVhHBs9DfXYclnI4nxm47BSuFoUshGLgeOxzQL69IQU68otmr7uuR6GkB8TTHRFoqc+IjCV51F/8V7SfayI3DqvPEs0YfCG7/XWOpAiUcX3qN9WLN23proh0g6ZyNgKfaPKS/ecUG3gXsDQ4vzEoFJoe2PZuitJsHUVlacMdnsHBmGAhdTrKK9Pz7JLekDMo/eK9IjC3rS0xXiewHedRu+68i+9yPPWqTLTmM9141o8fmna/RW0e4NJRpTLirPZ/dXqbDHaV2Nh+i8zcubDBOg+q3X2t9UTvuu0XXd1/7Sb8G489yHryuEcTMft+iReV9DYTGPgugjLKc9blwlmTlVCgxNuZCLVcY/taM5QRmsAky9R3vJZFzAjUL9lZhFXiYjWFhoerK0J6moD1dJOKNXPmKQtX0DzhUdezUgNxCkkEDJy/IqcBLPTSPIqsuhjHEOXJ9DGopRtqgUl4dxF+O7Y56/UoFI77fDdZOrZIsRXqyRIp+9PGwTib3aJQsxPg8dArNNT5gI5FYcMZc95kU/6mAwspYi1pc9hsZb0ZqqJC4R9uOB5bTHsa24loR1F4GJfcz3m4RvJSeJjH3t3F6Bv/6zP2e3Xm/l1fUE3+L5kdqA98ctSEBSjuyaijRWgkoFh3voecscZR9T2FPBppAFzZ0e/jMPdR7nnKbodRCJexnnYYrfRVzXI0GvvHAOmm5b3r8ntEQL77plPqpSjvweVhzLwtbN2x5qQesKvTuAB4usaAVYB+s9Syi2IUkPGd1HKEfrFeux18iWiHeFN6/Y/jNy+s1hZZXydQKs2t4Wpe0jClfKElMiKgHWWNusUjgbRIYjvHJr3wyIy00WgKLiXuLd9ij3rZzQfNMTPhWyZ8+/NsfWuRTAk7FzNEAwwauUFeyRhaAWn33RwrHRsZ/8W38vt5GMFeTR6/j+tXrQx7WMZyIKGNETc7lED2PuG1y5YSUxc/pMPY54dLphY5aL9DC/uGAV2mBwTnOnARD+EPCegeUIjkWYDCvGqxUjhPdX8B8AY5Q/ovDBiOdk3Nph283PL+hsJLWqSjdfonuGs68gPFvF8yi5Y6fDOImG2U2XzlpEodSzHSzFY9BwioXGx3NT91iCKyyRFpTtOLfPdjHicldiD6vUUlcWSWFSw5nnpugPfsj6lccfOI52kr1jLt4TRg2bhRktSkVWimfuO2/VTTADNMXR8EWKfH0u3ios4sx7b7pw7Wc0FjIrYfX3P/l//xvG13090hwW0I2HKb0NwSvHl3+X4fGYp9092RdxvXzStV/j/ZOhYNNCYwbOx5DO+ZlYTZAC5XtnIvHBG+LFBQues+UFz8RQzRB4EO/XV2jV5zYUy6mNnswUDTYeets38lo6X4+57KnVWzA8/ZzCcNPywri2Vp2SDfJDMS97vZ32BrnQ7K7CidfopebvgFUA3GuIvCGB4H8IBtuebXNRHwEYeevJZdt/bnxbekfjMqxhMW0sBaV4xmFtRTUZgz6x3tN2dIzHqSqd33/b0x7fJx6o5D7tDvNBUCaLLhla7awJ/1Dg+0UYVZ4Wg/A//r/+NmvxoroYzjIaorOQ55S2VRPc++dLwkiomiptT5yjHo45KrqDEddHlV4tVzKv2qW0Y0vErJA9U/s5sOrvhyM/70UxVt/HK8eZGPVpXaP82XvWdiwWbgNFLzdepR2WzjRjP/SELxU0YpX4GY5g3lHmVCc8eCoj2DG2eEMZtcjlEj2sk94yr+z821/iIeTCCLHieLMVZfGAnjEIMo0vHXy9RZc+k0hXyd72t98sZGmlzM163ZTTRwvCiRm/4p5Fx+m5SEF+InwF7xNYn4Aslo5TRWRDcoK8iTV/C8br5rR/8Ytf5Atf+ELvs5/92Z/t/f2lL30JgKZp+JdpPL7/uf7GbXn89GTSs0oHZ3pUwkOs+E4UOME21PLynAgegsw3/aJxmDP5eAYhemugF0oXlJSXtcQFwv0xcqaZiUZPe8/9lEd8XspH82fvq6eUrVZwPO7xx87DA0NEWKxa8K0I57CmWkcGXoTLbePjtiK/jt6w7Qly3Wp2dwoPFruJBYb8IpIOfO8ARo/D6QKen2QjXbS0YpbIq/h839NoJNED8VC8fE8TYDW9Ws0eo7MWXpgOfB1iuzevKisxjGZLYLlawCtrq3L5vru78a98vw3fk6X1MRdBPL9nW0EYILlPu8Af/Ne+3wp0zDep8OAuYXCngrbqrF1Y3Lt4Lb01tT1IAQYt4X/6Ks80gb2U25erx0r5mJ6hQi0C4aZPugzllr5dJxphjsULtAE6Ap2v+x7oOCIB1ZxvFJyg6gYej4cWYY1wXAltZUL10MOjwIXBe4foK2t4j8Og1l5mL2DtkdyVnNowkQWXCthfdpxNGw4lC5umKBiASXGv4IF42LDgUQCwGkBTwBijJsqicapWhC4K3lwAk1iErpBeahNAZ00F+yP0/gzeOexVxU/a2zYH0OK6LXxekMLb+sUes5FsBjxbKiyOTyJYiyGB9XJjwkuh+EWFXSEbIi/WFnIr8O/8gR/whZdvvIL8Fk1Jaw3obAUH2YNqkQMRb0tcLYtw5fPZ1TXSlUUTcyGkAOh8Y7xmWKc1fCim4NpSWXVlpsBXl2zEKsy/u4bvUKPxhuOalLOgJMFxJ7AetRQw4TMEJbQdOofueEIQeEWE9zsCVZL5XSTle3VFW0Oz3KCTYS+nvTRKha5D6wGvqBW1E4cpwha97ClEuMEKO8WuEttn20dPviMrDgeq1vEjeBvBxwG9s+/zkV6eZBBrjWYG7Lx+81HD3tx4d/JA+/Nj6tkEowdsAlo3SeiLfD1KeVpXrCTYHsbJvu0m/C9a5P/zKvzIs8gLtykQpKCT8O/80T+QFWjyWZBZIIxGXDpxifD1nALSv53uD9Az86heKdxQ85Da8cwGAYPXeX5oYWKe9lcoDBH0dGuv8VEYXuM/TMZw2V7fy6D279t8aB5gMsg8zl9RqRWclvU23+E9HMD9q2trGb3sm85y2FvVlE7yT4Ly/g0walJR2UasfWsj1u4tySwR8aLzYR8zyp+Mr9ObED3hkWb6K+bsOx0zVJRMrguyPahg7gsQcSuIwADC1draykJvDeMje1E9V7BohpanG9ezsoZJZyKE/QG6XGZe6r9HrZCxYMrstlhQXqORPs5HgL2FRYrJuEmOolPg4wL/N6cpsQPw7//h389/X8EpwoGY9zMcjtCrkGEK2WMei8qN5y1hYl72nuAAyGjMwSywApoEUxEiX2wNmMHgMC9RT4SdYIULS8UzXa9W6NG4d/ZSeq1Y2H8lVqsmRePEiEVPmWW2tvOpoFeK7k9cJ7A0z8RjyPRlDCxE4GCIesuQMq+9pCNvbGTeEPE5qKKbDr0Ebk4SXbtCcmHNAncnAo/GNayLKEHn56Fc8Pkmh6n2zrL0Eas8f/EMxgryjxdwb5+ksEM+gyJ9WbtU7i/m6PHNHDlaYRFWIlz6uQCMv9dbHneEq6EgF8veGev5pZQ+8nyTx+sq7R/72Mf4qZ/6qfS3qvLjP/7j174nIjz77LNv/ey+gdG1yySMhSQAQ+MeP53UKce77KmsIjzBlPZIEGIxj0gnEEH2hsjMCLIp0HaCp1hRqnY0YkhxaP1+qvFZXpERzCs/W2UmDbnCrAbKEkPijC8y8wqIYU0TXAi+WqHPj7NQURUFschC1gOEj1RiHtNhjayNqafK8b2xJWDEA7ns4NaWtxaKeLuCuN4bwWce0sP8CGdZRKo8FfF9fOblEjl0tI3WSGIhOmEdXHiKs/b90nGTc+187qas96vGB6wFV1jAmEGiM5XY1KrKPO9xPxNsX34Ev3hqn//1V+BPCnzwXoYtxrYimVBCn8A82sDRNDOhSkiFSCojSo14iJQ/9vjoCPZftvCdE1d6dnk24ij/bdNmT3skkA6XQtHyDfTlxzRfnEELf/oXXqL6QYF33kkKe6U5XH7n3p22uUd7sW6JORUMATEPyKm4YDoZoMtN73bbho+QXq70+vdPRwOmfnYntpycChxV4vUdPBLl3gT9zGNiMTpVa601da0ytmHMggquwAusWiqF2cRrJ0ihpDsvKRn8GR7hIqZTTBHmo4q9TT8FoMzDi8/fqIXjA8hqg3hNAnEumnOxhBUCzxzDfUVfyPuh0ULtxVT6fV23uFKcdBQ+94cpjzeILWjpbV+w5WmXLIBUwGZUsV61BTkpPLYOe/ZQreAZ6yF+6/gw4Sa3xvDyrI9fO4x/Tx3bv6MQMi5ba+fli7qsYqhifjwU0QNb0p7uQ/WwTUKU+pu0r/MNOs3e0DVWZ+FmVXQnAUYjISxXdM5bRJU7Cqdq4Zo9Eio7bbvF/jmMneY8+NMlYURKHbov8AO+X1UlVJ3NMSrwzwqshwMGi5ZwnD10neZWPwHQ1QZujHmk8H5fw0o8ND4Y/azLhTyqLBokIgR5T0paVQrWKR3H+a11TbFzoWcz9FmrCZ1yvV1xt1ZvMSrAFAUFzpqaO+4JqjCjdaUezeKTmuAG4Q50HKsLZP5ektmVeG1IFxpEgPfdhJ97gNw6yrBdw1u4dfOI1bxLnTlwJZvVCm5NLJLOz7r6+8TjKOUZrPf1l02YvsSio1C2ivllL3sFyLxFGgtffrlAo0uskFmi1+ApFPEMFAL2xY6QdaV3TtLezjur5xH3WaI3P/OCYeV8ICqzcQ0OKnS5yvTC5bwN5lnvKDosBHhZ4cnKZIDBcJCKz9WV0GA1HerIm+B6pODx2PJj30UPN59qhAfHbcww4fCVinpJpybkgnu9lIfDyj3t5f3zY5KhNz626zita26S9wsRDh1Hrg4m3FiDrju0rgqGY4XeTJaMu8D1qzr2xdQ4DJf2ZmuuJnUyXHcCv6jCbxPhbmX2uYGYB/7wxhFHi85S4OI5HY3QeduTUUt4W+DZM+B4muciFSK2p/UJ3Hx1aSmiBfsirpEqqY0sOae9HBHOia9Fmky+JXqxRp/fy2c+OTlMpgdLO50lvlikxgJ6ADJbozGewXu0K9ajPRV8qwoeg0WStoAOh3CVUaxnjC/Q8muOZDGnR3P18cIcJaNBoiWdmKc/0RunxmNgNh0aIwvaf3zB/1j0I2rStSTsRAYo+QzWAl0F9xq4v4B7e9cV9mBr1YOjhO8U9MbE5JUCkVWEM/HK8WleMbo632a5N2CwKNv0RXyK8sqbWPO3YHzN8PiI7NEDtt32LbZ++3f/3X/3WzHfNzXmwfraXimcK6xQ9GwFtyoUsdBYSFbzgOHeFd7yjayoSyGAArA/ovIqr0mgV/vN7dWK5bF9TXtIQoGglvs2FOAY5GLpX3PGCukQbodfxFtUfiqiR7zG8/sWK2tz5rCF4hrz2cE8PLfjPZsBVQBpveXNLg/xtpUcYNXu9tYi15ne3T1Lqvo7n7RiPNsKe0lpt5lfNGmdYe3eCotf3JtxJYlQlpitYBWh511meOrMXbMg2zoN+CxwsrIejRXCQCy3sxJj7rWULjfs/cdf66/Lxz1vsSyYFdttxdD/bgve05VbN0mh8akgjhOUKXgv+ryPOq6tQFKxhH0PQMnBinVdtP3weOJzgLq0EAv8xhNrSTaB4QXw+bNc0EjJVeR3CS5g+ck3JvkZDkOqRBz3059/A2Hp51L3h+jc7pfy3SAxnDIsPn4clhsYW3jzcSFs3kA4dYVdnUEoAndH6IO1KbLOCFbBi9BFwwQZ3t6CzlYsR7CubC17nrcqM+t4Dp+IcEKGdSJwNR5YvqzvXY8XFEdwE6zdG4CsrcBRjgYiGT+aytMobtVw/4y4MFFhTxXkd2l7PYXd3xcFo3A4knGnwJtLTGmHgg9LwacHDeNVsFDjgunFvPZcjE5htoSjwkAXz9ztITzZURsDng5Tb2gftmI9dIEVKfXzdoa4xypz8ghXNkjkI6oNDJab/BwocFbRZUfYq9N+PsLkksN0T7vXYFRTXXY5XDvAbbWidAmX2Hq/iz4XCoViNTwUJVxtCAcWor8SK454b+ACCyXPs9ucAFdNA2vD0fIcqsZQcwhtCyN4LHAz5rITyaQXuUteTLGOC7PdxcS2RyKDSsppbxQata4pqKIXV3BSF14Ve5bWZqCLBtrI7xU424ODbpMU2DI9LLKzQ6y+gW6A6SCjWKTFcQ8qCyX1BCebbyVIXSETtRSokqdt0+sIGzniTQAu11RjklKQFPVIZ1CisTCHx3t7KFUuFY59kmXRUNFcdFYAWbZIbXLBk7gVInau47aB1R+pCpko3mB/aNXS47nkda4KLALsl0o76RzY35ZLq9LPawfMmHve5nth+L0K5Hz2EI3yyj8J8N3rDdRQDSoGeD47HhovkAswlMD6+5sT6w5T7lnaePJI8KmtxZBCkCz0lCrfGjHjbS64R1IsGA3Qed/hED3H5RlM53+1ZnXgRdZ8LSs3Ch4InDcVYQx6sShIoL1Zhuy0KZc70gWg1+otIT/KZBE4HY2Jp6YFPibwe7GCfwOiTG2LcEPgcVRoAd1vCIvcPz6Cm6IAgKPZiupomHCjJwOO4OBsydIFPO0vzjWaUvajp7hWWEvbq3gf8hxUFVYb9GCQonOVzA8v/Sb3gHOKvYSkuIeDJu2nAlzllKw1houpHlNcL7x6O9ANhymVrpTNtcSPNzKSlz3zTgV4sjHjW1zcChaVpDz7dCTE9JfZqF8cr+zVnu4962DS9GS/wnLVl6VLhT2Ou/twf515e+nsijJueR7jGbz04qmHMV3ZaGasQXAZeS9k/pscSD6vvTF1h6VGRVnB4dTeJnxrxut62r/3e7+Xu3ctn+DHf/zHERH+3J/7c+nfRYTDw0Pe+973cuvWrW/uTN/k2Du8x0xDKkwuQWkAPd0g++PE4MpwiVzZmSRUp3x2nOZGwW1/iFx1PeYX/bv75yuu3jbhJBIjAfX7q1uNqWCG5YRUkwoWi5wrFPR6L9cCfxO+u6UzGgxOVHmioIvWehJGpacSVDTl8kbj1EMsYrkCZGA5QtWmoxoN+qHx20ypJAybzi0P/TleO4gCPD63f/ucwudehn+vgg89U0h+mpvD9w5lPPjGoKujUWGcy8+ZCjzcZnq+K7rXmBWHuKyFl72zNloBU+B/U+EH6JCqtlB4PO8N0t8pRj7C9tufgU+/lOH/jrvXYYjhyNsCTVzPRzP4yK3E2EvDQFzasVjv6MjtP/Hrn+W7myEsduQ06fZri7jM8erx1wlpUFJIqQro+2+iX5rDFbT7wHuOc392h7OKD43wldfzJTwz7RNrD5uuqnzGslUZLvy9js2DrYsWPagLZkxWcLV4oeiig8GQc4X3R4lDzMN9VljGIwFXN5bo6QJuWQhWq8ok5POYBKzQ71HLomPejEwRLfCxXPq0LWIKzaELbIrlMl6Oh+bFa4Pl2CcPsP/QYZ6rMoyH8WIFL+z1987dtU3lAuCtEXq+gC6YAhNcmNmO/ihxJr3X/NnV2nBXpNd7PlM9GwuK9miFkTMKa9WkYdgqp2qevx6v3RY8nqil3iD8k0/+Ot/7HR+yRbv9RirIl8Rox9gyLqlAiP1zJ03yMGzE6kiURttC/nY4SYgrA2gWmwRLpDgxjDEsFB0MkxH1DOFEKM6BGwj3hsiCnuJ4rMpjNN20jOCI769BXYQ/dqFY79NAuDVFxVq97SMcSBbuK+xcRP53LMJs0sDGzxdZ6S1z2pm3LGvDg5TTLubNFKcRUk5yv4HtYmLl/vgoUTwrnXbgD9Q87aELVs/FwzpjPZPoCeuElB4WjQwq8KiBd12u0z1L3he90AO10GHmoBI97VuF6FxZnuMKoOCRUvZvcji07idvK+AsaZnCP/mlX+N3fceH+j3aVamWK5pR1QufTs9O8gW9Cslhv0FnFglxoeo9qTVX/yZ7SZORottQDYRjER45DohY/Z2j7X1Acmu7uEmHA3jxIm9cua+V9PbUlHYX5ilkK/9fVFaGDs9KLK825bUfDHtFvVRjT3ZLl9ioFZ9rg3Kh8CmFP7jpqBpT2BuPmrOweBeGBZfau6w0RICPhvDqjgifkreWBgkwmeWoSveJfL1csngd+TqXLV0BK8Q6Dz08ibiznTusKMw33B9O+A6/eUr3qCwt6yoAkzE6a+37buhUtYKFh6ppTuX80rUwipZG+uECLg7HLJ1u/JoKgwq+w+G12kB2k8/+yqc5/NAHkpKrQDgQ+M1Vdpy6fBHD3BeqnJwvqN42ygbFdK1gb8CN9ZKHvjYoKWshPqMUgV4vp30awSyso4mmn3foXkPqZOD0UEW4EGEf2Pe9jNaOHp0YD01pj/e8WMJ794kt/8bxd9FCif3duD1pcwTj+7HXe6bpkfd9zUizOLaU3DTHxxu4u5dpmghXFTzbSx3JfG8s0I0q6tkGPRjn6A8le6IXAcZFCnW2yqVFFxG02jp78Zl3xvDZszzv7fNX8o3yTJ7OLa2llq3q8aaLXYhwHPe+sKBJMbWqqWgbaGbLLIsm+Pp86lsxXldpf8973sN73vMeAP7+3//7iAg/+IM/+C2Z2Dc66nrILIB25jkb4bTpYkN1c5K8Xsni7gz9kQi3KKztIteqxyMg0wHyZJmFCJXEYI9WK16Z1OQ2MKTqylGobxE24pWW9xvkwqhmavUC14m0j77g4nNSM+iGlVu7vNARBYzRCo9YaDwUvVcrK7Inq44qtxT1eSi9TwqmQeuedn9WuhYCkz1A4Nce9AH5lVfhg8/Qk9zheohLfNbp0oAcVB46nsOBqcxCGQu55KI1kVA26KJNXtKAMfdoiQ8YfrQBvqDwR1ctcqNOfVxrsZyzGizfPBTwVQLvvQN/PMDfe8Uo/gu3+wQlKue7CE4kMI/WcMODn+ucJ1hVNgEJMTw+boMwny/gYB+dFZbbbY/G9ogUvsUKgyRalfdY66ycUQv6/E3aP6Csfu4lfuXb7/Ddz5yYMKlkL3sb0hm49vzzBXzwqK9cks9Xeu/C2pGYdwcwZXOCpX3se62IrXOSFIcovKyNSVyKpLw1MKHvoeCwCaFy+EIFBwH9h19Av+9t8MItcwKlCALyPLfXc6XM90cuUEcDYMbB4Lw3MvYzvNCl3+xQ4LSpjUasNhaWVixjKjij5h0Yxn/crBEPb46RGTGVYiDWeoqDsbWffDhDnzmweWxFf/RyYbaVJhcEmG9iM9N8piQrD3GnYyE6jTJH6Y1DYNLwzMYrcRNfRbh3fK6HsXJk9TIu5otMS8oK8rty3L4WEy0F62j0CWrdAw4p6Jgx9eecvvTorUiCLw9BRjVNa9b9uGdaLLXOOvRo6CTVUrFu5sel/GCZDszTumqRuqZSo9WnCQQL9UyKM9fBflq7twCE2RodW0Xdl4G7fh4M1BwiGIWZmwKfHzW0a1Ngg9peqUpBzpSwaTlrhGOEIUJVF572yrzsAnkv94oIqDTxrX3yUfk5qqKR0M/Bnnoo69kCnYCOzQtmRke/VpKq5gfnxx1mxH5pUPF9m42FxEeBjWxwElWOsSAvbUM+n1JMO50Ji3AZl+cxjuMJcrrJiN/jD/bZxdU8GQPFkUgAVi3NtGYplHpEojGxnV3vPE4be8Sm42pYWf2adG9NqQBCVtyrdQtNxYlY7vEldiQugP1omKJQmHqbAxzW1vJWtQ+jw3KNNy2jV6/Y6HTQ7MOhG1ZXxb9F+BTgagMnNZ0qa7UOG63mInSdwsc6eL/A0TpQ141HzFnI9rASc4YnRYG+3BLnc6OBzy6u87dt+aX8t6sORsNMU6pMCxPNxmCdirdkS/voxuX9Bl0UmnJS1LPokB6pSliuWQ4k1eKIjXwQ4QjhFLFe7Zf2W4n3UGvnerAVqSTbV81G67hcAIOrjvPRiJma4fYfA9+HUFdewNdhrwTm8znHlXBaFXCOK8JqQyxKSkQXNVq2VLgzn8PBLSwsPj7cZ7Y/ZryCLhm+41oVee3FeVzQV9pLeKfO81eYkTwpn50JjLpvNQqCr2tswXgqdl4OXIHvt2X0iLuDIdUsZHSZr60LEMK8irnj9qrEHCdxfmOB1RD2z4vq8VHmKQ2A14SU/ugVbtuSR/XJHH2H+Z9jRM9GhPFWZEiUh4ZANxyhy37USy/ya9bllpCFY6NU2NPi7+rXfncE/2jRP2vb8vUWXwfgSYsej5Oul2QWp5tnAm8r9j2qE2Vq6jGwGI0YXLVwo8jZj4aOp8nZ36TxNcPj4/jP/rP/jJ/8yZ/8Zs7lLR0Xp19lHsw6vnHvUicQTldw1KQKsmVhNhXhEVmRzZvoxKYk4Ac1crXsWecAUJgsO06nzTXhNl1xxcutVOyNTClYGdLLNjJuiWPpmRqZvX1nBDSzNYytIE56vsMWq+MHgQfALck5ixUgI6iWbQoR7Jklt5lt/KeFegJfsRBxgmWYiwh8eKvn4kfubR3CInmoPHjxerGGkwFl4af4LMEsnAv/hxQ6Hqc6qXIFy2B9W1vNynqMqv2imtIx1pZqmNu81WK5mKlQTfS0RzgrsfYUP/x2q8alW3uoZE9g4f1K/77uzE1wy9u94QJ8dE35a4h9LcL43b/zO9Gix3caWlxLzh4/b/3NuLDbxTV1gqVqcKZw7+du8PCDz3IcxjkvMnrb4zO2LZ/x8ycteAhYKRB5RHk2iPmj9isPNRMxZjtt0EWumFoSyxweX7xWwN6QK0zYjKFONwXOhRweHwn4Vx6j9wPVyzD4mRcJLz3iMigTf5h4CFZFTgfA14Ar2IxGOQKiYEjbqSkd8LiCI3Irl4F4T9eRoItNFsaC9mACiw5xGzgyD7A3SAyvvObaB4LeOYRHnkfu+KZxj3ZVWy8/ingz62Biwqf63vksMkPEa9WJ5OJjcUmi4NE0HF15FX8lRbZpIPX9RrEoAkipN3/oo7/D/n4rKshvn4mIR7MOnQwTPCqWl2hGH19bv0UlWbGLNU8QqEc1o3U2oJVVkAOgi47QDJMg9wpwh1g3RfJRrz38+Grtz7SWZEvnaUTST0/n2w2nCxex3VsAwpM54abB+RJw159bRSN1fO/7NwaWo4blZbl8ek1+oms5b6pUc7KUzVLYfZyfYLm+3r7ourExQ9Qj9yHTHQKM1YvEXbTowdSkyWhw9AeqQFdZWlzKoHA+eDWqGKw9p121n/bj+zfFzi7rLheTijMUCv4uLESKlm+SsEf2R1Z9fBdv8/5Uf+gHvisb7oPPoTXeMJyYQXfuFhWLECTjq5/J5FEa1N41Zc2FWp5u2dIVMt1NToAlyKhmIHAMPIrH342fcQ9UHPsL3AexyJgnEabimhgxfUS93MAktx1NBQqLPa8ArSDFQvi+aiXoWODSjARrTNaz9m7uZceU+H+G8lGUaqM0dW192fGq8RTeqwJneoo7Yp72h1upHNdkNfq8b9ZlI2MBVKlIRzjHIixSKErpaW/Q5WZrDQ3/7RgUPBFgs2E+qq32STxvrjBPxFuMjiboRZvJoFrq2TzAyOWw8swRp+UGn9TiVeNnAqsVmyNThh8AX6yE73NHR1NZamF0hP0r3/9dHGPRnkmJ2hvAeeQB+Rrtjpt1y3gDHOWM+8oRRAQY1rQ1BO80g1s2SuNp3BYwOeppnvYJdkbm8QcuYzD3ujPTQY8PxntfibXWO8IMvog7yigU+GlDWPh92s4ecmitcDcIgwid/14A8UIgI4TFuELXhWEs8nV44wpklEHjb6LCrgoXc7gxKNL8TJZo0nmP87J5DkXYHFheu6Y90/QYFEuvmzT9RZZtDGO3wi4Cd/ZswxZtn+FEGSYxJfob/WQDNyf+T0W9D5/Hhe9XAjXSnwK+sQiXh2NYZZxMhok34iR4i8fretq3x1e/+lV++qd/mhdffJH1en3t33/iJ37iLZvYWzHmQRkEO4BWaEzp5gs4OUmhZKbYehhw5SHjbAtnWehMgvHhAJltivYXTsCWlhs3n3h/zRSKWwhZIswdgQYYcsoecLZCpsOsDMURtOcNS0zWnxnD+fZVmcxbawkByasfc9w6LERQsb68d1ySivlL1Qik1ZTjdg0Zy7/jwVgAw0FeMdn6TZ0PAe++DR85h4/PrvdcjERjV7hLXMCzNhFsgaTUVi6kjCXmFInDnxdMJ3VS2pNXnWQ4tVbBqnxSlfcIMOuoB1Fhz1b5ZOXaVtjjqX/2wIjw1QaOq74V0NxT15QFVK0yZo3lDPt9pSCaUZofu2XZiLtvyWiAXi2zNbjcH55C0KInc5RbeJX7F5CMGGQF9/zWgFu/eQkcI678JSU2kITNBF9QW9wNltNeeBzi45J3scpEc08sfURxhj4doYtcWDKNUIT8asEoLpV21LAhO4jBFLDPxHMRBT+B8LmH9oUG27/fOCO87Q7jjhxJ4Fp46p2Mn/lVSzs2r1akJ5rWTHrLf+bXG/FYVHYOHwDaDHcYJgqhCsPVIaRkTZlmgVAiM6qsddFS/LDf2oeHM5STLMQkRm0MNoamPvXszULqGQzkPu3xRc5rnqYJkYTSeFSoBuyHLsv18T+VwhGnprSf+E0izqRwVfnGKshvwZhkn/MWjsbJGIEIs8o8cVoec5JcXQSnuAFmNKDx0J0IShRkAqCbDXo0Set3JsIL8V5+3yoaUY8EWXTJUDTxvX/s3uUEtvTl+WtwOl3VKN+oEmZLz60XHojw2/3siRg9rd1zmwwSgA4q1stYLDHXXbDH+HzWgYfD2kL+cViqAia2wqn3a/jyuj9n8v6UoZ5p7TUUhjNlX60OjT5SuBkLREkqwEolXoSOa1721xQOJyZw9vLZfQ5xe60FFKAtOm3SVFXkmjKwEEndIRKOCMjxAPnyWYb1muKXP4tGUQDxysuDoSnTM0yhvpaKI/QcEArWUWTRcnVURNWldTT4anXYVZENyNDEwhMRHiC8E2v5ti+Z/1VVYkl9L5nnjrLpLDSthDGe39IZsN7AdCt8HL9nlf8eYZGJvYr9AEc1OtukonOmuJPC4jtV/nkwUvJOgWoNg72BhcfjueyQFJEExzWag+W0K1Z8N8JW0p4SCeL72Qb2fE0izyt4e8JpjG5eUHwQ93Vaw8OttojqbwujYFTiq5USPIKucuSr/Hm3xRXlGxC+tPBbZcW2UziIcoKf/XKO4rRE/KG57oLC6ZLLt09ZAv9jEL5T4LAyJW9QmYFkoxlvDiu8PVpMYRwZTBsvkBciX3Aafb5kPq6Y1lXinWVeO1hPbWYbuMEWD9UezQKjGWWV/HLpa4dtGT30vr56uUYnBkCU7dP7yiKhDrCI7C/GZxU8MgBMa/Th3PbufEUYkAqCbvDo24j/KokOI5bKsRoPYGlyQjTIwk5b5+sMX5wiQi3VdXmicHOcV6ayVoHjaAgtaBoepbIaDTm4ijhZ8KM4qfnGjF7liAtfbe3ALofYsLZFvX8F+yd9Xl++3z6Tpwv0+f2enJJqDFUVl75X+BrHpS/hGwjMJiM4zyJ0NFgDaKc9HPpmjzestH/uc5/jz/yZP8Nqtbr2b284h+JbOEQqPtXBdwXzToWgdCjd44Aejbz9S7RURyFUeEwuzlZhn1WReCUhTWBviJyGXnEqUUXma1Yj4b5b3fF7pJBZ50wLIbWFEREYj5B54WmHvtBcwgauIEXqbe/HwP4aOMnFQHIKgORq2Qj3gTtk/iRANaipNl1WRuIcuD6HJJEGTPHL3DZ/p1TY48H8bXfg01+CF25dP2C7FPb4LAUuNnA0zgzP9yISzrF49U5f59L7oHs1ul4jLjy3Iea059x2VSO0/yZKtd5Q1+J57H4twECeQlya2qrpv3RpROr1iEoJ45MV3G6i1G7LuX3FhEcVq1A8EVhtNkz3ang1huQWOJOI+A4qHkOZSq4c4RKwHuPuRfU+TYrw+HjAe88uE2Uucy+fHhrvNGNS95/phyp6ZUuieehwzrDwJN0bol6VWKEoWBYJqfZQiE3Hejyg8TUzfBFuVPCkit7hAkc+dAf9tRdhA2EPeM8xbYAbrkmWxSbzcvkpW65pnxlwznWhMoj0jvETgT2sxVAcDWZhZ9KgG+3Bo5jBIApVi7iuy41FYTQm8KZ8UI+SGFZWpbcTYXCrQj9zDvqcKW8lHqY8cPr7to0y8857DZOKe8URi2HN/O/9iEf0ttnW7QAmjzbcp8/cQ1Rq4/Mvul63gVXbMqqbjDs3x/DK11lBfgd9CQosNuh07DDaP82wXO+IPxGmnqRY/FmPYj/z1miB5iOhgF5uUuVhMHz47X5T3zonLUI7bKhWIQnFota264HC28q1I4Pflx7yuihehC6ohY/OIXgLqdfEUgAEC18vojN75GG4D2GWQ/+jkSU6vbtghPSV4YBngRyJkJXhZHtO4fE1rNa76UYEMPJIzVXjK0htp6bxfMyscrwJZs77YuX4qqKrcj2X+J2XgAOPNqrWLVVTmyISz7lP5wC1ntLLFpr+OU/F4Bxn5pWXeSkipQTgcIBcLrcRP8MdAqv1hkarwpOpMNsgTjunCHPcqFrIL7ngLL2OODoZwjIwQ5niaT4FfODRBYC0waIMhjWCyUGPxfvTs9UeyxE+KbtxP2Nh04t1ylXfuaeRVyw2MPUUn4IPxOEsnrHARjKv9y+iE6tWn73slgKyCUqL2ch/QeEHHf+aKxg0xhdqxCvI5wdJfMauEPlhbRLzkznsHe6GbZu/X63h2X6+YSIdIr3jOnJ+Vy4TAjqp0NhODdJZiVHskW4qQOvGeM8fjusXFa2JWNg20wq9XBReepv3XJVxpBvlnAsY89nYgnW1ZDkZ8FiEfyHw7ztNGzg9q8UC/ESEzWbDTSrOIowCOqxMDr9aEzx3OCrcoFSzjou9KdMo+1U5nS7KhLODMbLMPIAEmx/8OrO2GB7fE300r/GBWpRG8tSD1WA4jEWe6V1BUjrJIXDmDpZU+yLSjL0ajdXIrzZwVCflIirHSN67GIYOpiDPpyML0d8EtK7z3ifh5xojuD7KfSsKIofThcl+3k8+tqteVeTooUiP/RlTgUXTWFHqUnwoRYvZGvYOCqKzdbbiKMOxdnnb769z94Ye3y+idEtn2Pkc/Y5j26fkpJHElC7YqtVRVUjVkbiXmBHm8WTAey/Wzs/z/dUB/VbqwG84PP6v/tW/ynIZe9X1X/8yjjvPfZj/BOWzLYTOvQyrzozZJ6OU542YgBYZ3SOypz0JLVGgKi3KB14MbdP1irowb2lHo1zopioZvPjzrKjKOFJSBDmZIKchF7jaVtyLYcRFMwH11xCQM2BUVkp0PBZSyzcFXhVxwSrCaRVu61UsxLPNaJWe9Am7Q6zLSca1Kg/e3amZE+eb60wu5tpGKbpk7mA5rEeDdMZzP0WDdQ8PHYzPdWYAWCXdq5CmbV72vsL+mlqXgXcJVG1L3VTZ0w5Z0YrSdV0Ql7qA8bkjeHnVl6afFhofYXy0sdD4OOocIp/QpIIhRnSi6exv/Z2fQSfAapN7NRdEZbdCphZmlHqH9bmzKpYTVsVcreyRfvl4aq3OLn8ykJgAAQAASURBVJa5anzQ3Tgb9+58mb2mycuW4eqjiDHgprL+uVcRpNEQXfVbokU4k3U3ElAgdGvm+95lpMrn+Aj3dleSDHVBBN5+E/1jz9MCm9/9DDxzg0tVDyk1mKri4bn2hCLnK8LQq/oX3DZ52ym2GWunlJixWP7vOcBkiMYORtrfRsGYxRVW2ZbZBpmaepULOOU1HTqD2ghwZw+9whinw5IU95LhpZkWuBL3cr6Gaa5/EH9RVsef+2fjtNU+LykUwSHsrVvLaY8CYzwOIac5cNFaP2THlf/8b/y3fSZ+5+urIB8FwBJHk7fqbGWFDuMquBC1H891hCG+XHgpvXTjSlgNsJaDGqMIsiGm26ytnY4LVtajXXJYOoUndDpELkNPwbqtyhM0yaDbIfJ9YPM+xtSDoKDnS7ohMBpwKVYw6ZnCa2XFNgtjtcPaNCCX3nqR3PYt5qDqugWB15pBEW6fDRGVbHnZwcLjzwuBC67jHvkn9jKkEd/rMXCmip7OzPPqBCXxvlrcuw6hMj4Yo89eBu7VQtVAtdgkb3vir/5+DBaCv2zROvLUTDfLdKylG5BxHEpG5uORSYmlwLkF53/+V/5Whi0q7qsOGZpBdyw5tzviaNmuNinucTn3xoQ5zNWL65JhEui3e1u19r62orQ3xdJYYhXsqcN03dte8EXENJbLfvjuNV4er5f0iqFGXaBUChBTVlLXFMcGBTga0V11tNi6bIKFxUe+/kmFlSrfGVn2esOgGVBjSsgQUyh7o2RIPeVC4NYAznakc+yCDYzm7tc9gTLyucQq/J+mYvUQYsFiHEd1Wln6XM/6V+xx+djlhlDBsO5HL1R+AG+4osJ+Y4XokuXNbjRXZRr68yqvxogyr09pFW1nG7A/5n9Ui9J4V+UphbWkQn9xOX/6v/lbHAmcS67LoQh6BDprCVHhLmCuT2F5OCVS4koyzYoGkPV0TH1erInfPIXaOxixv8eunHbbUxijrDTTWhR0puhkVJy1bCALYhEpR5jcMfMbx5pWKfplr05h9lwEdM9MBwos8JbC0RAIOQpO3LBTe3hsVPzj3GCnvrBz7HAeKQqPV+htP4/Js+4pP0XkS9R7RYzfrw6xkH2ctynZmKAKq2yc63nWt49eUqilfwYF6z71YNGXnUtaWp7BWGT3YYCTcS6oLGl7CWKOhkP6+B3TbyM/HgOX+8BimZY2pS4G7R33b8V4w0r7pz/9aUSE//A//A8BW9y/8lf+Ch/96Ed5/vnn+Ut/6S99s+b4dY0HL3+CLsAvmthkBXhOl3Qj6JqiJQyFF1yEh5iFOTEyyda8qiTi48oYXqw66zsnKwhHI2N0UljZyIxVBa7wfPZIuKcjC4OD617u0MeKsmJ8FGBQI0CHq7WF3/hTFZtzIhr+zNeAu0lQc6G6HlCt+9Vz09jFeDcubDWRQUhfqn2aJ/oAeLBD4FZMgSi9fSVDvFrCiSkOuYiL3beqDP4LJzKRCYDBzWSAzu1WrboVXjWFxgfg8wHejRpz2XTUw4oaZzzSr9cl8VQnhT0SGuDZCbx0nveuK+EM14mOAqcLU1IKHEvFMByXxNGoEYgNAv/oH/khdFih6w3J8pe4Of21LK/rrohjTkD5dYvRFELEhVQsj/aQxyaUJYVdNRWI6u0dWFrD/iTjR2FdjaGCCW2KOeyL9zoF9KiCq37F1PiMGJpb5rZzsWbWeKhZce9jhAfx7EfYBPPIvf0m+t4jGDSgylqVkYfHVdE4QXHW1cFYrdBxTUdmDGUoVlSuAB6LcGtLAZxKzDMcopdFZW7VvhzoR+MARVYdNMO+8OdMRsXC40PMA60rOGnQB3PDkRIfCwU3CUi7vO2XRleS0ByVouKrM8wOFGWOKHxLcaWB4XzDRVSUUbMZaC4kqIoJ/V7sB4H/4Ef+9RJJzMD1RLOhL861V0F+x9Ctf4pKrSq6WKGHOSIqYArYhKxQb5O4OKLgOAYWzYDg9UniM5P+smwJIwtLX2ARM7eqfL9YQV7AKsjPusyLVLmr8NjPW8IT6OFYGsU+J/sMSvj8mQnGr5zyGlZkbuRe4cjzysiyqECNh8JgvSmMLdkgEcCU9hoeV8KtYp1irn5FzEGNh1Jsj9e2/zs9ssVIUW2dXzV3TVltAsw7wo1cOT56VgLQinnZYyG6DpwPCs8I0AyoFi0VmhXZgnZMMM8cbYs6v0tTlN40WVTO2yOexPO+PzTeHus1lEqt4/B/8O/9Uacx+WWSpVlYRwiXhaKQ6Y0teIiRZU53GI3YzA2H9pw4lql1PeV92VE1eb5HAg/E8HS/MCjFrXPO1D8QIpbXfuH4XxqKS7oSCXXA0m4SSmTeUCq1dVWxqCKc2fnApEHna1fUja+3ajVrPhPgL6F8CLJnfbOmaSrrGe6fp4eUG56IWPE5wPHE6rNs7dt12By+uSvtedF6zoby8RNXIjI+qf0xrtHLLn/k65mN1UX49qJlM6qL6CB6tSn2xYpvsTdGA+iiXzRzrYYnopqNM+U8S5yJijsgVyuoYT6s+bzA28SMOoPKohQbKdJjgH/93/u3OHZFN1WQF0FHI5h3fX4excz5kpW3ABX3YsdCdP8/7v483JbrrO/EP++qql17OOfcc2eNlgfJxhMmxgSwMSQhYKYACYQhBEhDnqRJyC/B8IROJ6Q7/aS7wUnHgUAaGpvBGLBl4wGBZVmW5UGyJVseNFiDJV1J1tXVHc65Z9rzrqr1++NdU+1zriwITqdTerZq3332rqq11rve+f2+fi7n/ZzcYWRYZ2k3EKxuL+Mmfs5pkZueG4upa7qNOrv8vFvAnt6Ap4bYJzYIQMcSjcFd0b7fq2jpU0qrAYyuX8Cu+2w79mj3ZTydhO8GeSPKn3towM92CxguYjZBajw+GysylZupA3tjAUf7rSxhBIbGOSKdYIhAnfr3cQfYWcSxpg54gL0mBveW99tS5t6BBrsAJztwPmZ5tuT+QXvRZS5br1ej89q4aP7QfdbOIErm3unepQibpYHRDEjK6QJ9Js/xX+F41kb77u4uAN/yLd8SPnve857Hz/7sz3L69Gne+c53/sU/3X/BYW1DZuEbmqiX2lFFfbTQ+jYv3Hwk3K3qJuCb1y0vZJgs51GWAcioaiG5sw2UpSrhyYZuIZqjXuNOQpCymsH2xJuZIe04TfdMD+P+HsByrKUPrIynVK75pEfOxSpqpq/rmwEbsuScAEwnQ+Y6b+4x/GQePMk+xTpfkj7Lxtlymssxl+bix9dKEaQt9PznWFXS10qCJwxCXRMiASyoTriwf/LGpfY2VeMMdTXYa3e2WO5GEWYFyKaa6uqj7JkTOq1xhmi7/5FbzCsH8PTcFczbOJZAiOm43L8vjuFoBOpI0cBtyzsvlDg9V6BTdDTtfJh4Nf05XcflKMC0hvLgvpkBkdgLnSRUNgbmR9dgI5ZRqCKdKKCt++F6tMeoaaLNq9wNkWJawHurEBXULtjxvM0ok+E1NuqFFoudVww7hnUvYFxU6Ijb+0N3f9+rPUj9E64fKOrMWWk5JqLCgiWC8E0bpN9x6eEx8hWMh2RaLqLts6JQVgDFPYDCOV9ay2XdGPVcYdV5NEcNHr9sqRMrcwB/4tq+iWBPrsPpecxIaDmTmiD8DzJog6d84Hq0m+iItI4xWhyeDn6Zk/ow95Cex+SLhUZ7LO0Wq+kjbM+0R7tblrLbiXwEYn3cxUl7f/nnvpQQPUC4B1raqdS555534njoqlurMNckihREUClc7XNeMJ8pI9PlsyGSYYdo+0nRrIsSoZ8qCsmcmW6GmTunsIt+HcZqr3ZrDwSiC/TSWOU/lfKgurEabf/iJvYTG5gZ5B84zc6ZTU66xTEimExc27cYZfdJRL1uRqeKuCDe5vLOAKY1jctOWvfXJCLR+xbYLSPX8eWAsbGsSC4tpDhZIP4BrCWzsLI9VrDRTgRQSpHj6+A803ZvoHtxLHAZgikKZN5ERHV3W82ygT4KdEat3VK8wu6f0CZW2AiHzWpcSYXB4a8IcojYq31Z/llLWRSkhpGAOm46Su99IWRZWYiOR7yxTjAUAJp1aGbzoJimpQ8iEhwUgsXMawWjdX87jtY/70qs+6T1ewIeSUvxXtOU9fgQS5vRMze/5r08XDeZ1haZFGjHnZasEmA1p9mZUQtRnlt4oIb/zSoOwR0Wnqit9mTfrch6hkJclP2ANN0Q5U9kVDiv97TcK+Efbea1JGe3gX4RrxfUBYn73Y2xK2mmYEyptr0COydGxf000jaOrJvTRdHBowxFI0TveVhghjAzwIqh2ZnhkcSt1SyFvpN56Rp4uknHnJbEybBi3Otwr3v22wVO2VjL7jvw+GfqlB1yAwOjbS9DFHqtxI40sOEdEl7/HWyNWQyIkXWv+wVPEsxXoBz7iKgNqmOQe27evNHeTcYHbt/Na2TRcHjRMKsaF0hq4MlNeGCCnYL9w6ewT1wIe98CjTHsoHgTqyjYdBWIOO7PZsUBkVYNjKZwqBOCaWNxqP9hEyS6CTqPFtG2cbOmbTweJMMPOLR7TLMULNOzfewc9vQWPLkZ9L8FGgAoU2dTwkxWELbLzEXabWueQ2bbDOX1iSMsPurSA6cZrOEsmqV7Yem5W3o1Szr1RBc4NxG/KNFZ9tyztGgg0Rf9nu0LnB0UWj4X9oq7TfPs5vwv8njWRnvpUq47nU54/8UvfpGqUsPt4x//+Jfh8f7Ljm+1lhcYjaI0FurtmnqtH1NbfLTICfi5qMD1Ld8ivbRTlT3nkdUOMqzaitx0jvTymNabKrYSI95Tcb1ccUJvIMh4Grzgl0qfg4RRuk3q719iWR3PmHdNuK7W68e0uUaEs6LeT69ge0+s6RrMpInCMt19B302q4OnsyVhw4N6bW1pE54cwIVJe5OlEbLlFHLQWiII7WG8oiBuoUQ0cOxTx8M+8sKvo9kV9aRiQbxFDTSNZWLhMQsvETC1Jash62i/evUUx3uGI80kSN8fdZ69cz6bwEbP5jJz8Wk852tn2EqMtHtDwf3bO386xikwThBoLbRe04aBE62h9PD/nDVQpMjxcVzBc2xMTNNzDHsiYE8InNt1EedosBt/v2XFe3uqCLqphhLGaFo6WHgU0fJI3UcCZYadzQOfVu+5DqaxS4ILsIs5W6VxoC7x2j1nKG8asy9a1QjYExl2Q725c2vpupulIsYr1QAy0TIP0ysYJ4OIEVAn0N2/W+U37rurmZZrVCtAtXAR0zTKHvf/zDp8wD2QTscx8ASMx+0FaxwYnWdklxfY87t4ArEHOZOSOd0Xbd+rYJAH+gAi+r77io+046fB028wAAW6Gdlc9+AYpyiARn2aiIbMcKo9nxNaCcezQZBfpvtwLP3dLWtTN1qacKjEm0tDlF933OSmkafUI58uZo4w6xfUvlEFUaFuFo3SWbegAbbQiLSfKt1yEvQh08+QnbmTRfq86xa2kv0dhhuHEv7meY5tLI0z3O1DF1QudMHuwZFHdrjcDcjLOm9cK/t2SozAoW5Bd2ap3BqlepMFmnnNIi844n/rHGXeL9ZKj/e80mdp7aVgdInilSyjRtqJmWYueraKZTCs4dAgyNu0W4sHX63dHveG+2krnETTUWVQkE3cGrh7+tZokCQlza06Bvxcu4WzxH0xFS1jaqE/B52hB1tLUWj/3u3BNPUYQGZz6BaIe46x58cQz4aQ8p/W7NMB2Z2p0e3H4/lZo9HUzOkQMm9CPbsAR42m++6iijmk6o/ESODymq6WCsSaEmRq2PrDd3Mp4u/j9ZProk0kFn5N/bwDds1gXZswn21SN/BhRyOF1bZdn0AN/3w6Jy+1bWbHOxwOOpb1Fj/4IzlsjuP3Dsos8+Ou3IKuxkwCJGYnSHJZ0LWdSLwEuGwJj1Q+a1r3tI2N/MXLvwWM+wWH/X28bHC02BNlnzsI9HsO+NTx3EbBmzvu+cMjp2c3zuD88e8nDU8cK5lnWrs+RbhNlB8WJvYYj9mretV1JGDBWMB2OzTDap8KY4HBeEq9qg6QVH5Gh6dQ9wzd8RJuhKJvxpRm1Gj3OLvp+EzdIFUDi4b+oqFeqOPT1hbudy2LM6crPHC+BTQN6nxfxWPyaOZE2IueZh34r50sFEB4LT7qRHClNUp/xs2LD2YUonXzdrUD0yDO49Z6NlHfuom9EJOIu338ApyxGrl852nsmQ0A5s7Y7XrHo0gy55oROek5cDy3YNYS0+M93ToHbeXGOUKBCEdWsXoq5zjaZ7D7/bfutIvNAxz1qVfGf3ZxDkc6iTxwgUwnA3Yg9GgP9Oz+Hnwlok717UGp95xVzhFkVWfB65xfatL/4o5nbbSvr68DGnE/eVJbd73+9a/np3/6p4FoYPy3cqwdfo5LtUzq/8YLmkNdFdwSDfYaPW8ERpIyGE87ntnGcUq/UC+4JYJzTGbkg+hlC8xnSdiMRIk9CPOVAi46FT9E8xLGk9KETYjMG+7uN4dmCyau9tSKXsMD0XkD4ilcix8j0akFSJGTVXVMz4f9tGiTN/MquqnS9W9xQWmfBZfmMmxvsnQT+s9Tr9nW1PUOyfRWJt5E3Pz6+qShT6PzKpdbZ3JYjOeh3q22ltqlxj9Yq7PmCGhqvAWTG61lF02RjxI+kRY+2t4y3g1c1YOnJlFoBA232W9YjJwSdySm8ZC1wVb0dvomRyNEVuDOT31GW8KIaL2ln6+Ubg4yxKZNiHC01iw4CKSVHt84TWNXhPxIidmZqLfdjS1E2/1hk/c7U1jP4/onSp74Mif3pyAUgMOIpqeJCik7dMqJFwY4wWCj8oJVJwxzuNDtqAERuLDO2TGBzUwcGGVMpUUEjvexuzOotWdtmSi4AXSvSdrdjObQE0ojhOZcjuOn9ez+vIU2FdCn0u93HdlMC2AvSTFLlFzv4Z3hDIh5pZkSRB6VMCswGuWovIJ/vAtnxvD+B7CnLkTnihfc2PaD+sOHKsZoxCgYCW4+SbKHiBE563mbd6q5t3QLqGGlsQpCBKR1342LSLONRuzcmG78+F1xr/mxPhOC/KXavqX7wQtf0B7tAraMvHMsDhMhUVCWX35s+kj6j3mZq9Ge6hOAHSvuhM2VMLaIKOCh5RuOLwOy4iLtVkFuxFpOAlvugsFYXho+0FLKrI+015bmqiNUgJ2BHII7XrjOZRlIpgqZ76OehdKpOL5BqXgiW4s6jquJTnFbWeZFznFHIyGJxf3n0+TD4f+xgqYRHyTvEj4igDRNAqYWUfVXL1pYWwkytgXGJnEfhD7toiB0V7nrmqJAhk00YL0MJtLuau0igC6aby1BGSSR9QtJSt8C/evV5EgXthfxy0uRmhtvvVO/ZxMa251jVvF6vKY3SzTSwysZrzWiU9fLMLMZ694MTHUHPzarJQFmbhGTBSyKNVTkPiriwCXjsglxT7QsKFAv5PY0rl+6nqlMHy9SAIw2WaR0gqZXh1r+MN+iDuvtOoKxuct/kztX6C2+wY0zny1a6fHtASU3DBMUZRUA64XWtKfjSjee12MgpOcGOZvcJ+h9ye36Iuz5NYQoP3w5xjg6tlrT6qPtAHOYdAoNCPn95sWf25CHUKyYZrWHvdiuyR1bWGF/pD1MjRtrZiFrNOvLWMi2LVfbkkET6f+vCAHoL0/4pxG468N3gmgW0y5eloAdFNipd85HPsesIq8JrdHSFIK0pK4aFPQmVdD5dV4SZuk+S2VVWOq6UYyqqsFUDauLhsZlK9mmodlRB0dTu732ssuCbukDc9toTbt3XntdtAWMbATbRR1bewtsP9LH1ERgRN9JJ12DFVwgw5XSRZJLaPCSDmvdIyxq12LBZWItGjXkP3ZGL5GhDtH7L4KJumYZAi0pQWgG6lavAw2K/A9BroLKPQDbMcyAkVHHwxDYtZZdK+w1mkE/9T9KPb0Q9erLCjg30VG3MusS2e8nZauCI70YjzASg6eirX9TGgAc9oN+EvUzURBT316SmNUapvrSU/4Xfjxro/35z38+AKdOneLrv/7rsdaytbXFxsYGIsKrXvWqL9tD/nmOup7zZFhH54XdmlKv5xEkTmIEupaIHG9IPS8+XTAhVk+8ayUyVAUmRABGUzoKs8geCZGAE7T6+5GP4DiiZ9X1ap827Uh78MCnyov/DGdEuIsvGooaxoPSi+hgcPmXBc6IqNFOJE0DGGM0RS69XcrRlwl03rSLholzo7XeJs5XmDeBEz2NLAcj3d1nOUpLct6dw9EIZCGwr3VK5h5tn3B3m7Q+JDSziooIQOdp4QHghU5RM4sKI1qPlUns1d7SYN3993nk/furVuGpg9CtaY/TWtgYqyWWm3AN8eM0cXx+nntI6Eff7/fcXDvmeNC6pWvmj9RoT4SeftVFbLzB7hjo1NFSZ7ULBcjGKPb9vUSNlDpcFnBof4/2oMCQyOHkcUYCHzfCqQZ1TAB2VkWUcXcPG17OeHD1xNtl3oq0+zk8LMKWm+eg6Lr3DArV8rZGzBsFo5HGYryh0Hil3s3UuEKKjuuLDj5V3NNdmjQC6sQ+4v4uAsZ5gwYIw46hqVQhbHnQk2LluXUt3+Yz5FBKjCmN6PrlIiy8kb0zVvSd+xbwB6exp8636TA13Jf3nseucC3fPM+07uz5yhAYLD1P1K9cmrRrJ3V8VrHXLMlbnznh02aTFjFrK67/dko7R7u6d/btMaeqLe8BiPsi+Y21Fvbm2HVdlJBVgq/jS6Y5DC+JONCm20WnoPH9zP3trKUZL7ArUck7BxxNr+FoInO3lG4Go7QMRWlnB5hjW9H1NIlnOTW+8Qa7tTSjjPrKjNlXDZi97mruuvo4V2RG5Zw33EXCMxhw0B3Kz6sM9iZzdy/b3uoVDAc5JySJ0BvVtVK/ZsuBKwIrOYybpfVJLuznPFXM3H6ksZTA+u5IkdMc31clWvd0Y4xGYC0tJ/0XgSu8iCoLzLQKciSss43v1+bOWVG0a5TDI7p/j4DSmEQ2SeBBrHZcejwH8EurdA4R6NJaZDqDUvfTOqIptxKjR9bSivi12r4NOhTTmsLpJ6HExyY1y9at87TBdHInynT+jop2VFlJl8y/vGPHbwy/rms5jGdxLZezdvx5UmuxvPt9kHn4eQt/ohDFCrDub4HHrpXYGk01tgQn7nVYXmThOgs/Y+E648Y4gqybkREN2mRTR2JLW70FehU43FMH5jKWxj7HuFUFv+N+t5R+39rz7jZdNNtTp8jRstOZbB8H3hvv0+rP7vgoezAui+Bk0V9L4FeIOEMZWO1EFHPn9a5wQHTeKUb7Of2ATeOwf6ylAIrplJP9gn9i4LUWfl6EV+SigPvG0PE8zb36q30ELcHYCGNGMUV255FUvIDYnjLsZQqwJ4LJdB73Fd4PSs2UmanhHnh8mCO98pgIQufn03iDfaF8c1A1zCsnpB7dgblg/+aV8IoO9kevxl53ApsJNtdXlRmmxBrpNdQhEZ1MyXktw+5V6j045LqkIMxQwLdQ7ibSaoXb87/vZVjfycuNKQYzDpB7/qiSKHvqtG/QTDMBW0OTgX35UTBGW8c62eD3SOooKQWGudGuGuN5mG/r5pXRAkqYiTDK1GE0tsRzA0OrpSwj67pV+D0DcS8CnHTli2lmYKpXp/x0awrr3aQ0WfeVZlkb9kQ7E/kjbvPE2eWItgfUZRc7rpyMddPudbVncJT8RR/P2mj/sR/7Mf7lv/yXXHbZZfzoj/4or3rVq8IGeOUrX8k/+Sf/5Mv2kH+eY7R7lqeaWOPUWEszmdAcyjVdzjj0aKKXbAMHck1kLj6dx3jmTfKFQYEZzZxS5VrzTBbIoGBFXO9YCLV0oYWWaF1RkRJHkakhtD1xRjhtAZDShFckbGSkAjCaMitgkhklLJ/a7Ai1lhhpv9KNIZVJpiMBQXZfanxbA9XzrIE8j8IumZ7w75aR5m7k65svJt74VPtbTnW1KJjZajcaA6nBHnkJq6LKdkgbdM+h7W8KFhPbirJ73nUvlq80qqRl05rc1fbloqUEvgpg3zhNNLRbRvvVXXhqN7FIEubiH8yP8+LCRdkTCR4i7O1UMERr3yr0oV72shfr5VaBcYVNOeal+IhFgeg6SfQbgjK0QK8fou1u7UbuQboIHF3DOECeFEF+X7pg1agX5fD+Hu3+fSvy49bzYYRPiPA08GtotMf2UOMq6LhJPV/q2Z3OoVRk2lDL6Y0so3t8A6LX2xvsRmjEwJE1qp0asdomyYfxfTquH6cAzEDWSnqIw7GIwqEFSOee7QLeUEvqGQUGApPSwLxqjc0rGl6pWmDVaN/RMQbaD5pVpEPfq92KwCMXEcA6P439zNn2PtvHcxJ6cW2+QjunRHlu3BmiIhRWN6Vf/zUjUMCR+YJNd6OQEeUfZXvmNPUs7IXX/KWXtr3vAhzvwOYzIMgfRP9hb0ReZgG7V2F7Hcc3bPDEr7rJDWNoTbW05t2T99xk0LRTPAHsrNb0T/cIm0J0npokPd3/e1AgQ2dguTGuOcNro4myJbBNv2zWthQzH2m31tKc2qT56ivhm17A5lXHqI1RQFKnlJksOnF1eBKeCWDeyRhNtV5Z2bON5DODsSk44sWBREXdL104UgOp24FRvZ9vLcm9ZeA0L/8GWI7uDGEliz/12VZC7NGO9mf3MuGMCJf75+sZzHzh0sX1Kstp6ocXFY2z6C3p3o5p6aD7oOs3tvfCeDl/JIcdX1FLW8Y3lte88mWBt8TsvUodOAg9o3QZu8JEY70JOo2NEfdegVi4fLZo6QxhTdy9MtCAQTdviYRjAo+LM0QOcMS1ZLz/0WoBW0vAaalS6zfEJMFVIbkOS9dDAxxzCN/1bSdt14EKj+aB9v2dcizfbLVE0q+jzEF6RXKrhFhT+iThM+kYV5zzeXtJd0nH6B9gXMGh6JQIY0xulZ77KC21uwM4GlvNsJMqXD+VDfoY7qbVgu3CqEGarFFib7EuTjddA7s1iYaetcwaKJsEwyV5vtRplgGdRrsqdIDexoT+qvCyTPipQviqju6BjmjUvZCUp8DL//JXgsCKEY1Ge2OqNNj5LDgkwlhHNRdX+3QTZ47fXjGjQFO4x10DQ9+9IMpRld062ql77jA2Z6xLFV9l1TBpGpq9KdxxBvtNV8ELjmH/xkux152E3GBzQ5MZbJax62jkkLvuQPxelVA64+Vl0+nAuZm20y2zYNhPRNs6pmuXZjEb9+z0UYwf2qpkKJ04wGFtvT5W2Rhh91H2cyPYBPs9l8NXldgfeQ5yzQmaTJhmQi+h20DKLnLdF9EIeado6aBBT5tUVOsZU3R8UzTAMbEwtJoeP2rUbzuxWlpReQe9N9j9XjzRhbPDONalTKV2du4YjuQhsOAd8iHSjmbStfai59MkmAmizvvFoa7iGTj94f8tILpn3af92muv5dprrw3/fsMb3sBwOCTLMnq93jP88tKHtZbf+Z3f4U//9E8ZjUa88IUv5J/9s3/G8573vGf83Wg04id/8ic5d+4cH/zgB8my7MDvZVjONPBc66IMW5bmUCf0aPfear+QF9AU6SX+GiNF/kP0SzLIkCe90Q5S1cgcGJR0gbEzHm1ilXhGvCMoaq1J5Ma6gWGlKkBKhK1dSfibuL+F/tijinFZOqYfjQaEAL5jgTPA1xBlkWemWWEwvnY8uc8+gvT/nltVrP2RKmJh4tgP1lYJnMi0rv1Ef7+HzI87vd/OQg0/twaBWfv7unv3INQWL6cnN92CelIH52KNOnNus8J5AFein80bTOFS493rko6JFDQjJZgrVtWdPak0gh7GGAph3EOhRvvxfpzD5DrB0AnToamz3iOPo1/KPACTxHk7YD79eVop8F16iNrXEzRNaS4aqfXZGvcjDEV4HLju8ApcmCIvpo3DYGiPz9eq+hSwfYqQhLepkvARR7u5wESEOyy8tJ9jJxUNCXJuY1VxTYwIO1Fk9SGKlutB6PzWPYIiXDdCbGtnoqOHwyvY8wvkeVC6foChft+NTdBxyraFThn6CFc4sBh3KSuxT/sEdYgcceTqweJA0093u4qk7YWAdePxijYWFlaVUeZzxNXGBTCooMTohBZGtEbSCPa6I9jPjLW/K8ArtMQp1oQ16l73Ryr8hu001lb9dEKaaaQ9DYCkPNQAFDnHZjWjRMf1JNNgaYYLjZr6C+AvQPIS3TMX7aUR5K1l34b1Hnk/RuuM3b0au94NRhiiYE295J7Lj2CXSdkd8xVgI6lb9rQwAdvt4BOvtxBHC2209mDo9jsKFLaokTwLke/jWDaBK61VZdfGbIfG4gz2JkRS6tpi64Z6Z4q9uKB5ziqNEZ42wslM+b5kgskNRoQMG50HWXSKClDnBaNZjStiaAfER5rdcsItj5qZEmrZsxZBEHnqageGqdxJLtpmaJhkP3owuv68pjttWBzuub3nS6bc/JjYn93XtH+ugTOieI4iYHpg9uYxu8DJVeMfwEJ/UVMXhjx5rOU94EfR8WN0fxcjyjsOdWCz2m/spZvA379x4xwROikUIkzdhUOrt6X34DIM3HzPSjg8mcNKGSOoTeS3gYZnDVJmkR8DJ9wQfLu3ZEiBVvHrivtwrauMbnlf2qXXpIm93JPrBj6W3K9Ee0UHeQfBmdwMBLu3wB5u45rs4trc+XEuGh17N7aN3Wc9p5+HiUh4kYgy8O2p6i5+LKm+4t8Payg77d/7WxnZN8a+kxsj8eUISWZB0YnZKD4jKbld2CrVgsmgoJfyXfztJRhZ5xFsP4PZxBkgSjxT67oMJBsvTFEyTmksZWC9FhlOyXpG6d9odmph1GDvZrHdmy/PUN1GOAo8DlEPH+TYYdINRtA9cRE2V/uchFhCl5bwuHGWImyXXfoeOTysD0FnADUcV/24qoasqsEb7At9HWoaLtQNfOQs9oUn4epDLrJuFDQ2F2xmaDKhKQy7bq58avwh0c4LcY8m5L/Wgad3sIcV1FJpInaeSGlD5YwOsDTumqXAZBaN8yY6qwJBLNO0N9RdBlYaZef2c9ivOgJfcQL78ssUAyoTyIRJbshzb6jYUP7nn6+LRtHpl1hXvx5KGwDGNYuyYGbU8TZDsXlmCJXbm4V7+Mzq2hTGkmeJzeUZ0skSPjohUfjcudmv425UcLgMfDBm3up5jwTXy9OCtFu4en2qC0zKkpUdPz4Sxxnt/f9lPp51pN0fFy9e5NZbb+W9730vKysrf26DHeDtb387N954I294wxt4z3vew8te9jL++T//50wmk2f83a/+6q9y9dVXP+N3srzL1RZO+3WdaD1hs1q6ujZRxcMQatxS5PhU6UyDxOFDQFYzZLqIaUSjuau7NgwEtjyREFPyvNCZi7jUXf2SEYF+D7NdfUkgOhpiXa37SABmlvFKqWn5eOVTzz6zAOApo4i5ESDKKVilIUtbFfkj5XapAJ43rsfq0hGEFG2DPRXsx1cignw63mXvmd8MWxNNuwuX8NfU6wXhLhrxDNPlxg9Qr3aoQqRd9dov1PCbbjz/N/B4Y8mqhjzLyERBikxropc4ocjBre26mQr303uRwSw7J/zYLozgcBuoLaDHG+OHEf7eFWeMibCzs6tj7RTYcYLA3Fq7ZM38Ma40cholejDYJ1az56cWZmKYIjyE8LtGqA38uoWzxwQ5txMxFVy0vTU+l9bGITdPSxF2P540GqdfE77J0eYCbaP1tSLYbkkzVuFUN7GOL3rlXXuXeUNTFkxFWEuEnwerOSSKHN0Yo9knIsneBI6DXNila13FtrVQExGl3VwKKEhUr6DrnmXqNE51CpqWjnrRDX01EXieBfQF9kpXK+tLABLB59/PUXAlmdYKDJcohN4w9vutEBx6PHDVUezXHFa7/Ieuwj73+AFGw5LQ8/QyqWC1HTFqpeC6r45Roz1uFQlnP04BJC84smjYsqnzhYiEvFth+93W2Da2d9r7C/58CPIHjdGCHS1U6YDA/HdJeHTCY1JWkKYJ+j3adMBMXR1f4mBqhjV2tXDmrrAh0YHj6dNH2TPAFJpibYbKJz0A24lG274Fh0Pyahobu1Y4o8lnm9mHhjTXrGALpZszIlzh0OI8unlw4BptkRVkg1/PfkFV+W3ebk9YNRUTYziejkfiPHle1tJIBcVKmCwBly1ndeFuhLZ8sxB4T7k9ZrebMSkyvCXpFcsmU1lfuyVvBO4X+A+iStxvIjzeaJaZqeaKHA/tdlbudXjeUGVR3jUSDUhvQLn4K92QeZUohEbU8bxA60pTGeDodePiTlhrAd17FqSrxu2quBpTT2tB1utcxeweG6Z5WJSsjrUQLMQPbJgqQDMXzKLGSB73qgjHUKfmWkL/4TdGWAbnBQJgJcN5XMPIrON6juvYPSDxiKV8zN+zgyr5gTzcd60IrBYJoBpYV/O2azV6rTwcmGq2gRRLARg/htTKES6dIr/aU0f7sp7m19EvyKhWANb0mu5+Kh7aGTy+X3y7H72btpUiZqOQ8EpLjLZjYW/ORuHHLe52kqhewjFv+K2WNCN16Fl3o1mSXRaAENPHT/ZoBvRry4q1DC40DAYFfafXDozQd69BJi3QNwF2L26DqFjZdp9awA46CqpbNe1I+3TCubVM8Vw8P5Fo7Hp66QDDQ10FaXPPq3NlQ8aal1Vdt14yjzXeEozahryxvOxzu1A32K8+jKuZxBb68u/pZDRG67S9/QBaL72d6PxuAZRs+h3s2QW2rxmIPgI/EnXMpTpzIE3R6P1URDsGzTzaqTPYmwSIeEn2hSh7bfdH2TfG8NAe9uuP67MaUdrPDU1u2MsFky3poRCcJoW4LJh+Byb7zYVmUlOtllTE7k5zlFd+VuB/Bz6NGvJz/xJx2aTS3nsnBi6yVLX3nxeE/t/TWm92pBcCDUAM0Bhhl3aP9pTvaVmXZ0ius8Oa0fa+jrCspVWScGA53pfh+DMZ7ddffz0//MM/zL/9t/+WX/mVXwHgJ3/yJ/nmb/5mPvKRj/yZb/7e976XH/iBH+D5z38+ZVnyEz/xEywWCz72sY9d8jcf//jHeeyxx/ihH/qhZ7z20ZMv4kosT9Y6ufXujGZNU8hq006N96jqG8RIu5AYE5L0l/V/RGClg2zX8aPhAumrp3oNj2KepMla8CkaI0k6pXld5lAXRosIBHdQpJSEyByRhu/vQtUrY6s3d1+NLijj2EUZ1mWSpCs5xmAKwVTVfsUW9itToJZdN6nvS7kyHiAkMp/W+XjPoauz32D390ujfaMpHNZWSa3e3uLaW7lDW224sSOJ4wJNTa2qqOBiuR3lMIWFqVjutJDNwZg8RNo9ME+Y/OSfCdrSAdH2NTg9TTRq2355qbszhmNF+xpubCR2tTcQuqL13gA3f1D3nV3rhP6mrbVLFaV07eZVTHcWTYef4ryg4gx2CzMjLIzwbqMRq1yEYSZ84lgPc7FWRa9xfcxTYeHvn5Q17DO63FyFbA+cIijwFQZ+xtHvTyA810Cz1qHZq3E2dAAeCoaLFxYzqFYKcnyqWYy2I4refhEgk9AGJApWoTnWJx/O6FfqnvfAV+20VafQDGewpnQiEkFb0iX3MmWDpM1iiBLo3ltBe7jbDjCJJQBpNQVuTXpVg9RArxNJUZZfCirWJHUd9rp1WM+xzzmSRCCW9t5BCuhSxCgFofM8BrSW16Nsh63vDTdvECJIP2elUtAeb9S2/D2jCg63WwT+3p/eQlxEojPwRPasEeQDyutSZLMB7PYUuxpRwRsRxk5JsiItJ24qAsQ9o7g5F8DmYCax/tTi7jGtaUpV4oduzx0XaW0NL3dCR481QcbaP9yv9VHgQpKel+orTWP3pcY3jaW2lubxDZrr1lQeZMKTxnAyE42ym4jd4suBAp916yiAlIUrOtR7Km6oPke1WND0VRn2v/OR6yyhiZaBB9pKcO8gA8/NXpKVJNbNu9sYYi2y17C5PmDk6dzvQW+4Ox5Ro0buh9x3coGxgTsQTMdgRrU+r/XXdme3imVtWbhysJhJ4/eBfhaMdreoyynk0nPycnu2n1da+L33fhAaV29uwezNkG6U0V00EptGERr3kKGlkRPs1tHm7krJyiLSD45/eeRvGg9Et0A6JuxTiAkvHrCpVcrklzFYhMQIRw/tR5/qEh6cw6/ttNLezYlM9ZFTny3hL1uKyiWMjk+Sy9h+BzusW6SzaCyLBg55Po3DH+mCWGkh07et0vgcQTj55/O/OdZrgwmmTvlkjhktYODironMEz/O5Lb+/aoI0yCLCLve9jvYaWK00zaOGveBnS/YKwwr3mFq4hp5sumLCyj1CmwGdhRTyWfW0ml0D4hd4nd+0yf8NQN645rVecPKaskh1BBaFX31jcqhlLcJcMu7PoCgYLPb4QYW61PFR/PWuJqLYy4OkrKTlvx0YxXtELBRdmFHZXfC5kOJGWhwomut1q874LlY763G7PHze1z3yBn4xsuweYbNNB3eG+36ymicQbtNrJMXNw9Dv47i9VG3hH1XynMo6dGO6uo9L0vCHo/YRh28gVxqqnYT29o1nhbbYk+PlqEe5QMN8Inz8PJ1WOtqFkFuNMhnBDLDJDeaHk98Li/vQHnSFKAsscMm0qd7NRNLPdCOKZVodH1h4X4L/1qED4vws8Bn0M8rNFgzT/Vp/76TKTM6N4xjXZb31qojPyPQk8+kTO29XZJsi/QVAoFRNg+AcRfsziyMjybpdhMW9st/PGuj/bbbbuPXf/3XWSwWLY/C937v92Kt5fbbb/8z3Xg4HHL27Fle/OIXh8+yLOO6667j4YcfPvA3Ozs7/Mqv/Ao///M/f8mUeH+cf+punmPhDM7LNq5p+r2QGq8L6RUeJb7zRKM9pMlBBOKBqGwICkRXoS0iLA7IRQtNc1El3RsDaV2LFWHPwCBsTMfIVwrE13nvM2QT5cU2sb7PywILTBfMuwV7gYZcPbuANZq6dAYlwIEfgyQGUweN4EEikJJJXX6/aLQu2l2rNT/+OCgKLSiC/MYB9agpl/XzgNX+jGsdgqYsJK3Q4j27xF6nYb7dq+4b7GgRIkMWeLX7XQV0LbxGwEwtpqtpkLlNZPny2CCsH947GRQX4Mo+nN6N4/OM0j9U46TuFuoRXDZsJSoxYYpFKCXWZn7f3/5uXZa80PT4S61X+m9rYaH9hkGxDnxK/IxosE9Ro/0pA/c67+RchL4VvqZXkK9Adm5EbrVXsqQOCX+/nYWOzc+fn8J0fKhS7413jzL9MiOcQHu5WsCWpRo+bghhHW1yBpohzDsdVTRNW6dEhKPi2sx44zOLNe3WKTNV13DV1jihxTZ6POj+YzJDOnqdHjqPKQhWyssvEjEz/AOJe8Y1cbWMRUEzrYMxG9bLOhwGoJzMIAdxqMIhPd5ProuedoziO3hHoT3cgyHYRd1eJy+8/fv0bNGI2GonkpAkhoKbU4sqQiHS7g3dpS0hAnQKVqawl8hYBRF0RujeXCNLUVvkZ37s+yKjShHkj6/AhWeJIJ8K9mSM1lrsbIZdNfEhRflIzzt8OODlDetWEoJAmZG7fuatRJfFQmtw0ayuVUlaIXklwcTotBHBlLnWGkNIaz5iYcMPMxlWA1iXCu/H39SWpmqwG2Oaiw32Oas0jmc9mcFljj+bwgTntDFC6K/ux+nGWpQFjEhwf+K6VbMKU+J16tY8ZSYqQ2Gy/GuQweRLt3wTV1oU0sY9MV5s2FwdqJPcTV5oRyhQmWi4VwJ/1cniBULPwtcLmH6BGWpJnfHGrNAqh1mptLVRm6ocDblheaPddxtJnTmSuQEfM2q0eyMokQU/82N/K1xWsFr3PXBlMKKps0N3mZS3xMyX5JJORmx3SvojIv/yLwiOCQPIqMJ0TboFOI46O24G7gs03o626xtJF1yBR/diJLA1XX59RwuNGIYF3p8y7s8dieCrftmDE/FQV412f2lr2XXjWwlziUZUByb9KftumB6tsSXfO1Ro2yk/tqCzQIvHDOfQz9rXDqyrxbHD0ROJkXa3CBagm2En7flsGtuSfwAsFky6WahmSodpnKPzsDjEdlC09p15cOJW1hmeNrY7DNO9Ty/T35itKR0Dg8wwQOvUB2gqt3Ebqc034fv/wQ8qvoxoavUMHW+DaK39MPbEBpDxjAsrncQZRjgHx5Foavr2IWDmerUneoFAuOYEWK0aDTqkBrs3ahc1z/vE09z5VVfA4b7u3Vy0RWVIj9dIdOPWcg8HMuvutQrsitfD1d6wqGFO39H9aifQ8wyV092ET0bDXT8KgLel40M+o8sN0gb6i2sXgEm9se5r2qtGMyHv24FXn4jOPm+45wYyYZyZ2PISp2/4YJIozsYcaFYEZov2vFuw0zlNGR3i3pn6QZ8R5Y4/wbW+tdre0UflD4y2+yzdZZ0zBItmcNw5WE17/r29l0baD3qpjQHeUbHVzWA6DbpZOs5LZvZ9GY5nbbS/853vRET4yq/8ytbnX/M1XwPAQw899Ge68XisvS5XVlZan6+srIS/LR9vfOMb+c7v/M4vWfPuj2vQtoOVhWYXagf/38C+Hu2IKtXH3W9T4RSA6PzLM/NupiBBI5d2tWthvUSAY6IGTgRB0J9Yd9EZwsAJ2qAgrBkYTxV0CPYrmDZuzpA+54U7IJMpzRrsLVFfQ9RfnwaucBvFOyb8fsjyHJnSPloKVGTUgAMzS0LB6RG8CRLnbHnj7aJpgqnBvvzeohF9gPVuFESmDUTn16yHj0I7oeQo3ArYbkYzSSLtFl6ARpa+zsI/A641gpk2mG4eDMjlnbyvvaGr/dlnvF85gKdm0DRJnS1BQQOc8gYcKuO8eYFk9isxiLi052SOAdvbL9Rb92mW1m6sWRINDhTEnX2t0Qw14HeAXxLh243wLwVeK8LPGOFlmaFzZJXizJzSQpE4l+K9gZ3ZJXu0+xSTRObGOXd/OG6E805xaVYNdjILyNW+O2AABMENt6oY5Xmor/ZgWirkhSMoIJwKUI87EQ13RJgeX+WKXe1woO3siO8hlqeMF04Aq0I9d8/tr52mL4ce7RKfyU9JX5wiVXYCNkGrLsxa5qhzrjOpXIZLO2KUKjIYbVXiFUAEBbwpgc1JVPIO6nOaCh+LllL0O2HtrLtZiDK6Y48k0u6+E/YqRCO3LOiPlLZoIAWis0CzM8Wu5216Wea9/rMjXbjwLBHkbfLyBrs/b9Uu+hGBynbFt3yTOKZkOv2YPF35r0qZkc/rtlEF2N05zYBQinU0XHCppt3PkwXT6yCjRiNf7p7HrOUiNgQuw7AbZ7AnkRRbOyDWR0bY561QF1qCsTDCucxwlVHwOYxZQow37QwY96hlJ6O/qNhOyca/mVSYPM6Lbxvno+yBLYf97c4rmRpw+6LscXAe58ED8onjbQKwO2J6xDvMaBnuATk+macXihoLLxb4/4nwwkwwvUJbV80aHXMrq0afp1/BPPRol32PalE+6kHA/Ib0rbb8nmClqx019il7kVY9sKeMGqRTBvoaGGEm3iBPHIPW8TKnCHuDbwSMyoLOVMve/Hr698EoArJZhXSktd12nSH1OQP/AriHhH3HTdBeT4CVEnYTcMGDlNrJAvppKpm/jEQ5744OatwF56qX74BdybW+l2i8Dq1lBbeH3LdlbpG8aMmXllWb3tD/fV8WAXCkgN1JpNd0bCm/Gc21/d0BvCtkV7aHTgGht7eXI1ZQ3jRchEvbA25pG5AF2FIdniahv/AerbXecbzbrvWwE12kKUpzfS8LmvbztbKz/ORjNUvmyBK+SsuJk8r2lJ/EVoI7fiziyuCmSbnDeIE0MF3tRl4rcV9FHVADGrsl2G1FDPO8yesJ4t7P6oZVZ7BHo11fYi3csUF1qM9nrz3kdDpnxOaiBm0mWJcW76fCR279nA1wRruf60C7YAc6A/ZQpDufYdFFGa/nuWnkt49iZUVld56s/5Ks80fVaCnrIhmnr2X/+Hn4ijU40gtZBL5lkjVCXRhGRiiTcYlEWQ6a/WAFqi4wmqXuAv3/aIF1IKGenhuBl9E+vgWNtC9sjLTvi7YLcHIA5ydLe8+2HWgXK1jvx3s6nTzt2Z7WtEv6Mu1sAl9SOVnpYKeNZnimWZ42eYb/CsezNtofeeQRAP7Vv/pXrc+PH1czd3Nz8890435f1bvhcNj6fDgchr+lx4c+9CHOnDnD3/k7f+dZXb/sH+Y3f/6fcObf/yv+w//1r7ntkx/kDz73YaaLRUBcve32u7j7M/eBM7Cnm9vc/etvS9Li4cb33MID9z0SvHmnTp/lzTd8IDKLPrztpg/y1NNnMcMFUnZ47NTjfPGjt7EFwZP0tje/g62LO0HhHX3mPh79+KdCS4H5ouI3P/YB5hecEddYbvzEXdz+6fsCIW5sbPPGX31bUFbEwk03f5RHHnlMVYjdOZu7Gzxx0y2JQBfe+84bOXNaezCeBo7c/wi33/hhICqIv/OuG7g4HQWj/fZ77+fGT9yl/7Awmy94w5uvZzaPaZ83PnE/t288HuZ8Y3uHN77lXfoPt6Ovf8+HuPvBR8OGO3X2HG9+/81a95YD58a8+cabOXXmbNh0dz/4KNd/4CPh3mxPeeP2XWxMR2Fh7vzs5/nwRz8ZwLzq2Zz3/Ke30p3NYw/z2+7i7rvvD0izG82I337wY/i+3ljLzTd/lM5Dp/h7xvJ8A2efPsd7PnsbUuSqKAu8+b03ceqps2Gcd9/7MNe/65ZIbJnwxje/U+tunfF+++cf5MYnHtS/nx8zm895w1vfyWwSo4I3fvLT3P7pe0Nh68beHm98+3u85o4I3PDeD/HQfQ8HhnLuyTM89c4bg2C3wB+//4Ocnl5UBg7c/ehjXH/zx+L8WXjjW9+tz+fW7vbN09z48P3MUGV3d77g19/0dnbnVYi4f/KWT/CLn7qXk0b4AQOX7e1y5I/ey0tzrR3rHO/xgTs+zkOPPk7u1u7UF8/y5vfcFOdme8KbT93JqbPnwtrd/dCjXP++DwfuI8B//rW3sbO5rV8xcP9nPs9nbr+Lk2hUcVEt+MPb3890Z4RFlfCbbv8Ut3/28zFhYWeHd777Bux8zmRFUXJv+/BtnHrkVOD35754hvt+/wYARXs1wg1/9D5OnznrmDo8dupxPvzkA1x+3kX/Gnj7H76b7Yvb+rwW7rr3AW7/5GdgArJSsqgWjN7+LnYc+jtG+Pitd3D3nfeEdTq3uU3162/Ta7jn+fAtH+WxRx9nFW2FcrbZ5cbbb1NDxb3+5F3v5+zpszi1lCcffYKPnnkoOJRE4M2//262t3bChR/49L3s3v5J5i6ddFEteMs73st8TbDb6g2/8RN3cfvnPh/23caFbd74W+9sOX2u/+jt3P3UF0PE6NSZs7zlvTe1akpv+v0bOPfEmRBpf/zzD/PR995CqA0DfucP38P2tovv5BmPfvFBpnd9Bs/9Z/MFv/2H72I2nysq7qGcGz/1GW6/7wH8hG1s7Sp/SQT59Wfv4e4vPha02FOnn+bNf3Sj/sY5yt70u3/Mqcef0lWwcPf9j3D9Bz4aDcJFw5uf+hQXxaHxinD/Pfez+fFP0Xf7sJrNeet/eiuL2TxEoG++5Q4+dde9QXnZ3dnlPe+6ASlz8lqV6A9/5HYeflSfr6nnnNnZ4APvv4UdhGNO+bnpne/j6dNngjL7+UdO8Y4P3657fqXADGv+8F03sLujaCXHLWx8+j4+e+sdgbamszm//stvZTKaY53BfuNtn+K2uz9PQ4N99AIXrxCuf/cN2Ex42hgKIzx480d47KFHg5/xzBNn+IO33BANdiO8548/wNmnz6qyPIDxucf5yEdvj5EUC+9+95+wN9phtTAIwv333s8nPn5XuM5iNuff/affV/nhaOfGOz/N7Z9/UB1Cu7Cxs8sb3/lex7d0ba7/41u5+96Hg6H+xBef5vp33aj/dlbEzZ+9jSenFzU9XoSHHznFBz7wUXy7ysbCW//vt3Fxc5tG1JE1+ezn+bo77uI6Z1NV1Lz5zMdZ7IyD/P/YbZ/ic5+7P6zvbHOPWz73UX08N4abbvooDz34KD6b5dwTZ1j//Rvw0RkReNe73u/4i8rau2WL6z/7qZbV9cbf/SM2NnbCvvv4vffzoU99BkYVcqhgsVjwjre/m3yh8zcSuOsjd3LvJ+8NbH7z4g6//Vt/FA09Ufp7avwkZjZHgKfPPM173ntToDWx8Ob33czjT5/FVBVSwsOPPs6Hb72NzMAn3bUO/eb1ZJvbvN/NzWfvuIdbP3gHHiBrVlW84ffeyaxymDiHSm584N64f9F6/Tf+wbvj+s4XXP/wZ7n71OPBoH3i9NP84fXvaxntt/z+DVRPnHHgq8KjD53ilg99LIyRQcZvf/pWthy+S2Mt933283Ru+6SyDmAxX/A7H3g/iyQb/8Y7Ps3tn/184JlBv/KHEa7/01u5+wunwo9OnT3Pm++9UwEwre6zN9/wAU49+XTUXx55jOs/ehuM5yFL4o3v+GOHy6E0cecn7+EjH/xE0DMXsznv/U9vpV/NmTs6vuPjd/E5N3+2n7Gxt8Mb332Dmz69//s+8FG+8PAp3S6LirPjbTY/5nQnJxve9c4beeqLTwfH4MVTjzH/6O2asbHaw25b3v2uG9jY2g0Acw98+j4++aE7wvzNZnP+/S//PrOpL2Nx8uO+B2CngkGXjd093vjOP47OCeD6Gz7M3Yn+8uTjZ3jPW2+IEfJM6P3x+3n8zLmQLfLQfIMb7/D7w2J3prz7ybuQvb1grN/7ufu5/WOf0ucTdH+87Y/IqoqLvRxmU+6667Pcc8/9ep3asr21wx/91jsQa6nmNYNFw21/eiun7n8EKotUDWeeOsv7/uAGeHqTza87wdQYbr7pFs6cPx8i7A888hh/fONHNF3e7b0bfv1tbG5uByPwwTvvYXzLJ9hz+v98seD33vJOZouFupC2Jnxk82E+9/kHg01wYXuH4vffFYxigJvfewsP3/9ocJDtnj3L7Kabtd67U2InNe++8Wa++NRZvU5jufv+R4N+aq2FuuGNv/kONja2g0P39rs/z40fvRPu3oLXnGBWL/gPb38Xs7qCTGiM4ZMf+xT3f/o+Zrhql81t3uP1F/fMH/3Qxzj96OMIwrwjnN04x5/ceHP0Zwn8ziOf5PHpxQCW+vDDp/jYBz7KIYS+0wG/7tffxhWb2wr3AXzyjnv4wIfupBINqs6qijf84R8xqxaapXt+jxs/9WmlP5dGtbG9wxuvf2+wGTjc5fqP3c69jz4e5PrpJ5/mpre/DyTWtH/w92/g7BNnAo3e//lHef+f3hp5kMAj776Bp2ZT1XnGc+6+7wFu+8RdQU+bTee84T++lT/5kz/h9a9/Pa9//ev5kR/9Cb4ch9x6663Pyj3wute9jqqqeP/738/rXvc6RIRbbrmFCxcu8IM/+IN0Oh3e//73/5lu/sM//MN8//d/P9/3fd8HQF3XfP/3fz8/9VM/xbd+67e2vvuLv/iLfOQjH6HT6YTvjkYj1tbW+Kmf+im+7du+LXx3NBrxd//eP+X3bryFt2YDXlE3fP3NT9C77hC9aw8zKDKyXs6kY9grc0adnMfLjH8EvAtNsV5B03JXBFaxrM5rskmlAAfjCmY1zGpmb3mA3ddczvC6dcY3Pcn46lUmL1nn7jzj/Z2cn+tndMqMXq+g7mSMgGnd8OOTil+dVlw+q+nPanqLmsFozsqvPcDaT7+EvFdoNK2fQ+nO/RwQmCyYTmr2JhV705rJtGJUNUzffj/3//VruO3ICn+/m1F2MwbdHNvN2StzJrnh/wSuqxt+aFLRn1UM5jW9Wc3KrGZ1a0r/Vx+En3+5osL3ck1f62bKiKe1viaVeu5+/wvwonX4yye01qSf63d7+qzSydT7N610zvxvp7X+/i0PwsuOwquO6+/9/SDea1rBA5vwsTPwky/TuSgzxr2cYWkYlhl7nYKhqPH5W8C8avhH4wWDeU1/XtGbNwymFcWTuww/+CTjH38JozxjWhi+0Mn5DQNvmNd05jW9qqH/0TMMspzV15xgpZOR+TF1M+gXrv1OPGxjNWowqdv04cf40iPwqhP67N1kfLMaPnEOntiDH7xWsxb8fboZs17GXpmza4VRo+nE00XNByYVD0xqfmZecedNH+HbvuHrGZzaov/xs6z98Fcw6GSKLO7Xo7Fu7t38L2r4pXuZ/fRXMD7cZVRmTMuMWTdjXOaMy5xZZvgt4FPAv1/UHBlX9OY13UVFOWvozip6j+8w+OMn6P2jl2M6bmydTDMwprWef/ke+L7nwjWHdGxlss79XFsdAuPGstdov869Wc1kUjGd1XxwXPH0tOZH65ry6V36H36SwQ+9hF6RcajMkG7GngijacVoVjOZN0xvfJx7XnSIR563zt8qM7plTr+Xsygzht2caZHxfcD/BVw3q1mZV6zMKppZzWhSMV3U3P/EDld89gJr3/0CunlGr5szKDP6Av2J3mu8M2H8h48y+vsvZp4ZfjXPeWWZ8epeRq+X0+sX1EYYWo3A/e/AVwB/GxhMlD4Xs4rJpObxac1b5jX/810b5HnO4FWH6XcymjJjXBgms4anZhW/Ma3516e2yZ8aMvirV9MvDP1uTtHNGJcZw07GXpEzm1W8Y1pTTSv+7rymO6vp1Q39D51mUHZYe80JBn7NPM2VWdyf6T7/vYfgZUfgq4/TdDL2+jl7pb9fzrDQdi4/DvxPqAd9BVhZ1KzMF/TnDdNJzXhSMZ7XjB7cojo/4RdffTk/0sl4XjejZy29Wc2gqhm88fMc+nvXUhzrh+e7/tbb+IHv+WtKU+kzbkzg1x+Cf/7yNg9JeKa4mkNbNRrRTfhQM60ZXhix+9ZTTP7pSxhlGZNOxqzM+PlOzvf1Mr66VzAwwoqoTFgzWq9pG8veaMHepGI8qRlNa6azijvnNV/z9gfh+66j0y8ZZEJvUTN96/2MXvcc5idWeXuW0elmfG8/pywzBmXGyqKiP21YnVYMpjWLWc3ubecYzivG33wlo0J51plOxuu7Ob/Vzej0CpeSCitzpeW1WU3m5mcyrdg7N2T4zieY/IOvYNRR+r+9MNzazfmfuhmdXk6vyFg1bnwC/bphPKrYnVSMp7p2o3nN/LEtzj6ww2Ovu4bXFIZukVEtauZVzfQdD/D0Nz+HFxxbpV9m9LoZg17OSjdnbZDTyQRGVVw/f96bwy/fDz/3Mq1xPmANsRqxGU1rdv3zzGrG4zmzd3yB6//2i7iizPnGMqfbyxj0MvplTm+QMzGGkeMto8by4HTBb0xqfmVWU8wq+ouGXlUz+M3Ps/Id19C9apVRT2l8UjWMZg2TecXGJy/yJIZX/OV1yk5Gr5Mx6OcsOsqnh2XOnU4G/WegP6sZzBaszGt684a1ScXKrMbccQ5O7cIPX9fm+WXG9Td8iB/4pm+gntbszWr2PnqGUVEwefVxRrmh6mT8RCfnxb2M7+rmvLKb67oJ9Oqa8Uhpcez4yoOzioee2Oa77tui813Po19k9MuMfi9nDViZVJhpjZ3XjP6f+9j7zmsYX7PGuFT96L5CaWTay6mKjP8MvMbEfdCfN5jxQmWZl/GzGm4/C2dG8P0viGPsmLhv5zX8x3vg+9uyYdbP2esY9roFQ2MYWsXguRm4dVHzf04quo7Oe7OG/qyi8/gOe7edZvJ3XsIoM0zLjI8VOZ/IhJ+b15RzXeP+nRfo705Z++tXs9LJFF+gG3mGLCHZ27rRMXl57uXntIJ/fx/89IthvYzXECJdLxr4xXvgf3iBdpJJ7mW7qr/sGhN6VHsZ8X8sav7ypOI75jX9WUV/1tCfV6w8vsPq+x6n9w++Ejoqq3e7GcPaMp7WjGY1080h85sf57f+1ov5Bx1DWeb0uzn9XobtZAyrhsmsZjGp+V/HFT9Z11zz4DblhTGLb7yCp7KMf5dn/PtBRl7m9Hpu/2YK6DqY1WTTpb07reHmpzT9+tuuDrpLnNcc6eVYaxla2G20L/cfv/sWvu5138R8WvHvJhV/ZVrz9VVNd9Ew+Ng5SiPMvuEEY2Dy8Ba7Tw753W+8in/cMZTdnF6pz1Z2DJNZxXhcM5rUVPOKXxrO+fn3PEz+gy+iWxYMyizIx72O6sH/cd7wslnFty8aevOaftXQXdTM92aM3/0Ik9dewZPPWec3Tcb/0jUUHd03g67K26zMQruyPatlMW9As3t/SLV0bgf+sG74tXFF6XTtwbym94XzdP/gSUYGRjmMf/BqJs89wSOdjP/Yy/gP3Zyil2u5gVhw4xs7neh/nlT866Zh/ZYn6V2zSv9FatOs9HPWuhm5n/cy01K4dF/687yBD5xW4/YHroXCMOpm7HUzxh3DsFDZPioy3oSmrf+PaCbdoG7ozSrG44rxtGIxq/m305p/eHGPy275Ir0feAn93DAQYWVR0/uNexl++zUMn3uISSdnVBomZc7NnYxbezkvKzI+CfySs736zvYa1A0r0wUr80azCz29XRjDb3yhLfPLTPVab1v87gPwVceo/9JxdjsZe87eG5U5e52ccak64P+Dtr8OMlSgxDIeL1SmT2qm04qPT2u+UNX82HsfpvP1lzO4co1+mdPvZhzq5Qx6GZLoswC7u7scOnSIP/mTP2EwGPAXdTzrSPvJk9oi6M477wyf1XXNm970JgAuu+yyP/PNv+d7vofrr7+exx57jNlsxm//9m+T5zmvfe1r9333H//jf8xb3vIW3vSmN/GmN72Jn/u5nwPgN37jN/imb/qmfd+fTbYRC88BnrQWO5pRO/AH38+0cakSjYkgUSE9kBhtT0uagFZ+mHQ7yJ72NpfhDOnrd1dE0y+8Bx4THetj5z0aJHlDAppuDweD1KRpIC7qIBDbvi1qmINZKRUZ1LlZdZyENDrfo92PzXvcDZB1HMFVHjDG3Tt166TpX1Ud6qJJ5yc5Arps6+y+fNkKXJjFwkxrk3TdZMzbFay0+3z7dKjlVLoeml6GKLBHmrpnuznN0N9K01vONTa0tfGpkGZSJYA8xLCof+0bJO30/7SO/+o1OLOUvuvHZ4GtORzth3Gl1xK3hpLcBhF6aM0PAldefaVersy01Zm/NuxPifdrN29YGJh0M8ZoVH1OrGVfAB8CbgL+FZpOV2RCJ9PawlIUaKl32YDurpaHxLIGG8daO03kUBsJPAwo8chnyZ88KJYAx3Dt+AStvxuiLd8am5BNRE1tsNjZgp2OcBxfJ0zw7Ps7HkdTlK0HoxMJabWIsHG0x+pwrsqI32/WJmmzFtmbw4CQrleibd9a9ezJdmkBXYoEMDpElaIR0JgcFov42yQPcta4djJDkI5vLLMf80DcOHKT1LR7Tr/ShZ1Juw4rpJUlD5uCusxixCj0R/YkJfH9LipwW2l9ROR4P72mA4wWrKJprI2NqL7NrFKevNpGXX7R866ilQLlaccjyG8mCPL7eObymNKXxe7N4Iirp/Rz5SKyq+ncJmMLZCxxDQMPMsI8J9YbNq7l6ARsv8AKrr1oLBtoD02vJAKmnyE7GiX1ZVNH0LTfTYhlBY3F1jVNrSnxPqLSWKgfGtFcu0pdZJo+ncGTmeEKX6eZmRBpb2NLEPAlfJo7hWFlvmDb39etHxbKBayWuZsbib+FUNva4qOecL0jc+z7UCfrlqyll3ex1alFNsfQz8lyo1gmSXq4dcjxFg9Cp5c9heoFCB7+QVP4B4Z8UkUQOBvXXoDOomaviCSExFIKP5a0/3OKai1CLHc6XMBwGvdbktb5omuubsv3nRni6l+NwCNWWAjcJfAvRLiH2L60JoLeNuh5G6HpZTCbtcYSWr+5+Rag2GsoCiFH6IgCYn2lgTeI8DoR/jPwtUbb2RWeVjyhpJtC0E4vezPC4XNJ0zWdoi3fUtkAIXqfitsO2vrTfzed92ZQwLbj/ehCDxvLqqcR/9VZg+kULdJL3rD/SOSx/4oRjbj2gIvjtrzzD2aJOtRqJ1467Os4vvTOgta0DyU+i3VMxvZzZbBuLtOyKy8n7LSiKgrlWS4i3ZJ9EkHb1kQzu+gDF7VcamYtPaKeGfaZu2doRdwsjXlnCmtFewpTmkjG51/PvfY5YV+sirgsGUe7/QI7n/uhwkXLeNBXEDpHYyZLVDtPL+7idZk7gL15iIQ2FnzbN2ksddUoOKNLGZeqQR7bRH7rQTiUIdesU2bCXlrfXWgNO50sAQqMy+7Trf2IPRBdLNlRfsSD5/V3GZgG7BcuglHE9E4gfD+4KAtw7NogEfjNAVh5GZCuj7U2SYWPMoHKaunGpzfhG04SujwFXci4VnYq7Sb4bgStR3L0pQ9WAtN+BzujpU9YwA5xWC4Sou0W2BDhiAjfAjyEtv7zkXZf1z4XYe7nz9PSutN9UpnvFQj/7805HFG8AJ8aj7P7MIQMv3S90rPHcXHDY1VgiEC/C650g0QGhtKR/wrHszbaX/3qV2Ot5d/8m38TPvvu7/5uPvjBDyIivOY1r/kz3/wHf/AHed3rXsfP/uzP8j3f8z3ce++9/NIv/RK9Xo9z587x7d/+7dxzzz0ArK6ucvz48fBaX18HND3/oLZzk9GmM9otF1y0t1kraRBq8YIdTVUxwiZtEAm3tsGIwH1vWeGQQx1k5BDkJ3NneAt9EbbdBTyDxZ3HKHMqPXMNgkEgt8ifPgKnLkQiXFZCnUAPigxoKlYGRZEpUIW0FYvanZ9Ea9rTMYYaSgdsxcxLV/YTYhiIVTCzTpu5hAlMD4/UFIwid+PjpaJA+uu1BF/yfmcR0aSTNUhBIvzRQ1um2HQO/DT2Cz0nLU42gBONv6RriTOuMaWJc5tyqwNku6K8m2hMpHRyZRdO77SFe1prvjHWfunL1oCjiRYjce9zEdeLXnjBtc9TGu7lCjLmDNpw2KUzUM8qxrkwKYz2zRRfwy4sgPtF+BXg54GrQPutGugYoWOE0ghdI/TyjOyIwJlhXL+0NtorbSvFgWNLJ3PZgeSn+riBc259m17HGXYKRle36oqiAUM151yZuf2VzF9CK0dR/D9rXN155sFK9LzXLZj1MtgYh9ZSgRS8IjOtkW4nfD4QBxKF4yvELQyKLnvUj9dIa01X3PrP14CFx11IwFyspUKVZeYVlG3lM3Qa8MqEUQVgbJbaJB3NsFvjIHBaxvkymIv/4W6j9OUGmoLQ+dpe12WpXdPu19EbtJ7vFAKzBUewsXWZdXXt2zNsB1WOAp3AK15ybfy3H3SKIL+ZIMgfpFj6I+UtjW8xV2N7ZagDDlg2IqwgB9oky/tS8AqyKjCzIteIhruX9TXuZRGufdLTvB+qu5dJ9r4ZGGQ2D8aHwZIDR6zOXRhmbbG1Km6N4zFN3dDYhubRDex1q+rANYI1htNGuMLNZcvXiDNgjUTDPV3HrqFcLBzyf0IilcrAdTc+/1tB28eFnd4i2mQ9CxS4y19wmYdZoI7t2ELN916DHO2zLqLPZNJWhBLwXAKNCjyG8Bz3DHHOhSwvAoK8NJ66JRi1naZi3EseSeKjeZKaQcDSCIaTl1demKyXsOG0giVMiVe86PnhYiqL5phBdH58wl8XdS79CbEOtBK3H8Mca/276Xdg0kSno20HJrwwLBbQLXPtrY06ZgcGvsbA/2Lg643Wr6rTlshf0zX1m2U1h90lnIJ0Xb1R279En3baRwfFcWl1BnCXbVY7Lj28CUbaDnDIzWPoNDCfI6VpB2D8e7N8RxL6hH263+GOIsinY0oJYez+Fvhmm3l4Ph14i7tlXxxKPskYRefJuj3gx+hvF+TerGFeFGSJfhd5kwOFc0JWWxILrOQwVjm9sJZuIOglPrdM6On+3JvFdrwJz04d9AHPxH187cuuc19TjJkNSVSVNYHtWBttJ2NG66bV7g2RFhGLCOLAMzpA1es4DIBIf8EJXlvmtSWvLTQNUjfwxAbyztOYBWRPzuDsFmVumGdC5Yz2xqHFp21O02nYQrvb+vVcBTbdfKgT0b1edsIZ2WgL1pcewWaGvQxyF/CRhC4CzKzjlV1RPmPLDjiMJj9ZEaza8ZaFjajxvqa9sXDHBjynp1kgmQnAeuqgkIAgD2q0xxABQY7HfytA3rijjhs7WcS5adRx3Aw60cHvBndRFNdlDfgrwJ+iPLpC274tECqjgZDa05TDX+GyAs5NCDzU37Bx452hwTBJ5IF36Bptzweu7R9L6nfKf5xM7+IcJYMSO0zoqUn0qMRs+nIez9po/7t/9+9y+eWXU9d1YDiTiXroLrvsMn74h3/4z3xzEeEnfuIneNe73sX73/9+fvmXf5nnP//5gEb2b7zxxn3Ad/74qq/6Km699dZnRJE31nIlMB86mP5uEQz2EH0W9X5p5KPNw9syKXAfd9aX9Atk7JSqPRDnWV1FPd8z95s62ehjgQ4JiJT3xD95ETMBzgJ/+BQ8ci5yBQ8c4f4dEGAdI5K9BdIrKMVF10zMJPAK9YYb22VEJcwTaZaO8aBe7bDfAJw2MdLuj3R+wme0+7V79OcTJZydOe61tPFSjrg1VcTW5JomSYFI12kAbZRZCEy2Lh0YxqwKt9iycNTS9shXFaYTldVndaTI8Wl6xlWraq1NlwD3vADZnCqwDSQefce4D0piEFWYIsCY3tc6h4RdLAnV1Chzp+m0YtpRHIeZwNxa5ghzC+cEfhH4H4BXospSKdDJhFKETqYGexd1HnDFGjyVtrVLxrYzda5MaStF6eaKwwq9XINBK8IJo57WHTfHdRfscN4CAUmn0zYWZrDdLVhHBZ5xAt64/S7AOi5SCRG4KVm3PRF2j68iO5q9EFq+WVoGA4MOxmnkOcLIEU3sl0wAv9xCjfYQdAyRJf1sIDAtwDpsglTXtagg6wDM54hzEXshapZoRYzQE5eRYbwCKNi1ArvhOMJyT/P0huFznU9WiiAAfSYBjo+Cy25B0+LDM0h7fEqqouUliwV9IhhdIJ1JRXNYARIPtpaTfebGzvEVOP8sEOQb9vEWa8Hu1FjnvfdKxRzNUBpIVDhbiop/hITf+c87AqO8gFkKpjTHdsBmakheEAVD8/wrJnksoe73c9fyLeX3Kqs23GI1bq0aqyA5jYuo2MZSnx3RDC3Nc9acwmIgE57MhCtdL14jsY+yN9ydCHHPFTMBpFuQzy0X3MD8dt+aVTRAnhs8loFezzsFlgRqGr0EOCTO0LH7DbxGlWsAqaP8A2BjDr0VStF2QkBECRZtW1TTxgF9VOBqiWzJjz3vF5hxvQ9ZPaz3tGK7UKUy3SZ+v4NrJeU+DsZziEi5i/lIkc+MSrPo3HtjVX/JHKJ75uby1UavWzve8tdx0SkLFUsI8qKqRK+nDj7jgEo98r6QDKRSh3W3zOmizu9epjWng/Qlalh2xfUVX45Cu/lgrXTRCbtPBunYnY5xqZaxS4K3RKNuSGrMunPHaHbMaO70ZsvIWtabpUvuLZCuiUrvAdHg1rFMq+n3jvZhq2rTajrOvbkyaz9HkSnGvZ3cxp+74gAV3Wded2m6uY53HNHCU7YNYCsYrxYcxvPemCWTnhHhsIguz1oPOwdbNVq77PVJ7/DwZ2G/XuaZ2/ZC9bPlOU2ZJm1HUVhigXURtgzByWa7AvO5k+0WtibsdcU5IyTKEREHfOfnVG9WiLBY7cLUB2c8r3cyvLGMG8ugaZSfNMADF/SZcshmwMNbdDJDVRjG3mjPMzVm/ZL7eXfnEW1gMw9iOs2M6w1ukNxgX3gZ9u9dg/3qHvZHroHnnoTcMMsMvUw0wp0axtKey1I0M9IeImTQpA7+wEsWdTTSk+wrJhV88gJ8Y4yyWw+mbPTso+wWlxATl1EfI8kiQtSemSsBY4fzOOfOqdC4rhvaISDqQ0fcHv5O4INuDqvWS1wLOKLdAHByRRHkQ/ZOshhbDpir5/R9n+Xg6KQWrWf3QdplujRuXGHPoDJ9CtAttbOBIysLsVd7yt++jMezNtpXVlb4tV/7Nb7ru76LI0eOYIzh6NGjfNd3fRe/+qu/ug8F/v/to9NdRawq55cPF1QuLTG0fLOJ8Y4q8Gm7N0iiDJAgVdISVLKaIdszxKX2mZ5G3npOkG+776XK90i0PlIV96h4y/3n/WX1+IwDPwsaR0wB8cw0RN1nDdIv6SNt9HQkjPkMmhbcIexNNWqIhhIFLkLkHzghxGWinACFq7NPqd6NJxwHGewiiiBfo3WOqbK9LOiHUziUx7l382/c/9Lb9nBlCc5KaPw8iIsydaEJRpHlAra1eY21SLXAlF55Tp53SQi1DkmYXvqcvVw5+ZnduMtTj+AEOD6I10+9026uUqFuxaVhu8/OPK0AJNbV0thpRJhtaZbufY1lPq+Zr2qU3acfLVDb7N+hxvp34wx2tHVLV4QyV0WuJ/oZAlzeh9N7ybiaxNlSwWrZnrsDvPB+bD5Ly78Xox7cIwKbXiHt5dhxpamQXse1hBQlO9d9uFkWDNLUQL/Gbj2PoN0iVJhK0lFC180Ck7U+nJ/F9or+7NdkWCP9Mix/zwtTIbQ18UbNtrv/0aVpCBECRPduIdhpu62mBx2aYelYCzvzmIObeOXTtFIEciPMouWlRsThntpFI6c0t5xl7Hf2+KybQYyIeUM9TdH0/T5anmvxAhDXRsytRTdHZg1Hgb2lFDO729D0u0FZ9RN16smnk5D00l55tgjyKdw68eHtZA79TlAqEE1RtUbbcgKtPRjWX7zimSLNQokw6TvrznOacUXjEIN33CIddmuntK4AbkaIzhwRZFBgdhUr3Fjf5sxy2ML5RGloqhpbWZrKGe1Vg22gfniEfdEhmlyRjhsDIyNczIQrc0EyE4zz1HCHuGZB/xa0BZ2F6byO5GNhOKtY+AYY/tlpp//vM8ZSI6/swCgxYv2xtKYCmFrn1ACyOUaOqdjadftO97Re17Ncnx4/F+FJEZ7raNRHsjJA+gX5uG6LMRtTyPNpRZP5tm77u894BbcT6CNuRnHjFUHxYnK0l3AauWzg1Omz4d+5teTbDfmgIBftGvIVmfAL7trfIcKLSRRcSws93qLZU6UR6BpkNFcaAu3R7mUtqMwH8k7GioUV0bZdAxFWDKxlEdNh4LKu9q9jsr4rjkGNEz5Dsu9Gi9STF2VeYtQSP9b0+HAPIj8zDkV/XUKbMGs1k3wFPz7Xwq9aYHpZ2Lut4wC5rs+SZAn6s6DdXrambSPWj82P+9CSJzUxZJfH5899YC84ftty0+bAeBGrRxI9qQEYwzTraJ9vPG9qyz+fbbYuKv/IDU0J7E6YWiidrBFL4DdClH+tDEhvDE7ZXwLnj+R9ykuefuJMeJY18aWkjnb7OXY3Gtx2NGf3UId+Mhc6LmmN0f+tAKb9rnqEvX6QrlGjJUR9Nx7BIr7muALbBV56lCI3LJzR7iPRaYaHf3k5eBGNtHv7wfcA3ync792LMsN+xUns974crj2h0fuOYVgajE/FJ1k3Rw/ejC9xXWpKsHuL6LixifFoia3d0ih7beHOC3BVF65a07lstbETyLLWunmjPZV9aStiRHWfIUCno5gPOL1lsqAxXrdSndsrZeeN6kMZcB2KB/AhYrS9EqESw9zAPHPlrp6Ajnfh7DCsZ8vxuT3VFE2Exgkz35bP2/a7kHQXivTp/+0dz34hBsbpOIcJ7UmtczD7iHtL1/gyHs/aaAdYX1/n9a9/Pe94xzu4+eabecc73sHrX/96Dh8+/OV6vj/3sbp+Fd5XdOWsYbTac4LMIYd74eaEr683hcRoIAr2fQabJ+pBjpnOkb0Z0sUJZiXoFdFancYzYffTEVA4BVSccWcAXnKyvSCvuCwx2G2sTfHeeJ8eb0F2LPRLbb+ARlCVCfp0VuEMcHk6BCJjCOPsoWnvPuKRvvwRUtxQAIgoEeJ3WkJQIsf2c2dEGcUacG6pX7u/l7/PRu1qV6P0kYRxp0cPNT6BBOE6zn8zENfPXO+zAZqmaglKpplYpMjiurfOB0h3P5nLBrtXYq5agydnbQFvUaUNFKRGln7vevoeJNxLo8oYCJ/7zD2BCdouMFpE38pyKpt19UJVQ9U3LFDmP7fwQAM/g7YT+R9RJamDRlR6Ap1c6Bmtpy+jxwcu77lIexNp1Y9vp4o92mGf4pOu3b7pM2kqu3AWknYwKtCbxkX6mhhtZzKHAvaMJF7vdn2tkBjtOGeOcyx5RXwMLA4LsrkLOIUl7DcdpEzn0CuCwjAQYc/RaJpCZ1GnYI+o0HtnWWArohGscTeDah62vN+GWJhYXQ/mMyjbymern6ubq9Cn3e8/EW1dsyqwOQ57oBUl8mvnj5FDC3alM6Gm3fMzdx5BaAvTotlkTf06S1kgDRyuGwVhTubJ7jXY9a4aWqKlTJXALXd8LjhW9u2xEx24uMRD0gwlSxSmS1EiC9idmWYgOF7hx1OgToe2srIk3AnbLxhqPYFxmUOSHcy8weYdrIhGGEh8mcGx0WaTAmq0W5CF79XudBYsF/0YnMHn68t9pL22DfbBDerrVqPT0hjuQJgZ4YtLbd5Swx2cQ8GN3xvwZPqQndmCXUeYFtiZNdSZRnR9ize/ROpcTQa1HGUHrf0dJs7iZeeRW8c2lkuDDMewlrMqro+3d9aKQ46PP6UGvojicpx0kSIjSXlAkSNjzdhIW+yFqHRd0eRGaxuJtOLJCdpRKU8PqUMnpFQczdX5lo4RuPVTnwv/zmcNRWPJBx2tIRchF3iRgb8vcI8kCq7j7b6G3+s4W6KBC+kUMK7CeIK894dTtDHqwOiJGh2HjLDiDCsPeJe3ZKDsX1Mv23O05Wc6SZ6ZTRfOqibK1EsY7II6A8eB4bVLfqxz+thQ1mcZNbT4P9YiswpxfeiftTN+WTD57x7OYTtpTez7j/q1HNbQ7cT7LBuylxin11/SbImgO66Ia+uqBJ3GOKwFppZRpwg92sPYxdN65FUD0RIdC9h+FzusmFhLz6Wwpenw4cnTUgfPT4eOhn0J3JKjIZ3YlI9++mOfDnLzqIGtZF3tSklTAXVDM5yBwJlBySE3DoGkVl9CWZK/Vykw6eXafszTG04GOMf0vLF0ahdpt8DIIi8ZYL+qS/N9VyNXH0cKgykMk8JQdzI1PBMRA9EI9J2Sfcs3zwc7aJeaupNpen3HvUoHFFcqMKEtDLuFQcqslYEX5i7MqUa1ZyLQzbCLWVgXmz5Y3cSe82lN+6yCO87Da0+41m4m1rM7jJOmMK343IjojJfkWdJ2pz0cpsZqiU0D4OMKu2qCQ9xn/iKu7an7ngH+BvA+9O8+e2hu1HhfAFUq8y8rXds3vxGSDbFZwaEkNd7E1PjGPfMeyhf9kW5tcQ8UyikF+s45u+gAu1Man0nQJD3bU9vly3g8o9H+S7/0S7zhDW9ofXb77bfz8Y9//Mv6UH8Rx+bZB1zkFK7egosrqgj6qHMjBLAWRMGu0kh7UKiXlY6WwiHISoFsK5qmWckirzKqhG+57wV5hXpsusFidh6dTJDnHoXvOKGX/tuXw3OPRYL0aTzuKiHS7k4yWkC3Qxcd24TobfcpKU+hRrs+XkzLTI13SqNWXHoEqZAMwjOHMt8/+cuG7TMZtMcHmuayrGz7DbCoddyHu5GL+ayAxNvnN1ufpE974hUNhlRR0CwUsqbCMmzQ1kuWWDc6skgno9XP9Uscsc5K9gv5KwZwejeO0UWKuDiDky5TYdmTHx8/MkqiAjN033nd3/jWOMYVg50uOVxaxpgaudUM6rygEqG2lodrRTbfEuEcmj4aouziahgzoTSGrpGQAYCI9sy0wJZzlfh7WmA36dG+b/+0WU+r5o04lQgcF7jg99Baqem+1pV9eIPdQoOFSU3twIZWnLGaGlX+dRQVGv6ZghHqnBETEerjfdhbKMhj0wbmMQA7M8xaHEdHHJ6CU5TSSPSygPLCziscgiqZF7u5grlYrU1OhUGFtuNhWiMDTVdXBcYJz5SOUOE+dX/zURsrAodK7FZSjxk04OVItFWjfeAe2LT5mE8JtihPS1MDxa+ptA0/AaRQh+XabOFqy1Iguim2r2VMIydc94zw/T/4HQxRBWJhYq9V5SE9QoF3Op7U4ZnuhYRGrbXYyUwtEndJKzAVYdUx/yDIl88SHUth1kX3zV6noBrG29kJ2BWN5l9AWE+UaU/rInGOQjaRB8Qczp3BpQ6kE03sOmWrBts0GmmvtVe7tZb69B711GKfs6blWSJ8AeG3M6HOhF/IhPtEWoa798WltlhU9t14y4yTs4rNwGas8tQib8lMXxcf2UUyk8v8YNDRdPFU9Njk7NY2OM8syLRSbXm9r4q6m8jGPbivb29wiiLwKPB89z4FoTNA1jeYvQVeanjDxa81VQUdEzFT/No6Zm3RxwkKrufjPsKeGm7rvZheHcYHP/m9sQtONpzTqS2djqbH50aNdiPCawTOiPAgrgYUVXRbPaFFGKHBA9ZKZOZoOSnz0UFYTZlNs3dQm7sQ1VUKI+QJvYcjZarLzpjDxhl1iTzyesSk0a4AS4w57Cs/f+5PIbvMz72L3gXyWFdQLk8yQ6vgUdK05Tod48qZkucmudnysTw2fz7cgY2qbain9Dqs1BGVXif5/bIT2f+5L74P937HhO0XMPIlNzGqFxySszk7PULv8wgiSZATxsmDIyLs+vsc6YHD9Op7escDr7p/+4zOVL5bqyVwfaLATseZDiz5yAB/80f/Boi42m9hSyIvUaA3NANqewb9DrW4kIqPOie8OTh73P16wHQV7HgaliM4NlG6n9eWrgfDqWrksT141WXw11+kBrsRbGYocmFYZIqxkixxuK577brPfHTdD3sdlWFNbqi7BU2ZQydDSqPGejej6WTU3YK9bkE3M63f6z6QoCMgChKpIII5jFTL8JkENqwREXSuSgz4T21oPfg1hxLnmssAMILNssA3/TEj8jT8fLvbRJ+UlpTR6eiAvRieNth+lmCIuWtamCKhXDADXoumzN9DYriLUCMsjCRyXzRLd4byrXQhLEozR3rKK5w8EFyGoJODOyyV8rmz1+ZM6jgRN34RZoM8liQ4/cwDsbaUoy/j8YxG+0033cRNN93U+uwXfuEX+IVf+IUv60P9RR0egOTwdMZT/dwZ7VrbEIx3VwyapsenCxj4dcrTE+EkqyVmjhruZRmFmqh3euyItUkIdgwMjISoUTD4AHmZovTT70UBd5DyaX00wEUexjNtTI1G44bimX30vp/BIcdLmxkYgczvwCKPKbGt1Hjan83dd9Ka9uUd4P/5TAbtiYG2bUqFQYogv+2MwW47Gi0mGjyprtDDMVD3WUiTdJdTZFL9x6ZVxWTVjclAEFSmmyeKeFzT5bG1Dl8X5J/Tv7+yB09ONXXce+QtsLmAI/2U88X7LHnjw5BEjTHviAGiN74osJNEEUsPG/RCmmmN7br9gHAb6okURy8fQplUz0TAoZ4RegaMDw/68WUCl+Xa3sc7l/yxNYllDX58fm4O4DxeeTbGRcDcXFxBrD+vyw52tAhyyQspL7SaeUPV6ajBJanuIC1aOYKrp8ZFIIUQbUeEqQh5mWt/8gujmB7fxDRBmc5c6FsXpjBq7Hkm4h37EPmLP1K/lRcPhcCkLHQ8HrgsUQitVQRrGjTC7++8tO/E3aArCmqU9lS3AMf62K0qPlzqpV5WQMe1ghV5o99d27ob+6/5SHvyGIFeW15so8qXKeHwrGI33N5Hvac0h3KGAnuiBrtvBbhrVVnZA8YmAac55O580WMrJIp0Wvi5bDj4dMKLDc2gSIwd2BYoHS3sE+jpPDvHS2rAd4FKMprao6FDM2wUOAiluxPJljcS+ViLxRjBWMGsCDKuEGv13lZLes5bqyBKTYN1Ney2VmdP00Dz8JD6Jes0mdFa+gw+7gx2mwt1ZriJqEhHeeco0kh8NpJnywounzVsulRk0EBt1iuiTEmu1ZKfB0XZBS0jGi1FnlOj0tFmMDithY0JsmYwmTjUbX+x6KwOUDDudQq4xig/yJCQ7ZAJmL5BXHmRcff1Z7EWFpqBNQ0kFWvZfclImkoaaEK8rCVuhvUu7CY4DEAL20VrDigGkFsJBnuGdoXoi9aze/Amjbhr/WeqHG+JsAKYokS2l9KdSe69qCOKZFiXA9Zq+fBj8kcqw3pd2K2XDD33vXENnQSELjGaU9+O/7Rwf6ii8qJT5mV7t6sGrVUH4NBa1rxu5MbLFMUg2sc4n2GMflMuj+1IT70li2R8/rBoevygbP8uzJMk/2/rnD2U7/lNGUgDoFtgJ02Q5f4cpnWxYNTTLIlkilT2mcThIlrysONvWvZgt2ZmE7p3yoI4R+4+IDp/3q0c3lDC5PeNN5nOZMzGfXDUyaahe+hGBLuGpn6PLRztM0JcenySuSLSKiXC7etchGHXwGiOr/X2kyiNpaqUj/QcnLyc3oNVQY739XqZC0wIZJlh5LyO6Vq0poKYbp3yUb+e3qDHCE0nUx20X2B7uRry3ZymYxgbaWfp+DWUqJshmtHXALbXwdbQLHSNWk7+WtPhbdVQ1ZZFbZktahafPEf92suwmXEGu8RIey6aIp+ME9Q23g8wmwQcRAI+jS07WsLhrzGpsWUnzpnbr5vOLlpzZJOj+sO3EqPtnqctjBrwc0mi7Z1Mre5zwygf/IJsTrRDh5CUPRKcX7g18UGGg+W6m3yfxSG6NnsrXewMbFW3MhsCcv9/Bav9GY32/68fbs7p7044s+LSx3AGtGcOol7qMbHeNJWtcQMKbe3TrfBAI83m/BhZ70ZjmBhp9wou6PsRqhD6OnnviTcOGVGuLOGsS7hZTo+vG/80iffTIqMpUurz9YkAeI1LDQE12q/w4zMxopl5AwkgzxKjfWlC03+72mGfNrsvUrwsBQ8y2AU42YHze3HDhSJld8PtmXJ1P/9+LqV9h5RJIhLA98ArMY7RrXSwexpx3m7guI10IoCpGsRq+ztZvvgzKS8Q812Dwe5eJ131jHdO+NfFidbjtggumb/EYEjPXceA/BqHZfGe+PQe/nAGSoMy+WaQB6P31e7i3ob7LufN9VH2vmgGf5ZLmPvW+C5fgzPTkHoWvfBzWD8AZM+v/dKRRvp8lMAIHDfCBfd9u2aw80UAoWtSg88CC1isFi44HL3zolsr3OcI0RGgPEHH0rh1nIqm0XJiFbnYBIHvFXgBZKdBBnlQyFfwCpe09rtFU/GPkLKPNtCJiBpy5zOjraoSbAKf4jcBjk/nkIPxHvlUaXHX83SSG8PU8RibbBh7qKPp8cA+o9YfXgkd1VAmynVqsDs6BK03TVFNWnQrtNLMDUBe0J8prXokV416z5mtZkxQ7I8Rmr0wBkZoG7aR+9sYWKQI8hsOwil1QATBaiN9JuO2c30Ge6h0Ql6JbmoUG80PpMX6k/GZ9N9x2VmsQOMAPS1gZwuasoi04GjEuLVTP5bsSyU3Ikg/w0xdrbUF08BhCxccq2w8arxr92ZrS9001A9u0rxwjVpchpkxfG0mNLlQG0NjhO8ktnnL3Pt470QGJs9Iv+BQZdlx01hZaGaQd/I4P4nB34rOSjK+VEsaDuGBXXjsAmHS/DrVESdDkmwK2aqRdcUD6YnSRCMEbAqfipmC0D2CRtr9FjVujjMg6xlkvEjwKxIadqk9pswdvUroooDExz0Qadl9pw1GV6hyCYnSSfw3wLAm6xcUjh87nZpcBIPw7cBtaHTK17U3YqgdQxk7I35NUCffbB5pyD+fP2aNZs2l/Dls4gOYdfiT++JButHhEvYSUNvUGhjXMaU6TBa0suiSP/lI3zzhq+lz2ZWMZq4609it3ZqbUwFt6QWYXpIZmNzz0odwYIq8B9DbnLbHFdLj5+rwlfalWmNkaQ3QNFzP+eNl3ZhXkki7f4VoewOjBVu5dxpJ5B9ClDVuqQ4b5aULwB4BO5oyBFYSZ07QiVwg40BH6E6l9ez+eAY573lJm5eqs7orEffFiqjxN6v1+mVf24552ZZG2J2DP8g+t0/2BoWWYDgHrm4xfT+zFlM3lF5J/OIEueY4iHHBIJelkxkKox1Y0sPrDOk6bBOR49NvrxPbi/kyVesi3NYD2znguQmJwy89Ox3P89FCHL5DbtSbNZ7vYx0sLNWiYVw17FUNO49tsPt797Hbg+EL1pmKOm/JJEGOz1rZK/5SPj2+9Vx+LRzvW3G0xBo0VWzXZ8cNdqVo06yoXXTCjcmgRrsBvh24E22JqpF2RZGvRSPt8zTacSLJ0nWtebFWa9qP6D4P3UQcj/IgpbtuvZbnOjiVUv3MEWtXYFpk2BxtJ+jHs5QR+eU+/rs12o9e9mIyC2It+XTCvJdxBhehNJF4fD07uNov0ojDEt9JBZL7goggHZALe0hXCcV7Ag8h7BqN5qebYIx6Q633FAZO5pj55atwdpIYQXZ/vXDjogD+PF64fq7aR3vkx4cqbBWKJHsVUYH2t/ZGKwDdXKPo6b38kboWZz7hUPZLnoOONAIdzgIn+3ChaY8xVbh3Khi0e7T7+8W04LgkHlxi7Bi4TdbLArbTwVaqSFwADjuFKSjfM1WOTeFq3/ZFhp5hsH4il4H3MgNXdOCpsQ7Oz+lF1+7NE1k6N9nBBjuioHAWjercdMMHCIb7Sgc79evCPmXQ4pCPZ5YmK4ID68pMIzivFvg/RHiFe+wCZVRdcRgMHggsHZ8BrujBU7vxvp5mR2hESaQ9vnRek6NlJCRe3GNG16oBBRLcnQXBWScGuwXsHoyKjiadSFTMdf5imtlhd89dd+PGRIUfEcaigDZmva/r5OYzKPNVgyyAldINSaN9U0Mrs8YL91aPdv9aSu/LcSlmZa6oqz4S7KfTQjGptD7V8w43X36sKXvqGdhzH4Z0XgGOFNidSZw0bwj5h02j7eNaSxzcc4Y+q+GstDckaXVFfJaAE5E8n4ggRYFZaDRsq7Yh3XM+hvFaRw10a5lYjbK/7fr3MUQxQqaiCufQaHRmagR7bPDMCPKeSGiPz+7OdE58hEG8UNdMhWWDRZbfS1SmJPlsWgKzJOIwX2DXdK7Oi2JURZYmwakU+LCJ1zRlBxk2oW84aE27xbLT2BBpbyzYutFI+1N7VLXQXLUaHNSNEZ7r9u6rMuGXgFc4+vGGe740QB8pbyna3Zz1hWYqAWxY6I/VaAdCyykv1gwHGO7pOE9twOdc/4G3nYFHzrfRjr030WXxBDC17RmsKdX1HY37TJfGEVzgE+71KPA8aWcDZO4Zs27R6oUtEB10C9dFosgUJdnvJ6IB6XlymkrqdYEwZM+MDuewO23vQQtvfs9N8aLDGul36FhVanPRKHuh4oGrBV4G3AwBYdnbIVY0WyQXl/W+Bmboe7Un2Qp+L0wbByqbPniyXs8g9iLTSZiPoEb5XoLlkuoP01p7tKdzcgmDHaIjZGqcAu55mjhetCLYXVWkd62lg6VIxzrRsgfJl+T6pYIMy2OXpd8g6ijcnumA0tI+0KyR1ezg3ybic/ml5X3+j0u8u+tafLXFemKozdnuZFoO4WWBv61T9ozbFwOUN+8gMJrBI5usP3VR07ttkk3mbiYH8E4ssLeA1e6BY2Rp36fjfM9bb4jyyghrRnmuzwq1KyV2BHZnDEc0Y6xMM5qCfkAcK/rZALjYL7Xkaupbotmges0qS9ZA4TJbzBMX4XmlYwZGo+yuZqiXGSZuXKmhztL7ITFym453BWUp/nsRdWG/ij2m7fALr2SMgmYH7foB9zNtbeeynqyjw/miYbRoGFaW4WMbDN9xmtE2DMewd3qLvcIwKgx1WtPucWuWnmvGkjNBon7mP81xuKslsJu065vV2H7h5i5mQG0LHE7kZo7qm5cDfwnlaTWaHl8ZoRL3XtAMO0GDYeeTQJiX9UPgSD+WBAZjPZZB7tEuZThom0u6AEYBZqegwbG9CHqJn3do84Av0/HfrdG+t31ahXttYWLprHV5El24Bme4O0XmAoqqnqa2hAUk4empUeU/A8yaQS40yEoemDGo92mbuOHB6cE4VGIX+vNpPt6A5vISzibR51TpdIa8uIuJBeoGmQArynhKUeUWCBGHc+7+x/GKSjvyFZhrmbVr2tPUk/CxVUCLVvGef790Tj9fNtghtr/ZTFJbk9uwU8HRbryPZ2DuGr72xBOyf6SxN2SJe9oCTWmwrg/2hnUpyz56akFmFUZsFAjh+WX/mJYPndg4Tv8e4MpDcMY7YhqwDZyrNBqB7Bd4CYmlupB+RZnQFOEVr3pFHGcnw86SGh83Nj+noZ1lXWF9+zvgaYR14KcFXuqUWa9wZySKvHdIpOND4Io+nF2ot9OnxzsFKtT1pVqKSQaYHIb2HvS+gcOiSvVFVHI31Uyj655hkpDOomKS5U5hUyGn6YG0FPUeKiQuElOoGmedNGh9bF+AIwY5v7s/+rbnxtfJgkBVZ1ncd/6w7I+0Gzcn6XSsi6aA04ntwuL/LAssa7NGkbaRRDFLpUyc2UKSWv3EQ23XS+x2ExXNA2glPPi4gl6nRZOt+nh3jLlUlED/F6K1fg4GCtS2akMJHIvJgnEBo36HsegeHgGfs/DZr3slnxSt95yIGkcT/x2B8ck+9eZSmU1QpBOFupVParF7c+wRowLdZyW5aw7SPbj8cmMPrfaCoqyfLxzSc8hwGS6wbqtvoVkV4viXOpY8LUh6E/1spYMMnTPR6p9KVOm42MTouta2axZR88Ae9iWHqTND46LrjRGeMEIvF34uM3wl0Vj3hntcN30I/3dxe1AAKQsGQ0Wvx1q2gMO2BpPHcbhrhBp5f6R8ztPkPWdpHZ87q3WYKfKxj7TXSfeG80PMMfV8lUYN9T2INcDQSo9/yl3+Kj8eE+VgJmAGnXgPS6z5BmReQaao6aPEbgkOU3csK7he8/MRvMDQD3VJakPCHvyrX/2V8WLDGtZKcrQkKpOYDZGLtsD6DuAmYqR9IYRMA21B5eiyI8hk1kKPD23zLBpp7z4LfJqDjuVING4C1nIFogtHsg8ni1jyFu7lbyn7ZJ6Pyc/ch9b/0Wf+dDPsTNuEjYFDbv+HrTSpkNLJg9Rh/KWGl46JdHwCaz3YWrT4SRBE4zkMknZ2/rw0rhb7Rmlnx31gl199D0RHEmFP3s9rxmWWgIb5unmfzSUxgmhUrk7ObJJ/8hzFBP7Kh06z9tSGE4jOYG/8PrBt3unlxEXX2SfMV8K/lhzz/iMBvva1Xx0cCKBRzy33JWuBfgmjBrs7hYFhjAYrQilSEnFqlSeJ6tZTI9Az2L1ZNGhRo25qLd3GBYrO7kEGctlK0MMDbzKGItN9tGzILq/NNm2j3euja0T5tvxavt4MnDMlzpc/p6BoK3gwN8EWHQU5dTRhUbY5WTSMa8u4apg8eIGpgUlHnV6TRzaYZMLECJPcaL1+EYH20udyWk4LiC5dahwtdTJRgM4yw87nQe7Z6ZzGZaWow1/tkQuirf789Yyo4Z4B3wG8n+iEXKBlMTWWuZHoNF3O0gXFWICQxdNOjSdkEuy4tdkv15OzuCwON9iuoGNc6WKnatG1QJDThf0yHgdw6f3H7/7u7z6rz378x3/8v/yJ/oKO+XRP05yHUySHK8qcMxDQ1GuJSNEXiSBRgd/QZjKp0gq0mLd0SwxTGMQ6XBE4JBoJ8unp3nAf4noEGoLxKU5zEBFto3Wu2h8lqm3MX7TEKMBwrpvHgcKV4oS3V1xEeApNjfd1w35svnY48NdO1o60E+/XOs+bdvNGN+4wicuH3w0h5KbjpRIFYzs/1qh7KLx2N9qawJWD9vx7Q33JSPHrluH6mONTeZ0OL2AHQnNOI2C71vI8Z4iJ+7aZ1ZhuNKri8y+dDxyiojMj9VL7N+CqEj62AfZqJUIPunSsF6+ZAryZ/WNLzz20xueqKy6DhTPwejmcG7U8y+k6NtZq66NpRXOkH4AYn7JwpbvwgYazv0CqaKfjO+JY+rmR9qUHTVFaScaSrt0l5tBPlafLAE5nhOOi6ewnBgV2qFFGX8OlIGYOSX6+YHgi5zISoeIeoaFNRsfQa16LM0Dds02NGnBlI3C8DzsNMq/VC+8BsfbmyIq0hGnfaNeG2igNhpp79gPROedt2Pu+LmwsohkTXhe0FutCLdZCdwGsFXEcye/xY/aGnSjNz0VB8sImd44UuzV1QIJeIUtoJk3zvCImvvuSohaqMe1Iu1dYAvAccR2CApkXMFah/L4GVhp47miugHAJfTzcCP8bwviay/mgCG8Q4ZVWHa81aqjVAvXJDs2DG3StpWgZ7CjflOTfxPHZvZqmXwbnpucZYxFWgtIbBXmaVhzmPxmf/8uik2GqRVzDao7tGCoUAOqonw9JrmsMRpoWHxVBe7XPFpFvo2t1tIELBl7UJPXsDoiuefAi9d+8RlPExUXaM+HRXHieMcFJvBxlb3nxZamm3X1PspyVqlJMCKu0ffWsgqNZa56CXt0ykiRiYXh+8srL4fOn43defnI/6rGRluGObZCLczhUIA5Kum8U68C6B/Dk7KPPHoQuZA9AWwZ6o3VaIWUWHUzWagZWYTgMnPO0smSwgwOZde/9Pk/5UFhbj8Owt4AjGd4h//wrL1NHmUUjoIe7YW1KtKZTOzSpQ+Vrgd8EPgW8Bq0BNVb35yYKxgZaYsF4EQz2lI51zI3KD79Ggejd77+U8Z6Oza/3miJ4HySLGC6iXE9/k4iH9OxfM59B4b5ncXrOaoEdqfEytDYC0wNgkVmDDKQ97lRfuZRMEldalMq+IPd6sJ1k96TG7DYakWN5LuNY01v69z107SpEMyTcH6yA7eeuTjveKhgNtUVqaLod93gSea5JxLB/DiOsGKF4ZAfr8rKzXTjx8A4870Q02BPj3U1lEm23MJnCoaPteWHpfTKXHifiqmuuYGQJToRjiDornGzR1q5TGFU0ayVjcc4w8eNq1+gnrBdEkczpdmFcOR1Bx2BRELoVJ5zl9ByuOuY9eGASw9056ZbcTuGckvQuBxuBa8DT7jt+Chu3P1Nygej4TulB3Nr7dbOi5a8BmPewZiQ4kQAWZnXDtGqYLRpmVcP0xDqNOYvUQBeylx6HXHvGZ5lQZEKe7x8fuDR8LtHyjYgvsAJMBW0NO1GgZyzY0YLmqtVWhh5oMPOI3044R6Q7vxLldZ8AvgkFnl2IRtp9XXsjgvFZusFOstqG8YjjESZG9j2vTvUV72RZXjMl5Ui/PiNyFdXvbK+EbRvjAK784r9WevyzMtrf8pa3hPd+o6Sf+eO/JaMdIMNidiuk1+GkwJ1oJKUWCd53C5wn1rND29YKm8cL6DQS6hXltRJ5eor0FQncR866AheD1NbDolGiPgTmkNa2A4qUDmrIXrkSDfbAqYlI1tbCcIGsRkamtbUJA4RgtOMe3Ud4hCTCIqjR7tt4hB1sW2MA1GjvPEMN3LIQFJ6hX/tKO7XVo1gD7E1hfT3dTfozp3WlzM2/X0Xbw0S0SIJH3nZQb7W1XBT4aixiowIriwbTNZqKuiRkLyXYW0eqjAZBJmrMbliY1xrR2Byrdldk8fv+Xi7fOR1ba4wGugiLVGkUYGCws7RPe8JBLFrbCjSTmqYb6T9iHcRU2DTylnobE003jrc22vfz6Qlcuao/2lk45HjZt3aXMtwDidhkCt1vj4lmxHxFv6N4TfMG28uUYZpEgI4XbBc9imTJfLQd467ppuUIzruPplxlokbp1GgaeCkCRYZZNXB+BM85hPqKQcY1DIqgRPj9Dtq5oUNbqF/ggJp2PyXuEgMRzc7NiyCIIW77GVDugHRcRDBRzLwig0gYXykuI0O0bZPfB4hgj2cq4E7092sgKd2M5tqYOdnj1s1CUDxQheMQbVrFj9Ptw2DEAKYs2JrVPA7MDPxKbfmeYcXLyy7va4SLjWJOnBL16+GUlBuN8FI3d60U/WNd6osV9Z/eT/cVl1G++DJ9hrTkZtkhYcHuVVrC4Z7ap9zuCFzhnvugfUj6fslxggBlRjaPpSp2WkMv4yJK4741kHdOJYGjtmwBpJchT/nmfRFM7Biw2TShnl2VB0tzeo86g+rq1ZAW3zi+9KgxXJO1s2kO3Ot4mvIkE1ujyQC6FxZM3LqfaeAr6grplJGPmphd0WoUYXBt45pYpP3Ck/AjFu44A49aKLuuZZFEAz+TIPcEkOECWYCse6enRuKGBocYLC2DvUFB6K4N44TMSOB5mRC7YgznKtMhOnTnDeS5+pmd0t0k1/bHQUjL4pzzQnJzI+rl2hprtpWXe6nStzuHq1dANMV9bjS6njvD3Su634aCN30dOmUd41NARaNZArJSIhMSIL/kPhaVSx0fGY7P/qyOVD6m9LvScYXKdr9CO19ozXd6P9weuoRcT9uheT7kH9/2O7qf5zV7pdF6doiBjXmD5HmLXz+jvrI8vmUZJijY1ecdIodNLLHKUcRauX8uU2NgaYyCA/wS1V98yUe4Z89g57FsKiCGW4LcN6XOqZilYQY+TAgUHRJ44rp1nvPoHuxB04XxtYeIZWBqCEXwVaJs8Dx0o3FO4APmyOyf1JTviPXTIQwEdhN5Yg8Z7CPbkMHcZXr107Vz1/eZTn6fIUKJ1oez1sW6ikQ/T2BZNJaOdZH2L24gX3dFkFE+Nd4YDcD0jGKnwBK9LYmVXWJ5bTrqFdRAXDaGl8/Qdvi1rpM4KATlVSPRH9tOB8YR5wBrqReWxaJhUTXMqprZw9ucfeVhTuULTj7/MNddc4LMQJYJtYE6M+SZCWp3+my+ld0+kNnWXtfU8RlAr9DrzBtsJ4P5nKavvwoI8qIYRdcusY1CILfK016H8rTXovK/EvesonXtJdAJWboTuMx1Mbq4gFUtp/WR9YBpZSRxGlwi0k7iuBYDpg56VSYwtcCgoxkcELNcgk7RkCDDfFkO86W+4GsNv9Trv7WjNziqqYQji1nvcbkI50SYEoEJfNRok5g2HqJEKW8PDDfkQrqzvsxAUzHMWhmYECLa8WRJwICW+q7gPUA4huOUeAdGxxUdrWuHpZpMGxhnEEjjGsouXr30mzr0oSdBjic6I6JhlHgqOxLr1ZdzZSAy61mjoHX+WFL2lg8JLl+iwe4n+VgXzo6iQp0KiM0K1vbXvnkZcdDteriIJYmDWJySVWY0lQq4i1YZbeD7gFlYJL9Eu7cvJdz9d8wBr0GhStqZPR3b5hyOlvGafkHSM5ceY+EE+2OPngqf2a4BJ9SXDTEP1lYDtq5oOl7pFM4IXB0Mj/3KfBwbCdGwlP6/qka7v+d2BYcv3aP9UjTi6TOUPbjPjorSMJmh6YAdzUJSBng/j4XJnPO5KqsgmIwY0Vyaz8PEXu2IGuwYTY3uuPciAsdXkXOVOhO8wrun9abgfSwqSBr3+9SgnaCpXinQpV6+beytOhqtXHq8y1IM+3BqoVstHGBUHIcf3HJ/18KNaeqVv0Ro2rUebCzinluuVfT3nS5gJaZ5XkrpGHEAwqz7TSAbEv5TGp5kwcJAbi0L0eSM6lDJtQLfLMKPGOHvO2LMHnwEK3BGlKdO0PKQqXs/2R4reN1DFaO3nWb86HnqUA8SeWaaJm8tsDejGSTotmikdmxgYEzUD/055Ttu3lPHS+ClZU5WOzussdgZNN2CHasgdAGPI9lO2oIsWVhPt4MMM50nioWO62Rj2aks1FZbvlkHzPjwkObFR7HGKFJ8pkA+jRG+kMHzMxPWIY2y71M1HG36vuv+WSnBTBasApvWchHojxZI3pYvvpVc65IiDk3NedC8QX7tCfiBr4RXHoVPXPCAFfHl1jF0cNicIocFMuPA+9TptecYmO+ukUI1nAJeQJsOjYtYZ156rgHTBd45Euh40SB5xgBhV9q0n+6LOfujZcEBs+zwXy+VTzp6xMLdDzl+bi1MZ2HvZUZC3WcusQY0B74FbZP0FL5Fkj7blmi2DYApc527cdI6MB3ErAqlPvuOL2W8+w1OcoaYTTBL3Bqer4wrBd1Ir/8l5Ktml8USFisSlfLMYHvAaKagmDZJjQeYWKRsZyg9m3vuG186xiO5puMuZxKMneO8G/nmkgW9z771V++itDshcU44WdL0ctirwxS2RPx0QVVKaE0lyV3EeFqn1fatJ8LpK48xf91VLC6Dh54/gCuORNA56wDoPK0slxh55Pz1pB3vl5hXP+6H7nu45aQ8JsKGOL0csKWo43qgpVIgdNwPQn2+408x5V9v2BVnbJZdGFaJ6myhskwb1+5tc6TOuCtW9Ro+0u7oikwRwyewTyzapc92OLhGeo3YpYaD1i05p7xjeb7S7hNdI8GYpptjZ77drsq0hWv9WTeW+tNbbOUFv/jqK3nza17Av7/yOA+IYZEb6sxQFYY6jzxjeXxTlMcE0k2eB/9cqNkwFdQhW6h+ZgE7ttraDrDYQNMXgaOpvofys5SnPQA8gYuw47pjGH0/z11W62UFnPOAnmi5yjE3i2YJg8fxjNqNq2W0S3uMMUsqluqsiOKE2LVkfCT+SA9u+2W2h58x0v7fWuT8z3KUvXUlhu0K6XVZEa0ZfQq4TggI8laEDRT8ANpKhyemcKS7MVGuZDhCqgbO7SLPOxYYSh9lRI1TILxSNMSjnBNbcQiBaQCKyH12mqBf2DYoT+ox36kR53US0f7CF9wgGsf0zwB/hbZCJcSaxTC+jtH+Pf5I6S/lMh5tdvl4JgHvrUFoG38nO/CpceQWXmhUjRbqHVkCovNLkEl7SdxtSlxaT+IU0Y0rNH0F2hsDcyzHk6EbQKYNWX5AuzeSGzzTESe3PUYRNWyfnMJzrXoEj/XjPZYdEkaw1uoQ7LLM10juGNh74ilees01amyUBnab1pKptJKYrGEtTVVh89ja42mBy9NlcXOxrHS30v9b2QTAFSV8bDPcT3u0l5dQ6C6dbplG/SJAvXBM4F4csFQ/pxlV2KPWZXbbEH2gWrDdzRgkj+fu2MI/ENSI9ka7N9itgTlCacTl0wsc7sP5IcJRlzIIZqQAbX49/BKX4IzkmI510T3DIdr8JRjb7n0pypDnA6F7cRE857qRLQugM5/D8aIVkfWOFkjHq/OWiTD3Sq6/J8DRPmzN2tqDTzEL90WL7HsO0snds3Hz2LhrWXS/pfV4wcg1UbBn3kASyPpw7fkFKw3sGU2Pf+1ew9Gy5DJHBGLghUY4CfzhqdN84ytfzJ8K/AsDPyfCc5wArgWaUxdVwc2hXkBz3zmaF52k31iy2mpPy9Qx4U52e469ZjUox36T7SCtdP+D+Awkykv4t54zzxsXCYJ8WXDeySG/7soSo2NDWrLF0WvfYEau5Zvj+WLhqIUHncPF1rja9obmwS2a736Oa2nqIgyZMM2EJ43hBSaJtBP3WwuELhlPdPK658wFJgsOW8sWwpa1dKoKChMU6Sw57+ObmahHqTJKc4VjTlUDX3cM/vND2lnjWM+FWYx6y3xpCmi7zEODEAXBCKXLKgm0CgGEzgIPA38vPELMcAhiVyR04BAIOBYAUgHdnL44g8Dt3cYvpLufB5MK9ODl1UFG7eGuGu2JXH3oi6d5xVVX67+3ravN1Ht00Cj6HE2PL1Bn4BHg1Wj7t38IoU/9ngjPd+uACLICsjvHrHV1fwavIAoMdzzh9vsMzWc6EnnnxyjEyP3uTOc1vd8Q6B6cPr68p/xRENN102h7SIPtFthxxdZhyyFLAE9TILoa049tMluMMrnngcdBOosIrPdcE26bBBss7M11sVKPHMQ5PfgRwhQUArMgP1ydsQj0cnX+iSuHsTYao9OGKi+0UwC47I7ISmLWi0HbIAjHjXBagCuPwF82DO7donZBIbFWN47fc55GUx4a2vGaOD+eDkw6smQq3Z8ff+SLPOcl17k0ZGFFXAs6N7eN68pkj/aZIBplN96ASpyey/MqWns8BzgM9ilv3vrWb2q097DwRAVXH0EyE9q8+Ui7ZIoe3yMCVafqb3AEuGOXKN/TLbOCOrRbv1u6nj/GuAzcA64TZD0KYj3z9L8CPLmIBmTTYCtLUzU0T+/SPHCOW777uQxzgzGGYW74SGF4eW5oCoMtMm0JesBzWfdMg/QRkucVJxhEtHvHxP3VdnMFTDxsYWSxvTzqCu68LZoen143lxhpPwR8Ixpt/ynRSPtChAJLlUmod89PriiCvLeLNibwwkORNzjasCbe26P5L0fal8cYxofS86oIewiURks3gr1iw1ufAf2sbIU/5/HfrdG+vfGoMojhBLlafWBXCDxphRcYCUAOoKmrHtk5pPcRFZZwSPxNYE6nNuCekUb0rj+N/Igg154AJChnXpD7zeABJ/BM1NQqF4xv+YOC0X3qHAEcKkQbiLV9/jVZIN2uY2B67YeDkq1M0adA+8uHsS7z19JAtYRAftD7WRM9yenvn0kItph6IvxOruhOWtQagfG38UKhl+3/vbRThkTiBK/iatqlncLoFeemhot1w2pu6Eiy5hZkajUqsTwur3w9k3BHlbNQH70cOb9qAI/s6hc3xvCc1TaXCCUDJo4reYwwRtFUsUrgG7/lG7GzWr8wKLALCDXK/rA2KK8N0MwtTUcZ9RAVKpeHeUhSdZNHCsel0v+vWNFUuUWjkbStKVy9VLOYrv0lDpN8JQUCOSnwYUfgtltiZ43yaVfzbUFTlGaWi93CtV9x6a9JtD0YzGik/T4SYepCpmNnAARj/HiGuX8vKDMCsDdDTsbGxuLWvG9gKDHy1rA/kyfs28Sg9dHaFYFxF1ZcumOqHCyspdibQzEI92wpZT5wlYyxKxJ7tZuI8cDhAvvYtn7J2ghg5u5nLBhrMRWa5uoumILQpUrHHpeKtOu8+8igjxh2CjgxnPPTBm638BoDV06ncKRPAOZ0hPhVGbz4b/w1ZsDXCrxLhH9thL8PfINbWPvCI8jnxtq3NgP70hM0jaZ29huLSbOGEgXbjmewmkVFxa37WGBlKUy8xOLi534dE340EKEqIJ8uVKh3dZG2rMMzIWlVRNt4b2ttghmUmF3NmYr1yJajjWV30Wg/Xhdp566nsZOappkrbotr7aYgdIZebjhGNNZDsJslWYf+Uek0ljYYQLoZVAvWBU41Kt+yqsJ0XATftOXLsiNXRLTFUNa0099zowBtLz0Ed1yA73hONOYdI/JKkdmcIEf7cR+hPHHHEJDjU4P9HKrIX0N0BgYQPpGYZVAWMG50LmwiF+ZAmdNFwRBhyXB0Px9xENKyAWnahrugkeitaaRJ4Af+2mthUrlx09p7udH2WIVxde2ivqgM+E7gfwV+FAWts6gRlEb9jWuj5cfUOqaVyv5lIl8yNA88lug1/A6Uye7NNH3Vzamv32dQtO/j3yZ8LD0XKD5HuFlgnI4fDUqYWRYWBizpSLMa6Tq5foAT+ZnHl8i7dIy+q8bOTLFPPI8ZV9oeIr106/cHTHPyfhWXobn0aLbvwLVmjbYLs8RU+XnDrCzIWS7n0faAxhDT0Y3y155JyjeP9Ti5d4bNulEjtlb+j9VaeQztLEisruthd6eQMtAe5/JhRH/6nd/7zew5kBkROGo8aLNoRHbQ0eho2deysKV51Hpqz5/0vj741TEq8yiB7VmcI9QRMW8a+tbCkxvIXzrmnkFC62V13mvkLY20s3RO9/0uB9dIr5H0aV/6zfI1hiy1Vlvaet6hq5kE7i+FYOezmKa9UEDSZlFjP3Ka5lVX8PL1PjeLYZIZ8sLwmlxR420u0WBPxGN6nnKJ6L/7n6e2Upx/1Qp5p6NAbZULIPV9JlvkyVtCkEN+G+fiOmMkPO1fAD8uQscYFlJTiTjATe3fnh/vwkPb7qEt7I7hiGIs+CwcT2RpuzeIztXlLerfI7p3/H7NxBn8K+octES9KVjt6eR9mY59cvq/p0OsxexOyHq6CNeI8JjzuGi6oH5vuR0TtIkpHAcZnfecDUQsAA9t4OuyeqLp6Tuyf4N7jxqGWNsOEZH7UmB0vu7NEur72J0hg9hepDAOYRGNhk3Q2t0rSAxUic+cQRREpdHo0KV2sT/mVmva/byk50sJQZElgDZ37uXqmT43ik4Ka7UlzjMJhUvcqUvbcPK/s0DjUgBH04p1P48Qe9fOGkzp0mJl+SZfQrj7Y3mM/v0Vvdj2bWcMR4r2d/wcXsJYSI9CCCiaYYlcCx3ra2kTw72BwGDsBJpuFroKrKOeUmPaAE0+Lar9MBKfNx3bakcn/mlX47czg/Ul+lhau0tNnUBI5/M+geOZsI16WO1qSTOKvokgdOYa1Rx1C1bcfZZ1iPR1lOhFBweyZoQ9o8Zu2CTHB7ANMquC0W721NgzydcACiQoXH72N9EyDJJ7e0eZpzMfQegD4xztveqzB9yF5kA2n0M3Q5Z+75nQ8tR2fPQxXVjAHi5gU0GiFlbbye02lh2rAI27bo/MjEvLhFiTRpufQYy0p2NMX0Y0O6R0r25u6M3mvFzgH2bwciP0Nsb0B4ra3kezZwdGGBihnyl5dUX4AWP4p0Z4hzH8gRUmIsyuPMroWy5jZGDy/Vcxu+oo0wYmjWXmM5RS7aRRMEO73WD7OaFG3znF9kRxAA6knWSSUyeMXwpc5GGe5zCtHYZE7hQG4aTEbRS2v1+a4IWJNzGDjvKnhfaalkZ/d6JuGM5VOWqqBvvkJs1tG1igvv4pmtObNIZQ1/6FDJ5n2imJ3ljPhX204+lL8PXfqtyaXo5MG64AHvn/s/fn0bYkd30n+vlFZu7xnHOnqjvVpFmqkpBAQhgMtrExGBDgdpsFdBtatuzXa9Ht9Ty95273s193r7e8umFBy9i0UdsNtkGAJDOpJRBTSQwWJSEmlVSaalTp1h3qTmc+e8x4f/zilxGZO/e559xbt6pePaLWrtx3nxwiIiN+8+/788FjMSmRXk6FMO8S5Pi2/Z45Ne5ZqHxlDAS++k745HXFVgnh/2llCvEeruwgJ/Kqj17UW7crMcqlTD6Po+VOO0Ql3YwQFhUAwKp62o0vVN3f9TjJ6RPySYlyWhp2CYv5n0jc7zXl7VihQKvW0kgXC7EOqXdGI4rwySUo8CidfgA4BfyOUNVpv+q0rFIVQjzo4DbLiIyfYsdMZ3WPadL3G7Z03dbGKDDswaal24XnWVnSJvAd8T3U5j60HsEDLSRgmAk96ndhBzbCmsSTYBJMkY5bdMI0x7t0fMl51RhFXYLrwetmFHF7Dr1O615ONYOK5Te60xFJ0huJxtauUzK2O12gwX4KOysdBR40ZcoFA1qy5MSJpmACdzphwzox7LDXEQbXdsO8Ke+RuX5PKylUcsXGXN+vPSDVepYYe4z2xClUenEETfeb2bi6uaZsnPsS/vw1VdolpvDV1kn43YfHFgSeN8zxo3HscxU5AHds7MHeBO5a03tlguR1j7ugfGjEYmvO/wZ1T7v1bQ01ahodqq719fsY7WhDaa/mMxlfBbQ8zKrIWB8AScvS4x+6TNnp4B84wssy4a2ZKur/ZSG8qqN12csiq9KI0nGlbUQoGdkYl/VFwoD74csY4EgXvwve+hUcRAbIfS3c4ViDv+YobeuE769FafaHUdgkRZAX5k7z2ifA/HQ3lH0LtHMdTcsM688qwgTOSYnqX03g8daPrbXAnFck4BsMOzBDnWU2754K7PB2a+0vaaXd4XEbM9yqhmHd5eBJI/SBKI5RgTNV2ithisbmMaUz/bzlTE2QkjecVItdcF+sZI6NsDFsg6alHQzZUAQlGPZwQ+S+vBt3eTM8nkBQd8awYvtaBcadsIlKp+iVBTF/O/W0W8mbqnUk5qDVTIINKjOdHz4Hrja56VHgZA8ux9wcAK7PYCVuwJQpSJAIU0Jinz6B0AbrhCkbVUpER9geTYP3M3iwrHuzOdLJ68LmsvEsa2l4vH0XgTMrSp2vjhSU7kTC8Jpzwj4CjAgd0fJiPvzBA5jVdCcFo9PD3Fs+e8lcwHdUibiAhh/bAyoFoj7dsUljfNEtDmeGcD6gBW8DR9rf3X5CkhAUCVfBxyEirKFL87IH3+3g92Y1z7AHyr0pZQE9l1ZECPfJIC1HBerxNKurMhUd/ESEInwXAelkunku7kaAnt2JGsrsvYQHDsUYatwqhhxfY3Yk/UmY35oIO90MphYeT8Ao0PD4fKRhnhAB3iohRhbXSu4khAwTVnmgOSf6lGMYT+dse89O6dn26BGtjb61O2Wr79grXAB1DIIRxLzS8JxmGF11TAStjmhoXw+h183pr3sGwADPwHuGmxOG3Yw+MMhUWe871SV6AgPRvd3NhDc54Z9lcCET3umFiwKPvvYOPn9PzmPdDmOvgEOTuR7LKk+TKHSO5jquI92IHB8E5B3RqIeKrrTMbVyztl/jHx0wKgoF+JqU+KIA0XQpC8tTFHNJ7GBCalip6EDPaakuQ/9Gw1XvnJbMpnPG07kKa793Tt9Npoqb//wVykyY5xoe/6hzvMrVQegsBcY8/QvNJWXfwnnSLZASjs1LrgGnyhLmKN2UOn9ZFpkkTqKynklU4DMHJ4fwsgF87EqSJhUJmeBxl6ZwtIPhx4hTD9umUAOmTPPZDYROSAyUkqSICVrecDSrpSQByHwOHQ2PHxNqEid8HahQphdKH1b7u/5eOVpomlTqpQH999ZYJdfUMEqirEvIAZWIuvw24IOiDglEFYlhorSx0kG25jUaWPH2cfC0116SJINY3ipwN9dy/pEubDbKkJpBIm/3Ri9E0IXWI4Q9V3QnGGfEwuM7MJqzSwB6TPPat2dIL4v3a+vr0gFS35OpUWKtr+8Q4mLbnsVSp83xhflq0pK0G2qcoALQMt7kEeiB35vVDLolwDaM84LVsNZqinow2qghXOUhcYoefzWMY4xw/o41eutzLDdaaulS1GmnR8vxGmhySiAb77E5lenHof9bC3LaRriXP38dN4b8nOfVv3mOsxeuVvKcBKJVzV0Yg0U89SQA0a10w2ZVI5zOl2fsPfeem8Ddx5A8q0UPRuR4V72LraT/bfnsc1SHaAM2szx3C5FPFff0aKa7ypnXOBqYJViVmvDXQRd2g8LoUS/7Fzfwn76K/4a7KJ3DZw6XObLCcbzQEm9lJ9O/NcZC4/uIyNch2TaBYFof87Dm9gC6HfxuCTtTxZmQiD1Rou/4iIsG45q3nYjZ4YBvB94DvNMJn0a96zOUv82cUJ4c6jvem2laClRYGqUp7uFllKGzmyzKKkb56nanNKUwke0yp5Fzm6O4PdKKCrdXZ3/pKu0n73oTbjLHTdAcLoG7RLgiWnfRQOjM02ZWspoVkAZNdwTk2yBodDO4/zT8rXtwb+7C2+/DvepUBNlxjmEmCqAamlntqtwViaiXlnPLAhidj952iOHx4d+yPUX6ecVHViV4A8IPhhyfji9LCHkUNgWKPFIQa7XQj/BlPFM3XtraOFD65zaF3cZ8egWeHUeTpEeZ/fEGU0iur4UWJ4/tk+QR2aYlWq59p2BvVKqhxhO97IAbzZDC1fX0JqO/YZMojJpEbv8+XcBnNvS0o8nYUqFAandqPfZEgT/e/zO/pITJPKgraomveRS95n2XoGFToFZWFOvgtC07iMzdPg3Ga8izNeHFjnetwPkdLecDMXywzTCxfOYaa1S3AiLcgUaM+DVHOQmlb3xSg3U0Y1YUSerJogCTejeOE+u0l0RD3pbT8HjDmxAR5M413EWtcCCAXC8hVIuoomTQEN2dSkmuK+323Goawv40pVtQxfZaL9cQyKCs26t0kwD80y+iPG3T6RYFQdBa7SNnDCwyT3o5846wd22PPe/ZAXZLz6737Jawi2d3PGP3mGNPYo4lEvOFU+Zu0UMp87P+WWcz0XDDocBKL2e4VzIsPQMPw9IzvF4yXOuyKloBo/Kyi/C+f/s++hKUfid0M7jDCX8/F17t4Ae88KPi+MQrzvJLoxmfmXtmpYLxTEvPvDRDZBQ6/cYYHPgiC3tIZ28XHeOwRbhuMkwnVMIiEsWYoQi7/SJY5KE8onvhGsIdFf2iruS2vcBgvHJ9kJ1pVETmnsG0ZGVecn3u8ec38ZeDp2oecrm/7KSWxHMa7vlo7nhluL3V+zYve7sgoP200n3mbXeFSszHxlPAczZE9rgiqxT1lPQt3fC5KeoNGumArzsJn7isXiQr/WZ8b3OidPt4PxqsnLDiYMslpX583NtPoOXebOxOhMzFx1U9HDjYCcaRwPcEtE57IVUKiK2RtPSb8famt6wScGvMStQjNEaNEmF873zv+/XvOzM4tqjUZqLGiY5E4daU9q9HDfSfFw0PnhAAOY3+dQtkNEk87cm72KUFPd6OB+F7Cf+yo6Dh/dtJLXPvQ4126uenz6N9xXTQ6SolGqtTw6E/KjAaVQbEFEhQxlOkZxF0abf350d6SoPPJTSNE33FJUi9MrszGHYX56MxsvSXdIo1DzrykErxAMq1DILBulIgPTCbs5PlVT17pUS6uF3KG5zKmeKEY0GB3w7r5eKRIfklNT1Jqp3OlwDRbY3VOGFzko5TllIUHPDvf+w91bgtNH01g/UsgMA9qv5Y3we3CV/26EbdGOCil7ZyeoX31AsPmnRyyKEMZfIsDWzHe8588Tpyd6QfFQhdw0jWJ9YqbxoCbd2ZUm86hI3RrrdzmgpyqiSbyL1AO+yYLJBeWA8TAbq5KqOjqcoLkxnlg+fwX3eG8kgfQm7+hUJB564VDl+4Wh57sy/pMUW0T99h1SchONAkVnfoZzAeqyd66CrZqgwXXxFC+mKdr2Ys0rQTqP/nt0T47zP4dKlGyXnga7Nuphvm0rbioKxSyaZpdZlSIgbPFvH50NjWzX9L/HQkAlz7XjeGyNtWaToFblN7ySrtVy99Hrc+wnXA5Rkiaik5JsJT6Euci4LQnaRu8Uk3Xp2+iyqqHacKe+GglyOvP4N895uQ+08jheC6CvAw72SsZFJ580qiMllZesIqqQBrTNoBOLPaDkaH/ltCzqbsEBQkJdQd0ZxMwmI9j4aZpHTVhEUnCUEQdFzmqG0uvvSfe7Mk0YjY5xvx9yrhMRmnA052dOPZczwadra2nCmkP6fHIRpqZUjQkIZKiibUTktWw4P0XYfjnuZmHnpctTFSD5GPiGpw1xH41LNKNRoMYlk8acrU7S8dNFT869/2l2K4IOCHuZaXsnkkMpo54MczyoyKaF8grI3A+Ko8V/YhDsvC/+/uKjr+9b2gwTXG59rH1xyrC2szKgx6/ikJSnsX/PokerlMsR2XTDoFRxIGp4+M90j39fFwzgaRuHsn7GaqdJniDyhw28VtVZqmQUmpqkXoCxKUsO8INWZ4lUa5t6Qf6TYQhKPAVk/LpvhZBBWceRjujYO2pZ1qIrhaH1IB0BCXkSgAEoS12akOexszRsBo7tmbB4Xde/aA8aRkMugwCor/TEK0CjF6xRPzhtty2qs9Gr5kIgw8rHRzVicla3szjnhY3ZqwOvWsDgpWvHpe1kQNkAMH3/Pd38xA1Ns+yIRe5uhlQscJf61wvCr08fqdOacuz/m9EubeM5+rl31uzLSSUDxsTSjvyKInK/RxK+wnE7iaVvjm6rXx2RZHtJLAuJsrLd30UHQYoWvjhEsV9cR4ag9Jj7bNVnJkFPOR3ayE2Zw7ZiXjq9v43zmH/5Z78d91N+Wbu/i330f5ylOUuXpatjPhnBNeRWoUi3yvDYTOWk2IMSNCTzg+mjLxcGE8ZZxTlRG1/ZvWum1rlbc9DZMvgsH77jU1Wv/BFX1507IKq5Fnd5ETruKbkuneWZFQ8i0xmpln63GoDBZGngVVgrPU6jvItMxhNU9WMmwGff2tI9RSYGyPmtJuQEHVPnBShVhWBA4ggG2xEStBf99f/nr9sj1bGmKdO6nyP83TnqP77xuBXxE1DqnhKXmHRzJkYxzXcKXxoZpJL2993oF4X5tCK2it9vVGgPHeHFZbvOxQld1LaYgdTWmvIujCGHEq59CFcmPC1HvWgmvVIqNkMsX1I53Ejm0bunV8rtbP6rpjHbgWioLZQtiegKUrWmuMs/lzeuyKKktNg4IXwXcLfCjxRZlUbhpPWV8Nnl2hFhZvU1a9osB0ikyRyK87RSM/d0LgymYFwKil3hT8sqawW1sfwZG8PjZb3/toFk7gP/vub64MfIrrBEed46pTJbN84AR+AOxBeQSefuCo7vfM4c2Yns5dSnud8qgJKADilkWz6KezM2Fly8rTSkJHJBgOXcVbQxdam+39DXtvLPJ3Iea1J0GySz3tWeMe6Tu0tdutjIThj33wWxMoPeVvX6Rc6VK+4ajytEzp6oXC0csdV4oAQCcRKDfBU6v1yYwJtTz7xpynwkZXlIz4QejPxFN2ivqzgOsinCAOLCUdhSh9tbSf37E5E32nDzqpUr5mojqcv3OoYHTXp4qJYvKOk8pZUXndiUj/zTG5xr9FCGkS+svQScAzEZiO4eNP45++qvNeTVrDGHob2ktWaZ/PRritOW6tqJg0Du4SeFwiYzeBGhY3W5tTUDKnFmlT3HsZ0s9hkGuNzE6ufw+CyJqopz21XEGyOUUQceqtqSlDwOlezBGuwuOjeVWgsmJLPyJKKxgWlXXpHFFpjx7UJHI7HaChHjdz2pttOo/ANelNbmS5riZWouQIcGcPLk4INZL0t42R5kVLch1UTKGVkBBKvkH0hARBrhKwVhWwLYIP+jg3oymu16SUBxhXOkQxrklDwUXrmW8CRwfxnqbcJmNLp6utK11R7+fa0SPVXzT0X4GUgIoK+9KrYuVhPprjB+p5B+ECcNZFhV2oK+6trU1hF1Ej0zZwYQxHD1ejPZ27qg8ueYSDO0U4j6Lklwa+4hOb1hT2Vjt0haAIRaU7fSX2sfxqQ5AHKDMtC1lUSpz2V07myOVgVAqevirSJFj9fTAMpp52WMTMqIyDUveyI6qUbuSZrtnRtFIwJ8Bwb65AWeHaGldfMq0dCSFdzkolxX7NTgyYXZsy9QpRMS7hU1N418zzyNwzGsFkpcsUC0mzdVa/jxkiV2hbq0k/wx9EoMgdgzkMd2YMPaysjxkWngFC3ymSfgfoOmHghHvuPMrQaZ5730E/F/q5Cp25g28OyuSjxxyr4z3+jJ8HhV097rPE2Fnti82Z5sFKjCIogc+IWvMfkbohNx2XtQqZO/m7iK6r3U4B2+AnU3y34JpXAWhg19g6tec0ibEpMiK4boFslbEvsxLmJae3Rpz97XP4Lz+Lf/kx/H134L/tDcxfdRKfC/NMmGeOxwvHESecoO5lTxX3hZasK0ujMmMvWcHVvZIJ8CXn+d2XH+XJ0pOmoGTLJi1t5u5uAtJlAl97Cj52SXnN3EOpeC5yeYocGURPTzAgdUVYT+i0AW9eRUnuy5Nxm3HBaE1FnwYZjKcRedz6uTtHQjnqFRJwqkQYHLGfpwxq+yB43zkuMSfawx1H1/Rm23OtvkHjRk7D+QunGBEm5Fo46duAjwp8UeCImBElrKO+IKORplqkkrlJnL1DVoOpnZfMYfp9LYe9cV2Y3Zur4bzNQJA8sjmHXWJ4vK1NNbaGW/dzmIzJgF6gm5UgvuMDEF3Ck2ov5xDjS/nesRw2k5xaUKPPSsQYauN9FYhayzgHhPJZQt0gD/hhh3I0r/ge4Xf2Jmx3lH/EewZzdXPIIlV64aoTttFw62fvGGrqwmROVfItrA+ButHTUjiOLMGt2WcaBbjjxNFqO/hclcteLmwUDt9x8PKTzL7zPqZfucavfft9bLzsdBXBKplDMonvNmxoo8KZCzW1EVjt4ffK4AlVWeiOC3tsnVxFOllN7jal38biwrswtPHUQFfZMFDPbTNHOn2fK0RvfLrtUhF7j8WScdX3ZErFSKQklRT6BYzm+Kc38Z++jv8rd2sJxExD4aeF43Ih3Fs4LheZ/o1FkOZ0jPbvMTemabanuoRUvK7AaILf9VrTvHqG0unrgewZn6i2CSGfXWIJ0r9CfJh3wl8QlUPmorrNXKA8M9S89muzWkUmq5wVP9rzTSJoYJtB3vpSrSnRsQ7Cfcbnr1FcnOHOAz93Dv/Fy1SOo5Se3qb2klXaAbL1KW61GwQJzR98uYMnXHyhl6nnm7rGYmpr0smUQfRVaaeXId0M181wPYfv5Eg3ByccIfHkoQJuE2XSu0DETfgzMLrTfbg4pXIVNSmG97jNMTKUSnhEAgCeCHvh7TbD41OjRGYdsWZ5bZNmOKmvL8bZPCotKdO7Ef/LYj8jWroo+mpJsIqG512fwpH2Gu3Ge6ufk8f3gb2kTxVjl4BMmhXItmLcCdRLqs3n0dN+WG9D2swy0vS2372if7+wC09erlOLYMxIQ6EWCGWYrx6EaAqq0DlAieTuvLZWLJ23xOOnJfMQBrmBCgdnXZy/GhDc0g0g7d72bsj9/uzVGPpPcqNUetinVTm0pniHS465kM4yLBQhmwC6Yuiw27CbF5wkZShB+addUErLvpkQvu1awuNPDZEtcLtT2B4jR3wwCtRzy3sSDEbEV7DOYnh8xYyrqdHOrkjI6+s6zV0MHqOx96xOysr7Js0plfa10hFhr7JW2KSEXNDjPWZbI+bAzHs+O/X8EPB7wI+WcGHbMxt29O9YiJneu/K2Ew2RVcRr8tqruU7fuXV+AOxNVTDcDHu9xdCTZ8JAQlh9YJ79THMXe7mGC78yF75OoNvt85UXd3jZszuaEhJC5EuzhieS0mxrjj/WiwIF8AXg34bu/VMRPp3MZXPtVPMfNNkqvxpVMDYkg/kcP5viV3W/HTN6ZTY9G6qtAZu4ZM4EkNUObmcePYfzEsYz3vZbX+L8Pafwr1XPSllkGv7YySgLxzzX4+dCaLzdr+llb92Stq6pSFNMoenkPDbz4DydMWQID/loc3TOKqHsv9klEyiyeqi80cpXHoWjDj55NQJJeXBX9+DEIOylsD+dhsePJFnfxND408T0DQuP17FLfX32c9hU3ufCUnHeI9MZEqyYPUTDXUVqBqwR9WiTah8m8xgnM/xhpafYLSbsGeHYnirgUbIPUiNOJdyGo9U4vht4QIRfFAmgZNYXwQ1yWA+KbKpEG3Bp18LjW4jJjVoLf1aCVsDVxIjsUaNyv1i8R/LcilwlXegSPO0SBHDzuCvhphx2cKOSVd3o1TgFj4xAejGt6FAySzqu5viO9uByEjAd8E4YJnOZjq3xrLZx9kVTrFJFqjIsDgvYtXx2O5awN2UjF3okika4qbFrozMubH4vwprTvPaJiDqbhh24pGg5UpV7SywEUCn0qv1049hSg/ySfZ/y4GpKM41MPVo4LncyfCdTzJ1XnIJvvZ8nX3GaXidG5Pjc1ZZnNH5TGem7otEDftCD62WwqeiMnn1qk437Vqt+ihHE3NVA6EBlybSGOS3HdZZUTgltlUXFv/lJaUc1V+lRiKH7KA2aEPZBv4u/XsJHzlH+xbP4Iz2NsMp1TJczVdzvKRxX8qiwQwLzsmR8e9QrUEAqc0hle0RCrXaAfqYOh1GpshpRYQfVuSqATOJaMENvZVAG3gj8g/Dc/0GEVzk1rJdOFfaZQHmqA89uacTL0RiZ6yF424Ekf3+T9vJ80vg4o9vhH70gI/jH19UA1AEpwX/mss5nFUKRRMDchvaSVdqHa6fJtie4Yb8SIgR4GcJTYgxXw+PTckzQsLosscJK5tQyPShgWJD1g8e9V0AnC2GEqsNsJNftUAd2gLgZK+Jhu+KOsF0u70VF1jxGZv3cmcOKhrXZBuqFLm+F5XgeuMvGhglt9Xzw6ouBwxgjh0WKdUvANcnutOc6JS4cBZ7d0WfMSuXQRxdrtNv3JoG045DgCZGk1imRUI3zgmxWak1TTxVyKt7jxnPcTQLy1JqNK/0IcCWshgnwnvPwxLPU3D4tzK6NERQijAQ+88nPQBgjoGVhRvNadb4URbmclvisoBThWdQDXEBAe5ZKoM/YZ7hprF3T2352TQ1Na71FgTNwnxuVzYtrlMpDjhNOIlwFGHQo5+CnZR0UfDpnOy/oVK8r/OeoeQBT2eIEGnJfzZUTtrIEPT4o7xQZcszBxR3YmiPDbiToNlci9Kmjx5eoUeAEdfpS87aHqRNRBr8LUHTwo7nxAEYe7pigYFLhPqmnMTVSVP0hghqZ9FZ52wXmxwr8RlBuved3UZCeHNhx8KRMKbsKWDiXRHh00Wpthshm+ZTasaF0xI3qNM3GewU1Wk09ixKPAr/38U9VYHRD0VC1bi5kziltz4Q/mzlyEQanj1Oem6ueV6KKe/C660tWq/h8Z8xs0Klqvc8RPkoYXwiH/bWF91XfFzWGn3D8HrCzAoynsDXBF82orljSzraJpHds7BvX6+BGM+3HrESmc+Q3zrFzYpWPv/mo1hUOMdM+U4Ftnmse46yT8ZgIryEq6k0veysIXeiOgbUVdgSKYc4bxzCcq+K4V2T8eafl/DKJnt/aJC1ruQuuFamHyzsHX30GHrqgL9KXulYu7yAnk7SpsHcGIlxxcV2mIHQvT7rixGyOIcohNSoOC5hQKS1VXvRc69CDRMwUqYe6WmnXxvQpnajRSeL6PtGH9Wl1k49+Suk5W8FbW90oudZpeHxHkvB4iXmg3yLwlMAFB4+VUtEHWekis7B+Up4eUJ6rHAl7XwnNvmFLx5QSxaM9fRGzRC3Ym9dQ8evSc0voczh2UKUgDXWtjPFCqPsOp0bT2CXATYMRJo0kSMd4kJaOL6VjBsS2lxjK11G5kObYkns0f06OQ4LTQYzOJlGCvZxyNKk5vD3AbMr1rqtXTalstXr3yrEhVAbnYxlsoEB0HRG4Yw25rDetvOxWacAMS6B0G5ZGg+y3ZBzwhx97uD41HcdKN+dCN8N3M+a9jLKXU3YzNrs53W5Q5rt5tV/Tx4i4WonjLpqZ5IcFjDX9xAe59fTVbfbO9oPMrcTAaEEaGi9EhdUSPNLoBvu+RShylA4/Gf8qVNG26SdtuyxHadfxJWsu7P2xyXyTPfjwl/DZHP+mY5TOeIB62p8NAHRHCsd60xhEPUe/GWBrSnvbOq0xRBE1NgF+0IUR+PEE3ymSMavOte7gRKqwJ/OW8iZT3v98mF+XxbTmEq+lTEWYnRqo4ez6LhzXyFwf6K3m0der3myxGB6/sE1J/xjnfiCw8cqjeoOJotpz/50qU0DckLdPZ3/pKu1Z1sFdH+PWsqhXiHCvg8tCtXhTkChbQHa80eQYgIXkDikyXAjfSb2+R1DLTroJ0nATI6oWplOBtRkY3ZkCLgbfXVWrPS4MtzlFht2aIO9Ew0r3RGu1jlBPe+XVkXisCWvpAjVGvqztoR4Su652vAHFTgXSVOG7c0VzUzwRCXKYhF9Vuzxur+bGgwhElyoW6V7aWYHj46l2JTCn6p3vlEgRZuow42q2mnlb4ufhZ+vn/cmlfZldg2ZUx55oWb/d3V1V2I0o9TMF+oGKwc6Cx7EEygmUIQXiEnCGyNCda3R56dACV0rfnx1PB3uxpTWk46re3f6tUpLCWrac3ztFc4L3cgcFlHuT2rtlPOX6alIlMGxmgarWdHMej9L0tGtY3TBZl2LHUyvI+TFsKdBQNTz7nyhQ2l5yv/VwjkXzpBE8UcaNodJ9AtjJoMDPfHWfGdDbBLpBPTaFvRpQFM7TMXaBkUtBs6jq0ZfHOvirpUZgePi6sBfmwEoJr9yd4leyiqnPJFrLU8a/S3uNWutbbdukClK3E1M5tkI+mp2TrimEre1dRCSEy0MRBK0sgyzTsZ/N1PK+eaagvHi9MkaUc/W2z6HaEyUw3xwzP6pAPiUaRfBnpe4VeBuRZJki2jQ6OZv/ZN57AhtdKMdTrQTQdVxGWEMXtwl2TQNOTSFIBfyhw22pmOZmJfKRc0jhuPw1J7kSBDRfZJR5hu+46GUPEV9PQA2ELvWyL0uDkcQSpGXGIEe9vL2s4N6tkr/v4GuvzfjmK2PuD0p7Iaa8L9Kz1ueYt70CokuODwQzx2euYTk+cmmGHO8iBP4bXtBAFFG4KhsV3vNjYeyVl93eZ0Vnks6EWthWQaVay+M5EurQr0ojPD4Mckxd8E7XQ61Ge3rCkU4s+1Z6NndD3MruuB5inRINUb6do8J7mgOaocYL9SgJ/5vAo2W4vJtp1MDWRP9thHNvFojYwd5Xe2vsWRtnL6yurUniVpyF/PnGuNJjS6vQ4yEqaJ6K9yEw7TmO7U0qpi/o+AQQK+XaYkg+0PjaZJfC6Uu/Gt7hLNCztW772KR2x1aFoUeMXvLJH7yAH2RVdRgdYqDE45LdXpF4RS0sPobHVwbrQGfEwRBh0ykWREeAUx24tlWtDzNcmQJP+J31UN0gd/X3fYA5FWBnW5OqUtp3pOO42Ms1SqirH9/PuNLLKPo5ZTeP2E/Ex8XJjPyvI2GtrIJfH1fGb57Z5tLaANfvRPndOciovOzp/SPwZJ3npcr7JhE5vupK8lklAUZu3Keym1H3tEvbUWIa3kDUaeMvXMM9qXzBX/L4c+v4YAQtM0eZCZdyx9EiYy1zXEue0cx2sD6lx6a+ko7P+mM/9iWs12Do95d3oB+B6GwtX2N5SrLZbjPqIKH3A4+Iyi4xNF5p/fxoV/t7zQcjmq5Bw7vQ9xXX4wZL5JXkeelvagDTP/YRtu8+weRb72H6FUP47ns0Jc0TEeSbIJ/PcXvJKu2b158m2xrhjuaRWTstl3CnCI+FkZu3sSJq1F/gQVtzo9q1R6h78qwcSXWdGN9PPJA1MLo1zRGuuRTDtR7YniPB2mlCuxdhiObWnhctl2WhgdGzYqGOjc5AQHyZx2elYfEVk0DD6ZrW5xvN034K38lBiCrwAYSOeK61RAFsJWxQoVgiUXHHgcfjBba7MJyYNd7rI0LkghuD9BoKJ40HHGScqVSeljV68+n6iV95OnqY7Nz0PkuOPVS5fMvXvrUmtNDN8IbeDlWqneW0+wmUK0pUz3vhbJjLysopad7nPgOuwlipv8uzQWz45Hl48kr7u7vR3JGGyEfjUi+DNTQ6puzl+O1pDI0H2JtwraOe2LgX63l91ZILfz+BGu4qRixauzYPHXChEwLInQPk/DZsz3Ar3UrYQOJxKHX0+GvhXXVI+9RU1uI2WhOtBVp2i0T715z2Y5Op1j9LxlczKiTzZ8cemtNuQGuVIUugPNbTNOHdKaWHl4vnNXgoPX9LYG1zStmnSiVKQ+OrNUf0tDefba+c0M/aH0AVpL0Q0bM+htVk36UCrhO+5Zu+prrMcrKz3EqmqfLuRLhLhCdODfBbI8rxTJX18JklUkrpPbPdKeVKVuU+zwXuy3Q+3yzwvwJvSp8nEWTMmoT/RRquP3SBeaZz68cz6OdsASddsgaQyiBV80o3FTsBN8yQ3THOl8hHL+G2xvCX7mI1z7gSwIZ8ET/zXD3scydsowY6A6FretkbJKcxQP1jLjqmnuha7uUZg/GENzjhbTtz7upm9ND11pOwHmwYBzF25hI97AZKlzvNef/qM/CxC+rtWw/o1sd71b4zz+wwrPEUqRngKRogdOhacU5B3SCZ8xBlVZXXq8oDomlxYfwbxD1u+8JKuaZTV71Ci9ixZxkhOpbD1qjiq9/y1rfo962ZRtClfUtvSKKsSwSly4CPAD6wkz0Rfhd9thPBDQXZGidyhIfJLInvbXnWAV5f67lGwFeAzQSMbmeq2AGtE7Wc5xXEsnoWWYajKkcJMO50Obo3pwIQ9CCjKa6j2r24gwxmyfia8ooR7xMFrE+UiFg5OzNWLMyj1G7ZZpAfArsuGA9J6tIDDBx+XK/T7mfqBZ/1igpg0WiSuEVFxEEFeHynEy5nWmlgIALHcuTKFvgSmcec9gVtbnMCx8MYmwr7ATzt3/CNX1PrF8BxES7njnkvp+wVlP2Cea/gcj+nV2RqaGiMJZ1Wo8E4KAhl0foOP9b17j3wzC6P33tUowpcWA8ZVZ58U2m3VWqrt6lwe+pKYOoYsM8akSZV1zaU5F0aSrssjtG5WDWhkJAe+ei6vqNCz/GffVbToxJ+8EzhOJE7jhN1kWX57M2j5bTbfKTjc2FdumC4zNHoXrFFfG2CH7pY+cDrmr6CNMBY4/cMqmit1Mj6ehRrpnQocnxwIMwzYe4c/kwwth7rVbJJKvNU+wdNVVjmZKj2oe1Ll+hlohg620UOLzuJfOvr8K8+he/n+Cy8m9ussMNLWGkHcOslbrVQwc7F8PH7RHgivIirxPD4dGHaYjrwsyIPgeReR6jXgt6mHm6iJwdrn1APj3fA6S5cDHew8PjE6uk2xwqCVz1Xry0cbInUQuPtlql1U8Lza62P5qxbp9OWUpxlwDU3mrdmPrRN/qkOXAnZP+uzEGKdnNdgDm1yhaDEz8IXjTNajXaAjRxWdxVsyEH0tJtV+VYAedJW1R6W+P3+0/D2u+GNOfzte+B1Z+I5ubQuunRs9r3jbIz1+fYrDibTSHiDh7EKj98r8RJqtIuWe6vWhSlAcgDCkKY3VIiGAqPgcbgA/MwzGv7ffHc3aOmy0NzTeM1RgasI9DqU4zJ62n0JexM2C/VmCjoIkxvbrKigXvkUiA5gNxMGJAzdlLFTXeTiThW6Gt9LtPB3Rar8NdAc/GY+e23/mUEg3GAQ7jPrdmAnCgYTYDCdwCARUmwf0C78QcgDDYP3YTK8kwpZ1h8Dvz6qQP28hxUPQ/GUswm+E3LBRKojUmf2e6hcDi19kJhjucAR+znsBZ/FToJEnAp9LQKgkcksc+ptzwUXwuRf6YQvdAv8ao/5he3K0z4r4x6g9MzEU2555quaKmKgnU95NZz8ExHeSN3ib9+bLQUStE8mwl43QyZjDZPod7gK3GHvPFmbtf2W0Kx0rtz1XeRLY+SDjyNPX0O++T5cJ+NYrmV8pnlGWWj+elk45p1cPS0ocvodaFRJ6mVPQxCXtmTb9kUjQfpAvyMMtiYMgP5ozsA5eug5PRJl+IbMIJyVBQU9NXIaPfzyE3C9hMfX4coeckfMY7eJ905xKEqRyqs1R4Xly2i5t6bBOnWcVoNEdNPsTJAy8IfSIyVahx41zKUe3zav1MIUpnws/qg1hZ8NvLYqa+eVuK800OMb+ycTqfLZ7dgBvgUVjueoYv8XxTxYQjbMybYtii70fOIV3bHqF4t79SCtqbzZOl4tYCtJt9ub6vOaxDjhZW2rx3Laa8BSYiPR0NutI12OTyNPB4+MS2To6ivxpo0SLXzsWF/xd7xX3tAJ5zXfWQsdaztW4GfhmT55rh9kmjaV0Gs/muId5CG1sQqLN74kCS6F3Tbw5GGmUadTp2uJY0OYgmyOwOvaZ67rvxbluTmDYa99Pm4wp+nUp0b0E6gTzYtQmszg1AjerKu9uEyVJvjwgEKCfLTSgW2dLz+bwbl1PnV3V7EsRDeGBGIszkV+TKSLQ+qe9hSEDlRpP5IMu9m3VahVkLKWKsf7obTbd+9E6aQTskyYOId/7TGtGT4NxvU3ndaoq9wxD7zgmU7GSdHKNLtQi0Sq5KekP2lL67S39cnImIgaa7ftnp0OvoSyE3PJcbAZ1vPxlvlq8iX7CKq0f0pCaLxoCtvcSVUVqcwDfTl3DUy+qeYtyi+g0Y9r1J+fbu+23+xL1nVsdRTHrOzk6iTrKsaZL1yim90+zf0lq7SLOFwJ+VqvUkgsr/UVAl8QXZB7NJCdEyJyCHZVe8mpAm9Ku73GPRbBapSIEkrDSJRKETgzgAsNMLoU2XZrhAQPVbq4VtHw+BSELh1flnxflPSzCESXNqNWIUesquvado/9WlNhN+n1ZMhNKT1sTGO+WMrwKoW97llMlZaotEs9BAhl7pudjO7UavFS1Wl3kzmu9LcGyJM2EzwtT7Ob6ef1Z+H73qxHKx0YvEtNr9Syx/eAqcB0Oq2jeXcz/M6sosS1fHbQPPCOKu0XgTPJXJpiIuxfAqrqUTOcNRN45HL9tD++GN+xvecb37naApXC7bSfd4hw3YNf7eL3DBNH16WfTtnsZlVen0YLhHuK1IWFcDxBALdL2rZTBHNEBR9bb5weIHvAhS1kVb1uLtxMgnI6kNQbpAaBO5J7u2YfnFTgOeb9GwKTrsOPY0jpzHuG25Mq/jbNuzNTddta6RAs8kGotc1iQm+5MsBvlVi8wlUPXTzrHq35OsjxJEisRAHZ9tQ2+3gY7YfaMXz6eUzluDZX4T4dQEIfxmNTk3TsGcERm8cweZxwtxOeRuD0ccpzE81r94Yir0YsD8z35loyZrWrOe3onHzWwWvCmjMlvfKyyyLDjCQ3hqO68IdZJ8ONNbqHIuOawJrQIGcNbJHmHAnw1BXkd68rMNrndpG33IkbdiHLWMk0b/1y7iqFvSwy5pmrAJQeRZVWu20N7Efq62WhJZ3LRGnrKlqeebg51u+7Y1ZwrKLGm1pe92GUvk6kgzVQuiKDrz4FH70Ez06Q4ytxvkW05FugLWuiinoKQncC5cOpwUJJVgMsz7q65mBvHl/BJAAAhnSwI6JpZ5VoFvbCHhHbgebRaEjzecbjAiL4eBoAnAiTTONmDSOWhcfbpyfwVoEfFPhGJ/xTB19WSBU6n/c65FvzupQ+KqHI62svbQd5hXEjhH8nF632FLPCZJfxVEF8m+elS7/RFYEqT9mYQsXTA20C2O12WVkP15T2/kqkyHELhMnudYDhmXCVblZ7F0d7VQQIuzM40jCALPFAS8sHEiBdU9TDyR7B9/JAr43vedibMu9koT55jPaxm9Zs5tX8Kt85LlrybTNMujiQIz24MtZ7m7c9Rcc3pd3AZmtMTb/sF10jwHQ8WRi7Gbe3wtEk0E2UrhjtTR9nYzL5117T0GkYtR909UajGZzbgkGXS2s9uok8InmgH0HoafY8VdrbvNFb1MPjjcbYvdaIyqxdk37gBpUn7Ggu6czRz4Wd3CH3nWT2nfcye8sAvu8+yteewhdCmWst9rLIeMYJp4l599db+lDrW6JvblGPokvnRsL7NmPJkCSHfCVc1XMxWgRY92rY7SYypy2bpkE1Vd7vRdOuHncu5rX7gCT/pavMvxRWy3vOwxOXQRSfyLDLbIxzVD6znHajNbW1aIZy4h9FBApH1su5PsgoOxm+l+F7OdLN8F2nynsvpDTdRgT5l6zSfvKuN5F3PC7TEFfdo7rAXuHgMQmgVkQrWbqAmgv0IK0tNOZo+M02bQpEV+MbKWVtA6O7koDRJSYy2Zwgw6wS3iUMoisqWDwDnGmMz/SsmmGiEiQE8gzGRqATQm1tHKxaTfT46mY3mLl0ktNxHwkb/eoebI73rdHe9qSU6UFk8B7NaTEGf76T0ZnEnH0XrPJuNFPB+FYAedL+iGgJwF6mc9XLYJBUHegmx05WCYX1e9S7YseeaHmND7z7F6pzvQj0Mvx2fHdGqLzXnPZ5qSHW17z+flKkegWmQOwLQmctMI9KYTdB+y1n6ud91dnkHDkQxalChiWC41nfzkqwxnd7lNtRePEeZOyZ94uAhh2EB2cGu/oesPEdJwJF2hLfEFGZMkgBVUmYIkOOO9gCMU97EJJMsBpIvbxLW412mz4av9u7HghsD8DPp9WddoDBZKKVKsKFRjeM0bStlR6KDBzz2cPRGNmxAeX6DO/V6T1Bw6ivlx4/Bd8vkpzv5D7JAtllH7AaqGhSbZCg+2B3qnmgM1QIbCo24Ub/4l+/l7TlYkYOV4XGOxHuzbSkzO5ZwV+6ztyXiudQeua+jKUPN0fMu6EmMFR1YL+A8LpghEmFB8tnbwNsq+T5lKADPkTs+J6CE06QENUVwuJdfU1Wk9ZUfP7kYk2wkfPXkdzhCod0HWtFxpVOpoJaJ9NcdqLi+ij10PhFb/MB6HVomVNv+0rHcWR7wkoJaxtTVeJ9SB9oU44O0pzEcm8pTckE3noHnJ/Apy/BHf3Kg+jCUcKaHorUkJofB16WDKNKC5CGwSLlf50CdoLSHsCrRFB6h45xBAthlxP2K4+UPDjlf91Mf7+u/P1HfuEDWkoLdOx2Lsk1yaTmqKJun76owvLWTPh/OnhLrvg2XdEIiO5KB9dU2sel8ilr6fo74PtbUGrTfq91te68PW+7TJR24tjCcRkd6RLDlFPDY00p6GS11DcHyK7HdYpY5q7FUHCg1owQtOuPFXAtRJhtz6sKH7Vx2bnpP1voNYSiGoHGluF9l+GEctiBYHw0TzujkmlRKLBuOC+WN43KUVTYqfbPESfsOjUSDIJ8LKePIOe1rKli/vgod5oysjGCtaI+f65lzC1NgH/zY+9b4Ml9dD1fIyrsZqptyszN6bSyj7YOOyhQmzjwK+A3x/ClEeU9J5iJhjlj4fCiNKZmCE+OHeq12kvqOtk69fB465fxeAOiq6739e3niTy09vxk+7mw5qTI8LmjU2RsmKL48lPId7we/5pTVUh8aSHyueMSWj0jD/O4Tnz+olOr3rcpi9FDFYuSaKAWUZ1jL8jZ9DoqIww7YW8G4G8XdCKpz5V90lS0iv+G4+uBR1zMZy8zKDNh/plnmaVy5cMXk9D48HGG86HtSMuzm2urOorilvlORrenwIg+gCSW5mnv5qGiWAAnd7dPtX7JKu3PPvNJsiOdIPhH3dCJIshfR4WZk9QJhzT+fdBWXWd0K/xuG9EWiyntCwvGBJBmSTTn4HShJcKC5dPKr4n3sAOyGspAhfsIGsK364RnWKzRbv3Mqt3XaEVeAfG0RnkYsnwqnKX/vuFkSRRgmoaK07nWXLw+gqMJU6gp+cmtWj4VeEj4wVvUSrjZ+V6BmwNzH+fDg4zm6rHjgOM4yFAzCRu6qMoDVpu7lyrty7dik4k4lEDuCHz79/7nWO4boGipUOW5VcuFMAeTGWVfFd/TJoNIXBtpruu+4wqWx1q+fjeDB07D37oHvryA//o+eCAJ/88WIwmWNYsEISg39v0EcMkDq4Ifj5Ma7boms6AoqWc+MpgaM0326AmUiZlXco4KSl3RyZGgvOu9BE4rIoWsxFI3FbMPgs+IyPiuUo/kSZewC/ICQeG0NgT2CmB7Um2/mYfeeA6DuNehvvVq/w7HHmpZLkPJE4LlGevj8Q5+fRcPXCk9Q++5G9jZ0xQLQ4/3Erzt1L2LUDdEtnpDUjqTTkTfqafdQCcHy0En//5/892kzREUaQuNF8HlQlccp0R46tQK5WhOuTXGl4S89lDuG89se0Z5TPPZ5y6Wj/mcwAPUBQhHROdua2mebCUQQ6UI+aLDdRTArAgwIE1yltwh2Yjh8xUKF+mC59Ddf6eCn4a87yMdx6VOVNg99QqhTwCvTsaU7vVFM2GjNQVxI9f9nGJzrngNuxPyrquMF4fmB9XpUk8pSqN4ejm89U64DvKFZ5GnrtY9PaIhkSuwoLSnBgtjq0ZfXHPjgJa92p3HUqB7M+hFAW5VFC/GrrE9sV95pOrHGgEKxzsy2JgAnr/3175NS4athQvaFOikryJSedj7AgOnnxUnDDLF8OkJFd5At59rTnva8VEZ916t88l7OUhL10g6r6u5Knn20BEq2C5TbBtdsO81pZ3E8CjRaLq9Cr2x4WqLvsO9Ehlk9feQPPfA46vWt22CcDxWwPVAw7ZnyyMkWp61QMdR+WXTzvNU4fEe8P1cFdrxLPK+mWfcL+hQmaorb3sgnwsykhMB5zgSlKDzTqoINU5m8Oymypd4ZO4XNdWtERzJ2tf0DaZTgO///u9qVZjuRCPfbGnaXl5hcQy1NRL+lxpQtwiOjG5P38u5a0zuzSlFAU0xI0UGOFcZwNP3QXgfVU305PfKBoUqgc3r7HtVESa5pnm0CNy29ZAa+H0wZLpuxm43r7y7PkRxeou0KtQbvC3CGFXaoQV4l/a8dmsjWmhaejRZRITCCTu2bLtan933VH4w3Ikt4I5kklL+Z4bkNLotlUcfAB7JHGUuzEIue5k5Zm86FVPfAL7yjOaYZy4ew5+2wrNSjKHQ/YU15aCKgPbdnHKQkw0KLg9yZgPFW9AKB7liLHUzpJMpb94XKObW2ktWafe+RI52yc2L6oJnIxOGogrLQ9SR46sXxYFoT621ERS713GipS1l7HYdhEWTWuJrYHSrcCkFowsX7c6UKVkZqIQh9MMGOYfmtKd9Uj0hWBbbqFQ/U6W92tVm0g3PHs0SmNxFhnvDiasmuMH8RODkKjw7USHmyP5APE0emjJ3iLXaK8YuqsBcC2H9bhLmL6i9bjJHKgrV8syb3IeSCWLK+iCPx2EBvVw3+hLBYYExhdYTzavMO0U9PD4QSSvJMvdew4MJy2dvjs9VmTSfuEOjUSwX7oYhs9bMIGFGB4sm+LKz8F+9GV4fFHb7W35wclMPxIjeguMOrgnQhXJ7GsO59ibMcxhkLrlHAkLn6ujxtjePhd82iBZvzOsQFOq6QGDh3Ft1z0X4Rz9MnAmXhpTapAkL/w73EIQ1EbY7Dj+JddoZhyiQpNZwJaCYtz0ZX7oXdtEHqbVZJ9bql/ojjnJrD+89m8AJH8pU7k2hp8qQkR3LSk3Lp3jqhkho70ddmgn/GGQwmSpI1Ur4PRXgE+W9200EYRKlM9D1CpQug7NOeCzLKO9cpbww0vU/D0p76ZkC5eaM+aAXyseocPclNATv3mDorQkQLMlnt094d+k+7jhhVgDDDhtI8DBEwdqFNVXjNanCbsaw151Cvu9u5I057m/cg7zyJC7sKV9krHUyLoR8djVOUuX6baA53U0QujSKYN+W/j2lw8MiLHIP09m+4c6Has2UIguXdwJnwg6+DPKz55Cnr1ZGElPgV6kD0T2JlnsT6kaYzAmZaTNNJXpYwF4ZDVDTEunEPdYXqrKOYQaAG+Slps9JnyUCa/2qVnu3CPnfw6Kd97QIJploWs7QwYpodP/QFHcRVoIxYwC41Sx68lNPe7fBa11zFAdo6RjTfq/lsBPA76bhoYbSX5soqf+zcfsOIXoOKsIZox30YZc6QmdrjPikXN94jvSLeirEzYwvHVv6/o73dS/MSg2PH3br5y95VnN92HQNwjhjac0IQKZKCPidaUwLm8Bur1A8lERxjd72uPdr9lCncuARJ5x3AYdCBLmjh1yZwLwMCntiATSGe32mnvbmOGtEv70J0Ot1Yr+SJX0CKoTzih/TUg5NGuskoQGIhmpPTP473oPPrEMnY3R8SOmUzldQ5c7hknzAar+GZiWErU92NCXxGmpjaxqsCb+tNsbU9LLDYnh8cxrjuIWymyG9jKs9NdTOgvJuCvy8kyu+iRMuhrkzzJlUF0nViWafUoP8MmOC9cc6OxArLwuMd2B7hr+wXrv/ZYRjtk6pr0+7X0YMymzmtX9aggPChRSAQihfe5rZO+6l/PJCcaLuV7nTB62/DF7vEnWeNnW+5qf2N5FKxvVFRi93bIQIU/Xm18Pvb2d9dmsvWaUdwK32qnqsalm3cA7hlSJ8gliKCRJFgfqGOfDzjHaFf9s9VogbZZdFqyEEwdtCKppgdGd6cD4E3Vbh8R42xkjhY/iu2CYS+g6+FCjPaRaJtm6EhAmFeQF0kU4ru1V4bvjgYTpviZlp3GufJlFDiVKjdezOro51l1ijPSHG1bl2r5ajEEOafFC8zBN9lVCDuwOMpnUP7KREem7JjW9mRTTGnWlpQEktcjcIJWsbm6DT7x3M7Jdw8CL4AtiZVkslYhd6ytkMnwnnPZw1pYHo1MvtGQcYr4b/O8U26DYiCJrRBJ38QGNNx2wR6s7WtdP6nhOEnZ7AaExp6PF7M6adQhmMRAMEUt/XqVxh66RHtD6bkNDNlBhbHVdxgnzxKvIpPUN+7iI8HdHxjXkNwrwZGFYbEJ0tZzOembfP+tsV2Ohm+ElECWZvwixHDUDYQKTG7NpalxBiGOhCGt7uRSiP9fBbc3wJ173nTuvvaK614km87JWArK3J2KsxNI9LvLX0ctjysDkPqTBSn6D0mkYz5l4p7iKVEPoqJzztgbtWmV/aUQXWx/D4OTDbKSmP9SqQRg98DnhVWGuW79wM1VvWpPoflZFnAMzyHLod1oE7AsUVV72OhXQNXW8uKuxJBIv7ri/HvfqU0o8ieNoLx5FOxjMdVxlY0s9jaDTZKnWl1R1gTFVrvjfQyCFQPrFTVqjrCzT6EHu+Gr+FyJvhwhT5R6/UHiGfvqTCXxiQiArYO2HsI+A8sdybsZuKF7aFMAoBa0HxJARgUiJ5Hv9MmgITx7dvXmqlSaUEKfz1WF+N1JV7cR4VP704HpdMpynuq6a4Z6q0rwZDRt+MlquJAk143mSmNLzt3ofhe8v27mquOe0Q63unuDHptbSn+UDAcQnffQs9mwPP9jKySagw4DW2TiZT5bvpUG6Kry95fxalcH2kUUPDxlw290TSmrKirS8P/AjwBftRiBFSaw4fSvKWAJsw6hYclToJVTIUDYmpfGp02TvhiNMyo5nNxUoX6YE8uxuNH2md9rlX78eRJelMN9jzKYZOc+zHqHuCU6TvpsG7STdTYOWBaMYVgO/28M/u4u+5k5EIHXFKT0TUcmH0Y0mfrARfm8JuyvwCsFmyVVfDNZNkXE0l2TzazTWfir3VrIrQLTI2ewXzQaFe4H6hIdu9QvOtnSqSFhpv1x8l5rSTjGOekAM7Wp9rhsikPy7c1Oa+wvO5cJ3sU9fIAP9z5/DPXK0Ma9dFwYSbc2U0GRoKe/L9VWiE07lCQfb0oxEF8wfOMP++N8Mb7lKQuMAjy1B1wMa1yaKskhpbSP7WRofWCOWkqbfbr6rH9pJV2teO3YscVbTXHCr0eBeI/avQBZuWezM6nBK8g7YmIUkXwDFiePwWS4DoUGGuljdlYHSn+nBhUgejA9ieIMfySCSS1dVH+CwqsBXETWG3rRkmmquzyBSIbtlKnJRJSRMaxwPOWermSRnhyQ58KfgpK2AqaUystD86+W61MSsLtUDptFTPEYCigxtpaRiHlXtTwJqlBojD8PfnqC0wp3DsomP7/Y/+fjW+qt+rWhamxFfLpVLc53PoOM4jWn5KogJpud83DJlN++eknqvfN4U9+d7NDx0uZHsycyH/l2BUEDgucK2XU6albyYle52CY4kFl2qd1626ktwfonXflPZOGJcZClzYNPLpS/U+furZCovCDGYWZGrM3JT2tuem+1acCTOaAnCl14EZ+HmpAvZozqRb1LeZSH3fN+4NUdD1DWuFd8HDPCjwOfjtEZc8HPGeE6hHrOwVVWhbFDT0gWm99j3qnvYFj0P66pve2jEq0K91288J/f3Qrz9Es2WYp93hMlE0eSe8LNNSl9OTGf6ZDeZlSTn3lKUC+s09zLdHlP1Olc9eivA5ifnslUdaEuGhhbZFtGGpv88w7HI+hQuX4JlrlbDiRJL9FtOaqmaKehq90s9xvQw3yHEdp+XHwud44bgsUTApfUz3eIw6CF2qrB+oSoS9vKYiZkr67iwkZBbx3Fulk5lbBKVr4GUIIF9xGskFH0JbfeJpB/WyD1Eeb4Jfyv8qVpLSTkEjQDYToNKxhzyv3tHQCVNRg2ka5TSiDsLXpNkN4SL8BhzNqzrfH/rEH9VDrFMFMWympVFZIuSiIJqDzDEUjQow/QRE0bTXwwU+iOyj2WJ61kLnD9CWRhL0AgiAh52JWSsbjE1qz2rj7R2S0lsJMTUv+w6wM+wiExRAza7fniL9NDw+edeHGZ8R7/T9mYx2h1Mwul2tLLIgCLZESLSNEXTdAnwU4X8CPmMQBBIMqL0MPykrHwrzGTt5lvDtQI0qnlLnPVX3A/NfEWHuNI1CjWAOjg/hkua1S+mDZTNQGEtnWtlfPtuv/eZvPFRb1tavE8TweFgEOW2br7jUpOpO4RRHxAN+vAtbM/xgxlhCwJ8IYtqhqztPmvfvs1jyzb6bXG9lnGu8PXzsb2kEEFADfEtLvi2sC6nfT8Kc7DhRpPjgBabIKr5uhuiL1JX24ywC0VV57Q3F3QxkprTXtmsyD/aHAjX+8Og6TMF3QErwn79a7dd1EU4k8lhT77LbNcu+Zej+fx0aIj8vMmaFY97R8c+7GbMk3dR3wieP0Weg7+tY0vWmEyftQ3PfEOZ9M7m+DRPgdreXrNI+n09grdCXnyjszoE4eE0474+AR1h8QYedmBriIPWXv0YEuxpTr8dYO9eUV6h720+GK66OwsoICvXmHBl0I7EiEuM1gYkocrz9rfLu2fc25VRQBm5AbTUqFf4x9gpWdyvKbcrMqp0jcCoE8qThsil1bvCEZdENXRLUbKRKx7qKemvpFIoqCwkQXYlktwbIcztaKiNU4wtjk2FkaVXuWy+HnXn0rntfAdH56Zx5R7gscIpkPRDrRR82HUdEAVLohdz9geXwh9D/Q3rbIArVNvUusz0mnBC4POgqY5jNdVlOYHulo6knQfk1z6vdp+lxt5Yq7TvofvWiIDXiXASs+YrTdaL+FafDORLXsZPKGjvSbtWV9oaQ4sxTT7xxLrAdPFF+rPswG5daBk6ktiwhjG+J07AO3qQDr8K5QjRBudqBjTHbpecYuvXuHMNkoIpDxZDCILzUBY6mIbLt2O6tDXvt2p4iTAssCrmqpKyuNqlmolAXUqU/uUw4GrxHXzq+QumgvLwT9oEy75lAuTVhfiwg0UJVGu1+dH4Pms9uYzKjjfUZ4OyF66w9Oye/BF/34DnuPn+len8uCI5tvEYjWBJwmxD26PqKVOssUqebU3Yy7nBSVUCoBDGip91C49u87AcyTDdPsQ2VEwX4Xl6XMu14E3RTSy02FHbDy3iH4mW4/9t9yGtO43IVviVU3kiVdstnT3m6Ke657Zk2BW6YwSSiWzMqkV4EnhyE800psGa8fWEPpMsi3QeVpz2HrT3wnrV+XxXbYQPkK+WBB5rEZGzpM1eDWWE6j53fm0HPLT6jRdG8YWszTJhytz2F8SxqMc11Ej41Gpt0vUr1gSQkNRpOtkQxOHDAXoJOPp7ievVn1J570Lbs/YloisO1qSrtw2YUgdSfm07X4vD5CJHWzkT4sNT3NJ0O7CZKwmzCxkoDBkHi/Nk+t/tXfDDwqxPB4DVwUvFqObmCXA5RZZXSjhL+zVFY6HJD+WxZW1sdLnjOoc6LYTGKq/aRhtxnP4qQOwWi48J18uD1LX7/Ily4RifwdJ/SmfQZySsGVdqbnnb7bKKKXErHm/0sULqTKu0WBWltl8Xw+P2+96BWWtaUx+oYnvMsKufZdUeT+d0vPB6i46Etp736WOqSCP3MsZ0JvPZoKIEDcwf+9XfgRcPVL2VwNKy75vuvjP0spnDZuQ8AnwbmRca0p3nl845j3s0o+zllL6uAnstCvVKmsNv7skjndEzVu0t0qfRobYX2VAmoy0S3s71klfadzYuwtafo06LhYwpoJWROKkH2aeCfoIp7TaG9iWemRBHiPY4SjdtmOVwgQFAv9yaN76dzuBhIR2U2miFrvXC95e7qzXqBeFm5N5ccK6976m5Phbeu0/BYoBaOb4tyHErE0Lj2MExQX0rdk+Ak1n7fBp660jKp8RnNjZU+uk8IjzeG55TRn0c4KsBKgRsTa7R7VIl/LgB5nuPWNk6bknve8oZYs5bwqroFfndeRbIZMS+9IoJfL3JytNwLIhUIfGrUual+mqKbKRDHrcxXiiCvPEEqAecocLHIFD00AKaxC7t5EfKlGksy7H9oN6odI+ac7RK8ZYGh+zAeCod7XVAa3lTAO+5BXncaCqcWewtpJoboHqQ6he77ML7QxyPAum5i2FMwus4EZisxs8+RjHOf/dDDyh8G9Hek0txUERf8iQHswnUPJ8MmP7oNu92iyvc2BPkUCdba0jKWVV8aHay8tUG4fXY74ldULy2ZLODrvuZNNJsQUeS1zHeMjniZqLfdnzlKeWGm3vV5ySzsg/loQtnPgkda89lLJ9wrDSAcluezx+5aWGZ8H+KE+x5f10nrQ74JZx7b0OHbNbKc14gTpcO9GLUivQzXdYjhSBQaWXAS9U6Z8SEFFnqcCEKXKu6GiH/DVnuZjUlYJQCoEem2XZMeb6aZom6YGFZp4w0BL+OBM0jHaVRY7vABy8L2HigA38tJ+J7UFXfXHJcdBw5C2UxH5At2qhlxtu2acF1FO1qmQGCRh9kNj/YCpLPnax94nVZOMW9t23UHanGf1+5h6V9mbAHFJGimhd1Uk8Z8EhlLB9gYw+5cDbpNTRVuKD90WYT1gai47xLqefdyZMciJTwynSL9UKf9FgxK+6Y4HO/D+kTf47CTzEVjfOn9iGsyVU6+MZzrwyV/QWAuCqQ7A/yq8ndMJNuaslHE8GodWvgvtcUQeVDVLdEUitIJnSBrigCnc+TSJlh4fFlGrWRzBkcOl87UbF/71W+sGbBTT3taNHaHaOOxKUz3VDq9iKHBa6Tp2Ak8uo5MwXfBb0PvsU3N3Q8GCgm02rretm+bQHTpZ4MYvp/2qfn9OFFpp+U4oY51lfah+Z3Qp7S0bFvfPDE83ub3OFHWgUXjQXqt6Uj74gmEdy+Z0M+EWeGY3HuS6X92D7M3D/Hfey/+ZScVQM8JV0Q4nrVHf6QRE5bXnirvDlXaP2d9dMKsyJj1CspBwdzSMnu5IudXhr342aKebgHttqYmebLPCvVqQ22f291esko7AL92GXnyMnmlsMcwx99pnPoh4gKCgxu009YkiPZJPe0LwA7NDdCmsIvA6TW40ACj2xpXaOHaX6mEwZXAIGo12mkoZk0Ga8eOi2XdrKWUYZyUbGleizG3GzTbpelRUEXdmtVcPGCIWfrYFUKoDqpo2LRtoXV2JcuRnYgenwFuVLbn2tW/PK+tjYkYsx2ihDu+mjDe1Q7slVqnlERxn2lI3eVOzp3hGgOda3rgXgytMjC5uqJzUrT6A72ccmeKx8O45FpRVFbUGgidNJhEMuYmI0vD1LyF51o4cjdDgtIgbziLdBxSBMUhKA8QPUJXIZT4WqQNqTxdowVO8+J3AfJCkZ29p7eJetpJboLeJAVAa+6DLiFUOtCRysAjpsSD7/fh+pR1YujY0emUrQDY6PFxbdn1xHVnOB21sSRjau2Y/dsBV0pNwk1fTjUhLG0WZp47wYXKBFmm4fJ3OeELgD8zYP7MRgTTKz2z0lNuwXyt0FKQAo8jvErUuJMFocGUdSv3tqwJIIY+LKFCggiXX32U+RqwB5M1yO4/igsx9xoZIDVhZeG+Ipq73i+gX+D6Oa5fIL0cKbIqtP6OcP5VG2P4XAufV9LuZT8Qj2vyCEl+63XUuwhQJDTajhWTOXyrkOS7IYKnEsgsVSCkCRSuwssQqHnaHyPms1cGC4mGmNZxIdDvaFlHAA8yLUFCTnu4ZAUNv02RX9rApGozkL5si1YAzQ0G9USD5tOvZvG89PqDtoWH270kTJKB0XlV2itMgpt8np3fVGbtHkczHd9uqSX1qmvan5c+2r6b8mC5ymVqqJaQryoC3S6yN6+ulW2veya9WUI/D9XaIgkErXTzbDAXrXYWCWALLTP61czd/TJUcS9E+GcCr8pEq15IoOW9Dn48C+HxJUymbOWOniSKeuhjs5tN3ieZetpLgY4YHxHk9BCue2Q0W4wB3pjFNZvOYarpHHAam0b0EyTZG9SdXOl5TXos4aamRPYyrZ7EA0cpB+DHwBpce91R8kIUpMwJ5Iuo8TVygPLQVGlPjaJb1JHj7dMcV58YVt2m3KVlU5vPb+vXgBh1Yq2KxkgU8Uuop93asZZ+1DzuPv5tD40SaKNlkVxqlJPPHd3CMSkco46Dl52Gt90PrzqNLzJ8x7FT6OdY5pY6MKw189qNZ70OjR4wI/WcUKtdhHnmmAfDfTW2MB6j0xssL/e2dL6TPq6gBhZLP0vnrYECdtvai0U+f85blitRcZ+8lHhOIirwtzTO/3ZiDqPlgB+21Xhy8ttRdKOYbbsZSlp9F6GC/GyC0Z3uwYWw3ZJamXIkAqxYiKwgnA+/jYi3qBTURf5R71BHYBbrmC/EfUwStNmbVG4lZe52dAIP1/OG+eRFPVbMddGD20ZQKvCQSnHX4zUCjkHRUVRZ0HqkgBvPdVw1KiX14wvQmuOz1hXh2voGqoyFcQL0C/zejNKrgGOCvJ/O8QKXs4yTyfKqFHeRms70QjfzPlTANaHPpwSeRaDXxY/mitg5nrC9ErMqkHi+hci3ehqIeV5QV0Bxoop6kamCbuX5Qu6UWPh/ETyC4R2sogzvGqEmafK8BWZV9U+q81aBbRHoFbrXgM54ShkMSpb7Hr3t8VqS50H0/E2hKouFfSeUYjkhzNZ3tVR6OH84m7A5jJEq3kVPLtQFj00CMnUybbX+NDkgydHcKKuJd8pukhDUy1fWaWuW+yaZKIJ8eNGvyISnRShPdimv7lBO58znmiIy35upADzoqgdLhM8IvKZaL/V8diVNy3eFgEZbSLgghHWP7z3Je//KPWx/xRrv/NZ7Wb3vVKWw41DFHQ603yR4M5yTmsDrwhwcQ4UZez8W7n8aXc+pl93JjQ0RiwNsoYO9QsG38nDSzVi693usk6RMZh0vQ7oOMbyMROg2T/sUjaJLlfZUcc+XrUdBQ9OhKgnKZKYpCUQ+PQQ2Je4jwjOboaT1PVFf09X3TJRhrY+4srEJ637RW3tIT+bCNel4VzoKdmdt1yfG6lqHD/dOU6KaXisCw556aPfmEaum5XnLwlOFSMvG4Qcf9q6Bze6hqUmsdpERsTLMntfoFGkZ02GXbNv7E+B4Ac8EQ0iF95POe/vDctqRsr8ZVUZeLVTRThVoZtfVQUqnE650XVWyreIrJOBstDuVvBOuOxg5jUxCwr7r5MhRQS5shzrtxM/mRDFI2tZYi3zW1q5eWa8tbaNn5pGehbHuEPlxUxFOr7Ux+xDl1ykcmx0H951i9p/fx+wrV5l+x31cue8UziJzgrJp96qRg+QZhh7f5pFepz0SIJ0aUL5qxsQ2HrpFA4hOFt9V2rc6GGa8jyngFnF1gToQ9TE0kmFBWU/uZUfDqknnJ/1eveZMq5hknYxJN9c65t0M38+h4yi7Wjf+auGYdDJWLLIhXF5zJNpvtOe1rwD3AJ8lVkix49wHOTfoK+k823ELfV9t9KW5atvOsXdt0VzLIiduZ3vJKu0nTr0WAPny0xROawjmInSc0BX4SuCHgW8C/hXwVlFnQbpQDtuam8zucQTd3Pail4bH202a3naAM304H8Do8KpIb0/I1oIgX4VsCZ8T+LFw2buBz1h/pBEaaM+rBhD+0XEh5y0xu1nzqCJRZPWVfjNKrYU/2CfkDdfaW84kErTU4lSbHtR0OAMC9o1IQpyEqygBdUOQmea9VTnt4+cIkOc5bm2MBCAX4Y//r9+s5xoDdDPK3WmwuvoKQ6Ycz/AdeEbgrDHKYF3PskPmuT4PrVK6IZakE+FE8LT71Q4+xHDN9yZc78JaMlcSvqWGtBpTDcfjxJA8yy2r5jpz+G6O62o+sVSI+LkqDlYj1YROdO1to9bg49S3SJM+uPRvoYOrYc3Ohh18sPR1phMYUhkkCDYCU9xhcX0I0fM3DhPgw+YvhQphtlzJkZ1djnpPjioqwxByqYp9LIvmEU01ITEG0Z7TXqNpy7y1hkJ+tBcvbnpugHe/51dpa5VB1kUEeeeE06Ie9AsrPcphRnlhS8PivafcHDMfEsH4PDwhwuvQNWaedscB8tltjJlUiO4WfdHpZnzpZad45ptew/WXnyIL+dlaxzXDZQdX2u05tbWcXHsHcQ2nIHSvTM5retkPwuOqkODmewPNVb62l1i5qosaC+Dmm4holEsDL8MNcigiXoY9ZhXde0+jYz0d/lYZX4g8cOm4AtaC7M00vHpvBh2pDWUoi7mNC7SjcaxrKFJ/7rEOrE/5qQd/W6XNA3pr95+8xrXWVrtasSHteNfqhnDT76wWPt6c0yNdLWU3mquxB1oMA/V32TymSnsVOUQ0nFwjYL10O7itgBw/C8d+UX8PteceoqV9Ti2vxwKl7YR/HzBiqKaUJN9fFh7xFEqjNDxejwwz/PZMlRMPTGDUKwINrnvb09feVCgF+IzAfwjG3H/r4HGvfxAROLmGnJtEl6XJg9fHWsavOb6UQN2g/cx7f7XViHA8/N0i39rKiRrfk+bvTqo65nnhWA9Anf4Vp+Btr4NXnGKj68gDyKXPXI1+LFt3ltNuLQ0p36Tdc9u8jwGYpcpdykPtOel1zX41+wQtHl+iMm5zeDK5z7Hwm+kilZHXs6B4WgnLtLX1TWm0Y97LyHqO3V6GDwjuvptRdnPm3ZyL3Zw7MleTvdqcKBAdNmnEm537AJrObIaJVGFPq8HYWFKf4zoxPL5J+lN+2FzO9jebj23qc57O5e1uL1ml/dlnPgnfcxe8+iS5KC3tOk0THWbCisDXCPzPAl8tmtLVE/0UGAM6XGvzsoNu6g0OVnNyAT3eKO+dQSy+FsDo8AEFo6teIIlKwIelnnP6G0RBxTZKXutwg1l3nIblhsdUzb5PknA6azfDCC1pJQUcuv80fN/d8GU5/K174HWnY51ere+0cJtUNkiJ2g5U4bwe9YzMBM177oHbjiXfnAfZm9YBeRaiCJ7/toyRgAZEvOFvfieQECYBP3R4U9oJ+ex4yvEc8owLHk5LUu6NSKCSpIcXvKlyERG27c0fC/0edztVrJffm+ILoZBUaIkgdKmg0mT4x4kheU3rMhDyi4PCPsxhpUCGMUw5NR5BzIG7xmK5t9SqbAzPNQSHwimNmHULfDCnd7fHSCfeSx+mA6rKwLG4TkzQHaFKKk6q+r/K4AWO9MnGntMBnEq8pzudcL6jPVXBmIjYTCQFxvzbwF1q26bG7ZN/WKispdvUIm/ihf/g734Pba0SeJ2GxmdO87xdLtwjjqdE8GeOMw957ZWnfaWoBJ5nREE77xNwyEJIXi6tj64NzcDjfO7wHf10uxlX+xkXuhlHurlGSoRUCilcbU0epKX0OxUoBBXMnqUuuBkIndDuZT80j2saXnoFXJmG6CRpkVqfO8LZhpfRJlitoiThCTSXP1XS0/D4ios0mUd6wx21mMlopga65F110UokaQnEHZaXR7LtWu9wMj/HerA+5R/85W/Sfxu2ygG8tcvmy+jDQsj6akcR6lOJ9rkCEmyTKQT1rm+NYG+qe71GDxrXsvhaIBrPqlzewMDKcPIecEJAVhyMQ6320Vx5u8krrWFAh2jNjWedtOoXR9zimPbZ6KlHsVJQwucBgc9KNJrOw7EcOphOgpddVb5pN49VAhqvL12DKe/JgF8XA2SDkQi/45KKFif7yMWtkNNuDhwPu6OIQZKO6xDE7O/9t99TM6KnkTBrRDyYbdrxUmg5AkjmKDs53a5jt+eYhrQ2383xnYztbk4RvmuZw8XQ+Ob3HtFAZ60KOqBFaZdFXWCNCBzXVPYsd7yt5Nuy8ZqMUgEzhmMKRPcs6qDqJP2w69Yb/Uj7Y21Ei66y5IgIvsiQXsFGP9c8827OvF8wD7zvauaqVC5pfJpLpyrpymJe+xtQpd3GmSrsxuObwSGpfbJVaaf+/LYx2t6xaK7KMOCXz+HtaC9ZpR2A+09BNyMTrVPad0IvcwwEhk7rma44/QxEy6P0RJWhm2nNRQg6wUfRDZuWr2izFOqXsHqb3nYncCqA0ZVUQHFuraNEP5yWZfCNQlWSCeBbiR4jK3m7MMSUiXWypMZF4m23780SMTer3DqJNXktf7GbwRvOwPd+BTxwJoIRFU4V9hZbQRshqcBDJCruV4A1RMefg+xNQx3SkNs+TnP70hsenBndjlYj4Ek/+qLKBmIIuiFUc+Dw0xlzq2FuhGxS4vOC62iIudmDLPzXhPoXS6uYuUuR4AVcCKPrZ5TjcRUiSBU+HudK9+Jiybd0fx5Hme+cKCS0vn5nSoMqDjipvRM7f0AEojsOC8+2cUUmH40MpkgNgFGWV2kqK9MJrpchQRCX0Pnm85t9se0ygSSUV0IJxLBuCsekK7xsc48AVUc2nnGxm1dhip702pgzZkJDr/G8urNN4o9p5wDG4Q5PXU3+nuy3G6zHqkyhU4BRySALSt2rHJzz4M8WlOevRwT5zZL5Wo95GMtTXniFI6kycvB8dusuoJ6eroZs+25O0c/Y7OWc7+UMe1mFCG8VFZo84EYtrW/cNEClSrt5bh6jHYTOFPcDt7b3BgrYNmP/HOXbSE+k8V2ITv/PoKXu7HdLATLFXdKLahsnHNcCfwBkOqusX1Yh4KiIVieRunerCUSXfq8Uaagrt4LmCK+PNfT4kN7apa3tvQmwkmtOu/cwDcZ5C4+vdfiQz7NrmmMT1DO7Oda89n5iGG8zYLR0wY45sd618vZIi66HdS19kPWx7tudCS5XY1xDK7jJtWkLKZlbcyisoDgPTXpn57U8Ly2zaoGEppzcL6KgW2Kedh/Q45M67XsTygyK4MzQYS3iuUA0QJosmAu8DSgzYSYajfr1WaClAu5Ul/zcLs6XhmSrN7pSwtqtpW/YJUab7DdQedmU9l3aw5lrW6NxJHd0ewWjbs52P6Ps5dVnI6Tb+ECDbeunr6fZn/1A3zZIiiFQv096XGOx5Jvdx3hoG0q7HZd5fNtQ7Y3+p/nsKa+4E00HrELp/eI9QFWANIiqLYBmYX86YatQD7vv5pRFMGSL1OSh9H4u+S1tTYXdjvcDX0JltdS7PvfKjtqiDzyKOn8pfKTt07Jdm+8UIm5Km1Hg+UCQf2kr7ZZ/mjsKgb4Iq1lQ1KXlKKq030p4cLrhK34VfnuWlkjCxidKGE3mIHB6VcHovFckVgFXZEH3VQCljghvdvC/ifCNwL8A3ooaInIJR6i887EjyS7s5RHtpW0RjrXW9yJ1ORwjrEob9RLF3PKG7d1Zvd6AINyWz962uSynPYbQ6fwfD5Ms3QyZpJ52H4SzZL7Th7zAra0LHZGQt08QYPR3383xm3NF/PYBNR4o555pJ2MgUjFCHX9U2F9MBKG2FSQqVAB3CmwOwI8neA/52CtgVyWoSPyeyogkckY4Hgt/W0fXTDOPKz2/2b+2j1lirxDwExrPS+e56ZAyuX4A7K6An6q3bzAuyfuxDJSB8oEsZaB2rCopkAi5kn6EzeGAEztz9arMPTKHUa8Tcv0DerzEmu2E++2giors8/zav1Lh7snLykEhgk6mNzqg58YEUMmkCpMXB/dkwpMicHrIfHNCOZoqg9+aU/Z7+l3gc6IlQM14lbk6QNSNulBbI7lTL04vo9MruNjL+FI/50g/x4eSbeIaGAuH4De1yJjkuSeJuYoeXXsbLAehO1RZR1u0UF+wFh3Rz+vnJufdrlSbZXTf+OuniaXu0ndZ5Q2nlr2FGwoMCthRzBM3mVeREYQ/dySGSEIU6pd5y6qWhlWnc3ksh+t7sDtV0Lb0wht4a/edpDYFejWH7dBjA5w1I/yCAf6Q769GyJLjWqaI9eMpDFpA9pJHtc1fSsvGyfmlPcMpevwREeg5ZKxnyaREhkuQ49MbH7Sllu2mFiPAl0ZK19IB3GAvLMtrf0Dgc4Fez0m87cMCvwMeD6M5824eyhBKxDUK/Uqn2AXvpT2vQGXDH3LCX3bC/5jBlxWiopgIxckB2cQj18eRsEzCejmSpDPdRGRGc++m/byTqLRv0O7oWnZ9pdQ6YdTN2OkVUWnv56z3crpFVhnc076w5GhGeGupSNzqaW98QOnSJu2KnvnHssY1bZESaX9zEr5O4pwJn4vE0Pj0+jVi6Hyr4hmOaRm6tDX7kb47w/OBen698aQTdk1ybdxC9cVTq+KS0O47wrg+x2J4fAnMvOKLmNe9BD4F/NNw339NUuZ7CSlo+1tKg9Kc9v2iFW5HezHJ6M9pO3rHKyPa7CCH3NFx6nFfEVhzsGofUcW9626xTBWLBESIFrTz7FMSpqJ7wgIYnUl4p/twIcTLbk00FgwFJOuh/e+KGrK/WjT0/2tEHSJ90U+HCPRbe3DaAmp0DImibkKazZ+jEjGox7KbgAx1w3GQfE8AhxauT4aQzmkNPCQwvquIonkLSD/H7QavYvAuyl5Z97TTcvPnue0HzNMRePxDv2UnxrEOcvwkWObLUKM9mGBH/YAcL0kOcFhmrREYL2AzL0HMGLGQfuEOES4Vgt+Z4EOIIL1YlsnG1HTapiF59umgjPkai3lczXmn8be2v1sO3DoR2XtfgSPxstt9jgrsddDcxfEM56EI+d9mkAAS8MnFY8pk1NOuPxp6vDIZXTfX1wYcvR6uHU1BoNfNuEZU1Ct8iLAmzUuwLNysNi9tXr820MmGQGzr/32/8CDLWpULmoXQ+IAgf48T1kVY7+RwtMf8wk4o9zaiPFJQBhb7uAj3ByNI5qQWkZSzKEy0tTpJ1VDBXjdjt1/wZC/njk4GATW3zXhz0JZ62W09gwq6z4bvHvWyn0XffZuX/dD7PL3A3tGwobTfqsJ3yNa2l02wu0z0tLeFx1dtGS/sFbAX8qF3y6C0x/1pYfhGd01QTdHj246RECTrHBR9fH3C+37/E4f21i5t1cTYewnH1Qy2A1hG8Nguagg3yQzSNVAtVNE8+i1gd6YCSfOaxtiW0d0eiacdIQUC3BKNmGRYINtzBI+blNBz0UnRHOOhhycNIS8wmScvR2Sw95yPirtbNpLYmkjZ9v1VwLbAMxAq4ITw+MAH/KyE8ZxpUShqfmgmPtp6TZ/cEXVM9UXlxIGDr3bCf5/BW3KNRu06Lf/WzRydO3M4vxNigIOzCKL8lxqU3P7jTNt//MUP15S39HOCqFSOiEq7tWV7q8n7MlEE+TIAzpWZY9dJJYO3XVN9T5ZxmtPeLDm4xaKnPf1uH/O0W0tF63SMzeuWjY3w3DZPu/XxAnCGOp+AWC2nTdlMwdtGRIN8sw/pMW1m4Gj2SeXvmC6Yjs94YrMJi3vDrnkdGk2V5rWXPijsHsYeJuEzQ6uDpe03aJ/n5vOrviYnpO+yaej4U6X9Ftp4b10VwYEBR2WQqUDXDaHyK04YBiKV3QQBb7a2DWd3vQPdRCnSZM3KlJwbKE5kZuYWOd1ThFLvFYm13wNRIbPnJCjmwsAJw0wNEkOnoDkW+t8XBTCrdTo9QlTaJ5bXnsbPeM1ptxyCNuv1IZtkLtYjHhRqie9niuJrSN1LXEPLCElFaCXkvKEhQceDhdX1CmQGMi8rIDrZBToNQJ5bYPDPVdtvjN1X3As0iMagUHTsSVkRNA+UI9hyBXekfNaWGNSUxhdLU0UjoKWHLYFoXvu5QQaTMX5vwiyDNQsRtGsl1nhfKPuWHEEZ2VVU+F5Jzqs+sri0m8zdjivEkm/Hk2eYXGNz3+yTCCEqQEEztwqB8YTp3oRREUMgCeeQeNubfUhbB0sVEXyon+clCLzhlpeOFBzZHWm6yO4Uuo47BS6jAzeB0c639Wae9rbn12xsKU2zcNIm6ORXnol/A5U+Q3vtq+9lWXOE1B8HzrztGXQy4awTvoRQnjlOeW6sTH5zwjy85IvAnsC9Lq6xm/FIN4UqIeZiPol6BqyvbevvoK0ZUmjfT6FjMaHtcZaD0B0aaLXNyw7R02750E1aeRtpZhtNtO/HwvEeEk97Mm/VMFLFON2EoHnfIfJERoQor3jdisCeSBXdZN4ySxRIp6I2C+kcpkrtsT7swmt7JxS0rXnxzUQuLFOgV7rB4uBhPEvicpN7LyMmN3wmi+sEVGkHlXZ7oZBUulkaz2+jq6Dza3NdChWmQCnChmgEmet3YI6W6tstkU4KQtcY480sUaNLZk12tBggL9UV2n0IidCOlJ2LcL/AY0QwujngO07HPprhZzAadpLpjT7qAAB09klEQVSUrsgTXBhfumZykQq7aSAqGw4zWM2EQai13c+EHvrJzqzBM6OozW2NwwaTdCMtvssbtNe++t7afkxp2gnqOe2t/Dh5rM0h1LuwwiLq+4hGyWU7tizZisyFY1VqMLnnOhrOn/araYiAeinKtD9m+N7PMFGRgMbfqmhSEoU9MQY8SwTiTD/HWF5rPO2fzVWzP81+pfe2qL5qfMlgLxMjD1PjdQiUWWhVSVfqe8MBr0eVduN3aV77FFXcp0Sv+19u3PubifssjXqzZnumOeeCrqs0yqoNzO92tpes0r63czXUd01QZ3tJ2Y/b1JpednvaEPW0D1quWejRslrtJ8PWXh8r+uvRyNw7ootpmAkrDladsCoximA1KO+dpiSdMlk7mit+kpR9g2Q3+6jYL6N+h2xakzjTslrhvYmV27rBPdsIidWxNK9gCVwWrdEOIJ1MlfXRTImBD7u+DZAnfcgL1Iy42XfQCIv8gVdGz2d4f77jKJ1Q7sayMHOAPdjuZjGfHfVaZ44qdO7FghxvzUGMBnBRgb9T4NleV90uO1NG3ZyVIKCIHakzBFvqQn3ZgwoK14mlV+z8trVF47eUWROuv5jct8nAXeMehuCfLrvjou+K2ZTZ3pztTqGgMKaoy+IyXSbodojlJs096YPCYcr4uRXoXN/V/ozmUHQ4ikavV2XfiJ55IwVm5EjH03asBFyLdcsdvOYUfO9d8IYc3n43vPrU4nmhvenLXs2yVimiImTiKgR5RDgr8ChQ3uWYX7pGiWc+HlP2M0qExxBe5gLWpYvK7UHz2W2M6XpKhSrCXJ0k8oSm8eYwzdZZcy3fGf5+nehpt3z2Ni/7Te/zVFA35P9loKS3m5QkvDZ9XKh2zmepAxil+cILN0k3jxA87TOk9Kq49zSawEr/9UVzqEHne8w+UXTN57URoRWdyzftrarhukYwbnJC2xYlhHxkYKyeWvpNwtFyzWEemj7Xxlq4hDkXLc+KBG2/+ctJw+MjevweqsSvClp7OwfZGiN7Jc7WaXqzW0nfqJLPE1r2lWfq53zl6USpl32VdlubKfCWrdPXCDwiSndLCTgkCH6IgvrtwV5eqA8l4Q1mV2gbX0dUFlwJTp1VJ6xkTv+dafWSFQnb+mwfzm9G7WtjBiu9RIBoMKIDTuebvuzV9UwDuwWxBKunBT1elq+P5qObqO+E++2XO972m53fVJDnKP9bS65dCFgJxwVPO3UeuhTwTdrHDIsAeU3l+1nqxmLjG8dQo0jqlU+VfTum4fHN+V/G8yq5O/mYUluVW07OvxEfbDNmCaq0f45YMz3Na5+kH9TYYuvrzwL/K/BmVM2xEt9taXDNObd7mNLenK90rLezvWSVdgiCu0tQZ3PXGmL9nD2v+UkedRz1tPcb55AeUwZWuQfCajJGcTLTcKXtcSwLU/FFYSiwmmWsuqisr4paVTsHGbskPRonZWEgEu49gtJ+K8x9ny7IwdMU2og+1MFD7GU8KyE8nqAodcDtKtiQm4Wx9VryM19gRXYZM+kBo8Zi84Gplz0o92YV+Jb3gJ9zhYyzJHMQLrU83hdba9ZpN2/7HQKXusHAsuXZKTqaz0id0dkY9Xf91mY9PYYKCmMWDWvLhIJlvw9Rptgjhpe1KWx2bcUInfVR013O9woYe8pRyU6nU98TNi/h4v0EmB4JriRS5bKXoSPrIlxe7ZDv6lky9cig4KiIosyKMBcqRT9V4lNwTdKxNOfFSawW0Q1YFb1MwSb/yy9fBJ0s3IE1WkOazQGXK4K8iEZVvSZzPC0Cp1YoR57y+h7lDsxXO5QCX/TwaiwNQ730TeH5QH1oOdoehcVcvvT7YZpd1/RO9dD3YHntj9IOQmfGiEM/tE2RGyTI/5VkI/F4G8nmwlyGZz1C9CL9UzS3PVWCFoSzNqUWNNprZ4ILOd+uk8VpEPWcWUlRUJbYRLmm5bjQYeuDiCbHPjPWnPPqfGm/5kBN6tdVCnQwuG+OtUpMJ6+/35Tv3cwCbfCk6vnHwzFNp1hGRJe0PtEoUykGgYblornYAG6Ywc4MGZdIN3jam86Jm12gRsuMTnUzrXrzjnvgTQX8nXvhgbPx7xWse3ur6Jc0cBdQ0K3HwhhNMSlBwdRGc/xuyahbKH2pXqHOa8r7ms/rBFlxTVRGXMlhJXOsOWEgUGThJd41gIvTmCC8MdfynFB/f2FtHcYIIo1PM+rNeFazRDLU6XJz6do5VYQZUYwds9wob8emTGk0PM0fh6iE15T2JfexUpSpYtfm0W72pXlMp9ciCUjuaetjgirJp6gbKoXoaV8I7W4o7iP2R7Rv+93wfOw+9pmE348n1zZ5WFtrGrOMj90VnvUYdYV9jnrZJz562+do6eu/Dvx3wFeginohejR8hza8rODjqI0x9bRXn+fJyw4vYaW901u98UnPcWtTCuxjlrZmOanU6B5vxHIwujNrcHGi3vbVfOFGzimQSD+E/vedEmjXRkzbeJed10ND52wpVqsyHLsvHo90G/HoU7eGzYB1gRNBMRJA+oKMNATSGcBKFUHQFGJegIERu9B27AGbT18ADJAn/tGvOfx4VhFxj2c2nrI7iMjxJvwb0TwUONXz1IRAqDN7b+pNGKLpILNeBpcn7K4UGkZnXmuhOrrG8twvJC+17C98GvPT5tk2xgWL5d6an+pv0riXqDC12Q3C7RUYhfBSl4wPoXXrNfuagjdZeSQNLVWP+3WgXOtBCbI7RXZAugUnRXEgICj5mJAcb77L/uBbFSaDiCoHnUTQNbDJXlYHnuw46GQ1A+sTTz3Dfq3KV3ah1nqupfRensF5EUbO4U+tMn90pKkjffVtfMEJrzEy6xIvu3DgyJPWtRL+toqGKNbCAVk03hy0tQk7xm9OoN6VyyjteznUvOxVbveh93mDSVU8ItDKPzgPT1y5CaXy1lo6dnvybzTO+TUWPZlN41dr+P/QKSjceKb3TtDCHTBAKk87qIC7rKbxAm9Pn5eGra/1eGK6DitZ/UVDXXI8aGsjCHY8ipa0m5RQNIwEzesP+8xmCoDddxBmKHfx75CMU2q3aXYdGgZI0bB4L1LH1hCHFF1kr0QmU43YaxvLTRrjxYnKCaaUd5waIt5wFt7+Zj0anSsWaVlba81rFzUoXhPhig/GUxSMzudd/FTTG3Z6SSg8UvGTG6W7uaC8950wyB39TCgEXFp2+FgAnLu0rTLg1lgjNWpMzN7xwdWJJ556pjXVR1Bv7CWi/GaRXG08ZuGTDNgMa7BcaYeEhsjyZ6Sgb3a/zfC9x5LpSD6mjTQVWsJ9rU/79aPZeizmjxuPDogKtUg/G+dRImYAxLDuphKf4vs0+doyfpdGN6RKrT3vaNKXtuubzRH2htQVdyHWa7eoB1PeTVk3L/ufoEbsv4a+xwKNNilEj11p4HzdYIxDWpT29HObIeRfskr76tG7X5DnVhtE6i/7aPh7LdSncU11DxEqyOsFMLqehivtjuFIEJqaWslheFEqFKStT5LTTtzJ5pFuKxHzPAtt6aNrcgmhZBbmFRQuiVQWTwjKT1Ego7IKkwdqwpke5XDzeZtaW0RBR2DroT+ugMWseRF8XjAf1Qn5bKali3oSlUUV6OVAKNkvRIsEXmKfA8U/JsK004VrW2xmnXruWyXEUBOYlinQx1DGkpZ8g3YGmvYt3e/2myntdyTnNkOi6+s2NTJIdY9N5yCHbG+HUTct0h7H2IxKaXuH5nHwYUCmsJeo5/wywlEn0C+Q9RFuNMd1OxwDrkgs+TYPR4jkwIwcSdfaDZGguBS9BGPEACcNd8QU+U6G5HXW9OHf/sOWkcVWKWUOrdcuqryvOuG4CF8CyrtXmT9xkXkonXAFYQu4L5Mqf8487SYsHLS1GXBAIy1qZXcSoeNmnNGpAJauO1DjwCXU+3AXKnC1edlvap83CawAXwyZp1eBn30GnghQeLJkATyHra2ObwF8S+O8byMaYOy8xZsl321CBxmMJ1qjvfCqDLmYL7wCzESFQ4/ymoV89qqv9X4vCgjhhON9PrL7tLo90xss21A3ak3ClD5v2FVcnFH5nKL/t5Z3rAwF3aidNGWW9Nj+T0Bp2ZhGWKrAVYGVoK0KwLEObrOE7SmuV3sBN9YUDtCkSAyNzWPjtyYta2uO9lDgvsDLBB4NdLgMDm+/muPHwHzKZj81WIQjSv8OLODXrPgSZU/n4O4enA/q73qo0d5cm8bgDtg+/Nt/uMA/ja6dQN/rlWQemsu3+ai2V2k536n4us3h6qHbd8OpsfuUqNK+X91xiP00HpkqexBTAEzxT5/f5vxLP1VZ46RPJu9dpG4sTg3ExyFUhVkM6077ZQaOhX7ZGmvheTUA6OTeV8JzjRel87Sf8botr90+96MpUBUYnVf1xEDopqjS/h9QL/sqUWk3L3tHQh37FjrXZHl2XKVeTcDan3rab7FdvfjZF+S5yyxIpiw2Q3OW8o8qli8hoKAI8s+M4ZoP4C7CIqU4BDdqiy0yr5gp7WnbzyNd//K8tSaRFeI8T1Hv4hXguCOUW4pgdG631Hc2mkepq02geAFb05tkxwFQfM/bQIjI4ATL40oXvztXK2qpJd9mu7MYmYgp7qasvCiGutAEYk47QpYFgUSEE8DOkQ7sjNnqFprPWMkQ5mWvexvScKc0bMy8lLBoiW9+b/av+d2uT0PBFhhx5YEOf0tlSQfD4D2iU1Bc3WEnlGSS6iK9oObJTp6THrskOe0SFHYJqMtO2CAIvMcHuO0SGU+g5zga1tN1Qv67UF1nHwPR2U/gqc1X7iLWyCARcoehSkS/QDqLqtXfeft3tNwtuS9mkVfkeEOQJxNeLgpG50/m+D0oez1KER4D7hNl3LrG5ND57M0xp0fQeX8KBc2pCXX2/SaUopTcp/eysm9pPrudl3rZD830ax2XePxkA3zrjy4ueodvY7Nw4pzgNQHeAvwQ8I3AjwBvlXoI5IIhps3LDro+Nz0yniGDuLdsrw7D3tgiCrjDltu2rYnKI9lUqNc6/O0jb4ThEvT4mzGKL5MLVruwNde8dksJe654+bLx7e2qRP/UlUUNIOnbvhVTSGmZVAbrPSSUPQuksddF9qa40RQZZJURt7Y2b3F5SieL1W2sSlE/j5Vw+nkrLWtrJu6l3nYJdP51KLCkJ9BggKKD3/KwPeV6YYZmqYBM5ZBDFFPWa0p4+H73mqZkQvC0h/WSam+HnMu/8/bviDzYlkD4m+2jp9GMEWi8uvS3fdZKM+cbWkK+pXG/xn2steXHb7AI1JbS1vQ3CeMyepG2NCVvGS+x95n+Zkp7yo9NYl+o0Z7wimOo0jmjjobf7Fcz5ecgxwExQoKkP1eJAKEpD4Qbk7Vlee1vQD3tFXp8GNOMqLD/PsoTvyPcp0NQ1GV/L3vaz2Z/rXxfNUZfn8Pbrby/ZJX2F6qlPDJ94cfD380bSHpso3nLwuNPJqLBWneR+R2KUlM/NxWy8qyOHm/N6rq+SDzSC7w4HI3Y7AQl47IkVtHQVRkUyGiuNdons3qMkp2YPuQFbG2MpSvCdvLOvKfqczksKPfKSJS9h+mMIjeU7FjuLXrtXuBBtjTzJGehv5UwInDWwVanCx4mwxDKZcIOgVE1lfaEeYXTAWUoFoC9NDy+2bcln9TTXiP6UjcU1O4hMawRFIdiJILvFOR7M8qEcFTL0hT3xliaxx4xPN6HqJ0SzWn3wDURTZno95HrM9zWBBlqf0+IGrwsLN4qMaSeixsx9mYTJ0g3AE4OCv0Y8ORN5mjULPIhNN4FI93dmfCogD8+ZF7OmG9sU56/xhe98MowgZkzQMbD57PbWOO71N8eQQ1BG8D/QKwNe7Oh8dVYSfZs8tw70Xf1GFouSlj0spuh7jBNBXojFuGTCby5if5/Ov7N+NdtbBkqdBkadt+pMv01Av+TaNnTvug5JqwtVIlpEgfQfq8Uqh3ulbouabBHgQyphPBmqUi7dSvrqGkqEk8aBxXjSiIS2sU3obAbPkbtejuudmF7pkq7pbpVG/cW35stcjsCPHkFHgvq9nvOw+OXF43jjX+2HbsktIyYqnNV4EiIhBBABhlsjZDpFOk16rSnN7zFppVvskDHQtRQv0D6uf7toPeRiMvRTOV4pYPPIhX9LQHfLfCTKUwnbHUc3YR/pK/9UK+yucftPme7EYxuk1CjXervGQ69Rmu8sXE8BXyR5aHs+wVq2DH1RFteNSyCq9X6IvV+2TkdFkPtN4mKqPWpeW36jDViLnn6ScPj0y2YjqdtjAb6Zn1KP6a0t/XnaLhmveW6MhH1m5Vhmv1pG2fT+299M+R4a6njpJVGJq0trz1Dq6NMUOOOhccbEJ0p7T+FetkH6N4yA2+B8oWuLOeHzTVn/05r0aeRF1Cfv9vV/lRpf47bssVsnnYTcJd5T2t3Sr3tqTB0Mlhvu67OGKsQpUNypLZFW2TK0JuxPKNZjDF8jhjfrTYjtvYdIhrnHsrYLwucJAKaCSB5jtubK+EYlzFHc4FCvrADXbZGusC44jJSq5897+X4Wchp9+ppd/MZxzquxiijkvIieZktLQOci14EFxSto8Dl4MmYhfiy1JNeKcLJvWqCQsI4jifnLCC5yvKlvt/a+30SRa3x7Ob1+rvlqgvDsFbnqxr+UVaxt5IA1rGQRtjWny4hVST824Q/73TNPBvmUo47ZGMXGU2Q4Ew5iii4mUiCjxDug+6v1NPeDJHfr1VAoe7gwJP7tcoiL5rjmYWw95dnwtMilOevk+2Auw6d3zjHxoUrvDbMpZJaBaI7TD57NQ5iXr15BH6zcd6vUQ+NPzQgXGi2b6s9HO55EhXWvsAiCJ2wT3j4QZrxnkzq4Fv/1d3wxhz+9j3wujNJAqLcdunCSSxf1ZOIiL0i+hm6WOZ04FRAW3IjPaZ/DyB7sjFDXF6LaLE9elS0jjao8LxvTeN0LTUVWieq1P5+UNZ//iI8dbn+d2l28ICtLUxd0Lz5rXG9fKs1aVx76GdSJ7CZwMMX6+c8fDGe4wL1a+y3ZbQ11mkH7zRlZ0+kbmwdguxONHKoWenmZiIS92kR8Njp5ybvWwOik2hwux91OmwSvYp+RWA+g/GMK92MlcZrtmi0Q/WkqosoieIucPeqanjXgtq62rGB1+f0kMNOl0iTNx4HvsTBKpNU/LVxLys/lirHQFIeb/97pssxBX2z+22icn3z2mXRtk3U8WZOe2sf9uljM38cYqj4RZQfVHOTfIpw7fWkH7WqzuE44cY4Hc2jhcfbfUxeuMYiGGs9Q2j54kmjT7L03yiKfJrXPiUq7B9FDQ9vI3rZuxI97B3Znwc3DSd2XEG3g42xOW9/6mm/yXbi9P0vyHPTUJ90oxwNf68BTrC4MeONWO5tz4K3+6mrCVdrWWE3aNLkiOl1/VyTQ2rNa3h8s65rk1o+z+1GRM2LcEEUcbwWXtrPcLtT3QTjAMhjY9rHC/B8t2Wv6Tyw+Z4P8lmoUL0NgKMc5sx3JrWQqc60ZC2A8lj4nfJmea7kl9vSohU+hLy7EOYl8GywhvlCX1Kz5Jt559vul35MaU+rO9BybLY2hv1I+P5F4J8QFXdjVE2i66TuJQkyLCvAJFcBaa+nqlfVD9vuCbNb1u8e0cvgw49WZQCn4e9HRGDocFs7yGiK62UIwnGB82LYECE8PiELWxze034z7f/8D//XDc+pmLoTsszpvDrhjFPP+/bj6ypE9KDchNc/tsl9mSTVm6TyRh8mnx2iwcCs+R00nzpt3x7uW0g8/2ZaMyzePieBc6iB5uXUvezp95tquauDCHZC3u7rz8D3vRlef7aB/n/jUp3PRctFGLigrAdP+9DpZ0UUGXvgVHFvjySSuDFJjiEdhfUJLgBCVob2MOE9YpjkhP1LSTUfWT3HFl+o8/3jGw/r71bnO1Xwb2Y602eli2U10wo0u7N6yb4ms7mZFtJSqnJorSXRztQNQY2FuR8tGyfnpTntR4PmJoD0M2RniuyBDIvlfP1F1FLlpPruYAXhlAiP+qiU+T6wMYI57HU7gQYHHhgIw6F5ugkGzRD5fq7M6LObgcC5RQ+72PMP1oyep3QsXabHUQ9qTWmXdjFz2X5LPdEQPeXN0oyp8rhsFJUsmXw2iOH7TWN19UlutobSi2YYdWtpteRYI0/J7xVuU/gt5csXaK/Rbtcfp6G0t4zZUgla+yXtfR1Qr0dvn6sslr+1/txICRUWeZhdZ2B0ZsyyuuxT4KeB70LnNs1lT0Pj9+NRzfdo34eoUWDeGKP3f1ry7Zba1vq5F+S5y160be4PoGVo2jZB7T4i1MDoQHfuU5d1R4KGmT1xeQkBPUyPWzrSyWCaLMHK/FZCzzWuWTKI56E1iUBKfCvrqMAlpFLMTFmVfobbmeA8sfTNwgNeHJy9OdWPAP8O2P26N/M/I3y2lKou5VhgOhT83qyydG6XnnwOJ7q5sfaa1+/FiBxvzaJzVaaIYFB3ApshISm3EFaICjCLRLkSEpK96VCivkIdqXbZuqLlnFSBanpYP9Q4p80elHrwTP7pA6NcPX6zfrEYFp8ek/41j10aXgIJOe0CY4RN0WpM7kgP2fC4bXADfd5ZgWeRqLBLncG3lbpaNl+30v7SX3jLDc+pCb2ZVB8phLszx6OvOYZfhXIM5RH44uuO0Mm1JGiWOT3K4fLZrVnOdCExZPur0Lzqbwb+NfBngrfXQvRu1utdW28S/201ee8hgOuw6GW/2XdSIWab4m5YBCmIYAImeBDwreeqFaLlq1YE1px+jrhY8nQo+0QSNTcLRKtZD+TKHtLLsB2W7t2jUKUn7dFSp30ZKzblKK31HZTavzi4V89JldpAAG/Kg5sSxWpsKNjd1lQ97T23uGn3Cy+6UXNQ5ZoYuvoDZ+ol0e4/o+upUtrr62U/WlZVwkCNj4iwLdCrZBlBhh1kK+yNNqC9FwlfT5sZC1M6ZrzgfoHHRaMKSsAXDnZUDR13s1Cnvf6aD+1pN+Zkx0oDFTi7Cp+/DMdbohbS6w7Y/tJfeEvdgWL9Dn8/TswZX7YW2gBY0y4Y30s97QWNZZ4clz6HwIvDv43/bbBY7m1hGyUfK/uW3sPwMFJPe2oAWNYfwjUpIFpVDhBNyzKl3RTclHwcJ3qLm9FzaerbvpVh7CPx+4B6rrw1C4+v3rcd5QBKuywvifgAWq/dxmGI8R8J//5G6rnshn1yIy979eyWo8mIbe8yPd6udrMRerfcvPf8+3//7/nlX/5ldnZ2eM1rXsPf//t/n5e//OUL516/fp13vetdPPzww6yvr3PkyBG+4Ru+gbe//e10Op2Wu8NktNX6+/PR2jx5ZkL4ZPj8CPC1Ut/grTeqmHZYsQ83wH8evghfdqYWznRTHo7Uwi4EILqkTruZ8Salhs4vs8i/ALxQBPDtDH4HtcQ/K3BnUIwqgtEHmUyip33QxtztGS8ck18gcj6WNpreexa3N+PDAq9JuihdRzmfhtB44ep0zgpQFHk0WgTG/mJFjrcmqNBdKdthqXdE6G2P4dqM4eYIzqxWCrAq+dHrnt7LCVrmj/r+O9p4Zu3YMkGKuu/JPLFMmFcE699Kzvt24t+bCmHF9GxtSvhVVAnZWVEGO++HcN3Aec3bt2z7pb8vhpRKVS7pCpA7YVgC/QKXg8xBwvNOiHA13MxLzNlKvQRLS/I8h4vqFS+764bn1N5H7nC5wxUe5p6Xdzx/ct9J3vLtDj5/nV957VG6LzsFudNzs6RG+wEEiWbLROiJZ4aG7DoPuYc/65XOm6LeExjIja38+7VKEGusY3sP6yjw3Vto91DcbJPM4fs5ZKUadAunC8I2VVWX+vn3BTgRzVGEquTOgee36WW3y1YdbO7BmWFN77W92hepPO0jluDV0LJHneCzME9F2En3n4Z3wCv+sFBsgNediXNZuJu38KRjqr6L5rTvAMNZYoRPGchNPg+dH9/JYJ4Y/Z1oKbQ3nI2yTCiHRqcdy6KNlhW0e9o3RCOvKpo/KBDvEU8SHt+QcV5kXE9EyLyPee0+8D0RXoEqIl605JvrOcoZlD1dh2B6c/jPta+9fZ8f0qVaIzzuGsIXtuAVwziPtxCNaPQ85cHpd3OwGE1r82TXHt0iAw6JijYs8qr99qod7bnN/HiPepSPtJzrRMVl1+jTKvWcdmv7Ab65lt/texMcz+67HcZtNdorGcPHexwhetqhXXGfUY88bNrx2ubPxmEYH3bPdWJOe5t+dKOWi/LUij+H769FQ+8vAXcTjSDvBf5LVPapUOLl4F52G09FNn18FxYVsRPGlL7Pl7Sn/b3vfS8f+tCH+MEf/EF+6Zd+iTe84Q3843/8j9nba8IYwN7eHvfccw8/9EM/xC//8i/zwz/8w3zsYx/j3/ybf/MC9Hz/VhEfid8d8DuN88z7BnERL7QsCTMzBn7IMLMbtrZ8PtCVbUjxBo8Iqtzmz2Fd11tsbYTDmoUPbaJKy0mXKH2AdDPcTqjDO/EREX8h5+2FZe6p5T1Dhf8q9DYM6BkiAMcEYdzPKHfLiqBcG88URCwL1m0n0RMnIU/8RdoEKlAxLWMTDFMXrvHXf/8iOfBnf+88nL+2YL1vErgms0jljjs4WA5d2kwZy9Et0xd4K/C/Ad8E/CsUwbojtCqEVRh/4Iopc1wBys095uszjl/aSC/S64zQpGNrbGehXqcdokW+FLgiGgJf3XO1o/fJXZWCcJnEwyNSY1Kb6D5b5h14vptZ5J0TVcYLh3QyXt7J+Hw3x7/iFHzr6/i9V5zhNZ1Mw7iDgp9lsYzYzSjUHVGFfJgcV13Mr7bfe6Le4ZttFY9pHC0tYwsFvvts+FuquN+q8bEC3hpaub4ChuHTy5HnKSx+3z4exnDdlBpTxbbbQTaogOj09Oi9XBGpPF1pnfaD0A1NM3DR0NHNVKH9r96sqQYdl3yyWzOEtG1Ky0t+dl4Pj4dFInITTTIJUReuXgotLYlmn6J9bG20zCphVApGYObraL3x6nVmDumAZFQRSTVr4ouU3TVzd01/fq2DZxBGCB6PH+j7mxWFhjBX/KBdpz54B6Td235XWN1He/HmNSZ6c86iyvhI/WMK3kEMYc3fbTX1qSOZp2HobdfaMZXf7bdmfjyoImql9toU0eanzdMOseRbc2x2bAuNBzVKpKCMxtcvocqq5du75No0kuFaMp5mmHwK2rfQn5bf7Gjh9JZKYGHrltOeygmpI+pGzbGkJCJwH2qkLlH599dRRf3Pk4DPUfeyH9QG2nyHqYE8rQTQRJC/ne0FU9rf//73813f9V284hWvoNvt8o53vIPpdMrv/u7vLpx79uxZvvd7v5e77roL5xx33XUX3/It38If//EfL71/f3jidnZ/aTOPRk4kwDmL9WO/gyhgGoFuNrGwsVsIMztQS5mZtY5T0Lm0eTTPvZcs+QZleSEEthrRTh4/RInHZRGGoqBFlVInimDtQggdk5kKEG3df4GFUCdShd3a5ytRxfCrP/MY/1hg6uC9XpghTPCMBx3mM5iXHo9nZzxn1kkUdUxZjwrji7VZX7UsXUAGz4BH18lCDJfbBHlsHTJV7km87bV7mVcivXf4TNHSOo9U59b/3tbScGgDvRqKIlf/z+HYS87p0NKn8Czzsks4nr1wjZd/+jLdEv78g+fgwjVwdWF2mfCSHg2IzpqFuiPCNadgcwTDjcynyPYM98x1EOEOUc/OtfCwtESM5XS1eQn2m7ObaZ/81KMHOi9l6lI4VSILx73djGd7GRc7GVe6Ged6Ga/oZ7jC4YqMrHCRXt9kxyXQGFPW11wM0V6RmHfdvUUACRN0TBizMTfTMn6Vxbz256KJBNCtTqah4x01fNwsANeLorUptsMQ3dJxdY+VRMEt9bR3k0ube7DZqnSDhjL7yaeeimXEDDugcLfAV6UuGZuGlLvYuU4ez6tpDbe4TosMeoWOpUJWD+kUfU2tkG67kWfZk1N8DlD6MwImEnLazbgLyFqmgHTpWA5C1F/AVgOiM9lQNArshChOSgmK+A9MOx0Gyfyl3nZ7pYfuQEVgJC7608Gc/YWrmqKZPjA9HrAZPbfXkBofQRU8OFjq1bLX2TRWj6iDzLYt9WU8tK3k2zZRabfzmsbrVM4wpb0ZRm3h8Wlb1o/0mBolUoUxLfeWzmtqWDhK9LS3lX0z1+l+OB2pccM+xm9SgLz18P14el3Sv4O0lM+lqSMCfBkqs83Rd/w+1MtecPNedhvjMjq+SlTaF8Ljb7PW/oIo7dvb21y8eJH7749gcVmW8epXv5pHHz2YcPYHf/AHvPrVr176927/6K1286Zamn9hC6RH3fv2vwNf5eqAREvLbXUSi7xZpt9wFt7+Zj32Qp5hd3mY2f4dpp1idV0s75a2yW2o63oLrU0Js2MPJR4XRXN2ITI1B8hKh8yDzErYm0XwIVpu9gK3jqhQaEp7T3RNff0TT/NW4P8BfFbg/V7DmiadnIkDP5nhPVyblPgQISFQAdFlweP+YhjjspYC5mWZBO+JQ+4/TnkE5TBHgNcdxwX0XkWbl1ZFwhhYauH/DEr4p8D/i2W4Ey33CoqaKesDUa/qqotKmgFh9QQ6S/qjxqQwNqdei/se38AFaFm3CTy6XnnY7Zxml9I+2/c0pz0MRD3mLmA9uBCaf/4q7txUadIvnUPOXyV30dteIrUwOvMyLvOGPJft848+faDzUot8JqIh8r2cvJdxup/x+X7OZ7o5d/Qzep0M6eW4ThZC628unz1tIkLHSU1xXwvrYSAKnHarzXhMITHlomAR+O47CLl7EgWdP231tm9ZtEFU2iudVuxsfceWhGe1lhdpxj6Ke+aUl/Zibe/PnzsfvmeVgntLxpCapmP8OhyPhWMvb1fUn4P1IllS3rFfxOiM3v4l0ZbRkw51Wqah8UrPBqH/FT3tdpFeHj3ttRu+ODeD0MhrdzHF6zUifD549OaZwxcwWi20xGjgH6YR3XwwgUSLgRCV93PX9M/bwM+ehyfbqhscvBk9X3DYo0Mwpd28xTUFqvG4ZQq3RVpasxSW9Lra9mhcnz7DZMlUSbuGih1tUWbpx/6+iirKzdZa8q1lrLUtzGKdduPNF4A0HrctksE87dYMPT7N/wflK239aZsr+76KzpV5/q+iDjTDWUnfd6rA79eWlUR0aF77Z8J5H0TfydeSeNiJZd4O7WVfskYGRPlnWbTC7WovSE777q7aYVZWVmq/r6ysVH/br/3kT/4kjz76KO9617uWnrN+5fFb6+QttI7oJp+JLlpxmrr2NYTFJHXv3NJSNChj990cmOkqz53milXx9xJzw5aEmR2qWV+6DmaJ0m67elLGMPIXCQNcRmyNqF0QqSyPApUl3nUyzXnbm2lUgQHywC0xpNvRLGe2Ahtx4Ev4pu/4BsajKcdF+LtO+FHghIevc+giHE2hVzCalWR5rspqGL/x5Zv1LD6fLRPRUOdpqeHMHZCXneR3vtXz9OMbvP6VR3jLy06qxy8XDY/MXasDoAo79FE4+vXGOb8G/FnqSKXLWiHC0Gkuda4p1Lrvw/UFQWFfMs8CuMCJxFx5ubD12qPMntwi31TgNLn/eHhpGn0jWd0D1yZsgCrt0/C9CucSRY+/JPAmE/IevaaMMAc3AfnCdXjFKU44eFaE14mG1Eu4j1FqC+1LhZeUwT0X7bv+82840HmVV9nebTBulJnwcg9/5D3Ow6uclr0zTAcTAp6rSmUmZDxX3u1mK0TXmkV6eOCrvGKlfAhV2M0wfNiQwP+/a238S6gwTqQbDJsVL9DjqkTBzUq+2aVtx9ZHO4FupsBiHr7re75Rr2iJErqp1pT0U+/poKtlvHotYuBzzNOj4eHg921TCCw83lopomHKEvXLKs1ouos7N1cF87Wn6t7g55pAPUfNieCSvPYqaki0IsQnJACJ4qGTs5cVFEa/UwVDpPocrgOYRZ8Ke6ANS+mPL8KXnY3r6ZCGpZSe1xQ5olIJit1zF/BnknPaXl3bnmt6otvC49Nr7LsEBpfeq80AAO1AdG33tXObefEQAd/alP9lfYSo6E8JWB7h8yyxRnstQigZ0zFilFClbPr4b4tKSMd0o6O1VKEFVdqPJ+em/TqMeF1VE/Uxr92U9vNohMHPA/+AkEbKoof9sFgyNRpkgg/6LpcB0d3uvPYXxNM+GGjQy/b2du337e3t6m/L2k/8xE/wwQ9+kHe+853ceeedS8/rDo7xN77vHfzDf/gP+Yf/8B/ywQ9+kB94508xHkeS/6Fff4j/9NAnq39fvrLOO3/0PbX7vO8XHqyFZj7x1DML5Yf+z//wf/HEU89U//70px/jg7/4YJXXOBT4uf/jPcyur1e5jY98/GF+7zcfoifqfRmPJ0v7J7mDXsGV3W3e+VM/HxF7+xnv+/Xf4ZNPPFWFmR2kf5/81KO87xce1H+EXfTOn/wFrqxvVMz6o888zocufaHayePJlB/8j7/IeG+kSrvAhz7+h3z0k5+p7nvl2sZzMn+1/oX2zh99D5evrFf//k8PfZIP/fpD1b+n4wk/8S/fzWQ8qTba9MGHuPzxh3kWzWffWt/kF372lyoG55zwi5uf4+HPPw5TLX3zxIVL/Piv/Ebt2T/+7g/ecv/2e7/WbrT+Ok64+MXz/MJPfUC9u06VwQff+8tcPX+BMw7+awe/8vhTvOd3fo9Zv6Dcm7Hu4ckP/yY7jCuB5uGHP8vv/KdPqEDghPHk1vsHt/H9Tib87z/6M0z9HFdodMkvf+IPeffmVX7jL7+WH3v5af5kZ4v3veeXNFy3UKX951r695M/+YFKocoFfv2nP8DXffF8dU73kUe57/0PVgjfmcC//t/37998MuVH/8W76U4nrAbP6scefIhPffzhKiT6ytX2/fGpTz0aogIc589f5Fc+8GtQOPzLTvGTb7uXHy++wO++tQ/3qVHiC489wa/+ym9BHvNr3/mj7+HqVe2fAJ/8+MN84kHtXw9df+//V+9mOp4oU8mEP/rd3+eZTz3C0UzAOTbv6vIzl/9AQzVycPcf5z99+D8xePRJnsmgdI4LT1/gV376A3iUMXeBD//0B7gU5k+Az376Ud7/i8///gB48ovn+Sl7v+H9/dpPf4DLT1/gdU54JHN8+vOP0/3Ah9W7HtbBu9/1Hjavrlf57Lerf8/V/vjYQw/zO7/5EP0giLjJhP/4o+/mLZMJ/x+Br3HwBw8+xKc//nBlMFq2/p6P/ftim79a/wTG0yk/+BPvZTydVb996MLn+ejeOaSriB/r6xv87M/8UqXPDoGt9z/IU488WuW0X/rieX71pz9QE/b+/U9+4Ib9+xf/+r1cub4Ran0LH/3Yw8/J/P3HX/wwn/zMY5Um8MT5i5G/HVEzw4//9m/xxIVLldb3yc8/zvs++BFScfr5fr/p/L3/3R/gQqAvHWD+yKP83vsfjLnFIuQ/+fNsrG9imAOf/K2P89ufeVSVg/ecZ/yFC/zgT/0c48m0motf/Y2PvTjWX2P+TGH/6G8+xKd//2FV5IHTmxs8/h/fjyUt+vmUT3/sI+SfeDjMl3D+3EV+4ed+pebBPEz/RAQyx0f/+NN86KE/qIAQx19+Jz947eOMfXj6V53lQw/9AR/9k0cqJf9m5k+An/7JD3Dui+crhe6pRx7l/e/X/n0eLZv6rne9h/Wr69WYHkr2h4T5+7c/8m6mk0n121MPPkT+8YcrpXTj6jrTd72ntrZ+7Zce5LOfDqH6Ijz11Hl+9ic/UFMuf/OnP8Dsi+crJe2JRx7lt0P/zO348+96D9dD/xzwiY89zO/+5kPVfWbjCX/yr97N9bA/PEqfP/vxhylRBXzz6jo//673VH0T4Od+4UEe/tSj1b/Pf/E8vxLoi2lKv/HTH+Bi2B8eOP/Io8ze/2AtNP7dP/YeNpL+bXz8YXYefKjy0I/HE34qyAfmaT/64EN87uMPV8++fnWdf/evk/4J/PIvPsgXPh37d+mL5+n99Adqxok//OkPcDyRr5545FF+/ZcerBk6DrI/fvid72Y+nlTGrD988CE+//GHOYrS4v/m6jrH3vUevpLoZf+tX3qQJx55tKrR/vQXzx94/6ZRvD8V5s/Gnn38Yb4Y5g9gNJ7w4z/ybn7tg7/Mf/ePVOf8G9/3Dm5Hk4985CO325vf2v6L/+K/4Du/8zv563/9rwMwn8/5zu/8Tr7/+7+fb/qmb1o433vPj/zIj/CJT3yCH/7hH+b06dNL772zs8O3fdu3sbGxwdra2tLzbnebec/Iaxr4PDiqBaVxHVGFK+dwlh9fgcJ5VcBuMY/Qz0rYmcJorjVbx3MNFX9qA37xKfi/v7FS0pmU8PNPwJkBfO1pDcnvh9C+XgaDQkPhnue2V3o2S9j2sFXCjler6rtRq+O10vP1oynfPJozGM8ZTuf0x3NWpnNW/4+H6X/TvfAbX4KvvxteezyELNqYNA+vQqB9gZv3nrGHXfvMPOPRjPFoxmhvzmw847HRnJ+elvzjX32K3huO8ug9R7j0hQ2+7vIexZ87y7Bw9Hs5w37Gai9nZZCR9fMXHEBqvzbznq0SNmee3fGM3UnJOyeeB8uSEIfCNzrH3+s6hoUw7OWsZsKqY6HcU+k9Ox62yzCHpe7RP0K9lN+Ogsf1REPbLR95admoW2xT79koYXvm2d6dsjcp2Z2WPD4t+bGZ54SHb3TCWwphUAjDbka/m7PWc6w6qXKkp173wVapY9v2qlh/Hg35fw+qZPeAUemZjqZ8/6jkn41nvGJa0p/N6T91mc5nr7D3hjvYe9lJ9oqcD3Qcn+tk/L1+Tq/IKND7/gnwL4F/G+45JKYErIU5W5r2cxtbNZ+BFmyVAdsC+JvhnHej3gbrcxrOfisgcc9nK71nz8OeDyCUPlr7M6ESVPpy63n0L+XmJ4H37c2UD+4FPvjpq/D+c0y/7+Vs3LfGTi9np+PY7eRsdzL+ZFDww7njx4H/Gvi7wFcQ1pREPIM1aU+Led7Gt9cY22iu43vwPHz8Mvz3b1TlrHIGWLh+cfh0u+eopXvYePo28Cngh4CfQGnZDPj1yZw/3pvxTyZzeqMZg2nJ4JcfYfDHI47MYTgHeWMOf+MrYk79oEB6Lw6e3mzG65SOe3b3ZuztzZmOZvy/d+e8YzrjleeukP/COUoP5Rr4t91D/2WnGQ4yBv2MlV7Baj+jfxPrzs897E3jOpmUKsB+4SL80UX4qrPwuiD/dTTFQ/o3F7RrvHgzodfbHv4X6hVYvhn45w06balGlWzQQu/fjvK9HvDv0d//W1RJXpG4T9ccDJ0wKT2bfpGHfhz4ceDHUCPv54D/EfiZcO8Bdd43J9wjyBk7aNj63wF+jqhwr6P51z+FpgQMiGUqLa1Kwr22TL4tdS+Mgb+GlhO9L/RrBHw/8LfR6ASjRQOnMo7NzVXg+9Ba5sfCc/ui87cD/D7wf4bxtvH2oVO+s2H9Ce9tD/hnwNcB34ryo59A7/l395n3gzTvPdthraTP/EMUeNXa/4JiPpnDdOA0KmroDp+etlP66j2musX/CHwJTUu1Zxl2zWoY0+bmJkeOHOGDH/wgw+HwUM/dr70gnnaAv/pX/yrve9/7ePLJJxmPx/y7f/fvyPOcP/fn/tzCufP5nH/+z/85f/Inf8K//Jf/cl+F3drJu950O7p9qJaLVJvviKvnOA5FhcPDKkritK6wZLcB+EeSL50sKUyZ2HVGIfdbGtfcfBLVc9Ka3YEIHqLAHFLlRpuV0IngeoVqbbtemVB6k5sEWbmdTUQqQbwv8LP/5r30HPRE6AWF45VO+OsOzg0Krk11/Md3gSyv8v0sNF6tljdZJvB5bI6Qv5sJWScn6+V8fS9j3M/Z7eWM+zl/oZeRdTNcNydzUuUGLtxLRJXXVDF38LWOykvZdzGSoSe3T2GHJLTOCdLNNVS2UMX8cj/j6iCj6DkNo+3l+ACuZlET6X2q+0n83qNeY9YD3gmbWcZ2LtwZEKylk+Fecxr3V9+Ae+VpXCeHwnFH7vhS4bRMFfWc9qUhwc/xdDU9OPs1Rx1p1kBBjxKFpaeo58U9F/nsz3dzIvRFBRKL7jDB6rkEvnvJt2oD2qYJx0FYDYlB0/KjnQgrEnNUrcSRND7p7Q7SDrPOD9xqSa1JZ3ZDEOtTVxZDx9PjC9QWaAr1nHajZdcyYZCF3O8syEdvuBMXThDQKju5qyO8vUib8TrD5cicgqrihFc54SkR/GPr+OCidZsgn99AMoAEG+Umny9ZkP8MQ8kcGFbd4IEzEfXfwBIP2WydW7RTTsTn6NCOz5ECO6d0um2dQB3JHJbs0YaMsCw/fkgdS2EDzZ1O+3Cjj7kPN1nMHd8P8G3Z0Xh7itRuOe2nWUw7IDmm5UHbcrH3aAftszlbRiKEGB5v97xCrNGehuu7luv3a8vy2n+jcd6DxJQwC4tXbJfD74gaHQ/Hz6AOi6toFMjD4XfLIL7d7QWr0/7d3/3d7O7u8o/+0T9id3eX1772tfzAD/wA/X6fS5cu8Tf/5t/kB37gB3jjG9/Ipz71KR588EGKouB7v/d7a/f50Ic+1Hr/q5c+/3wM44ZNRBTM4cUqN9Wk/oRidbOQnNFYidO0ruvz0sMbtkoWaclD2gEuCZw0ucXpO6lCh4oO7MyV8nUMV50XzdjamojQCy/le77nm1VxEvBhUCXweoFniw6f2YKPl/BmPGfyjLNE1M9MDOTmBRvKgZsTIfeejsA0E2Yu482Z4wc8/Ir3fKsIX+HUo9URqtD2ZcaIjhPKUHQ8R9GH5z4yJKupvV8u+nM6vnC0VBiflazN5+yUjj2vRSHKgF/hE6Tu5vCk5bsxX0OosDIsFwpHXjq63p4tODyOkMObacj+qY7ji50M7yRiKqCM/bAl8m62fe/3fPOBzzUl3Gq5OgHxymxNgPunwA8DX5Mw/+cqn/35bFafvPCeUkLZ9LCG91v/f9qSlvK9SkoTuKqrRZ7dRE4N63qvKOCSlRmysk2S3LJ2uwO2w6zzA7eq0+G7E3jyCnwq7Ib3nIfvFVXGmlrLC9RqyknC21NQTVMKrouw5kTpovcIHnnlKeTtDvnjC/CmU1plJ2rCqBb84mwLee0GrJoJr8zgYef4i689hjy5jd9EtccHjgWHDop34uTWXmHAWAgdqpf9daJzGZT2m4nGSNe5AWoWXhWskkV8jj/j9G8F7cDNbTKg8T0zWO+iXmU7Pz3eyAjQzI/foo4cv6DU+np/JOnPNhHd3fqWJ/cCWhXj5nNAadCIxIAVfj+ZnNcEojPZ9w7U6HhvMi57xWPaQftax9voU7Om/TXgy5O/V7L3TfDbKu0t8PYc9eh/JDnn24jAc7lEBf5mWtsYf61xzq8CX00DjO42Qsi/YEq7iPCOd7yDd7xjMe7/1KlTNWX8y7/8y/nIRz6ycN5+bT4b3fikP23a2hh1KCnCzMdV4r2C0xnKeko4X0Am3yQmRggGaAgLItxJYt0LBMh5kJUc9oI60799KLrPdRMRunjuvuMou3szvFOAGiQod8DJTsHVacnTwNlceP8J4a94zxvFQLqCw+H/RzxxHYGOTwAeM+GrPXxVUDILiWknB1G2e04NASOv9y1FCa7lunfDPW+34lNjrp4KnCovHRPvmaNWYi/6jveTq9sYvYHvWGkZYyeX/r/tnXuUJVV56H+76jz69GPewzx4iMPADDIOE0eeERRcSkbBCcalsK7RyL3KQl0XriRw4WpcEjWBcCOQQCBqkBhCIF6diSIMGCY+ELwsRQaGy6MHcBxgehDm0T3d06e7T90/9t6ndtWp6vfpOuf091uruqqr9qmzzzm79t7f/l6eoquYo6JG9AceqUTqgvFvXJj3Kfse+9CTAcw9+tAaiOp7T1JQGQ+LF80bd1mlFL4z6c2ZLiy+Iv8A2ozPXbVvViHX+r02Yl/V8FRn/M7+pdfggd/pU5t6UHPysGppZPJqJ7W96P4onqc9fjweJtLOx40bLMw+nNt2R8s80aM1qUlSQ0YkfY9W8HGnxHs9Yy1kFmG1xj1ArVqCt2qJ6QS0NZEN2puV2f94qQrsgRbafV8L4m/Ke3ynAiNHHUb5/YqHn9nP0cfP5UgT7wRPx0TAWBVOFqUUQcHT40K5ApVK1PfGM9ZZk3wTt53n0ON1xdPBdRV6jD8tgN9Xxj9ZRYM319Q3ZW810TC+tIwRAc2Ox+hxc5hQKNtHKLQDNWNfmkC7gLC/UKZu1vrLi5V16+UpapRSoJ8HG/TN5mifRxip3aqhlGlL7v27CIV8N+0bjC9on/0/vlhSItS0g9ZI22wAVYE99lnHi13csdm5hoH1gXaZ2YIW4NcTatftfrKWkvHPp4BziLpunOMcxy0W6kFmQrvQKKhYT2EObCT6oYp+em1LHKiE0pB9TVK4yxkkTVAooU2RFqMntcoIYIpwkqtKeThggucUctGbQkMLtJ5SlAgIPEXg2P1XjHBHBwz2DxH4MLcCu1SORwM40bxW0VxpoHylaPcCgkpo9jyswlgRNlL2REzac0rRgdFSmnPhSvDMfDmpg7ynmIdiD3qykTSfTprYJk1cILoiHwC7gSWeolL0YcRoqYKKeZ2Jl+F5tHmKOWizu0VEB/bSKO+bpQBcTYdmB/hAxypwl34/YMs55YXZiHKiZqP7/Cei0bLVk3tQq5dW00gq44qk0JNSiGnaY/tM0WZVZvPAq8D6ZbB9V1jm7cscLbR+7rNewEr6Lq3QVUb39QF6jO/K+wQVnQJOKVB5nSWi+hHynhbcrVl3g+NqE/2ch5fzUbmAw83CxM4RxdFvXsJdRy/hC76Hyquq25QyllhT/fWUaTdBm4LAdzTt09u3KzuPAZSn++zhQP+WYAQ1qKZWjY/rbvuIzwU7CbXZh9CLzLXj1NjjqDVfP2SOe9EGDmljtxWyvdi9OohGbbd1in+epM+S1Ke4Wm3QQvthTjlFVEC2AihoQfoNwvmAnf/Yeo3WnymljFVLbZ070bGk7H17zHt5pHxPE8BXioIKdDwLM/fzgFMD7cPvqzBKfFHp/mIqlpI19UWnWr4B+CHwfmAt0XkV1Fdwb/zea5J0zBnb710wVJ9mwqfSzmAHh6NlD2GE21h5nHvMMGl+SHYFcwlGQ0m0E/MUeG0+vGG6vaKXfMPGmHol8vNHt9HmKUpKUVQ6R7TN514ownF7y3SMQDAyDPlhzlTGdNwMhF4DaFQmQl4pHTjMbHOcrVOF5ycSTEz7+CvyZvOVmvEAakm5VCFczR+vFi/xUTb7QbO3g8sejO+bUlpLY/OWl3I6v3EuzBG9DC3k29eDXk23E46qz5yK1n+6cKM8jwef6Gp7yYNTFPwtsAEdvOcUL5oSRlawZylVfwoVamVPCjMdK0C9bamOI2FSCNqUWAvQzxGM7Zc6HibazseF+/lySlvKrV4KnzgS1ub0fvVSLcxW03xNfzUmQ/w7tEL7IGE/tBctQAUFD1U0ue0LPl7R04FxbYC9Nh04LevFiPFgtaT2p9BpTn0o5jiymOPpNp+BthwDbTk6i7rvpuCh8j7k/Wmd2CulnFhK0xP/Jt7OPaVoVzo+hw3mZQM5dqkwPkdaQMe43shtL1bTfpDJ+Y5DOJe0AvJ+EoR2FRXSkwTTuYRm9pi6ub7jkb3zuohw7Jx3fe2rC/FO+aqRTbyuaFeBfc5rXaHTLk4k1ivhM7q/imvdYD/rIqLfh1uniVJQevGmXUVjEtmAsu1mK5lxfyrxiKphrcz/RaXf41Rl4h+Z/9uUk/Ktzqr2lp2n+H5h7EJCMsr8UejooQFhSxxGR1cfrWfJgKQOxXa0h0FVy+4pUF7o067afdhrxBnXxsn9v4Hp7e3HN51T4PSKAaDycNjBQf67B+Xd+3nXwoW82TcCKqEJXrNhteNtKsyJbuelzWjiHB/83NXweaZMKVYGkptm2sCaIxTaIVwBd/PfatcRVTXTd03ylqE17e7g3k+YpzbpPaeT3t7+sQs5eEpRCILqYGq/g9MVnI5uJ9aVoqRMTtomazfC9KCU0kEW/YoW2AO0EHsR8MvdsH6pNrPOeaic8Z3O6WlcO6HQnrf3q9534s/BRNv5eFBKa2F1Z2k6Fk9pH/a3LAsFdTewWC5bfU7a9+YK7ZZ96H5SKWXMa6wLUaD7MGMuPu2Be+uIpxS+Cqo5qX1foYo+ga842oenKh6/VwnoRweaDHyFyvsEeVW3hdPpJKmdR+JzEMbn8AjHpiTShErQAqQVaq322JZJEjir15yxD0JByd7rAHBEyr08dMyYpHp1ogV+OyYNEArHaZ9FKQVBUKO1V+bzuEHfdqPHalcodoMvW3N/hRbadxPVskMYIC+uKEiySIh/T/Yz2u/pdfRY2+7UCbdOTBzfWGbgaWuU4QCGHOG6oMLMKdORCcbWsxQL5ZXUhuy+nnJ7ywrtB/buzLoKzUFST2cbegkoj1DtYkZMU0yKFtoAE954x2Q7w6XmvO4o9IDuWfOxkhd14Elb3mxQNrz3NILhCj5QsoHCTH39gk+uv8xbPYXqLePnPN2ZYYNzmIIN/PnSUEpVI842O66pWXybZ8rEo7QnDXqjCc/t6EmL9V2DqClddWJkj81zZH3ilgE7ia7GH0Q/W2nvPZ1seO9pE35NwVMElaDqSlFW0UBtdmBvU9mm5BIagLwHI344e1VoH+81y/VzlNO+wirnoUwwSNCLVq8zirZsgtWYTDsfDyrnERSMibMV0kccAd5aGBSMxU0DjeeuUGAn/WV9mhH08D0Pp9/0jCucibreCJ9lMtjxzQbU9JWCvM9xvsddQcD7K3rM0K5xyliBNL7ADqO388nE54gKuVQHKVcTbWO6xMvr90y+F0RjJNmlhv3E2pzz3h6hz3r8XnOIatoHSI4L474mqU7uuO5q2vegzbXte8d9yF2N+3x0OlhXwKx6wRLVjifNKeKf3X5P1n0AdOT4NHP9yWraQT8LHQQU0OO6rbciXJCfjow/ts52ISD+Wyd9F/WeSrSs0C5MgHjPZf9vUzA0Epazx1ZoT+thZhjr1+JWQxF20P8X7cd9MmGnaoUe2s1ncZc7IRTeG330g2odc0C75/jst+XI7w2oEKD2B/h5jzxKmxQpbSavX98MH7K1qQ5iishq+DycYDJOWXcfv0/StTZC7ZSNAG9X5d2B3NbBC6LnlwGPUKtpd30E46vojUDR00Hp8oHJY24qZgMXal/2RqmtkBU68JZP1RF12BFqzaDheR74ntZaG3erTnQ+aGvVNd7nNBOs+XtuRM90IVT5+VognEpwsekm7XssEPZl+80+yb94KkJBIxDxa3eOj/EUAyi2+brd2Z+Q2L6ZP/tkSPoOrCYaQvP40Z7PGiHcueYuAPSiA7klvcaeSxrPu9DuHK5wPN5YGFZQdBexrNDuLsTbyPQR4diphx2n5xPG44BoyrKkoH1JnzGpriXC5/N1tPBvy9mI8XGhdzIoparCdBAE1edguhfprPtczTyH2s8RL1MPWlZoV6pl3fWnl2pP4PyPOVfwYdBZhxs0QruV9lxhX7knZpYkgR3gRbPvBv6XUvwtipNwHjZPQckYNRZyRJap3e+hgUe/wcEyhVyu+hvmVegPVy4VGCkHjAxV8PoreMWc9vMlZjbUwJ9vtpA2WTiA1iY9Bbyd2jYe/+mSzNVAm+66udpt1NjFhAO562vmDviQ7NPeS1RYGa1eU2VwsEyxODmXp5xS5BRUzMAOdgIhDV8IUb4iaMtpM/nhijbLqIDyzPPgezpAGwplGlIXenyJR1qe7HMwlXY+FtZ8PPCUjszoatrNwkSjaKVHE0KtUBCghfYCyVqwZp8BRvzag/D/HLAGvYja5ZSPf/7G+CWTmc52HrdUg9q2AqGfdtLULiK4p4yhrn/8PlI07VDNkJc0nncSWqwpak32id/PPI9J76MI3XMCdOrJN9BCux3DXSE5Pk+eT7joFQ+idojQpD1SNxU9TvqeOggXSl5HR8xPEmqnU8C2AaanGx/ts27foxFo9n4tlcMOPzHrKjQPNT2WIZeDQWMvGARwaDh8QWO0XyDskGyHYjusrU6ZQMGDCjw/fMDzAdBhhPa8Gzm+eQTaG265m+rvYTQkvqdoD6Ar79FVrjBn7yBzBivMKeRoD6z/rrlBg2hVZjtu+7XbdnRaMtB5xZ8yx6kC+yjXi2iTUtBa9j1EU8O4/m9xXzgfLbQfQgvqrpYgrmGMT1KmC93Op4ZnggxmEWhQaA6UUqiCr9N/lvLQofeqlMPL+9Wo3HazaZPGE0xqPExHOx8LHVTMQxV0wLaq6X+DPRNp/VwboXn8XrRQYMvVux+aSRRhnJZqLEFzfAKwg9HTjjUy9WjndrHCHkNo0m7Hvrh5fNpxUtsrocfAEfTYZ+O5xBdJ4ufczQ1EZ33Ha0z2E6bX7m/qXnODvr1m9gtx5sSxY3dhfj56PB8h6jZHWr0S3r96f3PSQ3/nrnm8NbNPmmM0Okqp6tYotKzQvuflJ7KuQnOR1CgLvs7RaZ/moRHnSU4QbDNq13ZAyxGuTOfQUaItgVL8gbnueVr75oEOqufuXRroQU3jsk9/RB/Eqqo8RU4pih6U3jhEsQL5ookqW2P63/ifs9WpGVypzSu+hagve9rgjnPd4mocYPTUMO4KvT3XiR6MbeAaCM3j4+8L0//oVNu5IMwAStlo2VGBNi4U2RRO7e5rU/bjQdp5SHyYsvscYfrK/WhByF6PbAn9YzOhlNKadRUK79ZV6gRTpov0xYpGEjTiTHc7TxJqFaH5uDVrbyf5u4rfq3pP56I1j7cCaURoN+fi0ePjx52EKd8gXPhOqnuNcJzwPHQQWtC9iskGQ0xgV9H/7TbPvG4ftfnFI2GeEuqXVkcIXTZG0AuaC6l9bzvPECZOy35vQVAZu5AQduxJT2XJ0bSDDkpXipePC4Azjzu42RRPRbQ58d8A7wX+Dvg9X5uF501Zz/ZoCv1Z9c1iPXFjrbLFKRYLtTMVCH+POQreMBYS8Sg1zT6raSGqkzJlAiCjc4C6vB/dYdvraRF1k35SN4qujRyflBrGJ7oa7w6uS4BXCAf3A+hJg+vLnvb+U6VeJsOCMB7sUGGP7d4KjJEI0IrE4XQ8SDvXjLbwUSDUnNp0b9XXxYfvJienomby9vg4c30b8DTR4b8ZJvXT3c7T2ovVRNuxr8YipmZKpI9Gi9RuhW7rix4fQ92+In6fLkKhPzVKe2w/2rUSoeZ+D6E/u62DXeRJsuQrmPe2Pvau4F4mIczTOOtlF/L70dp/awmTZNEnTJyW9WkXJoLtYWL7gg9l16c90OdcwbBBBMCCgmKg4wdVADzttncq8PvowLhtnhXqdS7z6ufowgmuZ27YwIJ6DXFh3f0MbXnYV27a6PizBRsYLRfofVHBSQHcANwLnAu83Zy3qfrinbdNDZM0kNrgTW5qmKXEhHNVG9nVV1T91pYTatptTokkn/ZWmTALgkXFNjvh7DR761ONs69O2JtpLGkgIn2K6YfAJLUx1w6gzXzjv08oxDb3dx/3a7fa9m5z/XfAVehx4lRq295swqYodQVla9I+gI7rEpkexfaknHcF5EF0m1voXBtrc+s1x7ze9WkfLeWbez6+2TpZTbuboz2pr0o6t4Co0G6Ja9oj+9hUM/6929f1EzWPj7+3eGZOjpZ9tufMPyrrKjQPSQObQguyQyPh0zxY0X7uSa/L+AH0lY6KbvMudyjo8KDL0/sOBW1KUVKKkjKpwuxsYAh4+nV46bXaGzf4oH/fA4/og4jg7tS5lIff9etw8bYc1FctKkwYpZRe+VZE2vEpCr6k4FTzf8m5nk95bJP21g8UwtQw7gAfF9yTNO6HAy+b19tAM52jvOd0Um3ngpABNYK42dtAYOPx/xwP0s6jJH1/RUJBxWra3X7KaptbYWizllVxv/YfxcrdT3ShtdEn9tPdztOCEVuT9gHCBbbxCu5xo8USWhDdT61bWJIgmiQs2/7Ctl/XPD662BT9DdMMYl3z+N1ol7ek8TwSZNap4wK0eTxE/dptpP2075WU8/Y98uhnc5CY0B6bUwgTp9Gf7UkzMlIeu5CgSXsi8x6UjWl1gBbaGzRHO+hcy51GUO/0oEtBp9k6fOjytexagLDOL74W9up3vQIv7KGZbOy6utqNNkHV9voAnQXYdwiKudqeH8jaQkIIyTvCertpw52xhSdXaE8LppY04SgQ+oFC1JQurl2PD/K2SbkR5G3wmzbnHjivm+4m1dXVPnYhQagTaWl97CS8GLs22W5V2nmUJKHATfl2gDCKN9T67jY7rutfXmlhqECt69R5hG5TVjPfyNSjnbttxF2sPkhUc5xUPn4+qd1Z/3hr3WGJxJlJeX3cMsea2Pcxtu94Wn0V0Zzo1qfd3qdGcE94/Vy033kQ20bi9UqYEift7XEXsMscxxfV6jVHmC20rHn8wQO7xy4khLizDUtRwYCTp71cCX2/I6+xL83+McwrhU9AUcGwzthjOixFTnl4XsWRSBRs64ne4Nc9sGa5WepsfIH2HaeZLAlxLbvtFUs5PTIsaEwLCSFEKUUbgdauAEPKSRWNnoi1KWMiP5rA7hzbfRuh0D6MNluzqWHcgT0uvCv0JBD0hMD2qgfRgspog/h0Um3ngpAB8fVQm/LNTsLT8j9P9FmQdq6xrj5JFNDGcaBTSlmf9ojArlpHI1VQ2tUvr/RxBTglgBuB+9AC+8nmWl6FfvCNzHS387Sxx7pSuHnHawTs2DQv/vy6CwD9aIG7i9r3jLjDBEHoR+6M4R6hoL3E1G08iwmROpl72oWEIULruRqXt/heETFlX0AotFvsgthYOe1JuJ/7Xe0kmlLW/T5F0z55WlZoFyaA7Qnssd0XHE07aP92q2mP+7830CPomcjwcfPhoBqG1QjkeQ/etgye3hUWevtSJ7eKavwla0t8FLKUzO/VnrDYYn67RlhsETRKKS2UB4FedDKTNDcrwmi/V9og20ZoBrfH7FNTw5hJQVXjbo6XoScsA+jJi003VDMJopF6A0GYOmltfLrN44WQtO/SNY/vI9R6usJTK/VBvlIUVEAbEHjgBTr2yekBnEYYgNd1rZptKS3dnOHuZk3aXfN4Wz7tGXWFW7dMO7rd7Scc+9IszEYbE+cQasfjaVMj+1jFkjTltt95w9QtvhCfJDC72zzgOaJadmtFN1afNlpf1w78luizWbN4IEyKRl+QmzR+Lr5+JYyK+xDZJ6rowbDRtAdoAb7gJ4+GzTBIWIHdNwJ73oO3LIVPHAkn5uG/Hgmrl+nzOU+Phg3+uV773T59EF94sVuHEdqLTnR8WyZ6IDQQvlIUPUXJU3R4ijZPkR9nvtCkQTRPONG16d6sn2SSGV3cp91Da7RyaDM8q2lPer96PDLVdi4IGZHUxRacvVvO3U8EaedR4t85RINqvoHul5KEp1YSDNqUdo9qN1skZo/SLoDtSrtP5Rt8zgLT384jwqjTXqxWu59wvIq/Lu1cfO/6tFuT7/gW8WNXtddB+6Fbob2P8Wm0065bgf9F9BhvLQCSorQnCfE2EJ2LnSfk4++pRq9XPD3eLkLFgPv+8e9DmBgtK7QvXLIq6yo0D2mzbatpt2ZqgyP6XOJr61nB6UH5nl50yHtQ9PXW5sNblsHH3gZrDtf/W4E+76MafOT/53+9Xx/UjFhm3+4I7W5PmRS0Tmh6kia5dvJio3zYdG/2WsQ0XoXCvCKWMgYdQf5VEjQXKfvpotrOBSEDkiboblv/MbDd+R+SJ7ljIe08JP4d270NqmmDYc6j9jdptYmtMoF2O5UW1ONbh4l/0tbg8xVLPdq5Sji22uIBRheO44vhEWHUuVc/WtCeQ21bi3tTpgm0cwkjyI849UoS9ON1io/t1n7yBbRpvK1PfOxO0rZDNBCd1bTHXQmS9hB+Z0kWAO3odG+LnDpBdK4hFp6To2XN4/e8/ETWVWge0kJTFrwwwSXAoWGtfa8R/OpfxWkj78GISVvnK+04bLHm8EaoV7nGH/r/x2cv0AdJWnZUGIOg2LyLLcL4SRtk2wh91aymPT6IxwPReUEoyFunNyu0Fwkj6MLok43poNrOBSEjkvw3n0K7r7xEmHrrNCbfvUo7D0nry4rovmy/+d9qG+sdDDNrrOtUPgioKCNkBaE3XzMJQfVo50ntxQrtexnFDH0c94Fw4dtmLIB0Ydj1a4/fqxMt+FuNdhvjq1PSeI2530uEQjvUWpxYN7f46+ehhWuICu3jjbSfds1+1wti7xevuzBx5LsToijnoJALe5YgMObxMeEQmJRKISOUUlqbbrf2XHhcMlt7DpUUJb+RiS6Bhuc6jOFmm7PY4sYjaJLfTRg/7gDqTnStr5qbz7W6Kq+cFXmlIsJ79Rjt1/6quddENBeC0MzEJ56+eS6SUm/FJ6jC5EkSFPJooX0fyXE56rl42Ah4SpFT2l2q4Cn8cbpNtTKjCdqgAxZGNNqQmhowLVJ6O9q64yDReC5Qq222x9VFb6eMzdVu9WGTXUywtBMK7e6zkBRc1p63x/PRgvoAYTA615VgtM8X+Zwqet1+pniOdrdewuSQ705IF/iKVnA1j/PwSKixbeII5EopLZS35bTQ3pHXWykPbTltRt+MJOVetwHofvUqvPC7pvuthImRNrAXCc3jdzN6ahiImtT5Ttnl5vUHCTXtra7hEoRq6i1MWBS08JiWesuWaZY4po1IkjCg0JrJIbTGczz5soXZQTWIKuFmZ7CvMTnh2G1/Vmi3GQvibc0tX61PwhYX2sfjO27PJ9W7CLxCuBAfWVwkKrjHFxBsIE03gvwh0mN0xOuW9hntc7koVk4C0U2dJpVOxmbeomOyrkJzkSTwWaF92PFprzGzTnhdk6A8hfI9VM5sfvOtWN/z3f8wRyq2rGv+3/WG/v914K6XdV56SB8ZhKYmbWC3E13QE5jRcrTb8/GVeghztfejB+akCVA9mlXYzgUhG6wwnkenXWxTcBLaJP4c4GbgJKWN0XLo7CUTnWBJOw9JE65c8/iFTnkJdNU8THc7H20c6kK3lYkEi1QJx25oa+vTHn+/tAUAV1PdhTaPHyCaC320esXPu0KvNWV3reeStO3xzZ5fiF4Aq5j7HCLZ9S2pXml1tp9rYawu8mxOnZb1aR8c2Jd1FZqI+EzfHOSN0F4e0dHUB4CcHysbe40wo6w69ih9kNRzKgVP7I6+4Fe7deC9pN5faAmSJgBF9OM7gJ4wJKWGcdd8fEUk7Ztnjpei13/2EfrQjTXhmA6q7VwQMiKHFtQrHgQV3c7zCk4L4HT0M2OF+TZzPNFFYGnnUZKEsALpUbzBEZBkTtKw1KOdp40/7eg4LomLzCm6i6Qxrd25bgXlNJ/26jUzjrr3sosISb7j8YWAeJ2SBF7rArAsVp+4Vjstp3oXYQR5ayqflHsr7XtKSrdnVEW8ChwRq3uSS4IwflpW0z5w8PWsq9BcVJ8+wifK2vYNmrRvZbRJuXJ7AaKvEWaUE996rD5QhPnnbUA9X8G6ZdEXrF8aOmSKT3vLEZnkOo+z9WnfY/63k9141Hj39XGfdrsqD9qHzp0EpUXQnS6q7VwQMsJG8C4pHa273abbMtG73ZRcbWpyGhFp57XE+5MC2mpoH7WR48VFpzmoRzsfzXwcxs47jvN/RNg1560g205odl4tr2qFqbgg7grJ/ST7jlfH01il7AJUUt3t53KDy6blaE8yT19I1DzeCu1p35O7GJb0GZ8C/t1c/yLwtFuPhO9JmBgtq2kXpkhVcEdHjbdp34oJAdpkRTtzlFIEngdeJRTe8x6sOgw+Cvy6B05apvPQu4K9/HYth0o4bkObv+1G+6VHBvDY3r4unu7N7g8HXmb8PoKC0Cr4StFOUPVpH1J6smufj7zSGvaC9KtTJu0bdH3alzllXcFEBIPZRaLQa6as1tTbNUVPEqZHu58t5xNGjh/rXlbLHr/ehV5wOkRUoz2exYSkvc35/hzwdpxxW7nCskIFQWJ95xOmfcPUa7wLHEna+wdjZbYAp1Jr2SdMjpbt2wptXWMXEjSRp9guV5p9CRgagbLxeHGjqsssPXNeeOnl8J+c0pvNQ5/3tGXEW5bBf1mn9wUvzEPvew2fh16YPO7jaVf0f0vUrD2eo13FrlUnwc41O1F2hfaxJkFTJdLOBSFDPKUoeYpOD+Z60KXMZrTtUxHYpZ2HpGaiJfRpn09C/yPavIanHu08bfyxAmjqInPsBWkCO2hz9jmx8267iy+Yx69ZoX0QHdTONbkfy3ccaoPtPQ1sM9c+j9ZyuwvsNWN67PUKnZZtL2HKNzenvfsdJdXJIwy4mVNaCxwPzvl+QsPPPHY+IfPOydKyfVvXvCOyrkJzkRrBytMCe9mYyBe85PIiuWfCQz/+ZfVY+Z5eVMl7+ndyU9u1mdR2VqC3wrvQcsQnDhAK7TsJzeiS/N+qZngpad8UodAej9ycNgmaDtx2LgiNgG/SbrV5iqKnj6c6GZV2HiVJgLLxOfYTaj1nYuFQmD6mu52PZj5utdmjpSituV/K9RKh0K7fd/Q2l/R+9vW/Y/y+41Dri67QWmyXLSSbxkO0nu61+YRCO9Rq2uOvi9fJCuvWysgG53wPcCM6OGfRCOy+EvPuqdKy39/ru/9f1lVoHuK9hDv7zvswWNEm8vbceJbghBnhv338A9ETeQ+CHPgjuveuBOE1axJf8KHgi5a9BbG/qDVbiwvtLwFnERuIVbJJqSLZRH65ud7hvMZNPhEw/dS0c0FoQaSdh0SEDac/s+kr3yBF027LCw1LPdp5mkButdkRP21VWy5yr9j4afcFaoMfRttdeDd3fHVNyK2gvpva3PGR+scasYfxfAyMdhvYAPynU+b9hJrvaro3c5/qAnwQFcDnEQaOg6ivfaQ+1KKUohAEtCkYASrmez0FONnUJa90HBAbnDMvz+aUaFmhXZgg7oPkdhY5H8qBDkZXSLg+1pKlMKMopaDoE+QU+BUdi6AShKOHrzXsElm3dUl6JO0AvZMwR3tSapj4fewg7wr1B83+t8DK2PtJqxIEYbpQCcd2GjJENPXWWFpPofWJL/BAqDWO+2nHjyP3cDbXP76MNkd/Gu0/bt8vKSJ6klDvCsp7gBWxeowWSNFX4BuBPaf0c7A+gOvRGvb3AesJNd+5mICcFj1+PtpqBfMxB9ELHbWLCMn1KigdL6cCKA8KAQyjp56eCrNu2CCeYho/NURoF0KSHqZiTpvHD4+EvV68vDyDDYfyPSh5BEFgelNEsz5LiP/KdpBuR6+iW6E9SXB3sWnffELh/Wngn83169Gm9icTHeDF6UIQhOkgSXvqagFH03oKs4u0fOSuT/tE2kr8/NNo7TjAVWgT8FPHuE+aoNyJNo8/geQ2nii0E5qgVwgDYJ4S6DE4p7QA3Wb2efMa9/O4CxF2MX4BcACtKfeZWP540IqiNgJtKo8OzjkSaK271frbVJg5EdinTMvOrxYuPT7rKjQNWusaW6a2D1ebNY+vhJHjk5bghEz4xh3/Pup1pRTKVyKwzxJGG2Tt5CUtR3u8hfhuOfN/PDLsg4Qm9H6KxmE6GKudC0IrIO08JK0vswJFB9E+ytV6Co1Nvdp50rhn20shXiZFc6yUigRYSxv77ie8lmap5u7dKdgctB/5eKO023pZjXVR6dSSHUqnm+w0QTCtGXpJQcmr1WonLWzMM9f2m30/tT7taXVy61Y0wTltUM45nt53mXqKwD49tGz/1rtvV9ZVaE7i2vO80bSXK/o4LUe7PI+ZcPY712ddBaFBiT+SBfRgbDUOcdP4eHmbwiqvwlX+c2Nl3k9ohudOcqYbaefCbEDaeRRXf1Cdkpj9PLdMwiY0LvVo50ltRaHHuwLJAmhaO8kR+oXnlX79ebEyH0CPfbZcLuFmae2x0+xLsbKj1Qm04NtuhXSzdTn/dznCez4mJFfH/NhCfQFtvbLXlCuTYFQ7jrqBDs5Z9BTtnqLD01k2Cp4Sd8xppGXN48uHescuJIQkPVQKHWX80LD2a89LjvZGY8XRh2ddBaHBSAuikwcWm+N47nU/QeuglMIPAj1pUdp87mTgpgDuRQvw6+0EASPgQ10GaGnnwmxA2nmUJCHLHs9zykVzUovQ3ujUo52nCeR70ILoU4R+6EnlXHwF+SAc9yoKTg7gb4EfogX4Uzxjio4e+2o07aPkRrcR5BMD0Y3RfvNK4ROQA0aUNkWH0H+8oLTwnPT9pC1uLUQHozuGMczj5cHKnJYV2oUJktaDFTzYP6JN5NtyqeVlJU0QssfI64mP8wDQC2xHT17SUsO4FM2kZcQa2AC/r+DUIEzfYv3o2pREhhUEYXpRCcclQn9293y93HOE5iAukD4FfNdc+zw6Dssp1PqYx/GVok0FVd9xTIC109GbHfeKztiXNAeOaLeDsF5d5npaarWx2rCnFCUFQRBQccbm0ebh1QUtJy6xMgL/fGCfKdeHFtrdzDDjrZdQf1rWPL7UsTDrKjQf8eU0BRStpt31aVfR8vIoZ8YTTz6fdRWEBiOilTL/bAdeQ+dg/V/mfztwVycwCQO+Z/zoSsr40BnzO2uGZ0302o3WoV6RYaWdC7MBaechNZY/znGJUNOeKFyIEqGhqUc7t65ZNjWaD/woVmYLoVVZNcBqyv3sYnSHgk4z1nU6xx2eHhNLKt1fOzIWO/9b8/h4nvY03VkaSil8s42nzSct0iv0s7SXMAr8eCPtCzNPywrtxdK8rKvQXLgzfPeJLigYGoHyCBRytXY87l6YcZ59fmfWVRAaCBtEJ65JSAuiYwfx0UyuckpV/eW6lPafq252EjPKxGU6kHYuzAaknUdJE2IOAY+jI3pPVEspZE892rkVxF1f9EQ/dExaNFMuTdhVSvtk27Fujlmsro6DZiwsjBLk1y6M22O7n2uO26m9pt97fJ95Iiilqs+HrZOdJyxAm8cPmv+t2X5S3YRsaVmhfd/vdmRdheYjsqxm/il6MDRshHaVXF6e5sz48AffnXUVhAbDJzZ5ATbEypxLOGnxVDQ1TOI9nQnMXDOBmWsmMCVP1T33qrRzYTYg7TxKUmCxp9ARrl9Fp956iqi2XWh86tHObeDUAqHZ+slK+6H/AXAzcIrS1wpKC+/jcefKKUW7EdBtVPROM+4l+Y67xBeTbDt1A9HNpHCclhZvLlrTPmDKTSTlmzCziE+7oElb4it6WmAfGIbDnJiSkqNdEBoSG9E2F5i8rsD6QPvzbUEL7CepUOOQR5cfD74894IgzAA1Ao8CglqT5/vQfsbVoJozWUmhYVBKUSRgxINKRZ/zgdOVbh8KLay7MVjGax1mtdQT1XKm5Wl/zex3Asfh+JvHyk039jmyOdrts7UQeAxtwQJhhgZXLJAhvzEQoV3QJC1pA+R8vfxWHtECfJIdjzzNgtAw+GhtwrCiGkjHQwePO80I61YTYbUOY2kMBEEQZhKlFF4QVNNv5QLdd20A/tMpdy6hVZG1MBJmJ75SlIyU7Ac6AryNrq7MArU79tWbpEWnp4FvmutfA5ahs7LY6tTT/DlJ0w5hILoBJpY7Xph5WtY8/rDDT8y6Cs1L1QlH6eBzg2gT+aIXvQ7yJGfM1/7uX7OugtBg2OBxdutwTPtsEB17rTRDk5epIu1cmA1IO49i819bU+Y2BScBfwO8F236fLJjLZRTLTypbSHq2c6r5uxKm7LbPOZzzDjYruobNDWOK/Qq4IHY9QeYOQE5nqPdbvPR2v8BoCNW35molzB+WlbT/nrPs1lXobmw9jlxbJq3weHa2b2YymbORy/4g6yrIDQgOnhcgB/AoQCGA522zZqP5lWocZipyctUkHYuzAaknUex7j3DyqTeQk9aTwVOI0y9VfL0AmSB5ujPZjv1bue+SYlWcVKiWfP2mcwsYMdbX4EX6OMNwH84ZTYQWonY+DL1NI+vbo6Z/Dy0Vd5e9DNky4LEi2g0WlZoHxk+NHYhIUrSclreeIjtAwp+cjkZJDNj8aJ5WVdBaFByStFOQJ7QVN4O2Hn0hLhZUiNJOxdmA9LOo3hK0UbAiOmmPGAoJsDnHKuieKxcoTGZqXbumWwqWVFNPxfodlpQ8PYA/jc6FsMGYD16LLYWJX4dF9JdU33l+NrPMftX0YtkbvmkvZAdLSu0CxMlpjV3o8dbCrnacoIgNCyeUhSNtioI9FS3WQR1QRAE12ooZ3yURzBaTBVGCy820SKkMDtQSpEPAh1jBqpa/1MC7ebhq9DP3m75Ue435fpQ69du/18AvEIY2V7XXwT2RqNl3X865izNugrNh2sin6RFL/rJ5+VpzoyfPfJE1lUQmgSlVNNOaqWdC7MBaefJWD9l66Nc3SsTo8Nr3r5tNjKb2rmNVl8y+w7jY9/p6Xgz7Z5277DWIuNJQzcV4jna7dt1UatpJ1ZGyJ6W1bT7fmHsQkIt7tNpn+4cepmw6NeWE0eXTOnt7c+6CoJQd6SdC7MBaefpWFPnegs1Qv2ZTe1cGRcPAN+DwUC7q1nyhIJ9va1FVGyzEe0BFgHPA4tJN4uXhbHsaVmh/cDenVlXobmwTzHU+qiXgF5C//aaAHTyIGfFhveelnUVBKHuSDsXZgPSzoXZwGxr555JRZdXUAh0fJlKoIVmDy2056i/UKyUQgVBYuq3+cABJOVbo9OyQrswCdJytbd50FsJE6C6wr08yYIgCIIgCIKQiFKqGgC2EgTVufNMZzuo+rGbYHSu0A5aaI8I9KqF/aibkJb9LZRq2Y9WH+L9hiuY53Lh8o6YwzcUg4PlrKsgCHVH2rkwG5B2LswGZns795SqbjNNUhC6uNBuy7l7kagag0x/hyAIuP322/nQhz7Ehg0buPTSS3nxxRdTy/f29vLlL3+Zc889l3PPPZcvf/nL9PX1JZY97PAT61Xt1sXtP9zOJO9DW7ysij79QibccMvdWVdBEOqOtHNhNiDtXJgNSDvPDg+T8o1QcIdQaB8t5ZuQPZkK7XfffTf33Xcf1113HZs2bWLNmjVcccUVDAwMJJb/yle+wt69e7nzzju588472bt3L3/5l3+ZWLZn16/rWPPWo+pLYzXp7lPaltPhLd3zaf7vwoxywrHzxy4kCE2OtHNhNiDtXJgNSDvPjrTo8fPMvkTyNF9m+o1BpkL75s2b+fCHP8yKFSsoFotcdNFFDA0N8dOf/rSm7O7du/nFL37BJZdcwty5c5k7dy6XXHIJP//5z+np6Um4e1D/D9BypKR7K/raRL4mAB3J/wszxkMPPZR1FQSh7kg7F2YD0s6F2YC08+yoiR6PFgQXmOsSiK6xyUxo7+vrY/fu3Rx//PHVc77vc+yxx/L888/XlO/u7iafz7Ny5crquZUrV5LP5+nu7p6ROs8a4sL5/l54tQwvvha97pYRBEEQBEEQBKFhcbXs1q/d2j5sAZ4illBqRmsnjEZm0eP7+3Wexs7Ozsj5zs7O6rV4+XjZtPJBEFAodnHgwIFprHHrExwagf4hGByBgWG9f24P7DDf47efhwv64fglMOTDcA5GfNRQPtuKz2Ke37FT2rnQ8kg7F2YD0s6F2YC08+wYCQL6KnAwgIMVvfUD29D2yU8D/xO4FjhZQeCBMpL9oASiHje2fQfB9Fp9Zya0t7e3A9QEkuvr62PRokWJ5ZOCzvX19VXvZRkYGKA82MuRRx45jTUWAPj3rCsgxJk79/9kXQVBqDvSzoXZgLRzYTYg7byxuSzrCrQIAwMDiQrnyZKZ0N7Z2cnSpUt55plnOOGEEwAYGRmhu7ub97znPTXlV65cydDQEDt27OCYY44BYMeOHQwNDUVM5gEWLlzIPffcQ6lUCgOsCYIgCIIgCIIgCEKdCIKAgYEBFi5cOK33zUxoB9i4cSP33HMPb3vb21i+fDnf/va3yeVynHHGGTVlly5dyimnnMKtt97K5z//eQBuvfVWTj/9dJYsWRIp63keixcvnpHPIAiCIAiCIAiCIAhQ6/49HaitW7dmFmbd5mn/wQ9+QH9/P6tWreLSSy9lxYoV9PT08Cd/8idce+21rF27FtA+AjfeeCO/+MUvADj11FO57LLL6vLFCIIgCIIgCIIgCELWZCq0C4IgCIIgCIIgCIKQTqZ52gVBEARBEARBEARBSCdTn/Z6EAQB3/rWt7j33ns5ePAgxx13HJdddhlvfvObs66aIEyKf/iHf+DRRx+lp6eHtrY21q1bx8UXX8xhhx1WLdPT08MNN9zAE088QT6f5+yzz+bTn/40+byk4xOaky984Qv87Gc/4/rrr2f9+vUA/PrXv+aWW25h586dzJ8/nwsuuICNGzdmXFNBmDjbt2/nm9/8Js888wye53H00Udz00034XkeO3bs4KabbuK5556jo6ODc889l49//OMSWFdoKt544w1uvvlmHn/8ccrlMm9605v45Cc/ybp16wDpz4Xm46GHHmLTpk3s2LGD/v5+fvSjH+H7fvX6WH33VGXUltO033333dx3331cd911bNq0iTVr1nDFFVcwMDCQddUEYVIopbjyyivZtGkTd9xxBwBXX3119XqlUuHqq6+mq6uLf/u3f+O2225j27Zt3HrrrVlVWRCmxJYtWzh06FDk3O7du7nqqqvYsGED3//+97nyyiv5+te/zk9/+tOMaikIk2P79u1ceeWVnHPOOXz3u99l8+bNfPrTn0YpRX9/P1dccQVr1qxh06ZNXHfdddx777185zvfybragjAhbrjhBl577TX+8R//kc2bN/POd76Tq6++mgMHDkh/LjQlnZ2dbNy4kc985jM118bTd09VRm05oX3z5s18+MMfZsWKFRSLRS666CKGhoakIxCalk9+8pOsWrWKfD5PZ2cnF154ITt27KC3txeAbdu28Zvf/IbPfOYzdHR0sHTpUj7xiU/wwx/+kHK5nHHtBWFi2Enen/7pn0bOb9myhSOOOILzzz+ffD7PunXr2LBhA9/73vcyqqkgTI7bbruN973vfZxzzjm0tbXh+z5vectbUErxk5/8hEqlwkUXXUSxWGTFihV85CMfYdOmTVlXWxAmxMsvv8yZZ57JvHnz8H2f8847j4GBAXbt2iX9udCUnHzyybz73e9m+fLlNdfG03dPVUZtKaG9r6+P3bt3c/zxx1fP+b7Psccey/PPP59hzQRh+njsscdYsmQJXV1dAHR3d7N8+XLmzp1bLbN69WoOHTrEb3/726yqKQgTJggCrrvuOj760Y/WpPLs7u5m9erVkXOrVq2iu7t7JqsoCFPi0KFDbN++Hc/zuOSSS9i4cSOf+tSn+PGPfwxo88qVK1dGTC5Xr17NK6+8wsGDB7OqtiBMmAsvvJCHH36Y119/neHhYTZt2sTy5cs55phjpD8XWo6x+u7pkFFbyqe9v78fqM2N19nZWb0mCM3ML3/5S/7pn/6JL33pS9Vz/f39dHR0RMpZgV7avdBMbN68mSAIOO+882quHTx4kCOOOCJyrqurSwQZoano7e2lUqnwwAMP8NWvfpVjjz2Whx9+mL/4i79g0aJFHDx4sGYO4/bn8b5eEBqVNWvW8OCDD/KhD30Iz/OYM2cO11xzDcViUfpzoeUYq+8OAp2sbSoyaktp2tvb2wGtcXfp6+urXhOEZuWRRx7hi1/8IldffTUnn3xy9Xx7e3vNQGdN56XdC83Cyy+/zLe//e0as3hLR0dHTd/e29srQozQVJRKJQDOOeccVq9eje/7nHnmmaxbt46f/exnqe0cpD8XmodKpcLll1/OggUL2Lx5Mw888ACXX345V111Fd3d3dKfCy3HWH33dMioLSW0d3Z2snTpUp555pnquZGREbq7uzn22GMzrJkgTI0HH3yQr3zlK/z5n/85Z5xxRuTaypUrefXVV9m/f3/13LPPPktbWxtHHnnkTFdVECbFk08+yYEDB7j44ovZuHFjNYrwF7/4Ra6//npWrlzJs88+G3nNs88+y8qVK7OoriBMis7OTpYvX54aCd6aDo+MjFTPPfvssyxfvlwEGqFp6O3t5ZVXXuGDH/wgc+bMwfd93vGOd7B8+XIee+wx6c+FlmOsvns6ZNSWEtoBNm7cyD333MOLL77I4OAgt99+O7lcrkbQEYRm4Xvf+x433XQTX/3qVyMadsvatWs56qij+Pu//3v6+/vp6enh9ttvZ8OGDRQKhQxqLAgT513vehf/8i//wje+8Y3qBvC5z32OT33qU5xzzjns3LmTzZs3MzQ0xLZt27jvvvv4wz/8w2wrLggT5Pzzz+f++++nu7ubSqXCww8/zBNPPMEZZ5zBmWeeied53H777QwODvLiiy9yzz33SCosoamYO3cub3rTm9i0aRMHDx6kUqnwyCOP8NJLL3HcccdJfy40JSMjI5TLZYaGhgAol8uUy2Uqlcq4+u6pyqhq69atQV0+WUYEQcDtt9/OD37wA/r7+1m1ahWXXnopK1asyLpqgjApzjrrLHzfr8m5fu2117J27VpAp8OyedoLhQJnn302l1xyiQjtQlNz1lln1eRpv/nmmyN5fWWSJzQjd955J5s3b6avr48jjjiCj33sY7zjHe8AdECjG2+8keeee4729nY+8IEPSJ52oenYtWsXt956K9u3b6dcLrN48WL+6I/+qBqzRPpzodm4//77ufbaa2vOf+1rX2PdunVj9t1TlVFbTmgXBEEQBEEQBEEQhFah5czjBUEQBEEQBEEQBKFVEKFdEARBEARBEARBEBoUEdoFQRAEQRAEQRAEoUERoV0QBEEQBEEQBEEQGhQR2gVBEARBEARBEAShQRGhXRAEQRAEQRAEQRAaFBHaBUEQBEEQBEEQBKFBEaFdEARBEARBEARBEBqUXNYVEARBEARh8lxwwQX09PSMWW7JkiWsW7eOLVu2AHDXXXexdOnSeldPEARBEIQpIpp2QRAEQRAEQRAEQWhQ1NatW4OsKyEIgiAIwvRw1llnVY+3bt2aYU0EQRAEQZgOxDxeEARBEGYJf/VXf1VjHr97924uvPBCAE488UTOP/98vvnNb9LT08Pq1au5/PLL6ejo4MYbb+Sxxx5j7ty5bNiwgT/+4z/G80KDvd/85jfceeedPP744+zbt4/Ozk7Wrl3Lxz72MY455phMPq8gCIIgtAIitAuCIAiCAMALL7zANddcQ6VSAWDbtm1cddVVFAoFXnrpJQAOHTrEt771LRYvXsz73vc+AJ588kn+7M/+jMHBweq99u3bx09+8hMeffRR/vqv/5q1a9fO+OcRBEEQhFZAfNoFQRAEQQCgt7eXz372s3z/+9/nhBNOAOCVV16hr6+PO+64g1tuuQWlFAAPPfRQ9XXXX389g4ODLFmyhNtuu40HHniAr3/968ybN49yucyNN96YyecRBEEQhFZANO2CIAiCIACwePFizj//fADe+ta3sn37dgA2bNjAUUcdBcCCBQt4/fXX2bNnDwC7du1i586dAPT09HDxxRfX3PeFF17gjTfeYMGCBTPxMQRBEAShpRBNuyAIgiAIgE4LZykWi4nnczm93l8ulwHYu3fvuO69f//+6aiiIAiCIMw6RNMuCIIgCAIAvu9P6DzA/Pnzq8fr16/n+uuvrykTBEHVrF4QBEEQhIkhmnZBEARBECbNEUccwZFHHgnAr371K77zne/Q19dHuVymu7ubO+64g2uuuSbjWgqCIAhC8yKadkEQBEEQpsTnPvc5rrzySsrlMjfffDM333xz5PqJJ56YUc0EQRAEofkRoV0QBEEQhCmxbt06brvtNu666y4ef/xx9u7dS3t7O4sWLeLEE0/k7LPPzrqKgiAIgtC0qK1btwZZV0IQBEEQBEEQBEEQhFrEp10QBEEQBEEQBEEQGhQR2gVBEARBEARBEAShQRGhXRAEQRAEQRAEQRAaFBHaBUEQBEEQBEEQBKFBEaFdEARBEARBEARBEBoUEdoFQRAEQRAEQRAEoUERoV0QBEEQBEEQBEEQGhQR2gVBEARBEARBEAShQRGhXRAEQRAEQRAEQRAalP8PrGeM+TkUkloAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -71,9 +91,8 @@ } ], "source": [ - "from TSInterpret.InterpretabilityModels.counterfactual.Ates import AtesCF\n", - "\n", - "exp_model= AtesCF(model,(train_x,pred_y),mode='time', backend='SK', method= 'brute')\n", + "from TSInterpret.InterpretabilityModels.counterfactual.COMTECF import COMTECF\n", + "exp_model= COMTECF(model,(train_x,pred_y),mode='time', backend='SK', method= 'opt')\n", "exp = exp_model.explain(item)\n", "array, label=exp\n", "\n", @@ -110,7 +129,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.16" + "version": "3.9.17" }, "orig_nbformat": 4, "vscode": { diff --git a/docs/Notebooks/Ates_tensorflow.ipynb b/docs/Notebooks/Ates_tensorflow.ipynb index a90c865..0a4f014 100644 --- a/docs/Notebooks/Ates_tensorflow.ipynb +++ b/docs/Notebooks/Ates_tensorflow.ipynb @@ -4,12 +4,22 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jacqueline/.local/share/virtualenvs/TSInterpret-x4eqnPOt/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], "source": [ "import sklearn\n", "import pickle\n", "import numpy as np \n", - "from tslearn.datasets import UCR_UEA_datasets" + "from tslearn.datasets import UCR_UEA_datasets\n", + "import tslearn" ] }, { @@ -25,7 +35,27 @@ "metadata": {}, "outputs": [], "source": [ - "dataset='NATOPS'" + "dataset='BasicMotions'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Trace']" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tslearn.datasets.CachedDatasets().list_datasets()" ] }, { @@ -37,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -46,15 +76,15 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(180, 51, 24)\n", - "(180, 51, 24)\n" + "(40, 100, 6)\n", + "(40, 100, 6)\n" ] } ], @@ -65,9 +95,18 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jacqueline/.local/share/virtualenvs/TSInterpret-x4eqnPOt/lib/python3.9/site-packages/sklearn/preprocessing/_encoders.py:972: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.\n", + " warnings.warn(\n" + ] + } + ], "source": [ "enc1=sklearn.preprocessing.OneHotEncoder(sparse=False).fit(np.vstack((train_y.reshape(-1,1),test_y.reshape(-1,1))))\n", "pickle.dump(enc1,open(f'../../ClassificationModels/models/{dataset}/OneHotEncoder_tf.pkl','wb'))\n", @@ -86,56 +125,45 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2022-10-27 10:17:51.991448: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", - "2022-10-27 10:17:51.991466: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n", - "2022-10-27 10:17:53.774855: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", - "2022-10-27 10:17:53.774882: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)\n", - "2022-10-27 10:17:53.774903: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (jacqueline-ThinkPad-P53): /proc/driver/nvidia/version does not exist\n", - "2022-10-27 10:17:53.775067: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", - "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + "2023-08-08 14:04:53.476346: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2023-08-08 14:04:54.516721: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" ] } ], "source": [ "\n", "import tensorflow as tf \n", - "model = tf.keras.models.load_model(f'../../ClassificationModels/models/{dataset}/cnn/NATOPSbest_model.hdf5')" + "model = tf.keras.models.load_model(f'../../ClassificationModels/models/{dataset}/cnn/BasicMotionsbest_model.hdf5')" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "6/6 [==============================] - 0s 2ms/step\n" + "2/2 [==============================] - 0s 3ms/step\n" ] }, { "data": { "text/plain": [ - "array([3, 4, 5, 0, 3, 2, 2, 2, 2, 0, 4, 3, 2, 4, 1, 0, 4, 0, 4, 0, 2, 3,\n", - " 5, 5, 1, 2, 2, 0, 1, 4, 2, 3, 5, 4, 3, 5, 3, 0, 3, 5, 4, 2, 1, 5,\n", - " 0, 2, 4, 3, 2, 2, 2, 2, 0, 2, 0, 1, 0, 0, 4, 1, 4, 5, 0, 5, 1, 1,\n", - " 1, 2, 4, 1, 5, 3, 0, 3, 4, 3, 1, 4, 4, 2, 0, 4, 3, 5, 2, 5, 2, 5,\n", - " 5, 4, 4, 2, 4, 3, 5, 2, 1, 5, 0, 3, 0, 5, 3, 5, 0, 5, 5, 0, 2, 5,\n", - " 0, 1, 1, 4, 1, 0, 0, 2, 4, 1, 0, 3, 4, 3, 1, 2, 2, 2, 2, 0, 4, 0,\n", - " 0, 1, 3, 4, 4, 2, 1, 1, 1, 4, 4, 3, 1, 4, 0, 4, 5, 5, 1, 5, 3, 3,\n", - " 5, 5, 4, 3, 5, 1, 3, 2, 3, 0, 1, 3, 0, 2, 5, 2, 3, 5, 3, 1, 0, 5,\n", - " 2, 4, 3, 3])" + "array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3,\n", + " 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -154,14 +182,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1/1 [==============================] - 0s 18ms/step\n" + "1/1 [==============================] - 0s 24ms/step\n" ] } ], @@ -173,17 +201,17 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[7.0318120e-09, 4.3381502e-07, 1.7595490e-05, 9.9951905e-01,\n", - " 1.7949790e-06, 2.5720207e-04]], dtype=float32)" + "array([[2.8015620e-05, 1.2882984e-03, 9.9654043e-01, 6.2079956e-03]],\n", + " dtype=float32)" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -194,12111 +222,12101 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ - "from TSInterpret.InterpretabilityModels.counterfactual.Ates import AtesCF\n", + "from TSInterpret.InterpretabilityModels.counterfactual.COMTECF import COMTECF\n", "\n", - "exp_model= AtesCF(model,(train_x,train_y),mode='time', backend='TF', method= 'opt')\n" + "exp_model= COMTECF(model,(train_x,train_y),mode='time', backend='TF', method= 'opt')\n" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1/1 [==============================] - 0s 48ms/step\n", - "Current may 3\n", - "5\n", - "6/6 [==============================] - 0s 2ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "2/2 [==============================] - 0s 4ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 45ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 129ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 44ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 43ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 67ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 66ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 84ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 55ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 54ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 82ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 97ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 49ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 40ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 102ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 45ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 95ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 54ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 56ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 109ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 51ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 91ms/step\n", "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 41ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 115ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 68ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 60ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 79ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 49ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 49ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 42ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 44ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 53ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 71ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 45ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 100ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 46ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 87ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 71ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 41ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 40ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 41ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 54ms/step\n", - "1/1 [==============================] - 0s 59ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 53ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 67ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 40ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 43ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 119ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 42ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 46ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 48ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 40ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 69ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 50ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 57ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 49ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 49ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 45ms/step\n", - "1/1 [==============================] - 0s 59ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 86ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 78ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 48ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 40ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 97ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 44ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 51ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 47ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 40ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 53ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 94ms/step\n", + "1/1 [==============================] - 0s 93ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 113ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 87ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 115ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 88ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 86ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 110ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 96ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 112ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 84ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 48ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 91ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 84ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 120ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 49ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 43ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 42ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 50ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 90ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 41ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 94ms/step\n", "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 41ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 51ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 44ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 50ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 111ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 99ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 102ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 101ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 86ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 136ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 96ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 123ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 84ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 95ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 114ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 88ms/step\n", + "1/1 [==============================] - 0s 119ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 98ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 102ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 98ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 101ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 110ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 78ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 143ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 107ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 97ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 105ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 89ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 90ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 104ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 95ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 82ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 161ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 82ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 90ms/step\n", + "1/1 [==============================] - 0s 100ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 84ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 93ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 96ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 99ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 99ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 126ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 114ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 95ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 78ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 106ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 130ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 87ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 97ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 107ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 119ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 110ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 106ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 90ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 136ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 104ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 96ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 116ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 110ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 89ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 100ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 118ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 45ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 89ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 109ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 133ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 41ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 78ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 96ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 86ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 39ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 42ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 11ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 41ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 43ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 103ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 36ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 86ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 84ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 42ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 40ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 44ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 42ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 48ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 47ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 30ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 47ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 44ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 37ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 38ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 27ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 47ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 43ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 32ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 29ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 97ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 121ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 31ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 25ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 93ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 24ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 21ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 26ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 23ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 22ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 14ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 20ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 28ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 12ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 21ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 18ms/step\n", "1/1 [==============================] - 0s 17ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 16ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", "1/1 [==============================] - 0s 18ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 17ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 26ms/step\n", + "1/1 [==============================] - 0s 20ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 24ms/step\n", "1/1 [==============================] - 0s 28ms/step\n", - "1/1 [==============================] - 0s 18ms/step\n", - "1/1 [==============================] - 0s 15ms/step\n", - "1/1 [==============================] - 0s 13ms/step\n", - "1/1 [==============================] - 0s 22ms/step\n", - "1/1 [==============================] - 0s 17ms/step\n" + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n", + "1/1 [==============================] - 0s 21ms/step\n", + "1/1 [==============================] - 0s 19ms/step\n", + "1/1 [==============================] - 0s 23ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 27ms/step\n", + "1/1 [==============================] - 0s 25ms/step\n" ] } ], @@ -12308,7 +12326,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -12317,12 +12335,23 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 16, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 100, 6)\n", + "\n", + "\n", + "(6, 100)\n", + "(6, 100)\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAP8CAYAAAAk78/kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOy9eZwcZZ34/66q7jkymcmdTO6DcAoEuUUUBMEL8cAvK+KB13qvyu567e/rgq6uru4XFXWRRQVRRGRBBZXDCLLshkOOBAEhkIMkk2SSkGTu7q56nt8fTz1VT1VXz5HMTHfPPO/Xq17T013TU91PPc/zuT/OPffcI7FYLBaLxWKxWCwWi8VSNdxqX4DFYrFYLBaLxWKxWCyTHaucWywWi8VisVgsFovFUmWscm6xWCwWi8VisVgsFkuVscq5xWKxWCwWi8VisVgsVcYq5xaLxWKxWCwWi8VisVQZq5xbLBaLxWKxWCwWi8VSZaxybrFYLBaLxWKxWCwWS5WxyrnFYrFYLBaLxWKxWCxVJlftCxgO1113HXfddRf79+/H8zwOO+wwPvShD7Fy5cpqX5rFYrFYLBaLxWKxWCwHjXPPPffIal/EULzwwgvMmDGD1tZWSqUSt956KzfeeCO//OUv8Tyv2pdnsVgsFovFYrFYLBbLQVEXYe1LliyhtbUVACklruuyd+9euru7q3xlFovFYrFYLBaLxWKxHDx1EdYOsGbNGr7yla/Q29uL4zi87W1vY/r06dW+LIvFYrFYLBaLxWKxWA6aughrN+nq6uLOO+9kzpw5nHnmmWWvCyHYs2cPzc3NOI4z/hdosVgsFovFYrFYLJZJhZSS/v5+Zs2aheseWIB63XjONW1tbVxwwQWcf/75LFq0qKwo3J49e3jXJR9CBj7Fgg57d5i36Dg6t61FSqHeZ8YSgqBIb9cOALxcE7PmHU7ntrXRe02ffQiF/n309+4BoKGpldbpi9iz4+nonFntR9K9byvFAfW/mltm0dg8nX27n4/OmbtwFXt2PkPgDwDQ0taO5zXQtfcFdXWOy9yFq+z12euz12evz16fvT57ffb67PXZ67PXZ6/PXl+dXN/OrY8Dytfd0NhKsdDNTTfdxJw5czgQ6k45B2WV8H2fbdu2lSnnzc3NyMDn+eeeoq2trUpXaLGMPRe/63387PofVfsyLJYxxd7nlsmAvc8tkwF7n1smOl1dXSxevJjm5uYDfo+6UM5vvvlmzjrrLGbOnMm+ffu45ppryOVyHH300WXnOo6DkAFtbW1WObdMaKY0N9t73DLhsfe5ZTJg73PLZMDe55bJwsGkVteFcv7II49www030N/fz5QpUzjiiCP493//d2bNmpV5vl/sG+crtFjGn4ULDixcxmKpJ+x9bpkM2PvcMhmw97nFMjR1oZz/67/+a7UvwWKpOV7zmtdU+xIsljHH3ueWyYC9zy2TAXufWyxDUxd9zkeKl2uq9iVYLGPO8SecUu1LsFjGHHufWyYD9j63TAbsfW6xDM2EVM5nzTu82pdgsYw5P73xjmpfgsUy5tj73DIZsPe5ZTJg73OLZWjqrs/5UPT29nLeeeexf/9+W3TCYrFYLBaLxWI5AAYGBigWi9W+DIulpmhoaKCpKTtKu6uri2nTpnH77bfT0tJyQO9fFznnFovFYrFYLJb6Q0p5UJWLLdVhYGCA5cuXs2PHjmpfisVSU7S3t7Nx48aKCvrBYpVzi8VisVgsFsuoIaSkJCEABOBIiQfkHMhZRb0uKBaL7Nixgy1btthIVIslRPcxLxaLVjkfCdNnH1LtS7BYxpybblnNhW89u9qXYbGMKfY+t0wGJtJ9XpKSAQlFCb5UyjlA3oG8hAZH0uQcXB9gy/jR1tZmlXOLZRyZkMp5oX9ftS/BYhlzDj90SbUvwWIZc+x9bpkMTJT7vCQlvQL6Q+W8BAgJrgM5qTznzeG5Tdhwd4vFYkkzIZXz/t491b4Ei2XMWXXModW+BItlzLH3uWUyMBHu80BK+kPFvF/CgISS1GHt4AGNDuBC+EP9brFYLJaICamcWywWi8VisVjGD19CESiEinmfUL8HKGW8EZCAGyrqDQ402GJxFovFkmBC9jlvaGqt9iVYLGVIKRFSIuXodC/csGnbqLyPxVLL2PvcMhmo9/tcSkkJ5Sn3USHtBWAA+DPwVeDh8Hl9ji4YZ7FYLJaYCamct05fVO1LsFgAJbAUhaRXSHok9IZHv5AEB6mk//FPj4zSVVostYu9zy2TgXq/zyUQhMq2HxaCC4DHgS8A9wB/Dzwavq7PHR1TtcUyPK699locx4mO1tZWVq1axXe/+1183x/T/71p0yYcx+Haa6+NnrvkkktYtmzZiN7n3nvv5bLLLkMIMfTJI+Cyyy474CiWO++8k7POOov29nYaGxtZtGgRF154IU899dSoXuNkYUIq53t2PF3tS7BYCKSkT0KPhB4BXQL2h4d+riAOXDT5wHvOH8WrtVhqE3ufWyYD9X6fS1RuufkzAO5Onfdb4zWt0Fss480vf/lL1qxZw3/9139x8skn84lPfIIvfelL434d//f//l9uvfXWEf3Nvffey+WXXz7qyvnB8OKLL3LCCSfw3e9+l7vuuot//dd/5cknn+TUU09l8+bN1b68usPmnFssY4CQMiqK0y9UxVpfhvl2QNFR+XZCnUyja3PuLBaLxVKfyPAQMqmgnwLca5z3WuM1ISGwW5+lChx33HGsXLkSgHPPPZfnnnuOb3/72xUV9FKpRC6XG/X6CIccMjFaP1900UVcdNFFiedOPvlkjjjiCG6++Wb+/u//vkpXVp9MSM+5xVJtzII4/RJ6hfKU9wgV1t4Xvq4r2h5siLvFYrFYLNUi4TmXsbI+J3x9Cirv/CXhecIIax+tOiwWy4Fy0kkn0dXVRWdnZxR+/v3vf5/PfOYzLFiwgMbGRvbt2wfALbfcwqmnnsqUKVOYPn06/+f//B9eeOGFxPv19fXx0Y9+lFmzZjF16lTOP/98tm7dWvZ/s8Lae3t7+dznPschhxxCY2Mj7e3tXHDBBezcuZPLLruMyy+/HIB8Ph+F55v/97Of/SzLly+noaGB5cuX85WvfKXMy/7YY4/xile8gqamJhYuXMiXv/zlUZ+Hs2bNAiCXs37gkTIhlfNZ7UdW+xIskxghJT5KQS+ECnifhF6gD51zrpRy3QfWP4A18ZrrfjO6F26x1CD2PrdMBur9Pjc95hAr57vC3+cAR2Wcqx9bLNVk48aNeJ7H1KlTo+e+8pWv8Oyzz3L11Vdz66230tTUxFVXXcUFF1zAUUcdxc0338wPfvAD/vKXv3DGGWfQ3d0d/e2HPvQhrrnmGi699FJuueUWDj/8cN7xjncMeR3FYpFzzjmHK6+8kksuuYTbb7+d7373u8ycOZO9e/fygQ98gPe///0A3H///axZs4Y1a9YA4Ps+r3nNa7jmmmv45Cc/ye9//3s+8IEP8OUvf5l//Md/jP7H7t27Oeuss9i9ezfXXXcd3/ve97jjjjv40Y9+VHY9l1xyyYiiBYIgoFgssn79ej70oQ/R3t5e5lG3DM2ENGd07yu3Tlks44UgLoijK9IWUIVw7gJeA5wE5ELFvCShdAAtZc4644QxuHqLpbaw97llMlDv97mpaAtiL3onSjHfRnk+uvnTUt9IKeke+rSDohVGLaw8CAJ836e7u5ubbrqJW265hTe+8Y1MmTIlOmfevHnceuut0f/s6enhs5/9LO9973sTiuzJJ5/M4Ycfzg9/+EM+9alP8cwzz3DDDTfwla98hc997nOACp3v6enhqquuGvS6fvrTn7JmzRp+/etfc/75cR2Kt73tbdHjRYtU0etTTjkl4ZX++c9/zv3338+f/vQnXvnKVwJw9tlnA3D55Zfz2c9+lrlz53LFFVfQ29vLXXfdxeLFiwE455xzWLp0adn1eJ6H53nD+EaJrumRR1Rxy5UrV/LHP/6RuXPnDvvvLYoJ6TkvDoz1EmGxVEZXoQ3Cxz7wGKpi7b3A51EVbP3UeSMVUFYsWzhq12yx1Cr2PrdMBur9PtdKt0w93g0cjdoH95JU3IWMH1vqm25gXmFsj9GU7I844gjy+TwzZ87kox/9KBdffHGZ5/jNb35zwhiwZs0aurq6uPjii/F9PzoWL17MEUccwX333QfAgw8+iBCCCy+8MPF+b3/724e8rrvuuov29vaEYj5c7rjjDpYuXcppp52WuL5zzz2XUqnEAw88EH2OU089NVLMAVpaWnjjG99Y9p4//OEPR1TF/vrrr+eBBx7ghhtuoK2tjXPOOYdNmzaN+LNMdiak59xiqSamYKIFlbtS59wBnEzsbRBhcbgJaS2zWCwWy4RFSlkWpm56zg8FZgIdKC96lHPuxBXbc7YwXF3TCuxsHPv/MVrceuutLFq0iNbWVpYuXUpTU1PZOfPnz0/83tnZCcCrX/3qzPecMWMGANu3bweU590k/XsWe/bsYeHCAzPUdXZ2snnzZvL5fMX31td39NFHl70+nOsbiiOPVGnFp5xyCq973etYtmwZX/va14aMGLAkmZDKeXPLrGpfgmUSk1Wx9lxUn1fNOcThfKYnYSSsfWI9q4459OAv2GKpYex9bpkM1PN9nvaYmx1CO4HTgYXAVmAVGd5zq5jXPY7j0FbtixgBRx99dFStvRLpEHpd4Ozaa6/lJS95Sdn5ra3KfKCV+p07d7JixYro9Z07dw55XbNnz+Yvf/nLkOdlMWvWLJYvX85NN92U+bouPDd//vzMaxnO9Y2E6dOns3LlSp577rlRfd/JwIR01DU2T6/2JVgmMVrwMCvWHkVcDOfi8LEZ1qfPHwnPrH9h6JMsljrH3ueWyUA93+dpg7R+DmAPMBtYgMo7z+qFXjvdmi2Wypx22mm0trby3HPPceKJJ5Ydhx9+OKC8xq7rlinJN95445D/49xzz2XHjh3cdtttFc9pbFQhCv39/YnnX/va17JlyxamTp2aeX2zZ88G4GUvexkPPPAAW7Zsif62t7d30P95IOzcuZO//vWvE6Zd3HgyIT3n+3Y/X+1LsExSzPA+SIa365IaOWLhJPKeH0C/1wvfevYoXLHFUtvY+3zykl5PHZRHYbR7DdcC9XyfR8p2qiBcCegiVs7XUe5h1yldcoQFUS2W8aatrY1vfOMbfOxjH2PXrl287nWvY9q0aWzbto0//elPnHnmmbzjHe+IKrN/8YtfRAjBSSedxF133cXvfve7If/HO9/5Tv7zP/+Tiy66iM9//vOccsopdHd3c+edd/KpT32KI444gqOOUq6ef//3f+d1r3sdnudx4okncvHFF/PjH/+Ys88+m7//+79n1apVFItFnn/+eX7zm9/wq1/9iilTpvDpT3+a73//+5x77rlcdtllNDY28o1vfIPm5uay63n/+9/PddddN2Te+Vve8haOP/54jj32WNra2nj22We54ooryOVytsf5ATAhlXOLpVqkPQhmm5hdwGIyqtZaAcVisVgS+FJSCLte6LXSAzwHmpB4TEwlvR5JF4HTj/eEr89EhbX/3jzfyDnXSvrwa0JbLNXhQx/6EIsXL+Yb3/gGN9xwA77vs3DhQl7xildw3HHHRef94Ac/YOrUqXzzm9+kWCxy1llnccMNN3D66acP+v75fJ677rqLyy+/nKuvvprLL7+cWbNm8fKXv5yZM2cCcN555/HRj36U73//+3zpS19SRkwpyefz3HnnnXzta1/j6quvZuPGjbS0tHDIIYfwhje8gYaGBkCFzq9evZpPfvKTvOc972HWrFl8+MMfxvd9vvSlLyWuJwgCgiAY8ns59dRTuemmm/j3f/93isUiixcv5swzz+Tzn/98WR93y9A499xzz4QqlNnb28t5553H/v37aWurpwwYy0QgkJJuAd0SugX0CuhBtVJ7C3A+sB74V6AZaAGmutDiwjQXWhxwrcBpsVgmMQUhGZAwELabDEIpxXMgDzQ40BQeVkGvPkUh6Qr3vB4BPRJ6UV1JvgP8J7AT+BBwMzAFY+9zoM2FVhdydixriq6uLqZNm2blaYvFYKh5oV+//fbbaWlpOaD/MSFzzucuXFXtS7BMUrIq1kLcAuQ4VFEciEP/TA/6SCxlV3x36Pwli6Xesff55KIkJf0SevUh4sda8esLFffiBHIt1PN9ns4j1/vebkCX550d/txJ9j45gYbSYrFYDooJGda+Z+cz1b6EMcOGPdc2ifA+Q/DYDTSgWsp0h0cDyWJwOsRvuLzz7a8dzUu3WGoSe59PHkQYyt4fKt/9EgoSStpzDjQ6IEO3ggvkpMSbAHtiPd/nWQZp3UZtNqpWgIcKbd8CLCGZmx4VRK3/YbRYLJaDZkIq54E/UO1LGFWElJQk+KgNzZESF8g7Ngys1tAV19O9zjtR/V1bw2MrMJ1kvl3UgmaYQzpn9vRRvHKLpTax9/nkQaAU8VKolPcLGAAeA+4EXg+cJMGTKrzdd1TEkTcBtsF6vs+jCLCUJ3wXMBe1pUniiu3pFqIHUhDVYrFYJioTMqx9IlEUkl6pcpi7RHz0hCF+/UIipA0IqxXSHgQtfOxGCSkAi1ACCqR6nUv1u8VisUxG/NAI7RuPHwU+A6wG/j78vRTmovvhT0v1MCvqy9SxC2WU1lX2FwEdZBRE1b9bWcZisVgmpnLe0tZe7UsYFYpC0qfz7EQy567byL0rSLup1QoJbwBxmLqZe7cQ5TnXAkxg/BxJv9f716wdhSu2WGobe59PHgLCSKLwsU9c4VvzW+M8HU02Efa/er3P0ylc6Q4lOtfcITZMR1XdZXIPrP9RtFgsloNnQirnntdQ7Us4aIKwKE5/qID3GYp5T1gFvE/Er02kwjj1iulBSIe3aw8CxHl36bC+kXoPurv7Ru/iLZYaxd7nk4esQmHnps55DfF6eSCFNGuVer3P04XgTM/5DmLPOaiw9o7U35l74EQYR4vFYjlYJqRy3rX3hWpfwkGjw/UKoWe8T3vOpfqpC+YUQsW8xMTwHtQz6ZA+raBLVL9XHdaue51jnBcwcgHldee+bFSu22KpZex9PjlIh0fr9fMoQMfCXR7+bhYR04/rnXq9zysZpHvDx3NQgqaLMkx3Ga8lCqJilXOLxWKBCaqc1ztSSkrEhXGKUvXJ7gf+DHwFeJhQKTcOm69cfdKtYbSwsQcV1u6ilPMdqJDMdCu1iSJoWiwWy0gwjZPp9VOvibNJKoPm+mmpDmmDiv59F6poXwtxznkbqsf5NsoN0qaCb7FYLJOZCamcO059fyytqAWEeXfh43XAPwH3Av+AKozjG/l5dmOrLumQTDNsT+feOcTh7dsz/mYk3oNCoTh6F2+x1Cj2Pp8cDLZ+dqJacb1AMoRaH8EE2Pvq9T4frEOJjhbTnnOIK7ZDst6K/mmxWCyTnfrWYiswd+Gqal/CQZGVwxUAd6fO+63xmq30XX3SHh/9eG/4+mxiIWURqihcWtDUhpnh8K3v/2LUrt1iqVXsfT45GGr9PA5VqyOtmE+Uva9e7/NKHUp0GzWTzKJwJCPHLBaLZbIzIZXzzm31WfVUk/Yg6M3r5NR5r+XAK31bRp90vrkeu93AVKABJZw4qND2SoLmcMfxUx/9m1G9foulFjmY+1xKiS8lBSHpF+qnL6Wtz1GDJDzmqfDoVuAQ4jXTDImOKn3X+ZjW63o+WIcSXQzOQUU+OMTdSirlnNf7OFrqgzVr1nDhhReyYMECGhoamDVrFueccw7XXXcdQVBdc9+mTZu47LLL2LBhw5i8/5o1azjllFNoaWnBcRwef/zxUXvvffv2cdlll/Hoo4+O2ntW4pJLLmHZsmUH9LfXXnstjuOUHccdd9yoXuOBkqv2BYwFUta3mlpJydOtuHKowjgvwbA4O3Glb8dxMt7VMtZUypfcBcwMH5vKuW6nlhA0RzCOjY3135XAYhmKA73PfSkZCGt2mKJWTkLegSYkObtW1gxpT6rexfX6uRh4gHhdDSRIxzBkO3FV8HqkHtfzwTqUdALLiPPNXWLl/D7jPUQov0TyTp2Po6X2+da3vsWll17KWWedxde//nWWLl3K3r17ueuuu/jIRz7C9OnTedOb3lS169u0aROXX345p59+OitWrBj193//+99Pc3Mzt912G1OmTOGwww4btffet28fl19+OYsWLeL4448ftfcdK375y1+yaNGi6PeWlpYqXk3MhFTO6520kmcKKQAziBVzYSjm+rE37ldsgex8SR3eNy88xxRQHmbiCpoWSzUpCkmfJFLOdT9sB6WYN4SGsCmuJG8V9JogK1pMAjtR1dqzDJpRSpdji8JVA5k6zA4lu4CTiA3S+jBbiUaGaew4WsaH++67j0svvZSPf/zjfOc730m89qY3vYlLL72U3t7eKl3d2BEEAVJKXNflmWee4Z/+6Z8466yzqn1ZVee4445j5cqV1b6MMiZkWHvbjCXVvoSDYjAh5XDUptePUQgO24qkFsjKl5So8D5dDE4fOuc8kXOX+jkUv79rzeh+AIulBhnpfR5ISb9U7Sb7pGo92SugR8Q/+8LX+oU631J9zBBnU+HT4dELiMPcExFHxlHP1ON6no7uMyPGXiQufqqN0i4wP3xuN8lxNMfSYhkrvv71rzNz5kz+7d/+LfP1Qw45hGOPPTb6/aGHHuLVr341U6dOpaWlhbPPPpuHHnoo8TdnnnkmZ555Ztl7LVu2jEsuuST6XYdSP/DAA1x88cW0tbWxYMEC/u7v/o6BgQEA7r33Xl71qlcBcM4550Th1vfee2/0PldffTWrVq2iqamJ2bNn8/73v58XX3wx8b8dx+Gf/umf+NrXvsby5ctpaGjgyiuvxPM8hBB8+ctfxnGcKCz84Ycf5m1vexuLFi2iubmZww8/nC984Qv09/eXfa5bb72Vl7/85UydOpW2tjZOPvlkfvOb37Bp0yaWL18OwAc/+MHo2q+99trM78O81ssuuyz6/bnnnuNd73oXy5cvp7m5mRUrVvCRj3yEvXv3lv3tRKUulPOrr76a973vfbzhDW/gggsu4Mtf/jKdnZ0Vzw+C+qx6qhlMSFmJak3yAslw6IlUtbYeSYf3mcLKblRKgvbPuShBs4QqdpTI2ZPJvL3BaG2dMqqfwWKpRUZ6nxclFIFC6DnvDxX0nvCnVtwL4XlFu2ZWnXSP83Tk0WxUzY55pCq2y+R+Wc/U63qeVRAuQLUP1T3OIQ5tb0AViusgOY6mPGOxjAVBEHDPPfdw7rnn0tTUNOT569at44wzzmDv3r1ce+21/OQnP6Grq4szzjiDtWsPvLbVu971Lg455BBuueUWPvKRj/C9732Pf/3XfwXg+OOP53vf+x4A3/nOd1izZg1r1qyJQsQ/97nP8bGPfYxXv/rV/OY3v+Eb3/gGd9xxB6973evKcuWvvfZafvvb3/LNb36T3/72t7zjHe/g/vvvB1Ro+5o1a7j11lsBeOGFFzjuuOO46qqruOOOO/jkJz/Jj370I9773vcm3vPKK6/krW99K3PnzuW6667jl7/8JW95y1vYtGkT8+fP55ZbbgHg85//fHTtb3jDG0b0/XR0dLB48WK+9a1vceedd/LFL36R1atX8/rXv37Ivz3zzDNHlId++umn43ke8+fP58Mf/nCZkaNa1EVYu+M4fPazn2XFihUUCgWuuOIKvvCFL3DNNddknt/btWOcr3D0GExI6QSOAZaiBJSjMDznxGHtlvEnPVamgNEJnE4y964ZpbBvRQkw6bC+QEJuiLE8/WWrRvlTWCy1x0jucyElPqGCHirg/RIeAe5AFdE8Qaq5mAvPa3TU37k2vL1qmB7YrPVTpwUtQoVEn0wqLDpcO+uZelzPK8kqe8LXtVHaBTwHnHBcF6D2vuNJGqcDK8PULVJK6B/jQmrN3kHVVNq9ezf9/f0sXbp0WOd/6UtforGxkdWrVzN9+nRAebOXLVvG5ZdfHimiI+Ud73gHl19+OQCvfvWrefDBB/n5z3/O5ZdfTltbG0cddRQARx55JKeeemr0d5s2beIb3/gG//zP/8wXv/jF6PnDDjuM008/ndtuu403v/nN0fNSSu666y6am5uj52bNUtWrFi1alHjvCy64IPF3L3/5y2lra+Pd73433/ve95g1axZdXV184Qtf4C1veUvis7/mNa+JHr/0pS8FYMWKFYn3HwmvfOUreeUrXxn9ftppp7Fy5Upe8YpX8Nhjj0X/IwvP88jlhlZt58+fzxe/+EVOOeUUmpub+Z//+R++/vWv8z//8z88/PDDwzLejCV1oZx/8IMfjB7n83kuuugiPvjBD9Ld3U1ra2sVr2z0GY6QshjYRDInXQsnE6GlTD2SDu/Tz4ESVGaHj3V4H8RVa1+KFVAsltFAAL4Mj/DxY8Bnw9fvAb4BnCLBd+JzhVMnYWQTlIRhk+Q6uos4PHoxcRuu9HppC6KOPwmPebjh6Q4lM1ACplkMTv9cgPKcJ8LZw3G0Mkyd0h/Au+8d2//xkzNhyvipLffddx/nnXdepJgDtLW1cf7553Pbbbcd8PumPcnHHHMMf/jDH4b8u7vvvhshBBdffDG+70fPn3LKKbS2tnLfffcllPPXvva1CcV8MLq6uvjKV77CzTffzJYtWyiVStFr69evZ9asWfzv//4vPT09/O3f/u2w3vNAKRaLfPOb3+QnP/kJmzdvjkL+AZ555plBlfPVq1cP63+85jWvSRgVXvWqV3HMMcfw5je/mZ/+9Kd84AMfOPAPMArUhXKe5uGHH2bevHkVFXMvV12Lx8EwHCFlKXHVWnNTi7221gs03kTjlQrvKwFdJHucm0XhynqdG2M5FLt272PO7Omj/EksltpiJPd5OnolAH6fOucO4ESSyoCNpK0upjHaHMN+YIC4JdcS1Pjp83UhTTNvuV53vnpcz02vuSmrdBJ3l0kXhNN730OUyznR+1kjS/3R7Cnleaz/x0Ewa9Ysmpub2bx587DOf/HFF5k/f37Z8+3t7QeV/zxz5szE742NjRQKhSH/TqfzVipgtmfPnsTvWddeife+97384Q9/4Etf+hLHHXccLS0tPPTQQ3zsYx+LlGP9/mZ187Hg85//PFdeeSVf/OIXOe2002htbWXr1q289a1vTSjqo835559PS0sLDz/8sFXOR8ojjzzCT37ykygkJItZ8w4fxysaXYYjpBSAXxjnmwVxtLBiGX+ywvt09spMYqHRLApXSUAZjhfopzfewac//vZR/xwWSy0xkvvczEHWc/Ec4I/GOa8mmRsrUd7zvF03q0baqKJ/15Vl2lBGTR3WjnF+VEizzve+elzPKxWv1Y6EaM8Lu8how/Qi4Ffha3rMzXZqtutM/eE4zrh6tQ+EXC7HmWeeyd13302hUKCxsXHQ82fOnMmOHeVpsjt27GDGjBnR701NTXR1dZWdN9r5yzok/a677kr8//TrmuEauAYGBvj1r3/NZZddxic/+cno+SeeeCJx3uzZKgZ027ZtHH300SO6dlDfU7GYrAmWNigA3Hjjjbz73e/m//v//r/ouZ6enhH/vwOlFgyDdRXJt2bNGv75n/+ZL3zhC5x88skVz9u/9wUuftf7uPTSS7n00ku5/fbb+foV11MoxDfF7+9aw/1r4oIOu3bv44rv3ph4n5tuWc3aJ9ZHv2/YtI1rrvtN4pxrrvsNGzZti35f+8R6brolGVZxxXdvZNfufdHv969Zm6jMWigUo+vTm9yf/rCGRx9YF/2+cc8+Zlx1I20o78F+4I+/Xs1zT66PBM3NGzv4yU9uS3iBRvv6av37q9b1de7eF43VYw+s46HVa6LKwjMLRW6/8qcEhWIU2vfY6jU4D65Dv/O+Pfu48T9uTNQP+MUQ1/fpj799wnx/9vrs9VW6vk9//O3Dvr4f/eS2SFkIgN/97DZmb+7g7PCck55cz75fr04o5ld970Y69xz49UFtf3/1cH2du/fxg+/fmFDw7v/1ap5+cj3zUQpd5+YONvzsNvqBfah18vaf3cbWzR1RlEQ9f39aMa/V69OY1yeBgUKRa779UwqFYjR+G1evoenBddF+t3/PPm686sbo9wXAgCG/BMDWzR3c+JPbEgVR7fyo/vVNND73uc+xZ88ePvOZz2S+vnHjRtatWwfAGWecwe9+9zu6u7uj17u7u7ntttsS1dmXLl3Ks88+m1A877vvvsTfjQRtNEhXSj/nnHNwXZcXXniBE088sezQldJHSqFQIAgC8vl84nldZV1z2mmnMXXqVK6++uoRXzuo7+kvf/lL4rnf/va3Zef19fWVXcuPf/zjQT/DaPCrX/2K3t7eQfXLNHr+3n777ZHOefG73nfQ1+Lcc889dRHRd/fdd/Ptb3+bL37xi4N+cb29vZx33nns37+ftra2cbzC0aEgJN0SunTbHwm9wIPAD4H/CM97D/AZ4FhU9fapDrS40OZCqwONbvUtP5OJgXDcusNWTT0S+oDVwG9Rea7NwBSUINIL7ADeD9yI8gxNAVpdaHHUzzYXcjVgwbNY6oUeIRNzsEeqqKPvA3ej6jv8X9RcnOqouTY1nGstDjYdqEr0h+PWLdW+1x2O2+2oFK7LUVW+i8D7gE8Dx2H3vmoipaRXwn5DVtHz7UuoufYm1L421VGRKb0CelDRf28FvgUcQjyOU111THMhb+di1enq6mLatGl1K09X4lvf+haXXnopZ599NpdccglLlixh7969rF69mmuuuYYbbriBN73pTaxbt45TTjmFY445hs9+9rM4jsPXv/511q1bxwMPPMCqVasAuOeeezjrrLO4+OKLueSSS9i4cSP/7//9P7Zv386b3/zmSMm99tpree9738v69esToemXXXYZl19+uSqqh/Imt7e3c9555/EP//APNDY2cvjhh9Pa2soXvvAFrrjiCj7xiU9wxhln0NTUxJYtW7j77rv5wAc+ELVh063U/uVf/iXx2X3fJ5/P88///M+J9mUve9nLeP755/nmN7/J7Nmz+dGPfsTjjz/O888/zz333BMZI7773e/yiU98gre+9a1cfPHFtLa28vjjj9PU1MQnPvEJhBDMnTuXww8/nK9+9au0tLSwfPlyZs2axY9//GPe97738alPfYrzzjuPtWvXcu211/LEE08krueiiy7i17/+Nd/85jdZuXIlt9xyC3/4wx94/vnn+fGPfxy1Y7vkkku499572bRpU/Q5zj77bDZv3sxzzz036D1wzjnn8KpXvYqjjz46Kgin/9+DDz44aFTFUPNCv3777bfT0tIy6HVUoi4857feeivf+c53+OpXvzoii0Y9ktWWBJQHdq5x3lJgs/k3GMVxxulaLTGVwvs6iXucA7hOnHc+E5VXYraUCTIK7FgslqFJtDMkmQvbAZxCvGaaa2WUDjT+l2wJMccsHR6t10+9hqZD2+3eVx3MFAT9WNNJHNZu1llxUOHqOrR9K0lZxxxLi2Ws+NSnPsX999/P9OnT+Yd/+AfOOussLrnkEp5++ml+8IMf8MY3vhGAY489lnvvvZe2tjbe85738K53vYupU6fypz/9KVLMQRUTu+qqq3jwwQd54xvfyI9//GN++tOfJgrJjYRZs2bx3e9+l7Vr13LGGWdw0kkn8cgjjwDw1a9+lauvvpr77ruPCy+8kDe96U18/etfZ8aMGRx66KEH/J38/Oc/54QTTuBjH/sYl1xyCe3t7Xz7298uO+/jH/84v/zlL9m6dSsXX3wxF1xwATfffHPktXddl2uuuYa9e/fy6le/mpNOOikqnvee97wnqnL/xje+kTvvvDNq5WZy5ZVXcv755/NP//RP/M3f/A3d3d38/Oc/H9bnCIIgUSyvEi95yUu4/vrrufjii3nDG97A9ddfz4c//GH+9Kc/DZnuMB7Uhef8Va96FZ7nlYU5fP3rX+fYY49NPNfb28s7L/kkm59/tC4tfb3a8yNj708/cC2qsNgnwvOuRlUj/ihJL1Crq46p1nswrvQKSVcFj10jykM+BTVGQehV7wc+hfIgvIrYw2B6gZoGGcebblnNhW89u+LrFstEYLj3eSAlPaHXtTv05vWianV8EBVt9E3gepRhrIXQU2d4z623bvzRHthuEY6bVGM4gIo4WgxchFpHB4AfoBS4DxPvfXoM63nvq7f1PJBxtENPuPf1orzifwN8FTic2Cued9TY9oRj+zVgOfB24r1xarjvtbowpU7HcSIxUT3nFsvBMB6e89qu3hByzz33jOj8Qv++sbmQMSbh+Ul5YXeics219XkZqi1QooCcY/Z9tRXbx4us3vT62A2sIlmp1nPUiw5K8Ex7D7TnYKi+vYcfumQMPo3FUlsM9z7XcygRfYIKhd4FHIbywm4EphOvs4FjRKrYJXPcifYwkh5Y7Tk/gXjtdFFr5v+S3PsmQreSelvPE7IH8fffh1LQ52B4zJ0wakwmi8LptnjpfvXDKYhqsVgsE5W6CGsfKf295dX/6oG0YmcKKbtRYe16q1pCeVh7omrteF205YDC+3Ro32JUiGYitE8arYFk5ZFcdcyBhzBZLPXCcO/ztIJnGjZBKeZLgeeNcwPiOTd0IJxlrMhKCQLYgxo3iIUVvWZCeUi0qOO9r97W8/R807/vQu1tutGt2eM8q5WoHq+gwj1gsVgsk40JqZzXK1lWaL1B7UYpeaAUuyWoELK9pPL1ZCxwWsaHhEHF+AnxuJmeczP/zsy7g6RSUc+CpsUy3mS1URMo79xC1Lw7BNhA7K0zFfOhjGGWsSErWkwbTvT6qQUV7Tnfh9r/0oq57Vk/fmTJKjraoZ3kXuemHoOakx36vUi+l3UwWCyWycyEVM4bmlqHPqlGqSSk7CEWUlxUrt0c4AWyhRNbTGz8qJSKMIDKKzcLGpkF4bRyvoVk5MNwBU2zRYrFMlEZ7n1uzkGteEuUAjA/PGc5KqzdjHIxI46sUXP8yVLwJGrPg3j91OvmNFQe8xaS+525D9Yj9baem/PNNEibxWvNPU8/1pFjC1D7436wRhaLxWIxmJDKeev0RdW+hAMiLaTox1pImUV51drNxrmmkBmM32VPeioJl7vD16eR8iIYCrpWGnaRyr0zjkr88U+PjOrnsFhqkeHe56Yn3JyTO1CKAMAKVKRKkew10yoE40/CGG083o2qDZBDrZUeydD2reHjLKNmPVJv63mWrKL3PVNW0fKK4yRD21tQLUS3GX9vRo7Ziu0Wi2WyMiGV8z07nq72JRwQaSEF4hwu3XbLDIleivKcm0qd2R7IhmiOD+l8czP3bh7loeymFyiPCgHU3vOReIE+8J7zx+YDWSw1xHDu88HaqG1HKecuyqPXgFo3s9ZMqxCMP+nx0gbJTpSSB8m1Mx1xlNj/jL+vN+ppPR+seG0ncX2cLIO0fg6Soe1pI0u9jqPFYrEcLBNSOa9X0nlXlYQUvcEtJfacQ5ynFWDzlceTtPfAzDfXxYxMpdwjDu+DZGGcRHi7FVAslmFhCvTpwmDbUREqeg6uRIW2g+Ftx4a1V4ssBS+t5EHsec0qpJk2alrD9NiT/u71czoFT4+bmWtuhrani8JlRY5ZLBbLZKQuWqlNFtIec71h6Rwuvdl54c/FwCbKPQfmT8vYU0m43EUc3gexUOI64MjsljJmSJ9w6jdE02IZT9JePK10F1FGsgUk21A+j6HIk5xvtoXT+FLJA2t2KEl7XRcDvzX/XqoWXJGS7sT7pGX0SUeJ6T0PkkbpdEE4L7X3LQCeJhnxYo6lnYu1QVdXV7UvwWKpGcZjPkxI5XxW+5HVvoQDIu31McPEzHZcuqDKYqBELHwmwjTDXqFWQBl70uNmKufpcTML4ujnF3FgPeuvue43dRUKabEcCMO5zxNeN2P93BG+Pgs11ySqYvtdGN46Y77puWfVgfHBDI+WlK+fx4fnpSt/L0btiwVUmkJ676tHw3Q9redpg4rp7dbySjqk3QkVc894bSHwB/M9jfEL7FysOg0NDbS3t7N48eJqX4rFUlO0t7fT0NAwZu8/IZXz7n1bhz6pxtBheJUKi62gPGe5EZXTvBmVt2xubpEX3u5sY4opXEJy3PYAh5HdQk0r6BC3U9N/b3oRtICSxVlnnDC6H8ZiqUGGc5+nO1zoOdhB3EbNDV9bDjxHqiAcscdOYPO9xou0McWssZGVu6yNmrPDx9tQa2yWkaXe9r56Ws/TBhX9eG/4ullh3wxvN/dAbZjuIJleEqWo2LlYdZqamti4cSPFYnHU3nPj5g6WL10w9ImWQZFS0iuhS0CfgB4JvVJ1QLgCtc+9FZiCUvT6UO0n3wN8G+XQmwK0ONDiQmt45G2kyrBoaGigqalpzN5/QirnxYHual/CiMkSUrScoi3RkAwNA9XvfDNwMrGwGVWttXNszFGhd9njtovy8D4tYOrQdg+lPHQBPSgvUFpAqeQFWrFs4Vh8JIulphjOfW7W2TAV9A7iSu2m1zUAdqLWT/23UVj7aH8AS0VMxS5ds2MnsXKeNmqaeeeHGn9rGlvqjXpaz00jdLoIahtqH0so4mZBOAdcqZ6fF75fJ2oumveAfmypLk1NTaOqhKw6pm3U3msyI6TEEaEhUoAIF04XtXaeBUxFdUXIodbNPMogth0VQdYMTAmV8xZXKepNrlUcagFrlKwRKgkpEhWaaQopZv7dUuLCOGZYZ9Tn1xbGGVOyxksfO4nD2hNj5yS9CG2oRXQrE6tvr8UyXpi54+Zc1JXaTcUuj1LsyvLOw7/x7XwbN9Iecz1uPYBPeXi0F8qNDkqZMwtpJup1jN9HmJSkU+/0970LmBE+TkeMmYVQ9f6XQ0X9ZbVTs3ufxVKZhMyf+n0ryukT7XtGEcZlxLWq0nVX6tGoOVGZkMp5c8usoU+qMdKeV73ZdYePE0KK8XgJqvKw3sNM4dRWbB97BhMuy8bNyTawQFwUDobft3ftE+tH98NYLDXIUPe5SOUtm3mwZhs1PdcclNdAr5tpxdwqduNH1rhpD2wOZbRM73nac74E1RIvHQ6tx7LeDNP1tJ4PVmF/nnGeqYw7TrmSDrZbyWSjnu7zWqZSjao94c/5JHUGvW4uBzaQvW5ah17tMCGV88bm6dW+hBEzmJDSiMoNSRfFcYjbqWXmT2I3t7GmUnjfbpRw2UI8XmAUxyGprOu+vfq9htO395n1L4zFR7JYaoqh7vO0t03PIYjbqEG5gLKRbI+rElasgDIeZHUnSSt56Txls8vFlvAcM2JMj2W9jWA9refpuaYPs41aRaO0k3x9AWqeJjyAMpZpLBOLerrPa5lEZxJj7+pApVPq1BKz+LD2nG8O3yMdaWsNYrXDhFTO9+1+vtqXMGLSHnNTSDHzzR3ifq8ucT5lJ9kTtd4ElHojy3sgidvfQXZ4n5cSULT3wBw3PY6VvEAXvvXsMftcFkutMNR9no4UMtuo7SH2IJiKnfac6783FfN6VOzqlbTnR6935voJ5Qqdi/Kcp4uJpceynqiX9dwsgpre/3SdlfSep5WEtKKgi8LpVqJpI7f63c7GiUS93Oe1TtbaCWouaYO0WfNBz7cVKH2hn9gApt/Lx+59tcKEVM7rkcGElHSYmG5F4qLyJxegckjSxVS0oGkZOyotkLuJjSpmQRxzoTRbyphh7RPBC2SxjBdmpIk5F7eHr5uVo7WSsAxVWXo/qUrRNuJoXEkYI4nXObMNZVa9DrOYmOl1NQ00ds0cG9LecjMv3Czil1kQzkkaykAZprel3jsdsmuxWJIkUkCMn7oIqjn3tGHMBWai0oU2kSogTSxvWqqPVc5rBNPzaj42LdGJnHMjZ2spKvcurZgPlq9sGR0qhfdp5dwhQ8AkOYa6gvR2lOVyIniBLJbxYqg2amaeshZQpqLmpxnang7vs4wtg3lgOynf9zwnaWDxiEPb04ZpK2SOHZne7fC1PVSOGEsUg0tF/+0l6clLG6gtFkvMYGtnB8pzXqYzECt8Oq0ra820smZtMCGV87kLV1X7EkbEUEJKmQchZX1eisohMUM6zRAVW+BhbNDjliWsmOOWTkdIh7g7xF72HVB2L1QSUK747o1j9MksltphqPt8OG3UIFw3DaPmMlS/c/136bXTMraUGaNl/LwOa88Kj9adfhzidmoTwTBdL+t5JVmlgOqjPJtshTxdDE7LLzNQEYAdJJUE8/9YJg71cp/XMuYcMfc/SBqlEznnhvy5jHLl3KzzYHWG6jMhlfM9O5+p9iWMiLSQkg4Tm0dSSIHyiu1aOSf8+/QmZxkbssZNojwI2vMDSWElHZ6pF9DBvEBZAso73/7aMflMFkstMdR9ns4V13NmO0pIMddK06hpVmy3Rs3xJ8uoqb/x3cQeWD12QFkbyiXEUWNZIZr1NIb1sp6nx8uMFgOYziAec5JGabPmyrbUe5shu5aJQ73c57VMOu0j2gNJ7nuRzOkk59wK4r1vMEXfUj0mpHIe+APVvoQRMZiQ8iLlBeHMnHPtOdc9ss38SRsSPbYMNm5aOYcMb3kqvE8LnumWMkN5gebMnj7aH8liqTkGu8+HaqOmw/vMdVMLKctICijpvDu7bo4t0bilBEwf2Ee5BzZtYNG1OrRyDrFhuh7zletlPTfnmLn/6Qr76XzzhFHMSe6DEI9jB8n7wJyTlolDvdzntUzZPCGO2ITyeeilfi4jbqdmuzzVJhNSOa830mFi+vci0EV5r+z0Jtcevo8tjDO+ZHkQ9IKpcyYrtZPR4X2mkWUxsXKezrtTQqwdSYvFRM+RdL45qBQRHdaeZRhbgVIICqSEFGnXzfEiq9aK9sDOolzBS3tcdVh7ujiSzVceO9IKgVkEVRukywwqTlJRSIe7Z6Yn1GkEhMUy1iQ85sbjbSh9wHTgRWunIW8uCs/XaZRmlye7btYGE1I5b2lrH/qkGiKt5KWFlBlkVD8lWRhnMXHFdvPQwqZl9MnyHkiU1weSLWXSuZMJ7zmx90ALKFCed5cexvvXrB2bD2ax1BCD3edZxkht2Cxro+YkPehzgCaU5zXtMdeRR5axo5KAqYuglgmYTvnauYA4Rz0dCl1vUWP1sp5Xihgzi9dC+Z7nOE6mUdpBjaO592XdG5bxRUqJLyUFER/BKBhJ6uU+r2XMNK7IeYNSzheG5+g104NE+2UXVeNhEamCqMTrp28nXNWZkMq55zVU+xJGRCUhpROVd2duYmqTKy+Ms5TswjjaC2QZfbLCaQXKqNICNFKee2eOo+kFArVYbk29b7pVhkl3d99YfTRLBlJK68GpAoPd5+koEz1XdBs17X3NSglygJXA8+G5WSlBlrFjMA/srPBxJaOmHscGlKcoUasjFdpeL9TLep6V76qV83QbNXPPg6RhJZ1zboa1m/PaevLGn6KQ9EroEtAl1dEtoUdA70Eq6fVyn9cyZn0Nc85kVWpPp5Xo55ajHHr6721KV20xIZXzrr0vVPsSRkRWaDTEvV4ho0q7kwzzW0qG59yGhY0plfLNdxELl2khxHXi8KK0sLkQ5fHbS3beXXoEX3fuy8bqo1lChJRKUAmFlV4JfUJ5FOycGh8Gu88Ha6O2iHIjWDolaDkZ3gMzvM+O8ZiRFi4hzpvUnS6gPATaDIsGtW6ahul0SlC9UA/ruUzVeNCzQ0f6mZ1l0go6ZBtadASET/bel2WYtowNMvSU90roFvHRJZRi3i2hT0K/5IAV9Hq4z2uZRHcnkrpDWTE4Yu95WmdYRnLvM9dMm0ZZfSakcl5vHEiYWDosbAlKQDHfz1rCxpasOgF63OYY55nWynTOuekFagZmokKTsgwsNsx2fPFlKKSEHoOulLDSJ5XybqkeldqobSOjjRpkVq19nngO26q140c0Xqm9T0eMpRU8U9g090G99yW8rdJ8fzuKo4Upq5iPIZZXILsgHJQbV/Te14QyaNu9r7oEqH1NH70SeoU6esKffeHPfmnnVjVIGzXNObidZJ2VtIHMM55bgeryBOWKuTaKWarHhFTOHae+PlalMLGs6qem99y0PC9DeYuKJIVULaTYJXT0yaoTIEm2UUuHFpkCZjpdAeKK7fr90x4Ek0KhOCafyxIq5qEg0iOgJ1TQu8PHvYYAYxX0sWWw+9z0dpvzUBeDyxJQTG/6cpRyngjrIymoWEafLA+sPip6YCmvOmwapvUsNA0spne31qmH9dwcp3Rawg7iNLws7zmUyzDm3rcApZzD0HufZfSRUlKQUJQwINXe16f3PmPPG5BE5/kH8H/q4T6vZfScS+ecF1EGMr3vRZGaJB1Ceu4tD8/vJd7/tB6i24laqkd9abHDZO7CVdW+hGGTFlLMXtnaA1spTMwUUnRF9w7KBdbAeF/L6JAILTIUA0iGZUZjl0hJcCrmAWnl3BR8KikK3/r+L8bwE05epJQMSOUZ0Ap4j6mUi/joDwUVy9hR6T4fqo3aArLrO6Sr1urzzbVSYNfNsUSS9Jib3h+9fkJK0XPK9z5ItlMry1euo+iHeljPs/Y8CewPXzeLoKbTEWDwvU8r52ml3xrJxocApXAXJJS0kg48BPxL+LOgXw/PLR6A97we7vNaxlzfsuqs6DloGjDTDiEXmA60odJhTcXcRqvUBhNSOe/ctrbalzBs0hPMtPSb4dFlxR2cpBdBh/dtpoKQMh4fZhJR5jEfplFFCylRYaqUF2ERSkBJeyayQjQ/9dG/GbsPOInxiQUP7UHoDb0H3aGCrpVyfd5oVLG1ZFPpPje9aum1Mx3el6WYe0AOtW5uIJV3Tv3lLNcTWZ5X/XM7yfahZVFHJGt1LEK1w9tLdv5kvczMeljPKxnDdqHSspoYvCAcJPc+81ytnKf/h01PGB/80GPqo5TzEvAo8DngHuAzwCOEHnN9rhy54aQe7vNaZsR1VgzvuXlAXHMl8sYTK+Z276suE1I5l7J+7KxpS7Q56bQHISuk3SyqAnGIpulBMNsi1M83Uh9owQHKFYMXyTaqmLl36bQEfd5i4tC+tHCSDu9rbKyvrgT1QlHGwklJqnCxAZRg8q/An4mVcn2ebT0ydlS6z9Nrp7b+F1BzMN1GLa2kE/6+EqWcm+umDWsfW7I8sABd4U+dc572wFaq1TGLOOKoXj1A9bCeZxXwkyR7nKeLoJqh6/r1dNV9HTXWYbyvOYY2tH1skVJGynZgKOm/T513B2pM9Lk+Ix+XerjPa5nB6qwsNM5LdAdysvfCZcQV29OKuTWIVZcJqZzXE2mPuX68N3xde2DTG51HcoPTit1msvO17EQbfcoKc6AWtX0oQSVSxE3FwImfi4QTY+FciPJCFIz3M8fRjuDYIqQkMBRuH/V4LfAF4F7gH4HHSHoZDiT3znJwmAJFOrzPQRVXzPLipddN7T1IG8Hi3+2sG22yPLACtfY1oRTurKijdMcSrfQtoryVqBY0rVI3emTteZK4iJ/GDFc3x8l8Le09X4zKW/fJHkM7C8cOQdJzrr/zc1LnnY1ac7UC54cGasv4IKXMTFvVnnNdqT2dc66PdEHU5cQFUTHeM51qZBl/JqRy3jZjSbUvYdhkVT7VQkorqo9rWd4d5d4Dh7jXOcb72eqLY0Mlo8qe8PV0f+Wy3DvKhRMn/DuPuHaAFk7MRVjz+7vWjNGnm7wIYuHEFELuSp33W/2aIaTY0PaxodJ9Xim8T7eTSYf3OUAuY908BOU5x3ivtABkGV0qeWCzUrmyfqafS+edm3tevYRn1sN6nrXnac95liMh9tzF6nlZ9F/4U3ved1CuIFjlfGzRirne07SSriXpHHAccBRJBd5He3KHPzr1cJ/XKnq+mUZp/bxWzk0HnrleplNhTcN0YLynjRyrDSakch4E9VMNMr3R6clg9spOb3Q6b9IM8XNRyvlOVAhu2utaT7l39UC6lQXERpUZJHN8TKOKxlwg0z8XoUI0zfsiK0SztXXK2Hy4SUxJxhuVKXwcmTrvHMqFFLuRjQ2V7vMDCe9LV631UKF9XahQ+KTH3AooY8WBemDT42d6XXW+clnEGPUR/VDr63mlIqh63MxicOkoBxPTa56el5kFUUnus5bRxwxTjxRuVCrXIuCzJNvcRQp86DkfyRpZ6/d5LZN24plGqw7iOivpnHPXeM6su6L3SW0QSxdEtVOuekxI5by3a0e1L2HYZG10EqVkzzPOS3tYs7zns1Ce9q2UV6u1m9voYo5V2qgyM3xsGlUgGd5nCi96wdTPLyGpnJsedNMLdPrLVo32x5rUSCkNL3gspEigG6UAAFyCUtZNISWQNu98rKh0n6e923qebCeZb26G96WFFReYglprN6be04w6sowulTywZjHNLA9sOg1Ir62LSUWNkVTq6mEIa309L3MkGF+q2fY1K5XERO93aTkGYuU8vffZ4oxjRyBlmedcG6gfBE4FjkXNzRdIGqX1eSMJba/1+7yWMRVoc470oQzM6TZqWSldUVFNVETEYlJpXSTrVVmqw4RUzuuJtABhCim6KE7WZEt7W80CDy+E750VpmIZHdIWTD1uZngfqEIcaUFTPe8khM205zydP2nmnNvaAWODqZRpz7n+/h8HzgVeSVwV2jfOK4W/27EZHwZro7aDQcL7MqKOQK2bG8hW7Gw9gdFlMA/sLgb3wKaVOv38IlQ7rx6yx8/OyoMnvefp50Clcw1WEM4ka+8zPXm6rWE651xg19exwEzlMj3nJeBh4BSgETgB1U5Ny5SRtz3cM+3YjD2mHGimO3agxqiNQXLOU+so4TkryK7YbgtJV5cJqZx7uaZqX8KwSPc4Nx/r6qdluVtk5I8YoX9LiIvCpRVzO9FGj8GMKmU5k4ZRxcy9S3uB9BiayjkkQzRNL9Cu3fvG6uNNSrSQooUNfQwAfwGOB05CVWvXc9X0OOi/s4wuWfe5VhTS+eagBJX54eN0pJFZGMf0vq4gbqdmesy1YmcFz9FjMA+sjhir5IGt5D2fBkxFrZtZRTTroWJ7ra/n0ZilvHYllNdOF0HV42UaV9Jk5ZzrvS+dnqDlmGiftXNxVCnJVM456ngCaEHV5HCBE1HKejq6SBdFHa58Wev3eS2TTnPU3/k2lNc8HWVkGr7SRmn9+jJUxfZ0lGYsc9r5Vg0mpHI+a97h1b6EYZH2+KSFFNNzXhaeQrknwUHlnZuFcco9QXaiHSwHY1QxSbdSM4sbbSFpxTRzYKWUSCG5/ue/t4LKKGJ6AdJCyhzU5nccaiPsJOlhNx9bRpef3nhH2XNpz6tWqAdQkQ1DtVEzhRXtPdhkvrdh0LQVv0eXtAfWNKzsYZCCcFqozFg3QYVnbg0fp9fNehi/rPu8lqi05+kiqDOpnI6QJl03wAuf173Ozf8nABkIgoEA0R/AgI8cCJDFAGlzTg4KoVO5SOacC1RI+0nEsuaJwLOoCJVEaLtW0oc5FLV+n9cyleqsbCfucQ7ZaSPpWit67qX3vqRibqOOqsWEVM47t62t9iUMi7QCbVrCzNy7Sl6ErF6hWjmP3t9OtFFHpo507l1mzqRTIfcu9bpL7PXbTcpKKiSiEBD0B9BX4tPvu0AJKlZIOWiE7vNK0iMgUG3TVqHGphU4HFUoJ0gduue5NZiMLp/++NvLnkvMC0NY2YEap7SiYHa5yAqRXo4ScPqp7D23jA5pw4r+vYiq7TCHbA+seXgZry9G7X1p71K9RI1l3ee1RMJjbjzWsooph6SjHdJUaqe2EHUPROkJQiILAWLARwz4yAEfwv2Pfh8KPtKvh9GtTQSx5zydyvVnVEi7VubmoObYo8RrpN4ztWI/HGr9Pq9VtFMoraBLlFFSp3KlQ9p1xGZWQU0X5Tnfg00JqjUmpHJeL6RDt/RE60P1uZ6LGQ5dwYtAcqItQU20XqyQOVZkjZkWD0zPT5ZRxcT05JmeoAZUaKf2nktQCvhACTngI/p9GAiUkNIfKCFlwEcGVkg5UHSIuhnarufnY6iQdj0+J6AEl0hAMbwH1ss6PlRqo2a2k0nX44hC2ik3bM5ChXBuJrlmZnVJsBwcg0Udgep2USmk3XGcilFjmV0uDGXDGs0OjkqOhN1U7iyTFdKuz8tKT2hDFWjsAEQgoOgji8pTHhSF2vv6fCgE8R44YBX0A8XsTmJ6zjeiulesIl43HZSy/hCpqDEZ75m2nejYYTrbzD1JK+dmWHtaQYdsxdxDpQRNR3nP7d5XO9SFcv7HP/6Rv/u7v+MNb3gDr3rVqwiCiZHZmdjoUpZoB+Wlg2whJWuiuahJNhXlQajX3LtaJ8t7IFEGlT6UoJI2omR5ELJCjvQ5pqApSwGiGCCLAn8gQAwESkCJFPNQUBnwkXaAD4hkv/JY+OhEeVSPJR7Dk1DegyKGYEMspFgxceypFN5ntpOB1JoZPk73OjfD+zYQv6cpnEyMHac2SKdy6e9bt1EzxyQrPLpS1JhupwbJfa+eQttrmfSeB+qx2UYNyve8LP3cody4ooXRhVKyoxTgFnxkQYWvB0WB7PcJBgKlmPeHPwsBFIXyoNu9b0To7iQJzzlqTB9ChbE3kDRqnoyKGtNF42w70fEjYXRM/a73vbQx2pxXes6lI8dARY7Zva+2qAvlfOrUqbzpTW/iYx/72LDOnz77kDG+otEhK+9Ob3bzKd+40htepdy7pcRtZSJLGFZAGS2yxsz0/EwnO8ohLaQ4jpPIizX/ZiGhoBkIZClAlgRBIUCEPxkIuOn2e5RSXgigJKAgoBhYD9EBkFUILkBVaT8UZfDKhccylLX5SfNcw3tg24+MLjfdsrrsObMoUZaQkuU9UGumk1DqTOXdVM7Twon1vI4eQ6VyQbYHNq38pat9L0btnQWSAqbpBaplsu7zWiKOQEiOX6XOMpFxxUnvfOXpCVH1aCFZVhTs0kp3SSALQinoBcMwPeDH+15JhIu3lW5GglbMTc+5Xuv+F9VCzUsdK1FVwZ/mwPe+Wr/PaxW9L6WN0l0oR4HZRi2dcw7gGvJmWndYRlyx3e59tUFdKOcnn3wyZ599NgsWLBj6ZKDQv29sL2iUSFuiKwkpae+P+lkuZOoNbzFx9UXTy6sXU8vBUcnzs5vheX5MdARE2tK5GOgQEqeoFHN9BIUAGXrPD58/PymgiFBAsTLKiBBSJvqVm5vSoyRD2rNC29PeAz98T8vocPihSxK/D9VGTXsQ0nNKb3ZmxXbz9eXA88RKnBkSrY0AloMnvW7qsTPbqEGGBzZU8tIGTT2Gs1DGs63G+5rGm1ovy5G+z2sJLZxnGaWz6uOk51yaLMO0JyRewWdpwWdn6DGXxTBqrKCUc/nsTuRN6+CZnZHyHi/awioRI8CMFjMN07qf+QnE8knOidfNE1GedW0ASyjoDL331fJ9XsuI1FqmH28jTgepZJTWZMmbDko5t3tfbVEXyvlI6e/dM/RJNYAZjmluemZRsfRmB7GQkvb+6EN7zs2JnPhfdgM7KCLF3PgJsXAJg3t+TNLeOzO0b2dJ4JQE0heIkkD4ElkSSlh5dierHulWQkrCe2A9CCMlQBVyS1RdD4/HgJdSnrN8Iiq8T98LpnJv+4OOLquOOTTxu1bu0vnmkAxrN+eUWZAxrZibFds3Eo+9KZyYxlPLwWFGcpnrqA5rT6+bacNmwuOa+rmY5N6X8ASN9Qc7SNL3eS2RNqgkWnqS7HGeHrtKJGSXUoA3UMItBiwsBuwrBsowXQwQRbX/yY27ET/fhnw6gJ9tg/Wd4eQ0DivaDAspJSVSnvPw58PAYagIQB0tZu59J4Xn6Hsh3U50qHWylu/zWkZ7zc11DeI6K5Cdc26unZX2vuXEqbB276sNJqRyXg+Y7bi0Rd8ME0tX/DYVcI0OT8kKa9+s/w+GMIS1go0GlXLvdGGcSp6fLNLhR3ocF/mC/lJAf6h4S18gfPUz2LAbeWMHaCHl2Z2xcKK9CJZhowUKM7QvAJ4LXz+UWDDJhT9Xoby0HcRCjek9sEMwdmjBJKuN2j4qt1HTobPJMPf4XC3gdFC+Xur/Zzk4stpQQrx+mkbpSkpeWmmPQqJRBVFN5dwM0RRSIgOJDIT6aQd02KSN0abnfAeDd5aphOeAIyVuIcArBnglgVsSLCwK9hdUmlZQFEg/QPgB4q6tBI4hvzy+Xf2MlHNUzL1lSPTaZnrO9Zr3ECq33AyBzjnx3nccasy3kb332bSuscE0Rut1TZLMNzcVctMzrhnJ3ifs3ldVDlg5932fnTt3snPnztG8nlGhpa2di9/1Pi699FIuvfRSbr/9dr5+xfUUCsXonN/ftYb716yNft+1ex9XfPfGxPvcdMtq1j6xPvp9w6ZtXHPdbxLnXHPdb9iwaVv0+9on1pfl1Fzx3RvZtXtf9Pv9a9by+7vXRBtdoVDk+u/8lFKhGHkQSqvX8NcH10Ub3d49+7jmP25MDNgtt67mqb+sj4TQnZs7+OPPbmMJKg+lC7jjZ7exbXNHNNnW/WWY13fXmuj3QqFYe99fFa/v5ltWJ3Lv/uuqG9m/Z19kVPnrg+t4ZPWaaKEsFYp861s/pVgslV2fXkT3vbiPn4fj6wrJjFLA7Nv+yONPPqeU8pJg65YObvrd3Yi7tiGADaV9/HD/Ojb8918j18baJ5/jpl//MSF41tr3V1Pje+1veH5TRySgPPOX9dzz69VIlNf8OOD3V91Iz559kQfh2QfX8czqNRyN8p4XCkVuuPKn9BeKkSfhd3ev4f7/nQTf3zhc34ZN2xLXp9fN3/1qNX99Yn30+1ObO5j+s9sS1b5//VO1/mllQc9f07B5czi+Hiq8b004f7UA1F8ocuW3fkpfnX5/tXR92gN7zx/W8OiD6yIBsGvPPvZddWOix/nqX63mmb+sj8ZSX58OifaAW396G9s3d0QC5/Qn1/Psr1cnBNnrvn8ju3bsQQ74yN4S//Onx/j9b+9XBTQLAQN9hZr4/vR5tTq+WoZ4/MF1PLBayS+9gCwU+fOVPyUoFKM9774/rOGhB9ZFikHW9d188x94+tFncIoBXilg54at3P3L39FeCnALAftKAXfefidbNm1D/noTsghPFDq5qfuv6g1WtYOQXHH9Lex+cX+kTdTq96ephevzpYoW8yVc/x838uKeffioVpLPPLiOGavXRMZoMVDg+u9cTzBQIIcKnz5y9RrufHBdlNa1e88+rv3+jZEXXUpZ8frM66nX72+8r09KycZNHdxw/W0Jx9DdP7uNzZs7ohpVm55czx9/tTqheH/re7+Irs8FHnpgHf8djq8LiEKR26/8KUsKxSjv/MHVa3jswXXRHrhzT31/f+Nxfbfffnukc178rvdxsDj33HPPAdlEnnvuOf72b/8Wx3FYvXp8Cjw8/vjjfPrTn+YPf/gDnudlntPb28t7PvCPbHjmAdra2sblug6EQEp6BHRL6BbQK9RGNwC8D7gU5Z2bCrQ4MNWFVhfaHGgIzdH6Pbok9Ah19IXvcQnwD+F7tABTHWhxoc2FVgcaBzNpWyoipaRXwv5wzHqkOvqBf0a1Gnkj0Iz6zqeG33erC80Z37lIv18g6SsEFAs+/1YQvLIQcHoQ0FQUtASC5q1dTL1xI61FuGHfOt4/7Vh450I4aj40edCcUz+n5HE8O8ZDkZ5DveEc6gc+A5wNvA4lkLSEXpvecLxvBtYBl6HGewpqvPWYT3VVATLLwXHNdb/hA+85P/q9ICRd4brZE87BPuA+4EbgSsrHoy0cD9dxojncFf59r1Tr8ED4ty2oNViP+VRj/Z1q182DIpBSfe/GvteD+u7fCnwPZSCZgvq+W8K1s82FvDGX0vdAr1T75/8C1wHfB5qAFiGZGgim+gFThaRVSFwhwQml15wLDS40ejhedQMJ0/d5LVGSkv0iljN6wu97PWqd/CWqUFgLyTWwtcIaKH1VP6W3ENBVEvQVA/pKgr6SoFgSfKMgeCuSQzu7ab53K1NmtzHljHZat+2n9WdbaTxlGrx6GTQae15zDppzOI3ZsqElplfIaBz1z37UGno9cJWUNAlJSyBpQZAjnGOuS5/n8ivX4SHgX4jX2pbUWltp76vl+7xWERVk/X7g48DFwOmo+ZfWF0xZf7C971uoVIb3osZUr70tjlp/W+zeN2y6urqYNm0at99+Oy0tLQf0HrnBXrzqqqsqvrZ///6y8z784Q8f0EUMRRAEBEFAqaQ8j8ViEc/zyOVyuG75hrpnx9Njch2jiRnSboae+6j+krqwGJQXhNNE4X0ymWcCcWj7saTCYSQIO8cOGO35SY8fJAv5DTf3TocdRaFGvsDxVa754pJgV0mAEMhAEBR85OotiLMWIKZK3v9L4I1zYdmcZN6dkCAEVDBgWWICGeebR6HtKIXhWZSBy6xWC2rRdFC5dz9BbWwNJKvelhz1ntY+cvCkBbl0xdp0eJ8mq5AmhMWopFRj6oAjk3nnD5Cq1+GYlb8lrjW4HDBZ+55EpSNAXBAuK0TaJGvfcwkLaRIXppK+gJJP4AtEIBGBVs7DN8nLKGZTNjpVNWjWssKSTr3Th64TAEbhPiqPm5RS1UcpBrhFtc85RYFTkuooCvAFCwJB7vn9yMc6kMctQB4xDem6BMtmIY7tAbchoyprPJaWyggpE55zs8bKg8ApQuKWBDk/IC8EOan2vDyQdwV51+WUvMuP8h694fM6tD0I9z5/kL2vlu/zWsUMLzdD2wWqAOZCygsxZqWVDLb3LUN1p8nSF9Sabfe+8WRQ5fymm27KbIOh0a/98pe/BMZOOb/77rv5+te/Hv3++te/HoArrriC4447bkz+53hgbnT6sS5lp3OXzQ0vvdm5jqNytjDyK2Wce/cCScVfT7QAtUkONraWbMyxSudN7mTkuXd6sXQBLxC4pYCcLyj5goUlwUZfIIQ65P3bETNaCF46Cykd5JydOG6Diq8PUgKKreAxLKIK7cSFbQTwBCp3eS6Gch6OoRcKK4tQ4/0Equ1M9F6hYu47Smm3jB5Sysx8cInqR7+QZA0OM8fOXO/Swomep8uBn5FaN8PffQnSLpkHhanYmQr6LlSUWCPZhs30124Koa6j5qQDzAtf3w4c4qs2lCKs2RGEHS8QMvwjJ1bmXAc8a9CsRJYjQRK3UdNUMogBKtWqJFQbtLDYqRseTkkZpV1fQNHnVQ/sYuau/cizlyDntCI8Rx0lQTC3GTZ0ZSvmUlrZZgii4m/GvqeV8z8LyT8XA3JFpZh7vlBzLFS2czh4eckCIVkKPJb3OAOj1grx3tdYpc83ETHnnLnnaX2hneR6aDp80lTa+1YAvwrPSSvmaq+Vkaxr59fYM6hyrhmsPYUThgmO5WC99rWv5bWvfe2YvX81qNQWYRdKMY8qsTO49zXRFkjGQssS4I+kBCHDAySpXKTMUhlzzCBeMHtQ3+1syoUTfVTCA6WglwI8P9wQfcG8QPBIIEBKxPP7kTu6EBccpjwIAuTC6Thb++Eo4kGOlHSBlK5dRAdBSFkmqJgt1I4jHjtdEAfCXOXQa3c8qqXaySSFHt/Rlm5rbR5N0sKJnodaOT+KDMMY5WtnQjgJx1PnnPeiopfajf9jCipWfTtw0h5zbUPcBcwMH2cZNss851BmkNZ74SJgWyA4pKTaUIrwkMWAoCTIP9cJj++AkxbAke2xou4HyJxr04EyMJUD/RPKi/ilx07vPzJQ3nIKIu4uEnrP3ZLa71whcV7sxflTB1Nbm/jNa1dw4ZQ8wnOQeQ/poOqvzMsjH+rFiRquy5SSjp2kg6Drq+jibXrf+yuQCwRHlAS5YkBOCDxfkpMSL1wfc55DTkpKeXiZ6/Cw53K660T7phk1Zve+0SNdnE3Pww7U/GsgqS/onPNM5Txj73NRe99eoEvKMKBIIoSWkySBEzuZpOeC51Q9FWgiM6hyrhfW5uZmLrroImbPnh291tnZybXXXgvAZz7zmbG7wgNgVvuR1b6EIankfR1pO64sAQVUWPsm43+YHqDAeoAOmEqen92osWghHjOo7PkxcZEJ74ETCitzfcG+QCC6epEPdSDOWIRsyiNyLqIk+GHno3xQrAS5sNx7HlghZSi0MGG2QdPzcS3wQYiK4pie85xhcT4RuJpkdIrvGBVwKxjVLMPHzFFMzztTUehARTtASjF3yqeBQ1h92FDMXVSuXTuwAeURTCjmQhIISU7/Q88Bx8GxuXjDJiukXaLCo+cZ55X1OE+9jxZAHRmPMeEeuERIthcD1eXC6HQhfEGwvhNuCAsAPblFFRd4yYK4D5Ssntm6VnNxB+ss04kS6tNyin5shrFHfcmNwy0pY7QjJO76vThrOnCOXsCeY6fxguNCzkXmXGTeRQQC6TiIuVMRXeCVAlUzwFTMA+t6GAwhZaKjSNSbHHhQSE4tCbwgPHyhKuj7IlwrHdy8q/ZDx+FE1+GrJUHQ6MUeeCcObQ/I3vtq9T6vZbIiVyCZypWee5UcelpPcJG4AtxA7WltQrJISLZIyWztkDUi1UTiDQR4DrLBg7x1Ao0Fg8qN3//+91mxYgX9/f3ceOONDAwMRF7s0047LTqv1jzb3fu2VvsShmQwIUXn3UG59zU9BcyqjLotl4fKvetHWcISVm8ZewctIydrzCTKqDKPCiHtDCEq+Mpr7voCNwhD+3zBTCFoKgWI+3bCoQsQi6YpL4LrIlyHM049Dnb44Itkv9fAFFIslYjC+ozHAWrD6wSOJhnSbj7WCvsxqLHfipG7Z7yvbStz8Jx1xgnR4yzvgUCtdfup3EYtrT+br2sPgj5lOUo5j/+XRJQCgn4fvy+Afl8dPSVV8bsY2LZcwyQS9GT5+pnV4zxaT1PCn+M4sZBp7IEOcEhJsN1sQRkq6YEvkA91JFfFP283UoH0ulkdzPu8lpCpw4xWMdu+lhmlhVQKeSFUzPVj43CLAU7Bx72nA+e/O3DOXIj70unMyrnsyLn4eRfR4CJyjlLMHRBNOWQTsLMX0t5zsH0sB0EbpM3e5FqWeVRITgmkUsoDieurx/nnd5H71V/IbdgVpSG4vuAwX+IEgmeFTNRbMXueZ1Gr93kto51rZs65QLWza6dc7jQjV6RUbSNloGtwCLxCgDvg4w2UyBd8nAEfr99nZcGnYyCAgQDZ7yMGAuRAQDCg9j/6fejzITyHgjKCWkafQZXzww8/nKuuuooPfvCDBEHAlVdeySc+8Qk2b948Xtd3QBQHuqt9CUMSKcwpZc9U8rIs0WVCCknh0vQAzUHlnZsCUToc1DIy0oKlXpZ2E+felY9ZZeVcBgK3EOD4Uh0lqTzogcSRkvPX7sf3XMQJ05COg8x5CE958pYetlhVY9nRUy6kaJefpSIloCTjjc8MaX8Jag6ZxeByjjrM55pQ4e8Ph3+b8ErIuK2M5cBZsWxh9NhcKwNj7dyBGo8ZlKcDZeXeme24TOXOReXebQjfVwipvK8DAUExQAz4yP4gFlD6QoGlKOw4D0FWj3Nz3zOLwQ2WkqCJcieN81xfsLgUsLukDJxRWLsvEIFA7JZJ5fy49ox0oOqMo3mf1xLpaBXT7PsiySKo0dgJiVvwVX65qZBrBX1APXZfHMC98RncHd04Fx6Ct2Q6uA5teQ/yHjtyHqLBixRz6ToEroOc2wydBfWPzaqsgfHYUkZJK88kjchbgc5Askqo9IKckHhC4m3YjffzreTWlXB/voXcpl3qeSHxhOCEQPKokNHep9+3ROW9r1bv81rFrLOSXjc7iIvBJVN9JF4gkIVAzcH+EvSVoLeE26eUcXcgUEp6wSc/4OMWA5b3BewO56wsBMiCT1AICAZiRd2cv3peS98q6KPNkBGXnudx0UUX8cMf/pDjjz+eJ598kg9+8IP84he/GI/rm5BkCSmmB6FSDlfWYJkeILMYBKi8803Ek9kMaw/G5JNNfLIWSIlSznURPzPCoZJRBVDetmKAo0P7wlxzRwjcQMKW/RyxaQdrX9GuQohy6hCe8pwHrguLWmBLf3bunVXOKxJIGXvLZZx7J4j7m5sRKVlKun79BJRCnwhtJ+mZsIwOpkJu/tyGCu8zFTsv9XsardxF40xcFG4T4AQCCj5ywEcUA4KCQBQCRL8few0ihUMp6JbKmEpe2kCsq36nQ9kH63RhRoq5KE+tVwxYEna5ENpbHkiEkIgHdhO05JCrwtY2b18Ay+eURx3ZYSwjK6w2QBWkmkO5x9wZ8HEKIvawpedLIGH9izhXP4PX3oZz4aG4rU04ORevIQcNHjMbPToaPZXG5ahUPOE4SoZpn6qU82gTNva7KhpYahmpa6wYhmMzpP3EQNAkwJOqo4EXSLwnd5IXar/LC3Cf6sQN1GuukJwoBI/5IlIg055zK2cePOa6aUaNQRzWnvCYh+ug0x8ohbw/UIeeh/2xYk5R4A6oCBa33+eQQsCuvkDtewXlMRehYh4M+Mj03hcaQa2sOfoMOx1ywYIFfOMb3+Bzn/scU6ZMGbfe5gdCc8usal/CoOi9JNrojMnWycjacWkPkBnWrn9fDGwhntRaMY+99nZCjZT0mJm5d2WV2g3BP5OSCvXT7WS8Upxv7vYXcR7o4NmTFrB5apMKZfdU7p0EAsdh3cZNyMVTYUtPyr2hlXRpw20rEFn6TU9C+NxjqEJvWvBXOXZJpVw/r/PO/4LqO6rfSyvpuk2b5cBZ+8T66LGee2lPgulBgGTOclatDihPCTI953t8wUDBh2KAKKlDFgJ87T3Qh/YelASUAqQd7IqYRmjTuALJsPYy73mFsKOkAUaF4DolwfwwV3ZfSUAgCAKB7OhCPtKJeO1SxMsXqTdYOCNWzCOrtQzzzscf8z6vJSpFO2R2lhESp+DjmLnlZjh7MYBSAPd0wM1bcF6/EPfVi3DzHm7ew2nwcPIu5F3amly2NqrCU9JVhyCs/zC3AXb2hBdoKuYyKVBZIgKyPecC+LOUnCQkbqBC2j2plHTvyLlqrwvCPe+wOep5oc47zpdsF4JdkkRal/k/0tTqfV6rpFOBTOPYDlQBzGitlGHEShi2HkV3hUq53rdy/T5OIcDr93GKAjf0nC8u+uwpBohCQFDwEUWBKAbqWL8L8ct18Nedal7r9TKQqpimlTVHlWFVazc599xzOeWUU/iv//ov+vv7x+KaDprG5unVvoRByfL86J/bGXk7LtPr4xl/txS4nVTEl2NY3wYJt7aUk454MHPvXkT1lM8asyzlXPoiFFSMwji6nUwgcP7YgdM+C7FsOrsdRxXFybkEnouUAuE6PLtlGycveQnOAztBilBqSXmBqljgqJbJKgSnK9ZOQXlPTcVce80d8zmpHs9H5X2tBU7HqILrxMVxbEu1A+eZ9S+w6phDE+F9pidBr5uZ4X1UjlzR66ZZfd+Vklm+YF4xYFtRMC2I85aD8HGwvpPcYzvg+Plxte9IUBG2HVcFKhk2+8MjkbvsJNfRLPTrngOOL/D8ADcQ5H3B/JJgly+YHQhk0Uf8aSvi5fMR7VMRgVSVO7d0w6EzkmumXjdHLBkdPPo+rzXSnWUIH+9GpZFoI2UUzh7EBU4jT7n2sPWW4Obnoa8A71+JM7cFx3Nwcy5Og4vnOTg5DzyXOXmXLTlXFfJzHKQD0nMISg5ibhNyexFHCrXQ6guNknLtvpcmHSmmFeh9wPO+5KWhUp4jDFsPJPmpzeQl5NohtxvcBdOV8u6CJwQt0uWYkuRRTzCv0UsYp0t670t1c6rV+7xWMRVyM+d8Z/i6XjdVxx9f1S8qSZwwvzwRRRlOZkdIPCnV3wUSRwJSMFtCUwC7XMkCCaK3gNgzgPzrHoJ1vQgfeGobXAwcNT9+7wA750aZA9qCpk2bxvve977RvpZRY9/u56t9CYOSJaQAdIU/51JeFGcwISXdSk0rEUuAzaQ85+H/DRxrXB4pCec0ydy73cRV9tOF4NLjJgOZUMwxFHNPSJzH9uL298NrFjHDddjuqqq1Qc5V3oMwxO/8V52uwoyKwL4CzJ6Syp8MhRWrKySIwvtIFoJLh7QnCsE5arF0nPCxjKtFO6jQ9j8Dp2F44aWq3K7mum0rc6Bc+NazgXi+VWqj9hLKjWPaI55F9LpWzIVU1YlLAYcVBR0lwZFBoJQDXyL9gGDDboIbtql/+tRWeDfwkvlh7zwXAtvCsBJpw6Yez93h69OoXGsliygqwhfkSkFU+dsvCRb6gl2B4EipwtlFSzPyuBkIFwLpwLJpsLkfDpmRTAOSUK02lPo+rzXS6XdaXulEec0hnHdSRS8QpmU5ptf8uU64r0OFuBzWCm9fCU05yLm4eRcv7+LkXBxP/STnMifv8YDnIIVEOCpaTKJs0HL2FCTg7C/CrObylC4r3CSQUkY1VsxIsQB4REqWC8FsKXHD9mleqLx5z/XiLW7GfcdKcj96itxzXXhHzMANjTCOL3ip57I2ELxGqHQ7HTavjdPCSYogtXqf1ypZkWIClco1HyOtJyzi5/hSRV/qiC4dHaQVdCmNDiVSKfW9RdwXB3B6Je/YXWTavh5k9wCiCLI1R7BrQDkw3PCfP75DGab1mqmjV6ysOWoctH24v7+f73znOziOU3Mt1WqVLCFFoEL7mlCFqNJCSpaSp0m0UgsVBh3W7ofvuxBDqDUOO5eGT1opN3/fSbZRJR3xIKXMbCujK6A6Hd24f96B85YluDmPuZ5Lt+fSnXOZnndVtXbfUTnnnvKoMy8HW3uVkJLVTs2SQFv109XVJaqw21uIPeXaM5cnVvSiMHeZDG3/NkbIWSic+DIsOjeIkmgZHun1Us89SLaUSeeaV1rjXMdRggmhYu4HeMUAryRYWhDsKAUgVDExnbcc/M9WpRyE6y2P7oAj2svnnF1Yy8gybArU2qkrDmcZNit6zh1HheEWg6jLhT4WBYKOQCK27ENs3YN800pVq8NzEUIgl7bgPLYLpOH9Seed2zEEKhulzfo4hD91vRRHhMq5L5RifmNH/IYvnQpNeWhQ4ete3sXJh17zUDkXeY95OZctEnBRxVAJi8HpvW+OA519MLMpWcjAtNxZAGNPorzGykMSXhYoZTsnwj1PSjwgv34P3mEzcXDwXjKX3GO78Y6YoXqfC5V3/tJA8LPAZUBIGsKe59o4rXuee5UmsWVI0pFi6TorEO5zoXHFCWSUIslAaBhbuxOOnQuzp8GuXpydJdz9A7j7+3H3BbgeOHPyMLsV0drEs4tncuzMRmRrE4HjILa+SPDzrbE4eWyGYm6n3Khy0Mp5sVjkzjvvtMr5CBisHVdm5VMG9yBoAVQr5lqpaEAJPZtRFrbImerEE95GoQyfsv0//H1f+Hq6IFzmuOmer6l+r05J4A34OHe+gHPSfNy5rbiuQ0POZUrOZYfn0hYWxhEeSknHIXAccoumwdZ+1dcrzDWvtheoltGCSZQuhfp9P6q7wSoMzzmGMo4ytOQMz7kXzreXhH+/CViJ4ZV34ly/nB2CgyISTlIKej8q6ki3UUt7XQdrQ+6C6ulbDMgVArywBsTykuC/i0KlkAQSIQLEY3sR22NDjgOwal5SqbOpJBUxhUzTA7ubeN/LGrvBvknXF1GuuRv+RAjaheDFngI81IE8bQGipTFOCwokcmkrzu861Ppr9sq2Y1hGVs6rJB63aJ8LPXKODHPP9ff52I7kGz7ZqUJiw9xyNzycXOg19zzcnMsCoA/JfsdhtuMgPZC+Cm8PXAc5uxV2FOBwyj3ntvZDgqiCukx6zovAo4HgPUJ5UD0Z5pwHkny/j7e1gHPeNHAd8sfOIPe/O/D29ePOaMZzHTxfssCTzBeCv/iCU3KuTesaZbRCnp5/2zGKwUmpDGMiLMioI1dMw9jT29VfTQdnZgvu/Kl4h7Tizm7ECcfTBfZIWC/h2JySL4XrIJfPQfwNiF9tRcxwcZfNTirmYGXNUWZQZ87AwMCwjlpj7sJV1b6EQckSUiSx91WT9r4OGd5Hec/excSh7TqvVv9/f3Q/1oTHHKt0WGYzKuphsLBMGRiKeUpBdwKBe9dW3NZG3OOm47hOFN43O++yLe8iPVf9f0f1fP3Bzb9GuMCiZujYT1RlMCpyZHiBLBHpcHY9Jx5HFVeZSayU55zQi2B45nKBwENGvc49lPBxPMrzrpVILaRoY4AtwHhgXPHdG4Hk/DOrtm9HjdV0yotoZrVR00gp8UqqlYxbDHDDooxeUbC0qCt+B4iij/jvHYgndyAuXoF4+0I1pc6YCVpISRcWs5SRVVRMG6XNNmp6vAarFwAgfYFbFODrcM6468UsKXnZA52waA5y6XTlbc25SM/Bd0BOa1R551u71DqZlXc+zuj7vJYYTmcZCOebkJGC7moDhwSWzUy+6UkLoMmLDqfJI9fg4TZ6OI05nJyLixqeNsehw3GQkfecuGL73CnKc56wmMd7n11vY3Rh0nTBtrVAeyBZEnrOvYA4pH1DF/nZHrQ2gOvgTsmTW9GKt66LnCRU5sOq7b5krRAqugjDc45eGuOxqMX7vFYRxvxL6w26CKoyjMXzT0c0IIG1KcPY4Q58+Fj4m5V4Z7TjHTkTZ85UvLyHk1PH/JzHprCVIQ0eskGlK4hlswhetRAZhCFFthDjmDKo5/z1r399XVpB9ux8ptqXMChmSKa56ele2emwvqGEFCcMz4x69spYSF2G8gZqhSEyLDva8CWrPsZSSFVISa8+rhPGEDs4g7m9xpl0jQBz3AbLN3cgapuWDmfXOUHuut04G7pwP3gEjufi5tRBXhXGeSHvEuRdREkiwp6vb37tqxCuA4umQmdYBdd6gQZFyLgna+RBhyjf/ASMQlOEOciBUIp4KGC4jqO85jmPnOPg4USh7fcCF5IKbQ//Vzr3zjI83vn21wJJhdz8mW4no42Ug0UcqfQSgVMQuCWJWwhTS0Kj2Rxf0OwLXhwoMG91h7pv3nYosrmBgFbEYV0Q5JMKQXRYD0IaU8nL6nRhFvMzDZuVvAd6PdUGM+U5V+udIyTznt3P/t4Bel61gOmugwgLagpQgqbj4C2bBpv6YcWMpMdVUpUx1Pd5LZE2RJvR4maHEhUKrbznTpgqogR3CflGVWVzmaeKKB46T3nNGz0IPeZug8o3d6WDK+I5uxDY6jkcjUOAUtJFWHdFzG+AtT2xESDtPbepCYDa87I85wJ4WKh2aJFSFyrcnoT8+i7cFbOiQiuulHirppO7cyvuy+eQcx08V1V4Py5w+a4vkYEgcL04akyGoe3Ec7kW7/NaxbyV03WOdBFUCA0qIo5ecfVcOHIuPG0o6CcugAYPHPBcRw2t6+A4Dh4SB4d2HHZJ6PFguucgkQgpECWHoL0ZsaOEJ0SsRJipQFbWHDWGTIOUoQVysKPWCPza8+ZrtJCSMPYSCylpD8KQ7bhCslqpOSR7nUM8h0whqZrIYgD9JdXuoa+k2j30lVRV1wFfVTWvEfTaY1oytQdh0IgHKeOWMmnF3Bewpw9+14F33mLcloZIMdctZbRyLnKuCufzVGjf9JnTVf5ra4Ny3Xd0VxZULABxL1bDi6DH8jHgpYRzSUhyJUGuEJDXLUcGApwB9XuuKMgN+OR8EXnPTwCeAbpJ9jmP+p7bYTgg5syeDsRrVlpQGWkbNSlk2FJGecy9YqC6JBSDODxaCI7c1c30OzYi50xFvHE5ckqDMpABwbJW2LQ/Q6kzHlsSJAwrMn7ODI+GcgW97H2M9dQpxS0oo04Xe3rIPd7BXS9rZ1fOQ3ouMqfWTVVM01ERR0tb4IV9see8yv3O9X1eS2QZw/TXYuacO2FYrSPACQzPnQC2D8DhM+FNR8PKuZHhnbwLDS7ulBxOg4fnOGX1WhYC25ywlZqjFHPd71zMaVE5Zb6Ixw3iRcJOQiBMqyLpOY+KwQnJSYFS5nJSkgtD2nO+wHt2P+6hU8MN0QXHIb90GjkXvM37Vb0OKXEFHBYICoFkky8IpEwYv/Weq6nF+7xWSRs09fdZQK2bOpXLFVIVdwsIK7Gj1rV8mFBwlAvvXKiKuDV50JxTESvNOZxGD6/RxW1QzzU1ebQ0eWxuzCEaPDXXCA1is5rV1HpxICOsXVpZcxQZMufccRxmzZqFV6E9jJSSzs7OUb+wiUqkmFOuN+0EXkm5x7ySkGKSc+J8c/Nvl6A85zqk3ZzsgaMeV6tQlSwGSW+yXoH0hw41G9mo+p9Wm0oRD1lhmQmvnS8z88wjhf1XG+CE2bgrZoStZFzcvBPl4c3Lu2xs8JCOA+FCKV2VCxR5gRa3wpaC6gFm8+8qksi5k3H4+QuonPGjCEPafUGu5KuwZ6F+19+j5zl4eRfXc6N2al7OYy5KmHwcOJP4vaNQQgcax/XTThyGaqNmes4Ha6MWpZYU1E+naLQxDBVzN5CwYR9veaiD9ccv4MhDpyE9jyCnwvsCRxAsmQJ3dSjFwHOSSp2NVikjyxitV6XBIo8y9yadFuSH0Q5GQU3XD3Du64CXLMCf00qH63KI50aec+kLAk+tmSxtBZt3PiiVHAl9KAVhDnFYrVLQldfcib4/YHs3rJptTsi4QljeU/td+HdmQVsHNa+fCT3lgRuHtQcOyKk5pAdOZy8sblPvZ6tHl2G2DTX3v+eBQiA5SojQ8xp7znNbu5ReN79FjVc4OG7gknvJXLzH9pJbMSMMgRfkpcuxgeDxwOWQQBLknDi0PZQ1ayFKs94w97mEvQs1P3SdI1eGeeaE4e365K0DcEQrvGmFKsCYUwYxXAfXddQ+6Tg4SNxQcpUOzMLheQde4gulmLsgPAcROPgL8jTu6IO5U8oV89rxpdU9gyrn8+fPZ8eOHXzhC1/guOOOyzxn//79vOUtbxmLaztgWtraq30JFRlMSNnDIAXhhljTzFBOsz2QDnvZgep7rgsq6aJw1VLbIiF5IEiEdyfC2rXlwgHpuThVLPlZKSwTlHC5ggphmTqcPUsxDyTcG4YcnTUfN1LM1aFD/trzHts9lyLQ5IY5k67Dn9c9xZmHH450gIUt8Px+kO3ZYbZC1lSKQDWQpkVfxt5tCTyCaqHWgCoQlvMDvDCXNRcK//p+9FyHXCBxG+O8dNd1cVyHE1F5568k6TXQVWttS7WRc/+atZx26rFlggrEnvOjKTeKpduoSV/AgJ+IYNGeV1eHSAcC9+E9uJs62fiKRTzQ3saRnoPIOch8XIRRzm5G5MHd3g1Lp8VKnangWcUgIr126t8D4sijrFod6amSbkPpmJ0uhMT53914Xh5eMo0ZrsM2VynmIjSsiND7GriAmXe+0ghtNw0t49jv/P41azn9ZavG7x8Og7QjQf++CzU+reF5qiCVkXsO4XwQ0FGE14Q9aHR4n2M8xqiVI+OCttpzvhr1ogg95jLc/wLHRc5vxOksqOI6tnp0GSLc8xKec9QYPiQkJwVCVWgPlfNc6HXNPdeHe+gMcN2w8qkLEjxfkjt2Ot6POnF7CnitTWqfdAQnug6/DQRvCSRBrrwgauCo6VSL93mtYqZymc6hDlR9HAcV5ecEIpyDahwj5XxLNxw6LVm4KlTQHddRKXpS4oV1HByUA2iB4/BcKDcGLmrOgdr75rUidxRxjg4vMuEMsrkko8WgTtMjjjgCKSVPPfXUeF3PqOB5tVsbMkvB02EqPRiWaJLhXUOJ89pjlA5tz6E2OO09T0/0qjlVfRkrqYVQSe/3kz9N73IxqGoKhSlQ6v1fP58I78MYPylxCn7FPHOe3wsP74qsmq5ZuTavQttl3mNmWCCnA1QLGVfl3/X09ytvgoMqCre1Xy2O6T7nwrjgSYy+380WanoerMXob+5LVfTNDwuElcKeoU/tgJ8/jvPXHeRKgnxJhIq8IF8KcKXkROBR4v9hhs+XwucsI6O7u69MOTANi9tR4X2Q3UZNShmmzxhzsRBEh1tQ7dPc/hLurzfjbn0RXr+CpgVtbPFcyHmIvDoCB1VUzHWRy6aqXtlppS6soVGLKV/VIm2M1o9fDF/XkUdZtVai9xikDaUnJO6mfbjP7cY5awGu5zDLc9kR1u0IcqqNmvTidlzCcVS/8039Rs6EodiJ8R3D7u6+cftfwyXLkaD3vET7u9Dj6kiiVmoA7A1TDOdMKVfKtRGeZPqeOf6LgG1u6Cl3zJxzRw1Z+1ToLCQ35kT16Mk9B7Vx2PScawPnQ1JyilDFTnMizlXOSUHu2d14K6cmw5A8B3IOudZG8oubyT3ZpQrCSSXrHCslHb5kXxAQCFlWEFUPSy3e57VKpVSubcTKOWG9qajegwwjV4RQMuHCZsPqGc69vAvNHl6TR25KDppzuE15nKYcsinHgkaPDa4bGcJUnaMwgqW9Cbm9K7xAUzFXj6UNbR8VBlXOX//613PBBRcwd+7ciuc0NTXxnve8h3e/+92jfnEHStfeF5BVVuYqkbXRSZT3FVTF4SwP7FDKufYUaYHUVOyXEFdsj6q1E8oho/bJho8MpCpepsMHg1BR/+tO+MVaeGZnMkdbyDivrErotQfKIx5epDws0wGVB1mSSSODzjPvKcKvXoDXLYDZUyDMMfd0gZywUrubV0WJFgFbIApnlx68/PSTVFsZx4H2qerCdC6QmTdpQ9sBokJw6UrtBZRyfjwqXysfBHihgJkLJPmSwHl2J9ywDZ4M4CdbyT27Qynvvgxbzygl/UhgABUymFbQtaBkGRmvO/dl8dqVUtB1G7UFZK+Zblj4jX4/oZArg5+AAdU+ze3sxf3Fs7hNLs75h+C2NjE/57Iv77Ev7yEbPETeNQQVEEun2rzzYZIuKqbHcDcwDciTUs6y9j0jnD2hnPsCt7eoul28YgFOaxOO69Kec+nIh+HsOTf0ADnRmildYEmYd64vsop5568792Xj98+GSVa0AyTrrDgYxeBCr3kU1r69D+blYkU8raCHoRGmQ8GcvzoGcmeoKIiwU4kEhAtybiPs7FEn6doBpC56EqPD2NP73k5guy85LlDKnOpIojznuV395PZLZbjSY+W5Ua0AzwXv2Fm4T3biCdW9xA0kbUJyWCD5iy8RgUjssaXQOC2lrMn7vBYZLJXLLIKq0xFcSSS3OBIlCwpg3lQ1jlE4mfKO0+CRa/Jw8h6e54Zh7qq47Qpgiwt+qJRLHdYOiLlNiB0FkNYRNJYMGrR1wgkncMIJJwz6Bo2NjbznPe8Z1YsaFUIBTObdmgrnTQiXxuNOYB7l1uMsD0IWjuMo6zUkKrY7qIrtWjk3J7vvaGPzOOcCaeu2qZhr5QfgqW1wMap4RUlvDo5a4asYMZMV8RCglHMd8QDh9x8InJIKlc0sAnfrJljWCqtmqc+mveV5Fy+nK9h64DqRgWUbRIqBbqcmXIcg50DgwvwG2NIb5wKZnoRxFDJrFW3FTwsqT6Lapy0G8kGcfxcVximJsl697iPbya2ch+s6oUPBUbnqnssJrsOfUe13E21lpM29O1BMo6YZ6teB2sSmkVw7XUcJLZSCpGGsEJRFsDjP7MH77Tbc09pxTp2tBJWcS851meG6bGxwmZF3I4VAhIXFgqVTyf9hBwQiLOBhKHU2ZzmBGbVlKnmdqLxJiL+pdOQYkGxDmTq8QOD87gXcRW04K6fhhm0o5+VdXsy79HoubTlXVdwPveaBp9ZPlrbC7zvUe+tUKn2T2THMjHbQzgSd76qLwSHifFdH//GOIrS3xvkJFcLaTcVc55y7qO2+HdjqwmKtKDhSzcGSUhTYHioKwklafya5gaxSGlcAPCglxwrBVCnxRNjbPFTwcut7yC1rUa20tDLngk5L8ByH/IppeH/cirelG3fZNDwhcAOXVa7ksUDySl8Q5Fx8nETldtuxZPjouZaVyrUNOJZwKhnzzpMqcgUkbOuF+XkVxm4q5TrfKyzAqNNIXCc0shEaxVyHDtdhBaHcKZXcGcyZoqLX9xdhVnO593wSz7nRpFq1wMYUx3GVENbv12bFb5IbHmT0DHWyhZTB8IjnnSmoLiFupxYZuaji/mV6J/RkTik/PL4jqcAHEvxACWlVIC2c6GNP+HpUmAPDa64ND+lw9od2wd5+eMMSZZHW+eV5w3ve4KnWMuH7LSb0nIden8BxKJSKkZApARZNg2195SGaQoKc3CF+kaBCee7dY8Aqwry7khJU3CAMWQ+UVZrZbYn3814yL1Lc3VCJz/nq70+UkoeIjTfm/ytZO8mIKRSKI2+jJiTugKqwz4DhMTejWPwA7tuOe8tWvPMW4Zw2Fy+nPAluWEl6XqPLxryHzHvKmKkNYo5DMKdZ/TOzS0I673ycqOXuKVDuMdfrp/bARoq5Ux7ePlQbSueR3Xi7+1Q4uxu2ocy7TMm7NOVdtoZh7dLIOZdhqDTTG1Sbr21d8Rim887HiUKhOG7/azgM1f4uavsqw/mWbuME0NEF7c2G5m16zeNWdaacY0b+QVixPUpFIOpzriq2T1EX1V1K3WR6HtbmfBgPdKSWue9pp8KjQnJiEPY2F2oMPRFWbN/wIu5h05KpB2EkHzlV+8fzXPJHzcF7ap9SCCU4QrBKSJ4KBMVARj3PzUJ0gtq7z2uV9JqpDzBSuaQqyOcIoqKMnhbwt/XDounqD8zIFeOxNoC5jlGzCvX8MsdhU5hGEuBEKUEi5xLM82B7bxytkjaKWQ6aCamcz124KhbGwpY5tRLmnrXRaSHFbCeT9poPx9OWzjfXx1JgK6mQdpKL9XghpYTQyp5Q0o+dlzzx6Lmxl7kkDLdndcZwqLDMHIZBRBfoCFQFzegzrN8J16+Fe3bAm5dBc05Zp/Oxgu6FPV/dMM/cLIyjlHMHXBfhwPU/+1VU5Ei6wOJG2La/XMiMlIbx/tZqB+29FqnHEpUjfjxEHvOcEHiCSDF3BbC1CIc0xLGcs6dFeee5sNdyLlC55yf4go2oLj9RxXYZK+k2tH1kfOv7v6iYe6d7vSaUOyFxC36YVmIo41FIu9oTuHkjrO3Eee8hOIfPJOc6kXHMzXvQ4DG/McfzjR5BzuiOgKr9IFwXuaylannnUkqkL5C6Toc2RhcDlTpUQ6TDM/UYmuHRFVO5BmtDuasP5+7teK9bgtOUC9tQKs+5DNtQbs67iLyHj4N03XgcXQccF5ZPq4m88299/xfj8n9GQsIgJuPndPFaB0IFgTDfVSno6vsT0FGA9ib1h2mvuSF9OmE4baTDk9z7Oox8c20gU1FjLswAOnuz971JnP+aiBIzlPQe4EkhOTE0qOSkyjn3hCTXVyK3tYhz2LRYiYusJrGinnfAO3oa3rPdeAMltVcGkkVCMD2AvwaCwJfJrihSGadr8T6vRSRxKpe57/Wg2rUuQHm6XW0YC+VNV6LmQsd+WNiYDOmMlARlGIt0dZKpsQ6wzIENOo3EDa9BO4fmtaqomDKhWE7qOTeaTEjlvHPb2mR+oVFkrNpCSyVL9E7izS4tpAx3kNIhKvp9tNrbQbmQpENmxo20Uq53jmWzVZ+pGeF5RS/p+fW1ol6dMYzWIOMnKOV8Zvg4UhACVTnYFVIpB4FUYfs/71BWEgC/qCzR+eThNSivuWsIK9pzrov66aJw73j3W1VbmVBgYVErvCjVPZ8WUMzWNpOQyHstjQI1qPHbBqySUuWQC2VU8cIjXxKwbwA29cFrV8D7joUj2uC3L+CFRePc0NueC6t9zykJlgnJYxjGAJIeBMvw+eRHLhxW7l0k3As1Jk5J4GTlme8dgJ88Bf0leP9RMH8qubyL2+ipo0G1bnQaPBY1uKxvVL2yTaUuyjtf3gqbulLzLPV4DJBCqnZwvSXoK0GfHx5aUS+pIng1gOmBlamjYjHN8MCvHM5OUcCvn8c9eQ7O0ulxOlAYgUTOZW7YhjLylrs6+kgpeui888371MVWMe/8Ux/9m/H5R8MkbYjWYwbJ9nexYh4aprVwvq+g/mBuS+WwdgPtxXOMny6hYVpHrRhpXdHPOYaikLXvTVLM/UaHswvgUSlZ6gvaQ4XcDYirtT/XTa49B1PycQEx7TnXjz0H13PJT2/Ca2/Ee7o7asHmCsnxQrAuAIIAX8jIQKCv4e8+cmHVvpN6woxwNfe97UAz0IZWzFVtFQfiSu2lAHYJJROmizAahRidMB1P1/sz12DlOXeRLspjHirqASDnNiO2d2cbpaUtCjcaTEjlXEpheM2NwxBaquFFTwspaUu0DhMrU9ClRAZCXXchPHxRNgHSBVX0ZueRLAoXec6pQhSKriaentADvqrM9c4j4VXt8L871LlmOLjWrKqQplAp4kGH92lUvrmM+05qASEdtv/EzjLFnFBB8FynzDijq1HvJgwzch3yTQ2qSI72Ak3JqxU7K0Rz3Ae6tkgLCFpQeRzVGn6aUEXd8oEWWJQn3BPAn1+ElVOhrVHtYK9ZBFt68Z56UZ3vi+jIh9WjTy0JHpYyURnerJgrJrGhZKQ0NDZUzL3rIPacO4TCii9wBar9nVbi/roDfrkO/ucFuPoZFe538WEwNR/NO62Yu40uToM6FjV6bG3w6PaMirWeCvHzHZCLW2BLf5h3nmF0HINxVoq5H7eFS+x1YaeLgnq+FhT0tJJnbludJI3SiYJwOpy9zGMefrf37lAnntGO5zq4nhMp5k4uVs636P7YoVEzMrCYeefbS+p/pdMSxtGo2dhYW11mzPEyjdOCeNx0pJhu4+TIcNykhB19MNeLPa669k/kNS9XzhPpfOHzkefcaKOmw9uFA3LeFNjVV8GDV7upHmNJIGWZ51zvRQ9LOFm33QpzzXNhvaLcs/txV8xKKOKRQmco6K6n+mTnjp2F99R2cjKOFDy2JHnSF0hfya3mvleSkK+x+7xW0XJmtO+Fz29DGaTBqPEgiHLOHSlVqtUU1P7mOuWHEYlrKuZmG8PlwIYwN13gIDyi7kDBvCbkjv7KYe2Tb8qNOhNSOQfguV2Vre26WNw4W3cGs0SbOefm5uQIiTPgG56RkjIy9JaiEEaNDksxlXT9/FLivHMzREYv2uOGFqy0WVALPxu7YLYLLXk4fjbs9mHDfqKCZlF4e3W852nPnT52k4p4EBIXZY2OqmZmhe2fML9cOW/wlOeH8hSFBlQExFYwBBMn8ggJLdEuaoMthWyL5iRtLSOkjFuZ6dsuPB4FTgAcP/aWa895LpC4pQAe2QUnzVQDkXOVEeQNi3B+tw2vr6Q85mHVaC9Q3vMTSwFrA0M5J1bStYHAMjzKlDvidXMHqTZqUXifKuxHIOGZHfCzbfB0APfthaNb4LWLoUGFrtOocsy9fJhSEnrNacwxLe8xHdikw2jdcN0Mo1WCuVPUfdHRExvExjrv3E+F6WvFvM+PHxfjEP5q1enQpPc7U9DcSdIoHa2jUuIURVjmOSOcfdPesjaUZqcLJ6/aUC7MuVGwko54iCoP63WzhvLODwYpZbjWyVEx/qXHTT/eG74etb8TKueVUDF39MnbCzAvVQwuXZTKILHnGXLMwvB/9rmhkuCoPU+1FAU5rwE6e8rHDiZtOpcgaZDWe44PPBIITvZllGOu97x8KSD3fDfuYa3lXlYjpF0/l3ccvJXT8LolbkdP6DkXHI6kK5BsCySBL/DD/desu2IZGh3Snt73TIM0YcSDE0YtRDLnlgIsNKq0m23UjEKMkFLMndiptwzY7zq8qI1iOFHHhKB9CqKE0kOyjGKTUM4cbSakct42Ywnc1KFac5lhjYlQdx8K/rgKLsO2RBPOo0Dg9JdwCiLu/W32AQ8LHelIAJ1Dkp5kWjnfbPw/fR3aKjceSpvUkzYdOiiADT2wbCa6xQOnzoX7d8SKeVlxuHEct4ywTP04UbUWIo854WIZfcZlYU3i+cBFC+HQeVHfUMLiU+TdRM5dVmGcrcThfff/90PgGCGaDrCwBbZUCLPVN94kwxRUdO6b6Tk/QUhyQRD2ehW4QkYedOfJF2GGA0unhUKlq8btyBmwpIXcXVvxJKo4XCCjUPfDSoKmYsAzIlbQTU+GzTsfPr+/e02moNJHeRu1qJWMUAIngYRHU1ErxYGoQwINLjR6OE2q56vXEBaEa8zheGp7XA48r5U6bRBzVHpJ4LmwrAU291Gm1Ak56nnnUocsaiVVK+m6VVy6+F1RhYVXM8wwve/ptbMHZTAz971IlvRVt4tMxbzPh1tfgHPmR20otcfc049DBX2x47AL1d5QOA6+4yAdVxlWQgWvVvLOf3/XmgP6OyklRSHpldAjoDs8eoWkIA7cc5wwphhjtwsVoNVArIw7MvaaR2HtHd2qGJwWaCCzGJwmvedp5Xw6qtVehzZEQxjSHhpc5rWodC7dbrVMMZ98i21JVu5M0hpIDgnlk6jOipR4L3SRawHmNlfwnBvyiufgeQ75nId3xCy89d14UoVV54Xg6EDyeLj+pnue33H3mknpJBgJWubMyjnfRqic67SEcO5pJV0p592waGqy0qLhNTc7WDmENZMMncFF2SvnOA6bPMMZpOs95D3EDAd2ZBjF9GPLQXFAyvnevXvZvHnzaF/LqBEEYTXI/94W9bLNPPqVUDNeYe6VFLwXw9cjSzSh17UY4JTCvGXdq1d7R9LGhpJSVs1JZoYJLkV5zqPrMBTzcTMuR229UocUsGEfrGiOY2xOngMdRdjapc4xi8OVhKrcnrEACCkpSSWUDAj1ODjIsZWUCyqasrBMbcWUKrw9Wln3FtQfXHw0HDKn3DKd93BcJ1EYJ+FJIqxaq6/Bc2hubVG5QK5qDaROmgJbB4jSB0wlXTApLZolQzgxBZXngSJwWCBwfRUOnfNDj3kY1s4jO+H4dnBTUQ6eC29YgvdMF7n1e5Wgo/PPQw/68b5gXUkkPPWRB5/xMYhNBFqntpR1lxAoD0KeMPeO0DAmhcp/1CklQsKqVNTK8e3Q5Kmj0VOe1wYvPprUXNTzcAWwwVUF4LRCJ8KOCcIBuWwc884DI6xbGymLAp7ZCTetUz+zosVK1XMfVlLydqO+36mkUrmEwC0GcTG/RHV2Ab/dDO1T4ITZkZHFNQ5yrjKwuA4zUffIVojGTued68rtuMDi6uedt7ZOGfHfCCnpk9AjlULeJaE7PLoE9EoYkByQJz1tTNFfwS7i0jCRQVom885VMbgBmNeU3Osg02sevRflOefR3uc60bhJwvEERGs+vLC+eH/T887sfT5JEDKukm56zgXwkJCcaNZVEXELtfxzPXiHzFLGKjMEWjsRPCPvPOfieqqNqHdkK96T+/CKvkonCiTHCcHTgUQGEunHnnMfaA7Xc0tlIl2XpMwpUWvZAgiLL8Zec93nHClU156FqbmnH2fUekgo5oZDaLEDG4mjM6N103Hw21tVwccsxbxOoo1qmREp50888QQf+MAHeNvb3sb73vc+AL70pS9x6aWX8tRTT43JBR4IvV2hp2Qr8OBO1TKnmKHQjnOxuITH3Nj4Epbo8HACFSbr+qmiRmnPeRSmr/LQE/nmhgV6CaqQRDH8n2nFfFymUjqc3VRce4El0+KQt6YcnDIH7tsZn6//JiP3XIYKeW8olJgCSo+AfnHgoX7p8dJjCHGPcwiVaWF47iLhXMLGblU5M9E71LBOp3OAIFFF00UVhduqr8d1OOakY6IQTe1NZ14o4HWGgoo2iEzSRVNqQUXGgoq+9x8FXiolDb6I8u7cQOKWVAs1b2sPdAZw7ExDKEEp5zkXpjbgvmYBud9tIT/ghwq+xAsV/ZNKgsdLAfgiYRgQxAYDy9CccuqxZUqCJG4nYxo0PT+sWCvCCJZAwtLZ0IJywV20QEWt5JXHPD5cvEaXXKObKJLjEHrOIQqFDsK8c+GFYbVLU3nn5lwb7ZxlMy1IK+frO+HGDhW2f8M2VXzSlykFPahaS9GstVOiDJvtpELapTJGO74sV84DCev2wKYeeNOysjaUXugtd/PZbSghVtDNfuc4DiybWvW889NftmpE50spGZDQFyrmpue8R6jne2WsoI/UGJgV7aDHTZu7zHzzRFhtV0ktcO0tcThEOqw9RaRHEJ+un19EaJh2icZOouZk4LqwoAF2Dag/0HucVswnmSao9xfTc649r6qFmnIiaKXcCyR5KfCe2Yt7eEssPCY8526ooMdyi5NzyXsu+bkteLNzqnJ7qCgeLSUbhKA7kIiwMJyeSieeeqyNHBsCc84Fqd+jsPZo7sURK55EydM+ML81Y+5RNve0Q8iMuNXHcsdhs+uUFYXzAdk+Bbmjt2JYuy0Kd3AMWznfsGED//iP/8jGjRsTi/zSpUt5/PHHueeee8bkAg+YC+bDO5bCAzvghuegp6Q2+MHC3AdKiGKALwTFMCSsKCS+HJ2iImnh0rREh0HPcWsSXfHbV4JKpJj/dQfcuBae3hEJXZF3ZMDHDUTC86qVu7nhc9uM/6/lSB06M+aYCrapuD6fUlx16PCpc+CFftjeowRfM7QxVM5lGLY3IGPvQY8IFfTwcU8owPTLA/Mg6LFKGFdQho4eVMRDlG8uRFQILso3lyiBctm0pPXSTT0OMS2ZWvEAJaDo/MmoaqZZwdYLN9FFTbC1z7C+GN/3JFPOI7sO5YLK48AJYb6dDkvXQktOgvvIHjhhFjTkDKHE9J47cOwscrOa8f60Pczfi4vDrfIFnb7gxVJQFtqnlXXL0ESRxiSVhA7UnNCihifjsD7X9Jz3+8r4984j4ZC58VjqbglNHjTlyDV4CcXc9JxvAUquDusjUYhRpPPOTc+rnoOjgAzD5BNzOZDweCps/7EdFeqtVKfTRVrJM/c9XUwzUsyExPGNNpTmmv9iP/yuA968WNUmMbpdOIbn3Mm5CcVuKUmjZhCmKASeE6cDTW+snHc+imM4mhTDPa1fQEFCX7jf9Ro/+4U6pyBHnuubnm/62IMRLRaE8017z8PIMXb0qBoyOkd5iGJwQFlanuk5X4yq2B6F1bqEOedKSZfzpkJnMb65Ep68yaWdpyPFtOd8M7AnkKwSImwZGnvOvR295PskLJ6mFLpKnnO974XPe56D5zh4R83Be7pTrcFCMj2QLPMlTwiBCEAEwnYsGQGmXG6um/tQkXfzAVfoInDGniclbOuF9lzSuKINYp42gybxKK9zpA3TGzwHSbz3RUXh2hsRg7UwrL0ls64YtnL+k5/8hGKxyLRp0xLPv/zlLwfg8ccfH9ULOxi8XBOsnAvLpsPfvkTlMP/HU/DcXrUy6JY6qcMvCPoGAroHBF2BVJ5XqTa5Pgn+KIRHD2aJ1lPGlVJ5DkIBxdE51891qnZcTwVw/ValqJv9X8PP4QmZ7F1IMu9cT/z0z7EkIVgmQtqBDV2wYnosoeVQK8WUPLx0FvxPynuuPUah0BYJKeFYaQ9Cb6iYa2FFCykjvnbiPd8cu93hczMwvD6CRHEOJaQL2NANy6ckw4yiI5l/N1hhnP0oPUM4sHff/tCSSdReTbkZ2tQCnbjh9Pc9uarX6jBys8d5gMpXfho4PgxBzwkVyu4FKt8811uEp7vghJmxJ0F7zFPh7bk3LMH7y17czfujUEE3ELQGksN8wVMlgSiJRGG4khVQhoWUkl179g3dRk2H9gkZKea69gPr96mq0WblWi2ohB50J+eWtaLU62Z7+PwWo9eyDmnX/c4z887149HKOzeVcvPxsXOT581uiw2YGeHt4z3/TSXP3Pd2EadyRYcfRhz5YY96vc6v74QfPAuLXVgZRrIY81Ar516DCmc3972FxG0oI+XOcUMl3cg7X9YGmwYMa5DxXY9D3vmu3fuGfa6UkhJKQS9C5EF/ELgc9VPvd0WpXi8yfO+5WWclLbMkxk0XYJREobVqchbjYnDmngcVw9ohO+fcQc3zLY6aa+panKidmnBAzm1SBgHIVBImixdPR4olPOeor+JBKTk5EDSIeL30Qm9rfn0f3spWtb+ZXnMjss/RxulcrKB7nkPOdXAPb8Pb5ePt6iEnJI4QHBNInvAlQgiCMPc8kNC5Z18YADQ5xuRAMNO3TMN0ByoArDksvqerszsyVNIFsK0fFoZGFrONWoVCjFBerT3ynANbHYeiGxeD0z/FvKnIHpTTMCus3Y7vQTFs5XzdunU4jsO//du/JZ5fsmQJALt27RrdKzsIZs07HBrCzbslB29bDmctgJtegLu3RWHgpue8VAjoLQT0Dvj0DPj09Pt0lYTywspYuTsYBV1PsKzNzqzUrltxae9BpOQ91JF8w0e2JyvQlwROUeXruUKWhYYtI67Ybgq5WnEZU9KCpVa2hYANvbC8xfAqu/EictocWN8Du/uS3vPwvURJUAhk5EEYMBT0bqm8CQOhkDIQCiojHUMpyRRU9LhFi5k0woz0uEkJu/rVLrlgmGFGZIcYTUP1t9wGBI7DXb/6Q1ScKqo87ACLG1WufiWL5iRyJCQK4hjCyjpgvpDMFyJS6FS+XFjY7ZE9sLgZZk1JCiRaodNHzsWd1kj+zPl4f9iCV1LRK15Yvf2lJcHjYY2EIGwrE3nyrYAyJBK48cY7MtuobcdooybV2GlPQqLew7NdcOispPfAVNJDpSErnUQLK4dg5J07RksuR+Uwk5V3nogQGoUvIx3SHgg1x3ON6vUjXDh6CjyyV0WCZXnPdZG1cSKt5EG87+k2lJGHVEg8GdZ/MD/n851w03b1x1sEvLA7sw1lrkHlwUbjGL73EoyIIx394IWeV0f9VLlfU6uad/7TG+8Y9rl6+9SeyKKER4B/AFaHP/9MrJyX5MhSaWTqMHXbqMK+DqsN/0Abx5RynioGZ+55OGXF4DSmkhDdFxj1Vly198lw3kmdWjKnEXYMgBTl3rvRmn91gFbM0zVWBPCwkJwSGo5zgqiAmycl3sbduIe2GR4Bc410cbSMokPbw1aFjquU83xDDvfI6Xh/7Y1k2GOE4JlAIkoS4Yuo5/ktv7gjyoG3ZGMq5Xr9hDikHalrPEicQOsMhJ7z/SrfPAq9NBR0t7wQI6QUc2P/mwc4rsNWlyikXXdLCJo8xFRgZ3dlWdNywAxbOe/pUVbJ5cuXJ54vFlXxtb6+vlG8rIOjc9vaqEUODR7kPHjpHPjgofDCXrjuKZWTGxaLCwYC+vVRFPQXA/oKAb39Pr2FgL5Q+esNFfQDEaizKn7rYzdGO5lw8dR5k64pJExJFYw5em4ytL2k8tOdklIOPGRio1tCsmK7qasJhm9VPyDSuZhacd3Wo+7C+S1xOJVWhnKu6i19zHRY0xmvWIbnPPAFpUAoJxFKAe9HeQ7+BXiIpAehyIGF90nKF8o9JNMRokiHUFBx9Gfe1KMUvcjokPLeZVWtTXkPzND2beHjt/zt36jFUheF0+FLC9tUGet+f1JbNLMK42hB5THghJLALenCOGFf80CSCwTuI51w8uzYa54OhTZDaj0H77hZ5Kc04K3ZpTznAhxfcGxJsN5XwoksBpGAoq/HCiiDI4EPf/TtidA+ffduR3m1ARX5IOJ555nrxHM9qk+9KXhGXqFYWInkGJJz0CHOOw887TWPCzEm8s6zCjGOwpxTkUdB8j21wvjXbrVGvuUYeMMhMKMJ7txKVEhzGOHtMiyk2SckvULSIyT94uBTuiLljqS8JomNm/o7dsP6GDryqGLY/rqdmW0oXd3tgqT3dQnqXtHzLa7RQdTvPM47LyoDRhXyzj/98bcP+1xJ+HkMRex3qXN+TzKMWCvow33/tBPB3Pd0rIZZkCrZ47wf5lcoBpeRb64xFXJzD1wQfsa94XuJcEMUqDGU86aoD9nrV4wYmwyYhl/Tc/4isFlIXhooT7knRVSpPd9dJN/h46ycnjRgmofGdWIFPVTSc64qDJc7vA3vmT14pQBHSpYKSVMgeE5IRCARYWG4d33k7dH1WbIx9zptmJYo2U+FtIf7nTn/hEqDpTOARa1Jr3lG+qRJJcO03vs26/0OVKSmQ9hSbaqKkslSzGswFaieGLZyrsPZN27cmHj+jjuUtXfmzJmjeFmjgK7Gq48GF+ZOgfccBUtmwH+uh8d2gR9QLAYUigGFglbSBX0FdfQWAvoLAf2BpBAqeQeyqKQ3u7QlOsrhkmELJyGS7YCEhN1FOK5FuXEAtoZCRDEpfKmq0QGOLxIehKXEhXGi+WNcz1gpClJKJbSmvRES2NgLh0wF1/CWuxi5asDL5sBf9sP+gTBcM/ac+74kKIVW2VBBfxT4PHAPyoPwKEkPgxJqhj+IaY85xMKlbqOGCPPNzZB2/UcbumBFW2qRdCoumFpYjbwHTvz8ItQYSpRQ4jtElTSFfs8mD2Y6sDW0aIrUMUkWTUGqEJyMN7m1QvJS7WkNlXI3CPPw1u/D9YC0sJJ3Y8EkpRzkPRf3NYvxHt+Dt62LXCBwAsGSQDC1JHguDG2XvkhcjxVQBkcLJ4m1E5Xa0Y3RRk2oNniJYoxSwub9KtxEG/8SeXgkBE8z39xcirTnfBPhXPPiit+6W4Ic67xzIZOe88jQJuDpPXBEa7xuvmkZPL1fPW/mbSfSn+IOJb5UhTR1C66oXkf43IHW6oCkQm4apiHOXQYjYkyPn2mAWDEr+aYnzs/0nKc7XZj1VkB5nQTK82rmnUfpQDrvvFLU0Sivm1JKZKCMdrLfR+q2qMP4P2lZQgLnpM55NXG+cUkqw3RRDs+5kH5vPXYF1NybDWHrJhKKuSNR9X2KwDyjGFxaQa9A5MFzjMdAE2qv3RbmvQrDgyddhyDvqaq6OwfJgZ3g6FSHhOc8PB6SkiN8wfTQ2+oFRMq591w33oIGaM4lZRPDc65xzHaiYS66l3fJuw7u/Ba8Ng9vU1cUbn2cL1kXqNpAQSCiwnBRBfkJYDTRrQz7Q8Nmn1D1qg40Ki7dRs3c97RyHhVgDHTUZmgY6+iGRqAtXyGFMnvuDWqYdh02umq9lF7cUi0AgvaWcM6RnGvh/ltvKZS1dL3DVs5f+tKXAvDFL34xeu4f//Ef+Y//+A8cx4lerxm059w89HPnLIQLl8AfOxD/tRG/z6dYEpRKgmJRMFAIeKIv4Kr+gHX9SmEvDvgUSkJ5YBn5omJucNL4HVLhfYFU/c0D5YmNhJR9A7DDhzOXwoWr4H0r4X864cndsYIehra7RZWv5xUCXD+IrM9Lw//VH/5vM1RUPx4TdAyeGaoYKef7kopr5Dl34pZVs6bAYa2wZlf8XmE+ovAFga+EHG1ouDP1739PeY/pkRgi4siC5Dianh+VwxVbMh2hxg8hYFOfykk1P2O0Gmb0ezWEzHSY30KUci5A5dq5DoK4Z690CL3n02DLQNJlFXn0xj/vtBpE4eypxzuA3YHqxRrlm4s4xC/3UCecELZPyxmHFkgavLIcdDfnkp/RjPvydrw/bcX1g0jhP84XPFESyEASGOHtJWpHQJFCxkcNXI/GnG9mHt52VHeLNkIvgl4zBaqNmvYqr++Bw2eqnOK0USxXLqykFXMvfH4F8BzExRejsHYj73zp4HnnB0VZSLuMI4/6UPVVHCeONnrjIvjNVuguJupzxP3R1V4RyDgqzFTItbKui2n2HaCCnqXkCdR9/yJxodLIuBnE1fYjj2eXqxItj/LgnYtUtX0dWht6zc3Wd9qmayp3i4lTuqJe9a4btlbTa7I7bnnnMpAqV7MvbI/a70NvKXxcUor6IApluoJzABwNvCl8vRk4AiJlTRundf2NIa/PeG/z0HVWpkPcFUESFWJ0pFQFXGc6qsBr2X6nRf5soi2SeAz12SrvXJ0ljPoPkWF6TgvsnLxevEjMIll4VAB/lnBi6DjIhWmTnpR4QP6ZvXgrZ5Y7D6I1MvWPcoaR2nVUSzXPJe+4eIfPwXtiT1QY7igp+Yuv1j8ZetAPVA6rRUrasCljo2a3UL/3CCgcwH6a3uv0bQxxWLuq76BlTV3IFtVGd1ELZe3wIo27gnI+iGF6GSjlHKN9qE4JWtCI6BwkrL3GB1hKFR3WF0aLqRpVB2dcGS2GrZy/853vpKGhgZ07d0bKxKOPPoqUkoaGBi666KIxu8iRMn32IdDoKm951pFzYOUM+MhRiFKA/5OnCLZ14fuCoBjwTH/At4oB9xUC/q0Q8PRAQFAICIo+fjGgdAD3XJaQIlFW6CJh7rIIFXNB0gMrpfIcL5kCzWGV2nkt8LbF8JttsKUr0QPcLQSqDVugPOheWMF9JsqotpV4c9cybNqbP6rIlEKuN8uir0JilremPMokQ6pc4OVz4bEXoacYCaoykOGCrzySUkoE5R6Esynv+Tns8L5wglYSVJJVa438Hz1u23vVCe1m2H5KScggy3vgoIRMHdZ+32/+iHDd7PzJhVNg6351YkIxNx5PcPQ4p70Ij0nJMb6gJQiLJwZKuXMDQb6zD29rQRUijKrUGmOW84x1JPbauXkXz3PIHzcTL+/h/Xmv8iwFgiMDwTPamFRSa0zkQajy/iUDgdTdKvpL6hgIkKWgJpT0QMKvb11dllqSaKMWeoNcmYpckQKeeREObYm1tkTOucqZNEko5sb8W4JapztDpS4wPHdBWCRnqLzzAy1KJUPFMKGY+0J9GX/tgaPaYuORrqZ81Cw4og1+vYlErQ7jkIWAfl/QJ8oLanaLuNp3r4jrdRwI5tqpH+8JX9ORRyp3UkWMJdrgCQnP7IbTFsCbj4ZD5yb3hly8hmr501TS9fNLCHOWIa6y7xH2qyfed7LyzhPjeWDfgYlSzEthh5ggao1606/+GD834EOxsjFAK2JpJboBeFn4+EnCHGRSoe0M7SHSW7UkKbOYxWt1UTFTQXAksL2QXQzOHKAKuGHF9nR6goNSzjscJ6oWLRwnioQQDkom2tWXuujwHqK2jI5jQWTwTe15/cDaQHCKb3QjCVQ6V77o423uwznMCINOyCgZzgO9DxqF4fKeg+c6eEdMw+ss4O3rwxWSI6RkXyDZ4Ss5LQgEd976h0Tl9npFpQGFHYFCQ2aPjBVz/ftI2xiauoK572nP+aIw4kF7y12p90Bgaw8smpqs9RDNP6dsvzPJUswhTOlynUSEZuCgWqq1tyBfRKUCZRrEaneARWiYNiPG9NEd7oXFKkbcDFs5X7JkCf/2b//GokWLVNhFeCxatIivfe1rUWG4WqDQvw+a8qpXdtp7ro+8C1PziLevJDhxPvKWFxAP7iYIAu73A0p+QHMpQBQC7i8EBCWBKAhE2BZppHnLplJnbna7UMLfVIiqZzoyDml3/FAoe7oTjp0RS4s5Bw6dCWe1w00bYV8hUtCdkiBXElCSKsTdKBC3DOVBgKT1XXvPxwRT0IoEHqkE2TZUOGE6F9Ssiu250D4Vlk6BB3ar9/AFsiTUuASSwFc5TRJ4CaqtMcAZwFHhZz2Q0Pb0eJlzVVetRSqvjxt+rkRhnE1hsbtE2L7+nFS0ZGZ5D7QHqCP8PAtWLgnbOjmx0Kk9E4talOFD917WxgItYE5wQUVImWhZpj0KAhXSvir0akft04Rqn+Y99iLuMdOTIX6JQnAOjueGtSycOMIj55LLqV7L3qsW4a7diburG1co5Xx3SfJiSd2zKv9OJLz6442UElnUnjvtsQvCI/TmDQzuvUsjwvC+ASO072BzlgNgxcoliRw8idHrFaIK35FhLAiV8519yqu8dFpS8DS9Qin08pquXtsQ/r8NkMg71xErvoPynL9QIe/8YOackHERTGEcUsBfdyklPFpXwjXTdeA1i2FPP/x5d2Z4u18SFAsBA4GMlfNQoOyVcfvJgnGM1JuQXjvNfW+m8f16QbKYZjRp9w2oHMrDZqS8ejqSxagZkGrFZa6fSzA854RrpRlxpL1KSzPyztPRCgeBlFJFLeguMbpFar/P4Qvmh4p5+HpBKehZ75H1nep5sQw4CxVBZnaH0B704RSGSxvD9FXsJtzzQgOYC1HbUN1OjY4eaJ+SrSAMUgxOYxam0vueQ1wUTqVzqboBkcIAyPYG2NVT7sWDSWGQLpHynKMePw4sCCSLZLzXaSXd29hNfpoDM5vLFfMKaySQLAwXKuZ5z8FtyuEdOg3vmT5cCQ1CcnggeCpQXvMgECw6ZGlkmPaprVDi4RJISb+I18g+GUcfaQOnXlNHathM73VaTtdRK+1h2pQrRLhmasOYgK298P9z9+dhchzXmS/8i4is6r0b+w4CIAHui0iK1EJJtiRLlsbSWJZky8vYsjUej31nxuORvs+z+F7f2e7nx/KMZY/tGXlsjazNoqh9pUSJWrmIO0ESXABiJfa10XtVZcT5/jgRmVnV1UCDaECaG8+TTxW6G1WZGRknzjnve96zrm92UuwMQFAanYnNxBzbAExYw4mUEIuBeTAQBmqEPrqXk+iNmv+FX8QhMTCfqux31TaUE3EOJ+VHF6Bn5/LH1113HR/5yEc4cOAAp06dYvHixaxdu/ZCnduLHtOTJ1Rdsjf1zfbtFI/K4VuG8NLl+Ev6kO/tJxwe41WvXc0j/b3MiNAThFeJ4B14A3luaDUDvs8hImfdaNLo3ETTUc1Em0hpt7GNWuFkHp2CEwJXLKIQpXKAeLh1BZxowKe3w69dBemzrNJUjFiyWtzgejI2WMOeynmkuhZvLgyCJyK09eYtnEtg9xRsWjw7w56ye9XAyAOvXgEf36MouqtpkOMFyQM4g+Re60GNYRJ4B/BQvNZiwzIl5SucOYmv58/sOUv36SgRORcKBMEK4CvB+e4xuHxkjvqf2chdGskpKQylUKhnguoUbLxmi1KkUx1etX5yaRTjOTwB64crNAkpg3TX9av/XzGqQnDF+3g8lQu/7EN0UKI6uxeymRz3+EnMP7q0vPFVWnuVBl2zqFGIz3JN69UzEeyyAdxNq8i+fxD7c1voNYEtYnimaVhqUfTcgs8MLWNpGaifgy1ZkNEKGoRXux8EKZ/NzERnVpCe7IwZdxEpxBYbUto6ayATbZzRi+DO8fpSEHLltVsYD+2OygFicF5JjFVRcyPA9nG4dEDptZ2JFqfrr3MUiLlU2Ctx7V0K7AZeFZNgwYF4Qx6RWFbGuvNDcc11Qc9f1JrrFiQGgcNTWnh/6aIy+ZAZlO8rmmD62Uvgk/tU7Gxlf8X2BHJrIoIVyGtOO1qgzvxdwFuAW+Mp1wVa0XaexcdrG51BXnJzisQmMbjzQduHBmlnjG07DZf0dU+WdXE4i8Bc2oPztcA9le8vRf0o6s6NARb3KCd8/xhctng2VdPLOXpNHaNSUkArFKVoeOGG9Rs0MO9JNwZwHsliQjCO6j6UTin9/BBwC/Ay4PeAfwrUqNDa4x7YkrnjrvRZ3XyW9vZ3ZQlXld7OkSnViXkRAQJ0WYOUyPlXofi8AO0lJiv6cceqyej4gSkwF+FMlPr/nUdKRnci5wFVab81loykVp+ZxBZqO8ewly2bzepLa2wum532iBigWxdwxugWefkQ9jv7cbcsxQa4wVoe9oHXBYv3wqVXXlog5z76Yf+7uSJ5Zb9LnYKa6D03qL0M0YlLWFom89sDC1ND+xo8iJYB1YIUZZRIiZ6b0009idWDc7NWzjAM7fYzrb2++L17rWFFNTC30Yau7IfDDc2AdgbmP0pa4BlGar9c7eaUBDad0WR8SmA60ETWxfTPmCdy3mw2ed3rXsfrX/969uzZw9q1a7n22mt/LAPz6jDGYOpON/Y+N1skrtfhex2+ZgkrB/E/twVZOsj6O3fxrocP88Z7d3LLvmNsElUF96nG2XtaXs4Jae7Mcqdn9hgx4AqC8V6FNEIKzpXizrbTWnNdrzgodVvWvP70Ouipw2d3F/1hXcNjW+q02jyJxAXWi5SCYrSfj56jsKCjGzUwbZR7TkZUmXZEy5q2VlUFErRuGNb2wEPHlCYaacLBg+SRNuqFo/Gr34qiJUmptzNYmw/7oXCEOhyVSXQjrArjGMp6SZOopy9Mq2OcjOM8HZXODGZBtSXW3qVzqWYyI4pQBB7r+2D/dHcH88c0o7lQo9rXvPp+exD6vGdjntaFFMI49qlT1FbVdHNLCGSV1t6B0rWVyWQGW7NkLqrX3rRY5+ux09ggvEQCz0QxQ58YH02PF7noe5j4SoCQkLsKgqetJuPvGvo6F7ohokKZRa1ypISlf09ImZE+5xaGtAfkac9PQcgaKHubR1p0qvMnCDx/Eq4YmV1LWbyf/Z0Jfc1oRw8MFcV2U9L61EnRxNiFqDuX9P+qQXl6YJ4d132hM/lQtZ0bF8Mty+FLu9qEQxPrKM/1OczzQBMNzP8d8F06xDSZPyW6Orqhu0IlsQkQ618TYyzVnReU9msXt89hldLepSwh+sSzkPNkM1Vx2JSq7Sm5Yo3Wam4a1rrz6hwuQN25iLSJmRYB+oyHZw/Dp7bCs0fKgL0Q72v/zmTCO/dwUD2NNSh6vhH4PhXWGPNnjpX+QHti+hhRJyDEjhReGXlFQmU6Vx71qjkChDMk+dKoIubV9+vRpHRuKBIrpCABkJGY1TgxXfoYaZ+rBg3/G43EUA3x8PHIK0crJkfb/JuKn/NIEG6NAnCZCC6yUzIfcM+OYrf0tzscFXbKnOBBhzCcySy1zJIZg1s3RFYzuH2nsSJc7QO7c2EmssbyVux7Xkkm/O80qsJ7ObqeZtDH/iHg/4mvqUNQYh3NFz0PtK/vtMYPoGubQGStxKA8+px2/wSszNrKDQq/8yxaDzAbMU//HWCDVVE4oq2slpXk6wY1UVzdpIsE2Y+fvpGIFOKYqcVygaATWWOhwhjjxZd0nc+YV3Ber9cZGhoCYM2aNRf0hBZi1HuH2v5tnIWebBbNPfQ4pMfh6w6pOUItw9+2ArYs5ZUPHuXtj0zwa9/az/S+Y4SW4H1UB8+lEHWa76gusm6Z6GKzSyrt0SEwEmDbMbh2pN141mwZoNcsvPMyGJ2Cuw8pchvbqZnYb9nlAdf0XNYM7IuLJW3ynRvxgo5O1Ce9H2/CSYFNIyXq0w3dqtLcnYFXr9S2as1cUfOgtUwhj3XneeCACCtR0ZobUcSkCNQ4N2p7mwNUMZjHUcM1FK8x0WoTem5EVDmzBizvmzszPcdINrXTSYFSsf3w3oNl/aQtabbFH68fUppT28kno/nia2B/3IeIFFTOKoogaO3dDXmk9Ilg81j6EQK1R49gb1rRHZ3L4jNYGQW9PQZCJrO4Wklvz16zBvvUQTg1yWUhsDsP5LGtWhIyzFvh4rdUa8XAIFFIUoAwUwnU2wIE35Vemz4q0femJFLBKvS+aj3zjJxb8i/Zp317DrYlEKGsOSfSM4ukWEy0MNmCIzlcvqh7YN5FiDGNzsA8BXiXoa0osWXdeULt2urOd4+1r7WK/TvnNSfpIa7Y0NTf/LmjcFXHvlAtB0qJpZ9cpX//g8NFUCixy4XPY5KzqTWDd3V8/VepIK5cGDFNlxDzWJZQBOenIqX9isWzgoa55tBQJlOqic3ktRyN3691y7HuPDqbs+rO0xx2K1F4MaPg8pZJEloBnj8KnzzIrq0n4OP7YfuRSi1OWqvllxZOe2XvFtSxnKJsL/gm4Ou0Jynb9r85HsWztX1dDkVXBCMxUBD1YTg0DiOoj9UNNZ8H+tSZWEnzmZT9Dxmdp7TnCZXk2KoaHJ3Ws+0MzH9MUTxQmnRV8Tu1M6yWmYwHTXRWa2RPx9eJjjWa9rzt+uFcEbUcXExkZiJkhyao5SjLJ/knbTbyLHNVVW13BucMmbM4Y7GXr8RtO40RwxKENUHYFm3Ngb0HVXMFCh2g/51GCp47fYzH0cTmd4D3AY8Q2/dKSW2fT4K66o9X1+ABYHVkiikrVsq1J2AOzMCaOJfVMq7i/Zm/NwkRd5YFWZQ1tieWknhT2szcgKzsQaq9ztNeBednL88yJMRuF+mY595aLfNpUQbgjwB/BDyM/rtovyzz73KxkGNewTnAbbfdBsCTTz55wU5mocbQonWzfmYS2tzjiqBWapY8vvr4KhYYn9QgtQ9qYzC6fZQg6siEoFm/VmzfNZ+sUGeNGJSLLiEINg+42N/cBP23DaICDxMoxa6gLkZUJAUGNQcDGbzrcnj0ODx6TBWLW1pvblqCa3lsy7Oh5RnPAxPQ5vCGaCQX/PGrOhmFoyPqwK7K5t7E0zUmBCht7BtHYHkGj54gBMGnoNwLEh2fI0EKZ+xVwA/o7qDMR9ivG+qTnMtVVGi1IaoNJ1qmoCrtlw7RVSnackZHpbN+sgjSKUXhnrznEQ06nW1TrS2o7et7y3Zq1WAhGdCLa2su2gh0iOLE9yEIT7YCN/sSNU9iYtm+MdxUwF65pD0QKCjtrjuKUE2SZYZabC3jnMWuGCK7ahX2+0dYHQIjPrA7tlQLCT1vKWp5rhoWL3aIF8hjPW01SGh6DQrueAKeOTybdtvUNk9tnxUz0IkWNh2D8XEp67WmomOSjnO5zrTu7vv+I7NYKxOoo+LyyA6SkrFig8D20+qo92WzHc6zsVY60IO07jahwck4SoX2idZn03tUtLNad56Ma3p/rht8VDqeRWk/NgWngM0j7cnNKnJe9AC38NZL4YfH4IXThTBhcUQbGlqB13WcX2rHlb76XESczhTkJQQ2Udpn63UIPH1a72fv/CjtUGEYddjMDE3m7KucT7AdyPkFrDsXkfYSkup++PAhAL4ztU//+JFD7cr68X1yPqv3tLo/HSJ2UYrX++p4vTuJqu107H/pvDrPtfK51fdQobUntko6YpDAwebcYnBpMZ1lVBPSlvZ5XAvsN8RkWFnOlWOYNjC9ZohwpFlu7G3slR+/6DyIanRMRLvZ2c4wBd+n4+/HpP3vqsH6lJR7XUr4PhiEW3zQbiQSKe1e5yrbOYW9fJhCD6fzOAvLwTijwnDx760zZJnWn2dXDeEOTuImZlS13QvPeSEE4bF7H0F8KJ5BHwOfHzeEda4hlH5F8R5NhFXHV2hHzdM+eabrTKLGVZuZ3h8C1gplnbmPoB66FjlwWuvN06Jp63M+dzK6OpLeSpWpadC6812ugpibMsHpV/YTquUkswLzhZ1XCVEvpxG1cSZahXaONM7eijKdVjU59Cjafvm7wL8BHqMM3tPrxWZ4zDs4f+UrX8nQ0BD/6T/9Jz75yU/y4IMPsnXr1rbjQg4R4cMf/jDvfOc7efOb38y//Jf/clbP9TROHH6m689Lmrs6baFX0fNQ1zZroe6QWsbU5YtpDqM8FQuPX7pIxSyCIl/eR9TLy7ySQp2LrErPPAqsrAR2GpxLgaTz9Jii5lmHAc0qQUFSjl7SB+/aAN84iNlzChdRc9sKmFzfj+SBZS3PgbxsPVbN0C0k27lNZbgNuQV2TcDGJbNR8yozoEopTo6mtXDbKrjvMKHli7rzUFA/A0dbgdXRAL4MdVAOMpvanjJoZxpVRkGaQ6gI40hCy8v2aamtDLtHFUlLjknVWTlDvXkaVSczGUmDIuf7gdf9ylsByIlG0na2UxtSKGW8ORvFS3Pz/8KRDG41oPDAeBBe8MI1UaXdhVAIwWUPnyB7yYpynRWJIVMeXYbS28uEn430PpdZnDXYmxfhgodnx7hMhG0xEPJeE0s+CnP5SFu88DenEhxUA/QdR+H2g/CMh08cUHrtrP7YXinx6aNop/Y1RB+3h4D/HF8TYl4VFZvvdSZT8c5ffWubI5SCkJHoqBRK3z7Ro4HnRlUwszOgS7WSZ1h73QJzhwY9S1FRuCS+GBKCFwN17cqA1p1LJQCrBnjzHF0p7emmPDum9fTVUidnaSsJqtLbVw7Aa1epensj12ewFYPy+Eyalmd5BaF9Gx1impwbtV1oR8w7gzzV6xAcqtKedFaKsoTnjsO1i+ZNaYd2xlEnNXMd7aJweUquGE22FH+c6s4PjM2d2DzXEaSd0p7WnRdwSsf+xyPX699et7Krun5Cz7tR2pPznjRJLCqK+pOofkCgnL9qbXK3HUDo4rPE18PAigKBbWeKWUGf+9VziMGZs4vBwZlZYxqcK0oeQBWjBaYNTBiYXNXH5IkpGiT/ozJ/wo8VWyyVBCV0PAXoxftQClQVrQ5DpVyo8rfpb2aknFcBHhLh1qAlks6Xyt41EbIdx3GbhyuZkKoPdnb/BICaKfZM6wyZjcJw/XXchiHc05NYEa5F2Oa1w84bfu7NuvcFpbY3qYioBaXpX7T98EWMKmOlui9d0/F3r6dMirXidTblzD5n1U5Wa84hiqBKFD6tJMVcBBs4ksPagY6g3JTR9jxGNTCvJsY2AQcMNGIJSUjJMcCP1BEHHJ0sE5fpxlRLSxZgSBAFDKZzmPJFp4skYKtlNS3VoZpjdM5boHv75WLe0sH8fZeFGPOWNvnDP/zDwrD+7d/+bde/ufvuuxfmrLqMT33qU9x55528//3vZ+3atXz0ox/l93//9/noRz9KX1/fOX2WcQbpdbFWVw8fX4PAC+uX8/BPCb/y3Elk9xTbhwZ4QxCyXAiZ0trzWqzXq5mzCgVU9oZZwjgngJU+QF4KwJk8OiohwFMn4O2XVKiLtuJg2goUH79g4yJ4Uwtzxz7cb/VilvTFhWZxUSl1s8ABcq62taJeKz2wYR72eN5DpExPVZ3TEGDnGPz84vaNoXCiLcZZpOZ0p8miM5McqC2LkaEDhKdOEm5arvXmVvAmIM5wIg9cXbNYZxgEbkKp7b9IF2q70QVn55jDbhlMoQzOy3IEvb6E3pmWVxThrYPtFKP5UsYoA/LqK5TBeXF+1uCjJS3bqRllVCy3yr5Y1NNOz/wxp/mdz6iq1hbCODEwXhsCS0MZBDgfsKPTuD2TuDesL9HyNoTOnjGYM84idRWHS230Mm9wweKCw71iFfY7L3DTmjpfGO5HvCG0NJniHfhmIM8MocfNP1v6IkYhzlgNEBIS+P1D7X/82CHYvELfJ2ocgPNIj7ZkKVAaKRG5x9EMNGgW+r+gomJJhKoZX3vmYWc6A4P0uB4ktlFLTKOk1h7n1bS8slZev6Y9OKjalzOxVoh/JpUEWTSzG9Hg/EZj9LkqkFfIM0OPt9pVYu+0amR0Bgg+wHzlj5Jj00Zpj/O1/Ti8bHVlX6gcNYMqnVW/V+DW5bD9FNx1AP+WDYgJhFZVfddwwMIlznKbNWynXD+dYmLzEXHqFtxVA8kVoCJwPjqcifnwIintEBPwIm1ifsnRvISynVpRd15hP4iNrYaqdeeb6Ni7dP8SmR8SVYyilKQSlHtRdH73DLxyBHafjjdmRP+u7bqNrj1nlSFVCRDSnnSIsoOBi8cbgX8PvAd19lrovlePa7Ep0NdxGWmeOn2W0/H3qUOJssZKWruKwU3CLUu7o+bz2PPONocO+CJwrYWbrKGJ9jvPrXZMyFfUaT04Td0IPUCPQJaYbNVI58dgpFrXKYGZEAXFKoE1tCe46Pw5c/88R5/1o7lwo1fxt4wSOXenZsiOebhsZDbzZp7+CVD6opkFF8ic+sOZAXflMO6+A5iXLmaDDdhg2ZsLl9VEA/M80HJOkwoGnJQJtSSiZuNzUA0aL6pwapdRuLSUCCzo+lqOJo5Hgcsp11uGurEzlOJw3XzOtN6qCbiUWDuCtlErfE6hTIwdmtASykU9HWUklOtwHqMamNs4Jwa11ZkxvGDhisQ4Mspa8cEys76X2tEZ3LohZe2mB3cBGZoiUpbcNX1ZIiSU11kT3fusR4xRdkfHZ6SAvHqP34j6K2mk9svVPa8pKhQ3H99lIcY5+YLVFmqdx4UeX/ziF/mFX/gFLr30Unp6enjPe95Dq9XiBz/4wYv6PGMMvu7w9YwQUfM8s0hmOGANZt0yeN1mzOXLuOW5afYGpeR4r6hXyEXpqPPIChUbXJcFdwpYnmiZHeir3Re3ww1zGNBahdqe0Dtn4Mbl2JuWYz67EzeTa7DfEmzLY1qeDa3A4VaARk4I0oaen4vI3VnHXJTAo1NqtdYOd6e/pQWVFLKT8a+0VguvWEN48DASQlFzTkRfjvjAulyKrN/5UNvnclQK5Men3vRSGEstRxiDfhSFqTrQ1fdnGVVaXxUNWouSOk6nc4sBebCqHJ2nPzYG1i6C/TPttI3CKv34iXWc7wiRFtZZeydBeCoP3NyKCGsIse4c7BNjZJuHcUP1Ln3N9Zk7q0NQYbLUahE5T6+rh7GXrWbj/ccY98KJiFaGPOBbalPypscvJG2l+80p65dTYD7Xwr9iuQYOVdp7K7QJxHVzUjqpfV+jRAyq4jjzyUAn5CB9fjWwWwtFIsRStuCyQTC7T2tvyuV9cyPnZxg21t51o0dfigbnmhCzRa15Hh0WMWhgtxB157NqzeNxagaOBdiyaI59wc1GztPr2zbBU6P4HSfxIeoftIQQA8cDrcDmpuc2ER5ByweqYmLVhMzZRjfbCVoWIMCyEJNjPvaoT8nNF0lpL+aPdntpKBlHeyl9xYIafYHrzsUHLSXpnMcgsPUEDFt4zSXw6zcoG+I7h0rvsUikSbEOk42rImxCKQaXrtcBV6Fsj/vpwoCQ7ror1X2uyho7hhIK+kJVob2isD+T6wOz6gy09nmOKnKX5nBbvI5x4A+s4SkMU8AUhhmBaWOYXt7PVMsyOZMzEbRue0ogL+bwx2O/86LteBuigXlSji6QcynfJy2BScqSnvS++vP07yl0Xj8rQk8I7IssMZuXNee158fJ1vaqFlPVNhbrbH6hQZswXNJacQZrDG79MDaA3T+GFeGaEHgiaq54L+Q+MO2l0CkpmAORGZCo/ePxfWpvVW3T+aNA1zsZp+nYhQJBH0C3n68Sg3PKva/62m10rr30/kj8/TIvGKSgthc15wdmYG2/JhY7GSupXGceI623lCCprr9N1rA36qwkMNMbwwwwvm6EsVPNWNImNEQ1umQh/cwq46ijDSXTHVo5MYDv/N5ky5LNTPbtapR1tDr+3QjtrIeUZDlXQdTzGfMOzt/97nef8fi1X/u1C3aSExMTHD58mKuuuqr4mXOOLVu2sGPHjll/v3TVVbN+1jlSbYfPLL6e4TNLyLR2d5+1rLVG95LLBrl53yGeyQMSQiEGl3ultfv87AaiuuCq70+gG9zSGFQWgV7KSG8bg2uWUtQEdVLbK/XzbeJwzsDrVuGG+7Bf2K3Udh/F4VqBS1pK/TbNuNnHAL18YM//4WtroVY9BNg1qY5XVVWyel1JETs5mp1OmTXI1UsIGYTtp1UULkDINRs7mgtrvMd5Fc64FRVQO0Ck89HuZM5FM+pWM5nm8ziwPNWbQ1F7V9Sb756OYne2C2VsfsayaiirAUJ//P0ffeLLPIGidz625GpYw7QxtJKTua4PDozGzND5OZkXY2hLGKW2teL7RHGbTyIwUCK5bcFjLjztheu8Uvxsnuhgnuzxo2QvWYTpRCFjX/P5JFJU00LXo0sBeqT6OWOwN49gZ5q8cddpno1BUd4qg/S8FWg1PHIhSw1SprkamHuB6ZZ63m9aDldaWAw8fLqyEXaKw3mkEdrqttL7N3R8ZVsGmpLed7ZykrT2PPCZj325bR0eICEIUeshJjMTpd08PwGXL5299hIdep6iVFklwEuBwia0nZoA4krkVYP1at35FOdTd17Yz7YkSlzDT5/W9mK9XRzrlFCqu+709uEe5C1rka/tx08222jtxKTtxlZgfR5YR3sryhTczZfa3i3IC+ijVgcGi8Cusv9Fh/PFUNrTmItxtB5mdSrJXXtJUFvd+cEFqjuvCi+2oecBHjgEL18N1vKhu74Fb1wHT45qctdX/j4PkGsSRbx0LZE7TNRBQZ/XWrz2nwK+yezkdEKDOvNyncmUtPeVpVxl6VZxBMEcntCopPfFi8GlUS0rSXNYFSsUY/g7B00MDQzTVhPW0zXHzFKYPj7FlEikfavA2nQA/2NCa0+tuKotKKtq3w9TKoCnY4YoVAWMoQHbHuAZtGb2B+g9+gLKWPquaFLij7zwfIuiJVQGuB2nsFcs7r6+zoEGDVAVhtO6c6vUdmtxm1eR7RjHClwjwrMh8M3Pfx2fB2ZyYdJLSdmvBumhDNLT+zGJtfeVgF2p/+orXIygSVXz2wP0tD72oqKhNeCfAB9HwbcWpeJ3tbyrm8BYN0ZMILYODVKwQEylRMEKmBcmVAC4GpRXy0nmmRgrHgfaQSFDZI1Zq2zjuN81gCkDk2t6mDw+wQTCODDuJQoZCo1cgc3znp9O+5mC8WcOw98/Bk8fqvyNlHtnZQizWQnJzk2g7SdfA3yejv1OSoDhYgkYzpvW/u53v/tCnscZx9TUFACDg4NtPx8cHCx+Vx3jo/tn/axzVDNf3hoNzFsBMstuJ7zCWZCAXT2EyWqYfWPIZYsiHUdrnPPc0mp5Ql0p1HONbnV3gVhv7gNZhZaZqJk2D5inRuGXN5ZQQCfVtu4o6hqpfHj8Uvu2Dbg7nsP+4DD2J1ZhcBgCazFFuzGxSXHYIihVVea/h575Brchc1Ke367RiPrQTt3rVh9ToOYVx6gWVdpfugZ55BDh8hGCVyN03AQyZ1nREowTnFN/4WaU2v5LtFPbW6ZEDzppRlWnsvoeoqMilAG5rzAegsDeU3DTihIpT5buHIxlYWelHUnYFn+/81U382/RjfhlBpwxOBMpYikoXDsAX8nVUGV2tpNZcIJ+tCNEJCEFbuk+J0cz3QtDvOe039p0BcnxrArB+SAc9p4xH1Vr08YWBPfsabLFliwp1lb7mp+BPtttpFIMpcvHFm1eohiPw7x8Jbd8bz+fW9lLWNxL8Ia8ZQpxMd8KNDNDvT6/2sxzGRKkFIKrBuZB4ImTsKYOL1kNN6/R+q3/tQ2+dxheu0az1FVqnDWI8XiEkLlieYNmoBejCaQDaN1rQg9qohtOQzQ4O1Pf16pjcsurby4+X1Ba+82hQoWu2E3nAzx3Ct52SXe7OQ+tB4iBuZSBeTouQ0tKmkCP1bmTiLwmgTi3akA/5NCkOkxtlOj4/myc8G7/J/17+wm1LVX7WWglpEDIorUuzPocuXYZfvcE8vUX8G/fhOQmOii6L7zcBqyDn7CGe5zltbw4avtcQd5RlCZJnuZOf5Eo7eZFUtrTSDazcC7j7V6HPosn0SA2EBlHFYqmSwZlcQ/0onXnly5uZ0EkD28e3pMk6npnQiwIPHtKb+zVS8AaXnvz9bC4F16xAr75Arz7qvaSKGc0IdSEUDcETFvS+DAl8lMNal8HfAxdN+sp977clOVdtcrt7PRTUqCQ5s20Mf3i2gPMgcaZW6idQ8CXKLUFcU7gLagSNuiztxPDf7CGdwOXxjKTHEO+fIjaaCBfr7Y/D7q39IjQmws9mVAzzFnKdjFGMQeUCctHaS8J2ox2g0moeANlDTQ6PmsQtbM98X0fGrA7H8i8BkbfD4GXxn0pm8mp7ZvB/IPh2f6XPbc9D2KZqLPoRmeU2u4sWS64qwewnz6MnW5xeX+dv/HC0A3Xs6klbM60a4Rx0c5W/BwnFKVFRaImvu8sOaoJ1A30Guhh7hLFhRhCCWIVAXr89/PAr6PneDNwHRqg/3MqQV60nQ30vPuQtntdXXu+8tkHUPuVSiera8+JYPZPwC1LzqucBJQJ4aJ/Vb3PqaTkqxZebQzXx3PODDgMdnkP2WiuyR+vOj42vq8HoeaFzBjtEhB91XO6715oE0ZNAfpzR1QrB2DbfvgNA1ev1pNvGch8Wa5UnTdpD85H0TW2Hng7GqT/CoqmF23z0tyJlohc6PKKc6K1/6hGf79ihRMTE20/n5iYKH5XHcZm/Mqvvof3vve9vPe97+UrX/kKf/yBj9FoNIu/ufOb93PfD58oJunEqTE+95HPMGMMh51hdWa45wf3sWf3XrJrlnH9s6M8eegwd37lrjJAD4GP/f1X2bGzTAZsfXIHd3yuvfb+z//qdo6fGC0W2pMPPMGjd9/PcRFW5YHWTJNPf+hTtKabBQr07a/fy71hP6xTitjx8XE+8MkvlIutZvn0F77N1u27FUGvWXYdOcqHvnpXQXN3PRmfHHqBA1t3YZ4YxQZh93M72XPX95hpBaZaAWl57vift3PyyMkiI3jP/U9w5133F+ffaDRn37+77uee+7cW/z52fJQP/OXt5UWLcMcXv83Wbc8XTs2u/Yf50NfughdmYJNu4h+685vsOnSkMCRbn9nFpz//7fJzrOEDH/oMx0fHCif73m3P8PVHHiNcu5jQEBo7j/P3t3+ORqPBSS+syQOPf/eHPPvA40rjAl56YpT7Pnh7G3pw5xfu5qkndxTU9l17DvC3H/lSeQnAxz765aKVkwA7t+3gvi/ezRFgeVDFzM/83WcZPTVa1Ez+8PFt3Llzu9JbjaHhc97/sc/QyPPiGs56/4DPfP7bPPXkjsI4Ht53kLs+8WW+GX/f2rCGkU98mS/sPciMMcwYw5PP7eQL3/oBM9YwY0AW9/CB0w9z/PlDRZbo3kef4s7vPVg4mS9qfoE7Pnc3W58smSud9w/gbz/yJXbtOVD8u9v6+NO//CQvHB8tsuHfve8JvnrX/YUK7YmZJv/lzz7O8elm8bMv3nU/37r/CU4HzabvPjbKn/zl7TQpBXHu+sLdbN+2A/FKp7tyzwG+9/mvx6A54CTw2a98nQPrLNYqurh1927u+Nb3K0Gd5QN/eTvHjo8W53vP/VvnXh81i6lbvn3vwzz65NPaWs0ZxsfH+dIPv0d+6UpuefAYeRC+c/cP2P7sTvJYIvPs7gP89Ue/zGTQtjoiMq/7N5/ze/+ffozGVLMIDO685yHufXybortPHOX45b184Itf0SCvL4N3buaOb/6Ard/eGmtjA7v2HuRDn74TIuLvm57bP/IlXth7sFhXz2/bQf7Fu/l3wE8DnwS++MHbOXFitEDPf3j/E3z9m/cX6HnX5++b93Pf/U8gwJoNazh1YpTPf1Cfv0PAGi/c89Vvs/uZnYUozr6Dh/noZ+9UiGn9iNqXr0X7Eu3m1md3zuv+feOb9xeBed5scsdffJy80WQFiozcfff9PPnQk/G6DcdPj/Hf7/gCU5mhaS1s7OeOb97D1p17Svv3wiE+9MmvtmXz55zfgkMufOBjn+P4yVH991iDe/fs4c6pPcU1NfKc9/+vO2j4vHCsv373A9z72LaC0n58YpwPfOZLULMqYvfGdXzluUd57u6nlDmVBw7uPcjJz32d9bEN52uanp0f/xK79x4s6NDPPLmDr3z+7jZq+1zPXyIJNBpNPvIXH6fRaBb06MXfup/nHtgaHc3A6IlRPvypL6jT+fRp2NDPHQ8+wNY95XXuOniYD33qa23OZrf795nP3d3GOPrsB29n/MQovWgp0g8feIKH774/OmaGGd/iL//2U0zneeHY3vnI49w7eLLod3785Gk+8InPVxIdgU999ltntX8f+rsvsWv3wWIutz67izu+9QNdd/cfgpev4gNf/irHJye4dP0a3d+WnOTO/dvhyRNqn6cavP/Dd9CYbCAtLUP4zl338dgDTxQO/IkTo8gHb2cVpTP9gy/ezb5tO1iMsse+svcg3/zElwv2WC7w8Y99med3HyxQvHT/qsmxz33wdk6fGC3YYs89+AQPf/9BLT8QXR9//qnP0zw4BqtVEPHOhx7l3ieeLu7n8ZOn+bO/+lTbvTnT/uHQhMFnPvZlju49SI+BW4Df37aDW794N39kDB+2husM/NdPfp6/OXGa4xiaCI9OHOH7jz3GNDAlwumZJv/9b29ndLrJuA+MB+GLd93Pd+/bWqB5F3J/61wf379vK1+/6/6CwTc90+RTf/Fxvl6xfwN338/MA09wC/APgJ8/McqrPng7/z/gfwAfAd73xbv5s207+Djw18Af7D3I6z/xZf4v4P8ErBf67vgq/fsO8gYPLgg7nt/NV7/wbdxyB8M96l/d8UWOj1X8q4eePGf/7/jYGB/4u8+C1eA8c4av/+Bedh47TLZiALtjkm0HD+O/ehePr1zJf/bC3+fCHX//JfbtPqBzBTy9bQd3ffFupe+LHh/5H7dz4NioouoC997/BHd98/6CDn9ypsl//bOPc2qmWaihXyj/5fEnd/D5z9/dJij2hQ/ezu4TozRQXYvnHniCrXffz28C3wKebej+MdFoFuj5Xd+6n+/f/0SBwqbzq9ZDf+sLd/P8th1FQnrp7v1861NfxQUpRIjv+No32btzP2YGWDPM1l17uOM7P2gL0D/wwTvm77+gtuN737qfx374RBGUPxj9Z7GGP7SGbcA3v/UDtj2/hykD08O9PO9HueMLX9eWqkGY9sLHP/01ntl9UJH0AD98cgcf/+zdhY8TRObnv3zgYzSmm4UdvfPeh7l369Pw2GF9/vwUHzj1sHa+iOj5HV/6Dlsf31EIae7ac4APfeTLbQH6Vz/xZQ7tPcgLaPnP0W07OPjFu7mB2EYU+PQH9fxSEu2e+5/gq9+cff++8pWvFDHnr/zqezjfYb7zne/I2f8M3vve9571b/70T//0vE9orvFLv/RLvPOd7+Qd73gHAN573vnOd/I7v/M7vPGNbyz+bnJykre85S2cPn2a4eHhOT+vEaQIBpJS5GTDs2Omxf+YCXygmVNvekwr0Gy0yD/7HFtffwm3rBiip2bp783o63UM9DqG+xwDfRnGds91TAUpqDhF3QxwexCOzrT4V9Oe3qZnoOXpb3oGWoGhL+xmYLAH87o1Slnvy5Qu1uugTxXni2yQD1p3Ua3DaAV8wzORB8YOjTP1pX1MvWktU5csouUM/9E5fqVu2dLj6OtxDNQtfX0Zw3XLkFFU6HyGNDxMtdr7J8/ksPMUfGEf/N51SllP19XjoD+D/kz7R1c/y4dSjTFe3/R0zlgemHzsBJM7TzD99s3MOMv3s4zH645/1u+o1x213ozJuuMU8I+Av0IN6AAwaGDA6uuQhb6Oa85FCupUUkWdRFHzdwOfangWzbQYaHr6W4H+mZyhhmfouZNk33wBfud6ZTcU8xavtcs1zjVm4nM6HrQmbVKU+vb/rfzN/w3cGoTemZyhZk5P09PbDAzM5Aw0Aj23P681lLet0vtcPZe+DNM3bwLNgg8RKURxpkJZ15PIIAmEMXRB0Cs/Sz8H3TSnQmovIzRncv50xnP9jOfNLU9PM6cvD/QfGGPgM3sZ+qdXM9CbYdJzmOarv4bpmad4V/Wa8kA+lTPe8Iw3PFMznumGZ6rlaTVyJu94FukPDL9sLb2XLKev19FTd9R6La4no96XUa9ZeowizDVzfiI4IlLWZlXrtBoeXhiDj+6G912rz0TdaYa6GeDZE/D5/fCPN6vad9K16HE0ehzjdctkZhmvZUwawwTwHNqK5A60bOefoDV4m1FEZ8BAf1x3Q/G1Wxa929qbQlHPfyTCJ6ZzljU8A62cvmZgoOEZbHiGv3uI7Pg0vONSPdfqs94b7eY8kIQgUlApE+1yCqWX/lOUGfBbwK0zOf2NnN6Wp97w9M6oDe/94RF6nh+DX94y+zw67Hf3+aqo0aY5a3i4/wjsGIVfvaJsDTqHbVEBnaCf1ShtZ6vhOZ0HJvedZvLr+5l61yZmRvrYbx1/kjn+pM9Rq1tadce/7Mn4mR7HT8VrHjB6DFq1mQNneDYn476XqKlp3/tbIPeBfzad09fIGWx6ncOmZ7jpGfjbp+CWVfCS5V3slYPe7IzrQSKduVqnOiE6d/8BrQv92cr1DDdzBpo5Q41A33Rln3nkGDx5XBHsdK/7sngOZ3+WxAvMtLQesrJ30fS6D356H/zeteW1WaPrrulh2wm4cz/882ugv1bch1bdMtaTMVEzTNRrTBitu94J/C5Kx0wIas1EBWzgAeC/AR9G12E/OofFXMY9X0RrgNO9m6jcuz8CLg/CL8606J/xuu81PQMNnbe+v3oC3nQJbFmsJRfVfa8/00455zCaQYqWjDOitdmpL3ET8A2PzOSMzuTcOe3Z2sh5Q+75yX2jZE+cInvLRmo1R61H/YBab3zfV6PuDD2G4sguIoreirZtosO2PYTu5Wn8EXBtx/81lSMNW/ldMYKwfabFPdOeN8x4XuKTjxkY+GL0LV+7Jj7TlX2vP9P1dY7+n4Ros2Y8Mp0zOeMZn/FMtjxTu04x8/ARPvy2y/lBzWJq6pO5Xsdkr2OmL+OymmMLcAWwhVg+QTsDpPo+/TszmiztMdAXfblBC7ULNJ9VfyzZlkngPjRh8t9Rwo1B18zHgK3An6DrstgDK2uvP7I4Qufai/7mNJpseV3D86aZlq65pqdvxjPY8gxtO0nfPQfgH18729/sm/+el0Z1752M1/qfgLvR8pWemRbD055fn/Hc3MwZanotFfzKHuzVi8guW4ytO7IeR9arh+upYXudCuPFOcuMko/qRo8zoekynbfvhVO52snv7oF7T5d/+Ctr4cpVZUzR66DHQq/eg+kQ156U628K+DLwILo/OJTF8keovRymsvdV5m3gDGtkbGyMkZERvvKVrzAwMDDve18d8/bKH3/88Tk3RJELD/H/7M/+LHfccQc33XQTa9as4WMf+xhZlvHqV7961t/2DSw96+el7FTKDntAMsMeZ1njBOMsNgs4D3nNcfLSlQxunyYsH1Tk3AdCbrXnea7qk9kc8VZBn6h8nwAnfGB1nqjQlbq7Zo55bhzzq8ujBSprehRFaO+5bJxFetws7nWim9nVQ9ifWoP99gHMz2aweIA1wXAI2GwpBB5wOd5m+Nr5ESpEFFloo7Onestd01EhtEs96Fx1aamO0oXi73zNKuJz7SLkqcOEA+PI+mEO5oFV1mByo+IkuSfLLIPWnDO1vTpXVXr7MZQi1x+CCvhJSc+0AmbPNGxc3J3ed461d4nSVzeRhgjcJPDHwOe27WDHNVv4IXCjVUrmTGxXY6PBdxbcJYNkL0x0FH9KUcMqQc55M16okdpwpT7YRT1W/H1S6m0LwKVEh6BKdy//NlHbgxeaXnjWB34xaMsmK3pP3VOjZNcvI6s53bzSc1YcL+6emMzq5hSiOm4sW3FeaB0/Tc+UZ2wa/Df2k7/Z0Ni4HG8NtdxQy7TFVdMamtZQN7qp10VefJAepKTVptrXtB63jsL1i3VTL+p5rf7+yqXw8iZ8+nl4zzVtkxBMmX0WPL7mwBh2oSq1FkUpfxr4e+APmE3ta5pI7etySYnRJMBzT+5gzTVbijZqA0EYDlGfw1N0ubAimJ0nNLBLNQ+ddM15OinpWUtqtYke/TSlOM+/Bf7EGW42emOkss5lQz989zA9IYA37XXnnlizPMe5hDhP3Sjtz56A65bNqxbbGIPULAqVl5+VR1aGv2QEubpJ+PYhwj/cxHEJrMNgc4NxYHPDT1jPfc7wusyW9cqmnEtvujsRVb2OTnr7UeCq2J3EhbI0yHrBJrG7WZT2dJydcmuMUdo1lYRefE2dLqq2PbVU89W9yBjYOAjfOKi0dGdmz8eZ5hCiZoC074Fp3d1zFF62olx3zrB11x5u2LBBb/BVi+Gho/CDo/BTayKNM2ocuIAYpRFLTctKDlGKwRVBTNw7HHAjOk8PAbfRrh2Q1mQ9zlnnvpfGUeA1qYQrtIvB2YbXQujVZ6C1n+OoGQ100l12tlS+rgm0nKFlYakz/HIGr84Nd+aG54d6+K2JaZqilO6Wh3rUCMqDBv25NcV1Nw30GjlrgLBQI7Wzq2rfVOv+fxJFy2+kPRivntlcP0+32Yhwi8DLjZBZodYSerxQ94GeZ8cwv7Sp5IV3rq8XMVfGGiT6aCaz1Fyg5uKedskI/r6D/NThcR5bM8zYnp0MXLmF3/XCRi/syQNPZ5btxvBxlMK9CA3SL4/HZhRQqV6zI/pG6DPipKzjv1C04zYdG0qK+x60JjudWw2d33eiQe13Uf2VZjznrPIcp+RC4ZZRrr+0/A6KsCaEKDpcEYITohjconLdnalMdB4joeUu7n91Az8jeh3a3crwk9bwkIXPieFaMdwk8JIVw2THhfzS6O9En8d5Yis/S2aNXnuyTYV/o2uwGyjY1pK5uhcGYMLCegsvBNjg4JJlha0sqO3O6M+ca2MmVO/zPpTSnp6r61H/5VtoIrdNHM4kGRG5oEm9c4LMfpTKzu9617uYmprife97H1NTU1xxxRX88R//cdc2aj19i874WZ1y+kXwbA07nWFtErfwFuvUaRjc0suSr+9l8qWLyWxN1SZDwOdWheGaQtblbladFCgXnIgwmgeuTQF5qp8Uwe4cwy4xsLK/3XAW9YWzHwhTc+orpCkKlbrcIJjLFmNOBdzdL8BbLqOvDt8zsKYB11gPFnwLWtbTiEHBi37wArOdyxgIsuck3FpxnqvGZI5a7MLJzDVokExUyMgZpOaQq1cTtp5E1g4xagLXBFvU7duaIWsFXI/jVcBngXdBu6MpZQ1l1Y7NVTN5DFgZLamR9rkzIph9J+EVa9oDhHOseU0jM4ZeE5WxTbk53AScen4fv37NFn4XuAF4lY0qqUZfbaS2u0v66f/hEawEyj48lbk5m5N5gUbq81pV8p4Srcd6HO09+WYUPUgOZwrMq05oZwCfHtsAhDzwvA+M5MJ6HzC51kHZ6SbumTHcr16mSbVqX/NUw3seCQtbt2S5OifNmiELmiw6sWOUgysyLWcFVj93ilXrlpG5pGEh1GzAZZbcGL03hrYgXWOwczi3CkWavLLJtTxsPQX/aFP5rGa21LFoBviJldq7+HO74Jc2Q1Qk9wa8MXgEwSCireCeR+uy0/z8PPCbKLJ3OWXteRJBqsVr6nSK06bpgT3P72PVNVsApfetieUj2kYmFM6KG29ijnjYvKis1e085jlS7V3VSbFQlJSkcac1XGcNJjpXYqNq+4oBpG7gyCT1tUMqcjbfuvOuivoCEy041IKfX9RhU5KNmR24GmeKNn/pe0PQZLJIILx8CfKlU8gTpzl1/SLWmoDJDZmDYAyvNIbbrWfcGmrWlLWyMTD30j2HNVeQJ8CxILw21g+m/uYpuWK3jWkruk6V9qodncdIDmaqVU3P43rUUS7OTyjEjXIDDWfUQbScV925pIRYEiZKQkU+wMFx7aDxzktLW5NZnnvhADds3lTa5J9eDx/eCS9ZBCvUFwhODzEQjFeVeWeL9oJQxsIZUc8ynubr0ef35bTvf0nwyMftuNu+B8qEWZbWGrT1ODeHxxVe6stmB+XnmJBOwxhDL1LMZYPSqc8EWlYF/ZpGdYM2WMNvOXh2pJdg4NOnZrhl6QCbY5CeB2h6tf+5jQlvSpHYXrQG+EI63CH6nikwT+UiAWU3vB5lQPSiSctauheV1xSDUf1Z5YAEzIRijupB6A1C377Tut+tiUmUF7m+uo6KMFwWA/TMGWrBIptWcNnOCf7V2mFu33uAt19+GZux5EHY4oVLg+hzDQUT5DlgO9pz+iSafErBukHr6t+M+kKZVICW6MudO+ftzKMQkWZ2zfIuNIGQgrssHgPAbwAfAl4Wf1fte572wKxLMjPFKDPAqMDqIhmmPo9BOxK5/aPKMip86rTmAHOOLR9R36JmRBMHcb3dAvwZ8FVjeKO1XGM94gynM8NTLXhAYM8Sy6t2jnFMFnNF0FpzGyjteyhtUgrMs+SDx1O0IrNZDylZPSvJGeCZU/COS6C3prby5DQs62t/rp0B5wkOxNpZSu2CJmx/kkpiAngH8Ak0UZZV5iy1oazPsfct1Jh3cP7tb3+77d/eew4dOsSHPvQhHnjgAf7iL/5iwU+uOowxvOc97+E97zk7l3/0+M4z/j5NTCHskCbJGLZnlrdnEZVxRhWXraF/UT8HFg8Sdk0wdNWisp1aTetFmz5QzzVr2O27OheeCcJJL9oawWvdHVEB1W47hb1iuaLLnYrmtTMEDTWbIv+irjFlsGwr4G5ejJlqMvmt/Tz5xkuYcIa/zOH3pg3XRpQ1s5ZmFphxjv4XK66Rslydx3SuQj+XDrc7z9UExFyjInYUsijg50WP64aR5w7B0QnGlg+xKgSMt9gQqOWWpvHYYLnVGv4cXYgbKJFzb8oAvbrYAkWZdluW7Tgq5Ke96OPchWiAZnLM0QAbK9eYjKZ7cTtGj6EtOA9Wb/Frf/b1zKCb+Z8Dm51hnTE02m6rwa0ewOXQO9rELOurBOWUc7PQO9k8RkqOFZuVlMI4/y7+zXeA/0xJ72tzQOJrZ7CeAvgQBAmBp3LhhqjlkMUgwD0xhlvXR21xH7biVFQTYOeTeTfWUOtxmgjwMYucCz+8fDEbHzxIran3/M6NI/x8CPTlhtwFrLNkLpC1hJbVjSy18agG6TWZn6iRBKHobV4NzIPA0ydhqYF1g3rdKTmBKXctEXj7JvjwNvjuYXjdGqQZVPzMqnsQ8OrAW9hec7wtzkUNpSf+AxQ9/7+YjZ63TPdeyyUqD6972+uZiO8PibA+D0UizHmKdWieH8OsqWuA0Bm4xuD1XEaRp4l2oS7wM5SiVADHjWHGEoMPozfNGQgW2TioQdiaIerRPpSbj3T7ygrrqGI3C9R8VIX7BurtznSVWdVtOKMIbRBV+o7BuX68I/zkGuQbe2mucqxZOYTxBpNrYnC1NVzWMjziAq+r25iQKe1lQlw710rnvpd+BnBKJOp1hCjoV0lubj8GL13VHthVxe7mmTAr8qJSOlxQKrZDadPz2N1iJqrui9UA3ZxPv/MUkKcESxU1v/8Y3LQU+mptiaNf+Jmf1IRYEj9dNQg3LoGv74df2QxRPLLsEBCQpkd6DYeNYTXdkfMaakN+Ci3JOIEK4lWF4Yo+vqb7vtdEgfHUyklRc2KCGuzhppa+zIWav0hTaozSz52oyFRK7M1QIuc1p/PXctA0hqst+MF+XjrW5PbF/SzPhbfWYHVQpkbLQ56126LcRIKLgQF74QL0wGzkPN3jh9BEZnpeM5SqnZ7dTvq6YY5APQhGAnh9/l0QakHoCVB/bgpzxSKKDkCdoM95JKSrwnDOGXoyS54rkGKvHMDdfpTrXr6Ca197G95CEF0/eQiquxLJn3XgJSjgkGzHCTRQ34FSkA/Fn38feD+qqVAkPExpa842JIFG8e6diVmV/PdqgJ7+5x60U0lafzVTxhivQVuK3oEKxiVR1CzufQ2jz7Uzs2OSgAo9ZiIsrtrJxDTKA+ZgC946qN/uTLvtfJEk2LpRvzNH/U0r8DKBmwW8o9j/l1l4TWZ4VTCcXpwxcHqCO7xwhxEuz+FaJ1xTqzCkMEWyMBO9T4nlCPF57Yw7qmh5Feg7MK7/+ZIRfZ6vXwzfPADv2hwTo5Ftm1vVybEWX5fos5TrDhQ5Xxffp7X3KrQs4T7gJyiTeFVftRuwsFDjRfOXnXOsW7eOP/iDP0BE+Ju/+ZuFPK8LOqqLq1gM8djhLOudwTiLyzQ4d06RyLErh1n87DGCKDUwjz0b86AIXbc2HVI5QvXVC8e9sCS0U9rtTI7ZO4W9ZqTDsUzH3MirMabseR5F4lxNKbYusxjnsK9cwcE+wyseP8SrHj5I35ETfD8PtPJAKxeaeWCmFWh4OWu7ozlHNcuVIjAR2H0allutoet0nM/iPOu1OcisKta66Eg5Q6hnyObVhGfHGBUVajN5uqeBWhBqPjCAqmjeW3kGCkeTktqeRjUgT68Qg/NobJKTkhRszd5xzDLbjiC0Hee+5Kwx9JqoRlo56qjj9ep4/IkxNKKD0kBp0U1nmMksM2vrNA9MlImbapAQzvj1F2wU9z06KwlR+FrH3/2faH3vv0U34g+h7WJ+gNKMD1G2mkltZ6aAZivwTEv4hheGImpuRYMCt+0I2U1LdEqqTkpC0M8xkOs2rDNkNUdWs6pemxlesn4Fn79tNfdsWsru5YOsyh3/pSXc1RLGfFx/uTCV+6LNzFRQRsGkVNrMSGQZhLO0cgxSBgmdtLDHj8P1K/WZrCYB67bSmjHWrr1zCzxwDJ45oQmxPBBa2lpSWiEKVXle8IEtqH+Q0IN3AI+garZJuT1tcIk5UW0rU22jVg3wNDiHtRXnJLV1coDZPorZsqTDOak6nuc2f46yNi45K7eg3RFeC/x/gKPW8N+spWEMDWtoGEsD7f3a2DjC1IFxptB5krZkZeje77yKElTnSoBnTsJVS8rIa56OdbkvWEJND4mtQ8VZwuJBuHENN99/mNW5h9RqMNek7m2twMMtj+ShrRVXQW3v8p1FYNclyJvMhWU+lC244nNpTs1gj3q4fFEX5MN0ZQbMOXemdJQLghYanI+jNaBPxPOZxujhYMoYpgzM2Nj3/EX0Oy/a4BVsFYlBelBkZ/s4vHwZRclaanNXJCEqDJ6fWA0Hp2HHKJKSK6n1Xa5t1cgDRyjbqBXXTVnXmaHKw9ej9NSEGFdRvDSXaa1V190JvTCWpv1OUiu1iJ4fmoI1A+3BeBGgz7+V01wjM4Z+k2o9y9d+a+i1RktrraHPGnqMpbZ4gC0n4X1Wu6r8SS580sPJoD2Yp6DUOolHtbTqQrFE0z1ODLi0jvahjLyXUEFejdqfQQvDttR5SP8esqoVMGRg2MCI1WPYCIMCQyIMBT0GvdAjAbPjOFw+tCCsvq4jtfK1hh5n6HeGAWfpW9xH/9I6A0+P0ReE/iD0B+iXwIDAQPAMijBArO9F67P7UBbBKjRY+nW0Lr06vk5pa6qM2DMN8QGZ8dpGdCqPmkYtZDrXtdXt/5B8xEoMgfobR4BLKRNjac+oo3P5T1Gf5QCRek973/OZaCZmxQkomLQ+BeNxzbn0emQSk6Esn+q+V33/IkZmDH1G6+H7Tak1ktbcgDP0W+iLTKOaNSxeNECWw+9OzfB/GFgShM+J8HsBPhiEh6T006bQevopgelAG4Oyup8U4ELVd0l297lJuCoG5hb4iVXapnnPKdpL+ZTBJHlQUFXaWQ+n0T1hPSVqnqFr7y3AZyh907ZSIEpR1AsxzlsJ6uTJk+R5zhNPPLEQ53NRRnURVwP0wyjFbU3M/hlrcS7grMXYwKL1w/DIYfyBMcL6EbxESnseaGaWvqZHsnYD181JEREmfMAEYUXaxFNWbMcYdkWGWdTbTsdMwetZeBTGRhoj6tQV9L5IRcvEMbJpiM3bjlBvBC4/lrH4BqF16Qpcbsgyg2sZZmqBzDrNWJ9DZqjIRLYhDHE17J6EDUtm06mSNTub8+wM1AySW3xNkFzZC2IEuX4I8/lDrD8xwvCKQQgGm1tcFsi8xbUCzllebQ2f5uzU9s6aSSiN5TERLvehRHxCai0DZt8UbFg8u/5nvtc4x0j09kSBq1LcBRXeeq+B243hV21EzwGLIsBu/SLs4QbuWsjSHBWO5hkQoAs0RKRsUUE7vW9Fx9/+CxSBPYE6MCdQkZVjKN0t9XBYgtaqLQeWBW13eF+ss/t2Lry0FbhaBLf3NK4GbsOIPtvJIU7IcbYATgrgrCWro3V3ztBylmt6hN9YsZz7FnlesmeUFU+d4PJNI3wjBO5uWl5mAq/PLEMtIXeBVo+jJWW7mHNG0ov68urmFuDUjPZx/vklXQJZW6bvdbJgeT+8fR18bj9+WS9+5QAhZaBFWUeHDAzgWd2rbKMU3C5FN7lPMj/0vDMwKE4DOOwDr8gray4lNZs5bs8U/NTaCmOlw/F8EfS+nsqaC3EZ3yraJqcJXAP8R2f4gDX8njGFdyYGWFdHHpxGJCDBIAF6g57vnHXns6h78XWqBQca8LZFs+drHteX9gXJRR2UmqiZzgNiId8ywujuMdY/dgp76zJMHsiidsXLjOGOlmHCGjJnya05K7U9zV/1vQDHg5D5wBJP1AyQon7ZPjOO2XgmSvv8jWcKxqvouUURLtAE7b2odsdN6f5gih6+ISLUfRsHsedad+5FEfBqj/LkUP7wGFw9DCO97YyHtO7S52dW/09fBq9fDXe9gGwa0aS0MwVzDxuwLcNhZ1ltTVtgbumgkaLo3sfRcpMqcp4owTXp7rMcR0u5XEpI+zIwtyKYI2NwzUh31Px8qNLVOTVGk2UINaDpDI3MkjlPy2o5l7NGy0yX1mgdmCBjEe8wwqsM3BGE3xd4YxDeFARvTeFgS3xeXLRFPWYBnOOOkcop25Bz9LsfQIGDnnQe8ciife81Ze4t3c3O1/Re4tzMsiPHZ5T+sGmkO3NxITi6iYHVChhr6HU6J3VjaF69BP/t/YRDR/AvWYm/fBXBg4RAEKNlolFDoTPQLvx1dC/5buUr35D+jvK5zeN96zakGUUZq3ujEO9FAG/Vh66129TkLlVp7R61KYOo/1H428SyiTjPl6L6K3+Liv4VteeU7JbCvNCeIDsIrK8wVmzUfNB682nMmn5l2VaDcpv2ohc/p/X4XzOjwXPy1VrOKPPBGd0LXCwLcobQ30PrZIN1I32sscLPALuC8AMR/rsXpjJNsqwBdsd7civKSqv64UVrR0kbTSWW8AEkwPZj8Lp18aZbGKzDq1fC3QcUTe/wA7wziAVfNwQp0fMX0Pavg5X5A/WzkmbONpTJUU1mJh+s1qFVtVBj3vanm1p7s9lk165deO9ZvHjxgp7Y+YwVa2844++rqHk1g7ILVfI2NYv1BisGEywuE2xuWe2Eezau4sbnJ6itG8HngZCpKJz3gWZuqAVpQzCqjklBgwmKmo/4QI9Q9soGzLMnsVcs1eCgm/Gcx0NQrTN0QC1IRYBCuHTfKVbtyjm+FLYcarKv7xT5hmW0covLBeeErBWYcZbMGNy5iGtIx0JKhwTYOQpvuaTiPZyb82yMio4EGwoHSjKDeIP0ZJy6dBU/9dwErBjE+SQYZchC0JpfH7jVOv4MXZAbmZvangxjEShUAoRTQVgRr0tRBP2FFcHuPQmvWTd3Zvo8jWUfZXD+0f9xOz/3T38RQbPN/9oY/rW1XG88N1pD05gyD7KuF/vAYRxr6BcUdawG6YGLSm0vnBRKZyUhCvtQA14D3oRS2quOfjrSaAKnUAfyOBq0j/nAw15ZKT250ArCfUG4DsE9dgJ79UoNntt6mqfj/FHzNHqcoZk58ixo4i4I13nhKhFaG4dpPXKITQfH+K31I+yWwFdyw7/LA7c5y097z1CwtKw6pdUgPesSpNdRocIkHDerN2hBbQcePwWbB5XF0hmYJ0HIFBWn/3/FUnhFk/D55/HvvkblC0z6M8N+gaswZNbjehyZ0RrCFto79D0oLfFKSuekxuzac6Gd1nfHB2/nH/z2LwJw3Eul9q7S53XvOHaRgSV9swO783A8C5ov6JquPoho0ug/WsOfOMOfW/jdKMiIMbBsQI3u0UlYPRRRAK39LGrQK2uuHXGtzFsQpbSvqsFQB6Xdzf/6jLNIzSK5ID4QfNTyEOFoEL70ihX87jd2QS3HnZ6Aq5biLl3BymC4LDc87gyvaQXyHndWansbYl4N8kRYHdlibT3qRbDPH8PcsPIMlPb5z5shTr+UQZcRFfipjq8BV0NMpqpzGwxasmFBlvTQ1wdunnXnIqKBfGeSJReYbKrGw3s2t+9/TgOaD/zdZ/hX735H+7x7gRuXwWNHCA8cI7x6VUyoRGTfKMX9ZCuwuse1dbRIAUISUXNo3et/B55CUdrOHr6JElwNDkDt6rJKUF74LEGwLa9Z0gUUgzvj3Eaqe02EmoOaVdaKc4bMGmoGmsOO7PExmvG6V4vwLwxsC8LfivBVlG12HC27uSXaoFrlXix0PWna86rIefJBf4judQWlPT7y6dmtR5t+tiGSKO0dfpgAz42pnkPNdSS9kq08/33P2EhtzyxkgmkF6s5QM4beeo6fgD//7v38zhMvxb/b4K9cRRAbNQECwVgCptDQ9BLXIyXT4AZRJe3/hvaBv5rZgXkCwWaV26jwgKp+t9J+GJ/ydC8KhkyG1EufrSCBVr5P0Ljh0vj5ybV16KNfM/GZAn4ZRdAfRHUfEnMlrc9M2u1lStwcDMK6UJb/2LT+AHNwErN+sCMor/ib57H2quusTplMz50G6G2BuUFLnpYOUD8ayDel8idhM8ImgV8KgSdwfBrVEwJNsvzXeD98t7mbSxj12LRC3pcuUpuTEpsvWw6PHtE2lC9ZrgmYOK/BGnwsBwrOtVHa16drpsJ+QBkcPwN8DvVDC3/VVEqB0GTeQo95r8bHH3+crVu3th3PPPMMMzMzALz2ta9d+LN7kePEkefO+PsiyyazF9lm1MBgrdJSbUltN8aQX9FP36HThPEZfFAFUO/jaxBCM7RRotoQ83TkwgkvrPBACKXa8GQTc2AGc+WiMjhvc1Lmv9iMs9oSo26p1Sw9NX2t1xy1K5cy0AerTkLm4GuXLuJQLrRagWYr0PL62vShoJvMe3RDfgJwcka5LJcMl8h55+Ywn5FZQk3RAyKKkJyU7VcNsGH/SRib1sDZi9IzvVDzmnDoD8JLmR+1vdvcgQbnywsjGcpAYaKFPSHlNXbbAM9jJGOZKO5vf9eblOKOGogNwG9a+KAxnDIqlNNCae7NVf00jntmcl9SbJNzWSBAF28kxyQhcAk5nwAeRhX13wu8lHaaWz8l3S1R3gbReqHrgdcBvyDCP8kDv58H+luqSzDgA68RwZ2YxB1u4K5ZRM0abFaZG2sgc+fUduRsIzOG/pqhP7P0Zfra7wx9maEvc/RvWU3Pk6epBeEyEf4Fwvu8cDAP/G4u/J0PHKOk6k8RW1KFsrVeorun1i4z0oVamwJzLxACPH4MblrcHiSkQKgWA/RYGpMo0TiDvGYlfukA4at7CV77nUukPL/QDGxpeWwrYJsBFxGuhJ6/Fc1CJ4pYWnOJIpbsTDWoC8BP/fybEGAiCNNBO1wkm5notXbnOPaypbODgzS3LzIpZmJJSaL39dty/fWha2+RMfyBVefkv2GYMCpeNWMsjXVDNI60mBGYDsJUEGYEQrKR1RFkbkr70ydVPX9W0taeU62or1nV7IjUdp9ZgrUcsZb6YC9sXEz9+0fJHpsiu+MF3N6j2Fx4RR54OBfwnuDDWantyV5WKZoAJ/PIFpNIafdaZmJOTWOPeswCUNpBWQ+JmuhMVERGUbfq2I76eDMmUttNLFEwhmlrmLSWqc0j5Htn2gPz4mjf74tA3EspApcCgAeOwyV9WpvtbLm24rr71Xf9dPnvztc3XoLce4Qw3kDyWEYSqZoncqHmveqgUDqXidZeM2Vw3oPayG/QsfdJuSa77XtH0XIxRIWdLFIqRx+ZwvQAA7U5ae0XYlijdc0D1jBoDQNWqe+9xtC3rJ++U2hbQ9F9oibCNQjvD3CrCJ9Bg4PfBx6jvP6mzC5xW4jRbc/zaF5jF7rXuY6jFp/deT/7yYZ0C2iePwlXLmpPfrUlMhfoQqt7any2jTO4bceoA78xdDUDAYYeOsSwF4bywGAQhgWGRUr6vlEKf2r512/L5/haNNl7mnYApRqkh47TkiCaOGuGsu1ww2urw2mvmkip5WEraGu46M8n1kOVrZiC592USu0FJkMsPTRl+eEi4FfRsrwZKuirlO+rNefE94dQEdSk75AOJ4I9MAbrey8oY8Uapa4PmFRWYRh2lkFnGHSJ/m7oB/oX99B36HThpw0g9ImCBr0CNwahs5fW1ynnLl17CtAJcyWaxmHTQKXLDPqs1R28fi3cfRAaedte6r2yKaUVtNMT+j0pOK/OXz2uO4fuGY/Gv2tTbads/XshymDOaTmmhzQdqe783e9+N7/5m7+54Cf3YofPZ+b8XZByUqqLOKCLbBMx657Z2E7N4GL9ubGG9QN1dqxbAs/M4EUn2+dae9mKNehFJq7yHYXDGRTRPeWFJfHBK2qXt49j1vRgh+oxQVB1Tsw5p3JNfFjrdUdPPQbomaG+YTn2reuRq+vkPXDtSD9fzIUQYt15K9CMrw0v2lN0vg9fEexRyUAK7JqAtT1zZ23nufkYE8XgnMVnse48s4g17B/o4dDGFZgnx0sV2aDBuaLnSql8FVqvnAxs4WhK6WhWA4Tiffz7US8slrJ9WhEk7JvArsw0qOlmKBfASXGV+vNVyxYVdehpA3i9s1xpDf/TGFX7NkbrmwbqNBcZZg5PMiNRT6Bq7MLCG5e5RhulPTks6Ov9KHtlbbyeVHM3aGJfbBM3baOBegrc+9EgvR9iPZtwgwh/4FUZ+n0iXG2h/vQ4tasXU+/NqFlTJsGSI1w7/znqHHUXg/OapT8z+uos/dbQd80gfQcn6D8xSW8QaiFwWRDeK8IfeuFIK/CeIHwIdZDPFKSnuvRp0XZBbUJwKTAXgedHddfZtKhMIlXZA2mTS8FDrfy3ZBb/1o346RnCAydUXMwL0vIcaAU2tgK25XG5J8tDscllKHr+OPAsZe15Vak/1Z4nm5wey+Gli/DAkSCMeBgoqLUpSA/Y50YxWwYo2gN1BLDniyCkAL3PqEhTny0D9F5rGLSW37OazP1LLBPG0EKYWTdE48iEBuuiwflkEGZCdBSq666Nuld5nc7hhRm4cmQ2ZT8iXvN13oMx+LorAnOJx0FrWeIMTE+pg1KDrAVu20lsHrilFXg2D4y3VGsgF2nTipiVZ6BLkBeEkz6wPFHaK86m3T65YJT2NGoxME0aHX1GNQP+Kxqg/gFaQvOvgUMRfZ0xWm/eABpGtQMmNw4zeXBMk0fF3HS8J6HmlYC8OoeNXDUbXrWi/RmtMDuWrVzasQ5NkZTnkhHClSPI9w9HIpoG5pIHTrYCa1uBWisULeTStlPULsd1aIE3oi1FJ6iUFFX2PnWM2+fuGLDKp/Ktajs1MIdnMCv7ZyfdDSXV9oINBU76rGHIaOAwaA19dUdfD/Qen6IPiernZaAw3bHf3Um7H9BZ+3q+o7rnFUFePB5Bkdcl0FZvXkXO5z262ZAQbcihFlw+0mVtmXNOfp1x2Mp+klXe37gKgGWuX5/PG1aSBW3x1u+FgTwwkAvDVmvoh2ystTda65xR5hAsqtp+BH2O070s0HNmB+exj165Rpteg/GnD8HfPwbPHI4/D/rzjgC9ui9Vg+eEnKd1l8ppku2pBuhviq9fRM+xLUDvWHPp/A8HYW0Eg1wEg1wQzGQLNwasGbpojJXM6FrrzwxDzjAIDKfkmIG+JTX6D0/RJwqE9WHoR6K/JvShCvvV8QbaA/P0vkxWd7D/gsCOE1pvXvjXlST11UtgSQ3uO1b4P6GltjLphEkrFEmd/ajPWU1qJnuZRG1/Evg8pa+aOlwk3yVf0Dut40Wrtf/vOtID0Bagx9/tQmuxDEoNt85gndLaXctiXWCDh7+/rJ8t9+4n3DRMbktae/CGlrdkuRR0xfT56UEQUdRyNARW5lIIwRkRzI4T2CuX6TprQ/PODR1pGzWLiRuS9vlUITt/yTLqa5Yg3z/MK5+e4IFberkvF26zSs93WSBrGRpZIHNOlUPP8vVt4g3VQ4CdY5GCQnum9hyztkFERYxcQKwlZLHu3AVO5YaJqwYwX9uNeckIzvZirLawcrmQ2YDLDbc6y59Zwz40GdNZe5dLVNuszls8TkaUfJmnVIlO6N0Lk7B+8ex6rgXOTNdMe3u1ggEQn+vftIZ/bw13YvgZp32LrTG4tSPYQy3cJZR9KKsO50UaVUp7gdagx/dRddMqva9OWQYN5SMlHXNU/DwiWgThJTZwoxGMgfpMTv2Jk9R+foMGjCkQfRFq0OcyjLXUe8B5FXxrOlMctZ4arcuX0nrqNO61Q9q/NwRyb7jCG/6dtzzrA39vHe9BKVZvR5HoJnpvmqI1W0lt2Fh0bluCq6pFJ+/i0ZNwwwoKxd5utP4MvatVJzZUxFR+ZhPhs7sJqzLCxkUE4LAYNlqUceSMNptwhpqxtFDn82fR2vP/QCmoUu17XkXPq0kygENeWBXnta23+aEJVW1ff56snDPNodG2TlBu4gXNXeJ+YQ3/3Bk+7OCvmobfMYahlRlsHY8IgGkL6sRDfwgY62YzHarO9fZTsMLBop4uiLKZd9I2tQIKzpJnDqlB7gWpCfty4ToRzOVLMNsmMY3oaG5Zgg2BpWLY3ApstYbXuIDPrNIZpTu1vZr8TusTEU4GYVkIBWpeUKQjpd1U94cXSWlPw6EJFI+uC+K83SLKsplBe0l/EBX3+/fOcLmJrfAcpSr6JX3I3U3Ee8SbUnm/jXVkojPZwVZJda2PnNCyhEuGK3t6JflVc7EczRKlrCuMF72I8LrVhP+1HTkwRlg3rNdkDSdNYG3LYFzAZhZbM8UzmurNUwuyGsqwuhRFjf8h7Xa4uv6qxzHRUhxCSWtP1Fp7ZBrWVqi1bUHC+YvBnXFUvjOzWt+sTrWhMdxDdrRFay1kov3Os7rW7r4ptJc4vI7ZfkBb7et5jsBs5LxKaX855Z7nUlBObIU3z+84ow3ZMQorM2U3zKKzL4yNTEPLDzs+O7OweQX8osDtB+HK3tiTWvTBjPbchQBB10IP6u95A5OBokwl3acRVF9mB8o6KO6xKd+n+evKJGsF2H4EPnFA/2jbfoW2r1pVuakAOV4yfAZBzCwR6V1UQL3Ka/JdclMpnwR+G/hDVFR0Zfpb0S23TnvMMAFMe2FVUUZSKSs5OIld5jRxfoHAoLmGcRqoZzZ1j4AWhnx5P81JIZ9okY84vAi5MfigLDoThOus4T+jQr+/DVyV7qfQVsLgqnNVTTSNN+FIDlsWtSeaara0x69fBx/fDTctgUU92i7TmbLVqVF9MGIckGjtKfHjTNmG0gE/B/xL9PFYQXs5UC5Rff9cyn/nMea95X3jG9/grrvu6vq7I0eOcOTIkQU7qfMdA8Or5vxdCmSqiHlAa1bHUHqKZr4MJrNKabcaqDtnyayhZ8UQU/UeZN+YGo9ImWjFIF1aXjPbIrMDh5gJOu5hRZAy+zw+gznSwm4ZVnGBamBuzTmhI9WRlHqzmqUns/Q4Qz1TdcWagewlI7hdR3nn5DR358JYbGvRbAUakere8ErFbJ0NPe/MbqVVFoKKwV060L5xF8f8r01Q9CfUVLU9HVjLMWPoH+mD9UswW8c0YA7abiLzipq7SHG+hdnUdi8ltT2JxFTnLgAnRBX2s1D2Vy4Ejfacwmzsow26KJIQCyu41mPgsQeeaFdwB6UfWcM/s/AVa9iJIbcxQ7tygObRcW1FE9GDUCRR5lCPvgCjs9Y8OYengCcpg/OkMpyZimKtKZV6C9VeU6HAIQwFz2AQ+kNgwKOqsEHo23aa3qU1+pYP0OssrqqKvNDoQedwBlcz9GWWwcwyWLMMRhpm33Uj9D85Sv9Eg14f6A3QF4Q+EeohcFUe+EMR/gsqWvmPgb9GUYOH0VZzD6J09oJylWuLx1mO2kRT1+INiynUojtRZhcd6rqrqLbr4esWX7PIkn7CG9YSvn8QOTXFkTzQ2wqs9kFp7a1A5gP1lqcuUqDnPxfn+Bm6IwfNZJcra+7JB55AgnDMB9YWiF1SrgW7cxqzeRhTbQ9UPRZoThOCnlRs+0xJc++xald7LPxjZ1jvDP9D4NSSfpoZTJ9UxkrD6zGVCzM+MO2j2n7hWVYCvHQTto3CFctmO9Tn6IS1McUyi3cROa9ZDtQsKzOLXbeU8LPrkKXgloFbvQjn1Ya+zAceyYPWq7e8JnuZTW2vimm2BXm5MOoDa2JiUxX3A2Z0GnPUY7eMtDtb57ku2+bL6pEYD72kvtbwz9Ag9d9Yw0PWxFZdiprPWJgZ6WF6kWXy0ARTonthobyfvEooa1g726jlAR44DK+sdEbIOp9Tyz33b9VytFoHayVS28NwD/6Vq5B7Dirrwit6figPrM2DtlVq+djjunQyC8X2GOhZFMH7RpyjIiil3PeqaxDghKBK7ZHWDhS0dntkDFbXKaXiOwL0CzhMTACk7zIG6lYptoNLBxg8MkU/0CtCr9XXusD1IfD/iCLqr0DrlqtJipLivzB7YuFbSDtq3kCR85dRCeoo2Q6Oc6G00x05F+C507B5SXcbciGS0qlso3MtX7ace2+cUSZQCOV6aUtqlZi3NaZIWFSTF+lsL0WD8xQsFwzHij2C+IPO9ekFHj3cft6PHipp7a2g75sBaeT4ZlDmrZSJ4/S/19Ee2BnKYLsWg/Sk3H4tOt9/R4nEpr0vqcGn6zkowkhQRXtCSkjHtXeggVk9XKLm6V4X789j/s46THGxGqYooj7gLMNDMHRoiqEgLGuX8QABAABJREFUDARhIK6zLDFZ4z24khId7py7kJIpocvz/NxpZeHOpZfjLKwfhiuH4TsHIYDEGE1yZawFL4RWYEyEMRQ5T7YxMY7SvKWE5o3AV+K5FpR2ae90sZBj3tP3x3/8x/zxH/9x19/90i/9Er/8y7+8YCd1vsO5+py/K2LGyvuAUtpXoBTZZARsorVnlqwWW6o5y+XO8PjVS5Ftp1Rh0ocyQI9quOQlbaKgqSTDE2AsBEaCZnmMCHb7NOaSfmxfpq2dXiQ60m2YGOTXM0NvVqk/zyy14T7c+mVseGqCK0T4Siuqz3uhlQeaeaCRa+1542ybVSedPV4fB8b1hq4aKDfSzs1hnqMwwtYWDmawhqaznHSGpQbstUPYxw9hvv40ZvdxdS6DkHltqZblgVcHKajtnRtySypzVnkFRc6XhCjeJ3qNVsCcbmDH50DvFjgzDbphNyYm6bPt7dV60L6vG43hndbwIQMTGN0AVmQ0T07RDGXCpVEYPy5K3bmIdA3MPUq1vBxdh6m2zCVDSaS2xyC9bBvT3mZmSAIDXumL/QJ9PtDvAwMhMPDYYQZuWEq/0TYvbYY91XZeoGGSaImLNExnNEi3lsFFffRvGKTv0VP0i6KpvUHo87q59cX3V6Bq5/8VFTL6TZSa+x3gfWhdVFMgD0Ir9+TVdZhet56Edb2wuFc3sU6GTq28B8bZ9rrz2IYroaZh4yLC1auR7+7neCNnvQ8YH3B5GaC7lgboNREytO7uZylrzwv0nHKjKyiK0ZxMTkyCCIeCsLIL6ur2Ho/BOV3WnV1QDYGk+5Bq0HtNpLk7DQR7nNbnvcvBRmP4W7E0Vo3QOp5ry5wgNHKhKcJkDNKnBHzRtaPDGWnksHcKrhqeXUt/jjokhe0UEGPIa46QWaad5WhmWVmLpVzrl2F/5VqsycieP42LTIWX+MCOXJiI9c4+hPb6WSm/p4qYhxjMWh846WFxaKe0m+1T2Ev6sfWFo7RX5yu1AqomVPpsqRnQA7wTFfP7r9Zwt7VaEmS1JeWMscxsGGHmUFPb/4QuiU0fIPftSE+azydP6JdvWdy+rxfouSKF4+NTetIdQTm1KOTnDOHmJYTcI9tPE7y2VjudRxZeHteeD0Xda0YpIJmSnQ4VQzuAtjdMbdXSPM5i+wFHRFhZSYwVrLE8YI+FUgyuGpinIOFCj/Rd6XvjS8+yGgMHxhgMwhDQ6wUnhkxURPJ6UTRsJ+1JiqoGzUI53C06kPP42Y+j+90lVObHtCPn8x7V+tyq3W952DmpLdQ6bUgENhY6KW0KqnElSI+JxLElmd7w50cpBGkTkh3bDlaBAmtM6ZObMgi2wBY0OK8Cbek+a4JJynKTTlaLF016VsfGpWVQXgnQ82ZAGr4M0OPn76IM7FzlvNIc9ppIazftdcy/gYJDT1Mp8aJMjqXn7qDAmqqfmcpKAHfgNGZ1XxlRVkE9c4G776SLhDbU3hpDbfkg/ftnGBQYFgVGMtGErEOKpbop3r/OuUuv0upiSwV49hRcsbgDAOuIlyzwujXw9BjsH4ugadDAvBXtdctzIAgjlErtbUlN2vU63gZ8FS0prCalq/T2hb7F5zW8X+h8wfmPsVP75vxdykwVATpl3cjG+DfFnFuDcw7nwBqtO7fWcLk1fH/9EDI9jRydwIvEunPtde4jOp7qVIrgLm7mxgdO58LS+N6IYHYfxV61SPe3rrS+81xomcVG9LzujB5G0fP6S4axu4/xlslpdnrhuVydLw3O29HzucThCvGGaiCQLn7XFFw2REGjTcYkWbBzMCJFwGyNBuZOa9CPRGbDoLUw3SBrgNvWwn7yBbKdR8lyRc2dD7hcuNUHDgJ76Z4xrwYHVUfluBeWxw1FlWvVYbEvTGFW1TFJoKLqnFwgitHPvPGV3fufW6UVv9bBGmP4pKj6aXPpgNb2js3QjIHCjBdaFarthR6zROAqG+n3mU1pr9bf9ZrYY9Oaou9mCspHrIrJDOeBIYHhPDCcB0a8MByEod2nGRrLGdy8mJ6qQS9o7QvTPu2MoyoCVQ3SDQzeuITBB48yMJPT57VmXoNyTSz0+0BfzEBfjgblN3d8/FeJ+1jUwPC5iuGppxl0fT5xBG5c2v5sFvdhtp0xNVcE6NLjVFCsZgl1p3S2mxcRlg2y8r7DrA9BnfWWx+UB09JgoZ4HevJQBOhvQ52Sp+mOnqcNWuL1vPT1r0C8drhYHQMEGwNGM9bAHgu4TcPt5STVY4GHiQI5hUicicF5pj+vO0PNWX7eGV5i4MElA0wfnaIlQiMEZmJyrBGEqVzR85mW16Ru9RBROuoyG1XoO5Ip55jYTPe1cH6sIa9ZDmSWes0wlFlMZrCZxWSO7LY12PsP4po5JghLvHBZHngiOjm+qQmgtJ6TME7VZha2M5ZznQyBxV4K5BwR7K5jmKsWq1h0173v/OertxKgV7UD+o0i6HXg1dbwh9bwaQefwtDC0LCKbjbWDtA4MKY9ekWY8sJUAF8EQKFi2KroXIAfHoSXrS7Xf7I5ybDFpOCb3/gKPV/bcf1ZDMwzi2QOuW0t8tBBpJlDCJzOA8u9rj3nBZfQc1Misan+PgWAfcBPAN+kDEyTo5niojR3kwBBe5xbAUOsa5coBpcBQ7X2wK9w2C9GcF75Xohr3sCKPtzhnL4g9OaRvSNStGLLRLgZGEV1MKpClZ00//MZQaQrch5QxtNLmR0UJOT8nB79WS2nog3Zd1rFWFb2z42cX4hRZYhUysfefOvNcNMK1WCoMoaCtK+b6kfRgZ6jj9vlaIIJZpespkB3VrlJFak/Jir5fqWFtRa+d1TbjFZQc1qB0PDkTQ/NnBAFxQQF9S6jRPIL9za+r5v2AD2J964EfhEtqWnSjsRW/c1DIqwNFCrtVowGuT5gDjYw6wb02xNcXwToCzyXHUMD/+o6p3xd2Q+HJrBSdopKrZxt2rtR1sPuyrUmbM+D1oVL5VlOz/N0Dvtn4IqR9mREAliqSc2RHnj5CvjWfkLQ+CwF5hr4Bw42PZdEUMpQmTvK1rUpoXJ9nLe7KIGFzp7n+QICXGecwp07d/KNb3yDb3zjG8XP0r/T8Td/8zcA1Gq1BTupCzWS49AZoFcXWTV7Yg2YKAiXZQZnFUkfcJYlNceRjavw26diKUtCzlXtXFqa1W6jaAZtYdPywrQXlsRaZXNqCnPSYzYOKZ1+loN5/lmwtOHXuqDn9eE+apcspf+Jcd6I8AUvzLQCebqeDvS86wPYaWSrma7dp2DTUPfN+xzbPRTgPKgonDUEZznkDMujKITdcUrnz0V60dbDWK811pnXuqaBPPCyIAW1PWWy0yZaTdwURxBGQweCELOY5oUJzIZF7TWT1Qz1BTKWtYpAXBGgW6Pi2tbwG5lhv4V70LYXzaUDNI81aCI0Y8JlJj67sxVUFn5Ua80LJAEVO9sB3EaF2kfppGS00/uMiXX0UaTEeaHW8tS90JcHpVN5YdALgwEG7jtGz0tWKJW9SoHqcJAv5Gh3uktUwVlD39ohBpdmDDx6kkGv4jhKbVeKe78PDIgUKqi9KNpXHW9AHcGQmDwhBedBnbT941q7c8Xi2QhesjPd1mIUhJOaUtpV8VtFGYO18PKV1MdmuOmx06UCdx6wuXZIcC0f5yYU6PnbaEfP0waXXtsCPFHU9VgQVofYG1s0OHC7JjFrerE9WfuaK67vws1rCtD74tHrVJG/1xrqTql+P+UMAysyODTKvqAt/RohIuhBaHiYakUUPUgZoKcN6ulRuHzZbB2LFLidw76Q9qIi8QFIZtmbGVbEtWBrVnvUW4O5dIRsoAf32ChZRL5fHlXbJSaAQivMorYne9mW3MyFMR+wHpalJHUI2ERp3zys63uBKO2dozOhkkoTEu09oehXOsP/bQyPOsNfG6W3N4CZ1b00Ts3QyL2WJYR4eNVy6UrPDQI7Tmlx+7UdSvvF2pujO0TqkBADHMlsUTMZNgwjSwcJj58CL4x6YVkeu77EV9vSpL+rBuWmpEo7VBju26jIZELPk32uzt0xoDdAv2iwVxWDs0dmMKv6VOiiG2p+EWLzWYF5ovku69OfjTY0QREUMXcBsqB6K3W0bef3qKDnlMkmjXfPz+FONq6KnKcA/SGU4pxYDikITWjdfPsnV3VWZpUWbp+EK5aUc9TGvjk3G3IuwyT7222vuXmpBlknpuhaJ5+3d0FIiLnreL8ZLYc7SXvSoxqkz06YSckoeOgovGk9/Nx18KvXwOVL4SPPwYnpQjQuNDWo862AbwZo5oXi925Kpfai3tyUKHobaGJoE0j9OdQ03EWJnjcq5y3AoaCtJxGKFmpGBHt0EmsEs7Si1J7W2wVganYdVRCqGqSv6oEjUyRVSRvXnY1180lDYROaWCn2ovgagoKdoVuy+vlRWB4D7869IvlxlQ4Y3LYcTrbwz42qQnsELVLHi0Ne2JiXXS6qz1YW56oaoL8Dpban8teEmlfp7Qs1zui53HPPPbz//e/n/e9/P6DBbfp3Oj796U9jjGHNmjULd1bnOYzpflkFYkA7MpqC8w2UiywF6DWX6OwGlwJ0C9daw31bepH9J/AzTUWqQll/HvJAaEkbpV1yjwRFX+sxcEAEu2MGc+kwpp6V9Z5tRm2BHMz44NZrlt4O9Lx24wjZnuPcOjHNiBe+FpUNm7kquFfR84Ywu3VAoicVu7qUtMxDrYicdwlaz9GIVB3MYI0iCc5wxFkWO4OxFnPlEqQGJkf73F69UuvNc6W0Z7mi56/xgXson4c2NFdmO5hJ0GhpCIUSvDopAbvnNLazpUVxrReGYtRoNIHSwSwCdKvoec0pwvxrzvA1DAcE8hUjNA41I0opNIMmimaCIJ1tgRZ4hEhpb0o7pT2h5tcDi+kemM9F75MgSMNrRnXalyqrCZ3zAXNyGrNvWh2CaoBcGHd7wTPNxaiin1WHxRrcy1fSd/8hBluqWjuYaxKpzwv9osmGAasIYC9wA/Af4sf+c2K/17gBSbJFqXtEQHub37Ck7JhQJAkqG1uXYYyBHkeoR9S8ZpGaQWoRzas5Pv7qNazYfRCzZ1Tprmm9tQI1L9Rj/XktBuhvQ9GqpygDg7a684qT0pxpMh60Vnul0J4U2zmK3bxIffNuwc8Fnte2gC8i5z0ZMUA3ZAZuXDZABtx5fJJdAVpeGSsNn2jugZk8Utx9KNHYZqSjXjXcjg5WA9dzSGwWbLFKEB2MYWfdsTpSUI1VQTGTWZy1uNesInv8CG58GhsC1xLY1QqR2h7wuSfPQ1srrvbECoVQ6GkPQyGocFxCYXdMYTYOYuPet5CU9jnnK66hNu2AuKZ6rGGN1dZ4k8bwFxjGDDQHe5geNswcmVDtAFGhpql4tKpOZAoGQoD7jsDLV7Un5aroecWwJXsOcc1VOiZIYqxkVoVQb1sOzx9lanQSHwIrEmsl0tpNy2s5F+0OZqqjzNCaz+Voh4wCNabc+9JxVLScpDNAMIA9Oo1ZPTjbQY+vF5yNpDerkgzoeL/CwZEpnAhZEGqS0HOUZYAyCO5J1057W7kUoJ/PSP5ElSnm0cBkGriGMmHSiZzPewSZAzkPsP0kbBnsYCxWfJMLOUcVplg6GiGHgTpcOQSPnIxZkVCyT9IaqlLb0fvSFqSjhIDVaEvEbrT2PAXh3YCjp05qrdxli4pEGW9cA1ctg49sLwJ0aXp8wyvq2tJgnWaObXr2BimQ83Re6fFLyZU6pWJ78Yram/cAH0Vz5olFli5bgMNeWJ18TZ8QdLCHGtg1/RRs1Or+Z7lIjJUugbkxsGpQH+zpHIKCYomSn1Gi6Jeg6+so7TGZ5pmk1PWoJpqePd09Wd3p16WjnhFetwb57n4tB/Kq2p66ah1NHWaCdG2Fl9ibKaHyqniu91IpB6IM0lPHmQW5vWf7g9Q2zRjt893ZTi21VPu1X/u1BTmhhRgr1t7Q9efpAWgL0FHa2kE62iGYNFGGWs2SuSgOl2kAuMUZnhzuJ6wYJmyfLKntcaNW1EprZwJU+koHxrywTNRwGhHMniPYzYOxZKsLcr5A/klC7pwz1DNLbxU9H+qjtmEZdusYbzfCw154oaXXk3qftyJ63pXePhelau+YymoO98xGks8xw1eoDVMGzXlmkcxwOLMsjk6lXb8M83Pr4VJNpLilQ9TyhJoLtYgC3dIKHAoyJ7W96mCCvjkZhMUJOQgqjmNOzmBnwK4bLp2DqsG6QFnMP/vvnwJK2mafKZHzHmc1S+sMm6zhpw3cLtBaBa0TYxqYi7bcmvHCTIDGBUbPC8enw1EJKHKRKO2W9hrJboq1Itq+i5lcj9SztEJFIw+w8xh8eLt6oYP1kmaXjHp0li9ofVZlGGc0OK6qxKdz2bIYesA9c5K+oMm7gSCFsEq/ePpF6DWlM3cD6tw1430MKUmYqz0q6s6bOTx1uhSCq6IY80hQGGs0QEgoXqbBAk57ZJ9c1I95+RrMfQexJyYUuWv6WHMecM2gAXrTkwVhGEUOuqHnRYAXX7/4Pz/FMa/3oT8i59YLtpljDkxjLxtqR10rgd3FmNd6DPj6raHXaZ/lXqe6BnWrirbZqhHefCrnY1541mspyXQM0qe91qHP5IGp+O8gAjtHlWawvG+2U52SPPMcnS1EqwH0HmtYVXNab16zUfHbagvRFYO4q5bi7j+GEViUBy7zwtaWIhu+VZZzVWvPq5+f6IlHYocSfNnlwu45jrliJJZJmvbncgEo7d1GzcQA3Xb0rTfQZ3TORpzldzPDcmP4K7EcxdBcuZSZw0F71seE5kxC0JuBRrI5KSG2bwyOtDQpmGiXXZJyaSR7noZxylghrrUk3ieZRUb6CZvXYB8+weKgYqfWCzZoOYkNWl5iRMqAvBL4JWT2DShylxI3VZuc5u+4wMo4hyZEHzw62/bIOGZ1T3vNd4UVd1FGt8AcYnA+CEeaIFATikAhC0pvT+JUDu113kltL5g8L9LhTgnpNuQcvbcPoK390lx0IufndPeqaEIVaTw8pUWyG0baacBV5PxCjiqiGdf1n3/uy3pxL12qXQyavp3WXggptgfnyW1M6Hl65DZTIrDVBGQu4NsC/lDWkfsADx7SchNrK3RoB29YDdcth7/bDsemFDXPldruW1IE6BNNz1TTszGUAozWtAfoEOnspjt6/jKUmv8JSpp0ShKJiLZRS6VclB0SzKFJ3No5kmL2AndISKOtxr1yHj0OhoFDE8q0SesuRLZbvIY62jJ3F7TtTT4KtrWxyFKS5fkJ1U7olqxu635RJoXk+qX4AUd45KSi516BKJMHDvvAhly1coo5jHNXozJflSD9LcBnKNdyJ+tvodDzM7ZSu+2221i5ciUA73//+zHG8Pu///uVuTEMDw+zZcsWli1bNtfHXPRx9MDWrj+vUl2qAfpeNIu1nNnZLwux33nA5RbnAtYZVmaGgRwObB5kw8OH8deN4L2J9Z7aUs3mQmgGpO4gZmwkaO3kYq+ZaHN0AjMjmEtGlKrrNMBcaFpfMRJ67lXNuSezSk004G8awX9uJytuGOb1Q/18Ng/8bstibbz2psdllppRql8mgjPmzJSqXZOwacnsoLWg4ZxDcE47BSaIfp53jhcy4ercqgPhLHbjMsy6JbjP78b+8Bi1n1qr9ebeYPOAs4Z+b3mlD9xjHRtpp7bnZna9ufHCuJeosl9xUPbPYNb2qjPVjRlwgQKE3/s/3lW8d9X2aqAUSJfaAhl+whmezw1fWtrP2yebNFseay3OpxYmQparCn3Nzbd5y7mNzlrz5LTsB15A28kkJ6WgFUUjWV0D4iVushXRluqRfr/jqLZtAeVm7jkOV67sMOTm4lDAqqMTrc6i5xgEbl0NDxyCa5fgWlqTXs8s9aBlCFN5oFVz+piJ2qdrgG3AP0gJQR/FuuJGFIJgnzqlKNKqgfYsc8VJO5ud8c7ia47gKdRPQwb7grAsCOaSRdirwX5hJ251HXvdSuxly6lZQ9OAz6EHQ6vlyeuOnzWGLwBPoEqoTfQ21NBTSuvvH/7GO3lQhNXRgKsgjmBfGMcsM7iRnnbUtXpcpFEzhv4I7aRzERuZPEZg2QDrj07zjssX8bEgvKMVuLFmVXE7JvokKNvDiVJu+545DVcsVzqqmz1fnIMDluxl5/4HsM8YfqFmwRuMWIwETFDdiuAN7taluNu3k+0/jV83ws0m8GjL8KpawDtDyAO5M+TO0RI9rSrjKHUoGfOwqJLANaeV0m4uHcLYC1PONdfIjKEviRNZXUsmULRQbVqw1vCPMsM3cvibHH5rTZ1lO8cQWaQso2DBa/maSq7o+x6v+wP3HIVbl0On0F3FiaxeX9WelyeqNsp7i2SB4K0qDhuBG4fIvnSYl79wGjYtUpZQC+1akAvGqcG1dUvNRNTYULRtcmgLsY+g4nCXMDsxDdqhZHmgqHstlPbzgDniMVWh17THV6OTCzyMMYixKLQYvzOdw/I+2DMOMUCoSUxsCtRioJAZw2vQBPFLaU8iexPdGTM7QTyfEZiNnKd7+wDaureKmleRczdfSnvS+2nzveIC3DEOmwdn2/sL7JukYYxBnAUXimf/X/7i2/TGrhtSivJTJ+DmFbNo7bS03ZVxujcVyGvc+6p15w9DG3ATTGKRKUpqq3T2lPickPZykypz7PWrdHP9yA7Cr20mrBwoPztYyOCACGvRONTVnXZ1iueXUVZ0pDacLRODb9MOTvwm8C/QDgqXodclwKgoCrsqIc8VBNodGsP85Lo5S0UvykgX25kgMAZWDsKhBmymaNtbdE9KrDfKuvPbqJQhRHCzYJClOdt9WpXbumknJD2P9H9q5auI4H9iHfKlFwjXjxD664QWTGOZNoF11pK1fCEAngDamon+iCn9khbw02g72CdRv6UqZtsQTcIsRJeHM87i5s2bedOb3sSb3vQmrr/+eq6//vri329605v46Z/+aV7xilf8WAXmACLd4b/OWpQkZbcb2qgp1QA9M4o+Fsi5U2E4YyybreGhtcMEY/H7Tpd15xFRUEc50igiio4XTnthaQrs9jQxm5ZoQOnUQTEdDspCjoSeGxdrzzNDVrPUMkt9sJfaxmVkW8d4NVpLd19LnXxFz5Xm3hBlGzQlbgyJ0l54gJIgE9h9Ei7tXxBKldCOyhSBc83yQmZYkdSwM/1ca8C8Yjnu4eO4sQYuqtmqarui569pBe6N7IZOantxGajj1QqBiSAsRuslE7WPF8YxG0baqbW24/0FGD097V0JaqZEgXqcliz0ZIoEOWt4lzM831Njpr9GfmSioLU3g9DygWkRZnJZMFpOdZwJQfg+iiAM0k5pT61/ko8nIkjTw3QrIua+HTFPqHlSWv3BgfaTePLwbMT6IqGr1WESha7TUbIGblgKpwLsOV2sKxfblNW8Jk+cSJsoTgrOicF4NfOch6gqvfUYXL+ie2Ce2o+cYYho4ifUHL5yhJplj3Msc07X3LKAOw326Sbuky/gnj9KreEVPW8Jtdwrvb0ZGBLh7Sh63kltL9C7INSyjCO51t6ZqPRtBcyeSWXJGFOiri8y8bcQo2YM/TWnCLot0fMeAz3LMrIDp7gG4VcRPilwX67z08iF6VyTL82g9P285QnPjSv1s4CN2p2Rc7WdVa2VdEygNZvrrFHV8FR3nllM1ChxvTWym1fjHjiMDcL1IbDXB8YStT3WY7a8FAnOwjYHDcwlwMkQtNNFQn92TGM2DhSUdtOZuL2AegGgwU+fqSi5JyQ9i/PmDDUHb8pUO+D2xT2EExPkPqheQC4l+yEPTLUC061A0wc4PAH7puFly9oYOgV6nhg8ldFpz6Fk2gRn8IUwnCZ+qDl2vGQVL33sSIE2pnpwl8cguukRL4UgXM20s5JG0KRoEoZLyB1UkPOg4rVASWcXwR6f0gTAovqctPaLNuYKFFbW4Zh2e3CiiHktouaZaLBuUWr7vWgNcHqGq0KHL5ba3taRpLLvHUGT0jdT+ptte988P79UIq8E5dUg/fmTcPlwhz9SCWguRhwXtYDSPtfTV4+sEQs3rYJHjlC2Vaucv1fbkUanKFwKoragtPaqX5hExYra5dDxufcfhVtXzi43Sd1JMgevXQ03ryD/xE7CsUkVgvNBAbdm4FArsKnpsemQdgS9+vhnkd1YRc8TvX098Fbgbyj3wYDWm68IUEdRcxuTuGYmx54SzOqhi8rU7BzGmDIp17nuVw3A4UkFIGNgnsVSplSDbuii2B5KzZzgK9T2AGwfhyuXMad2QuoOkFV+FjvLyIYRwqZB5KGT6td74XAeWNwShkLAtNTPqrIfMlMRhavYzH7gZ4DP046ep7ihIQuDns97af7Zn/0ZH/jAB87/G39Eo3AuaQ/QA/pwbKISnFcMQPpZVtOgXPueq6rtdc6yw1i4cgX+2XFd/9FBbsUsutaaK6qcUJLxIKwW/ZnZewSzqb+gtNs2hGRh2wAVIwlR1Sy9mR51q/WRtZtGqO05QW1smrcjfM0HTrUUZW/mQrPpaXop6O05QKfxSwtqvKlSqHNRqs4xFV0Y3475m7SGU5ljRaasAxPZB9ZZzKpB3OZBavcdU+QgKCU21aDfnAeO+dCV2i6V79R6c3VKRuIJmBQs7BvHrusrxeA6spgXjTId2zz1Gui1aGBuVByu5gzD1vAOZ9ixbITJ40Iu2tKp6ZM4lfZengmy4LXnno5a80oA9n2U0p4Czs5acwfa+mIm1pY3QhmMz1SOhleK3HQO3zyg3k913Ly6ndZ+EQKAOUfNtNeepvOpObhlBdw7W8k284pWOR/anJQr0GV2LA9IKANziYG6Pz4Fh1tw7ZKOAC8F6mcP9FLeTQN0Sx6p7VKz7KtZLqlpMGd3nlR1VhfRjccPU28FelqBWh7IcqGeB+reU8sDb0Xt71Yq9HYqibEgiIdjIqxIwYeg627nadxluu5mI+cXQX2/y8gy7WXf7zQ477WGPmPoXT5AbxOyU1NcCfyWCHeI8Pce/ocXnm5pUjf3mhxr7hvDDwOrB7qgBLMDu7ONtqSmlA7sPhT5GUEZYiazWBtp7TVLlqlgobtmEQ6D2X6aYREu9aKq7Xkgz2M70VZop0XH5G3qWXsiF9YkB1MEs7ektFtTfR7TtS7kzHQfNjrNqd1ar1Hl/T6rJQq6LxputfDmRb1M1S1bj0yokndhM1VAdcaLJjgF/APHtIRkoEspTVzn894XnBpEySIbKr1aw5MbRsh7ejBPjUXnPdae+9j3PKKQqS1X0R7IlPb2DagwXBJCTR2MQJ+ZkwFWdNS9ImCPNrDdxOCSA3Uxk2NnQvAm0H0hCPWg6tFO2uvPL0Nbmj0E7cJwvHhqe2ob2oacU1Lar6E9Id2JnJ/184NoMno6lnUlOnjyvyZacCSHLYva/a/K/ncxfJMiGd2ZFLYGrlsCJ4KWgHTS2mNwnu57dc+rvr8ULXE+QiUw94qa50GD9DY6+6EJONCAly6rJKej7alXA3SL/ORq5KUryD+9Gzk2oQF6rsn/I43AplbANj2u5bVLSVuA3n5vU0Ceykx6TNSBQJXb91HWMoPWm6+JjFQTDbgVwR6awC5xmF43OzC+2ElpZ7qvvdU9cGSiEIXLghSouUt6I+i62xs/Sojzlh7jOIf6jwDPjMLlA2WyuhPoc0bnr6rYnqkuTjAQXrWS8OwJ5OQkEgKH88CavCwDcrlXvQ7KdVirzpkpheF+Bi2D2Usp5tdJbz/fcU7b3759+/irv/or/s2/+Te8973vnXX8uIzhxZfM+lnVuRRKZ0VQ5zAptRsoalrS5lU3kMWg3GVad26NYaMzzFjDwUsHCMfHyUen8D45K7HuPIQySI9I2MkQGAyCOTyOCWDXDhWU9rYe5xeoHqiqGl1ziq72ZLH2fLCXbOMy3BOjXIrwEi98JtaeqxJ9iZ4ncbgwV735rjFYVVNj17mInTln+k1yKtNcCjqfB4EsswxmJjqYpkBiHGBevYrs0RPUTjcich4K9fbeILyygp5Xqe2h8j3Bqyruch8NZBLFOT6F9WBXD+hGV914DBe0puvOu+6f9bPkbPba2NYpUwdT0XO4zEB9VZ2TxydUZdLHAD3E+vOg9ecL0UKmOjprzZOjshMVBLkF2hRri/Y/ISID03nphDT8bNS86fWDnz8Ff/0UHDgNv7kFfnENXOPg19bBFavKDHlmSf2FfySjimB31ORx6zJ4YRqOTKozEZERfWbB+VCIqji0JGdzELanwDxPwpRBncKnTsOVw9DXhV47TzuTnB4v4I0pUHNfs2yvW9bVY63y1UsRCzaPdrS/H+OFnlagpxkF4nKtQ6+1PMM+8A605q6KnhcBghce/e4POZlXdDqCOijGgF01qPTPbsj5j2IYQ2Y1wOu3uhbrztBrLT3LBug90iIDthjh7R6+EYTvBeGPgvBMIyj7SiA8P46/asXcKME5Jh66JaVBHcIN8b21MbmZKYvLRUZVlsThXraK7NGDmEbODSHwRB6UYh3FT32urdWqjCOJyrgITHphONUuj01jT+RFhxLbljAzF5XRYjoC9D5rouq+LVrk1awy5bIVixk/FLgjJjSbEUFveKHRUl2W1ukZ8mfH4OXLS0ey0p1BW2nMvrZu9hxArEFqjuC03jzY1Pfcctwajt6yDPP0QczEjArCtcqjKP8JUgjCdfbvvRF1QB+indEkACKMhsCylIyu1r0encGuGtST7AwS7EWqe02jW/2rQW1eHThaouf1EO2oiFLb0Wn6SeC78R4k5DwhYqkTwbmMRGmvIudp7T1EuecVjwhlYH42z0h8ULHdmZy4eZeMseSL3bNP//jIaLv9+FHYyEpLtTt/+Eh7MvqmZfDwydLhSrT2PLRlipJv7kzFT0en9xLKfucanGs74BB98bZSyweOaTvRWfuhUV+1EqCLM/hXr0JuXon/4l7k6HhU+/YcagU2NHWduaYniwh6FtdH53CVzjrVNl0ZmqR5N/BhVCLAi3A4BFaHRGdPlHaw+5uYVYMa/HcGxXYeD89CjrmSYqsHVeWuobanELKLazCxDDaiFYcTVJDzoGzjPETkXAReGNPvWz/cjtZ3xErGqV9XrTv3taiRs6iPcN0K5IHjhCAc84FVMQHkcmXSulYoUH0Xwa5CFM6UyZSlwGuBL1Dai2rP84Xwn+c9jc899xy//du/zec+9zkeeughtm7dWhyPP/44W7duPf+zWaDhfXPWz4pFWw3Q48930qUdAmWAnoIGV4tOSnRcXKY9z3fWa4RLlhGemYxJHlU3D7mocxKDVsk1AzQehEUAexqYjStUIdeVqG+ZEbqAqyw6Cjai5z2ZpWaNZvduWkR91yns6BRvIfCCD2ytoOeNiJ43hag6HNrp7MkI7h6HTYvLxdSZuT3Hy0sOQ1FzHn9+EFhpDSFzWjsbkyimZpXivmIAe+UQ7v6jOAEXBOclqrYHXpUHfujDLGp7Qc0UVZ8+leh9IdL7BOzBJmZtP7ZrD3dzQbOYQ0P9XX+eKFS9maEnChzVnQrFZcawZUnGqhNjfNFH9NxT0NubPvY/FxasZ2MQaaMHVqlb3wdegQaY1VrzzEAt102P6QqFPTkhVdS8GRQl+OJuuGMfvGI1/NqVWpt0xUr4xZfAVavKrGo1IP4RDWNMmSToQDPorynq9uCx0mGJSswudhpwQYrHzQDX+8CzkdoYYpAevJD7QHjyOHLjovZns010ax7BeUdiM1iDrzsO1CwzNcuqeC1uwwrsu9ZjbujBvXIx7sExODhO1lK19npL0fNaRNPrDc9bgvACpSBTotYqah7o6+/naKy9MyFe894G7tKRohxolpP1I0DNgYJen1kNzgecIuc9QO+qIXr3j9ODJp32Bk2y1GIp1HdDRAt8IN9xGn9FVFie1V3AnXPgU0WzqwH6XpRWaYiPR6ZJFhcTnC4mcJ0zZOtHcKuGcY+Mcj3CPi+Mx30uj63VWs1ALtLWOpQAxgdGg7AooebPz2A2DGFrSmm3nc7WRWa0pFZrAxb6I3Lek6HshyjwVzOGvjU9vPzEGMcFPuCFv8uFbS2h6fW6WwKtR0/RunIYWdJXBuVtjJ3uiYe57LmAUjOj+Klk2sYQZzluLT3LB2HjcuxDKtqnau2V4DwGb0V/74qzmRJ8r0ep7cnRLOjBAqdEWBLKeldDfD0yjl1VL/fxtiDhItvWakDe9mpgZS8caZDaOmUxUeGIVHf0El4DPEKpnF0otlcC9HMZVYHEKnI+gdardm2hFufmTIkpafn27iSdQqitALuOweOT+h9uPwh7jv1obWQlGT083F+uCwu8dIlSlieaHZR2KUXcKJMYVfTcUNadJ8V2kUiNTiBZZJGRBzjdgGfH4WVLyw8skvW2pLbHAD3ULMEZwsuWIzevInxjH3J8HO8DJ1qeDXGduVwFGG3TY2KA3m3UTLs4XI+JyCyq/zAMfBZA4LDEUq5i3UVU/uAYbvXAbH2Hi8zUBLonxazRxEcvWt4TEwsu7d8RPXcoY2sxWlqcRLSDV0wi6doQgOcm4apFFOr0ncrs1We50PSJ3S1qai/FGsLNi/GjE7B/jJNBWBuikGYetLtFAu7SR1HOVaK3J5v5c8B3gBO09zxPduN8x7wt6Cc+8QlmZma6qrX/uI3JscOzflYNxquO5uH4s3W0ZzHbAnSjlO+k1m5j/bm1lsudYSvAlf3ku47iW3mBmvs8BeihCNLFw2kRFvmA3XcMs6lXaZnWFGI0F5TSHkcVPc8iet6bKVJSG+yhfukyak+OMgD8rAifj0rCPqHnrVh7Hko6ZhtyHgI8P95eb96WuT13I5KSKykwT8HzQVT1MdXSu5ot7qWxBmMVPa89dpLaqZkiKM+81pnc5IWTrcDeIG2bcvEdGqEXtXdF3Stg9o5hNgwXc9iZ0buQ6MGrXnHDnL+rGwpabT3SM2tWEzDZYm3tdOLUJE8FzdKmwLygt8scLfNexEgBV1FzJ6UTeA9a71eltGciuIbHNjy2k7be5ox4yD08cRz+8mn93T+7El66QrOndacbbW98rWbF6z9C1DwNlyy+pQ05tyh6/tRpLQ2JzBQT2R4uBLK8QqET4Zo88HwsoQleAyMvQth9mrzfEC4ZKTfSF1Fz3zWx6Szba461NYutO2yitl+2Avvmq7CvugT7qpXw6V2YyZYG461A1lJKe+qBPtz0vCPILPQ8iNrMDTdcTTMXVqbATgSz77jWK0MZ2FVty48oOAdIbTCdURS232ptc8+aOj37xqmHgBN4lSgqEoLQH4RXB0XOw/5xfJ/FrxkgdEtsniMbJ8RguY1ujh4JOU9JHmsMpl7S2ms1qyVdzurjcssyzK6jDJ+cYFMIbM0rded5wDc9eS4FpV0ipb3pVdV8SZq/Pccwm4faO5RcZEp7t1EzMUCvGfpNao1XlifUl/dQPz7BG4Nnjwj3CvypF7bPxB66My38kyfwL19G6EzUVlk7XcZc9lyAYIzqPSSH0xmmnWXMGZZZg71pEWb/GOaF02U3g2qQ01Kns0DrUoBOGZw/iqJYhVo0cFJUZXlp1JaxgVIQ7nBLa0uTXak65xc7Nu8WmCcbsGoIjs4UD30Npdm6AJkErT0H1qDljfdRMgiqAbrn3PbDTpZYWn+Pof7KasqEdCdy3m2IxLahKSHdCl00V7yi6XccbP/PW4+ct/91PqNIRjvDbS+9rm3/YUkfrO9T5fYURFfR7ihyaozpSmu3aN15UmwvmKoh1py3QiwtBR48rgJ5i/va99x0pAR+9BVCr645sYZw41LCTWuQb+3j1NFxBnxgae6h5ZWpEgN01/DQiBpTHcNGNLZae16lt/8O8GngiAiHg3ZJMHHdWa++pz00g13T1xEY/4jsZrc1Z9DzWdUPhxtF3Xm1pZoLUtTkb0LZy0SkPAS9d4UonAR47nh3lfYUK1X2+7Ijjpb/hMoh9Qy5aQ08coyTeWBNpQzI5Hq43GvpDvrcJtX2aivKGsrWuAnte5583GrP8/Md857Kbdu2YYzh937v94qT/tCHPsQrX/lK1q1bx1//9V8vwOlcuJHa81SzwgF9KNZTblLVAD29h7iRWRUbyzLN9FtnuMpZ9lvD2LIBZLAXv2u8qDv3QQoHM1Hax2Ot+cjBMahl2JVKhy4E4dJDV7sIq6ySLeyJ6Hk9oue1mxdR2zmKOzXFzSGwyge+0iyD81Yr1p7nSoVuhJidTJT2I1O6I61dGNEKqTqYlQBdUKXZdcQER1yUNlPn0tSsUl2W9ZNdNUzth8c0Wy6RxhKEXh94eR64L6Lnecf3VJMqI6Gse8UHzIFJ7NreqPpr2g3Vj6qemRIJ6okBes1Z6jbWUFqLWTrMW07nfMILH82FZ5olep7nQpNYI34O3ynpWU9HzFg3Y/ImD4qw5V6FVZ71gUYeuCnX3vO13FPLPVkjp9bMqTU9pooKJNQ8OScnZuATO7S+/K3r4Bcug0U9usH2VoLyFJBXA/WLsb7OMrT9V8U5SGh+fF7ZNAAPHS9r8SLqbL1u1IUwXBCu9sJJHxgPEIK2tvIC4YlT+GtX4K3t7ozM4xlNeh0FrZ3Sfj5Xc6yL7Z5MzeEivd3VHM4ZzG0rYO0gfGanoud5oN7U0pKaD/T4QK3peWsrcFCERyg3uqSEfczDoAi9xKBgbBp7MmDWDykVuxM5/3FIukQb4FwKzg19KwbIGpCdnMKKsNkIvy7K4vlXXthkogbg3knC5UvwVlGb80W8EtuhmtSs0tpTEVix/zmLy5y+VgP0zOKG+8guX4158ATXifBUpI/6oAF6CAHf8moLUmJa4IQX6l4YFIGxGexojtkwFPe+2SKoF1uksToyYxQ9r2gH9FhDj4Xe4V56MthzbBJjlCLd8oF7YjJMtp4mrO3DrxpSleqO+keyc08cFeVc1hCcI8Q6yqPOUMssvdZgemvYm9Zg7zuobYGio1m0lIxHTaQUN6oEhCvQtozfpj2QPBG0E4ODth7n9tiUJnQW9ehJzqLW/gjmz9rZ329RUbijE/pv0aRFjVhvHqQIkC1Kbf8eJdMyJZKrAfp8hheZhZwnG/pDFDU38TuL1nZpeXf5PPESk9Rd2oamfbEZ4OQMfPQZRS2r46WrzivBtyDDmu5ssZSMfuSoQqZVWruXmOFQi1UNzFNwDhqcP4fe96TQHvKKH+5F793Dx8tyk+o5pHXam0FPGaD7WkeAfvVi5OY1LPruC1x1dByCAj2m6bFNwbREA/Wmh0beNUDPiEE5lQAdjUEuR+nS/ysIR4KwKlC0nTSiIoxWwC7rK4PgamLsIu99JiUGOte/QantR6YKxkpBa4/M00Rt34Qi5xLBP/EUujkhCHJkSukmmyoAw9me5agfIDVLXovoeWYJ1iCbRwgGNu8eY5VITGYGbKS2m5YUwTlU6s3N7JKgnwO+CkzSoVFxMZHzsbExAN7whjcUP9u0aRPve9/72L9/P5/5zGfO/2wWaLjs/8/en0dHdp3nvfBv731OVQFo9NwN9DyxyeYsioNma7BjxzYleZIsWZNt+WbdmzhxrC83zl0ZviTX98Z28kVKPETJlewrS3Io2pYlkbJESSQlmRJFUZQ4T82eG93oeUQDqKpz9vfHu/c5+xwU0EB3Y+zzrFWrCoVC4VTt6R2e93nLO1Ne/xM66JaiUjuUFr7Kn88EVFw9XhSJ7H53pNigNc+hSG5aTvLcMRLrsghO7jNtezG4lFNtyzILet8oasMqlNKZcZIZmjNEOQqz57qUPa/11KldI9lzDbzLWh5PUva0ZAE1XQ16O0ldn2xx7DKPds952NSdOx9l6u4UjS+f6cmo7TZ/fgCJQiucqJEJ6iaDA0C/sR/zzCnMqWGhByeiaqvbKa9PLD9opZJxpCQK5yK4JxPodzUwKrXoo0MoA3p1N7q8aczARnns+OkJf6+0V4zWEqk1TsFdQbR0EV2Hm4wixsLHUsvzbUsrpLhPkD231jvfKbaZYIdbjmrXktsFuU8utGhfaNG60CIZapGOtElHpH78Bxfa/MRwm8Zwm2i4RTzSJh5pEzUTomZKFGbMM6dcItU8egQ+/pJE3f/RjXDDCrchB1ny0BlvGOgy0BWhalMQY5puhNm0ssHy+lVCbW+2syyCdpoJJs3ro0zb0pukbGxbXm7lRokdGiUZGCa5eSlJef1pBdHk2AOW8fU6dgFbYvneVeT6ZLssuok0yhh4x2YYbaG+cYi6E4SLWsJcidznWdRKeFc75TP4A04o+dZadp88Rb+j7CuE0q7XdaNqkQQAdHl/meXAS2kv0Eo0ILTRmP4u9KFmlkF4g0V62VsLaUqSpqS7T2G39pBoSMpjdgmsgDCoGTrnZ4BziHOeiZ+6qadijYnz0qDYZc8jrTCvXowZusCrD5xhILGcS1LXC9jSbqW0W1ayVY7SbpOUc4nNsq9qzyhq4+ICpb04hrMfONNaHPNMO8A76EpTW7OUOw6n9LSlLKieWt5gU+l//NwR0rska56E4xYG38bBePu5P/NSII20BG0izeFIs9wpFCutUdcvQZ9roj79DGb3MVS5xWRTzryw13JoaP494EFyJxLguM+aO0oq1hmNx5vo/rq0bfN7SJg1n439NcyqgbsuBasacLiFV5rSSOZcBOHIROEM8CbgBUQHxX8PYfZ7skZ3FuQvZc4TpO1XqLHiHU5ff1wWEsvqy8cTQR1N5CJ3nYL//hKsXQL/6GZ47zq4OYJf2wA71gRnzewET7y9efzs2fzM87bgNUvlC3jpVM6+dIwPcdIlm2pUHkgJs+ebkO98ILVZy+JMFNXXnf/wOKypSQu3MFAQKLarqOigJ95Br5usW4LdvpSXb1vLO//uAAyey5gqqpVgHM1duew5o22xH8PvoaTcXl6HHwCeTCSxdzYro0TOjMOj6P5Gvu5Cp3zW1l0Hx1wh3/WRc5konC8p8ZlzLwq3BdidSukoFjkDHaMssWBfPidsh9jQ0ZfoUEKjtILYj5ljG2lp62e14virV/GTzxyiq5k4EU0neOm0fXyXC/l4SpT1Ayfdr9WbEN/ja+RJhcvp7lD4Wif7wnpdIqS1Wi17vH//ftptya1997vfvfyruUJY0Xdd4efU2jH9Xf3Pe8iV2rN682AD8Ea8xi0grTDGoCOn2m4UtxjFSyjsxsUkoy2SQ+dF2Me3ULN5/+EzqRUqzMAJ1Pa6BJ1MkYZ9KTWFl4wgex5HmnqsRUhMQXz7Mmq7ThOdGmKVTfnZJOVzbamnb7UtzVYibX9Sy2gq9eeJd853nYFti0ubhypuJFNAOfvj7wEOI5Q0IBM18jX8OshcqOVdxNcvIf7esUyxNUole/7qJOV0W1oEFQRcUjGavTDOMu+cA2qgidqwSNSNyxulYdo3ys/c89UJf6+UtAD0bZ1EGM5tMn2K02dP09bSWmbUWh5JA8c8zQX/WjZwxtupo9Y5R/x8Cy64+jd/72vhhhPaIwnNkZT2SJuk2aY90sYOi4P+9EibNw23MaNt4tGEeDQhGnGO+ainhyVFsZuD5+DPnocnB+FXNsHPbJQa7TjIloc0dv98VwSNSFgUcwhZgCwqGQtawYZeWB3Bj05kGQSdSKbVJI7enlpMkqASy47Esrvt+nqmluSF86Qbumn31klioXjljrmWDW0S8Fkkn/0JA5w7gW2OsqhrYtyYWEkG3YtfNQz80jXw5Amip45RS0QgLm4Kvb3unPW7Wwmn2ik/wJWVOCPtyfsfkgi3q7/Tu0+iti7J9ucxmfPZHmJ/iAT7ndJKDO/1veiBcxnjIbIp2xLLniSVc+rwOVIDydpFIrznKPLZZ7sExoffN8sO+n5gOdBDHpD2/k2kFaomxpC0EpWbMYoojlC3r6HxwyNsbyc83S7WnbedMY2rISS1HE9svnfuPYbatkgIVU4MTs0BSnsIpSVo0O1uPQrqjuKo+rpZfeQM/6uC3tTyk4llM5Z051nSxTHphl4SJdntQi1rNPG5Pt5+7ksRUkTrwcYiDHck0izxpSSRQh0+hToN+iio/zmAeuXomBpe1U6J07y1WlbvjGRzh5B6aE/hPp6mrEjJFfatcxSOjqD6eyV54edmFt1ReVZjJlF2zD1jb6Wr5T/jyKapa6cWOOb+thy4BdFCKVPbPZNsMj2MQwHUMGv+PGLYXwfFUi7GJgHz1qElzZWCloALVn/7sOit/PQ6+OkNcvbt6IP3vgpuWFNs4zebzBSj+fQXvh6wxfx5p+H2Pnj8aNE594+d0nqYOAuz5wa4BtjjEmFpSxIH3jFPkxQeOwKvW53/39DB8624cKJijYi0brCxJqkZ0Xtw9edWK763dSkDr16L/uYB9KEzuRBjU+wWlZUcpNAcm0H3YmOF+nOEMj3okz8J/Gdr2e0yuQrQRy6g1y+WaT5X1l14Ddm9ksz5Ccd68I45ZOJ2PnO+FekZ30qF9eDLElLHPE5fOQE7lhTZDpPxJYzramGcqGakZP/UioNrF3Ns2WJ48izK7W+6JeWqJsm7XHhEQRClHEz5JYTa7rVyvCjc5WLSx+DSpUsByaD39fUB8JGPfITf/M3fBCYWsJhpHB14qvCzd+zKDjqIc76VnGJUdtA9lFLZRmpiEfzx9efXGsVLWtOKNOnWNSQvn3V7S+DQyGnHWWvZMXAOuuqoZd2uJjqoj55hylGYPVfG9Xf12fPuGrVrVhE/eQpj4U1WolsPt2Szk768uD7ZeY9e20rg4Ahs7e0sGHEJh8NE2Z8RxDn3Y5crDpfEojREr19N/OxpzIkLRG0n/uCyeXcmlsdbCWma9+u1PnOcWs6msMTmG6U6cBa9rhegKGh0iRmuqeK3f/M9F3+REYe8oV39uXbt1foWseVomxUjbdqOLnyHq/FpWWgnslk2Wymjowmpz4oPtYpiNCOB8eAccu+o2+E27eE2yUib9mhKMpyQjCSkowk7LyR0DyfsGG1jRtpEzXbWLzQaTYjHZM3b8I1D8KndsG0F/MZNsHlprn4cZsvDjHlXBF3x3MqWl2E6GAreYHltPzw2iO8Dq9qSMdcJzkl3giapZXti2Z+KUZLalHTXUZJblpIqxFkoUPgCQ/YiKGfNvWM+4O434oJicV53blzNchZwWNYF796I+ttD1A+eley5a61mnIJ7TyvlF5sJn029MIw4cyt++Z0iBmctutlGHRlBbenB6Lwrw+XsLVcaWblCcF1ay/lh1jfQB86j01QyBylsSi37rKO072+SbFpBqjVt4+rkytnzKSI880LW2F5ySnsWTyBIQEYKamOp7Voros1LUPUGb33+HM8nvjetq/Fsp077wGXO25ZziWWpp7Sfa6E25B1KirT22R+/DO66GlpJSZuR1lO6v44+PsRmm/Jaa2lZl+l5bpD01atIlWRqkqg0dhcRoOy0n9sgseDj3m1Xdz4YK5b5s1tr9M4TToPBnYM/GswFtYJ2UibNheFCI7OGiFL5LJC1cNpaVqdFUSplLfrIOVRfHeU/UiF7NltjqIolc6EDs1Jniu2kIgQXe8c8tRmdXCMaKN+iSG0PHfSLUdtTVwZUzpynSAu1Oyk65mHm3NucWZu0Tp1JwvryC224Zxc8fRR+bRvcErQHK5+LNZcVnsWSLmUUv/2/vaeY/fRiibetgENNOHpBgnuFlmriLCk7NnuukNuO1LInSeT8S3JR1CS1JC+dwtaB7cuKzKYsIF5kkSmjoS5K38SKtKZJY0MaG4gMA0ahty2Fu9aiv3EQfUAcdNOU+vMsmRAkF8oMxEwQLrivAQ+5tRalwmT8O+fEGmtRg2cxa2uS9wmdcm9zzsa6K6un+32gN5bNZVDWnbI40TWXGHNJrn6g1rYMJtYtT0dnTyzJ2VHSY4kwK8Jxm8R5oZSMm+h0KNI4F9Qc1Ip9r1oGuw6jz17Ias5NKxTTlLkEEkwJM+deryMCXo983EfINXOmUg46Hia9Srdu3QrA7t27ed3rXoe1llOnTnH8+HGUUtxxxx1X4HKmB36TDR27BHHsTiGZ86zeThUd9BDZQaalptkbFn2RZrFWvIIivaGLZO8ZkqHRnF6aWKyViNAJC9ccvIDatgKNHKoqyintKtYzTzkKovsm0jRiTd1oYqWI71hKbfdZ4hNDxDbl3TblK4nlaCul3Q7aq6Wu9txa2gNnpeZpZWNstMsvqikirDMPHx9C2lAUsj9aoWNNZMRRD+v+9LIuzE3LMI8dD5TbxWB5bSvl+20XccUZtK7eXATTLCssstG0E9TRC6gNjVzQyG9Kl/gZpwUqNzAbShTba1pRqxl6F0f8w6NDvCGxbLCWvc45b7ZTms2E1nCL5oU2I8NtWmVn3Dvoo+Xn2pmzno5I5rwVPE7c46dHE24faUsLktEEMyo0djMi2XPjD7W2hd2npD3agdPw4WvgLWsc9SxwxMdkzfNM+qwLv10EuYBJkDX382nHMplTL5zMsgh+zkpgSbLnOrFca6X9ykhqsYPnxFHatIRUqczRyzMGkz/I/d4ZZs0tjtJObmhqo4VqHru2ap654KmUW5bBW/uJ7t1DfK5JvZ0S+9Zq7YSolfIzrYQLo21+kOQH9PEElnlK9MA59IoY1VMTh7dMcZsrY11i0ohdoTD9PdJm7uSFLBu5w1oOpo5hdeAY6dYuEkVx3HzgYYpng9cLKLPGLHCAolK7v8/3US3tBt25EPne58YJxL1mBRteOsS58yOcdVmPpC3lCElLHPPUsY7OWMtaLGrfKGrDElRAadcmmPNzidnivnelcQKwCq1BL26ga6CPDbHJwrHEwr4zpFqRbl6C1YrEuCxNlj2/tH3IUmKLWUCJoTkQafp9HXuk0DeulMtOhALL1hUFp1zqeC2mlWQiaN5Bj5Ex/3tIr+VzANZyIoVVfu2lCOXTWvThJrqvCwjWXEhrnw14by28FoUY9asXwZFm9oWqgNbu26n5IMVrkbWxj9zQDh30i1HbU8Zmzr3d+X1ylfbQQY/x000Jnda3Seukt+I1Vw6fh08+J5/pwzdKprKT3kr2XAS1ORD88iKoZcZTVww3LRFhOL9hZbR2m9Wlho55qBN1XStljyt/sqm0FE3bEqhOnhjE3rVG9pcxdHbVMXCWGkdnjw22Jo66rRlOx5rTxrDGKPTWpag3rkX/7UH0vjPotojZEjronuHQTAsOunZdPLwgnM+ivz0VATibilDo23AChs02teMpZu2ivG1vOM9n6+zz/9ufd9m9hv4GHBnJaO0mteLLu/3Ea1lsT1MOpp7t4Bxza6Wl6IauYtu78DbBeZFaK2MYGUdr19n9YaUxy3pQ21ajf3BSMvmu7tz4PdOtOz9mY3qeB0762xGV/YzaPpOZ8w9+8IP8y3/5L+nv7+cDH/gAd9xxR3bRr371q/nH//gfX/7VTBO8U1520PcAqxDnzm+WGa2PsQwRjV/HIgxnfGY2UlxrFM8oJaJwGxaTPHveZc6l/iV1dNPRkTYrD56GTY2MOufv9SUaYJeLMHuOUdSyDLoi7q4RX7fSZc8VW1LLa5OUe1qy8eWZ85RWKlnskX0jpNcsoWOPXk83myK8Q+CNFB+9HiSntIfGpTJCq1VZ6yyfYYD4dauIXzhDdHwoc8x123JbknKubdnXkn69vp0TqeV4W6hw3b5+5sh5VBeoZQ3JVHSi28wFuAmtVd77XCiNinj1YjYesbxPw/uAB1PLmcRKkrYpjnRrpE1zJGF0uE1yoV2sdxtuS+Q+fC64tYfbtEbaJMNCZ283E6G2N9u82GzzmkQy5bqVEo16enubaKSNeekI3PMk/NlTcM9+eM0a+NAOUQfOFNfHyZp3RdCY49nyMnz/uDK93Wh4TT98L8+em7bQ2nXqROHcobfYpvSllgMW0leGSa7pIzWaxIiz0C6ptE8GncTg/Dp8BRGwUQSZV+eUezHGzDl3FGleswq1dTH1v94lvc6dgx65W3cr5RdbKX/lMh8qFWrtSk9pP3ABtWE5RuWMoyLFbY6MdwcNisi4uvM+V3eOGCYbSTmewujR8+Kgr+kVdW6jSLQ4eWM4r5OEd+5C5oN/bh/SQtQ75oY8OJ3NDhc4iiPRWYkcKyLSGr2yFzau4uefPs0ziZwHbafcbtuOSuqC0ydTEYNTe46jNvU45qOMX6HH+RzyzUPWlw8Eaa3QSqPXLYXBhH4sx62FZ06S3tKH1TpTVE9iydhk6/oS4B1yb7P4sbNGcyAyrPQssUijNvehf2UD6uYY0wfsa+ZOTpB9pG2J2zYXhAuMzI0IPfibyD8+nlqWedqnp7WfHBYDe3kjd37LTvEsQPl0YiGL7+5XdWXiVD667/dNYy0ROb29B3Ggv01eO1520CeitnvhOL9n+r8/gNSyvwqyYEA5c27bqdNt6VBX7intiYVnjsOf7YKbV8N7t0FPlKuMj8cimwuOOTgDW+VnnA9Ia+DVK+CpUxKYCGntmaihzb6vLImGzM9rk5SBtnWdI3JB5vTAOZIzCemtK4p2qN+bx9FeSaxz0GuGdmQkCxtr9keGZbEmigzKaMy2ZagfX4v+4gHMI/tRf/0MvDiYB8UyJz3J2sJ5hK3V/O0ua/nPqeWnUsu/SS23KEvNWuLDQ0RLFHE9GjvHL9GuvhKYsFPC2t7MOfcdjnxLNWNTp0Rv2ZZIa06beptDGEPJK6dIfIKiPHbjqSc6ZHunb4dndJagGDSKfqNQty5FHTqDPihdLkxbHPSC5sFIG9tMREhalejtkOl1HAGeJi+HuVxM+ii85ppreNvb3sa6devo7u7mD/7gD/jSl77E/fffz3/8j/8xo73PBSxdua3ws9QJBQ46eeZnk3tNNvYEtL7S+2pPbUci6caIwaK04tZI87xWYgBd10uya5DEU2vaNqNTrT10nuaSbtSiekZj90amNnp2VDQhUzfE0VIbsabhsue125cR7z1LfPwcUZryDlKOJJbHXD1PJiJm5TY6cIrRbb35F5lZ7rKBXErwoVPmxyLU2rXkgZTs32nllNr9IZAfBtHiBvHNyzGPHZfac0cPrlnL7e2Ux53KcNuKiJ91mZ8VYb35wTZ6/RIR9NMdRKlmYKO89/MPXvQ1EmGVwy82XojEaQqsblA7fBqDYjOSwfvbFJJWQnukTXM4oT0qme/maEKzTGHPIvkuwv/SEfjLp+DlI9hmIqwKJxrYbicko1JrvmdolHVnhtl4egh18jzx4FnMwbNE+84Q7TxF7aE90pt1FxJ9uXs13DlOe7Ry1rzLZQfmSnBkklCub/EYup9W8KoVcDyBfWdzUTjX91xnjrrUSW2yliOjbdKDJ7DXugysEYchMVJvNZU2jf6AC527cP+8hmK21Sgky1o3qFJbGl93y89slHZq3xiglnpROEstEeXbn2yljLQtT6SWC4ll+KG/YxWiqqr2nUZtclodWUAzDzjMCeMTSnuePNZ6bN25Ti2LUlhpLcP72qTrV2Uq7YnLmrczQ3LqnqulKIQa7p/7KCq1K4rsMSBrgWQiLQ66O/e0kVZx6tVL2XD4JCcOnxUBH5f5SJzGihfTPJ9aVpy5AEPN+UFpxxudMobGBTi1a+ek+rrRh8/Sh2XzwFnSVhO2LJbyES109my9OSP+Yui0n5fZYt5+GQWOxZoVsXxv2vWlV5tXoX72BvQ7r4VnTsMxRxEuicOZVkLNFh10b/v8FPAAYFPpULIyzcXgFBZ9rInqi4VZUWKIzJoolUe45kIHpq8Ox85n4lQ4x1yoqTmLwGez30LJObeBajt5TX4miDoqt3Q0IWkltJoJ7WZCu5WQOsfy8STlriSlK0mzpIDoTkjgX7dSOV/DuvIyjX00ga8egL8dgHdvgB9bUzwXw4Bodj7OLRHUv/ybhxjTpcQzRtcugr4Inj6RO+ZhDXpL2lyVs+cmSVnTTulOUwayUlJp6Zj+4ATpbX0kXlAsswn9d9X5e/HBldRI3XkSSQ363ppmtfuujbP/zTXLULctxjxyCv18Ap8ZgBePFPUB3DjaVl4Y4cXhujV0KehW0GNT7lKW/91YXuXahdctdO0fpbG6F9Op+9FsMlaAcTslrKnD4NnMbjaJ63nunHLtMupbU8uh1ELqBG3bFjvSIhlsYrcvzgPUpaz5RHM62y+VIokN7UgE4UaM4likWa0Vuh6hb1mLenRQbCjXZrmw/oa93dum1hQ/oazZ0Q3cDfwNV845j6b6BydPnuSpp57i7NmzvPOd77wCl3DlMTp8OnvsW3CVHXSL1NxtJci2UnTQOw18rPLsuY611JlEms2RpdnS7LMpW9YtJokHSfaewWxbJplzp/y3YddZ2tuXChXa0+R8dD6a3eiXNRpMCkaMsJpRNCJF2l2jvWMVyROnSH6ql+7E8osq5Z6W4mYtB41uu4NmpM3I8ZRo62JiJe9zuZR2P4beSAmzCAOMFfTz+5Q2GhUHG3skEVitwbxmJeZPX8bcNYRZ3SNUwLbmNSrlf7Y1724nQlN0FKlTnlrr6+8OnUbtWJ736S1sltPb39zjuu0bL/4iyE8x5SjtRtFsKeLVddp/N0ycpqRa8w4Lv9tOeXMCG6ylhWgKGGsZtUL/q7Ul05BFR9opHD4HPxiEF0fk/71wiJRDtLsUbSO1l0kM7RjSCLYrcerQMiSyWcvUi1Mwh0pb254TcPu6PKPsadL+cU1oo8Sz3N/6clHT0Nb5XG3JWqQWwZ2r4LvHYPNSifAm1vXqTTE2dT1QLdutZWj/eVjSQ7K0m1RrEkezTbQ4e2YKNYch4yiktafAy8D/4l4X0guN2xtFetVlmNLgsTWoX9pO/ZMv0urronnbSmmxZz29T/EO4P5EHIOedWtpWAtHzqFj0Kt7Cs7dnGOrIGeHNRppUKvy7Cug1zfQzxwVY0AblE1Zby2Ng8ewd/VhldMI0Jq2lnGzXnRyiijXK/uxO4mwnNYTZKBUPobhMlJGQc3InIvDuWcxjZjRW9ZyxxPHObuml+XtVOZZW645dcyjs9aycn8LvWFpRmmX4LQOAixzKW3u4M4s5R10oyRI31dHff88JrW8+fkzHL2un7XGKwKrTCW4HWniSQovdtrPC0GVIDg9iIjDLY0MtC0q1ejIolMtGe7lXfCq5fDwIXj3NWOE4XRipbVhzTCqZLvxtO43Ah+3lufTlBEXOArF4NSxUXTfYgmId8qaz+Yy7OSYKwV9PVLH2Erl3HDneJxa4lSE4WKtJFgP3A58FHgRUWTOMufK1Z67AKlLo7t6A1m3rdQGejXyK4XiOaSe3ZcS1FTO7tZaSfumDgr7GbX7zCj89S5hUP2D62BZQ96sZoJzsMRWqs29sq7rtm/MEyahbRi5s++OPvjOgJx5rdLv3DlnjATLjHPuTFvah25vWQ60LVtSqTtPTg6RHhom+fsbpHtClq0P3reDzeC1HjK2rdG0G4oEYYxdgxBDlZL9QLUSzLmhjEUGwI8Ow7ZV+Zv6ealEoMwH7IxSdGGxSphUTaQLBCiUC97ULdQPnKGxfWlua5ZtztkMvmQZTRXQ3JX0Oj+aZOd/5phb0X2IUhGp3JxYvuSoeal1orb7z2P7Ytq9NQlyljPnF5nXYTlJqrVLUlgOty0NY+nx+hk3LUE9ewj9/GnMjctFzM/PiXaas4pbqWONKWpa0zSKGooWijbws8CvI35l/xX4SqfknN9777188pOfzBTa3/nOd/LhD3+YvXv38m/+zb/hzW9+8xW4pMvH8NCJ7HGYcfULzfsVu8mL+T2t3c8rU35TB02grOlayyjnzF6vFS8kms3KktzQR/L0SdTWpeLgWcvohVHWnzhP+039zliTmmilnNjMLFDaC/DZc7cJ1mPpT91qW2q3LyX9850kx86RrF7Eq63ie23FF43ifSm0raVlLebQeUy/YbQrIjZi0GRZZX1pBlhGTwke++cHgDeQU2tD41Irt/m6gEPWZzaxxL114ltWED12jOjuHkwKup1yi1b8P+2UfW3FVp0SOcv2ZGpZlYpQh2q3UUdHUD/eldWbj8mczwBuvXn75F4YZBOMEQe9rqC9tCHGxokh2qt7WY3ljaMJX7OWX9XQSp2iLVKf17QiENd18CzsHYH9Z2BgVBZEyZ9ub4T239tKWhMDtR1JNrCpFX9gFb8RKdYhB5M3CiOcs77nuGTOPe5YU8wKhOrmNe0MkDlo2E8Vnu4XZhN8rd1dK+EPj0kmrK8b01aYtkZraf9hUunRuQXL0IunaN+4jAgyhzzRirYWBWkzhT3GO+UZOxZZd4eRxxuhkMXIHHSjQEX5Yg0MWFILS+tEv7iJ2r37qa2u0Vq3WD5yW6bS25TiG6nlwZZl7ZYtYBP0wRZq3Uq065KR7S0hy2AuoZRV9Nn+qL8H0wR9ahizogcF3HJyCN1uY9csljFTCqvd+Cmwl8ioKpd0eeduP9Lbuovi2eeD02P+W6yJ21ra30XOQW+n6ERT276ERS8c4/juMyy9ZintttR72kjOkbPu/GvsPQG3rsgo7VmHkrlIaffIaO0U6s7VEqk756Wz9J07z/euWctat9ZS91kSgwjCTXJedtrPwzGzwe0wsA5ERyXSWd9glSJ9lzXwpj74wxfg4FnYuDh3dNy9V+CPtZakg3PQu4C3WvhLK23iugH8+wPq8Dn09cvkf3jnN3PQZ5n9ENbihk5MTyQf7uiQfBcA7nyLnThVqFxfQ4IU3wRuoEhtb7UlI574+tQU8cLJs2ZJmmfbLXDOiq1yu3LnnE8ca0WkpNRMWXLqc3hLLOw9BX+1H65bAn9/g5yHoZ6Oz5QXHPO5xUTx8PPcRsZNuiAQrRVcvwweGIC9Z2DbsoDWriDRUhusFQaVlQaZRBhlGxPLQcfaSSykz54hvWU57e6Y1Ak0ZgFd9/11+o7CRFC2d2pF0ojYjQRZvNxCZvrdshrzo4P5m1yzUq7br//QLtQJtq6ywEmkFD2uc07LOnPKrTfPKov3DqPesrbIypphm3NcjMniu+tZKp29OHYB1i4SxzzxtHaLSqUd7PrUMppKR6SViQtu7TpLunWFJMkcYyvzISZx3odjaLULmCaWgShldaxB5aU65rVrUV/Yj9l5CHVbP2zvkz/WCmKbfd8qsdSNoqlTIuUSXVrT0prlWvE2JHv+D67EVzrZFz7yyCN8/OMfp9VqFUQNfu7nfg5rLd/5zneuwOVceXinvKxW20Q2yzBz7o0Ub2h2glEqb31hFDo24qBHmu2x4lktVLbkml6SUyPYE0PYNIXU0jowzMGVvdS7a5lxopQSMRej0FPmMVxZKD/x3WLXRlpwNSJFratGfONq4h+coGYVJrG8x1oeTyy7EpvpzjQHRmivW0lTKVoqEDNSXLRGZDyExkmZmhnS2nXp3iiKB5h/bJQ8vGsl5pXzREfOSQYyTamlljuSQBjOtQI6n1qWpa5GZvA8arFC9daL1NqMEzrHDkSlAu/JqU46oyxa2U18pC0GQ5LyM0nC/lbCvmZC0k5ojbZo7T1N8zvHGP3cy4z81+dof3E/nBqBG5fDb2yHf3YzvGdt9u8s0Hrzelpremmv7CFZ2kXaUydtxLwQR3THhn4javqR0ZjYELlbXDNwXR+8f33eo/WGNZ0FbroiqM+99miXCqEQm7FMk0jBohrcvBQeOwap0MNMW6jsImYih8zSk0OsujDMwIZeyeJpSDVY5TJ6emqsjvGy5juRkiBvzGb7pwqYR0ZBPcozOrVigEVtWkrtrf3U/mYv8blRaq6ePkpEIO4dieVJazllU/YlFnXgOHpjPWer6DBzPgdZE53qzrUSrZL+Lsyh0bzufG+bl9asFEMEsAZx9BQ5PfoSEDrlYUnXXkQMDiZX0qW0MC7iSBN5enukXccSxZHbV7P2ycOkTdHrkLpz0Vs5nVo2nbmAGh5Fre9FkdPZvRDqXKO0Z3Bj6HVhCnXnkUZ9Yz/H+7vYX4tEJ8BRJ6UkQYtC8GX8+06sB++crwFnPIognL9pV4fOohq8ZhU8dKhIbfe1u+1Uas9xCViVr+eftJaXUxi2ll1t15M4deUzR0bRfV0o750EAahZzZpDkLWj5KBrobYfHZXXOYPQuAxenObSAJ7a/mZyBeYEJ/LWklKvZsvS9q2ynDiqHZYSsNaIUNrTZpvUlXI9N9xmx3DC8tEkE0GNRhP0aIIZaWMcbbaYNU+gncB3j8D/3A9vWwt3b3LCbh1qywOFdlWfOzT2cVEORPu9MjZw+yr4/ol8AYQ1wE1XEgBoLFE7kfZXqWVbknKwLWzHdLiJffkUyc1LhI2ky+0Nx7fVwmReWA47rBV7GxEbaiKUSU1j6tJGVG9bjXnfOrheQx/w6HEn3pcUWRCt1D1fbLFmlKJhRfNgsYXexNKbWnpSqB0flqXV143rQZnPczX+55gxeBszdMyFEgJrazA4LC9LZL1pJNFlnO1Ss5Y1ieWwz5y3EtID50mv6ZYzsByImEQQsMz6kw4amr2xps9Fx7TWrtNMiklAvZigPjsgmgG+dDNsZTjcJhpJqI0m1JrS/rc+mhCPtIlGE34htXwLODHhlU0Ok7Zq/+qv/gqlFLfcckvh+TvvvBOAl1566QpczpVBrdGbPQ6pDaGDvh+hUK4mp0R7o8TfxkMooiIOuhiGt0Sag0ZxSilszZBcs4L0+fNZe4Bo52kObJVr084x14ZMFGdOGJdB7TlOobdhXO/z25dSOzBEfOQcJrWssCk/107508TyqXbKS0lK+/BJWptqJEoYuu0pLqhOKLMe/Hiecs+voeiQhw56WezOU5l0pIkW1TCvWon+/gmhVbvo650ty49czZJ1qfoTqWWxuxh1KEGvW+YoTZSYAWrGShN27x2Y1OsK1+cMzLpS1IBaLSF6dD+1AyfQScqikRa/eOA05x4/RXr/Xlr/8yVa3z9MK2nTunU1zd+4ltHfuhn781vgjtVCF4ycQ/3B9XBrTPJrG2hd10e7YWg7tdOkZkjjiMfiiFtrEboWEdUjTCMiqhtM3VBz9zQM3NgP779NHPOO7dFcHd1cWDNXEkYV1l9BLOeulVJHer4ptFSnlWDaadY7lF1NBjas4kBksEplTkJiJHOeRGpMS5fxEIrBhQ56itSbezE4f9mhg+6fV1FOryxkdXyQ7PZV1LYupfalPVIHm0h7taiV0pdYksRyZPAIn71wgdELiTh3GdOolDmfa/AbUkD1M9pR29fldedYS/fAMV7YUOOwwgVRdNb+LjVSmjBVhNTM8OyzyPm3iXzMvA+T/dxhD1Oxqzt3tZYmUiIMpxXrNixmYFkvo0+ewaZCMfUiqOes5ZZ9LVi3DBVFgVOu83NvjgbYynXnsr0rzMETRAeb1ID1u84xcvgkGFEClmCKzhgrk3XOO+3n3ikoZ9AHkXNPketVaHdTTjcGo+D1q+HwKOw+I9ndQBhOJVY6JaRprtyOI0I5potO4aPWsqvlaO1nRqQv8Mou184pcAzmQGB6QnGq/l44OhLQEOS7iC0YKxm8zK5D6OwR8CPcGmolJKMJSSulNZrQbqZYr7cy3CZ1oqnJcFu6k7jWoXY04aWRhLtG2+iRNmYkQY8k6NEUMyJtQ80Y8Ten5fJXe+DxQfjgFnj1qmKyIRRDbRjoMtm5OJeRzXNvm2V7eHDe3b4cdg8JlT8U6HKOumlbNJ4x5sRRE8vWNOVoKixO++x5kk29pMu6hZYeSSutyWiUFCjRgYO+F+jSiiV1CZD4QJiONbpm0Nf2wS/eAh+8GeII/np33jHBC8Nl9czyXKEHeirOqrGudCiR9oUcvADr6uLslgNismFP44hNAuW1FtrBa3phUNadp7Urt7eY1LUmTixbE8uRJAVrSQfOki7VpMsbWVlegS1wkfO+0IISt3e6Lhf7jWZ15JjK7l6/fEyuzX0UvnwIzrfGdkkYSVBuzcYuwBa32tSbCbVmm00jLV4/mvB114LtcjDpE/GVV14B4F/9q39VeH7VKqmpOHHiSsQKrgx6l67PHnunPHPQ3fN7cHUjBHR2JqD1Bcg2cCXOudHS87zLKLYazXMILTG5vodk5wlss409P0rt7AUOrVuErxHRfoJoF+2e7QXGWGdWmVy9vdYVE9+4itrjJ6gh9Ln1iTiujyn48wvDnB+GZO0iEiXOQLvsuF4CQiG4sOb8MLCUnJoZGpmFMSwFHLzoXaQU8Z3LifaeJxo850QqUm6yKReSlP1tL2gEZ61lha+9GzgNaxsugBlmztWM1ZsDPPStJyb/YicK57+gWCvq+04QPztE7SzU7j1I/JnniO59mRuePEGLlAM3LyN513bav7SD1o+toX3DMprLu2jGhrY3DLoMdEfOoV4D77+N9g1raDcMSd3d3OOhhuHJuuHmhkE1TMExjxuGqCtCd0eZ810QfPPt0boi1x5tbhrzl4usR3aYNY/F+GZ1D2zsgsdPiEHiHFntDBSTJKi9g4xua/AiLvPqas5Td8AlavLOgotLFWjt/qDbTS4GVxbnGePclUXhavl6VJGm9hPrqVmIHz5EnCSu/3nK951hYp58mr5TKa9s6UVHRoKZutRG7RLE0qYbhX7n7pbXndcxA+dRaYo+fQGaLZK1vexRCqucuqwfN60uSWDGj1/GOrL58/uQkgRF8QyciNyklCKqa2KjiGLvpEsGvVsrnrhtOfGuQZLTF0jaacYYO2UtOw6cgA3i0HkBTd+pRJkJ/ulcgJtjvozCGIV6+ThRCqoOnIfrdp1lyOS09jRyNY5KmBCTQXk/L2itUKS1e+dcQ24/mJzJkK2LRiT09m8OFNuquVvkuyVgC0mHh10JV5xaRlN4xLoe58dH0X1RxvwrZO7849lGKE7lr0cDfTU4cl5+9oEKxFmI05zWHrt9LAJ+DPgWkLZE6C1ppZmD3h5NSJspvDAIn3uK5KVBWq2EpJnQHm3L650w3N5Wwo52gmpJhxLTlIx5PNzGXGijQqHVZirK8n/6nDjo/8sNsH6x7J3llqEZk2z+sMj8PPdikx2ZYksasKXHtVXztPY0c9C1F9RrC+PRJBaVpCxNLEvTlMOthHT3YdIbl+ZZcxcsy3Vrxv+uyn5DyDjaitvD6hEqNuiaRtUMUS3oUFLT8K5r4MwF+PqhQta/2ANdHltXZ41Nc6ZAuIEfuiBzAIoslTnCWMmEh6EYkNYIY2XwnLzOiiMuWkM2b6+WWtanKQPu46f7R0k3rSJVWgRStRezdfNjElnz0FfIypmNZk9s6I9krLTrPqJuWO0EWoM3+Nhz8Lf7pU+7Z7K4NRqPJtRGpP2rGREHvTYqQbZfGGnxjZHLl4Sb9EputVoALFmypPD8yZMnAbI69LmAE4MvAHnmp9NC20UuJKbI57d30Ccaek1+iEVKjBPtFJBvNoqnjUymZOUi7PIGdtc52DvCsfVLqdflYNOR63Guc2rfXHDOgTHOrHF9z2taEd++jNrAEPHhs8QWvpdK1q6WWlaeTtm5uUf6Cpq8DVDqN91L/HyF2hH3M0iP805t1Dy7xv+3Ml3f3yLXKs7cuoro+8ez7HmUWO5oWR5vp0KxSS1nUlhsLaqVok6OoNb1ZPXm2v9D/94zhN/40Dsm/+JwM9eS8a8/NUjNurMKiLtSzC9fi37HVlp3ruAvNy6l3V2jZTStSNOMDa26YbQRMdoVYUPFdOdQ24ah3R3RbkSZc96qSQb9B3XDqi7DyoZBNSJMw2S3qCsi7iopr3unvy6Ks/OuPdqlIii/KFK5gDesgu8fhWZC1PY9z10GYf9ZdByzbPUi9mpFWzkxOJeBTYymPQVnoUwLCzOvLwPb3Os60dpDZEZYWbDI3aKapvaOrdR2nsY8fYpaaokTy1vaKT2Jxf7Uj7Pm+AXWrep1bXTyetlC9mAuomREaYU46P2L0KOgTw9jXmmh1i5nQ2Q4iCI15GOmRVRR9sCpEaRDxlF5/PYhmfNycNrfj/txjCauGWmpZuRs0EajtWbz0m6e27YG+8OTtFPpVGJTC6cu0HNhFNb3FsoRMrX2ORKYHhduninjurMYhb5hFcSgR0Avhmd3LGXAiQ7l7Qt1dnZNBuX93NvmYWDav9UgueiQRhgqntKuw/VllAhrnU3gxVNFirAXhktkvWUt1azlp1PRW0ms9Fp+C1IabA43iTLF6JJTPgecBKDomHvjDmBVAw43cwcIIBVqrUFl7AHfVk4j1PbvtxKaTXHE01ZK2znorVZK++Uj8NkBeD6hdc8hkm/sIXnxFOmuUyR7T5MOnOHw4bNce/Qca06dR50dIbowihlpYZptTDshzmoCE3jlKPyPp+ATO+HaVfC+7bAonrhNmu9QMk9YZIV57soyxvQ918BdK+CJY7lT7h3ctnPw2ik6FTFU3ZZ7rHQsSfacw/Z0k/YvyujsaaRpB2Ky431f4/kNPii9GTfFtELVJXseRdIdSGd1/0Z0Dn75OnjmBDx2RN6snD1vpnk5Q0jv9RotnuExcAbWN0o0J3+2zJH90xsAYfYcBWu64XALUhnHCOeYW5uptqvUst7CIbc204ETpBtrpIo84Jmd9xef62W2bVaWAByONf1hl4tYShLU+zegb4ngvWvhH98CH9oq5UCffAU+/RK8eBJawmzRnto+3CZuppjRlLgp1PZoJCUeSSa6vElh0lXOfX19DAwM8Nhjj2XPJUnCJz7xCQD6+6+EPt2VRZj58ZkDH3neC/wERYfO23iGzrQ+D6VURoGS7LnG6ARtNNdHKV9sKUZTEbpKbllO+t0B7EjC0ZtXs0LhHHGdGShzhtLuoJTChkJqLnveMIp2V0z75lVEj59Av72XH0tSfqgULWDlmQusWr5E9hhnXLY1pNr3I7606wk3Rz+WFnHOM2ofxWCd/Bx8pyWxO2JnmKQWc+dy9J8dxxw+h1nTi05T7kgUn00Uv2QVw6klTVNRax88h1pq0I24kP25HMG7GUFY/+ooZPFt/dSfO0i7BW0Dtdeup92QkoQ7UHwTeFQr3mSknVNLS0CjqRWjxmXfA8ouPstnLW2rstYzbeQr/yaigqvIE4qezRa7EoGCyIc7eLz4x5w4gGYASrv1Fwfz1YvmbFoCKw08dQJz12pHaXf71nNnUNeuok8L3fiAUWxzWby2zp2Ftp0cCzzMmof76GGkndAmAodOFffRjp+pFuXeRSAQp1JLvbdG8+2baH1+P+nyCLthCTdFmv9PYvnhcJufe+IESz+wXQKExtVuZ4GLOWKcdMI4deeR0ej+BuZwE33gGOrVq1in4NvivWdBFS8I17Zgp/gRy1kfP37H3ON1jC0H8sHp8T+OIo41UUscVZOkRLGmlVhuSi3/9aZebvzbQdIDZ1CblmGtZem+FqfXL2NVZFAa55Rr+UrMHN4zPVy2TZsU7R3gbX3wy4rkhZM0b1iBXr+avZHmWueUJy5An1rRsapfwr8tZ31C9t8RiuVcUjdpXDZKZ51JpEzGwJvXwjcPwnXL8o3XCcPFRrlqE9GJSYBXW8v/lVoeSeFt1nKDcebAkXOYa5dJ96myUz5XnASfCAgdc6VgVbdTZ2vBMhN8sVLzOmotkdcUsmIcX9NKWN9KeLKZ8sZ2KjXnbXHQW62U1pOD1MjXV+vJsySnEznztFBrV6YJ70rFqTQjoFtgmmDalriVoptuAy9HTbfEWReSMTfPXKsZKWGYp8jOOpM6WruVx0rB5iWwCHjhJNyyMqe1t1N027Fvglaink22KU1Z/dxR7KtXi0q3KzFpOwcvVErvhIn8ht1Iy6xs3zQaVY8wui0BK8gDP9bC8gb88hb4zB5YGsF1K8Qh98iM1gRqNv+MoYM+msBJC+t7sxKbwm0GE0ITwl8PFNfgyi557uQIrO7JmH6+jZovTVhDyqnU0jpyjihSpH2LnDCqjF2WOZ/E5w2z5mFJ10GgrhVLYoNKQFmNVilaGcyOfvQ1q3Oba32v9Gn/8ZYwOL58AKIDcGc/vGoFUSOS/GUinR5aWhFry2MqpT6TzvnrX/967r33Xv7dv/t32XPveMc7GBkZQSnFG97whsu+mCuNiTI/rzBOG6BJ+pChuqkxChMZdNvSF2uWtVJeSjWv0ilJnGJOJMQKbn7hKDs31GDLapQhzyDEuuhIzgWEzqyrCan5Otfbl6E/fQw9eI6ta3r53yz8cSvlZ54/zuIf3yi9lVVOyUwd5eWS6s0dta9TzfkAed1raGT6sQxRbhXnKfuRVsRdMdHNLnv+jkXodsoOpRluWQ7EsoH0pKLgymCCXr1caH0qp2gW/vkchDJBayf/+Xf0U/8AtJ49SvOWPpItq4iVysbvp1H8uYLbIy0+snGlCgZaWtOMxLDTPtKttegMoGi7oHATcc6PAT/AqVgqlWdZfUJViYGZX/DEAbIFjzLTw9PbUwuv6YdvDqBvX4lJlNRKnR1BDQ6hf2ItaMVGrdilFVuMFpHbyJBqJeV7k/xaC2Iq5PevIJToGDLxpDKtvROUES2OYlZA/klkobF+Mclb1pDefwDeV8csaXCzglsGhjDLYuJGTF0rGlqChZkY3FwxTjohCFyFdeca0OsWo58/ij7fRq/vZZ1WHNea0wpWeGNSaxJUVjc+lY/ayUBJkaz5GmQ/y4LR5NvXxf6FMYqoZkS8L9WYNpg4pTvVrGlE7HnVGq554hhq/RJQsHb/cYZetVLWtJGzTmuEldVps55jUEphY41qazEmrWM/XNOH3tKHUrBGaXbHGhtLbWsS6cwxl+SXnfJ+Fp51Nrg/6n7v9XIyB904entis+wgvpXoq1bAY4fgyeNw++pcHbutMSalbjTt1EoZmqO4364tt2uLjhTxiKWRptQHhqm9oU/YFXMxaw6AKkYJvdMQaViu4MiQqEgHDpCx5H3f/dfXFCr7W0ZTHm+mvKEtIqlJy4qD3k5onU4ym7KlIX3XepKNK2TNpeKE/VECv6jhGuVYP1a0QqKWxTRTdMtlU7+2S4waj2ePwA39nVulzdE2aZeEMWedm7ephVf3ww+Owk0rxtad+5rsoO6c1LL14FmpWNiwJKNDe+2OVCvS2AjrahyM5zekiHO+hRLTKNLi3JGS9c6D/IzbsBh+bj18/iB8MBZ6uiJ3ZP1jxThZ83PQizAkChlz/3iOzIEwIBY+bivpXT94AVZ3SwkeoKxk0FUi5aKLUlhiYfRAm/qGVaRai/6Kc8wTI8mhi6m0Q1HMz48fiNbKRhDmRE0uQicKZRy9vq0CloaSNzE1eFO/6He8dEqYiw8PYl61nNody6n19dBSwqKOjObNKXyvOYO09ve///2sWbOGJEmyQ2Z4eBhrLf39/bz3ve+97Iu5UljRfz1QXFThQjuCOAwbmHzmpwxPbTfKOeiR61OuFdcbzXMKidjtOiXX0g3ROVi166zLmOtMsVYZPefsE6VUXnvuKZmOSmoaMfqW1ZjHT6IsbFeW158YoqYV6fKeLNqVBLdLFWzye1VmqNj8d4eQ7I83UELGT0dqZofa8yjSxFph7lxGNHgBc/gc2kJkU+5spzzWtpxNrGTNrUUfOonaEOf15qGTMMOZg0986ktT+4Ny25W6IbphDbV330ptR79EAhuGuB6h64YbG4aVjYj7aoZWPWK0ZmjWDc1aRLMhj9ueft4VC6U9NjSNpu0EWNru8beN5jqjWWGklZdkD929y4b6QIe6irLk40EZJVmT0hpEK7h+OSSgXzolBoq16OfPYTb2Yho1tFJsN4oXtBalU585t7k42GQo0uOJwb3C5MTgOn4uLxAX1qC7x3Wt6LplBT3bl9F13266Wwk91vK3X/4GXRuX0qUU3Vq0PeqZwT25w3q2MF7deQSY9XX0oRFM0kYdPUNNK9ZqeNmJwSWO7eDHbKqx+DalujtySvsGf33k+2Vm713kfQ2IanusMVoTxcqJkSl2GMXXNy/BRhG8cAbODLN4pIlZJ5R27axaXw6k4vlRpqIimaemJhoZpq5RtQjTFUEjoq9heLluSGNDWjOkLqDiM2+TKSUp7+edKO0pwlzpo5hUUEjAQDux00JdrdeseMt6+NZhoWaWhOFqSUqjndCNpWEt3Vi6rei5dFtLF1A/M0pXy9JY2ZOPWdlBnwvo5Jj7a1y1CAabY5wgnTp6v/tT00qIWwmmmfL6ZsrO0YQLTVdr3k5J2gntBw7QNjGtX1hD+5aI5P0baG9bRRJ78THDQWM4Hxk2RQZtpBRERwZTj4kW1YiXNURLZG0vvHld8XPcuTbfJwtUdtFjma+OeXmeZ2dd6KD7s+7WFTDYgsPnyToOOIE4k3hKu4iL6URKLPufPc23b1jNiHfMXQs1qxFB1IukJMfzGw67+/WMPe9MFFDafTDFj51RcP0KeGs/3LNHOt347EVYh95M8zkZOugDI7Buce7whnN6LgXFOjnmID/398q6S92vAiE4X3tOmrLeWuKDx7DrYhmHki8x2a4sPsASJmRTcufcl9pppxsQ1TXKlVsWykX8Y9eylxtXwId2COW9nRB/8hVqf7GTaPcp4nZC1Eq4Lk357dZkiwfHx6R9wkWLFvHHf/zH3H333SxfvhytNStWrODuu+/mj/7oj1i0aNFlX8yVwrnT0muwbUsLjTz6tZ7OmYOLicF5aKXyvpgKEYVzBsptRvGk0TKpdizH9gDD0FwM0Y4lUmvuMo4+Azsn7cvQmY2lls0YUec1r1qGPjGEGTyHSi23DSYc6VsmLZsUpBqpF1GQXEbkoby4wp8PkrdR6+Sgl9FJud0HHKJGjL51Neb7x4ms1DDdZi3PJpZTqXPOR9twpoVauyjv06vIFaNnWCT1bW++fUqvz5Wzc1qcahjqdbnFDVFMj7sMcSNCNww/3zB8vmE4Wjc06xEj9UhqzmsRo/WIEZeRVVpllGlPZfd9XlNEVOdN5OvNf12xygV4KpTge/sU+rs7Q/s1/fC9I9J3OknRLxzFXLdYHB6j2Bhpdjq2hGeweCevzcWdhdTaMbT2sO5uG533Ts0kGA/ltmrB/tKtFYvevIZea+j56gEWtVPeOtLPok3d9AKLtHPMMwNujlBpJ0JG+3V7jjsv9GgT04L4LNTvPwhHTrBRa3Zr1/bOsViyoApMSWm/zDgK6803Uyzp0lMYP6WkpCWqGSInqhM5p/BmoxnQivN3riD93n7Sr7zCvoZmeWTA75leBNWzbuYJVM1pZGSOucHWDapm2NBl2N2IuNCIZL2RO+b+8cVQ3s87UdqhWG8+JrgSqVypvezo7Fgm1NrHjuX1u+5mWildbUtPmrII6HEOeQ/QnVh6rGXR4DDdy7VkHTM2iH/sr2b2IfNXFZ0Yf7+6G45eKEX9xRGSenOpZY7biQjltVLWJAnbHLU9backSUL7mwMk54ZpvWs7yfWraf/CLbSu7SOtRxKcqWnSuuGZ2HBNFtARAdSoEWHqhqhu0F5fpctIlvzXNsCtMXx4Q7FTSXBmz6f68k7oaLd4pkc5GN2I4NZl8MOT+YJw4nA6Qcq6klRqzq1FHTmPHr7A7s29DJA754nWpJHvfDGxQTqe37AHCWp2ah+qlcLE7nrL2ip1F3h4zWq4YTl87mW40JYgWVnFvVPN+f5zsL6nVLuZr7+5MhcyUbjQSffR3v4GHDoLSCBMpzZTbg9/3nJyCNNOsGsWS6cLrbJWaqk7Fy+GUKk9ZIxZ4AAyhj6YSc2guyO0S0ipUGwxfNwV6B/VjFDe376Z6J/cQLxhMfEDB4k++wLxUyepjba44eDlC6RPqbP20qVL+chHPnLZ/3S60RwRZUDvLIQLzSKLbAuBU6cYk0GfDLztHFlnbBlRTN0SpTRjzV5ruWbjSlpvh/Mvn+Hj25fwTzauFkqFcUI4kdD85sbyKqJQe67FsDLupusR5oZ+9BMnUT+ziHWHz/DDa5ewDnIRKk8ncgvrUhywct2dN3SOu98X6u58wI4JzIQOdP3I3161jOgzRzGHzqLXLebaNGUExbOpZSUWBofQi2uoWpTVm6ODdk4zrBi9dfO6i7+ojJoGFUmNU2Ih0URWaiJbytXNKSVCh0qzRcPNRvMZ4J+4MWwhFL6WhaaCpoUuJT+3guxsG7kNImvu9ZCp4GbKwH7tzXUHaxagjB5TikCkhCZ22wqhVh0869qpWfTGxRglehbrjegCHHCOeqpc5lzlh9ZEZJYytS+MRO8EPuRe14nWftHP5WjCpKZIAUwtCqhbS/zOLaSffIFk4Aw3p4vRQxfQujdXog4z53Mdpbpz5ajt5sVj8t1FoC+AfukMGzf381VH47NRTmn3Y5ZO8jsOM7b+b/3z+4C7GBvQnMrZZ5SUuZhYEyWptFZLUroTzeZ2ysvtNq8dlc+1vdEkPXwSNq/KA9M+OD3XKGMXgYldcDqSTh5e3XeZq6HfpxTXE3z/k1xvMHY/D9dcSG0/jDjnqnTzgRVV1xIR9+Jvmfqzhbeuhc/th9tXgokL4nAmsTTalhhLE9dy0a3JKIH44Ah69eKcRlvOms+lsQxLSUInva8Gzx2V7yJ0ggDthfFabaKmOOaRU1y/q53ybDvl9Tal/R3XkeCd22h3xbScTZHErmWl8x8t8EQKP2HJOmAZrMwf5Zw8H7Xx13PDGul64hMJmYOnHY19Ln3Jl4aOdovfy0NaezuVOXX7CvjTV+DH1wrF2M1n1U4LrdS0Bf3CGdi6lr6a4ZDWbDeKREkLtVRLucnFGEgT+Q1bmYAxppRkGlKTR+P8vT/nfmod/M8RuPcV+JVr87XkHeyaDoxdySYzMAxvXdM5az7X2BOhY+4fA/R1wddHnRijcuxU2SC9c461bDvYZt+aFWxze0uqyVgPqY8iXwRhMiH0HUCc83eQ75cGsbNMrOV6EgvtJG/fF9Lcx6G8197QR+31q2juPkP81HHUtw7A0NBlf5UTrvTf//3f5w/+4A8Kz33nO9/hu9/97mX/4+lGOk70xGfO/SLLImBus5SzZnIT3jsa2UZrcrXUG2LNDyJNWouwm1cz8BPbObO5D10zqNgJUnhxGeZKzLkDStlz47LnRivUq5agTw2hD5yl+/QQ31/VRVNJjXlqkAyCcrWTl/jvC2qLtmigrGQs+8EH6sb7PjvR9SMjtGrTiIhu7sM8fsLR3FJuSy27U2cMHWmjXH9zT2n3DvqcM07GgVJK+qD6dmVdBroNtS5DvRERd8dEXXEW3dex4X1a8ZBW7EUc8ybikDctjLr7lrW03e8zEThkrL4N3AYsoeiYxypvXVNhHIRlGGFGoR7BnavQjx7DPHkafd0qjPaOgwTQrjGKZ322gHw8/PhMhELmIMj+DQKjTE0MrhOUi1qTqdsG2fRIoxfViF6zgvpxWePRPYfRe4/nxokPVMyHoI6CsgKiiTXmltVoC6oFNEDfuJxrYs0eo7gQiUp76JhPhvHgERomIePIU/s2UXTO/VhONtZhQLLnrud5FOWU6huNxuw6TZoAXaBHgF1n0FqjDJmI5lxpHzoVKCDSElg3sRFafmxQWrFNKXa514VZt8nS2kMU2qiVsj+hcx4GpkNjk5opZiJ9/+jNS2FdAx49mtHahSos97qdEqPosZYeCz2ppSe11AF96Bz0NYrUtMxBn2Nj2ckxVwr6ekRcqx1QiAGcQJVpJsQtKy2SWkJT1e2UV6Uph9opre8cxZ4YIvnZrSRdsZQM1QztWJPGmqRmSOoRSSPiaM2ws2G4yXUh0Q2D6YqkHaHLnGfZua7IlYdFeZYuayFq5k2btEtFwS4z+T4pLUS7YW0NfnTSzVlxkCRjbvPs+ekL6ANnUTf0sE4rXlHeIXdtRI3TQGL8sq6J/IYwqTceY0xplbd9DXUCwnP8XVug1Yav7BdH0Cv1h9lzv+hPSn9w+nvyTHSZtTKXMB6tfXW3fI4zUlLi26fJPVn9+YoDJ3hifV2+f62wro2aCEyLsN/FUPYXQqX2YwitvcwYUyAlqnUDXXFuGxda+namvJuaphYbatuXEf3iNXSvVTQ6T68pYcLV/sADD/DAAw8UnvvX//pf86//9b++/P88Sbzyyiv8zu/8Dr/wC7/AW9/6Vp544omL/k1Xz4qOmQP/fe0jd879gRY66JOFdsqeWZ2SduJusebGWPPDusHWNGk94kg9osfR4LwRmvU4V3PXOS87s9pnzn32fMca+MY+uNBm5ZkhDiiFdQ56QRjuEifreNS+ASRrDkXjRAePx0UHun5kNJFW6NuWYk4PEx0+h7aW25KUlrU8l1guHDqJ6o8clV2MzEyFfhbotU89s/OS/1YZ6c0pLcoiou6YWsNQjzU1o6hpRQ1xjNYCPwN8CpdZx2XNXabcO+hNOz6l/cfI11rWhpCK0n5RhBmFkN6uFdy1ArVrCPPSWcxyd3a7shOMYkukeM4fbuT7YO50j78o2z7hRr7uUnIxuBqds+ZTWQHKqKDMouSkRxoOnwbgqVEngfXUYJGmO8n6s9lG1krO76O+ROjaftQHN8Lt3aj3bEZtWs3ySLMoUuwyJjAkKYzfZDBRcAVkTYf7ZWhwTvYzxUjtuYlMXvIUKW6NNd+8dhksBoahvRjYsVQcc3fmKUe/nvujV4RnuYU2g3eQtyAGfLhevA0ymZKEcD/3Sd2ygw7inPsuJZ0C00BA63Pnt783Ct62Rqjt55p5/2if7m1bqe11xrPKLiSFQyOwphFE5AIHYa75jaGqtf9yFNAby/2xC5KthgKVOG6lRM1E2EitFNOSmuZFScoHvneM1slzJH9/E0kjFuG/2NCMxUFP3H2rJi1Ev98VsbHL0NXlHPO6QdeNJAFc+9CCI+7p7Vlr0vzn+bDPTRbj2i1Gj9NCVMEdq+CHg5JJznqeQ+Sz5xb002fRW5aju2LWacVeN+elrEuLKKpSWVa8EybyG/Yy1m/wUyu0YSTwHOUOehh49jbXu6+FXWfg71yLNV9/3vIHr5WrGRiCNTUy0TwfZPJrbi4FxAAmEmNcpeHwkGg3ORFGlbqWaqmF86NEF0bZ29/LURF1ytqKemG4dOItFCgFpAMH/SDCEF1GkTEW+g4g45fZxp3WaInyrroiKQetGeqxofs161h0BTqLz7UtdQziOOZNb3oT/+E//IdJ/029a2mBlpktNOAcQonewtjoySRZEwWEmXPJnmuoRdxUN+xtGA7VIpKGYbBhWFSPCotVxWZuZ809AmdWxyIEpF32XK9IqZ+D+AJ86OGDHD10QhaSVnkLC9RFM3XjYTxqn+9xroJbuOAu1govFNtSJu+bHNUiohv7MY8fl+x5Ks75zlaTJ1Z2s7df6s2z7E+YyZthvLRz/2W/h2cBANRVfqu5+xi5/TLwLPAU4nw3cVl0K49HS465z6LvQwIpryF35sJa85iK0j4RsrlaNlgiBSfOip1sIfryIGbgpOscIfPyeq15JtLZmgkF4doXyeaVxeD8HroL2M741L6pHihjdBB8lqGm4XaprH2peVJefOea4vcwHyjtHmFwxfXDjRoGc10/5uduwmzrywSFNsWaZ2OdGRU+Y+4DXpNBOevjb/sQEc2I4PyjOI5T+UgGiGoue+7qz7tiTX3Tah75qQ3setVivvlTG1AbVkum3Lh+3FpnoprzDVlQKghIacRw30XehCA0DEPnejyE+7n/u/K5Z8kD053OPm+/KKPzM64sDLduMVyzCP5uMKBlpME9eXTAX/gZEXNidc/4tPa5BP+leOsbd6+0ODvHRuS5rE+WBCXMqKs1H03EOU9STJKgHj3GuhNn+dyPb8R2xSLUGGnans4eK9qxCKK2GxGtrojvNiJubsTYRoxqxKiuGNMVE3XHxN0RpttIL+xFMfS4W3fk7mNoRPNGMHEqGM9ukfJAXWR8+P3+uuViaOw+7cbKurpzobWb4Rb6hRPomxajlGJtpDilNWe0ZFx9G7XQ8e6E8fyGs8BJJu83KM9uC3QCCsH1xTV47zXwnaPwzPHcQW8mRcrTwDCsXyJv6s89VXo8l9DJMfd7RF9vJsaoXfZce8V9a9EHRmDtEhbXDIeVGy8liu2p9p1LLo5OSvsgzvlGiluDKd2HUMoFkLuiYja9MfYWNQy1hmFR3bBo22oWvesSSk5LmPPO+aZNm7j77ru57rrrJv03p4/vyuZ2eaHtAZYjQf1Q1CFcaFNBIXOuvHK7ptGIuKYe8f0ug20YDncbehuGtBELRSk2haj7XN6AQ2fW92XPsud7T6It0AXmLCx+5YxkzbUTM1LSs1fO+amlzyei9h1iYmrfRWGcd+hV22MtWSCtiF61BHNuBDNwjsdTi1KW6860uNCIedSJ/mnHeNDZJjnz4/fuX/jxK/p+WrlsuXfK3X0ELAXeDXwSlzknz5b7DLrvZ+5rzT2l/TVAN6VsuTfs5+60nzvQqjO9/ekjQO5omReOZetTRZqtRnFKKw6RO9uhuNh4Wdg0FBOjGInehYjBFQ62YO+8pH2sk0BczcCOfvjVDbz7DTeJQNKONcU6zHmUTVJKuayJRNt1I8+mmYZk1HSsUTXNltjwvM+akydSpqq030mpfT85pT3cM/04TuUb9UG2SCupOXdlT8SaW2qaRzb38chPbKe1qU9ErCJxzJXRc7N96CRRdsz9vXfOM/E+xga4JkK4n4937rkwFf0Uz73wHMzgM+amdNNIDetTp+DkcE5tz2i1afCPrThDh4ck8+VZOyGtXVP+z7OPbHKHgQT3uK8XjozmA+LbXzVTVCslHk2Im6lkZdsJ5pGjmKNn0D+5kb3dNQa1kdrlmqthjiWDnsRGOpRoxZBSPKkVd7kAvu9KYlwSwBiNiqSGXAJW7hZL33JlFm7HkgntlozlocaWZbx6NTx2PIg0SxlGlFjUj06h+7vRy3vQWlHXmmWRYmfktY+K+h3tcc++8f2GFUhHs8n6DVngORSGC8+6vh5490a4fwD2ni6uPx8wOnQG1tWLiz1z0OdYKQnunFN6bCBBIXXnh86Bz5inQSs8a1G7TsH6HlYpOIhQ2q0m069K1OSC02FCz99bJDDtzz7IL8/v5xN9k+oilHfViGjUDYsahq6uCLNj9SV+gznmvHN+qQjbyISiDruQ6BcE7CzygM9Up7r/u1C5XSNO2y11w3cbEUkj5kAjZknWAiOvM/eH6pxH4MxGcZ4lMTtWQh30MLAEHtyxVETgXI1IWxeptFNBmH3oRO0L26h1pPZNgHL23Ji8pZeJI2o39lN7/Bg/hmVRAkuPtBlcFvMmLWJp2ohiceacz4tBvDhilWfOsxsyt9+BME++TTF73nLZ86zWPBjvv0Mo7T7blJ277n8tkK9tWpFlFLxx7Q/7O6SwQ1uIUtA39xEZl5XU0nNzu1Y8T35QlWuYO8EbL53E4F4GriE/1Mq09kv6fJ72Hdag17QcfjeugQ+8Gm4M2go5Y22+UT2zbIo73KO6IeoSx1y52lJbj7g+NrxA8ewKAysX20d9ULPcSq1soIQG5lT1ViCgtivkPIgNuia3WxsRO7sMzzYierqNyyIJW4zYSBBpCt/dXELBMQ/sh/Xu94cpjllo7E8W5XPPj+FhhJZZp/O5F45eVjZS6opApGFlN9yyDB4+HDg7eUay2GsZGBwVpzasJ53DtPZMORpyx9xP+tV1GDwvvwvbVjnlbNNMMZljfoRo8BT6pzZR665xnTE8YcQxb0eOyu4y5q1Y01YSVPsRwuxbS67uHdqJlc5KZyjjzroCS8z9fPsK2D8sAaVESjB0YjGtBP3kUcxty2UdODbk5kixW2sR1vT6HXZiBlLolId+w26kwwVMzW9Q/kwLs+dZoF3BtmXwU2vhc/vg+IXcQU+tqLkfS0UZ3JdphEGnucZW8Rgve97fgMFhsK7e3JIrtY+0MMeGUet6WKsVB7RrfefqzBMj7UUlXjj+RhoqtZfLYQ8ge7S3XcrjOJmzbyLKe+SC7Bn1/TIxqRLrT33qU5N67kMf+tCk//Hv/d7vjalnD3HrrbfysY99bNLvV0bZOPHG5R6K1JTyAE01mq+UIrI2F5q0eSbrNcCfKcV5BUeRyBvB/52KMznbEIVlA22JdulY6kT0ttWoX4LkpVOMXr+c3Rv6GNCaTb63stYFQ2UqmdKyceJ/Tsh7nJeDHJ0oRuPCBxzaGmJLLbHUUkszsSQ3L8U+O8gNB8/yT9cvht2H6L1jPducU17TyjlCzMkI5qVCK0XNWupKnO6au4+RnrfvBz5DrrzedPM9cvtlRm1HVL1PAHe610YUjZOK0j4F+IxxqL58fT/8mkL/cBBz5xrMtX0oX8/sWrDdBDwD/CQlx1z5tWXH7HnlrLnfO48iYnCb6Xy4XY6toLQSPQ6CN/afFchq72u5Zsd8hBcMsrEmqqXSCCOxElCxsv62AiMIfXkLgZOnJrePjhfU9M75myjtl+QO51RhlCur0KLcbqy8X5dJWZFo9ljLGX/IxVoc85rsl/NzBIvzXdvcSTZI4GO3ux+TPZ/C+ihT2X1AptxGrXzujfkXft/wNeVh9vxNffDHL0o2a32vKBD730PRQR84D9ctLdLEM1r7HD3//D5SFqhaXZdgg1OOzutHUmhKrXmcJEQPHyY6dBrzC9cQ9dRpG2kV+Jex5qeNphVpWjVDLTYiBmdVFgB9jGJHBB+Q9tU483Xuzwhi7drBBPM1UtBbg+2L4ImT8PfWQdvpIjx7kmixRm3oRSsJThNpNhrN952wZuTZmyqs2iiefd6xK4uJWaTefDOX6DfEekxngHxTTuDVq+B0C+7ZCb9+g5Q5gKzLbuRn7+SGt7m45mB8Wnt/j2RxhlqwpJ5lznVq0XuHUCu60PWIdVrxZe3E4HzWXItj3rZgJ/jY4XlXLic6APwsnRN6Uz37RItLAkfWBzRDlffG5Tvnk9oj/vzP/zy7+U04fM7fpoLf+q3f4gtf+MK4t9/93d+d+qdxWNF3PR/+4If5t//sI/zf//tH+NaXv8xf/uFnaI422Y0YPD968FGef+zpbIDOnDzNn/zxPYX3uffzDxbEK3bvHeATn/pS4TWf+NSXOLDvUOZ07HpuJ9/+4oNEyCG6Fvj0x+/h2InT9CFf+HOPPc2jDz6aLfJWs8nvf/TTjI42s/f9ytce5ZFHn8p+Pnb8NB/9o0u7vt17B7Kfn3pmJ/d+/sHCaz76R/dw7Pjp7OdHHn2Kr3zt0ezn0VF3fe2WGFex5uFHf8APn3tRRE629XP+dWu5/7FHWV83vBJLpPKhr3yTF59/JXMIXtl7aErX5yNef/rf7uHUidPZRvn9x56m58FH6XPfXzLa5M//8DO0RpvZdzqZ7+8v/+YhnnppTyZCsv/wEe758tfpMopGbGjc3M9XP/cVVuzaz62DcO3aRezdvZevP/x3dDkHHa346H+/d3Lf3xUe34/+0T1Xdnzd9cUKvvWNR3n6saeJlTjoF06c5ssfv4e3AA3gPuDbX3yQF5/bmVHb9+49xBc+cx8tN27fAm7+7H2c2ncoc853P7eTB77woNDl1aVd35X6/uAKr49pvD6vbv7Uzt3c+/Vv5/VON63lY2Yfp9Z0C0U61jzz5HM8/sjjaK24AXhxtMkX3P7nM+YPf+NRvvPo05nRH16fF8z58hce5KVnd2br8If7DrHps/cVOiR84TP3MeDGV13m99dstRxNLOIr3/0B33nmeeiK+Ohf/A3HL5zno5/+fN7nV6l5Pb5erfwv/uLLDBw64torKfY9t5Pvf/FBdgAvIOPwlx+/hxMnTmf76CPfe3rC60uBr3/9Ub7vxjcFTp84zX0fv4cBxHHUyPp95dmd2Z65f9/U9meQOfA//uQezp44LQ563fDC089z36NP8EKXYbQr4n/ohP/+Z/fSJEXVhM7+0Ncf5dHvPX3J399krw+u/Ph6w/xv/+ZBdj67M7NFj+47xMrP3sducqf6C5+5j/17D2VO20TX59//kUef4oGvP5oFWEZGm3zOrV+v1P6ks1+87Xv6hNgvod167+cf5OnnXsmowrsPH+GT938tpwsvrvPJ3l3svv+5LGP+1Iu7ufcr3yzQ2j/6N1/i+IET0F8HBd959gW+8j0nzGsUo605uj87x3y01eIP/vwvGW22xElY3cNXzu7mOz98LvuMx4+f4qOf+Ty0UlQ7IX7gEF/53nd55baYqKeOiTRHjx5l4Ktf53Ss2VUTGvuX/vIr7D00KF1pgFee28kjX3yQxxHnXANf/Pg9nDtxWnIBwOPfe5oHvv697HqvtvMtfF3H6/viQy56L/P0o/d+keNnz8mXeccKvvPIk3zlez+AVCjgyaMH+Pi5p2i3k0yU8onv/QD79HO8GCnSWHPqxGk+9/F7Ctnzz5Wub9feQ/y/n7qvIAb3wGfvY3Dfocxv2PfcTv7uiw8Wulv8yR9P/P01my3+4I//glGbZIHlrzz+Q77zwouZ7Xn8tm4+ev5p+NxO6Xuewr0PfY+nFp3Pgku7Dx/hk194oFCDNBfHF3wAUPHJL3yV3YNHxAOODU/FR7n3gW+CtZgUlLV86vP3cfq5Q+it0gnpzPMvcubxJzitIDWK4XaL//ePP8vwSDMbm/GuL2MIWvjaFx7k5efEfhkFTu07xMBn7ytUCHz+0/dxYO+hLN54Kd9fs93iD/7kL7j/wa/xkX/zO3zk3/4L3v9P/hGXC/Xwww+PyxF429veNvk3UooHH3zw4i+8DLz1rW/lP/2n/8Ttt98+7muGhoZ458/9EruODsKixQxZOJfCBWAIeBfw3xBhgG5gkYJFWm5LNMSXEI1KrWXIwtkUhlIYsnDeinT/nyGR9KeBe5Ba926gV0OPgsVaHkdzNQpWgk0tdqTN0GjK+VbCUNtyIbVcsDCsFPdqzdFY87/WDPWaZpFWLFLQo+WzLlKTz5aOppZzwfd63soYPg78d3drAD3I+/dq6HXjaSb5P6y1MNKG4QRGE9KRhJHRhOHRhOZom/afvYDtSuGIRb9rPfVrVlGvGbq7IqJMWTUWOtYM49jx06xauXRa3rttLefcd37BzekLbk4/Dvw+8AmEDdKFzGWj3PxHXvfrwD9GGCRdkM2DRUrGqnsKc6GCm6u+7UozLWSWW1pxViuGtGIoMpyLNBeU4hTwPuD/QQKF5T1vsUKCTAHOp27s/Zqzsn/+v8Bp4J8i665Xybgvcmu75wqOp/U9Xi0cP3GalauWgRNhXCiw7tw4l8ptaILvepFi0vtoy1rO+PEL9s3dwD8B/hq3Himux0s9h/w+7efMkIX/E3jIitq3VfATSvFvrtD/mwu4kOb7ox+7C8CXkP3x3+H2RWR99Dj7okeNn2Xz+7kN7Ak/fuetsCl+D3ES3oOsZb/+ev2e2mF92NSdcSOJ3EaD+/Mt+Nhz8N6NsHVZrotgdP43p0Ykw/7PbnLdPUxRwXhRPCfbfNnEwnBLzvbh4PM3E/hvT8NPbYTty+QzeVp7O4EHDpHsPMH5X72Oc0saDMeaC5FmONYMG82fxgZbM/xqYOMY8jnwFPAfgD+nNAeCvfJS7MyFgsnYLbZZGrMR93M7gU88KyVdr1oJL5+k/dWDnP3HN3O+ZrhQN1yoaS7EEUM1wy83Iv5r3bCBi5993uY56214Z8t4v+FPkMDmpfoNNrUw6mxNV0JBM7xvw2dfgp46/OIWuGcXbF0Mr+srtvBy96prKr2lZg7WWhmrC+3i2DVT+PxuWNkFb15DUtOcTyxnR1pc+MRLXHjfVi4s7aYVa/5tbPj5esStroa7u25kn3N7XWMcO6CZWs66sfP78nngJeD/AO5lrM+wyPlhk/UZJvP5z546w9IVy7j//vvp6em5pPeZcHSnQlOfLlhrabVa2c/tdptms4kxBmM6UweS9ggpLqsaUBwOIB/YZ1y9EEBIcbgUaEdtz4ThbJHa/gVkMjToLGA2n7ZppZW03lIJkQHdtmgfZtSaTQYejITmZZWoYyYqj0SmU6CQ+L/J6JnkYnDlNmpTrTnPPk9A1yex6MjS1U4xWtGKDO0NXSRPnxf64l8cpPYBRe2GfkzGBZ3iP7yCmC7HHOT7rCmoW2E71mwuBHc7cB3wl8CHkbnu6e0tZK097x6/ioDSror3lWM+NXhRMasVmCSvEUU0LmIFOhJ1X2OFNtyDBCKfQzJuSXizQm+vBf/jYmJwr2FszdZlicGN91mNAre/r1qz4iKvnp+QcbJZPaqnhGtgB+Kgezp6OoV9tKASTlEMbiM5BdufRX7PvNRtLDvzlBNItUIffEipjIL4M+Q1twuB2uvHTNlg/iNiiZ9zr8kycDApSqbfzzMGbPDYP38IKSlSjKW0j/d9Kq2wkQYT0IT9rSsSevtDh2DTkpzaDrkY3OAQrFBFMbhs8fsrmYMIuf5liu2qRUJtv4ZAqT6Brx+Cl05gPngd0ZIGcaxp1gxRpKQNYGy4Mzb8Qc3wKzVNpBQtC6hcBPUxpJTL15pHqlhzfvmE1/mNSdktocaK3zBiLXPytn744RF41Qr43lHUnX2SMTdObFKL8GRkFOsixU6kBDLU7+hUZlJQ+Lb5+j2ITCUvQHypfoPSCluLxrZtyMQoDLx7O/zZ8/C5F2BfG7Y0xs7fuVxvjrOpx2tl2N8NB8+LYnvqas73nkMv1+jFDYyCllKsU4p9Bm4xSpT2CaQxJvjooQCnPwNBfL9NFP2vsqDnlfz8Krr8023OO+dHjhzhve99b/bzv/gX/wKQa/vVX/3Vcf8uPND8AO1BFFXDRRUqr17O11moOXfGigGudb8fQlpR3clYB33uLrPOUFoR1Z1qeduik/y7u8ZoDmjJ2K2mc53rVJzzsoMQOufh9xgaKlN2ErzoiEnB9d+tuxr09MIQ1ilnaUA/OQg3rQlqf+Zovd1lQilFHUtbObE3Jc62F1P5EPDPgLuRjKwBsPl4fwt4I66TAU40iry7QaXSfulQkbQXkUVhhUVmLcY55SZ1+5n8ipuQYMlb6bwerbXZHM6cCMY6dzuRLLxfa2UHvcLUkYlp26KDvgMR/zqDrJdw3JKL7KM+8FIOau6nqFYbOuWXIobq4QN5NStikm0Fd1r4z8BXgJ8G7iBf995Bma9q7VByzJWsNYPUpZ5DVNX7KBn7kzz//LiV7wGOkNecZzYExZLqjvDtUEPNCn9/1yp47Ai8dAquXyHPGYIDtyQG11Gtfe5hQiehrxuODbsNT+jRfOMwPH8CPnQtLG9I95aalAqZSGFigzaG62qGpKZ5UilegzjlKrBRHkfOR79Hegfdz//5PO9nCsq4pImvO88SIQpuWQ5fPwzfPwaHmuhfXindgyKdtRJVWmy6bVrxMiJK6880v4cmFM++To6dJe9vfiX8BmWctkpYex4+7onhDavgK8fkuW+ehHVdoi9jgnk8h51zoHit4fpbU4cnjmSicNqC2XkWvWkFWrn2xC6o8rKWHvWpE1kMA9ThuIUIg6H+3iLO+UbyM24qSu2zhTm6rebo7+/n4YcfHnObyDHvWdw/bo/eLeTO3JUcIEPQUo08Wvpi8Jp/hTjoWQA3uM03aCXtQExNlIZ1LLderViLfO5CtIu81mcyCFUXs+yRuz9Mscf55WZ/MrXoQj9YhYo15ra1mZ6ABum9PEc2ybDmZjoQKZX1Ow+V22Mk4fAm4NOQ9WL2WfMW8B3kQNQEQnCBgXKlKERXK5QSRVqV9Y424pxTzGZrxDl/lnwdharf5X7n/nDLbHf33FGkVGEz+XuH/2c6l8F0z/PZRGbAq6IxvwQJQPp9NDMq3f14+6gNmQ9B9ielqNSezQ+VG5yXGmRUShX2iIaCLgWvVfBv3X2Xgi5d3EvmMxTuTAjGTSM05n7E1vDnVZiFG699IeTzPAuqBH9nEad/BJkXIVMsdNDHvV5X81noH+1vNQNvXgPfPChOarmd2qHz4swW/qF30Od4y6+yk+CNhr4aHDuP72/Og4Pw7HH44LWwvAtijakbYtce0NQMUdaNQPNjSvEtikykNpJlHWQsYyzMnF/tmPR+HrZT86wNo6AWwQYDDw3CRmljpbXCOMdOO0ddRZprleIVAjHhMPBsi0nshLEOeoqUA23lyvkNymgppcjU202x1drek8U/eMrVbKtgzc51r2E8xkp/r/DMRxKpO2+n4pxv7pLhdZ9zg8ucp0ZjnZhfmc1XxkRK7fuADYxl/V1yQm8GMOed80uBMbXCQHqjdC9CO9PBLTSKLmeAtFKZ4Ee2GQPfKL3uAa6cUTSb0OTUxHCTUsD1kLUCGmNY4mpSLgLL+KqLh8id82xxcZlB/Cx7rvLHsYYdffD+dXBTBL+2Aa7rlw/rfz+LNbDnzl2Y9v+ROeQq733uM18fAB4BXsFl1ZGx+hFSwnEDuYGStZFx71PhyiPLwlJ0nG9A1swZciMyy55TPOg6Zc19YHM9Y1s4mWAfmy7MxDyfLZTPoHAf3UEpyEluOI63j05kgIaZ8/AM1FfAaTDkTnm3lpuvk/e18l0qv83XWnOPMCBcNtK3ICy98jryZ+B48PO8TGn37zNIrhVQGEN1ceccIGyHWg5Ec9tKp1h3Iq+/9rT2Ixck41U2tkNl97mKsmPunZzVPXDc0dkfHoSnj0nGfEVX5igZ1zK2Fmui2IiD7gQN34wEoEfIu5NY4HvAbcg4meBWMcZyTHo/1yqgpKp8ru47DgfcStqfwL7jmEhnDAelhdWJUWxH6o0zx5uiPerPvonKufZQ7PB0JfyGrAd62GLN327vL744SwgRMAim/C9nFlmLxZKT3jBSa3fkHKRg9p1B10D390jm3Ch0pFgfKQ5rzbCjtIfj4tdaGaG/Vz77DpJnzkP75VKU2mcKc32ILwlnT+0fkzW3iBOxxb0mzCxdqbkeOiGxEkP27tJr7qaYSZyvkVTfCsd/Zn8IaXLnPIxWFjJyk3j/8SJgCULtC9uohcbJpfrKUs+r842yHkQzb1gDv/IquffPu6jubApU/fRPvm7a/4dxWTF/q7l5XUPKFt6JiB6GmfNvI5T20DApO+gVrjzC9Zg9BpYi2bbnuTibJWFsj3OLOOe+v3l4qF12UGwSmIl5PltQju0QjttE+2ioF9DJQOmYIUJKUw4jBko5mOltvsv9HA0lolc9ygntaCcA52/ud/UFsP79+RfWn/rbFsgU28NzLFtP4wSn/TzPMu4UKe2HEao8BOcdxWzexa6Z2BQd8/D+zevgW4dEMM1PoKGWS9cvGp/WPpdRdsz9dS9xShv/8Rl47Bh8cHvumAe94Wt1Q1QTx9y4GvMISfKsBr4PBefh++Qq7dnZFwRMF6TBPUVMdj+XdlW6SGuPNDx9pPjCp48Ind2Ic2dijY4kiLIRsrrx8OwLKe4wcTnXbqbJb+iUNa8b2NEPH1wPN0fwqy4h5NeoUWDmQSllp3WnkD2krwcONcFa9Evn0NcuRystjrkLni3Rim4De7Tq2Na1EwNporPvCMWzr7Bnz9GvcsHuFeUD8RgySJvoTGu4EmdMrIq0vbqSjfq/AD8F/CHwGve7hRBJLWfo/Pd6PVKf2qQUsZwg6lVG6JCHUUy/La+iaJyEGfRLhTLBZlnTuRptw0B3VNxAa26zvAowhtru5m6MqJjuAp5AxnaUIqU9ppgxjxVVzd00YaIs7I2IKFwWJCNfjz4LO172IEUCm9soUqJ9sGWu0sLmCzrR2v0++iL5GBXqzukc5CwbMH4fHUDefzVFal/oVF4ulFI0tMoUdXu1KBkvdj/3aKjrOU6DngLCcQvPv61Itg0CMT8mpmSGKAelPfPvMBKU9t+ed8j9uTepb7XMEPM3reCG5RJFeeK4mzwWBs9LdC82RSM7E6Wa42OpVG6BhwGFfSeKrzs/lDtLQYDe1DS1hiGqO8c8sHfeAgVq+xngZURfwZRunnm2UOb+jMHoomMaa7hzTfE1d65BO4fcROLkKa2z7347ZNT2cvY8y5zT2bE7gSjwh35DWavjUpElhEKKu7cvb1wD77tNas0bebAoo/rPcSjPUOmk97CmB44MSd35i6eIrumRRLsW51w7tsRGrdmtVe50UyzLK2O8s+8gYqesZHxa+1zEXL2uy4JSuhi1RqJfa6HQo9cP0JWiZWqlqJHX3Xl63+sU/HsFr9eO+qeF2ldTzOva23LNqd8MfcumXXQ2KCequ/Mo19uFRqavuQsd8stVHM4Q67xdjG9f0R0VHfW6hlo0622dwr6U04lwXnsH2zvdvcAvk2fPH0cCJ9cwliESKfnbCtODchY2ZLPcCDzD2Lrz0EiZKHvwCnnmvNP+OZ2YqXk+W+i0j2rEEWsgZ1d5Hw2zPiHKYjj+fh/FevMsyHIFz7/884iTvkgrepS0TGxoNe+p7GWUg/t+bWxFgsgXKGZVJ6JkgszzTnWTfgwPM1YINWSNTcbxyxyCuMPNaHjrOvjWoLRRSxExuP4OYnDhP5/LCK8Z8kBEOfv6zNE8KB8E4HUjIqppYle26PdXjQSgnwDOImP0BJKdW0WJNeb34oU1/S8ZU9nPvbBb5pTGWhiMH94At8Zyf8Ma0QeKnXPuhOF86Gg7EjQJ/YFymWVZF8Lbm3sQDYkuiqymK7VvZnpHNVO0MX3LNJ8U8gmh+uzbnZPGRKJwR87BwHn0KKj1izGBGJxWCrRmfaQL5UGh3dKJgVQ+87ztsp+c0m7GuZ+LmOtb6yVh9bpbCwsxrBvxC3a6aJk1Z4z0OAe9R+XUPv+4y/1uvtP7NF59dKyzfD2SqcvoQxSz5xfDmPoR914DiPMPY8fxSqguKqVQdbc5dkW5Y97lbt2RbJBz4KT92J987uIvukIos0J8LXqEtE1qAg8hmYQ3EWQBVTFzPlfrexYKQjZL2Tnfh4i6hevROwxlfYgy62gIcTo6GSfTvRRmcp7PBsK1ErKQNLKPPg+F7MFE+2hKMcDigzH7ETE/P1ShMzmdarVKLZxMeRnhuIVjthxYjGjcTJaSCTLPs+AZedYd93iQ3DkPHfSp2i/KaMmEd8qeb10qxvOjxyRzfnhIaKjhAZsZ2nN/bJUz9Atq30bBq0t1vXeuGcuMcxnNWKsxbUBjxA7ZjDDFLFJv/nqKlPYwc16dfYIp7+cdGA3cuBY+9Gq5rxtUTRzzrPac3B69Fqk7DwPToSNezqSHWdo9yBhD0d7MyBiX9U249/W12A3niJcd88xpj65Ii64Zw3i09jWL4BTw3Bm4frEIS3shP+3qzg1s0opd5MHMTgGUEJ2YD5ZiGzWYubPvcjGPRnryODrwFDYYSJ859855uLgiJh91ngx87V23cnQ+d1vsHPReJbduNf/pvTqou8vOd3Kj8iU6RyvFWJk4fV4W9PMLLVRq75Q1v2LjaDSqK5INsyuWWyNCxWbORC7/6T/85Rn7X9rVnjdUieaOZPfeD/wxkjnvh6zmuazDMN/n/FxHKAjnDQmD0JlXITXMZQfPO3QTicGtoygG57OFfv+cTszkPJ8N6CAr58fN72c7yMU1O7GQwn30Ymq1Y7IHgaE5152suYjQMQ5vILaGNywnQ8kEmefeIS9T2iHPnEOxLMGP6ZQQq7EdSrLs+Vr43lG40JIe52trnbPmcyBAPSlkomI6d/Su75d63luiLPvayTH32gKxKjLA/Lp5KxKQbiJn313k4+EddO+YV2tMMNX9XNgeJmc0ho5rxmoUhoOuS9eS0M7fjgTKvCZOp300O/dKfoNP6hXW+DTsmxmjpdslhHwyyCeJ5ptjDuPT2ntiMRx/dBKuXezOPFHb99lztGaLVuyhlEyg6KR7+LMvFILzr9mPiNnOt7Nvno325GBtOkatby95zWSZnnKlRdmUUtQdpa9Xw2LnkC/WC7PuLlRt95Pf10tmxonNo5Pl9k1l+HZAZVp76JxnjjnFgMuVhnKRPDUHx6xer83o/4vooN7unl8evO6PkMBMIdOg5re+wnxBxmYhD4woyNS/x7BZbN67vpx19WtvF/neGWYPQudkOjHT83w2EO6jXshPIUr7k91Hw5rm8vkXZg/CsoS5rFY71+GD06HR7h9vhSlRMkHmeXbuldbhCFLT7AOfYVDaP54Ksuz5GOV2DRsWw9YeeOCgcPMnorXPB2hVzLx65/vGNfCBPPvayTGXP1fZ2Zc56Mi6eROyPh8CliGOXFjOFWbOKwguZT9XRuV0765SuaH7WXcZqVumWK7qy1n3UlyL3r5s21LGNdg395C3UQuz8dNRziXtUTWqZlBdsbtF8vN8WWshvIEQOua+Fr3bvca0xTE38tlNkD1f515yiHE0AYItdMyeuQDOvgXpnEMx03AeoWYWImCq6KBPB7RSxM5Rr2vl6pbm4SKbAOV2av7xdqQv62HG0obGq5f0GJP5scXsgae1hzT6+VD+Nt9R7mccisM9VHrtA4ytNZ/LG+FCgXcYyj2YFdLv3IvCdapfLtPaw8y5rzefTtbR1YyykF+4j55Bzq/Q6Q4fe5QNk9CxO4oYKOF+Od3n39WAcMyyTAxi0HsRKrg4JdOjTGn3Z+Cge99ljF9zPmX4Wt4x9HbgrWvgpXPyusOnOmfN58m6H7euN9OQCW4lx9zDtxAtZNCRoPQa4OPkatCh8+bPvso2uXwopVA+g94VQ3fAaKwZcfIorkV/9l2HiBQXAtOMPffK++YgQmvPkkCqOMYVxkdBFC4M7O09Bqfdi/56EL33uAjBBdR2baQ0YRPCei4EOcnLhDzC4HU4hk1kDP3aDPfMuX72Lcg9Y/GyjQUDZi8iOLqUYvQrXMQVLg2KsQJUBolUbiWntpdVMsej9sHYheaNmiZipK5hrJE5nwL5Vwpf+dqjM/4/DY7STu6Y15G68xBvp1hrLs7iVTZAs4RO61EjdecvUuyiEKq2T0UMLqS1TzdmY57PNEKmQ8hCaiCGhW+DVx63cB9NOziACZI5qCOORDlzEFKxK0wdnTRXfOZ8P7nS/kSUTI+vfO3RMZTMkDHmldo7UdovZWdVRuWt1crCcENBL+p7DsGeY2Md9Hk0cZRWufMdim75+t6GlvsOjjnk2e8wK66RkpPD7jVPIuu0LIQqtmZ19nlc7n6uXD/s7BYwHDrVhCvk/Aqd83JZV6d9cx8iBLeS4r4511W+5xT8nhHeSmKM6unBPGOuHK1d5eO2h7GlB/4M9BhPqf0QMk6+u1O4d871MZzL13bJSJJmgZbp682hc/Sr2jYvHWGUOPw+FULJDNs3lTfE8fq9lrMHfhwH3e/LLRHCxXY1obe3++IvusJQShVqzn0dum8Z+JNIy8C7Sq+paH0zh4JjHjxeByxCjJSyUFVH2hhwHGHAbKVo9ISGynRjNub5TMPvnZljHuyjN5HXnXdiPfh9NMyq+zGEohhc2aG7VMeugsB/h+V14YXbxuuvnHY4+np7uzvqBXjnPGwgVaa0X/IYjpc9f6akZv7UYNHAngdicGUo7cVeY6l79fW9iyQDq2pm3M+klMo6lXi6egR8vfS6Bynuuz44XSHHdO7nWTC6FDDziu0+2BU6c57Wnq1T9167KZbChg56VPkNk0OnveX2Yis85VrhGaMwkaO3O92ALeTlQeWyLRnH/Owr+A3kXUrGaK1Q3KvnKhakPzN0drAwUHsoUtrLDnoV1bx0+PZNZUdAI3XnLzC2fVOYQeiETsaJj4Kto0Rn5zKpffMYb3zdrbPyfyMnetilXMJBiZbCaxX8n0ruuwLHXWr1rrbRmT1oihk9E6wP3+/c74+hIFy5/MRT2tciGdxOWfOZGNXZmucziU77qN/nwn20LGRU7tUbZhb860MDxZ99oZFSrcxLR5nWHjrr2+hQd85YSqbHG19367hCqKFSeydK+6U6yoXseSgMVzKguWNN0dCexwIiyihU5Gp7a0bqfCdBuytT1WPg7tJrfoYgw65yNkyFHNO5n4/HZNmOdPoZZmyyqBOrJUUYt5sZa2fmzKNqYC8KrYpt8OpGxBd/fYO0wvuNjbBjTaa0ryKNNrpQHrTHvVU4NmGG3P9uISm1w8ywEmcFiZUBsIiB+S7GCgJ4alKFy0O2Idrihng9siGeRw6yQvsmJY871SF3Uly0dG6jFgZb5vJCW2ioqXxcjIamhVS5n5E54R34+d4ycL5BK4W2NqdJ29xYuQH4IcFB57IGiQI6HG6zLQZ3NSFzzG0xELIDyX4PI+UkBRaSW4cqVGqn6NjtB26nlDkPDc3KyLxkZGvCBueQe7wNWT9vo+SYq87O+URCqIPA6ygGpcNAwGXBG85ebMIiBvSvKfjhoLQZ29EvrzMqp75fZTA4nRULLSW3Oyx8FPhbxDG/HbIMu79faDpDcxkh8yi0SVci7Q13A7cQnH2qmIn1Dp4/+36G0loLElAVLg6lFDY2RZEpo+CmtXIDcD3qdazQkZa681S+483AWeAk0EeJOebGTrt9czyl9mspUdqD4M1cPvsW5A5roka24NrIAG2l6DiGDnqFy0O4IYbZ8+VIC6cXKS6qMFvXCWUaYEjtG5M5D5yFubzQpgPHjp+etf/tWwYu8jedtwzs1dKdoMc551WEeeYR1kX69agQivSzlGqXCYRxSodb6JzPlhjcbM7zmUSnNni+Xm4FQsvs1AbIawUU2gAFWYUwe9CpdrLCpcMzHsKyBH/bwviUzNTmlEyPY8dPjyuEOogotcPY8+9yx1CFaub+vmHg5mIvaWou8xVNLtO80FAWRG0o6NbwGgX/TgljrFtDl6bwugpFTOd+HibdyqyxkNoeZs/btlSz7J735bChYxc66BUmBxWV9pVQhNG1xFM1Q1Q36FgXAtPdiFO+m+LZVn48ntp+p7MvLEGay1iQZ/OKvuuyBXiQYg2YX1yhkVLh8tBpQ/SZtmsRUTi/cMrtm8p152mQPfAGp49khj3OC5EwFuhEvgg+c89XZ/X/Zy0DNSzRxZaBizR0aVU55rOEcv2yf7wZWTN7GCssVqa1g4jBbWf2xOBg9uf5TGE8wxJkH/Ut1UK14UIbPEoOIDAEnKCoJD3TmgELHWXH3Bt9PnMeBrvKtZEhPv25r3asOW8javuFFqLBGF4JPzkzoOt6rJJ5lykqmsdX42kr8CVd3c4R71YSjO5xAeoe/zsXmK7KucZiOvfzsL1hgcKMnGM7Ke6PZUfPr8tB99z64O/L5UAVJg9VM1m/9qwNnhdj7IowXc4xDxT3/Ve8mWKQs8DADZ8v7ZstxGfwZ18YzPTn4FzGgqS1Hx14igQZgD3IIVnIGFDMTFS4PIQ0Wq1yGq1CqO2PUqrrUbkTYFUxQFLOAHnHHKTmPGyjlm28V2kG6Ld/8z2zfQmA0PYMVJGuOQRNoNpu8+y5AW4GnkEcvnIGIcwcnEAoZVsZG3GeScdurszz6cZE5QjXA0/QuRyhXGMetlLbj4gALqWY1Z0PgjjzBX6sMgPejdtGpB3TMYTxldHa3RlYLuv6J//oPZxNx5YlHHW/90Ko/uwLH18JqJrBGgUmhSTND1+N0NhrGvT8E4K70mgEAbSWglZgx3g6u9daqTAW072f+7I6HZx7ClH+fti9xtuZIa09LAvajTjmMSXGbeDcVZgalNHYhgJrIEvKyReqlEKnVsoQgv1Uk9edh7aJL40NHXZfluDH8JC8+7xUaoe5f32XDD9ou5HBzbKtpehXtX9eGXRq36SQGtfnKWZ7ytm6EJ0MzBQxck6RZw9Cp7zKAFWoUETYVsbTpP268WuyLIwT1tylSNZ8DdJOpkwJmykxuKsN5XZqfn/rOGZ0FofzvwNxzje5x6FREp6FFS4P3p4o2BZI+7q1lCiZwS0swwQ6UtpTJPvTF7xvpyzQFfssxmXOu52aeY/rKd1wwmlXuWMOOWNskSvfKpdzLdJQr4IYs4ZyN6Ywc34E6T5SZh+FtqZFxOBCv0GX3rMa2UuDUkq6Jhjtbvk6CdliYTJ1C7lzngVVyO2VcPzCoOZ+YEPpveZTYHrBOud+gPZQVGoPF2wlhnPlUG6n5r9fTynxNNpyvWTZQCksssBAGXTvs4zxFWsrVKiQI6w7j8gPpLJie9iWK2vPxfhicOEar3BlUS5H8IHOLQhN7wBjyw9CQzNspZYiSu0bGGtk5pToaue8XHSivPrvO8z6lB3zsihcJ0q7L+fy2unhOvSPr/QITmRAV8hhMic9v9W1qgTgZhnlsiD/8xIki+qp7eMFpVNyvyEMts0XIbH5ik4trjUyDoeRBF05S96pt7nfN8N68/L7z4fE7IK0r5au3JYN0C7kgIRi5LkyLq8sygZl9jOS9fGtgAoZdFczEqK8yPw4DiDUwDI9Jfz5asO9n39wti+hwhxGp/plg2QQLjDW0ZuLYnBwdc3zifbRG8n7nZf30fEcdG+glCnt/n0rXD6U68mblXVRzPrsopQ1D4LToebKX33+wTHZH4sEpvvIHf4s0ELlKFSYf5ju/dyzgsK91K+QbYhzXqBIU3TUoZg5L7PGqn1zelB2zP13vhIRhttHZ/p6xiYrPbeP3DkPg5n+8VzfNxekfzo6fJoUOI60n9lEsU4ynAQVrgxCGm2ZTrSDolEZijnI49xAKYt0eAPlEFIDpLL/N7+iYNOB67ZvnO1LqDCH4R2GgqGC1NHdgGTPOzl6vtRkF53F4LyDPlO4mua5P6PG20efp2hYZt0vOmQOIDdQoDN7rMKVQdkx94HjbcgYQDHbU15r1lqu2b5xTPbcZ8776cwYq8awwnzDdO/nXhSuLP6skbrzMHPuae2hk3cO0VvZTNHGDM+/ClceCkkoFJIB5Pvobve6MKhSprWXldo9a6wcnJ4PYmsLcm8fHjqR1ZuvARoUo9ne+KnW2JWFF+II6ZgKETN62b0mqxOhWO8DYqCE2YWQ4u7F4AoLLaC0z/Uo2HTg1pu3z/YlVJjD8E5YpgMRGPQ3Ii3VCo5e8PgkcJrOYnAzHdi8mua5b80VqRKNEnHOfeeLMY4exaBmApxBBP02UhzDsOa8wpVBwQkI1tkWRBDuPKVMXUlzxQI33LS9Yxu1sEtJsSRhgRpwFRY0ZmI/H0+74zpESwVKdOhg79yLlE8uoegkViLS0wvtGEidzqrNSKlBmengA5hl1l8b8Rk8a6yTgz7XsWDnmRd18HUjZUpDlTm48hiPRnstwmI4RrGdWkbHdFZIZnSSb5j++UPktPYCpb0axwoVOqKToxfWnftSk+ygCw64XUi2rpvOWfN5cLbNW5T3Uf/d70AEjU4zAa09MDIPIEbmIsYaJlVw+sqik2Pu61yXUzIsA8c8POM6aQb4s28NQSCa+WVkVqgw0+gULDNIBvY0khkvixSHpbBb3Pt0YttWS2764G2Ugq4GkiTYTTEwHSYWygGWAfd+qylqgYTZ+LmOBenX1Bq9WebcO+ezWTN5tUDTmd7Xg1DSX6S4EYZiVDBWBC6kZ4aiOJ1qzq9G7N47cPEXVbiqURCEC9bldUh2/Ahj16Q3UMYTg5vpjN3VNs87BTgN0ItkUH2JUEFcs8O+uQ/JmkNlZE43Jvp+tyDZuiwQRrG0C/e7PXsP5YrE7v6E+72ntfu1GJ5/FSrMJ8zEfj6eLdqN2JEhtb2s9r2Xooh0eW1XIprTh7Jj3km7I6s7Jw90hqwkr7WykRLTCOYV+2E+XOOU0bt0PVDMnM9mzeTVgk40Wm9QhGJGZcc8QSjt5boR/9oLCD3Tt1ELKX3+8dWIh771xGxfQoU5jk6OuUHao22h2J4rPOB2Mr4YnGZmA5tX2zzXFLPnofr39eRBzjH7aEmrYz9ioISOXGhwVkbmlYOvcw0dc//zVsbp0+ues9aSWHjk20+M0VwZRDLvNUqGZnD+VagwnzAT+7lfh532UF93HtqYIXtzN0KjLpeR+D25wvShE7tZI8k9r78R+gmhkF/ZOfdicP59Q7bRfNg3F+RcOzH4AsNIVmgrnWtGrlaHbjrhabTlrI+nZPr2TeMJ44SUvnDBHUJ6xi6mbFxe3fTM3/jQO2b7EirMcZSNlDBgdhNSdx7WLHumym7mhhgcXH3zXDlHzwdVMqof4pyPKUegSO3ze6x3zkOGUVjeUOHKwgdVwoCWz/qElMxyn14/fu/5wNsLlHbIxeCgM6X9aj37KsxfzMR+PlEHhWsRJktYZuLPwDaybxb8BooOeoXpQxjgDL/7CDnLdlOqO2cspT2l2EK0rJkzX1jTC9I5B1lgi5Goc6d6uwX7wWcZndoAaUQdeh/Sq7BTO7XQwCy3k/E1d2Uqe0Xtq1BhYmR154x19MJ+537dJcApd9vC2IOtCmzODDrtoz5z/jLQZGz7tDK1by+5UnuZ2ledf1cenZSGfeb8IDJmBVqmLZ515VpznymaiNJesR8qVOiM8UThtpMLaxbKTJB1qsjtzXLNerXaphedyoP889vIGUhlensnpfaQNVb2/+YDFuwZvYdc1EGXblW93fShrOjsH69GgiWv0NmgnKh28jC5GByUaIPVWFaoMCEKHRRU0TkfRGrPQwNlF9JX2QuJdaK1V5helNup+cdrkbrJXYzdO8N98xTSRnQDnWmClVL7lcd4WZo+pH3hfjpnzAu0TDv27KvaqFWoMHWUGWP+8VYkSTTI2Ays9xtCZzxkHFVrbnqhgjZ4Yb9zz0AKhTWzfbTkM7QRQbiQNVb2/+YDFuRcW9F/Pfso1psXag6oIs7TBU/tC50Bv0DKfXq9cdm2xShYuc/rQXLnvBOlfT5QVKYDn/jUl2b7EirMA3QyULzA2DqKdedeDG6r+9twrc1W1vVqnOd+Hy0EO8mz557aXs6eewNlP7AK0RYo1ypXGaDpQVjfWhY0ugYxLGFsn15/5v3PT983pkvJAHkWr0xpX5DGW4UFj5naz/36C508g+g3bCQXhQsDm7spCqGGf1slgmYG5THzNv9W8j00DHCGtHYf0AQJipbZD/OJabsg9/dzpw9mSu2d6u0W5IeeI9ClyFeYeRsjZmSLYkahQx4KdHTqcR4amlcr3vbm22f7EirMA2SOHp3rzp+jWK/1CmKgjJc1n+lg2NU4z8v7aJj13kFRXLPMQvKU9g3uvcrZ1sqxmx6Ugx/hOttCrjYcnn/hz6970+0FRwEku1cu6dLB+1eoMN8wU/t5WLvs91HI685DxfZw3ywk9UrvcbUmgmYS5YCI/+43I23wTlMKcFIcx/3kjLFO5Vzz5eybL9c5JTRHznEAibSE0evQQa8wfRiv1ud6ilm6UIiqk4MeiuKsc4871Zxfrdi6ed3FX1Thqke57jxclzcionDheptLYnBw9c5zQymogozJDZRqJkvMI69W62l9oTOX/VwZmVccfp2FBn1Yd+7rJUPB01B1eN2mtYXz7yxSpx72OA9LuqoRrDAfMVP7eZkiHZ5l3jnPRBrJldrLznm4d1aYfig6t8FbhJTHhtT2shBcePb5/TF0yudTSfOCnm++9VY4KN5BrzB9KLdT8wtsG1LrM0DumIft1EJDxS+0c0grtTUUqZlhNKxChQoTI6w3D0XhbkAOs/PImjuD9Fb2mfOwfrZabzOLcisg//gaxHELe9R7FhIUxeAyemZwv6AP/VlG2TH3iYCt5ArRnfr0ltX2EyRr3g300LnmvFqKFSpMjNAGDct7vChcWBZ0EhhCMrSdtCMqpsrMIMxyl8sJNiEMpIKYX8ln2EcHMbhgHOdLYHpBntNdPSvYRNEILR+aFaYPYa1PmPWJgevoXC/pMwllA+UQYpwsonPN3fxYZtODp57ZOduXUGGeoCAIFzjpK5HarBeQ9bYTiU4vorR/qtkTg7ta57mmc4/6OpLd8dT20Lnzjl9ooFTMsZlDWcjPj9sGcoe7nDH3Y/bcszsLDJZD5G3UOlHar+azr8L8xUzu553Wo0b2Rq9n5PfPPchZGOp0hGdftd5mBiHjoawVFjKQCnT2wH8IM+eFzhnz7OxbkH5qvWtpRk2BUuSsOtSmHf57Lm+KntpeNip9O7XQuEzce/k2av59KwMlx0s798/2JVSYJ1CMX3d+PVJ3DkLr2xr8zWyLwcHVO8871Uz6MbuBDvsosnceQ/bTDXSmQ1fsh+lDp0SAD0xvYOI+vXte2V/IAB0hrzeHsZT2ahgrzEfM5H4+3no0SPb8Ffc6T2nf7H6eK2ff1YrxGA9bEFZYmMgr158fpLNS+3xjPyzI+Xb6+C42U8oaBAttvtAa5it87V1IpfULZAciCtdpcbVKNecXa6N2tRso7/6FH5/tS6gwT+AFxjrVnd+E1J2DGCvXUIxW61neO6/Wed6pR70fE6/fUa5h9oI4/YgqcWjY+Pe4mvfM6Yb/nkOnwD+/jc59etsug/6T7/zxwvlXFkINHYb5RM+sUCHETO7nZds/DHBuB14mX297kMD0XDr7rlZ0Sqj6zPkAosWR7aGBUvug+/uw/eR87VO/IJ1zIHPOOxknFaYfndqpeaPyMFLb2onWXq4fGSA3UMKa82rDrFBhagidvHLd+SvAKGKgXEOx9Yw/IGdDDO5qR7nLiL/fgWQIhuisOFxWag/3zgV76M8BXKxPb5g5D9sBhRl0yAPT/uwrO+jVGFaocHFMlCi6llxY0++bmxlLh678hplHGCAJx2MVUta1j2ILvFCpfT1jS5rnm1I7zK9rnRI2Uok6zCZCAyXL2AFLkKiWb6kWisKF2XTI60fKBkpFM6pQYeooZxD84zXIunwcoURXYnBzBxNpBawiFzUKHbwDiHBOaNxUAc2ZQ9kx92PgM+dQdMzD7iT+MUgWqC94z0JJ1/R/jAoVFgTCAGe4JrcjDnkLCUwfptR+uQMDpsLMQOHK8EoBFYUkD/w+Gib4LOKcd1JqD0u75gsWpH+zet2tNChmGipRh5lFuV7SKy4qxvbpLbRTo0htD7MHnWrOr2Z89I/ume1LqDCPoOnMaFFI9vw+RAyul85CKrN1WFzN8zwzUig6fSCZH18i1HbPeXqmV2ovM8cW5IE/xzDVPr2pldtn/ts92XPDiCJ/P2Mz5v5xhQrzETO9nxeYR4GTvhYp/dmLZGIbSMCz055Z7ZszC+8rlGv+Fbliezmw6Z3z8OwrJ2fnU2B6Qc65E0de4kUqUYfZhJqgxvUGcqOy0KfXFjMIZ5Copm+JF0a//M9XM97/nr8/25dQYR5BT9D39UYkC7vFvTYsAwoDbbOBq3meh1oB5b6v15MzkEL12jB7EGZavaNfYXqhmLhPb0EULmCN/fS7/n52/h1xf7OM8WvOK1SYj5jp/TxMEIXlQQrpHrQTCWhuo+jUhXtmtd5mFmE5QqEsCxmnvXRm2u5DSroKzjnzszRhzpcRPvDAA9x3333s378fpRRbtmzhwx/+MDfffPO4f5O0R/j3wEeB11FR+mYLmWNuczqmz5z/CeJ41yjSMtPAQT+E0G19a4vKQCli1cqls30JFeYZIlwmtrQmb3K/34+wWu5gbNZ8tvbOq32ej7ePXg/8GUXG0RH3Nz6gGQrqVHvmzCBLBNiANeYMyE2Ic34HRaV9gMUrljJkxzLGypT2KjBdYT5jpvdzrRRaWYwtrk1Pkd6J2KGFjKsqOui68htmHJljbsdqd7xCUBYb3EKl9jF16/NsCOd8IvnChQt88IMf5J577uGv//qveeMb38jv/M7vcOzYsYv+7QPM78jJfMd4Na7rEVGH3RQF4cpt1LyBAmNbIniafIUKFSaPgiBc8Pic+/1h4P9AlMDLa7fC7KDcTi2kSXsqn99H9yF7ZsxYw6SiZ84MJurT6+slC3167dia8wHyFqIE71OdfRUqTB3lLKxfj16x3WfOQ6aRDs7HCjOPslaYH7MNyN55hCKl3QemfftJH2SZr4HpOX9W//zP/zx33XUX3d3dRFHEL/3SL6G15sUXXxz3b3oW9wPwM1SiDrOJ0KAsqw3fQN4KKGyJEArDeQPF15+UF9rVPpyPPPrUbF9ChXmG8pr0KuwPll73FcbW6s0WrvZ5Pt4+apByhBfI90xfcwdjWUbzTRBnPqPcpcSPwWYkKF1uJZpYeOqxpwuGZtVGrcJCxGzs553ExbxzPoBkzze714ZMFf83FWYeZeaX/zlGHHRfHuR9iH1I2+XyGM/XwPR8u16ef/55hoeH2bZt27ivMabG/w3cRpU1mE1opYriU8E4+H7nIbWvrFobtlHrlAG62g2Uc+cuzPYlVJhn8GsyBmJ3XwPuLr3uHcjvIvea2TRQrvZ57ve9cv2/30fDfuf7KCq1z2dBnPmMifr0HgZGKLVQA4bOD2XjOEhJDI6igVqhwnzFbOznBeZRsJeudL+3wHk6Z2or8cXZQTgOZVHpreQMJO83HEAo7f5v57NSO8xizfnv/d7v8cADD4z7+1tvvZWPfexjheeOHj3Kv//3/55f+ZVfYe3atZ3/EDh7aj93KqdMTCXqMJsw5DWuvp2aQjLnf0tJFE7l4g4gNedvpjOlvYpmwk//5Otm+xIqzEPUFTQVNN1jC7zGwn9FMuZvB16roabkFqvZrbm72ue5UgpjbZ79sUX9jm+Rt9/aB7yBhSGIM59RcMxt0RnoRsbpBvKWakrBXW97HUPu7wfJS7rKZ1/lnFeYz5iN/dz7AJluh3v8fPCa/y/wn4DXUAyIVn7D7EAphbI2Lw8Kzr3NwLMUA5yeNbZQAtOzts//1m/9Fl/4whfGvf3u7/5u4fUDAwP81m/9Fm95y1v48Ic/POF717uX8W9//cP8l3/+EX7/n3+Eh778Zf7Lxz5Dq9nKXvOVrz1aoNccO356TIuHez//IE89szP7effeAT7xqS8VXvOJT32J3XsHsp+femYn936+SBL96B/dw7Hjp7OfH3n0Kb7ytUezn0dHm/z+Rz/N6GhzwV3fc8/uzCJfh/cf4qufvQ+D0InOAF/67H0c2ncoE4Pb+dxOvvXFB7GIuMM64L6P38PZE6ezBff4957m69+4Or6/6vqq67vS12eAb33jUZ557Gm6NHQpaJ46zd7/fg+/q+EN7rlvfOFBXnl2JzVVfX+zfX2n3f4XAc98/2l+8OCjaERt+Nhok8/94WcYGW1yEDFQfvTgozz/2NPZnnnyxGn++E+u3u9vpq/POwP3fvo+Du87lI3Dvud2svGLD2bU9gT4i4/fw8kTpzPG2HOPPc2FBx/NMuft0Saf/sPPkIw2Mwd9oX9/1fVV13clr+/EiTP8tz++p8BkeeSLD3L/c/n1xfsOcc9n7ys4dJ/99H3s3Xto2q9vrn9/s3V9EdBqNvnT/yL7XxakfPBRDj72dPY3Z06c5sDH72E9eWD6oS88yMvP7syCLNP9/d1///185CMf4SMf+Qjv+8Cvc7lQDz/8sL34y2YXu3bt4p//83/OO9/5Tj74wQ9O+NqhoSHe/vZ38OLxk3QvXoxFxMd6NXRV/JQZR2It51M4Z+FcCkMpXED6uP4W8PPAjyOK7D0KRi0MIZmDDwP3Ii1oupEx7FGwWMvjaJ5Fwq40Rkeb1Ou12b6MCvMQqbWMWBi20LTSJ9uzViKXMa8D3XNgnVXzPN9Hz1o47/bRIYQe/Y+AX0Gc8t8E/hq3nwKLNCxSsl9We+bM4nxqOZfKeJ23MGTl7PsEMm6/iYzTIsdOOTXcpFWvsQ/4h4w/jos1mGocK8xTzNZ+PpLagh06ZOFx4J8Hr/kY8DoFPcF66678hllDy1rOBnvoeXfunQQ+APw50m6yCfwiwv7bitszlds3NSzREM/gnnn27FmWLFnC/fffT09PzyW9x5xnSD377LP89m//Nu9973sv6ph7rF53azYgiwJ6e4WZR1gj6elEvm7EixmFLRF89uAQsAKphw0FdcI6kqsdH/uTz832JVSYp9BK0aVyAyQ0/Hvd8z1zxJmr5vnE+6jvd74XEcrJlInJqX1VrfLMY7w+vVuBXeQ6AYmV21//j3uzs6+f4hhWZ1+FhYLZ2s8jJZnYWOUlW69GqOx/D3HMbw9eF7mgWYXZQ1hvroOfe5ESoT2Iv9Cpheh8VmqHedDn/JOf/CTnz5/nk5/8JJ/85Cez59/3vvfx/ve/v+PfHB14ikVa0aPAKhm8yjCZHfh6yUxt2OaL53okMx4q1/qer4fIW8l4I7S86K52/NN/+MuzfQkV5jGUUtQVxNZiVV63LGts7qywap679lzWjul5rpEg5/0Iu8j36oWSQVPtmTOO8fr0biVvI+oD0hb4uX/wblqIYFx49hWc+2ocK8xzzNZ+bnCOuYW28wsUorfyGmSPrCtoBM57ldSbXSjy8y7U8AA563YDtyL15msRhzYMaM5nMfA575x/9KMfnfLfWCsunjcwqwU2uyg75t6o3IEoLF5AMuShWvshcqX20CjJswiViXK1U30rXBnM9bVUzXPBePvodcB/AZa6xyr43XwWxJnvKDjmgYG53v3+ELCFnC0W1Ws0kZKuPornXRicrsaxwnzGbO3nSikaWBIXiPb7ZOp+NrhyLiWaKw0198/GhQ7tgtKhY+73QR/kBPEjNrjH5YDmfA1Mz8eAQoV5hnI7NU/3W4VQ119ibDs1nzkPDZSQ1lmhQoUKVxPK7dT84zWILscT5JnzsmLtnI/CL0CErIWQkmnIsz5eFC48+wbJz75sLOdxBqhChbmCSCm6NXQH9ciLnB5Hj7t1O+d8JmuUK4wPTd5ty595Cgls7nGv2c/CUmqHBbrXL1628eIvqjBjULg2FpDRMv1SuQ6pl7SIKJWn1oaZ80415xUoKEZWqLBQUc1zgTdSsgBnUIPs+/WOELCLKBoqFWYWZVqlUfnz28nrJS1gLTz+oMxzT2svZMupzr4KCwOzvZ/HSrEoFBdWcluscxGxerVhzhmUHfMwc34QaCGtKTcwds+czy1EF+RenyTNi7+owoxBK5U55t7A8AvtenJROE9pT4EBpI1aJ1pftW8Kenu7Z/sSKlSYdlTzXOD30dAx18j+ude95qPAc4wV0am2zJmHKo1XWHe+hTxz7s+8xqKerKRrDdXZV2FhYi7s51opupwuVa/OuyF0aVV1QphjGK9Mqw/xKfYhmfONFPfKkNY+H7EgnfOhs4OzfQkVSsiEjMipfQpxzp8nF8exwHH3N2HdXbnmvAK88XW3zvYlVKgw7ajmeQ6vIhzuo18rvebrBAZNQH+vMPMoO+b+/AoV2323kutfcwsn3N9VZ1+FhYq5tJ8rpdBKHPL5SH2+GhAqtmcOt7u/BnjMvW4hKbVDdWZXmCGU2wD5x1sQw+QAee3dIWA1ENNZeXG+LrYKFSpUuBxk+h3ucQz8bOk1P4trH6pyo6baM2cHBcc8OPc2k/frDVljgxRbiFZnX4UKFa5mjCfw5hlI30aYRgvNX1iQzrmJGrN9CRVKCB1zQzHzcwOSPQ/rzcutZKq6u7E4dvz0bF9ChQrTjmqe5/CKwuHtTuA/U+zVW3OOe+zuq6zQ7EDRuZyrC+llvpvcOT974jSH3fP+b8OMeRVkqbAQUO3nFaYCpVRBCLVcd34EobRDZ0d+vvoL8/W6J8SKvutm+xIqlBCKM5QXma87D9uohWq1ZZGHytAUfOaer872JVSoMO2o5nkOpRQxzjFH2v10KXitgn/r7rt10KsXyaJXmB2ESutlFkO57vybf/nVzDnPzj1VdtCrwawwv1Ht5xWmik5dL0D2UBDNlRdYOErtsECd86MDT832JVQowUe/CmrDyOLZgbRTs+Rt1EKl9rKBU0Hw27/5ntm+hAoVph3VPC+ipqTdT48WR7zHtQLySsM9zmHvVtClqQSOZhGhKFwo0OezPj5zngB3/6/vKTjnZXrmgjTWKlx1qPbzClNFueuFLxU6535/BPg/EDHU8r45XzGfr73CPENByChYbDuAo0j9HXR2zhfCYqtQoUKFy4VSirpzvhcp16M3uPe9e7t11at3LmA8MdQt5Cr7kAemyz3Oq3KuChUqXM3wznjomBvgW6XXfTV4rWJ+s8aq/b7CjMG3UysbKouQtmkvIBmEQYpt1Mo15xUqVKhwNcO3AvItgHq19On1vXp7VOWYzxV0orWH9ZIXyOvOyz3Oyxn0ChUqVLja4DPmBtFRidzjny697u2UxFBn+kKvIObztY+LpSu3zfYlVOiAsG4kjIIppO78RSSDDqLWXjZQ5rPy4nTg3s8/ONuXUKHCtKOa5+Mjypx0RbeCbq2oa1XVJs8hlGnt3mhcDixGsucp8NAXH6RFsce5UcVzsEKF+Y5qP68wVXitlVhJgq+moAHcgYih/iTwh8CdTmslcq+dzw5uNNsXMB0YHT4925dQoQOUUmhr8+y5zQ2VG4AvA7ciNXf++XL2fD4vtiuN67ZvvPiLKlSY56jm+eQwX4VvFjqykixbrDmHvN/5DUB0zUYWAd2MpbTP5369FSqEqPbzCpeCSEHNQl1JMFNpiC28Fngd4sw2tPy+4cRQ5/OZuCB9neGhE7N9CRXGQad2ar7ufBeSRVjrXls2TKpWMkXcevP22b6EChWmHdU8rzCfoZ0oXMYcCwLNXrEdwN64nT7/N1Rt1CosTFT7eYVLgVGKLu2ETgNRVC+EukjL813OOY/n+Ya5IJ3zCnMX5XZq/vEapPb824ytuSvQ2udxJKxChQoVKlx90Ejmx4sV+bPNZ85BtFb82QdjKe3VyVehQoWrGbFSdPvuJIHeSuagO5HUhpr/vsKCdM5rjd7ZvoQK48AbKVk7tUDsbQewn5IYHPlrF+RkvQzs3jsw25dQocK0o5rnFeY7yo552E5tP9AG9u47VOhSUmaOzXdjs0IFqPbzCpeHWIm+Sq8SAVQvhtrrHPS6Vgtir1yQ/k7v0vWzfQkVxoGn+IWq7f62yL1m2L+WqpXMRHjoW0/M9iVUqDDtqOZ5hfmOgmMeONw+U34QOPbIE+O2UTOzctUVKlx5VPt5hcuFVoqaFjHUHq0yIVSzAJxyjwXp75wYfGG2L6HCBOjUTu054Jvu958GnqdzzXmFHL/xoXfM9iVUqDDtqOZ5hfmOULHdn2feWd8G7AGOve/t9LvXZ2decF+hwkJAtZ9XqHBxVHt+hRlH6Jj7jPg3Sq/5OgGdj0qpvUKFChUqzE+UA81hG9FtSHD6LMU2av5srALTFSpUqHB1ofJ3Ksw4Qlq771n4s6XX/AxSp5e9rlKrrVChQoUK8xBKqYIQarnu/HuI474keL5qo1ahQoUKVycWpHO+ov/62b6EChNAK0XN9SGMFcTAncDHgL/n7u9EnPZIuXv3dxVyfOJTX5rtS6hQYdpRzfMKCwFlx9zXkW8FzgPrP3tfgcpeprZXqLAQUO3nFSpcHNFsX8B04Nzpg7N9CRUugtg53Q3AatAWXmfhLsQoiRTUXc9C78RXKOJtb759ti+hQoVpRzXPKywEGCXnnHfSlZWzbpP7/fE33s5zwB3kfc2rHucVFhqq/bxChYtjQWbOmyPnZvsSKlwEkVJ0Keh2tx4FPa4tQo+Wn7udc96l5PUViti6ed1sX0KFCtOOap5XWAjw2XBfb+5p7i+73w9tWsu/ROrPqzZqFRYqqv28QoWLY0FmzivMD9S1gtRiFDQttG3+O09nbyjpa1ihQoUKFSrMV5Qz5to9LouhfhV4A5UQaoUKFSpcrViQ+35Xz4rZvoQKk0RdK3oU9CpYrGGRlvvFLnteOebj46lnds72JVSoMO2o5nmFhQCl1FgxVET8FKD+nMzztwe/N1WP8woLDNV+XqHCxbEgnfN619LZvoQKU4BWippWdGlFj7uPlaoE4C6Cl3bun+1LqFBh2lHN8woLBV5rJQ4e3wH8/4BbX9nPfwXudL8PHfQKFRYKqv28QoWLQz388MP24i+bPxgaGuLuu+/mzJkzLF68eLYvp0KFChUqVKhQAWstQxaGUhi2cmtZSNzvI0QIta5y7ZWuqsl5hQoVKswbnD17liVLlnD//ffT09NzSe9R1ZxXqFChQoUKFSpMM5RSNLBYDaRSV95WkLgUSaQko95wt3rll1eoUKHCVYfKOa9QoUKFChUqVJgBRErRhUVpiJwQauqccEPunNcUVWlXhQoVKlyFWJA156vX3Trbl1ChwrTjo390z2xfQoUK045qnldYaIhULoTa61qI/vl/u4deJ4raUGAqx7zCAkS1n1eocHEsyMz5iSMvzfYlVKgw7Xj/e/7+bF9ChQrTjmqeV1iIUEpRU6LYDvDr7/3pqr68woJHtZ9XqHBxLMjMedIeme1LqFBh2rFq5dLZvoQKFaYd1TyvcDWgmucVrgZU87xChYtjQTrnFSpUqFChQoUKFSpUqFChwnzCgnTOexb3z/YlVKgw7Xjk0adm+xIqVJh2VPO8wtWAap5XuBpQzfMKFS6OBemcG1O7+IsqVJjnOHfuwmxfQoUK045qnle4GlDN8wpXA6p5XqHCxbEgnfOzp/bP9iVUqDDt+OmffN1sX0KFCtOOap5XuBpQzfMKVwOqeV6hwsWxIJ3zChUqVKhQoUKFChUqVKhQYT5hQTrnSi3Ij1WhQgGjo83ZvoQKFaYd1TyvcDWgmucVrgZU87xChYtjznuxjzzyCB/+8Id5+9vfzt13380/+Af/gG9961sT/s3qdbfO0NVVqDB7+NiffG62L6FChWlHNc8rXA2o5nmFqwHVPK9Q4eL4/7P35nFyVWXC//fcW72llyydfU8IhD0IAuLCKiBuqPjiggpuwyjj6DC+oPAbBX1xZGQG90EGBQQRgWERUANGkMEJiAiEzZCEhCSddHcSkvTeVXXP+f1x7rl1763qrN1dXd3P9/OpVHXV7Vs3fe4559mfTLkvYHcsXryYb3/720yePBmAFStWcMkllzBr1iwWLVpU8nfaNj47jFcoCOXhsAMnlvsSBGHIkftcGAvIfS6MBeQ+F4TdM+I951OmTGHKlCkopTDG4HkexhhaWlp28Vtm2K5PEMrFH/7wh3JfgiAMOXKfC2MBuc+FsYDc54Kwe0a85xygq6uLD3/4w/T19REEAUcccQRvetObyn1ZgiAIgiAIgiAIgjAolE05//a3v83SpUsH/HzJkiV897vfBaChoYEHHniAbDbL8uXL2bhxI5lM6Us3xlBd00hHR8dQXLYgjBhWrVkv97kw6pH7XBgLyH0ujAXkPhdGO+7+Nmbfo7jVI488UpYY8N7eXrLZgas2+r5PQ0NDyc++8pWvcNxxx/GBD3yg6LMtW7Zw7rnnDtp1CoIgCIIgCIIgCMKecMcddzBlypR9+t2yec7r6uqoq6vbp9/N5/Ns2LCh5GfNzc3ccccd1NXVoZTan0sUBEEQBEEQBEEQhN1ijKG3t5fm5uZ9PseIzzlfunQphx56KDNnziSfz7N06VKeeeYZzjnnnJLHe563z5YKQRAEQRAEQRAEQdgXBor83lNGvHK+adMmbrrpJnbs2EF1dTWzZ8/m8ssv54QTTij3pQmCIAiCIAiCIAjCoFC2nHNBEARBEARBEARBECwjvs+5IAiCIAiCIAiCIIx2RnxY+95gjOGmm27iwQcfpLu7m4MOOogvfelLLFiwoNyXJgj7xB/+8Afuvfde1qxZQ09PD7///e/xfT/6fM2aNXz/+9/nlVdeob6+nne/+92cf/75UgxRqBiuv/56nnjiCdra2qitreWoo47iwgsvZOrUqdExbW1tfPe73+W5556jqqqKU089lc9//vNUVVWV8coFYc+5+eabeeihh9i5cye+73PQQQdx4YUXsmjRougYWc+F0ca//Mu/8Pjjj3PNNddwzDHHAPDss8/y4x//mPXr1zNx4kQ+/OEPc/bZZ5f5SgVhz7npppu45ZZbqK6ujt5785vfzL/8y78A+7+WjyrP+a9+9St++9vf8m//9m/ce++9HH744VxyySX09vaW+9IEYZ9oaGjg7LPP5qKLLir6rKenh0suuYTDDz+ce++9l3/7t3/jwQcf5K677irDlQrCvqGU4tJLL+Xee+/l5ptvBuCyyy6LPtdac9lll9HY2Midd97JT37yE1asWMF1111XrksWhL3mlFNO4brrruOBBx7grrvu4thjj+WSSy4hCAJA1nNh9LF06VL6+voS77W2tvLVr36Vs846i/vvv59LL72U//qv/+J//ud/ynSVgrBvHHroofz2t7+NHk4xH4y1fFQp5/fddx/nnnsuCxcupKamhk996lPkcjmZ9ELFctxxx3Haaacxc+bMos8ee+wxtNZ86lOfoqamhoULF/KhD32Ie++9d/gvVBD2kc9+9rMsXryYqqoqGhoa+MhHPsKaNWvo7OwEYMWKFbz22mtcdNFF1NfXM336dD75yU/ym9/8hmw2W+arF4Q9Y+7cuTQ2NgI2ys/zPLZv3x7d57KeC6OJLVu28LOf/Ywvf/nLifeXLl3K7Nmzef/7309VVRVHHXUUZ511Fvfcc0+ZrlQQBpfBWMtHTVh7V1cXra2tHHLIIdF7vu9z4IEHsmrVKs4444wyXp0gDD5r1qxh0aJFiTD3gw8+mE2bNtHd3U19fX0Zr04Q9o2nnnqKadOmRYrM6tWrmTlzJuPHj4+OOfjgg+nr62PDhg0ccMAB5bpUQdgrli9fzlVXXUV3dzdKKT74wQ8yYcIEQNZzYfRgjOHf/u3f+NjHPsa0adMSn61evZqDDz448d7ixYtZunTpcF6iIOw3q1ev5n3vex+1tbUcdthhfOYzn2HGjBmDspaPGuW8p6cHKO4t19DQEH0mCKOJ7u7uovvdKTQ9PT0izAkVx9NPP83Pf/5zrrzyyui9Uvdy/D4XhErhhBNO4IEHHqCjo4OlS5cyZcqU6DNZz4XRwn333Ycxhve85z1Fn3V3dzN79uzEe42NjXR3dw/X5QnCfnPSSSfxjne8g2nTprF161Z+8pOf8OUvf5kbbrhhUNbyURPWPm7cOMB60ON0dXVFnwnCaKK+vr7ofnchknLPC5XG8uXL+frXv85ll13GcccdF70/bty4IsFN7nOhkmlqauKcc87hmmuuYfXq1YCs58LooKWlhVtuuaUonN0x0H0uxiehkliwYAHTp09HKcWUKVO45JJL2LJlCy+88MKgrOWjRjlvaGhg+vTp/O1vf4veC4KA1atXc+CBB5bxygRhaDjggANYvXp1VFAIYOXKlcycOVM2OqGiePjhh7nqqqv42te+xtve9rbEZ4sWLWLz5s3s3Lkzem/lypXU1tYyZ86c4b5UQRgUjDHk83laWloAWc+F0cHzzz9PR0cHF154IWeffXZUhf3rX/8611xzDYsWLWLlypWJ31m5cmWia4EgVBpKKZRSGGMGZS0fNco5wNlnn80dd9zB2rVr6e/v58YbbySTyRQJe4JQKQRBQDabJZfLAZDNZslms2itOfHEE/E8jxtvvJH+/n7Wrl3LHXfcIS1JhIrinnvu4fvf/z7f+ta3Eh5zx5FHHsncuXP5z//8T3p6emhra+PGG2/krLPOSrQxEYSRzF133cXrr78OwI4dO7j22mvJZDIcfvjhALKeC6OCk08+mdtuu40bbrghegBcfPHF/N3f/R1nnnkm69ev57777iOXy7FixQp++9vf8r73va+8Fy4Ie8EjjzwSOQxef/11vvOd7zBx4kQOP/zwQVnL1SOPPGKG6uKHG2MMN954Iw888AA9PT0sXryYL37xiyxcuLDclyYI+8Tvfvc7rr766qL3r732Wo466ijWrFnD9773PV555RXGjRvHe9/7XumLK1QUp5xyCr7vF/Usv/rqqznyyCMB237H9Tmvrq7m1FNP5XOf+5wo50LF8NWvfpWVK1fS29vLuHHjOPjgg/nEJz7B4sWLo2NkPRdGI6ecckpRn/Mf/ehHiT7nopwLlcTll1/Oiy++SF9fH42NjRx55JF86lOfYtasWcD+r+WjSjkXBEEQBEEQBEEQhEpkVIW1C4IgCIIgCIIgCEIlIsq5IAiCIAiCIAiCIJQZUc4FQRAEQRAEQRAEocyIci4IgiAIgiAIgiAIZUaUc0EQBEEQBEEQBEEoM6KcC4IgCIIgCIIgCEKZEeVcEARBEARBEARBEMqMKOeCIAiCIAiCIAiCUGZEORcEQRAEQRAEQRCEMiPKuSAIgiAIgiAIgiCUGVHOBUEQBEEQBEEQBKHMiHIuCIIgCIIgCIIgCGVGlHNBEARBEARBEARBKDOinAuCIAiCIAiCIAhCmRHlXBAEQRAEQRAEQRDKjCjngiAIgiAIgiAIglBmRDkXBEEQBEEQBEEQhDIjyrkgCIIgCIIgCIIglBlRzgVBEARBEARBEAShzIhyLgiCIAiCIAiCIAhlRpRzQRAEQRAEQRAEQSgzopwLgiAIgiAIgiAIQpkR5VwQBEEQBEEQBEEQyowo54IgCIIgCIIgCIJQZkQ5FwRBEARBEARBEIQyI8q5IAiCIAiCIAiCIJQZUc4FQRAEQRAEQRAEocyIci4IgiAIgiAIgiAIZUaUc0EQBEEQBEEQBEEoM6KcC4IgCIIgCIIgCEKZEeVcEARBEARBEARBEMqMKOeCIAiCIAiCIAiCUGZEORcEQRAEQRAEQRCEMiPKuSAIgiAIgiAIgiCUGVHOBUEQBEEQBEEQBKHMiHIuCIIgCIIgCIIgCGUmU+4L2BNuvvlmHnroIXbu3Inv+xx00EFceOGFLFq0qNyXJgiCIAiCIAiCIAj7jXrkkUdMuS9id6xfv56JEyfS2NhILpfjnnvu4fbbb+fOO+/E9/1yX54gCIIgCIIgCIIg7BcVEdY+d+5cGhsbATDG4Hke27dvp7Ozs8xXJgiCIAiCIAiCIAj7T0WEtQMsX76cq666iu7ubpRSfPCDH2TChAnlvixBEARBEARBEARB2G8qIqw9TkdHB0uXLmXKlCmcfPLJRZ9rrdm2bRt1dXUopYb/AgVBEARBEARBEIQxhTGG3t5empub8bx9C1CvGM+5o6mpiXPOOYf3vve9zJ49u6go3LZt2/j4BRdigjzZfhf2rpg2+yjaW57DGG3PM3EuQZClu6MVAD9TS/O0xbS3PBeda8LkA+jv3UFv9zYAqmsbaZwwm22tL0fHNE8/hM4dG8n22e+qq2+mpm4CO7auiY6ZOmsJ29pWEuT7AKhvmo7vV9Oxfb29OuUxddYSuT65Prk+uT65Prk+uT65Prk+uT65Prk+ub4Kub62jc8C1tddXdNItr+TO+64gylTprAvVJxyDtYqkc/naWlpKVLO6+rqMEGeNatfoqmpqUxXKAhDz3kf/xS/uOVn5b4MQRhS5D4XxgJynwtjAbnPhdFOR0cHc+bMoa6ubp/PURHK+V133cWpp57KpEmT2LFjBzfccAOZTIbDDz+86FilFNoENDU1iXIujGrG1dXJPS6MeuQ+F8YCcp8LYwG5z4Wxwv6kVleEcv70009z22230dvby7hx4zj44IP593//d5qbm0sen8/2DPMVCsLwM2vmvoXLCEIlIfe5MBaQ+1wYC8h9Lgi7pyKU83/9138t9yUIwojjzDPPLPclCMKQI/e5MBaQ+1wYC8h9Lgi7pyL6nO8tfqa23JcgCEPO0cccX+5LEIQhR+5zYSwg97kwFpD7XBB2z6hUzpunLS73JQjCkHPr7b8r9yUIwpAj97kwFpD7XBgLyH0uCLun4vqc747u7m7e/e53s3PnzgGLTvT19ZHNZof5yoSB0MYQAHkDGvABX9lnT3rVDwvV1dXU1krEiSAIwnBjjNmv4kGCIAjCyKCjo4Px48fzwAMPUF9fv0/nqIic88Gkr6+PBQsW0NraWu5LEYQRw/Tp01m7dq0o6IIgCMOAMYacgQD7UMbgAVWhYVqUdUEQhLHJmFPOs9ksra2tbNiwQdo5CAKFnozZbFaUc0EQhCEmbwx9BvpNIWIMrFJepaBGQS1GIscEQRDGIKNSOZ8w+YDdHiN90AVBEEY+d9y9jHM/cFq5L0MQBoXAGHoM9GroM5AHAgNL713Gu95/GlXY9wxQJwq6MMqQ9VwQds+oVM77e3eU+xIEQRCEQWDxgXPLfQmCMChoY+gNFfNeYx8utH36AXPp1tZrrhUoz1bsrRPdXBhFyHouCLtnVCrnvd3byn0JgiAIwiCw5IgDy30JgjAoBNhQ9r5QMe8zBe/5jMMOpCce4m6gCqgx4j0XRg+yngvC7hmVrdQEQRAEQRBGEnljQ9jzWI95v4E+4C/AVeFz1kCOwnH5UdVPRxAEQdgdo1I5r65tLPclCIIgCIPAq+tayn0JgrDfGNcyFKt4B1gl/FngMuBPr23iy8BfKSjm7jhBGC3Iei4Iu2dUKueNE2aX+xKGlZtuugmlVPRobGxkyZIl/PCHPySfzw/pd69btw6lFDfddFP03gUXXMD8+fP36jyPPvooV1xxBVrr3R+8F1xxxRX73JJm6dKlnHrqqUyfPp2amhpmz57Nueeey0svvTSo1ygIwsD84Y9Pl/sSBGG/MeFDu2djnx8KPx/3uL3PH8Qq5CZ8HtwdURDKi6zngrB7RqVyvq315XJfQlm48847Wb58Of/93//Ncccdxxe+8AW+8Y1vDPt1/Mu//Av33HPPXv3Oo48+ypVXXjnoyvn+8Prrr3PMMcfwwx/+kIceeoh//dd/5cUXX+RNb3oTr732WrkvTxDGBJ85/73lvgRB2G/iCrlT0A3w9vDznee9B4B3xI7V7lgjse3C6EDWc0HYPaOyINxY5aijjmLRokUAnHHGGaxevZrvfe97AyrouVyOTCazz57lgTjggN23sqsEPvKRj/CRj3wk8d5xxx3HwQcfzF133cU///M/l+nKBEEQhEoiUspjCroGFseO+X/AYVjFPFAxhV6BlIQTBEEYG4xKz7lgOfbYY+no6KC9vT0KP//xj3/MJZdcwsyZM6mpqWHHjh0A3H333bzpTW9i3LhxTJgwgf/zf/4P69evT5yvp6eHz3/+8zQ3N9PQ0MB73/teNm7cWPS9pcLau7u7+cpXvsIBBxxATU0N06dP55xzzqGtrY0rrriCK6+8EoCqqqooPD/+vZdeeikLFiygurqaBQsWcNVVVxV52Z955hne9ra3UVtby6xZs/jmN7856B6H5uZmADIZsWsJglBetDHkjKFX20e/NuSNEU/rCCTtMXevt8aOOZiYtxybc+5+FgRBEJKM1r1uVCrnzdMPwRiDNoYgFF7yo3QAd8XatWvxfZ+GhobovauuuopXXnmF66+/nnvuuYfa2lquu+46zjnnHA499FDuuusufvKTn/DCCy9w0kkn0dnZGf3uhRdeyA033MDFF1/M3XffzeLFi/noRz+62+vIZrOcfvrp/OAHP+CCCy7ggQce4Ic//CGTJk1i+/btfOYzn+HTn/40AI8//jjLly9n+fLlAOTzec4880xuuOEGvvjFL/Lb3/6Wz3zmM3zzm9/k//7f/xt9x9atWzn11FPZunUrN998Mz/60Y/43e9+x89+9rOi67ngggv2KlogCAKy2SyrVq3iwgsvZPr06UUedUEQhoYbbv51uS9hxGGMVcS7DXRo6AwfHcY+9xjG5J43komHtMdftwPNwPhf3E8rpY+RkRRGC7KeC/tL4PY/begy0BUap0fTnjcq3X+dOzbSbUDpQmGVOgWZvYwLM8bQufvD9plGGNSQ8iAIyOfzdHZ2cscdd3D33Xfznve8h3HjxkXHTJs2jXvuuSf63q6uLi699FI++clPJhTZ4447jsWLF/PTn/6UL33pS6xcuZLbbruNq666iq985SuADZ3v6uriuuuu2+V13XrrrSxfvpz77ruP9763kG/0wQ9+MHo9e7Yt4nf88ccnvNK//OUvefzxx/njH//IiSeeCMBpp50GwJVXXsmll17K1KlTufbaa+nu7uahhx5izpw5AJx++unMmzev6Hp838f3/T34ixJd09NP2yImixYt4g9/+ANTp07d498XBGHfOfWkY8p9CSOOeJ/sXFjZG0AZqFJQbUB7MA6DLz2yRwRRIbjYM8AWYCrQ+dZj2ADMIxn27hR1iWsXRgOyngv7Q7829BvIYvc+p45XKcgYqFWGGgVehe97o9Jznu3rjLwIXWEv0X0JC+sEpvUP3WOwFf+DDz6YqqoqJk2axOc//3nOO++8Is/x+973voRBYPny5XR0dHDeeeeRz+ejx5w5czj44IN57LHHAHjyySfRWnPuuecmzvfhD394t9f10EMPMX369IRivqf87ne/Y968ebz5zW9OXN8ZZ5xBLpfjiSeeiP4fb3rTmyLFHKC+vp73vOc9Ref86U9/uldV7G+55RaeeOIJbrvtNpqamjj99NNZt27dXv9fBEHYexbOn1XuSxhRZLWJlPMeA90GukPPebeGHh1+Fj7rUeRNqGQGKgjXDkwGZs2bSQulFXNppyaMFmQ9F/aVrDb0hntely48d7n9L/ys31R+uPuo9JyDFVLQ1thc7+1bxdNGoK1mCC4udv7B5J577mH27Nk0NjYyb948amtri46ZMWNG4uf29nYA3v72txcdCzBx4kQANm/eDFjPe5z0z6XYtm0bs2bt24Lc3t7Oa6+9RlVV1YDndtd3+OGHF32+J9e3Ow455BDAetDPOuss5s+fz7e//e3dRgwIgiAMJsYYsliPeZ+BXk3kRTCAj/Wia+zelzFQDVRXthNhVBBXtuMKejswLXztlHMX8acNaFWQXwa7eKsgCEIlEBirmDujdL+BrEnudXkFxrM/e0BNBS+Xo1I5r6tvtmHtBmpVcpPbG5RSNA3JFQ4Nhx9+eFStfSDSm7srcHbTTTdx2GGHFR3f2GhNCE6pb2trY+HChdHnbW1tu72uyZMn88ILL+z2uFI0NzezYMEC7rjjjpKfu8JzM2bMKHkte3J9e8OECRNYtGgRq1evHtTzCoJQmueeX8WSIw4s92WMCDSFMPZsKKD0AH8FlgLvBN5oQiVdQd5ATlkFXSgfxpgijznh8xbgUKDrxVWsOOzA6LMgrNIexH6ngmVNQQBkPRf2jbyBHHbPiwzT2PXRA6qwa6RnrGKbU1BdwQbNURnWXlM3ge7QqhKveFrZQQ5Dw5vf/GYaGxtZvXo1b3zjG4seixfbRi/HH388nucVKcm33377br/jjDPOoLW1lfvvv3/AY2pqbIhCb29v4v13vOMdbNiwgYaGhpLXN3nyZABOOOEEnnjiCTZs2BD9bnd39y6/c19oa2vjb3/726hpFycII52Vq9bv/qAxQhCGOAfGCit54Fngq8CjwCVYRT1nCsKM9dbK7ldO0iHt7jVY5XwK4K1eT0v4Xjo/PTAivwijA1nPhb3FGEMOu6/lQt2uH+gF/gJcFT5nTeGYXIWnA41Kz/mOrWtYAZxIoUeosz4LSZqamvjOd77DRRddxJYtWzjrrLMYP348LS0t/PGPf+Tkk0/mox/9aFSZ/Wtf+xpaa4499lgeeughfvOb3+z2Oz72sY/xX//1X3zkIx/hq1/9KscffzydnZ0sXbqUL33pSxx88MEceuihAPz7v/87Z511Fr7v88Y3vpHzzjuPG2+8kdNOO41//ud/ZsmSJWSzWdasWcOvf/1r7r33XsaNG8c//dM/8eMf/5gzzjiDK664gpqaGr7zne9QV1dXdD2f/vSnufnmm3ebd/7+97+fo48+miOPPJKmpiZeeeUVrr32WjKZjPQ4F4Rh4twPnFbuSxgxRMoaBeXtd6ljfgccR0qxq0znwaghrZTH88rbsQXhDjr7NG4CdmJz0BM550rkF2F0IOu5sLe4fSzAGqSD0DC9Arg8POZR4HvACWGUdEBlF9Iclco5wNcIB4qkkCIUc+GFFzJnzhy+853vcNttt5HP55k1axZve9vbOOqoo6LjfvKTn9DQ0MA111xDNpvl1FNP5bbbbuOtb33rLs9fVVXFQw89xJVXXsn111/PlVdeSXNzM295y1uYNGkSAO9+97v5/Oc/z49//GO+8Y1v2DBAY6iqqmLp0qV8+9vf5vrrr2ft2rXU19dzwAEH8K53vYvqahuwOXnyZJYtW8YXv/hFzj//fJqbm/n7v/978vk83/jGNxLXEwQBQbB7m9qb3vQm7rjjDv793/+dbDbLnDlzOPnkk/nqV79a1MddEARhqCmVs3wG8EjsmNMRxW6kkQ5pd69fDz+fgk09aMLmnU+i4G3XqiC/7G3HGUEQhEonbdx0+9tDqeMeBN5EwXhdyZ5z9cgjj4yqfbu7u5t3v/vd1LTt4IymJr6hoMGDxvA56Opk/Pjx7Ny5k6amSsooF4ShoaOjQ+aEIFQAXdpEPc27je1G0ov1HrwAfBp4H9AA1Lu9L9z/ajzR7MpFVhvbPSY+dtgx+1fg5+FxXwVOBd4B1GHHrT4cv0YP6mQMBUEYY+SNYWdYlb3L2DW0B/gD8O+x4/4DeFO4VjaEz/VlWDOdTP3AAw9QX1+/T+cYlTnnU2ctAewGF29FYqj88vqCIAhjiWt/uPu6FmOBUkXF0oXCXH+OeNi7NvvWSlQYPHbV47w5fP3gdbczi0LF9nj6QoCMoTA6kPVc2FtK1evQwMTw8xps3vlhFCKOKl3nG5XK+ba2lfwLcDgFwSRdhEUQBEEY+Xzsw+8o9yWMCHZVVMzlLYtiNzIplY5gKLRRU8BJ/+cdzAI2UpBZotB2KlvQFASHrOfC3hI3NseNm64X02SSivloKKQ5KpXzIN/HwRR7D6QonCAIQmUxZfKEcl/CiGCgomIBVkh5A7CB0oqd65MtlIdSXh9DoVK7AsY3T2A2RBXb0x6gShY0BcEh67mwtwxk3GwDDsSumc4IHXfGuteVyKhUzgG2kfQexIsICIIgCEIlsbuiYkcBm+LHxhQ7iRorH7tKR3ARD2AV9FnAZpKCZtrIIgiCMFaIr59pBX0zsCQ8ro3iVK5KbqE9KpXz+qbptJDc2OJCiiAIgmAJjCFvDP3akAtfjyQv6+PLnyv3JYwIBsq7a8fm3i3ACit5koJJIIpdWdldOoLznP/tyRVMC99vZXQJmoLgkPVc2BvSaVpOh3PGzVnATApRY3FHrKZydb5R2UrN96vZRDLszwkpgiAIAmhj6DeQNVahM9h/MkCVghoMGVX+6tCdnT3lvoQRwUBFxZyCNyX8uRWrqEeKoBLFrpykxyzuOW+lkHPe19WNjxU0NwJzY8clBM3yT0lB2GdG0npujInWUQV4I2C/E5KkjZtuTYRC5NEcrHJeSjEPKnRIR6Vy3rF9fVQYJ+E9kH6vgiAIBMbQa6DPQL+BnClU/c4oqDKQV1CnDNVlbt901hknlPX7Rwq7yrubCvgQFRSbxwAehAoVVCqZgUIyu7COgynYEMZjTzuBXgpjmHYuVLKgKQiOkbCeB8ZERmk3Lz0goww1CnxR0kcMpdZPDWSB7di9z9XqSHvYtTNMG4OqsDEdlco52PC+yOoceg8CRDYRBGFsY4yhz0CvgR5tlfM81oDplPNqVfDMemZkeNDHOumuI04IaQOmh8fMJqnYjQYPQqWT8Jyn0hGqsD3pVfjwsGO4idLOhUoVNAVhpJDVdv/rx0aNRfsc1iidU1CrDDVlNkoLlvT6GS+mCbYV5WzgOQrO1yCm8zk9sNJGc1Qq50p5bAxfx4UUA4ygVEpBEIRhJ4/1mPdoIiW9P5YHW01SYMkYq7CXi/7+LDU11eW7gBFAuqhYOu/u0PC40ehBqHTiCjkki8G5HHMPCPqzqJpqZgMPx47To0DQFARHOdfzfBgx1hPueVlTmFc+Np3LpXgpXf6oMaF0tJjGpgRNp2DQjIe1x/c/p6hXGqOyINzUWUvoxIaNFXkPynplgiAI5SVrIB96y/vD0PZe4Angm8CT4Xs5AznssUEZrZrf/fGvyvbdI4U9ybuDpJAChfZbQep3hOGjVEhmWjkHuPf6O4BCzjkk5ZdI0ByeyxaEIaFc67mLGHOPHgPdBro0dGv7ujf26MfWZRHKS6n1E5Lr52zseO0kuV5WcgvtUamct7c8Rz12g0t4D6jMQdpTli9fzrnnnsvMmTOprq6mubmZ008/nZtvvpkgKK9ZYt26dVxxxRW8+uqrQ3L+5cuXc/zxx1NfX49SimeffXbQzr1jxw6uuOIK/vrXvw7aOQfiggsuYP78+fv0uzfddBNKqaLHUUcdNajXKFQu2hiCmNKdMzZ36xngq8AfgIuBp0Pl3Snx5az0/aXPf6iM3z4yGCjvLsCG902j4EGIK3ZFHoRhvm6h2OPjXm8BJlMIZ//g352Ljx3DrvCRSE8YAzKMMPop13oeUNjv+gz0aqug/xm4EmuU7tUFj7rzqgvlJaFsU1xrRQF1wCTs3pd2xrq9r9IYlWHtxmhmYcP7DiOmoMOo3dm++93vcvHFF3Pqqady9dVXM2/ePLZv385DDz3E5z73OSZMmMDZZ59dtutbt24dV155JW9961tZuHDhoJ//05/+NHV1ddx///2MGzeOgw46aNDOvWPHDq688kpmz57N0UcfPWjnHSruvPNOZs+eHf1cX19fxqsRRhLpsC+3kT2UOu5B4PhYOHRgbMhfORjrIe1QOqzPAFvDz52SNwvow3oQJpPyIEhB1GFnVz1624GDKOSbV9VUkwcaIXIujKc4NUEK+wmVTPlC2q2hORdGjuWAp4FLw8+XAd8FTjC2GGo+VNDLte8Ju14/W4FF2KXQYPe+Ddi+50WtRCtwDEelcg6FvndOmEko6KOMxx57jIsvvph/+Id/4Pvf/37is7PPPpuLL76Y7u7uMl3d0BEEAcYYPM9j5cqVXH755Zx66qnlvqyyc9RRR7Fo0aJyX4YwAomU8pQH9njg0dhxZ8Y+C4wUEys3u+px3ozdyD1gHDABq9hNih3vOpUEprz1A8YaaWNKvOduK/A2ksXgXCijKwqXdi64+SsIwt4RECpq4es88NvUMQ8Cx4bH5ZWrUyV1OsrFQOunwRb9fguF9dNFjSV6nceMmpXGqAxrb5o4N8rbSucfVOIg7Y6rr76aSZMm8W//9m8lPz/ggAM48sgjo5///Oc/8/a3v52Ghgbq6+s57bTT+POf/5z4nZNPPpmTTz656Fzz58/nggsuiH52odRPPPEE5513Hk1NTcycOZN//Md/pK+vD4BHH32UU045BYDTTz89Crd+9NFHo/Ncf/31LFmyhNraWiZPnsynP/1pXn/99cR3K6W4/PLL+fa3v82CBQuorq7mBz/4Ab7vo7Xmm9/8JkqpKCz8qaee4oMf/CCzZ8+mrq6OxYsXc9lll9Hb21v0/7rnnnt4y1veQkNDA01NTRx33HH8+te/Zt26dSxYsACAz372s9G133TTTSX/HvFrveKKK6KfV69ezcc//nEWLFhAXV0dCxcu5HOf+xzbt28v+l1BGCqClJLn1sfx4ed1wFVYpSAdGmbKlH/324eWl+V7RxLpsL543p3rb+7ERxc15n4vHRYtDB9O7ig1dtso1ArwgD//wd7nLgLCVd1PpybIGAqVTDnW87QH1q2JZ6SOO5PicGiZb+Ujno6VXj+3UOhS4pTzdAvtRM2OCqsfUBHK+fXXX8+nPvUp3vWud3HOOefwzW9+k/b29gGPD4JstLlB5RcG2BVBEPDII49wxhlnUFtbu9vjV6xYwUknncT27du56aab+PnPf05HRwcnnXQSzz333D5fx8c//nEOOOAA7r77bj73uc/xox/9iH/9138F4Oijj+ZHP/oRAN///vdZvnw5y5cvj0LEv/KVr3DRRRfx9re/nV//+td85zvf4Xe/+x1nnXVWUa78TTfdxIMPPsg111zDgw8+yEc/+lEef/xxwIa2L1++nHvuuQeA9evXc9RRR3Hdddfxu9/9ji9+8Yv87Gc/45Of/GTinD/4wQ/4wAc+wNSpU7n55pu58847ef/738+6deuYMWMGd999NwBf/epXo2t/17vetVd/n02bNjFnzhy++93vsnTpUr72ta+xbNky3vnOd+72d08++eS9ykN/61vfiu/7zJgxg7//+78vMnIIY5d07qrb6JwyNwGrmKfXzHIKKY2N48r0zSOHUmF96bw7j4KQsgGKFHqXxiAMHwOFZPYB3RR6nCugoaEeP3ztIv8GKm5UaYKmIDjKsZ7HnXNRagi2y8WE8Jivhz/H97zRqDNUEgOtnz3hYyrJfa8l/nup8a60va8iwtqVUlx66aUsXLiQ/v5+rr32Wi677DJuuOGGksd3d7QyGxs25ooZlQor2x3GGOgdwiCyOn+/w2W2bt1Kb28v8+bN26Pjv/GNb1BTU8OyZcuYMGECYL3Z8+fP58orr4wU0b3lox/9KFdeeSUAb3/723nyySf55S9/yZVXXklTUxOHHmqb/RxyyCG86U1vin5v3bp1fOc73+HrX/86X/va16L3DzroIN761rdy//338773vS963xjDQw89RF1dXfRec3MzALNnz06c+5xzzkn83lve8haampr4xCc+wY9+9COam5vp6Ojgsssu4/3vf3/i/37mmWdGr9/whjcAsHDhwsT594YTTzyRE088Mfr5zW9+M4sWLeJtb3sbzzzzTPQdpfB9n0xm91N1xowZfO1rX+P444+nrq6OP/3pT1x99dX86U9/4qmnntoj440wuknkYlFQ8lqAo4BnsQVzqkkJKWXMV37rCUvK9M0jA2NMQshI591NpxDa5xQ71/M1ETUm7dSGnfQYuPnmevROpGBYWXL8kfSYgqD5h/g5UqkJRknauVCZlGM9j6dzpfe/jvCYRlLG6Fi9FUkFKg+l1k+NNUr7QBPJVKAtWMNnXH6p1HorFaGcf/azn41eV1VV8ZGPfITPfvazdHZ20tjYWPJ3JofPm4EFJAWbPaY3gE88uk/XvEf8/GQYN7xD8Nhjj/Hud787UswBmpqaeO9738v999+/z+dNe5KPOOIIfv/73+/29x5++GG01px33nnk8/no/eOPP57GxkYee+yxhHL+jne8I6GY74qOjg6uuuoq7rrrLjZs2EAul4s+W7VqFc3Nzfzv//4vXV1d/N3f/d0enXNfyWazXHPNNfz85z/ntddei0L+AVauXLlL5XzZsmV79B1nnnlmwqhwyimncMQRR/C+972PW2+9lc985jP7/h8QKh4X2lcq57wFOBx4CXgNOBgRUkYKu8q72wIcSbHn/Dex340LJ07J84fzPzCGGahHbxsFo4obt3ju+Rxsznm8aGM6h7Iiwh4FYQQQN0rHFfOt4fsLgLXAYpJzrlKLiY0WSq2fzig9g8J6CbbGShV23WwgacisxEKaFaGcp3nqqaeYNm3agIq5n6lFYTe4jcB8kpNzj6nzrQI9VNTtv4jU3NxMXV0dr7322h4d//rrrzNjxoyi96dPn75f+c+TJk1K/FxTU0N/f/9uf8+lJwxUwGzbtm2Jn0td+0B88pOf5Pe//z3f+MY3OOqoo6ivr+fPf/4zF110UaQcu/PHq5sPBV/96lf5wQ9+wNe+9jXe/OY309jYyMaNG/nABz6QUNQHm/e+973U19fz1FNPiXI+xknnb8WNlZuA04ADgHVY5TyhGJRRSNmydQdTJk8oz5ePANJeAyegQKGNGiQVuzZsNeLq2O84QbPSPAiVTHyexdNItpCsFeAp6Hh9B9UTJ6AojGk7MJfiHEoZQ6FSKcd67uZg2jDdgp2Hi7HKeSlDWIBEG5WL+Prp5BGnnE+LHRc3TG8EDowdW6nFwCtOOX/66af5+c9/HoVQl6J52uJE7l3a87CnKKWG3bO9t2QyGU4++WQefvhh+vv7qamp2eXxkyZNorW1tej91tZWJk6cGP1cW1tLR0dH0XGDnb/sQtIfeuihxPenP3fs6QLZ19fHfffdxxVXXMEXv/jF6P3nn38+cdzkyTbGoqWlhcMPP3yvrh3s3ymbzSbeSxsUAG6//XY+8YlP8P/9f/9f9F5XV9def9++IhuLEFfK08J+C3a9nEdBSIkfH6jyVYm+9fbf8U//8OEyfXv5KZV3p7EpW1tJ5t0pkjy16FEAAQAASURBVFFjC+O/qySHcrhJpNSRDGufQtJj/ts7fsf7L/wwHlYwm4EVNGdTMNBIOzWh0inHeu684GkD10Zs8cWF2G4lka4QU8zd2inTbfhJp3O5RztWOXcGaR2+dg7Z9DhXYseZioqMWr58OV//+te57LLLOO644wY8buf29XznU5+m9ZKL+f0lF7P8Nw/yqx/cSn9/ltFYR+UrX/kK27Zt45JLLin5+dq1a1mxYgUAJ510Er/5zW/o7OyMPu/s7OT+++9PVGefN28er7zySkLxfOyxxxK/tzc4o0G6Uvrpp5+O53msX7+eN77xjUUPVyl9b+nv7ycIAqqqqhLvuyrrjje/+c00NDRw/fXX7/W1g/07vfDCC4n3HnzwwaLjenp6iq7lxhtv3OX/YTC499576e7u3uV8cfT3F8b6tw8t5/HlhQKBW7bu4Nof3p44/o67l/Hc86uin19d18INN/86ccwNN/+aV9e1RD8/9/wq7rg7GaZ/7Q9vZ8vWHdHPjy9/LlHRtb8/y9XX3iLXt5/X19ufjTasP/1+Oc89uSJSFPxtO/jrdbezABvWboA/3reMV15YZQUbYO26TfzXTcP/9/unf/jwiPj7lWt8v/ej29mybUckmKx4cgV/WbY86nE+vj/L3T+4laA/i4/d1OcuW85fwvHVwOvbdnDjf94eCSpj6e9XruszxnDzz+9n3bpNkXC5+sVV/Om+ZbRREC7vve52dm7bwcc/92E8BS8/uYJnli2POs5k+7Pc/oNb6e3PRorDbx8e/X8/ub7ReX1xxXy4rq992w6u//HtiSJhf7pvGateXMVMbFj7a69tYtkv7i+EtAO/uuV+Xl23KTJojoS/X5yROL6DdX0uDa+vP8tPv2/1t8iosmw5VU+uiAybXdt28MB1tyccspH8Ygryyw1DKL888MADXHzxxVx88cWc9/FPsb+oRx55pCLU1Ycffpjvfe97fO1rX9ulotHd3c273/1u7m3bwZ+bmrgb+C62RdA4QHV18MYpE9i5cydNTU3Dc/HDwHe/+10uvvhiTjvtNC644ALmzp3L9u3bWbZsGTfccAO33XYbZ599NitWrOD444/niCOO4NJLL0UpxdVXX82KFSt44oknWLJkCQCPPPIIp556Kueddx4XXHABa9eu5T/+4z/YvHkz73vf+yIl96abbuKTn/wkq1atSoSmX3HFFVx55ZVRVdlt27Yxffp03v3ud/PlL3+ZmpoaFi9eTGNjI5dddhnXXnstX/jCFzjppJOora1lw4YNPPzww3zmM5+J2rC5Vmr/7//9v8T/PZ/PU1VVxde//vVE+7ITTjiBNWvWcM011zB58mR+9rOf8eyzz7JmzRoeeeSRyBjxwx/+kC984Qt84AMf4LzzzqOxsZFnn32W2tpavvCFL6C1ZurUqSxevJhvfetb1NfXs2DBApqbm7nxxhv51Kc+xZe+9CXe/e5389xzz3HTTTfx/PPPJ67nIx/5CPfddx/XXHMNixYt4u677+b3v/89a9as4cYbb4zasV1wwQU8+uijrFu3Lvp/nHbaabz22musXr16l/fA6aefzimnnMLhhx8eFYRz3/fkk08OGFXR0dHB+PHjR92cEJL0a0OngQ4N3Rq6jK0Y/RTwk/DxCrZq7W1ALVAP1HvQ6EGDgiYPfInCGFbcuHVq6IqN21+BHwL/hR2rOmwxnD7g21iB88PYfa9eQYMHjcqO5ThPxnCo0cbQHc63rvDRDfQClwBnAW/Hjk+DglrPzstuYysR/wx7/BewY9ug7Dg2uvkoYygIuyU9D7uNXUN7ga8BJwCnAh8Crsd60sdh55ibb00eVMm+N6xoY+jS0GGS62cfcBHwcWyf8/rw+G7gceAX2H3R6XwNXnLv84ZhHJ1M/cADD1BfX7/7XyhBRXjO77nnHr7//e/zrW99a488gFAc4hDEnkcjX/rSl3j88ceZMGECX/7ylzn11FO54IILePnll/nJT37Ce97zHgCOPPJIHn30UZqamjj//PP5+Mc/TkNDA3/84x8jxRxsMbHrrruOJ598kve85z3ceOON3HrrrYlCcntDc3MzP/zhD3nuuec46aSTOPbYY3n66acB+Na3vsX111/PY489xrnnnsvZZ5/N1VdfzcSJEznwwAP3+W/yy1/+kmOOOYaLLrqICy64gOnTp/O9732v6Lh/+Id/4M4772Tjxo2cd955nHPOOdx1112R197zPG644Qa2b9/O29/+do499tioeN75558fVbl/z3vew9KlS6NWbnF+8IMf8N73vpfLL7+cD33oQ3R2dvLLX/5yj/4fQRAkiuUNxGGHHcYtt9zCeeedx7ve9S5uueUW/v7v/54//vGPu013EEY/A4X2tWArfIPNb+3F9mB23oMoX5nKy9saDaTDot0YtFPokx0vJjbQ3uc8CK5iuzC07KpWwDaSOedOXHSt1DxsOPsmkqG2iftAxlAQdksUpk7pWiuzgBpsGkk8pSu+5wUy1Yad9J4Xf95EcZcSV29lI3afi+ea6wqUXyrCc37KKafg+35RWPDVV1/NkUcemXivu7ubj13wRW558Wl0UxMfAm7ATjznOX/TKPScC8K+Ip7zsUGXNknva+ihuw67uV2I3cz+HvgMcDzWKt2gCt7zJgU1w+yxu+PuZZz7gdOG9TtHEt3aehA6TWHseoGfY3PO/4kwykFBfzimy4D7gGspeBAaPTuOTaEXfTg8CGOZvLHzrTMcs7jn/BxspMpsCmPz6H3LOPG9p0WREc9jIyB+jh3fuBfIjaFEsQiVxnCv53lj6AjnYXcYgdSDbaH2YeCnQDNwNbZ49EcoRKo0hBFjdu2UuTacxMctvn5uAS4AfgmMJ9TrsJ/1AB/EyjRzKF8ExGB4zkd2tbOQRx55ZK+O7+/dgYctqz8F6xmaRmiBHvGmCEEQhMHF5W+VKlC1CTgOa3kOsEXh1oXvOe+5sz7nlfUyDCeLD5w7zN84ckiMW8pz2ob1+jivgXu4YqgtJI8PUj8LQ0/cY+5eu1oBzSSjHRYumounwDP2vVlYBaKbQtX9eIFGGUOhEhnu9TyxBsbW0E1YBWgS4fwDVlNcsT1QhWgjKaw7fCQK18bGrQ3rNKgjuX7GC2luwK6f8eJ+lVZIsyLC2veW3u5t0d9/FoUCAZUW1iAIgjAYFFX7joX2bcauk2A3hIXY8D6n0EWKOc7AObxqwZIj9j21pdJJK3bxHufxomJpIWUWkAW2kzLIGKnYPlyUmm8a6/mZhBUk4waVQ484MGFoGY8VQF2/87SQqmUQhQpkuNdzp5CnjZOuUrubc64YKiTXynhYtDB8DJTO1UYhJSja82LV9F07Nfc76bSuSmFUKudQ3PdOlHNBEMYq0UaVyjnPYnOXZ1JYM53nPJ7rms49F4aHdL5kPG853ivb5Sq7au11WAVwEykvEIVxFIaWgYTLLRTa3cUNK5DMOQerPGwMX8fr5rhnQRB2TcDAtVbmUpiDC7D9s3spETGGGDSHm1LRYgY7RjMoKONOMXdGzbTOl64fUCn1Vkalcl5d25goquLC++KeB0EQhLFCwnMQ26haw88nk/QgtGAV91JF4YZ7CY23OhlrlPK8aiCH9YpPI9bjXCWLi7moMUgKpeIFGh7S4waFHr2uxzkUhMuWdZusgSX8IO1cKCVsCkKlMZzreTotKL4ObsTOL7fvTcKGS6+j2GMuBs3hJ16ML772pXucO6O02/vixVDj0UZB7L1KYFQq540TZkf/Mbe5QXKTFARBGCuklTu3SbVg10iPwgY3FRtyu4GkYh6FuQ/z7vaHPz49vF84gkh7DdzrLeHnLl8yyjmPKeiuT3bccxsP1RSGlnR16HitgLRw6Sl44n+ejsbPzUXnOS/Kg6U8KSaCsL8M53qeNkbH04JcXnJ8vi3EKueQnHNiDBte4kYVk3qk07niUWOQ1PniYxiXYyqBUamcb2t9ORHisB1bxU8K4QiCMBZxSnWp0L5ZsePiQsprsd+NK+bDHU77mfPfO8zfOHIYKG+5DWtEcWHsAxWFc624Egq6+1kUuyFjV8KlS0dI1wr4yMffM2BhP0fakycjKFQaw7mex/etdGHMDRQ85+4xn0I7tbRiHiBr5nAR93ina+Q4zzkU55z7WHmmG9gJAxo1K4FRqZxDYdObgM2/a6GyBkYQBGEwMMYUhYi5tdD1eY0rBC7/zgkpacVccl2Hj7hgEo/8igsoceEkPo5zKCh2cQ+ShLYPPXHhMv4akrUC4nNOqeJ56LxAicJGJMdSEITSpCPF3BzaGj7Ha624Yqivxo9PRYzJfBse0kq5+znAGqank1TM40bNemwxzRaSinmlpSdURCu1fSFeVMVtcAdTECw7OjrKcVmCMOKQuTC6SQsm8dC+TcBhJL0HHtaD8L+klAEVP4eRPtnDQCJXnGRoX9z7GinmCpQpVGxvx9YOqCZVO0BacQ0p6WiF+HMrqVoBJJXyeDu16eH5tmDlmISCHj5cOKcgCEni+cZxT2wLNvKomuTcm49VzhO1VsLfdS3VRq1HcwSR3u/cWGwLP3d7XzpqLF2x/QiKvee6QsSWUamcN08/BD8UPtJFVfzqaqZMn86cOXPKeo2CMJKYPn061dXV5b4MYQgoChGjoJhtwnoPwAr57v35wC/C1yXztoZxg7vh5l+PydD23fU4d5WGE6F9ppCa4Ir8bQIWEbsPlESRDTUDjdv28PNEWHsY9XD7z+/nAx9/T2Rc8YAqrCK/ATtPo6gHFTO0VYiwKQgwvOt5uqBYvBic2/fiXS5mh8e0YruWRCHxsmYOKwOlc7Vj66xUURxl5PY/p/NtIJXOFTOwVAKjUjnv3LExIbTMAl7BDkpNbS33/e1VanJZxnnQ5EG9AiVeoCGhSxu6NHRr6DLQbWyriuuwoScfxaYd1Cuo96BBQZWCTg09Brq0rRfQAnwJuCU8fhzQ4ME4BY2efWTG2BiufW0TC+bN3P2Be0B1dTW1tbWDci5hZFHKc6CxeVkdJEP7nKAyH+gCXscqB4m8LTW8HrtTTzpmmL5pZBEP50tHPLQBx1K6x3m8SI6rXHsApY0sVWNryRw2TOyR7nFeD9RS7C0/8cRjCopCKGiClV9cx5mER6+CvECC4BjO9TxddT2tnKdrdVRhFbu12LUzSgcLfy8va+awkO5J7xRqV2sFknufH4sYc8r5M6lzJAw0xox4nW9UKufZvs5IcFRYD8Mfwp8NUFVTS11dLQ2hYt7oISGaQ4AxBmXAhDPCGPtQ2GINhwANWGW7QVllu1FBRoGnwTf22aPgJeoEmrHK+bjwdxpC5bxqjI3hkiOayn0JQgVQqohUgPWo1mKNZAlFATsnp2Ir106hWDEfTo/dwvmzdn/QKCSt2DkBA6wHwQkpReHRyh4YzztPh0K7sRSGhvS4xWsFNIev04aV+Qtm0quTqQnOuVBU2C/mzROESmK41nMdjzwiaTDbBJxAqg2lKdRbWQe8jWLFXIxhw0OpqCNnlJ5KcRvKePSDU87vD49x62WgkmvnSE8HGrXpE/GNz1WtjaxoJIviVEqYQ6VhCBVykpMNrJAyOXxdlG8Xe44sYxS3BkoInBJvJAglSVepdetdC4XQvnTVU7BhfWtjvxP3QuSH59LHNKXC+jQ2h7wDK6Skxy1eHCce3pdW7KQV19CyK+Fyeuy4dCE/F/EQ3/tcxfa4Jz4px8gYCkKa9FyJy5/xLiVu3rm5t4BC3nncqF04j8y3oWRX6VybsetnUToXybV0NoV6K0XRRlRGesKoVM7r6psTyp2rattKqsARlTNQlUjac5CeZM4ClvYg+HGBJaYsDBTeV472TiOB555fVe5LECqAgNJ5d65Su5tffkyx8yh4EJxiH1fMh1OxG6v3eZGnNHxdqsd5+rmUcg6p+8DI3jdUpBUC99hCYd9LG6RffH5VUeVhKOx7UDoCQsZQqCSGaz2P9i2T3MP6sIXFZpOca24+LgTWx84xkIIvDA1xx5v7+7v32yko57tK55ocvrcpdp50p5qRzqhUzmvqJiQmnOt9V1QggMKEEwafUtYvsF4fsOGyRdYvCmOWfq9UeF/cojnWWLlq/e4PEsY0aSt0XDlvodDntZRiN5+C5zytIA5nj+Wxep+X8rxqCt6DdEEcXxV7XuPFUIMBnoXBpVSPc/d6K6V7nCtgzar1CaN0fN/bjq3Vko78kzEUKo3hWs9L7VcaK0NmgInEFPPYfFuANaJ1UTpiTObb0FIqOsj9zUulc7mcc7f3uedSUWNxD/pIZ1Qq5zu2rinyusaFlKLcu/Jc5qgnbf1yP28BarB546XCU0pZwtK5d+lzjsXwvnM/cFq5L0EY4aSV6rgV2lWAjivl8cd87JqZJ7lmDrdBbKze56VC2qHgfYXCuhlfJ+ORRzOx+9s2Snvix6JRc6hJ701x4388ZzKdznXOB04raZSegG355Pr2ppUNcS4IlcRwreel0rkMdk9zEWPpeh0+tgbLBGzUWFwxryTFrpIp5dRz6VzbKbShTKe/unUUCrXG0vVW4kbNkc6oVM7BFniIC5quam1isprC5JPcu8En7TFPh/bBwCGZ6ZxzkPA+QdhbSnlKS4W1x5UEp+g576yr8+AU83i4oDB0JAQKknnL6ZSguHASL45Tg/XUtpBcK9M974XBIz1e8T2w1Nilw9vjRul4UbiNqXOna0gIglBgoHSuFgoFhqHgdXVGTSjknbvfjSvmlaDYVTIDRR25dK5mShtW0vVW5pD0nKf3vpGu841e5RzJvSs3paxfhmRoCqQ85qo459yN40xslXcJ7xOEPWMgK/R2rEd8BslaD3HlwIX4raVYya8U63Olsrse56Xylt2YpaPGXCFNSK6bLgJCGFwGGrcuIEeykJ9KeckTCnrMC+SK2qb3UlEWBKGYXaVzbaCQzlWqAKOLGiva98SZNywM1OO8laTXPK0zpGsHpHW+SqsdMCqV86mzliQmHRSHtZfyJAmDSynrl8Hm3U2mtPUrHl6UDu8bj/UESXif5dof3l7uSxBGOOn54TanTdicuzoK8y2evwWFyrXrSK6Z8Yij4WAs3ufpdTOejuCElIE8r+loJBdxlKi3YgoeIWFwSY+b+3kLdp41UHrcfvCj2wuGMZVUHgbyAkX7qigLQoUwHOu5m3vpulKGZFh7NA9TqUELgDUknXnp6DFhaBgonaudQnHvdJRfqcJ+s7GF/eKRD2nv+UhmVCrn29pWJnLvXEG4fqzHSLyuQ8+uPD/tJIvi7EqwTFs2Z5LMIxnL4X0f+/A7yn0JwggnLcS7ObKJQhu1RM5dSimYT6Fie1rBtz8P/co5Fu/ztGLnlHWwxs1dpgWlUoLirbgSCjqi2A0FThFIh7a7Nmrp8XLPH/vQOyLFPO0dioe1u++oJC+QIDiGYz2PG5LTcmLcc56WM+Pt1NaHvxNvwTyWCxAPF3ubzpWu3RGPtAW7X6b1hEoYw1GpnAf5vqLcuzpsrsJAuXdS5GFwGcjzA3aS7crzU5R/twfhfWMxzHbK5AnlvgRhhJPIl6Mwb1yP87hxzL12a6YTUtaG50pvbMPlQRiL93kpw6bGGpg7KYT3FY1dKtoICoU0o/OmFLuRLqRUGgOlc8VrrUDxfjdl8oSi8UuHaFaqF0gQHMOxnieMjxTmiFPUZlKczhUPjXaKXVxfkHorQ8+unHrxiLGB9IT42lmFNYYmunSViKYYqYxK5RxK59456zMkJ6/k3g0+u/L8vI4Na4diD4IClFJF4X1xIaWo6n5MQBEvkCBYdrXRxZXz+OYW99z5wDxs68MdJD0Iwx3aPtYoFRrtvAdgUxIGFFJiPzvP+RZsf9+EchfzKgmDx0Ceny0UR4wl9r7Yvhc3unjY2hBQ7AVKh34KglBYM+N9zp1Reiq2+0EinSu2XvoU9r61pPLOGZuOoOFiIKeeodBCtJRTLx7xV0rnc+dM730jmVGpnNc3TR8w966o17kpDJoweKSVAvdzFivsx4vipAvCQbGAGQ9rTxd5SH/XWOHx5c+V+xIitDEE4WOstbQbqTjDY6n5ka7UnhZSnPe8AatQvAYlFfPhsD6PpPt8uBiox3kbVlEbKDQ6bpB270/Cjuem2PniXiCZrYPHQAYxSKZzlQrDfHz5cyXTSzysMjGVVO0AkxQ2hfJgwj1PHAN7xnCs53FPd9xY5tqHQoloTZJRmgdglfNy1lsZa5Ry6rm/9RYKOed7uveVrDVWITrfqFTOfb+6KPdOYYuq7Cr3TpSKwaOUYOnCiqDY8xN/DckQlbSBZVPqnOmw3bFCZ2dPuS+BwBh6taHbQKe2jy4NvdqQl/lUVtKhy1F4HgXlPD3/SkUczaV0W5nh8iCMhPt8uCkVGg2li+IkPAiUzqEslXcuKV2Dz648P+mcybRxurOzp0jA3JUXSCL/yocxdn/r1YYuA90Gukxh3xNFfWCGYz2PG4/jc6WFEu1DSbZSi+edr6O0vmDPLWM82JSKdjDYDk09lE7nikc8JCKPSO57ccW/IMOM3DEclcp5x/b1RfkHcQEFSucfjNxhqjwSHvPYRHN5d+mCN3EhE5KLZ3wsZ2BbQG0nbVgZeyGaZ51xQlm/P2cMXdoKJR0aOk3soaFbQ7+4dMpGkfGRQngtJPO3dpW7NZ+CkFKOtjLlvs/LwUCh0bsrijNQrY45DKzYjXQPQiVRyvPjZsc2dl3I76wzTkApVRQtFo8aixtYJPKvPBhj6Av3uI7wsTN8dgbqPiMpdgMx1Ou5jkevUJiDBmuUnk3K4xpfM2OfLSBZb0Uqtg89acOm+7kNOy5NpNZGVfq1H57Pec7j505Hj41URqVyDgPn3m2ldO7dWPO6DjVFHoTwfRfaBwN7ENxn6ZYyrrDfJAohmnEBRbxAw0feGHo09BirhHeHHnPnOe829rMeIwp6uRioX+hGbO5WhuKNLqMGFlLcKIqQMrQMFBrthJRSPc7j41iqVkcp5VxacQ0+6XFzP7t0rinsOp0LShtanPziosbi55bIv+HDKeY9MW+52/u6Q0O12/dEQS8Pu3K8Oc85FO996Xor84Gd4UPqrQwPpQybBlsMblfpXAmHQkyGmY1dd7tIRz2MfJ1vVCrnSnklwx4mYiv4SZ/soSctWLpJtgVbNd/JImkhUin7SSmh0/2O8yBE30NS2Bwr9Pdny/K9xhj6Q+GjNy6ohAJKT0pAySKCYzmIK89xIT7dRi3dL9Qp5u6xgPK2lSnXfV4uigybsamzux7nA9XqcPVW3KkkamxoSO936WiVSQyczuXu8yJhM/xd168++h4Zw2EnD5Fy3qPtoyvc+5yi3q3tvthnJKKhFEO9nhuSodFuz+rDRq84z7lT5FwBuIHqrayltGIu+sLgE1/Losg87L43PXZcKY95qTaUjeFjA6ULoY5kZ96oVM6nzlpSMv/AeRCckFKUe1eWqx2dpIWGuHI+kOcn5jzACyvXlvIyOOU8HfY51qyZ3/3xr8ryvXkga6Df2GcnrPwZuBJ4wkCvLnzebyA3ghfB0cqu8u7SldoTodEk56TbFDdCQjGPC0FDSbnu83LhBIiEgh5+tsuiOKpYqYundLl9T1pxDR0DRau0s/t0LnefpysPu9+ZhVUuJPKvPDijdHxfiwzR2Ofe8P34MeI9TzLU63la+XJzsAUbLTaR0qHRcQXPyaJzKa634uZ2fkj/F2OTgfQGV2tlIMNmKYOmU27j6czpvW8k6wujUjlvb3lul7l36bwtN4lH8kBVEvGwTMPAynmpiRbHWTDTxeHSuXdpa9hY2Qy/9PkPleV786GyncMKIFkDTwNfBpYBF2N/zobH5GQjG3bMLvLuNpMsBhf3IMQVcyesuLYy6yg2Zg6HUbNc93m5KKXcGQpFcUp1uoivo6Vacc0MzyGtuIaW9FyLG1Xi6Vxpz4+icJ+nwzPdcZMYuOq++1kYOgKS+16/gX7gL8C/hs994WfuuLzIlUUM9XqedrrFjdKzSdUzImWcTil4rmJ73PnjFPOxJGsOB6X0Bve6VDHNUpG16b3PGaY3UnxfjHRn3qhUzo3RRVaweNVa106tVP6BTLb9J+75ib8GK6Ske5zHhZU46fyReIjmptR3xQtVjZURrKmpHvbv1MaQxwoerphUDvht6rgH3efhMXljK7sLw0PaYx6fg5sphLUX5d3FFfOYUfMACsp5fIMbDuGzHPd5OUkbHePeVwWMZ+DIo7QXId2Ka2Pq3NKKa3AZKJ0r3kYNShinlYru87i8IlX3Rw5uLwuMXffywLPAV4FHw+dnse+7Pc8p6EKBoV7P3RiljdMtWOecm4Nxp4+vStdbmU9BOS8la45k5a7SSO936XQu1+O8VNRDvJBm2pkXT+lKO/M0I1fnG5XKOQyce1dUvS/mcR1Lit1QkpgEqWdnASslWMaL4gAlLWMuvG8zyfzX9IQThgZNKJiEwolTzt6eOu50ws8JhRlkXIaTtPfVzZUs1kA2k5RSTkxQobitzHyscl4q2sh+j6ycg8W+FsVJe3/SIZrSimtoGaiQX9rzUyqcNk56X9yTyL/hams4VjHGJKLAXP2NtFF6KYV9MVLkh/dSxzTpORifIxsoeM7jHlafpBEsXW9lI9bIUmrNlF1v8CilLzhDyGYKynnasOn0hlIFpOMGzeg7Ukbpkbr3jUrlvGni3KLwFPd6LnayxYsNpCeysH+kPebu77w9/Nx5EEpNtDjx8YsLKy7nso3S4zdWFszfPrR82L8zIZw4rzg2j8vxceAQksKJC4UXhof4xhafh5vDzydTLKSkLc/piu3r4ueOzbehNmqW4z4vJ2nlzq1pu+tx7jywpQyaCmuQGahiuyh2+0+071GYd+79rQzc49wJYe4+V2G9lYGq7se9QBL5Nzy4dc55xJ3yfXrquNMoKO5xz7kYLwsM5XqedtLE5+BGCj3O07JlQjGPGaunhe/Ho22Hs97KWGIgw2ZH+Lqox7k2eNqgAo0JNJ4xRWPqYdfMVirPwDIqlfMgyJYUPOOKXTvFeSkjeaAqibSA4n7eCtQDNQwclhmn1ERznr0ZJIvCpYWVsUBj47hh/T5jTJR3F3nOsX/z5cBRWA/61vC9tOfcbmZjZHDKTDqsr1RoX7pYZpHlOaawz8ca1zoo3VZmKEd1uO/zcpPwiJIMjU57X9Oh0VBYI3fXiitt0JS5uf8M1ON8K4Wc83S0g9v34vf5QJF/Mymuup8WaoXBJ4gp2k75DoADw8/nhc8HE0vjIrn3CZahXM/jSnPa+xr3nKfnla8Kcy7tRV9I6XorEq0yuMTHLN3jvB7bRlkBnjGoXIDXn8fvyUF3HrrzqN48Xn9gFXYK4+jW3c0k5Zb4eI5ERqVy3t3RWjL/wMNWa5xBce7dWFPshpKBBJR2bBs1KBGOqYqVc7dolgrRTHuBKiFMZbB56wlLhvX7nGIeCSemoKg9ARwPHIstjBO3Msc952NlbMpNqWgSp5w77wEUe1/TbWWcoteILUj1GpRUzIcy33W47/Ny4sIy462A3Pi1kvS+DhQaXcqgCYWQaCht0JStb/8o5flxe5MrhLqrdK74fZ7Om0yn5aUVhZEuaFY68RorzjAdYHPMpwD/gVUe/kbSc+72Psk7LzCU63l6v3NzwhXCTKdzOdmySDFXhTV2IbZie1zZd3ufKOeDR6lUWLDKeWTY1AYvG+D3B6hsgMpqVF8AfXlUX4Dfl8frz+PldcLAUjLiiKGXXfaHUamcw64Vu3hbmbRiJ5Nt/9mTsEyIhWLGHnFUrJ1aOrzP5Z3HJ7MLU5ExHBrSYX1OQHkdWI1Vzo/CCqLrSXrO3UYmoe1DjzFmQAvxJgrKeTwyJZFzXiLEHax3aC3F62Yg6+agEfcauNeONpLtZEqFRsPArbhmYudqL6X3PZma+0faIO0e28LPXSpJqaiHNHHPT1xRnxl+x7bU90la3tChjSnpOdfAk1iDtB8+P0khaiyR1oVEpgwHiRorMRm0BWscq6ZgcHZzKxE5RnL/c1Fj6yhOoSysnzKug0GpkHZnlJ4BKGNQOY2fD1BZq4yr3nyonAf255zGywX4uQAvHBeXDlSU0sXI1vlGpXLuZ2oHzNtyVpQi63PcyySTbb9IWy/dw4X2DRTS7sIy4yQW0tjvxqvWpsNgxsqCuWXrjmH7rnhBnHhYX4Dtb34A1rNaAxyDFVLc/Ip7zgNkfg01aa9BPO8u3k4mEdLuBJIBqp46IWUtxetmVL9jiMZ1OO/zcpP2HMQ9CO3svigOFBuk3fhNxAqnLSTHLy50CvvOQD3OtwATgCqSRhWlksp5/D5PG6Wd4lCD3UNdSlc6gkXGcPBxHUkSnUfC95/CGqUJn/9MYdzTnnMxnFiGcj2P54TH5dANFDqUlIpccfnKacUcbL2VVymOhjHYcZUpNzikHQpu7JxR2tMGPx/g5TQqb+xzqKDTG6D6w0fO4OU1fl5HYzyXpHKeNkqPRJl0VCrnzdMWA6mcEgoCTVw5h2SBB4NMtv1hVxVrXa/XtLc8HZYZJ10Mzh03k2Q7tYRFbIwsmLfe/rth+654iLrLOY97D06gMI7HUfAgxMPf42HxwtBRpHRREAw3Ya3QUDrnnPDnUm1l4kIKDF9RuOG8z8vNQGtnN7aH8q56nDvSY5qOOHLdStI5mTIv949dGVVc+9BSRhU3dvH7PL7veanjZlJIT0iHZ4oCOPjYNqCpKuzAK9g5eRh2nh2N9fJtpHTRVIkaswzleh7VQzHJuRFP5/KwXlgv0DZHuTcH/QFev8bLa6sEqoJjaB7Qg41WSUeMSbTK4JDQG0g69VzErcpbpdvLa+sh7w/w+gN4uRVuewZe2oyfs0q5ymu8fIAX6GjfW0+xzjeS9YVRqZy3tzwHFBfFccJnKQElvsGNxIGqFNLe8nRYZryg0UBhmXES3rtUiOZ2xnaI5j/9w4eH7btc5dlE73LspvUMBeXchfetwY5P3HMeL5IjDB3xTSe+2XWFj5mUrtIeb0lSSrGbj805j4d1pr9nKBjO+7zcpC377ud2Crn/A0UeOdLvp1txbYp9jyh2g0c8+iAuYMYL+UGxUcW9H7/PEyldJI939VbisouEtQ8N2hirWJPc9zTWS34sto6Rj805fwO2/ooLbU/vfSPRQzfcDNV6rneh4G3CRox5gNIGP2vzk/2+HKpPW89rbw6/J4+XzdtjwuPrsBFLayleL51hWtg/0vtdXGFuA6bp0JhiQAUGFYSK+itt8IsWeDGAmzfir2y1intg8AKDH5gih2yl1OoYlcq5o5Tl2ccq5z3ATkrnH4zEgaoU0pMs7kFw7WRg12GZcXYVollFoQJj2lsoYzi4REIGJKq0P431xM6iIKRMwipyT1McAp8LlXwRUoaOUlVPA6yAMg5oojjnPK7gpQvjuONmhZ+3UqwUyLo5OAzU47yN3fc4d5RK6XLjma63kt73ZF7uOwOFZbpicPHIr92lc0GytVNckZ9Fstd5OkJGxnDwcOHpcc+5+5s/AbzJGHxtH542HGcMfyapuMU95xKdMnS4/a5UBKVL50Ib/GwePxug+vOorMbrzUOPrfStsgFeNiDTl8PTumS9lbhhWuqtDA5ppTy+prm9z9PGRjyYsIWaNnjPtSXOo/6yGT/8zA8MKm+rt8/EjpMrDJguID0SjZoVoZz/4Q9/4B//8R9517vexSmnnEIQ7Nl0iAso8TySemwOmLM+x4VMp+QJ+0Z6krm/aR/WIDKZ3YdlxtlViKYL70sLKTKGg0tgTKEAXMxzHhAKKMSKiYXPJ5AMbc/Hf0+8dENKKcsw2Lni8u7Sil288Fs85zx6HT7mUqhcWyr/Ttg/0mtnOu/OUarHeZyBWnHFlXMo3vdkCPeNeFimST3iynnaqLIrAaxU3Qc3hvGUrrQxTtbWwSMXM0jHFe1NxrAlF3BsX56qvhxVfTmq+3Ic35fn1bxmR+hxj0LhY3ufMDREirNJKtF92JD0WWDDnnM25FnljK3w3V8oKOZlNV7Oemn9fKF39kIKnnMxag4+6bXT/V1dMc0p4aBaBd1GP3gG1EGTE+dRR06zXvOw/3lGG/xAU41dg+Ptl0d6rY6KUM4bGho4++yzueiii/bo+AmTDwBKhG1SEGJcSxIonnCyue07CUXZJAUUsEaRUjl3u1TOU4Koez/et7fUojnauePuZcPyPXGvQSSoYD3gf6YQ0u4854pCS7UsBUU+KgyHCClDSTwHPL7hxSu1Q3G7Jvd+2mMeD4teSLJybVwxH6p1c7ju85FAXCGPj106JSit6KW9r6WUOrdmOqN0EPueuIIn7D3x/S7ttWsn2eN8oHSu9H2eKAYXG89Z2P00S3IcAxnDQcUYU9SdJA9obfhrVnN8X0BDv1XuqsL816n9AQf35nkuqwm0Sex9EjVmGar1vJShUWMVsgwwURv8IMAPtPWYZ+2YqZ489OahL7Dh7nmNF+YuZ8Kw6PnYfQ+KFTtxNuw/AxXTbMNGYlY5j3m4ISqnqNfWFE5y6iS8eZNtobictgp8YFB5DcYwi+KosZE8fhWhnB933HGcdtppzJw5c/cHA/29OwDwUnlbcUXQ5Z2n87actU3YN0qFZbqcSVdpeHdhmXHSIZpx4SbdHiG9aI72TXDxgXOH5XsSLWRMQTlfgY1CWUTBs5oJHwuwi+oKCsJJ3HuQG5YrH3ukCzLGN6GNFJTzeM55VPQtVPBUWLHdJ9mWS2HD+9ZRenMbqpDa4brPy82uimnG85YjxTy2HqZJj7E7zhUD3EIqvC/2EPaeuKc8bVzZTLKQX2Lv0waTCzDZgIPmz8bkNSZ045RKyVMUos82kdz34uMp7D+aguc8ivgyBrIBL/TlOS5UyDNhf+WqPvvzCf0Bz/bnIRtEUWcSNVZgqNbzaD8iOf9cSLsXaJuvnA+Vtpy24e0r2+COFfC3VutVz9njfK1Rga34vQA7j/spNojJnNt/0mummyNu30PbIn4qDGn3tI1oUG1ZmD8O3jAJWvMojVXiA4OXN3ha25STwESG6cR+ZwrjOdKoCOV8b+nt3ha9TudtxUPDihQ7hlbIHAuUyhuBQhs1KPaYlwrLjFMq59yFtcdDNCuhAuNgsuSIA4f8O9I9Xp2gorFh68cTU8xV0uP6Rojy7xKF4YgJOsKg4gT1uNDu3ndh7XEFIb42xknnK7s5txBbFC79XUMZdTQc9/lIIK5kxccOrAchbtzcXTHNKM0ktW5WYcPjE4bpEveLsHcMZFTpCD9PhLWrMCyzP7Aeux77WLJwPnTnoC+PyQYoY0p2VCglv6SNZcL+kzBIu30rr+nMaV7NBRydC8j0B2Syefysxs/m8bIBb8wF/C0bkMtrdGAkaizFUK3nbqzSntEWrCPHhTv7JiwoFhi8NVtQt2+ClwP4RQveyrawYrstPJYJbPX2KUAthYKoaaP0WB/T/SWejhB37LUCU42J8v89bCSDZ8Lw9q19ML0e3tgML3VAVxYvH+aba6ek2yiI2cYUtV9ORKqNMHl0VCrncQbK25pDoR1JKQFlrFs395W0x9y9du1kVOqxu6I4UCyYxJXzeFh7KaupsH/sqserU86dlzVjTPTwKIS2xzewKEwQmWNDQXwOpJ83Uuhxnk718VPTzyl96YiV+VhDWxcFo4tTSvLInNsfSnld3RxppYTnnIKylybtcY0bQF3UmDu/hGfuP4kxiwmZ7Vihvo7YmGmDlwvw+vOoMN+V3kJoLT3hc9bgYRJGNCgo5wlBk8I8HIleoErDGEOOtOfcYPKaF/OaRTnDpJy245jVtvJ3VuNnNXNymua84aW8RucC8qGBW6LGho5dRYxtAGYbp5iHHliwSvqKtmQxzWc221D2QBeU+bAd1wHYvHMoLgon6+a+s6uIsVZghiFWBC5cPwnHcUsXTKmG5jqYUwd/3RZWatdh3rkNh1eBZq42USpz2qg5Ep15e62cd3d3c+utt3L55Zdz+eWXc8cdd9Df3z8U17bP1DdN57yPf4qLL76YS//5Yh564EF++r1byWez0Qa5c9lyOp9cEeVtvb5tB7f+5+2JvK077l7Gc8+vis776roWbrj514nvuuHmX/Pqupbo5+eeX1WUU3PtD29ny9Yd0c+PL3+O3z60PPq5vz/L1dfeQn9/Nnrvtw8t5/Hlz0U/b9m6g2t/eHvivCPt+v7jh79MTLLf37uM1S+uipTzxtc2sewX9yc8CL+65X7Wr9sUnafU9f3gx7ezfduOSIl48ckVPLNsObOweXfb+rPc9YNb6e/PRsLRQw8v5/HlKyrq77e31+d+HsrrcyF5W7bt4Jb/vD1SzFcB6r5lND2/ikwuoKo/T9uq9Txw831k+vNkcgFHaoP+xf08/dqmKF/v5edX8cC9y6LK7eX8+8HIHt99uT4DPPHECh55eHk0F7P9WX71g1sx/Vlb9RR4atlyVvx5RaS8bUtdnwfcf88yVr64KlIOtry2ib/84n7GU/AgPPiL+9mwblOk4D2zYvD/fq+uaxkT42uA519YxQP3LEsIl/dcdzt62w6mYcfhxSdX8MSy5VFYdLanj6uv+Tl9nb02RDow/O7hJ3jyiRWRUrdz2w7uu+72RLXvP91XWJ8DA+vWbeLGn99fsX+/cl6fDv9+d9xyf6QwA/zPL+5nymt2f/OANS+s4vd3/x6VDSCrUX0B195wJ1tbX+fVNS3QH/CnJ1bw24eX22rSOU2+P8uN37+VfH82MsiMW7ac1U+uiIxv27ft4OYf355I6aqkv99Iuz4N/Pfdy3jhhVWR57xlbQsP/fIB/hJo3pDXKK1Zev9SWp96Gf+hl/HWbmHdK2t4/Pd/5Oi84fm8wWjDf//kV2zdtiPynP9p+Qp+89D/juq/366uL349g3d9t9Lbl43WzeW/X85L4fzYCEzeuoNf//QOVKjgedrwwCOP89LEwv/p1dwObuxeY0PaQwXvgV89SNurG1HGMA948cVVPH7fsoRifv2Pb6d9244o2nYszI9Bvb4f3c7WbTui/e7ZJ1bwl2XLC+lcff3cfd0vyfdl7fgBjy5/mj+/8DK05mFqHVs7Ork2+yw81W77nAeG3z30R1b9bY0Nb88bal5twfzifropKOV333o/r60tyC/78/d74IEHuPjii7n44os57+OfYn9RjzzyyIAGg3POOQfP87jzzjsB6Ozs5KKLLqKlpSVx3KJFi/jBD35AdXX1fl/Qrnj22Wf5p3/6J37/+9/j+37JY7q7uzn/M/+XV1c+QVNTE4ExdGjoMtCpoVtbr08/cA7wH9ic2XqgXkGjBw0ejFeGTCwHU9g9xhi6DPbvHT66sb3ILwNOBc7EehEaFdR70OTZ17UD9VLDWqy7NHSYwnl7sFU4LwD+L3AkdgwblB2/xvC8Nbs4b6Vzw82/5jPnv3fIzq+NoTscz24N3cbOo17gJmCrNlzSn6cmr2nQhnoADN0oujxFv6/4Vk2Geb7HR7HjXq/soyEc+3ol82sw6deGztiYdRk7B58Fvgv8FOvJq8fOvwYPmhQ0KIOHda8qpRJjn57LX8dGRbwX25otWjfD53GDPOeG+j4fKeSMYWf4t+4M51s3sBL4KnAHUINb5wwNxtCYD2jQ4GuTrPRX5dPnKzpRdBp7L3SGc/e3wB+BqwjnJPY+iM9JT+bkXtGrU3KGsXvUfwMvAv8f9m/doDWNfXnG5QKacpr6rLaKemD46W8e5tNnnwlVnn3U+vRV+3TV+HR4XjSfe4BHgLuxc7oOOw8bvXBPDddXGcN9J6tNJG90h8+9/QF9fXm+2BdweX+e+bmA2nVbqP/VBmoC6M9A17lz6Js/lZerfK6r9flOrU9VXYb6Kp96L7n3VY3R8RmK9dzJ+Z1uz4vJ+R8AvpvXHNSbp74/T30uYFx/QH1/wPiOLFXfewmqgQbgwiX0Vnt01Ph01/j0Vnt0Vmfoqc3wO9/jYeBqZM4NJmn5vjuUNfqATwL/N685yo1dNs+4rKahP6Bpay/V/7kS/u8RUO1BXsN1zxOcOIvOIyfTWe3TU+PTU+3RXZWhv8bjw7VVfN1THIId7vqYvtCkoHqQZJeOjg7Gjx/PAw88QH19/T6dY5ee8+3bt/P6669HP//85z9n48aNNgwh9li9ejV33HHHPl3AnhAEAdlsllzOBgRls1my2Sxalw4m2db6cvQ6Hg6dfk73fDXGEOQ1pj8giMLM8pj+ABNI4MruSIf0xT0IW0hWrE2EtO/mvPHcyngoLlgvkPO7J2oHjIFQo6FWWDSpSrWxqJI/a8Nb+3L42YCqbEAm7A/qZTWZbEB1f4Cf07ylP8+TgY7CZ+Nt2KTv6+CTDg1zcyDeRi2Rcx6G2NIXQL9d80xfPmxVkgypdfNuPoWK7aXy7wa7XsdYUMyh9NppSLZRi9bOvEb15VH99jnKXe4Lx7Inh+rN4+UDG9ZHYbN3Ye1QGeF9lUD67+ce6R7nXhRmaQtSqWwA/QH8rY1Pd06Fl1shp6OHFx7ja5PYM0v1Ok+nsQj7TjyVKzCQ1wYTaF4KDBO0Zk4YZptZuY2MBt8HPwD/lW14RrMIQ04b1hlDoIvrrYzltpNDsZ7HI43ic8D1tZ7lcpBNoRWXrw2qpdO2EPr0Yngdm7McFPrWqwD8QEPeMB/bRjQ916SQ9P5RKqRdY6NitwPT4gXgUHb8jMHb0gOTVVjoyAPfgzdOR/2lzY5tmJpgCwBqVN4wL9BROnO6W8lIk0X3Kqx9+fLlKKWYMWMGl112GZdffjkzZ87EGMMf//jHobpGHn74Yc4880wuueQSAN75zndy5plnsmLFit38ZnErrnhboHmEuXdhLpHpt8p40Jsj3xvmfvVYQYfeUEkfYUUDRhLpSeZ+Digo5+lCRvGcSWMMJih+KE040cLqma6KZqCZFWha89pazfLaGldyAUEuQOe1PYdUOdon0pVq81ihZaMxbM1pjs4Z/JymKqx6munLk+nL4/VZxdzPao7OalqzAVtNsjBOvNiOMHjEc4jjxqriYnBh3mtfDvoCvN4AukMFL1T0vH6rFLiK7k45mE9BSIFCEZ54URdh7ykloKSVc7BVh73+AJWz7YCUU8jjj6zt56v6w969MUPLbGAn1gObVsxFsdt7SvU4d69dGzVFmCOpwxY/4YPAwOp2+GULvBTALRvhbwUF3QvbOqmcxqegoM/ErsXbSRc1knor+0upIqhaG7Q2PKc1b8ibsJq3wVs0ybZ1yoNnwD9gEr62+cxHGMNfAyDQBOH+F52XkVeAqpLRJfYgt+9NBWq0tnueMVGPbA9QLX0wazyMr4FZNbBie1Td2+ao2+JwmSBgrrZ1CNpJfld8/gl7z0Brp2u/3KwNKjZ2UY/ztiw0N4BSBQ/CkmbU5jxqU5dV0PM6Kg6ntGF+XrMhXK/jRpa4I2OkkNmbg9vb2wG47LLLOOywwwCYNm0a//iP/1gU6j6YvOMd7+Ad73jHPv2uUiqqeuqpsD8eoefcGDYGBpULMNpgtEYHmrzG/hweh69CM6oBMphqT0JxSzDQJNsefu4KwsU9356xli2TN2AMReWCwx9dX8OMAd9gn7WtHr0yPJ/BoLzwuxVoT2E8hapSmIwHGRm3PcX1eM3FPOduIfuzNhybC6gLdNh6JAgrnNrB8pXC1xqfDE0KDvU9/prXvKPKj7zm7tw5BdXGyLgMAsaYIg+em4ObgCOIefDyGj8X2H6uxljjlpt6voKMwavyrMCZ8VGoSEFfgC2MEzcERB4EZd8f9ZVGh4CBvK/tWOVcERbGyQd4RkeeV5XVoYXE2E2uygMnxPgeXsbgBR6+7+NlPMZjUxtagEZiEU+q8P27DWcSIqK/X+y1ow04BTd2hEWNTORFRxt4ti15wqc3wwFTwVcoT+EphecFKIUdQ2xY7STsvJ5CLFpMFSJZMjKG+0TJIqiB9Zw/nzf8vRtDbcg01lmv+STwesGfPQk/bOW0JID7tOEcbQi0Ia8UeVXwnGsl6+RgoSldqX0DMFvbtTFSynXYksuAt6ETDploT/KGybB8E+qEKfiBwgs8a4TxNZ72qAk0szyfV7HGMZ16BAaqZM7tNQmDdOx1KzDNhNX1jWulRtTvXG3phSnjkh6+mgzq6Ga8v27Dm92IZ+zY+2G/8zkZj+cCg86ohEEzUIVaHSNFFt2rtcHllB94YKEVwuLFi4HBD2XcH5qnH5L4OV1x2Ao4mgV9ebb05W1oWV8e0xdg+mxYu+4PMD15G3LmvBE5DWF+mFBMWkBxk2wL0IRN64mHpXvG4GU19MZayvQGqYf15Pm9trKt6s/jhw+vP8/svjyv9+ZR/XasTG8Qjp8m6AswfbFzZvWIuk/3l3TxjcEkHnYeD0fXwFN5w/FhyFBGW8tkJqfJrN6Cf/+L+Gu34AXghwr70VrzbGAiZS7tOR9pFstKJT7v0l7sTRR6nHva4Oes51UFGi8KhY6td2EPXz8bRF67uOfVYDfPtAdhKDyvQ3mfjxR2532NKrUbQkEj9O64EOiXW+H25+xzOJ6qz44fWRvZ4mXz+P0B6ELPVyhd3V/Yc+KGlHi0CiTD2p2CrihUHEYbOHIqAD/dGUYCHjEt8pyrmPfczwWosHI02Pm8IXydjoCQNXXfcUVQXZRXEIa0vxbYuhALQy+eD3gre/APGE/mw4eRyfr4PVmr9BnDEqNp04b2UDmPR6C5c49FhmI9j6qnpzzZLcAsY6Mv/dCoooxrq6ZRG/tgZp01SB88EbYZvE1dkTLn6TD1K5R35hsTpXSlFXNZN/eNgVLx2oHpVmMuGFNiCrra2gVTqwqLq+vje2wz/os78bqydp90Ye3aMCvQtOU1uP3WJFPzRtKU3CPP+cUXXwzY3G+wye6TJ08GbJE4gIkTJw7F9e0TnTs2Jn72ncfc2IHycwF+3jA30OzMWa+DDX/WBGH4UpDXGEPBE+FO5CmoMnsZczA22JWA0hy+TnrMNSpUEshr1/y65LkjpV4TTVTfwCwNncZglPX8GA8CZa1iznvuZQxUh54llYHq0sUEK41TTzpmyM6daHsW85xv04bXAs0bwlwsP6xs6r+2larbN2IA/4UNZM4Df9E0vMDwxrzhtipNnzZUeypS+POh5zwwxa28hL2nlNfcKcybscK89djpQk5WGPZMThfmXrjeeYDyFL4KrHEz9NplsAr6WmxLyvj3GOy4DqYHYSjv85FC2qAZXwZbgdMJ5Q+tC6GZeSsw8kob3BZGrr3UAh8FDpwahfL52qB8j4xvUL7B1x7zqn02+l7Rmh2EHj1hzynl9THY4nt9xHLOXd6k8/y4X5gyAdjMKYvm2s2yzwvjnzWeZ73nSik8pfFVYKMBPcVMrPKhU9fgoleEvUcbE6VvRTnn2qADw1+0ZknYQ9mFPGdebcd/4wwy1T7elCr8jT1kDq7BN4Y6A4dpwzPG8I7AkK9K5pzn1cjy1A0Xg72e63grLpJOohbgbS6NJPK62pZq3tZee4Jp9XaCVvlw5ETUip2o2U1korxlhe9bZX6h8fmbosgY5ubcWBzP/SWRlkNh7NqwnnNXXT8yrLjXWzVMHReGtYePvIFJdXhzx+E9sx3vbdPCNFjwA49ZecMWXxNUeWhfFe17Iynqb7fXYYzh2Wef5dlnn41apr38cqHg2l/+8hcAFixYMESXuPdk+zoTPytjbHn9vtDrmrVeoRl9AVX9mu39AWTz6GyAyYae11Vb0HetgL+1FbzlTnnMB5LHXIJSAkrc8+PwFNYq6bx38eiE9CP0equePF5PPiyCFITevjxT+vPU9AXs6LfePt0XhBEQhdeEn7nIBzNKIh8Wzp81JOdN9Hh1Sjr2+S/acEhgmKitgmcfGv+ldvxQyfYNeH/bYpV2Y5hlDDMCWKGTeefxHDxh/0kLKPGcZQhDo8OoIRXmTXphYSqyAaxsgztW2JzXMKfZz2ubt5UL7CZHIbT9tdh3pgvDDSZDdZ+PJNJGzfhzKzAd53ElUrqdB4hnWpMne7IlatPlhQ+VDVA5W7jRzwbM68/TmgvQqVQIN46jKcJoqEmMWWz/aw8/b6JQ50HFhc3QK8TWbmiChZ8+Ed43G+7bCDv7rcE6l0odyoe1BIxJ9DpPR1w4RUHYOzTFnnMdGNA2pP1IF86uDf62Hrzthsz8JjIoMrMm4Ld0h6HTVhE8OjA8H9g0Sa1Nked8LBpRBns9d/MuruS5O38TMCdy6Lj6Rcbmn2/ugRnVtpCY51lt6Mjx8NzrZHJB2C+74DVXecPCQPNa6nvTXnthz9ldj/PpzsBsCmPoGfC2hYaV8TX22QsLw4Xec3X8ZLxn22ykUTiOBJqpgSETGNrzxd870uqt7NL/e+aZZ5Z8v6+vL3p91113AXD88ccP4mUNDsaEq2w2zK3Ma7ywiJWXN1TlNHNymm3GMDVcPLUx6Fe3ou9sQeeBF1vgPOCQ6aC9QuyDMUhiXpKBcibTFWuVCYuphIK/yumC8uz+tqlZkq4YrUxB4JkVwDYFU1TB+qXXv455oRV9+DQ4eLr95Ux4PwTallcVSuLCtNJChAb+mte8MSxqZD0INlzMnzqBKtOOCcDPgH/gFOtdCL0Mx2jNM4Hh+AwlPefaGGlDsp+UElA0VoCfQZjeYwhzuEJvgtu41myB28O+By+3wMcV6pDpKF/hO69dLsCvsl67+cDfSFm9xYOwzwwkoHRg58oUwmgjra3X1RRC/DhyGry0qXCyNcArr8NBk/DRsagjhe/b352n4U/aKvem2kd7KpGvbJTsbntKKYO0M0rPILbvhQqb86JHnvP2LEwKPUCHNMOr3XDPq/CJxaAUnqdsZJGn8LHecy8Ps6p8HgivIT7/ImUlLOQo7Dm52L5nRQWDDgLa84b2wHC4WzcBf1UvmQOayFT5VAGZebX4y7aSMTPxjcILDEf4hp9rTbf28I0hj4r8PPnQ0SdRY/uHU6wSKV3YqJVtxjBT68J6SWHd9Ft6YVaTPYmHnTCzG2E8eCu34x0x2SrlOoxY0h4L85r2jEePUlSTVMzzamQpd5VAXE5x65Z7fzNwoiaRb27TgQze1j6YlrFrpptAvmcLUSmFN388Xl0L3is78Q6ZGBlEfa2ZE3i0BAGztYfxVJEMM1I2vl0q55deeuluT/Af//EfANTV1Q3OFQ0CdfXNmLyGvjzkbV6ecmFiYQ6Xn9fk8oY5WUO70RyMweQD9AsdmGUtVkHxsKP2bKtVzp3HVRv7kJ0vYlc5k1uBJaTy7lzV2rwptI55pc3+rZdMh/mT7W+H0qJVJkCho4IeSttQ3MU5TTZU8IwBvakH80gbQQD6mY3wCeDQGXZAo8J+lc9zz69iyREH7v7AvSRvYmF9MWGlWxte0JrPhqF9GRPmnBuo6lT4M8BsgczCGvzZk8iERhilDW8M4D8CTaA9Ak9Z70SomOeU3eRGSjhRpZK2Arv5F2+jFoX3hZ47Nz48tSl5sr9uhkVTyXhWOfBQZFD4SqOqPBYoxdLw0LRiPtiKwVDd5yOJtIDifm6n0Jc+CulzwmW4LrJgCjRsgirgjBnQ5cF/b4AlXXinz0IZ3/6e76Eydu7O8gzbA2NTtLSBah9d7UVjN5LC+0Y6pVJJIBkxZr0+Oop8sMp6+Etb+2FaPc+tXceSA+bDGbPgZy/CY21w8gwrvyjCeQieUmSAOb5Hm6fIYuu5pEM0R8cuN3y4Iqhxz7lVzuFZYzhEG+q09d5ljMZf0473lplksEVQMzMb8DsN3o4+/En1eMYwOXQerNCGN2tD4CeN3nkFNWX9Xw8/g72ex6PE4kXhWoAaAxNNoS1aoijcpp3w5pmh5UzZCoqBgSOm4T27Df/wyZEBWwXWmTQp4zFBG9b5iiNIhrW775dCjHtOer9zz2CdetOdI4HC2CkDfnsWptTbcYNCvnmVlfGVNvhHTUM904p38HiUVnihwDknr2nNKwg02vOL0hNGCvudOd3Q0DAY1zGo1NRNsIXEsOHoKm895Z7z0oahnEprZgSGHfkAvaYT/dwmTHU1+m3N6D9ui24WdWQJxVziVxLEJ1ncAgY2rNa1k3EF+VRQEDbRJmwn4zx3myh0L7cowMsovGqFqvJQVeDXAtVwhg9aKYzyrIK+MWuvwbdOcp5uhUNmFMbO2PZqyhtBM3EfWLlq/dAo58R6m1NQ9J4NNHPyhhlhBU0vLErla03m+XaqzpyLyWsyj28OW5Ao/FBBX6w1Oe2xxhgORhXy2WPVa6XS6f4Rt+LHN7vNFNqoec7Q5QSW0CrNtPGwZmfhZIdPjXJePU+h8KKcV1/B/Cqfdmw7rqH2IAzVfT6SKCWgGOza6RQ81w5NhQKLwoZoYjR0AecvtJ4fDcxpgPteRf3sRfz3LUDNaAy9tR54hmkZQ402bNWGmcagMWBCBd1TotjtBQPlTLr2oVGkly4UNiIwBQfNli44ZiorN65lyeKF9r2zF8KNa2BBHd78CXgeYe45+OFvTvECqPHZrBQHEJv7auSFaFYCmmLPuc5rjNa8kDe8KSwi5muD19qN3w2ZOePJeIoqT5HJ+Pgza8ls6MOfOM5GKGlYog1/DezvB1UUec4DY/DHUJTRYK/nkWJOcg62AHO0wQsKa6YzRvs5jWrXMKsh6X3NK1gyCfU/bfgd/agJtYUIs4zNQV+UN7zqw+Hhd8VTukaSclcJRI6E1P7XC/SEEc3R2okq1Oto74Y5jclK7b4XFTBSnkIdMRH/T62ozV14s5rC+gEeszxDW2Bs6+WMh1FqREb97bdy3tvby/e//32UUlEf8nKzY+saGybtBaEGEHrLg1jfu8Cg8nkOeaWTyS9thto69FtnoWc3YTyPYHod5u6NmOkZ1Hxb/K6g3JHUPoUBcyYhJaTgJlqhHQmG4rzJecC7FttcIF/ZUJUM+L5n04OUikKUnjXwkoHzvVBJ3/g6+lcbC0N11LSCESBuRahwzv3AaYN+zsCYQgE4EyuKYwxP5TVvCueOn7cKesYY/PWdZDR488djAkPm/hb8rb1kptYXCsYZOCow/DVvOMhPVoHPKft9I2VRrER2VRRnE/AWXGhtWETMWK95NP9MjU1Kb1KwykCrgYU26sj3VJRS4oct1Sb5Ho2e4jVsO66h9CAMxX0+0ihlVDEU8s0hFsoehuh5OlTwdthaMEwNPQnVCppr4RMH4z3ehnfrWrwTZ6CObbYKvmeNZrPzhm3aMCP8NmMMxnho5aOVN2LC+0Yyu8qZbMPWZigYpWPdYnC/oGFzDpprOHfJW6yACTC9AU6dDve+hvq7BnyVsXuep1Bo2+3Q0yzwFS1VPgtJ5ZuDtHbaS+J1UKzsbtBa0503rAoMnyZM4wIyq3rwD5pAJuNRFRowMwqq5jbRv74D/8hJoYdW80bj8W1tCMKCw3lPFQrDhQrBWArCHOz13I1Z+v7fCMxxxTM1+MRacbV2oWqAxqqUgqegsRpvbh3q+R34b51mvea+lXmUbzggCFgfhkSnFfORpNxVAgl9ITaGbdgs1CZcj/JkKzW1pRuOaS6MnRNQMp6NwvUVXnUGf0kz6vkdeDObQh1AMyPweD7QELbKC5RKtBEdKSld+x25ls1mWbp0KUuXLt39wcNJVFTMtgfy+mwROC+nUf15vBe2wz0rmbp2B78+bia8ax5mzniM76MzHmZeM8GJMzH5Knu+tFs49L4KlsSfhsKE6wH6sd6fQgs1EqEqaANLpiVP+NZZMKkOJtRAYzU0VOHVVuFV+6iMj+d7NkzT95ic8Wj1fcj44HvouZPRH5hlJ9v7p2PmT0kq5oEJawYIaVyBtrTnPKcNzwWGY2OVav3Qiln18g4yh0zG8zz8Kp/M/Hoyq7vC6qiEfV81xwWGvwQ6ET4Yr14rrUj2HXdrD1QUZxb2AFet1kWtRMr5xk44YgaccwR8fAH8sRU2dETF4FROh0Ucw0c2YIG2bWWgWCmQwKK9I21UcX/LLcR6nAepPq+hJ5bWHpjixbqJeLYjRZWPOnEG3kcXoF5ux7vnVVRnPypvIBcwOxfwejawRTL7A1sQNReg+/IEuUAKiu0B0b7nXpvC+/EWeC6dJGoJ5Aa6MyyHOcVVHcaOn6/guCkweRzqgddsMcbQyeAF9pm8ZkE2YFOgk4Y5JLhvbzGuSnts39OBRgewIjDMDwwTA+d91Xhrt+If0GBD2kPlIAP4c+rIrOuyRVJDpWKeMdQaw98Ca0RNtFQz9juFfSNtHCtSzgPrCPJdtKYOi4tt6kPNqgflFZQ7P6bkHd2M/0KrjQAMbEs1V6dlYd6wLpxzUNjv4uu3sGeUMkg7o/RMZ4jGjqGr0+HlNWonBWN0XEHPhPtfxrM+vSMn4q/sQHX323PlDbO0pj1voyB0viCPGkZWxNEulfO+vr49eoxI+pM9yv2srdbu/WUL6hd/Q63ahnfCLPQ75/Hs7PH0+R4m42OqfLTv2dCwKTWYrb1EBcpGofd1sBjIArYFO3caw+OsYhD2j3ShfdrA/Cm2ek4N8JGZcNA0qPUTD78ug6rN4IXPfo2Pqs7QXJVhc7VPrspHZ2xxI7OgGTM1g66ptkJmqfETiki0kDEF5fx5bZigDfNCRdt5xDPZPP5LHWQOa4qsL5mDmsis2Wa96sZEVd2P0prN2rBFm4TnPB5GKOwbae+dCzPvB7Zhw9p9E/bmdRudsXnLaA0bewv9Xmc3wSnT4Z61tkNCWDFahf1C/bxVzhflNGtJKgVOUAlAlLs9pFS9DvdI9jg3BQU9VPZs3kI/TGssCCoZD2p8qPFRVR7erEa8jy7GmzwOdedqvLXb8bRhZqDZnNPQrzHhI+jT6D5N0BtgekdPZ4uhopRB2v3FthJLSSBMRYjlvWIMbOmx5dwzMSWhygsVdA/ePx+1oQv13OtW2Qs7LbjK7XNzmi39tntMELueqOaEzME9QpP0nOcNBIH1nD+jbZV2ZbSt0r6pk0we/NmNZDyFHyp1vlJUTau3EUZt3VFkmadtzZVntEHnTWK/i9LGZJz2ibRR2ol1BmjRhtnhhyqezgX4G7rCkHbC9kEUFHSl4MCJ+B3gbegKFXvXftQwLzBszGuCmFIXRY4hRrG9oVS9Dqecz3DKuCkU81PG4G3pQXlAfaZ4/GJV2z3fw5tYh5pTj/dCpzVka8O0QJMLDDtzBvIarU3RfTQS2GVY+zvf+c6KDM+YOmsJ9GlQQVStXT29Bf8v7aipNXinzMKb24RSHrUKavFozXgcUKUwGYXJahsePWUcQR9k+gK7eaa9rzYjvcz/25HBQBawdgptgGy+ZKGokWfCnEmwgorOwBnTYGGYRlDjFyZe7Bwe8VY0ikZsdGArhgWBxugwvH1yA0F7DjOfYsV8FAid1/7wdv7pHz48aOfTxhR5zp3g8Ne8tl7zwAooUZX21Z1UTfLwp9bbsTKQWTQB/+HNeJ1Z/Am19jhjqDdwRGB4OjBM8wvnd8JQTkG1hITtE3Grb3wubsbOl0kQpZEkwqIN8Hqf/YVpoSXaB46fAq92wK/X4X9oIX5e4fmF8HZPKRZ5Aff7CpPxIo+5y3cdzPCwwb7PRxrpMYvbfdsIPee6IFhiSEY9bO6CA8cnBZUqLxJUvJzC9xTqpJn48+pQf9oEG/uZedxk1md8jLI55zoMbc8bgwlfK6Mx1T6qaiwF3u450Z6XEjBzwE7CKvuQ8AAl0rm2ZKHZzrtr//vX/NPHP2CVcleor74K3j8X7871+HPGoaaMw8MWaPSUZjbwvFK2SnG1R0AhRFMklD2naN8LQ9rzecPKwHC2Dh0KgP9qL/6Bk6jyPDKeQmU8MAbPV/jao2p2PdkN/fgzGqPaHkdqzU3a42Nao40dJ5dznjOg1dgpwDiY63lkiDaxyC0KnvPZ2lXXNwnZ09/UBW+cVOx1zYfKXcbDO2IS/os7UHOb7DgGGs/3mBl2OGnThnm+Kny/1HrYa9KRPgm9wUUruErtQRhtu7UfNb26EPUAhX0v49kWlL6ynWYCUEdPQi3biHfMRJRSVIcKenvgMSkwmMCgM8lOFyNh0dyjPue7e4w0trWthKy2ReH+tw2+9wLqb9vw3z0H9eED8eZPQPk+XpUHVRkmVPu0VHuYap/AC8vrewpd66MbgPauYu85jAoFb7AoZQGDQhs1KLQ+88JZ6IoaRWHmbXmYWmePdAU6qmNeoFrfestrfLxa6z1XtT6mxmd8rc9m3wsLw4XXMaUe095jh0mnxm+E3rt7w8c+/I5BPV9A0nPuPAlaG54NDMeG4V1RrjmQeWEb/iGT8eIWy7oqqmbUkFndGeY1h1ESgeYN2vBsoKP+yonweTNyrJaVRjrnLh7aNxs793wdU9BNWO0bAy3dMKPKbmy+Snjt2NyN/9QWm8oQes/9MKx2fk7Tks0nvHZOUBlMD8Jg3+cjjbhRM/28iVhYu6tcqwuCJsZAay9Mr00KmlWeXTurPLwqDy/j2cJ+8yfifeBAyOU45DdraGzrsFVrcxqdtQ+T0wRZjclarzp9ASYrYe6lSBuk4+kIEBrFjAm7k9gPk5Xa+2DqOFDw8TNOCQVMYt5zBQsm4h87BfXbtTbFJLDzUOU1s/KarTmNygWYvE4oJ25NEHZPOmIsCDQ6b3g5MDQGhjnG5o9nAo2/ahv+AfVWh4t6K9tHFeDPbcRfvwMf8EOv36HATm3YkK7pQrjvjqGBGsz1PJ3G5e79rdg5NkObwroZKnl+ZxbVA8yMRRt5ytY3cnugB94RE/Be2IGXzUcV232t8TEsCAzr8iYZNRZ+d34MjeX+sKsOT23AtLAFnooMLGHdji1ZmBYWIo8X83MGlowdR88PO83MbcQb5+Gt64i851PzhjatMTrs0hV6z0eSDLrbgnBKKZqbm/EH6AttjKG9vX3QL2x/CPJ98OBqWO9BcwbePwd1wASU71kPQiioeOGiOtnzaMl4aF9hsoFtQ6IgUAo9eZztQzqfYsV8pIziCCC9SLpHUTE4U8i7U2HYClAoajS5LjwwtunVWg+6CgUbP/KaF75/Ys5WYDRgqy8q0NMy6Be6w0rEFHvPK7wSy5TJEwb1fHkTU5ZjgsOqvCEfaBZrK6C43uV+V5bMhl6qz5wTLoxhGwsF/oETyazcjn/0ZDKEyryGowPDzwNDj7HFipwSFxWGM9L3dV8olXPnlLtZhBXZox7ZsdxzDWzqg5nj7YmUsgOjPRhXBR+Yj3fbOry542zFb6VQoeduplJ4HmzzAmbU+Ha9DD0I7hoGg8G+z0cakVHFJAWUneHnUymseV7qme4cZIHpJfLvQuXOD70IXk7ZsGhVjXfKLMzqnXzgsY3kD5xJ5g3jE95zrcOaKvE9TwHiQU9QKuLBpXNNwW4vhdaFYYhmolJ7N7xxKiiYPKEpjHbwgNjf3mi8E6fj3b4T9b9b8E6cbscRxTQgQNHlKyZ52JQuz0sUZxR2TVHEmDEEgb3/XwwMRwVhKp4Bb2MHfjX4MxqoUgrfj3nv/DC0fd44/Mda8fMBvqfwNVSFofFPBTBXG9tOlILnPFCMmUJig7meJ9K4YvNvIzAjMFRFBs1Y9NGmbtQUz65lbq10RrFARUXF1Ix6/Ck+3qoOvMMm2XOERaUP8D1aAo3RtrtFXDHXo38IB4WEz4zCNgPQpg3TQiHGpW+5OlVeaxccNCGmVMQVdCInkarybJV9bVCHTUM9twV/4XhUANOUR2vOQJVGBwoTaLTvR9EPI4FdKuczZsygtbWVyy67jKOOOqrkMTt37uT973//UFzb/rGyF06aCSfOBc9DeQq/KrSmVHl2PoaWsklKsSJj23AFnlXMtQqb009vwGzps4JQ2mNuNMZ4Y2JB3RW7qljbDswlFpKuTaJAjvNi0xYWNXITLT7pfAW1GZRSYZiYa01jv8Row8wgT5sHxlfovMIohZk6jmCnRvcHGN8reCskLaEIbZK5cEH4WmvDXwPNGwNsT/PQE57RBv/lDjIzavEaawqbHFgPwoHjyTzWit+Xw/Oq8TyDn9HMwGOWNqwING/x/IIhQBWq1461vq/7iwmjEOICihMWWgg95ybMOXdFVoJYG7VNO+FN0wsVG33P9sw2wNzxqLdOw//1OrwLDrE1q5SPpzTVSjFPwXpPM91T6Go/6UkwUi16T4iH9MXXz3Zsf/M6khEPkXHTGGjtgvEUC5pOOfdshW8/fHY96xVQdeAE/mtiFRf8bxt603bMSdMx48ehAxM9or0u9EoY36v4FpSDSamIB7BjFyZnJVK6okKogQlzsXIwuZZEtJgbx5gxWRmD/675qF+sQc2tte3VAk2tB5NQtPuKiR4YL7BRfxkVeYKk7/KuSUeMBRq01pjA8Kw2fFZr6zU1kFnXjT9/CpkwpN3zY/KKZ42V/sRa/HqDv7kLf+54fK1RgccbA8ODWvP+wBBkChW+nec8UIPQPmmM4faZSP4kjBgzhjla27njlHITplVu7sebPr5gzHROIOWFFWytgq4Cg3fIFPwVW/EOnVio+aEN8wLNM9rDaBO1ngxihmltDN4Y1wt2R3rdjD+3YnucF/a8WCHprb3w1mnJNC4Ix80veHjC+el5Cu/gJrynNqPaulAzGpkZaJ4JPBttVOWh8xqdKbQRHQnjt8uw9oMPPhhjDC+99NJwXc+gUN8UNp/Z2WUHq8YWFPPCh6r28WpsSLSq8mmu81lXbVvHGE9FirlRoKdUo9u7Cid3wkrcCzvGMamHs2EYCmHtzsgVhRgRq1hrgLYsTA3DjKAw6WIKuvKtkOn7MUEzFGSme7BJKXBtEZTC1FahGzxMe3fponAVnpbw+PLnBu1cmrBSrUl6ztE2R/xora23PAzt8oyhamU7mcMnWZkyFd7nNVWTmZLBX9NpFXmDzf8JK77/NVZQxYXQO8+FFMfZO6J5R/K2dsr5TIi85K4dia+toEFeQ3sAs2P9Xj0VVvu2nlfvzVPxG2tQv2+xgmZYtZ2cZmFOsykboLI2rDaumA+WBXow7/ORyEAKXhsFBc9VqrUh0rF6AZuzyWJwcQW9yoNamwZki2faVC6v2sOrCjtbTKrnb++cB9MmoO9bi/nbdvTarej7XiBY2Wbb0uS0vU/yoSFViEgbVNxc3IIdO0WhAFz8GShUag+jxf604qWCgl6lYlX3PRvtN7EO7+2z8P7QgurNWi0y0MzMadrDcTLhWMUjaYRdkzfJ6umBtiHtrwWGXKBZiF0//SDAW7kD/8A6WxTahUDH9j3lKarwqJoznsy6fhvWjm1duMQYNmp4Xdu9z31fvBDdWGAw13MXeZeOGttkYEa4VvqxNEoP8DbuRM2sc8VTYjImhbF0Rf4On4i/qR+1sy+s2m5QecP8vKEl0BAkw6HjxgJh10QGlZRxpQPrcJiqSaYkaIPXF9iUhFKV2iEyrESh7U5fqMrgLZ6CWtWJMrYS/DatUdpg8nYctTYjquL+LpXzd77znZxzzjlMnTp1wGNqa2s5//zz+cQnPjHoF7ev+H61fXHMjES1by/MVfaqPbxaH6p9TG2GmbVVtGQ8cir0uDoPLAo9uQbTmrNW7rRiPpixmxXMQAIK2ErRU8LXBcGyIKhEv9jWDVPqiqsvKgAVRSdEzj0KHgmA6UqxKTxeeypKSzBTxhG09VuZMh3WXuG7YWdnz6CdK+cEBJIV1DflNVu15qjA4OUNGR0+tnTjtwVkFo9PbGZR3rmnyCyYROaVnTbSyNj2a542HK0Nz4ahhPHc9nj1WmHPccJBKQUv3kbNtZPxnYJujC0mVg00VRfmnMs7Dx8q46HOXkDmtQ7Uizts1EuYd74gp2nJaWuBztrcrXjO+WDkKQ/mfT4SKRVxZLDK+QwK66ZP0muuDNDaDdPGFa+bTuisCWtz1PhkajxbryNU1FWVz8SMT2smA8dNxJw2m+CP6zF3bkSvyKJv2QCr2ogaPweVv2YONlGkSGr8okJ+xAVMEtEPbOmxUQ9hpfaO3l57UidgxuagV+XZ1IRDJqLmjcd7uCVqrzY9r2kN5yB5jQ7zz6Vy9O5xEWOR59wYgpzNRf1rYFgSYPctA/6GDjINCn9afdJrHlX5xip0HvhzGvA2brf1WbQtSNZoYHHojY/vdc5znmNw1suRzmCt5zoesUlhDhpgszHM1rF0kjBazA80Xks/zBpHFK3inECJnHMV1c9RC+rxXuqMGdgMc4yhI2/oCgJbPDB2DTLv9oyEvBJbP9uABm2oCx1qisKa6bd3o+ooFItOV9r3bYSXe/arbLtlT4E6ohFv1Q5UT5Yp4fj1h5a5INBR5faRUtRvl8r5Mcccw0UXXcTb3/72AY+pqanh/PPP5/zzzx/0i9tXOravh4/NhsNC5bzGh9oMXq2PHynmGVRtFdT4NIcF4DZ7YSh7mDtpFASTx2EUsDNrT55W8MbAYronlLKABRSU86hSO0nvj11NDWzthmnVFHl/3KQLcdWi47Ko7ymme4ouBV0qDEsJn820eoKtvQXlPK6kU9lF4c4644RBOY/r8xj3nAfYdIEntebovKE2VO485wX/WxdVi5vIVGWKrM1uYDKLG8m82kUmH9jcn8Bulou0IZM3rAp0wnMe73ku7DmGZMVat+F1AD1Yz3kmDMfzKMw9zwAb+yDd79VTBc9d2DM0M64K711z8R7djLe1y4blBpo5Oc2WsAe6ydnCYYEpWKAHQ0gZrPt8pDKQgtdOqOAl1s2UgtfeBTNqBlw3la9QNR5+jfWY+zUeqtq+ptpjWpXHJt+G8+lZ4zELq+39lAmX5r9sHlUGzcEkXdAoHjHm2qhZz3mooGOSVfZjldpRcNZbjo15gJLKOVUefsbDUwrvbdNRPb14L+xEacNMrdnhFPO89Z5HhjLGhsK3r2hSnnNtU7lMYHgpMBymNV5gyBjw13ThHTAFX3lkPC/qb542TPtKUTW3gUxrFj8bWK973s5fWxDV2BxXij3nY0GpGzS5heI9z93prdowy6VQEisK195j9710bSPn8XGGMRcW7YF/xES8l7fghdGDXmAYpw2TA8PGfGEs44q5lim3WwZyKLQBU+3CZfe9IFZrZUsWNbmudKSYM0hX+dH4qbDmiud7qKY6vLlN8GI3DcbQqA3teR2lb+m8NcqNlPEbvd0bDp4WKeXOc65qfPzajLWG1fg2Fw/7R5itFBvDgioaZT3nnn0OpnjQ3kNUsT2t6I1x0h4f93pb+HkzMQ+CLnh/IiU5F1hNYlqJUBX3OsStoU5Jd49xStHoKdqgULFdgZ5WhdnSZUOlE4o5Y2c33A1RzhuxarWACTTP5g3Hh4qdDWkPK5a+vAX/0CY8FxrmKytQxrwJ/uQ6Mo3gre+w/V5DL4JvDEcZ65nQJFuq5cKfJbR9z0kYxUxBWd8ENGCt0Co0qkSbnPO8tnSFIe0k51umUO0bV+173ni8N07F+/0GVC6Pl9fMMJodOU02DKnVeRte6wQVGcVds6se521YBc+tm27MnIBIf7huzmjY5bqplMKv8u2+V53Bq86gajJQk2FiTYaN1RmoymB8D3PIVHstOhy/o6an0oHCQnHCLiPGXEE4jMEzhUrtilg6V6xSe1HUQzy1JOY99zKeHcOT56D+ugm2djFNa7aHyjmxeegUdBmtgSnqFqI1QWDYGthqzke44pm5PP6aDjIHjKNKxaq0xw3SsdB2v76KzCQPf2On3fuwKV1v0IYVxtCnY/stybQuYc+IG6Wj10AvsF0Xwtq9IJZS0tqHP6vGeslj0Q5pA4tT0JVS+AvH4+UMXktnuBbbKNo5gWF9mBqmTaznuZHovz1hoIixVmMNjlGl9tBz7gFqWz/KVWqPUl/dazv3onorLtooTIP1FahDm/DWbIa8ZqrWtGvrZNB5u68FeRPdS+VmVCrnSnkJpZxaH+oyeHXWe26L4hR0PgXMUtAS5ixrL7xhlFX0gskNNic6IaQgnoSQtHJA+HoLMBFb5MSFNlsBU0WF4aJicBlsdei0oOKrQh46qY8peNHxrfd8c/g7tmaAQk8dh96mbdhKfOyiEM3KHb/+/uygnMd5DRKec2N4Pa9ZHxiWhIq5FxYU8zd0UhVA1dzxNt0g2sxICCme8sgsmkzVK102LNCYqNr7MXnDX3XBUpn2nIvNZM+JhAJIbCybsV5zIJG35RR1WwyuC2aX8LymPHdeVdjh4rhmVHU1/vJ20IamvGZ8XrPZhdXmNDob2AIrDM7yOFj3+UgkreDF892c5xxd8CBE4dHGQFsX1AJ1mdLRRrF101PYVmo1Np2LautBn1zrsb7WQ1eF3vM5zeiTrYKuPzIbvWBKiWix4fwLjVzSYxb9jB07a1gpCJieIerVizGwpQumVEcFjfrz+eQ8DMcpMQedoWx6I+oNM/Ee28SUfMCOwCrk2qWYhO3w3DwUijGxvG+77xjyYUj784HmoABqw3HLbOjEn+TjNY8j43vJFmppJU9BFYrM7In4G/rs74dG6ZkYZgSwItAE2iQ7o4R74GhnsNbzeGZp3Au7yRjqAs3EUClX8TpHrT2oWU1F45VQzGMKui0o5uEdOgXvbx0F46jWzA0Mm0I5MtCF3PPBTOkazQwYMWZihpXIqBkauNq7UFOqCpprKWO0cy74YWeujGfzzpXCm9mIqqmC9R1MNobXw8lvwgKQBAFB6DQqN6NSOZ86a0lUBI66DDhPecYr6XlVwFyl2BDmm2ulQu9r2CJh8jhMe0+xx3wUhEYPBmmvj7uxt2C95lAI71PGhN4EK6jYA/vDPr3pEJXYc/w8xHLO3ceeYqqCTWG+ufGUbU9SX4WuAd0Wi3xIe88rlO/++Ff7fQ5jTGSxT1dpfyYwHBoYGkPvT1TYbeVO/IMn4zvrc1QYx0tanj3IHDAOf+UOW+k9MPhhiNISY2gPbPhZ3HPuvBjiQdhz4kVo4nNxIzbf3BUTi/qbhz+rrlwY916ioJhHMu+8yiOTsflb/plzUK9tx1u7A7RhVqDZlHX5rqGCkBu8TW4w7vORSnzM0s+bscq5HxSKwUVjaYDW/tDzOoDXPLVuWoN0qKDXZKDaZ2qVT8732OoM0yj0EVMwNT56WlOhnVrcGD3G9ztHer6516+Hn7sWoq5WgFXS3b5noDWfqNT+vV/em7A8Kz/pPVdhMT+VCbvPHDEe6uuY8OQ2qrRhWyy03SnpOhtggpEgao484kbhPNj1StsuBc8H2CKoYZV2b2UH/rzJZJQq5Jt78b0u6UX3PMjMrcNf/3rkOc+Ec+kYbfirNlE62VgriDpY63ncGB2ff5sMzMSuU84IHT1v6kTNqk16XKOHZ2WYlAfdU5A5pAG1sgM/m7dRMIFhrta0hMq5yhspCrcXJDo8kdQftgDTnFLudAVtZVCvrR+m1NqTuHRXFZNZHKEs6jznnqudozy8w6egXnidmcawRduwdhOGteu8zT83lN+4MiqV8/aW55JKeSxn2Snmac/rLGC9pzCoqE+2rdwOelo1ZlvXwMrdGN/7BgpPcd4D5yF34X2uSIdyv9DeB/FQlZSAGW/do5SKxs2PjaMCpniKFkWhqJ+nMMojmDYO09aXLAoHFT92X/r8h/b7HGkBxXmttTY8o23xNhVo/HyYb57Lk3lpJ1WHNNp2vPGKtW5yRa1JFJlZjVQpGxLmWnn52lCnDUdqzdOx0Pa45zxP+RfHSsBtcumcc02hUrsK0xHcnHN5r6qlEyar0m24fFXw2oVVvlWY96rqq/FOmo3/v5tgRw+ztaYl7zx2YTGq0IMemP03Xg7GfT5SSXtf3fq5Pfx8qvP6aArhfW7tbOuFmSVSEuIhfiFRCpAzSvt2XFVGMcVTtMb2PFPtoycodHt3cTqQey0kPeax8dsCNGHrLLr+9EoXQtoVQIer1D4uMqJ88WPvty/cGAIqU6jY7qW858r3UCdOh9ZtnPjaDl53eZOx3PMgb2wrURmzIuLRWraEhkHnDb3asFprDg2jjfxsjsxrXfiLGyLlXMUVuJRijq/wlCIzu5HMVo3XnY08564g6gptyGszJguiDtZ67v5maSVvkzbMCyjkmetQucsGeNsC1KyGmEIX2/dcIdRUiHvG91CTx+FPyaBWd4btfA1ztGFzmAahAx3VeIgr6UJp0mtmPCBrizZMCfc5Dxf9AF5nDi8HTBlXiApLFPSL6Qm+inLPfddOzT0vaEL19TFnSydbtYGwO4MOrPfc5O2YlnvFHJXKuTG6SCl3xGs/xBW7OYTKueeEFNt30ihFMKUOsy1cwdPKnYGxbiMbSMCMt1FzOeZRv8nALpyADc+cVj1AqErxLVrSwOIpZsY857YgXBjePrWBYEtMOYfC2BldsUpgTU31fp8jLaBYBd3Qk9e8GBiOCkKPtwlD89Z0kmn28afVlxBQijc2z/PwD5xIZnWP9UCEG5sXGI4J4NkgSGxqaSOBsGtKbXKOFmCWSyWgENruGWx7mY39MGN8ac+r29yqC7nnvitK5Su8ueNRB03H++Mm5uQDXg8KSkEQ5r0Gzou+n//HwbjPRyoDKXhtWAWvJhJSwrB2lztpDLR3wvTqVN4dCeXO4Ya04EEPjZ5KMc1TtIXWTkO4dk5uQLdmo3aKkspVTKmIB7BG6ShizKWSmNTYbe2GCSSUuprqqsIgxcMequwcVOEcVK56e8bDq6uG42dy4l82sbOjNxQ0nWJu518+Z2wueoXuc0NFlMqF3fOCMHd4RV4zJ2+YFBrB/HVdeFOq8JtqyPgqGdLu2jb5irRxM1Ptk5lWRWZ9d7TuehoWhYbS1UHScx5vrTaaGYz1POF5jSnDTjmfEa5XXhCr9L25C9UAalzVwGlALl85JseosMifOngy3ktbbJcTbZgSGGryhtYwJNpoE4mVzlgulCatM8QNLO3GMFUXxs0jNLRs68UbrwqRKm6P80OLM8k9j4w91nMPLyyQWuXjzZ/JjFU9vG6wXvNQMddao3OFtmrlZFQq57sirpjHhZWZWGV8qyKq2G7Cfud6fDXaA7b2FPTwdFu1McquChptpdCnV4ENLaJgEbMzU0Nrds9CVULiKQlR5XZgpufR4rlxc0o66JnV6K2dhV7nzshiTMV7z/cHl3MXCSgUqrQ/GxhmB5rpxnrs/DAk03/hdTIHTaZKqaK2I6XC+5QHmUX1ZF7Zhm80mcBExeGO0pqVAXS73DvSRoLy/W0qhbggkA7z2wDMMkkPghcU8u9o2Qkzx8W0NWJCppfw2hXlvHoK79iJUJXhwKe3s02bKKzduHZOOU0Q9j8XSrMrBW8yLg0o9B4QS08IDGzRML2+dDpQyjCtlEqkdNlDrQdwhgetbr9z9VYm16O39IZLdEwxD9dNUfR2HTHm2qgRRTwUUhKUAdpzMGmAXr2pfU+F+ecqDGn3M1ZBV35oKJszns3zp3Pg/7TZsMy8CVNLwjSTvMb0B2JUiREYk/BYB2HesA4MLwRwRGhUyRjwX95O5oBm/FIh7QN4zvGsQpeZMxFvQ5c9j7F7n2+sYfov2ioBpdK6Rnto+/4SLUckjdIGaNFhpfZYKpBnwNvUjz+tRApXbN1UzskQr9juK3xP4S0ej9+eQ+3oDc9pmBsYNuRtznKQ14n9eLRHQOwP6TXTvd6GNWBNifa6mOe8PYdqLpHGBUVrZvReJiwKlwnzz8O2ahxWR/XG12nq6md7aHDWgY2c0SZcMysxrH379u289tprg30tg0bTxLkDfuYUubgH3cOGoE1WipYoHDoMafdtaLSeWQ1b+gBTrJhXmOxpjLHVJcPn/ToXA3vu/n/2/jxOkqu684a/90Zk7VW9V1dX79p3IQTCGAzG2IBtGGMbgwFvg5mxPa+feWyPjcez+H3GM/M+hpkBe7DHeAxjEAiEDBgQICEQYBAIISGkFpKQWr13V9fWa+2ZGfe8f5x7I25EZXVXdVUJCft8PtGZVZWdGRk37ll/53cC27BB4X1F7wgFY+1EQ//jIqAqQcIa5vvTP+9PNCAf9790xkPcN3XgRjMdmdAS1v7sNIR33HXvsv5/gLTnDkp43hS+nTmenwFOIe2JCOlUneToDOkVa7CxQ9LKSQm/M4Z051rSSUcy4isImRLM9Tthq3M87KHtod89ryAs8/r8Y5Bqz1Z4Pu7/Pih+QoKTHA6tPcwOhurlea++klpkoslh7bRp1c7WLLYtyWG19kcH6To6yiWHTnPGSV49d02dF5w1hKzuyVYuUJZ7nz+TZaEAL5+T7SSquFLA/EanVOmt9VWoc/SbB4mTmSFBjTVsNUYRR1C0dG1OyU5OavK1FJjzrLR5qyHV6s88xJhHreSQdv87I8D4DPR3l9brjq8/ULQkmPICmqRoL0lqUZDu9+3p567BOQffOaMkmx7eHlAsgazxn0QlTgDn/eZNIcuEx2OW9tk6yfAM9rJealar5rntS7VHWdfAFo5lqe+8ndq+MyTi1Afyevh653jQJ7pKrWXyg48aWwl9vmBS2gnDTtgWXeucTGxokmRwgekIcRtQGq+v/t4mBtuRYi7pwz45nSNhdmTCUd+zjFOSvxCY/1NwvrBUY4bgx4yIsNE5aoImo31hwQD2xAymojNL61fVmcZoUSHA2dMAb7eY7g7Yto4feWKGMZ8kk8z3nzd9//n3OZm5pOD8kUce4a1vfSuve93reMtb3gLAn/zJn/B7v/d7PPbYY6tyghciWbYwG2SpSETZjxk0ytieQ9tNpAT6PWN70JrPwh48J8KcE6YEJpweU+IrlxcYpFerPvHjMNGs17DJ/G60glauR6c8pfsioSrMT7AEp7Nm8P2T6Bg865EPfe1IAm5sipzMKIe1y7O2otDb27Ws/5+PLosy9pkTmpnj0Qye50ncFAYt2O9NUNvSQdrXrg5KHITH8L7KYVNLenEfyb4ZX0HQKoJxwk0ZPOCZa+MkQcGi++xcm6dLggqq9pwPoYRUbd5BSWKCFSeY0Wl9g00t5r2GdaUwcDGsNkBqk8RiutrhBVt57f1DnDw9o7AwX7lzAeZed8uC1S73Pn8mS1z5iXXnKDCA9iqX+AIydVTM8CwMtoOx5XXLs5Xz9WZMhBrsH1Zh7ccM5FMu0CkXckoU+dAS1v7s25dO1M41/KNbBgLgXIixYoyah9NGa5fbvbEp2FQrtST09XS2bEnIpWZJaxabGpKaKWDuiWVtmvDxF22GR47g7ngEOTKuAXqmAac4gcz9U++5l5wEFQ3Mmx7S/mTm6G5qP7FxQrp/iqS/g7S7jcRq5bzM6B37K9HhdWq6tY9kBpITMyTOo8ac8BwH45lwrIoao4Db/6DKSujzalI6oMVOeMj5Zol0phOMOJKhKcxgR+uqeYw0sqYUoBvPIZAYsJf3YZ4cIRGHcY5BEY77ok+WFTPPi7FqP8ALuQxZCDE2JsqzgovGLuPRtmOTmE2La+PKxZoikWmLsWrWAJd0c93hIcaaGaHvXDKnwXmmCKTvpyw6ON+/fz9/8Ad/wIEDB0oGbefOnTz00EN8+ctfXpUTvBCZOju84N9iQrF8jf2jzjq3Coe2vmfZQ9uzTR0wPKlvMq9R8Jk/+zUTYVpgwgfmZwUmBc44mPTHjFu6sxJnv6DYbFP++UaKak8V3qcRfB02tYAaQbmCF8lCCRYxhn4LIyYi9fPIh2ygAzcyFy5GOTB/Zi/dgvLiF16/rP/fIHIIpGBpfzQT1jjHDqdV7jRzWjl/cpTk6vWkUHFQbGHMElt2UkIF4ZJeavvHinFsPrN9o3M84iSfE1oihuMHu4KwElIN7ML1GgK2+Bfko5wyfwB2aBoWnPdKKbgLsNpS1S70vCYGs30NB3cPsulrx4vKeaMIzLOmg7nmBVfulnufP1PlXAHeKOqkWOfyVqBijBowMgtbevWNqo6mLZPBBSm1A4WXW8OAhbPWMJVD2w2uo4Z0G7LR6aIdKA7Sn0UJzZCUnvQJ6bP+mHAwc4EJwNz0U96DUEGMUfSdWzRAB4GRpibGKOzdi553beGQtBBjDLYt6jevFfD2TYllbnqOWkNIn3TwyaO4Q+NaPXehskeRnP5HLIoajCvVPlHTdDzSFK71ybAEsE+cJLl8vR9eoeRSRa955KuYyB5Gies0sdQGO0gOzyjnilO+j3bRmef3V1FjUiQNvt+w2tWSldDn1aR02IfHnDDghBrk/DZGwJ6Zw86BGegpfM2YJyAKznU8rC35N0noO9/eq+byyFmMCNvEMZLDDrXimkkxVu0HcwWXL9V1C3ZvRIT+GOmH0fGTTjAjTUysM+MAvQW/GKjvYvy88yT1jO2J7z8f6KVR66Dn8ISijUT1ZOZ5OzKPPvp+yaKD85tvvpl6vc6aNWtKv3/Ri14EwEMPPbSiJ7aaYplfRbDANuCwJe9ZdglFFX1TG258hnmM7bGVfoaKE2FGYMr5Q8gdlfxngWmB+hK/Ryn7FW22UaAG9EBOREUWes4pgvOxaT8OiBaZsPlQFThHgsXAQIBommgdAbell2xsNtIEUjiY7vvfX/J0S3BQShUEQJqOh5zj+U3taw2z6ZPxKZKRjNqlfSQl+LrNg/ISQVx8GEN60RqSUUd6ZlYJ5nxwfpGDjkz4XrMgxyk7Tt/Pq/TMl+DYxfA+h5LBbfHBXSChipm+zbFp2NanbxLWrVpRiMQkVkk2awlpanLm9pCJHn1uH3PGIt8+rWQqPkDPPDmVNBw0/ok1OpZYZ8bOCvgATwrdaRx+RnYYozYBA+2FBS8F6K3NetCTpSAd6DGGHmsYISQzve7c1IWMzKmabFk9f+ZLsH0T/ghB+YTTn6e8XWxcYFK6VXJlGG1JCIGBcYXNswBnPbJvQ2exz4Jzea4qEOpsJj5RZtMiSO9ILTftP4PMgXSCqYN8b1zPLRMPdnj2rNtqSkbZ7oU+fXHwiAjP8f2uydQc6dgsycU9eWBeaueytvBPSpD24rk1kOzqIzl4lgRI8COhnPA8J3zHlVm+48r5P8GiF5ZwveKktADHnZKgFpVXb/OGZ7Gba9gSeV/ko1QNXhych8AuMSTWYi7tx+6bwAgMOmHaOSZ8z7I48YFeMe/8n6QsVTK/WIeOCGxxUqBt/XN7dk516YYwBi/Skwu0ceXiuTmSxGBSQ5KgxHDGcOqa9Wx/9KS2+vpquTSFpsMTxH3/9OWig/M9e/ZgjOEd73hH6fc7dmh/99jY2Mqe2TIkSTvO+fdWDgooY/sRv2mdRQM7g1bP+7uRGWA2W8BReeYavTnRCsGsPyZ9UD7pCudkxhV/XwrEvVoxD0cYowbkPeY2JjQKzsKYZ2qvBgZVqFFF4gpQ0X9u2GItQzYkVYKjCa6/HRkNpHASaXZ51qY4x8ZPX/D/DQ5KXDnPnLJVPtwUnpv5oDwLpDhTpJf3kbalBSFOlRAOKDG2RxWEpCOlNtiJfWrKj5RR9nfrHM9zwoNOYYXVyvk/keMsLOL7FVv1nA8B26SoHlg/WsaKthQwdNZXzmmx92zLpBg1S+p7z2NYLYmlP7F8+sUDcHAYd+hU0fcaWNvzGXlLd1eWc58/k6XqoMSO5gghuVLpO890zzDcgM2+ilAN7BaqvDK/Fcj49p8tBoZMYGv35zLQgzsxow5mbO+cnu0zPaEpIsz6pHOcmA7J6Ph3M25pFfSFnMsJ/3wTPijwAXlIjhkRTUivo6wngfEzZ5nH1F4RA1oxb0uUtT1qJzp02VpcH8gsZBbksg1KcuSrQv+YyU9jaUpkXzJt4xInHMkcc03hotAK9NQMdrCbpKNGmhhqwc4Fu5cW65RXWyuoMWOgtqOL2uEpEt8mljrVwdeKsD+DMxG0PZxbSFL/IMpK6PMQ+MatXCLCkHNsiyuv4gP047PYgV5dp7iFq8qx4sXEKEDP2J4mVmPCK3qw+89i5pq0idCfCUNNB07ynuX4/P5JylL1VcI1EmDcCZv9msVjl+2JWewmWwTl8dqF5wuISQxpSK4Yz77v0WV2Zy/d9VkYmUCc6oEsHqfW+P61Ai06OJ+cVEj37t27S7+v1zULPD09vYKntTzZsPnyc/695KBEQfpW4LQxTFrtu1NotDovWXuCdAGj55h3/gwUJ0JDtCIegvRpgWkUej7lA/I5f8zK0qrnrWC1QkGKA4BEDgoUsPZM4ITA5hYMjOH5AtKq5xxgwMJxv4HF+sAcg2xqxw03CiclJAfi588y+dCtd17w/w1V6dwhAFzm2NdUaM8lItimJ8VxjuTJMdIr+qjFiZO47y7PYjK/ch4qCJevobb3RD7v3Prg4/pM2eFxBRzsHws5znIkqCBhfuV1CJSxNpr3apxHLMxlcFJga29h7CrJlFZijCFps9jSWKcEm1j6U8u+3g6aLxhEvnCY7K7Hkf3jpeq5zwAtOahbzn0u4vvIGhnimeMle2YElrGDEj8/6f++ydsX68grCVbAnJzVF2ys8AXAOSuvoT6UjxENBQdj6LeGIaMVc8GPEe1PycYnmDfrHJ4VgV4TtXczrrBtUxFibNrbwvC3WVk8lLjqXIafR1Fy2W5CxbzYe3lSerQOG3rm2bwPfuqLC7ZyBcnXMLWY1HiIpg8Ot27kay/fRmMAmpd0km3bgPh2IZfbuX98KLFYQgI4T0y7ggxqj4e0p95fSZ4aI71sDQmQGg9pb2XzglQg7aE6m2zuJkFIhqfyWec2EzYI7HJq+wICKq6cN/jBhLYvR5+DrmHsb+bJTVFY9GBIZEpAGgnJ0Bnsls4IbhkFdudIRseM7XpYbF8HdkMn9sAkOD/vPJqTnYWZ5/JPpLatpKozg/0DOOmETaWkpkcdjdRJ1ld0ZliyJHq+gNhaXDnXQN1Yy6Y04YEdgzT3TiGC1wWhiu5h7c/04DzA2Q8cOFD6/Z136kZbv379Cp7W8mT02MPn/HtwUKrV8zVAJxrcORtVXQ3ah7epSw3rs8hRiSFcQenXgQeAtwPfBubQ3wWD0JDFVxHigDw8QmXGuSvI4HJCI0FH0wH0RYzDwfsIsKMFpFXPuQW2WMOwNTTwiAdfPXfrO7QiND7TAtYu37cNuBz53d/+xQv6fy0r1L7n7sFMq+ZKXuN7zY9MkDhId/Rhg1Erkb8Vxq1UQYgyz1hD7ZI1JEN1ktmGvr+vAl4nwphTcpwGEXs8P1jkOCI6IaHhe2Ab/ucLdcDC3qvC+5ootLZgrI2MnAj2+IRGD90t5r2eb99Zg21Lip5z/7g2sdQSw4nUkcxC8mgd97EjuINjaujCHruAbMuF3ueSOUU6zTRhuqmPUw2YbsBctiwG+ZWQVj3LIcBbA7S5gHbwFSCPZjHD07A5bV0BOkcVIW4HihObJlFSuKE8oWlyWLsb9wiIlvbumb0xG/52a0BeQZ8B7gP+BPiWFEnpOTQpvVgocbxeUDiYeVK62lIC+ToyPuunk1Dae7/7669joVauIPkaGoO1FmN1T2IMgwYODa5HXrADV7d+KgsF3LZF9Tye3NKMdNOME6b9MeP0bz8IgaKjXDnPghPulGvlGh88p2dnSE42sLt7lQguh7TbeTYvF2PUIanA2xNrqW3vyfvOc0LUzPF8J9zvtE85Y37l/BnqVi5LLlSfB8ndb8rBnRFh1CniCPFoscwHesMN7GBXJSg3506GWaMBekQmllglh7NXr8M+Pq7j1MRx3OvHLMzLztTHUlfz2b9vVlKC3qz6LQ0RToqw0QWkkR8fCjrjfEPHPJ15rvbXWIzV1gSbauXceqh7mzF89/JOkqOncFNzxbxzrzOzTJZFZrscWXRwfsMNNwDwx3/8x/nv/uAP/oC/+qu/whiT//3ZIIb5VddwIbZaw1EfmGd5cO5J4QZ6dJxa0A5QBHjP0Ix0XFkLBukh4N8DXwH+CPgOPjD3zkydxVXPz9U7Moaf0ws5NDPMNzehDWB0FrbUyBmHoQzNPMd+qxIbhWrQBqP/N5DCiUXH4VlLNtiGDE/rZ8eB+Q+qFVxAVBFGY2R8BUEy4TuZ8BwPN7dOlMTmqbPULt9IapUYZT4re0WNtKicYw1Jd41af43kqUnfc+7JcZwmBB7wsyVL49TkB4McpymekNEpCeOE+Ee3TFIqys6KoJBo0Mpr0bMcQaOPzhVV81JQznmz0AY081yL+l79uLWNicU9dQZx4Nq1cugeH9UqQgjunEC2+ptNmg5mfUA+k2mQPt3UxzkfsM80NID/Pkk1qRnOZAQPi/ZkcDmJJj7BMlyHgd4iCG8VoC8gcTIzjBElwNr9faBkqOC6a0g7uJgUziNcnun9yyWCSa/n6mgy+t8CdwO/A9wvausCumyxqLGFEGNhBB4hEVbiC/Cw9vH5TO3nZR2OJF/DAM80BmNhY2IYNgY2duIm5pQ52nknE4VwNxzUnWPGCVNOCpi/K8jyQm9+6M+f9HprWp79LUalySR5lRNOZMKQE64KiK4nZ0l29pC2pdQSZWk3sT1rgS4yvg+9FbQ92dlL7cCZvO888SiY5znhYZE8MRTfs6G6/2wX8YmfkPSZcfr8QiexBH+2hBpDCY1POmHAw6FzEs2RKUwCydp2fQNrygH6QkijOBmTWpKId8Du7sVM1uHUNP0CQ5kiw8RpBd2Fmef/uFzLRUls8+Ln46IJzPWhkBe1AtkTU5j+pbe/BjHGqL9iA+LI5GMoO3raObVtHTw6o76Lc6o7PWs736fq+aKD81/6pV+ira2NkZGRPEvx4IMPIiK0tbXxxje+cdVOcqUl2MQY3hd+vx044p1WiRyVzIDb3AYjk8UbVSuvq7h+OTwzHIu8WVplqD5fec2d+Io5hYPSWIQhrm6u8HJBqz+b8NfaOax/kfVwFS0R1WGzZxxuBc08X5BAVP0JPxvYYjTBEvgCxJPCyUAv2Wi9HNH8IySFC2QzccImc8KxTDjjhGuc01nkDtJGk/SxMySX92iLXRyYe+NlqsrRmgL2F0HgrTUkl6wjeeJUmRwnE27MhIdCpYf5lfNns4FriuQcD5ORIzwZOb6TbmlcD9C6euBQMritTkgDYiUrZr5aAXtkAraeY17oOQKE3B6mGqAbP1qN1LApsey7bC30gcxB04C7rN87wVLMyVtlj1MyUXb4OacM8SEYn40e684fi6+gx6O46q4Yx3Wh0iqpGXTngAtkYlKQifkKrDk+AZvjKkLkbJoFIJpeSmixKEG9xRpGDDT9lAtFjllcfydudE59k2cJWgwoOcYuen5X5XWfoUCLhcfF7MNWiDGhGKMW9lqoAIWktBFpydReWozzSL6GPiETqucbjWHMgOtqQ9rAjU/n1fNmJkw6YSJT8qpAinfWJwvPShGMnw16SorpLqFHf/oCE4nPBMkTv14FNX1lzGWOx5rCZU7odA4rQnpwlOSSPm++tHJe6jVfSEdWEtKBELW2q4fk2AxJM1NC1AwSJ2wXYVMGj7gimRRXzhtP3+VZFcmkICM+K+UE0IVOCIoT0bFvO5IJnSL0uYIMzgjY4TnsYCem1dhJvz4LSj6FxldefQXd1FLsrvXYp+bY4iv2zTCGywnitGc5jFT7QZCAslmun7wQYmxYhC1OUSUWbckL7UB2PMP0L739NYg10bx6a/3Mc/Vd11n43iXduENDSJYpT4dH1Lim88riGRyc79ixg3e84x1s27ZNA0V/bNu2jT/90z/NieGeCbJ248Xn/HsreF8I9LaijO0lSHSirN+ysR0ZboC4+YF5jOleQRERpJ5pFWi6CVP+mGkgi4BmBiciPsVXVF7zY5THaYXq+fngxMFfqzooAON4eF/oHYHC2QwO3vAEbGovsiWlAP3cTmYpriBKsBjDoLUc96RwYaSaM+A2deBGJvzJy9OaXFkNue0Tdy/5/4QexHLlXLODDzrh6szR5iTvC08OTJCst9T6u8szXsPz2nwVYoyvIFQcFWMMtUt7SQ9Pk9SbSo6TCYlzXC/CvqZwNnMtyXGeraztmQjTTmG1wUkJowtzMkYp/r4Ux7dV9UDQ4Hyb6D1dVBB07yXiMEenYesi5r22EGOMr9zpWCfjK+fGGrZaw3e3bqT+im3MDUC2qw3Zvt5D94mq50sjWVnyfd50vvTkA/PZyjHnj4bTAP48JHXiA/IY+RCCmUkHcxfgYEJZN8c6dJgw47wIzA3k83rN8dkiOD8PsVFVcn1JZPesod9AZg2j6HsFtJhs6sWNzWjiNQ7MhWcsWgzKzl8cSP9w5XU/Qblqvii75xFjrexfnpSWYO/AYPL2kpypff18voDbPvuVRTmahc0LzqYGGOv9yJLTGNjYhzvd1PPz1crJcDREgyOZTw4b/xyShoEwdkbIddkzdd3PJY5y5dz5wFyc9n0/x69RcnIaezYj2dlHagw132/cqo1rnlQg7eG5XddOrROSo5PFBBRXjBN9IOo7r1bOn61ohRCYT7oiyTMh8LG/vzv/3bQs/X7KA3OivSeKfNieE58W4/DMyDTJQI/G4BVUw/mS0XmhwVdabaprbw0kl3TDgWHWOkeXOI5n6P3kK64uzDx/di5fLk3R9paAspkSmPbJ6QuRVqgjgFGnY/DAJzWNR4qNT6u9uoD211gS66vnITBPte98ozUc2NQLImQf/y5yeDxnandZGEO5eFuXeZTIciVdyouvvfZaPvCBD3Ds2DFOnTrFunXr2Lp167JPYqVlbub0eV+TQ8OkgPcZtHL+JetJ4EwBaRcD2cYu7W05U9cxKHFQF6B+52MmWIKIE63uzDWLilNY9MR4THCCtCeYKrQYFmRzvsp/zyZwHOjAV82BNoGG8ZUEA20iCxqiQjFWekeAM/gKApGy9NUgG67VyCy8tL0caYfvdp7LaIwpZpH6TRzWcMCi8D6rrPsSYJr97bjhOuIcJvMfUEqurOz6rbZcfunSE2JxYB6ztEsmPJQ5XuGNW5LptU2+e4rk0n5VbFV29ppd2JkMGec4oE8MybpO0nWW5NAEyWXrPJM/rHfCTifsyYSX1uaT4zQNtF/wlfr+SV20nzUQMYYeV0F1T7spjJMVVcgdLLznYomrgnGAEMjgQltCgNdaAXO6jmkCi5j3upDkfqf1vVsm0+A8NXy+YWDrBtyP1pAvHyFzDskMTQ+vzbMtS9hrS7nPRcuEGniHYy6DJ0fgO8NwwwBcttl/EX9fNjLEk2vNez+RnCxsVgrUSfAN2ozquw6ga5HrFt43XrP4GAOuinRlTigmYCcaegKbuxeGtZ9DSlMuJEIeWctmmzFsDNviKReDNdw3TxQBQisyzWegyoyT0XECa130mp8HrsBzsqC6cE6U0K1NhOQcdi9eu9gPGwFeAsUYICmSLFZEmdrXm/KeA0gMl1+yncVczHwNE+NjjKJ6vsEYxoGN63qQ0VnkCqiL4LxHLE3IUh88BPK/iv6In4PqpBAIWQM1r7eW5Dw+A6TUxpUJzWZGlgkzmbA/E34pBM375kgvWkuSJqQ5pL3MsbKgmGhto8MaS7J7LenhWZJda3QCir9HbnTw586RiSUzRm2y8ZVzo9d+0VW0Z4gEvTnjj2D3MmDzRTuYdKo7JfpinYvUIwFVEPucInBclAyOsOfwtm94AvvSwXJwHj8/hxhjkMRC4vJxXDa1JE2H2dKDTRM4epYt29dyLHPsdNbD2q0yftcsbhE2Nfjq8X4UClub+HN5OiW2fQFZFKSGrl+7ETrM0s5tIdTRuKMgg3MhKS3YUw3MQK1APkC0t1i0/bGQj8QzqcVmDpMYBqzlwPAJ2k5npDPAJ4/ifs7gLt2ct+QlAXqVLPCdRPKEWlM08blcWdSer9fr/NiP/Rgvf/nLOXjwIFu3buWaa655RgbmADNTJ877moXgfdvQkTLNQIyDyeHtLjG4jRZGp4uINLb+K9iXICK+wtPUAH2mWUAyQzWo7nw1qNmyd7LqmMTF4Sbw62jl4NMUwVDoPQ+VhHOxTS5k0MPVXw85Q20+Z9n/zExTswH93fOhKrCkICF3MP0xaA3HfEAueXLFkG3swgHTZ+aYQSteDSfFGLGsQIQ8G+T6ay/Nn4fzdlIQ/ASSnxiK2xDKlWnANYUTmeNYBtd7mLkVSKbmSI5OU7uyj5openRKFYSFjJuJXmeLx8QY0ovWY586mxPjJOLUScmEbztH5iF+OQo6nOuzZF2C5MzAUkxLmBa4H/jP6GOoHMTTEhbD8Boz1sb7PATn21wEqRWKmfVDU0omFidaoFirRVi6JNadSWCMNgxaw6Q1nDVAfw9ZE2RsSu9JDxXLk2FLgELE9/kiLkwBuQjJgL0jcMsxeCzTxydHysG7h7i32vd1KcjEpqXcn5tXEaI1XKyUzAZl3TwKDAQiI4kDPMEOT8EGo+tX1ZcWzrd+If8SdGYeHyaGLcZw3HpSOHxiemMHbrSphH7VfvM8ofnMk6rzF6zjMLALeAvwLQrC1HrkWJ2Pc6W6dvH7B8RYmEkfcz5YQVu51re2eddfe+miPLLSGhp1NkP1fKPR+0c2ghufoCHiK9+O6SZMOmHKw9oDbH2a4pjyxzSqn/6rfwxTXBrR8f2Q2MYFiG31WEhi/oGm04SFOGFPU9gqwnpxmvA/OILd3e0R7B7SXrJjC5+fCZW8yOYFZ7O2vYv00Imici7aOnZVppW2/RIlpSUibH1mbrFzSkahO/Nxhv7YcvWlBVosQo41FqFLqjxHeeXVCUPOz8gWyScCmdkmySmHyceoUQ7QF+Fnhr5z4xEUSbB5xmIv2gwHp9kCHPdwdnEgzvcse18mvi8DMWzoww9V6UlXQP4DsuWs//3T3U5SGkMpRVtLjqzxvwu2bynvW7V5QYeOibDJ/5DHCwJ2tI7d2FO8SVgzE63jIsQaPLQ9KcHaNyWG3fvO4OZAfKVSnhhTrg6hKCpUrr8LiDonOSpkMnpcriwq+dnW1kZvby+Tk5MMDg4u/1OfAZI7J5Rh7f0oBHrEGHYZg0tAGr5ybg2ysQdG6nA58yvnK4lfcaJwy7orIJgNp783RiuTcTLAZkh7GaJT3QTh5wytmA8CrwH+NfBrKJFN3ndniqAiXaAiVKqYR89D310C+ZzlQPAQ+vAYnYQeoC1ZAFq7iCCB8tqFpNYWYzjmK+ZZRArnMsPk1jbs2Ax2YyfWpyjDaBPbFGwaIPjSMnljn+bsZVUyn2GNM8dQOPbhViT6W/U1pTmvTrkMHs7gCufo8ZD2VITkiUmSwU6SnjaSuEcr9N+lC18LY0PGuezYGAvpxT3UPnaQ+iuckqxYXYPnZcJnmjp3NrNJmVHenDNx+YyUHEYphWP4HeBt/u9fBt4B3CSqiFP/WBPfj3+Oey2scxUZAzAkwqBz3rhFVVcBOzQLg30+OIjWZpGwaCj2WuKNXeKdnLZEobXDmWGtNci2PtyxBm4z80nhnEPk3K0rFyRxAiBkdx4cLr/moWGtnsc98E0HzpacNSdCnaLlIIzkCiy8abgvDdrFAaQipIv4TufSzaNAvwS2WiKmfbDDc8rTsVBC83yw9gUQR9ZoUjO0AwWuFelrx6Vo//KWHtXK1er5M3BTVp33cI2HULv3CuCjKEHcCygC9Bq6/xRF1rp6vpBzOYMGtZsipIqlwtR+ojVTu28gX9R+iNfQpAZTVwZpk2jf+ZAxyMYusrMNZpoOsRYy8jFBWab3tsOU9MYsWvkfQae5hP78rwDvBH4Ir8tMQdL5dFTzQq94PXK15hGll/9D6efwPA54XdPlI68ez4RrM9WXyegkyayQbu/Le83tApNJFpRSOxd5X7Pd1Ud65xDJXJM0sYpOSx0Jludmwv2Z41KblPhgGqZoPVvoUxf8/ffRV4mTOCFInwEeRu+rnwaeL96WSNCdul8WQqzAfLsXfB3JhGEnvNhJzu1gRcng7DpL0r6An7mY/ZYYJE0w1mnlPBxNg72sC/vJIXbPbOTernYPh3a4zOKcI2sKUvNtFK5gcA/+V3ge2tJingwo0Fk1UfPUyeLsy3KlIYXdm47sXibe/fN6AOtvcSe0LaIlJ7Z1sa8qIow64cVSFPBy3Tk2hd0WceTAojlWYsn9+ZqBeig2WfqM4+HL1vLSgxPIacgScJdtylvxXF7hFFwipeRZXcotKMHPm5aFz2Oxsmi0zIte9CIAHnnkkeV/6ipLW0fveV9TgvcROZzANmM4YjwkOvTfBQjYpi6FpoU7K9cWetutWNW17oPxZgTNnMvg8WH48HfgseMFqVGjeIw/v+qYBGjauP97P7ADuB4lhQvzP6us7QuNl1moOjEGbPDPTVTBy/vNBRiuw8ZzEDwsgRgn9nMSYNDAhDFMBGI/Y8iAOWOY3raGqbGmVg2AKSdMRmQ5gRQnP6Rg1Z4SJTD5flRwnYS+wSK7+t39QznBSiD2CUzgMfnKZPR9zvosbFC0EiDtznFj0ycpMp/Z3ztGetV6aobKjFd7blKcIFViHG8M0y3dJG2QHJ0oZp5nwk4RekSdpSphXVOKEX9x1eSZLGHPBSciAz5Xec0dKOx9TorqeqhSLeq9pfw5M8AZ0XEyOTxMwPgqXnLsNGxd4rzXipSmJFgPEfOtQFusZcS/h9vWgzt0yn9/oVklhVtkdnn/wWOLep1muF25BSgTuG5z+YVX95d1a3isVM9D9acerc00WnENyId8FFd0LOa+jPVmrJtPoFXyTcFBySLGWgFzfAo2Ly+4a4U4whi2WB0jSkhoWj/lYnM7MjKrQVwrWPszTOJ2rnh/CEVSugP4Z8DHmd/nG5PDtXx/WiNWxvzf1+XrVTC1a5JFYGwSAutwZQ33Hz2+6O+YFxZCcswqK3jTGh4EDrbXaHRb5k5MUfeoqTknDHnysc874QNocvDfAL8C/CLwfwPvB75U+bw7iIjKePpIOp0o10Pg6Qh8D8HWxbYvZpiPn4dj1vs1SgTnlPQpU3tzNZpASQ7Mkexej/WjIdMW/ebnlTBCtHIkXTXSDZb08GSevEmcBiM3ifCAK+7VOJFQl7INL3GWSFHFnKock74quxxm9AuRwGtTQiqgU4L+CLjn0BC/jyaAYr0Z0Efn0p+x3XPRzzjHiBO2hH2HUf15rIEZ6NWA/wL9TED9HW/nSgF6Tzts7mXn4WnGvb3RirnDZSBZRj0TvR+lfA8HX25Syms6Ga+xK3hpAt/D08FBEJKVYW1m/D02jZ5jFe1XZ3HnFevMUtwgcALfcy4+MBef1Dw5ja0ytcOiiwlBQnxgjEc/GIO1QGrIBjfyvR/fRn0dNK/vQ7au13ZPp2Ngm06YbWZMSdmXDqS+U9Fj4BJariy6beiHf/iH+cY3vsF//s//mTe84Q1cfPHFtLeXu0Cvv/765Z/RCkjv2m3nfY3BOyhSOJvB0dgGHPXOjqNwVJwBN9AGj45EZWMp0j/n6UtYrIivLOXOZXAenxiBW4f0RY8ehX9u4IqB4svYzKfa9ARaQdodCu3rRxc/Qavnfwa8Dq0c5FUEKSrorYqk1eoBFE7KRrwzEs16DT1ARoCxGd/3ynwn0yyygkCUYJHC0ewxhh5rGbEZ66wmVurGUAdsfwc8ebo4l8xX9v3amaYo9CUk5qRwhBKjWcxOtC/46chggg/MJSYNU2P35a9+m5/bOZjfilA4iuHIf1d5jcMb/6ZjyjmebApvkdCnLKQnpkjGMtJL1LAVkHbLoisI1pR7z32QnmSW2qXrsPsmSXauUXZcUQX4vKbwYM1xnROa1pQq5yFojW+ZUCWJ2xpipJOJj6e5ktCM958/XoFWzIP8MMWYp1SKCkKNc1dhY+MWoyiOAzUR1jnK/cqZkDQFM9SE13RXgnKzJENnjFFH1v9XaxWxYxLDYKLTLsQa3GAn7iuzSL1J09ZwTu9j8dBz08zAJPn3WUg+/5Vv85ZfGfS30jnWMIdbS6E7ncCujZAM6fDwk8CkIYe/Jw6a1pcCHGQFIqSEMPEOyIOogwm6ju/EV15Fq1x1WVw/bitIu0Or5hvQNQy6Mu5ZNsNTcNOG1o7mYiCaLIA4MjBodMoFBrV7PqkpW/rIxuaQPJsgBUqsgoCIydLCUejpp2f/hc/NCaOk+P1x4Dp/Tj8N3AY8DlyDrm+oms/5dWyT+QiWqnMZr90AEUIstCUQkiwCoxls7NAzCE6mv+ZfvudBLr50+6K+Y773/P9PrGGvGL7goZ5/mRl+e1MfE6czvrlJGDPC8QRmU6EToS8T+mqanH8+iprbjPbkG+BRdNxqkB8n6tcW7YluyqJvuQuSYPcCdLYuhYtV/diFfo6XzuCrk01l0nZO2NcQupyw3bdWpQdGSX5kW65r0mDvvO2bN5mklZSyX5H9M4Z02zrSQ1Okl60rEtNOuD6DP8scI86yzZoiMW2KKty8T17g97HtC6dSE+gwQptZfTsYbFKweeF5QGJ03fNtzuwc5LNoYShUzvNHdO+1kpYFJyeMi+r6AVCfIPibx8+S7F5T9JtfgJ8J+ItoSBoW23A5EaMB7MW99O4ZZ/bSNZx2jo2Z9S2SjqxpmW46XJrMS9THz8M1y5+Hj6WosBvUTLWhfuhqiULuozYfUVTNg+ikp1cCz0V940TU1s16n2WhdQvSyuYJMCvCTAYb8TrTM7WbRoY947CbIo6cOEBfRLU+SP5frQ/ME01uGmPotzA8uJ5Lf9gi+87mJIOZ01bQWZ/IqzeFpon8UsrIyJCIml70WS0siw7O//iP/zi/kd/73ve2fM3ddy+dPXqxIiK8//3v57Of/SxTU1Ncdtll/M7v/A67d++e99oTw4+f9/0WhPehZGmHPbQvzDrXuecGt6kTORmCOSkH5gLFNlrWly3KhiFFmIkSGsVy/3G4uL9iAEB8T0x1E4QAegg/i9V/3xuBXuCraPAQ9ySfiyAnV5SVjTbq3183b+ibNOUKwugkXNzbsoKw2A1nqCRYKOKLmoWbjeHXMFwRxR1mfYqdnMZ4UrgQmBvvdYjzpyKFcQunFcNYnYFue24I1kqIiOSZyymn6xEgNK9482uY8IsagpvYEYViTaq/A/KRHw83hR2ZsCEPzsF+b5rksl7Sms551QtQdlTOJ8ZX3nSguckPayG5pIfanUeo/+gWksxgE71PrhfhbzM1uM6a3EEJaI4iKC+vT3wLtfpbYvRebDtfgLeC4pgfoF+NBuR70K6O76DOcUI5wJslBOutoaNVEqfweAzY5iRnhzYSkcKN6rxX1i1t3msrCbB2K756553WQWPYYw0iBtfdjqxLyI5N4C5ax3RUNTeZg2aSJzKlxWeE3/3cL72GCVEHs80I7WaBQG9eZd4/np7TBfjVq+Gp0/DFY3DV+iJ51HT+JjOQZqo/PVdFSGyG9auOofwccIMUcOgaukcXWrcg1XULe3IM2OzbgIyr9CzPNjFTtIa1h+eLkGDvYv2ZGCXGmbAZE8awzmgyWgxIfzvZt0e8efN6Er9Hm3qdM1MOhsP1ClIDaudauxWUcA6x3Qv3UmDCt6jNezXwMeBKyuSTse2rOpyxXa2u3aZwAqLXGKEgpzozpy9swdSONfz6r7xm0d8x2ChrfZBg4BvWUDfQaQyzFvas6+LG0TrPuUyD7nUIa9B7S5yij4wxubeS2zrU+f4vwH8AfhYlkQ3V0DhwXE2SzoaUK4YBWhtsHCwchOci5Z8NKKeJr4o97ISrnO81H55QU7W1F2uUpT2Je83P0cYVS04iFvtl3jlJd3SSfu0YVrZqMOp05GW3c1zrLPeLsAWT+2CtuCxM5bHl9/aidg9qRt+vi8UTjl6oxKiVPEBHpwJ9BTjzZr3PX44mwuLgPBSMkgUS060KTiLCsNNWoFpoJ3GiI3yPz2Bf1K/3R+QjFxwri5OwpiZ1OlKtqWRiiTGYHX2Y+4e4ZnySkc29rHcOySxZU6inDtewZFbbSFoG6BTBeECmfBe1NT8FPM9fn5rXSw2jemm1RKAcfKLtCCEp/RXgT1G/JSQza6IIwHSBVqD4vWM7EfTnqNO169EFzZF+ZnwG2wamM50fJyyyLSHIvHaghq4fFgas4RgGWV/DfWvSzzo3ZE4RKFnmyDJLIxOaiSkRKgfEcVg7hyYylitLItw8F9xktbNxH/3oR7njjjt4xzvewdatW7n55pt529vexs0330xnZ+cFvWee4IyCO4NWzr/jHRNnNCgPxGJuTZuG3+PTMOjh83kVwTuEy+3Ba1X9EYFt6+CJiOzuWg/PjDKBACTafx42fdUJHAa2UFRNEhTi90lUYebQvkgZVLPk52MbvgQKMqOQyRSwTf9dRjPoj2a9xhtvkUozD7yIfFOBx4ARazhtDf/Jwh+L4VL8e6/rwjhguo7p7dC+85Da9ddarCk5KgZvOCIHNGSjF8sweqGSUYZ85dVzWlfJafG7hV5jMscTTeEjmXBTJphmIKlxpHvHSF6mFQQbw9KDk7JYOFHNQt0U96i/T2vb+kjqkAxPkWztJXXa839NIpxyjsOZsDstkkRTtA68YeGgPP5bWL82eXoqCK2gteHnOvBzqHH7v1Cn5XLUuAUHJTVFD2yrLHkM7Yv34BCwM5Niz2VR5fXYDGZrJ1zIvNeKhMA8r4gaZW4fTB1DdUMToyzP2zcgR2ap7/aEP76NwmRApk7MQkFlMDfWFOvX4b9nZ8XBFBGFtAe9GXSnCDx5BrZ1QEeqQfk3j8P94/DDmwv9GTvhiUNqtlg/ivX7CdQ5CfJyyu1AdbO46nmr6oHgUU0hGBfK8L7RKUwP0HHh/ZNQ6Mw8wEOPLgtrjOG4MayxPjDH4Da2IcMNmuJoZEbP22klIX9MzLyKUKxvUh/IZX7tVjNBlu+1yr6bQaeIhODcoHbv14GDwMUUjmYN1RV1oyiGOKFQvSdiu7cJ8vatfM6y+ETL2MyCTO15sL5IMfhAxmhiJbGGH7GG+6yhYQxrBG5cZ9i6/yzb2IQx6vDmyAf/PL+FKD/OANcCr0XBJnmiiqLvXK/xubkxLlScT0qHdp+AHKuzQPmj4pqaymP+3AnWV84lEx7LHG/065TsmyXdsYnEKqQ9SW0Z0m6XgKEt9Z0Xds/u6iP99FHSiTmStZ05IsYCz3PCN5zw6sTbCSmTwS10lfPvaub/3np3tMOTPFr059WsvIYArBqgr/d/fwFwH3pfNSjQYsH2WfR5d4skQnDT4n0tTvvNt/gPzHXn6VlMBnZTd26j5nGsLEU88WniJ3sk1mFSg3UJ7NrM8w7OMdTfy5VZEczNNIWmdTTTBGeLfRTOv+rHNYAvAn/tP/IrwP8AXiCFL76a+w6K6xv7GHdUXnMncAPeR/E2r74In7iVzRNgxMHmKE4IdsmcbGA3dPjxvJU4Idahi5QY7ac8HVpc2GAN3zHA2i4tNp6awW3spi5q3zKnSb1GJjkPREhUNinW8jEUjfXw0k6rpSw6OP/VX/3VFfi4C5dPfepTvP71r+eiiy4C4C1veQuf/exn+drXvsYrXlGd3L04qcL74uD8sO+7Ex+YZ0Yr0llmkS01GJuFwZ75gblb4MMWKSUnU6L3FaCRqobL8LPK1mjVp2QAgMQgxiE1heVXN8QQWikI3zkBXgZ8AHgE3XRx712x8QqFEGx81RGCcgUh77vzED8LcHJWX7i+o3BKKhC/xUiA1+Y9sN4Q3YWuGxaaxvD/M4bdwEanhDk/1dPB8fEZXFc7XYlCgLt8gJ5laiEMxWk8CnwBeI3ATf56zeUO3Oo6mjFzfqigz6D9W59HkQ5X07ry6FB4zaQ/pqLHCRGONB0PZkJbJtyXCS9tOq4W0V5wB7XtvaTG99wtlRQnSDCClSNJLLWL+0iemiYZ7FUnQoQ2EW7I4MHMsctZMmsU1icXFpQjxT1eM4Vxg/NDsJYjsWNSnZRwGM2Ib0eD9L9EDXBCIGBUZ2UW3+pWMcQhMVbtORfgqAi7fOW1mHEeIH7TmG295aA8hvgtoXIeI1WsX09jMzb4Kvqwg50OZLBG4+ujNGSzz3QKpukgNUjT4lJ1tVvdv/lnSeFQOqO5BQt0xKcbvLZq5VyAJ07Bleu9brTwsm3wscNwwwZIavP/X9MpgSRmXoLlasK4O02mXEqZTCyVAhZ9rup5q8SNoGRcWzM/QiaC91kBMzyHaTXdIn++uLXLXy7lpDTWMGANwxausIFrBdz6TjIDkydmkM09Ogki87PrM9G5voZ5zrhEnxejjrA6dm61nMt4P8TXd8R/13XhnNAWgh9Hq+e/T9FPHRAsdSlXz8/FNjyCwsRDa1CeIPOVc0brsOEc00mWcDl8qyQ1gTQ1tFnDdQm8zRq+BrzUGnZv6sKeqmOaDpMmUbJHcgNuTJSI9qcQoKwW9QXeSbGmMaS9KbqeSwhZFy2BRT/mAZhDK1J3oWt2zQL/t3oZ459N5rBNDeDuaWjFNXE6oSQ5NI59+XZv4rRyvmRIe/5BcSBInkAztYR0oEZ6cIrkug5SJ6QObCbcIML7MmGyVoyvi8//XN8LaOkEJOj9K87nZFE7WJPVq563aucS4AC6P/4IuAd4NzrKcMCfZxglGvRFSkXH0zroFxeNUXPe50Qwo3PYzTVsWLvga4YWrqV+fwsmtZiGEsOZ1EPcDZjd7ez48mEeeO46XGpwTWGm6XCJJUsKkts4IJ3x12QfsB94CjjS4mPvQBP5MfxdVtl3qSZAqu141+JRDxRrFaDttXO047VKmgow7hwD/o9FUQ/MyTlsf7fe6y0C9KX4LBAVY42ijYwP0jcZGPUJHLexFxmv09zQTTMTsqbQTJUzp9EUmqnqpHD++4B/QO/pWfQarIQ8K4LzyclJhoeHufLKK/PfJUnCpZdeyt69e+cF5xsGrqy+RUtpBe+zwFY0GD1lDJutD9Ktd9QMuIEe7EhdK7BQDqBdCw25FIkquOXKOXDgLDxnAG7aBJ84CJ84AG++tHzT+i8jJsNhkTTJN0SQ42i1zqCbS9A+6p8EPoX25AWIX5h5XhetfISMa+yUVB+Poz3t88iM/MZjdAb6k0JRxkozPF+kBHhtUBAJGvh8xSjiod0Y/kUC/cZwxhpmxHBqQy9zY/ClbTCewemmMFeDbid0idCNJhc2AmeBW/1n3Q38T4EfNsW1yWTpCdjFSj6KizJ85iHUwK255Xa+8ubXcBXQjQbiZ1EFcQZVnkE6gT50DdcAPU444snf2pyQOce9TrQHbN8EyaUbSRKrY2RKgblZFKQ9iEkCxK+cRFJoey/JN4+T/MgmEmdInME44SbnuNVZDovwExiuoRJ4h+dS+bnyNxP9nBh1UrLodeeDYC1H4uA5rjrNoG0fu9B79fXA1yggbLmx8/fznH+Ms9HBuIf9FvKDAhwX+GFfoQ4Z6NBekhw7A1ftWCCwW9p1CLojVLWxWk0wiWPQGoaMZYdxZIO9TNeBs7OwtluTiamBJrhEq1eywO0UVNZdt9zOa978mjypkkiRGMsDvEAEV62czzTh2Bz8TF/xHS9aC4Oj8PVR+PFBz+nh723/6FJLlphS8iOsXxPl6PgPaNLupykC9FBtrYtn2W31vSqoo7gVZUzUScdREGmGBOTwNGzpLjknF9I/aT28rxSUCWAMAxaOGk+AatEkhbPMbW1HTtXJNuuaOQFpOiQ1ZBnKcEvZ+Yr7JmumWE8ri+tPvFBp5fwJmpTeSnHvhuPngH8F/JL/e0pRpar7xzYfzMTO9by1A54X1gw8NNNXRh1wYuacTO3vu/l23vqr/2xR39EYQ8236bQnSl5LanhOm+E6nwGxHTVMB9rOsn1NkRMgpMMEa8sFCkGTtwFqfCVqSw4DF1FA2jNToJoWifZeklSnXDTQFqB/5//+FdSOrUdtWs0fafR83iFCZ9PRkwmnGsKXMqEmjvc64Q+OneXi1JAO9JAYQy2xZUh7bYkpiADLjN/Dr3W6fS3poUmS6zZ4fgIhccJAJqx1jv/HCb9iDdct8xo+huqnV6MTQWIOocys3pz6gK6I9aZQoFPuvuV2Xv7m13A/8OfAn9A6OA/w9prXa/H40FzPiMLXx5zavVAMsgJ2ZIZksM9PmIz8Sxs9X4IYY5BUUSo5KVyAuG/sxrW3seboBFy0lobTG9glDpdazjYce1PLXmM4gAbjx9HWtovRvfUG/3gC+I/R5/4EZVuRGf15tYZktEqAXAU8BzgE7AS+QRllW4a2L5yYdpX3FhT5MCZhDJ63e3iujuEpzKVrMXmPYuSrLAXJ4iXXdUaLCtYrxY2JoWkMp4GNm3rJRmapX+7JI50G5lnmq+ciHDWGr6KtwKNoq+K/QpOZT1K0ACxHVmt/rqhMT2t7fU9PT+n3PT09+d9imTh9dFHvGzuYoepq0arIRmM4ai39JlNHRdBKAjC9uZNk72mPgIzGFHn4uThZckYnF9/TN69vsungyAy8YqvelK/eAe97FO4ZgZdsUXhmZOzFGjLEs83bUjXhGMpYGwx1IIH7KeBfoE7MdqKg0JSr58FJaVU9OOu/xiaCU1IQwYVggZE69PcUQXirAH2RkvrgwPN10A7cKPDfjeHLxvDKBC63Rit1XjO4/hrbh6e4JlkLRqhbGBfhhMCIE447YdQa9jEfnvIZFGKU+cB8Nft/gpGLiScyir7X6RffCKgyfz7aQ9mNKvye6LlvHiiJdcLeTPhvTkepdWXCS0VImk3Sx8+Q/PxO2oAkDswvpIIAFUi8hcSpc7l7DbXPHiM5OUuysYvECUkmdGYwlgnHmsKXEp1JfCPqjHVXvouJHuPfxwF76GfLRP8QqrCrSWgUE+LEwcoh/x3W+/PqQvfcf0dHFW2knI0OUL84Gx0C8lKA5z932AlbffUg9ConTjAzTewZtBWnVeV1iRci93HE/3fPJYBVhuM7DGwSw8WJRbb1wvAcpq/TV8/Jx6q5pjovskBg+SjwzRffyAB+5JwpAqeMqGpXrX4HSPu+07DJQl974ZSJwMsH4QP7lVxtbfQ3H6A7m+E6tHoew/yOovtpA/Am4G9RJyWhCNDj6nmrMZTByYrXLwSu46KjuGKm/ZxQc2QCrljTOrmyxPULti5OShsDA8aw17+vTijx/a9b+nDjjYILLnM4Z3AZNDOHcxZnTKl38hEU/vhTwHP9F7RoAiMOeFdaqgSoMWIsHgRb868dRJ2rvwd+i2JETkwOF0iYzrl2wKbgXIYgwRWj1Bifgsv6CmVVWb8fe+mNS/qeNaO+ivP7N7WGpiVPhhpjMGu7MSMN7DYKDgO0gm5FSreRQZFZMTFXG+qUPwjsJoJzSuEbrPRItZCUrva9VvketqCJsUCoWcf7LNHvGmiy+qx/rxAIH3SCdY6aE6YMjB2f4bKL+rFWg/LEE34VbVxL1I+mwrcSXWi7q5P09jEScaSZUR0vwmNOWb3HRPjjyJoFHy1OQOT71x/hb4n/+0nU1oBWPP8ceGFQjcYnlVbB9rmonatafT2AFn6ue/GNJMBvAL+D7rufp0AkxsF5CPRs8DmlvKfF/3PcCYMhoYmvnh8/g71hIOS+ykH5IieTzJPEkqQG2ygY201isZnDXb6Ri799jPuGT+J2r2NqZz9PWGF/6jiSWrqdsD0xXAK8BA3KN4RTix53UfA9/AoaGAc/Iot00GqtX7B1se8i6F56A+qnvBXlzbkBH5jjbZ8J3DDzE9OtWmHDc01K+2KCKwp5dnwG+0P9+gbLiBOCBKRYYg3GWIwtuAM2GMMYsL7f0LzvDHUZ0FFqmeCc+qRfFeGLAoeM+txvRh87KPbijWhP/u8u/fTmneui5Pd+7/fOe6yWdHV1AVpBj2VycjL/WyzGprz5l9+Sn9dnPvMZ3v6uDzI3V9QS77jrXu69d0+OBjxz4jR/99e35uu9FfjGZ7/Evif24zBIAoeHR7j5zi8y0d/OxNlZziK853Nf4LtHjzPlhCmB+/fs5daPf5FMilFP7/qLWxkbP51/9j33Pswdd92b/zw3Vy/Oz2u0O/7hW3z9we/mGmj8iWO868wDsKlTlUxHym3bT/Dwl74LB09B07H/8BDv+8SdOlKtrjMWP/r+T3P0wLF8Ezzy6F56PnV3qe/u799zK9MnTrMJdVJuvW8P37773txJmZyt85d//iEmZ+u583XnF+7lm9/ckyuK0ydO86n33MoYeqN2inDP7V9i/+P7vFMAR4aO87d3fhGGJ/V7GHjfHV9k/7HhfLM9/Nh+/u7vv1Raz3NdPwtIvc57//xDmHqdTgM9Brj7Xn76wUd4TmLoSgxzk2f4zMc+TbsxdPQltI2c4d6vfp0jTx2gywk7EPqPDCG3foY3orPf/xPw+ltup3ZoKP/s6x/dy12fvLs06uSdf/GRxa9vdP/dc28R+o+Nn+Zdf3ErsXz043fz8Hf35p9z9NAQd9xyOzf4vzd2DrLmltv5tUND/DzKornt0b1MfepuLvX38FrgzvfcyuyJ07ouwIH7Hua7X7yX5yD8P5njR6fr3HDrx7m02aDt4AS1dZavH3qC+x/7Xt5zN37mLO/624+VKgi3feJuHn5kb/7z/oPHeO8HPl36Du/9wKfZf2Q4D3we3nuA2758j0LbawnJji5u/sjtnD19Nu+/+8aDj9DxD/dhnQMR/nauzn9894f45bk6Pwv8GvCv776Xf3ffHv4b8DfAB0+c5s/fcyvfQCsGR4AvfOpu7nx0L/8vOvbq4KEhPvHB24sZrMB73//p0qiuhx/Zy22fKBNbLmn/ernzC/fyzXv35I7EyROnuf09t3IINb4A3/jU3Rx5dC83oay1f31oiLtuuT3fd3MCH775dvYeGGJW1LiF84ur8re951ZOnzitaIlMOHv/Izz4tW/lBq5Rr/O/PvQxGn1Z3q98x33f5usPPZo7LOMnz8y7/861vsYYEuCjH7yd44eGfPHW8NUn9vPI3V/lqDG80xg+ksH799/HgX0jfNXBF5rC+x78Lv/rq9/i1kz4oAj/e7bOf373h/iruTrvAf4X8Pa77+WP7tvDvwPu2TnIH544zbvfc2tp333043p+kglkjv2Hhnjfx+6Iqufwvs9/if39JjfoDx88yG1f+4YmKS7vha8O866P3874yTN5UP/1bz3CHXd/E1d3OL++H3n3h2jM1TmMQjMfuvteNt23hy4UdnjyxGlue8+tWmn1a/d3n7ibB1tcv9xhFfj7D93OsUNDObri7Hf3cvT2L+ftCEaED/zdpzh54jT2pMBAN19/9Hvccd+3c4d/rtHgHe++ZUn6xQKf/eTdPPHdvbmjP3r4OOO3fY5jHikmxvDpz32BfcMjTG1pZ/rEFHv2HeSOL32NaSdMZTCVCbe+9zaOj59mGg2EvnPfHj529738IRoYvG2uzl+8+0NMz9aLQOuue/navXsWPL/z3X9B3vuB+fv3Y5+4uxQcfPw9t3LmxOmca+UJb98So86Um6sz8O4PcddcPe+D/frd9/LAN/fke/H4idO88y8+Ulq7uz55N3sf3atJVGDi0BD7b7ldkyp+733s9rs4fHTYI8YyHp4Z47Z/+EYpMH/X+/6O8VNnuGjXVmDx9uPr39xDu4GuxDB7+gy3fODjdCaWTqukcF/6h69zKDtFz7FJeoATQ8f59Kc+T68IvQK9CJ/44KcZPzREn1EkwxPf3csXP3V3Titigb733MqDJ07nuuyhb+7hq1+8N6+iz1ygfVtofUNSuinwsQ/dzpGDQwgKZW9/dC+9n1L9/KvAjwIz77mVF584zWvRiTPX37eHq+6+l7cA/xL4F3N1dr37Q/zfM7P8flP4PRFedc+3aN/zGJkIaxsZ2/Yc5aNP/oMGF36M2t994as8/MR+SBKMNYu+/3L74X2ad938CcbPnM0Di3vPDPGl0X3UxmewImSzdW67+e+4Z6ahY0yd0H33vdxw3x7+EngX8B9OnOaV77mVP0B9k98AfuRTd/PKR/fyOjRJ8UOHhhi85XaeR4FaWeP9l8+ie+HR7+7lk95+BLkQ+7bQ+gpFYvpOr19C8urwoSGmbrmdgZ2DtKGFg5fdcju3HhpiPxrkPf7oXu785N2lMV3/4y9uZWzsVB403n/vHu7x95+IMDHTYOZ9t7J2rq495iJ8475v8519BzEDXSTGMD5xlnd9+O8j9N6F6Zc9jz7Fxz/7DwVbe2L42Mc+xdmJCU60Nal3Gib2PMmxz36dkaNjXC7Cr800eO17PsJfTs/xH9Ckbsfd93L6vj25T1Y/cZo733MrXahOuga4+lN3M/Xo3lznHDk0xMc+eHvO6n6++0984eWd//PDjI2cRDIdFXqu9Q3r95Uv3suD9xX+y9kTpznxnlvZgfqUbwDe96m7eerRvTTQtTpwcIiP3Hx77ruISOn8BNjzyF4+8/d3l9C8n/3rWxkdP8NGb+8e3fMY37zvQcxsEzsLjXU13nHb3zNXb+R6844v38fX739k3v0XS6v1/T8fuL3IzySGz37sc4z4+GOTNTx64BBf3fsIczMZ9bkmZ5zw7o9+krePn+YPnfBEJrzwmw/zh3ffy79H9U/nXJ3PvvtDPPi5z/K/3/Z7/PXbfo9PvuXXWa6YL3/5y3L+l8GP/diPLZhpCpnT1WRrf+Mb38jrXvc6fv7nfx6ALMt43etex2/91m+VYO1TU1O8+tWv5syZM/T19Z33fad8tjKfVycKD/5rwGSO35pu0jnXpLuRkc5m2HqGnWlg/+YJ7L+4nKSzhmlPsJ0pSUdCrS3Bdqekic1bW3JmYzhnn52IwGwTZjKFY85mesxl8JXjCov7uYugzQdIdQffHtW//eaV0NumY9TaE+ptlrPtCVM1y2QtZSK1TBnDI+hs0/ejQXQ3mu2aEoVsPoZCMm5Ge/O6gG4D3VYfey10WcOck3yWdj7jD+27+DDwbid0zTbomcvonsvorGf0zWX0zGXYv9gDr9kBF61TkqaORI/OFLpSTNvSADuZ6CzUwOoaqswuc5iZJlJv4mYyZDbD1TNkroH87RPIL1+KdLUjbRbpSHFtCVlHinSkZKmiDeoorP0WNJv5XHxV2l+PHgt9lhx6tVIiIvlMxfjenEFbDz6L9mu9Gg3sTOUgerTVn50jmW1i5pqYOYfUM5K5jLTpaP/4Ptq2r6Hnpo10tSUkHXo/0ZFAVwod6ZJRIaX7era4t2UuY2rPOBOPjjP1xsuZqSXMpJZHayn/3w7LdEfKXGfKf0osV6P78gxw2j+eiX4+jc6tP4VWSSZanMd/R8louq3ex71+/VYa2h6v3YQrZtHOAH+FrsdvoEbZor8/DvwmmhC63v+tyxRHt9WkU7s11KO9l89GRRle/3ymwXvnMtrnmnTNZXQ1HF31jL6vjtBzaobkNbtUf3RG+64rhc50yZWEOSdMROcxXc9413STe2YzuuaamLmMHXMZLzg9xUvvOsinfv5ysloKtZSsPSHrSJjt1DWW1M6rIHydYnY0KLzvP/nkW9h33dYgTQdTjUJfBt05l8F/ewR+5SLY3qu6pmb19/UMxmfgr5+EX78EBrpVd/r7faojYaLNMtVeYwKT24X/gz7+tj/Pr6PJhL9BkStdlNcr6In42jZFOBPt6wmn73kU+O1GxsdmmnTOZXQ3mnTOObrmmvQePkvvrQdIf+9aqCXF+oXHrtqSEC0NkXwO9FR0DkONjN+fafKBOV3DZM7rzPEJ3BcOwxuuhMTi2vRzm20JQx0pBztTDiWWIygE+nDl816OQjV7bLF+aywrPo7S+b2X23SndmkGrUT9CFrJ70TXpeHXdRbdezuBf47axi7Kdq/HK9KzC6zdbwCfaDq6Zpr0zDXpamR0zWX0zmX0jU6T/PWT8LZr9T7rTKHT69Yub/eW0C4Ui4jQqDsa003cbBPx+8DMNjH7T2HvPIz9jeuwbQmmI8F2JJjOFNOZQGdx31RtetAr+9H557ehtq+L8jqutP2bcZJf23xuMFoJ/v8AL0KJ/J5HAcVv5cTGvws2yNYzzJxen6dmmtzXyHjlodPsemCYzl+4nM40oacjpacjIQl2r7uGSZe+NpIJzER6abrpdY+jccteJi9fy8RNm5htS5hpS9iTJvzbjoTpjoS5jpS3G5P31Uvl8Xyyh/IovHcCPxTpzt4WemklpKrbwv47Cfwy6lduQPdXQDXcgurRd6H3VweR7fPn2e1PM8wHD3prupFxYLrJO2cz3j3XpK2e0dXM6Dx6lu7PHqb3rVfRmyYky9SXsbhmxuR0xtmZJtMzGdP1jNnZJl//6lP0Dk1Tq1kaDceZbd3c9PLLvf+UYtsSpDPF+sS2oUBAWJ8ozChikL9F/Zh/7a9Jryl00bnWT0QUSdt0BfoW/yGafVL+gxb/d6H1G0eTYR9CEYwzKIz7TWjSLOjLfL0ifyVIJqI+Uby3gblGxltnmvyXmYzdDfVbOhsZ3YfP0H3HEdb8+tXUgm3uiHRn54WtYYj5pjJhcrrBzEzG3GzGB6abHK1n/EKWsf0z+3ngORu4c/ta+msJz21PubYzobcjQTpq2PYkR7Dkj0bRTCkwM3GWGzau5TOf+Qzd3d1LPkdYQbb21Zaf+Zmf4bbbbuO5z30ug4ODfPCDHyRNU37kR35k3ms7uzcs+n1DdjjuP7eoErzLGF5q4TnWMIvJq0NJW4JdB8n4NGZbnxIWOZ0jPFdT1mlrix6axBRQsZoRXcBWSjGk+/NGVSlwJQdPw7Uby/CcTOC5G+Hw5Lz+88wUffKQqVKvJRxHqwdQBHKBxbqBskbvRnuVfh7fU0K5/zwL0CWZDx0cQfvNc1gf0axlJ5h6phY/wNrD94khfkuUxBhlb7YKgwrjcASD8w0mzhqch5e5NEF6DYxO43a1KemfhPm8QoYSHNV9hvJngI+gCiiwMzal6P1pim7KlZSw/DG8L1zn+9Eq+Y2P7uXKqy+lyxQ9g3FgHi4vlAN32xBwTjkTorWxE3O0H5qm4xXb6TCVMTKBCO4C1icfLZO4Yq0TJSCrXbKG2heP0zZZp7mmAyfCtdbxJ5nli5nw4ky4yveztqNZ2+3Re8eOWaydHBqMfyP63Z2oQxeywwEittISzqlKSiVo0PIyCr0T+uA3o4bur1AIYgxtD1CxMKokrpqHzwE47oQtvt/cxNB2wB45i7lkTet+1yX0K8cS67XUKFTs5YnhGwnUjWGNMbzJwq51ndCW8PNjU5itfWAc4rWsOM+c7C1RfBbPRx3M9kf3Mnf1pbySsr5RHaRTBub1m4vAkTO6aQejue6pLV6zvhNuWA93D8EbL/Uj1SySeihbU3DGIW1Jfq0Po1A+g67ND6G64TPAL1DMqw/rVROtSMYQvxLcM3o+Amx22mdpKJPB2dE5zEAHyoZnyut4ARA/Gx3BSTTARmtoWsNfGPgZMVyMvndzbReJgycnZjnW18WRpnCgKRxONZhaJ2pXdqAJsFmU6DDIj1PsBWeKPbjS/crxfovhk1BMKQnfP0G/dIDQ/gLwx2j1NaXMuxLI4VJar12YT58EOCZFS4J1oomgjaZs66AE1Xz4kb1cf+2lS/7Oxih5WS0gHgJZkjGYzb2asZxtFvd+uEih9cOfTBJdi7C3U8irZY+hkM1QMW+aAt6+UvZPvH4rtXOh1/g+NHH5B2hypdW852qgLtGTgEYRJwjCdQlc7wzJvknadm6izVjaraXNal9x3mt+oS2KoW8ksnlh7dOL+qgdPEPbTZvUnxLhOVZ4uxM+J8KPCVx3DvtU/X1sAwWFj/80Ourxv6BElpnkXUV6GyxdbZxXWjF9O7TffB3Ke3P40b1cdfWlGP+6NwAPoAWj34CcrT2JH1FdUbKr/gOHRMng1HdXlGYy0sT0d2ON91mqLVzL+OImsaRJRltimEsNtYahaS1bd65l9NQsdtox3Z2wfddaOlxoL3MYrLaVWFO0FFEE6BiYcUUMshNyxEN+bc+zfuJEi3ZzTQ3Qs+hOCfdgUzRh0KIIttD6HUbXr8efbwfK0fF+FG2bUPSdB9b2ViTSreKGCacxRT+S83hZATPewK7rVN+kVZxwYbnMXPcb77MYa3jKwL1G2xTenRl+uX8NO0fg93fCWgvWRMS6zpGIJTVGCXvxxL3R85Vol1x0cP6lL32p9HOWZRw/fpz3ve993Hfffbz73e9e/tmcQ97whjcwPT3Nv/k3/4bp6Wkuv/xy3v72t7cco9beuXbR71vtu7NoBeoO9B74Y2P4fzFcARGRjsFu6sVOZKXA3NaUYEudqqhi7t87NWFmuI5zaq8q/bjfPCY1qmcwVId/1lN2Mmv+Lv/pHdp//rUReKn2nzsDmQ294f5zrGEosQwQVVHjm0s0EH8tmuH8Z+jfAgS4KQXZUez4xM/HicbJiB+ZBMU4mdEpvQgrMLcwltQYuhBqRGNeQGdlW4Mk6rTojHKDW9uNDNeRnR7+owuAQ9sRcrI39HSfhwbFl0E+z7ApBbnKSvfdBRKcvIUWdVKm0az4bwJHnjrMtVdfSg3otFHw7d8jXuP8ZycYcVin52z9PZY4IXnsDG2b22nvbiONHYpwvy3Hk64G+v552lmjfXMbjacm6bihHSOQZsKNNccNWDLnELH5KMPYCXEtnsc//wzl4PzlFEFBYJderQDhXIy1vxYuCerUBif0tSgM+JMoUVyYAVsN0uP3C46KAEPi+83D3sNgMh2NZ47PYF46UDgnsaNygZYknH/NeIIva7ghMfyJtXzVOn7UGC5NrX65/vVwtAmDxhtgDQxEQHzPctUJvs5fq48/dZj/ePWlXEN57WJCoFxX5voTeHIKLl9HPjoulCdSW0y5eMkA/PljcPgM7FqjTO1Ng2sEXZHhrE8uoRXS11IE5xnaF/g/UELNlHIyc05U38e952Ht4keAURE2OwdBV8bJldEZzECvvrDqpBiWnDTLnUJTJKUT4DGj5GL3G51XfxUgYpgUw2/1djJ0Yo7x3k4uFuFGgU1O2CBKEledcjGIVqtfjcI0Y6c6BOkrLeH9q/2uddQ2bSFCZ3j/LiSmr0L7QD+HBgzB2YxH5BnTeu3GUL6IsG6BpT2fcT5ah/UtEtKQe+lP7D18QcE5kPsFxioLcf7+HYlGREOTcOm6KEMixXMvwUeJeVyC7/IclJDtBgr7FzhXArx4JexfSHa3Skp/G02GBT8tNcrmHYK2qsS/k6ZT/yriBSITTL2JfeIsbb+4gXYDHYmhvUJ+eqH8QcW8c0c1uDC7uun4h2GyptPRrU5IRbgpEc/MLSV9GOpirb5n/HuHogdBk8BfoJhRHwddobBwgfHNghLui9j2CYq+2OVfc+ypw1x3zaWqP/36/gGKRroRnYiTB+hSBOcdprKv/X183KHBeV4QAjMyid3So5e7VTL6QhMu6LqmtYRa3VFLLC51SNNw+faNtNcFd8cxNj9ngO2DG/z3kLxlz2SCrRX3cBygz4kmNUOidAea1IjtfPVxnjR8YD6X+Y0UBegh2eSCt8s8lGor3SkoamWHf034Hy9FfZVPAb9ImXOlRsHVkU+6iN6vUD/CuHP0OuiI9SZgTs+RBKb2FSoohPNX99NgrMXajK8bQyMxdGUgCUz3p+x48gwJa5WnAvEcQKJ8HfgQLIqfcn8IlsKZvKBcMCFckiRs27aNf//v/z2vec1r+Ju/+Rv+9E//dPlntIAYY3jLW97CW97ylvO+9vT4vkW/bwjMY0flC/5vIQv9LqNZ9UsEthpDioM1vdjTzZx0yYr4fiEgc9jMkliTG7eQla57gyLoZi3BwarVn7wCdFbx52vbizJ/WmwyJIWfvRj+dh/s7EB2r1OmXV85F0+mgckYbjfstKZULbGm2FANNBP2t2im+sUU1fNAktPw/6eaBRPUSbkUIjIcyasHFmBkDjZ35BX+eQH6Muy7NYZ2oxVWJ372bmKRxJUCcwFkXSfuyCRyU7+SmPjvofkRYUqUgCvx6/cCVAm9kcIAZd4xWQ320+CY5IkA9Bo/iDqYg8BFP/PyPAFUQyFF4fKZBY/ivjLeQbFNP0pmzyjJ8wfUuauSuF0AKU5JAqQqfl9rSAx0XLwW9/hJ7A3KXqstCeROlKJA9G1ifzK+76p/y1CH8r+i1defpggQgtEJgd5KS/z+sZNyAoWD7aDYe4lRAxbI/v4VGtC8BF3jUgVdCkPQivTquBOu8heg0EtgT87q+KDNYYxTcf0vaN6rl8AY3R4c9FQzz8+twXOdATHInFcU22rwwAjctJ6ARTVOQLSK7tDIJ5zJnGhw9DLg/T/zcnZF3zPonUBGRcvKuYMnT8BPbi90pne2Eaf3dCbQVYMX9cPdx+DXeqGhibzMKmM51ilpnTXMeMKY7RTZ90AAsw24HdUPsa4MjPtxla+V3hRgTAoyOOOiZJsIZnQCc+NAJbIMenPpnkCubqW4PAh8wetIY5WtHWN4nTFsTg09/b0MngSzW/MdUMzONs4hJLnT2UT328v9NQrfsRQkLPmszy9VBzA8H/V/DwRMYf/FiekmWjX/czSxV0q0+PsxMeW1I3r/TYEngKKCl48FGp/JeVbmOZqoo/n6n3v5hX/xsIjVe8MYGOiFoTm4BOYF5lFlzRodTZo7m8EvQoPyj6GQ/6DbQoDX8Hp0ac1orSXmlIgr55MoOeS/Zj6UtCeyeyItKueiCJ1gT7QXV6+DfWqCZK2htr6TtsTS6Um+Avnpsktg1cp5KEBs7iJNoOvYBOxckydhnU+a46TkC1VHZ0nlMTwPvdoJamfqKCJnO1E11LBwcLcMEY+orAboggaZu9F76aU/83IMqg9DcL4VLTj8T3TE2nrKlfMQrFcrumHG+WVOA9+cjHFkguSqNboFqsnMFShr1iy0J5ZmIojV3vM0NVx+0UbM1rOYqUQRUK4IzBVV40jwsQFFkilMRIoLhdvRe3/MX59cd0qRoI73nGQOGpkG6HWnjw1XOEXWFPvdZyalQvAb9HKcFBOUw2c7RfHH+tf+S9Rf+Qm0KFfyUySMF9WpOC1JbEWT0v1eJ1kk/wwzOom9eqO3NUQ6jWX5ojboNr/FU2t4iTXcZz3iTwyXbWinY2xKi1aioM9UhBT/sxFSa5Ss1/vfceV8Ocmf/DyX+wYnT56k2WyyZ8+eZZ/M90OCgQ5Z9ATtSQsixnC1hT3G8JcY/p3AXzl4ZCNMnphiXKDhhDknzDqYzoQZ53tOpegVDr1T0/6YEc1wOp8SVYXsop0R7Y6DM7B7DTmkMVSAarY4BnrglYPw8cPIRB3XcLiG0xm0dYc0HabhGG04togU97j/zm0mygL5a/Bp//GhShxgfnXKGzdKvjMMbBZlQjVQVBFEE8iMzamzAGUn4gIrQAuJNcrAmKaGmjW0Geiwhi5r6Aa6+2v0HJugxwm9Dvqc0OuEHqAWsmSUHfDDaPUlhraHoCpGDy1XnIhWJYje3x/3U/Ta5ZUOiipCr4E+o32AfbboT+rxR1dT6Hb+yPTodEL7yBTpaIa5Ym1hwGIHZSmzzVuIMUaDiBhi5h2V2uVr6Do0Tfd0k+5M6HFCN6J91wi94vIeqx7j+61s1Dve4m9t/ra6hoLRNw7ugvEJVZ+VlHjrxo78QRS+3kGx78LonzZ/XI1mpP+3P7c6BTncnDfgzeg9S3vPoXvbFQkxg2CHZ0i2tBdrGZz2QISxjHVtMzrmrdP4XuvU0J0YOq2h05MxdhlD19ZeukYyuqbqdDkdWdgFdAv0IPQi+X3aHuniNWjh7xBRYkUiR6URdKWUUUcj0+rR71xTTkaE6kHNko8I/KFNcKIBT54C5yHtmeCczjglc7hMOOrXbp1fv7B2KdpP+XGU7yCMPAyIo3rQmSLnnJM9LMJmF6GOHFppcYI93sQMdM1Pal6gsxnmW4e2q/BdftKzTGdW+4hfZwyXpQprTtentJ04SxuGDhG60DXsCY8i9Ph7IQS/W1HHrmov8p9Xce8JxfUNTO3BsQz6MzhWgen6eej63gX5rO14LZvSeu1GgAHvhNuQXAl2VgRzYgo2tZWdyxUMFkxIurWwqWzp1sp5uPj5IkhRRfaSt+FRHKFyfgRFyAf7V0J1rdAyVhnaw55/EL2XNkfnFd+3Pd729dr5tq/XV+Z6BHqd0JcJa0RYI9D7yDi9uzbQa9Q3sLGeWG5CGrzuYX6Qbi1c1EvtwHRxXt4H6QV6cfQaye121Y6Hn+Pv2m4iRAxqT7aj87NLto8C3bWSkgeO4XOk+P0+NDiPfc6a0XNuQ9fwJ1Bk4rsp2PZzu4f6y7HuNP4eHnPCJtF72QjY6Tp2AuyWbuWTiXXlMgO7XBJLe6o2rjtVO9dp1LfsungtXU+M0Snqy/R4n6YnX1tRP82vXWd0i1TXbwD1O1vpTlddv6YUAXk45jJ4bBg+8hB8b7jyd9HKupeYqT1WFeLPYSeF7gx27ypUZ95CpC+lPGKt7s9zwaS0gw1h/VxAHzkdV72hHUOkI3P/cRlLRxHrtCWGdmu4PoU/MoaXGMPvWrhibYf6NKNTdHpfpRPodNDt/ZXgbwbuoi6j6MGV4jBadLGvFRt7vV5n//79ZFnGunXrVuSEnm6Jq9o1o87mjaIwxc8Br7BwjTE5buFEYjiWGc70paQTU7w9E9qNsKkJOxJhW03Y6XRjBUUUNlzNGzNj9cLXRQMqC5WgPHIyReDQKXj+5iI7HirnJtz1/vU3bIDDk8jf78f90mVIU3utBZ95NYbTNmOrBVNLSueG0fML1fNXouQPT6F96AHi12Z004VqSLzJQIk/wjiZfOZkVswtZGQCnttfbK5lVoDOv8AtlLPvxTOTzOvFazohyRS+klqT9+CtRQsPD6CJizhgDhDWlRoNFJRc7PiEz3oAJezLHWsKJyWF+a0SkUjWAgLc9AmhR87AVX3QlhaORAheQpC+XGlROScxsKad2gZLsvc07ddv9DMl9f4PsGep2ZxDIdxrJQNiintxTnRNgiN+CUXvVnAgzte7tRxpUhjRGNp3kAIalvvl6CUI91GKVqd+A/gmimKJ4e2z/v/FVUH9HsKQczmsvYBFgzk+gx2MEmKJKQcGy/jyxhg6/N5OgUbNkjWV30HiNW5LYUMN9k/Bde0KKfWLF5wsTOGcB90ECoc8BFxLOfDKnOCcKwfl4YZ4cgIu7s7Jb0qVKyjfh22ptgN9+Shcuo6soefvEqP3lTEYk3EkMezw1f1wb7X59b4O1ZOfRGHucfU8OJk1innf1cSmACec8EJXBHSh6mrHp1Vdrm0v1nAF0EY1U1SNa0bh3TcCf2rha8bwE8ZwVRvYWa2k275Uqxk4DIm2d+X91aKgDAuzrli/7RQjsML3jccBLWbvSZ75FMCckwQodgDjvTdEmWsl+HfW2/zgTDZRlNzNFG0K9bB2ousd27xwjANXxs6l82uXSc7UziY/1LIVYmwlJDGt7d1gG3xrqigrx/sklLO8xJD2uAd9Daq7HkbREHmA7t+iaRSxthxxHjVVbefKgG+hHBRh74WkdIih2w20ItuVeuariFnegytO1Kg+Nox5ahou7y4nNlYA0h5EEShWKxPVdd/dC4+Mk7xkC50+KSjOT/kRvy+82a3GYVWYe53CLwvVV4O2aRxAkVjVwHylUWPVxHdeRUeDu12UfeIUctRVWOv/yx9fQH3QvHouRVCf6/9Mr9WoE50+5CHHZnQau9FiaolyB1QTYSvgoxmjM867EkeaWBrW0Qj77+Je7J1HsWfq2HUdpE5yFv58RGZE0iAiOYopIHiDa78d9RtuouxPBD2av4cTaGZlW9hw8OQIfMRPG3r0qLK6XbWluBb1DEl1HFysDmKEIaj93e6fh+A2FOx+DUX8vQa933LeFf/YhvaetypY4HSE8Rbn79lg/yYb2CaYjV3FclUD9GWsXZuItkl4JyxJDDe0GZ4jBoMlaUC6rpvkeJ1kC6ROqDkpiimZkLT7JPQKkyoGWbTH/dBDD/Hwww+Xjscff5zZ2VkAXvayl63KCV6I9G+9ftGvNcboxTZ6E3UYzYDchLLLPt8aOhKtvNYSw4Ax3GDhxeu6acvgP87O8WajhvmQwP9x8FaB33HC/0RJqO4E3o4GVnWiniofRABaNY8J4IIBnc1gpAm7+srVLmvKlfOahSSBn9qOTNdxXx9DnOAaGeIzZTN1R9ZwbGlkJJnLYbWGCiwDZR5+JQrlrvZY16UIQIJz4vx3m0AJ4eJxMgZfARIHxxvQ3wErnA07xwK3dlo6EmW3GJ4sOS2JK3pLcmIc9NRuQivXJTSBFMbFtT6DJUur2eYZ8CT6uyvRc/rEe24tAnNz7t5pEYEsCmRCYJ6J3nuPjMM1a4t7qwRrX6G1ideiCvO7bCP2e2eoOej02ebuTOgW0coCmqVc449eQ559jqsIHaao2oXH3WiSKVzH3GmQxcFrJROkqaz2Us80WTAvbV1cZ2F+gC6ogdtNEdiFS93uA4R2dB+uRQP0v0HZTOPqXSCmCvsuvPcJUedks4vJ4DRoSo6fwWztKCfE8gB9eYgI8AG6NUVFJzH0pJZea+hNDH3G0Af0bV9D397T9An0ia8SiaJVekTREmGvBXVggA4/gi7omdwBdEIz845JtXL+1Em4fE3ZKQv33Ty9aZRYMwMeOqHIlaaijVxY+0w41nTsoCh+JibqMUNnnv49Wl2sVlzr/nGh6gHASYeOk/HIB+1XFszYHHagXZOXrXTmMnrv2o3umQ6jvBXdBl6QGP4gNdzYpmz4XVbRD50bu+g+C11TDbqEHP3QJaIMvSjnR65qUbj/MGXkSnACY+evlUjmlHl8pgHTDWW7nmkgM03tIW4hrRxAgZwINQ4OrCnbvVANepF/zdcoKrgxaiy3eVFcq7B2/WXYd/lM8dNz+qL1HQVqxUbr6J9WRwEtWRZIRLOlV/tpphrlwDyqnudvgd7TcXU6XK8b0Qp2HCQ0S/d1a524WClV5ImCf9R3Cr3IcVI6rFnLwLzplK8nriI2FEFo9o1iPjmiL/zsGBwaq9g8u3JkJHEyOtZFu3uUS6iuQZX1ENo0E1InHrZvSI2hVjnarB7t/ojXK7Z9F6NV63hfxHtvuWsWSwnRFH1GGPQVkCsf935L0D+hFbENRa38a+A9KL9HHSXWDBX04v3Vbznh1Ob2h4SGoCij/j4STNGiF/ZDuKFXQhJNFLYnihbrs0ZtXkeNns3t9Dx2mm4ntGca2CWZBun4kWZBAoopD8wp/INdaGIjtvXhOpeQR5krt3cF/+47w+Vz/vbx+dX1elZqSYh1p0Pt2TTldryaKdB+gyg68W+Zj/ariyIe5lrYPPHnP+aEAdEYwaC+izkxg91gCyRL0Jd5MWF5e7PNGkX8JYauxNJpPcovIP2Azv5ueo5M6NjJ4Id61Gmb0YTRagXmsMTbVAIszx+h7/xXf/VXeetb37pa57hkOTHyxJJe3+adky7v3AfIbI8Nzgn0JIZuY3QSg/EBe2eNjpNzXITwEgP/EuG/Gx0j9kanTuffAX8BfAX4t8BDzA8MFNLO/Mq5iBIVrQN6apFDtoCT2WahPcX97MW4B0aRw2eQTHCZOppjDceGhqO34TD1LCdesD7+CsiBYPxegzooJyg7myFojANzoRh7tM7vbhuVhyxgzvo5mRu7ir0VnM3YYVlJCZ5+K6dloEd78SJHxYgG5jUnRXYe/S8vQElp5ihXzuNs/3LFieSw2NhJcWj14HkUjtOrfuFVJVjqOTdz5JyUiEJE4MAZfc3uNUUAHarmKwBpD2JKMPn4XgYu64WnJrXC4feBiTLO1nMABEel3WpA2GkN3dbQbcpw2jyHRZHxHaIc3AWDt0CcrVWMOR8cTPngYLoJkw0NErxRK/2f6L3jIEHQDPhOysY3GLrgpMQQv7XARyn2XoD3NWS+ET3uhC2ZZ0clYvpuOuxIhhmMyCTjvbCCCbHEGNoTq+OIEqNHWB+ge2cX3d+boDtzdDd98sUVj8EhtdE6WuD6X3hVTowTX9/M6RxXqVbOJxua0Lx0bdkZDvddgLRXH1+2DfmHIVw9y6Ht0nRKPNR0DDcdO4LO9OfXFq3ZlSib9McpoO0hmRKclYYwL3jUIEc45RwbKpVXI2hwvrlHL3LMERDrswsQa0wemHeYYjRkj0+0dNmoPcEauhNL51roGplWCLu3cT2o89IV9DzF+m3ynzXM/D1xrr5XaWQ6Em+6UYzHm24Wz2ea8/ZfcDBbVbZHqJDBRY9tpmjrChD3n0Vtd7yOofc8tnnh85RpX3KOmcDUbkSwY9Ow0RY2LtifuMUE+KVffNWFLWSQhRLRbYn6EEPlRHSpep6/hSl6uv0+DLblBtR/qSY3s+i+Xo5Uk9Lhc77nP/9yCttXrZxXRTKnqLi6y8eX5cFI08G3hsr/4eGRMkpshSqsQGTrKK/P2g7dPEfOkJPVxccSHIpWsGiDBuf7/WvianZIrKyAy5JLHjhXHg+idi+s3St/4VX5pWg35QC9hvo4rwT+G+prBeRR2IMhnyQijDhho9N+4BzFc/wMtr9TL7M1lX2xMr4MUDjOPkhPEqNoSwPJVeswj5+YnzQOBZKK0xGuR3X9dlCQwkE1sRKtX6vA3AkMriuf87Wbi7/nwbk+lhBH0eccRrk6usJ5UiRWgr58A7pPHyBq66IMba++v6AB+RjC+hwxFmxeE7u2C0tFl8GKJVjajR936pMr3d5X6bGGHqBvoI2eQ2fodY4e3/6ZuoKriYrvt9JywWztz2TJmrNLer0xOooLwNiCldwJZAlKEGQMLqWAPDqDW9dNdkJwOw2COgZNJ2xG2OiEH0LnMI9Gn3UncJNQZhxGMJmL0ppS7I4DM7BrPS3HjtW8exErcie4/m7kxwfJ7jqKvLkT19mm0DsxbDVGW9etwSYOm1gMJoerB0boGlr1uAFlrv9louBcwqiyspM5RqiaRxVz76RYJ5iRadhQCcwg2mwrpDQraysL9eINdMPwdOWL+CynE62eG5MTXOzw3+8hFG4cj1TLxEPbl3m+wWhWnRRBg/M3UCjHvo1ri+qBYcFeF6ln6qAEJ6VeBMDsG4PbhmBXWlTmSoG5d1ZWSlL/ftaVg/TNXeqoHDgDV6yvGDR/09UWfltjCohtYiiIGP2xC60g7KLsPFThYfk1c1LMw25UDGpIjDUFXIq0FfDHUmU3/hnt2dxFuXIeHM02dE/FaInfBn4XJUW7KLxWCqREHIgMibDF38MBGmZFMMNT2A6wvbVKUB6OVYCrpNE+y50io72vKeBJkIoSix5JJtiEEns4wOUb1vIBykFRJho4N12lcu4E9p6GLW1K9latVtlwf7vyPW4NXLkOd98w7oFx3A9vViI4A4oucIwkllemDmOTEmdAgIYn6Di8P0AJxTb7v7dJMY6rzZSDxzyxKRrIbXARkZhvF7BDE5ir1hceWylAX56zmRpDl9WgMkdleJtnjXc6rVagLIZkTTf22Bz2Yq0cWH++ANMenhmPJE1QO3IEddDDd47ytvPUvjSdBuFxdSfee4kpeaZS02sQq/HYAQRKI0TjxFhq1EbVTEHgl6DQ7Y+gOveHKTubprJ2p/37bnJ+zXw7Qo6AGG3Ahu6yDQ/fOWor2bRx7ZLXryTnSkRv6dNE9OW0rp5HErqPUil0aQJcgSLjDqFBX17lNkWS+kKLzedKSt+PVu3jwDxu50oq7yVZFJCHoDwkpuuZBu1HK//peRHUd4Ug7blUEWP52hjYvRYOzOoFnVfa1kkli9nfAcoekpthzXajPBgn0P7lUmXb66Lq9btQiQP+8DmCwuovorjlN2xcm+/BHNYeHv1X/zXU9n0URSQFeLulqPiLgxGPFgub0TqHHZnDvKQdazyHQKwzV9Dcldj4Y5/GGrhiHXz+OEzUYV1HOUgP/kx04dNo/YLuNKjPeZjCh8j1p993Dg1wieOHHBEJnBJVfDOootq6XveB9Rs8nEtDp5JkmBKsXfznhwJHbtb9JQ0E0WtQxva/RWOGuB0oFd8WG6ltCWsowokMNuR6M6CNZjAbuzREqOo0Lpypvbp+7QZqqaGZ6IE1Xg0Y7EAPdgI4U4cNna315kptnhay6Fv185//PHfddVfLv42MjDAyMrJiJ/X9EGsMXcZnUqySavV4iGaXNXSl0GU0w5LDHno66Do1mZMFdCF0G6FLUBIBEaq58J+gssEAF5fy8qwMvnJ+EnZ2FYY3dibTZH71vGbJUoO7dj2yuw/3+aPKVJo5JpqOwYbDNB224UibmT6nqJwH9sG4ev45NINZrSLE1QPQ4DyMUWs5TmakDpvOMU5mFeKE4r1bOC1b2rQHvlJNCPPpwxFXYZ+HOmx59YBy5XzZ0D4pj5EJnzGCwsOeC+XAgMJJaSXzoH3h+VwGT47Crb6CcLAJh8bLgbmvIpyrx3PJkvM3VB0VC1dshCfOFpsjDrjOASXP35ryWuWgDLTvPMD7Yuc9XN9YRKRIZsy2OMLvwzzRuWbeF7sQtC/4gmGMYe5E4XvvmA9v342OoforygQ5gRQuDvKGM2EwQKJD9VXAHp/DDnRjYjLJGOK3gkubS3WN8/vJwqV98NR0izUm77OuVhG2U4zCyp0Uwfeca4W71BL0+Bm4bF3xHePzSE1Lnanwdov82CDZN0eQ2YaijpqCazgaTeFk07Gj4fLJE6FwElfPL0V7Y/+OIsCoVs9j/R+ej4mwxVHMphc8GZzDDs9h+v3I0KqzuQLrVzMmJ1Tss9CXGNZYQ0/qoZqGvDWhZ30n3Ucm6HLQ7kQD2iiZaaJrE05tK6q78u9N2f7FIiJFf/BctN9mwtEs9l5IOjbUAlUrSnFibF7l3BTPQ9W8zRQw6XZ0lOht0TqGFoUqamUU6Bbxo4AogvPQWjI+AxvPzdS+EnJOUriBLjg2WXYsc2ezTAoXdFIc/CboPf4cFNoedGhO4Obt1oUS/J0vKX1TdB5BP4SkdAxpl0x8AB4F43HVvO7go/tgUwf8wha4OoFf3QZXDJTbXFZwvmZeva0mCS2wuxsOnigq53FxJlyExXwG84mNLeqXbkGr50Vis5xEXglxEWolq+y/gxRkcDGyLfQud5gycqwNrdL+PqpHH6MMb3eQs+6POBjwvmbiBHNyWm/79b5yXkWLraQvA4V9qdqZrhps64DHTlf8mPC8Am2vXJvgw2z1fx+hdVVbgFK7YrPy/OGT8LKd8BvXwuYUvj5arpw39ZCGkDXcvPULwfkOFkYctaH33qvRvfsFfJxAGdrepJKUFjjh124j+gtFHQlmfBK7qU3BK1W9ucJraKyllihCrNMob1OaKKcAm1M46hFH+caJnq+iLDocevvb387b3/72ln974xvfyJve9KYVO6nlSnffwAX9P+PhsgHe12d9X2uqfZM9EfShy0D3Bkv38IT23okP0J323vWgjst1wH/y7/+7KBtzKQMG+bzGecd0Q5tJd60pO2Oxw9ueFJD2mlXirNTirEVesgVpzOG+fQZxwlgzo9+ztif5o/afp5ThfcEo34DCa/+BwhjHsPY4QBjD90xKVP2JHs3oNGzqWnUnZZ4sWE3oUWhDPStlxayv4ukIiCIIthR95zmsXYrH4LhdqIhIwdAeB+mog3I1WlwO5/PIt/aUes7nvV8raF89UspVaN+e4flGprayGRMTqrWlKoW3Rpd1a2AV+BdiQ9MCCjbvvU259y52UgIxThwYlbLRsVOZO3VRUsNDaUsBehy8zzWRzM2D9IX9cYgytC8YuJCFbjcFrDYO9t6EQoK/RNngNeP3d0qKsyUPyotZnHZI57223HNmefNeF1yHeI1Lnwlc3AsHThbGLnJGTVNyMqrgrFjgwH17GPDXMNc3vg88sKrnBrOeweFpuKyv/F1zp9hiUlsQxYVkVKrn63asxW3vQr51UgN/p9D5403HmqZjQ9ORZK5UeQ1Eb0FnvhklQRvx6xVgfSGpGex6WD+AUVFYtME7JyGheWZOky2bPFN7FQ69Qo6KDbbP27+umqXHFs5KzerYQ7ulHTM8PS+hafyXiZNO4diOJqdK+0Ki6ky89zKpBFN+fz12HD78HXh8uFwJ9egWaWTzq/L+MSDX+pnvYOZOJuVES5hYcgx4hHJiOrZ9EOweEGyfT7IY/OOJSeg/P1P7Pfc+vOx1zPVp1d4NdniUmCtXf0K0Fi1BCH7z6nS0ns9BSeHiQCy2hRfqr1Znmwdf4zjajnRDOC8WTkqLE6g3o8Dcle+VRgafOQT1BrzhYrisH15/PVweBeapzXXBikpsV/Pso9FWsjFvX1r6gYu7osGW5DbPFLfbbjQ4z4M7ymu3EtIq6A+31EGKyrkFvnvfnjwIrVEOzuP+84tQxOa70MEbDXyRSPQ2xsPaBzOKEYbjDezmdpLEYqv7zMKKtSoECRnaaoBugKvWwULQ9mbZn4kLCrFuStEAPbZ9cYIzC+9X9ZdEYO8pHcG8o08r+6/cDveOwsmZMqy94flVGo4scyWVEPsuQW+G+ytn2/c6sx0lQ70F5cqpTi2pTrrQfnNYL6LteBIV9kYz7MYOP+XHzNebK7qGFPsx3CvB1m5bA0dnohOX4uJUEiwrLcv2vLNspbb3ykmSLA9cbIzS4dc80VFXaulOlOyhz/hRVcbQu76T7uFMyauc9tx1Wa2g1wQ/sF77EAfR4L1V9lJi2Gyu2QQOnIX+RMnLqpCoADeuWe0pq0XBec2S1SzSluJevgN5YggZOsvpTNiUaeU8VM/1UfvPY3KcUEVIUIjmJ2HeqIS4ehCcoM0SVX9cVD0QgbEJGGib7zisRkazvKDzq+cGzW52MI8UjnAtROaNlrkaJcfYR5SskHIF4UIlLH3spIR7JIxQi5X47MRUHphXN3IpMG8F7ZvL4HjlZG/cMj8wX4XgbV7lPLG6Rtt9QHXkLPN68BZ5ccO1ya+T//3FwF7mV9RCgSK8s2SuCMrDaJKQ2Hh8REeSPDZc7mOsOx+kN3FNV4L2xcF5DO2rVvhj5ySu4PUAbwX+D5pHCg5K3nvn30+Dc6GYkuCrCccnsVvbn/4916qaYAxcvEb7wVs4ozqGypUcAAPMTE6Veu+CU+JEPClc5JAcOK3ZxA2dzOM3iCtiuTNuCvKn1JIlBveSAbI948jkLK7pfHAu7Gg6rWY3MoyToqJoygmVXSgU+qPMr7rWZX7iRoDxTNjonRPrKCqv47OY/kTRK60gmquQ0DQezt4yoTnQoyMDpueTi9lQPae4tw3qXIbgHOZXZkq7el7vpCjj8C3H4NEMbj5ajASK999cpmvF/Or5EMUIrvi8cuSKKdYwJkXtRpFjH2O+ro/PfQQY9LwxOQmqoFNKRDCjzs84P7ejOTExvfzFy9sdWqxbHZhoLFg9DxJIcoNdqfadP4y+VRYf0XVZqoiHtFeT0g5NSl9DOSkdtkI4R6BoQ5qL74tIR2cCXxqGo2fhFy+DjrTwm9qTsj5oW8G+5CBJBbkUjs4UNlk4eLZ1dW6R7nU8GjEO0g1qd56iEtRJFKivQIAR29PYvp5FCcVCcGdRfR7OLTDtVwP0MF70Z9Gk2l9TJKeb4ufWOx0/uQXvawJ2dAYz0KefldsdyvthBUUr85W1jdqkGG4otD32Y2Joe3gfKknp6FR3QE6IGidXNC6XModQHEc8dBKu6wejqDC29sH16+COIxrQx8F5w9H0pLeZSEk/H6KYMhMXFkJSOvSdp6jdG6Q170qMts3QJ6ecjg/FRRMuzszq45p2vQat9OZKr6G1EWzBFF9yWyccO1PEBzlCL9qrqyTnDM737dvH5z//eT7/+c/nvws/h+Nv/uZvAKjVztEQ+jTL2VOHV/YNjW501duehEqgp7eNNXOOvrFpekXn8fZkQorRwNw7KqDVg8O0gPZlQtYK0uSAg1Owc31rSJR3zowxamS8gZGaxYXH1CLru5EXDsI3jlGfrrPBKZQ9iQP0hiNpONoQdTAjByUBfhQdkbaHcoAenEz84zjQH4LykAHzTpttOtXS/ZXeu9XKhlXWb17VMEDNNnfBcJkULlTP06xcOU8oCEuq0PZQOV8OtK8Ej6dwCKfRa/8CimxqCrz0J16Y99/FzoRkkaPSCtrXcHDbPljbBq8baA3t81WE1aiszquax7DnK9fCE5ORBxHvi/ND26tBbzB2u9CgdpT5jkQeRDtpfa3ykSTH4LEMPuQDhLiXv+GQOUc2l+EaWUto305aQ/tC9S44KG2mqCAE9uhL0PFOMXN0OO+mU8bTzXEbiYCdqmOm8ZXzp3nPzdNVkTPan8D+M+XqeSYa+DZlXvX1xpe/MB+nJvjAPHO4po7cCxBHHDpC7dJNhc4sJTNNHsyaxGj1vEIM51JLtrkHubKP7METGrNkwmjTsaMh2MxhmkKaFUmEVu1Ab0bRDkPMr55XYdECjIrQ739ZwKLBHq9jN/UWQfgqwNpbi6k4Kv55W6INhi0SmolPLsQOHBQ95/H3jVs/chviBLKs7MQ2HTy4AONwnmzUw1UDdP8Zw8wfo5ZEz4OT2UaEHkPX8jWo7t1LERxUSeHGgP7w3fP188iHU7O6ROs6/Aks7Gj+5CteeGFLVZL4XqdYt9QqKV0ghWtVPY+kBGk3RXJ6O8ot9yjzA/MLTU6fKyn9ANpvHuv0aruZtkIEO5cxD1mRCXxzBL4zBm+6DHrain2fE+km+tiRYlaSYyVIyALlN2Dkg+xcr75eiLhKvuD5bV6QVrB2g9qOg/41eXzB/Ar3cqRkS6P3P4CSifVG5/TiH39haQ/WImLKUpIa3Ye/g44VvYfC9xQR6pkwkXmfM/jbx89it9QKUFEpGbIKSRco9ltp9KzR4s/Wdnj8dHlNW0DbjTHz2t3CsYsWsYPfL9JU7pV5HD1TdTg4Ddet8/vfv/HLtsCxGeVliQJ71wiHJ0H1n3MS9Zu2UfZbLEUrUFVn/joanI9StCNUW7oE9VOHRbk68rY2BHNyjmRTUk4SV8k0V1ryqo4pvqQxsK1Hx2A2yujaEkJhleSchHD33HMPN998c/6ziPCOd7xj3uuMMQwODq782T1TxITdYnKH1iSGJLOwuUY6Okv7lh5cJswAc05vskBgYSmIHWLHRPeRkDl1TEy8+CJw8DS8anu0U02xMyJFYxKDtCXgHVWd/6jv6TJBLlpLdrzBq78+zMZXbMNkBtNQSKtpGrDiyeEMtaQYLVcXvUE6UIjfp1EUQAgOElOu3o0RNlo0TgYKxloDxMRUpWBh9QIFY89BCjfYAyMzZUfFhZFqBSlcYlDILRokfwJ1wDMKUjgXPV8002IkJUifFNWD76C9yoOUHabgpEQjM+dD++Yqj40MPnsYZubgl66ErhSuHZyHwKDNZ1tXQYyNiVRi44mytn/+CPzEIMpYExmchlN2rXMElcHAJYaCIAc19FtReN8g5ey+4MmM4mpcqJqHFoB7Ky0ADw7Drk2lDeCc6OlmgquhrSX+vj6M9rCGoCUODtQgG9oRGsY7qeHR3w+/gc4S/XEUvTGHrr0Ao75Ct9EbuXzvDU9jN1lsLZl/7yeru+dyuF81QDcGdq+HfRNwzcZykFCqvppSlXMncK//vsYpGZCIVs+zTJBMMM7B987AG3aVvfncYaokm0LFvKmvkcTgrNHb7vmbkNv2kV2zBre+m3EMlzb1tWliMM2MpM1iMdQM+bqFpMlWNKn5YbR3Mq+eGyXICV8ZdM+ecMIP+e+fOymAHZnE7uotJ1Nyh2WVnE0o7E1JR+MTmr1wvK5ef5zQDMkhyvtvG3q/nqE8J9x5XZm7N8FZrDqx1/XD48eLc7tyk+5TomtiikBR2gwOk1e2j6OVc1M5CrOqe6/u1yaQwwWio59Cq+d/RNn2hfcfA27MbR4leKY9MauV0Wo7wmo5muGeD9emVD3vVVK4KyntuQI+nZTeJoznDK0mgWTzOahNei6V5LRfAxFZ0n3ZarZ5SEo/AvxWOB8iOHtsY+tuPkosDsy/Ow5fHoZfuUgRNXG1PK6atyXa8rIKYkyYdx7po3AD7u6EO4+AbJ+/LnkAcP7raf0axaRwFq2cj6FV7BqVyqv3W5bLaxUnHGPE2AE0uIRyYBcnz0GD8WD3BPJRpBlaOf9t4N0on+EWJ9hMq+adTuj19s42MsyJDLu5myS0bMV7YLWQYsHWtYS2r9f776b+SgDtoGn1uT+vvB0vihsMGjt8jULfOFHXSJwf+ekT26UEwCOnNDGwtoMcZZs66KzBjw/q/bZ7TX4/ulRtqLMOqYNrtzhrOIzySHWGNaMwCWlYt4qvchlaULgZ+DeUbV8t2D4AEU6IjlEL39UImPEmdkNPnrB4WhLScRtefM/0tikBwtAEXLRuXhHvfK2Wyzql870gjE0zRnuCq+PUwki1X/mVX1m1k1yqGLPCCjZ2UKC8yTf3wEhdnWIonEtHMdoBzTgfogW0z/lxQCGNGRb+zJxSo+7om18FCgo+PsVUDU2pcp4YxPdPjd20nq65Bl0PnVXHwVfOS/3ncxltzuX9d/EM359Ex4gdo2Cujas/DoX39YfvLYIRo9A+wI7NKgFbIKaCyPljFStAFJ9VDcwNnhTu7LwqEEDiimxgCIot6pQcQQ1ecE6qM8+XKk6kqL5L8b4OrdI/n+JSBcckq9dLkPYStK9RcVJiaN+hM/CLl2tgHkP74gpCLVlZIriqtCIMCz14k2h/ZCnLXBifcyETqhXzeKkvQtsRwj0bB+auSpwXH01XzAkM0tVF3h/rq+dSdzTrGa7ukLlMM9EiTKH/fSeVPFv0HHwizMyvHoTEwi8Cf4mv3hEcGGHIObbm+kbyAMEO1bGb13iiKOZnhlfHDwUooGJxRjp85sVdsPcsObdAtLah8hhDkLO5OrvQPZcBWVZUzl3Tk8KJKAu8ANt6F66cx+eYmFJCyoUjtbi+DtzV/ciDJ8EJ45ljQPxoukxRNabhSEy5chDPiH4jWu05RFF1rcL7wp180onOyY5676wIZnQa29/e2gat9votlNDc3AXHp+YlNI1PauaJBX90op0GxygHBnkVPVyEuL0r8w6sCNTa9e+XGnWUHpqEZjnpKHWFZrqG7j1xkr//QjPOw/lB0cpVJYdLgNcC96HQ/LCOsY5Xu6eraQPENuzBkYipnegawjxHc26ufqHLlYuuWxQExuu2pUudzFYOpquQwkUw6Zwd3V+vGyhI4XKAk39+ISPVquSnISn9ILpuCyWlU8N8ktO4DakpsP8U3H4MXr8DtvaWK+Zx1bw9wbQtN0Q9j8SBW1yU2NGnvt7puUrlnOL5IiSvmEf3doIiOjeigXIpMI+eL0fiGdnBrw229SDlCSUG9VvixBjofVutnsetQj+CFkX+HGj4a3TcwaDT5IVyGk2R9IHpqmGtD85jvblKicxzQtuvWgfHFwdtz7dr5diJ6p4SpB1vB5ueEDW8b9OpXX1kFK7fUNj6cN8nBp6zAXpSuKcgh8saekjTaUGvoVX9Q8xnao+TKwFpW+Vd+RU0ofAUZdsXkjgBvXPK4WfU+5gJMCemses61NRVYwVWiZsqXKf4fgn3zLZeODzbWm9mS9V2i5dzmvcXvehFvO1tb+Ntb3tb7hCHn9/2trfxh3/4h/zX//pf+fCHP8yP/uiPrtpJLlX6t16/ou+XGzwoZ6UNyvo5Mqm/y2FtFA6WryS0qpxngGuKJ7iINpgIHJiALTVoS+c71QtVvTwZnJLCaWAuqcElllNpwpdfPAB7hzBHNUAPQbn1c89Nw1FrOGpIXpEN/SQb0WzYpykMaOxknvansMm5iLHWO2kOZWpfhVm9i5aqoxI23pYeGA9KrQjMyURHyXhSuNgpWINmcAMxXCBtyyh6S5cKbQ/tAnHlPLz3A5Qh7cFJef97bvNoJU2azWMwjkngMoFvDMNDY/DmyzQjWIX2Rc7KalUQcglj26o9wbUELumBJyYiLz4yZsERW0BCtnWh3rv9FMYtBAbOic62bhWYZwL3jKjX8LoBuCqBF6+FBybgnuEiSKgrpF1mM1w90xnMjQyZyzjkhD40QCkZXlM4vOHcA1t7CBRC/10K/Bx6j9xOQT4o4vvuouqloZj3mmzuUNUV7vdcl6xi1TXIPEcUb+z69AsMT5Wh7SHAaxaM3xa4/X/fRqD4HPIGUXmtNFGj0HbgiSm4Yg0LjgRshbiI9oCknqsjsYg1uBvWIqMTNIcnOO2EzZkG5hqgO5JGhslcQeIX1gx1WjYDr0Cr59Xe8xDYONTZPCNKpllUXcFMNzCzYDe3aAUK13c1pRWs3QCD7WrzKglNI/6lUnbGQavnYWJB7GDmQXqo3ladVwc8PgHXrIGfvxb+xVUwNglfHCrQNHXfKxmC80aWO5egwfkgheMbV39Ke48InmmKvtd+FAXxccpJ06CFRkXol8AVEEFsAXtiGjYujgT1z/7XR1dg0cKXjOxrsH1bOuDYLPNI4fJFKNusKt9K0FXXo2t5ksj+Sdl2LVbOlZQOPCth3aqzzU2wcdU55iGhOjQBHz0Mr94KF6/L+8nnVc1Dgm61Jejf2BdJjPp4g23q88XVz3gvLObtWbgyvZsy50ocmDeX+bVyOxreW4rf70eD83jvfeg9t7XkyUl9gN5u5ieoUxQ9NgJ8xidjR5ww6CI/cyTDbOrTxJKhqJzHgddqyUpA2ykn7IP+3Ow/Yoiy3pSm8/33cWAumjgdd9rzHiemY9LDV+2Abyo5XCCDc01H5tnbXVNRJ0fQ2CXW5/E91mbKyZTY9r0W5coJk2ZCYjrE5iCM+sp5GP9qRLAnJzH9qaI5WiH+VkFKExWqyeht3XCkktSMjsW2nSxVzqmRLrnkEl71qlfxqle9iuuuu47rrrsu//lVr3oVr3zlK3nhC1/Ixo0bV+XkLlRGjz288m9aNXh5cN4GYzO5o2J99cBImRxnEA9BJQrQvZLJGYfzxQcOTcKudeWbspSVm3+Kxhiy9sQH5QVzO4nlRGJhXTfcNIi55yhmai7vOQ995zQcacPRlrmCtT0yzq8F7kILm6E/LCj7MaDXCe0hMHcU0D7AjExCf0exw0sB+tMQKLRCHxgUZp9SBAq5pVEHqyZSCoiDUno+6jwEZVmtnC+5ehD0K2Un5Un0d1dSKO6QKPiN33o9qaEIzOea852UAO17eAz+YQTedNHC0L72RKF9tVWuIBB9kWqm2aIB1gOj8MlHYO9I4YTn/aWZ9lktIHE/Ytx7dynqLEC8zDoqK/OVt5Jz13RKTvf1UXjNbrh8M/zctfAjO+GfXwz3j8DnjmqrgA/uSwGCZ5I+Ptdkt1fgcXDeymdIjCmT4piiet4B/CbwQXS/NQBEGU+3hmSYA+Mh3smxOcyWTgyRQxiTia22xM5o6bBwUTfsn5pn8Kzz48N8gsECP/svX0+CT3B6Z6TUcy5CE4GnxuDS3si7ie+v1vwJxhYOlfOHhMeOGu7aQeTbJ+lxQp/TfnMbPdqGI0WKSo8pVxB+Aa267qPcsxwniE74773O35R5cnNsGrvW6H5s6aSsss5sFZgHcrEJtHUmqiRY53kDXHmcmqEghQvfuVq9WxDS7hw8egKu6tPv3F2DN14Ge05oH3EmilppOFy96J2koUgWJ8IQan9z00M5QRYkJoYL6xhs3+uAL6P7rk5h+ybR094U7T/wCXonmBNT0F+LPnhhR/N3/tUbVmbdQvI+/gxjNDnu0AptvO/i55HE88SDzUnQ5PQOCtb2EKDnfedLONWFktIZ5aR0niDw55E2HTZGOlXbt07MwIf3w0sH4NqN+h9LEHab95ivCgFcK1nI5hlg11o4GAUAJb24uL7zgHao+ioW7UA5QBl2HgJzzctceIARB+X5c38cRpPi8bn82m++XhPoLS554F4pBemo/esFftcJH3HCkUwnlGwOvEYCZmwC09+Vc/CYku5anckkudjgLEdHWNur1sPjJyt6Taiytsc6KUY+BNt3iEh3OsE5hbRnITAPC/DIGU1mxoW9UvXcwmAvPGc9fO4IkvnAvOGQpo5Uo+kwjYzDTnKuHEOR2Ax+VQnlYIrkZg21fYdQ+xfI4eL7reHgjAjrcrSRYDKHOSGYDV2Kqqjan9Vcw2riLHzm9i44MkOO9At7M1zvVeo7X7SL9md/9me8613vWpWTWGkRWQWowUJ9XJt7YIbcUcnJmNAKQmBsb0P7hg8TOSjO93k4KY9TEwf7zsKuzvKNkiv2hY2JswbXlpAlFqklCtFMLUPWss4a7O612K0bMJ/ai/n849h9o5iGshAHUqZas6ieV2f4XoKOCQqbLfOfO4YSf+QQoyo8c3gWNrUX1zIOFJ4GuzgPtpI/Wq0ojMzOc1JMJiRZ0XsXnBMD/BDadzdDYYiCcxGcjcWKEymupxTOjkMh7c+jUNJx3113exs2BOazzdbQvkzgyZPwuSF44w5VytX5zk8ntM9LDgWrBm7GQFumF+NxBx86VmZnDoRtszq6rJVUYe3ByO1GER6niByUpsPVM5p+nnU5sdGETx+Al2zW65aEBIZVxMWvXwHHz8CHn0Jmm2R1rZq7ugYKUs8w9Yzj9YzLZptYP4KrWtG3lb0cstEdLQzec1CH9b0UCb5RJ2wNyTDnk4KjU4oqj+crVys2qywmBOKtkmKX9MG+U2VD5/WPFXIdmhiotbdh0PU76gO4vHLu1DlxJ2d0YS9es3BSYCFJdQ9kXldmqVbPnTFwRR9mbpYXHTnjE3Y+MPfEcEnTkWRSqrrm5GJov95PMb96ntt4lGk/zOq1UJDBjTTy3ruWTspqJ1haTbmwRkn9uoCRiXnV80TQ9orwXyiC83jWuUTPHSBBV+X3gtP3Pjah0fCutXo+NQvrO+GNF2kf8WMnIBO/5zIPb1dSRtPIOOWTePEYteq5BbG+el6rrGMNrfzfRDG1JOiPMaAmQk+UjDax3RvJ/PjQynVs4Wi2ty9vyky0cPOLCWEP9CdwfLpArJSCwPK7WMoJilBFN6hNerByLUIFPCQ9FyMLJaWfQN8rJKVLgbnTFrzSiNA4qTrVgI88CddthBf2lwPzuFruK+ZPS2AOUatP7Mv5e+GiLuXhaNHqk0OkFiHVwDys126KcWq5yqWMXrlQCe/lc4v5ng5ImQHK9rijvS0/r6oYn5xeaLza1SL8nBP+uwgPOEWdqs/psKOT2P6az8VW9tsq27vS2lb99SvWKkfHZKOyruHm9/4m85EP4fc7KZPCSVYE5tm82eYn4No1hbIL4wHzLJs/rx/dAsdnkCdOkTnJA3NpKqydpnAsczmsvRSYm/Bo5tm+eNLMm4D3U7Ti1UM865RnxThY6/Su1LGT05gUbE+tSK6UbN8qrmM1qRk+b3O3XvjxmbK/Ej9fBVkSb9Xhw4e5/fbbOXLkCPX6/P6od77znSt2Ys88WcBR6Ui0pDU6Cd1r1akMFYS0qJ5Dwdj+Aorsl/jKeZYrZGB8Vu/mbX20ZFleQNE48SMQUou0JbpfUwsOhpvCdtHA3+xISe/PsEMZ9jtHsW80cOVmfd/MkmbQ5oSaNaRSkMJYdKza+9EqehPdiIIiAgZcUTFXJ9MH6NMNTAPtVaz23sUV9FUUJYVj/vqBBl7D0caDfPOl+HnnKClcKrpptqHQnYeAFxM5F4acHGexrlaovMdOSnBgvwW8noqDFBSgAduU+T13sbNy5Ax8/Ai8dpsiMUJA/v2C9sXSKnBLDDxeafD+9nG4uF+fx06tzZB2M6833hDB2qXI8najTvo+tE0jh7M3HS7TzHEthrN/YUiZfYODFxIZ4fPXtsMvXwm37UM++DjuDZeT9bWpk5JZxDO2jTodMZIi2LaUpGZz49YqFWKMoQOhaXy22RSJnyY6Wu1fohwQz88kh7WHcTJGwI42sAMdWGPnO+mW1TVyscRVhNjoXdwHdx3XBEhSy6tFxgk2E50lniY5qZgBdoqw32k1NFQNwrQLt28S2dGJiasF8Weeg9zQWG0Bcqkn2EmtPnrHZu/1A9z48BjsXANNwSZev/tkAg1HLTG0+bZCKs2DAAEAAElEQVSEsGYBwv46lMH2CeAqVLVbyElxxp2Ok8mDu9CWMDqF7e9c0ElZfbRRq8/FV8+71eHcTbl6Lh45Rhm1sg34rH/b3Kcx/rnnEEhaQdofm4Cr1xaJvJrV/7S1F35hO/zdEehOcDvXItYnp32dR8QwhvYtt9WSltDM6hWsGQ0EYnK4VAoUxNtQfRzs3giwxdv8wuZ5xFxgal/rk9LnYGpfUQmefavq+ZY+JYW7yr+2VD13iEREs0anzuTw9kiX3gD8N4pKbBbZvqbRpTufNQkj1FolpR9ggaS0c6T1DBvbuXhE6GwTPvKE2vQf31JUC0PbVp6MVtu3qtXUVlJNkIb9NNirX350Wklq4wpr2BeLyJsnppzYNP75xWh7xwzql5Sq56bgvrgQCX3EcbumUJDBhTU0UEpOL3R/JJH9y/D3FQFII1zjhM85aBPhc0640sFVU3XMFNjN3XrfLtJnXlEJlfPUQuKKz+9p07aFx0/BCzYvAG3XfZfzrfi1y20f2paga1ZBjvnDiGjCuxPYsUbvq2prV/y5nSn8xCDuC0dxl6zFWYNkRknhDJxMHKYB2xNLYk25vkXhBgU4e4nM1t8PrwI+A9yBEuKGvewcjImwORQzQ2L6TBO7sQ1rIqTbQtnUlZZA/J1U7pvEamvC0Wm1e2H94pa8VZBFe+NPPPEEv/mbv8knPvEJ7r//fh5++OH8eOihh3j44YdX5QQvRPrW7Vj5N606KoZCsW7qhNF64Vy6QGgkuXK0KDTlKGVYe9aUXOlI6Dc/OAnbOsr9K3H2ewGnLDg9DsjCKLWaksSN1Cz9NYtJLObAKT0n68/toePFpm06nXmeSQ7ti+cYhmEv9xJBVNAKQoAYFeNk/OPoFKYP7SduWf15mgxkmGVYOgdgoL2oAkGRFRN1wAP5TAyXNii0vTpSrTQObZHZ7jwop3BSMtTxO0YxSqZaOb/7zq+Xe+7i+a4NB6NT8OGD8IotcOUG/U9tUSD+/YD2xWIpG7RAWPLcgfLrruovw9pL6IBsHuSvWp2O/eDd+AqCaGAuzQLSlcWB+RMnYM8peO1FC5MItSVq4N50KbK5l+yW7yGjUzmxSuZH+4zUHTvmHKbuSOtNbCMr9Zy3kjSqIFR7mTcAvwr8bxHOuso4GR8Y2dFpzGBv4aS0gms9HRK3K8S6bE27zmQ6eGZe33niCmh0Ajxw972K/BQ47l8njpwIzgHuqVO4K9aWHd8SxPD85ykpytXh70uXKHv7w7v6SDGY/Wc08Mx8O1BTj4A8alVBqKHr9TPALRQw3mahYhinGKNmI71pT0xhBtoq8Mzo+62ynLMPb0u3kjYGo+MfA9t8Uqmeb0P1WZ2oWk7hcEvsNFYh7Vf2latAbVb1xiXr4VWD8JFDuLEpbSepZ0hD9zaNjBMNx/aGjg8NJjvo71bgg7gSlJPDUSDHrkGTDAHWPgZsDokloczUPj6LWQJT+x133bsy6xY4cnJvOtqDA50wdFZfWK0AhXWMJFfPFNsoAa5AOxsOUQTVse1aTN95DmOX+Unp+1CkQikpLUJaz0gaOvp13tjLutMRoW01eM0u9TcWbN9Kn/7AHIp7YZ5fZ2FHl45Uq66Hh0AvhBSLJa66GopkygYUFn6AcmAeV7wvVIL/E7+fQ8ngLqYwNeH++eoX7z0vYHLB8WoO7vV+ZpuDBsI3nWDHZrAbdQxekkRkcDlq6mlYa2sWILoFrtqg0PZwsePESwRtj7ly4mTiTrSwBxo3BMStZE6RY8Hx/84puLZffd1qYF5FTCYGrtuAW9OG++aY2tNMfRfJhOMNx9aG0NFwmnQlMj/RFQ1oh4Xg7f8cRY5NUMQMRoQTTtuBkNBvDna0idnU7esHkZ17OvyWcL/E907QEdv64Fg07jA3Xnr+y2kLWUgWHZzfcsstzM7OtmRrf6ZJli2f9bQqJUcldpZAe/DGZnPMkAV14pxmekMmfTuqsATA+SqNFLB2CYu+/6yyVseOmK08byFBKToBMYamh7XXE8tozbLBB+f2yg3qgGb+Hry2v5zNazpqmdPquXdQ4tnnP4kSwznKTsqmTKs+RnTURQ7xH2nAxnPMN3+6CrZVKFlY04EunWUYK00fMITWhJyIxl8DizoPD1B2SEKGN4b8n0tEpCDDiYN0NPC/GoUHxUF5YrTnbk1HZ+ueu6aD07Nwy1Na9b2xAu0LVYQQYD6N0L5YWkLb2xK4bDO8aStcbjQifWw6Il7Lys6Y/znWQybqvasauovxjO1Nlx+lXvGmg8k6fPoovGarBpHV4Lwyfoe2BPfTO3DXbcZ97ABy5AxZ5qCZcbqR4eYytjbUqbSN/z97fx4dSXbdd+Kf915kIrHVjq32qu5m73tzJ0WRMkVJpFbTJLXSlDxz5ueRxzY9M/IZW/Mbn5/PeKzxDOUjyZaP1dZCSmo2RYmruDZbXJp7N3tfq6trBVBVqL1QWDLjvd8f972IF5GRAGoDUMW852QhgQIyI+NFvHu/937v91rMfIqeTzP6bycrBCXhgTi8nwJ6Hfwhjj7rGHD5/aacEzG4sR6J/+N7TiuWReMhWEyNLldfd2+El9vn++qQ4LRyfvoHxFnvSi1T1jHvgwgbqgazTdKJOdwNa6M9Mg5+F/+8VilsYoTOnmgZg+f1OsaV5sTdm1CPT6BaraxiLhX+aM90ee95rPgdxPyeBZ4mv8dD5fxoChuINAOsQzVT9AmLHlmBGfWxVbHFFDDWUznlImOOuRwcKISpAlK9C+A8i3F8MJhfA57SfvCMnKida/PrKInuO6Pg7iF43TD2Yy9jz81LUizcx03LsXnLtjmLmW9JUiV8FMJl2H4ek3CfhfVTeUvTu4FPImO+LBFjLF6/ANKPzqM2DeQgPA4uK9DJ4GDfpa9XsLh6HgJNgLFeODyX06ehSGsvxXMaCr4vgOUaUj1/lLzYEM86b7F4H3OnpPRRpIhRSEpbRzLXwnhdnLaqeTOFz+yHuSa857r2Snk2lcRXzJejklpl5SRlfH9dtwZePl3qafVfZ1OYaeFm0wVBuoJsnHoA5iG8ynwfOaDOsGLFaznn99eW11BJ23vfs+QoeWIlfN1HLgaXUaIVrBmIwNcCFpLTGUDH0eMsb7fQ6xypdfRZeKMCM9HEjKxF+u4VOqYlLyU5exmssm0hfL15HYzPS2wRsyECJd1ns+J4Ja5S70D2znkQ+rn3fUGvyqUOzjfhlWm4c13+AnEiKFHtsUyiSd++Ffv9Y7iT54VF6PV2jjYt21pWigmpy0B5XPwIVmiBVcWC3quRa+9BfGLaf/6jDkY92y8UFdTUOfT6BmFYCBAB9Csbt2Tr1+ZrgW0NOHS6zd8VKqKX2ZZ8yT7zzDMopfhn/+yfZR/k/vvv5w1veANbt27lv/yX/3L5j+4ibfrM5JV54SpgroHhutDaAZwEbNkFFwJmiortoaqaKQ5bfIBiJXu6s4/2oHrhQDPeGK1DFIfrhiN1TbOmWeMzaXrbEOrdW1HDoBugtm+MBCVk0zCpI7G2oFwbbrZ3IBSbQLOBXLFWRsr5bJinquhjM9K3ET5P4eJfBnpmsKr3h5x2eHS6snoeqP1l9dpbkPm9L1IE6HGQsphZ2oOU4OiCWm28WQcxHDOf8ua7bq3uuTvXhL94AW7eAG8eiSrm5eqBXhlqX2yhElZWjb9xBN59B/z3N8Mrp+HrXvwpYwdEX/2M2zgY7NR7txs4mIrDyYC57zcP9HY+uQ+uH5Q53FUZ57qWdpYIpKeJwb5xBPu2LdjPH8LtOYm1jqPzli2tlFozRTdTAeYeoJt5K1S0DhaqeGWQHlSkf9M6Hk9hzjlebuUaD6aZoo479Gbfr1wGxssYmCq/Z7VVszUyUm3PSTL16ADwAkBH9tE7X3sH2jk2pI41qWOi5aI/cdh957CjCelgvVSNih6LmANSo0SrI1EC0I2ipTVHjWJw+1p0Ty/qyTNybGkuphmuw07V8zDh4RcQMb+gXgtSBTlpHUNpVHF1foRaL+hG0g7KF2BPXXarAuZBFO4k8tmjQEVZ0ekIgn4xSNhGzhzLAvpQ/amitD93Fm5dX0zgJSoa9yg/d28Zwe1eR/rJPbi5Fq7l1dqbKSfmU8ZCUmwuleOL9oUqM0pm1xdE/vznuAOhyX/O/+5R59jo8tGpYf00oKdmRHyz0u+0+703vf7Oy7RotAPzEO0O+wTAidkiCIwDzsiyGJ/89Idzdxe5KFzwY5n+yiLxapyUDkAxJKW/h/SaDxJ6zB1JM8W0BJgn5ap56mRE6MEz8N5XCZspHhFaYompBVpcrrQVxm6V76tdA3BgphiLhQTErH/MNBcE6W2icNF67SbvOy8Dc8nL+IJbKuMImW0J4JtuwvmWxBUzTRlV6BM74TXiayBcQa8gTLWAbzK9ntffsaS56rpUPa876HGOu5TjX1v4Uef45zhuUVCbOIMZ6clEjHXMVlnOZHSB2h753Yzafqo98WIdQbW9XDEP52zIPz8ckpepI/VCgVnl/KkT8h7rGsU9MzCOasYH8zoD6c5o7OZB0rs3Yh+exFmpxLuW42hq2da00mLWlL0zvp7ic1qunsej8BLg15GC3iShoOc4Zh0bHCJg64sK+vR59Kaa7M1xjL4Y1eJyWTmxHxI8WwdFsGimVcFqcUvWhLgQW/IudebMGQDe/va3Zz/btWsX/+Jf/AsOHTrEX/3VX132g1t1lqWMogsGZJzaRFOCzNTfYBm9r0jtS4EpyMQcXEqW/bLOiWq4RfqO2sQJWDDQtNEm6fwjTTSHE8OGRKNqGp0oGYO6YxP6F29FNxVq/Jyn19hCgFRPHXWE3h7AaRB6+HGkghAyrlNOqLU6VA/8Z1bOoY+ehZE6Oa+wFGgul4WekvIaai2b2pFZ+VkEzKWSR1vlPFDM7yNXbc9GqrniHOqFrECDJw9SzgNPItX5UL3Ie+6kgqDKCrWh5+6BF2F4EH58CySlnvKs+qtXjtoXmdLKV59LFengQAbr8L7rRTH9qakcoLf12aeFEWsFYB4HKNZxcj5lxoMq28or5i3rcI9OifDHT2yXP2gD5iYTz4tBelrX0u9603rsT27Ffmcc9/gpjqaW7b6Kpz1A116sSs+nqNmFlXgzR0dOse1BwEKY99qy8LvW8XLTA9qJafQahe5NiuNklhvYBSvTOIPD274WpoHjsxHPMszL9kAPv3YOtLXsso7D1uGsJFKsA7v3DHbXRmy5UqDIxW8WMeukeu5qmlRrbKJwRjNhFDWtGVQKXr0R89QEaraJbuUzz2Mxnpp1lfS+BOm524cISQYQo1LHcaT3LgjBKQfmWBM1tIBi7XItYSda+0AiF2NppJqyTv7E5ortQMYcC+A8A+ipxaaI5kpcSbIWnjkBtwzme3bcdx4BL5cY7I9vxTV6sJ894FtV5LXOzltG56X1wLRSqaDbvArUycoj1UKixQDvRXzfPEj1J1Azvd+TyrlDnYyU2qvuwytpcf9kDNK1gtGaiMLhitXzCkStlMr1Tcj9ngbuQXzUHBEoJ082LwTOYzAfJp3ESelQNdfWkaRWwLkH5jr2e6kT1f4fLDAiNNurVxaYZ9apVXG4V/7/I0/B3mPy2WJgHj8WAOma9uq5QsD5HqLYMABzJyzOdM4nus+3BITMVL2vVPCZbeLmU6x1GaU9A+jAaf/YGR1DuOcWCWMLlkQAvaEcDQcN57hbO/5HBbcr6LGO+uQc9aEe6ijqpnSfLeeShwp1J2r7s8fbqe2hkmMjrY74XPmvO4CDvkqepjaqoFtS5/xs803F9w3APIDyQGf3Dxfat94wjDs1g913Wmjz1jLZtGxvORm3nMp9mLnUio+eqAp6O7Jv7gZ+FPhTfEycwgkcGwLIdUhcdAb0pt52vwfLgxU6iaA2EmnDO+TbX23pcSl9IR1syZdtT49UF+v1evb8wIEDtFoyOOOb3/zmZT+4izWTNK7MC4egEvILRSlRYwU4I/WQ0HetURnFXZPP/zvgs5PYnNIu4Jy8ah5m9Wa72uKBdYEqSA7SDyeKYaNwSqG0RiUaZRSqnmBuW496/FTuLUMmOpV5w2GUWKBpBmD6M8A3kETDDFK92xQomaFv0lfA1NE0F4MrB3nLCQ7LQVLcUzK2RsB5ltnIbzjjZFxSTCsP1fPXIP1xIdgsV84XY7vElL7wtxYJ4EcRleOMThh67lqOWtMydfRke8/dR1+GWgI/uzMC5qWqecP33K0Uta9kyugiMC+L1I30w3u2w2cOw/5T7bPI4/5zr85cqB5E329sWoablsPNMNtTlEnTlsVOnSd9aAJ+djv0Je0UsPj4IoV7V9e4HkPLjzG0W9dif2onbu9Rtn1riq1pmvcmN72zm7cor+bOXCurRLSdm5J6bawD8TVP/65Zx5x1POKTgXpyHjM8gFblcTIsL7DLP0Q7QDdKMvnbekWlONxvAaRaUUJXznHmxClRR09hW+oY90lN5zy423eO9Pp+SRTGr5/oJVdNsp5Jo7E1Q0trbE1zWGs2JlLp0qNrUGODmO+ekMSrlbWkFV2HvnoeRuHF1fNB4O+TV8+tc8w7x7kUNgZadOi/m5pBDQ/I9lTFNlqufTPsk+XjUFr6lyeLY7kUeN2VYtVOkc86jyt3rpVXgFxWkXBw4IxshDvWtl8/NVWonruaV9j/6R3YVhP3yCQ2FQB3spUy0kozjQDTlBFcAaB3MuPF/Xqi+y2s42sRccmHgZPOsdGSMz38c2Ud+miaK7UrFvV7x6ZOXYYF8xb7t2wN/WNsECYiXxcHl9a20dELlPbI920BNgDP0A7MF2OOZQlsVwT2M8DjzvG6VJgOtdkmtblWVjU3TT/2Naj7Pz0lqv2/tKvziFDvS1SyCoA5+OuZ9v1w33H5/wngL/yUktk015VZCKTP5SC9itaukUk7B/G6D04AHnMp6UyLdKaFm23BeQ++ZyKQPpvK83AMcynMWphpYWdb2GYqopwRQN+HVHsHSsegFZw+fuqCXFBdQZ+CPufoRajsvUQ/OzpNQzl61zdoAEmWhKYI7pbBLpXanh0yxSSGQhIdh1tWEpc2p7O3rMMemYZjFm5ZX3zPrO9c4v5ykcYlmtQobE9C+qbNuO+MY5vSGjnVcmyxFtWyJH60Wiz2WWVt1PZo7/gV4NvA836PP5XCUGiDRZTadZ9DNRJ0ZTJzGdYxXKTluEkp2LoODpX2zayC3r5vXo5DWZKtW7cOkAr6yMgIAB/84Af5zd/8TYDlo40swTaO3HiFXlnl2WgobqwbFByRESVZ3511XkghV2zfChz04M9GN5h1koFk7xnYvaZ4cWTvUz2rN1gA5Nn1gnwd14oho1CJ9OJoo9BayXV3+zrUkydhvpVn8nzPibKOesu1VxEQx3wPQu+bQgKytSE4czlA18dnUI6cOr6CQKGypwRkTcd6YOKsfB+AQhS4xNT2sNloJMN/CBE7KgcoIUjpZNa5yiDFIv3mr4asPSJJLbX5FqaZZtWDD3/qoWLP3Sf3wXwT3ntdDsjbghS9sj13HUzVShXpmOKeKLhuPbxjDB7YDydmqtXpoxFrWWxKfstq3z91XdNyyIMq27Skfs6n/cJ+Wq8dFlX7KmDuexdV3WQietQEmKc9RiYkeIdn1/fDT+2icfIc9/zdYZhvCShvpug5L2oUxO1mAkCvTuXEGensYR3vtI6630N6neOtSKU5OXyOZLSPGqwssAuWLYAqPlfA9WvhpdOFe02lXlDMi9B88WOf91R3yzbrmLQO54QKbQ+fwQ1COtyXzSdvC3qXYKHi44BWItR2ZzQHa4pRrSShqUC/eiPqsUnMx59C7zkmQKHwSKlZW6icx/S+n0b0Ob6L3PPH/edc631Cphlw7Cw6iMGVQd1yBpshId1G9UPYXWVRuFSSFsbZvK2JHJwfJKe9pmlgQLhMP6CN0h6S1IVRQMVEmatpbN3gehLcu3ZhJ0/Bo6c5Z0WbYMgnxvS8RbeEtWKaC7eUQCnQVBQSLe8G/go452A49nteBFadnEVfoN/7yAOfv5SlKljm66BYPdfI6NAgChcloQsU98hCJTaeex7W9U4kkRzunzJzrFPAWp5tLr7S8VTLsmMuZftMi2S2SW0+bwVKmpZa5u8svHISPn1YErdb1nQW7lzGEaFLMWEz6fZr4skjxV/84rj49RgUdwLq53OQrlJbWa0ecY7e1HJoLsXNtlBzLeyc/E06KyA9A+Oz0fvMlIG5Z+jNpjRnLXZWXi9NbTYxaC/Sxgm0+eKPffTzF1TMVr563pc6+pApjr1WtFZ6HfSPz9K/qUEfmoYpJaQ1y88UuwRqOxQLC4p8/bZbx2G/X6at0HPu2WPPnsHdsobCbPPy+DRoayO0QThaK9z1a0l7G/CDM5yyjpa10hKUOgHoPhm9kFaOKcUqsZDtEDLx4k8szDrHtHMMgeyZgDqZotb2SlGzyu8twzK2JVeyawnY0ifTj6DINOqwb16qLfke2b17NwB79+7l9a9/Pc45Tp48ydTUFEop7rvvvst7ZJdgRw8/cWVeuAqYK+Tm3zQAR4qK7TLSwmWjxTSyYR22UvlJfbVAVBIdtmVxB2ek9yjb0aILZIFA0/lNMaa0h8ekUmzyVSQ8MFeJjEfQY/0wpOGZk+0bRkvG29SdyzJgcSbsZ4C/RcDpFhuBcovc0DjUsVnUaJJXP+JztxIbZ/BYBaqMgpFemGySCeXE1XNHW+U8gPRBRLTtu+SU9Lhy0KRzgJLSHqSE13jUOl7fiqoHswLMTcsJOG9a/vnf/2nfZ57CFw+L4vwv3uiBY6l6sNqofVUWV8sLfehe/OmeYbh3SGbYnm/mFcs4YPOAV9kiMFfWSZ93y7KraZloWlygtVuH+84ULRzuzSO44MwqKO0hqaESLb2NDYOteydXkxGGzvdypY0a9799O7WaRn/2FfS5OXFuLUmumPi4fcDTCaDXFRG9D3qV4z4c/6dzvN06fhu4XUPdWWoT56iPNuTSXm46bYUV+ixj0KyA6wbh4IwEoVmQEsTWJDH1S//9e9HWoixstY6j3ik653D75rE7NuKUJtVKxp9llfOlAVkXixo50epIjcEaxWGjGUk0SvtxMtOz6BboPRb954dQLx0pgnOfKOrBFXrPw37Rh1TPP+Lf96j1SvtItTlT3D+a+jFqFaBuudewClgqilMuokqCJmePBTyoKFbOLYC1UgSyHqgvSGlXUeU8Yq74e8+FILO3jnvHTuzeceZfPsXG1FFv+XaSANIDNXp+YUHb0HteEIfzjx8BTvjPecT7/EzMD4c+PocaNkW/t4BSO8A//833XYbFiqwcQwRfN9YnbXixr4sDzLIonO9jDlNLQuVcIwn6H1BkjqWl52VrS0pbJ9W62RZPz7R43VwLM5eSzIv/C49kPtJ4GD8LDxyAd26RxG2i2jVVYn+y2ixuwQlzqMtTSo4D//VpmVgQg/SFqunnm6gZOV/aSvymU0syl5LMtrhjpsX4bAs1l2I9LT6dk4eNwXf82s9Nwl88Ds9ORO8tfeluPqU1l2LnU9RsCzsvLJhXkH7zODkXAPpv/o/vu6hiXg8waB39Ppm51n8dPDTN4HA/vZC3cUWP5U9GR74n3rsUogNUpdoeUdsDrV1RbEvYlVomW4IncA7bctkYSvvUFDYIwcXvWfKDKuyfvm3QRgDdGo170wj2pXFOnz7PaGpJnEWnVlhsLd8alLoFcXKh51wVW7t+3jlOWstnLNSdY8D7Du1ATc2hhr1YYIXPWbZ1zILGaP1QsLVfmA9pBUawXPa+8yXvWr/2a7/Gv/pX/4rR0VF+9Vd/lfvuuy9zbPfccw//5J/8k8t6YKvRVChjVAUrw31wLK8iBJVvlfqvnq64HTicBaE+KHGSNbYT53A1ZDRbud98MXBOidIeJXImgGGjUQa00ahEZkNro9FKw50j8PixfJOINgzdEtX2eLRM6L27E6G1PYgEmPk4mWg0wtQ8aihSrK0KVJbTysA8VBQ2+X6vqZk2Wjs+8CpUzlXueOK+89AdUBZ4q7LyGJnUSoLm5bmU+myLW2da1GabEqQ0W5hZqZon8ei01IlY2rMn4JduhP5ae89d1NO9aqh9FaaUio63lFQIvVJvG4XhAfjonnZKf2HEWksYB0oATxLGXnlwfrhpRfzEOtz4GdInj+F+fIeMIKyisocEQXy8RkNPgqtrbF3L15rC1sXxHTGGZj2h9uYxGFmL+fQe9JGzvoqXosIxZ8ctVMFAzY8tFsdpKKHz9TnHazT8zwncZZB+vFNz9M44GsP9ZH1bbQH6ClgMruI9bVNDEOuBM4VeLuMDEJ36CroDk1o2O8c555j2NDJ7+Bh2Vy9WQarLlfOFmUbBYrZR1j9Zk+r5wUQzVPOV80SjXzou970B44AfTObUxJbLrkXjGUcFgRxk73gncAb4tnUct45RfwBZcnNqGpWAXlOX7XEF2UZAB1q7knFqxzytP1D8wLMc5L7L/hTYjOx1Jwn95lI5d6mNppU4OHBa3jfM6i37wEQV6JlpXD2vaeyaPnjLNtZ+f5x7D52Sc9uSUYaqKWukUmkriXUqqixW3g+PBBFDTZHk0b91jj0pBc0AfXQetbE/93sxKDfLtIZx29ZSfF0M0ktWFkMNoOEOJOFynLxyHvxaqKKXLUtKpw47l2JnmlhfsX1ursVrZ6RanswLSNdzKcmsB5wvHoE/fwL+dC+8ZQTu8KKdZXbYSo4IXYq1TSnRcNMo/NpWuNXAL26G/+V2uHcUvngI7n9a+pUXA+lzokWj5lLMXAsz1xKV+7kWei7lhtkWE6HyPW+x8y3srADzdC7FzZZe+8Uj8OeH4dkUPnIYnj/i388D+9lUAPmclfGFs030bJPDcym7PKMkVIIVnfuVFzW/nyQO+q3zD3nee+A0yZaeEkOMzAcst2XV1yqfd/N6mZYw3YHanuaiazFI186xs2U5kTrmWwLMU+cF/PafJm2Ai/fLwhi10j2QJYRUNnLZ1gSc2w0DuOtHWfvoCbZ4Fq1uCWtN+31Tt1K07QxE43GU5dauPgfvc/Ap65izeCFbf50cm0ZtrOcurpCYXsZ1LMdL4fnGhizM5HQeqwSs5Kr3zUuxZKm/eP3113P99ddn3//O7/wO586dwxhDb2/vZT2oVW3lanZ4PlKH545mVYRsVq/LZ3+jYJtzjIeeET+aIrUeoO+fwe0eBKXbAxLDglXmQuUn+j5FKNebtQIjEaVONVo7AehawW0b4MsTklwY7YdUFwC6aTlq2pEoRc35m82Dyp8D/pN1zFjHHgt3pJHyIqAmp1E7BvPzFc6hAtQKOM5OgCXVIpRzZMafgxyYhz5YQ8RYcrkwzmsRoYvzyCYUKgepg6aSYKWMiaxztBBRrzT1WVCvfPxUanldCom10meeSmuEdpD4hEkmhvPoUfjmUfjA9bC+Ud1zF+jYtdVD7etkSilcjwHyYL+QaXIOfm4nfPh5+PR++Lkd/g8pXmNaYZRGJWA8nd2k0rO401qOtSwtL66Xfv0Q7g1j2KF+oaVX0dlr1deqMoq0J8FisS71e7TC1uGwg/X+uPXrNqH6EswnDqDvWIOZOou+fVjGxmWfLbxqC9fTvl6JUvRpyfbUgDl8K4wTQFR3jvrh8zQ2JtTiwCDu2V12ZOetqu9cK9nrrl8PL5+XCljoO0/lupfqj8KkQkNupI7h1HHEwuCJaWwL7OZBEXPTMpe8AOKWYAGUB3ySAlYrZmuG8ZZj1Gqvwq3QN21CPXpQeqoBbhkWgKeVBFhGCTW/mdKjFU0fqDT9npkgFaD3AA9aeL0TMThslNScaqGHelBKtEGKLU4sP9sovH98HABr63I8R8/DtkH5md//Q1uCIgdyDWSk2iFgyIruim3lk0rS1JFY4NmzcOsGKintRgJfZVR2u1jIfKhNHc44GBnk2ddv5ke+PS76EUODKGNRTSXuRysfAMqad6I9GyTInHeeTOPk3vsSZBNJsPB1HPc6acdQgJk6j6pSavdvuix+LxaFK/u6zXUYP5/7ujJIL1nifV5WjPP+cC0iVPUkMEwE0PGYQ8n1Hsw5R6tlSecdtpWSNl0m3newKUmU653Lq75O9u/EOWovH4O/HM9fbEwXgXlcLV/BEaFLMWUUrmbyYkiwW8bEJ/hzwquH4a5N8IMp+Pwh+MY4vGkz3Lhe/KKW/QajCOruqqYxiROyErJ3mhbo1LKrBY9Ym7VVhl7xNMShqa/MTjeFfv3lieKBf+Mw7BTRsUzIuGVF80HJvWpTmEoc16caU9NSBDKqANAv2LIKpcvYqco6odyfAbYM5rGdLl3vK2EhUCz7vIEajHlq+6ujEcYZULfoRGXU7hB3autYn/ppJanjOq/TYR3Y505jbxnBdtovS0xJpZQw/FqeIm+khctpi9UKd/daGp86ym0HT6N3rUO1LLQUyjh0y0mCs+YPrIMFOntL+eKTypk0oza/5n7Pwf+cOm53FnVyFrVBlNozv7cSRbyF9s2tvXDovKi32/x6bLuPL4NdcDrixIkTPPzww3zyk59kYGBgVQLzdZuuu3IvXkXvC6Jwx/MNJKjVZortvn9yq4Omk/E5gj9cTqs8eAq7a7A6GFqkChQDchd9Peb/fxiynnNlhOqjtTynN4Fb1sDjJz0fzRbGeRhrJRNGe9/1Jn8KTjvHv7WOF33jZqig62PTMFzKakJeel5uCzdauaIAXihnrl0oxwHWUvPU9riKkCAVoTHgMchU2+OZ563SITgniZnWbEo6K2Is6Wwro4Y9O5Ny71xLqgezvudu3lKbFWqamU1hz1Ee/HcfhS9OwC/tFNG0Mi18lfbcLWai4C6U8TzYiirYPQbee4OMzvlq5xFrytMjtR/DYzytdUPTsia1TFqH/fYUbrAPe9s6UVtPNGlVn/kC957VirSuSWuGtG6w/rG/ZhipBQFGg75rA+q2Neivn0A/3UT9+WGpTGRMiDR/7imDZaspxYBy9DvLIIo11rHGOQYd9FkYODhDz+gaMvGn2Mmt1D0Hxd7lAkAHdvfDK8dzenSaJza1dXzp01+RPdRnqMecY9w53MEWbsd6oeMZ5UehRUHJEgNzj40zHxv2z4NGGBAbjAYjQaa6bhj9S9vQtyToOjCe5pWPgjicy6rnmdJ+eA78uJOevr+18IJzvNLK1dr18Vn06GBxnEy0fy47TbM85SLsoUrD5oYkNMlPXqY3YvM/C0e8BQHnKhVKu/O95qkPFIXSfhJuHswDpEIFSud6GTWNq4kIo6tpXE2JOKPvoXxu6zr2370Z9dWD6LMzXpAxzWjtmV5AJCTZ/tFVG0WzR0lLV0hC15zjbamvKDuha5rj51DD9epqXgfA8OBfP3RZlis/eNp9bubr1hRF4VzR15Xp/poipT2rFyDMsUcpaqYE2noaYhzrZFb2TIvWTEprtklrNpXK+Zz4vmdnU+6aT0X0dF40AkQANSXZcxIdA3MQdeq2FiidzzJf7vvkQi34s0bp0RM9D/7u1cPwm7fBXSMC0v/bM/Bc50q6mWmh5j1DazYV5t1cyo65FkdnU+kzn5eqt51Psc0Ue3oO+90j8GfPw+89J5X62/uLx3wQ+NxBODePnbdSbZ+TvnM7L687OddizWzK5rkUPSsMCJ3aTEPkry7mOo+ZHQEQOSftDWsRlkTVfbZSyZlAbS+PEdVKqO3PnijGmOHhaetlUT/TEhbZztQxntpsxrmbbWL3TmNvW0OqKQJzrSCp1hdSRoogzihhiRmFDfT3muH7d41y42NHoOXHT7a8FoxnIDKfdhSxhep9s66gbh3f8Ptm3cEs8C0LeraFngW9sS9PnJZjl2WyNk2I+LravgYOTRepytk16RacvHOhtuTKOcCDDz7I/fffnym0/+zP/iy/8Ru/wb59+/jf//f/nbe85S2X7cAuxeZmTl25F68CziBVBICp87B5UG6s1KFQnpYpYL3XOsZSmLDOVw/w/eYpbmIe+46BairfIhdnoWIePZ9AFOINvlrgHzrR0vsaAuS71ovY1lvHsuqPAHSpoictR60mY1WySgLwVXziwUKK42vWcW9ITsyl6LPAyEB7VhNWJKuplMJpDaRFqp8GRhrw5BSwpV0ox2fxC5VzRTbD/tVI3/mbKNL7QuXcWivCePINraavIAStgRScpy2dbMosT50GYSxfRbeOJAX2HoWPTnDj3AZJT6bzbVXeHKSv0p67RSw4j6x6HmhEIF8H/Ii1+/fA+gTuHBJQCxkS0D6A1N6h6KZFWwupZYt1zO8/BRPHsT99g1C6PDC3vh8r7zPvfP5sSKwpobPbsN7AQae4V4GyCqOEUq/PT/tJDv4wH5uEXUP55wp7u5OHg7YKkHaKhpOZr9YjytCrzOHT8JqR/A2yIAWWdd5rlVWOmFGway184pBMu9jQyCrn2krFYPfObShrMancE5udY9w63MGTpLetxyk5/6mvnDutUDGIW8R8PrHt6wGtGKlpXEQ5Nw7UriHMlg2oO87AR16B29d7ylvx86lm6vNKmjpSPWgCTQc9Dl7nHF+0jgMWPuQc/zJ13AmoybPo2zZl22Qx6FwBmqaOevnLe/jYIExGo/B8K4KAc4t2Wnwg8qeb8X3nqVSJrIs0V5yD/afl2t2+Jk/mdGBDSAVI4awRWrxz2BRcTbaLIzZl9oZ1qFOgvrAf/dPXoVWN0EOdn2BAtXCqVnnNhOp53UGq5Pp4DfB7zvEVCz/hHHcZRz2FmnUk1lE7aoU+vkSldoAbb9h+SetUtszXqbTE+AM298B3j/iEWATM4+eq+FrGRborLgcOdwP/npypl4bz5KDlPCPCJ63S1NFsie+zLSs+0M9Se7Fp+REXtbG0UvTzpzGPTZCcTDGv6oEX5/KDum+svWreY1gNI0KXYkp7H6cV6LRYBQ+0u8T5jcOzcl49DHdtlEr63/pK+ps3w6vWFyrp2qhMWVu3pO+c1DGWCvvoKI4tOGkpeHka9/wU6cE57FBdRn79/XXiYxVwxxQ8Pgm3j8BgP3zpMPzHZ0nfMop97SbSmsGlkhh12jGhNdcbv47WYqwmsQ5d15i65qaLuc5t1DoTA/RDcyIG2Gnk5Eolo8O9Z2wFtX0dfGVSdHNMvURt15BK3jMkv7ST9VPWsdVaxls+2eUc6cvnsKN10vUNbBsw1wvSFJwRWrtrORkdarXci1bx8I61vPal06jHzqJfu178b0uKeSZxWQuXWyCmSMj3zcAcszjeYR2PWtkb1qaOH1FgpmYwa6FW0yRh34doDZf5fu7EkN7WA48dKbTgFarnlw+bLx2cf+Mb3+AP//APs+/Dgvzcz/0cH/rQh3jkkUdWDTifmT5+5V68XEWAIi362CxsHpC+O8gqQEEch1TGExzxFQNrvcLl4XOkg4p0fU/++kYVny9gVZR2EHAeZEaU8qA8tSgrz1UiNxnb14i62Qsn4fZNeSavaSHRmMRSTxR1FPNKbrqmg58CHvEbRW8KP+YVo41zmCPTJA0kA1xZPVghB6ooAvNwbkd74fPz4ghS/7PsBvSULCgEKIHa/hrg/6TUd6ekr67lZIZ2zZ9TlzqaqaXZknEmaUvGYbiW47mm45bU0asFbBl/7WhnSSamSZ4+A9+bAuDOnmE5xqePwG2lQGW199wtwZTRnuJOlC2PfmG4H963XYSB1iaish4Fv9pnYLVvBQgPZR03Ts+x7fvj2NduJu2tZ31XqQforqaFbbBIYiPsyQGgtxIj8a6CV4CfVEBLWCpGK9Stw5jHDmLCDTqNVD8qXzz/sK4A0OU6CqrmBed+pAWb+4vZ5ngvWUnLxkOW9oFGIlS/l8+IunXEPjLWcfNNuzk/kwqF2DlGneP49DycncFt2Y5FZUrtVsvzC5lGYJH7NQbmDikSbUm0P9cWkwR6uxbRtm1r4PZ18LcH4ZeukwikFIgZo6jXZd8MAUoNSJ3jnKey161jzsG3rOMuZ9FH5lE/2oOmtIYrGGwSQF7s9zQwWofvnsyvVR+gBFq7Js8TKUQU7vtWEpSBRhumlVgH7rmzqEUo7bE55Ss/1t93nvCFcxxLHeusRb16LXruPOoz+9A/uzurSBVAs1ZgqoNNpRQNHKnK/aoBXqfgDcpJkQVJljUcNKZmpI3tAieU3Hn7DRe5OAtYVayilOwRR1q5n7cRSLf49SweaJyYNkoS0wa4EdnG9gE34CntVkbkpa2UloXEU65T60g9SG/5UZY2tZxJHVMty00K9Mw8+ulzmGcmSXo1tXtHSW5cL1XIA1PwxBEB5jeO5BoltahivlJU5oswpYXtQaIkudyyso+UQXr23IO914zA3ZvgsSn4zCFYWwTpWqtCDKrS0GJpufnsPM2JGeyeU9ij53Hre0lv3oR95wBpny8yxQmxm0flXAcf84s3wL6TpF8fJ33hGPZHtpBevxZnNU47jmDZYbQv2uhMc0k7i7KGO191nRc+VRQcepaYLoGczMmGADcG52eE4h/fW9n9tkztI52sE7V9sA5jNXj2ZCW1XVmLcUJtN4pMYFqllm0tx9NWwHnqHO75Kdytm6Q4oMUH6jiRuUCSymmFrRls0+/BLQeJ40TqmNMO/dpNqM/uR99QR2/slwSdUehwPTbTfIxDhSml6MEVqO04uFs5/g/n+JoVvHCbgtrxlGSwD+M/84onWaqAuVKweVD6V8/OSxtpOWFkLZjLw1JdMjj/q7/6K5RS3H777Tz55JPZz1/96lcD8MILL1yWA1r1Fi8YFEHziFds90BOhwqyw29O0ku13cKkDzRDstoensPuXItVQskrqE4ugZ4TstYBnIevAZxnUNhXlEwq1UlllDg260QY7gfH4bZNRafdsqiWol7X1LXKqkAp8BoH/6+Fv3OOn3COO5Q4YuOgdmweHVcPlhikXHGrAuahNQHg1Jw8t+0OIUlUof8uBCg3I+f7BeB2PEBPHWmzJYGIlXnUhD4f62il8giUTmsdzzcddziHVr5qfuI85oXzJC8eIzmeoq9fA29cC4+czj/PqzdXjJC5uoF5MFWToDtvMHX5VwfsWg8/0YKPHoDf6MnXEAjYxqQO5WlhqiXO767vHOWVsSFetWOdADstlHab+JnJHpwvdv4CoAvUaAu0aoYzSjFOizElWXDdkvtNXzeM+mUwj47D9g3wtWPw2QPwzu3FgKSqih7WM6b4xRWvyWnZ0ddHbSRGte9ZK2UxTTmuJCik33zPabhnKLvXjHW5wKTzlXPrGHGOw5MzMDQgImDGV81V/lUvcSJBm1I7+TruB25Rsj9qq33RUY5Lhz36xzbD7z0LL56EmzZ6gQkfYGvZX+uJpm4U8/ikJgJe3m4dj1kB6mut482AOTWLsmA29spyVU25WAnrBPJG+wTkla5FYf14v6fyyvlW4DOpRXnVsExtOHx95iTmPTuK10oVpd2bQ9pKbM0I8PPgctrB6RZsdKBaoN44hvrUPtSnD6DvGkQ9NQn3jkmPb7gWm6n0H1RVz5WioeSGDPt/6hMSyleU69bRcI6eqdnOSu2a5aXaxj7XROsXEgdHp6V/Etqr56UYU5MnpkPPuUGSTXcjbV3X44F5K80q4y2XK/E3U0czgPSWo5VabGp5wTruODZN34vnUfumSEYGMW/fit46iFG+mmaUiKbdOpapTZcF4FbtJJIFTPnP5hoKrO4A0nUOzGOQ/toRuGcTPOpB+roJePNm1A3rMK8cwzx/DH3rMHrDAHr/edh7mveenubE8CD2xnW4H9siyWkg1b76rXxcGO/RDjkmrSSG2b0et2Mt9vlTuG+NY588TvrGYdzIIMed4gYns6u1syin/XhhJbGw9QmHYOGaK1sZrMcAPbTAHJqFt/a2x5dLYJtecdMqorbb4l5200ahtt83XElt14mTZL6DJBXGn7bCGvs7fx7cyfPY0/PY6wczYO4yYC6tWAu24zkkoV0zEoMmGps6JluODdph1vejXjWK/vpR1M/sQLcEmKv4ukjSHK9UmIyBFX0lq8SPJ8A9xnFPIoLZNQs9x2dobOilocCshiRLrJETH0vNwLCBQ+fyQkIci1V3R12ULRmc79mzB4B//a//Ne95z3uynw8NCSXz+PErWK2+QKs3Bq/YayulcCqiRUO+IQw14MVT8jMbFNsRUQeb05S3pY5vp6H32PnK+SnS24dwSjJaKnamauE+w3iMWhxgOgSc30rOZlNaoRIj4xHKwc9dG+BrR2SO9KZe2oThmo5GA3+j+T3QOV6D5XWAMY6kJRWEXgf1o7Po0YHiOQoX+iKf6YpaLPgQ98EaJTfe5Hn5/OVMrSXrM8+o7eRByn0Itf1WoGUddr5F2kqZ9yDctmRmZMtKkBLonGkqFfR55zjUcrx7egb1yjxm71GSqRZm5yDJmzdjtq9BJUaOfecUe7/5Art/9GYJWApVc3NNAPPMarrY4wPFtbl7CE424YGX4NdvEdEVf20ZX0EwLa806hzqhdM0zs7wN2/czP+ivFPzs61touRrj5H7YxELe3MZoL+SaHpVwoBKUUoJTS21aGUwNwyjdm6SAGv3JvjL5+Fje+EXdtEWEQdzDkhErK5TFeHwDGzu89mAklNZQoLvSltG9QuBShxMXdcP3ziCjClRWd+5sY5DByfYtGkY7VkCw8CNB88xs30Ng0CqlOybJqylWnKmPd4zy1MuDgE/ARLkJEaSq06hrcaENeitwds3wxcOwa51+blOXBZgG51S782r5z3Ict7pHP9f6/iGhb/nHLdqMMfnqA0n1HyVotBzF56vhHUCeRsa8nVqBsYGMmCnkSDcWIdO8GNFpef8ZOqY94wBG6rnzmEPnJZpJds8TTUevxeSyCUL95zTirSWYL0EwFELtbpQeJV/b/3O7ag/egb90TMoCzx9CD6gBKCHzzRvcY3qYLCuPbXb+W4iL8holPIjR4XCqY7Ow6ZIqT1euwWS0nv3HWb3zi0XvUSVthDTb0sPTM6ImFZV9bxkWb7ERYU5f27vQnzfu52TEZXzKTZNabVc1rpF5OtSn6BOrcUeOM32Z09z9+lp1O4Rkp/bjV7T699DUUtEUKxt1n24Jq5iYB7bJYH0143AvR6kf/ogSh3EzIM2oJ8+hK6Dvn4d+qa1PLV5M9+r1/h1A6nWGahLY+ZRDMCMkmsjVIJbGteypC2FvXUD9lVrcU+cxj50ELZtYPb2dWxd20DhBJhbJOFo5D7ZOznO7h2b2yvkwRYC67HvOzErX0f6i3Gcjy9XGpwvSG2/ZR08XEFt9w9tPbXdRuKIqWPUOs5ax6xzJC/NYq9fj60nOKNo+bXL7o1FlPdagEWYR2lThPxsyzJuNEPGglPou9eiHpxE7zmNumG99JyXrw1jJebsYD0qxyMaR9M5UpQwrBAM0Zg8Q+OuYXrw22Y5flluq8IH4brashYOzcAttBdJrMW5y7MPLflVms0mAGvXri38/MSJEwBZH/pqsMF1W6/sG4SFg2LQMlSHYzPZpmM8pT1TbLeSFdtiHRPWQSo9q66Zkh5r4rb2y6zeOHBdQgYw7FllgA4CzjeTg3MDIgwXHF58k/XXJUiOheGiCrqylh7r6FXQr6FPw4CCARx9OHpR9FpHH9AL1CfOiop9uMrKlfOVshBgVlXPR9e0i8LZ/MbTSirnNaLCDvJ4LRKgOOtwcy3S+ZR03pLOW5kF6gVbWtFs0XQ+lSrD2VlOPHOKf/y3r7Dub/ehz0xj7hlG//pNmHdsJ7l+PTVfDadu4OZRHh6dl8AyHiNztYjhXIBlI9bC568asfajo9L/+uBLuahaU0SFghCcbln0iWnUo+OYN4wxWzcc1Tqb95kaEZNKa1KNXYq1qXwjz/cBW40m7ZGZ89qrr+uaxvQYVFiztXX41Ztheg4e2ONH3KTFsXCz/vPMtuT7uN8pTlqMT8O2gaJTi7PPq+GaSKL7P3Z4o/2S6Tp8Nts/tQfo3/n24+CEmqkc6FbKziNnGB/rwXrwYX3FJ/SfLzUxFfbM8hrOA5PI6EsNkARhP42uySO79u7cCIM1n1wIoNxmM6VU6qg3HQ1k72woaDhLP3CXdvxPxnG7UQLuJuapbxqghsqC9TaAvhLWCeRpLS0Jk+cJ7RY4YY0J6yFKDAMbraPHWo60AqXdt3U5SF86h7t1I4UxROUEcsnC/ZbiAbofp3a4ptlQN1Az6LpPrvQkqM0m6+UE4PsT+Ri8WNSvgxml6NMiyjigZNayzF6GHv+ZOXYeYqV2iEB552vzK1999MLWZCkW7wXB14Vj2rxGROHCHgJR9bxdFE4p0ZwJua+QqNbIvPOngPmWFXGxlm3zfelcSnOuJbT22Sbp0yexf/0SPHqE57at5cTPvwr9mo3otb0kicbUDEkjwTT8flkWTmsY6DUCzFfxiNALNaVEM4OGkUkDvUkuFJedh6QkHOfb2F43Av/TbVCXe89oSaboG3vQP7UDdd06NvTV2Z9oSIy0hNRlHKHtMaQN+SrnNoneP8nfv0djG0b+pqaxPQn2vg3w8zfQSgz/6HN72fK9U6i5lrSRzcsYPOXn1T/8jcdEZb08T32mBedb+f9lP0/zn4d4FAeHp4UeHsBovE8uN0Olky1EbR+twXMno6qrk+S0p7Abz7Q1qVdJt47+1LHOWY6mFnvgCHZXf+bznFGkMTBfQkEvRf7W1gwtD+wPJ5qhRKO1RtcT9Os3o78+jplviQ/21f1sv/TiteX9IphSMgZ2EMeAg35g0DkGgf7U758H5+nb2JBWrvKeuQK3djYOr4wVNF6x/TQFvY5FEpsXY0v+2CMjIwB85zvfyX6Wpil/9Ed/BMDo6Gjl362EHZ987sq+QRUwV0po7TPIhlKitCfgBYVEbXjOOs55B2jHz+E2amx/LRM1KtzISwDnAZTHlHYHHEaUxOO+P61FtV0nOt/YAuXung1+5rmNRCryjJ6yjj4F/f4xqCQwGQD6nWMAGGg5GqlFTTZhuJeMXxyfsxX0pUopSUvGwDys40gDJs7KzyoAkLO5KE6sWh8ClAnrODqf4uZF8CZtWtL5lNZcmgcp8ynNliU9M0v61EnST+3Ffupl7LFpjt62Ad59I+ZHtmJ2ryfpSTA1TVI36EbkNHsTfuO9P5U75rqWQOUqEcO5UMtnoOuiOm8AuYmBn9kha/Wp/dAScKvnUowH5qaZor9yGH3jZtTIIBuN5mBMZQ/zPhNNugTHHlOi4+RYAOc78EyVuqyLrvnRMgHc9Ri5//pr8Cs3yov++Qsw3ZL7LgD0bHa7FeAeU6nC9emcANutjeoWkpWm+AVTqloYTmu4YQ28PJ1tZso6TOp478//hLQmOKR6Pn6W6f4eJgZEhE0q5wprPDXzAmb1+BxpW4LzMHJfD+G3CS2BiyQ1I3Ae6LU/sR2+c0wEQcvK7S1L0kppWOeBuaNfQR+OfqDXQS+OHqB3/CyNTT3Usw07AuUrKegXX1NQZGKMDcJklNB0QQ8B3z8ZjVRLLTtaMg7IWS/g5qup7oVTpDctoNJesa/FbAcLWKNJ6wnjdc3aMAIxkfVSiUbfPZa3eAHcMVL0c35SyWKquwpFEnyB9/XZfXh8Gi5QqR3gH73/Z5a0FBdihSCzcCz4yvmZCtpw5yAz+L1Ysd0gBYAh63jOC73ZZsn3vXCU5l8/Rfr0JOnXjmA/8gLpSyew9w7z0s/cwKM3r2O4UUMbTVIz6LrBNORRi0Fojwemvd4P9lxbwDy2AkjvLYH0LEHRAaS/c7O/3/xy3zYsycWaYaRmOF03THkleFtPcD0aVzekjQQXJwTCeW7owhrY+FEz2ETj+ursf90QH/2x7SRnz6E+/gL62ZPoZoqaT0nmRDn+N37y7e2ge6lgfS7NA93xWdi8NpysIgV5JROZsRWo7aU97eaN0nceV19DnN3ybV0tm+kF6NSBs4xYx9zhs6AUbouMEbUemNts31zYV2S3Oz5+0Xn8sz9RbPKJZ6UVevda1Jo65lvHMK18jwyicGFCAM32hF5+GhR1pehHxPUHrWPAOtY4GDg1T28KekNv0eeF87dS8WzwQwGvBJ+3bUBauZq2vdUiddWsj4uwJdPa3/CGN/Dggw/yb/7Nv8l+9jM/8zPMzs6ilOKNb3zjZTmgq8OiGyx2eg0jw1yPnoP+dRmdXVkP0H1mveFEqf1IC9Y6sBNN3NgGyX4p8lm9ATwucnHGoCB+HhoN4p5zKVR5MbhAlUo89UYp2L0OzEHYcwpu2hAFLMrT3GWOZkNJe55NhR6jIKOhGoDTXlV14yq74YJ1Yj+MNODhWXBWuPtxZdJH74n2Yx5VzmBNkOTEPU3L4/MpW5upBCctebTmU1p7j6G/O05z3QD2VEo6NU+6rY/0lg24bQN8OEl4n/b0L60wfj5oohVJSKa0gRpVUhZfDR7pypiI5yT5hR4sC6SNjFj7b8/CVyfhrZtRWCnEWYf65pT0v96zFqUVw0rzita8OsmV2luJEYCHgO/FHFwVuAvg/J2QtZJorVEqwehUGCvx9R+e/+IN8PG98OFn4RdvgjX10ufzz+umndY+04JziGBJJ42HVWCi/O2p7YX9E7huEL47CT86llWcs7EyQbPDgTowx6nNGxknp2HaRGGVFuaRUouuXbCyQnvYO/cjVfMAKhVgEp1N3lDOtxfUvEMeG4B7NsLfHoBffVWlOFzNSNVVK5h3jiY5/kmso24tPYemabxx2OuDqNVRNSeiaFZNuRjtEfVoyICdgpw15vfKwIbY4hxHbUkQ9dAZbB3SrYM5pT0+fxWU9k7tXDbRHHCGbf62kUssRTmN2bUJ9V6L+stxuLkB2zflc+ovgKpZALRQDLBPONG+COcoc7yszH0YJ/rzIADG+uFoKv490cXquQ0fqni8mlwDKtZd0cA9qeW5luPVQVfF09lbLx+j9cAhAFovHCHdbmj95HbS0UEc8DiK7VqjagqTKEyiSYx8rdVKlPbg68wKi30toymf0HSB1p5EdPeg5t7S8rNAd79xBPUrCvPMMfRdI6jrhv1lIPHEEJq9BoYSLXR2v4eSSHKzlpis+qqUtH3J68v932o56XPWCqctrgVOwUTToTYNwNv60QcH0d+dRD8xgX7tGHrnWkliNTuUFl32T8XPS89fOQaPn4DXDOaVpxiUr/RkEm8XS23XHpgHnRWd+v791DEK9O+fwe4YxSoB5NZoGekagfOFLIDyYluQIU0d+xLHmI38rXOYH92M+uM9mINH4Q1b4CYp1haAqHXgklwbp+1N/RQG66iFQMk5YRptKmEqKPq/lbDynhmer6kLzhs/K3ipXChZJLG7VFsyOP+VX/kVvv71rzMxMZGd+JkZmW86NjbGL/7iL16WA7oqrOxsgwNWCoZ64eg87CQXhINs1JHyd8OwdUw4xw3O4SZOkt4t/eapz4LlDnXxTaZMaQ833iSwAZmtm1Ha/SFro1GxSEUA6KmGO4fh0ePwqg3FjF7LihOwDmU0CfK+NShVmB0cPQ9Dup1dsNI3XLByP0k4ptF+yTacbcJ6E/Wb51WFoKKZ9Zwrn5iYt7x2PuWZecu7WqFyngo43zdF6y8Po4FUn6X1mrWkP72DtLeOc44DSjGDYlsi2UqTiKhVYhSJD1aKlaRoE/4hClbaRqyFdQnP+2vwvhvg/pdgfQ1115DQ+vafRj89hf7lXXLtG81Wrfl2TTLGrUSAuUt0Xo1bBA9Z8spdGeS9gq+c4+87pTB1LYmCZqdXVfAPdotA3J88B7/8KkluVb558Zrk0FnYoKSKUlWtW03XRtW1rBRctxY+c1gSDR4sGOvk46RRgDJxHPeWbYwjf2eVkt45A84I68FCp+79glVR2h2i1L6TUpygFLpusjalfO9Uksh7yyj8wTPwzAmZeFECfUEcLlEwF64Z7xOUg/qZJskcqOEO/cornXhTFAMo4x3faB9MFKdcqMB8sKDxI0V9/+TWluOoF3Ry1l/Ce6dJb96E0zpX29fR+a0AtSG+yxIrEU4+WDPcFWIkrxatErmOzK4heF8iUx7e4QPjQNUMY4JaFpcsIKgUv2GoljhErwXy0aptoPhSFuAirRyvhOdr63KTTE7DjjXV1fOyKJyS0bBtI9WsJKY/1bLZ3HpJTjvsE5O0FDjt24A21bCb13hQoHlOad5rlAfnWgB6TVEznmmUKBFiisDiD6NdEEhPNPqWMcwtYzJWTSuMClpGmlEUrxjFazzTqJUoUqNp1QSkl/v3lVFgDC7xYNxYUi1rarXyhSXNQSzDWqGdRe9Yh9q6Bv3MKfTnD6HXHEVd3w/jJ+HOUdixUY41MMLmUxFlDD9rOv9//mvLf508Lv2aAN89CzdMiaJ8fH2vJjLFYtT250/CvZFqe2rB65pkwNyKiKZyjq3zLUYOnYB37pL6UaC0G9EOsFovqpeT4QXy+MUaxWTNMJuK6CoujIDWqPOzIiK9H9h/GH4JUfAPL5bh0VYO0Mt7ZyetnCPzsHGBccsrdbur0nple6eGrQMiRrir9FkCXroMtuRLeGBggD/4gz/gXe96Fxs2bEBrzcaNG3nXu97F7//+7zMwMHBZDuhy2MbRm6/o66uQeS47PIDRARmn5siFaKwXeECq51jLmHUccQ4718KebuI2D+T0FEWuuriECLOK0g6yf42FYyYvdGhAG78Bx0Av8d/fvR72nYczc0UVySBA0owuvvINF27UI/MwVLrhCpHuRZ/+y2SqunqeaMniTZwj6+2NP1sqFbmEaLQMUEstSTPlvvmUl5spM6HfLgjifOsQLe31XDRYO0fa35MpDT9jDDfUpS/SNAymnpA0DLrXfy302Qnt7P6PfR7VK7S+H6aARah+Uf95NkrHf93UB+/dDp8bh30n0edbmL89gH7zGHptn7BGjGZLXbPXj03LlNqJnNUix1Hl4BxwFHm+lTypH8CdqWtZy2zcncmPu64lCH3ndrhxE/zxixI4z/tgJaKPFe47hziKzWs6V81XU7BSFvoKz3sTEWR8+XQGDkzqeOCvP5+NpFQT59BasXZogEkNrbBnGqlQpFpl++BiFtoS2qjRwAFk/RRR5VwhQW5No8q0duOP/x1b4AuH8/7ImP7XlCBUp45eoN9KS1C/dfRbR23iHGpTtA/HAYqGFd80TemYwrU25BNIJ2flqw9QZARknqA2XqV9LHUcTx0uaK6kVsY6Xd8vwWZbIFsNkuNtOaxbWPdJYKimsTWD9mDDeNCvjYKd62B7L3w90gmIH2G9OlncWhI+Mw6mZmEkKSZTQqygWTBJ9kd/+qnFVuDirBxkZv5Yw+ZemVMfB8zh83UIMjO9FaJHark9dUylljMtUWBPrYx7sqnJ5p6nCtKbh2jVhE59sG440aPZ3Su6HLpHNDm093+1vgR6a6geg1qEqvvDYkopofIvSHc3qIZB9yWYHiM6Jw2DbiRQM4w2DC82DM3ehFYjIa0n2LohNVri0E79w0ZDQ2N7DK5ucP7vWj0GV9e8UjdsqhuohTYug7pjA8mv34yupfDQce7/9uPwwDj8+6fg/3kGfu85+C8vwh+/DH+1Dz53AL4+Dt8/Cs+eggNnZW+ZbcmFd6p0UE8cqa5yrhbLYuwO1PZnTlZT2z0wVy6MwpOk5/ZD5xhf0w+DDQHjRuG07JtWKaG0LmIxpT3DDUqxr6YZqoUxyyrXWXn+aMaQAeDRcZ9Qse3aOHOijRO3BrkwcqcMZB3SCjbUV51EXECj40pbAeeVE6zbBuS6jPfN7LF4W9RSbMmVc4B169bxwQ9+8JLf9Erb2VOHrvybVG0EGuk1e+yUfB+NlNFOqghSQYdR53jSOpicxq7rkb4fLaOAnH9I9WDxqDq+weI5veUxatkhh+/rWjKtQfEzPNY2YFsvPHES3jxaBOfWQSvFpVpeqJM41ZHzsKV/1d1wmXWitSsFI2ukEnQTpQgwD14CrS8BTCslmU8xLctIatnWtDzXtNzXSrHWkR49S2tC1qaJfG3dOkRaE0qZQ/GYUvw9rVEJefXAKOpGkdTke6F6ynlXSvG2t967/OdtlZhKpEcui8bjINkhM89/qgV/eUAqO2Ogb1uX6S2oRDOWKM7UNBM1zZa60NmtkyJouI8WskoHh1TNN9POWAm0Ql0DlM+6dboP3r5Z+v3+ZA/80i5RsI4DprJq++GzcMv64v2WVTlXwf0WW+DGxgA9gL1dG2DvWak8WwlI3nzPHVl12Rych7GNrNOKmtJMaMVOJfulVOdUBrYXw7IxHbqs1H4QeAf5fhmzjkyi88qiLX29dYPMHv7aJPz41lw4J9BNm759yH8eFSdYJuZhuKItASKAvoIWC2jGz1tKAOmED7I8qDP+s2krl3tIsGxJHUesA2ex1gqlvRfc2IAXRF2c0g7t6xbuw/PAWWCzUgLMU2lHUOgs4MU6ePsWuH8P3LdRpnPEySKjwKRSPa+qQlX5PIew5i5CqR3gbW+5Mvu50tIuV1k93zIoYn7x5wjnB1fZHhJYY1lOP3UkTcua1HJD0/Fsy/HGwBw7P09rPCX9e0OkU6dJ7xoh3TWSFSKe0IrdRvybMkoAXSI+L/F+cFXtXavI2ivpqU8EqswfijaA8ssu626NZqtW/Jn2Wh3kLDCHvIRb4JRbJdX1VCla2kqCVCnmlWaPtoylCp1atFWiPZFalK6R9MgxvbVvu7zQbuBnbs2FNds/YPUB3FCHvxzPv793tMgkjJOIq8CUCntaidquFNy8riO13VhygO6fK+dY+/wpvnLjOjYqxRqPFYIgapr4cWqLWHm6TFj7fVoxWjPQcqLR4WQfV7eNYB49mG9fh5xo4/RDW4915kgdrp7I/hn2lfD/2Z7pYGoabl1XXVRYabaYUR32zV5pnXSeLVYA6bSfk4uwBd39v//3/57f+Z3fKfzskUce4Zvf/OYlv/GVtPnZs1f+TTTtwRPIOLWJpl80qRjkiu3+QneOzcBxBxxNsZvXyyYZ6Ck6mle4SEBWUF2MghQHjJOD87iCF6rnaCVZtrA5mug9790Ijx8RqmKoJhSq6LYY3ZZvuGPnYKRndd5weMeGaj82BYz0wvi5amDuRMgo4AtjLbVmStKUyrmaT7lz3vLSvASerXOzpF88gP2RbTTft5X0rjrp+3dgrx/BNgy2lnCsbnilkXB7w6AaiWS465LtNn0JNa+WqnxPeQhWLvvYnavNqqrmoQJtFKyRX1OAOQL60ClxOIlUPpOaZqim2VPzFQPag5SFLCi1l/9uPzmlPbvkoQDQVT1Xvq2soidaEmNvG4OPvAJ7T8oBzUbZasIBWF8572sD5dk9vYosE6kKCbKYinhdH7x0hiBIqaxj99iItI04izpwDL1N9pUhDeM6sI0kAAoJlnQJxxH2yjKtvazUnm1h5KwjatE6xVV0o+Ent0tb0MQ52ScL4nBh76wAdxPnYGT1VRAyqwLmIN+PDsLkfE43CbR2RyYKp9PQMykCcKf9iU/3z+B2DmF16J+MAtgFVIdjXxe3dk0i1d01SKVPJUYqQInG+Hsfo2G4H+5YDw+N5xdC/AiJlfL7LlQFOnYeNkaijBCB8oXX8Iru5zpiY2SJaGBzvSgKV66eV5AHMt+HPJIw6qlluaVl2dv0PecO7KMnsbsHaN67mfSdtwowr2laPVJ9/V5Pwu2hqtuToBvyMDUZZbnS+airwfJKuq+i99dEZb1hML0JukejfYVd9STommGn0ZxViuMUfVfszzpZxhJTijQxpD0JaW/C4Yam1eMr5z2JtAD1GFTdYOoGdY+IRu+urZMXev0WGXsahFGDPw++MRaAreucGXDTKLx/K9yRwAe2ycSasBcnSiZrrPReWbYqartR0r88msDzp0qJXhn9mvh9NLQEqdMz6LPnObxlgCN4YO71VqxRWVvXQhYwQ4siQHd4xphvldSJtJSomsbcMIL6tW2oWw28e1SSsH/2LJyaaxOFy76fSWGuhUstHTU6rIMpK+yr1aLREZuJjiNOtI4NyEk7HrGOYjbVZaC2L7j3feELX+ALX/hC4We//du/zW//9m9f8htf9RaCXygGKUN98vzMvPyXDaIKSL+kFYrKqHOcdw57+ARsNlgFVktWMvU0laX0m5cT9za69scRWnt2vVMMNGWWpc4p7XEF64b1MAvsP51XiQoA3d9wNnrTcLO1LJwmnz9ZBdBXgxlVvPnC8Y32SOU/ZgWUgjCtFElqqc21MC2LaVqSloztujO17ElT7GwL+8UDpNcN07p7PXbXJpo/ezvpdcOkdUOrltDqMTzWSNjZY2g0xJmZRoLuq2F6E5KaITGrIDBfhdZxxFoA6E8dAfLKp37+KCZSTFc1zfaa5qVE50CNHJgvFKCUk2JxBX0f0ooU7rmQxwsAPaylioOQaD599hmMglcPw7u2wEcPwHPH5d4LjjCjhfk+15EgQlVyJKsMnAPtvVzhWLeuEXrJ5DRB9VunXrn25Cz6jEVtGUQpxajWHFChz07mvC61JQGiIJMiuBtH1ixTaqe0luH4a6ZIbQ9fh/rgtUPw+QNFinQM0qsSmkfPw+iFq3wvl7VNuYjp2qPtUy6Uk2q5QYBbUDWvWceIhSnrsKnD7T+Bvb5XKO26pLliOo+FjNesnJQOfk+D9N8aJawZX6HN5oG9ZRT2nIODpysSKdKG4NLS1RSAfPRZszU8cXFK7VfcYj+XffVB5pSTzxt/lozW3h5kKqWyMWrGOUzLkqQWnTpud46XfPIpPT+HfWmK9DWbhI3kmYFpIuJTJ+qGZxuaWxseNDYSjNEYpaRmAF2/dwEWQLoKivZ9NXRDxtHpukH7c6uRUbdjwMsUE1xZonkBbNGms6KlNe+lRo2hhiQFVF2OI7RxmYZB3zwqYPrOmny9ebRiZJspUvQDbb/PK/SH/79lDH71Hrh1LB/xFidIV5stRG2/aRM8e6KN2h58nzys4IgX52DrRjb2JBzWXgxVaWwSzapf5FDK/i7GDPuBrVp8W1D3DzGTedUIvOdO6TV/73Uy7/uPnxe/VdV617ReZb8VsXHCm/sDOB40Onry81Qulq2oqSIuypLGWkaIHppGMswlYL6UAGQRW4VXcdH27NnDb/3Wb/ELv/ALvPWtb+XRRxefBdrbv3EZjkzllR8oUjQ3qAzcZYrtTuh9oYpex7Fleg4108SODnhBDa9+qaQStBRnHgclZcXh8ozz+Gv20gGchwsuVkW9ewgeO5nfwTFADxWgtoyYg6PTEtH2J9VVoNXicDvR2scGJDEx3WyvnvuNxaXOj+hyOTBvWlTLst1aepop8185jN3Uj33tRqwR0bG07mdqJ5qWny/6nYbh5pDZbkhmO9GKRKkshqyyJ556aVlO02q2jiPW6gbuE8UFBULPunM0A+VhFNbWumFvRO3LfGP2fXWU0lZxdXkYu5+iGFwAdKFPs3D8NZP3z2cgPaqiGyUU77+/DT5xCH5wTN543oMHHBw+LxWwMB86BgOa1XO/xRZX9QsPDbv7ZaSaEyrfMy/ulX63l8+jtg5gjEEpxWYNE0ZlKrUuYj8stHbBLkipnYoES01HwhOKQv/5m0bgTBOeOB5pdUTV8zIjZ7YlfOzR1a22XxgpEzuSkV4ZbZQpvJHrBHjGWCaImjqGrOWIdbjDZ3ANjRvp95U43V4572AF4hZRdwC534Oc6aATlbFmMl83UIc3DMOXD+fgvPyYL48IKvs88o3jhCsqtV/AGl7R/TzunYyPabAm/TeT59qr5/FnLFl22acBmMtjZ1N6zcetwz59htb167Ab+0mNTMOwiSLV4v++35Mw0qixrkeAY9Bxyaryq+SSvxpNaT8GS4sYXJagDmEOwip/hSJrKCOQLPDaKbQBdAu8rBVbewyuISPudI/Mpzc9voLeMHDbZp547Vq4bXM16L4QsB6+jxPyPatzYo1SqhhrF6jta+HgLMw0Cy1SGTD349SUtZh9E7CrwSYN40p0VqxRWVHP6nzSTCeLY52Y9ZcCh/Cxi0/yqJoWxmZDEi05W9HAO7eJePR/e0mSm/HI1xikz0mSs1Kj49hMu0ZHzKRb6dglZvep6DnA1rVw6Hx0Ml2+fu7S0fmqB+e1Wo03v/nN/Lt/9++W/Dc9veuu3AEFqwLmAdxtGpDeMx9cZvPOrZO5k14J8bapWabX9YPRMkLNhFFq8nwpF2YZHISb7QxSgBqlCMhjgA54Fc5SNi/xlNO71sGLZ6UfJu6rLNPcywD96JxUn5Vuz4KFg1gVpoo3XljHmoF1LBywzKeYeUvNA3TdsuimxbQcKrW877tHmXVgXz+aBSO2buRrTdOqaVp1w7nehG83Eu6ti+BN4sXmQlwalL6r7IWXDizXiVrVprSCeuSkA8C9ZQx+XTL15je2YV41IsDcB+iuZrhOK/b616mitXdyceG+q6JEjyNK3/F9FwP0tuNPtA8youp/XEU3SiYn/OIO+Pw4fPtIDvgsMD4jWWwoVuhiKtYqs8K+UwYMN6wRGr+/717ef0jGl+07gdmxRnCPUYwlmkP+75xShQDTLrB2waoo7Y4OSu3kDIjC3hnaKmLmUeLX7Se2wpfGJeiKReHKVUrnZK8ZYPWr7XeitQ/3yQk8PZ+tm/J+T0C5lSq6DzJHrGPKgds/h90+ko8E8tXVxSjtUAQTcZKlnJTW4CmaOqO3F9bs9UNwoimqyVHlqjClJAapZep3Wak9jECMkdASktJXdD8vBADx/aalHWZ8tt3PLUDP1Mj4P+PHPWVfneVm6zhwdha35yj2jvV+CqtntxhFMxGQ/u2a5rURcAzJS4N025UTmV27cFO+3zwhxzshwbgL2EOR9bVYYtrGjDFygBeSmrsAjAA71+PF6Oq5IB0NwwvjE0uvkC8E1uPvQ3FjNVbNg3Witq/tEYBaprZbK4yjVJKc5uAZFAq9eQ1DWjHpJ1uE5LQNk0oW8X2d1m/S/3/GtjUaXReAbgIjI8RWNQ2JgR8d8613++DFE+LnCsA8zavq5RYgh+Ck4YF8b4x9yiqonGcteDEwD45lewMOn76gpOaF2Cq+ksV27NjBu971Lm688cYl/82pqZev4BGJLdizPNQrvWeODJgH1dogCKcc7ByfZ2J0rYxC0ALMs9EUGX9yYSuA8uj5BDAI9JEHKFmsR+maDxTaGKAbLWOcNtfhyRPFTSOmtkMxQLF4cD4QTlTb+ek4nma5LY62ywmWkUERaKoKWDzdUc+lmKalNi9fTctirEV//yRDx6d54Ee3QC1UyhVpTWH92K5moknrhseMZlQptuBpgvi41H+/kPDme37hx670GbpqTBlVdBzBkdy2Gd5/D+a2LZL9rXmHkxh0otmFJLIutPcudmoxODiIrNswxcprgRJdefxaKuiNYhUgq6LXtChMv383fH0SHh7PmSsTp2FLT+kmD9f1Kuy/CxYHKTp6ft0aGJ/P6HD/4EfeiDrfRI/Po3b2S8++UoxqOG4U01ruKxsYEE766RYMUDpodVg8tY/S+qmcBVE4n0mJsRGq6VrBq9bDlj54eKK4b7ZsMdvugIm5hduAVo2nDhG+PwfhOBMtIgAT03k7kPd/BrKRQKI8DEM4zrZSmJjC7q55lfbQNykB50KU9gASMkq7X2wHHKGinUuL2JiuYmvUE3jrZvjKofb2g6wtIVIfLr/pkqtAC5/ZK7mfL6g8vGWgXRQuuzZdZRVOA8bmPi/xAF2njp3OsfHpc7htm0jX9mF9cjoNVXOtmK0ZvqcV95HfZ6FyHoD5qt23rjIrA/NwKd6AVM6hmtZetX+W/V3sI18hT2pqJWPx6EkwvQbT0BmYfs/Pv60ddPeaHJT3Gvl5XyLsyz7/swzA1/K++vBomNUNzCFii1VR2ze2q7a3yIC5dqBeOofeOYLSimGtGdd5S5dQ2nUhSdnJCpR22v1eSJBp5fvNGwbTo9FxC1659e7ntsLHD8LjEbMv6OPMe7AeC9iGr0fOw6aSRkfWkrdKYpdyC17YS7cOClNqNl1yUvNCbElq7X/6p3+6pJ+9//3vv+QDuqqsquqqkKrx88cywKqty6jt8pAgZeToCb70+s3c4MXgwkME4eRGW+zSzOKE6CsIOPdTCAvgIPbJmWklN1o8lzd8truH4Fvj0kMpKfAIqFMMUIITP3IObt+Yv2EICoClqM8vlynfSlAZsIz2waEOonDZHE5LMi90djOfYqzDPH0KfeAI+h27GG8kTGnDqMmp7DqrmiekRvNd4NXka5QoCpXz1XO2Vr8po3G9CZg0v44d0l6iFYmn+SkjwFwrRS/CLtmLAOosSFF5kFKVIKmabw4iqLKLIrArU6IXPP6e4Jji/4i+2TIIH7gBPvKSOIW3jcExKwF2OREWV9FXo2VOj6IDXNMD64F9p+GWjdKSsOcMeqSGbtQyxf1+o+nXiv1acYvOgXkQT01dZ1b0Qm0Jh4AfJ78ns9YEVdGWoBXOq9u2JTCdg5/aCn/4Ity+TmZJN8PntO1BymiH6RZqFWlOLMQYG/GicLeQfTYd/F6opKcO5SybnePg+Fmo1XAb+7OWrlA9d4tQ2rPtmNz3hfWLR4hmPg9ECdxaT00rrdVdG+H7E/DoMXjtSNuMevGJVpgS5UAsvPmxJgyVlNph1VSBOsYrm3vgmaPVFaBwkssXvoNa05JYUC0n7DG/3recm2Fg/1Fa79xFovBVPS/c6MdWPmk0axFqdda/roqV865dHtMK2UOj5xrxU1NIcrpGkXWUquplDwnsckLzBDIhYSel/VIplPaU6HCDtgW2qvJp4cerZf+7BFN6EdX2rx6REZymllfO/Z6pZ1vol06jfnEDSilGjOKcUZzSio1G0TJagHoUu3RinpSFbGPG2A7y0y5bhJK+cw1K2fw/IN9H5lIZCder4S8PwLkU3jiSv2HsXMuMsePT8JqNxT0pe/PLcNIvh4WkSnnv7E1gLXD4jDAbw2dbCm1vCbYkcP5nf/Zn0XGqtp8FuxBw/n/9X/9Xm9hcbHfeeSe/+7u/u+TXWxErA7oQpAz1iRS7d/5hMwzOSzvg7CzJvOXZjf38lAKLD0oST9HUaknrW7VROoSiEqoHhUOF9tg/bBqJlhkpzWjzuHk9fPYwHDoLO9bK/4Xfa5UCzNBrMTEHP9aQF8+yYCp/vpqsU8Ay1gOPHqkOWAJdp2lJ5lOhtluH3nMS8/1x9Lu2UxtssE1pnjOiCN5KDGlNKEItrw6eAt8H/iU5CChXzvU14JSW0zKAq61Uln0GU4P03hkB5RqF8jfYLgScv5aK3rsOp79T390r5NUDRX7Jx/1+Cx+/wtX9thyvvYq+DvXBB26EP38B/tMJ+fnxM7ChUZ3hXa0WO7242q8U7N4Ie6fhpo1y/l48g961QYIFLQ80bDGKA0Zxk1aF/S8kWDpZWK9yFWEeAXfbKSYzM+ZD1WsGenvqoFYC6et74Y3D8MUD8IFbos9MMUg5chZuW1ddNV9FCRZJaOriesUJzRdPgRvL9kvjgXnoP9dW+ic3Objp4Dzp1iESlVd/Mt8X9/ZVWLZmcYIFmEOAQmjnCmsWGA+mbqKsmyuu2dt89efOjRIgV9DbndE5M6AM0I9OSzUlnBOic7MaqkBVfk4p2Dwos6PnUvHt5QqQa0NT4KvkJvW026wA4Vj31Dme3TpEfbCXV+k86ZIaTVMrWjWdVc3LlPaQnF4tcfm1YFmCMQLmBplmMIT4vvW0A3NbsewhV1MWQt2HJLf74vfz75kg996qYUyupHWitq8L1PaTcM9Q1l+gghjqC6dRm2rotb1orahpxQajOGgU67UW1tEiawftjLHYZ+4jYj5QWr+aZyaoVv5iMUiftzK+9h/W4C9eljFrb99cfHPr5G/C3tm0khkaXuXC0QsxbLeuhYNzQkOJcUIoWl7i2y5oztOaFntcqP3Tf/pP+cQnPtHx8W//7b+9qA8EsHHkZn75V3+dD37wg3zwgx/kM5/5DP/+Qx9mbm4++53PffFbfONbT2TfH5s6xYd+/4HC6zz41w8VRFr27jvMH/3pp/JfUHD/R/+WvYcmskV74uVXePDJ78v/TwlV7A8e+AQnjp/KBHGefvpZHvvqo9jhNZxKDKdbLR584OPMtVpSPdfwxa98h29868kFj++jH/8yTz71UnajHd4/zuf+/NM4pO91C/DQn3+ao/vHs+vqhadf4m/++qFCoPCh33+AqdOnsw3jkaef43PffVS+rxnm7ljD7/zFJ5iba2aV48999Ts88r2nM0c+deIUH/r4p+BcS+724T4e/No3eWLPK1kQt/fgBPf/+WcKn+GP/vRT7N13OPv+iade4sG/fqjwOx/6/Qc4NnUq+/4b33qCz33xW9n3c3PzF7++z76c3XR7J45w/2e/SDYa6Bzc/9kvsffwZPY5n3jmJR781MMZ/VE3Lf/lwU9y5tnDmC+OY962heeOHOKxRx/n5prh0Zpmzqb8xZ99jPMupVUztBLD9x76Fl/+zpO0kELT9PFT/M0fPpADcwWf+JuFr78P/f4DK3/+Fro/WJn1VVqhegwPfu6rPLF3H/TVUH01Dkwe4WN/+VmpvCIBxFf+/NOM7R/Peu/2PPMSX/7EQxnotsD/+/t/WTi+r3/zCb74pW9ljm12dp4Hf+8jzM/Nsx9xcD946Fs8950nM4B+6vgp/vMfPFC47zqdP6HoSw/9/Z/4PHuPHMmo+k8cOMCDj3wT1jXgR0dgFj508vtM/fke2DcFWvHIE8/yua99N7vvVuv6hmkRc60Wv/MnDzLXamXA9XPNvTzy+FPgLP/x45/kxEtH+eOXvi5FSM+A+MaXv86aF/eyT2ucUozvH+eTH/l0VhVIgT/6k+rji5MqH/nPD3Dy+KlMqb3vO09y+KFvZUmV5tw8f/QfP0Jzbj5zmPH5U0oxdfoMH/rjv8qFxmqaB7/2CE/s2wevH4bZlL0PPc/9f/ulgijc/Z/9oviPk8DoAE/s3ceDD3+9EAR86A8fXF3376e+Uqief+ivPsXUmTPCGJuc4ZFnnuVz336UoLnSmmvyX//rR2nOzKO85srz3/0+PPUDTuxKcEpx6sxZPvLRT0hblxHm2Mc+8ZWOxxcCzAc//GkO7hvPwPoPnnmJwU8+xEbyIPMv/vMDnDpxSgC6UTzy2NN87uvfy/zdXNridz72N8xt74fNDfjGUT73nUd55PFnMmr71NGTfOg/fxRaaRZ4Pfj5r/LEC3uzBMvew4e5/5XvFIK4+//6c+w9NJlFWgvdH2F9rtj67p/g/gf/thBo3v/5L7P39HFBVZNnJX556OuF5MOH/qB0/37zCT73hW+iW46kZUnPz/GnH/4Yrdk59JkZ2H+MR+1evv7M89KiYDQnzp7hLz78N9IXazSPAus/+RAHnnkpq5xP7h/nYx/+tMcsqvP190Pu3y70+F7ZN57lA/c8/RJf/eRDGW7bCTz0hw9w2u9/KfD9bz/JQ1/6FgGGxccXxm999cvf4gffeTIDds8fP8WmP/T+F7nEvvyJh3jh6Zey5Fg4vvhzXA3n77Ien0/Ofu7r3+ORJ57N9qCps2f50PRTBWr7g1/6Kk+9uFcSm89OMT4Mn/3CQ1lrzqZE8dW/+TwThydkCgLw3NMv8cm/fqgg6BcfnwMe+daTPPzlb2Ugfn5unk/83kc4MDefCaE++tC3eOo7T2a49OTxU/zuHz6Y9/nXNA9++es8sW9/po+z9/hR7n/y2/DrN8Ke4/CJfdz/mS+yd/94Fi8/8dweHvzK1yXhd0yEoz/0pc+L//D70iM/eIbPffW7WWFhpdf3d//go0ydOJ0lUh558lk+973H5ERt7WNu/3F+58G/4TMPf4EP/tv/jQ/+H/+SX/n//A9cqqmHH364I7Kuoq4vZFea1v7Wt76V//Af/gP33ntvx9+Znp7mZ3/u3Zw4foQ1a9Zc0eNx1onYz0wqFNPzrVwA4Y+fhfuG4c5NpHXD2V7D2dRxfi7lfNNy/muHaG7s53duXMc/qBuubxh6ew19PQl9vYbBvoRBrehZIHtknWPawWkL0xbOWhH8nQH+BfDTwI8hfndAQb+GNRoGFTRKr+uck88w4z9D/PzwOfiTl+GDt0q/TyzkAX5cgh+Z8NIJ+OJB+B/ukJs2CHZk6pq1VaWm6dJoDWda+WeZT+H3n4Sf3g671+f9wHUj/xdVz+eOTnPmgb2c+3tbmbl1Pee1YjbRHKkZ/rea5v+pGdb0GBo9hlpdM41iBvhTpD/yf0FGm/QDA1rWaVDJc7NAteXY1CmGNq1bjtN0TdicdZxxcp9MWzjnYBr4HvCfgf8KNJB16Ndy/gcVDJbWIXWOsxbOOjhn5XEeEfh/P/C/Anf41ynfdwvdz2Vz1vn9JFJAjeeIfuxJeDZyw3ck8Mt35w60N0H1LokctWLmWlamIsxGe07YS/7D0/Df3cDUwSn6v3uSs//D7ZxLDDM9CdM1zUzd8JVGwmd7E/5Po+lF9rpBfw+t8fdQFftkxjrOOTgTXQvngYeBjwP/ES7o9QDcfHT881Y+Q1i3PSfhwQPwT24WwbC6F36bbcm4yo/ug39xu4hRRusne+dq2zMtnKtYs5km/D/PyGdc2wMNg+1NONejOZPCzEyL6bmU8/Mp8/tPcubRY+z/2eu5M9H09iT0NYz4vp6Egf6E3npnSbBO9/IjwIeBPyBfvwF/L4f1U9YV9/q5aM8/dBb+dC/84xthfSP3YT2RL3Pkvv58K3+N//sp+bsNvcX1axjor4kQ3QJ2pfdzZ52fCtAqrt28hQf3wNYBeONoUaSrYh+Jr/PpuZRz/uv5luX81yaYTQzPvG6Iz2nNB3sM9Yaht2Fo1g3nehJerhn+KfBRcl2cAQ39Kl+n+mqpml0jNm3FZ50LPstJnPiXSK/x/4rcLwOq6LMGVM6WdaV485yTxyzwfyMijL8Sv47/e9k/8/X8YY9b3Jy/f2aivWMmlbFif/gC/LNbZf57TcN8yvSx85z5yMuc/8c3M91bYybRzPYYPlpLONEw/KNGQk+PYVBF95C/n8psnZaPXc5YmPbXwjTi+94N/CeE2h4wQ9g712qohesgdTDfEhX2ckwSnk834YEXoZbI2LVGkuuztJzstY8dgyem4P0359o6mc9LoJGsGrZFtucFnBDWcHIa7t8DvxX57l7Dmflp1t0wxmc+8xn6+/sv6j0XjNxWQw+5c45ms5l932q1mJ+fxxiDMdXOO23NLs/BxTQHKNIPh71iu/W0VidMW+3VatXh03DTWjZpxbhSXKdVpFirSbnweYXhK+SiOJDTM2NxqraPooRSX6DaJL4PfbQfhg08cwLuHS726sU0FYf0HG4aaKepEJ5f0Bm+8haOMT5WhRz/cL8IU+2i2G8eiwadnsM8sIfk7lHMretldEmi0TXDxppmQ03zg7rmjXVDq6ZRfl0d8B3gPRTp7HHlfCFgDvxQO7iLsU69d9cBx5CeuRpFJdOq3rsqWl8KnPaPHbT3KYcK+oWY0goX1Ltptfej3DcGzx4qfh9EWsJjtVs8Ui2mt9cMbOuFPWfZdBzmrtuEVlo0AxQYL6yzRSteVqqwB6alr1VWRWl3tPfdZcxtltCWUNOiyRH2x8Q/NwquWw/Xn4CHDsPP7pK9I1F+z5yD0V5W/3SLYNF6xftmzQg/duKcJCB85TxXbPej1Rywf47JrUOcQoHWWZ+505rUIIJwC1gVpd2RK7UHyyjtRFu70blOQExtT51QvG9dKyJ+P7ergtru8vWIR6lNnZfnF6nUDld+P1d6AY2VzQMwPr2gKJxSSgLzZh6E15pecyW16BPn0S+fQP+D69ilFYe14nSi2aCF0p5qjfU6K/cCPUS+Dy8Gx9WxbV1tFuKLmNaukJ7/v/O/E5Y8pkZblfu+eM+M2ykd0s71RoqU6LB9laP0H/q4ZSFq+7CBF06K1pMPMPRTp0muG0T1JBij0IlCac1Wo/i+8XE7fm2itXMVriP2i3H8Mu7/f4RiG158rQTLW+/S9pgk7NsDNfiVG+GjL8OHn4f3vUrGVuJ/3wLH5mGkJBwdXqP8uittsb/LnivY1Cv/P+lbmpzL/f8l2mqDSm125MgR3vGOd/COd7wDgH/5L/8l73jHO/jwhz+8wkfms1LKn0JTurCGemQ8DiEwIVdrn5rGWGBjPxsUHA49WRqhtRuVBfwLWRZYlgD6NHAO6bvLAHkpyKw0o9uV2xMfMN41LEqMAZRn4x5c0aEfm4GRvg6gdxUJG3lbUMV2rB+OlAKWkB0MmbQHX0TvWkfypiGMViQ1TVLP52jfWTN8ywPz1I97SpHkyWHgHvINMPSZh767rl1eK/TeRd+vBTYgvXfBWcW09vI+WwAFkYPbD2xEJmLp+OHX82KufBkTpyXzHKvQh1FxH9gGd9bgH22Hm8fy8VCJv3dXu2kiYE7RCV6/FvacgudPYm7ok3Op/axqrdAathjNnFZMkSdJQtIyrEvZOvXdhTUM1L547wzJloX2L6VUPgKvoN6u5Y/fsRWePQP7TuYzixxwZEbAEVTuQ6ulepBZWKfC3o7soyNrRHPE75nSbw4mtSIKlzp0mqIOH+fsrsTP6s1Vh62G1Bj52QLtcvG9Gfu+WGslBuXhebZ+iW4PkgP390fH4LkzcPgs2ezzWL093hSshydTs9IzGhIXROcmvPlqsIVE4SY6jA4NNwnI+Wjl/t+kjsQnYMyjx0mu24Tqb9DQii1G84zyE0q0F4PTiu9Cod+8PNv8Kti1rjoL57Vw6yLgfAKpomdJZ3wdgmJyM9xn5aRmE4lldlH0exeblL7mrUprJXx/46ac2p5asBbz5FHU7Wu9dpxCa/HxW4xin1EZpT32aZ0S01VK+w4Rst1GniiLsUJYz8JHMCof+VoesRZ+3kjgF2+ADf3wJ88JM6Bpc2Bz5JzgpADEC1MuVoFGR2yqIj4xCrSWIsLhmSjwcJdFEG7V74Ojo6M8/PDDbY9/+A//Yce/6V8zunwHGBYMis5uuEeAqnd2JigvOtDjLdTIGrRWjGjFUX9hWq1EaVHl1dWqWZPBCtWiaMOcAOqI4EenIKXKQg9oFuDraNO4bQMc8TSO1OazX8vqi8fOwUi9VDUgf63VaAsFLJNn84AlBGpN66mAL0OjB/2T20iMoZbImC5dk5Fdqqa5s675Zt1IcII4vBT4LtJrPkgOysuV88Us7rnp2uKW7acUgxSQwOJlogCEYpASW0q7k3OIoMr2Du+1aNV1oeNWEUCPx5k0DNy+GX7tHrh1s2+78P9X6zyGajWZUn7PyYCMyhfmukE4OMsjpw+hmk0R9NNKfk0rlNHUjWIUAdX5nllMspStUwUIpHIewHk5wdKZZB19HqOlghxmaccAfU0PvGUUvnDQByk2F4MbLY3Cy/aj1eeiFxwjOtrnx6mRnVhtRTxMh7FAh86gemr0b+hnQiFA3ARROJnd22mUE+TJlTi4DI+g1J6dSqJKUPwZgohfrcM6vXZIWA7xnh8eqS0mbB2XRal9WfbzTiyxMdFYYbbVDsy9KFy5ah40V5KWxRydFtHGe9eRKDm/NySapxM/Rs1omkZzGngJAeem9KgpqZyvqqD8GrGyzwv3w0YkTnyFEmOMPK4MVv55uP8O+teLx4d2qrpCN26pjLNDkejWtXBgRgo/KfDKaXQKZvtaAeYmf4waxVyiOeaZY1XJ5rLFsUsZnO8gX6tCAaPD9qW08m07SfuItZrOgfvP7oBXbYL/9qIkPFve7x2dFZwU+w8WeMMVNBXHJ+X9c/sgHKpgHV2irT7PfxnMmPoyvlkFMFdK6BozZDPwtAPjnFzwB0+jxgakOKsUE1pn1YPUSHY5DiA7WRWlPVQPRmkPTuLvO1qoJpQBek8Ct62FJ07m0W2oIsROfMrm6ovlwG21goVOAcvogKjYNr0IUMv56kkKn90P8014z26oaZKaxvivSV2j6xpVM+zqSWhoxTMUs5XfJ68ehA0wrpwv5cY8e/b8FTgZ166JSnt79UAj1Pa9lLLKUfUgVPGccxl4jwGeQwDijug12wH6xV//GUAPoLz8tTfKYAcHebVYmd4X7sOzwjw6Y+fRH5tAHziOioITpQXYbUcSI0tJrBD/XkUFaIJ8DasSLEuyePZ5DNKNEtCngO8czQ/yaCqg9moahdcpoTlW92yjPEgxKVIx95R2tf88evsQG5XiqPd9YXxoalQhOV1l5Yp5nFwJlXMo3oe6ak+N1yaJvhoFbxiGI3Pw0qkiWyweIRoHY0enheIY+7nMlyytCrQs+3mnsUANIyhtfIHqeSuqmvuHSkWRP/nmUfTtGzD9PTKmMtHckiieqokgXMtXzR9Dkl9DFOnsceW8a5ffFHlckbVc+f/bTXtiOgDwmL1ZrsqGr/v8axSq5eQJzfJ9141byOPsuHJulAi9Dht48aTch0+eRN0xhNZafJ7RHtwrkkQxYjT7KGKATonpC2GMxQlpCYerb8zKwkGjBNJrBt6+Bd4wKnoe+05KEnCOPKEZ70WwOjcCXSoihD10WwMOnWnfNy/17S75FVahnTl5YBnfbQFn1wCOirMz1gcoqUVNTKPH6iilGDaK0wbOKyXj1Ew0r5eFwXn4vXIFISi1x1mwDIgslpTSqgjQA61dA3eth8dPCFjNAhWbX5THZ+Q11kZ9d2WAvhqtE629vyaNcZM+2Gx6tsDDk3DgDLz3VT5rKJXyWo9B1yQwMTWN6jEYrbgXqZRbBCycB55ARndpipXzEKQsJZj7yR9//RU5HdeyadqDFIUEFwGcZ7kmilUCov+LGSvh53spjVGj6Owu1ZRSqHoQHYlEw7Ln/vvaKqOELWZVfedawZNHAfjJ/t1yWz41mVXPZZya9KDvRIKLcmIlrF+ZHh0HlnEFKPTdDdGe0Kyi9nX8OHFyM1Ht4O8d2+FrR+DMHBzzgeq6Hvl6teyZHROag9JXFVVglbMyDih16GaK3nsKdtfZoBVzSnHCJ6ZbGpzOk9NVlR+obucKe+tRSpXzKMAsJ1eUjtap/GgkQm//ysF2antq2xljJ6ZhuFbBfKjKClTbsuzncRBQtXbjc1QC83LVPDoXyfhZzMvnSO7ZKAlQf2/uSDTTRrPXyBzmFNFZeR35/ZWBcqRyvhR2Stcu3MqJ6bgyeh05OA/7ZwDmlnz/DC158d5qkar7biK/p4oAvbyFdeMW2n1emdr+9ClpoXz+LDpQ2o3Oes61T2Zu1YoDVAPzcmI6+LsYoAfPGGutlBlji7VYFgoHMcU9BulGwRtG4Kc2yyz0j78gfzxxsn2/NOFKWmXWqZVrs2cdnWvm+2YXnK8Ci4OobMGQRRvqFVE4B8r6AGXyHDoBva4XpRV9WtGvFOMa6TtXqjL4r7L4RowDzklEFKdwo6k8YFm0b9KUApZEy+fZOgjrlcxizKoJ4SAdHJ2B0ZpkmCr77lbhDQdFj1LIiinpn5+YzRfj+0fhe8ekl2awngXduqYxdU29rkl6NLqeYIxGA69BKuVhvX6AMBu24EG5f/vQd15bpafpWrAAzLMgxT/fjYCzWaqrB+E2zCqzpQqCpTgntKqCcLlMGZ2peNOfyKO3JuqmyVUGzKGo+xD2nJqGe4rtSfruUUyii9VzJKjYR7RGEeCuYh+1SvtlTO3bTrECVK4gLNkCrS8GfyHZuWOd0Bc/f9D3m9evwj0zCibjfbPHSK/OZF6BVSkZpV0dOIMeMKh1vRgFG4ziSOg7N5o0Auad4ptCIBr5yqP+/zdRZInFfrDNarpdIyAEk/dskhd+bMqD04jaDnkQ1rLCsKqqAlVlBVbQRCdHtR+fQjRWxs+10zPDoyyO5zNb+quTJHdtQg/USRKp6Bn/uDHRPOar5i3ED76a/B4Lvi/4watt77qaLCSmM79EnpgO4DxOTIf9U+4zV/B18X23D/F7MagLvrW7ptW2ILX9lrVw4LzsO8MGNdSHSgSYB9+njEYlmh0sPTFd9okxY2ycImOsDNAX/TyhcBC33dUjkF73n/POIXjDWjjoORkPjMPeY1dHUrqTz6sbGNIy6SMIwl06Nr82wblSy/exVBV1O1zNowNwbNaDc79RHZxFb10jVR8PCke0KLajySh98QZYZTbquwsbKuTgPIjixEHKkqs/ZbGcUP3RGu4ckREIwVnbEKgARyL1Raim/K9CW1AUbsuABNDWwYsn4EsT8Es7YVNfLn7hv9Y8tV3XjNDbkTW/CxGAO4Scpu8iAUpYn7jPfKmUdqAw97FrS7M4eIiDlCFkfMg+qqsHcYW8yglO+q9bO73HZb72lfLVY6P9Y/WJLV6QlenFNQ03j8KvbWXuFuAD20huHPXBic4+u0YCw4NElR1KgWXpraoCFEe1UnscoFzI2c2qCTHwy6iMwI9thr3T8KVxUa195Vju/GHV75kLVmBHBgoVWG1tRmnXL55FbR8SH200G7ViMhHqc6o8vZ3FfF8xqRKej5OLoJaDy+ADy6aUEtplmd0Qvr5tK/zdhIwOKgNTKDLGBmv+3KjI+aolJ1iWbT9fSGNlotiSkJ3s8pSSwCA4fBbzynmS127EKLk3TSIPlWhuTRSPGY0DnkH22OsoUdrJw4yuXTkrA/O4cn4QmKdzYtpRTGrG+2ZgjFF63bDVla0bt3jrRG1f3xDxha8egZEGaIXRKgPnSuusB3o7OTiHhRPTcUK6ijFWpRnQad/sZCoIwQXfF8XH9Bj5zCfPFf/oicm2/XJV6uXEQV1Ys+DztqyDQ7PtgOwS3+6as+Etdy7vG2rdDsw1MFQTWjt4pXYw+06jtvTLha8loB7Tiv1Gkfr+uzjw76TYHgcwcZAC0jcZak4FYL5E4Cd0P1PdC3rHBhkvdmLG0/vIL8TJczDUKFYLMmGcVV7RqwLmCt9DeVayYh8/CD+3Fbatba+01DWmbqj1GJK6KQjd9AJ3I5Q+i1QPXgPtlHb/fKm9yb/7nz56ec/BD4EpqoMURZHe16n3rgzq4p6trfj1i14zBnhdW8Cyng5VdOa3jvEf1X64ZQzl20d0otA1I/sn+V43Tmc2UbDF+u4COI+p0Iv13XWyTByuSnSsvw639UvZoolUEF45WgLoq3fPXLACO9oPk+czJ6Wsr5zPt9B7z6JuaGTKw5u0YkIpnAZrfP+5y++/KuuUXAlicBC5Y4qHVmlxG0L80ApetR421eGRY7nOStPmFRKcKLWP1kB1Yj8s7Zwu237eKaky5nVypiN6ZhxoVFTN+bsJePUQSV+dWhIYLXKPKqO5I9E8rRUzkKm0x8A8VM5rdCntV9oKPi/a10YQAeEDVIO38vMYoJ9Eulh2ll47Buhl68Yt3jpR2/dPiU8AeGoa9k8JMNfKJ8BkYklo6apKTMe+LdjFMsYuNHZRiZb2uh7dPmGmx8C9Y8U/uG9M3izeg1ehZdO5MmAe7fFbe+HQaZ/YdF1w3smOHn5ied8w25FKgHSoARNNcOLMTTNFj8+it/Siw1gxDWNGcUgX+83joKNKsT0LTEqb5RyyYYa+u3LlYMnXfRjFVBaG66vBqwbhB6fkDVs277s7NgMjPbQlKjqlUFeTxRmxKIPH6ICI3H3kFbitD27eKL9bzgrWRKnd1HRB5CaswauR4OQFpBfoFtppfeFvlmr/7B+/97Kegh8G00q1BSnh3thNURQuBuah9y50ccSgzlEEdmVQFy6trnU2qTT73vlANW6I2N0//cDfh4ZBNwymLveZSnSBGrudoihcnFxpRdtnW4AZVRcOIuNksuCE/Bq56NGGZWAe06bnZ4q/+/iRHChdDRdNxwqsT2hmUy4c2jrM3jOoDQqzvs9rBoji8KEkV2kvJ1WqfF8VpT0G52H9FMW1XFTUqJLeruHHtsC3j4pGQFY19n/skNa1of7ieZEXviD2w7Lt5wvRM9dTLQpX1Xd/8LQoS79hCGMUJquay3PlBauGgKepprTHs80vRTCza4tbOO8x6Ao+6gYkMQ0d2EeueN+FfXYvAu5749en6P/K1o1bxDpS2588UvzFJ44IMDcKlQTGXDExHZh78VqVE9Odkpr7ydvx4NIYY9lnM1oq6IHSHoP0W0bhH26DOxIZBXvLWO4TjT8nq9VCwB5OTADpW/thslmcYnWJtorPwsWbc50IcVfIYupa7JiH+uT5mXmwoA+dwfSDWtsjwn8+Gzaq4YC/MduqciVqSrBiAJPfcJP+/zdQorRHIGTJn6lKuV0Dd6+XmedpdCHOtqRhd/gqUl+MrUopWQHHT+e/8/R5ODBVUqLUmVql6tHUlMqEbUIPuUGCkheBhyhVDyhWzi/khuzpWcapBNeQhXMfBxCB3vcS+f1WrhhkFHfaq66vUOw3j0Gd4K1Vfv2vApPZqUkubOcfPWsa0JtI5byRyLhCrfKtFhmFt59q1kPsDbL/LwUpVX135SDloj6TVtWK4DUtFYPY7huN3lSt/j2zUwV2dABOA/NpBu60Bf3cKfTuIWnJ8K0YY4nicADmWhWCxirfF6YllCntjup2rriKt5C1jcALX42GbWskIf3ViQix2PwAj56HTRWMMcUFMcaWbT8PJc2qtRtbUy0KF4LOlsuf/92kTB/oq6GNIjF5r3lQbNdacSfwWaS16y4iv6fyWLe2PJ/8h9rCci+UmI59WsxgaVEEfeGe24fsmQu9ftm6cUtkcftoeNxT8guvHsuFhk0uCBfimG2QKbaXiwZZ9000ZWYxpfbyOl5s7KKMFn8ehOFiqvutY/Cr98Btm0u6H2Z1o9J4v4xB+roeoZ9EWiuX/FaX/hJdA1Xk8IQFTDRsUHDkvFTOX5lB7ViLVtIzIjN7FWNaM6UV5+J+c3Jqe9U6V/XdhepBUGqPgUf8/ZI+UVkYLgB0pWDnWlExD+MenIMj56ShrMcUL+AsyFzlgWZ8s4WH0fDU0eLvPXWkvWru5+UqpXJhN0VBiXYIWAt8GentiavmceXcdEHcFbeq6kEA5wfIZ9FXBSkFpkq0B+8nB+eXrer6Q2jKKMm49yUFgE5fguqvoepaFNtVcU/bQTFACdiirDhcTmqG36/qu4vX8pLuypiBFI9Ze9UI/OpWuD2BX98GN43lv5tEic3Vap0qsH01mVQSApXUYeZbqL3T6Ov6cmKAUgxrxZSBc6ao0t7J98WgvXwPlivn5STLolbWWskop8DbNsPTp+UzpTbniAal9qF6e0J6qX1ky2yLzqk/fK4IzsMY0ZavnFsHB05Lj+Xrh8HTbE1NkyRahFATT29HWroeR/bBvUS+j2LlvGtX1pRSHRPTu8kT03FSMx4ZWgbojlypvezzLhXY/dBYKIKVtVY+EFWWbxqNBOFEY0b7PSb4voO0t9vF7XhtLNto34y1VqrYD5diWcI9VnJvVDxKcfSqtdjnxQ+lpXp+YKbbc76QrVm/fXnfsAqYh0z0pgGhvQFq30nMln7/K57WbhSDBvq14oBWlYFjlWJ7FaU9gPPN8aFF2dELpqhUqbYnGhGGG4bHjudvfGRemAKd1GpX8f0GvsIV5hhmn1e1ZzFfu6VYNe/RUDeZgEUIOHT03ADPIsUkgL/x38eV8yCMcyH2uS9+6yI/7Q+3lbP7IUgJrSAH6QzMy/PNQyvJJLlibQwILqXq+sNqWWW1x6B6Ez7/9e+h6gZlFIlS2Z6WBYBIcHHA/30ZmMfiYuW1u1J9d+XPk1UNAjAPY/BuHYNfuRtuHitS3s0qD1KgvQ2oUD3vg8m5DMCqF09hNmnUxj4R9PMUzQGj6DWaw0ZVMsHaZvVS9H0xUyKA83BNKIq+b9GPY1RnjYD1DbhvE3z5cK7cHpTaT7Ow71uiLet+Hnxc+Xg3N7xeQMQMCOKvcdX8q5MCzHuT7LUSI9RbbbQIw2kZ3xWq4i3gXyHCcOXZ5tdkILoKrQzMw9frkMRJJ1HNqlaguHIeJ8RCONwJ2HXjltwKgpTBLzSMUL1/+W752mNQdY2qaZJESRWdfO1CS1enwp6LxKPL/m8eiV2C78u2Ay5f7KK0yv1d+HzxCNiGyeakr0ohuMgWFI/eNggHz+VO6RLtmtwT03R51SAXzEQP9cos27kUNdnCbB9ABVEHg2TAlJK+83D8tPePlC0OPOMK+iTSh1IOTLKA5QICPpnXa4qANWSN7togWaIzc3IQx2ZFCKgyYFul6otlq6kipTH0x3xgG9xZg/9uh2Q1fYZP+mkSOU/elFIyDo1i5fxLpbf6MjmdPa6cX4gNDvZdwof94bUM2JWCFA1cT7HvvK33jnYndwBhNG2KXrsM0Lt28RZf5wVgrvJ9bicySmuGYmWnXIGNkysxOI+rB3B5+u5iE4qfKc6DjQOTEKj4Fhlqq/+qWTBQGfNTLvyJVs+ewuzaKL5P532TzmhGtGiuQNSOEH2NrUxpD7835f8/MB/idbsg5kMZlIevRsGbRuDwLOw95R2vg6lIqb2D71uqLet+3qmYMDogEfvZZgmYR1Xz/afg8By8bihP2teiynlNyXPEr32z9NZfJN9vQ+V81SeirhEr+Lxoj9vi/z9MlCn7uBbVwO4wFZVzivWqsnXjlpIZVawsB98Q2GP+Z6am0T2GeGa9onNiOmZAlH8W/N9h/zqdGGOXywtlo9Z6a9Bfk8/Wl8jz3pok4q8GjADVbDEFbGvAwek8sXmJtvojgIuw6TOTi//S5bZOCzZSh6lzcOAMeh2owTpGKx+k5CMRtmjFAaJeEYrVn9jiTFiZ1h5mnGfAnCL4uGALY9QKFXQFa3pgRx/84IT83tFz8lkV1UHK1WBa5bMZQyDdMNIX8/57pMpV6p1RFR4oY0aSBx/vKv3OO8mr5QGYX+j6vOn1d17Mp/yht3BZxkFKuGx3A3vo3HtXYLT419vv/658v8Vfu3bxFl/nZcAc9rUNiCjRQTorDi+m1N6p7+5Ck5qdTNU8dS+m8/X5HvsYqK92al9sVcBcIWO5jpwRADvXQr08jbp5jdxr2osbaY3SMGw0B7VqA9xlvQCopmZaxO8NI3ttHLgGALLUs6lCO1qZ2m6UBMpvGYWvHBJqu6Oo1B7T2S84K7Dc+3n0uWI/nWjYpHNRuEBrD2PUUiu95m8clms1Oj9aS/U8STSJUpl/+8nSO/8MRd/XpbQvn5Ur2yHRacir5+XkWFwpjwH6QWT9LnQEVzduKZpUz0PSNmJV9ZjcN/QYkt4kaxWJ4/sdSFtWkyImCPtneT3jYt5+2ieUlAsXl/WzGoVKtDDhvLBrVQy9qq2TXsfogGSxTs51e85XlVUFKErBcB9MOXh5GnZukFEIikLlXHlwHveNxOBbMl/5aldR/8L/xuNkCjfxRYA/IAfjccASXuzeDfD4UTmAIy35rIFBUDgnF/PGy2/ZJhkAeky9CdnMer55qg6qkgboUVCPHq8GPgS8HfiPiChc+L+a6lYPltNC710IUuIscVw5LwcjmSicK96j+ygqtYe9O67udu3ymKLzKLxdSLAB1WNlyut5xZXaq44/zIHN+ulNobf+qqogQDFQyb4qYVFN+Yrri6dQQxq9sddTnpXXXAGMZjRRhVaScvXHRb6vzBYL4D3MOId2ttgF+75YF6CssH/fEMxaePK4Z4x1UGqPA7fVaHFpsxxkxqJwBT6sg1dOSwvba4tVc2pCu63XFLWapq7EBzaUjA39EPDjwO8B93m/1+N936X2tXZt6Rb8U1Vi+npEsb2yQORoY7PsI09KVwG7qyTsWxVWWVnur2V6KzSkEBT7pXDOQ3LkMNWsh+D/ynPqA2NsJ0XGmIreY7VuXytrqoSFVL4XjtY8tb1bOa80kzSW/03LAUoIsNb2yNfHT8DOPr+OntanFEqDM5rtSgIUaO85L6vWln8evm8h1M647y6+iS8m5isIw8UAXSm4Yb3c6Y8ek1/e2MgdfNnxXyVW6I8JWctIlIq+GvR0BuYAWinqUAhQ+jS8TsG/UfK1T8vP4yDlQu3Y1KmL/pw/7FYG5iFAjCvn5epBVj2Pvg/Z5520U/rC63aTLpdm8XWeJUBoz4VuRwSKCslNV91HWd43y0rtZYB+OU1pCcRUbyJTHgIoX80jZDpZTGuPQd5gTbIak9Pw9Em4cUgS057OrrxgmNKKzUpx2L9c7PviZEqwQstC9HWCvJ0rPOLEzQW1c2mV94GW1dtrGt62BR4el0rykelqpXZ5oQt63+Xcz9tn9pKv3WgvjJ+NsiRR1fyrE/DGERF5KjMLEk2tbujRirqCXgV9Cvq9z/v/KXiDFt8Xktc9qrs/LqctlJiOK+dlxlgZoFv/u7u48KR0N27pbEpHleUeX132+iMhnqhqx9uBUNvjfTEbJUpnzLCfPCkdJ2wyPZfuvdlu2c2jogvfP7auhcMz7ZSvi3yba842jty4/G+qVB7JxU5aa1ExB6ApwNz46rn2iu1abpDjwHnaQUBZtTa+ueKbMeiKb6LIqoufX5SVVduz0Woa7hqChydh2OSgPAbo4flVZFkWs+HBeH8ij0YIohf/PDUfmPQp6NcSqAxoGPDf90X/31AC6C/UPvLA5y/m43WNEq0vAtLbycWlqijQZUYLSAVhp39eBdC7dmkWX+cLBZflAKWsLJxGz6uU2ke4MHrm5bCrPviJo/JC9VzDWAP2n4d95+HWtUWfp7RfRM02LeC8wHaguEZQaudyRd8Xg/NyxfyiKrPlZHRcKbllA6xNZPb5ifOXTal92ffzcvU8rONYQ3rrQ+9k6DV/+RRMNeE1m+R32/rzBVj0ekDe6x/9Wnxf8Hvx/3cnWSy/LZSYDort5cR0VVJ6HwLOLzQp3Y1bLs7iPS1su+HnO+k8SjRm2lYxxkI7V7Zu5AmArrWbUh77hEWIg4WtDTh8uls572RHDz+x/G+aBSURMAd45ZggboBPHEHtOyYqphm1T5SJ1yE9k4eoDiBjfYEqSnsIMkdpp3vG185FfTSvHlwQhkt8cHXXennzYynsm8o/exmgX4WmfCIljK+4ELqpUkoq5koA+RoNgxFAH4gCltpFBuj//Dffd1F/17X2YCI4pgRxVnspJslShBZW7lU+CZxFgGF231U40K5dvJWv8ypgDnmAAsU1CkHKxSi1X8q++cNgqtzOFQPUzYPwrSOSuF3fkBFAwe8loBONSlRGRz9Ce2IlrBEUg8yyTxxHtFaqgsyLWb9MYb9MbQ+zz39sCzxyFM4AM7NcqlI7rMB+Hio+wa+DfD8yICf4lKe2txxYC1+bgDeOQj3Jg9I4HqgZEURVij7v29ZoGPS+b9A/HwhJac8e7NryWsHnqTwhuQPpW56kPTFdtW+GyjkUY87FktLduOXiLK6ex+umEP+1n+rWoIz9UPJ/c8ieW2CMxX61e2t2tpjSHmO/bYMwZWG+LGV64daNOy6TZTSxOCLXCp48Uvy9J454MZxctTasb6j8QLtie7zUVdRMh2yqod88zn7FsdNFW+i5ix2y0XD6nPy/Ax4Yl2RE+OxKjuSH1QErpejVioEImIdgZY2vIiQ/pOdmpS1LelIsICk6995VVdL3IzPs+8hBQXBsCVdtXmpVW7kvLpz3HUii5BTtFdgqpdq47y5UD6AYoFzFucXls1BFKAQrgJsTTuWGGugwocQnpj3lOzAhxsh7Jh0lhooH4XFFr0zdPEw+4zw84oDz4j6XEnp7eU69VmCb+e99+ijsO9aeoFj1e7uKLvKSbx82MHE+F4V76RScbMGrO1fN40xkohT9KgfjITkd/GBPN/JfMQugLgZ4BtG92Ubu+7I2INqB3XFkMsZ22hNhsT/t2uW1uGUgo56TzzqHds2OgjBctI5B0C8wbatU/LvWwaraubQSnYABRFDzEq17/i+nZWlDlTvze0YLv6LuGxO1Wi395tr3kyhkYzxAOygoK7aXaX8hmKmi9mVBLJdIodQqd8SxEy8lH3jiSH6hht/5ITejFD1a0e8ffVpRU+qiqOxduzy2UBZ6N8Xeuyp6dLjvXkECFCgmxGLg2LXLawoJKmJgrpEEyRDFCkJZyGgpSu1h7S6nUvs1bdnFHoHTfVPw3TPy/8/Pwv6pyO95MdQkZyNthYIgankUHhTvxxign/D/X9Zaie/pi7FMIDQM5U50/rXs9x4/UmIQXMIbL5fFwDxE5UBBFM4iveZfOyxV85ppb3Gr5VXz2EIVvVfnj7ru+r2VtjL9vJyYLvSdE/m/6L57BYk1e6EtKd2dUHLlrFzZDlvNdqQKPkc7rb2ToN9BqpXaL3Xf/KGwsF+Wk9JKwbY10hZ0iXZNxo7rNl23Mm8c92YbJarfN43Cr22F2xP4wDbUTaOYmsYYhfG/H/z4NlhQsd05V+i7c6XfjWecZ6D8MmXBlFby+cJotfC4b6z4i68ey4OY8DdduyL24F8/tNKHcFVbGZiH+/A6pHoQ338ZPcwVK3YHKIrBlSsIXWB36Va+zsvnOGYFbUcCx6reu0LVfIG+u/h1u313S7AyMNdKkrSxPXHEtwjJGDUd+T6NgPPDlKriruj7yusX/m8CWA/UyYFCfI1cyh2ojMrF4eLHvR38XlZFubA2KFj+/byN7ZdVg/CicGekcv7CSThr4d6oah58vFH5165dFbZYYrpQOS8lMuN+8x3h9biwpHQ3brl4q2pH0Ej1u077KNGAEcqj1BzFMWqUX1N1wflCpnS8X0a+TwFb++HQ2Ut+j2sSOc3NnFqR921z5GFe9q1j8Ct3wy0yJ1vXNLqmUYmW/nPyvpFD/rVC1aCqSt4pyJyg2HdXBguXbMEhx0HKLWPw69vgzhr8dzvk+5oPUi5meHfXlmw33rB98V/qWkcrO6MQsOwCpoEp2qt4AaDjf/Yy+SiSGBh0L/3LZ+XrXCvVFqSE70PvXSEgqaD4hUcLAYWh57wM0LuYYwkW9vo4OV2VtK1Jz7nRHqR7xpiiCM7DvVYOJst+MLDJ4vGhhcQ0lynIjP1eqBTfPArvz5Pu3DhaTMwnF/6uK7Kfd6qej/XC4TkB5984DG8au6CqeddWt3VKTIeWrrbEdIk99goC5KuSmYslpbtxy8VbVXU7rN1Ocmp71aSZslJ7nJSuorR37+lFLOyFWXYqgPM+GL/0yvk1KZY5M3185d68psEauQvC4gX0rIBEoxPlAbqRQNPmgeUxpJenTonaF71MVZBiEVGcmNpXDlIu1ZRRuJopNgKmDm7bLI9AfQ+JiXrXaV9Ju/P2G1b6EK5qU8gGaBRolwcWDeQ+ehlhogRAblWx5SRFKuch+xzuuxigd+3Sreo6jxMhGf0cWYvHyffK1IFTxapPueoKK6PUfq2YUgpnNCTWAzYn4PUDwGOTcO9oBl5Nor0QnFSWjV+oLeSJ6XKVrnINyUF7G2NMFe/HS6VRt/k95+RNbhmTRwjMeqLE/EUwxlZkPy8D8zASaNiPmPnGEZh2cHenqrnuZrCuQjMKlIv2O/98J3AO6Skfox3khXtuH/AjlFqB/Osuxjbqxi0XbxkOdNEt6/Li3j7a22JbqphkiRlj7yLfK7tK7RdoZa2O8t55iXZNgvOVNKUVrsePFWul4rwCkPWLqI1UzrVSKJtvbOuBHiRIGaAiMHHysnFgEjZPr5POMEVKexykXBar+aAj3MXZju0DluC4GwvPAu9a11basqJRFKQER7cbqQ68gfYKQrjnJv3rbKGabtYNWa+cZfNeXfF87yQPUNrGAal24LcfaScy0WtcznagHxpLfEI2jXzd7ZsFvAYdFs8Y0zXvA6N7bysCCs4iiemCZoAqgvKykvs4cr8WEmSXe/1qOs/sACQO0sgXBqDq2XIXSmlfMQsjYMsgXSsRcXjkKNzZH4Fy3Tb3vZuAv/osJKZjYK6RHvIxpO98hDwGVSpv7Zonv+e6bKPlNaUU2rlC7BLWYAfwGO1tsWUmkgVmkdHLBcaYKrYmdG0RUyqnoOho79xzeYrD12TsUW8Mruj7K61QDQO9CfQl8jV66IbQ2eOgsoraXjlr0rVnMi0CFIbI++7KQcrluteyGeDZ5zHQMP5zhp/XUMk1eWmtKtu77/BKH8JVbUGIsSwuFsD5Hkr9diVK9CsUgV0cnHSB3eWzqus8Fh6Kz/dWZE8MY7nKgkZlcH6IrlL75TCllYzYahipIIevfUnhe9Uw6J5EVNvJz/UAMEj1KNGsHcEVg02oVmq/7O1ckI9W6/Wfserh/d/FJqVXZD+PwXhcPd83lY+AfWIa9k/l1fKY2t5FYlelxX4q7jEOvi+IwlVprRxA4swhqtlGi1393bjl0qxTS8IO2hXbY39XVmrvATbQXjXvxi5LtOyElZKaZbHQi7Rrcg0G121d6UMAkNnYdYPqTeTRY4TOp1RbcAk5ON9PtZBDDBLiPjwQeuYI+etcqSCl8Nk8EKevJl97a/IZuw57WewrX310pQ/hqrcq1W+F9N7t87+TgQOKSu0HyPvNoQvsrpRVXedhfyv3nCcIk2Ef7W0/5YAlVM5DW0JXqf3STBkFPUkOYGMg64Gr7jEySpT21oHQdw7to0QLNHeKVaHQc17weRR962X5fFliuiafrT/62le7ZLbYSuznSinQ/piz2b20B5hPHmmvmte7VfOr1S40MR3auCDvN4+LSxmTicX9XjduuTQrjFKLYo7tCIN2mmKsUp5VD0Wl9nI7Xpf1tzTL9s7yOLW7Rhf/4yXYNQnOj08+t9KHsKAFtcwqGmxQbO8UUFYFKSFAWajv7ko5UeXFfZSf3d615bN/9P6fWelDuOqtAMwjR7cb6bs7TTExFoO9V+gCu+Wwquu8vHfGlZ8dSOKknNSMg5Wwbx5A9twYLMbr2LULM2UUqscD2H4PXAeixG2ZMRatW+g7r0pMV7HFLHAGaFLUWjEl33dFPmPdyOfpTeR5culAdcX286yMGlXEy2r09421V827/v6qtgtJTJf93k7y+/ZCVb67cculWVW8ooF1CAPpAO2jKON2PIusb2CMXcwads1b1Ti1G0fgly+9QHxNgvOrweKbIN4Yt9NOTYlvtE5BStWM8y69tmtdW9iqHJ1BKLZDCL0vpoXFgioHEGV3RTHA0aor5nGlraryE/a9neSV80JLQpnmh1Rqd0R/2+2dvDwmCVsv/GbysWJVielw7gM4X4jpECdXgt8bRNqj42ugO2/5AsxEFfEg+nbzqKjQ31mTaSxhCksk+NpNPl7dtlBieopiYjoey7Uf8XvlvTKrvneviytq5QRkHOPH1PaY5Vf+Wh4fWsYL3TVcoilVbAtKtDDFbhpZ9E8Xsy5uWyErb4zhJtmGCDXMURI1chWg3OWvN07nMWrdClDXulZt5cAipqPvpDhWJq7EziB9zTtpv9cCQO/albWqpEqonO/3v1OV4Izp0JArtevS63WX8MpYp8R0TGsvr1tcvSu3cwUSYZXv667h4qaCkGtNiz5A3QeYt/gRsLduziew1LRMYemKvV71tlhi+hWqGZsvI+AcIn9H7ke7dmVNK1XYO2P20TbaW7oyrZWosFCmtccttl28cAFWyDIr2T+DxspleOlrzjaO3rzSh7CoxfTJmOa3CakGhQpCOTAp99vFirUBnFcFKV279uyP/vRTK30IV72FSl4VTex6isI4Mb32AKJsu4Gic+sKqlx+63Sdx5n+uJKwE9kP52nfM+PHfqoF/bpreGWtcJ+VEtMTyOz5QvtWKbiM/y9mjFF6PcXVBc5XdD+PgXkcYMaPHgN1k09s6dpVbYslpvfQvm9OIUrfO6gW5FwK26gbt1y6xcA8jllC5bxKryMuLEyRK7WH14ljmK4tzZRSoHyLT02LtkoQQb1EuyZ32bOnDi3+SytsMSAvfy33TJZFcMpByin//yO0Vw261L5r1972lntX+hCuCcumYVAE2rvIwXnMXgEBdrspJsLC3yXdit1ltU7XeTkJGc7/sH9eTnCWtQM6KbXHtMGuXX7rtG5D/v+D0n5ZH6DMHAtJ6S0UAfnVqvuwkvt5pkbf8BNm4mkzmahfcnWNievagraUxHQ5ubkP0XfoobriupQroxu3XLrFiZUyrb3AGgtfXbGw0IeMbq5i2V6ToPBKmsaPj47ET/tql+Vlrzmbnz270oewqMVVtrC5hZ+HvvOyME7LVQP0CWANUskr32xdeua1a7t3blnpQ7gmrFMFdjcyonCGdjG4fRQFVcqKt9177vJZp+s8DizLCc6d5FMvMuHMUv/yPop9d6GCkHD1AburycoMhZhauYVcELWK7RASLdBeOb/a27lWej/P1OgbQYE+iVTpayJ81wXm15R1SkzvRsA5+NjTf30FAYDQnghb6lSglb7OrwUr9JxHscd2RCTzDO3J6FBYOEC+huV17yalL8KMkj3TC5/SkMlcl2rXJDi/GizOWlYpth+gWhin3P8KUmkI2qpVQUr3Zuta1zpbGZiH7PFGpP/uFYriKkEUZ2f0t2Un2QV2V97KwWGc4NxFsfeuSqm9LIpTpvh17cpYHATG1HaQvvOg2F4Q7+vQcz6JtHNBeyW+G9xcnCmtRMivbnIl+q464jVpnRLT11GdmH6FdjG4uOLa9XvLY1mcUqqeDyAV8Rg/lJXaD9BeWIj3ze4KXphlI7ON7JOX6x64Jv1Xb//GlT6EJdlCiu2BmF8WxmmVgpRA7avqu+vebNe2PfHUSyt9CNeExVT0uPc4VBCCKFwM0F9BwDmlv+mK4lx+63SdLzSSMm4NagPo/nmgtevSIwb6Xbv8pmJBo1JwGUThCq1cFT3nDjiHzPQdo300WwANV5N19/OuLbd1SkxvQNiYITEdhMT2kU8oKfu9pSY0u9f5pVvwUeX1A/FpgTVWpVN1gOL40Pi1uoWF1WPXZBzZ07tupQ9hSdZJGGc7krUsCxrFwjhxVT0Wg6sSpurebNemvfDSgZU+hGvCdInFUh4rE/rOwz13EjiP3KdV91sX2F1eW+g6LzOPQrCxk2LvXRiDF/bMSf9/BUp0HKBc/o/RtcjKlbqQRN5K3tIF7RXz+PtJpPd1kPbWhKuxnau7n3dtuS0kprMWIXJQcB1FUbg5pI1kJ+2g7kL8Xvc6v3TTUWI6bg0Kxb22xLRbmlL7NQkIr1K7Jtfi1NTLK30IS7K2ag25MI5GKgjlmys8whi1AM7HiGgqFIOUrl2b9p5f+LGVPoRrxjTt1XNFMUCJqX3D5BoPsXJqF9hdflvoOi8wj6JAcTtwAqmuFtqDyJXat9JVal8pqxJDheI4tZjxUKa0x/3m0B6gXo3gvLufd225TZfYR50S00FIrIc8Pq1Sa1+Kda/zy2NZ7BHFHZoia6xQ1EP84Qk6K7V3Cwurx7oxyApaHFSWg5XK7BftQQpIBSH0nFcFKV3rWtcWtipaewhQDgJNikJiVaI43YTY8lscoOjo+7UILXM/OZ09bkuI+82J/j4EKN0Y5cpaQQwuuve2IH2up6nWXInbuSbIldqJXidmonWta11b2DolpneTJ6ZB/N51lOjQpa9dWz4rs4RCgnM7slZxMjrgh4NIX/painFOt7Cw+qwbR66gxXTYOGulqJhXSHsWLPTdzSAVhGuh765rXVsJKwDzyFGNIurdAeRVicGVAXq3jWT5rFy5iSumO2kPUsK+uZ8itS+se1epfXmsiu2gkRE/68jH4MWCRvE4oADOQztXFaW9u4Zd69ri1ikxfT1yH84j99xe8j0zTmLG2kldWz6r6jk3SD/5DNJ+txSl9m5SenXaNQnOh7fcudKHsCQrz5mMM5DbkACyMErG5VWEcMNNAA2unb67ri3dPvT7D6z0IVwzVkURC8HKDQiVHYrjZLo9W8tjC13n2ouLVe17baJwUSvQAYqiOOUKQteurMWJ6XJSZQvt1Paqdq4J2tu5rub7sLufd20lrFNiehihse/3v7cPqabH9+zFCIl1r/PLY+XESFjDXmTtDtDe0rWf3O/Fe3Be2OsihtViV6MPW9SOH3lhpQ9hyRZXD2JK0Q6qFdvLlPaF+u66mbBr237lfT+x0odwzVhc/Y7vHYWo0+5B7r9ADdtFKUghF9fp2uW1xa7zrG88Wj9NsXIeK9cGpfYdlIA53b675bKqpEq434IoXFU7V/gZ5OAciuseUzyvJuvu511bCSsnpmN/dj153/leLs+Eku51fnksTkaX2QvbqKa2BzG4ckI6vEbXVo8lK30Ai9kXvvAFPv3pT3PgwAGUUuzatYvf+I3f4Pbbb+/4N2lrdhmP8NJMK9AuClD88+1I8NEE6rQLGi2l707RBefXsg1tWrfSh3DNmFIK41ym/m1c7ryuB/7W/964/9pV+V4+W+w6z9bAFYHZDoTlUB4p01VqXx0WV+uC31OIP3uczirtFphF+tJHKbaWxM+vNuvu511bCdNKoZXLfV60l+5GRokeQ9Ta4wklF6PUDt3r/HKZUgrtXNseGvBDYI3Fo/AOAO/zz8sJ6WuyUnsV26pfj/Pnz/Nrv/ZrPPDAA3z84x/nTW96E7/1W7/FsWPHVvrQLou1VW3IFdtBwEA2m9dV990Fal+3765rXbt46yTOGAKUFMlGhwClq/K9Omyh3rt5YIpie9ABcqX2qgpCdw2Xx8rrFYPzQGsviMGVxqhpYD0lAdRuO1fXunbB1ol9dB3wEpLkHENo7uVWrm5Cc+WssBbkBbkd5LPOQWKXc0hCs6vUfnXYqo9Dfv7nf57XvOY19PX1kSQJ7373u9Fa8/zzz3f8m/41ox3/b7VZ3DcSA/Ry9iuulsd9d5PkojjXQt9d15Zu3/jWEyt9CNeUlR1VcGDbyEcW7kPAevBjVcCwa5fXFrvOw55ZBno9SGV1H8X9M+43//+zd+ZhclV1wn7PvdX7kqWzdNKdlUBAVlE2R2UTEGVR8UMRFdzGUcdRGT8Q/ETQwRHFAddBBgUUEYFhkSgEjCCDBmRAEhaBJGTtpDt7eu/quvd8f5x7b517q3pJ0t3VVf17n6eeqq57u/p0nfW3JwU66cOxI1929XC+tWEUK8mYyXweY/lc2ouxD2U9FwrFQIrpAzCCue3SrpL37uVZU8b5yDFYtad1ZA15oVK6HpOfKmlYKNY1s5QpOvnt5ZdfpqenhwMOOGDAe1y3fAxbtH/Yh0PbPSjUfuXL2J6MuwtVEaUQdycMn46O7kI3oaRIxtCFWmkXMxfXkC2jZm+EofXAQTxVRoOhxrkt3CVj7+aStSCE6+YGzEEz6W0UWR6kD8eEgbzGpgXXtxBPhmrvgS1k480h16W9GHtQ1nOhUAykmJ4dXP8fcvOs7OuaKeN85MiXJ8fBeIZ5mHCEMD/VehIlYImfeYpxzSxlChZz/u1vf5ulS5cOeP3II4/khhtuiL23detWvvGNb/ChD32I2bNn5/9FoH3XhpFq5qijlEIFsa5h3Iit/VpN3CXTo7Tj7oThc+bpJxS6CSVFdDDRlqIsiL07EGM92ACcRXZzs8sXijJsdBhqnIexd5EHkhV7N5/8wvlbyH9AkT4cO2JeY1a+gNB63oLxUsmnmG7DCA62cF/sChZZz4VCESmiVTbfSqiYXoQ5hy4gPkf3dc2UcT5yROcQS3ZwMHmqZmH2vllkLeexCiUquX4W35pZyhTMcv6FL3yB+++/f8DHv/3bv8Xub2lp4Qtf+AInnXQSn/jEJwb97IrqKVz4kY9zySWXcMkll7BkyRKuvf6X9PWlo3seemR5zL1m2/bdOSUe7rp3GSteWBX9/Pq6Fm6+7bexe26+7be8vq4l+nnFC6u4695lsXuu/9GdbNu+O/r5yeUreOiR5dHPXl+a//z+7WT60tFk+duy5ZQ9vZKNwT27d+zmzv+8MxZ39+gDy6h6aVUUd9e6fjMP3P5gTEAfifb19aXH9fcn7ZP2jUT7lFK89MIqfn/fsliJmN/deCfNO3azEqOJ9p5eyd+WLY82OK8vzU9uuJ3+9MT+/grZPgfYtH4z9/7ywdiBo/dXD7Ju/ebIHfr1l1ax+4FlsYy1d954J7t37I6UMxPx+ytE+/6yfGVk5d6zYzd3/9S0T2EsP88+sIy1L62K9rtN6zbz8K8ejMK5ZgHLfvUgres3R0L5Ky+u4r4J8v1J+6R9I9W+Hdt3R8qt559eyTN/XB6F/dT0pZn6w9vpDs6nCnh62XL+9tTKSDCc6N9fodp3y20PsnH95khp8vpLq3jyAdO+sBzzb2+8kz07drMBY/B79emV/K91fsn0pfn+DbdPyO9vJNu3ZMmSSOa88CMfZ39Rjz32mB76tsKyZs0aLr30Us4991w++tGPDnpvV1cXZ599Drt376K+vn6MWrh/9GtNuw8dPnT60KmhG6Pp+gxwD1AN1AAVCro1dAFPAr8CfoSpbVgN1DrmUa/Ms2jDSpe+vjQVFcUTwlEM9PmaDp2di13aJFL5O3ApUAvcjolnriE73+oU1DngynwbcYYzzvu1Zk+4flpr6Drgc8B/Y6wJG4HPBj9Xke3DGgX1junDlPThmNHlazPXdLbfejBzbAvwZaASM7+8YN/rBT4FfB54I0EfBvtdXTAXK4rQbUzWc6GQ9PjmHGrPxWeAy617vgscB9QEc602WDf3Zt+TcT6yDLWG/mtw30eAK4DDKJ01c7zS3t7OpEmTWLJkCTU1Nfv0GeM+5vzFF1/kS1/6EhdccMGQgnnIjKYjR7lVI8tAsY8zgut2xvZk3J3t3F8KcXfC8LnhJ78pdBNKjoEyf88PrncBL5EnXlbm26gxnHEec7e01sEwH0cLZt1cj0kklszUbve7MHbYifzs+dSEqUUfZRu2Ys7TGA+WUgvnkvVcKCT58q08mrjnEeuaAlL7sO/JOB9ZBlpDw3wrYMJfOzDW9Hz7pGRqH3+M+7PIz372Mzo7O/nZz37GmWeeGT1uv/32AX9na8uKAa+NR2zB3E6OE5YD2kA8KVwpx90Jw+eLn/1AoZtQckRzT8UFvteC6xr4KoGAruIHFfFSGR2GM86Ta6gdM2knhdsY/AySqX08YO93yvq5maxwnow33xr87rTE79qH02JE1nOhkITx4ykVPIB3J+45CygLrpcRrrl7t2rKOB9ZkmcVWzjfgFk3N2LKTtZa9ySNgcL4omAJ4YbL9ddfv9e/o7U/9E3jiPBgGCUyUkSJqOaSyNius+VkWoF/IHswsQ84xXpAEYaPuIaNPDnJVYLXf0jc9zBm7oWbmyQSGz2GM86Ta6idzG8BRjh/G9mMtQMdUEShObbEksEFc83BWM77gV3ATOIC+hbyKKXDz6J4D5qynguFxCUQvDWUK8goOFbDDcDvMYL6McpcS2EE9PJ9mGwyzkeW2Nnf2gNDr9pWzL4XU0pbD1FKj0/GvXA+EUhmbHesjO3zMHUmk3VeIZsUB7KHEtsaJAjC3hFm/k5hNq2UNrHK7wIet+47m6ylQbJ8F57Bql7MA14O7tsAnIBkah8vRBYfWyGGiTNvwIQjTCfuMbaZ7L4n3g+CMDIopSjXmkoVzDXHZG4/QcPxBFnAlcl7VBk8y5pZeGKhWValkhTGA2k9kqm9GClJGa5+ytyhbxpnRII58Ulju7Xbru39mLi7WdgTLK5BE0obO2OkMHKUBxaBMowloULBMcD3gNOAH2AsCOH10IogjA7DHecp4qEG4bo4D7OGehgvpLBOfb68AcLYYgvXtoIZsnHnEFdMb8Hse7YbvC2gF6v3g6znQqEpdxTVCqqVSZJZo0zyt1rHPNc4UKWgOnjeF6FOxvnIYislQ8E7XEdD1/Zw30t6GonX3/ilJC3nnpce+qZxhu3SZ0+guRjrgV3fvJTj7oThU1dXXegmlCShe19FYEEI59cJwSOFuRY+yvfxkCIMj+GOc9vryLHW0/mY9XJDcF+o0LQPMhJ3VxicwOMh1h86nhQuGXPeCryZ+H5XCvuerOfCeCB0VU8pSAeJGLUGFSikQ+v5vlYmkXE+soReY5FyWscV0+uDx5zg/lgyVPGyHbeUpHDe1d5a6CbsNZF7H/E4vDDb8BZM7GR4SAld+0ot7k4YPm89obiqEhQLSimq0GgH8M1cKlMmY3Q4v8qUsRxUBQcVYfQY7jhPCnjhejoVUzbtzxiBL0V83ZRM7YUlue+F/dIE/C9xwRyy4Vy2QG73Y7Ei67kwHlBKUaGgLHBx9zTo0CMp9M7cD2W0jPORxw6JtZPUzsPkC+jCGPpiselY+VmEcUdJCufFSEyTZU0wFxM3sgEz0cJDSujaBxJ3JwgjjRsI6MoxcecZDb5lUUiRjbsTq/n4QBGU9tFx64DCKDafJFsSLxkGJGtm4bCTMCZDuh4I7gkFdA8jnM+27iuFMmqCMN5wlIoU0cL4Jhlvbnve7sF42FYTD/mSTO3jm2JWNA+Im6osdBP2mnxxI+H7dsZ2O1N7I3G3vthrERhKnm3bdxe6CSVNSilqFNQpqHegzjHPtcq8rnKUCOZjwHDHebgG2tYBO/auFcnUPh6xQwscaw9swuRVSZNVSm8LfmcG+V3ai7kHZT0XJgIyzkceew2097TQ83Y3pvxr0moerrfC+KMkhfOGmYsL3YS9RillLD/kJsgJExppjOUgmRQn6dJekp0q5HD7nQ8Xugklj1KKckdR5ShqHUVN8DolgtyYMdxxrpSKrAK2q7q9Jnrkd4eWpDiFY6D4/4bg/c1k861sxpRWS3pGlMLeJ+u5MBGQcT7yRBZx24OWbJWSDPBVLAHdfshZZlxSzHvZgGxtWVHoJuwTA2VsD8shaOveZMbaUom7E4bPl/75g4VugiCMOnszzvMJ5i9i4u4A7sEcUKJ4OyRTe6GxBfLkczNZrzEw+16j9XvJCiXF3I2yngsTARnnI0++OHIF/CFx38Nk5YxQwSmMT6RvxhExt3brMQ+TtTbM2C5xd4IgCLkkQ4Mccg8of7Cu24KgUBgG2r/CcITNZGPO7XAu+yHhXIIgTFRCr7EUZg9MYTLrvytx39lkc+a4SkrAjmdEOB9HJOMlwwNHmPitDXNA2R78XIpxd4IgCPtKGBoUHVBU7gHlXZhDiUvWpV02wsIRhnQlPccUJilcGNKlyVYpie17KusFIQiCMBEpU8GDbLm7Y4D/AE4DfgAcG+yLqeA+WTPHLyV5Jpk87YBCN2GfsF1SbMu5i0mOswEjnG/BCObJkkBSRm1icde9ywrdBEEYdfZmnLtKRQeP8Nk+oPwHpkZ2GeYgUx7cJ3F3hWWgkK4mct3aZ5MVzpPK7GJG1nNhIiDjfHRwMXtaRfCoDh7HK/hG8FypslVmymTfG9eUZCm1vp7dhW7CPhHGPkYlZYLXtgXhePLH3SUFdKH0WXzg3EI3QRBGnb0d5+UqsBwA2gHlm3XzOIKa9UClkz2glMv5pODY+55tFW/GhHQlLefJCiV2hZNiRdZzYSIg43x0UEH5V+0AvlkTUyqr2AyF90oFVcGzMH4pSeG8p2tHoZuwTyilUFpnrQjWYSXM2A5Z4TwZcydxdxOLIw8/sNBNEIRRZ2/HeZlSVCqNJlB4OiZbrdagVNZqXhVYFiTzfuGxQ7psQX028VAuMNna7bwCtjBfzMh6LkwEZJyPHq5SVKNxHCjX0K/N+mmumb0vtKyLnDC+KUnhvJgJ4yAj6zlZy/ny4J4twCFI3J0gCEI+QquAC/Qrc0jRgSAXxuVVitV83BC5qQd7X5gHoBwTwtWCeW9a8F6+CiXSlYIgTHRCAb1cQcYSzrNJ4GSlLAZK0gO6vLKu0E3YZ8Jsw8k6rqFbexhznq+Mmri0TyxeX9dS6CYIwqizL+NcqbA2PdQoqHegzjHPNQpqHahwlFgPxglJK7hdFm02xrU9Gc6VVE4Xe0/Kei5MBGScjz5KKcqCPbAmeFQ4SgTzIqIkZbm6yc2FbsI+Y7v32QlymoLrrRgrQpgUJ5+ALkwM/vinZwvdBEEYdfZnnLvWAaVWQY1jfnblkDKuUErlJIOzk8JtwsSb2+FcSZf2Yk9uJOu5MBGQcS4IQ1OSwvmO1r8Xugn7jJ2x3Ra8UxiB/AVMgodGcq0GUq93YvHJi84pdBMEYdQZqXEuVvLxTRiWFUtwikkK10I810rSpb0UDjKyngsTARnngjA0pbCnlRRRQhyyB5XwSDkH+CswGZOJOF8pGTl+CoIgCMVGjmt78H4zxmq+mXgZNVs5LblWBEEQhFJBhPNxhlIqJpjbrn5zgWcx8eaQv5SMCOeCIAhCsZFUStshXTsw9c4lnEsQBEEodUpSOG9oPKTQTdgvooztxA8gYXXI0LUPcuPu5Iwycbj5tt8WugmCMOrIOJ8Y5CuP5gBTMBnawZRRK9VwLhnnwkRAxrkgDE1JCucduzcVugn7hZs4dNgZ2wFeAV4mf+I4iaucOJxy4psK3QRBGHVknE8MYrXOie99tcE9a8hfoaQUdj0Z58JEQMa5IAxNSQrn6d6OQjdhv4gdUizBe3dwfQtwOfAicZf2kuxMYUAWzm8a+iZBKHJknE8MksK2G0jcLwM7g3v+H/F9r1TKqIGMc2FiIONcEIZG5LlxSGgxsF3bXeDxxH0PE7cuuKVwQhEEQRAmHMl8K+HrRxL3LSXXpV22PkEQBKFUKEnhvKqmodBN2C9CwdzFlFBLBa/fmbjv7PCaKp24O2H4rHhhVaGbIAijjozziUOK7H4WPt6VuOcssnlZwntKIZxLxrkwEZBxLghDU5LCeUXV5EI3Yb9QSlEGlCnzKFemdNqbge8BpwE/BN4cXE8F90o5mYnFq6s2FLoJgjDqyDifOKRUViFdrqBCwZuA6zD73g2Yn8N9z1Xm3lJAxrkwEZBxLghDox577DFd6EaMJF1dXZx11lns2bOH+vr6Qjdnn/G0ptOHbg09Gno1pDX4GAt5CnNwqXagWkGNggqpJyMIgiAUKVprujV0+mbf69HQp8HToDHCeIWCSmX2vdpg/3NKwHIuCIIgFD/t7e1MmjSJJUuWUFNTs0+fkRrhNgkjhKsU1Y5G+8HPGEuCr028nYuxHlQFj3I5mwiCIAhFjFKKSjS+A/hGEV2mjHAO5ufQol4VCOkimAuCIAilhAjn45gypahWGlcZq3m/Bh2cQ1LK1H4NDyqlEHMnCIIgTGxcpahCoxxIBR5jXrC9hUrpcoxgnpJ9TxAEQSgxSjLmfEbTkYVuwohR7ihqFNQqqHegzgmeFdQ4UOUosRxMUK7/0Z2FboIgjDoyziceKaWM27oye96k4FHnmBCuWsfsjaWEjHNhIiDjXBCGpiQt5zvaXi10E0YURykqgnOI1lqs5AIAH/5gMn+/IJQeMs4nJuG+VwH42vi1K0rXS0zGuTARkHEuCENTksK5l+ktdBNGjVI9mAh7z/RpkwvdBEEYdWScCxPBO0zGuTARkHEuCENTkm7tgiAIgiAIgiAIglBMlKRwXlPfWOgmCMKo8+TyFYVugiCMOjLOhYmAjHNhIiDjXBCGpiSFc9ctL3QTBGHU6ejoLnQTBGHUkXEuTARknAsTARnngjA0JSmct+/aUOgmCMKoc+bpJxS6CYIw6sg4FyYCMs6FiYCMc0EYmpIUzgVBEARBEARBEAShmChJ4Vypkvy3BCFGX1+60E0QhFFHxrkwEZBxLkwEZJwLwtCMeyn2ySef5BOf+ARnn302Z511Fv/4j//In/70p0F/Z0bTkWPUOkEoHDf85DeFboIgjDoyzoWJgIxzYSIg41wQhmbc1zlfvHgx3/72t5k2bRoAK1eu5NJLL6WpqYlFixbl/Z22Tc+PYQsFoTAceuCUQjdBEEYdGefCREDGuTARkHEuCEMz7i3n06dPZ/r06Sil0FrjOA5aa1paWgb5LT1m7ROEQvHHP/6x0E0QhFFHxrkwEZBxLkwEZJwLwtCMe8s5QGdnJx/84Afp7e3F8zwOP/xwjj/++EI3SxAEQRAEQRAEQRBGhIIJ59/+9rdZunTpgNePPPJIbrjhBgBqa2tZsmQJ6XSa5cuXs2nTJlKp/E3XWlNeUUd7e/toNFsQxg2r1myQcS6UPDLOhYmAjHNhIiDjXCh1wvGt9b57cavHHnusID7gPT09pNMDZ210XZfa2tq8177yla9w7LHH8r73vS/n2rZt2zj//PNHrJ2CIAiCIAiCIAiCMBzuuusupk+fvk+/WzDLeVVVFVVVVfv0u5lMho0bN+a91tDQwF133UVVVRVKqf1poiAIgiAIgiAIgiAMidaanp4eGhoa9vkzxn3M+dKlS3nDG97A7NmzyWQyLF26lL/97W+cd955ee93HGefNRWCIAiCIAiCIAiCsC8M5Pk9XMa9cL5582ZuvfVWdu/eTXl5Oc3NzXz1q1/lhBNOKHTTBEEQBEEQBEEQBGFEKFjMuSAIgiAIgiAIgiAIhnFf51wQBEEQBEEQBEEQSp1x79a+N2itufXWW/nd735HV1cXBx10EF/84hdZsGBBoZsmCPvEH//4R+6//37WrFlDd3c3f/jDH3BdN7q+Zs0afvCDH/Daa69RU1PDWWedxUUXXSTJEIWi4aabbuKpp56ira2NyspKjjrqKD796U8zY8aM6J62tjZuuOEGVqxYQVlZGaeccgqf/exnKSsrK2DLBWH43HbbbTzyyCPs2bMH13U56KCD+PSnP82iRYuie2Q9F0qNr33tazz55JNcd911vOlNbwLg+eef5yc/+QkbNmxgypQpfPCDH+Tcc88tcEsFYfjceuut/PKXv6S8vDx67y1veQtf+9rXgP1fy0vKcv6b3/yGhx56iO985zvcf//9HHbYYVx66aX09PQUummCsE/U1tZy7rnn8rnPfS7nWnd3N5deeimHHXYY999/P9/5znf43e9+xz333FOAlgrCvqGU4rLLLuP+++/ntttuA+CKK66Irvu+zxVXXEFdXR133303P/3pT1m5ciU33nhjoZosCHvNySefzI033siSJUu45557OOaYY7j00kvxPA+Q9VwoPZYuXUpvb2/svdbWVi6//HLOPPNMHnzwQS677DL+67/+i//5n/8pUCsFYd94wxvewEMPPRQ9QsF8JNbykhLOH3jgAc4//3wWLlxIRUUFH//4x+nv75dJLxQtxx57LKeeeiqzZ8/OufbEE0/g+z4f//jHqaioYOHChXzgAx/g/vvvH/uGCsI+8qlPfYrFixdTVlZGbW0tF1xwAWvWrKGjowOAlStXsn79ej73uc9RU1NDY2MjH/vYx/j9739POp0ucOsFYXjMnTuXuro6wHj5OY7Drl27onEu67lQSmzbto2f//znfPnLX469v3TpUpqbm3nve99LWVkZRx11FGeeeSb33XdfgVoqCCPLSKzlJePW3tnZSWtrK4ccckj0nuu6HHjggaxatYrTTz+9gK0ThJFnzZo1LFq0KObmfvDBB7N582a6urqoqakpYOsEYd945plnmDlzZiTIrF69mtmzZzNp0qTonoMPPpje3l42btzIAQccUKimCsJesXz5cq655hq6urpQSvH+97+fyZMnA7KeC6WD1prvfOc7fPjDH2bmzJmxa6tXr+bggw+Ovbd48WKWLl06lk0UhP1m9erVvOc976GyspJDDz2UT37yk8yaNWtE1vKSEc67u7uB3NpytbW10TVBKCW6urpyxnso0HR3d8thTig6nn32WX7xi19w9dVXR+/lG8v2OBeEYuGEE05gyZIltLe3s3TpUqZPnx5dk/VcKBUeeOABtNacffbZOde6urpobm6OvVdXV0dXV9dYNU8Q9psTTzyRd77zncycOZPt27fz05/+lC9/+cvcfPPNI7KWl4xbe3V1NWAs6DadnZ3RNUEoJWpqanLGe+giKWNeKDaWL1/O17/+da644gqOPfbY6P3q6uqcg5uMc6GYqa+v57zzzuO6665j9erVgKznQmnQ0tLCL3/5yxx39pCBxrkon4RiYsGCBTQ2NqKUYvr06Vx66aVs27aNF198cUTW8pIRzmtra2lsbOSVV16J3vM8j9WrV3PggQcWsGWCMDoccMABrF69OkooBPDqq68ye/Zs2eiEouLRRx/lmmuu4corr+Rtb3tb7NqiRYvYsmULe/bsid579dVXqaysZM6cOWPdVEEYEbTWZDIZWlpaAFnPhdLghRdeoL29nU9/+tOce+65URb2r3/961x33XUsWrSIV199NfY7r776aqxqgSAUG0oplFJorUdkLS8Z4Rzg3HPP5a677mLt2rX09fVxyy23kEqlcg57glAseJ5HOp2mv78fgHQ6TTqdxvd93v72t+M4Drfccgt9fX2sXbuWu+66S0qSCEXFfffdxw9+8AO+9a1vxSzmIUcccQRz587lP//zP+nu7qatrY1bbrmFM888M1bGRBDGM/fccw87d+4EYPfu3Vx//fWkUikOO+wwAFnPhZLgpJNO4o477uDmm2+OHgCXXHIJ//iP/8gZZ5zBhg0beOCBB+jv72flypU89NBDvOc97ylswwVhL3jssccig8HOnTv57ne/y5QpUzjssMNGZC1Xjz32mB6txo81WmtuueUWlixZQnd3N4sXL+YLX/gCCxcuLHTTBGGfePjhh7n22mtz3r/++us56qijWLNmDd///vd57bXXqK6u5pxzzpG6uEJRcfLJJ+O6bk7N8muvvZYjjjgCMOV3wjrn5eXlnHLKKXzmM58R4VwoGi6//HJeffVVenp6qK6u5uCDD+ajH/0oixcvju6R9VwoRU4++eScOuc//vGPY3XORTgXiomvfvWrvPTSS/T29lJXV8cRRxzBxz/+cZqamoD9X8tLSjgXBEEQBEEQBEEQhGKkpNzaBUEQBEEQBEEQBKEYEeFcEARBEARBEARBEAqMCOeCIAiCIAiCIAiCUGBEOBcEQRAEQRAEQRCEAiPCuSAIgiAIgiAIgiAUGBHOBUEQBEEQBEEQBKHAiHAuCIIgCIIgCIIgCAVGhHNBEARBEARBEARBKDAinAuCIAiCIAiCIAhCgRHhXBAEQRAEQRAEQRAKjAjngiAIgiAIgiAIglBgRDgXBEEQBEEQBEEQhAIjwrkgCIIgCIIgCIIgFBgRzgVBEARBEARBEAShwIhwLgiCIAiCIAiCIAgFRoRzQRAEQRAEQRAEQSgwIpwLgiAIgiAIgiAIQoER4VwQBEEQBEEQBEEQCowI54IgCIIgCIIgCIJQYEQ4FwRBEARBEARBEIQCI8K5IAiCIAiCIAiCIBQYEc4FQRAEQRAEQRAEocCIcC4IgiAIgiAIgiAIBUaEc0EQBEEQBEEQBEEoMCKcC4IgCIIgCIIgCEKBEeFcEARBEARBEARBEAqMCOeCIAiCIAiCIAiCUGBEOBcEQRAEQRAEQRCEAiPCuSAIgiAIgiAIgiAUGBHOBUEQBEEQBEEQBKHAiHAuCIIgCIIgCIIgCAVGhHNBEARBEARBEARBKDAinAuCIAiCIAiCIAhCgRHhXBAEQRAEQRAEQRAKjAjngiAIgiAIgiAIglBgRDgXBEEQBEEQBEEQhAKTKnQDhsNtt93GI488wp49e3Bdl4MOOohPf/rTLFq0qNBNEwRBEARBEARBEIT9Rj322GO60I0Yig0bNjBlyhTq6uro7+/nvvvu48477+Tuu+/Gdd1CN08QBEEQBEEQBEEQ9ouicGufO3cudXV1AGitcRyHXbt20dHRUeCWCYIgCIIgCIIgCML+UxRu7QDLly/nmmuuoaurC6UU73//+5k8eXKhmyUIgiAIgiAIgiAI+01RuLXbtLe3s3TpUqZPn85JJ52Uc933fXbs2EFVVRVKqbFvoCAIgiAIgiAIgjCh0FrT09NDQ0MDjrNvDupFYzkPqa+v57zzzuOcc86hubk5Jyncjh07+MjFn0Z7GdJ9odu7YmbzUWxtWYHWvvmcKXPxvDRd7a0AuKlKGmYuZmvLiuizJk87gL6e3fR07QCgvLKOusnN7Gj9e3RPQ+MhdOzeRLrX/K2qmgYqqiaze/ua6J4ZTUeyo+1VvEwvADX1jbhuOe27NpjWKYcZTUdK+6R90j5pn7RP2iftk/ZJ+6R90j5pn7SvSNrXtul5wNi6yyvqSPd1cNdddzF9+nT2haITzsFoJTKZDC0tLTnCeVVVFdrLsGb1y9TX1xeohYIw+lz4kY/zq1/+vNDNEIRRRca5MBGQcS5MBGScC6VOe3s7c+bMoaqqap8/oyiE83vuuYdTTjmFqVOnsnv3bm6++WZSqRSHHXZYzr1KKXztUV9fL8K5UNJUV1XJGBdKHhnnwkRAxrkwEZBxLkwU9ie0uiiE82effZY77riDnp4eqqurOfjgg/ne975HQ0ND3vsz6e4xbqEgjD1Ns/fNXUYQigkZ58JEQMa5MBGQcS4IQ1MUwvm///u/F7oJgjDuOOOMMwrdBEEYdWScCxMBGefCREDGuSAMTVHUOd9b3FRloZsgCKPO0W86rtBNEIRRR8a5MBGQcS5MBGScC8LQlKRw3jBzcaGbIAijzu13PlzoJgjCqCPjXJgIyDgXJgIyzgVhaIquzvlQdHV1cdZZZ7Fnz54Bk0709vaSTqfHuGX7j681GlDhQ+q4CyNEeXk5lZXicSIIgiAIgiAI+0J7ezuTJk1iyZIl1NTU7NNnFEXM+UjS29vLggULaG1tLXRTBGHc0NjYyNq1a0VAFwRBEARBEIQCMeGE83Q6TWtrKxs3bpRyDoJAtiZjOp0W4VwQBEEQBEEQCkRJCueTpx0w5D1SB10QBGH8c9e9yzj/facWuhmCMKrIOBcmAjLOBWFoSlI47+vZXegmCIIgCCPA4gPnFroJQoHwtMbT4AU/O4CrIFWC+VZknAsTARnngjA0JSmc93TtKHQTBEEQhBHgyMMPLHQThDHG15o+DWkN/YCvQRMI5hoqlKZcgVtCQrqMc2EiIONcEIamJIVzQRAEQRCKD601PRp6NPRqyNiWcw1lygjsVUA1GqeEBHRBEARBKMk65+WVdYVugiAIgjACvL6updBNEMaQ3kAo7/bNozN4dATP4fuh8K51aVSDlXEuTARknAvC0JSkcF43ubnQTRhTbr31VpRS0aOuro4jjzySH/3oR2QymVH92+vWrUMpxa233hq9d/HFFzN//vy9+pzHH3+cq666Ct/3R7R9V1111T7Xg1+6dCmnnHIKjY2NVFRU0NzczPnnn8/LL788om0UBGFg/vinZwvdBGGM8LQmrbMCeq+Gbg2dGrqC193WtT7Lql7syDgXJgIyzgVhaEpSON/R+vdCN6Eg3H333Sxfvpz//u//5thjj+Xzn/883/jGN8a8HV/72te477779up3Hn/8ca6++uoRF873h507d/KmN72JH/3oRzzyyCP8+7//Oy+99BLHH38869evL3TzBGFC8MmLzil0E4QxwgcyGFf2DEb47gWeAa4JnsNY9PCeTGkYzmWcCxMCGeeCMDQSc15CHHXUUSxatAiA008/ndWrV/P9739/QAG9v7+fVCq1z5blgTjggKFL2RUDF1xwARdccEHsvWOPPZaDDz6Ye+65h3/9138tUMsEQdgbtNZoQMGIr3fCyJHR4FlCdxp4Drg8uP4Y8B/A8cH1jIaMdKcgCIJQQpSk5VwwHHPMMbS3t7N169bI/fwnP/kJl156KbNnz6aiooLdu3cDcO+993L88cdTXV3N5MmT+T//5/+wYcOG2Od1d3fz2c9+loaGBmpraznnnHPYtGlTzt/N59be1dXFV77yFQ444AAqKipobGzkvPPOo62tjauuuoqrr74agLKyssg93/67l112GQsWLKC8vJwFCxZwzTXX5FjZ//a3v/G2t72NyspKmpqa+OY3vzni8YgNDQ0ApFKi1xKE8U5Ga3p8TVfgFt2locfXZEokTrnU8DFu6tp6Xpq456HgfT94aEx2d0EQBEEoBUpSwmhoPGREPkdrTceIfFJ+6hhdK87atWtxXZfa2lq6u7sBuOaaazjmmGO46aab8DyPyspKbrzxRj7zmc/wsY99jCuvvJKOjg6uuuoqTjzxRFauXEldnUmw9+lPf5rf/OY3fP3rX+eYY47h0Ucf5UMf+tCQ7Uin05x22mmsWLGCr3zlKxx//PHs2bOHpUuXsmvXLj75yU+yadMmfvazn/Hkk0/ium70u5lMhjPOOIOXX36Zr33taxx++OE89dRTfPOb32Tnzp1873vfA2D79u1RfPhtt91GRUUF3/3ud3MUDGCUB7fddtuwBXfP8/A8j/Xr1/OVr3yFxsbGHIu6IAijw823/XavXSG11lFMcliOK6RcQbmGcqWpVGJJHy+E3g0+2dJpPnAa8Lh13xnBdV9Z95ZAF+7LOBeEYkPGuSAMTUkK5x27c625+/Q5wMy+EfmovLRVQP0Ifp7neWQyGTo6Orjrrru49957Ofvss6muro7umTlzJvfdd190IO3s7OSyyy7jYx/7GD//+c+j+4499lgWL17Mz372M774xS/y6quvcscdd3DNNdfwla98BTCu852dndx4442Dtuv2229n+fLlPPDAA5xzTnZRfv/73x+9bm42SfyOO+64mFX617/+NU8++SR/+tOfePvb3w7AqaeeCsDVV1/NZZddxowZM7j++uvp6urikUceYc6cOQCcdtppzJs3L6c9ruvGFABDcdxxx/HssyaJyaJFi/jjH//IjBkzhv37giDsO6ec+Ka9uj8UzLuDclxhfHLo1t6njIBeFdxfVQKCXSlgLODmOXwNcCgwGdgNXAm8gaxV3dfgKfO62NnbcS4IxYiM87HBt5SdKng4iDK6WChJt/Z078jYu+swAvRoPUa64NvBBx9MWVkZU6dO5bOf/SwXXnhhTOAGeM973hObnMuXL6e9vZ0LL7yQTCYTPebMmcPBBx/ME088AcDTTz+N7/ucf/75sc/74Ac/OGS7HnnkERobG2OC+XB5+OGHmTdvHm95y1ti7Tv99NPp7+/nqaeeiv6P448/PhLMAWpqajj77LNzPvNnP/vZXmWx/+Uvf8lTTz3FHXfcQX19Paeddhrr1q3b6/9FEIS9Z+H8pr26vz/I5N0TlOPq8o07e0fw3OVnr/dq6BeX6HFBeJBMPoNJCgdGmR1e8yzrul8CXbi341wQihEZ56OL1pp0EMrV7pvHnqAMZZdGQrqKhJK0nI8USqkRtWyPNvfddx/Nzc3U1dUxb948Kisrc+6ZNWtW7OetW7cC8I53vCPvZ06ZMgWALVu2AMbybpP8OR87duygqWnfFuStW7eyfv16ysrKBvzssH2HHXZYzvXhtG8oDjnEhEkcd9xxnHnmmcyfP59vf/vbQ3oMCIIw9vRjrOV9waNXQx9GiHM0VGB+UA6UYYT5MjEmFJx8Lu0a6MII543AJmCxdc2OTxcEQZjIhF5jPcHe1295IqUUlGnoV1CtNBWObHrjmZIUzqtqGgrdhIJw2GGHRdnaByLp0hImOLv11ls59NBDc+4P481Dob6trY2FCxdG19va2oZs17Rp03jxxReHvC8fDQ0NLFiwgLvuuivv9TDx3KxZs/K2ZTjt2xsmT57MokWLWL169Yh+riAI+VnxwiqOPPzAYd3raU0miDEPn3swGb+XYuKV3wS44XVlnn2tccTdr6DELOaWgL4N01+LMcJ5MhmcF8SfFzt7M84FoViRcT569AXhXN2WcO5pUArcQAldReDirjVlsueNW0rSrb2ianKhm1A0vOUtb6Guro7Vq1fz5je/OeexePFiwFiNHcfJEZLvvPPOIf/G6aefTmtrKw8++OCA91RUVADQ09MTe/+d73wnGzdupLa2Nm/7pk2bBsAJJ5zAU089xcaNG6Pf7erqGvRv7gttbW288sorJVMuThDGO6+uyk3qOBChFTUsx9WvYQWmFNfjwfPzBCW7gvs8su7TQuFIWszDRyvGaj4H2EhWMA+t7KH1fKQrc4w1ezPOBaFYkXE+Onha0xdYzXt88+jyoTMI6eq2wr1Cy3qxr5mlTElazndvX1PoJhQN9fX1fPe73+Vzn/sc27Zt48wzz2TSpEm0tLTwpz/9iZNOOokPfehDLF68mA996ENceeWV+L7PMcccwyOPPMLvf//7If/Ghz/8Yf7rv/6LCy64gMsvv5zjjjuOjo4Oli5dyhe/+EUOPvhg3vCGNwDwve99jzPPPBPXdXnzm9/MhRdeyC233MKpp57Kv/7rv3LkkUeSTqdZs2YNv/3tb7n//vuprq7mS1/6Ej/5yU84/fTTueqqq6Js7VVVVTnt+cQnPsFtt902ZNz5e9/7Xo4++miOOOII6uvree2117j++utJpVJS41wQxojz33fqsO/NZ319KHHPw8Ax4XWVFe6EwpJ0aQ/7cStGOG/G1DmHbP/6yoo/V8YiVKzszTgXhGJFxvnoYHuMpUNBHKOMXgqcpeEYDY4VzuWpEhUCSwDpF4FPf/rTzJkzh+9+97vccccdZDIZmpqaeNvb3sZRRx0V3ffTn/6U2tparrvuOtLpNKeccgp33HEHb33rWwf9/LKyMh555BGuvvpqbrrpJq6++moaGhr4h3/4B6ZOnQrAWWedxWc/+1l+8pOf8I1vfMOU1dGasrIyli5dyre//W1uuukm1q5dS01NDQcccADvfve7KS8vB4zr/LJly/jCF77ARRddRENDA//0T/9EJpPhG9/4Rqw9YWm0oTj++OO56667+N73vkc6nWbOnDmcdNJJXH755Tl13AVBKDxJ66sPnE5WqANTmsu2vobCncSdF5ZY3XKylvOtwHSM5byFrKeDbT0Py6qVpCugIAjCEISeYpngdRoTznV5cP2PwPeBEzRkVHCfNrHowvhDPfbYYyVlNOjq6uKss85iz5491NfnpnNrb29n0qRJA14XhImGzAmhVOjxNe2WK1+Xhm7gPzBu7W8FLsXE3dUqqHWgLniukQQ5BUNrk114j+WK2RlYfq4BDgHOBc4DfgLMA6qx+tCBegeJoRQEYcKhtaYzyM5ur5//jtn3Qk4HrpZ9b9QJz9RLliyhpqZmnz6jJBXNM5qOLHQTBEEQhBHg+h8NndcixLam2hbYiuB6aI0txZjlYsYOQwhfh7QBMzFJ4WaTjTuP9WPid4qRvRnnglCsyDgfeez107NeJ2swnYHse8VCSQrnO9peLXQTBEEQhBHgwx9857Du01rHXKPtRxtwKEawC48ivs4V5oXCkAxFCJ/BuLWHBTGbyfZhzA1eF385teGOc0EoZmScjzzReqjjCuhDrHv+DTgM2feKhZIUzr1Mb6GbIAiCIIwA06dNHtZ9yRJc9sGjDXgjWatraDVIWhGEwpDss2SN8xnBfWHceWghCvMFRIJ6EVuBhjvOBaGYkXE+8iTzdIRr447gusIop2XfKx5KUjgXBEEQJhYDWV81sAVT31wD24kfYGwrrFAY8mXZt2uc12EOK7blHIIs7cT7UhAEYSLh6fwKzjagHvPzNuJrpR0SJIw/SlI4r6lvLHQTBEEQhBHgyeUrhnXfQNbXncH1Jox7dCxm2bIeFHvMcjEzVI1zFTySbu1JC3oxd+Fwx7kgFDMyzkeegUKC2jBr5kxgA/F9r1RydZQqJSmcu255oZsgCEIJobXGDx7F7DpbjHR0dA/rvnwu7aH1YBJQjjmobCJ7LekaLRSGoWqcQ1Y47wN2J+4rBRfN4Y5zQShmZJyPPD5x67mt3JxJrlLTVkgXe66OUqUk65y379pQ6CYIglACeFqTDjYwTxsBwVFQpjVlChwp3TTqnHn6CcO6bzDrQRiz3Ew2Ztmuce4rOaQUksFqnE8jmHeYEnhTMQqWaWSFek9l+7JY6/YOd5wLQjEj43xk0VoP6DW2BZiLUU7nzdWhsrk6lJxlxhUlaTkXBEHYX/p8TWdQM3SPDx0a2rWpn92hTQ3tjFjRxw0DWV/DUlwQt5zb8c1ZS4L051gz2OEyVKyEwjlk+xDi/SzeD4Iwcmit8bSmX2vSviYTeI4J4ws7b4odnmVbzudi3NolV0fxUJKWc6VE5yAIwr7TrzU9Gno09GlIBwf/UEgoV8ZahwPVaFzROo8afX1pKiqGDlUaqMZ5GLcMccEuKcR7GrR045hjK0mSsf9twIlkY84VJndATq3zEvB+GO44F4TRJqM1fRr6rXARR0OZgvL99BqTcT6y2OunvZ+BSQI3E5NUc2PwXt5cHbLvjTtKUoqd0XRkoZsgCEKR4mtNbyCY92joDqzknb6xmncF7/Vo6PahV9TOo8oNP/nNkPf4lvU1aT0I62SHMcvtQCfxbLWlELNcrCRDEeyQBLvvHLJ9mAxNiNW3L1Lr3nDGuSCMNn2+pssn8hrr8LN7X3vgNdat993LSMb5yJLP68jHlKBsxyimm4EeSjNXR6lSksL51paJmQ1y+fLlnH/++cyePZvy8nIaGho47bTTuO222/C8wtoU1q1bx1VXXcXrr78+Kp+/fPlyjjvuOGpqalBK8fzzz4/YZ+/evZurrrqK5557bsQ+cyAuvvhi5s+fv0+/e+utt6KUynkcddRRI9rGUicTWMrT2gje3X4goAPdmNe9gUW9P7jfK1KBoBj44mc/MOQ9SeuB7aoXCngOpiRXHcaKYCfFsa3nwtgykEt7N9ka56FgrsjWOo9+V8eVLMXq2j6ccS4Io0kmUEzbCukunVVKd/nm0RvsgfuiCJNxPrIkldLhz22Y9XIyUE02V0c+hbTse+OPknRr17pYt+d954YbbuCSSy7hlFNO4dprr2XevHns2rWLRx55hM985jNMnjyZc889t2DtW7duHVdffTVvfetbWbhw4Yh//ic+8Qmqqqp48MEHqa6u5qCDDhqxz969ezdXX301zc3NHH300SP2uaPF3XffTXNzc/RzTU1NAVtTfIQCdyZ4TmO0ziuAPwDvAo7VUBZc71fm2RXXsFFhOC6QA1kPMpi65qH1FYxwtwk4jETN18A1WhhbBjpcbsUI5fVkBfOw1vl2jOBeTiLzsCpeK5C4+gqFpi8Qunt0VgBPBxPK1VARzC/lg+uY8K69FSJknI8stnJSW48twGyy+14zJu78SPLk6pB9b9xRksL5ROOJJ57gkksu4Z//+Z/5wQ9+ELt27rnncskll9DV1VWg1o0enuehtcZxHF599VW++tWvcsoppxS6WQXnqKOOYtGiRYVuRlESJqfKYDatTPD6BeD/Bfc8DtwAHEc2i7snm1tBSbo2h8/bguthxu8wZnmTdY9nPU88tW7hGajGeRswi6xQ7gbPUzCKsU3AwcTjJqO6vTIfBWGv8LQ2ymZMrHloQf8b8BDwbuBN2kytlMp6lxVrdYRSYbBEqMkylBute0olV0epUpJu7fVT5ha6CWPKtddey9SpU/nOd76T9/oBBxzAEUccEf3817/+lXe84x3U1tZSU1PDqaeeyl//+tfY75x00kmcdNJJOZ81f/58Lr744ujn0JX6qaee4sILL6S+vp7Zs2fzL//yL/T29gLw+OOPc/LJJwNw2mmnRe7Wjz/+ePQ5N910E0ceeSSVlZVMmzaNT3ziE+zcuTP2t5VSfPWrX+Xb3/42CxYsoLy8nB/+8Ie4rovv+3zzm99EKRW5hT/zzDO8//3vp7m5maqqKhYvXswVV1xBT09Pzv9133338Q//8A/U1tZSX1/Psccey29/+1vWrVvHggULAPjUpz4Vtf3WW2/N+33Ybb3qqquin1evXs1HPvIRFixYQFVVFQsXLuQzn/kMu3btyvldoXBEB33im94jift+Z90bCnXFGus63nnokeVD3jNYjfMZZAW78JBi1zpPukZLP44tg9U4n2nd55Dtw9D7we5DW8lSjAxnnAvCaOGT9RrrDx5/Ay4FHgO+DDxH3LPMY+9jz2WcjyzJkB5buWnn67DXzJw9D6lUMt4oCuH8pptu4uMf/zjvfve7Oe+88/jmN7/J1q1bB7zf89Ij8ne11ujuzOg9RmAyeJ7HY489xumnn05lZeWQ969cuZITTzyRXbt2ceutt/KLX/yC9vZ2TjzxRFas2PdY/Y985CMccMAB3HvvvXzmM5/hxz/+Mf/+7/8OwNFHH82Pf/xjAH7wgx+wfPlyli9fHrmIf+UrX+Fzn/sc73jHO/jtb3/Ld7/7XR5++GHOPPPMnFj5W2+9ld/97ndcd911/O53v+NDH/oQTz75JGBc25cvX859990HwIYNGzjqqKO48cYbefjhh/nCF77Az3/+cz72sY/FPvOHP/wh73vf+5gxYwa33XYbd999N+9973tZt24ds2bN4t577wXg8ssvj9r+7ne/e6++n82bNzNnzhxuuOEGli5dypVXXsmyZct417veNeTvnnTSSXsVh/7Wt74V13WZNWsW//RP/5Sj5BAGJrnRhY+TE/edQbZ0k09WoBdGnrq66iHvsQW8UGCDeBm1pHAO2UNKMv5cGDvyeTyEwvl0rGRwgYUun3BeCuXUhjPOBWG0sMtr+cHzQ4l7Hmb/9z0Z5yOHTiRCtV+HlvNkOBfE10177xTGD0Xh1q6U4rLLLmPhwoX09fVx/fXXc8UVV3DzzTfnvb+rvXVk/nCPBx99fGQ+Kx+/OAmq968Ltm/fTk9PD/PmzRvW/d/4xjeoqKhg2bJlTJ48GTDW7Pnz53P11VdHguje8qEPfYirr74agHe84x08/fTT/PrXv+bqq6+mvr6eN7zhDQAccsghHH/88dHvrVu3ju9+97t8/etf58orr4zeP+igg3jrW9/Kgw8+yHve857ofa01jzzyCFVVVdF7DQ0NADQ3N8c++7zzzov93j/8wz9QX1/PRz/6UX784x/T0NBAe3s7V1xxBe9973tj//sZZ5wRvX7jG98IwMKFC2Ofvze8/e1v5+1vf3v081ve8hYWLVrE2972Nv72t79FfyMfruuSSg09TmbNmsWVV17JcccdR1VVFX/+85+59tpr+fOf/8wzzzwzLOXNRCe2aVma6GnWPVcDbyB+QPEDl9qi0HYWGW894cgh74kJaMStB2GdbMhaENowuQTsmOWwH+WQMnYMVeN8MfEyai5Z4XwVuQfMMOZca40qsvKGwxnngjBahCFa9h54OsZqHvIOcuebj5mXw0XG+cgRKpSTayiYmPMziFvOd2ES25aTf90Uxg9FIZx/6lOfil6XlZVxwQUX8KlPfYqOjg7q6upG7w9XuUaAHs3PH2OeeOIJzjrrrEgwB6ivr+ecc87hwQcf3OfPTVqSDz/8cP7whz8M+XuPPvoovu9z4YUXkslkovePO+446urqeOKJJ2LC+Tvf+c6YYD4Y7e3tXHPNNdxzzz1s3LiR/v7+6NqqVatoaGjgL3/5C52dnfzjP/7jsD5zX0mn01x33XX84he/YP369ZHLP8Crr746qHC+bNmyYf2NM844I6ZUOPnkkzn88MN5z3vew+23384nP/nJff8HJghJi3m46W3CxL9uwWQ/jVkOVOjeh8S6FoDBBLwtwALiAl5ojd0CHIB1wFFSVmassQ+X4euQVuDtxJPB2d4PjyU+I1SshHNSpqIgDI9wDQ33sXB/ewNwIEYR9mEspbQlmMu+VzhsZXTS+2gzcbf2SZis7ZswSTbtdVP6cfxRlIaeZ555hpkzZw4omLupkbEQKqVQ1anRe4yAZr+hoYGqqirWr18/rPt37tzJrFmzct5vbGzcr/jnqVOnxn6uqKigr69vyN8LwxMWLVpEWVlZ7NHR0cGOHTti9+dr+0B87GMf48Ybb+Rf/uVfePTRR3nmmWci9/pQOA4/385uPhpcfvnlXHXVVXz4wx/md7/7HX/9618jS70tqI8055xzDjU1NTzzzDOj9jdKifBwknSX3YgRCBYCr5MnkZgu3ljX8c627bsHvZ5057NrnLcSP6DYlteNxPvZdo0WxoZ8h8rQLX0b+fsutAK1kHXBzReOUmwMNc4FYbTIZ4EN3+8lK7OF1z3rvkzyw4ZAxvnIMZBSOjzJhyVEQ0HPdm1PViqR88v4oigs5zbPPvssv/jFLyIX6nw0zFw8hi0qLKlUipNOOolHH32Uvr4+KioqBr1/6tSptLbmuv23trYyZcqU6OfKykra29tz7hvp+OXQJf2RRx6J/f3k9ZDhKjR6e3t54IEHuOqqq/jCF74Qvf/CCy/E7ps2zTgst7S0cNhhh+1V28F8T+l0PMdBUqEAcOedd/LRj36U//f//l/0Xmdn517/vX2l2Fw8C4HWOieWLtzAWjAb2yRgLXEX6tCKIJvb6HD7nQ/zpX/+4IDXkwfLfAIeGOHOI14rO1/snWTeHzsGOlx2Y8oXxmqcK3C0eR1mIW4D5lmfEVqBilG/MtQ4F4TRIhK4dWJvwygx/4G4UjoSzPchjETG+cgxWCLUeqCSrGBuK6XzJdEsRoVmKVNUlvPly5fz9a9/nSuuuIJjjz12wPv27NrAhR/5OJdccgmXXHIJS5Ys4drrf0lf38gkihtvfOUrX2HHjh1ceumlea+vXbuWlStXAnDiiSfy+9//no6Ojuh6R0cHDz74YCw7+7x583jttddigucTTzwR+729IVQaJDOln3baaTiOw4YNG3jzm9+c8wgzpe8tfX19eJ5HWVlZ7P0wy3rIW97yFmpra7npppv2uu1gvqcXX3wx9t7vfve7nPu6u7tz2nLLLbcM+j+MBPfffz9dXV2DzpcQe3489MhynlyeTRC4bfturv/RnbH777p3GSteWBX9/Pq6Fm6+7bexe26+7be8vq4l+nnFC6u46964m/71P7ozpk1/cvmKWEbXvr50zvwdjfZp4IUXVvHb+5bFLLAP3ngnG3fsZg7Gcr7q6ZU8t2x5tCH29qX5yfdvp7cvHWU8nYjf32i170v//MFB2xceSNav3cx9tz8YHTx6APdXD+Ku3xwJeOteWsVfHljGXEzNVw3ce+Od7NyxO7IeLH9qJb9/5C8l8/2N5/aFfbdjx25u/887o5+3AvUPLGPXS6Z9DrB5/WYe+tWDkRV9NvDIrx5ky/rNkffEyy+u4v77lsXc44vl+wsFlvHavhBpX2m2L1RQ/u3plSxftjwqRan60tT+8HbW9qWjebb8D8t59umVkafR1r1ony2Yl9L3V4j2/fwXD7Ju3eZoz1v10ir+/MCyyGMM4IEb76Rzx+4oHOh16/yigd5ec37p6UtHSaonyvc3ku1bsmRJJHNe+JGPs7+oxx57rCiUzI8++ijf//73ufLKKwcVNLq6ujjrrLPYs2cP9fX1Odfb29uZNGnSgNeLlRtuuIFLLrmEU089lYsvvpi5c+eya9culi1bxs0338wdd9zBueeey8qVKznuuOM4/PDDueyyy1BKce2117Jy5UqeeuopjjzySAAee+wxTjnlFC688EIuvvhi1q5dy3/8x3+wZcsW3vOe90RC7q233srHPvYxVq1aFautfdVVV3H11VdHk33Hjh00NjZy1lln8eUvf5mKigoWL15MXV0dV1xxBddffz2f//znOfHEE6msrGTjxo08+uijfPKTn4zKsIWl1P7t3/4t9r9nMhnKysr4+te/HitfdsIJJ7BmzRquu+46pk2bxs9//nOef/551qxZw2OPPRYpI370ox/x+c9/nve9731ceOGF1NXV8fzzz1NZWcnnP/95fN9nxowZLF68mG9961vU1NSwYMECGhoauOWWW/j4xz/OF7/4Rc466yxWrFjBrbfeygsvvBBrzwUXXMADDzzAddddx6JFi7j33nv5wx/+wJo1a7jllluicmwXX3wxjz/+OOvWrYv+j1NPPZX169ezevXqQcfAaaedxsknn8xhhx0WJYQL/97TTz89oFdFqc6JvcXTmg4fOjR0+ubRBfQBHwK+jjm8/BtwO0YrXQPUOFDnQK2Cegdc8VIYU/q1pt2HjqDPOrXptzXAF4F7gQpMX2UwVtk/AXcBPwCqMLF4tY551Cvz7Eg/jjp9vqZdm77rsvruL8AvgB+TnWfVjqm93KmN4uUaTMK48zH9V6Oy87DOgWpH+k8QhsNA8/Bp4Gbgm8CngF+TjV2uc7Jzrt6BlKyXY063nzizBGvjrzEW8v+LWT/LMP35V+Am4Kfknl/qgn1Pzi/7T3imXrJkCTU1Nfv0GUVhOb/vvvv4wQ9+wLe+9a1hWQAnIl/84hd58sknmTx5Ml/+8pc55ZRTuPjii/n73//OT3/6U84++2wAjjjiCB5//HHq6+u56KKL+MhHPkJtbS1/+tOfIsEcTDKxG2+8kaeffpqzzz6bW265hdtvvz2WSG5vaGho4Ec/+hErVqzgxBNP5JhjjuHZZ58F4Fvf+hY33XQTTzzxBOeffz7nnnsu1157LVOmTOHAAw/c5+/k17/+NW9605v43Oc+x8UXX0xjYyPf//73c+7753/+Z+6++242bdrEhRdeyHnnncc999wTWe0dx+Hmm29m165dvOMd7+CYY46JkudddNFFUZb7s88+m6VLl0al3Gx++MMfcs455/DVr36VD3zgA3R0dPDrX/96WP+H53mxZHkDceihh/LLX/6SCy+8kHe/+9388pe/5J/+6Z/405/+NGS4gxB3U7ddnfdgBLomYD5mk9tJ1hUwtB4Ua6xrsZOs1xo+WjHW1TDLd7JO9gbifWjH3hWFxroE8AGdJ8eDXeNcAY7K9l3Yj3PJhibkm4dSr14QhoedayV0cQ5zrTRhqpXUAOus656OvxbGFjsML18i1FlYZSjJrVSS7/wi3Th+KArL+cknn4zrujluwddeey1HHHFE7L2uri4+fPEXWL/muQllOReEfUXmhKHP13ToXAvsC8C3MZY8gH8CPgEcT6B5DjTOofa5Uix2I8pd9y7j/PedOuD1Ht9Yzjst60E3cD+wAvgaxjpeqyAT9GkX8H8wVoQm8luCysSCMOp0BZafztBqF/TdzZgD5GfJ9l21gj5trEQ9wB+A3wHXkfV+qHOMJWhS0JfF5P0w1DgXhNFAa01XMP/CORhaYH8I1AIXY9bRE4Cz2D9PFRnnI4Mf9Fu7H/f06wEux5S9Ox2zNoaW8z7gPOA/gEVkzy91gdfYJNn3RoSRsJwXRUK4xx57bK/u7+vZPToNEQShZLGzPdtJxcJkcCHzMEnhjiOeLdqTZGKjwuID5w563ba42tZzu8Z50upahkkqtgFjYQhzDEhZmbFjuDXO7YRwSmdrKjcTz7iftKDrIuu/oca5IIwG4XoZeRDp7HubgNOC+xaQp1KJzpZUG25SOBnnI4PdV/a+B2b9DD2Pwj0vWankAPKvm2VFtm6WKkXh1r639HTlZssWBEEYjJibF9lNbyNZ92gHkxRuLXmyfJPNXCuMHEcePnBoy2ACXitZ4TyqlW3Vv27CHD7D37EPp5J5f/SJFCLW6xC7BJ6tVHFVNkyhGWMJ2k1CQVOkoQmDjXNBGC0iZRbxPQ2yJUTB7Huryc4rO4Qk/P3hION8ZIj2rUTf9WPC7uwyaqFTg8KEAyXLiEaKljH9D4TBKEnhXBAEYW8YLH6rBSPIhYLCQkzsHeQKA+GBRRgbktYDW8Brw1jHbeHOfh3WfI1ZXiVmecyw8wMkvVXsEnhhv7nE8wdUAVMw8zOfkkziYAVhaKI4cx0XzvdgXKGbMHMu3Pc8cj3GJN/K2BNbNy0l59bgegMJxSa5+VbEuDB+KUnhvLyyrtBNEAShiLCFcjs5DhgBrpnsRjcfk3Cll9ykKsVosRvv2KVOkiQFO/t5C1nhPOw71/q5mWxCMVvI96z3hNFjII+HfDXOQ4+HyMU9+IzQtR2yB037sFpMDDbOBWG0iFleLUG7BZOZvRYz75qC+zcRF8ztPXM4yDgfGfK5tPtk9z1bIW2vnaFbO+QK9nvjASGMLiUpnNdNbh76JkEQhIDBXMTaMBtauNlNwyTEWU/+LNFisRtZ/vinZwe8lk/A84F2TN+Ern22gJeMWcb6PTmkjB1Jy0/481ZMP9WTG3MeumiGB84mTB/aipnQClRswvlg41wQRoukUB7Om1ApDdl1cwEmpCsWp8zehQLJOB8Z8u17kPUYg/yVLuZiFC+290NyDAiFpySF8x2tfy90EwRBKCLsw4a9SW0Jrk8nLigsxCTHgfwufsLI8cmLzhnw2mACXnXwiCWES8Qsd2IE+YFc/ITRI5/lR2MOl/nKAIWCebIkXuj9EBPQw5+LyEVzsHEuCKNF6P2VTIYaxpvb83ARsAZLiUl2vRyucC7jfGSIeQpZz2EyuGSulbAPQ8G9lbhC0/48ofAURbb20aC9vb3QTRCEcYHMhVyLeSgohNaDpEt0aEGwBQFPg68CwW6YmWuF/cPTuYcTMAeP6cFrW8ALf3Yw7pr1mD6egqWYUVnreUq6cNTIZ/kJYybz1ThPCuphaML9wb12//nW69BTQhCEOLFcK8TX0k3A0cTdohcCfyEh1Clbsa2LqnxhsRImQrVD8MJ+ayW30oVjPVyyHkdzyVVoSsb28cGEE87Ly8tpbGxkzpw5Q98sCBOExsZGysvLC92MgpHPtS88oMwhG+MabnALMTWWQyE+LN0UbZZWVnBh9MgXs5y0vkI8Ztmx3g8tr4cTz9AfHjqF0SOfQBAK58ks++HDJRDWtenHZkzyuF6gnETGfSVWIEEYjBwFmRXO0wKcQzwUaCHwC+ICXTjnMsG+J4w+tqdY+DpkC3ASuUK5E5SihNwylDGvMenDcUFJCucNjYcMeK2yspK1a9eSTqfHsEUD0+NrOn3o0NDtQ6c2yXAeAZ4CvorJSlujgocDlQq6NXT60OWbBDq9wCeC+w/CWIWqFdQ65lGnoNyRWVdK3HbH77noQ+8akc8qLy+nsrJyRD6r2AitB7YWOjxwJJPBhdbzBWTd+3Ji7wLLXUnGDBWAm2/77YCukPahwhbykpnaQwusr7OHlNDyusH6vVhfjup/NbEZrATeVuBAcvvOPmCGB86pmJr1LZg9z1aUhZ9dLFqywca5IIwG4byLJXYD0ph5GHqNhQL6PMz5dDumvGgs50ow54byVJFxvv/Y66WtVAZjObcToUb5Oqx1cx5Z4TyfQlM8/wpPSQrnHbs3DXq9srJy3AgibmCu08Hs8oND4x6Ma18tRjivDYTzOgeqHEj54Prg+GYxTGGsQDuAGqASc391IJzXKKgS4bykePc730Z9fX2hm1H0RO6wZA8a4fsbybr22S5izWRdyOZhxexZLn7CyHDKiW/K+35MwCM3bvkEcjPVupZwFyYUe57c2PXwoCmHlNEhOeeSlp+3kb/vMjqrILNd2zdilNL5lCzFwkDjXBBGi9hcsZRkLZh5No24BbYSI5SvwQiAScF8OC7RMs73n4EUmx2YJLZ2IlRXxS3o4Zr5NNlzSlKhKZ5/hackjTvp3o5CN2FYDGU9yGf5ccg9sMAApYGwFs8x+6+EsWLh/KahbxKGZCAt9ECWc1sZ9jqJeC2yLn7CyDDQOLdd+5IumW0Y12jILSnjWj+Htc7tz0smBhRGHluRkswXsJ3cGueD7XvJpHDFuu/Jei6MNbbFfKB9L9zz7Hwr64hb2kPBfDjKMBnn+09SmRz2RSuBpy2J9TLxc7jvJRWZ9rNQWEpSOC8Wcg4nlsXOjruDuIAeLpZ25mHbgjBQ5uFiylwrCGOF7ZJuH/B3YbTQTcTnH8HrA8iWlUkK5sUkFBQrSaHc7rvQrT2p2LTXzdADYivGjTMWomBZdYWRZyCldA8mTCtfjXM75tze98K6vbLvCcLe4ZE/GWqYLCw8fyqVP6QrOd9CbyNhdEmum7ZLu62UzvEaI1uz3sMoQpOu7T5yfhkPlKRwXlXTUOgmDIuk5Sc8YIKZNPmyDUcuRgO4qiStQLYVQZbM0mLFC6sK3YSSIBZvZ21OLZiY1ioswY74IWUt+a115sAiM24kGGicJ9fN8ICxI7ieLH9nC3phH04Lrm8md60UC8Lokc/y4zNwjfNIoTLAvrfR/twi3fdkPRfGkmTG76RwHiZCDfe9cL4dgLGcQ9zbyE6qOhgyzveffFnaNUY4n01uIlSl4n1ZjvFO2kh8HbaFdKGwlKRwXlE1udBNGBb5rAeh9WYHudaDnOQ4xAX20K090mASXzBFG1ZavLpqQ6GbUBLkm4NgFF2hA56dXMWudb42uJ4UzItJKBjvDDTO87m0h1bzqZgDSGyNTAjmSY8j+6BjW9CFkWdva5wnXTPta3MpjX1P1nNhLLGVV1HyRHLd2pMC+kJMhYROsvXNw9/PMPS+J+N8/xksEWpY43wwrzHI3ffsPa+YcnWUKiUpnO/evqbQTRgWycNJ+Hp7cL2BPJaf5LMltDcGv7eN3DgicdEsPc5/36mFbkJJEG5MsQRVZIVz2+qashRjCzCu73sgFntnWxKE/WegcW73le3aF4YEQXzdTFrQw+uhcJdcK+WQMnrkU4jZh0vI3d9cy7XWfj+8v438HjDFsu/Jei6MJfZ+ZSslfbKW86QizAUmAVOIe43Ze95QCk0Z5/vHUIlQ7UzttiLaDucaUCltr5vi+VdQSlI4Lxb0AJafrRh3y6Q7UdJibseQOJgkVY0YocJ2VbEXUEEQsoRl1OyNLnxuISucO4mHi6mkMA3j4pfvkCLzbXQZzLUvlq/DWidTxNfRMGZ5A3FBUWKWR5d8800zcI3zmICQZ9+bRXzfS/alIAhxcpSRwfO24LrtweKo7LwDYz1fbX1G0noujB7JUKBkItTQSOf4GuX5qH4PlfFRvsbVOupTOymc/Zme9Z5QOEQ4LyADWX62kY03zzmcqOximdSIgREm8rmqhIdNQRCy5FjwrI2uhWzcnS3M2YeUeZjkOHJIGVsGq3Rh13nNt24OFLMc9nuyxJccUkaWoaqUJHMFJK3n+fa9gVw0Zd8ThPwkDTfh3NmAEcxTxJXR9j64gGwy1Hxu7aLQHD3y9Vm45m0FGrXG7fdw+jK4vRncXg+nJ4Pb3Y/TlyGV8UHrWK6OpIFCwvIKT0kK5zOajix0E4ZFvsNJ6JoS1peEXHeUmBUvYUVIlpURV5XS5fof3VnoJhQ90WFexw8aaYySLJmpPTnf7IztckgZHfKNc9s6Ggph4ft2GcqkkJdcP0PLeZgYJxYKZFnPhZFjoL4DU+N8oL4byEUzaQVKZtwvln1P1nNhLLE9j+x8DclcKzFDENl8K68Tt7om591AyDjfP5LyQiwcVmtm9nk4vR6ptIeTzqD6Mqg+D5X2cIP3UhmfOUAXJizPFs5l3xsflKRwvqPt1UI3YVgkNWC2a99ASR0UoJSKaTPtGpRNmMzD4qpS+nz4g+8sdBOKnuRhPtzsNmPmW6gks+eafUiZT1Y439tDijA88o3z8LtOxt1Bbo3zwXJ1OBgrEQycq0P6cGRJumXaXmOD1jhXcbd2e9+zhXPIzbhfDPuerOfCWGGHcyXnyibyxJsnPI4WBvflK0E5lGAn43z/GCgRaivQnPYp6/dxAsu56vVQvR5OrxHQnT4PN+3jpj1q+z0mkyhDmTi/CIWjJIVzL9Nb6CYMie3apxOPbcTj7pILJMRdNMODCuQpp2b9DXFVKS2mT5tc6CYUPV4eIUFjNqwwW23MYkf+Q0o/e39IEYZHvnGe73ASejzswgh4tneRvU4mY5bLMNbaZFkZiVkeHfL1nWbwGueO1iitcxTS+fa9ZAxtsex7sp4LY0V41kyWzrKFczupWOitEs67mZh1cwP5PVUGE+xknO8fySR+oWJzq6+Z7XnQ7xnhvN9HpX1Un2dc23s9VCC4q4yPk/GZo3WOa7sYFsYHJSmcFwNJ64Ed22hnG7YzDIcHSkgcMC1LQhPQjilzkXRVCSeeIAiGZGZnOxlceECB7BxLutjOxMTmDXRIEcFudBjItS9MZjRQpQvJ1VF4Ysowaw/MqXGuNarfw0kbyw+hFajfQ2mds+/1ALuJz2Nx0RSEXJKeYraHUKiYhrh3SlIxtohsKVG7WokIdqPLgMk0PZ9ZGY3ja9yMD/0+Ku3hvNaG+u+VOKvajHDuaZyMj/I0c3wdV0qTPQ/JvldYSlI4r6lvHPqmApMUyu1FMhTO87m02yWAXOtaeL0eqCFb91WsQOMDrTWe9RgJnly+YkQ+Z6ISeq/kK720EVNiKxajrOLlnMLnMO4c4ocUEexGhnzjfDDXPttqbitUJFfH+GBYNc59jZP2cPs8VG8/qtdH9Xio3gxuj3HZdDw/6r9qTHmnMGN7UiFdDC6asp4LY0W+fc/HxB93Y5RdsbKFQZbv0CikMEnhVhP/fc8S7AZaM2Wc7zvJZJr2mWV7xmempyHjozxQnka9vh3njk04K/pxfrkRZ+1WHN/H9cHxNPM9nbPvxZWbRbBwliglKZy7bnmhmzAkA1l+dgbXw1jXpOUntPTYC6V96ASj9WwJXudLcCSMHZ7W9PmaTg0dvnl0+tDla/q13q9Df0dH9wi2dOJhK66Srn0bgdnkL6OW75DyOrnaZ4/BDynC8Mg3zvO5tEM2GRwkDpa+xvHj5WQGilm2LbrFFLNcLOTru1A4n4m56PRlcNMZnHQG+nwTM9mTTWzkhMmNPD8nYzvEBYZwjo93SnE9D5XSmeAhh/3xQcxqbgl5m4DJGAOP45nYZLc3Y57THqmMbxRnxJOh2pZ4O9FcPkpxnI8VSXkhOrP4mq0aZmhwNCjt42iN88rWrGEBUC9uRXngoFFkLecQPw8lvXmFsSdV6AaMBu27NhS6CUMykOVnKzAJKCd/Qg5bOLcPmI4CpXNLA9kHTEluNLZktKZHQ5+GdOheqU1fpTRUKKhUUIlGKTXk5yU58/QTRr7REwh7biSf7bi7ZJUEV5kN0I47f5zEYUdZhxTLfVrYe/KN84Fc+8JkcAqM63PGx/V9HDRgEmk6DjiOg1IObjDvhiwrIx04YgzolgnM0Bqn3zcPz4/cMJVnFCrKUaiUQmkXR3tm/3MUSilmE691HinJVHHse6W0nmutSWuTi6PfOuGnFKS0plwRzT1h7EkK5eH82ATM8XUw7zxcTxshzwn2PRxSjsIpc1mYciLLub1/2nMun/WvlMb5WGMrjpMx59vRNAYXHYw84CyejnpukxHYFTgHT488k5QPTb5mp9b0KEU5iXAuJcJ5ISlJ4bwYSLr02ZafacHrpMXcjpFUSplFk8CKp7P3zQZeIemekp1sWu+bMCgMH09run3o0dAbCOjhwudqc0jJkO33KumOMSepIQ77Z3vw/mxyLeWOJZiHyagWAD8jrgCzDymywY0sA9XJDt3aF4GxkAeWVccPrD2BQKAchaM0bkqjUi6uo2giW1ZmGvGxIX04cgxV4/wgDa7n4XpBMqOMHwnrAKQcXN8JFGMOruOYg6armAP8L/ldNMPQBNn3Rh9fa/o0dAdK6Qymr8O1s1xBJVCFJiX9URDsPcqeKxu1Zl5/YDHPeLi+Ec7BCHeu65NSDq7WzCWFn3JoBebZn6ckz8NokfRMCPuuV2u6fJiGNlZxz+yBavZkHGWEc/cDTThzp6G0EcwdXzMZTbWGTQpqw88PlNFRGKxM0YJQkm7tSo3/fyvf4SSyHmAL4bnu7SF2UiO7vFMYPwm5SXGKJXNtsZPW0IcRzruDR6effXQHj57wALMP7n59femRb/gEIlbj1ZqLLZg5GHqvRDHmKjvP7HJO8zB9vY3cQ494q+w/yXFuKzTD9S1kCzBTB4J5UNOVPs+Uken1UD0Z3N4MTr+HGzwcranFeCy1kOsOHa6bwv4zVN/N8nxUJrCUh5bzPpPUiLtWwiutxhsisKY7XvCa/PteMbm2l8J6rrWmV0NXsOd1hfueNiFdXdbe1+0zYvlXhOFjl1FLerC0ZXzm22EjfdkSXE6fj9NrFGVuv095OsN8X7OG+F4XnjUzA3RtKYzzQpFcO8Of2zRU+ppaHQjlaONJu6sXRymjmJ41xSitw+sYIX2e1lGlixwPiIL8lwKUHrRQqAABAABJREFUqHA+o+nIQjdhSJJWO9t6MFSN85BkMrjwd5oxdZrt5FTJw4oweniBS1/ozt4bHFT+CnwDeJqsNb3fet5bbvjJb0a45RMLn9yMtZpsvDnkzj+7FFcoqJcH9+fEnVt/Q9h3kuPcVjImXfu2ArMzRqhzMx4q7eOkfVSvh9tt6r46aR/SPqrfWGidoIOS5biKSbArFpKHSrvvdgAzfROO4Gpj/XE8jVq7HefXm+HvHvyqxWQd9s3h09EYzwitacYoyHqJCwnFkrG9FNZzD7Of9WroCQTwLj/Ms5JVVPcEyuv0eO+UEiTHpT002GhNW8anOSiz5fT7kNaoXo9UT1ArOx0oNPuNEu1Az4/izpOC+UBrZimM80KRL1eHBlp9zQwdVrkIPWk1ak8aZ7qL44La1p3Nt6K1uc/XzPU1663PignoBfkvBShR4Xxry/jOBrlPNc7J7axYsipLgJgZXG8jf9IP2Q9Hl4w2sXbhc1rDs8CXgWXAv2LcLzMYobyf0PVv73rmi5/9wIi2e6IRKa8Sc2MTJlttbP5pU6JEWfWW7fJqC4B1xDe1UDAX7fP+kRzn9ppmr6PdQI/WzMz4kdCtPG0SiL3ahrrzeZyXW03d14yPkzHxzSoozRXGnfuJvyGHlJFjoL7rwYQVzPB9Y/HR2niNaXBebIt5jDnPtZpyQMF9xvUWpmLi9Fqsz00mvhrPlMJ6Hiqk+4JHjzbz8q/A1cDTOn5PWov1fKyxLaP2fpX2NTs9TVOwdjqej5PxcNZsRd3/Au7qrWa99II552sWZXxety3xOllKNLdvS2GcF4p8oVwa2KahEQ2B0jIS0ndkcCZV48ysxNnWZ2QFz1jMjYCumeNn9718hjxJaFsYSlI413p8H6WS1oNkjfPpwet8CeFskoJ5lLAKY8nLOWhSHIeUYieD2aAyGAE9AzyUuOf31rVMYDnf21FbUTH+qxKMV3w79pXsHNQYr5NmgrkXxC67fRnc3n6cngyp3ow5tPg6cnlfADnufbZgJxvcvpMc5zGrq7WOtgFlGur9QCjPaFTGR63ZivPLjagXPbh9E+6r2UOmE1ppddZynrTqyiFl5Bio77Zi5tqkwOqj/Kx7pnPojJhwro6YaVwzg8NlqDwLk6Em+9C2BI1nin09N1nZs4rpMLTrOeBSjGL6i8AzCeW1eBaNLclwnXCubPE1lb5mig/4QXjJ2u04d25CvdiPe8cm1LptJn+HbypgLNCatUH/+YnHQCGUxT7OC0m+84rWmq2+z6zA68i4tAfrYnsfamoVqrEWt603a1UP104Nzb5PS7C3hetysgyzMPaUpHA+3rEt5cmYny1k6/TmSwhnE0tURTxhnJ2xPakRG++HlGLGtw4oodXUA96RuO9UskJ8eM++uLYL+0aOdpjsQaIFM39Uv0eqtx+3z7hDqz7f1F1O+7i9GVJBrWWFydi+PvHZScu8MDIM6NqHyT7rhIeU0NvhxbZYpQvn+S1GuPO1sRD5xko0UMyyHFJGjnx5VjRGODfeKqF3ipVxeG5DVjg/tQE1f1qOBcgI8jCXeL16WwiR/htdfBKKacwa+HDiviUYwdwL7u0f22ZOeJJKq/DnzZ6mOfQM84Pz5SvbUBiPFAW4L2+NhDvX18z3oVNrdpIrmIvH0ciSz+PWKI1hu4YZodU8SBStAHdbN87kFMwox2ntDAx4OqYAbdaatmAe2qEJnrX/CWNPSQrn9VPmFroJg5K0mIcTYE9wfTqWYB4K39pYg7Tnm4dvMs9Gsa+2kE427jxmORBXlVHHIy50h4eQg6173gocat0bWs73tib2Q48sH7F2TzTCeZF07esBdgLN/R6ptIfb7+OkTW1l1ZPBCWLvnDCbbV8Gx9cswAgYXWQ3uHCOZ5ANbn9IjvOBXPtagUatIYiniw4hh8yMC+eHzwys5nYNdCMcbgXSyCFltBio79oI+s4PD5eBwO0HoQcA0xS45UY4CF1rg/4LhYlmYANxQcG2BI3nfa/Y1/N+nfUGs5XO8xP3nUF2bwyV2FL/fOwIlSKxOag1LVoz17MUm1qjFk8L8jpAygd18Iys1RWo9k35rtetz4q7tef+/WIf54Ui6ekQ97jVTI+s4oHXkdY4O/twppTDjCqczX04vvEYU9beN903MsNmcj0qiiFXR6lSksK5543vbJAxi7k12bYB1UAVlsVca+NC25uBngx0ZaA7A70ZdJ9xrbWTVYVC/Ryy7n1Yfyc6pIzZfzuxyOi4u3p4QHkF07efJRtu4CXuCQX04VJXVz2yjZ9ADOTa1wJU+JqGsNZy2ouy1bq9Hk5PBrc3m2jMzZiyM1OAeoz13BbMbQFP2DeS4zyvax9GsG6MCXemXIwzdyrqqFoj4DU5OPOmxXIIpHxwPJ9pQZhCvphlOaSMDDEvLuJ9NyM4VLqarFumBrWzx/TdgmmwpQc02X0vEBwc7aO0jva96O/lmefjlWJez32tY4rp0HIenmtqgvu+ARxCruVcvPnGhtD6mqwoojVs1ppZYZmtULHZPBW3KjiPHluHM2dq4G1khDu0ZqFvkqHaSu5QSM/kaUMxj/NCEpMb7GetafODMmpB/ylNcHYBp6EaplejNLh70saAZ+XOcTXM8zUbEp8tZ5fCUpLCeVd7a6GbMCgDZattI1vjPIp37fMil1rV6xkBvTt4hGWBfD8moIOJOQ9dNGNxk4z/Q0qx4muddecLLeeY7/1p4BjgWIwAt52sUB4K9OFhZbi89YQjR7T9Ewk7DtWei5uAeVEysWydZdUblpPxcPvCbLV+kBjHR3l+FHcefp69ucnhc9+xx/mArn0ElS506LJnxyODk6o0hVy7/CAbeHBPYCkKrUGDxizLorlfDFbjvA2Y7ofeDKHQbZQszu40zHChqQJa2yHsPy8ISwgULY7OKqXDtdX+e+EeOF4p5vXcJ9dyHn7fzwD/jKltniKx75Hd/4TRJ5/11VzQtPgY4RyzLobhPk6/g3tALY5XgRvMT3vOLfR91ibKsw2Wb6WYx3khGWjt3BnkAJihgbD/tEbt7MFJaVSlC65CTVM423tifRfulfN8Hdv3bFlBzi6FoSSF8/FOvgkWHlAaw5u0xvVMJmEn7aF6M6ieDPR60OdFzyrtGzdbX8dqnjdhXGz3QN5FU/bCkccn13Ie9u9fgeOAycBBmANLZGkg69rez/h2vSwVQs1+cjNqAeZ5GuUbAd31dCCgezirt+LetRJnlZVQLKNxMzpybV9LrkAnSeFGDk3CLdpSNLZqzczgjejgEcTfOVu74aiZsBtURzqb1CiInQxdqOeSP1eHHFL2n6QyxXZ5NSEJ5i5lW380ONv7YUo1zKqBbT5kfKter7HyhQJDuH9uJVf5JqEJo0fo9RUqmEMl9XqM5fxojGJ6OYEgTx4ru6yPo459DrSVj56vafU1TYFQHrm2b+1GpcA9qB63tT0oH2oUoG4wiedrzbqg68J5LflWRp58+56PydQ+VUOZtgRuQLVncKaWm/LLSqGm16G29AWeSUTeDwrNnITlvJjCgUqVkhTO3VRloZswKAO5Zdpl1FxPG4Eg40O/j0pblvNQQO/zgnq+2tSlJBtzXotxs7VdNJMufsLI0q+zwrZtOd+EOXy+MbjvWIwlPRwHkTDP3iUu2rZ99wi2fuIwkGufD2zyNU1+kGjKywpt7rodOHe0oP7u4dy+CXfN1kD7HDw8zUKylnOIW4/EW2Xfscd5TLhLPG/RppxMmIU2FNIdrXF2dUNzBcxModZ1mD4N+1drUkFyuDnkCudySBkZkoqV8Blgu9bMDMqoOVjWH8DZ3QNTq2BSudE8t3YF8y4QJLysJS8FzMKsucl9b6AY2PFCsa7nOnBpj1nOMd/908CbgQrgBIySOun2vK/VSoS9J0fpGDzvCAS1mZiOiEJKtqVxZ1SiGqtxW9LGkp4oY7jQh61a00PWYyyca/nyrRTrOC80yf0uVBZv9zUztVlYlc4qNdWOfpypVSYkSAHTq3DbuuNu7UGej7m+ZmNwLoLiCgcqVUpSOG+YubjQTRiQwdwyYzXOgzqTKqjF6wTCOH9vhV/9DV7eYoT2fmNFUF48/hxMcpzQtT2fi58wcoQHlJjlHPM9P4URzKswZ8sTgOcx9V9jwrzOlpgZDrffmcyDKwwHe8NJHthbgDm+hsClNnKvfbENJ7jP1eCsbIssrq42ru0LfB3FnCdj78a7S+14xh7ntlLFXjt3Yw6L0/1AYIvi74zQrdqBhmqYPwXWdeL6RAJelCDHNxaEUDgHOaSMJPmsPhqThLFbYxIa+VmrebZWbzdMLQMUzK6C1l5juQsTxoUJqgKNc5gULvwbdlmg8ez9UKzruZ0vxc6j4mMs5cdh+vKNGO/ADZAT/iXVSsaGpKLKzAvNxqAUVyrI1+GEXinbenBm1eFMqzKW1h09kWAeKs+m+po6X7OW4eVbKdZxXmjy7Xtaa1q1cWmPvB0w/eLu7kVNqkSFiagaK3C3dQZ9ly1Z6fiaOWg269yzSzGEA5UqJSmcb21ZUegmDEjSemALBm0EwnkQx+oENziB+yyvtcGvWuAlD27bBK+0BrGxxrVWeX7k2q4wru22BcGOs5XJNrJEMXdkhe0o5k5rjvN83H6PVL9Hc8anydc8F1zPED+s5Euiko8v/fMHR+E/KX2SSip7Tmz2TN+EmmUVxmYtaIjyOTiAe+iMqIxTaL1rCqyqobeKbTEPN1Zh77HHue1tZK+jbUCdhqrgUBkmFFManJ09xpJeWwYLquD1PbjaD9bZ8OGbQ4rW0ZpZbDHL452Yxdzqu62Y/WpSmC8gZgHSqG39MCWojdxUC1u6o5AFNxTiI2WLjpTSsT3P6r/x6v1QrOu5XZnETnC6HVgHHBOEIFT6mjdpzVNk+2Z/qpUIe0++CiVawxatmR0sctlcHRq1tQN3pnGNVrPKSLX1ojBeR5FbtNYc6GeTwtlrZ75woGId54VkwHwdGtq0ZrofrJ1k9z9nVzdqalkgnCuYWYParXEDg17k9ac1M33zO23k3/NkVo49JSmcj2diBxTrGSzhnOyi54TWAc+H5xOJ7p7dAhnfLJSBa6ZdFz0UzpOHovF+SClG7IRutuW83fPZ0JvhuJ4MZT0ZUr0Z3O5+3tbbz3N9Hp6v81rOPembUcN2Y7cP8Nswh/zGMGFKaIXVGtcpRwXygXPSVJw5DcHczAoGbkYzn3jmWlswH89Wu2Jh0LUzOLXYFgGFKSejZrrmgNJcDz2gdvWZ8lvhmhmcRmYFGhSJWR558uVZ0QQ1zrV1uNSW10PaQ6WBadWm/2Znk8JF89OzrOfa1Dq3K5UkM+5LH44cWmv6SVjOMfvXsxmfI3ozNPT2UxY8TuzN8Ey/h+9nPc3snCuyRo4e2kraZs8JtKbVx9Q4xyiaQ8Wl25pBzTCu0U5jHaqtNxuzHObr0CYp3OtWuJgtmMtZc/8J1y3bCyh8f4eGmaHl3N73tvXjTi4HAotdTQonZfKvhAqYUJhP+ZrmwGvM3luLIRyoVCkK4fyPf/wj//Iv/8K73/1uTj75ZDyveJfwpMU8nAidGMFsBsYalz2ohAICsHh6/MOOaDSW9dAV0A+yR5Ot+dpi/10dn9xiBRoZdJClPWY5B3S/xwt9GQ7q85jem8FNe5T1mfrZJ/R4vNKbgb4Mnq9zLOfSN6NHXtc+YKPWNPk+qWijC+uBgrO5F/WGKXBADSpTZhLjhAcY7Qcxrz6LtHHvi1nkrYOrsH/k0+hrjHDeFBxKbLe9MPZOTQ6EuzKT9dt5vSPKFWALd2WeZhbEDylaDikjQXK+2YqVmZGLOpFbpqnT24NygErXnFZm1ZrTaL8XVEqw4l+D5yZM/4V/01YISGjCyBIKenbWdV9rdNrnhd4Mx/eZ0pOpXlOK8phej209GXYG+14sazuSC2c0SQp44Xet/SAZXKisDGKR1bYuHBecyRXgKGisxN3SESWFcwIlqPI1C7RmjTW3JN/KyBLuQ0nlptKaHT5RzHmkOOnNmFwcUysDa58C5aBmVuJu6zVvJUrizfHz5FtBDAuFoiiE89raWs4991w+97nPDev+ydMOGOUW7TtJK3b481agDJPILSoD5GMdNDXUVmU/6P/MgvnTICwnEx4yfT+yns/BJCILhT37gCJWoJHDJ9dy7nk+ut/j+V6f4/p83LRPqi9DKp3B6fM4IO1R3e+xKu2h0x6e1jkJcobirnuXjfJ/VprYQkKk2QdadOCaHiq7yAoKTssenNlVsKAetXY3jrZc2n0T/+pozUJtXDltJVzMRVosCHuNPc7zKVU0xrWvUevIouOEQjqgdvWiplZl433mT0Kt7YiEuaxru8nSb8edx/tODin7g70H2QfMrZhM7ZEbuw72QEDtTKNmpIxiRQF1ZVBOPClcYEUPM7g3Y+LYi61SSTGu5xkd1CnX1h6Y9kmnPV7t8zi2x5SeTPVlSPV51PdlODLt8XzaQ/dlyASK6fD3pVrJ6GErp2yPIPyEWzvB3rc9gzOjAhcniFmuwt3Uh+Mbb02lwQ3i0xf4sCkwUgyVb6UYx3mhsc8T9rkl7Wt2a00DWW9bpTVqZy+qCpwylyjWFVCNtahtfXlL4s3z/SgpXHLPE++HsacohPNjjz2WU089ldmzZw/r/r6e3aPboP1gMNe+mcE94UEjSsoRPLM9bWq9VgOkTMCJXes1sAS5BMkZg8/bQv7JLVNtZIhZDjAufTrtken3ebXf5+i0h5POmPrYvT6ptIfb73Nsn8+Kfo3O+HiejlnOjcV18B5afODc0f/nSpBws/ESc3Gz1jQHbmFukGDK5HvwcTanUU01sKAWWvpw+70o23ck2Hmw0Ne8Hvyd6ICCWO32h3Cc50umGT62aZhhK1Y0kZLS2dEF08qywvmCatTazqhcngNWP8IcrYsyZnk8M1SN82mhK2ZgjQvrnTs7+2FqtfkQ5ZjHrGrYnD8pnONpqjElK0PvB1tJZlsMxxvFuJ4ny6FlPB88j5Vpjzlpj9kZDzdtBHM3ncFN+xzT5/Ni2od+H+358d/X4jU2WkRCnbbPg5oO36fHNzXOw3ASpcNkcPVGSFDAjGqjlN7Zm1WCBgrQxmD9DPN1JF3nbY+jYhznhSafUU8DWwMD3uRggQu3OGdXBmdyRVBGDaPcdIAZ5TitnYGMEHrmmg9t0pqN1hklmTR3nC6bJUtRCOd7S0/XjkI3YUDyufYlhXNCazmWBcEHdvTD9Bo4pAFe6Yg+TIXlLULLua8D1yPj2h4rK8P4P6QUG1GcOMFBxdf4nuaVfp8p/T5zMx5Ov4+7dhvuwy/jrN2K6vc4wvNZmfHB8/Ezfo7lfKhDypGHHzj6/1yJ4efRDIcb3RbfZOuOJZvSGndbF46jYWolNFRCJbib2q17Asu57zPf03QAO0lYCi0NtLB3hOPc7q/kgWErBBlrs3V4jdDm47T2w9QKc6NS0FQHHjht3VklTGh99TTzvXjGdolZ3n/C782eD+H7rYHXAzpM5Jf1enB29cKUyqymRWGSwrV2WwJCWNbJ9DlBUrhNwd9OWs/H6xwstvXc0zpmOfc0+BmN3+/zckZzZFAC1k37qD4PN+3jpD2Oyvisyvh0B/dmfB39frj/CSNPUtgKnzdrzVRfU0ngrk5ghW3twJ1eZsJKHAeUwpmZwm3rwSEsRRnEnmvNIh/WklBqkutxVGzjfDyQz6jnY0rYzYoU0dkwPLWzH6ehOiijpsANTOczqnA396F01vshzM7f7ENLMm9A4lkYO/ZZOC/muO9CMphr33SytSMd4i7tCmBrFzSUwyF18NJu8HwIs7UHph2TJCd7/AgPKbZgPt4PKcWEn3BHz2AOKNrzedGDowJlibNxO+49Gyl7roeyezfibNzGwZ5Ph6dpyWh83zqkgJSWGSVyBDyym06bp5kVWA5cK6TE2dKHM6s6OKA4cMAk1NoeUpaHS2hBqPF9ZmpjPU+604avhX0jn+U19EzYpjUzfMstOlw7ezxjGZhWlT2kOA7MrcZd1xWrle0GQmGT57MpsI4n12rxftg3kvMufAYroVEUP56Vw9XOoIyaLZzProAt7VFfO77G8ULBwryXrFSSnIfC/uOTsJz7Gt/z8DOaFzM+bw7KwTqeT2r9dtxHX0Vt3EaD5zMno1nh+/iexrdyroR5W8Q7ZeSJCeXBQ2nNZt8kgyMMpQz3tLZ+nMaqmPVVNdbjtPZFVRKi0C4NB/o+a4Kkc0nBXKSF/SPp6Rd6cG3Vmlk+kbdDlK19Vzfu5PJsGTUw+9/0aiMj7EnHE08DTYGCbAeJ0AdrzAhjx6DC+ZYtW3juuefYtGlT9N5TTz3FJz/5SU4//XTOOOMMLr/8ctatWzfa7dwrauobufAjH+eSSy7hkksuYcmSJVx7/S/p60tH9zz0yHKeXJ4tubZt+26u/9Gdsc+5695lrHhhVfTz6+tauPm238buufm23/L6upbo5xUvrMqJqbn+R3eybfvuyLXvr0+t5IlHl0cTLd2X5vUf3k5DXzqaYMufeJq/PfdS5Gq5ffcerv/7EzCt3Fh+yuCu3y5jxZq1pk6vr2nZsJn7frMkEu4doOxXD7J2/eZosq16cRUP3bcsFkcSti/kyeUreOiR5dHPfX3pcfH9jcf2ecCPfnInW7fvNpuQp3nx6ed59vGnWZHxOSqjyfSlufuO+9F9GdwUpPrg2YefYvXKlznE1zynNXu27+Gen94Zs5zffe8ynl/52oDtC38u5u9vrNv3s9sejA4NPrDkVw+yef1mOrWmw9f0v7yGJ5f+yaoZCv+17GF2TSUSEP6sWnnkf/83itfK9Kb51c/vwutJQxB3/syy5bz89MpIeNyxYzc//fGdsTJ5xfj9FaJ9r69rYdv23dzw4ztjCs0/PrCM119axXaMgOZv2Mwj9z6UtZxrza8fWMo6tdskgnMUK15fy13/82c4oB7n9T04Gm676wF279od5OzQdD2zEmfZU1HMcl9fmlt+cDu9venowFJM3994aN93rr+dnr50JKA/tWw5Lz290tQ4B8p37OaBX/x3toyar3nw8Sd5cUNL5PXw+uY2fvbwH0xSuN1A2uP2JY+wadOW6KC59qU1LL9/WUwpfe+Nd7Jrx+7ogPmXp1by+0f+Mu6+v/C+Yunffm32qu6+NLf+4Hb6evvwPVitNerJZ+he8RLK83HX76D9jte4Z+kTVD6wETZt4yhf88eH/sSal1ebhKga1q/bzB2/fDDm2j5R5sdYtM8HXgjOf5HSytc88/O7mbZjD2Fy4RdeeJk/P/6UWUcnV9Lf3893fnMvfV4/qrESd3M7f3rmOZ5f+XLkFt2xYzc9P7uLdZYA+Yf7l/H3F1dF++3qtbnnlWL6/grZPh9Yt24z9/zyweweqOGFO5dQv3EzYJSTq1ev5ZE/PYnT0Y2aYsqoXX/Pb9nevsfEnruKv5S18Nj/PBMlvc309nP3z3+D05umMci38r/LlvPC0ysj5cr2Hbv5fhF/f2PRviVLlkQy54Uf+Tj7i3rssccGVFFeeeWV/PnPf+YrX/kKp512Gs8++yyXXnopkNVsKqWora3lP//zP4cdE76vPP/883zpS1/iD3/4A67r5r2nq6uLiz75f3n91aeor68f1fbsLb7WdGnY40OXDx2+OZj0AP8CnA+c5PnU9GaoTWeoTvvU9mSo7/Wo6M3AdS/C5w6GunJYusmseO+aC+UOPVUpOitdOsscuspdOirK6HYUy4AHge8BVZhw9ToHahyoV1DrgKPUgG0WBqfH13T40Kmh04fufo+e7gzrej1u6PW4rt+jsj9D1YYdVN+1iXINPS50f2AOvfOn8z9lLo9VpLii0qWsOkV1mUuNY/qlVpm+Sg3QPzff9ls+edE5Y/wfFzdpX9Ouzdzr9KFLm0oJf/c13+vp52e9HhV9HtXpDNX9PtX9HnU3v0jdiU24B0012uddvfDjV+i65FA6asroqnDpqXDpKnPpLnf5dXUZr6ccLgMqMf1Yq8ycm+RAjTLrpjA8wnHe52s6rL7r1NAF/A34aZ/HT3v7qUh71PR5VPV51PR71P1tO7UrtuN+5GAodyDlQG8GNnfi3bKGzssOp73cpbvCPLrKXdLlKS6uSvGllMMRQA1BHzpmPtYpqHCk//aGfq1p9+N91w2sBi7xfO7vzlDRl6Em7VEV9GFdV5q6/3gZ95JDoboMKlzo9yHtwfdXwnvm0rdwCh2VKToqXXrKXDorXDorU/xvmcuPgf/CzMEaiNbVcN9zx9kcLKb1PDzLtAdnmU4NXT0Z+vsy/KbHQ/d6fCiTobzfp/qBF6hZ7dNfBr0edLy5jvWnL+bbFSn+o9KlqtKlsqqM2mBtDPuoXObYiKG1pjPor2jf09Db5/Efvf0c1+NxctqjKp2hOuNT/fIuap7fRv0HD6KqzFo3N3XQd/vrdFx6OJ0pl+7KFD3lDp1lLq9WpriiKsWvXCc+54JzTH0w54ppnI8HdEJu6Az6rsfXXN/dzxG9Gd6VNnteVdqjJuNRc8NL1H/kAKpm1JhKFykHejKQ9tH3r6VzWhXtb2+ku9ylp9ysm70VLtdUpDikMsV7MLJCTdB3tcr0X5XMyWHR3t7OpEmTWLJkCTU1Nfv0GYNazl999VUA3vjGNwLwi1/8wlh/taauro66ujoz6Ts7ue222/apAcPB8zzS6TT9/f0ApNNp0uk0vuW+bbOj9e+j1pb9YTDXvu0EMeeaKFN7lBBOYwQCMNlqXQUH18JLu8A3ru1uxo/FTrqB/2zSrT3mroK4aO4PUQk1srXJvX4f7Wv+5mmO8DQp7ZskKipFyjUetc7Rk3FmT8XRmiM0bPA1O7WJU7dL0oQx7AMhG9zekxz7obudiTcP3KGxaij3ZXB3a1RTXZBURRnl2GRw1+8xbn2B54obWNvnezqKvQvnfDKxmDB8wnGedDEPv8c2sqVkYpm+NTi7+lHTgs0xTIqjFMyoRpWBs6Uzm/U7KC2Dr5nr6aKLWR7PDBgzCcz2dRS6pbBCunb0oiqA8iDjcOTrrmBWDWxOBwnkAjfcICzB9UzM+Tagj2zog+2iOR73vWJaz32ILOcZjMeY9n10RvOCpzk8SMzoanDdCpOXox+ccnAOnMwcran3NS/7Gl9rk7Xd2vP6C/z/lRo5Lu3anF8c36fVt5LBocyc2taL21hrzp52UrEZNbg+OLv7srHp2uQ4mudr0r5mK9k5l3Sjh+Ia5+OBpNwQhsYpX9OmYZrOVrpwANWVNn0zuTK4UVnl1EBNr8LZ1h3vv2C+NvuaTYnEq+GZRUITxpZBhfPdu3cDRBbo1157DaUU//f//l8eeOABHnjgAb785S+jtebZZ58dtUY++uijnHHGGZHV/l3vehdnnHEGK1euHLW/ORrYk8se/KFr33SyNc2jw2WQxZbtvTAjyMOugLmTzIdu2GMSyPlhxmhTd1l5Pi4m9q6PeFmZpMAg7BthjdYwTjwTxM9pT/N3T3NYkA06pcFd3YFzdCPuW5tweyCF6ds67XOgbw40Udw52ZhzKS0zstixW3aCr82eNnWygzkUurW7WzpRkxxUZSpbkkQpmD8Vd11PthyJDstywULPZ4vWOYKBJ3Nuv0jG3YV916a1qZMdE8yD5+1dOFPLs2lsrbhzZ0Edam13VsALDqtKa5qDsjISszwy5MsVAEY4nxV8yVGeAC9QSu9Ko6aWW8IB2Tk4uxa2dOXMvzAPREMgMLSQmy8gmT1a2Hv6Q0GaYF3zNZ5nEkq1+5rFwVxytY+7qx/38FqUBs5qxp3dgNJwlK9ZoXVgX8jWPA8TzEnZyZHDHvf26z6t2elrZhLOv2DutXagplfiRHXVMOumq1AzU7hbus29gUJTaU2ZNgru10koNIOHJPrbN5IK6ehZa7ZrzUw75lxrnF19qEkOjqOsMwvZ140VONs7A2MCUZ4P5WvmoNms44aFmEFP5uSYMahwXlFhYr02bNgAQFWVqbN98sknR/eccsopgDHjjxbvfOc7eeyxx3IeRx111Kj9zdEgNrmsCbAtuD4JouRSUcxrMHHYnoZpNcFBxTEm2EOnwCud4BMlhVPRax/H11QBUyBW4sK2HkjG9n0npwSMp/EzPjs9zWbf57Bgs3P6+nFf2UPqsDrcpgrcjZ3BwcXEax0VxJ37vln8kpZzEQZGhjDnQ045GaDF95nlaxN3Z21azqY0zqzabFKc0II3vxpn3c6oRqgpu2bm7zRfU61hPflLccmc23sGK8W1VcPM0GoaWhVCoW1Xt8nTEfWddWBZUIu7frdlQciWsWzWmi0690AUKTjlkLJXxBTDxBOhztTxMmqht5ja2Y9qqMp+iHIs4bwCWjuyFROCpHCh54vSMIfBvcaEfUMHgnTSco7vszKjeYOnKQs9xto6cfvAPXU+bnWKVE2FsdJpzdFas8Izcc9+Hsu5WOpGjuSZT2P6cYsPlVozybe8NX0fpzWNM6MCByuJJgQZ2+tw29JBnfNsrWylYYHvR15jkfUcKZG3P+Tb93xMiJCnNTOC9Q7CdTODU1eROLM4WeX0zBqcnRqn3w/623j9OVrT5BNLhmqv25IMdWwZVDhftGgRAD/+8Y/p7Ozk6KOPBuDuu++mu7ub7u5u7rrrLgCmTp06yk0dPg2NhxS6CXkZyLWvDZgFMYHczjqsNLCjF6ZWZbWYDiZr+8s7wfezNZntz0i4toO4aI4UWmvLnT2wHGQ8fB9e8nwOymiqg35IrerEnV6BM6WKVGMNbhpSO3uiOqGHac0rHvT52nwOxKwIA2mck8kthMGxNxh7s8PXtGrNbD8795wg66mzpQO3sTq7ybkqsJxPQu3QpLr6rc3Njw4qB3rmkAJWpnZE2bIv3Hzbb2PrZajchFA4N5naVXDoDwVsx9c4OzQ0VGWtry5WH9bhbDI16+310/E1cz3YHPyR8O/JurlvDFrjXGumRcowHVnvTH36HquMWtKtvRbaQfV6Wa8xHYSWBEJGUji3D5njUfArlvU8FMwjy7kXZGn3jAfYkYE1NaXBfb0Xd9FkXNfBnVmJ09ofCXQHBPvmmiCkK9zz7NAuYWRIlsTyAe1rtvimhFZkNdfg7uoxIQkNVUG277hiWjVWoja3kyJ7Pg3LGC7Umtd9nTPfsmunLppxPl6wFSv2+rlVayb5UGEb8gDVnsYNy6iFykzHel2Twk2B2tYdeUqE4UTNvqbL17STKyuI19/YMqhwftZZZ6G1ZuXKlVxwwQWsW7cOrTW33norZ599NmeffTa33XYbSine8pa3jFWbh6Rj96ahbyoAA7n2bQNmgOXaZ5W0wLzHzi6YZpeUUca1vR9o6QhcjIJ655nAPTNwD5xN3L1PXDT3n1DQCi3nnuebuDvPZ0W/5mjflJFxfR/nlTbcwxpIKUXKdXAbq3C29JEKDqSzgOm+ZkXgEm+XZQv/Rj5OOfFNY/TflgZJ4co+MLT6MNs6oBh3PR+npQdndqAUcy3La6WLM8NFbejI1sr2ieLOD/B0jnufHbslltfhc8qJb8qbryP8BrdpjFs7RHHHDqB29ZoNrr7c3OiEXkeBoDelAqca1KaOrGAYWBJm+T47vNzQBDmk7D2DKVbaNKbGeWC5izwwtcbZ3Q0NZVZIAtn5V5WCWlCtHYFyLLjFJ4ifNML5RuL7rd1/420OFst6HoVxBQK052t8D/b4mg2+5nCCtVP7uGu34c6voQxwm+pItXbiAinfzNWjfc1znhEUM76Ol2ZD3GhHinD/iSmqfFPjvCnYECOvkx1pnJllOI6Dci3hLqyV3VhFqqXXKKO9QKGNmXMH+LBRZ5WaSY8xTfGM8/FCPpd2tGabr5muscJgg31vWzfOJJOpHcgTFuSgZlbibus1b4Vrr9bUaM1kXzxtxwODCuennHIK7373u022wK4u1q5dG2UZDhPDaa1pamrioosuGpMGD4d0b0ehm5CXwVz7pmO582nrgBnEv7LVg4ZKc5fjBPE/Dhw6Gf7eAT64gfVH6SC5kecZF01y3ftii7RsgHuNHRtnrOamZmtvRrPa1xwcWFHdtk5S7R7uAfWkFOaQ0lxHamOHMeIFbmRH+ZoVQdx5WFomdO8Lk80lWTi/aYz/6+ImeUiP3KJ9kxBlRiA5RK7qO3vNfJoRhpOorICuFMybiruuy4QnhIJdEFqy0Nes9XU015LxrjLjhs/C+U05ltdQsZgG2nX2kBIJeFqjdvXhTHOJEvlB1oIQHFKcBZNw1vdmXaoDwa7Bh0rfp8WKO096XQjDI59iJVQK7wCm++EBM7t3KTSqLQNTKjB7nsr2Y2jNa6yFlr4gPChrPQ/noi2cQ37X3vFEMaznocdYjuXc93kxo1nkmTwqSkNqaxduD7hz6nGVomxWBU5Le+RC63iaI3zNc4Fbu6d1VjDX5m+I8WD/SYZzhQppfJ/NfjYZXBR73NqHO7MusAHlurUzo8YkTLWSwoXeLvN9zQ4N7RDzGLONQcUwzscTSYOCUSxCK8brKDTqhfue09GLakgZ4TwZcx7sg2pmLe62vmz4XrDvoWFekG8l+tuJNghjw6DCOcC//uu/ctlllzF//vyYQA5QU1PDe97zHn784x8zadKkUW9sMZN07QPLtQ9jOY+EAh+TNTP4mY4gd2no1m67+R1cBy/vgCD5mBtkjnaCWDwnEM7DSn5J649MuH0jpuH3deDap3kpo2n0fKb5GqUV7qounAOn4aZcUimHFJBqrsTZ1Gms6trEub5Ja17UGs83G2cm8Tekj/afnA0ueN0SWM1d64DioHG29uI0VuC4gTIsmnvBY0EV7ppdxkIUxNyZ7O0+833NukCws10KxWNl34gJdjrbf22Y+TM1sNxESeE0ODv6UZMsl3ZHxQ8pDqh5tbgbdmVdosO4dV8zx9e0JIRKuy+F4ZFUrITfZS/QFShWYmFcgNOVMXtfQ7DnQbz/FCZj+xajHLNDuRxtlJ7Nvsm4HwqRdjtszzVh+IQW0Mhy7mk8z4Rz/c3TvNFyaXfW9uIeYFzayxS4s2pJ7dGkutKRQvNQNLt8zeYgpCtjfX7oPi/sH/kUizqQ8Fp9k1CMcN4BTlsHzvQKI8cl3dqDpHDOdBe3tSerlPZNf9ZpzYygWkk+wVyUmnuP/T1Gik2t2e5n83VEyaN9jbPTR02pisechx5jAA44M8pRgReLCkP4AuV0k9ZsshSZ4mlbGFLDuemMM87gjDPOYNeuXWzdupVMJsOkSZNoamoal/V6q2oaCt2EHGxhIDxghu9vBY4jOJj42UNKGP/K9m6TLc52q4UgbnIy9GyElk6cefVBYpzAgh64uTelzN9IA+UkklSp8WdBGO+ESduirLIZHZSS0fzd9zk88HZw0xnc13aSes98XGXqlaeUItVYQ6pP4+7swZ1eg9KaBVqT8mCVrznE13huIJirrBWhLDHVVrywiiMPP7Ag30ExkpOtFqM02+z7NIVhJDpMxgiqtQd3dn02diu0IDi+mXtz6nE6wd3Vh2qojlkQmnwzHlpdmGf9bV+JW/TesuKFVRx86KK8nj+tWtPk+8Z6QNZyqsBkrQ2Fu0iwc8DxorhzNb8eZ+lmnD4P5TpR5mFHa+Z5ms2ej3bc3BjK8bftjVsGUqxsxRwoJ1txj9Het6MHVYWpz2sn8bNfN1XAc23xpHDhnhmEC4EJG5tDQkBn/M3BYljP7TwoHphkbh6kPZ/XfM35BAnF8Em9vhX3H5qMYO46lKU07nST6dutq8DVmgoNh/ma/9UmGZVH3HLuKbNGj8dzZrGQL5xLB4aAVq1NOFfkNeTjbO1Dva0CN0wGl3RrVwo1ow63rQ/nEGN5dXXW8rrQ91mDyxvJhgSFfz+j4JUiGOfjBduoF1s/NezQcITl7eUAao8J5XLq7FAusmbYsA9nVOFu6QtCE1Q2z5VvMu7/RWs0Ki6gkx07Mh9HnyEt5zZTpkxh8eLFHHrooTQ3N4/bDqqomlzoJuRgT6xkzOR2gpjzIA5LhVag0HK+PQ1TqvNqMEk5cOgkeLXTuBp5fpQYKeWD43nGigtsIXeSi6Cw94QHCE8bq3km40WZ2l/KaI4ItMnu2g7cKRU4DdWkXIeUq8zDcXBmV+FuNi6ZqeBw+UZf87wddx7+DULhLt5Tr67aMOb/e7GidTZJTayUmjYHlGYr7ipMTuVu2YOaVYEKV8nQWyWcf+UuzuxynA2dkZum8sxmWRYIdzELAtn5JsmOhs+rqzbkzdehCTK1BwuaHbOsAGd7F6qhPG55td3aHYWqLUNNdXA3dUTKUcfUcWK2NtmMk6594zVmebySb9/zMV4PTdGcs7JFg6lPP7UiHi8Zc9NUMKsOusDpycTd2oM42DLfCOgbie97dl+OJ4phPbct26Hl3Pd9XshopnuaxsCokNrahdNtXNpTSplwLqVwZ03G3dJr6p8H1tY3a5O1Hd+PXNtty7l4qewfMeEqtIj6mu2+EcqnB8osR4PT3ovKgDu9OpsMznZrD+af01iF09IRubUT9qevWaBhnW+50gd/NxO05ZXX1hfgWyhO8nkcaYhizqcFb0Qx53v6cKY7Jsu+bcRLKFeYXm101HvSUdy5Q5AUTsNmy3iYXDPFej427JVwno+enh6uvfZavvOd74xEe0aE3dvXFLoJOdjuIfZimcbUIJ8BWTfnKH7EaCXZ0QfTa8wH5XHN5OB6+Ps2VOBe6wQHTOX7JkmVP0ByHCTJw74QJsLJAH4Qa649n3WeJuVr5mpTK9l9aVs2EZxjksE5jjKx5811uBvbTebaQGN9uK/5m6fRvh/E4A0ef3f++04d+3++SAk3NTucA8yLNs+4tStthGvX16iMh9Pm4cyuyR5QbMVYMA/V/Mm4azvjsXeeiT0/wPejQ0pSMJcNbvic/75TB8zX0YZJKBaW9cm6tWucbUGdbLAOJsStr0rhNk/G2dBt1cw2QnqzBy2eD6H1QsfXTFk2h0e+fQ+M5bwxUHCo5L63ux/VUG1ujGLNE3tfhQuTQG3uiEo5RcmRfKNgaSK+7yUT+40nxvt6bnuMZRPBGZf2l33NYV5YlgmcdX2kFk7CDZTSrqMoU1A2uwK3ZbcJ/8HsfUdqWB8Ii8k9L1QGCPtO3nAu39SknxX2lw6SwW3vw5mRwlEKx82ukfFqJUBjJc6WHlLaz/a5NnMuDOmK/pal0PQ0vH+cj/PxxEByg+fDDjQNBAa8YO1TuzxUTRVOMpRLWcqVoB+daQ5qW4+VDNV8RpOv2eFresi/Zsp0HBv2WzhPp9MsXbqUpUuXjkR7SpZ8lgONsZoDTPXtcjLBATOIBWFbkKndtuClnMg1kwWToBPUlq6sS3ugxXQ8k7U9jDtPCufj8ZAynonFg/uajOcHhxTNcxnNEV6QCG5bF25HP+7CeiOQuwrXBZzAitBchdti4s7DeueHodmpNZt8kwBO4u9GDlugssc/vqbN1zQFfudh3LHT2o1TBW5toka2HVqiQC2oxlnbjhtWR9BZF78FPqzXg5eVEYZmoPr0GtimdZBQTGct3xqcXg8nrWFa4HEEWQHPtfsR3HlVqI27Y2uv68Ns35Qa8n0dUwxIzPLeMZBiZavWTA8t5lbMuQOwowc1uSJrMYecuRdaz9Vmk5jKtcJSXK0jpXS478XCucK2yBwcNjGPMcJ4c9Cezwue5mhMlnYXn9TrbTgLa0kpE87luMpYzptqcLd6uGmPVDBX67TmYF/zvG/c5ENPMU9n3eiln/adfOFc+D6tvolZRodVgcDZ0o+aWYerlJl2A7i1M7OGVD84e9LZkBI0LiYp3GZtDE+2cBeeZaQnh8+AcoPvo3xo8K3+A9SePpyp1cZonszRkVg7nWm1pp59KNgH/ThFa6p9TQvxvrP3P2H0GVQ47+3tHdZDGBo/MbjD11sJksFBlK3WHFaI3PTYnoaGCvNB4QJpu9eWuXBwHeqVjmy229B6pMH1fOb6Oidju7ho7j0+luU8EMr9ILX6a57P4aEV79Vu3IXTcMtcylxjOXccBxPGpSibWYPba2qKusFhslxrjvDg2SBeOSf+DumnfcUW7mzhvN3XdGrNTB3XQDtb+nAaa4wG2rEfWMnhFMyuw+0DJ6gZ6niBe5iGhZ4pLRT9fetvi+V1+IRrlW2JCdnqa2aEMeZkS086O7txyjHW1Xwxy1bNejV3Eu42D9XdH7lH4/s0BgLeNstF01buSP8NzWA1zrdqghrnxmoDZD1QdndbpUMtF818SeFaOrMeZ9G+aZ7n+jonY7vdl9KHw6dfEyvx6QVeXq9nNClPMz/c+7Z34XZAak5dUD7U9J/rKMqqykhNUritnUaYC5SaR/ua53zjhRbtsWT3P1GE7Rt5w7kCgW6rb+L8Q08hBThbO3AbKo2x3FZmOgnLa8rBmebgtPVYFRKMcDdTQ7WnWU9+hZh4QgyfmFIlXD99HYVzhXJDlGdlezfOlFS2jFq+OuehYWF6Fe62blMlNlyHgxCFeb6OMrbbSVDDZ2H0GTQh3Lve9a5xG1c+GDOajix0E3KwtV/hAQWywrnSZvVKWoBUr2dUkEkLkOMEQT6ha/skeGwT7smNuL5C+Q4qo3EcH+U5zPE1yx0VHUY8DVpZhyaVNVAIAxO52gF+Rgcxd5otGZ/dnmaR1jj9Hu6a7bjvmhtUvFOkypxogXRches7uLOrcFv6cBtqjJufD2/2NUt9zbmexisLDkHKir9T2Ul7/Y/u5Ev//MGCfRfFRE62Wswm1+prpvpQHR4wQi10axfu7Jp4OZIo66nOCneugzO3GmdDD87M2kBAB+UawWBPxqc95VCmVNxbJZh7bsG+keLhhh/fycc/88G4YjG4ti2w/pgcHaEFB9SufpyGRMzyAJYEp9I1dX03dqEOKY/CiVytmaU1LZ5mdpkVf2etm7JoDk7S4hMqVjQmJOHk4IsME6AqL5iDWz2YEpQOtfvP13Fly6wKWN6dDefyQ9dqHbm1bwraki+cS4+j/hvP67mvddxy7ms8zzdZ2rXmKC/Is6LBfb0Pd+EknJQbeIwFSrBAMZ2aVYe7KU1qHrgoXG3ytPzCh27fJ6UdMkqZvU9nk6K646ivioVw/tlCMlqjfdiiNW/ww3MnuNpHbevFfUu5sdrlc2u3LK9qRh2p1l6cxWTLGQaW+IN8n9dxOZh4STVPww9+cif/9/MXFOLrKDrs80ps30MzM7igdNA9OigfOqU8m8QWiMrAJvpQzazAeXl7IJgHxxpNUH7ZZGzXKo/XkczDMWFIt3a7fNpAj/HGjrZXC92EHAZK7BDVOLcPKGTj5tT2LpNivdKNHyxd4q7tiybDHnC39ZjDSRj/5RtXsyZP57r3JZ6FwdHhAUUbl74oEZzn80rGuOaVaY2zvgO3vhx3Rm2QpdaJrAe4ChW4tpfNqcPdZOqdG08Jn8PRbPA0u8J652Qt9aGrX8iHP/jOgnwPxYjtjhyOeaWNcN4UWBKySRh91JZOnMbKrHBuz7tE3LmzsB533Z7I6mdyPWhqA7fddZbVIPRWEfew4fOhD7wzx51cA51AWmtm+NlDhSLwfNjRj5qWiFmGXMu5o1BK4TZNRm3sDFz8sjXrmz1oCTxZxnvM8ngk/K6S+x7ATl8zI7L+WIqVzn5zMJlSmRUOkv0Xvj+rFnrB6ezPllIjFPKh2dd0Y/K65AvnGk9TcDyv5z5xy7kflA7Vnqlvfihm3XO1j7t2K+4BNZSpwKXdUoaVKUg11uBuMuulG8Q6N2JiXVdoHfVNaDkPFeLj8aw53omUUNhekmautfnZXCuOBtXRh5vWqOk1uKEhKOnWbp1BncZq1OagHFdguXUDBel8DWt9HZtzofX8/A++U/pymMSUicGzSQYHM4LVNMq0n/FxujRqamWijBrZNdRWrsyswdnp4fT72TJswXho9kxOglhIknV2kf4bfYYUzpVSTJs2jZkzZ+Z9zJgxYyzauVd4mfHlaj+Ya19Y4zzKVBtqsbww9i4N0yuykysSFpz4IbPMhQNrUX9vN5PV09FBU/nQFMRG7yTXkiHxk8MjtF5nILIaZExhcl7wNW/QQbz5iztwD51mYuwcYzlwEvHKrgJ3diXuhg5c34/i7yZpY31/3s9aK+yYczv+bvq0yYX6KoqOWOwbcct5k2+sbI4lHLjdGjWrNp5YJZx3SQ30vBrcdd04QelCx3IVXOCZQ4q22hCuA5nCfBVFR8O0ybH1KvwuW7WmUmtqMBci6wEmzMBk+yYeswzZg2bgdaQcUPMqjYIlSHAUKkubfZ+2QHkjMct7T759zydb43xaGGtOqFjRqF29OLXEFGBA/vCEMhemKtSWTpPIMXRpD7xgajzNJIz13BbMbev5eGE8r+dhWFUUC+6bLO2bM5o9nmZxGEK3owu3XePOqTdW8rCiTJiECkWq2ZRxSnkmga0b+Oy+SWv+17P2PR3PDC9nlL0n3O9i88/T7NGaXt8oRYxgrXG296Kmp3AC775IIZbPrV0BjZWmLJ72I6+J8Py60Ne8jmW5txQEU6ZOHldKsfHKgHKDhjY/yLViywy7ekz3VKfyeIglflZATQo3FeyVwfwN81w1ac1mKyTPVmb6MhfHhEHd2mfNmkVraytXXHEFRx11VN579uzZw3vf+97RaFvJEC5Q+Vz7tgFvhKw7bWi5AROHt73fuLRDwoJATmIjDpmE+vNm3BMbg8zTQXI416fSd5ipNS0oZhB3r43aJO4qgxIlZ/M1XsbHy/hoT9OZ0az3fD4GODu6cNv7cA+oMzF2rqLMUSjLch7Fnc+qxe3VuLt6cKbVRIfLoz14ztec5Jt655HlXGXdisQdevjYcXexTc432uGjQ5fo0IqwtRtnRgo3WWPZtTa5cO4phTOjGscFp7UTp7k+m/dBm+Q4Gz2NTiUEc5XN9VCMoUNjST7LqyYso2YE59B6E1m+9/SgDp88eMxy1LcKZ049bscm1J4+3CnVkYDe7MOLgeUcN+sKbccsS+8NTHLfi/oOo5CeHIVxZT0fnJ39qEmV+d1pSfysFDQGSeEOJm49Dz57DkY4P4Jc67m4aA5N6DEWWc59UzZU+7BSaw7xTL4UR4cu7fW4qWyuFdvi6jiQmlJJWUrT19qJ21wfhHRpjvXgd74m7WnK3HjMeX+w94lr+95hC8WRUsr32RLMvYrwrKlBbc2gZtTGk8GFcefhPLRd3RtrTL6Vjn7cya7x1Azinxf4mrW+xnNUTCluh3TtdzbqEscWhGNyg6/ZpuGtmujc4qBR7f0408twdL79jjyhXQ7OzCqcbX04zXWBQcGsn81a0+obY1A5cWWmr8aXx1GpMuj8OPjgg9Fa8/LLL49Ve0aEmvrGQjchRtLiEx5QwGRrn27HmNsHTDCZ2hvyZa0lKyCEru0HTsbZoU1SCM+PYvCMJd1nTkbnxN/ZliBhYLTW9BMcUHzj0ucFrn0v9vvM8zV1WqNe68Fd0IBblsINSsi4KScbghAcLJWrjMv77CrcTX2kdHiwhKMCS3yvF7ec22VsAJ5cvqJg30cxYQvlkRVBm3CPNp+gNq9Goczca0njNNabWqGRUB7MsZjVVUVWBWd+Hal1PSZ2L3QPCxIxrvf9rBbc0kBLUrjh8eenVuatcd6mNbOsmGWlVTY8aIeHaqgib8x5TKlpXrspFzWrHHdTT7T2Kh9meSabv/KyGdul/4ZPvn3PJ6hxrs1FheXSrjE1zm2FtN1/Seu5AhqrcVo6stVOon3PPJp9Ha91TtxFc7wwXtdzu964h0kE5/nGpf3ljIkXd7zApX3dNtyFtcEUsyyw1iOFgzu7htTmPhOjHux9c7Vmkq95yY/Ht4dW9P5CfglFSuhOHo37wLOkzdfMDsywkVJsSwdOQ1UgtwWHzXzZ2hNJ4dy20PIaeI35mtnaeG+2kqscWB6s58LgxBSb1rPyNTuDmHOzNKoglMtDTarKhiQkY86Timkwru3b+rJlKAOl9AwfUr7P5jyGjfEWDlSqDCqcv+td7+K8884b1HW9srKSiy66iI9+9KMj3rh9xXXLC92EHPK59nkY4dxkXQxciyJXFSOgs6sbppXnTCqTmEqBm3UZozyFWliDeqUjG4PpBxlRfZjj+bT4+csCSfzk4ISbnAf4/TooI2MOKK94mjdqUxs7tXYb7kE10eGkLOWYhDi2i2bwugyM+9/GDhwgFQiMs9E0epoXEnHnkUth0KaOju7CfBlFRjjWk0nhMtrU1p2pLas54LTuwZlRaTz5QqE8OqQ4eQWE1Lwa1IbdxoIbWA9cbbKebtY6qlOfVIiNJ+FgvNLe0ZU3JGibhkZNzEqqAHdPcNiYHFS4SB5MbG+j4LWjwJkzGbWhM5vvQ2tmYZRke3w/XlJNyyFlOOTb98CUUWsMhXPb0g04O7pRU8rjCukcYcHq09mVsKUncq+N4teDz06WEbXbMp5CE8brem67lmfrm/u0e5p1nuZwAqv5rm7c3T7u3HrKlPEaU7a3UdBvroKyptpsvhU0qSAk7Bhf82ww12LVSoJ2SPnJvSNfKIfva7ZoUyrSWF4x4Tw7enCmlwfbnIrPOTePW7tSONPrcLakY8nEwlwC87VmDfG55mHWczlvDo19VonWLq3p0poe38Sc2/ueau/Fqbfy5Az0bHnfOtPLg8oJgQxiGQebdZAUjsR6yfgKBypVBhXO3/SmN/G5z32Od7zjHQPeU1FRwUUXXcRFF1004o3bV9p3bSh0E2L8f/b+PE6yrKzzx9/n3IjcM2vL2tfebZZegAYBUURlmRGZUQQdVJRRB51xxpERv9+f83VGHb8KOoKDCw4wCtIzDSLQNE3TYAFCQ9HQ0BvdLEV37Vm5VNaSlVss9zzfP55z7j33RkTu2V3wq6de9xWRkVkRN+6551k/z+dpVzkQ8hnnw6Ka0zoN0LMMVirKZBOY2gvVA4qV8/DaUzaSfPuMz2J65ZtqZnuPE05HfSzlStSl4qRcihIy981UaIaRL6mjmQrfcsJVIphjF7F9XSTb+xXSXrUkFe+gtKkgWAPVPdp3Xin1bT1ThK+U+s7jyrkT4WUvfu6Te1G+QyTO9mb9UiKMO3Uitoh6n4nTarc5Xcfu7NXKeRwMtOy38HuD2T9IcqqGaabad+5LBTtE6ElhxLUZaQOXKwiLiIjwQz/y3BZIuwbnwjbvuQS2WSOCPTeP3VyqFrR7Hh3G+Hnnx6cyQj/rtKd9swinXdQeEQXml52UhSW2L/EaTohHjHlnEMgr31PzmC0dxqgRvRbWcscANDy8NgQImf2TbIwoFHVAHLRcCnIp6vMYMRa3dDkHDzvhyoAYE0i+XSO5YpCkkmSoMRKrR7SW1kCyp5fKiRnlW0lFB894u3d/ZPfipHSDy0WE5UihnQu/95yAE047YXe0/+xMAzsHdlufVl6jIkKh8loK9sz2XpLTU/kIRNTfNE642kPb48DcCfzADz/3ktlzl7LEOjMrLIi2c/U5oY8cYWsAMzmL3eLHqLULyMsJFwxmey92rIYV5ctR9GDQmzAS971Dwf5dlvWVy20fT4AUKgfR8wlgCwHW5We9hucC5uycvsFgVR8zh4TWYCGGto+lJOfms57zMD99dyqMe0z0peykXIoSMvdp6vwINc3uP9ZUKN4uBPvIOSrXD5MYS5Joxbwa1qlSCvIMWGOo7BygMi/YyTkqIr56LjwrhYecwgezqgV55fyycly6FCrm5NWDk07Ynep+S0LWeGIGWwG7KcpAFwL0UDmnkBSzm7pJesGems5mhgYOgSud41hanJWd9d89SdfkO0WCnirrT4AzDrYiub4MxDiTTeyGUkIzVGBDFai0tsYY7M4BbM1Xbr2DglPm2tNativeQ5d15oKy8IzznNAo7nW0TrATTdi8SEtC7HRWLAxb7Mh0zrTvnUzr7d4EUCMPEuL1u5xf6SwxYixMKUlFEWMPNIWbnSb+K+JIjo8r14qBqjERYoyiHjWGrm39VBqQnJ3LxhZaJ1wr0HDCYVdMSsdTSy7L0iT267I96I3heIwYQ1shzbAlqdjWqnkYp9AGtWJ29WAjUjgjZKO5rnDCUdqjNPXny4u5kLRrCRK0nWub/yGgFRIRzNl66xi1OGaIGfjR18xwHyaFZKquS+vySvwegRMl3ylOTF8u5q2vfFcG58ZcWl+rXeUANDgfhmwXGiJokAhmch62JTmsFqIMJq3V2MRATwW7vx9z+GI2FsE2tSK4KxXOpo6aaz8W6PJWay9ORDP3IqRNXzl3gmsKDzYd14rA+VmSC3NYTwQXAnMb2GoT27bqWrGWyu4eKifns55z6+BK76wcTkvzZcmdlFqt/iRfme8MaXFSAFJFkez0v8gCu/GGVgOsVcRDIfNM+31nDcZY7IENJMfmo5mhnrHdwTHncCItgfnl4HxhEWCuVm/tvxNh1Dm2ZW1Afv0Ac76GHe7tAOeLdGW0jjYxmMRid/diTtai9VP455gTpOku6Z7lS02CrYuTGeF1JfOLYu8AaZ9SiCwbSi0JkK9beF6ong9iR8K6RTZUhK3OkQAj0bmUx0tdCnIp6vMYrZWCt3uOWqq26SkB6Xd+jsrZHNKeJBFiLNi+yO7ZxFLZ0U0yMq8JadExXIkTniHCfZ7jISSiM9vH5aBuqRLbmuxeF6HmhHMC28PaCZixFDs8qEnKgr5kQVg72wdI5iC52Mj5VtD9fKXAUb/p4+p5rVanKZfOvrtUpW1LkAhnHGxBlC8g6NB6iqmD3dSbE8zGPefW5r5L+J3fi8mwxU7MZWgj61sd9jrRMaLhfCIf6jLfyvrLpRXFrpFs233jk30KBWlXORDyMWo2wPACmU3YcGcasLk/z3iVYZnB+MVkYwbsUzZgv3Ume79wbHKObg9tb4HLcHmzdZIUXzlPPaSvqUE6qeOwgxsQ7OF5kgObqXQpEVzFB+g2rE1pjcLzxEBl7xD2xEUqQOL77xIRnpkK9/lEQHBMYiflLX/xvifvonyHSID2FZwU0SromVTnvGaVO8CMz5DsGNCiXRkOljkm0f4LwbmFZN8A9sTZfC97NMwVqXDCCSIUEgV5cuzyzuskAvz1X72/RX+eE3UgtrucnyOMgbHjM5jN1WK/clyBbUvqp3vR7h/CHp/K+86dY7fTkXuI4FwrzO9yBaG9hIC8XWL6rIiHtfvAPDxemMduiPea/w8hURYnV+Lky44+zMjFrC0o8S1dYR/udUoKF5/Lpdaa8Na/vPT0eUzK1kyFpoe0P+qELU5JqawIlW/XsAcGSapJhBgLCWk62r3qqZmsRzlUz5+VwlecTkgoV84Dd8dlWVxiZEgqCmkXJ4wJ9DphyPuFavcuYrf0aGBdWisPLSr6L2F/Vi3JZosZn80QYwEBs98JM6kwSdHe/a+/ev9lvpUlSDzdJdNbTpgUT4Qa+s1FMGfnSLoE05209pzHRQUo6lZjSLYMYMbqHn1GZvv2iGQcVZmvQjFIvyzrJ9+Vwfn4qQef7FMoSAFWRK4wx4BtQaEBhVmvAmZyDrb0tFaAgpPSJiONNZhrNpGMNnUskO//CVCjfakw0pRL2km51KQpPihuKsy86fvNT6RCwzkOpCn28TGSa/r9MhgqFUs1C8zD2kRkYlH/XWVPL9VjF5XtNpqTfaPvv8sCzJKT8mu/+qon+9Jc8hIChNhJ0aSzBlw7/IXNAurRKZLdXaoYyz121mpWuszzEEaqHRgkGW1ia6nyB6QCThnbT6SazIkrCAKXKwiLiBP4xV95VYv+HAc2iVCBfBRQCNIna0ooBm0RR7qGtsXRtGgvrDk1i3VO3y+FnU4YFcH4DM/ldqClSezMxQmNGjDt8DPO8+SKETBnm9h2Y9SgmJCG4v7c2YM5Oa+9kzG81gfp+0X7zuPzCPrgUkGv/PqvvvrJPoWCOJFi5VxEE4mp4+tN4WkuItE8NkHlyhzSbgs6stXuYaCyu5vk5JRv51JC1EQUKj/mdL3ipHRAGjUuK8wlSdxCFQd3p5xOMAhoTSNCMjmL2d6lhKYtVfPYztES3JntA1RG6jlizKkf2yPCLtF55/F++9nXvyrzZy5Le4lbgiQ+nKKOdmYVbh87TDWxG7uxZfLT7NEnWco+jQGztYdkfNaT8ud8HTt8q9G4SMt9dLmYt/7yXRmci1w67lLHTUbE1B45ESGTaUVgcga2Rqy18aaKjV/puemtYPf0Yg9PZ9U7kyq0fa8TRlNXIAsJAcyl4qRcSiKiVeuG04A8EMFJKnyzKTxFRNnWu6skOwa0Yl6xVJLIQUmioC5eP2/cKjsHSGqQTM6RRH3nNzqY8Ma0nZNiuy69qQSXmrRLQomPqMacsDMLDsDUmiRnBbNjMCfFiY1ZCAqSNs6mNSR9Vexmiz2pLSUIWKcjo+ZFmHTFwPwyY/vi4oCu7q4CpB3yvruscuAdCVNPsTUww20QR+E5tCY1E4M1BrO9D2sFMzqdVV23i3A+RduBfJtJrDMvOyntJd57IUAXNLFiRdgUWhKc5CbuXD0fo1ZGPGQ61LToULb3q/08X8+q58YHfYEULq6cX4r9k93dl5Y+bxln1lTkWOrg4VS4GbVTyflZKueaOk7SQ9pz22eKfCtRUFfZPUj1vCOZrisc2hcRuhGe6YQvpS7T23FSOsCzL8vCEsOPQ2AuAqPOjzoLiJX5BmYa7NY+rDV55TXSlWaB4M5u68MGxu+QrPEffMApKVxYRwdUursuqaTYpSixzowTnEaECRE2h8QKJk9qbunNyDULCc2gQ9shHwzYbd3YiekMwRQC/kSUS+mkFPV4rD8vy/rJd2VwfilJp00G6qRsQ3+RwShRxWZFYDzVyjmmdbOFzRWqslGAbgyY79lEcngyd15T8XN7HSNOiMmNLjUn5VKSjDHWj05rps6PUBO+5oTrEezXL1C5biuJsdhEGdoriSfEqRiFtEPuXJb7zhNLdWcPycl5JQd02n/XLcIznPDliEzsspOyPMmcgngPpsIFJ9SdsqkbcUqKMzqD2WSw3UlOilNIpoQ9SNtEizGGZM8m7InivPMuEXalcMyTCJYD88sVhM7SrvIqaNJqawjqRFTniRIrmgqYnqR9QjNE6cYo3DZuB0oM1ljsngHMqUZGMjckQq9zjDpB/Mz68li+y9Iq7SDtDk2s7PYXLYu9Q8/5mVnMxq48mVLuOce0QjRD29C2hOT0jAYIaVyRF/Y4suA8nFu5teuyFCVwmzTxRHCpQxwcTR142LIRIXmsht03QKVaoRJD2jM0n20bGNhqQrItIRmZ9bB2tXvGCc8W4UtRMrNcOb8c2C0soSgUzxd3HtY+KrDDRa0kY7OYLZakmmiCspPO7BDcmZ3d2NGZrC0hvK91yuZ/hGIbUPA3L7cEdZbYtuSBsSAiTIj2nBfGv56fw2zsVhVZ0JeA8cWhNmunyId+kvOCaaTZhKesHSiF41GBsZyYvizrJysKzs+dO8exY8fW+lzWTIY27VvV/1cCMKHpH1ejQMpBeexkjgHbXD6P1ZJDgux0Q99gc2/uqMQOiYngmYGwI+6fvHYDdrSOnalnPUDGOXalMJYK4mlPy5mwy6qyKKnoPOy06ZSpPVUiuHNOmHDCNVNz2HMz2KsHSKzJnJNKVjVI1NgBhV7XKJNpDST7hkiO69zXhLz/7pa0OPc1dlI+/olDlxXkIlIeW6YVBA20NonQHYybgBlrYnYMkZhS9SB7ru9ZgEXHpGIWkv09mBPnFFKL7meczjs/7gRE8l4yLi1Y7aUoDjj4j4da2b4d7PReQkAcGcCea2CGq7kzAq0wPwJ0s4iAMFZ7Yc3eQZIT57OgER/cnfLr56J7KjxellZpl1gBHaO2zRMaZfwqoWJzfq44Ri22fQbiNpI8eEB/3jFEcrqW9U3mXC6w1zlOyqXdP3nXJw492aeQiZMSz4loS5ekjq80hZv8tU2AytEzVK4a8rWCiKW9fMRIFavV2OqOjVRPzmpg7mHtiRNuckqiOSnFeefxaLXL0lnipFO2D73+GnOKBiLYvvEUOzyANar/WtBiIUroAGtn5wDJjJDMNDJYe4Lu5ysEtXvkQd1n//HQ5ZagRaRdUlMEJr1fuBWy9TMimPOz2I3VDmPU/Jt2GofXX8VUIfGkcFlSE9gjOnavYO8inXk5ubJ+sqzg/OGHH+YXf/EXeeUrX8nrXvc6AH7v936P3/iN3+DRRx9dlxNciaTpylhPnSiT5YzARQdTTh+nRSGNK7kR224y4Jz//VavJBP/B9mM8zOzMETRqEGRGIfo9yVoe9Jb1Yzm4WnPZqwV+V3OMe4D9VSKo24uQzSLEma8Nh1ZYN5sCs45HmkKVyD0fKuO3beZSndV4XxWnZNKxWo1p2Ky9zMZa6YpHMZAdW9Poe88OCo3inDEwbk2TkrfYP9lJ2URaQkQfLVnzEWkKiGwOzWFHe5Tm9WSZQ7QPi9tSMWMMZi9Q1TOOEwpKXaFD85dG8TKZSPXXgK7ff9Af+bYga7lpIebZ0Gd153JZB27uT9/k1JCk2gJy0GD8dB2u7cXMzKPbaaqk1PYkypHgaTq5MZV18sOZnsptE2R20CdT58Hz1k7lxPMBcHEY9Ri2+cDOowttpkEB3RnD2ZkKoK1KwrJRO0r47T24V4q/ZODg31P9ilk4ihWzp2HtIvA153wNB8kJFNzJJMN7P5BqsaU2rk0iZklwqKEdEi0JHt6SE6dzyvn/nGDE64T4csSwevJUWMNLuvMhSS2MXHV3PlWuUBEbAAzOY3d0lckg8v2XWz3TGn9/PNqQrLRYMdm8lnnvuh0wAnjTpglr7z2Dvbj/H11eQXbSzmxEtZzwsEWIZtwoL6Ljp/UMWqtwXdeQaeVSNP7NnZrD8mZmv5JpJP3iHDS5etULnZcXr/1kyUH548//ji/+Zu/yZEjRwpKcf/+/TzwwAN8+tOfXpcTXInMTI0u+/+kIswKXCwF5uHnaYEZ8UzPy5BCxTzacONo7N3l8upM6L+zgDlTh019HZ2UbOUWgLYn123GfOts1tOOE3YISCpM+rm9GZydS6eCcKlIqGw2GwplD4G5S+EbznF9mmKOnSa5OiKCSwzVivUj1KI1C9Kh7zzZOUhSE5Izcx7ep47rRoFrnPBVl899DcfNz7nhspOyiASHIKuaizooYYyacSEh5jDjc9gdOifUlhEOSWkdO0A1K10JdnsVe2I2g+oaB/uccMq3lwRdELOxXt53rRKu0zO/94ZCcIfvu9vm8v44g388O4fd2F10SrLqqi0mWEqkfiagWDb1YAbAnJ72ME3HDieMpgprd37M0+V2oM6y8IxzGPaXqwDNvDCvSJMh33sdJ1TiKnqn6vmOXuzJGta5Flh7xelkhhPReZRRY0+2fN9zb3yyTyGThkRjzHw7l3Nwuuk4lwrXiq+cP1Yj2dtfmFJSqJBnI7hoRY0ZQ7JnkOpoSlJPfd+5BgdWhGen8OUomZlB7LmcFFtMYn8usy+igTICw/6GtyLYM9OYrVXVn+3auYKEefWFpDUa3G0fJBmpZ5XzEDhuEmGzh7YHe3fDs2+4TEK8iJSTmg7VZWcEj3oIaCOws02Fom/syTrvWlBjlAoOpZgi2d6Pmaj5xGZOprnbwWmXc1TFic3Lxbz1lSUH5+95z3uo1+ts2LCh8Przn/98AB544IE1PbEnUpwI8wJzAjNOjxCMXww/O/39vCzPEWu3yUCD82F8UEDkZAqq2M7UYZuvAC1QxStAbOMqnjXYa4ewp2uY+UZWxas6x/ZUHU3XLAYKcXWqk4iIZ3HVnt256Kg5WXby4lKWpigRXJo6JcNx+jifOo6nwo0nL2IrFZKdAwrnq1gqFRvNeC0FA0CnvvOkEved+7mvqRq4Zznhq2kOySzD+y47Ke2lTHooeGifE0adErWFqqu9MI9tgt3W78ng4ipBu+CcjqRidu9G7KmZwrzlfSJMpjDnq+dxYH65gtBe2gV3IWE2KcKWrGIeBWJTs9gtlYUTmkFMaR9aQ2J93/neDdiRhv4X7xBNeKdIfJtJXD3/bli/0MpV87q86XX9SiRO+MZ2RYNziUbgka2hPV/DbrF50A35cx8EAHlgHoK88Hfb+vX9LtSylgTrK7HqaBYZ2y/3T7YX8SithgRb40cIpooYu94pj4YFkiMTJFdvyFjaK6H/P2b5hraIMazBDFRJBoXq6WlPhgoV76vc4oSHU2GGEmu75Azyl6W9FBJP/gXnlAR1h4t8zVoTcxEldbOlGedxghPva3aCRm/vIxmdyUnhPLICQfvOXWvf8uWWrs7SLqkpTpnTtwXEn/jxoWfnsINgKrbItJ8F5nGCxbaxjWC3dmHHLmaM7cEv2uWEughno/upnNi8LOsjSw7OH3roIYwxvPnNby68vm/fPgAmJibW9sxWIUmlZ1l/3/CB+azT4HvWB+kXnb4WgvI5//v6MoxC202GBueBlCObbe7yWb1mYga2VIsV8riKUPjCJifFCX3M1mD7uzA7u7CHc+ZhUmGn77nFOZx0hmi2C8RnRBMVFx1MSY4ymPIog2nnA5DvgiC9iSeCiwJzlwrfdsIwMPDYRWwggvNBeSUxVCNIX4t06Ds3BpK9G6ie8H3nIiSEua/C/c4xX6qej585f9lJWUDivZfBsLxhG/coEu2tEsx4TUfJJB71EIKB4GCWkix5iwKtfef7erBHLmDE6bzlVNggwkbnFNourZXXyxWEVgk6c3LyfEF/nvGwu+HQN+l1pxHR/skYFl2uFERiQuIlQrEEB9Xu7secOJfN7d0mwpkUpCleL156PcsrldDONe3gQkCLier0GYG6W35LV3DgynYP4KzTnvO8HcE/TjaxgyW0WFiyJHpuTPvqeWIw2yvYkdkCKVwIFvY7CsF5bPMCqmZJ383bxTQ61kImzpxfk/dZrcSkayke0p4q0/dDIjzdB8/JxXmSMw2SAzrdIrR1FSDtQW8GW1cO/oyhumsDleNatQtBXSLairDPOb4qUWKaqLXrybg43yHSQoIaktKiY7jwe8KMz2A3gOlKSGwbMrhycaET4/fOLmVsj1uM0Cr6FaKV82CHz02ezwLz5ey7/3+RMplfpq+ckmkOB9h5QOZNOexgDzZw5ZRtXryEAf1QQJUZzLZektN1JcdNfcFCNAm3w8EpaU8gfSkgjr5bZcnB+fT0NABXXHFF4fV6Xfu7Z2dn1/C0Vidbtl+35L8NfcUNH3TP+eNLwO8D96LBei066rDk4DO+oWOnYAJlajfkykyz/X7TnanBcATvg2IVIZYY2h4q54l3Mq/ZjDl8LiOnMqLM0eM+BZ31wEqe1VwoEI+fT0eOXAjML/rkxnIRBpeaZDNem64QmDsnPJoKz7g4B+MXSa7KieBCcG4TA9VEq+cl6dR3joHq/h6So1N537l3UnaLsMvBA1LsO//w+z+ezT6/LK2SZepDgC4KS26m2sO/lQjWPjaP3T6k+yRuOYiflyVpXUNjDMmuQcyMkJyfz4IDnHDAwUknWc/y5QrCwhJ05off//FiS5DADvF+BuScARcVVmk2+eRsO1K4snToOze7+7DjdWwjBRGFYTsPC236NSxVE74TxYkwF/S31+FZS5fX8TMr0OdZUBAHCOiM8xnnGHZ5QiXYPnOhjt3Sq2/QAr00bQI9U3puYOcQdjSHZyrng57EPk8KFxIFceIuTh6Ur0+MKJh1OSdN4Ro5oSGrI499720fX/H/XUsJ+qgpytLe9HwrF5uOY03h6XhEwuPzJLsHSLoqVD0RqimgiXL3spAIKwUOdnc/lRMXlFxOlEwssLY/R4QvRomCUDkPNvC7Cam3VhIjxjLb5wRBSWx3hCQIYCYcdngwI0FtgbWXI4QOsHZ2DGJnhMpcE+Mka8szonYvVM4B7nr/x1vO77LkkuknSgGwCGedtgRlrUACZrKRj1FrM+c8IyQmvBYH5ugeHO7zCMJ6hqoIwf9ugRMlPR4nNi/L+siSg/MAZz9y5Ejh9Y9/XA3K5s2b1/C0Vifjpx5c8t86ir1MTYGvAP8JOOgfv4IG5SGIr4k+LibBUBdgteSV8+2id7cJWUyfkba1VL2YMKu3XRUhkkLAFwXo1hiSqwexI/M6y9KB8aRwY85buZKTWRcNvoODFp5ngbjLYf/TLof8h2PWaXA+56/Td6qkQDNA2sMYNZdXzm/8Vg27dxNJT04EVw3BeYkIrkU69J3bnYNUa5CcmaMiqngDxP1ZTrgvCupS4DWv/6mscv7dgFSIZS0SO7HjnQqIDzBGndCdwkZfQUhEMGMXsLu6ssRyYW1sm/YEyCvrceU8MZhqQrKzG3NiPqvaGaekYie9d1kOzC9XEFolBHc/9ys/VWgJGvOwaCQE5kav8bl57EZbdDChsMdapNSaYAPqaKBLx+qNTPsEi/adj3nkQ0iwxMnX5YhIcSLIk7F/RYSa5KixGR+IB50+I/mxXMRY2bnM7J4PxjdKnpA2Hi1mJ2Yxmyu5V1JGP2QvGwoEY5mNBHb2kJya8okb8f2Tep/sFp3ZC0XIb+xoNkWD7DknzEQJ6guuxEcjrYixabe6pPR//Hc/taL/t5YSFys0GPYJ/NTxUFO4wgmD3mlPHjtDcs2Qn0gYRod69F6lTWDXjrXdGOzefion5qg2lSsgSYUKGuA9J4X7/Dm1q5xfRhy1SthrmY3xVXNxyrWyQyTrWU7OzmC29GmVu8xvVCZBhQhNVvrb7oTKIJgxbU8IibFACnfCScZh8MrX/1QWmH+no47WQ2KdGaN6jAiTAtsDutbrT3t+BrOhK+QwVbKkdEsvV446Cn8XktJbEh1FmsUi+hl7XM7YHtu74ItelvWRJQfnN998MwC/8zu/k732m7/5m/zVX/0Vxpjs999pEpRYfLN9rPQ3H0Or5XXvoDRkadXzlk0WZQnH0TFqGaTdGzwrgp2YhSqw2KzeWNqQwllrsINdmO1V7JHpbNPtdMJ46kAEaeZkDyl5JWA6CsRnOjyflrziMiOt8P/GEq7RpSoNgWbT5bD21CFN4Zg4ulLH4InT2Kv6/eX2lXPfc96WCC6WDn3ntmJJdvZQOakjLSpOSFI1cs9ywgOpFFhrQyUhvPadLtm0BKfkjNNOFMq/wnsoZjwVtGdLUhjBz1l2PvPcTEnGU+2bK0P7sj3XRgqQ9vx5YiDZtwF7YkpHyjhlbN/r/Dg158BJy6zz5X5LF8FrvxsD+zh4ihOcEw5FPUhwILwzONnEbOzxvZEU4XudKucllEQ2Ts0Y7O7NmJNajccpHHTMJ1Rd02Vs8gHmtxRJJZ8IElepZ+SJbwdKUT0dH1ni1Qfsc06TrPM+2brUvdgO0h5QD7vQpFgYA5T3nM9hNlX1DeL1ard25cA82MWdfdhTNWxaJIVLnKKP5kW4AC2JlRT9vhd9ID4dBd9T0VqFpPR0dJ3C8xnJUWPfqRJ0UWZjmkLTQ9ofFOFmDzuvTM+TTNYV0u4T00msL9vxrbRp58IAwz1UEkjGZvLKub8vrnTCkBMeImJtj86v8YRenfWTkKxr+KO5Cp0ekk1ZgB4SRqkw5vCTC3wL5cQUyTYdwZWtX8HXLMkCpHBm+yDJSCNqJSGblNDlcjJGVzq/5SQ2xV+bhmirZeO70P6V44XwfF6EKY/iinlW7JQmNW28JtABZUtLYJ4Vh4b7SUY9qZ9P3gTG9hCcB3sX4gX9eXnXPrTKBk6T76a1W0tZcnD+Mz/zM3R1dTE2NpYp3a9+9auICF1dXfz0T//0up3kekq7kQU/UvqbHyLvw2qgAfpSquexc1J+PA06TiZU1gR1JgB7tgZbu9pCVBZ0MiuGeP5ykmjm0169GfPN8xkEdLsIF1OoNwVJdX6pQx2xToH4jA/EZwRmgWn0cQ64D/gDtBWgjDD4TuyHdqLXpNmIiOBScOL4eio8f2QKbEUZ1kOvXcVStWHGa4dKa5AOfecYqO4bonL8IhXwc2TVGbo21aDumy7vO88QH9+h1zmWeghYpHVaQuAxWK4Sj5NujrzvbjyFHRIgtYIZm8H0gx3Q7HNWeY0qCO2kU4tCAth9vSQnpjHOeQZb2C/CSRFSR953ztIrCMGBCwmMGF477YO7JxvmGffjrsboltm+40B93Dm2+l8YJKogRGPUWhzINlUgWlFHxuvMxIDd040ZPYv1MN6dzvedh+q5LK1nOTiUc04KCKSsVUjy/u4Z0ertEyEhsRd09ZyoPr8XbekK+jxu51pq9bzFufSvT4iwPUuoRDPqU4edBrN5gQklsbRh/sYAW3v9SL25LEgIie8BJ2xwwqnonMK9VZNiu1ZYjzgQDzw0hdddhBhzeg3ry0hiXGoSk62lHjkmqdBoOh5rCt/jWxHskXmSnf0k3ZUsMDdxwrldYBdzBRTWzpLs7qN6ck7RYj4pnfi1e24q3EseEASb1yCA/74zr3WQhmgyOksGRffZSkb4xkGv4JPSDqZQ27Edv//qKfY8mG39WLMwGVyQhUjh7I4+ktPTusQhAeBUP1/tclK4tHSOCyU246TFnJOCfxCjOue/g/dcWQrxQlhDESactn0M+gRxptsmxTO1h0CbjmtoQlN6u/Ub7sVOzGaoI0vO2D7iUYaxPo+TQIuJ88mUmWADo2P2CbR530my5OB83759vPnNb2bPnj3qOPljz549/NEf/VFGDHcpyMbhq5b8t7GBDjfe04Afjf5mM+qYhKAz61FnYcPQLgMmwJR/3Ca5Y1noOT/TgK3eyWzXN9nW7nknMzKQJjEkxmCvHsCMzGJrDYwIA6nQ70nhnN90tcgxCYH4dBSIz6COWwjI54GjwN8A/zfwabQF4Ku0VnW/08QReu1yIri0qZXzbzh4+uPT2GuVCC5JrDKtW0NSCTNeF95WC/WdJ/t7qRy5iBVHxfedV0Sh18908GUf1DWBT3z4YN5/x3euk9IQ7XuNHeHYCV4Jj0GZVCUE54Ing/MBggXseIrZPqB9d6FyXnAeF/igSqnSYH07yY5+TBPsxEzWc75d1OkcSyUbx7VQBaHsmMxIEUYbnofgLlTxasvFWK+BSKkinAc0siLDK+Q68+MfPpizfTthQmCbkFdcAyx6fAa7aXFYdIsoLjd3UrzeNLsHSc6kmPkGiLAd4bRz6qR4qG/sbJa/ZeaQREmUGAKd6dqQAHU5KekT4WiGICwk+Rqo/g76/A1oS1dAjNWWEXjGDlx4FNC1czlKLNg+e075GcxgqXKeOY+l9WvpN/fPrcXsqmJH59TBTHN0BaKkcCdK59gkatGS/HlLIC65bZxFkxi/hyYx5qPrEx6XK+//4MHl/6c1lhDwZm1dPkD/elNHYu3wxYTK4UmSazZkkPacBNV0RI5l887b2D27b5Dk+EWqeDJUESqpBgfPdo4vlZLSwb8IcPfvVJn3wUps98qBy3JbJco2xaH6aiKFTaIkX0bUNpkNYLqXSAYXpAMpnNnVjR2PYO1Chhy7UoTH0f32mdsP5vwBhOp+/v1CZbUdwmiq3XWKdOh3Q5BXTkZrcA5jogW9THcK2OmaJiM3dKub0q6gV5YO65ds68KcmcnfW3LG9ik0MZIlNckTK52ueJyUzmKKKKkS+zIXne6FJ0OaoghNTRzkk6eebH+6spw/fvrTn8673/1uTp06xblz59i0aRO7d+9er3NbsdTmzi/5bwtZIPLN0IVWzOvA3wP/nrzKUBdFnddF/667gw6LHZMsA4ZC2ntF6HM5W3sGUREwE7Owf7AYiGfkDQtUZUvQdmN9D+xgN8nWKub4NOaaTYCSwp1OHQecpdlw1BOLGJP3v5YeTwGPAd/2j4dpH3jfCdyCD8xNMBCi/UzfIRIg7S4E5p4IbtwJ9uI8A6NT2OdtJ/EBeZLoY9UaqLQngmuRBfrOKzWonpmjtm0gY820Arc44d1OeG2ia7L76n2Fyrkzy8i2XSKSihR4CkJvq0Od9gq6v8R/MQP0LOHyhj2X3cOeX0EcjDvhmT5gVidlGrNtwBd1ykbLFAlVytLSoqDBnXUWu7sPe6qO3Q6J76Hc7xzHnWVP6kgl2nMCqckr6pnjKTmUM5s7LLmT6vxpJEDN6LVx6D1TfYL2XOqTK1nwFi6N15NNA11G6DEsjCiJJNaZ+6/eVwh+J8l7zjNmYBHM+Xns5nJwZzo7KUHimfXWZI5q0pVghqvY0zOYK6tsF2HcgYR7qcQdICa/HnW/XiGwDbajET0PQYYFqia/V4NT27uOy5dB8skdLQfcXfq7O4FnCDSMt31Gv89C57bwjHPhOr+YGRkjokREwzqxvjAeLbSMlD8vC8ZLQTpgdwxhRmvYG8idTL/X9zrHSbE4YzKbP+vaQG2jI5x/7B88DPxnfyoHgT8Fvhdf0TV5snQ5du+6a57cAociXvKkjfNcKwg8IjpCzYhgZ+vYyRrJFTmkXUk0Q3FgAR+lQ2DA3l66vjhGRRxJavweUJ35VKeQ3sMYnkKEGjNeL4run+80qTvVmyEAD3ZPRC9TlfxeBOhBlqQ/43vZgR+Zq1wrOxwQkplnUuyWwaxqvigZXJCFYO1Tgp1vYhObERBbEa508AkniDXsvnpfpi8Lts+1tu3l3AfFlobw/ayBir8Xgu7s48nxN4NODW77Um1dy/vQijoSEc6IsN0bRlWJgjlXw2z2JKbtWoHanUOn9dvWT3LOYRopNrGYFExF6EfYnMJJETZgct/K5LYvplgKZMp1cntXlyLSM/gIif+/Yb6WcUL3Qv7WGorzRcm65AVX0Nu+YqAb6OaJ86PKsqTgvF6v89KXvhRjDO9617s4cODAJRmUB5mbmVzS33UaWeCAEeBq4DnArwE/BexEL1iXN8B1/1jtYITb9d2F4Hy7gCpJhfaFbJURwZybgWdtbg/tWyj6iqp3oXJufSXPXLkZe/gC5upNmFTYaRzjqUVSoZ4KjUhZngQeRwPwEIg74ArgGuAHgV8E9gPfIHdSAF5CFJg/SUFjUJLBmTedHtusmYhWCxqpo+kD8zTVzPO3RPiRb8/D3k3Yni4Nyj2UXSvnduleQhzUxeOAKpbKrh6SE3NUtvZTcULFgXXCTU74k1Q4WYUDwIGnXqPGyuQOfxLlMaX0kQv9HPzflRqUlUqAJ4a+1lmnXIghaOkO5+l8DIUGYospzLCvs0fxKJFUSb22eafB4jBjF0meunHpfXeRGGuQxIJ1+b6zHha9fwh7bAr7jC0ZM/UBBydcQB4VnZM40RIbsXaOScxeDGpMusI5oQ5L8gQ4KYHtO0B6M6gpulYVo6/14ddziacTB3fXPO0aLroAP9ZK03AGu/PJzUaKmQW7RBLNgpTH4QXGdmOwOzdhTtYwV8B2B7VUs+sbnUdiOMEZk61fzUmh/ansnAQnIDihD6IB8csFnu1Pper153omNTMHi6J9+mHgM9HfvQh1siqiwULVO11dIprI6vDesd3LUA8oX8ALyFnasyrNZCMfowbFtWuTXDHGINYCaSngQ0nhHpzAshuLGmHr75M9ouzfYnI4e7sEfRyUg6LHjqJ28QiKLIjlLuBZq7R7Nz79mmX8dauExF4sIVDIni9wP6VElXMRn6AWXNPxtabwSx5GmxyZo7Kjj6S7olwrNiDGzOI6s0NSmp2D2BpUJudJtvZnaLEEqDrhOU64N4HvoZikDImQ1KMwYpsm5UcpviaQtVBnhGhPkDgR6uRcD4GnJxQ8KqK60vl7OkymWIr+zJJL4tF0Pil9SsTzHPmk5tlZzKY+Pym0DGtv3wYE5L5LOcjrSbCDyh1gr6hmLQpGlBTucQ9r3//Ua4qwduOr3hSJ/prkiYYy10CcAO4yUZLa66ml2pnViohk+j2GeCc+Lqia5d9X5YSpAOLwwXkUJwiYcyl2oBfj2fZb4oV2H92hLcH0V0m6wEzMYfdUvH+k32iPCCNOeGpSSl6GIF0kb/2N7F+ciM7aUSTXsxV0/Qj8nnSOp9ZSAhlqKApl5yR5wqdu9N7st0LlSQjQlxScd3V1MTg4yPT0NLt27Vrvc3rCJDgOQtGJAA3OXwDsRTPi/wD8CrmjFZyV2gLKoG0GDBhDe17xDkNglTXOz2Y9B2xp03sXnncQY3ygULGQuKxynhiDuaofc98YttHE2AqkwmecY1NqESc8kjq+YRO+7d/rKjQ58SPA6/11qJD7P6Ab6Wbgt9Ge898Aric3nM7kzxciL18rafqKVSNSapl/Fx79CwYgwCopOjGNZj46LbC1O+f4etPx88dGMc/Z6QsEvmruoe12MSK4WDqQiWGgsn+I6vFpkmcMe2IcrSD0OOEZTrjXCfusKfbfeUclBGuxQxL/HJ7HP8enUxWhyzwxQXrMDBwQKTW0beJh4BNoe8mzJQ441QAvFnjGxkP3tjop5zzUaru/MGamob2uO/qzcTKF/bZUFES0P01i9Hru7cUeGtN+WptgUthnhXt9VC5OcNbgvHMx64pBeTvHpFBBJ3dKqt45MD6BURetoq93UiwkVQLqIXBxiL8sFQEXoR4SWZqhKwd34ecxp0SJQ/4XJgR6Z+ewVjC9yyDR9JIFejbNEEeJ9ep3TxX7xTMYttMlji1imUiFDalDxOKckCZaTZh1eRa+KblzUnhODsV9CNWdoNXXtwk8z+R/37uO65fZJClWi6/2vx8ANqD6PNujZmnV8/KaxfrmnHMKzYzsngU/Rq2nde2srl1bfRTrTSiSwt1VJ0m9DXS+Ou+0f/K0qGVoookGovN0wCgagB9Fg/FjwBlgI5qgPgD8OPDB6FQCL01Ilj6Rdi+N7F6sE7KEK5Gf7m1eu98VEoOpwjpd03HUI0X2B1v07Uns92yhAlSWCGnPJfrbUlI62dVF5eQsla19nrVde2ytCM9LhXdX4ef89wuV82D7ZikmgTL7R6u9i22jMRqodhlNOD1Rti8lR9XUve6cR9tK7gb+OXCLP9HE273Qy72Q/iwjYtTUaBJxzMEzycng7MRF7FUDugTLSUovQAqXbBvAjtaxB6LEm0+KpU4YQ33JDHJv1HaENW2XjM5eJ7+/HwQ+DrwMeGbwD8j1VJcsDWWwGhGRLLkS9H64tyqidZoeoJfOicx271nWmw4wzjHh4GaJEpuAnapjt2iCpXVNOujN4NeUdK01BjPcQ3KmjtnjX/a6ercIJ11RT4bESoq2+7RLRDej17PXyJPS/xxNaibi18/v6a513oJ10cB8VnLS05AwSPzapf5SGacB+lLXcK1kybD25z//+dx99908/PDDPPOZz1zPc1q1dPUMLunv4k1QzpiPoJVyg1bNfx14FbCd6KYzefW8nTIoBwjhmEB7Jo0TP49Vckj7uXk1okPRjPOCFV3kBinNO7ehErShB7ulgj1xkSNXbOSQEeZSeGcqbE6FpzQd/6xiucoY9uB7hciNuC29Fp7XUBj7lf55gP/FzKpNoxXQ9ZQAEQvERcFBhDw5r85JazBeCNxFGezTVOe7pik455h1wuCpKe0z3zWkgbnVwLyaqINiKosQwUWSBwR5xTXvv+sl+eq4n3du1Dh7aOYtTrhbhJ/AcOrYCFft35VV7aZdeyek3c9xFSF894pXisGgrHvVlcgAkxvhOGj5DAoZvUXKwbmeY6frXQg6RDPPIsJEKgw7qITAYGIWs7WiMDwbQcOCA7kgHtpLuWpkNSGWDPdiuiEZncbsGcKIsBthpClQ9X3nFb0Ode+cdXJM4n0VZ64fBv4RRaw8G0X1xE7resI9na8aBMKwOcmr58HIdaPGzVo1NlXRxMpi+ySu6p48NsKGfbuyyut2rzMDpF2DuybJcBfG2NbKwVKWMUYc2RxxZHcNYqdOYaZrMNTDVqfMtVejsF/x1aBQgc0qB7FzQh6Yh/W7H/jD0il8FHiOd3iE9Q3uCjZPctt3Gr2efwH8a+BrwI2oTq2KJqIroiiNaodAIXbe4kCh5oSLonN68wklPkE6OYv9nk2t1fJg99pJXCWKE2RbevwM51nszgGfBPAze51wxgn/PVEEWB/FQPxxf132oIH4U4EfQwPyDeFj/Wk9E9VTL4UMbh2Oxgrs3uNHT3HlgeUhEkNLSSCia0opKV2ye+2C8nykXa57XCo0m4ru+aoTbvDJlGS2QTJRo/KyAaz1o0MDpN0/rogMFWDvBionZqjcNJxVzitOOQNucsIfinDKGPZF55n64G7WG7Ng08r2Lfa/4r8z3pZ0GT36WDp8fDVS4HrwOuIrwP/lf/8p4L+jielicL4wbDvs58z39DAmIzrjfGfYd40Ue9YplHmJZHBBjDFIp+rrjn6SkZloEoPuvarAXic8LkLl+Gmu2L8r43touCISrGD/KNq+YPMCWvPTwJ+gerNpcj/CGb1m6ynzUhwbHGy1Qe1uVXLkw1Kh9mV97ITsZh4X2OIzb5lZOzOLvXJDvlxL4Fkx1mgLVksSFJLtA9gztZyt3Rc1djv4svMJad8SFO6xeWlt12qXlA7InIeB/58/l4PAW4Hvjf0Wk6MA10NCUSjwg4SiQohfKkC3gNi4aLW+bWbtZMnB+fOe9zy+8IUv8Pu///u8+tWv5qqrrqK7u2h6brzxxjU/wZXI4MY9S/q7gvNOfrNNoTfTTnSDHwCehWbKf4kcshEgfjXvrMTZnk4ZMEFh7Te7yLmUvJJgz87DVl+2KffeLcXJLPXAhhnc1hjs/mHskWm+tH8jqQhdztFMLU9Lhdc5yTPJtAbiAVaVmPx52IwGraA/gFbaC1U/E5TM+gV7ge007lkOjmems7w1zrii/GOxkg6mKdiGBubOE8G5VPimg+cencFesw1jre83t75ynrO0L0uSknI0aLZz1yDVOaF6Zp5kW7+SwqGJnGc44S+dcC6BB+/5Cvv376IpMF/CM5adkLKjUpbQ391l8kpn3zo7KWH/xb2eKZoRj+VO4Aby4Dz05CZ0hq+F+0+NnSfvEp2Rvc1veCNgTzex2zdksD6bOY4mv9kXk5a+cz8pQSzJnkEdx7VbDd0uEWZEuOCEzc7hxJJimCk5KJ0cEwEuoHvtbuBRfwqfQZ2555I7rVo5Wb81DNWf2MmsodWfT6IJg2fh4e2SB+eBR2AhiYO7L3/uK7zoNRqcj4uO5iEL8Pwx2cBu6s3VYzvduZBEa2gNOV9HNcEM92BH5zAD3QwbYSQl6zt3Tvt058gdkxi6HlfKZ1Cn+04UJv0s4FB0Ci+jiBZw6+gMFHpSo889hQamG9Dq8N+hAWpm8/B2z2giqF3yILZ1cWJ6AjAIG8P+I3cA7bl5zKYoIQ2Lr11mrEpBemqxO7uwYzXszgFMIIVz2rdpHHwOPUAJYA+g1/8AWtmrUszrlG2iA54O/DTKw5LtU8n3X1OWZ/c+9U9fWVZwHlpKZlzuYGqve2syOm7bjwP2OFg3+pKOOUp1VCCp4xtN4RU+OZwcmyXZ0YftqVJNDBUbbF90LCBZUtq0aUfY10PlExNU3b5snJN1mpjuc8IzBQ6ZvPIa8zhAjhhoZ+tiVGRsE8PtE/bocuDjq5FMp8vCdu9GcntnyAP1TgmEVp9Wk8B1B+dF2BYnpQfA9lSyZGSx3WCRC9CBO8Du7Cb52oS2P3jdnHj/9koRjgjMe78lRauW5WA8+G7B/jnUz34UTWDcUTqVu1BdGldzHesbnDd91Ty0dIXeZYdekorJgzmzyJrFUtCd5ElaQXXXMGT8GUYEOz2P3TRcrJyXn7eTsAcLMHiw27pIvnYGw65sSokVTWp+2NtdMbl9StGiUFv4OsXA3KHJzzeXTqXMUyWsv98SJ9Hr3n4H1MrL0MSr9b5K7rs8sfD2JQfnv/M7v5NdrHe+851t/+bgwYNrc1ZtRET427/9W+68805mZma49tpr+fVf/3WuuOKKlr+dHP36kt6znKEKz0eAIaAX3VQCvBr4TeAn8fAL8ux43Tsr1eiGKjsmsXEYAyU0wvd0uDxItxMN2NyfK8d4ky3GHA15D6yHtlvrDaiBytW9VD8wyve/IOXL1jCVCL3O8UPO0uMkg9+2C8TLzwVVSiFwvwF1yMM1jB2U9ew7D70jc9ERspjhksfOR/ZzyXnBfw/TcNimg2Zga1cH/NszNX5i5ALm2Vu9Q5IH5tXEkCyVCC6WNkFdBvHb00NyYpZka182WsZWhC0iXJUK91XhJa95eZaNjL9vOyh7+Wcp/RyqB0Je6ayyvvCieAxVHKA/hdxxhmLfq6UYnHeC+RX77nyyzAmnHWwVZQFOADN6AfOULf7yexhYljRZGhJCM9Gm4KQYa7QNZM8A9huT2OcMY0XoEWFrCidTYZMITjSxUoaqx9XxBsrt8FXUOTmOOqizpfP4OFppCTB55w3pei1hqNDEFY8HKKIe3uTPSSGwvg3ILN5XFgeMP/ozL2fGr2HLKC7C+Mk5zKaevC0BooTXEtax1Hee+L5zC9hdG7Gn5zBXb2S3wP3+pkqdIKmj4YSmMXn1gOJ6nkCr4p8E9qG25PloQve/+t+/AQ2Cyw7mekm2NygmkEeAEB6+AvgIes89x3+vuOKggXrr/msHaXdoYmyX0wDdIuobOsE0HXYGzHCplSu2e+0kDgzC3/nnZucQydhcRhZonTqan3NgnNOyiDG8EEXFxQGsjZ7Hielwixh8Ehi4CW15S8uH9w1CwLcU+cXX/tgS/1KlIXnP8qzkLSUpLBqUx7+L7aGBjADVNRynUzjrhOsCpP1bZ0mu20wFSIxWzpcOafcS27sIgsueIewFSGYaVCqWiggVcVSdpe6E700dd9uEV5KjimYoVsnjx3avlX9nUbuS+gsSyKDWs++1Exnjj1Dke/hB9B5rF5x3SiDEfcqpaBJREEZToc/BYEBpnksxm/MRarZNFXxB6QBrNzsHMFNCZT7FeFK4UD2/wikK4zWveXkRLUb7JPQIqnvuR23fBuAZwE+gey7ID1PUm5m/vY6+Swzhzlq7/HkE3hDI1yzYv+oi7xt8oFiHIsIFj/zblsULgk0d5pxgN0Vj1ArB9gIXwJb+1qME7dYezGgDKw6bGkwFHSMqwqRTzpcuTJZACb5LTHYaHyl6XT6LJlGOov7d+ehUXkIe7Gdx0zr6LTFnT0gm3I9OKQHdg28m8lu8rZsX6H8CUDVBlsXWvtA4h/U+4fe9733cddddvPnNb2b37t285z3v4Y1vfCPvec976O3tXdF7tmSo/OujwA7/3KILcw1qiD8M/ALF6nnFP++ONp+0ef/gbI1LIKQiczDDWBl7dg629BaVZLaJFiDpiCUYSe9kVhJDV2JJN/aSbrRcf+oibziwkX9ywgtSuN54NlvnMGhVeLEAvSb+Z28srkcRB8fRfvW4/y5kRtcDohkzItfEE6ugm+3jKOTwabQG6ME6FyrpTkiaTsfvNDWYS1PtUd55eI76no3093VpH38lCswTi1kJfniBvvNk7xDVYxezvvMwWqaRCt/r+85/xGrf5HTnbdm2ihC/9jWibGG4Jkbv60B2uF57uxwghP1XBbahsNJ70UpxA63KWskdlABxL0PGWpwfp0EwThlrbwn7zjnsRA27vRuLJzUK+20JibCClJIsNiBW9vZhP3NauR5MFVLYY4XjTnhaCk0n1K0pBOMhQfgVNNi9H+0Bvgn4l2g1ZTPwCHkgDOrcZd87CvDWq285diLC+ZfZvj/uz7siRZ6OCgv0LEsHtm9R3XmzhBGU+Ugue34Ge9VgVOqMdefi36XQZuLXLrHKQWD3VDGfHQXZwU5xHBRLNk5NYDYV6knEAeGPL6NVgYdR/pI/BK7DBwD+b25G7+OnQEswu17IBxFpabkKztZpYJc/xwHglcB70EpCsHkBARHmnpfbFMrrFuzeGYEdPkttRDQgFDxfAMvmC2hbhUVP3u7sJrl/nKoo8VYgcv1hJ3zC3z9itOexlw7BeFDL0fMYMZagPfoGJU19KlErit9768UkHgjF4r7lWdEg5i7U4X062eXIgvL458Ih0dZpKqTdCTyaOq51QheCnWuQTMyTeEh7qJwvGdIepBOhWHeC2WqpnrhIdaiLJBWv79X+3eK03eIs2l44F32n8FRob/PaJbq+Rs5rcou3K2EKz3rydYTAOdb3Dr1/QHXBt4BvomsYEtIB1r5Q/3nYxylk5LbiYATRvSdgMJizcyTDA76zoMy1ssiEEui8hj0VKn2iYy0PbChMm7nSCR/0MYRD169JricC10ywe2P+mtyMcg3sJ9+DzwD+C5rACEnN7Lv7/bdeEtq5YtRYDdWHD6JtZv8M35JAHpyHlq4Fk9JSLOiFxwknbHDaPqsVbTAX5tU+DVR1f8fo2pDw6iQtgbn+P7ulTxMqF+qYzb0+LhA2CfQ64ZTAtf78AlIuMLPHyIcURRTdjaLFdqO++A+gduWT6F7+b+j9Xo7DFnBpVy3t/M6y33IXet8FfrGA/nsiyQaXHJy/9rWvXc/zWFRuv/12XvWqV3HllVcC8LrXvY4777yTz33uc7z4xS9e0XuWM1RhU5xGg/OwBhV0cV6NOsM/TvvquTqd6qi0dS5ROGND8updGCdj8FWEyRno5GQutTJrTKH3vCcxpKG6t3eYyjcvcuOVm7ghAZMo2ZhBvOKICrrkMWP8PFTJ4iCpCzUkD6JBVZwFDeQt69F33q5366vAb/nffwr4fXJHpXCZSo+24bBNDcxJFd7unONIKtx4dIyeZ23HGrRybsMINUu1uoy1iT9/gb5zc6DPO5eOxOWjZULf+d+J8CcY/hm5UV+qQgsK8EF/bUB7f0LvVlUiWKZZP3hYDO2LE1hHUMX4K2jG9c9QJ3gn7RwUWsZOCUXli++bQpTxdKeH9pnJGWwVzMYe3SpxUL6c/QYtSZYAFUyGurEbwI5MY/dvxIqOLzzuBHGOWiqkFbiIrsf9/vEMes/eCPwsCreNg4dAxvi7qJPyH8mDg0Jwt/RvsCwJAV65LeHFFKs/z0INdwxtz5m/F+hZjoO76EtMOBgO1R9BCTRFsOMpdnM36mGYVt25FInW3obA3BjMjgHsPNgLc2zd1M85pxMuKg5qTaFZFeqexXYKdfjvRnXRy1CizE3hGpATa6ao03JX6XvH1Z/1qCAEO5fdK5K/PoLed+Fe+1G0ev5FtNofqueBGK4miq6JHYn43ovt6oQThgVPEoXaPwQ71cAMJ5iwdlB0NBe6AHEFSCMNNWC7+qne2aCSalKzyynB2U1G+O8O7hDhpRhujt4iq06azgG6oAngLDmI7tEHKfadB7uUmvVJsDhamZHvR9F9oHbvt9H9F39yfDlN6TVDVJHzkPaHm8KzA6T9+CzJtl4qPdVWlvYlQNoziSEIsc41BnZvJDkxR3K91+0+OLfAFucYFsvvGsMvk9u9dtJAg715/xg/n0eD37DvPo32vT5X8ja89RzPliGjSgH6ef/730bbS96I3lOhuJBIXgzp1H8eo9CyfmUnjKWwK0Ib2bEpzC07sqp5y4zzxaSsX6Pqud0+gB2tYff7wNzv9f0iXEiFN1VVrzwFLebchwbjDwNb0cD7F9B9FSfOKuQJk6ehibUZSoGd5Mix9YJGZ59DlIxDdUDohf8MOWdAbPcqLDwKthygBv/ljPgJTy7sVcFO1THDFovJUZsZgo9FDEekLyFbQ5MYki2JJm829eRtt8BegREnXOPPb05aq+TTwD+hSflTKOrxTaj/FvSlAb4fDc63l79vtH7r5XfGiZxwvX+E4gSOF5D7LaFQFRDSFXliyOG+I4Lz6elpRkdHuf7667PXkiThmmuu4fDhwy3B+ZYd15ffokU6jVELDspecuhXFVX216MK5Q7gZyhWz0PGNVTP4/eL33/Cv99ACMpDFSj1UL/TTYidTFi2k5lB273BTKyh1/9fe1Uf9VvHSH/Y95t42FEikKSiJGQe2l4OysN+nyEKzE2e1Q3B+Y+x+v67pUjIYGbjX1AlcVfp7/4f9EYfQpV9P5q96/WP/cBA6tjYTBlqOIYajv6m0O8cfU4YfWicrukaUyblSmszIpykomRwdhlEcC3Soe+cXYNU5yAJfee+emCBWafO0sO33cE9r3k516FMwoF9uIE6ILHSrEVHJ/k4ee9W3P+zHuLi/UcxQD8GfB96T30/6nS+Bc2ydgrOEyd0+Xu8vK/DKLx6KkylsC0Ed5NNzHA/1lg1SvE6WBbOPJclriQE1ApalbB7N2FPNrD79eQSJ3xBhP0pnHGOL4jliDHsRgPu16N7qZtiRS8+DLrGN6KVzh7aOyjrBe+LEyDhM0H142Z/OBT58Hzy5FkgFquRj3sr752C7gQ+eusdvPA1LwcnTIon05QQ3IGdbagTsak3yrSVdOdSJO47j4IP4yx2+wCM1RnY2MeAE0Yd7HdC02n7y7erCl3/FDru6bXolI8qeUAekpgB3m/R4HyUYhtD2UlZ6wpeS/KDfJ+fRpNg+HPuRVu53osSDgZG5Jggrhat40Izzs8IXI0GC1lCWsCebWA3lMaoQe5oLhicG1qCBICN3TqOanyGdPdg9v0qArcY4RYRjC1Vy0sBehYQRMH6vHfQEuODJXTPfgZN3gfdGTO2LzXB+c53f2TJ0PZs/jN5svzO0t/8gX/cjNq5zagN3Ogf4583+Mcu5yfGNIWHmvB1J/xQGiDt50iu2aQOq/EkqMuFtOOT0oG4MSRTwkXe20ty7yhV2a02zwmJg4oTHhLhrMAZowHsPmAQ9UfqqE6ZptXGJaiN70X3Xx86IjaWO9H7W8iT0uslcTtQHKAfRYPTfrQ6+QsovPatwBb/PRbqPy/7tE4E59TXHXfC9+CTL80UczbFbOvLyOBaZpwvIu1aucKj3dFP5fSsr/hLdpzyQfqj7/0Ih37mxzDo9b4Z7Tl+PTlqJyTE4mR02Ivzft8dAD5GlGwUCrPT1wsaXbjG5GtZ9js/Ro4aiyuvlQV6l9vpTXEwimhSGnIy1LMpdqhPx6hBUVcuqjdpCcwxujftcD92rIG5kpzXxQl7RTjl9B4LaIGgg76BJqQ/g67Lj6K+W2gNjm1gHfVttqKx1g7aJ6bXxW9pgxpzqN+y15/HDIpaKaDFpMiZ80SQwy0L1v5kyeysdlcODAwUXh8YGMh+F8vF8ycXfc+wocvOZQjObyEPzgNbXxM1wL+P9uMFaGI8ZiZUz9tV5AWF6ux0EaRdyCHtFxt6P26JnMx4Ay3nhggEZR6mWfVQzcqWXrr7IX18Cq7bBKkofMxpgF5JHbbLasUI2gadqlzIRiUFY3ET8Pd07r9ba0czZLiDc9L0yrI8q/cN6MabaXPMAhedcLaecrSpJHCNhsM1HGlD2HTiLC8+NUm9z3LukXG6qpanXL0dW7FULdqbulwiuFgW6Du3e3qoHp/RvnM/WiZxwj3egZr9vmcCWq17Np6U0B8VfHUSVYQV/3o1+v1jwP8bncoPkSut9WaMDk5QIUD3rz+OJr+MP99fRivDH0D3X4CKFYJztMKSGFMMGp1n1HYwKjqObsBnn+3EHGb7gHfMTe6ghCzyUiuueGfFRg6nR1dYA3Z3L/aBcYwMc7Qp3GG03/bdTrgiFV4ucIOBYSKdQ6tjEhJkCflseNB7+wTFYCtex/WQ2EEpQCnRNoT/jDqZ/wYydEeNvAWo4nVql2ntwysHdzd93zMR4KIIDZFs0kWmO8/OY4fQQKEM1zOwZMUZtZYYgwbmRpMsZvcgdmQarttIvwi3NR2vaFomK8KdzvGAE15kDX+KTq4I0PWEfB9WTM7rEIg0t/mPHkNhm1miyqwf8iFeu/iemUF1SXCQw333ErSd63NoJaRcPQ9J6QqtdjWryosw4RzPc7S2cp2fx25s08rl127BxGcghStXz1OL3d1D7+k5ZNeg2jknpIj/VyzaZvvNFBPScYAeEsAFnYMGF3+N2pIucn0WEGNLrQK96AeeuYS/IpspHKPGAmrl09Hf/Ta6lhfQquwFf5xDYfhT/vXzeIg4MNgUdqVCtSlMOkdVFKW1ZbbB9WNzJC/ek6PGYn25VEh7kCyzb6KLbWDfIOaOUySNlGrFanAuytr+T56jwEVJ2B9EE5M9BKb1/OglT3CWpdwS9BLaJTbXp+88kPZlATq53dvn/6aKFjkeQRPT/8V/j1AIKSepuyN7ne0/J9qKKjCO8AL/3J6ZxfaB7a36pYv23GJw6Fg6ksJ1Yb8+kcHZAyncPR4pM/98vc+fCvwOumfigLxg8/zHBPuXiuoeULt3jPaQ6PWERsdIsThAvxb4fPR3ma6UnDMnVNDbJqXbtRuJgHOcjRBjJlTPL9awQ73aHtSSoFxYbyq61xT1ZrB7w70kYzN5hd6jL3Y6eNQjkOaNYQrVN3ejRccXQcH+xUF5sH8B8QOqm06i+jP2/8IeXA8pXNvoOega/RKayPy//PfZRe5vVtDE0BNFDrfkqOI3fuM3Fj3WS/r6+gCtoMcyPT2d/S4WYyu85mdfl53XRz/6Ud70lr+jVqtnf3PXJw/xhUMPZRv73OR5PvT22wCtZOwCPn/7QY48cjhzrs4cG2H81js4gGZam8Adt97B0aMjCnkA7n/4MLd98GDWIynA/377bZybPK/QPmDTlx7kq/90r1e0QqPW4H/e9kEaE1OYQaBiueu+r/L5r3liu8Rw5tx53vKX7yt8z/d/8CAPPnw4+/nxo6d457s/oj9YAxXDu/7hLh4fGdUKemI5/Phx7nLHGfzaOQYdDDrhXbd+iLnJ8/SKjrz44qGHufuTX8w2d61WL1y/ioHPfPIQD3zxoay6PjN5nm++/TYM2muSAp+6/SDfePhwZoAOHxnJz8/LO9/9ER4/eir7+cGHD/P+Dx4s/M1b/vw2Js6cz36+59CD3PWJQ1lQPlur8zf/473M1+o00SCn/+AhnnXvQ/whusm2TZ7n2Ntv47lo8P4KYN/tB/mhRw7za6njPzWF1x45xS0f/Bj/xTl+Vxz/Dce2j36c2cmzVKuWoYspD937KAc/fY/y7VUs1cTy1r96X9vzC1K+fgB3feIQ9xx6MHNMzpyf4i23frBg8D5Qe4xHHzzsFbowduo0n/zgXfxwqi0Rzb072XDrHfzcsRF+EvgXwFMeOUzv7Qd5IVqxfDZw/O23sXfyPNeiivPivQ9x6uAhno9WVyq1Oje/7b1cW6tnDsNn//EQXzz0UNYHPnHmPG/589uWfv8tsr6xEbr1r27j7OR53YeA3PsQFw4eygKbrlqd577tvdxWq/Mous/uOXiI+774UDbGa+TMef77n9+WGTgB7vzwQb71tW/ra074xvFRej56N+Az0KMXuP3xQ5wcHdP+Ymt48JuP8f6PfQZsrho73X8t69usZ+t316H7OPTI17HGYPcMcGFkin/4+49wyAl10UkJPR//DJse/TYvTh07gfPHRvjsrXfQB9nxqVvv4MLxEfot9Bs49ehh/ukjB4skVW+/jSNev6TAg/c+xGc/eSjbd/Pztc733wrXN6zf+/7uDk4eG8mcoQceOUzf7QfZg0LWXgW8/e23MTl5PksofPmLD3Hwk4fyEWyl8xPgHz+p6+sEduzfxbnJ89z+P9/PoIhWigQ+/el7OPzYUczZJnZDL0fHxnnXXZ8sBOjvuu1jPH58pOX+iyWsr5IBWj7/la9x9+fvU84Aa2g0G9x6/ydpnjrLsabjlAiPf/Er/PH9X+M9ItySwl+cOccVb7+Na8gDgy/dfpDRRw7Tb6DfwvnjI9z53jsKfc2fufUOdh8b4ZS/nt9+5DCf/HBxfyz5/lvi+gaH8mMfVv0cbOCjx0bYcusdDJEnFz516x1cODbCq4H/48/v07cfLPQ6/8Vf3MapM+ezyt0XDj3EZ/7xULYP67U6t7/tvZyt1dnukypfPnQfDz78dUWGTM5ytnuet3zoDj1Zr//e/7HP8OCjeY2znX5519/dweMnTmf/58HHjvD+f/Iu8q5BkpF53vEPdzB/7gKDQL/Ao/c9wn2fOsSgEQYM9DTqvOt/vJeuRp0hA4MWPn9Q7Vu/NXRbw/nJC/zFX96WB+UGPnv7QY4/cpgdaJLl88dGuPvWO3LUGPB377mDbx9Z2v0XmNoXW18HfPwTh/jiFx/KPuvc5Hkee/ttbEWTPH8IyO0HkUcO83QUpnnLsRG23XoHv4qOMvpD4JW33sFbj43wAeB/ifBrj3yL53zs02xy2uLV5YTZD32Eb319jGRbD0lvF/c/+g0+c+9XlKW9YqmlDd78tluXp1+s4f13foYHv/V4tl8fHxvjXV/4LPRB9dRFKk744B2f4PTJUSoCL3FCz8OHGbxdr9+vokH11Ntv4/rJ8zwdDZBm732IkwcPsQHdi7ZW56Nvey9JrU4vujebBw/xinsfAhSRtXfyPLf91W15JVRWZ9/arS9oAHboiw9x8B8PZYHBfK3Oh972Xo7U6llg88DBQxy+9yH+PYpmudX7p2E6UE3g9g8d5KsPH2ZelD38saMjvOc9d+QBYyp8/P13cvrECBMpbEU4+tgRPvPZezGbPBmcNfz5+z7MmQtTWWLr8/c+tCT98vkvPZwFdWcuTPGW99+OksINYs8Ld33qHg4ffjxLsNxwYoSB2+4k3avYnNcAh7x+CYjG048c5ku3H2TQwIBVvfmht99G/dx5en0y7ZF7H+KBg4fYg/oCY7U6H3ib+n8hIfjJTx7inkMPdb7/WPn6/v0HDxYC9A+8/TYuTJ4nQZFQN9z7EP0HD9GFBufTtTp/87b3MjNfz8jj7mi3P/7itkKi4R8/fJDHv/ZtECVl7D0xyifuuFsDZsCcmeX9j9/L8dNj+ibBf7nzMwX0Q0f74X2VWqPBm//uA9SaTTCQbO3iM996mAe+9mgWo1w8d4FvvvsDfBnhIwJ/DPzb2w/yuUcO8xPoVI+fODbCsVvvyOxfH/DpyH/pNfD41w5zz+0HMWiMdQq44+23cd77f07g3i8+xN2fXLl9W2h93/XuOwqtH3fcegcjx0ZooAly+8hhzt5+kB8A3hWt78SZ8xkj/z2HHuKjnziUcbCF8/voRz+axZyv+dnXsVoxn/70p5eUYHrRi17UMRMTejvWk639p3/6p3nlK1/JT/zETwCQpimvfOUr+ZVf+ZUCrH1mZoYf/dEf5cKFCwwNDXV8v6YIUw4uOiXUmnaa+T6LVu3+DoUS9aEKoiEwIwol/RLan/u/UFhYH+o491kY8EoF8ve+6PT/zgLvBKSW8ivzDXrrKf21lN5aSn89Zei+Cfq/fg5ecy10WeitQE+iR18FeivLyk5LLYXZBsyn0dGEU9Pwt4/Bf3oa9PjPiD+rt4Lp6pzrdyJMO5gSHeMy7bTqMocaumvR2fC9/rqEazLoA4y16AMSEWb8tZ3213lG9BxuR+G0/40cypb9v+gAkNRhak2oO6g1MXWH1FOk4ZBGk7nbvs43Nhj65xwz/Qn7n72Tp1y7g97eCoPdCQP9FZLq6rpjpJbCXFOPeJ2OnKf5wWNc/I9PZ6aaMNddodZlqXUnPNhV4Y7eCi9JLDeU3s9QrBWWr3b4OfTl/S0aFP866swMGr9uFobWcM1iqTlhKuyNsH7o3vqfaCWqB6181NB99yE0KfZWFIbZC/QZPXp9ADRgNGGT7eu6Y3auSW2+yR2zKTO1lJ9Om3TNNeh/97fo+/nr6OutMtSd0N9bwYQ90F/FVJaHiJBU8v0210Tm9fMuNlJm3v9N5m7ZziMHNvLmSsJUt+633+5N+J6eKrY70UyzyZ3/OBDICk2QjU+a9jrlMyhi5X+QG8VB79gM+XVc6wpQp/W7F9Vxb0eDu2ng36Ijp36EvMLVb3XdBvyadUfOxLzTedjx3p4FvjDX4K75lD+oNempp/TWHf2NlN7PnGZD6uj/wd3YsH5Bp/VWML1LB4hJ6mBG9+JsLeXiXMr0fJPZZsrc//k6H/qhvXx0xxAmSZjpTvi+ngo/35Ngeiok3UmhSlBF+1bj5478ek1LrjOfirIQB1sy6K/LkCVrSVorCdd3yhXvo0+j40LfSn4fNcl7dn/Vn+NL0XXsN612z6DrNuVt3kWXo5NeN9fgf86lbK2n9NWbav+ajv4//xobXrGfyr4hXbPusHZq98wi+rXFzs01oZbCI5PwhdPwuqciXQmuJyHtSZA+/Yykt6LoCJa2P5y3OfF1m/Y+wZ+j9/vrKerQfq9DB9ZQh4Z58dOu6FucQdsp3oE6vr3kuj44/e2eZ/YwdRh/7b49l/JntSaunjLYdPzBnUfYcdUmep+2iYGuhIGehN7u4Jck0LNM38SJ2rjZZnHd6g4+dATZ1MPMi3ZysSthridhvstS76rw1a6Ej/RUeJkxGTdC+NSyzev0u3BPn0MDxL9Bkyv95Poo2L7qWnMFiHDRka1f8DvngF9DkWE/gK6dI++P/0/A76HoxG50b/ba3P71W0XlXAw+bSrMzDeZn0sZmW/yR7Mpf9pM6UpT+j43Sl93lb7nDDPYlTDYk1Dpzf3ApepLSQXmGjCXFn2Xekr9zx9i6l8cYPbABma7K9n6PdyV8LG+Cj9cTbiJ3MbFdi9UyePXK0aD2mm/92b8tfk3KLLu2fj189di0Nu+7jXWnbHfGfZe0ON/4dfmXwP/G+XpeAtkCaE+ryv7I90Q9y6n3q++GNnVGSc05hv85mzKv62lXFtr0tN09DdT+t71CAMv3cfgniG6V6I3mw5mSnpzPqUxVWPqf36T6V+7npmeKnPVhIcqCf9PX0Ktu8J8X4WbElsg6WtXJa9QtH9Nivb8Iyhp6u/66zNQ8jvXUmcGaYgy34e9F87lcXT/fdCf/wR6X/1nlAMhrF+/9zWDnujqcH9NTU2xYcMGPvrRj9Lf37+ic12W9ykibY8nQl7xilfw/ve/nyNHjlCr1fibv/kbKpUKL3jBC1r+trd/y6LvVyChirJgo3jjShFiGqrnCbpY28mr54E1NcBX6tIKzQyfNQ5sc86T4kTERoCdrME2v5BZ/3F4vkSm9ljKUOnw8w6PNnjP1+CxCY8Ld1GT+MJrao0pBAxxb/qNwENQyEDH8HbX8V2XJ53e26Eb/pnk1aluE218fwwaHYswmDoGUqePTuhLtc+8T4T+r1xgS283e56+nbldPex/1k6uu3oHXRWrR3WVkPYgnfrOdw+RzEPX5DzdDrpF6AZ6BZ5thJ955DDPjb7XoD8GSkd//DdWFUuvD/QMSuD3GHnCot2Is7WWTtC+I+TQPoOHAqPHK9AZzH9Ovu9CFSFkpOejvexEnUCnDXhMOGGnU7IjOzaD2WQxXYnCz23EWBsglssV60/Yv49JjPZmGkPXzk30nJznqdbwWwIvSoXfdcIzgX5x9ItopcAb7WCkQlIrOBtdJm8jCesXYO3hWsbff73gfYWefvL1O4auEeh59qG9k+9GA/XAERHmi4a1SyM7Utabjz1yGHHCqET95qKQOwPYiRnMpi5M2IqhFxIKFYQlickVW2INicWTX1nsziGePZrS39QJDv2p8ELn6EHoE6c6I1q/fpsnjEKyJCCw4/XbjVbHYjsREw6ttbSDtIs/h90U2xZD20EVTbC8D3WKQy9efNSk+H7hMwQlYrQCGxAI0EwBU0+xNcFsKfWcxyexmMR2LrKX7OyH8RSaTkcnOqEL6E6FbgmcqWbJiSvrWxzi4CHYvZtQUqvwfQNJlIueLyZxlWchyWYKk9s/hxKh7kV7OcN5Bp2S2bzIFvRTOoLdE+EG4/itVHihE/5Trc6203N0XdFP1Rq6EkM1at9Z6sjJWExYozY9y+ztx5yYottBjwhdqdCDoRfh2Qi/C3xvBzsX27hQeY0f+2xOLNaPBuWPU2oFip6vtcR2NXuOruUJipDgHtTuXYMGCn+CJmBCf31s8+Yln7OdnbuHII+nsB3PaQTY8YvYbUnewdWOs2EpEq9ZyXepbOuna7SmrUtO91svwjOM8Oqvqd8SkiCFtTL544D1Po3N2fMTiuphD0oqF3RZsHduiXtuuRK/d9DTYc8fRX0pg065qKMBaAMKkxVq4tndhUL8lH2HOGYQoeHgHMJm8vnmppFiZsBs6c0D/OXqzQ77z/RVsV2COTOX8QXcgx996ckhh9B7Na6S95GvX2z/+o0mkoLNC3ZvD9pCHF9XV3q+1tLO7jkUXr+H/B7bgibu/hq/duRrl/mdaLJtvWTJJYVPfepThZ/TNOX06dO8613v4t577+Vtb3vbmp9cLK9+9auZnZ3lDW94A7Ozs1x33XW86U1vajtGrbt346LvFy9MeIScqR3ym8iidihjZ0cdlT8HXk6RuT3A241p7bsDGHPCi/xuzpnaFaZix2fh+k15ysSUNs5yxRqoWmi4fBNaA0cn9ffjwP85BT9j4Kk7/I4QcA5xsmDPbciKxTOng5PyLvQahP67ct/56urMKqH3KDg+wcDNosmB15NDMyuockgoVgxoOEidzgJNHeIb2CV1yOQMcv9p+PH9XL99gKdcu52kK6FatXRXLT2JoVpNltWX3FEW6Ds3u7vpOTqNbO0Dzw3QJWp0x759nJtuvq5jZTw8L/+comN3gqK8EjVwwdkrOBB+zdYgBZFJgL+WA/QQ3F1Bfm7BEQ4G8T8A/x4dV/JiWvvPQ299poBTRxh7dcYJz0F/aUYddvsGOs55XcEXztn387WsWjVg6Z4uuGcE84Id3FiBGypgrWDFkYglMZKNMAwzUcN3Dz8LkLq8rTYk9Xb77zuBGpjMQYmOtdhzQToxtQvqYO4nN3KCtld8DLgNrSpUyEcxVgVq/jGQrMQOpgDHv32c7ddfzSQ6DqhApCmCPT+P2TzcSoqTGFo2xyKScwc4KlaDEGuMtlfsGGDPkQv82g0buccJ3yfC9cazt4ro97HF/vKu6HlT8sRKnGDZjTLcBicvkBnl9mPtel8XIkI9SR6ch/0XEtMNlODn71HiyFcQkcJ5R6VL8jUP7xmejzlhp/PBAVHP+dk5bIIiVsrO/gJj1ArSKUjY0KUnNDYD+4airIcmCEhl2RsjC8xDcC95UvqP0T24y1/fwIeSmqVxd3zz8HFufPo1C/5NKpLbvPD+/vPuRUkIw/2VJTZtvh4QJU1MVDkXAXHgBBG1/zdauMmCOTJL15Zuuvqq9FhDl/XzzSuWjAxuJdLO5hlgXz988jSV1NHbNFBF+859ctoZyfyh8Mmm9DxIMM/Gf8857woZfzEOoAnhWygmip2sz4SZcmAXdN1Jf45hSlCC6ozwNy9D2cz/O1pBt+T6P7aBGaRd8vGhYyLs1khPmfjPNrDDSiQWxkUW+BqWKAuSwu3sp3dkRu2D55ZI0XMae/w4Nz/jOhJrWqrkwdaVeVYyf8WvXdBP+8mD8/i6hlGGa83YXvic0uNRtLBgUZv/K+haPR8l2Yx7l7P+c9N+/HL23AmTTpOZG5z+JhHBnJvDVMF2V4rrt1y9mZgW/ZkYQ3VzD5WJOpXdep4/6OCfRFvyjFPCt36KvkrV+Eo5uc0Lr9ckSqz49duF6ss4Vsj2hVnfokLsG8W2D3KT8HJ05NtHUMRYxhsgSxsJu1pZMSFckiTs2bOH3/7t3+blL38573jHO/ijP/qjtTy3ghhjeN3rXsfrXve6Rf/2/JnHFv2boIDjBRI0k7OLYgLKkBMYBUfl2Si76d3kjkoXfuaf0QUsbzaASWAb2jNsIR9VIIKZnIPh7cUPXgpjbQdpIakKBvWhseIfPnAanuKD82ANRFjoQ4ODkpSe70Ehx19HEQYhyGt6Q7NWI0oKDO3iAz20erEDXcOYUKRKnr0TFJIlzRRSR+q9HJc6aDqFtn7yJPKUYWTbACQWU7UkVUNXxdBTtfR2JSTVNQpZQ/YnBIUx0cqBDSRHp+l95jasEyr+u4oTXvmjL9R1sia7VYK0u8Thu896ByURfW2n/91JdORFlr01uTJbyf3XSYICzgJIyffIEeC5FAOEisnXegsKv/8DdHpCCATj+efGhByTn0WdCiIwJsp4agF7ZgpzYIMnZS8xta8EpRKk5HBaa+g1BnYPkkw4kot10o09BEIKK4Yu0TGGwc8Nxi3LMvtzSf25JyUHpYqu4XH0vg8B3noxtmfvT76W4fVjaIIurF8wur+MrttL0DVLiNlr89Fq7YK7F7zih5hPlRTnOh/YGYcij1KHvSjYUHmN1zGsx3IlMLYbqFhDd2JwxsDObpJ7Zniaczy1YrWq7oMGZXFVkpiuyDHpMjl0UYNsstE0QXvsolhByPYFeaC+VlJw/Ciu3QiKOIr3XtWEtVG98zPAX6KJsZCUrkvkgJnW6gTApIRRQMXxoeZCEzvcpfd4jHaIHcbFpDwpIfu/Fnb1wul52DuUJ59hSQixdpKRoPp1DDZmAE0qPojanzhhHOzfYoHeq378hxb9fBe/J3lCtYGOpPoJooAN1SOhVzdbFxMF5eFoitpElDxT1ZNPpnxjkuSqjfQYnfrSHV/rZbC0t0hs57LnBoaVHNCMztC9dxDjdBxeqDQ60Zsn2Lz40030GB+CtgOF/Rfu76vQynkIsuLAXFj74K6MaAqPR8iT0iFxV/H3THDJfg0dy/g+4F8R2T3y7wR51Tz1Cz4hwjbnEZqTs5heMANVtSO2RIS6UnRmwX4Cu7qpPjJOn//cqtP1A+HHX/7CbNpvnISuhreDlmSk9STERvLrY9Bg+H5y/zr4LbHuXEP12YIoDOsXEA17yc/vRuB5aJvef6ZICtdu9nlBb4bnAuMCO8L6Bcb2i03s5goZkS1EMQNLi82tUdtSWj8DJNsH6JqY16kQAjcmwn8V4R8dvNA5bhBL1ZoW+HqcjA6vgxYubWn9hv15nEb3Yfi+we9cvnZeWOKigiut3yl07Wx0dKFtE78PvJAIkSR5gmWhkbCrlVVHF2fPnqXZbPLQQw+txfk8IdKWFRF9DGRwsYNiTZ4VCjC/BO0P+iBaNWiSw1bC/NGykzIPzIow7Pwmy9gXReF9s8BwyckMa74SJxMCdq+Ymb55R/FvbowC87BDFoO2kyvXuB/WAjegTkpWXSN3JlJYdSuEE2lbOXcopD0w7QcDF5R/j1GY1BAKZx9MoT8VhlLHYMOxoekYSoWhr04yeKHO4PcOM2gNgxXLUMUyWLEMVi19VUvSvYrxaSVRx9Tmxi02cvt74ehFElG4/aAThpwwKOoQDhphyOY9qoNG4c+D0fMNVo8h65lRTbGCF5yUI7RmhNcDHtYO2heczpNoNSNWklWjrQnd6N57Jjrj9E1or1cM8wtHyJo79Eucc3rPDCNaQZicwQ5r1jlJojmvIbheqcSBgt/DSWLoqyQMDFcYOnKRQScMpH4tRegHBlPJ1rDXKhQ+KSUJssoB7eF9x8j1TexorvX6le+N+J45jgbf4RzDhIADaGD+Tv+3BZhYad0KcHn/HIFxJ2zxf2ADxO/snG6XPp9nboFormAtA2O7NfQkGpD0WOje2ENvFfpOT9MvolA+0TaTPtG2mLCG/X4d457CrEgRTo+8gnAOvZfbQTPX0kkRSrBJ8gA6JKbx5xX0Z8Y2j1ZmN6Nj4+KWrrCGDSm+bwj+JpywFYmS0T7BdLaB2diTr1LYe8EGLtHJ7Fg93z0Ao7OR50dePWf5bXnB7pX5IAyql+6naI+CndKPXP1KNiRiaI9s3yMorPQq8qpj3K8b4N6D3g5kR7AXCIMiDAgMONEjFQZmG/Qfm2Pw6kH6jaHXT33Jk5CrsIOBab8lSLewtw9OzGIEup3QH9m8IZfbvLKdG4psXfi+A9ZPE4j2XFizK8jtXrznYvu0lpLdG9HedmjV9UqK7l6V3O51o9/9t1D0yv34iR0U27oyfez1pIgwmsI2o3bPnG+SbOjDGJtNEylc++UuZbs9ZwzsHIDz0F1P9T5ywoawfils8H7LkM1bL7qtodKhzaSMOAqP+2lTOWd9dCeUqq5SXL8d5NMBQozwr4GvAYcotuLVozWr+5Msv6cDjBPOIAz7vzF4vTnZxGzqy/R0QW8up5hnbWtC20L3cBfdpy/6yQdCj8CzEnijEZ7jiTRj+HrM1RDaZ3rDelJEisV+517U54u/czlxvFaS7fHS+wuK+AuoMUNu825E9frfkidbM4S0X7+arD6maSdLrpy3Y2Ov1+s8/vjjpGnKpk2b1vTE1lPCIsVOUHj9NBSIRjInBZ8dkrx6/jyU+OEgGizEI2YapugPCArhME7Y6OF9oWdSZy7PYSoooUPZ0VgqTKWdxJDpsHGv3gY/JXDbCNzUDweGW+F+S+g7tyI59EjyDXcT6rz9HLmRW8nc104SKgVx5TwYvfuAN/rzKI/iqKAGQJrie+ydQtv9IQ0HF2rI3SPw6n1INSlA90zVYqsWuhPMWvSax7JA3zl1YHIetvVT8VUEn9YHYcnQevGVu1AxDxVYgzp1j6HM9gUDZ/KEylolI5YD7bPeSZH4/kHvrQfRXuZfguJoGdGfJfVj1IDxVKsHiYC5MIetg9nqGWuNycdwhf2yUgnOZpwQ89Donr0b6XrsIvL0YW0bEdUH1klW3lloLY3fc2V4mEUrCMHIFYI7s/bwvhYjSq7fUtTIBb1ZNXnV9TVoBf1LaJAX9GVd8ky0peikZEbbCeMCW51g/QdbBDvVwGytYInWLdOdrExtRjozsRqcG2uoGEtjxyDpsXnYu4HE+aq5E6oYuhAqCMa21w3xPR2v3Sb0Hj+Ncp2EfRFD29dKsuspxTW8iCYHwuiYoIpC9T84JSm69/4YJYaLW7qaJuJbiZxMEWFchGs9Ist49IMF7IV57Iae/AMhXz+WgWDxrQhF/Qns6obPTma6sqV67liWMTLGkIhQDbdIye7dRZSUDvpT1maUqBMpVuPJEWNfQpPS5aRBCPK6TLEaGZxJMfhRk6onJVVIu6TK1WG+fg67pULS35WPTkuiYxVzNuMWktak9CCcmIbv3a7JONHeZYKuZOl2DxTVksHAo/13Bbrv5ihCa4PuXMu953xLSRzchf13lLyokAWgfg1To7evQwP4X0H7z/8M5T4KFfSg7lIRxDkFP6YKa9/mL5sdq2G2D3iEmSmOUTPLu6ZA22Q01kBfVbHdo9MkV2ykV8j4X0y4/sv4rHZ+i0VtTYranvC8HOitZUtXJ66cYxS5csK9tAkN0N8BGQFeGCdaRI9JQR8HvakjKGEHnp/KedV2cR471JOPUQsXadl6k2Jg7mMNu62H3hM1JHVYq1wbqtPVb0mMUDWmpUoe7qtYsttL8o/Dr+UetGpdsPXhGq+Nu5JJZlcp3if4c4i5ckIbWhNdv19GW0uehibEEvzMc2/z2o2EXa0s2VY88MADPPjgg4Xj61//OvPz8wD84A/+4Bqf2spl2+4bF/x92XmIHaC45zzO9mQ9hCaH+lXQUUEfROOncvU8rhw4lKp/tyOqmINNPXRsso7Z2lXMfC0X3tdOOkGmr9gK37sVGpVSuSoP0iU4MR0k7omN+85vQLPRgQCqXEVYbTa6PNs8BObfRjfO9RSdlKwvxjsi1NNCUB4OkzrMncexT92AvXKTznJNDEnVkoTAvMtqwL7WskDfObu74eh0njjxTspb3vH3y0ovhpnN2W1AflxJXkGIHYdC9XKNpFPV9Sit0L5Q+ek2eRWhC7X7v4X2v36Z1up51g/tncwzDnaI7kYzWcds6cVai/HwZZs5GbAiMjgvBRREvJYWONCLfWyKRBwVpwRVNqBUtDlv0ffPnEvy/WZQx+Ao+Tq1axtYK+lUPTiO6s4wtzbue62i7S4/i3JSzFOsuobnIdiI9ebtb7+Ns04Dui3hOohPLE02sBv7cocgOBmrbAeKyXIqBvqNYRAY3NXHhiNnPXpFGPRVoT6ns5gXwqAHWxI74OHnMFYmc8yix7WsIMQBQYxQGMGzHUfnFe61mBQuQduVDqC9eIHgLyaGi98f9LY+I6KJFfHJ6PA5Z2exmytRNjyyectJkrXpncwqeGe8jg/BXbioabjLliehAhv3xCbA96BB3hGKkPYM4r7IR5VHAZXF0Vo5D/vwPjS4C+cS9l4GFS47zB6VYwDbFJKGo9JwVFMlYOt2Qq+Dnq+do+vazRrEFZKOdnWQ9iCdYNH7euH4NKEPvnAsUVfGEt/Pse4cRhEHxyj6KfHztZLMvaJ4QA5rD3sv6IfM7kV69MXoHvwTcrKqYPca/tKEQPgiUBNhe/A5z1zEbq3k6i2+5h2SigtKec/FhYUdfXC6likD45Pjf/bOv8cs88Jm16W0fl2ozTlGUe/E9mmtpMzXEaOcjlFE/CXRev0wSjx4K0VyuKA3s+orRX9L3XBh3Cna1oTEpojXm1VNPKxGb5YD84BYGu6jItB/vs6A6MjlfhH6MQwgDFKc5hOq5O2SAkHPhMR0uEYGDYjbFhXIExRrJS3X1x8XUH8kTkyHlpIuNAH2U8BfoWtXtndh/daaHG5Zu7HM0h76zl/72tfyi7/4i2t6YquRybFvLvj7stMaFmkeXagd5DdPfDN1EfXgocb5Bf53nyHPZIdKQvzeoNm9HX4BFd4XKudgz9aVsTZIORu2QhvYFjIdNN2+HjhxobWqEKzIIvdanJ3PnqO9GTtQOI+j5KTI4k7KQiIi2TWOHR9HztIekgWhWh4CdAttg/LMcfvGOTg5Cz+823tf1jM8xccakcCVpVMSxQAHNsCx6VJWSfjZH/vhJSVR2n5MeO5fvxJNbsT37HrBw9q9d4CGlaF9Qan3mNYAfQ86puutKJdDHKA3nVYPnL9Wp51kTN/J6QZm11DW22aTMlP7Kr9gJxTEHo+CmJjLFVBItiyxB7YdoZhBg/MnCt5Xdk7i6sFe/zfh64fKa3BUXuofQ2BXCNAjJyVOEH3/K1/CGVFIexeStwQB5rxWXltIcYyexaq5AwLEPTF0GUP//kH6j9fprylre7d3OJcSNMT2xBAhEcmZa+P9l90iK/sGbaWMdgjvPYLyFkBk+8jRDyEx3YWu6c8A/wCcp2jzQvI1TrAAnBNl2kd8gO78Op5pYDf5buzV2LyYmCred4NVPemx6c7V82VKHJjHiekKWh27n/zaZlVuH1Av5Gz+zE+9dMHPDciFuE0ssHyPU6zMxe1mC1Z0Gq6YrI710aOjcHIe+lwx2bgWkPYgC8Gi68C5WlFXxnttGRIc7jiwC/d33HceB1zpOuy9WHeG4zwwRc7FEaqLoYLXLkD/Vf9/QsAXJ6ady9u5xlPVm1Vf8bRn65jhnlYyuOUGdV4WZN3fNQBjs+39FpbXUhKuSRzkhbPdxxPT0hXuiXLgL+RkcEFvJuTrVUHX66OojxWvV0hM16LbW6L3RpSvY4u/abT6LJjJJnbII8bKenNZ/qlpNUbhXthqScZn6JW8LWFIhCFj6EdHi1WXOO0iTqzEe283eXAOxaJCbD/WQsoFi7COp9DCQX90bmHvhTjvx9H48BPkCZZs/UQD9MZanizLgLWX2dovZUmb8wv+PnZO4gB9FDKYYeycZAG632wNowsU4Jo/ifYB/SAe5ic5Y3u4wQQY94RUGZmRRFWE8VnM7oHi5so2zCqNYDlYCAp195Bq+JmGBqLlDLVzkHQGBQVEQUaMY8hg0jegsOPnUnIoTO6krOQ7hQqEi56HtbwX+JeUoH0mIthyAo02VfOm6LzVj52El+5WSFa7wLwrWfbs66VKzvTtWh3M/b3w5XFfRTDZ+gxvGIoCgqVdy9CCEMP7EtSw1CjCwwK0KCixtYCHuZjvgaIiPkpOSBVD+yw5tDbAtIPj9CLgK+g80d/1/y+Qw4WqOU7J4J4TgrqJCyQ3D+eIvDgoXwuHcyEUxJ4eRUFs749QKizZ4VwI3udYf3jfQqQqJ8jZaoPuDA5xQLk0UZKV/4rqy23k8L6MZMUU742hzRs5M99gh//AbIRaqCDsG1AnM3YMV+hsZlJeu/B8sEvjh/c+Aj+0G67fXqzopdLRqhpjMG3aEgzFCkJcAQrQ2rVqS8gQJdHnCIoYi4lQY0eqalRvxwH40/zxQXRUXoBqVrw+ie+9uuhs52FCYO7tRK2JaYLd0kthjJperOU5mdmGoBQkWK3gjczDvg2tCegVBucZpN3kNtCiPYr3oaOUMj1l8uu+UEvX1uGNHT9TAqRdoso5+jW+BNyMoomS6Igr523fMy0F5vHx7XG43RPH3jkOm6rwlJ3FpNUqIO2ZdNKV1QR2VhXaPtxbQIytpBncxnsP/1Fej15BkRQuuzWCHlqjvVdGo4X9cRQtaAyQBwbhHKsAJj+3sHdD//l/RJGCzw7/RxT+71Kt8o46YWtofzs7g62CHezWv7Wmla9hJVIOzMPznd3wjYmWpNjwpg35Gi7RKJVbumJSv/20Jqbdeqwf+Z6OCxgpavuuoBjcVUzun+5DyRrfBvyp/31o5wrkcN2mrP81VjiDsBVytFgtxTZE0X+xwtYLtbx1DMoMWhNkWwdgrA7fQ56AjtZxOde0XVEB1FcJZKgtiWNZEIi2bImD8nCdIR+jRnRu4T6LE6KvQ1tJno+3d+T2Lm5PSNbgXoP8Gi0qd999N5/4xCfa/m5sbIyxsbG2v7sUpR2kPTgogRSgHYFBBu8zeUalArzQv8/niKoItDpB4wJbJZ9tDnkF3Z6fheFqUcERnq/yC3fqC+pOYKuFExfJINNxoLCIAVxo7msIzsO1Lc99XaZtzSTuM48h7ROogn4GkXIkD8wrAc5eLwXlweh/agS298LTNnvnoF3VfH0C80w6VVx3DeZ956usIoR7uQwP60ad88cpVe7IDdJaSFC68fuGtz5Ke2hfYtRw9RiUmMu0ZqVHydtL6kAjlQwWhgiTTme9kjrMuTpmW59WzW1EirPagC7IQiiIKzbA4xeLFbzM6XSLoiBM9Pbx+gV433GKwV05y79aid83rGV4/ShaOS+vX9Xks+qrKKfHLXQmWWm2CR4nHGwRIE5uItjxBmZjF2bVFYSSBJ1Z3o9Hz+jvwxjKw+ORvlx8DeOqT5zE2EXnCsJatSUEWGa5ciC0jlELXzvo0QwxFgI+tHp+O4paCdWEpvjqucRrpzZvQ1g/D800Z+ex3YKpJm0cfFiOl9lSwYvfrx0pXFY9Xz4pnDEmG5cX2xqLBskP+2uRxofkLRsrEUdptnm0fl8iD85CUFAmai2LpAI1bw9rkV2s+WD9npHif3hwLKqc2/z5aqWsH+P33bsRTswWN0EWpLtlr1vmn5iifxejxqCzfVqtdOpXfpxiv3I4v1D86LXF6nlAjh0A/h0a7I2RI8ea/v4WJ4w4tCCEkJxrYjb0YozN0GIZrN2SJ8iWK538lp0DcFa0IBInxTKfZXlXtlP1dR+tLV2x3Vur9YsDx1h/hp0SuHLixEp30JtoC+wcOla03ezzRul9ccK0CHUHW702Nej4SdNnsJUkZ9qHlenNkNVuh3zY2gejM+31piwT+WAo2JXgu+wiRywXCjayfojNwjqiti8kpuPzy9qYUf3+HOBacrRKnKwOBdm1JIdbcrTxpje9iTe96U1tf/fTP/3T/Kt/9a/W5ITWQvqHdiz4+3Z9B4LCG3ZFf1e+obraHGGu8o8D76cI8WsG++/f/4wI2x3Kzh7IHZz2ndozDkIFoazoVmsEC1otcjqNgT0b4cRcaVeEi7O4ASwH5nFwPgKcpeigxMH1ckVEsmtbcHzQ6um1KDwlhrNn5+akFJhHx9Hz8NA5+NF96njEwXhUQV8XOHssC1URdnd7aHseCHz+voeXXf1pCexMrpSupNR3TlT9WaOv2K5ykKLK+TzqcJShfQYNCnpMe3j7IPAG4L3AYbySdH6UjIP5VLjohG2AnZjB9oPp6/KFNZMTHQUHf5VijHdg2wUKV/TDkRlwLvIiJF/HRfbbQvC+PeQVhNgQrSW8Lxi22HiGx+PkTO3lpGZs6BI0C/05dORigPmFXq44uHPA17/4IOPinUzJ0TlmrolNwWzpzZdtpRWEkqjTY/M9GNawPIby/tHWqt4Caxhfl/g67aa15zwt/bxaiZ3K8Dy8HjsoNj7a2T10Ha9BkyzB7gXOlZBcCec+7mCHkCWlM8TAeYW0m5iZfTWVvE4VvF3dcHqqpYJXyBQuUwqQ9sj+7UVHrD5Ca2C+WEvXPYce7Pi7eLZ5qJw3Ub35LeBZFG1wQp5IKVe4RKQ1UR3bxZmG3hCxPGtnvhcS1W9rUY3M2u4MpQICsLcHTpxvv25u+etWDszD45VocBe3yJUrpKuVcr9yvL+PUqy6Zrev/znYvdj2hT34IpRc802oDq2LUGs61fdO+5V3BZ05Xsduz9u5ktJeWbF/0wnWPuBbSkZnCmv4+fse1v+3zIx/3JYQ68595EnpAmJM8vVcC2lG6xbHDUf9OcT+b0D7xYnpXuD1KIltmO8dw9sb0a3t3W8mRCcV9Ab9CdipFDPUrWiQtdCbnXgftnfBxMya7L/YX4ntSz8whNq+OKFSTv6vVtpN6IrjvnJiOjH5lKC4neuX0fHZj1NMsMSTgpprc8qrrsmSpmvZ1bE2kiRdC/6+nBUNizSK9t2VlWRGEkBr9TxkVX4IzYp9gTxAb5I7KaC9I9uch2T66oEFzLl5XYgNUe9dedOtQhYkqdrbmxvAuAK0xOp55qSYosMyhCqsh8iVZtlZWa7EgWJcOXfkI9QyWJGJqj7OYUNFoOlyDyf02911DH5wB2zsyYPxAqw9WR8SuLIsVHFt03c+NT2bZzGXWBoN5BwVoo+BAryvXWDuWJuMYOyYxAH6MXSGeYD2xcFBqEq1BOcmD9C/B539+icoEWHdB+fOCWMCgyL0isCkw27bQJgPmtjSGLXV+5sq7WDRxsDOfv2MkenWPScsmrUyfjRJHKSHn/eh8LrY8YsdzDVZv+iIP2fCvxYztYfLGfcsxyQrrwLeTp6FDk5KVjn3pzs3PcNkSGxmyCPBTM5hBwy2EiVCYEUVhLaSlR6joKRlDOX2oq5cBMkSJ3zjKtBu1NBPsX4VhIUC/xjWbkuPGalfZPuCnn8N6qzElbt6dM8BTIoo10oIEsJxtond3JuvUhn5sBIns+xgGqO9r+dQXd+ugreCfRGqmu1Gid4EPEDJ7kle9e60Dy9enO34eQFdklXO/ft/FU0IhBm87SrnsWhg7u1esIlxxbzp4AOPwdUD8Oqd8NQEfmEvfM+OKGFt1tYeFnySSFfuHdKM7VxzTdatEJhH67Xb/z4OEGJW57VAHZV1cYw4OoImpcOei0mpLNrX22s6B+ivR6uP7yaM8fX+gOje2xmQKhPT2G2J1gBg9WRwQQrKrLSGO3rh9HwhuJuanlt2USH7GFrXLxTUxmjvW6xRfNd6X5AnpQ+Qq6twboHINibUfAZagX2Hf49ycJfpfQBR3yXj6sAnNs82FdJO8O1XqTfbBebGwI5+NUhrgHwIbx/7K+E0A2M7FL//CvJvHSUOyuMEGeRM7eX9V+Za6UJ1xSuAv6b9aLxsHdfA11pwRz722GPcfffd3H333dlr4edwvOMd7wCgWl1rIvmVy9S54x1/F0P7ojgHQTf3TvL7O87QhY2QbTZTrJ53o/3O70MXP1SBwiZuABecsCU4Js5/jgjmXA27Nckrp5BnI8NGWa20g48ZA3sHYTztvAGXUMkrz30NG+8mOs87182yvBs4ldbZ5inqEH4FhfaFdcvg7AhJ3WECjD0E5SFIv2ccuhJ49tb2cPaKvrZWY6gWkkXnnR+5SMxe+7LnPWtFjko5MA/rdRWaBYZW6NZaKcq4by42cEfQqiu0Gt/8ljVtA/SgOH8CZd99uw/MG/7Ex1Jhm78+dnIGs6U/28+JIYeGmVVUD8oSPKCWZIvV6vnR2YLDkh+Lo1XCnot1lKFICgetDuZaOCnleyLo0mO0MrWHdQzwvjJM7CeAGXQUZZlkJdwXAtz8A9+rqCPRX4Tva8+lmI3dJLRxLrIAfRVibWtV4ept8FPeHbyhH/ZHYygzBETnNQxrVnZUelHUTwgQ4v0XHPvVSvleCOt4Ab3+u2ifOIiJqcrV8wNoD95t5Pq4MKlEhAnROb1ZUgWfoD4/h9nQnZNSET2uhGelXQXPGuj3Y51OtyGFC8+XKdYnyQrka+TB+VeJECzSem3aycte/Ny2r6cihcp5/H5fRCunmd0zRUh0S0tvmQAuPlKBg6dhvg6v2K/3+qtuhOt2qI2MSVHXov0nSKe2u54Ethg4MZUnMuNjmZsiTtxnz/1xgDZ95+TJsdVKu2p8aOk5gVbv46R0HKBD3tZVgLij+7AP+L9RuPS9IjQduFSoOeG8KCTaCNhz85gtvuKaaEtioVCzQlmQFG73IIzNFZztlz3f+y2sgBSOVmh7FdVdxygFdxQTIauRdlwr4f2PkiPGspjB5MW8sF7x7PP70YJSOcCLE+kiOmVmi9eXWcxwYQ471F0E+q2Gn6rT2vVV9aTH2lTPYXmIzYixPf4IQ7Glq2X/Le+bdJRYF8dr10SLsnuIktJ+O8RktnF7wqv9//knOgfoa0EOtyAh3D333MN73vOe/AuK8OY3v7nl74wx7Nq1q+X1S1HawRrCdQyVcyhWD2LdlcE0BepGSeHC3POXoMRw96Iz0BvoBRa0smQFNiMe1k72aM80MBv78p0WV8vXqprXLuizBga7tFx58iJcvak97G+BuyTMfc2q51KEtr+dopJsmrxw7ZZpEwoM7ZJXER5CKwf7KEHagaTpdC54KhqQx/C98Rn44ji89srWinnFOwxda+yILCZL6Tvf1t++WrdEchVryOfS++cWrZxPoJXnKhF8S/I5vUv8iLYSG7g4cBTUwB2gmFUtBui6BlVj6DFKjpSRw4VLgBLk/LoIn3PCD6QOK8KEUyJGRDBjF7DXDqk/6KvmBab2NZIFZ/j2A58bg90JXLc98rjDxpAFz6UMywyPeymy1pYN3VoE53FVIk6uHKOVqT3OQAtqvKpedzbRgPTn0Sz0c6EwMzsxkQEV4ZyDLT64y4hxztezREsGY48s/+qZpIlgvFEAceVWeEHquTqI9qIU92WbzZKdnrRWEAI5ztNphWeuxczXglMZPR9BkU69FM8pXsMuo+tSNTlpXyDDeQ3K+/BKcninITiZ+Bnn3uaFwFwEe2EWe9Vgy7qtOFgISqOd/tzZr2OdrqBDFWj5UrZ5we7diE6QOIcSHmbTSkR1VnPh7d0iwYkMNi/YvQaalH4lxUAzEMFVKO6BtgRwAdqeCnztDHzlDPzytdBTyQPyLn9Uo8e1lELEVVq3PRvh+DxcR9HWOXwic+nBSGZTJP9IRF+/Gg3Of5BSYG7WKDiX9mimk/68Qr9yDP0N+wh0HXtQ+xlscTz/fC/wa8DbnHC1E3YCo6lCogcEuDCLTcAM9eh7Ww3QC9d8NdIuuDPAzi74VispHLCgnmwn2faOfBfj3yokpp9HMTAPa7haiQsU5WT3cdT3NxQLHgFJGkiQQ4JtC0qi+dcoqWYoJtX9fRkuEyJMSjRGLRwXZrHXDuolbosYW6aU9Wb2aGB7D4zX9ALHX3oFZAyF5IrkdmYX2gYUIx2CzdPLsHpCv9gHipPeo/73WyklV/zzbqME4E001mug4dIvAH+DoiASWvvO1wJts+hShgxOmItZHqcWRqr93M/93OrPZo3EmM5fKzgk5QxKHQ1MAqw99hHCc31vU6wCRYawB/gXwP8hN57BgZ0QYYdzniE032gWsGfnMZt72zgoquHWpGq7kOOyb0gNYKw8l1HJC3Fsuf/8qcAZFDJZ6DuPni9VAst3zPocQ9qfQXHzK/OzUGk4bDkoD493HoNbtmrgG3rNsy9jc+fkiZRl9J3X5utRtW7pFzMzIKaYqd+ATio4Qsm4Rc9XI2XHJIb2Pc7C0L5YMnI4E1XR0QznVuDfO+FvnDDmQJxwxolCdmfr2Fkw2/q18mUoMtaudRImrGPYc4mBY2fg4Rn9/W0jyooc1jC7Txe+0J2g0XvQfXGG3ImIjdFqs9ALMbWfpJWpPQR3lnzNyiO5no86lu+jCG8P94mIMDpfw4r28gL5CMqJWezGrrzvrgDxW/2+XRDJcvWAoh8CAifehwsgWVZSQViLtYNiYiW8P+SQdsjvpXgN9T4zRbSKyREru9De11vJq4Hx3j7ryCrnxoFNA5lfE7uxSz+pDM1cQbCw8Finfji9NuRGQWLoeNzStQm9px8k34dLaemq1eptXy/PNg/v9QhaNb2KIlosnFNMpt6RAC4E6yMX4Y5T8JN7YXNvh2klahPXmntFOQdsriPjau7ePjh53gd3ku81iZTEMj7HAokIiXOY1JGkDuOEK0WKfCtS1qGrM35xAjne20fJ+83jZGusO4ME5FivyfVpDG9/IfD9Dt4mQiMNkGjVJvZsA7Ohl8RaTKLXwcTXebU+ZqfgbueA9nM2XbbfarVG5LMs/bp2mpdtUd/hGMWKa3y9V9vSFSds4s+YRxG3B2iNG4LdK+vMKhrMb0QRRwVyOHL9L055qnb6m9Hgbd+ZFLuhGxsQY+XrvkxpYeyPA/6dgxqcZycV+ZrLJGWMEWMxYjOMEYUoX0ruL65BnNuCdgjPAxFqfD5xQTZeu5iE+AfQhFrZb4nXcbWyoAfz/Oc/nze+8Y288Y1vzBYh/PzGN76R3/qt3+IP/uAP+N//+3/zwhe+cA1OZ21k2+4bO/4uLEo5gzLuf7+FYgYldlaCZNVzIng7umj/zL/XVynCMiZEmdpx4kfJhB4SwZ6dwQSm9vImWaOAYUHHZU8/HL9QrCSUny8gAQJSJobrRXuB2zkpwdlYqjhyJyU4OWGj3Ufeb55VztHAPGkKNg7KQ5XgK2eU+OYHtpPB2StR5dxXC54IOHtBMtydKT43tPSd/9lttxcdzCVGzya8bfRx4VteCTxGlMQiqp6v8qvFAX8WoPvjGMXgPN6D5cS67QBv70YN33Mc/IAI73JC6jQxtlUEMzGnRi1Rcj9rFdaeeddrAlGJpF3f+QOjxb95YLQY1DmBZqrOdAcJ16TM2N6N9nKfoKjj1jK50g5qHZzMfbQmV8J9FgLzMjQ6kKzc4c87sO03o8/7+N98gG2+Ym4zUjjBXpzDbkmKM86heEOvViqlNQzruL1Ps7EnLrRCbhdJlrWDZxo0MRz3vZYdldU6mPH7Zu/pPzO0c0HRgYp3RSDIadd7/lMo38pRinwrRoSzgrYkCNn4KjvX1EA9JKUht3V2FevXidxodw+cvthawYtv6mWK9degXUvXzbT2nQebp3uxdS3f+pfva3nNiRQSHqFy7lCW9lsofn54DBBaoD0BXAjKAwHc3z8OL9gOV23OWrkKlfKqhe4Ek6xTsrps67K2uwEYbRaTYEH5LLOdS5yQNFKSWpNkrkl1rkllvkllrsE1tZRjTVdw4MMeCRwYq5E4qRkn3Y6gNresukKAUN4Ghf5zW+o/F+FfO4dz8A9OZ5wrESM6F3vrgH9vo2ztUNwjq5FOkxIGq6okRvOWkj+79UPF6vkypMzvEPbbXootXQUfYw3Wr1xUCDr0BGoGttDe7lUo2r4YHv3v0GkXR4lIUf0tjkcaadwQKudgZxv6uLHH1+5Ma2JzJRJIGQuVeGBbF4xd1J8LgXm0F5f6EfG6Rff5HvICXkv1nLVPTMef0TJGLdLhSWndygH6vwE+jNrP4LfE7PurlQVh7VdffTVXX301AB//+McxxvDSl7509Z+6zjJ+6sGOv4sXKDgnjrx6UKgaUFysIMYYupDMwWyYfE5vH1o9fx9azU3Ig/9tjmx0msEoUzuCGWtgtvTQtoKwlvFCu4qsMbC3Hz5xGlLnscIlJ1NkwRMJdjWD9xkKc18fBF5GvvlieLsTySDLC0mBoT1yUo6i8MEbKDkpqVBpplTSyCEJzshUDf7xNLx6X14dD6WGeKb5ejkiC8iC8873Feed/4ef/LHiWi2yTkGsnxlahhhZNIt/hNYMdNOsHmJUfs+wB0/73wcysThwCdnWslQ8vD2gKZzxDrATjHO8xsH/K8K7m8LjAnMCdlww24a0gmLAJhqg5z2PK/panaWMgkgMPHMnPBJRIT9tm96XifGbwuZV9KQ93i8zbtIK79uDJjqeRWv1fLXwvmz9IgczPB6nGJyHtQuPCeqkNCnC/JpoUuYlwDuB/0o+P9ShTsn+176SGd+jmCU2nWDOC3ZTX872XYb4rYUYk6NpCvvRwjUb4duzcMWmqFQT9qNDXPsJD/GaxRn73cCnomsdQ/tSAVmF79WOLTrYwVMo83q8ZrEjFfa7NYYuUbvXMDn/RxOFb78UnZjwn8kDyLoTpkTYTEis5GPUTB/tyfwMrPibtgvMQwVvCphPNQFbhrUvUXfGslBL103oTOPYoQ+Q9k4tXb/+q69u+Yw4KR0C9Dgp/TryoCCGtOvtajoTwNUje/iBx5Q07/nbCK1csR3MAvPqapqaFpFyYB6eb+jS6OfUFFy5qTWxskjbHfjkhJ/MYusO0xRMI8U6SJxWpK+sOFxqOSsJO6pJEYJuWFVLV0D9lZPTgvovt1DSlybSC21sbZfRS+Igb+3yt7AR4d874Y8cdIlyrRxzcN3oRcxTN+Wmzsaw9jUoQoQTD3sve7SwsxdGc2j0f3j1K/T/LBP5QPiIyF8Jx340UA4+YuFa+2u0GvPerqgACxcVKkbXygHdYf+TF5gOoLHC24A/9v+vLvp/nQipCGedb4UVMIiSR29E0Q9tE9Ir1ZsU9XAoVmzrgdMNdLqM/12WiGZZejNcozi+MmhBARSBsJ/WdVttnNuOqT3s70AGV7ifTL6GgS+nnd9yJeq3vAP4L+R+S4XVF0JgGffrW9/6Vt7ylres/hOfABHpvOPLCxQWf4S83zx2TmKdE0uY/dquev6jqNJ9mPwmmHCSZ8Ag7zefbWKbAsNtKghxVmwtpJMBHO7VLxsT5pSz1AuIMSYnozG5o2DQ4PwhogqCUAiwl6KbxVcPCk4KempfAp6JXvvMQXFCpZGSNIWkhfTGwZ3H4akb1NiH4KkM33si2Nk7Saf2g91R37mD7kol8tZkWVloS5FULNzrV5BXzjPfleiWWMXXajeKJFQP9pGvXxygl1ErsXSZNgzuok5JtwgvdkqQYxDeJzA9dgG7o+oRd4ZAjLNmDkpJjDWQRIgMa+Da7fCa3XCd/1ZpJc9Ip1K4TzshIRZibN9LDo1u1+O4muprOesc3n/cv9aOqT0LRI0poI3iiRcVtG/5m+h+DtMuNBkE5yoVtvl7PKucn5vTxOZANa8AeX8ig1SugRQQR2XI7VUD8PhkXjkv9513hLYXnZSwfntpUzmn6MyvVMJejt8zyAidx6iVA5LCeBmTE6JWUPb9+9DRXg3/OWd8MmVjBM00AOeb2A1rOEYtSCdysd6KNguOLlA9X4Es1NJ1Dt2L5ZauGPYfS3d365SZTknp4+i+u8l/XhnSntHzLkYA948jUPMEcPEY0ThA766sf3tXvG7lJNi+wQXb7hYSSZ0mZOb0MPMpyXxTg/RaSlJPsfWUnrpjX91xvJYijbRjC9ZKpPxecTXwCGpzw94rB+jtL5VpaevqMdAtQkVglwg/7ISLAscR/soJtXNz2M1dWdU8gaIuW6W0IDNj32XXAIzmBKjd1WrkXy4PGh1sStlHD777KK16cy34VrKgX4q6+Sg5GVzZ7oU1DWsU7F0Mb/8pNGd4Nzm83ZFD2o1PbIJH2k45TF8vlogrJ05srnQty4F50MvDffraBQ/ULuvMZVzYTj5Lgq7fSfJrm60hqw90w/vF/lB4PVTOYzsc1jEkxzJkygJ+y73kfksYi7daWSTnWJTjx49zxx13cOLECer1VlT9n/7pn67+jNZZyhmUcJwmh/ZlmZ1o85cdd2MM3QgN40nhTJ41GSCvnt/g/35ShFtiSGZ4PDOHGSJ33ls22hoGDMZEUY/J78LUwr4+ODmn40vKG3AJlqliyEjG4ufXon05R9HqTNY3Z3KHo7LIVwyBednJcagz/xLyTV4xkDQcSVMPGzsjTuAb5+DkLPzbp/gI1dLSW1dd+766ZclifefHp2FrX2swsAwPomKKlbtwXIkqrAaqkGKFlprVGTlHa4Au5H134Yp3gtyXJezBJvn91ESyzPPjPgFWFWEGx7n5WXZs3Y7xDoo1WkFYUxh0WcJco4DKSEVZkPcNw2dPwxcn4JrN+fqFtWw4qDh1kttIwZEjNy77UdbesE6h4ppVTFfxVQuwsCjQO05npvagPwHfMylacQ3r5QOODcDPAv8LhQSHgEOc9k5eJ2RVc4Ngp+rY4URRN+VkZvyhayGFyjm583LFBvjwSUXibO6NAnTy522Wr8XGSLGCMIE6DOWe89VU72LnpJxciWecx05TOL9Y4up53evuQPC3BR0z817g9/y5jouH1oImU0S/rz3bwG7p88Wekt0zrGLmcv4eLcnNHQNwqqZKbgU2rp1Y2hPDdaPEfvejezLmSGmKIg+6FkEhhaR0qLbHSekvo/ukhwgxRrFy3pEAru4D84fOwP2T8EsLEMB12yekvctYg3Rqu9s3AN88B7IzSnyRraE4ablfJKCPwvf3P1vf6maajsTbh8SCcQlXp8Ip4NkWUmtwFVtAPaxUQoBYhtWeRwOz/UR22BT1ZydJPEFcsHvOqs0Lge4FH9hVgGptlvFu2Lqx119etX9A0edcrbRbOwPs7IbPT7YmxSDXl0tUbIXEveT2JiFHje2jTSLZ++grESfSEiyG9z2GkpnGPlSwewl54aps98JYxD60reuPUXKxrf49RIRJpySoieRj1MzZBnbYj1Frk5Be8T4NwXhmS8n9zq1WyZO39LQG5suInMPbt0P87SYvKsQJlTVD/EnR9oXkWOg5h2JCJfhVsLjf8nOo3/IM8ntxlR1owDLyLN/85jd5/etfzwc/+EG+/OUv8+CDD2bHAw88wIMPPrj6s1kjGdq0r+3rMbwhBOXh+Sg5Y2Z5gTpdpKx6Hh0ho/Jy4BvAo/5vlRRHioG5gJlsYIf68s1RVnBrmLBWApAoCVCATA/CsYutG88JS+lnDs50ue+8glbPHyB3CAtOCotX8wrV9shJOY9WeZ8ZfV6SOg9nF6oNP0ItjFGbbcLHTsJLd+uYiLakNwnmyayaQzGBUk6m7N+Q9Z3f9cX7lr1OQeJ7O3YItqNrdpz2ldeVVhDaQYvCz0fJoWFLhfYFKfef9/iqeY/AC0ToS9XB3TE9y44G2KGeDNaXJOvD1F46QfX+wmcEssHEwLOG4eS8Gr7Ueeil5IH6AiO5gnEr9+XvZf0Y22MHM06uHKMzU3tZhVVNiRjO5FWEl/rH28n3OE4Y+ey9bHGS62ZBSXE29mFDFB5XW1dTeW0n8Ui1OFnWU4FdXXB4qn3lvMP6BftS6C9F9912Oo9TW00FIdtvJSflrH8sE6HGe7Es7arnwe79OGrzvgakIpwRYUdIqggEtnZzvkTmB5FjuHL9uyC3ys5FSOFWcIHDOpb7zi15S1fQc9nWpj0K6a5PHCr87CjNNo/08JfQ0aFxUrowc30hArimUwK4O0/BK/c+4QRwHSXox1gnG2BPH5yY1yp5mQ8npeAJixOknsJcQ+ej19L8mNfKuZlvUqmnmMPj2LsexRwdxzZSrqo7TjYc0nBIPcU5KXB2rBR1VNCZUrR7W9FiTljHYI8rLK7C4v5ztX25/XuBgz6n0Ojd0w22dvdQsZYkMZ5GI7q+a5V46UQKt6sfJlxGCnfXF+7Tv882wQoCPPJrFV7fj0LbC4E0+W2yUin7QDHy4Rjqu0C+78M5trN7Be4VdJ1vQQO7dxICd53odFb8jHNQpC1gz81ihrqi2p0pJjZXKuGkw/vESc2tAzBaL8Ip4z241I/whH7tqudhUknBb5HitV6pBN+nnBy7AMyRE8LF/kp8b0Gr3xITMb4YTZJ+iGL1fLWyZCt46623Mj8/35at/VKTNG3PlRffV3HvHeRj1OIbpp1zGUth7jlFuMMQ8GPA+/1nTTrHFuc3mQuOCphzdew2Dx1Zy0xYJ+lEmLOvF47PEM/RXgpEM7sWRE6KyVm2LVpBeJilOyllaVJyUvz7fBXNkm6BDM5ebaYkqa+ch6A8OM2fGoHtvfC0zbRA2ePjSZalzjsf6ultXadaE5nzx3yK1PxRj45Gig3IApcz1oYM7VUo3A7yax2M3EoVZZxxLu+947SH9rWD1baTahygO9HKnghPM/AfEb6/KfzbkSYbNw9QMZZKYpTIyXqmds0ArPCbLSzGRPdZcD7D0VeFp22A+ybzC9x00dHZ+MUF4hhKtweFxp2lWDmIDdNKZCGm9hMszNQe6zDrdWaZIC6Q5PwbdNrFBBrcGRFm+vrYgUQBHtipeWUfLjuDVhXomurNLAKLjvCZV22CwxeKzkq8H9tc8Ng5SaLnoBXsUxQdzNhRWanElYP4XjgNbEYrveW91wmAYI3J4Jllu7cRDdD/DjUZZzwZI0JWOTci2Kk5zObq2kIzg3QkhesuEFOtBqIZxBiTQ8pNTpBn0Mr2/RTtVkzsVl7PwcG+ws8x+WlISjdRp/JbKK9EUjqqBqpOin3lKyWA66k8sbwrAZGSBeb+2O6vy2iYtxztM/9cxAfl800NyufzgDw7fJBeqTnstyewt52g8tU5Kh84AcfH2dd0jIWEflOD9DQklVex/5qUbB96qz2O6k1o1ZlL3QZdRtnbexC6xdEt+vwGK7wBeJGD1z3WYNtwvxaTMFQSk+vNtUSNmQ77bqhLv5iflz3U29uyfkv/CA3wKuTXKOipfWjCoxCcS26nVhqrLBTcTZG35C2EfLBRrFBmb0+AX0ITbl8hoAuFURG2u7yQZ0UwF2exmxINE2LDscp1NCFL2i6pubXPrx3tk5rLuK4FZB15uBMY28vxf15BX3mc2cn2nULjtH6igJziGmbnXfJb4qR0F/ArKPP+GDk53GplyZr3kUcewRjDr//6rwO6mO9617t43vOex549e/jrv/7rNTidtZGZqdG2N0ynyl2KBueBEK7snCyUkAqD6qumtYrwCrRi/CUfjOs4Gb/JfAXBjs9gtlTzlSgruLWWdplpY3RkQhM4Ox9pNSk+X0CMd9hCUB73nd+EVhBiJ2WpfeepSMFJyYJ6tM8jQIo0OPfs7E2tmidxoHP0PDx0Dv75Pgq9dfFs82p7AqcnRRbqO68BZ+d5/lOuL65TLfTWeQdltqGO2GxDUQOz4XU9zFyTZLaJnWtSmW9g55taQXDC47Rmn8NeWYmRE9o7KdNoIHaAVuVYzl4uJN3eQekRocvlz59u4RcrhgMTs3Rv7ldGd2OoWj3C9V3XdQ/ZqtB7nrWwALcMw4PndF1iWHvcf95GyoFduF49KDnXCdo7KCutvsYBfggWw+vHWJipvSxBZ2Z8HeRZ6KejFcF3+8+YE2H2pqcyDDlfB2AmZ7BbqnnlNdaZa4yCWOuRajFnQHb6/rFdcB7vmZVK/D7hvfGfFY9RC+cSJxDaSQvzfsnuHUOTpxMONgcSOJ+ctiLYcR0HBCb64DWye+0CBGNgx6AqnLlma2C+TObvWLKKNcUA/Qp0Ysk3yPVdbPOapY/7vufeWPh5saT0VvLPzSrnovavIwFcwykB3O4lEMA90QgyY/KLWECNWdjbq+1oWaZK8uepFIPyNgF5FqjXHXa6jr39pAY8VajUwD56jt3OcbHumPPVc9dMcU2Hk3z6wHKlHRFj0MVHyceolf3OxRBj+SXzQQO5zesR/fmmBP5NYtg3OkX31u4IYRbpyLXkWsmUfjnAs7CzB0aVN+D5T7s+N0QrIYWjeJ2CvdlPztiebWuKsOaVSMzOHgd3x9DEZkA+xHqzHfIhFBEKQTpq+4aBn0dnn8+L4JxOmRn2ehN8Ye+cYDf1KPIh1nGwer3ZKam5owsmQmKMVt25jPWLE0/B1kAOa4fWxPQK86aZLGT7CkztFPdh+WrGfkt4DBOCrge+D3gXHv2wivMNsmTtOzU1BcCP/MiPZK9dccUVvOENb+DkyZN84AMfWIPTWUOpt0IKWxbdP07432+j6CjFi9VJlLk9J8YpVxF+FF2wLUS9I+RBuj07h9nsiWDWE5qZn3EEHzO5M1uxCtE8PgMILZnNJWQ3y/C+4KQcQI3FtyhC2uPnncTROkYm3PxfIWI6TR1JI6XSdFSbjiQVTFPyqsFdx+CFO2BTTx6MF6B8yZNLAleWxfrOo3nn6j04dT5mS05KcErmosA8EOPUUk+KozC/Sj2lMtfkuvkmx5sudyxKxmklirKdgUtRYzqE7pVC/7vJf17a5TKZU9IrQrdTmF+v/7nv5Hl6d1TpNtBrDb1W4X16bdd33Y0xmhDKYO3GV9ItbO/XffeVM3mJrNB/7tqOVYuNXDmQCr13QcfFDspKA7x47cow+ePkpDhZNT96bHc9OmWhE5SB+nNoUDMhSvLX7/yMbCcYcZgzDeymiAwuPIZAb62l3Ui1UNVbwUi1eN1ie7MbrWZLdMQ2a8XQWlrXTciJUFvi4+zn9hcz2L1sNFBk9waAVwK3OuGM5ElpnU4CZrah331TTx44l9dwNdKJFK4nUWVzeoHq+QrEUmrpinTXjbSOVEsl51DptJ4LJaW/iPanhv1ViT6vkjqShQjgDo5ArQE/dgCSNkF5l1bMnwwEWT53u3QYtO3uRIfqXcMnpWtp+4A8fu2LY9i3PUoy4Pef96LN1RsZSB2bm47TDYc0c3h7mrpCQnI5kuUSyJMz4fUjFJm+g84MBY6lSmIMfQh9GLV/aDWwLxV6naN3ZJ7ezVW1jx7Wnu2RNdSVC87L3j0Io3PFfRacgmWSwsWtI7Hu3IcGXNm4QtYGHh32YGYDyZPS+8N3L59Xh0sbSGzLI0Wr6ESjPuADXl+ec7DRI0WMgJ2u6eNAl94fLUjbFX7BIJ2Smtv7FSLQSNsnNZfhEZZbEsL12o1+xAzFolDsb6xU2tk+RxuuFVP0Xcq2r53fEo8T/QU0JnmQJzg47+7uBqCrqyt7fvz4cZpNnX78hS98YQ1OZ20kqfRoJnU+LfSRFSrm0fMRtNcvDg6ye5TFL1Lcgxcq6MFR+ZfAOREuOPh2qCCk6mTSSLGzYLb209JzDmteAQKibLSJNIr/nL0b4ORM8QJFQfpiCnQhJ+UG9KYNGyQlJ7pZyEkpj5EJ//dRoF+Eq5uOSi2lq9akmjps02GbOuM8q2bdM67Ox3O2toez+2DpCZ9pvpDE61ReM993fub8VK4gFwnGC9UE/7qda2qAPu8w8ymVWhNbT7mqljIy38TUUlInLYHZSoxccEzKBi44KFCq2rF838ECfSL0oUauX4Q+J/TPN+mdEPq29dPv+/S6bGkPrLeERFBYxxgi/Zxt8JUxcBHSI8Damz7xUpK4+hobPIP2f8e9d2UHpSVpmbpi20MbpvjYYMZGLjC1x6ijGGbfKZlf8ezthT4u1FHZDrwa+GsRRh1sOXs+/34Cdj7FNMBu7s33bJkUbq2lpaoXnFubj1QreBRRcqVN0Fdet7iCMOKfZ/FH6flyJSTZ2qHG4uA8Xr+l2r2u8kE+seSECIdFqOlN59dPsOfmMYNWyRjbQjNXuX6xd1x2NHcOwkitfWC+UlI4ozDhbIQZeZL6ZrTSHa55bMOapfWcOHM+e75YUjruNw+3ZTV1JPWIZ6UTAdwrr9ZERYCwxwRw/vFJs4WBn6O8dvt64Li2c7UkwEJffc21QtnrKTRT+MYk/PXD8PAY5if3kfz8DdhX7YErLVTBUIHUsS8E51n1XJP7qecuWa6UkWchUGiiOvoKSjaPPEBfjljRJPQAMJgK/c4/PzfPYM0xuKWPAWPyqnm4vmtt+8rzsoNi2dkNo1Mgon5LufizDMVW8BNMfs12+N+PUFTFsb1arsRcOWnpvY7RmpQuVtBbr20SJTVjeHuAR/8a8CERTvjE5ja8zUMw52skmxXlZ4ONi5G2qx6HZ0rr5h/7qnpyY22q57AsvRn7BfH12oDmuEcoovxiu7US6cR1JORkcMuxfcFvKcw+Ry/PFuBfoeiHJzQ437hxI6AV9O3b/z/2/jtKruy670c/55xbVR3QQCM0OiADk3Mkh8MkBkWOmCRRpERRydbPz7aWfuJ7z/Zby/Z69s+/ZVtL71F+CqZtjn6iRFHDYSaHpIbkMM5wAoecweSAHBqpATRid1fde877Y59z77m3qoEG0A00MNhr1arqQqHCPffus797f/d3i67sRz/6Uf7lv/yXAPMK2CwdvLqgdU2leeWpU3AChRgclEF5fH6eyuLqeaB2hx7KvUjFILOO/2zh1dQJDncOfXACpUF1m/aMo1HMRQkop2jmZ2J0lazugh1HOlcVZuBAQ5ASAHrYbEIFYSPlzSquJHR6axvUaomCFOew1vHTVsabJlKSyZTaZIukmaGbFu2F4EwA5/tPwGP74RfXtFfMQ6Ng3chIrXlkp+4774Ktx/i773xPDszUzMB4taJuJjP0RCp09maGmrLoZsbKZkYymXFgKkVPtoTelxU9x2fqJ4PqcLzBBQe5jfIGV6L10XmD6/gZvupsnAjh9PnbQutYuOs4C3thQcPQp6RqXhKCOw++qzRWLe4/VwquWiw/+KXD5YprDtKz6QEelWwvZWGccOnGQUV4J5c5XHxuhNaHEylMprgoKVDqt4vWcAczU2rvZNUApSosNmkdn3KOow88xKbM5Urt6tCEzMgOUxXiqqvmNJ96dlYS0yyJw3FWI9VK7QiRCx5BmFxhpE7MegjXzJlafA7E6wedx6jll8bpjomvJHRavy2Qq+t/yjm2pP7/AOpw6kWNKiAsHJhzLNqq0KvcKdAc7oXR450rsGcpCgfFnheqKGHfuwU5FscpQHbwg9WRap+67x/zx9MlpZ9HEo8b/GeEfvfEOkwzk6R0MzuFANxqWDxPBOA62XRJlRULZezLeLOcTLEu2uuiXvPAHth9HP7uFfjKLrhrGH7/BvSGxeiaRm8YQL/vRtQ7VmMe3oWabLHWWka937U+hshacrMzKFBUrUqtDj40UHhDYiymak8nxHjqDwJjJRm9AFiYyd7XN3qSviWGHqWoxW2Msy0GF6wjrV3BUI/0uGSOv/vWd8vAzsKZeLYYmOegyj+3mjJrrOpDz9TyU63yHg4pLKyh8h3U6Rl/saBYTG+vIdf1L1v4UxwHneNEhux5DtS4RfX1+DGwTJPYPAcLG3cViygl8873T5X9Jpxxv0D8EXHMAmVqe7UIcC6MvzhBU937whi1+Lo73d5X3fPipPS7/Wd+4iy/b2wz3gbXr18PwJYtW3jDG96Ac47Dhw8zNjaGUoo77rhjFr7O7Nj+3RuLbOpkAOi2dKHa6H4PZaX2aqAyk8RD0mHBEuAhQFswDlLr+KF3ohowh1vogRpK6XJwUr3wZtuqysPhAly50HNLWuXsdH47fXqzNG+VMjh/CVFHDIGGpQhAOoJz4uKhw7YsbipDT7Z4YSLldVMyszRpCkXbNC21ZlaMUEstfG073DkAI33kvea5eo8u6Hzz0abtO18IU/DHE2tg0/6iOhJuneh9IVk1meb9eWoiw7y8D/3lZ1Gv7kM3M3Qro97MWDeVsWvKYqesiMs1UzJPdT9VG0In67TBBZC4FZls1GmDm4kYnMscbioTdd6pVMblWEfDOnod9DlYsHOSBQML6CWmssfH9sx+z1lbUjn38v5zDXcOwRP7yFsU4v7laarncUAXjh2cRrE9HHsvHpgrGofkzkSUxJlIpZIekiuuCHbC+25n5krtVdOVpGboP68h1MyfsdJ3d/Q33sefWdicBqXvLJ+R3bHnfK785qlGqh1ycLRZBuVxFb3624n2F4pjtsz/+x7KFfN4Dc/UYlAe73sWoYHG8+nLlZ8ZHBKidYsClW8jwDzxBJCHbZhSAmq8Mkatsoazkuifrn9yuAFbTsCXnoXN+9sT0GeHzdvEUIP/GkAA2DNEVdMAtv3eF+yP/+UHgWmS0v7/P4G0csUVc2OdtHSFpPR0AnBvGRQBw/kiANfJ4nau3KF4fzmUwM6oncsRVc2jynnTyrX4wHb4m80wshD+8Hq4fbm0hTUMum5IvMaMuWYRargf9cO9DFnL3rSonGee4m5bmTw+w58TM87ia3gbRdU8TrDOBNx1NGtzZ2Gsk+qshcaeJsnyviLJ3Qmgz6ZVfXFwIv0N+VH7TvDH7/tleS7fjDr7yFN9RFzhzElTdFZsD5f22QC8GNR1WsM1lP13vIbTfv8KPbo6+/xmazlgQTvH//SJTQ2oI1Oo/m6Mo9xCoMWBnqvfPGVbwnBfAc6ra2Zn3paQu3qKdQzPVxXb47U7G8YY0fuUktOIP92DgPM4IT2TvS/ELSHBEov71YF3AN8/y+8b24znnH/kIx/hZ37mZxgaGuK3fuu32Lx5M08++SRKKW677Tb+8A//cBa+zixaEEMBcD6Ibxis1m30hlFEiCg+aeIs5kxMK0XNFfNfa0p6JX8ZeMRnXLsdvNM6yXg7SMaa1JZECq3xKINwFs+FTdeT1zAy03DnMVHYzM9oN+MrxCiKea/R42Ek8Hwe6ZcLwUmmCvxRnUPZso40c2RNJ8Isvpq4J3Uczxw3ZRbjHIkP/Ewmvea1zAlo/fqoJBs+PFjQ2QMgiuh884n1UbLp+s53HZJ/3w5sH4XeURmH44V8qJvy78x7LTw4rMu93ncc892DqATMsztRHwK9ahnKOK5Ujr2ZJGSc1aKWaR2pNdiGPrX3qlgO6CobnKXcd3cmG5zLfNTfygrwGkTUfOU5TEVg51G4dnF548nP/zmYiDCNKaNwifHZuhB0KhmeectS+O5e6Ydd2Se/IwSlmRN6tCufq1pRzHpV5PNDVyJFpsMIRTwGeZkCax266RM4+ahBKy8MxyairTnAJnpapfY1dK66ak4PtAItLFUehKgiYXfIObSFmoMp63jYwc0O9MEWelmvL5JHAUQAd3NV+TvdSLVNR+CORnvlvMPaxed5mHMezv9VCGheT8RWoFjDM90X4v8fr92Y//eQmA5BSbwPns6UUjRwMrcbWb8W8MvW+X1P6LZvc2CQucv64EmSFQtCTOmPbVjDWQKH0yU2p6bk31+08OJu+F0N1w9H62XBzHTXjz4O3yvsisdhssAtSN/5GymzxcLMXOtciSFkaa+chzV8EtFk0HhQjux/tWaGafmkdFUA7rObxKfcPc8E4DpZcGbx9RWYECv7RRTuJqLEZfQ7rZOkxGMH4OF9Itb4z64SpkDwtz4GSIySCSWZ7+e9axD9wBbWPXeEQzf0k6WWTCmcAauVzD3XYBOFTmZ+fnTa+8K+t4H2wmd8Dc7UXFxACU4iVKZHj8INS6M3VsWHqTmIfZQqPiveazMNI13Sd76y79xo7UqhnCtYR67wnWuAVyn7zbDvCaZ0Z/Sbq/43bufKKIO76hqeyhKlaHSafW4djzr5TTUr4nCPOsdNgB6bQF3VX5wfMU6YrT1Pa6TvNt5XgeV1+Ol++bsEzKPzbgZfQSmFnmbtViLXRQyiz2XtoIzz4uT0Pv/vQWcsruLPZO+r+3il5e9rThIrKUX1/1xtxuD8iiuu4Iorrsj//pM/+ROOHz+OMYbu7u5Z+jqzaC2fRY0CzMw5XM1gjSnRG/Ygs+rC4sy08lO1WhRoZoDV8Hrr+DPn+IGFn3WOm2qK+pSTStHYBGZ5T/niylNJcwga82ieaAPEV2X7YeeEyA/GwNzhM2Sn/l6aqDjo/D7rAcSNSAXhTjoHKeHic5nDZZaslZG2nFCqU0fmAfqLLcfNmaWBAHJthc5sMkvNOszmA3DfaPGldh+Ca4YKMBTPNL/QlYJTWSlQiR4/s6/8ui7gusU+SHHBy0uF/JivJITeu8wKoG061HFQuggq9fP7UcNLUBZWK8eL1gFaWLlOZqZa58isJmsYdDIzdfs2Z0vnDS4+LTv1K7tAG245+S2dQHn17y37ZZb41c0yKIciYDufVvPnX+bA2DLAu3UJ/HhMWB6l4FP5RIsrNSPGxylschqpOg8gwHmAyibnhIHClC18ZCwYFb5PVMnINzaj26h925AZrVXfGSobpzOlFF0e3JVAunX8rHX82InfXuDgLQTG0QnMigVlBnue2JzD6zmcoLFuQAiQNiyWeee3L4+SmRFAt5SyTcH1KhcFc/64rqBQbO8UqJypdaL1WSQpvRwJKuKgZCYtCbHlKrauWL87HHzMOb7vHO+wcEPiqDeRBPaRCZIbF3ceozZrl2NlfcLnvLi//LKf7JG9IVddO/0e1/HTlCJxrtBcia7HW4C/ptxmkqoiKW0r10oQi4ur6ynSQrLfOW61jiR11Kyl5hzGWXQGtU4CcN8ehVYKv3wV800ArpMppXABIMR7n0ba7r63G9wqXzXP8jUjs/D8IXhoN/Ql8BtrYE2/D0h8ojrSm1FGYVoWlXmf4hL4mRG6H9zOVUs0+1YuZLVW2BQyrXBakRqFncpwemb7no37XSmDg21EYrYU191Mk5olcy76AFecZM6KvsI7u+R11ar5HCy58sdq2urrvskoyxi+J4go3Myvu3yUmiv7rtUIWxXKCelwSKyaecEtfL1O1dftSMGpUzvXTNsS6kpCtzgxnQG/gONJ68gc9DpRATfOoY9NYBYtk98ajmnccz4bFidW8D8IJbT2PS1haIRNKE8K4Vu3ZvYl8o9wxbopZN/7IQUus369wjq6s/iZpXY8ivXbSTHfvMQai9zNqSxOSocEi7Tdws8D3z3D79nJZgzOgx06dIiNGzdy9OhR3vOe98zCV5h961+2AV7ZD7f25SvtrCOzBptluBo4o7FK5UFKLGiULxRnlpDSPtDMlJwAGgl8Xq8cdxmHNpCkjrqDLuvoOnAcfd2idic2x1TbfAOMM9PhM1d1C73WrZhRkNnpGOhpgpSbgS9QXCB55RxPW8ehU8D3OLdSR5pastSJYqrnuL/YstzmQCM95saJ8zLWYrYfQcfAHODZfVIdqfbXzYdKwSlMKYUzWkBcoiXbUXNw+zC8sIv7j73EB/qugZ9bAeuXlSmZbtq3Je+B3TZGct8oOgNlQL88hV53GNYvYgWOh70Sp3OWzGm5hnws5KyDusbVTl9xySoOMty2Ig7ydOAgB+VNW/Rhx3TvTqA8s7D5AHxmj7zJQwdhqAuuGy5Vzc87ONeqTG2v+e+ugTuWwv96Fd7RhIUNWe9w/fkKkTNFpb+6yQWwB5Lw2IEIUoXqjYO8f7JUcQpU0M0HYONeuGNYAIv3R04rSczUEzKtS8yHHZyZUnsnMwjFLw5QMge34vg/nOPz3/wBH3rz3VxvlOhJHD1JcmN/uUUhHNs5XM7Cb9pydU8hfec/3CfHNTAPsuhWCV6q1Z84yIzpfXm1zQcqEgedRfUnCixDkSqIwUE5GR0/nulxaeBIVfH+WjnuBO7QDmUcSaaoWye3Axn1/i46UdpnrwJEewLaKLh5CF6M9oebhsrrNIM9bjoLl7VxRXI6JKX3Ifozq6iwxvzjRMH9X3iIX3vf20tiqVI5Fx/wU+u4O7X0ZEJdrjlH4izGymxzUxWA23gAnj4If3DV/BWA62TTtd2tWgiHdknSOdHi4y3CjPr2LhhvwTtWwA1LinGVcW99VDnX2sclPn5Q1qEXL4A7R3jfE6NsWdrFSt0ga4FTvnJuFKlW1BKLmwHjLgeElG8ge98H6JzUPONTL0cvlKvm456GvNwLDodjGwP0ubDpqq/DdXjsEPf/4GE+8M63RMD8zK+7TqwxjexFexDNjjrRvhcBvTOxuJ0r3ke3UVZqD2yxOH45/W8oAF6KZ7XhuBX4jzh+6Bxvd3CdhqRpqR1x1BZ3UVORZk5YwtlayyowDz56mWf4HpmSx1Wmxhkc2Hi94rhvJcUI2JhlEidYztSqCekA0IMYHLTvfTPt9gjsh5zxh5xntwH/b+D/dRbft/T+Z/Li+++/n3vvvTdXaH/Pe97D7//+77Nt2zb+/b//97z1rW89x68zOzY1MQ73j0LPArhqEKzLk4vOaqG5J+ASzUF/Ig7STis6k+pBsEQpunyEHIRaxP+IEFwtAHPrqI9ZWNY9t0HKdNapKquUjCz56m6pria6fAF2CDI7WRWYB3B+E/BnCNM8UEAyKxXx1FpSC/VU6Glp5intLUuWeYCeOiatZXcLPqKsp8cozPFJ9PPHSJ7eR+14hlqXwNaom+/2CjD3o9PmzUzzU1k8gisEF9cOwe8qrv72IXjnKlg30NlzhY2vkzngqkH0hxX6hf3o6wbRVqOfGEW/NM7w3cs4vnABJ1uOxGpcBlndJ05rFptpjAfIztPopxPVCwFoNYO5nYLS3nGDc056o2Mwad30VXJ/7kjG7ViZPQGw0Sdp4srBeQ5KlVK4xCdccmq7lkh8WQ+s7oYnD8LPDPtEhBJKYP77dL4RB4pYvMFVN7qwKTkgy6Rqnvl+ylzVuWmlDSQcrxd2wUcQgK4QWicaS4arKzIUDhEuc5y5UnunY1LH5ZXXDHBK2EW3KkffuhVcbRT1VMBd7YCltribNkGx8+E3pxupNtQjpf9dR2D94qiqEIG+ym5bDSzDdbASeJZyBcGpImA5vQcuWzXYCfejnLvWSnFYZN8L4CPxnwkCbhIn69l9tElP6jD9MvFl1seoEd7WJ1KqbUEbBuDnW/DgAfiVIVi7jJzObnWR2DsLantIxge2WBBs6wGuBp5CrpUsuqX+nG8AV1+5OqK0O/lKQZgsc7yQOd4SeoqtI8FKnsg/pzNXCMDtPiptXb++en4LwHWy6druuhOZubnzGFy5WPrKv7MbXjomlP03LJe2Ll2A8JwpV62cO79GgdZunUzQWb+IsdEmgw/vw75zJVYpMu2w2pIZRWYUbiqTbaN+6nMkXHfV6t04EgOtoYiNqnvfTM3F+2EJLDnYexKWm/I1ABF6nKN1j6uv+aagRIxxf8bVbxlpp7Wf4XVXBXbh2C33z40CVxCRCFSxFjP92WHKRUp5DePYJf4e8RqeCQOgy3+3AECNc9ym4Bbj0AnUpqBxaIKac9R6EtlG2pgJs+Y4yydhHpgpaXndfxKWdrcD85AQmslHUBynmD0WEsVjCHCO97tw7M/EK59KaT/MOC/FTmexflV6e6rEf996Bt9zOpsxOH/44Yf5+Mc/nv8dvvx73/tePvaxj/HII4/MG3A+ceKgPPjpHgEu+EWxDlcTtW/p0zHsrRuWaZXTU6qVg7M55RtagpEp5ytCDhxKNlHnaDhIxn3vWzVIyc/YczgAM7FqZjrc+uoyJHP3MaFqxtnY4OlOc9YkqqgexCB9CRKcPAO8FQHmLs2wqSWzltQ66t5Rp5kH7eFxJpT2TZljRebox6F2HsE8fwS94wRmuIfk7SswaxcJoN0+JvTv24fg6qFKUDJP+utmYMooXM0UXOJwUK8f5ubrhssvng6Mx08FJX5v+rphkisHZQSddeiVC1E/PULXgzt47/phDtyykL66ySnt1jqs09L/H4OPmv+elSpMcJCdgpStwJVEYA5f7HB+Rn3eV94BjMdBScsWm/yuo/CDfbBjAlYZ2BnJwNw+VARpcTvH+bYgTBh+W1jTDLhrAL64A97kdRKy6DWZ/z/RDhWqLtpfZwFgrUHoffnm5qvvWVrM8M3BuXXwnUoi4yd7YMNy0KqovPoeYldLsFqxg+mpfWfqO41SdKtiM9X4yQzAjVetx0xl1IDG+CTdmaOrr965726uky3K7+DVvthMw5WLYNMErF0cpfzDNSLaDTEQivvcwjUA4iPDalQTWiHQnKmdapTMHiRhGn+HPFd7FoemoSVZVHMwpRxWCdNGOalONqyjcXCCWh/l/Q7KFb3ZskTJtRZrPBgNtw7DT8agaSrgoAAJZ0NtD8mWxEWniA88b0X6zn+RqHIeklEOrHPcfOOVTPlrNGtaGd+VOVzqOJE6dlnHrZn171+wxmqZo2YdKnPw6n54YjdsBt46KImiuJWrEVHb54MAXCcrVUii80Qp6dn58k5Ysxc2t+D6RfAvrhGmUZzADpXyauW87hPznn2ga4Vejc4U2moOvX4pa7++FZ45gr1lMbaV4TRkLYXVCqcUSiMsplMcv7DfVfe+bUi70QIi/+1/asLM/aYLbLIg/lcC6Ej8M5bBtjG4erCdMTZXSz8drd3Hujc/dgzqB6TIEO9vOsNpNaPYLI8Zon0v+NPVCHjeQOQ3o/uZWu5vKfvPAM7fRDmhGa7/M/GdgXWUAU4DPomZIphBWKiO2pEW3UsMXU5h8hYuVXbes2ExMK9eewMLYG8TrqEdmEdtcDP5iDgxHc7/OnJd7EbiivytVYT/z2Tvo519Fp7fTaEzFp87Z3pZGKWoV7XGgJ5ZWI8Zg/PPfe5zKKW48cYbeeaZZ/Ln77zzTgBefvnlc/82s22HPGXTuZKjdL4ipzI46BzDjQS06khpP9tjbJSiR4UqEOD8OAQfrDA2ActUOUipPp5Li4VBqhfh6oWwfdIrErnKbeZ9553EcW5GwPmbncM2M7I0I0strQiAB3DeSmV8SZb6fmdrOXDwBO/d0oTt+zBaYzYsJ3nbCKa37vuQ/O+6dghuGC5v1vHtYrK6BhJyqljMaDgVGK8A8bbX+HNSG4VuKXTq0FqhXrcErmqw4okxln51P/b2QeyaRQLOnWgApImiESLMmpOqU+og01JJ91eODdee9ZUgv1sqYLdz/DxFgJL3kWExGQLOp6uQxyDdWthyBB7eC6NNmWf/vnUynzMkaQJVO+eeSqB+IeicSvvqeWLL/edKwfpFErU9fxBuGYjAnf/drQwXsRTyIkUUoECh2A4+QMlEcdhFlfOckXCyJQIAsd2wPBfUzBS+BUhuzmW4hmG7UqwMv4n26s+ZXmV1rXBWmABN5WiqggZqnPQrNw5O0t2vMXHFteQ3z/BDz9CkpzICfHliE9jQBw/vBjdcBubTsI46tSQYBJwf97c6lMD1mVIz4xgqpviBJAB+gShYItoOzvL41JTC4KijciqpdlLdTRyogy1Y1FNUaOayLUGpssJ+DE6uGoAXxuGGZcX6nCO1XSklAqUqSlBT7HtfpFw1DyC95QSEK7/ntVoCzJ0H5i5zPN9yXGktS5xD44p2LiuiZsY62FLRWhkKgNS073/zRQCug7W13YVzZNuYZJRAgPnbl8LrVzJdX3mpch6JwSqtcMZhUp2zDlQij5WDZdZw35uG+d++vR07oHErF4nejfb09nDKmgzXUNMyD+KKa2gDcshovdXht1L4zdyXz+AYOef3v6m0LP4X9sitB2CLn7Z83yj8ti5auhTMqaZRVRQO5HM3+aLZLuDTu+HDCq4bKv5dKzmmSp12tG3uOlyx34S4Yh3SbhVAdZXaPlOLq65xkjSIfq2hDMzzJOsZHlatFN24/P+2cDQhj8/qDuoHmnT1dlMPa9Zp75sFU0rJN6kmWBTgWvCjo7A6kWRP2Fw8A8JZNyMWTrzfxY9B9r7dwO20J6XPZO2I/l+eXKGIJ8KUEpg+ST5Ti0Vt8+t8FtZjxuB806ZNAPzbf/tv+cAHPpA/PzAglemDBw+e+7eZJat39cG7lsPTk/DpV+ADV2B7wCInkLVaVsLBGI41DnRDxMGqyaiZzlmeznSpZBFlNg80YXFvOUgJH3UeKnrKZ4A7XoQre+HFw+UgM86QnSaDdSpxnJuBv4G8d1hottJjnrYEnLvMkWYemDuwzZRs2zF4+TBvPj7B1Mpl6DevxAwtwCiN1jLDM1EKHbLlMZUrpvE15iGN7zSmlMLV/Tkb5KytY8uOPaxfPXx6MD4diAd05tAthdEKrS0qVRiVoRf3sPkdq9i+/Qh3/WQv9uWj2LsGcOw5i8gAAKX1SURBVP09pJnDZVoSXDH4CJXe1OXnhxQNXQ7KnQNnpSp6DMluJw4vhO38KajQOTB35T7zGJRnFl49DI/shbEU7loOvz4gAkdh/a8ZlCRNrFwfB2sXyjq1KwQwd8cwPLkPblrq11sX/ecV+l9cnYsB3irgJEKhHLCSCHOpFZZKDM4t8I87YU0P3LUIntwjVbftGax3OHxQCljvFa0TgLOjrlmj1DlT+2ILrKOmFaEVC2zfuYf1Swek+rqviV7YfcH8Zv45nVqC1i+CL++CY01Y3BUBdKJrpHibsM/EIF0BfQh5aRRYRASwVfFWM/2dnarmIWDdQ2WMmiqv49lamFxSI3yw9z0OONSEge7wwjbWw2wCBgFhlb0gZI2uXQg/2g/NFEyt8CfnSG2vJqXD3ncV8vM3I1qrGfjKuMXajJaFbdtGGVgxlLPGcq2VDF5uWW7PHEoJ+y4Ac+0cyfgU5tlx0TyI7bn9AsjqUcV8ngnATWvhuoqp0c/sLb9m3zjUVrdXy9uAuWd0RSe1UgrTMALIM4epOZSTgs1g4ti9uJeTd46w8Ee7yO7pxvbW895zlyNqBbpz/3mgRHeacLGNYoxap2vvtL3szgkgn0yLUXKxdkjLwvcrTKin98ENI/J4Lqvm0F7wCevohWy3tMZZX+uHp/bAlcuj7xT8gcJ1mVMeh1j1O67AKmTve4EyuAsVWAsz1uywrgLs/fvt9v8eWoJy3RCK73CmZpSix1lqztJE0e19ZmAd1ccmMP1d5T0v3/tmeeJMp5aSbWPw4oT8+32jPrES4YOWlWLDaVo9oFi70vnv7zuKoXpgfiasBygnpGNwfhQ4QSEId657Xyxq2wrPzcL1NWNw3mrJxy5atKj0/KFDhwDyPvT5YH39K+HaQbixGz63Ffe3L+A+eBVZfxdBW8r5c+iglYvZ4DD1BFXTue861+PrAhIJ3gEKT31oUnpMqxeblmjlvFT0qv14Ibhd3Qvf2uMrl6oMzMW7cToXNJ04zg3APus42LKMRGDBtjydr+UVwbGku46RbTlOtnUcu6Sbg9cu5pMrVvPHXUbAnNYYo0kSAZdJ3MMbB2NRxWBe0vhmYEopqBmpuPo1+O6PN7L+6lXFi1x071zlyfLDHMinDmOEKqW1whgrp6BWLMXyrTX93LWqD/vUOO5zW8luXI67fQlZYrCpkr7zUD0PFf3Mg3O/uWVWRgna4G0d7LVCYVoqH0WCaDJo7cHedBT2EEQ/fwgeHYUTDt4wBLctk42heg7E9Mbw9zxI0uTtCjmlL7oWb1oK394DO47Cuv6i9zz0n6dWquee7ROLioUkWI8/tjudY6CZ4UK/eery6nmSOXjxILxyDP7FtTI+ccNy6Su791XoT3C3Dkjfq0KCU5flFYpRDXfUTIltlMdi53BsNNClHA2EuvnEkxu58WffgbLA4Smv08EF9Ju67DfD2nUlInq06Qjc3mmkmisFhuFYVcVxoKggBCDnKvcztRiQR5dfTpSItVaq63i2JvueK/a6eP8bOwlX9RcfUO05n20LVPYqtX2gB5YoeHUcblw2a9T2wACKk9LhdjPSd34NyNzsNMNaSURnDr7z8E/4lff+AlkQQs0sWQqZs2xpOd6BgHGtFGaiiX7lGLXnxkh2TqJWdMPtffCTY8WX6aS1Mh8F4DqZ0cW1VROfx+3D8Hw0qOj2YRG6iwF5ab83UJueeq6MwtSN9J1bpK2rJm1VSzLH9nWLuH60if32btw9a2S0mlakCmr5tZ/JuVwBJVVAF1i/Dmnneh3tjJVkBn6zBMzjaRvx1I2dRwuGQX6shsrMkTMt756BtQlnhtttQ/DCbr57cgfrF/XDNQPyW6D4biDHVCtJKJ3Cwr4XU6MVwkp40L8mBubh8UwV26t+N/jO7RRV87jqGjMgzs4UNZ/YdCDFD+erymMnYc2Cwm+27X2zaNX3VohQbGxP7RU9r6CHc4Y+MwbCgf0QwPkTlI93vH+diRhqp5aEkFzpo2grKX0Xzm7vC5orKeQJo3O1GYPzwcFBdu/ezeOPP54/l2UZn/jEJwAYGho6928zS3Zw74te7CSBD27APbgb+7ev4H5tHXa4T3rPEwkgjhkJhCRASjEYVF2qsWfTd1eyvOThPXPclzF2EtYtqFQOmJuLbTqrZqaD4w7B794TsCoa61Sqkp76rTXt4jgGuSCusDKma9gD8zwY2XSA9PFRbKOL1uEmtgXZdQNk716L6+/mKadYqRQqESBujMYkGp3/PQ0w9z2+F1vFvJOp0POK4p/83ntm9H9cXDUvAXQgtZipTECxAmETCs19EMUuHCmK5HVLydY3cN/fg31xP9mbRnDr+osgPAD0VIGx+UeEKl3mBGhZf03sttI1kW9oSj5XIYwLlTdlRhXz1MIzY/AjH3ncPQw3LSszJU4FykPP4XwZoZeoQoU/cQVQrxu4YwCeOCjjgGLabf4aR2jF6USPBhE82ZVabvM95s73m2ctSYpxsgUP7IJ3rYAF9YJJMNADH1wN/7AD15+QrV8smWtPeXNOgVMcwCu110ybMM85+U4P6JQVqt8/uefnJPgEGDsBq5efnyBlOgtVvTa6NMVItds6jVSzYE1+cILrj7P3IfHRqYKQB/xn8DNLFfNKgDJEEUx2quCdteXlfcpsMedgfAKWDpw/1oNW01Pbrx6AF47A9RVqe5yIPsMTWStFolyb5opG+s4fBj7YyoTJ0vJaK5kjs47ffNfPcXwiFeHGvKru2J45FlhYlaWoncdJXjqC2XGCZFkdc91SkvcskhYeBVwzJsKXQWslqLLXNDT0/BSA62DKVIQzIyFUfrpXgN41Q+2APOorx5w6WacBU9OozKAtaKtRmfid4dSxD7juDctwX9lM9uNDuNcvI21lcv3FiTlFW/95J0p0hlCid1KunFcB+nRWUNk7APJw23scPr0V3jEkAl7P7YM7R+RcCOd/4s//ubTQ2xFPmbl6CH4Tfv8nGnZbeOEkXJlJuTEG56H/3Jy6/7zTvqeRPWkfMEW7YvuZqH5bgl5UuS1hOxK7xK4rBnhnfWRzvFDsfTl+ONCCJfXiA8MBUJx7FbFqnQQZb60kxm4cLMcjrRBvu1OfxN7CFhonphUSs3zJvyZOpsQV9Jm65Pz/UE5qBzE4aE9In8s2FEbjKQVT57Nyfvfdd3P//ffzH/7Df8ife/e7383k5CRKKd74xjee+7eZTQuzPJXC/cJK7JN13Oe2Y9+9EremH9uSXvTDKQzjyn0/gOoSgH5OVkr/RMGKs7CvBUsaEPo7YO4utuks9AZVQXqmYVUP7DwJK/vKAdYMxR/y+DUAc/9YAbenluczy89YP8M8c9htY6T378KmkKqTZG9cTHr3SjKjvViGYqNTvCNR6EShjcYkCp1oobT7x6XqSE2y7xdDMDKXVgpQKofCaS2FwCnQKLSyaGVBKRZr+XuPhbXW4Zb3Yd/fi33hCPZru8gGD5L83Ero7yqC2miTzTc1R96i4KxkhUczWOGQEW5INrQEVOJguZnBT8fg0b3Qq+CtK+D6JUV1ZTowrqPnKz2H88Ji4BAomCEJcecS+KuXYXwSlnT50UERcGhJ8BJGF5YAlr9fbR37WqLeHCjt1gPzzFp4YDusXeCPpSqorg4RNXtXhv3sDuzv1XHLe/3lryGBQ36pV2qkJcLofGM7E6X2jhYFKWW/OU2QklPcz+Ezz8BOPVKtFx6e2Ui1Er1PlamZI0iFLQfWlCtAM6Zm0t5355DCWnWMWklB95yOkCuiYYiiLCecwqWVtoQ5rJyfktp+3UK4d7/4l3ytbFQNOktqO9I9U51Wcgvwv6xjqmXpaokGhFyLjjR16NSKSnvmSJ2T4QxpxpGdR/nwrgnYeRjT00BvWIr5mWH0goZPgEe/7dohmUhRYYwJW2ieCsBNZ3UtaxFMK/lt8TjM2L8HHz9DZkAYZ5jUNDpzqExjaoBzjKSOzQ5czZG9fQXui9uwQwl2Tb/4US1MsyLDVu4/n44SHeDNMGVfGQP0aS2nrmfFyLwYpI+dhE9thrsH4XVeAO76SluDL1bM9R6ojC6EbMO+5ZBq69plorT/P16Epw7CbQPy/UvgXIFOcao2bf95ntio+M5lSGFoJzIlIazBmbQFTSekaZG2hBuoJKMj/HD2rBRX+UB/P5lJVmdpT5FUCccqZh7NlsXJ53C7cjl8yMEPd8tJPNhf3tcqccnpjkGJ8RCB9BFkCkw1sXI2eishIeaie0cxRi1cujn0iZ47GzOe3m4AOwvJrxmD8w9/+MP88Ic/ZM+ePfmBn5iQHoTh4WE+9KEPnfOXmVWrGy+k5Rfn9YO4JXWpor/F4a7u50TL4jQMaucdpMMoyVhpDaqhz5Gf4NqBrQNOpnIfaO1QDjTPE3goiRtVMsGs6YMdx+CuwfL3n6H4Qy6OQxmka+u4yVr+OpWLObMOm1mylw6QAa3Ex0dTJ7E143u8FIeUYrtSXF3zQKDmqeyJwtQ0SaJ9ROQ3nzmkbV1KppRkp6Vf38p5HxIaRrFcaXa0LGucxVorwmA3LCZbvwD73T3w318WZfE3+EphFGzHfXd5Xsc/f8RKJUkyxKqUBTcgM7ef3AO6DpunYFkCv7RSRugEUF4F5KHPMH6u7pkT8wmUe1PKU9ubtgAN4bsv6oIrFsCTh+CdI14MThWViLRIhoRjFlPEtHNsaGY84UXfAjh3Hgy4Fw9jd5xA//PrikRW3IdqHdy0DHskxX5xK/a3rsL21r0onGWfVaxWioYGQ4buknMm4J5zBndZB78ZgpRllSBFcV79JjD9SLXhXokqOo1UCwFMtOsGYB73nCsks/9DimAkDk5C//lMfm0cYObUQIoZ54ry5+ZJnnMJLjolVUASTSATQSBau/B4jtavE7Vdq4Lavmkcblg6e9T2GJhHj0eA4czyYmp5Xc4ak/s0teATmFlmsbuOkm2fgNFDrGnUydYuQ9/Tj1nYjVGy99W01wqpsgLiJPVFOKEkmDIaF1ObQ4LSuagK7H1+GOd5hj4gARFBrRsB6NZXzmuO73pU5/p7sW8ZwT60G/tr3WR9jUKvJ5y7WhH3n4ekdBUcbKOomscso9NRol0zExAe+sqr1fPxSfjUq3DrQDHpIxqXV21rOC9W0+QaDsHxBD/YV4f3r4b7dsBINwwvaAfnCqmgT9N/XgLHlfs1FOA8XoOQ4DydxT6zKqS5E7iHwl/GSc1zYozFvjL4T+fg4Ek5URumjCZDVmeWKUdKhYSm9cku7w+vXC6JlU+9Ao+PwduGi7gkXItp2ONOA86hY1J6mb/fg+iuxPtdWMeZWIg9OyVXdgHXUd77YvbDuex9tVncw2Z8lS5YsIC//Mu/5J577mHJkiVorVm6dCn33HMPf/EXf8GCBQtm7Uudqy0durbIFnYZbMPgtMJeuRj3y6twT45inxjnUGZZllrqqUW3MlQrQzUzdCvDTKUwZWVcxdlaFl1oMbXvwAlpCg3VvbhyMAcX2ymtSl/JwXk37DghVf5OAeZ087Mjy3ESxcmfZJZrU8fJzLGnZXGpB+gblolgh2+vza5fTlY3ZHVNVjc8Vzes6TZ0dSWoLiO9Yl0G022odSXUeoyMhqmb1www/8QnvzIr76MQQG5qBtVVQ3Ul6IaBumGoS7O9S8s1VDfYusHWNLa3TvZLq3EfXgsvH4D/9Sz8YDt8/hl4ZR942maaZrhmSjbRxB2fxI6fgLFjdO89yto947B9HL3lMPrFw+inD2Ie34/+7EsiOrLJwStT8IZ++N1r4ZqlQlf01zWN6HFX9FxXAt0GepLinJhnwDy3kGQIiYa8agC8bik8eUAqJQGsBnG81MpGSATwiIKF1LK6ZdnXcqhWqJg7AejHm2Tf3I27Z6XQYeNxQ7FwlFFkb14uSv1f3YptZsI4Si0HWhmr/Dg23cowrVTElSiu9bO2SsX13ge+Kf5m7IQA3zDLeI6DlFNaaC+JK+dGgdJw1SIZqVYqeceAr/CdgW2go5tCMvu76NzzGAcpMnnEtyw0M3nsj1+p+lN5jz34di6iz4/OoXOyalIl7HuHJgUMn2+l/U7UdqPJqe3Pj7evU0xtP9OPo/Pep6zjtpblpcz5ZJnzeisZ6ZYx/v4//x3ZZ1/AfvJF0sekvevQO1fzF/dsYPEt/ehFPZjE730NudW6Kj6wJyn7Q//vagZCTfPRVC34c/+7uqPf2G3k+e7aWfv4vGrtAbryveojNc3+RHPSaJwGe8Vi7BX92G/skORJyxYjzMItAGXKoC6+frciIqjhm5auf9X5EigB8yqtPbUiQPmpl+HqJfD2ocKfx768puWY1ZPzthcqrYoiWdRece+D35bvuG6xzKf/4ubOqvNhTFyz80UYA+Kw74Tn1yD08+B+SgB9Bt89BvP5WgITiF7HGsoA00SPz9qqLNuwDx5uwkCt7DfjvW8ultPoDj7TXyxvWg6P75c1i31lWqydOw0+iBMpuvL3Soq9r7p/zYC0C9Fr43UM/zXQ2mc9uTLLNuPKOUB/fz8f/ehH5+q7zJodG98lTqEhtPYwzsy2LG54IfaX18FDO+mbmmL565eBTnJahUKBsr4Yk4FyuHpydoAvPpviYGWs1ZnaN5cX23RmOnwHpWC4T3qBDk9JpSoOVs6g77xUObcOk1pq1nFtZtmSwUonlbwMjW1Aa0ON7KYh7PrlAsyVxhrFE1pxnZaKuE6k71wnmqQmgnBSeJmnAGyO7O1vvX1W3iewHAzIWDV84KozVmrF97XGWStzXo3FZYpMST+kW7MI9XvXw9c2w8Pj8oYvjgKjWA22rrE1haspshrQDbau+GWtWagNWmlf6VVordEGzJap8hc8fAwSU6Ywdqqc1/yGMoN+w/li+Vi1kKUO/eeplZGGAwaeOQh3Li9vhIFClkhbQmksSeZIWhkrUstUy3K8ZekPtHZrcd/cRXb1Itw1S9vpr1rlfso5qdZm71yB+/JW3EO7sD+3CpfCfgWrVYb2ONm0FEZnGC1B8qxUXv0G/7abb5TnDzZhWb3wm7G/PM9+87Qj1R7pMFIt7Aeh/YNKkKKKdQxzXg/6x3HcFnrwdOYD2NQWAR2AEUaGTfzoO8oVBJDKeaD2xUmBc06sQDnAjBPTncaoVVHKHNj5prbraVhjxjpuzhxfzWS9sszPMt9xEPvZXbwuW022vUX6zkHsTctBKV5witUKkprGaNFVMYnGGJlQYuIKcpWKOk8ZQ2dqKtE4o6QKGxI9Hqic628rsY4SLfoZFroyzUIr4z77cJLYvHsI+9mXsY/sx75pqKBil+I3+ZpW646slW3AHVSqvRG4a1N9b2blJEDcZ55aONGCT78EqxbBz60o9smGKdPZQ5LmPBculPGjVXPn5Xjb627xVXUHbx4U4dOv7YD3rj2j/vO4LahKbV8NbKQd2AXfebq2oLgVIXfdCODvARZT9puzktissmyh8JtLe4rXhTWcw6SmaD6YomqeRXHJmoUwWIOfHJQWitB3HnxmauUiOMW5lh+zKG4Jeisr6aDYzsxZD9C+duHvMKVkJZ3Xbj65ylOC8//6X/8rSin+1b/6V/lzjzzyCEop7r777jn/cmdrzcljIn7i6TtWIfRo/9gt6sH90nr0t3fx7od2wTtWQKOGSgtnmZ/zIVBtnIWIlPU5upiu4pBxMsv9xdZG7eM8b6aqHLTEm/1wHXYcF4G4PMCMLtbTWHCaeXDiZKaoTi03pI6XM8ubMk/le+EI9nUryF6/jKxmyIzGak1aM0wkiie15teNBFk6UbnCeKK9Q74IgNhs2/q1K07/ohlaTq1zftNLRJl22FieTzMR51MKZxU2s1ijRLhIS98zWQVQr4Tsl66USntDYxMt7BVgs4OvWfjfjU8M+H5zjf/8ayvzeoMq76n6ykO14CIB5SWrjlULQjqZgzsGRZX+tmVl+lhUiVVaFzPircO0MnTLsiCzLGtZ9rcsi1KfTHn5CNn4BO5DV5NpRRID86S8oTrrK6/O4e5Zg/3qZtyPD+LuXMY+ZblKK1RLhDOlHQJR/Tdh2ztLiyuu1rF+ZEiC0oMtGOiV13SoIpx3EFJlOgRq+7pFnUeqxckVj/dycBwFlxohCAwgQcog5eDEATYE7E1b9s2h/zhzwnCpGbIYoCOdAfuRynkcoMRJgnOyeN+DYi0PNyXRC8W+lzPH5vi6re5vObW9G/qBzeNw/exR29uAuZPE9A3W8jep40jqWJo5MmvJntmHBVZ09zPpwB4+RpoMY5XiKae41Sh0pY3LaCWaK7HvSDwgNxrJr15kfvAUpuZIYTxctvmki6D7UTMst7DDOq5WfqQkBvvza7Gf3Ew60qCxfjGllkB/PlutyGpKWsAowCFI5fwDtFftAkCPzaVR5TjQ2UN1uZnBRAr/8IqM5L1ndT4yLq9UB2De0B6Yn3Pa7eyspqO+Nsf6tSPyO4LPev86+PiL8NSYCGmeQf95IC9VFdvXAA/411STmuHxqVJuljJAD2JiO5C2hNxvU6xhos5+15NKcwTM4/tDE4IXYuecM4/mcPJCNeEXxyVvHIIHdsLrBvL9piQO17TQPf35FvQecsaWK9ZuFR1YY9HeNxO9lSqoD9dgGDY5F1NKZttOebU++OCDPPjgg6Xn/t2/+3f8u3/37+b0S82KeWqraxhcTWNrksFzNSNZ9K6Ef/zZVdgFddTXt6GPTaACTXMqQ09lqJChnBRH6FozH2LjOlH7QrCy/4SIGoWjXwo0z7MDzXcnFZVO/HdZvQh2naykD4tA8LTUFaWKea8KapnFZBZtHVc7x9bMz50/MYUdPUF2Qx+ZUmRGYTWkRmETxVN1w8LuhMGuROh8xgcnFOI7l+3crEoP04DWipG64UQjYbSR4BqGrO7bRBrScuACpfL24fIbvnUF2WAvdnEXtqeOrSfYxIDR7DOGwcRAYjCJRtU0uubv6xp9zRB8ZCXclMDvrRJRm+6koKzHFPbuJKc5quQiGBHUwZRRElhVJw1oJYDhOLD1SJEYC/QxPwNeWZfjQ51aTGpRqfiykdSyJ5X2HHd8CvujUdzbV5B1J9h8DnB0i+iHrmHIahqbGLKuBPcLa7DbDsCr4xzJHMOZtADpTD5PtyxqKsO0zoIL7C0PUjppdYydFBFNwXJiOZfxAgSe041U605guAabjpYr5zFI95YHJ9Hj8NOGkQo3lCtANrVkIVCfymR/OpnChH/sb24yw06muMx2DFAGKFfw4iDlbM25Dvte2CfGTsKSWnnfyz94jq/bmGlTorZruGa5qLbPIrU9prQbBYl1mMzSlznWZ44XW5IssxaypEaqJKfRMpDesAxXM5yoG15uGK7vNqiGtHHpLkNSN9S7pJ1L9cQ+sGjruhj94IUwpVTp2tOqoLevqGm21A020VjjE8xLekh/YSXuKztxR6dKVN5ws01LNpVKG5ANo2FhHNFDXEMBJDvRssED83iOedxnHmju970K9Rq8b11RMY/p7NFc+wspBChjYKO9Je6BT7RMCvmV1fDgHthzvEg6lloG5HdXY848bKXsR1cjwmITFOA6B3kUIM9lFtfKpC0oK9pYA4099psWYT6sop24VSQ2z/K6y32m/31xz/nhk7C01pktNofLWopLYqCuFVzRDwuUTM8ptW0FvynH81SWJ1Yog+MRCnAOBT29yv46lYV1C2sX/v9O//759Uf7HjxfbD59l462adMm/vW//te8//3v521vexs/+clPTvt/unuXijOqJwLIPUB3NSUU27rGJYaxJOHA3UOokaWor2xB7z0mQeZUhg7OsCLC4ZozBOjVDFjcc35wUuiZUI7G5pDaN50pGS5dBubhalnVBTvGwXX4HTMMWmr+pDfWYawlsQ6dOVZbh7aO3dZhXzlJtraPrLeBTQScZ0aTaoU1msdrhlviuc4+8AnTOub9STxHtvHZV2ftvfIscOSkDKJ6OmI0rzYMacOQ1nzfub+u0gCSrxuC310FN9fgd1fhrh2Sf/dA3jb8tVhP2F4zLG8YdEOCTl036K4E05WguxNUtxFA/lu3wfUj7X3lXQa6awUoNxcnKC9ZnsEqGAB5lfyO5fDYgSKdH/eft2w+dkVnFtPKMKmfYd6yDKWWfZkX83t4L/aKJdi1/b660wGYN5JcREhaErT3l5psQRe8bRXuqVGu2jnOgP8OumnRvrddpxbVtDP3k1ULvgVyf7Nx01bxQeNRkJJXXJnzIGVay6lBlYSKAjYsgVePlP1mDtCLvnAVsUZCcBJuw0jlPA4ObebImpn0vIZ9aTItQPpksV9ZP8/eTaUSfPr32E1RNS9VDtQsVA9KXMLKvnd4EpZ4sl68752HlgQRuNQd1gu4tg9eOQatrBRcxtXzMzWNv6SRm4Bz2fuuzSxbM4e1lizLsPub2Lcu5/lVh8l+YxV27XJsw7CxZljeZehvGFRXIgC9kYjWSldCEnRWGpeID7xAFgoIeaCuFa5uWFnXvFoT3xeYX5lWuGsXk127GPuFzVF/dEE3ty1JntnJFDfREi2IVsZ26xhwLp+vHAP0hOIScFkFmMd09pCU+8xmefGvbyj3dOfVcjMvgHmwuP984+at5X0n0TId5I3L4Qubixnu1VuH/vNqUjP8vRgZa7WTqN88ADbrhHk0mUpS82Qq7QEnUphMyXwSoBNA3wGsjT+Xwo2cU79ycM5xES/zsHJ/JhNbiOPz6H4uLQguhqp5pPjPG0bg0T3iH0ObRd5y4XJNnOks7DVx7zmUx4jmLQmVv09ncZ95PAYvKLVDOb8RcMV88qAX/qo9jdVqNd785jfzn//zf57x/2l09wM+89PQAiTCrSaZUGqafYlmYaJRr1uMvnUE9ZUdmC2HpRIVgp14XMXUmQB0V1zZUAQqLQsnEaXYTuNkznNPUP6ZunJTClYuhCPIPORqgGldQV88hWl8BcFaTOYwqcM4CVKucpZtmcVt2Ye9ciGZEup0ppW0rxhNZhRPGMWd0XuFikRCyJjOp0vq/NnLr+6YtffKczMUG054fgOwVSmhyHYlpPUE19BkdY2NhBe5fhg+fCtcN4ztMmTdCa47wXYZXMOLynUlbOpKWNZIoJFgGiI+p31lyIT36k7aRI3y57tFFPCSCki13/zitpLw9x1LYceEVB4zW5797ivpxjpMy6IzD5BTuV9pLePWweYj2GMnsXcNSJCZ6JxRVFJ0DpUND8wDQLdG44zGDixg910jvP+xUczYcUkMZEEYzn+2D6RcehYlxzgRCODg5R275flDrqzVcT6DlA6WJzZjYJ6D817YcqJ9rcItFoWjPXuvkCBilHJQ4rwYlW3J7PocoL+4F/7haXhxTy6kZKcybNPimhbbFOaXQwKf6hi12QtQKusX9orUwglgyTT73vlYv+mo7YM9Qm3fNF5u25pGxG8mlrPGCJT2zCemLTdaxyZ/XLIdR7HdhuyOQbaM1LGrl5MlmqxheKLLcE23wTUSEYHrrqG7EnRXQtIlDLJLxv9dQIv3vfz6SzRraoYdNU3Lg3ObeKCuFdk7R3DWwnf3yjkSVXrTqQw7KdefmxIQqCZSdk+2uHoyFeFh69C4tmu/BMw79pln8Pkt0GzBB6/0ILxDn3kA5vNIoV8KZoaXt+8qMbTyZPSbBmFhFzywA7JsWoAe7yuKgk4eV0MVAqJDhJTh27RaGXYiJZ3IhGk0ETGOJlJhHE2kZJNZ0dZFUYfahjAfgI4A/ezNlZOZwX+eSOV+SVc5mRnu5zqpGarnnZLQ1y+RA/PioTJDLGf3ZXkSupN12ncMsu81EehRYow5ZqTYHguhxqJwDtlPQ795nphWEXtsHvnTMxKEuxC2Zs0a1qxZc/oXRjY+tjl/7LSSANOGc0fhHJxUivFMscwhFNDrFqN6QH11N/oNKfq2AfJLMuZS+E3awakVUGOKSi4K5yTAVkjVrxpcmhBxnmeL56TGQVOXgWVaRqpdX4/4JcGRnP6ttVIkCNXWWIdxFpM6tLOsc45s9zEZk7BqIVaFqrki1ZpMKzYlmpNKcT1FFSKunL+WKe0feP87Zu29grhKtYdLAeuBp/COUiusMaRWxOFs5rCJRaeq4A+pmIbkx6lZyJyi6aTvbigHV3KOaCUVi1KSP2618PSqS1WJX8aqaWjponcr9HktqItw1Y8Pwi/2lPu7Mg2pQyN95rpVAHOVWYat5ekjE/CTUdybV+LqiQDtmiaryT2JB+Th2HqtjixzuMyJK7PSgoJVbFvVz4EJuPX7u9A/vw61sAvdUuJGtNBExY2luO4zrNwE/5LfOz7w1jfCgZPy7/2NcMDaqwgXwqYbqTY085FqIbjLRf0owPnX/cc4pGpuWxkudQLOU4dKrUxH+Pvd8sIXdsNvAlcNFpUio8EW29GemsmV2uMAJa/cz+YYtfDc4TBGreZ/dGWvOR9BUaC2h57WQG1PHVwzINT2a5dOT20/w9JYrtieecaYlZauNZmjaS17nWPk+cOk1w9ileYd73gzE0aRKUVLKZ7oMvz7xItbahmZZrTseQnzK5C8mK0EsJToBGhgaU2jrWOHNVwFSOd52NcM2XvWk/zPV2F1F1y1RFSqEUp6ZrToG2npPVdasa+luEIrEmNJjOi66JoWEVblN81QBIoTbzlQz+Cr2+HoSfjwtZKoDsA87jP39/MJmOdW03zgV94pCYjqiDXn4FfWw8dfgJ+MCWMsjBmFjv3nIYyoimoqhNq+HamUk1msp1pn1slzceI0vH/mhL2ZOfG3NYNVIu53GOkwW0N7QjWEKWdtnYSjwxi1HopEfRswPw8+IK+aR34x8b7xrmGpnl+3pNDEieISUst0gpp5QqWy9/UAi5Ak8lIi9oIqGBCnmtQWTqm4lSE8vwv4OWg/b5h/leoZgfNPfvKTM3rut3/7t8/9G82yyaIKlT3PpgD7USRO0Z2BQknFae1i1K8m6Pu3ol7aB11OemmvHuz43qcE6B0pKsChKVE6VLr9QrtA2LyIDimCFonSYGU/7JyEaymJenh+0IzEcpLMUcukaqAzMM6iM8eVwPi2E9j1gwLMtfJCcL7vPFE8YTR3UFTJq5Xz+XZBXcw2nbjKeuDz/jXBOUoPnojDOeudcTjX6dwBYZ3QzKaUOF3wtN5QfNSe/hbPsBae4SULyktmfLYp1V40zBbH4M5l8MktMlvU1CoZaq+wn1pU6lCZy8H5oHX84mMHSNcNkYwslORKosrg3FcxwnWslMIlSnrOrfO9eRpbk3hh1GYMX7kIdTRDf3MH+p716K6y2yh8W4ZrqJmvX7XPPA9SJspjuMLb6fhDL4BNN1It03DlIhmptnZxcQF0EBorBSfR45XAXkTAzToZv0VqZZRTJmPxdOrgp3vL3+mpvbh1A/4wOmzivEYIKAtjDl5X09JfS5leeM7+tNP64QScD/hPymk5itIXmGPLVdvj6k9ObV8I/9cBAUBGlZMoZ6vaDiROes1N5vJb4ixXOdg/doLh4xPYDatJtQi+ZUZYLS8lilpiWNswBWNMRXvfa8Adni9T+OprtO9pxA+uqhs2WccVfga9VOU0mXPYZT3wyyvg8zth7U54wwhuw3KyRGGVF01V+FgPxpTmVh2J+6USdwagjlJSwY2Beaiapxk8uBt2HYXfvhZ6pxmBmTOgzolkPWeWJ6HD/HMoJy17a/D+NfAP22X++Yo+aFbAOfh9RSaDmIpie3Anq63j6UwS1tZPSJBWEgHntiVxaB63aAU1h7Xa5+UkOe1qCTbR7EB0OnrglG0JZ2VxgiIcExAR1CVd07PFzocfCKy+atEgVXDLUvj+HhHUvGpJ4S9zcTiZKNNp/w8/IVdsp/g5QbH9JiptXR6kn8pCzJn/H4o6YmjpggowV+fYljAHNiNw/rd/+7f54xDAxc8FOxNw/l/+y39pE5uL7eabb+bP/uzPZvx+01nesxBouX7RdiNMNjKp3KkUdOZQw32Ytw+gvrJf3uDl3fAbFAC9Qm+bFqB3oqg4ZIzasg5jEapB53k0pRRORUFL+C4aWNUNT+wDN1JQ/oITmWFFQWegfa+5tg6dOpR1LJ+YYsnucXbfvpS1StTBnYZUK+k315pHteJ9lKvmceXcXK4ezJqVgLl3mgahhx1BMsfLiR2eIqsZnKoAKaW8EE4R17ZQpMBmYMj//xxfGdCe2WZew2JGSoWRT7boPw+b3fACERl76iC8YVCy0klxPaqWF4LLnFTPM4ey0LXpCIsmp9hz6wrWaiXUTON7yRNNlmiSDjOCnZLX2rqRS91KF4tzjtHMcR2g7liCOnoS/fUdqHevxXhxpRJF2QcUrjHD+bqdWoEcEqT0n6IV6EJhc32qkWoL4Ed7ON1ItTxAoJzNX+Y/Yx+wLnO4NMOmTirnqae1ZxZWLoYXx4ovNamxaVZWJ/bXp3JyHa9yQF0AerV6fk52qvULY9Sgc4LlfFiVnhlT2xch1Pag2p5a4pFqZ6rarvGU9kxauZLMV88zxzrn6Hl1Erd+kKyWYLXCGUWmJTn9pNHckqjyvufva8y/QPJiNu2Vo0vVUCen5Bqt2FQ3uaibRWMRcJdlDtcreh9sA7aNYj/gsFcsl3FqqVduVxarNGNY1iYak4ExGp2AzoS5ZMKMqOoc89DL+9BeeOUQ/M7V0FcXsBT3l4f7i2CmvdLS098RnDtgbT+8aRK+uAV+//qozBn7/Ewe++RVKXbx7SNXtCzf8YKpKowRtb4injnxn9bBpv3w1F64bRiuGcwr685qmd7nUnCGrYlmdUhgE9UOmAXfGSczc/8JHIrwwgWaUKJ8cTMvGoSRaoHReNcgPLIPNiyu+MxTJzbDdRfvP4H1EEThqj3nM5lTn7/OlWnxx/1tJWWmRbyG88lOez45r8p9utuZ2h/90R/xpS99adrbf/pP/+msfhDA0sFr+c3f+j0++tGP8v/8v3+UBx/4Gp/4b59icqopAL2R8NSPnsQ890KebTw2cZxPfeGrohq97RAKuP/YS2yc2g8/GYVmxpbto9z7+X8sOc97/+YrbH51Z/7ZG599lc98/tvEPSQf+/SXGDt8RM6QAyd5ZHKUbzz50/xsmEpT/uR/3sdUM803/29881EefnRj/r4Hxsb52F/cV/qd93/hoZIo2JZtu/nEJ79Ses0nPvkVtmzbXfp+93/hodJrPvYX9zE2Pp47v0eeeZ5v/Pin4gxW9TG1d5I/+cwXmZps5k7kG999nEceeyZPVkz3/Z7e+Ara99vt3rGHL3/xHyVT5oDNE3x5/CWePjoum5hWvLRpK9/+1g+wRnPAZysPffw+jh8czwOVjY89ww++/WieWZqaavJfP/Z3TE01888+38fvwNh4/vfDj27kG998NP97rr7fx/7ivln9fs2pZj6S69FvP8oLjz+DBhYAgwfH+cLH7yuNp3jgSw/x7HOvYlEoo9m6aw/3fvprKA/6MqP53Ke/xs5de4XepxXPvriJ/q9+R8T9tIzD+9THP8ORQ0fQWoDK+Tp+MP/W995Pf63gw2rFvQ98ky379smivG6QjT94hvu//7Bsgv72sXs/x8H9h6VdpGXZ+NRzPP7Yk6ijJ+Gno/zw9qV85YtfoWkzqYjXND949Ekef+p5XE2jEt32/Szw+S9/h+df3uoV2zWj+/bx4Ne/xc5EszTRaKP5RvMlRo8ewHx3FJVlPP/SZu5/8PtRj6DlY3/1GcZGx6Tn2bppj9/k5BQ42Xq/8f0neGTjC+DgY1/4KmO7D/GxPT8uVQzu/+YP2PjyFkASOhdsfY1i7MhRPva3X4hYSIr7977Ixt17ZaSadWzZtUf2j4gu/YlPfoVt20bz4GDTc6/yvS8/lFdmRoCvf/w+juw7KLTZ1PLkk8/y7R/+WEThMsvUs4f4k+zHTF1t4ecHYG+Lf/xf3+bRjc/LMW9ZDh04xBf+5vOkUxnHpzJGmhmPfuHbbHn21bxqsGPbKJ/826+e2/FzlkeefI5vfP8J/zdMNVv8ycPfZKq/EPP7xqNP8sjTz/s9UDF28Mj5uX614pGnnucbD/84T6RM2Yw/+dyXmbpyMbx0BCx847EneeSp5/M9fOzA4TP+fkop/v6TX2X3tlF0KsB828tbePh7D3N1K2XNjv2kVzb4/Be/ysGjx/iHz3yZVCteePp5nvzhE9zuW0TsVJNP//mnsM2mAHMFD37rsUvS/12o73f44Dh//Vf3lfpPH/3yQyx5/lVeSTRZ3bB7zz6+9OVv4hKV+8R7v/QgW1rFZz/9dxv54n//Km7LYelvTi1f/MyX2HLgEL3NjOWtlOeffJYnfvA4akqmW6RHJ/j//OWnmTo2mfvNb/zgx3L+ZQ4e3sfYT7bzseVboL8rB+L3f+9hNm7bltPYt+zdx73/8LULcvzOZH0/9hf35f3n937uG2zZuy+Pwzdu3879D/9IxOEWdcFXt/Oxz3+FsbHx/Ng88sSzfOPbj0n/eSsjbTb5yz/7FNnEFDrNMFMpTz/4I5qPbuTkVMbURMr4/kN85pNfIJuyuMmMtJnx2W/9gI3f+Ym0BL2QseX/eo5P/PXnsVMZWdOSTWV85TNfY/fm3aipjNGmZdmzr/Ko988hX/DXf3Ufhw6O57H7mR4/5xxjBw/zsXs/Vyro3f+DR9i4ZQssroOCLXv2cu+XHywKelqft/UdO3REvl+omiea+3/4iJx/dyyD0SZbnt7MvV//Vkkc7t6/f4Atm3flKvjV72eAe//qPo4eGs+T1C89/gy1hx7NReGmppp86s8/xeRkMwfaX//mj6Y9/8Ih/NqXHuLlZ1/Nwfpz20dZ/vdfpY+iYv7lT32V3dtH8/U8l+P3wAMP8NGPfpSPfvSj/OZv/R7nauq73/3utMi6E3X9VDbXtPa3ve1t/Omf/im33377tK85ceIE73nvr3Lo4D76+vo44eCYldsJB8ccTAL/zTqGp1J+s2npSjMWWEt3y9GbWvpe3kfvJwvAzSLgn95QFt8ozZE0+WOllJyIJ1teZKIQmqCZwSeehbeuhGuWlMdC+XEoFyrr6TIrqpWRMAYTXjXz//cMvHu1ZMaq37lb1GKnfV8/j/PEZMbxyYzjEyknpzIm0ozJL77C5tsHeXBVP/+sy9CoJ3R1aZqNhBN1w9e6Er6lFH+KKG/2Ar0aFmiZ4rBQv7Yr5wfGxhlY1j9r7+ec47iDoxZOWDju5DYB/J/A1ciM1h6gV8k69Pn73ijtaJ3jhIMj4X2saEFNAP8euAu4x7/PAlVez+75lr68AOamomtwMi1UuFsZ/Pmz8PMr4bql4ouCWB5wvGU5NplxoplxMs04+ZWtTA4v5qt3LCY1mvc3DF0NTU/D0NMw9HYZ+roTFnToTWw5x9HgNzPH8YmUyWbGnknLf5zK+G9ZRldq6cksPSeb9PzDq/RduYy+Nw6SGCXfywvLlUR/Qo+7n75Q+t3WFQq6kR8aOzDOsi/thluWwa0D8r49kR/qqZ3SB821uczBRKvs6wMt9W9egJsG4PaBsqihv1fdCa56vVSuuxtaGb86kdLTyuhtWXqaGb3NjL6mpWfjGDy0G/7F9eKbHXBkitb9r3BkWS8n3r2GEzXDycQwqRXbE83/WdP8Rc2Q1DW9/lxYYBR9+tx86nTrR9PCJ1+cN+vnpjJRZ44V7idT2HVMWkf+HzcU+1x3eb87k/3ZZY70ZItjkxnHJjNOTmZMTGWcbKa0Xhln56YjpL+wmg01WYPxiePUB5awtZHwh12GT9UMC/F+Uhc+d6GC+mU/OavWtI6jTvaqECueADYBfwx8zjl6pzIWtDJ6WxndLUvfVEbfy3tJPrkrf5+Jty3lWMtwfPshJlpw4srFTK7u5tmRPn6oDf8sgbrS9BhFr1Z0G8VCrVhgFForQRaBzp45eHwffG8v/M4VomMRV8rzHnN/ftYuDoHAELc454ppE8FP5NORMjjegv/xArxpGO5cLr/Z/8583/OCz8cyx7Gm5WTLciJ1nGhZWqnlX7cc/zfruCKzdDtHj3X0ZJYFDvrGTtL4H+WJN/Y6w/FfuZGjiWaipjmRKPGdiebfJpqfrRveUjd0a0Wfkni0T0HfOcQup8QL//NZePtKuPrC4wWXWi+gF8UkYZ97aBT2nYDfuLJYn4qQb6fvOuWvu2PR3ncCeAy4F/g45di/LzreCkqtlCDtcxPWCeZz8p7H/F76TX/7r0C3f0+JXWGR96+zIS7tUsvRY0fpX7KYBx54gN7e3rN6n1PS2udDD7lzjlarlf+dpinNZhNjDGaaHrAsFfGZwBLpJAywWytuaiQ4lYEGlSmUslKwunoQPuLgJ3tEKOZHB+G+TfDBKypfrsP3rWlKisPVx2MOls0fxeHcgihczvXwN6Vg9ULYMSnNx1Vho1P0nbvAh80ciZ+/nHiKn955FG0tS1cuZJtWTCpNoiHTmpaWvrsnlOJ1FP09gdoXZpufMwXzIrfZBOZASRSu2gt0BSLkFlOLrJO2I4esdTgHAmvXQVvPzzbgg5RFOHLG2qz+movYquNLEldQ2O8YhMf3y2Ydi1bZSK3dOvRT4+gsRd+2iGVa8bRWOY09n9tbM8JocK5tU4opYZlSMuXCOXZaWOQcSeqK9euuo+9Zi/67zaiFBm5cVoy8URSUbi+4g7EyRz3RYKJ+tNxPRvcOli3sg7EmLPHjJ6utQBf6xAnV8k4j1dYvhk1H4LaBdt/pR6opU9D7quI4K61jzI/4cp7KblPfcz6Zwjd3wy+tlBF4IcnS38B++FrclzZjv7gF9551cki15rCDlTZ8TZe3k+gug0HNUt8kpfUTpf1o/XRl/c73tjcdtX24FxYCW8ZFGK6N2u5Kfu605q/FxDoRQ8389ekcPH+A3bcMcBzFes8a61vSz4TRPG4UNxtNF1E7F14AlXMUnrpsHU0rEYLL9yJ/Da5ETuG9SrG2bkidzC13zu+DVw/B7yiJFW8axK5d5im1g2QHTuC2trBPjXH1o6MsXrEYVnajVvah64nsgVqE/lSIvxwFMH/qAHxnL/zWOhjsLaubV+nsFwkwhyJumXH/+ae3w4pT9J9b35Lasvk4T5M60tSxumnZm1k2+FYEC9hDJ7GPH8BuHJexFXuK72ZbhqyVFcrgVmEzIHMcsI71zo9F9IJ7IVY6J4hcxQhEjw+5+TOhJKqal8ThUgevXwZ/fkAA+nBvB3E4K73nle9cijOjvW8ForeSx5rE+kWOrCWYIo9/lMQBrmawRmFRJeznEJr8StoPo4meO1fLpy1MpOf8XvNerX3fvn186EMfyv/+N//m3wCSOPid3/mdU/7fUqxAscAg1+OgVti6ETptKxNsqqXPi2uGYMNyyV6tXQr/8KrcPnTl6b90yIBWL7jxKbmfb4rD+D6gPNitfKdVvfDi4XLvZPht4XGn725drtgYxHC0c9LL/Oox1NohFhrNEqXZrBQ3Gk1qFNYopozmJ8BvUVxA8WxzAxfNZnQxWa5t5YqkiEL6zr9HuS0qU5HDjDYoS3vPj0V6XY/SrnYaPuNy0CmmTBCu6iDActsy+ME+2HsCViwoNkEHOvSdHziBfnIP6r2rUYlmyGj2+Gq1DQDdj5TMHLgOx11EyCKAnmgyZ9hhYbn/P9r7S61ALe/FvH8V+tM7oM+ICJpCThCjZDPPwbkSRo6vpjuvxI8LHxj5F+t8dh5Y1jt9z/IFNKWm6TtXwBUL4JH9PkmpKr14YW9QpWstDxacY00z4wlPX3eZ84rDvifykX3YoS70tYvJlch9QjXrAftrV+C+tgP7lc3Yd62Drhrj1rHSAtpf3/l/ceju5BzhebR+UKxfywpdbWlFMyB81Pm+8MOxCqrtWpGrtl87AC8chauXlnUCfDIFa2YUiTsr+5724oyJ3wO1c5jdx9BZSu+qhTyhFe/UMjLUmaLf/I26OCfiPe9yEnNuLCTDqntfgqh+bwFWa69bhBM9ByWXNNcPwzVDvpfZ+n5lhR3sIxsAXD9fPnSS1+1qoZ49hPn+KGp5L3rdIszaBejumlwKwY9lDl44CP84Ch9aIyNtpwHkdCVQv3iAedVO23++ph/ePCnj4/5p5/5zbV2utaJTi24VgqjDLceYdTjlcEcnsE8fxj47Tnb1IrI/uAr6u2H7GDy9F1Yuxj02hn1gO+5dq7EYMqshg4NO3PsIoHEkOAzS3x8A+llbNZkZ/OcRTzNfVMELcEHwggjFanKh2upEmVuWwI/2w/vWFb4zFodLrLA84vekXKQJ90GCey8Se+ZhgXPYNMvFUUv7jVGSvPZtKFbpEvbbBVxT+ZzgTzXnjiecdYIXw4SFc7R5D86Hhob47ne/e0b/p3fhEFAWBogXaQIBCUNI5pKaRmnkltrOF9qHriwA+gdPA9AT3bl6MDYBS1UZlFcfX0gLF1sInsLjVb3wrT3IPDpVBuaWPMBss5a/MDMRg5M5r47kZBO99Sj6gwMopVirFc9rxfXGC6hozTNasRQBcrFCe6givJZHqAV7+NGNvOkNN8/qe5aCkyiTuR5JaE0iE6JygY4IpAcLoK4K0Lcjaqe9FMFPAOjnrHZ6qVlNiwBLGgE+o4TOdvNieHJMROKiTdD4MWrm2ztRtyxHD/ahtGIw0RyqaU4mmr6gB1DTpQRLbC6Mv6NwYRlga4bNwCpA4VA4DBbtNMY61NrFqF9I4R92wOodcPcIXLG8DMp91RwdPZc6jz4qrCP5Mjzy+EbemHhKXwzswjGZD2dOdaRaYB0N9Uq5c+dRWN9fTjqEtUuK6yAIUWlAZY4VqWWsJVUhl1ps6gHAvuPYpw7ifvsKOW4hePebVwAP9pfX4B7Zi/vaFuzPrWG0t4tBRz6ePWw/BifbT3dy9mA57HNQBNsOODQhj7vnx/oVIn5RgBmitGv64JMV1fYZiBu1WUhKtDxbzDPGjAP98lH0umHWJZq/U5oTRpFozXNPP8/yu2/mhZrmjyhXzcOeV+NyUnouLA/Uo70Pfy1egQiZvhWfpMTInqbARueIs44s04XgWGoJJdhXFy/gjiUOfdMi1PEpzKaTqOf2Y76xC7O8DlcthqsXwcGj8J1R2A/82ioRR+vURlm/eIF5NW5RRgtArxZ8wt93L4ftR+Er2+DX1ktCOvhagBYYGwmh+n1QWceKzLFj/CTu+eNk28awa5fgPrIBu7BL3j7RwpS9cjm0LNl1y7Ff2Yr9/Ku4e9bhehtY7RhzjjWmYGyG2MVoRKfqXHxYNZkZ/OihCVGtjpO9UMTlF2LdE38uBn9YkyQkGrhrAD7+MhyekGp/qJp3mFASLADjKlMz6K3sQpJjDgG/rpWSpcIey0e1Bfih/RQa60F8LckBOogI+Dsp9tdYFO5cmwPyFo0wBrGZneM7XqJJWGOEPhcAeYyTLaJ+a/DnPQils6bRXdKHp+LeFj+agq4EPnSVfMA/vCLUhWZWCB/FPTOtrPMFN9aCxb3TVw8utI+Nqz5xgDnQLf++94SvblUrCtXw3vdhpln+7zpzmNQD9GePYoZ6MAu6UFpxVaJ42Yhae+rBw4+BOyhntOPZ5pfkiXuGduzYyVl/z/h4K4pNaBnSp7OdMjDPK6vRKRCD8kBLcggtfrV/TewUc+c867/mIraYQhZuAUDcsRSeOyJ9aoFW5gMT88gBoUjfsVTUUI2mp6Zp1DS7jSqq5kqVqGKx5fiR8to6YHOiGaoZqMm4HlUTf2lqwkCSERjADuC+UXhub9FXGPf4lvp9o77fPNlXfPDRseMwUOtcObjAjKPcqiPVcsCn4apFsPlkcTBLgM/inCtyovhrwTpMK2NFy3IitUy1LLZVzOp13xsle/1y3LKeYqSSn1dv6zIiz9aM0PzeNIRdNQDf3IY6eJwBayHNUM0M3bTQcqiWQ/l1culZZv1jxkP4GweHp2DQp9+q63ehciuR6GIbtb0PobaHiSTxPOTs9AK4zhVJaazLwblOHeb4FGbbUdQ1PSxQikGteEHJCLUTExM8rTUrlSQxYzp7XDm/bLNvShVMhXjvU8A6ZO8qWESGrG7IGgbrb3TJfebvXUPjGgZbNxyvJRyoGQZrBpUY9KIe1G1LMb92FeqfXoW5sl8q5X/5kvhMPygIk8nCx8A8B+oXJzCHaeKWEGdXqfvBr71vHew+AU8cKKqxYf77VIaezDCTGWoqQ7cylHUwfpIbH9nH+x/cBg2De/8G3FuGsYu6sDWprrrQE+2Pb9ZbI/u1K7CDfdgvbsIeOAaZZayVsbaZCsO2KZ9hWiLoZ1rSvnLWFm/CMVg51IKF00wouUD7nrRf6HJSM8Qni7vgmoXw2Fix10XicDT94/j9oG3vCz9rBQLOHUhLQjPFtTJsy5IFrBW0TSYkprBT8u+2ZeW1vpUhA0aRwkKomuefySyQ71oWptKSEO652iUZDx89vAPoTGl3yCKNUKY3aKVQiUaHURQdAbqRCrrW8OlX2wF6EEdo2mJjj7/IoUnfb045uNRyqlxwR6tCWjDK1IUAc3U37DxZrvzEmc6qZeWAhkDtsxbz8j70Df1SvTGKKxPNrkQxbnQ+7/xJ4E7K9LIA0IVGdPFtSrNtv/hzb5j191T4ma9EwNk/vwGh90G5FyiAdPAZS2irujqk33xd5T0DKJ8NWtGlZG2bYADqRsPyXljZJdXzHDxY1OgxzOP7UG9fhU5EhV3X5P8tr2l21jQ2MWRGl1T3q9tIlfUQ1tACO5RiRZiL7hOZpm5QdU1S0/DsvvKbfWmv9EWPT3nfWAHkUxXRu5AJjwRCfnHJlUJpD5ar1aoLB+4qprQqytEl7Q5g/QLYerA9sZlnuFxxvYVrz8/nXZhZFqSO/R4gOuuwm47gJlrYuwakcpeDcwnkXQANXlHaGYN73VK4YYh3f3cHw3uPojJfXWpZdDOTW8tn/s8WoFdbEsKGO9aCxd3llgQos8bOt2lVBuh5dUoLtf3Fo9EFEieibfsFU7X8dT4xnVpqvtfcPHsEs7oP09tAacVao3hFS2L6lrfdxY8SzV1+/nwA5sEPh8eXbW6sCszjfW+rf03uN2sG15WQdck93QVQdxFotw3DaN2woGHoahh03WDqGu1nkSf9XajXD8rs8g2VL/TcvjIoDzGpF9q8WPfLTnGL8gWyXEC0Hj1OtPSf/+pa6cHffVT2iWaR5DWTmQDn1KLGTqB/sBv9wFYaDcN/+8X1TN65FLegqxgPWjdk3QkuAuau4Z+vG9xbh7E3j2D/cQd22zh7UsfqzKJa8jnaA/QkfIemtBvNxFyYn55aEacMvja0wAa/ebAJA36MWrzX+aLZBVv/JDof48SmRlgOTx+C400pGsS6OD5WiZObKvJ1OSTytxUIVnPW4aYEa2Uti21a7FQmx24qgxf3wqefghf24Jo2AufCNnNIQRaELl9KglNc52drrpUVE7ya2eXK+UysE6U9BufBwiIppYSiEl2w4gwjgN4wIgxnNHz6FcnadALoYW3iC3bsBCyrl3slqxmxC2ilALMUsABrFsKO4+2iP96huChzGAvBxZUH4xzJtiPoSYdZvUjmImtNr4FBo3neKFo1zXatOAjcRBmY51WEC3BsXiumY2dJdG3QXkGIgXlGRIeepuq6FekfCs4xVCYSdYk7orO1JNoASxU+hEL24/05MKdp0Q9sRb1+OWZoAcpodE2j/XsM1DRbakJnz/2hk3WrbiNVfxmSK6GgM6IU1L0gTk2jEiX3DQN3DJff7G1L4MikVIW+sk3YN2HzikF5DNarAG9sAhY3Cl9JdK/mUZDaSWhMKdjQDwdsPlKtVDn3j+NEsQDzTIT9UsuKlmXMz+m1UynusVGyt4zg6qIbUKpg+CAzqxfBpq1pnIb0qn6+fNsIQ9/fhdo+Lr2aLak2qabFTBWBJpOpTNqYoTnnCGPwSpVzB4xPenBOB8bDhQkylVZCTy/1TmpyavuLR4UBV9UICNT2U1nqiltgtKQiYKSfO4C5dpH8fKO4IdFsTBTWaFpG8YRWpaR0AIw1fOvPfDnXL0ErAXNVrMFapA3yEGU2WIb0oLtuA901sp4E10iwDU1WT0jrBttI2NJtWNydyAzyhkF3GXSjfKOm4a4V5S9050h7n7mPQc/HfOvzbUqr9gkfcfV81SJ4yyB8YatMhEhtnvBVLYvZdwL19e3oz2xDk6Deu4HkdctIF3az1wibyNWEQp81DK5L7sO0Jdswsj8mmswY3I2LsW9dAU+MsvqpcQYyifF1YBq1bNlvTqUiCNbBnHXCeAr73kRLJkacaBVTkQIoD+B17CQsqRXBUZU5doFMaVUw+UpAXYtw4ZoeeHxM/H+omocKegDskcUAORZnWwHstQ49JXuRa1lc05KFx5MZvLxPRuE9n8End2Ff2SvgPPVz7H1/+m5E+69acIoB+tmYy2wBzGM2x2uh5/xsTCk51DFACAGnQ0QGhmlfpCAyputFn8K09sEr4DObBaAHunvVSkGKhX0tWOrFHarVn/mCTuKqeQzOV3fLWA9nfbOVKweacd95JASXUwKtQ1tInjqMuWYAYzTGyJxrjOYao9iYKF5nNE8AtyO9zVW12gDUL5vMV2w06rP+vuF4a0WuYKuRvvOvUuwhQUwsT4KpdtAegpkMYTqvI6ISUQbol61sSnthuJouklwx4OveCS8eghuWwvf3gtGYu5eLAnCiMYmwgUg0QzXNj+penZ12AB4rtlcp7eG12xG/WQMR0awnkONR33V33TD8roIn98DNg7BmmfzngyeF7nbvJljdA28akCkQmZMTrSoYF/XeTR06SuOm/nafNN96IQLToZrc7DIwVIPNR+G2RntLUOZQtYLOrltWALr3nSOZ5Zj3se4nh7FLenHrFok+R6LKQWxdi2CcKwr1Uo1x7Mfyyrp+VB14eBQ9BerqxfJ5rkP1wC8BRucR07TgMDiFEqXd28GTsHbB/EtKT0dtH+mFBcDWIzLyNE8w6xK1veOEklA1zwWL5PWJdSSvjGO6QK/ow2iFVpp1ieKgkZaT3TalV9e4giIpHe95l33k3JpCjnXofw2BfA9ScduCtBvkCWhV+MhEIaBOQ2Y0WSJq4TazvGo1w5kFq1HWeh0XJ9d65oSCnTm4dgh+W8FTe+F2EZkrj+vVlwQwP1Xcctr+8zcsh23H4O+ehwENtwxBbw/qh/sw246jb1+K/sgVqAWNXGRvoVHsSjTraxqbeIX4mpIqelL4bKfIdQRcUwkIXLWIrC/hqu+OsmBiAv2GQc8y9+LGRGwW79NdwwucWsT3pg7Ra3Ltvr/TffDZ4xOwbEDee761wIaJMlX/mQFvXg6f2iaz6k2tnIxuWUgszhRJ2bwI5AqADjKp5OBUimoKu8D6SSUu9ZXzzIk+Q2TZT/diNwzmsahTCkXGLq1Y4a+bEt7j7A9nSQCu1eF2jjafQptZs+Urbsb6Kl4RfBbX+F4KWnucrYkzKKpeZNRKIhxxBf3XN0A9gU+/LJm8eKGmsvIHT2TyZZZF9L6AMuOM2IW2TsBcKRGfaiL9g3nZzZWdaLBICK5UHTrRxLx6jOSGhXJxaC1BvlFckyie8VX7J6A0Qu2yWm1n+7O/+sycvG8OzClfH+uRACWA7Zj+HI9X69STvtu/91D0nnF1Yp6c/fPPqpXRvJqu4Y4h+PE+mc/8xAH45XUelAvdXPl7jGJFYthm5Mqprk1wUcGqSu3Bh+6kohlglKdnaqFqBn95wwh8+FYB6qFFaKAH3rUa/vBa6ev99Hb4m5fgpYNSoYz7x0L13CPM/7bpx/NnnMypTFMG5zHg27AYNh1tF4SLqNIKpDc58yrfXn14JJNxQPbgceym/bg3D+K0aHOEalDcfmUbolzkot5zWzOMGcNCo2B1P/rtq1CPjWIeH0NlmagbhzWI5w1P+CrPZCrV9IkUN5VJJSP1/e8hOVtlPIQMwVgL+juMwQub7oWy01Lbj5w5tT1UiiraAto6kp/ux1w3iNFaktOJom4UV/nE9Nfv/VyusxL2urhyfpnSPrcWM8Vimi1I9XwL5RafAMyz6LEFSZoZYa6kXQkvdicMddUEWHcleeU88VX0fBZ0w8D1I/Cb3nfGlPaGhnpy0QNzmEHcUu0/jyvpiYbb+uAg8JKVHv17N6F7aqh/ejX67StQfQ10zbO66oaljYRd3i9mDa8XUBM9ANtt8sSHDZT2wEjy++z+Rb389c+toz7Zgq9twxyfEvG5lkVPCfOo1NIa9FNCdfxkS/BBPCN8ooPmSqjAWgebD8Ax4Njk9D3nF9CUVlAz5XUJgqQrF8JIvWi7q1bNQ9LSW6eec20dq6ZSJpsZk74SHcaIuqmMLHO4Vw4WdD78lnP98jKt3QPlsWbGSuc6Vs0F4pzZ8cx1ReJKef44gy0HzvEIX6I4Z//ujW0icAGYQ1E5h2ihaC/EdATo4XEO0K+ArroA9BOpBJphkTJbZMEOnJAUbM20X2Qa5g08CfM2q0FmzcBwDXYeBzplAOW/V4XgcsGqzMFTh0hWdGOWdGOMRhuFSRRGK67WMu7pFWATUjk3ldtltdqy/e///Nfn5H2rWcXg0Fb6f99DZ1p7CZhTvva2UYxQKyXDove/bO2mjIKkQr8N1+YtS2FfCp/aCtd2wfLeHJjrROd956qmGUk0h4ATlEF3vGYQtSZQ+M/w79uRNYyZDzrRmEYiyYAQZHZFfjP+u65hYQPePgIfvV7GVX19F/zPZ+GnByJKdVZkno80+aPFt4vYDLRT++aRK1BKkQ8Oj/2nAjYsgE3H27U4ws05rzicSS94KjOxSS3LrOWQdfDYGO7aEeyiblyii57ySAwO4ytCjUT+vV5QOfcnhqWJQRmNGlqIetca1Av70N/bJ58bt2ZNRmsxkUlwedKD9ZOeinkiBJ2tYjZzFaBPZdAClvWUe85D0vdC0zOno7Zfu0BGqqXTrFcH+mp7O5fL2070vhOY0Sbm+v58trX2OhJXJoqnjGHH//brbZT2eLb5ZZ2VubVYFC7elzSF3kon3xk/V2WMpVqxzWhWN3xveleCaiRCZ+8yJN0J9CQyJaFbetfp8c8F39ltBJhfIpTB08Utbf3n8eNEwytj5f+wDvjFVZj+BqYm/fy6ZlCNBNUwjDQM270mQOYBuO1KyLoSXM2I/+xKpBWoprA1hWtoAfA1wz5j6OmuwdtXoQf6UF/ahNlzTOapT2XoHJhnUVKzqqsS3SbS9lvws1MZbNoPn/XD1x/YD1sPRD4TQs/5BbeqMFzwn0bBGwfhsX3l1qDAJgpg29P3q8UabR1mKqW/mbGkZdnXDEBb+sydddjNh7Ff3AXvXwkfHIE+D7WG+slSD+QDSE8tYy3LmtS2FWQDO+aMrWW95lgEyMP+uWk/fGHvOR/eSzImds7mwCBz5WxnExjDj1ELtyiDUvV/JYAe+mFigF7X8IEN0F2HT79UAPQ4CwYi7rCka/rqzzy41oBy9UdFjwFW9YsoXFxuy0G6bQ9O4ovSWti4D33rUqHphQDFKFRN02UUV2jFXyPVuWVU6OxRFeGyic0FpR2K6yIG5mEtVlOuIMRALlxjaeWac0i/+XrKzKz4cy4v6ymsporAJKaR7T5cvObFSdgxlveB60TlAJ26YZFW9CLV7zxx4spBJad5fjthjFqxdgowicaE4DKuBJVuSfF8XUNPDe4ehD+8EV4/Ao+Pwp8/Cz/aK+Cv6X3noZM0FidloAvFSTMfgpTYYjG43I8qYQvUgF1HC9GfSmuQjkC5atm8gr7EOka2HYFmE3vLQpzylbmaAHQXKIaJbOcWsEb6Xm3NkPrq+p66ZmHdK0YnCr1sAer9G9DbD6G+ul0qQFX9lFA9n4zuJz1Yj58LPaBQ7HnOwcEJcRydxuDNh6R0J2qmUjCyQKjtsWp79Va10M4VB6IeramfHsJc30/SleTtXEZrlFbcaDRPJIr9jXreyhUo7XHl/LLNvcXsvJjVtQ5JMENEFqQIhdI4MR35zxJjTCuM0b7vPMF0JygvJpeD8GolvSuBxqUDzGFmccsp+89vGyq/+A0rwDO3dF2Ora5rjBfPG+gybG4kUhHvSsga4hedVjk+UInGdSdSOfdVdVfXuLpmR6JZFthodw+gbx5BfXEH+sXD0pYQK4dXk5qdquPV+wDsD02Ijsx9Zao2G72cWUhmho33ApsKRbtYGyduu+vX8PTBsl8MeCGqngeYoRBgrpsp2usIrJ6y7G8KMM9aVsYVbj2M+8ousvevkgT/hgH45zfiVnWRfWu3n4Uexq3JnnqgZVnVylCZbSsOnSkjyQUxwiqNvekTEQ/smZXje0mCcyhX7WJKe1DtW0qxQKryuGo5QK/r6QH6r22ABV3w9y9KRSGIVTjvqceaMOAVh2OVWn8/X+hKefUnBubh4Kzqgp3j7cFl/LgqBJf6Y7DjCJwEfdVijFZFgGKE2k6iWaYVL1EAgADM48r5ZWrf3Fu+9BTgOTx/BUUFoRMwj0Gdi/7eRiEGF1flQ+byMhviFBbTb2MaWVUZ/Zl9fqyZzkecqbpBezr7GgScQ5nZEMA4lFkQpTVGNANWU/aVYS0To6Ry3l0rKkBVUN5VCT6DH71tAP7gRvillfDyIfj/Pi+9ZMeaMmJoHNg21pnaN99OmypVOq+ia7hy4SlHqsl8XodKpRdVAhrLsmbKO5/ew+TtyyEJCuyi8J0ZhUskkFVGFXoQgAsAvS4VoJ0NzdKGnD+qZkT8dFEX5gNXoQ+fhPuiCSQBmJ9MO4Px+HYyqvykHrQGgH54an6PwetEbTeqoLa/dDQqk9rSPtemztxBZ4XMyTHdeJjaLYs9+FM5rV0bxUkjE0oA/iPwAp0r55dt7q1T0lgjieW9wASRj8TjDMqAPU5cb0WAfcwYM4D2QN00pGqbV8t7a3LrSSSBWdfzJjY836ZMhd4e2KvXDMGHV8INRu6vGYSGwXQlqC6Drmt0ty+mNRKGG4Z9XYaDXYlUw73uSrxezjl5vpHkFfO0LiB9R90w4tvEjNGoGxaj37US881d6O/tQbU6JDVPVx0P40VfPQzf3AUffwb++8vwwiFhwcV2+1B0Yqr54TeDxb3nsTic1vCGYXh0T+ETO4nDEbUXe2CetHybVcuysmk53MygJT3mdtth3DdGyd69EnvVkiImSjTuveuwW4/gXjosI9Qyh21ZJlqWyZYIqyZNGbMX5zjO5PJymZORaZ0q5qmDLYeFnjgLdkmC84WLV5eqPyFgsQgld4Ry5adaPe9kpwfoBn51PSzqgb9/CY57gJ75N9h/slBqDxWfPFiZZ8vQSdRIKVi1UALlibRDH54rLrhqgGKBnxyGWwfEwWlFYhQm8dR2o3g+0TzsP/4R2gOUMELtMogr7BvffHRO3vdUM1/XIwFHFdi19d1RAHSQqus6iuutCtAv2/SmlGqvmtd0uzL664bzXvMkUSgvCBdczioEYE+XWIFyQiUOXnKldtqD17CWINl0obdXQXoHmntcaa8ZuGYp/M418JtrRdX9z1+E507yjRNbpJqw9UAZoF/IcTLTWNvEi/z7Ahv6YMvBoj87poH7YMRkTmjtmReLclDfeIS9Sxeyb+UinBZQ7hJ/8yJH1GQPCZW7fB19wGkbhu11w0BN9i5TjwB6bw3zwavlu3zqZXh+L3z2GRlRE+sATHQA6qE6FF4zmRZfwCGzepd0Fweo2nN+gZfv1KrtC+D5IzOitrvMlSmc8fpuPAhDNfTQApJEpigYQy7Y+FCiQSl6HxJ//k0u66xcKOvk2zRSzOlD9r4YmMdgvNraFZLSG2gn/ISYU0JBJa0mNRnjqxoyZk2Z+effZsPOKG6p9p8HgH7dEPzGrXD9kCQ3ugyqq+jj1/VEjmWXoasrYWHNsCOAcipr56JYRivpS69J77mrG3Y0DIN+9J32MataswjzmxswL+6Hz24pJzU7VclDdfzgSXhiP/z9q/Cnz8FXdwiwe9tKafX6yDXwvqvhN1ZI8uEjK+HqoTJl3MyfCSWl6nkcn2gF1y6RC+j5Q2V/mIvDCeBWSknFfCqVKSWpJWnKKNEVacbh1M8r334Y+9Ao7hdHyK5YLAnqMFow0dgFdew9q7AP7cYdmfB6KFI1729ZFnqdAJPKWMu4fXMmJgJwqYwbraqzpxYOT8Jnd8AvjcCvDJ/+DU9jl6TPz7JmmXlNEZCOUvSbx3FTAAqnWqgSQI/v854YA+9fB/0RQLe+cnx4ApbV2isG85HTq6ILLA6GuwwsU7DjaLsAUAzQqwHKyRa8cgxu7QeNBCiJlpaVRDamb1WOwUO0U/suq9WWra+vZ87euwrMwzWynmLWeQ7C8fjCUaq6hn87hoyhWUO5lSQG6JftNGY0bT141w3D762Cm2vwT1bDtcOouq/Ihd47n2hRiGbATiqsovjmXEchOIskV0bwSu2UfWb4OzZllPjLrqQM0mNQXu1NDyB97SL4jSslmwAs1J4G+fTe9t67+WjVPryc6rdIRqodb5V9pleVUp7arlNPcbcWNXYMtuzjyVuXcEAJhd0myt9rUd+vmzxYqybNAkA/VjfsbyQs9/uUsCqKecu6O4HfuAqyFL60D17IZETNi3vLgjeB+j7ZoZIeQHszK/aGQ5OiFxCvV77/zRPwMR21fcUC0YnZOn56anu1nSsEb9bCT/fCHTJFwWhFzSemjdbUNPysZ7bYBcKsu4cyW+yyzsr5M4WcDvG+F3xb2PvCNdaJxh5fe6FyvobLjLHYziRuKfrPK2yr0JMfJXhVGFEXxs11JbnG0ypkD5tu7RyREKpSpDVNVjccr2tG65rlXZI40eFW06hlPejfvl4qqX/7ooCz0Itcqo4fggd3wX9/Bj7+ikxYWbcQfv8K+KMbRSj1uqU5U4KGEeX+37gVrh8uCoIROJ9XFjKJVXE446vnj42Kf6xWzX0hz2UCzFVLALlq+kklrYzlacbBzMGOcdwPR3HvGMGuWyz7XsOUxFAzo3DrF2NvXIb71i4Rj8ssB1LLylbRMmZSX5ln5vCrTQCuepvK4POvws1L4OYBWD9w7of1nN9hHtqJo3vJkINeFYULlfOQvawC9NM5S1U3Ug081cvevw6+tA0+9SL85jVyYR0HlvUWFYN5pLzYZiVOlyoeKwUr+mHnJFxDlIIM5dMOwNw62HgIVjSkguJHqCXGj3vSmlqieZdSPBR9hXsoKuY5te88H4b5bm96w81z9t5GgXIUQh3+8VoKsD1IZZNT5YpsCFa2A/3AIsoBz5lmLl/LprSSETMBEAT/ccOI3KKKuq4bqYwajbaFb1sDfNm/X55TU8Vl7NT0Su07yLFy4RY4fVIz9A46p2VcWstTn1uKfGxa5iAN97pI8L15BXx6N2/s9lKEdwxXGD2zeohnz4yufM+Q3ExkpNqmI0LlL4lq2pzKF/ee64f3wzUjJAu7OeCr8i7RWOPvawYbBWsxMIiT06NaoeqaHhKUylAZRYBCWD8FSzWMFRVhPr8Xkr2wNIFF3QK0+2uwOIH+LhH4iwWKFMXJ4BwcOglX9pUTKvG+Mh9sOmp7puG6ZTLz/MolEbVdl6ntmmLvi1ljzsG2I7L3X7MYPDBPtNxqiaKeGG7Xij8FHnz9TdwD3KmgoQpgfjkpff5MK4Vyrtin/N6nEObXVip6Kw4y1Q7QQ9pmK/ABLjPGYjvTuEVpJePJgiVRYSjyJcJIkRGFGiUj61zBGqsmpkPMkiGvKyU2lSKtGbYrRZ2UPr+JKg06U5JoA3RvAr95FXxzN/yvl+GNS2DrIejrgaMOdkxIgu/KxfCOlbBukUx4iv1h7HM63QfquAfp801/QBktI1+1LSektYKblsH39sCmcbh6SaXlVUk8YC266du6Ws4/ztCtjKXWsXznODw2in3LCG7NYs8G8zPpw3nhaexZanF3D5B9aRz35Di8bjGHnGUECW60kbXTGmn/02pm8WeVwh6rs6cZfH2HCPe+c4WPw859jS5JcA4Fq65624uM6cqvDcpZ0plYDtCnfQHw3rXw5e3wqZfg2oXy/P5x6B9sr0jPs+ypUgqndATMo2B4VY+Mb3IjRTUhjMwJu1TolwyVg6f3SqAdnKhR1LWiYTRZomgZxZ3AnwFfB96FqLU3FNT9raa4rFZ7Hk1xdjNfO7FVtiKBTXjfy2JwZ2fKRJtRuDYdcu0FX1ITYRxlNMYW66eRAGUM6ZusU6Fnqna6exyE7qCDUnsE0E+b1FQCgFwA44ktNugYlCcRUL96EH5Lif+4YxiuGa5UpOcpOtdIMBUHXSFYCSPVbh2otAXJRh/Gp2nrUK8cQact1A0LWa4Vm7TOZ/PaRGONkgAF8rnb8RqGYBM8Y0zJeDWFvEArJSJVcYByxzC8vLv4Le8dhIU9cKQlFPWjTXj+GBydhKP+Nb1Av0++LqzDkhosqsGxCZkmcGLSHxdV3Mcg/gKb0gpnTDm4TPz5eE0f/P1W+CVbJJKq1HanOo8PtcCPD8LtA1LBMwLOGzVNK1FCoa0ptIK7HNyF7HNh3wv35vK+d14tsBa0AuOKOHE98DkK4F3a92hnjI0jl8gaKIH9y4yxMzelPYU5UUXyK1hQDU+0xBTWxyzR2q1F2kUCDgjJ6FJbQiXBArAl0SzXNZxKQSkB5mmGUrpos1QKfnEVZFPwvUP+f56E67rhn1wJy7o8qqfMStUdHucBUvRcDs5N3r4076yuZQ/PnCThU1t897uG4JG9cGW/7O2pln0+wgmqaTEti2qKaJvyYtpLd4zz3sdGOXH3CItW95P5RI2raWzDYGuyDs46XOZkPZ3BvX0V9mvbsKsMhwYXslIpdIoIUWuFSUA3M7QxqNO0FecCcIENEQP1zMkY281H4Q+uLdiN7tzX6ZIE5ybpwvoLMw40oRijFi7aavV8pnZagA7wnjXwN8/CI0fk78/sgQ/7fpkcoDNvgpSSBeSkI4ehFKxeAA/slhMz0VEU70BVqgfOwfajskNdvbjkjOqJpqEhMxJkKgdvcPB6yPvMGyFAQYKUy1a2A2PjDCzrn5P3jqsGIVBR/oRfi4Dz1xEBPCICRQXYbaMM7OJrTz7n8uLO1FTN4LQuEl+ZK/xHYqAmYCsAc+WK49wPdCMVhAW0V89jTBH+hkKpPSQ1q7T2M6kAlUC61QJqUl9ND6C8peSL1DTcMMzYyh6WLemvqPaaeSuUpJSSNTK2HGgpYEMvPLLfr10E9gBaEqDo1KEmW+hHR1FvX4FKNANG8wOvyJ4ZGZeWxYrDqn2/i6t4e4AV4bvVNTrz66c9mSuA5WuGJCHy1F64ZRDWDogfX0UR2YIXBXVwrAWHT8J4KrdDkyKKs6dVHJCHDsJQl1A1457z+bR+VWp7SJqvXCAXzbZxuCqq/FRvQX04Tk4fnYLNJ+DnVvqEjehBNIwiC+rPRlH3p8H4wXEWLeunBnQpuV3e986/VYF5rLeyg6i/nMJPZqqdMbYNSWAvoKiah301YX6GfefDzjZuEYq7kekUwRcpSvuACWJf0dqBCJlup+wX43Y8pcoxTMz6W6lFt0Nri0ozqboah9IqcmEW0snKF27CYM/MquPTAfZEiZP27Z/z1kKFP+x5iWfKZQ7uWAo/2Avbj8D6xVHVXOUJzzAzXrcsakpE29T2ccyjo3zprhFuWdXPQl98cEZm0odpJSDgPMucj2kcbkkv9vUj8Ogejv5CDwM9SirnWknLXQu0tpiaOmWS32VOgHgnOntqYfs4fGcvfHgt9NULSr87d17MPF7ts7elg1eXqnjxxbiPQtQoBuXh8ZmYCkJwnXrQfQBJf+UQb9zbHqDMRy9dBebh8cK6BCujR9tV2y3tQnBPHYZbl+WVg0C9NYmiq6bpqWt6FPQqWKChT0Ovhh5V3LrV5epBJ/vUff84Z+99LjNfQ64G/3gLhVK7it7zTNgql60wZRQqKKH31EQhvaeG6vIzrImS8JTB9BpOrdgeB5ghwWI5tVL72VSAchGkLlMovHdSdG8Y/u5b3yvPSp/PFYRg1bagAPaGF0hkvrPiP73f1JkTsZof7UcN9qJWL0JrxRKjGa1psiTQ2v088yiY7DSjPqzjbjw4xyfDatKjaeqi6K+C0FKXkT7H37hFNA1CX2fQBiitgZHxoOsXC03/bcPw3nXwO9fBtdV9b19xDHKFs3nk06vU9rz3XMO1ntqeOzpbZjyEv6tA/aeHYE2P0P+jmcA1regxip6aZoFR9CrZ8x787D/S5/fBsAde3vfOv8V7U9wfHrSKdlEG5nkIRDtjbLX/P3GsqaPHr0U717hFecaPMqotQRsf43gPXAlMAocpJy2re11eVadgjK1DQB3eV+q6IfGimiW9lNsrImC3D0fz66PbNPtcPk6v2/vc3gS6ZFb7vAbmhMSJ7jzytZ7A65fDwweibJb3nx7oxsBcW4fedhj1w1G4e4SJVf3s0UpG3CUy4o6aEu2Vhoa6gHRbi1hlWuGuWAQDfbz5JwdYaqN2sTRMRZGKvYuEPWMTAbisGIsdessDMD8yBZ/dDj87DKsWldXqZyE+md8rfpa2f/fGNtEjR6E4PEA5yIyD1zO1jgC9KwLoVUXl0DeZ93HPH+XFklXpN3n1R8PqPtgxWQHmrgzMMwcTLRlFc+vivHIQX7j1RNNjClDep6FPyf1CXQQp9flUYZlH9sf/8oNz+v6GCgWdovdum39NOAWmU7C1FLT2EqCjCIIu29lZHqBUgpQ4CRKCwvBcEMapUtjjSlB1HcPAttMptZ/17zCVMWxB7MeLx/3xH3ygCGa6ayL2M999wnRgT2u4amH7SLVA78ssetcx1HOH0W8aysdMLqkpWjXNAaNwRpPWDE6pUqAZbp0SZLvpwBiriYBSHmTGavohiAzAPP+78m8hSVSaZqLbA9U7h4tZuNpXK+ZR9NFRtT04v2sXwAtHaBN9i6vk1SklqYWf7IfXL41QXpGcrtU0vYnK97tFWvz5Ar/3XQbmF87ipHS8XxmKxHQM5uK9L34+7HtVplH+92t0fecyboljizg53Y3E/TvovMe1XGUtaU+wGKWE7dLw49rihGWXZ8T+rhdo/f1VkuQs+dTIt8a3nvi+VgLk836fi81Ee14VqL9+GeycgNFjlMThPODNK+fWobYcRn17FPPmEdTqfvqMYtT4+fM1ja17AF43ZA3Ze0IV3dV0LpaK1ozfOcCq/UdYsvUIWIfKZFRpru3iKeoujP70VgjATVM1b1r4/Ca4epG0LRnVLhB+jnZJ0tqh0luCXGyjSL9stZoUZ9vOxlTd4Ka7hq4ahA8r6Zu8fQiuHCwHbPNU7UVphct7zVU5yl+1AF46DG64AOIhGqwKwQ3XYVl3qXIQi1fVtCZxjobyYw/94QgzzV+rG9h8MKPI+5WDQJymPPO12rscg3XnXwdStesE7C6mvediMaUUxrm2dQvg/CloS152uoV/28GZKbWf9fc2ApBcoqEe/IiVTwtgV88The/TmNKe2q5t2X9qZKTaY3uk0hz7y9Bv/p2d6NctRy3sQhuNNjK7vt9oRhPN8pqhbnTekhCuOa2iSh7tPecr/OMS86FmMHFQFb4LFG9MdJ9V/u70Guuk6v67WpTKbx8Sunwt2gPMPFzHtmSKllatFX3QQKjtVy4pV37y5IotP//yIfk/6/qLRHecnPYzkw1Qd0VgOO+OyWvQwqWa09q9D1WUWWOl5KZqbwXaSrkVKAD9RM2rvNQlZTkrwbW3461Gigq3Uaa1Z87T2isA/TAS46wmStJohTbGjwCOKq7BZ9wwAjeOeFZs+DIdkrQhUZsoUO0MgIvRlJLqdq6/Ef/WnhrcthR+tB9+tS9q5/Jgd9JXzDcdRn9zFP2uEdSaxSgNS43h6UQAeBYBc9tIcH5PFXFUJ73nqexnNtMcaNR46vUjfOCRXahlDfTiHlQqgnC6Jf3nshZW9FiC/60KwMW3zMlsegf8wqr2ivnlnvNTWx4nUDjS0G8OkQOmjDvP1lRtmh50oySjdt1QOaMUbvP5osypfZSr/at64Nt7yPsm4yxILAS3cR+8YaTslCJgHn67UooasyJweNlm0UpgOmx2wBKkj24bcANRFlq1g72tCCAMc+rj95xNYHfZytZp3RRCa/+qf024bKfrOQ9+cwdnp9R+tqbyfjtwbp4yi2ZicXCS+1IF6xfBV3fDiZZs7NEISvWTMfREhrpjqe+Pkz5lZzQDNc2umuKmmm4fBxRfe668fkcRSucI7fudBnSiBYjWfAXY2Qov3k0PwkMWvNNrbvSBajgWSWCXzdO2hOnYDpmWUUcvHoMNSyI6uy4D9BicP3kAbhuS4xqD8vxW/P6L9vy+RK2a3AwJ6pCYfpjKtabK11yGTL3YSblyXgXol232TSklbUEUwDwc+1ixveo745ausLbbgOVI1T1eO63A+Hnn+UmSOlnUAAKqPeTB9ycelOtL9Lo3SgL5WBwu7G93DcBfvSSz3gd6pO/cKhm/mTn0ywcxXx9FvX8Vem2/MAMTzZAxjIaqeE1U2rN6Iqrtjnw2vcw1F5BurYMU9mWWbHghrB9Bf3c36t0bRAhVSaJF5eDci7DU5X3yinmomgcxuMzBTw/A84fhD66ptDFHt1mIbOfhDnnu1r9sQ1vvpENEcYYoKJ7hNls0I1Uz5d7zcItpmpW+vXmdMQsORUfORSlY7udU7j1BPu887rdzDnYdg8MOrl1czhzmgcpFRtmZh3b/Fx46/YvOwUIQoWhnm6yn88zXGJw7hEK9lgLAxRoPcwHsLptYidanygHKAaQiEK9btec8DmB2cG5K7ediSqk5P8/nzKYbqdadwFAiI9UC0EstnGyhHtqDfsdKdGJQiUYlMnJSGcXyRLPTi8BVeybb1IajNRxFkmm9lPe7+FoMgVCuZdDttQx6Pd2yJ+gbmPYZw52o7nGfetxr2fD73jwMTCUppKehtvfB8+PTU9vzBIuF/SdhtAm3LikD/nwP7DwO6aI9zy9BqyaQQ/vVemAT7VpGeXLTPw7zDkK8Gfvh2WgFuphtrs/z+BjnexSyh22nwM+xcG38OPjWbXROSue+0yjvK5NpfKApfGdXgupOUDW59uej/5sNU0qVWbLhlmhY1IDrF8GjUe+5B+a8dBD9pV2o96xErxNgbmoaVTMsbWj2NDRTntae1qViXhobqhW2ZshMQWt3Nc2o1iw2Cm5bhEajHj8oFfo0jG6LqeqZKLMHIF6tnKdWtGIeHIVfWy2/J1TNg0p7Tcva18+97n1JgvOpifESKA+P91DuuwsX3KxSM2shuPH9JSGQKQF0H6Ak8/zwK++N8ixgeKxhdTfsPFnuOw9COBYvBLe0TQguD1Qup47P2a6+cvXpX3QOppUqA/MomF9Hh967DpXXrRTgPH6foFZ7qW5SF9piABYDssUI23YX5XWrMh6qSu2raNfnCGJJc21zfZ7PmWmmH6m2fomMVIsjwod2w7pe9IbFnj6pMImAZmqagUSxM9Ft/eUxxdZV/oZi3wtfqbqG1SuwJLhkJEBSdRGQU7kugIgQ0lur9E/6vS4OTGORo0Yy7+b0lqzUF+8DTaWE2l5H5paHEaIxKA90R4sIwd2wSJIbpRa2EMB1/v0X7Xl+CVoJmEeJzjUIC+UAFWp05X4rskeGXvUYoId98LVqc32ed9ILgILW3mm9qgA9JKXXUvaXMV5QSkC2qptCnLXXJzRD73j9IuwdP1eLad6xOJwG3rAcnh2XSRahFeilg/DFXej3rUJvWCyMsYYRLFXTLKrJZJLddU3qqeylxAr+ceIr60khnLo3kXYwnSjUO0YwL+wXFfjMoTv1kcfj0mJqe2rheBM+txXeNgRrF5cr5YENNouz6C9JHzFx4mCJdhQyZVVwHtNUZvNAqERDI8qohSxab6gg1OSCnueW00vbROGA1Qth5/Fy+SYXgkvh+SOFEFwITOLq+WvJWc2R3XzjlXP+GSG4KLWAUK4gQBGXVkcXbqcQgwvXXAzQL9vcmKLMeogTkmsQcA7twcn5UGo/Uzsf5/lcmFI+kRmD8uA/N/TCpuO+NcjCziPw3BH4hZXysjBqq6ZRftzL8rph1CezSm6XqFLuygDdIZXzEcrslWpV6Ux/Vw7eE6/23jCobqkQ5ZX3HJxHgep89/unEvK7bmm7anuopIe9byqFpw9Jf2Xu6KIgNSRrOtjFep5fihauj5I+CpLYHKE8rSRffsqU6PUU11beHUhx/b1Wba7P807sPIMkmFNgjPaiQs4AjJLSWygKC9WWhCpeKPlDoy/p6vjpTAWfFxflasKWZaAH1vfC42MlYM6vrEJdtQRjBJjn+19dQ82wpK7Z4YF5Xi2nWD8ZJ6qE8u6BuavJhJPBRKO0Ri/sRr1lBP3NXegTTXRqOwu9xRXzGKh/bjOs6YPXD3RuUfbi4LNVdL0kwTmUg8zgREOQklP5KFeYZtOUrmTUSiqMF9FFG6iZeRYjgPMu2H686E+0UZDy7EEYqsmFaDRtoxVqF3Ef6WvMOmWhFRJ4bKfIXJaqrv5+ApmQsJZ2OvRcXHOXrbDg36q94YryzNdqxTXHHZSV2qcT9Lu8hKexqmaHVlKJHVkgB3CXV699cAe8aRAWdeWBiU5EDE4ZCVCGjWYMmKJzS0KckI4r6vEYtWpCOlSAZsvaqu4XWaB6Wmr7C+MVajvlvvNnDsFgIuurVZkt5ivxF8uxeC1b1c/pyH+uQyrjVeZKfB1WGWPBB+f6H5fPgTmz6RIrdUQQejvta5ZFaxdimlMlpS8TP09joXqeVHypBt64HJ4cg48/kwNzrlqCMgrdMOia9mr4su+5umZ5I2GXVu0Ctq6y72lF5unvJ43mUE2zvCa6LUor1JWL0CsWor62A9MJnFcBeWBEPTQKrRTuWQMmqpI3OjyeJbskwXm9q68t8Dzo/2057RnMcOHNheXBir54ApSSdQLmSsFIHzSBw1PFgU6tgPSN+2Xu7WmE4C7budmWbbtP/6JztKr4VwjovcxT28zXuNd1G9LruoR2athrndo31xbm1MdBZjj+KxFhnGpg2RZsIoHMCMJyqNKhw99zbefjPJ8zO1Ul9sqFsOmEiIe1rFD+jPSYaw/Ole83p6ZZihz7PbSvW9xzHp7HP95FUTmvJqQvX4MdbDpq+8o+GVmw/UhEbbdlEdSf7oXblxcV8xKt3T83jV3U5/klZsq3dCUU10nYB9dRrpzHCenAGNtGO2MsBuivZZvr8zyO7ePECkj1fAdlrZzLSenZt7x6nqgCpIfqeWtKXjTuX1zLwChpm6ppdF1G1ama/O0aCSNasYvKJBJXXr98P/SjRkdrmnpN0+vBuU40Wmuhtx86iXrygPjwTgA9BubPjsFTB+H9V/h+ct2haq5nveh4Se7Nff0r25QX9yBzDut0DjIvX2zTWBgDU1WfTDQM1zy13VfOrYNdx2HMwnVLytWiy0Jws27f+f5P5vwz4o0pf+xvcQUhrr6GXtdt/jWl92H6XtfLNrvWqXqgEFr7Tv+aeJOrMiBC3935VGrvZOfjPJ8rK1ViS4lOZKTa4wfgob1wQ3++0auaxsRicHUjyrJIYmU37RoBJZom5SAmprXryv3FROI6b9YpqRwSKtd61fa4jSuIoG4/AuOufe8L+2Vyalr/xXyeX4pWBebhmrkC2dugvb0kA47429ro/1X95mvZ5vo8D4npGJiH+GMNBTiPmUdVf7oN8bVxUroaB12201gnYTij4Jl95dc9t09Ab01jGgYTAXPVSFBasYJCaR/aWxHa9r9Es7OmWVqTEWy6Fu2njQTzrrWoh/bCnuOFZkhl9jotK//+wG741VWwpLvz2LSGhnoy67jmkjzHDu59sSSYAwLOB/3juIIQYqXXuL+c3nKPpKJshvKVhH4RhYtTkE8fgluWFEJw1f6Ty3ygWbN/8tvvnvPPqFZJQ2ChmGbmK+UNbg1lpkoM0PXFyCS5iKxT9UAjYHs/ImzURo925ed2cuGU2oOdj/N8Tq1TgKIUJGnxmofHYceYVBCMQidyU0EQDtrAebUVoVOgOY70WQ5TBuTx/nfZyibjdaajti+AFw6X27jCRfPkIbh9oIMIqp7R3nfRn+eXmJWAebQHrkME4Y4TJTUjgL4VKQQtoAzsYyHU17Kdj/O8rS2BoqVrG51BXpzo3E4Ru8T51MuFhZmbML5MmeJe03D7cPmFd454kOsp7f5GPRFxOITBECel2wpCFYDulGJb3bAs+lzjK+gm0aiVC1F3L4cvby6AeFWZ/WQqfeZvGpQRmoEFUFVnnyOR00sSnENloWgfo1altF8GCp0tFzUqAXPkwK3ugl3jReV8MhVRo1gIrqTQri9T2i8yU0rllfIQnwZgtoFK750rnKSjqJznmxoFsHutU/vOh8VgOg5SliLs3GkV2yNK9HbKfXdxgHJ5DWdonUaqGQUvj5Vf98y+vHKeV8/rBu0rQQGcj9Je+Zmu53wPsIhiVm+ckL5MzzyFxdT2ANaVglUL5SDm1HZPaz/WhFePw21+76vONr+891101gmYG+R6WozsfZ1o7VsRnwnt+g6XW0nOj1U1cmLW2A7KCei2MZRI7LKW8r4ZJ1cuyhbVC2FJFP8HMHvtEPzuKrgpgd9bBdcO5/3auuEp7Y1ExOGQY78CaAGH6dyOV2VKW2CnViyvS3IgFlgVertCvXkQumrwrd0FvT1WZ//8ZljeKz3yRhWK7LE6e2Pupm5dsn7CVRYqBudVSvslexBmy+IgJadnKljVJ1fLRCoH+blDIoYz2EtHIbjkIu27f41blc4Vrp91wGamH+m0BdkMobxJBmBw2ebW4uCkU5ASqO1VQbiYBRFo7TE4v0zPPEPTVETB/O22ofLr7hzON3+daExNxvCENVMIPT303kH7rN4YpENBaYdKvzmXGWOntGrVPKa2X7+koLanSFT404MyXnRJd5nOeVkE9aK1aowYV0zX0773VceoVZOZ+d+Xz4M5t+m0clYga3WADmKorvCrO6iw/qAE0C/bzEwFUBuPGusycN0w/NZtcP1IUYVuGFRdYxoJ2pTH+HYD/ch+FrPFSkCd8hruAob9eDUV9537KjqJhveth42HRTU+APTMwff2wrFJeO/aMpU9BuiNZFYF4Kp2SeLSpUPXlipA0N53V60gXLZTmIoCjTwVrESJfomCnUdFtf3pfXDr8nJgEwvBmUvydLtg9olPfuW8fE41QAkAbS1wEhlNEoKTsNkdQDKdq+m8SV4uIs29VSukcUvCaoreuxzcURbF2evfJxbFiavw52sJz9d5PlemlCoAW7zRXzsEH1kpFYTfXwXXFOA8SZRUzymON8hajPrHcVDSqefcIVTAkhicKidpLl+Gne2U1PZr+uB5T20Po/B+uh/uXFY4ybila4YiqBf7eX6pmZ5GVFNTiMLl11vENtrKzEdwvRbtfJzn+bGvrFsNafHZTuQ3XTkh3USKeWvpnFy5HLucoXngLcA8kcddHW4NI2JwRpUwWjjcgdoOFTHGqLMoTpbtRphmygNxHVXQdQDni7rgPSvhy7tk9nrm4MWDogXzq1fK6OvSDPMAzOXxXCbaLskk0LHxXVhkUUOg0hakUAbol+0UVvJyEUhXClb1w45JWHAcDli4fnER0MRiOJeF4Gbd3v7W28/L5wRwYBQoV2Qzu5CNbivCSgm5sNB3N0IhwFhVq718Jsy9KaXQzhWXryuO/SrgOdopYvEGt4MLr9QO5+88n1MLIC1EgiCPrx+GG0bKtL+ap7NrhbLe3fq1G0ESYkeBZZSrCFq1U/tGgSuZnjF2uYp3CqtpaKoKtd3Cak9t33EE1i6GVw7LRXJFf5HIzvss5fFM9r5L4jy/xCyQXuJ9TyHg/DHak5spwkiKK+dVgP5at/Nxnlf3vOBDoUhM30UZ4AW/uRO5nAdoZ52dz33vUjGlFK6uQSXQyiBVxR4YNqRAP9cKZV1ZD8yR952H6UCOdjAeJ6YP+LcfQhKtqmZQODkfFKigFZI5uG4pbD4Gf/uSlOd3Au9bKaOgOwnA1aWCPtd45pI8z5qTx0qLN+4fD1IG5Oe7AnSxmlIKlC6D7tA8tapH+s6fHoebF0M9KVcNZiiGc9nO3NavXXFePifOzVRnvq6lrNgenOM22gVVqhX0yzb3Fq9XVRhnl39N3LsVb3Q7uPBK7XD+zvO5NKV9ABKy76F60J1AtylGtNR9BSFRpR7VsG4L/G2UU/ecB4tnnF9mjJ2hxZNKqtT265bAC8ekZPrjA3DroDxf7TU3asaMsUvhPL/ULKn4znDbgPjPJuWe81DZCy2Ucc/65VhT7P/f3t1HSVWd+R7/7lPV782LYtvImwooRBG4Y2Q092YSzbpOSDTEmGt0xpgVzcQ1SdY1YRIczXVy44xZaJiLOtHoRINETQxxRQgYbY1w47gu5noTA75EAiggtLSAvHZDN3Sf+8euU2efU9W8tHSdqlO/z1q1+qWquw+cXWefZ+9nP7sU7TzYCi9eM8DD3pdspPguM0G/dxqFy8JUp2PgjDGY2gw01EBTDTRm7aOpBhpqME6wG7zX4oVLRxHWW4mvOe+Lff429j2Yn1jIeFBjK8EHqe35YDtjYFID7CVc61fXVzBgHqaz2+Vmgy2198jxbdSGUbwoTvC5HEHwbnGrthsDY5th6yFYvRNO8sLXRQrBGaUnVLDD7fk6Hrv2ri/22EB0n9cg0ChllW+Jnq9ILUfsXq7uzWUvhTcppxK9sdE5HDiT9cJgvCEbSeezgXomv6WMMaYgJTPorEdh+zQorBcQn0FQxtjAmSCwPlzV9m1dsKUb/mJE2NdF0tozg1LJV0ojEpg7175WbH+4iegykmC9eVD0NB7YpfaGuwzls/2IXvfGEQbnUFirYwNhcI7zO9w+VAbGeHb3EVObsY+sV3B9DN5r8QmFYKcSiG4BG6+T42MHzoIhoPxgdDa37jxXGC4ScP9pGxGvdMQqsjsF4GpKM6ydymtFQ9OI/MkCu3YyKL1T7AZFb7ajUHQ7NeC9PeFrntsBG7cXKQSnYjiDYdUra0v2t/rb83U80T1fgw5vA0WqnRKmtUtpuEG1OxNwEvacRtLE/Gil9k2UR6X2UrbzwWYynl1315iFxhobpDflPtbnZhByg2Hu+QoCaUOY3he83+JrJ4Ovd+Q+utuoKWPsGAXBdrwY6rhhtqjGg+tspNZYE+3z8rMuR/+/nKZ2nhbuwGa8uOZEbDAO0UHp8RQGdu41uNqVqp3Ht1Jzg/NNRAei3evmRsKsv2L1cnQvO7jiuxsE75/R2FjuELGBaL+w72snmjFmAM8zeLUZMjWmMDj/i9j2bh88JVr8zS0GVyKpDM7rGobnT1Jwok4hvDDGb1D0VjsKblE497H63ejrVnXEAnNz1Gl9cmzWrN1Usr91uD1f3wU6CS+YRyqooomk0oncYMQ+ukXh3JsUt1J7PDhPolJ7Kdt5KRiTmz2oy2AasvZjbXSG1TjFqOL9lbv2zl1z7qa4BxljIyis+6CMsWPgxVLUg4HnjTvC13QAG7ZHBqPzWwgdQ3pC2tp5GuRn3Ygu5wkGpt2ssXgxuHidFQV2VqnaeXxwM7ieBrtXbCW600UwsbCR4gX9NLFQGgWTAbmPJ+ee76Awld2Pfb4FuyQv/jsyuQC9IFU9KM56Tha+MAYmjQyXmQUF4OoyJX3/pjJq2rV9feSC+Q5hcF7szaoL5pGZYMbAnRnIeoXbAX3wlNhNyuAXTqhWV3zmYyX7W8UC8wxwIjAUO2MQpEZvwgYELRR2bm56rgy+eDDmVmw/FbvEyp05iFdqH0X/s++lUsp2Xk6KrZcMgvMtzuuKVaqFMKUdCtPaNYt3dPpNbV/dEX3hK1tzS7ncYP7YMsaqtZ2XM2NMZA2s+14cT1hvxc0YOx0FdodTqnbuTga4174s9hq6kcLr5j7s7sCR5VyxwRkZXO7/e37WG/IFUd/m8EXhIJrW7v4Oz4CX9SL7lOeLvJ19Clz9n+z2bvWxCu0lKAAXl9r7ZDc9s791d8HJl6MUFE9wb1TObIWrcyNOXxwLk0dGCy2oEFwqFJv9Ds7seMJtZSCa2lcwcomCglIKZmDd9XfBORhDmN7nBublVKm9mrkpfcH/vyHc6zx+zuJ7vroZYyb2++zXeiceFTe1PT8oHUuDPPeU2Ax77nVS8eKBeRBknw6sI3wf7s49TqP4OnUFdqXlZjrEC9nGs8aCc7gRW59qKM45JHoeZXC55y0+kOwu6XLvW9z+rwv7PoxvARuZoAi2dQv2XW/I2kddrvZLXSbc/q1EBeDiUrmVGoQnD6Jrzt1RlOCjHCXPhNsBBaMfGQNnj7QPd9uB3OhUEo1ajj+vyLZcwYXvdMLgPEjtcyu1q6BKstytZNx6AacCz+Ze42MLT7uV2sflngsCuyQqtVczdyDFc95zQVi4Axuo5/c3L7Lu7myi/V0QZGgW7xhkvDDYPtRn+7fJrfB54OWtcO5Imwbp9n3KGEuNjAHPJ9L3ZbDXx17s/eVo7KD0SdjdFPKZZtj3bhZdM0vNGIPx/TADyQ+vg6cRBufBtss+4S4zEJvIQ/1eqcTPm3uvOYbiFduDlPZe7GRsPXaQxR3Yjhez9WtzeRSZXjjkxDQQ1gxJKDCHlMamJ4+elg8U9gIHsDc0kRsdwgunHJ3IdkDByFIw4hSMOgUVDms9zRwMsvk/eKykf8+jcGsZQ7j2LnjPbaTIPq9OUKBlJKXVX4GVcdgby6Bie7lWai91Oy8XwXmKFzYKloy0U2RLGWftZDthxpibYquMsWNjPAM1mTBAD9Ihzz4F/nY6nHVKmB4ZFIEbQN9Xre283LmZR/nPgRrsutZgYPpNYoFd7Lqr95xVynbunjc3UHMrtrs1V4J+z40PogGe7l1KIZKtRzjRE1RsL7bOPCgAvjn3Oor8DneAxRiDqctt7+bGMUGR1vpsopOLqbxe7OhYkz9ZW4FG7GhmZCTMSXOQo2eyuXSQOi/cCsh9BAF7XVZbyAyyq6/8eEn/Xn97vo7HdmqHCG9STsv9TLxSeyovOGUufmMSdFRBTYAgyAsyjYIBlrEUKc5iSj/rWup2Xi7igylu1skownXnbjq7m+4XVKx1U+Ld/k+OQdaLDkoH/V0wKB30fTUe1Axs+7Rqbeflzs04Cfqx4PvjCSu2byAsghrPVPHQoHSglO282HaUwcD0ZsKUaIjOnLt9ZTAorWyj0nHrrQTnAcK9zqH4cq5gGfMYwr4yvl96/F1oMiYszho8sl7imU9ln9be1tbG0qVL2bRpE8YYTj/9dK677jrOOeecfn+m99CBfKpKO/2ntCtNZWBM1sP3amyKX29fOFVjTL46e9INuxq0nDS8pH8vEpgbyPj2e8G61s3YtVpd2A6uWPFFjdeUXuQmw48G6MHauwmEBf16sUVXyqFSO5S+nZeLIL0vMnND4brz+Po7H9ie+x2tzs/F15zL0TOewa/LAr3k154HaZDBziVZ876226nWdl7uTG5JV75uhx9eC8cDf8y97k3gPAozVbIalI4oZTuP37N4uf4viAnewWb5BdfRDYTZD/n7F1DmQ4lF0tmdz0djs6H3YTPI+oo8NmPvZ9z7nGCApZIGyco+OO/q6uKaa65hypQp1NbWsnjxYm688UYWLlxIS0tLvz/Xhz0RW4luo3akURQ5OkGKu+/nLlk+CshTLr+OLhbkediL4VvY4LwVaHBfD5GUaCmt/ACJ7wTXfrju3K3Y7mO3KoHyqNRe7YrdWAbB+R8oXHsXfL0Fu/VMDUSC+2AmT+fw2BnP4AdVfA/22SINkPuP9eygtEYfUykemAfvoQnAE9issbcpspyLMECX0otkyvrhOclgM8M2Egbj24Fu7KB0sR1m9NYuHXdCIThvHvb+shHbvw0juuY8sBn4CEUyJhLI+ns/yn4w6LLLLmPGjBk0NjaSzWb57Gc/i+d5vPHGG/3+TNPQkYffjN4JFCplFKVcGWPsQ4F5yb2wclVJ/178vePu+ToBW7n2LYoXEtPoc3Lciu3xIDu4QXFnYDdRXpXaS93Oy0lwU+jeaBhsnxZJ7/Oj6X1BpXaIZq+4n8uxy+9R765PrM8W7FM/ENXczstdvKhpcD09DdgFvJ573UiKv053R6FStvN4vxXcpgYD05sI+72N2ImFOgozxXQOS8u9v3SzxiDa9wWZYm7V/WDNuaGw36ykMKXi+ujXX3+d/fv3M2HChH5fk8nUAoV7nMcD9Ir7x4s49u7tKunfO9KerxsoXgyuElOK0iZ+sxhcB8dhZ3ygfCu1l7qdl5Nia86D9L4O4CCFa+7c4Dx+c5PPGNP78H3LD0wfp//Lam7n5c6QG6yMXUObsRkqy7H9XjAr6wbowWvFKmU7N8b0O1gSFIVzU9r76/cUL5RWEK/Fl9IZbOAdbKcWDKwEQfq23M+PpPKz/hJLa587dy5tbW39Pj9t2jTuvPPOyPfeffddbr31Vv7mb/6GUaNG9fuze3Zuyi+DdrdRc9eQBCdLpFLNvPiCkv/NfGDupIiBDc5/jC0ydgGFwUAShcQkFEkPM+EarlOxA5gHsSnQQTG4cqnUDsm083LhngP3BiNY0NVBuGbSDdLfAaYTmz0w0feslJdqbuflzk2Ndrd4AnutfB64kOLLJ7V9aFSp23mx9OggOP/fudcU22UmnvmnAc3SMc7Wve42sAab1beOwj4vmDVvJR3LuRIbDLrhhhtYvHhxv49/+Zd/ibx+y5Yt3HDDDXz0ox/luuuuO+zvrms8gduuvY575sxmx5zZvPPrJ1n8b49wqLsnf4Oy/NmVrHxxdf5ntm3fVbDFw6JfPseqV9bmv35zwxYeWPiryGseWPgr3tywJf/1qlfWsuiXz0VeM/8Hj7Ft+6781y+sXMVTz6zMf93d3cPt8x+mu7sn/72nnlkZSf/R8en4yuH43Bnz5Uue483X1ub3fO3b2M7eR5dGKtYufWQp7Rva8xfIav//S+r4/nX+Ixzs7sl3UP/vuZX86Xer80He2h27WHLfY/mZ87HA/1nyHG+9tjb/M5s3tvPwT5YOyvGV+/9fUsdngPvvfYxd7+3Kn4c3freaVc+tZDT2ZqS7u4fH/u0RDhzoyQ9Kdzy3En63Oh8g7Nmxi5/8MHz/Vsv/n45Px3c8js8Yw6YN7Sx6eGmkwOnyR5cyemM7fdgU942vreWFJc9FBqTvvecxtu/YXdX/f0keX8bAztz1z80i2rXkOXa8tpaD5GbON7az/9GlkYJ+v3x4KZs3tuevmdX4/5fU8QWDKoe6e3j03x6ht7snP3P+znMreeN3Nn7r8+35/dV9j0W2UXvBuT81wKaN7SxYOHj3L8uWLWP27NnMnj2bv/38tbxfZsWKFf6RX5as9evXM2fOHGbNmsU111xz2Nd2dnZy6aWfYvHW92gfOpRvAb/AbkrfBDR5MMSDIcZ+zGg0TCpUd3cPdXW1Jf2bvb7Pvj7Y68PePujsg07gAHA1tormPwPnYlP+mjxozr3XhniQ1fstEX2587bHh3199tEF7Af+O/DfsEVUDgKXA3djsyGasOev2bOPYR7UlPgcJtHOy4Xv+3T6sDv3Xtvn28d+4HvAmcAV2CI5WcJzejnwQ+ygWSP2vdeUex8OTeAcypFVczuvBAf6/Hy/t68POn3b9z0KPAZ8EfgM4TWzKfdeG2KgrpIWuw6yUrfzQ77P3r7cefNz11HsPctngLuwAd3lwA+wgyzl0O9Vu4O+z+6+8H5ln2/7t/XYe5ZfEsZ13dh+715sFfcvYfu9oM9rMva92FSi9+GePXsYNmwYy5Yto6mpaUC/o+yXUbz66qt84xvf4KqrrjpiYB44efS0/Lq7URSmsrtfi1SqO+/9ecn/ZpDW7q7jMtiCOPtyr7kl97XW3ZUPd91ccA6D7wcV2/soz0rtSbTzchFfM+kuFxmNTV93K7a71fZPpv8151J+qrmdV4J45e6g3wvmExcAf6JwGZCqfEeVup3nawSYaBzgEW4l+k7utadQPv1etYvEa865CwqdbqOw7wv2OHf7PPd8V5KyP94HH3yQffv28eCDDzJz5sz845FHHun3Z97dsiq/7s5dmV6suI5Ipfr6Vz5X8r8ZBAvx4jjPxF7XRvEgXpJRLMiLF8YBe6MymvKp1A7JtPNyUmzNuSGsWusWxunLfW8kzi4JFA7OSPmp9nZe7tzA3MNeI38Te82zRHcnyaJ+L67U7fxwA9OnYfu8DdilXEFBv/i51jWz9PLLC2KD0jXYdeWbiRaDAyJp7Z77MJV3Dst+n/P58+cf88/4fl+kUnuxGxSDCjxIZUsqBTKLvWBmfft5FvgEYXEVgEsI94bNV7DV+y1R+QGVWGGcscCK3Gs2UV6V2iG5dl4u8jcXfhiggx14DlbLuTMIQcYYFK86rHdhear2dl7uPKAm1+/VGKg1cIlvA/LAJdjv1xgbRGQqMCgYbKVu50FxMbeQnzswvYYwUA+ujfFgXtfM0stPohYpwhj0fe7A9H7stoajKQzKKzGDpeyD84HysZXaJ1NYll8jYSIDlzVQ4+c+GrvG5zwf/hV4Gvgk8EHnBqUm97kkq1hg7mHT2tuBQ9gZ9HEUjjonValdcjeHRSrtjwb2YNfh1WLPT3/bqEXS2nUORY6ZMYYa37f9mQ91Bs4HfuDDMuBSbL9X5/Z76P1WDtyK7e5WoqcSZj9MIpoCrX4vWW7FdrcPM0SD82D2fAt2j/phFE7IVuLShFTGqENPsHM/WwnXJ0TW3Wk0U1LArRhZShljyOaC8noDjbnH+Qb+p4G/NNCQe9TlAnNt35Q8N0BzO6yTc8+3E1Zqj7yWZLfCS6qdl4v4coTgnAzF3oy0Y29OINxGbTSF26hV4rq7alLt7bwS1OT6tUbP9n0NBj7kwW0eXODZr+ud52srLSIogSTauTsT7l5HT8XGCW8Rzpzn16gTLk2QZBSrF+BhU9eDJV2BzYT9XhpqjKWy3fX29nAQ2EHhZvSVmuIgEjdkSGNif7vegO+B32e/zhrozV0pvdyMQb0JHxp5Tl7kOuikSGewAflGbGG4UykMzpO8ZibZzsvB4W42RmNnDCZhZxAgrLUSmS1Hg9LlrtrbeSXwjKEeHx8wHtT6NuPI98HkArna3KB0g/q9opJo5wV9We5jS+7z7dh+r1h9DhXaT048Wyzov4J6KxCuOd9COLEAsbXqFbg0IZXBeeeerfmKtSMont5XaSdKJO6/XDAtsb+dMYYG7BUz68MhHw45F8Oa3A1KvdH2aeUiCLA9J0UaP0zv+7+515VTpXZItp2Xg/zNou8MkvjR4DxI7zsIvEt4DuNpfbrRLF/V3s4rRcYYGvGpAXpyg9K+Cd+btdgAXYF5cUm0czf7KONH+7Th2Im8DuyMrFtjRUtgkxUs6XKXJQRLunZgt8OrwfZ9m4HTKazynl/GUGHvx9S2u60UpjjEZ89FZOAyxth9JE24F+hQz+4r2WxsqrsC8/IRr9gepIwZ7DrzF7HXTLdarSrWJq+/7dQM9mbSLYwTDEqfRGF1d51DkePDM4Y6z9BsbH83xOn36jxTcYFA2rmz4W4W2OvYIA/gfwCvEb1uVuJa5TSJz3wH5+9E7LlpJ8wYCyq1x7P+KjVjrBKP+Ygy2frIevNib0y94aTSbdu+K+lDwBhDrWdo8myg3mSgybM3Lp5uUMqOG5i7aX5jsbOu8Urt5XDNLId2nrT+ztso7FIEd5/XUbHXaFC6MqidVx5jTK4Gi/2ooPzIkmjnxpj8YLS7xeuzsddpC9jyUmygJPgYzxp7mzA4dwN0dzCmkqQyOB/ROokOCivWahs1SZNHHns66UOIMLo5KXuZIgFeUBgH7H6vf3KeL4eKteXWzpPgrp9zP7p7nQd7nMe3USuHARY5MrVzqQZJtXN3a1d3C1jXJcFzRlvAloN4HxYsywomFIKZ8+2517tbZ5fDkrz3I5XB+btbVuWD8/jNjCrWSlp842tXJn0IUmEiKV9Opxd0bu8AN2HT+8qhUjuonUOsD3MC9VOwBal2UlipXYPSlUXtXKpBUu08a+z65KwJi/Z9ELsF7H8F7gLOM7m97NEWsOWg2FI8d0nX27nXbQZasec3PmNeqRljqSwIB7YojruNmirWiki1i1dsD1L9lsde9zTwn6nstLA0iaRZOnv1NmDX37U7Hz+MBqVFRFwZY6g1PnVAr7GDmR5wQe6RwQbt9UZbwJYTt99zY7nR2Do5YNPbR+c+D+I8tyhcJfZ9lXjMR0UVa0VEooJAO0NuJiE3SzAz9rpPkXvOhKPRkhz3JsPdeQRsP7cl93mwjRqkoyiOiMjxEmxx1+jZR7OHUyvHPhc8r63wyoNbAyC+pCtYc15sj/PIuvMKPI+p7K+HnzQBCCvWahs1SaNFv3wu6UOQCmOMoYZcyh52pqDBwAxgPnAxcA/wQRNNA0yyo1A7t9Wh46nqQZ8WBOc92MrD8XV3yn6oDGrnUg2SbOeeMTb4Nrayvlttv9nkgvVcYJ6pwIAujfpb0jWKcElXOzY4jxdBreSMsVSmtXfv30Ur0S2B4jMPIpVu0hnjjvwikZgaQyS1z2A7gvOBDxGuyavPfawh2ZFntXMr6M+CvV+Dfu0U4FXsrLkBRtD/mnMpX2rnUg2SbufBPvW1Bg750Bt8P/eo0Yx5WTnckq4TsAPTW7Br0CE9GWOpDM73d+6gNfd5sZR2ve0kDaadc0bShyAVyDOGBnz6chfCjIGDvg3UwXYKQXDeaKA24XVAaudWvgKtc4MSFMZ5Bjt7EGwlE08BrNSKtdVE7VyqQTm0czeDDMD3fQXkZSo/wOwMSAdnajSwDniPcOY8LRljqQzOwVbuS9P6AxGR4yVrDE2eT9aHHh8OGfBz0XkmN2Nei/0o5aHYDYqHvSl5B1u5dlT89WhQWkTkcBQTlC/PGIzvR7dI88N157/H3qsMh4JM6UoelK7UGf/Dqq0fwkhiQblS2iVl3tyw5cgvEulH1hgac2vuhubW2w3NPZoM1HnlsW+92rnlDjC7gXeQJbaK6OxB/AalHM6l9E/tXKqB2rkcq/wSZROddB2FXdIVLwYXzxyrRKmMVYcMHxOZOY/veSeSBst/+/ukD0EqnDGGrDHUeYZGz1DvGWqMwSujQE7t3IrMHDhfZ7Drzl/D3qwEg9LuDYr6vfKndi7VQO1cjpXb77lLuoLt08YSBuFu0bhKzhhLZZ+9Y+uf8hVr3dnzYCZBJA2+9IVPJX0IIoNO7dxy09MzRG88RsU+RgJzDUpXBLVzqQZq53Ks3Mxnd3B6bO75tcDrRGuLVXrGWGr77BYKR08qOcVBRESqlzGm6A1K8BFgN9GB6EoviiMiItWtIAs697Ej9/w7wE3YFHe3j8yU/lCPm9QG51mKp7TrHkVERCpRkMbuBuavAy/lnr8993VaiuKIiEh1K1qFHVgee93TFMZ9lSqVwfmIkR8Aiqe0p/IfLFXpgYW/SvoQRAad2nkoPmuewW6j5nqG9BTFqSZq51IN1M7lWAWBdgbIGrsFXhaYGXvdpbnnMwZqqOx4r5KPvV97d21mDdE1evn15xW6/kAk7qKPnJv0IYgMOrXzUP4GBXsTkgU+GXvNJwlvUOJr06V8qZ1LNVA7l2Pl7kufxW7xWm9gBjAfuBj4AXBeLnCvofILgKdyn/OeA3v5LnAncD7hSarkEyUSN/600Ud+kUiFUzsPRWYOfHuT8kEf/hfwFDYwPxf7/SzhjYoGpcuf2rlUA7VzGYgaA3VAr9OV1WBjvA9h47y6XNBeZ+ze55Xc76UyOA88jT1p7to7ERGRSmSModb37cyBB36f7d/OB/4S28fVxG5QspV7fyIiIoJnDA349OX6Mw84aMDH9oFBNllD7lFb4VtzpXIyuaFpBACfIFocoMLPlUjEqlfWJn0IIoNO7Tyq1rkBafSgyYMmA80m/Dx4vsGDTAXPHlQTtXOpBmrnMlBZY2wf50GzB0OMfTQb+/XQXP9Xl4IuL5XBeV3DcOYC04nuC5uC8yWSt2btpqQPQWTQqZ1HGWOoN2FAPsQLH8FNSrMHjQZqFJhXDLVzqQZq5/J+ZI2hKdfvDfXCoHyIsX1enWcqOp09YFasWOEnfRDHU2dnJ5dccgkvvLuLpqFDqQtGVHIfNYsgIiJpcMj3OehDHza9L6jgXmNsGqCIiIiUzp49exg2bBjLli2jqalpQL8jtWvOg7QHiFZtFxERSYOsMfk15b7vp2LGQEREpJqlNjgPUhz6CFPaddsiIiJppMBcRESk8qVyzfnJo6fl1yEMy629y6CbF0mX+T94LOlDEBl0audSDdTOpRqonYscWSpnznd0rKHBMzR5Bt/38XPl9kXS5OorP570IYgMOrVzqQZq51IN1M5FjiyVwXnvoQP5z40xSmeXVGo5aXjShyAy6NTOpRqonUs1UDsXObJUprWLiIiIiIiIVJJUBudNQ0cmfQgig+6FlauSPgSRQad2LtVA7Vyqgdq5yJGlMjjPZGqTPgSRQbd3b1fShyAy6NTOpRqonUs1UDsXObJUBud7dm5K+hBEBt3Miy9I+hBEBp3auVQDtXOpBmrnIkeWyuBcREREREREpJKkMjg3JpX/LJGI7u6epA9BZNCpnUs1UDuXaqB2LnJkZR/FvvDCC1x33XVceumlXHLJJXz5y1/mt7/97WF/5uTR00p0dCLJufPenyd9CCKDTu1cqoHauVQDtXORIyv7fc4nTZrE3LlzOemkkwBYvXo1c+bMYfTo0UycOLHoz3Rs/mMJj1AkGWefcULShyAy6NTOpRqonUs1UDsXObKynzlvaWmhpaUFYwy+7+N5Hr7vs2XLlsP8lF+y4xNJyvLly5M+BJFBp3Yu1UDtXKqB2rnIkZX9zDnAvn37uPLKKzlw4AC9vb2cc845nH/++UkfloiIiIiIiMhxkVhwPnfuXNra2vp9ftq0adx5550ANDc3s2zZMnp6eli5ciWbN28mmy1+6L7vU1s3hD179gzGYYuUjbXrN6mdS+qpnUs1UDuXaqB2LmkXtG/fH3gWt1mxYkUiOeD79++np6f/qo2ZTIbm5uaiz/3jP/4jM2bM4DOf+UzBc9u2beOKK644bscpIiIiIiIicjQWLVpES0vLgH42sZnzhoYGGhoaBvSzhw4d4u233y763IgRI1i0aBENDQ0YY97PIYqIiIiIiIgcke/77N+/nxEjRgz4d5T9mvO2tjbOOussRo0axaFDh2hra+Pll1/m8ssvL/p6z/MGPFIhIiIiIiIiMhD9ZX4frbIPztvb23nooYfYtWsXtbW1jBkzhm9/+9tccMEFSR+aiIiIiIiIyHGR2JpzEREREREREbHKfp9zERERERERkbQr+7T2Y+H7Pg899BBPPvkknZ2dnHnmmXz961/n9NNPT/rQRAZk+fLlLF68mPXr19PV1cVvfvMbMplM/vn169dz99138+c//5mmpiYuueQSvvCFL6gYolSMf//3f+fFF1+ko6OD+vp6pk+fzvXXX8/JJ5+cf01HRwd33nknq1atoqamhosuuoivfOUr1NTUJHjkIkdv4cKFPPPMM+zevZtMJsOZZ57J9ddfz8SJE/Ov0fVc0uaWW27hhRdeYN68eZx77rkA/PGPf+Tee+9l06ZNnHDCCVx55ZXMmjUr4SMVOXoPPfQQDz/8MLW1tfnvfehDH+KWW24B3v+1PFUz5z//+c956qmnuOOOO1i8eDFTpkxhzpw57N+/P+lDExmQ5uZmZs2axVe/+tWC57q6upgzZw5Tpkxh8eLF3HHHHTz55JM8/vjjCRypyMAYY7jxxhtZvHgxCxcuBODmm2/OP9/X18fNN9/MkCFD+MUvfsH999/P6tWrue+++5I6ZJFjduGFF3LfffexbNkyHn/8cc477zzmzJlDb28voOu5pE9bWxsHDhyIfG/r1q3cdNNNzJw5k6VLl3LjjTfyox/9iP/4j/9I6ChFBuass87iqaeeyj+CwPx4XMtTFZwvWbKEK664gvHjx1NXV8e1117LwYMH9aaXijVjxgw+9rGPMWrUqILnnn/+efr6+rj22mupq6tj/PjxfO5zn2Px4sWlP1CRAfq7v/s7Jk2aRE1NDc3NzVx11VWsX7+evXv3ArB69Wo2btzIV7/6VZqamhg5ciRf/OIX+fWvf01PT0/CRy9ydMaNG8eQIUMAm+XneR47d+7Mt3NdzyVNtm3bxo9//GO++c1vRr7f1tbGmDFjuOyyy6ipqWH69OnMnDmTJ554IqEjFTm+jse1PDVp7fv27WPr1q184AMfyH8vk8lwxhlnsHbtWi6++OIEj07k+Fu/fj0TJ06MpLlPnjyZ9vZ2Ojs7aWpqSvDoRAbmpZdeorW1NR/IrFu3jlGjRjFs2LD8ayZPnsyBAwd4++23mTBhQlKHKnJMVq5cyW233UZnZyfGGD772c8yfPhwQNdzSQ/f97njjju4+uqraW1tjTy3bt06Jk+eHPnepEmTaGtrK+Uhirxv69at49Of/jT19fWcffbZfOlLX+KUU045Ltfy1ATnXV1dQOHecs3NzfnnRNKks7OzoL0HAU1XV5du5qTi/P73v+cnP/kJ3/3ud/PfK9aW3XYuUikuuOACli1bxp49e2hra6OlpSX/nK7nkhZLlizB930uvfTSguc6OzsZM2ZM5HtDhgyhs7OzVIcn8r595CMf4eMf/zitra1s376d+++/n29+85s88MADx+Vanpq09sbGRsDOoLv27duXf04kTZqamgrae5AiqTYvlWblypV85zvf4eabb2bGjBn57zc2NhbcuKmdSyUbOnQol19+OfPmzWPdunWArueSDlu2bOHhhx8uSGcP9NfONfgkleT0009n5MiRGGNoaWlhzpw5bNu2jVdfffW4XMtTE5w3NzczcuRI3njjjfz3ent7WbduHWeccUaCRyYyOCZMmMC6devyBYUA1qxZw6hRo9TRSUV59tlnue222/inf/onPvzhD0eemzhxIu+88w67d+/Of2/NmjXU19czduzYUh+qyHHh+z6HDh1iy5YtgK7nkg6vvPIKe/bs4frrr2fWrFn5Kuzf+c53mDdvHhMnTmTNmjWRn1mzZk1k1wKRSmOMwRiD7/vH5VqemuAcYNasWSxatIi33nqL7u5uFixYQDabLbjZE6kUvb299PT0cPDgQQB6enro6emhr6+Pv/qrv8LzPBYsWEB3dzdvvfUWixYt0pYkUlGeeOIJ7r77br73ve9FZswDU6dOZdy4cfzwhz+kq6uLjo4OFixYwMyZMyPbmIiUs8cff5z33nsPgF27djF//nyy2SxTpkwB0PVcUuGjH/0oP/3pT3nggQfyD4DZs2fz5S9/mb/+679m06ZNLFmyhIMHD7J69WqeeuopPv3pTyd74CLHYMWKFfkJg/fee4/vf//7nHDCCUyZMuW4XMvNihUr/ME6+FLzfZ8FCxawbNkyurq6mDRpEjfccAPjx49P+tBEBuTpp5/m9ttvL/j+/PnzmT59OuvXr+euu+7iz3/+M42NjXzqU5/SvrhSUS688EIymUzBnuW33347U6dOBez2O8E+57W1tVx00UX8/d//vYJzqRg33XQTa9asYf/+/TQ2NjJ58mSuueYaJk2alH+NrueSRhdeeGHBPuf33HNPZJ9zBedSSb797W/z2muvceDAAYYMGcLUqVO59tprGT16NPD+r+WpCs5FREREREREKlGq0tpFREREREREKpGCcxEREREREZGEKTgXERERERERSZiCcxEREREREZGEKTgXERERERERSZiCcxEREREREZGEKTgXERERERERSZiCcxEREREREZGEZZM+ABERETl2V155JR0dHUd8XWtrK9OnT6etrQ2An/3sZ4wcOXKwD09ERESOkWbORURERERERBJmVqxY4Sd9ECIiIvL+XHjhhfnPV6xYkeCRiIiIyEAorV1ERCTl5s6dW5DWvnXrVq666ioApk2bxmWXXcaDDz5IR0cHkydP5h/+4R9oamrirrvu4qWXXmLYsGHMnDmTz3/+83hemHi3ceNGHn30UV5++WV27dpFc3MzU6dO5ZprrmHChAmJ/HtFREQqkYJzERGRKvfmm29y66230tfXB8Dq1au56aabqK2tZcOGDQAcOHCAhx56iJaWFj7xiU8A8Morr/Ctb32L7u7u/O/atWsXzz//PC+++CLf//73mTp1asn/PSIiIpVIa85FRESq3N69e/na177G0qVLOfvsswFob29n3759LFy4kHvvvRdjDADLly/P/9y8efPo7u6mtbWV+++/n2eeeYYf/ehHDB8+nJ6eHu66665E/j0iIiKVSDPnIiIiVa6lpYXLLrsMgHPOOYfXXnsNgJkzZzJu3DgATjzxRHbs2MG7774LwObNm9m0aRMAHR0dXH/99QW/98033+S9997jxBNPLMU/Q0REpKJp5lxERKTKtba25j+vq6sr+v1s1o7n9/T0ALBz586j+t27d+8+HocoIiKSepo5FxERqXKZTOaYvg9wwgkn5D8/99xzmTdvXsFrfN/Pp8OLiIjI4WnmXERERI7ZmDFjGDt2LAB/+MMfePzxx9m3bx89PT2sW7eOhQsXcuuttyZ8lCIiIpVDM+ciIiIyILNnz+bGG2+kp6eHe+65h3vuuSfy/LRp0xI6MhERkcqj4FxEREQGZPr06dx///387Gc/4+WXX2bnzp00NjZy0kknMW3aNC666KKkD1FERKRimBUrVvhJH4SIiIiIiIhINdOacxEREREREZGEKTgXERERERERSZiCcxEREREREZGEKTgXERERERERSZiCcxEREREREZGEKTgXERERERERSZiCcxEREREREZGEKTgXERERERERSZiCcxEREREREZGE/X96Zr7aumNx7AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+sAAAP8CAYAAAA+0y9qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOy9eZwkRZ33/46sq++emZ6j54A5OAaGY1AQFVSQy2PxQF1XRQWP3X3UdVWedVX8LYKu7qrs4r3qAwiKyqKCB8olAgoOHggDcsPMMDAz3XNPX3VlZvz+iIjKyKzqmT6qpqt74vN6ZWdVdVZWRGZkxPfzPcUdd9whcXBwcHBwcHBwcHBwcHBwaBp4U90ABwcHBwcHBwcHBwcHBweHOBxZd3BwcHBwcHBwcHBwcHBoMjiy7uDg4ODg4ODg4ODg4ODQZHBk3cHBwcHBwcHBwcHBwcGhyeDIuoODg4ODg4ODg4ODg4NDk8GRdQcHBwcHBwcHBwcHBweHJoMj6w4ODg4ODg4ODg4ODg4OTQZH1h0cHBwcHBwcHBwcHBwcmgzpqW7AePDwww9zxRVX8Nhjj+F5HsuWLeMrX/kKnud0Dg4ODg4ODg4ODg4ODg4zB9OGrD/88MN87GMf44Mf/CCf+9znyGQyPP744wghprppDg4ODg4ODg4ODg4ODg51xbQh69/61rd49atfzSte8YrKZ6tWrZrCFjk4ODg4ODg4ODg4ODg4NAbTgqwXCgUefvhhVq1axfve9z42b97MggULOPfccznllFOmunkODg4ODg4ODg4ODg4ODnXFtCDrg4ODhGHIrbfeyuc+9zkOO+ww7rnnHj7zmc8wd+5cjjrqqMqxYRiyY8cOWltbnYu8g4ODg4ODg4ODg4ODQ8MhpSSfz9PT01O3nGrTgqy3trYC8IpXvIIjjjgCgJe97GUcd9xx3H333TGyvmPHDt5x/j8iA59ScVB/Kliw5Di2blqLlCEAXbMPJghKDA/0AZBKt9CzYCVbN62tnGvW3EMo5neTH94BQLalk85ZS9jR92jlmJ7eIxnc/Rylgvqt1vYecq2z2L396cox8xevZkf/4wR+AYD2rl5SqSwDuzaq1gmP+YtXu/a59rn2ufa59rn2ufa59rn2ufa59rn2ufZNk/b1P/cAINVv5TopFQe57rrrmDdvHvXAtCDrHR0dLFq0aEyW8tbWVmTg8/RTj9DV1bUfWufgMDU49x3v5vvfu3Kqm+Hg0FC4ce5wIMCNc4cDAW6cO8x0DAwMcNBBB1UMzfXAtCDrAOeccw4/+MEPOO2001ixYgVr1qxh7dq1vOtd74odJ4QglAFdXV2OrDvMaLS1trox7jDj4ca5w4EAN84dDgS4ce5woKCeodjThqy/6U1volgscuGFFzI0NMSSJUu46KKLamaE90sjU9BCB4f9i8WL6uNe4+DQzHDj3OFAgBvnDgcC3Dh3cBg/pg1ZBzj33HM599xzp7oZDg5NAbuMoYPDTIUb5w4HAtw4dzgQ4Ma5g8P4UZ80dU2GVLplqpvg4NBwPP/4F051ExwcGg43zh0OBLhx7nAgwI1zB4fxY0aS9Z4FK6e6CQ4ODcc119481U1wcGg43Dh3OBDgxrnDgQA3zh0cxg9xxx13yKluRD0xPDzM2WefzZ49e1wSCwcHBwcHBwcHB4cJoFAoUCqVproZDg5NhWw2S0tLbS/ugYEBuru7ufHGG2lvb6/L702rmHUHBwcHBwcHBwcHh8aiUCiwfPly+vr6propDg5Nhd7eXtavXz8qYa83HFl3cHBwcHBwcHBwcKigVCrR19fHs88+6zxVHRw0TB31UqnkyPpkMGvuIVPdBAeHhuO662/nzW84faqb4eDQULhx7nAgwI1zh2ZFV1eXI+sODlOIGZlgrpjfPdVNcHBoOFYedvBUN8HBoeFw49zhQIAb5w4ODg4OtTAjyXp+eMdUN8HBoeFYfcxhU90EB4eGw41zhwMBbpw7ODg4ONTCjCTrDg4ODg4ODg4ODg4ODg7TGTOSrGdbOqe6CQ4ODce6DZumugkODg2HG+cOBwLcOHdwcHBwqIUZSdY7Zy2Z6iY4ODQcv7nrvqlugoNDw+HGucOBADfOHRz2D6666iqEEJWts7OT1atX87WvfQ3f9xv62xs2bEAIwVVXXVX57Pzzz2fZsmXjOs+dd97JxRdfTBiGdW3fxRdfjBBiQt/98Y9/zBvf+EaWLl1Ka2srK1eu5BOf+ASDg4N1beOBiBlJ1nf0PTrVTXBwaDjee95rp7oJDg4NhxvnDgcC3Dh3cNi/+NGPfsSaNWv4yU9+woknnsgHP/hBPv3pT+/3dvzbv/0bN9xww7i+c+edd3LJJZfUnaxPBpdeeimpVIrPfe5z3Hzzzbzvfe/jf/7nfzjzzDObqp3TETOydJuDg4ODg4ODg4ODg0MtHHfccRx66KEAnHXWWTz11FN8+ctfHpWwl8tl0un0hC3Po+GQQ2ZGuelf/OIXzJs3r/L+lFNOYc6cOZx33nnceeednHbaaVPYuumNGWlZd3BwcHBwcHBwcHBwGAte8IIXMDAwwNatWyvu6t/4xjf413/9VxYtWkQul2P37t0AXH/99bzoRS+ira2NWbNm8bd/+7ds3Lgxdr6RkRHe//7309PTQ0dHB6997Wt57rnnqn63lhv88PAwH//4xznkkEPI5XL09vbyxje+kf7+fi6++GIuueQSADKZTMWd3/7dj33sYyxfvpxsNsvy5cv57Gc/W2Xdvv/++3npS19KS0sLixcv5jOf+QxSyglfP5uoG7zgBS8AYNMml5NjMpiRZL2n98ipboKDQ8Nx+dU/n+omODg0HG6cOxwIcON88pBSIgOJDEK1nwTxcBg/1gaSz5Yla4P6XvdGnTeJ9evXk0ql6OjoqHz22c9+lieeeIJvf/vb3HDDDbS0tPDNb36TN77xjaxatYof//jHfOtb3+Kvf/0rp5xySiw++x//8R+5/PLLueCCC7j++utZuXIlb3vb2/bZjlKpxJlnnslXv/pVzj//fG688Ua+9rWvMWfOHHbt2sV73/te3vOe9wBw9913s2bNGtasWQOA7/u84hWv4PLLL+dDH/oQN910E+9973v5zGc+w0c/+tHKb2zfvp3TTjuN7du3c/XVV/P1r3+dm2++mSuvvLKqPeeff/6EvQnuuusuAI480vGyyWBGusEP7q7WXDk4zDScdsrxU90EB4eGw41zhwMBbpxPHFJKKIcQhBBICFGmKE8g0x6kPYRXX9dlhzjWBpJzyrAFuDyAa6TkmNTkz/tQAG/3oQ+4IoAbkKxO1edeBkGA7/sMDg5y3XXXcf311/Oa17yGtra2yjELFizghhtuqJDVoaEhPvaxj/Gud70rRmxPPPFEVq5cyRVXXMGHP/xhHn/8cX7wgx/w2c9+lo9//OOAcrUfGhrim9/85l7bdc0117BmzRp+9rOf8drXRrks3vSmN1VeL1miEmm/8IUvJJ2OqNwPf/hD7r77bu666y5e9rKXAXD66acDcMkll/Cxj32M+fPnc9lllzE8PMytt97KQQcdBMCZZ57J0qVLq9qTSqVIpcZ/Mzdt2sRFF13EGWecwQknnDDu7ztEmJGW9VLBZR50mPlYsWzxVDfBwaHhcOPc4UCAG+cTgwwlFALI+5AP1FYwr321FX1kg62yBzpuDBVRB0Wsz/BhQXHy2xmaqIM6/y/rmKfsiCOOIJPJMGfOHN7//vdz7rnnVlmWX//618esymvWrGFgYIBzzz0X3/cr20EHHcQRRxzBb3/7WwD+8Ic/EIYhb37zm2Pne8tb3rLPdt1666309vbGiPpYcfPNN7N06VJOOumkWPvOOussyuUy9957b6UfL3rRiypEHaC9vZ3XvOY1Vee84oorxp0lf2hoiNe97nWk02m+853vjLsfDnHMSMu6g4ODg4ODg4PDzEXFol4MoBSAL8G32FxKQFoqazsgc2lnYW8QzvaU5XsL0Atck6bulvWFwN/U0cR4ww03sGTJEjo7O1m6dCktLS1VxyxcuDD2fuvWrQCcccYZNc85e/ZsALZsUaqLBQsWxP6ffF8LO3bsYPHiiSnvtm7dyjPPPEMmkxn13KZ9Rx99dNX/x9K+fSGfz/Oa17yGdevWcdddd1W8ABwmjhlJ1lvbe6a6CQ4ODcfah55k9TGHTXUzHBwaCjfOHQ4EuHE+AfiaqJdDKIVqXw4hlOAJRdZz+tiUgFQI2TowSIcqrE4JbkDyy1AR6nq5qp+chp+K+p8X4Oijj65kgx8NyVjtnh7FL6666iqOOuqoquM7OzuBiOT39/ezYsWKyv/7+/v32a65c+fy17/+dZ/H1UJPTw/Lly/nuuuuq/l/k8hu4cKFNdsylvbtDeVymTe96U38+c9/5rbbbuOYY46Z1PkcFGakG3yuddZUN8HBoeF4/MmN+z7IwWGaw41zhwMBbpxPAMaS7oeRhb0YwKN98IMH4LG+iMwHEoLQJZ1rIFanBBdmRF0JdSPPOxGcdNJJdHZ28tRTT3HCCSdUbStXrgRULLnneVWk+dprr93nb5x11ln09fXxi1/8YtRjcjmlhcrn87HPX/nKV/Lss8/S0dFRs31z584F4MUvfjH33nsvzz77bOW7w8PDe/3NfSEMQ84991x+85vf8NOf/pQXvehFEz6XQxwz0rK+e/vTU90EB4eG481vOH2qm+Dg0HC4ce5wIMCN8/FBhhJCbUUPZETYH++Hazerg/76LLwbOHqRJus6+ZwzrjtMEF1dXXzxi1/kAx/4ANu2beNVr3oV3d3dbNq0ibvuuotTTz2Vt73tbZXM7xdddBFhGPKCF7yAW2+9lV/96lf7/I23v/3t/L//9/9461vfyic+8Qle+MIXMjg4yC233MKHP/xhjjjiCFatWgXAf/3Xf/GqV72KVCrFCSecwLnnnst3vvMdTj/9dP7v//2/rF69mlKpxNNPP83Pf/5zfvrTn9LW1sZHPvIRvvGNb3DWWWdx8cUXk8vl+OIXv0hra2tVe97znvdw9dVX7zNu/QMf+AA/+tGP+OQnP0l7e3slPh5UQjznDj9xzEiy7uDg4ODg4ODgMEMhUcQ7lGqTKDL+QF/8uPv64KhFEalHAlNvoXWYvvjHf/xHDjroIL74xS/ygx/8AN/3Wbx4MS996Us57rjjKsd961vfoqOjg0svvZRSqcRpp53GD37wA17ykpfs9fyZTIZbb72VSy65hG9/+9tccskl9PT0cPLJJzNnzhwAzj77bN7//vfzjW98g09/+tOqbKGUZDIZbrnlFv7zP/+Tb3/726xfv5729nYOOeQQ/uZv/oZsNgsoV/vbb7+dD33oQ5x33nn09PTwf/7P/8H3fT796U/H2hMEAUEQ7PO63HTTTYAqd/fZz3429r9PfepTXHzxxfs8h0NtiDvuuGNG+QQNDw9z9tlns2fPHrq6uqa6OQ4ODg4ODg4ODnWEDEIY1tneTTb4QgAPbYGfWXG37zoIVi2EtjS0pKA9g0jPyAjQumNgYIDu7m4nTzs4WNjXc2H+f+ONN9Le3l6X35yRM9b8xaunugkODg3HZV/bd+yTg8N0hxvnDgcC3DgfJyRg4s8re2CuSvDFAuBti2HFfPU+lPG9g4ODwzTBjHSD39H/+FQ3wcGh4Xj7W1451U1wcGg43Dh3OBCwP8a5DKUitqEEIdTmVWe8nhawCbrZkDBcUp+/YDEsnxsdZ451cHBwmGaYkWQ98AtT3QQHh4Zj3txZU90EB4eGw41zhwMBjRznMjQJ2AIIiAhsSpU3k9kUIjXNHC0rJD1hXR/SsbUjQYLI62McYXdwcJhmmJFk3cHBwcHBwcHhQIcMpSpfVrJKmBmYWuSBVIR9OtUgl0Qu7TYpH9ZkPR9ax8pq4u7g4OAwTTDNVKljQ3tX71Q3wcGh4bh7zdqpboKDQ8PhxrnDgYBGjHMppSLopUAlXyvoOuQjfvy9JvMyCPd90mZBjKhbDNxY1vN+nJgnLfAODg4O0wQz0rKeSmWnugkODg3H4ODIVDfBwaHhcOPc4UBAQ8Z5KBVRL+ka5GYLLTd4Y00XAlIBskVMkxj2RMI4U75tRMesj5Tj/5fR96SU06SPDg4ODjOUrA/s2jjVTXBwaDheddaLp7oJDg4NhxvnDgcCGjLOfV1b3Nckvahd4Z/cCmv74PiFcGSvKjue8dSxIdDk3vBSJoi6bSwfKMGCdETW7f+7TPAODg7TEDPSDd7BwcHBwcHB4UCFlBJCHaMe6AzwgYQn+uEHm+DhAL77nHpv/hfo7zQ7krHnoeXiXizBvHYolSOXd5uku7h1BweHaYYZSdaFmJHdcnCIoVgsTXUTHBwaDjfOHQ4E1H2cmwRshrAawv5AX/y4+7ZYxzI9iKydXC5pXd8TQE9LFLuetKo767qDg8M0w4xktfMXr57qJjg4NBxf+sb/TnUTHBwaDjfOHQ4E1H2c29nPbaK6OpGA93m907O0WS3rupRQBOZnwaQAqFVnfbr00cHBwYEZSta3bnLZgx1mPj78/r+b6iY4ODQcbpw7HAio/zg3lvJEebODetT7VuCti2DF/GlY2kzGvQGMMqKgrek9bWofJLwFppMywqHhWLNmDW9+85tZtGgR2WyWnp4ezjzzTK6++mqCIJjStm3YsIGLL76YdevWNeT8a9as4YUvfCHt7e0IIXjggQfqdu7du3dz8cUX85e//KVu5xwN559/PsuWLZvQd6+55hpOPvlk5s2bRy6XY9myZbznPe9h48bmy3s2I8m6lBOPuZKhRPohshggC4Ha+6GqVerg0ETI5VzVA4eZDzfOHQ4ENGSc267thrQPa3f7lXNg2bw4kbX3zYyYEsJSRgzpvnXpa5n3o2Niyohp0EeHhuJLX/oSJ598Mjt37uTzn/88v/71r7nyyis5/PDDed/73seNN944pe3bsGEDl1xyScPI+nve8x583+cXv/gFa9as4fDDD6/buXfv3s0ll1yyX8j6ZLBjxw5OP/10Lr/8cm699VYuvPBCbr31Vk4++WQGBwenunkxzMhs8BOF9EMo6zInZpETgCcg6yEzKUR6Ruo3HBwcHBwcHGYKbAODnYBtoKheG2Jbg8g2fWmzpLeAIeAjJehCyWygMsJ35xLfcdb1Ax2//e1vueCCC/inf/onvvKVr8T+97rXvY4LLriA4eHhKWpd4xAEAVJKPM/j8ccf55Of/CSnnXbaVDdryvChD30o9v6UU05h6dKlvPKVr+TWW2/ljW984xS1rBozknl2zT543N+RpUBpYfOBcqUqBKrMiXmdV/+Xpal1jXFwMLjp1jVT3QQHh4bDjXOHAwF1H+e14tUBhrS1OV+u8Z1pQmST3gJmPxRAe0a97gDyJaJwAKq9CBwOSHz+859nzpw5fOELX6j5/0MOOYRjjz228v6Pf/wjZ5xxBh0dHbS3t3P66afzxz/+MfadU089lVNPPbXqXMuWLeP888+vvL/qqqsQQnDvvfdy7rnn0tXVxaJFi/jnf/5nCoUCAHfeeScvf/nLATjzzDMRQiCE4M4776yc59vf/jarV6+mpaWFuXPn8p73vIedO3fGflsIwSc/+Un+8z//k+XLl5PNZvnqV79KKpUiDEM+85nPIISouJH/6U9/4k1vehNLliyhtbWVlStXcuGFF5LP56v6dcMNN3DyySfT0dFBV1cXJ554Ij//+c/ZsGEDy5cvB+Dv//7vK22/6qqral4Pu60XX3xx5f1TTz3FO97xDpYvX05raysrVqzgfe97H7t27ar6bj3R06PChNLp5rJlT0uy/m//9m+8/OUv57777qv5/yAYX1ZVGYRQCqI6pIakj/gRaTf1SUsBMnATvcPUo7Ozbaqb4ODQcLhx7nAgoO7jvFa8ugQGNFkvlkYpbTYNCPtofRsKoE27wLelIJ8IibS/41B3yPUDyOueRq4faNrzBkHAHXfcwVlnnUVLS8s+j3/wwQc55ZRT2LVrF1dddRXf/e53GRgY4JRTTmHt2onnx3rHO97BIYccwvXXX8/73vc+vv71r/Mf//EfADz/+c/n61//OgBf+cpXWLNmDWvWrOH5z38+AB//+Mf5wAc+wBlnnMHPf/5zvvjFL3LzzTfzqle9qirW/qqrruKXv/wll156Kb/85S9529vext133w0oV/g1a9Zwww03ALBx40aOO+44vvnNb3LzzTfzoQ99iCuvvJJ3vetdsXN+9atf5Q1veAPz58/n6quv5kc/+hHnnHMOGzZsYOHChVx//fUAfOITn6i0/W/+5m/GdX02b97MQQcdxJe+9CVuueUWLrroIm6//XZe/epX7/O7p5566rji2IMgoFgs8uCDD3LBBRewatUqXvGKV4yrvY1Gc6kOxoBbbrmlon0aDcMDfXv9fxVKodqKQbT3w8gN3ri+e0K9z4SQSk2k+Q4OdcNLXuyqHjjMfLhx7nAgoO7jvFa8OsBgAAvSsMvEc1vHm/fNTmZH69twAJ3a7T2XUR6R5niDZu/bNIVcPwCfewB2leC2TciPHAPLOid/4g2D8N8PwW593guPQyzvmvDptm/fTj6fZ+nSpWM6/tOf/jS5XI7bb7+dWbNmAcravWzZMi655JIKMR0v3va2t3HJJZcAcMYZZ/CHP/yBH/7wh1xyySV0dXWxatUqAI488khe9KIXVb63YcMGvvjFL/KpT32Kiy66qPL54Ycfzkte8hJ+8Ytf8PrXv77yuZSSW2+9ldbW1spnxnq8ZMmS2Lltt28pJSeffDJdXV28853v5Otf/zo9PT0MDAxw4YUXcs4558T6bpPb5z3veQCsWLEidv7x4GUvexkve9nLKu9POukkDj30UF760pdy//33V36jFlKp1Lgs4wsWLGDHjh0AnHDCCfz6178ekyJnf2JakfVt27Zx5ZVX8pWvfIW3vOUtdTmnNOU+Qqkyh/qhsqA/0Q/396myJocvgJRQZD0lIAyR0mvumC4HBwcHBweHAw5SWozbdoOXwHAR5ndA/251zLQksqP0baQEXZqst2dgJKxdZ33a9HMa4U/bFFEHtb+otufrpLCrBH/eBpMg6+PFb3/7W84+++wKUQfo6urita99Lb/4xS8mfN6kpfmYY47h17/+9T6/d9tttxGGIeeeey6+71c+f+ELX0hnZye//e1vY2T9la98ZYyo7w0DAwN89rOf5cc//jHPPvss5XIUKvPkk0/S09PD73//e4aGhviHf/iHMZ1zoiiVSlx66aV897vf5ZlnnokZaR9//PG9kvXbb799XL91++23MzIywqOPPsp//Md/cOaZZ3L33XfH7vlUY9qQdSklX/jCF3j729/OggUL9npsKj0OjYhEkfTQIuxP9sP3N6n/P7IJ3g6sWhhN8oGEEHDGdYcpxLbtu5k3d9ZUN8PBoaFw49zhQEDdx7kdr26T0z1FWDlbvS6GkE7VILLGrbD5IJOu+3bfBkqwUIcTtGrLuv3/JHF3qB9eMA9u26QI9ews1NOyftlD0XlPmDep0/X09NDa2sozzzwzpuN37tzJwoULqz7v7e2dVPz0nDlzYu9zuRzFYnGf39u6dSsAhx56aM3/GwuxQa22j4Z3vetd/PrXv+bTn/40xx13HO3t7fzxj3/kAx/4QIUsm/MvWbJkzOedCD7xiU/w1a9+lYsuuoiTTjqJzs5OnnvuOd7whjfs07t6vFi9Wnk1vfjFL+bUU0/l0EMP5Zvf/CYf//jH6/o7k8G0Ies/+9nPkFLymte8Zp/H9ixYOY4zJ5KPhFJZ1G080AdH9KrX02AxczgwcM21N/ORf6qPh4mDQ7PCjXOHAwF1HefJmO6K27hUlvW5Oq57pBwlZJsuRDbppm9nui+UoENbUVrSMFiMvmOOiX3gUC+I5V3IC49Tlu8T5k3KVT2GVbPret50Os2pp57KbbfdRrFYJJfL7fX4OXPm0NdXHVrb19fH7NmzK+9bWloYGKiOqU8mfZssjAv7rbfeGvv95P8NxuoBXCgU+NnPfsbFF18cy5L+0EMPxY6bO3cuAJs2beLoo48eV9tBXadSKZ5XLKlgALj22mt55zvfyf/3//1/lc+GhobG/XvjxYoVK5gzZw5PPfVUw39rPJgWCeY2bdrE9773Pf7lX/5lTMfv2bWRc9/xbi644AIuuOACbrzxRj5/2fcoFqMBctOta7h7zdrKArZ91x4uu0bHXxyniPl1g4+xtrgVVqv3657r44of3xSb5y+/+ues27Cp8n7tQ09y3fVxF4zLvnYt27bvrry/e83aWObXYrE0evs0tm3fzWVfuzZ23uuuv521Dz1Zeb9uwyYuv/rnsWNc+2Zu+z7yT29p6vZBc18/177p0b6P/NNbmrp90NzXz7Vv/O371a2/5+7f79/2GaJel+sn4bqf3cHaR5+uENR1m/u44pZfw26gMws5uOK221m3WRORULL2sae57sY7YjJOU95fyxPgsmt/yvbdmiQNBNzTt56b7rsf2jwYKlMsl/nCD39CsViuEP2bbv/Dfr+/TXX9xtG+8UAs70L87SH1I+oNOu/HP/5xduzYwb/+67/W/P/69et58MEHAVXO61e/+lWs7vbg4CC/+MUvYtnfly5dyhNPPBEjor/97W8nXK/bKBGSmdjPPPNMPM9j48aNnHDCCVWbycQ+XhSLRYIgIJPJxD43WdwNTjrpJDo6Ovj2t7897raDuk5//etfY5/98pe/rDpuZGSkqi3f+c539tqHeuDhhx9mx44dHHLIIWM63jy/N954Y4VznvuOd9e9XeKOO+5oehXjzTffzH/913/R1hZlSx0YGKC9vZ1TTz01RuKHh4c5++yz2bNnD11d+36wpR/CcDnK/l7UJdzueRbu3Aln9MALD4LWFLSkoDWt9u0ZV3PdwcHBwcFhBkCGOmdNYMU5C52nJu0hvOnjSSeDUMkzRqYxlW3yZfivh+HDR8E1j8Ipi+GIOcoK3aJlnLY0tKYR2eaM85OBVB4BBS2rGdmtHMDnH4L/czjMboW/boc/b4XzV0HWi8tvpo8u79BeMTAwQHd395jl6emEL33pS1xwwQWcfvrpnH/++Rx88MHs2rWL22+/ncsvv5wf/OAHvO51r+PBBx/khS98Iccccwwf+9jHEELw+c9/ngcffJB777234kJ9xx13cNppp3Huuedy/vnns379ev77v/+bLVu28PrXv75Ceq+66ire9a538eSTT8Zc2S+++GIuueSSSpjHjh076O3t5eyzz+Zf/uVfyOVyrFy5ks7OTi688EIuu+wyPvjBD3LKKafQ0tLCs88+y2233cZ73/veStk3U7rt3//932N9932fTCbDpz71qVi5tBe/+MU8/fTTXHrppcydO5crr7ySBx54gKeffpo77rijopz42te+xgc/+EHe8IY3cO6559LZ2ckDDzxAS0sLH/zgBwnDkPnz57Ny5Uo+97nP0d7ezvLly+np6eE73/kO7373u/nwhz/M2Wefzdq1a7nqqqt46KGHYu1561vfys9+9jMuvfRSDj30UK6//np+/etf8/TTT/Od73ynUv7t/PPP584772TDhg2Vfpx++uk888wz+7SOv+QlL+Gcc87hiCOOoKWlhQcffJD/+q//QgjB/fffX/EiSGJfz4X5/4033kh7e/te2zBWTAs3+FNPPZXjjz8+9tmb3/xmLrjgAk444YTJnTxZysPs53cAO/XelftwcHBwcHCYiZC+Vb7V5LCBKKls1kNmU4jUNFHQjxavPqCtfi3eNM6WLuOu/abtRd2X9qyKUGxNKeWEKUVnu8+bzxxXP2Dx4Q9/mBNPPJHLLruMf/mXf2H79u10dnZywgkn8K1vfasScnvsscdy55138slPfpLzzjsPKSUvetGLuOuuuypEHeDlL3853/zmN7n00kv5yU9+wvOe9zyuueaaWIb18aCnp4evfe1rfP7zn+eUU06plJw79dRT+dznPseRRx7J17/+db7+9a8jhOCggw7i9NNP57DDDpvwNfnhD3/I+973Pj7wgQ/Q2trKm9/8Zr785S9z9tlnx477p3/6J3p7e/niF7/IueeeSyaT4cgjj+Tf/u3fAPA8j8svv5wLL7yQM844A9/3KwT7vPPO49lnn+WKK67gW9/6Fi996Uu54YYbqmLwv/rVryKl5JOf/CQAr371q/nhD3/IiSeeuM9+BEEQS743Gl74whdy1VVX8cwzzxCGIQcffDBvfetb+ehHPzoqUZ8qTAvLei28/OUv59JLL60i8cPDw7z9/A/xzNN/GZtlvaS1skZDm9ea6L/ugJ89B286CFZOL82zw4GB666/nTe/4fSpboaDQ0PhxrlDIyGDUK37pXB0sp7xIJeCljQi1RiGV89xLstGrrGszwUf1u2CX26E9x8L16+Hhe1w8gLdNy3b5LTnYK455ZuYN2SlbwFsGYIrnoKPH6vu2bOD8IN18C/HQjYVyW+taUXkWzMNu5czBTPZsu7gMFE4y/o4cMcdd4z6v2J+98RPbFQXxTC+l9NJ8+xwIGDlYQdPdRMcHBoON84dGgUppbKoG6Je1NZ1m6xnLGu6J5AtqYa4T9d1nCdrkJv9YAAdOrlcWwZGgurvQXMnmbO9Ie1+jpTATj7elgGfqDRv7Bz7paUODg4OdcG0Jet7Q364OrPgqEhmTTV7Q9ILYfx/Dg5NgtXHTNzdycFhusCN8+aCNC7EAGLs2YabEqEEX8eqFzVpLwXKug7KQguKtAvUcaEXfV5H1HWc2+7hlUzwwIAPnTr7dWsahkrV7uGVEzQpRlNEDAUqs70Zj21avC2FkEmUp6ucaBqPXQcHhwMGM5KsjwtJ7axBwSLrSW1zKJt6LXNwcHBwcKgnqhKwhRJSAul5KgHbdHQpNkQ9kGrzQ0XuntoKa/vh+b1wZK8i62lP9TmQ0Jwe4hFqxatLYMgi620ebNEx7DXiuqWUzamISRpYzDYcQJv2GhCopHIwPcvTOTg4OFiYJtlSxodsS+e+DzKQNSZtiVqwsfb2/+y9g8MUwS7J4uAwU+HG+dRD+iEUdW6XvJVdfETHDefLKv/LNIKUEkKteDBx6r5URP3azfBoAN/fBE/0q/8Zoh7u89QTQr3GucomPUoStoEidGgbTVsKimX7i9G+meUb21PAlt+GA1WSDlBsXUAWRdbNcdMqkZ6Dg4ODwowk652zloz/S0lX+JLOJFgMak/qtUi+g8N+xG/uum+qm+Dg0HC4cT51kFIqEl7QJN0k88oHUfKyYqDCxoqBSmw2XWCTdPNaSmVRt3G/rkOedLuuM+o2zkdzEwcYLkJnSrmKt40hW3pTIkG8K5b1kopTF0Su8B1CjV3ra9Xu8A4ODg7NjRlJ1nf0PTqm42Ia6GTMVsFXV6eoJ/qa8U4ODlOH95732qlugoNDw+HG+dRAhlKRcJNxu6g3k4XbEPW8H5U9KwWqDvZ0gCGkhqSb18fMjx93XG+CzMpKLeR6oq7jvFa8upQwUIZObVlvzcCAPj5pVbdloiaCTFrIbaXEQAk6UhWjOkJASwbyLkmwg4PD9IaLWYdqqzoogaTHU4JI5bj4vmljuhwcHBwcHCYIGehEa0WdJV0TcUphFOMticqaeSIqcxaGkGr2oG5qW9WlhPa26Ji3LIIV86aPizjUJtuh/mAYFbPuoeK4Q+IEHZq7jzX7hWpzoQTtetwZsaxFZ7yfVp4DDg4ODnE4sm5P2LbmtexDW0vkDm//3030Dg4ODg4zDFLKODEvj7I9tRXW9sHzFsLKBRFpD3Tcd2aqezIGhFRb1QG25NV+FrBs7uhEr2n19LJ2vHpehyiYuO5WLf4VApUtvcqq3qSdTHo5mvsyGETx+AbtlmUdmt5zoFkxMDCw74McHA4QTMXzMCPJek/vkWM70HahMu/Rn5V96O2ETbtrW97N+yZcyxwODFx+9c+di7DDjIcb5/sHMrSIul1z3N78EB7vhx/rOO5HN8E7BBy1MLJUazfxZvY6U+XnrORyphZ3iCLri3OwpWgOjvYNJHp1G+e2XGPLLgNFJa+kvWgPqnxbJTEb0feakczWikI0XgN5oD2r3N+NK3xLRnlH1jLKuLxD+0Q2m6W3t5eDDjpoqpvi4NBU6O3tJZvN7vvAOmFGkvXB3c+N/WAzXye1tCMSOu14p8TxbqJ3mGKcdsrxU90EB4eGw43zxqPi9m6s6bZV3XweSNhViIi6wf19qryZgbHoNi9XH92qLiVsGYBV82BT3351Ea/bOK8Vr45UpHyOuSlCfdZOlGTO/i40qYyjFSpJ67optduRcOlo9WBPIX5spVvNr1SaarS0tLB+/XpKpVLdzrn+mc0sX7qobudzcJgKZLNZWlpa9tvvzUiyXioMju3AWlpas0Dlge40jCQ+d25UDk2CFcsWT3UTHBwaDjfOGwvphyqh6t7c3gMJT+yE65+FJR48Z7kWH7dA7cPptDbKOGE3ZdkCCVsDeE0H3Ml+dRGv2zhPXv9K2bYAWnNRpnQhVIz3SBB9zz6+Ge+h7TVgKxaGNJnMWDHrApXxfqQc/37yuw57RUtLS11Jyepjuup2LgeHAwUzkqxPCvZi0JnSNVWb1CXMwcHBwcFhgqhJ1EuWK7yvtzv74A/b4DWL4ageeLgPfrEV/nYhLJs3/RJ3JUk6qPf9Qyr52rxW9dlQCTqy0f/Nvpn7KKmOV5fAkA/dOfVeaMt6LhvFsk+HGuS2W39lk6okXYc+xhMgPCCENg9Ke6mz3uweIA4ODg7M0NJtre09YzwysaCZva+tBl1am1hOaJrNQti0K5rDgYC1Dz051U1wcGg43DhvDGQoIxf3YhDfDHkfLME1T8CT2+E9h8LRc1UyuSO1NX1+tz6ZZXk2McTNDGNVh4iwS2BzARa1AAI6gZESFTkh6Q5fZ9RtnNeKV5fAUFkpHozVGVSo33BYbXGuyDhNBpugY+2HA+UCb8erA7SkYGgUzwFnXZ8SuPncwWH8mJFkPdc6a+wH13KFL+jJvUtroYtmspe1j3dwmAI8/uTGqW6Cg0PD4cZ5g+AnXN1LYVRPvRzCht3wrUdV8rF3rYLedshaZdrSKMtzLdfiJl4fK8nlbJJuyGnfCCzuVAe2pWEkUaM7GcNeR9RjnKs65LK6vjrA7mJUY92Q2dZaCdj0vhnJbIyoW9tQAK1WsidTZ701Ux3KaL5r7x32G9x87uAwfsxIN/jd258e+8G1NOSGnKf0ilb0gdy+v+fgsB/x5jecPtVNcHBoONw4rz9kKKN66Ya0G9f3J/vhl1tgCDhjIZwwV9VNz3pqTSxrAjvLg+EysTCx6WC1TFrVK8RWQt8AvFTHjueyymIL1Vb1BnSvLuM8qUiw65Dniyq0z1ieBap82858/NiwiZlsLSUEqPvUpcm6nTCuXSecC6SSdht8Dx32DTefOziMHzPSsj5mjLaoFfyIm2fRmudRYp4cHBwcHBymE2yrukmsFkhVP/1/NVEHmCsgrYl6xoOUFhmEgJasqm0NtWOBmxZWf41V3ZSt2y5hkQ5+7sqo5GtJgtfM/bO9BJKJ4nYHUbb0SgI2DwZHT8Amm84oMYqL/0gZ2jJxF3iAFm2PyvvR92L3sNn65+Dg4FCNA5ysJxYzsy8FoPPL0Kbf1zqu6RYyBwcHBweH0RGzqgcSfBklkluzOX7wX7equN+WFORScYmhO6eSltkEzyaLzYokSa9Y1YeUcr5Txz63ZqtdxA2aee1PuoqbfpZQoX3CYrRtqX0nYGsSSLuNSev6npLKbG9XphOocA1QZD4ptznruoODwzTBjCTr8xevHtuBo5HuUgg5rZHNpdX72PcSJN/BYQpw2deuneomODg0HG6c1xm2Vd2Q9EAq9/BkOeUTFyqSnktBWosLnk7i1ZaFYb924rVmJrOBjCsWzOvNBVjYpjKJG6vzsLY6VyVek3W3OtdnnMvaZNb0o2JZ1yS2NaXuof4q0LyhDHtz8S+WoEOXbTPj0/SxA8jvv0SBDnuHm88dHMaPGRmzvqP/8bEfXGvyL4SQ0Zcmk1bv7f8nv+fgMAV4+1teOdVNcHBoONw4rx9kKCFIuL4bwr6nCFuAV8yD53bCCQthZa9yf894av2z44E7UrBRZ++q4V4spUTYxzcBVHI5GSfpZr9lBJZ0RFbZ9hQMW9qLpDt8nVGXcT4amd1TVF4DQkTWZiGU67gJeZgOCdiSigTTvkEf2u3keSKysrelIO8MLs0CN587OIwfM5KsB35hbAcm3cXMvhgqSwKomKdiWL14ORcqhynGvLmzproJDg4NhxvndYQfRmXZfCtmPQR+vxUO74TnL4IXLlGu74aoZzyVeNVOTtaRJLMJ92JJ89WwDqltVZcStgzAMd1WpvQUFEdzEZd1719dxvlo8erDZZilZRpB5FNpasj7ofKcqJJvmugm1lIgmDKBI+iydLqttkIil5leteRnONx87uAwfsxIN/hxoZY7VClUWVJB7QuWVnY6JJlxcHBwcHCwIGUNq7qJWR8swQM74SULlFSQEtGW1lnghUWAADrSqnZ3VY11ms+F2kDK2m7wxQD2AIs6LRfxNAyY0m36+zYJbsYuJg0Qpp+DAbTl4p4RoBQysJcEbM0EWXuMFfU9MpnfIa5faM+oEny13Pybro8ODg4O1ZiRZL29q3dsBya1z+Z1MYSsJuvZtEowV2tSd/FODlOIu9esneomODg0HG6c1wm1rOq+rje+ZhusaIcF7Srju7Gmpz1IG5JOPB64I6tdqGVti2UzLo+jWtUHVTLZ1rTuo1Dx3SUYtX91Rl3G+WilzQZ9lRAQVN8qHhJCSYHD0yABWy2PAYAh7d2RtXIq2PtWbVlPynnQvEqlGQw3nzs4jB8zkqynUtnxfSHpCl8KIKs1zjlP11mnejFzcJhCDA6OTHUTHBwaDjfOJw8ppZVILmFZHynDfdvhpQmrumcs63acs3XSTr3OFhM5XawkbE2H0ZLLbSqqkm2GyEJkqd1P/avPOE9YnU1bh0pK+WCHMRgreydQKNP0CdiSHgPms6GSSiKHNU4NBCqUsVCOvmufqxnH6F4gA4kMQqQfqv00VDa4+dzBYfyYkWR9YNfGMR6ZIOlmAi/4kNOTfs7ba43O5qtD6nCg4FVnvXiqm+Dg0HC4cV4HBBLKsjoTfCDh3m1wcKtyAU9ZFnXbum6XwTJ7Y8kcqpGErQldjGUo95JcbhgWtsfrdGd0/0ZGr0NeT0x2nEspGdX6vKcInem4ssUQ9tYMDJvytAmrejPdw6THgOnnSKBCMmyPARttngrXgJpu/tNBhpNBiCwEkC+rvgyXVRb/fBlZCqYVaXfzuYPD+DEjyfpYIJMTvj3X5X1o0ZcmpxPrVJ+goe1zcHBwcHCYLKSUUA7itdXNlvfhD9vgZTVi1Y1VPaXXQpsEeZoVdQBDxYgE2SS92dZIu31VbvBDsDinlRJe1L8WVBK90eqQNxNsImv3VUoYKUKnXdrMEv1aMorw1rKqN1Mfk/0z25APLZY3ZczNH5UNvmgrXBIKiSaHDEJlQBopQyGItryv3PvzPhR9ZDANOuPg4DAhzEiyLsQYu2XPbbZg4fuR1aDFg7Jf+7hm0zw7HFAoFpNFkR0cZh6m2ziXUmp3VYkMm8D7yiSRq2VV/8M2RVKXdCkSV2VVT6nPbau67UbdmYGhaWCVBUZNLpf3YRhY2BnFcBvFRKcHI/unDvmkx7lNYJP17ndJnfld1HCDz6oEbJXz1HCHbwbU6h8or4CuZDy+lRCxNaUs0rX61eSEXQZSEfWifm4NUR/xlRHJvC+GUAqmfq4ZA6bbfO7g0AyYkWR9/uLV+z4oOafZk3dZW9aFiGLWR5voHRymCF/6xv9OdRMcHBqO6TLOpZTIUqCE63xZWcLyZSj4KsZ0CtaLilW9bFnVTcx60Yd7tyqrup31PZkJPknu7IzibVlF1pNrYxO6wY9qVd88CN2ocq1GGQF6/c/CcCJmHRrSt8mPc6t/EPXR15nQu3JW36ytJaMUFrWMF80k40iTmT9hXR8uq3rxSRd4U2+9JR3Vkq+cq0kVEkn4oQpfKYeKnBeNJd2Q9CD6XylQz3WTY7rM5w4OzYQZWWd966YxZptMasjNPDciowRz2ZSq4WkjmZDOwWEK8OH3/91UN8HBoeGYDuNcBhJKvsq2bkgxRLHevoS0h2xJIZLlsxoJY1U3e2NZDyT8aTv0ZmBpt2pj2rKqpz3IpBAp1VYZs8gSEfauXGRZh7ilstniaEdLLre5CAu74lZZg45s5CIODS37NelxbhN1u22D2pLZarnB22jzYEtBva4qTac8Q/brmK2BWNhi0ro+WIIFrdHBIpEQsS0Dvj4+OSabbIjakIGMwlfKlmX9iX64vw+e3wtH9EaJIAP9fKeb2wY3HeZzB4dmQ3M/1ROElOEYDkrs1RfVPo8i6SaTqPHamS7laRwOCORy46x64OAwDdHs41yGmqjn7VhSP4opNVawUgCl/WdhV1Z1y+3dlGkLpGrLmn546UIVk25KtNmx6rbQb8iaTYIE0JaG4WK1RVe1YL/0cyzYa3K554ZgYZtVms4ie+37r+zXpMf5aPHqg8XqbOm2hb0tpeLyK+exztcstzBpAbevfb4EHalEaUHr2DZtk6qV1b9y8iaECdswWzlURP37m+CRAK7ZBI/1x6s8hM2fIb7Z53MHh2bEjCTrE4bWJCNRJN2QdYgsJc24kDk4ODg4TA3KVv3ycqhIgZ0EynZX3Z+uqqGMJ5XzLav6fduhJw0ruhU5NSS9hlUdUJJCMhu8QGUYHxg9G3zTxNBKVL9tq3oolWv1lhFY1BIne6D2rWkY0f1rdpKXtDhXLM++yi2QzJZu7mNbCkrl6PhmtT7X8oSUUvWvTXsNVCVBJMo/lN8/Wf3rhkAmxirKom7jgS2JMU3z3C8HB4e6YUaS9a7ZB4/hKGvhxtqX9T6nSXpOLwKlZBId6zwODlOAm25dM9VNcHBoOJp5nFdcVStEXRPzR/rg+/fDo30RUbdd0BvdLikjBYJN0k17f98HL1moMp/bJdpqWdUNahGhjhQUinGi14wKbZkgPqadg2XlOdfbUU1mBcpFfHB0kldPZcSkx3lSnjHkfTCA9lx0nEm+ZvrZmoaBMDoH1FBMTDFq6UdC3cERVLhC0vuj8lpAFhXbPh2y+qPHVRgq8m2T9mMXxA9c3Ru/1+aaNDGaeT53cGhWzEiyHgRjzDZZawEwZdqMNjatJ/6CnRFe75tlIXM4INHZ2TbVTXBwaDiaepz7YRQTbuLCH++Da56DhwP43nPKdTWW3G0/uKomrep27PoDO6Dbg8NmRfGuJplcLas61LaqI5Sb+O6kxdMiD82yRNpW9cpeqpJtc7VHgcl6byzsoMt+7aV0Wx37N+lxXiteXaIsz92arCf7J/Q9LOqDmzbUbxTjinFtb7dLt1H9ukOohIr6VLFzNKMclyTp5vWyuaqcIMBLZ6v39riGpk8y19TzuYNDk2JGkvXhgb59HwTRAmzDTOgVdzgBKRRZlzW+19zzosMMxktevHqqm+Dg0HA06zivSgBl4sL/klh//rKldqx0I2FKtSXb5odwzxY4aVG1VT0toi0JO/FazA0+p5J3GTI8BVZ1VSovVBn3S4HaB4mSeWFYbVWXwKYi9FrJ5UzMurkEbSmrNJ05V2NI3mTGueprDYUEqJj19nRtEgsqARsoTwyI909CUwg5dn/s5phY+5wWZZMlBkHdz5YM5BPZ5JPnaibUKjMYSJ3/ApgFtOukeraSrBmrMCTQrPO5g0MzY0aS9TGhyp0KNdkVfOUyBVRm+zZUAiGsxaIWcXdwcHBwODAQJCzXZtubq6qJK22gRC219b6qXaGE29apBKq5ILKq29b1TAqRqiUWjJINvl2Hi41oV3Hbqr4fXHJlEEZ1p4fLuma6LplXUh4MMknS7debBqHXTi5HwuqcjarBNK3VWUNSHa8OMFSErnR075JeEobojjRxTHcyeZ75bKik5DM7eZ6BncG+JRNl9Z8ipdK4YD+zlfEqYeOAIuoHzYJd5fh9ij13Dg4OMwkzkqyn0i37PigZe2725UBP/hZavMjdKknS3bzoMEXYtn33VDfBwaHhaMZxLo2beTkZFx5CxooPPr0Hls1Tr5Nu4g1rHNXJ1PwQnt4KDwyrY67bAhu3R6XaKhb2vZToskm6bYXOoKy3+zkeWPphlHXfJPQb8RPJ/XydBZ84SQ8kyBA2F6LkcqkahK9dW539xludJzXObZKWLG82WIJOk4CtVnjDNIjptvsDUfuGA5Xk0PaGsDPCV5RKlmUdmjNUQyOKV7cJO2rbMALL5sCsHOwq1AjtAEh4lTQZmnE+d3BodsxIst6zYOW+DxrNMl4IVXI5YWnXM2n1efL45p0PHQ4AXHPtzVPdBAeHhqMpx7mdtM0I1YEWqu/ZCi+YB/NT0NlKxT0Zql2UG4IalmQJ/HlL/LC1/ZFFPSUgPZpVnbhVPVn+a5YHw/s3HlhZ1HVd+2IQJ+12Bn5TMi9pVQfYVVT3a0FHtN6nEtZ1k2B2P1idJzXOa1n6jWfDINCRS7j662PMvlNEeXn20z0cF2JeA9Y2HECrFa9ue0VANGZbMmpc2F2p5YXQDAhRYSxmvFbc4SU8swuWtUFPBnaPVCsvpoErfFPO5w4OTY4ZSda3blo7tgOrFjbU4p9OaKGzaSjV0MQ2qwuVwwGBj/zTW6a6CQ4ODUezjfOKVd0uh2as6luHYd0wvGgudLbAHr+aJDZamA6s36lYWSUsnh0/7vjeRGK5fVjVq7Jso+OBc1FcdwMTsMXgS7VWm4z3JatcniHqlXJ5YTz+N9DEZ8uwUqgYZYXxFLD7KASkgaFyNYk1fawTJjfOjfU1Qd6MkaGrRgK22D3MKuILzWmQsGWvmIt/AJ26b3Y2/+RQbvUihUtV7HuTWaKT+RXMlvdhewhLu6A7C1sDKoo5SHhUTGH794Fmm88dHKYD0lPdgClDUlNr9saybqPNsqxT43sODg4OBzhkYNw3UXOjR4UEiaT77XRGjKAnXFV/vxVWz1Zut7NbYXeptlK4kdZK23Jvv25the5dsDgFz18Ihy2IrKypBFFNQAihupG0qoMigkN+nMzaFv06QylLgsi931jXn+hXdaif1wuHJ/IGpERCYQJsLsLCrmqrepLpdQldo1tWE/ZmsDpDbRdxiQpPAMikquPxbbRmYCSsJnvNYqVNWsFNG0fK6lmzCXqtRIhtqeaOybcREJ9TjHJp/R6Y56lSeymdXK4QKONSzZwYM2jOdXA4wDEtyPq3v/1t7r33Xvr7+2lpaeG4447jH//xH5k/f/7kTmxbyA2KoZoMIZrrcukoZr3qu5NrgoODg8N0hpQyHrdtBEeTuCztIbPe6C7W0whVydvsrOu78vDoAPyfwxVhmJWBJ/aoL1YlgFLWvIYoMWJk2SKnO0qwYg688iDl3m0nVBMgkvHaVUiQIPP9jqxyg096ndn7eiKUiXJ5oSLq39+k/v/IJjgXWKkJuxCQFZFV3RC0zQNw7FylVDJW9JRQx9gxzy2ayCb700xrfy3rKlLFq8/Sx9ihfTVjuoPofLbX4BT3s5LpPhmLDzBQhHnJGvLWlysl+Dwo7SUmv0m4rUqGmIxX1wT8mRFYOkeP55SS3nfko7wKSVf41FT1wsHBod6YFtKTEIKPfexj/PSnP+Xqq68G4MILLxz1+FlzD9n3SWuVAQHl7p41bvB6y6ZUNvj9JYw4OIwB111/+1Q3weEAhwxlPE7YdkO2Y4iLgYozngCaapwHluu1IekmVn3NNljVpSzqHjArDcP5iPjYVspGWZ2ljMet2pb1rSMwJxu3QlaI9xhEgVqJuwDaU4o0qQYkrLMNcDG2ianp5/2Jcnn390Vu8qUAytaxxgNkcwkWagtlKkHy7P61ZWtnEq/zPZz0OLfbYq7RoA/tNeLVkzHdrRlleW5GGcduE8TbUyhBh5XpvsrFX79v2X8l+CYFu2RbMoxl/S5YpucWIWBuRnnuwCjKmuZEU83nDg7TBNOCrP/93/89K1euJJPJ0NHRwVvf+laefvppBgcHax5fzO8e+8mTblUlX1kd7IU751nJV5Ikv4lnRYcZjZWHHTzVTXA4gCGDEIqKiFMKK6Q8lpXbxA3rRF9yAoLx/hjnMtS1usuB2pJ1utFE2Les6rZ1fbAEa3fBi+dHq2p3DnZYVkF1ksbGlSbjlm1hf/cI9GQj0mYITZKojoZaJE+gsnGPlKLjZI2+1hPGNRiiPq5Our23RHWpjZu8cSeWwPa8Om5+myayJm6daoVEhybrdv+ShK8OmNQ4rxWvLoHBQI1DA2HtYwoJT2WDh/2jcBkvRs107ytlEVS7+NvvWzNRCb5a3hHNIsYlcyuY8T1QggFUvLrBnFbYaSlYbI+aoFk6VA0ntzg4jB/Tgqwn8ac//YkFCxbQ2dlZ8//54R1jOEuCdJsJvOBD1rosAkXW837VV80CMuULmcMBidXHHDbVTXA4QBGVzbKSeZkkXzZRr0r0NX7reiPHuQwlshSomOShsmr7iK+sjAUfaSsYAqkstLbLv69dVu/dBivaYX47pDztBq9LiBr34ppxpXXvUSTom58wwvsAMLc1bmVN1tzeG5Ik1nynPQWD5TjJa5DVUnkOhPE+hlKVx1skIAecMgceGoa12yLCbucXQMKWEViYUR4FRlkhhHpfZXVOj251riNGG+dSakWSr5VJQVit9KoVry5RY7o9V7u+uq1waUvpuPzE+ZohiW4tQm0y3Q8D7dn4mKw1lI2reCCr7+NU98+GrQQ0z62UsGEAejMq94DnqT52t8Du4ijPWxMoWEaBk1scHMaPaRGzbuO+++7ju9/9LpdccsmEzyFrLWwGeV+Rc9ulqsWDsk3Wa2hmHRwcHGY4KvHppSCeibsUREnXntwKD+hEXyt1EjMjePoSmW5QrPZ4+xIay6tF5sx8XilpFkLWQ6Y8pWgw5NwWqvNl+PN2eMfyKKmelLp2ObAzDx37Ka40KbgbMrKroD4zmbNtl/ZkFvTRkKyxbj7rzCnSZHsQmLbY+3qgYkG0FCgGYRrOmg9H9cCiDvjhRqV4P7JH3efK94EtBVjUFfUhJeLkNWl13qI9B0axOjdqPEs/hHKgvDfMtRUC0kKNyYphQVZbnQH2FGG5ZdRIxnSbdrelIF+q7flhPpuyR1ZWj2tQ8w4ozweDmOcAUf9atKib156TNe7jVAetSzOubY8Yo9jbMATLZmmFEuqzngxs2BWdoJb3wdRPsw4ODnXAtLKsr1mzhk996lNceOGFnHjiiaMe197Vy7nveDcXXHABF1xwATfeeCOfv+x7FIuRq95Nt/+Be+77q3ojJdv3DHDZDb9QC2OLuizX3Xk3a9dtUO9LPuu29HHFr26LCR9X/OCXrFu/ufJ+7UNPVsXkXPa1a9m2fXfl/d1r1nLTrWsq74vFUnX7bl3D3WvWVt5v276by752bey8111/O2sferLyft2GTVx+9c9jx1x+9c9Zt2GTa98MbJ9536ztg+a+fq5942vf0+s2ccWVP4/FpV9x7S9Zt25Txaq+9jf3cd23bodHApXw64mtXHbN9WzfvlsLniH3rHlwXO1bt2FT3a+flBFRv+yb17F9y85KnP09967lpl+vqfSzuKfAF/77exSHi9q6HnLTb//IPQ88rN7/YTvb54dc9qc7lVVdZ8C/7ne/Z212B+xR/Vr33Bau+OktMWG67vdXn/umu/7IPfc/XCEi25/dxmXF+yJiClx3629Z+/i6CrHZ5/UTsPaxp7nuprtiJOCy39zK9mCkUjHlngce5qZ7/lQhGsVisW7PxxVX/zxy+Q4lV/ziVtY916di0PvKrM1v5bq7fw/LZsObDoKfPsdlV17H9h171BiVknsefoSb/no/LGwBD4rlMl/43o8pBn5FIrppzZ+556+PVKzO2wf2KPkAKkT4ul/ewdq/PhVr32SeX3Ocub/K48NX4+8r36c4UFBeH3mfm276Pff87n41RkPJ9u27uew7P1En1KTtut/ezdqtG6FLxXSv6+vnip/doo7Ryporfnkr67ZsVd4Dg7B23Qauu/PuqJ8SLvv2j9Tzq7H/57/NlT6tfXwd1/3md+qf2m3/spt+xfY9AxUF0j33P8xNv/2TOkZA0S/zhet/SlH6FQ+Jm+69j3vut+S/ZpifC8WKRf2m3+n5JZQgQ7Y/0cdlz9wTJUMErlv3AGuf21S5T+s29XHFT26KucQ30/pRS15pxvbZcO1z7Rtr+2688cYK5zz3He+m3hB33HHHtLAN33bbbXz5y1/moosu2itRHx4e5rz3fpR1j99LV1dXzWNUUiQ/ctcc8SN3zSv+Ci9bDEfM0YnlAnhmD1y/Af75WPVZi97a0nqfGUMmXQeH+uLyq3/Oe8977VQ3w+EAgAykyucRq21tWdeNZfqKtbDV+uLRKXjb89Q8mdNzZlt6XJnhGzHOZRBWx9WbPhjLccaL6pAbS7uJvzex+fky/PfD8JaDYcVstT5kU2p9KYXwk3WwoA1e2qv6b9aNnF43WuprWpeFQLvwWwn+igH8rg/6R+CNK5Q1tjUdrWPtaWhJ79M6LI0XQd4694ivyqj950Pw3sOgtz06r/mN9gwiXR+7gPRDRdKSSQ235+Gbj8NHj4lyzvgSHtkBP3sO3nqwIvAp1H35wkPw94epsIVWa2xmvCj/QiFQ9/HpXXDTRniftf63ptX3WlPQWp/13x7nshzUHpsQjcWMp9qdSymPDzsEReeI4EsPwpuWwdJu1WbTT4hfw50F+MZj8LFjlKu16Z/pa1sGkZoaGUeWg2pZLe/Dhj1ww4bachnEx2kpgK89CK/Rz2lLOn4f29KIzNSmTzfKmUq7i4F6vXUY/t+T8C9Hq3YbuXSwBF9+BP7v0dGzZuaW1jS0j2+e3V9wcsv0g5QyXhLQoym845oVAwMDdHd3c+ONN9Le3l6Xc04LN/gbbriBK6+8ks997nMce+yx+zx+R9+j+z5p0gXe7POhcoOvQEA2PT2SkzgcUHALnsP+gEokZ8WllxNbKYQggHu2xok6wOpeK/aS6PU45OKGjHO75Fo5jPr21FZY2wfPW6hc+FMCMjIiR6ZUmCFPf94OCzKKDHma2FdKgQGzW1RyKNutuLL2hNTTDz4Wz510id1VgJ7WeEbwSsy6GJvgFXMxtuOfBXQBw0WQbbXdqOuFZA134/K9bQR6RMWrgYwHMoBVPepe/XAjvD0FB3WprPgAc1qi62DHrdvu8AiVnGwg0ZcGJAqsEHVpjTGjHLJLIpqxKInnHbBlGuNSXQC6ctV5BiB+H20Cn0lZ/TT9m0KfatOGpMw27KvkhrZrf7J/9r4tpeS72LkT55xK2LHqsXj1IVicU/fFJEEEpWQAFWazSIc6JBNZNiGc3DJ9UAl7M+VKzTSQ0mE4Gc+R9v2EaUHWv/KVr5BKpfjYxz4W+/zzn//8mMh7FWySnSxPMoIi54hoETDxTrUmwCadEB0cHBwmC1kehaQbi5+vX//iGXh2EM4/BAp5uHYzHNcOy+ZaSZ2MMDrFfZIyXivdZHR/ol+1G+Dh5+BcCYfO18oFEVk2zXfKAazph9ccpNzf0x6kE2ShOw2bh8wPx4mHpL7xzjZ5Ne002D4CyzoScerEyd6+YI43r+244PaMVRqrBqGtF+xs2XZsb38J5nZEa7ax5BcDWD1PlWT9/no47xDYklfkxySXg+g6GCJkx+d3ZKsVBHb/6g27jrz9zD3Rr0rSPb8XjuhVxxrlREpU3/8RnWenPRv1yb5npn/29RopR3kNGt3PsSImpxHdh6EAWqx49Vrj2M6tkMvEkz3a559ixOqrJ8u2rR+E5bOs5xV1v30B8zyVZG5RR9Xc0lQl6RymHWLedGbNkzIKpUqFEKSQuZTzLN4PmBZk/Y477mj8jxjtcYgi5/bYy2kNZjlU2s0amTddJg8HB4eZhIpFvRTG3XGNNd0PVQKrHz0J6RT8/SpF2mQHvKCsFnoTX2zXD5YhUk6hRr7SJuKC8dpEre57N8PBc+NkPSWiZF9rd0C3B4fNsgQYEVk8AWZlYDBRaz1p9a7XZaglqJtrv7UMc3QJLzsruGB8mWtiRM9qeHtOkacKYcT6/Yl1JwmVGDZBZMx+2wjMa4sTmqxF2F8wH4ohXPM0tKMszuu3wZG9kVU9Vkfe6p+dnCy7H5KTVRRIYfTMPNGvckAAPLIJ3ilg1cLo/0bpYFuf9xSVhGcnz4O9JJlDx3Qn5Rvq6x0xXtjX2m7HcABdNRQRtazroOamkbDaw6WOY3TCkBICLMu6eR3CuiF40TxrjOoMc0JAd1tUvi05t0yxUtRh+kJKqUItinrtN3ORgQkPAxACmXMW9kaj+QJa6oCe3iP3cYSMT/xmDPr6RTKO0F70rVPE9g4O+xnJZBkODvVCZbEuJQi7iYcth7BxD3z7MVjYBeeuVBnPM9oNfHEONu+JiE1gCZLjtK7Xf5zL2hbaI+fHD3tawm82q/JXpv9GcPFDWLMFXrRQWWgzXhTjbpO9WTnYDZUszwZJK22j+iVRJDME5rVWu0OLsVvWlTCWILTmu53ZiKxD3BpbLwufITDmnJVrKGH7ECxI1JDP6GzpWX1fXtILS7OwByiivCjWb4uOH83qbIjwUCnev2Q/J4nKOE/ew0Aqi7qNv2yJu0sbBRRECoThMszWsktSQWN/Zt53pCJrfPLeTaWck/R+NM/NSBnaMtWKCINkqbpWbVm3+1LvMTpRJN3fjZKtf0Td28Ud0bNqh9nMaYXdiTCbStnG5mTrTm6ZBjA5aeyyq3aOC+NpVwyg6KvXDg3FpMl6Pp/n85//PF/4whfq0Z66YHD3c/s+qJa21pBxk2gkuXgX/IYu1g4O48Fppxw/1U1wmKkIZVRT3I7pNrHaf9kG12yAUxfCqw9W3kfZlNK2C6GEy21hFGtryIftTjdG1H2cj0b4WrTleZUHb1kEb18OmwbhSw/DXVsU+TEugX/doVbPVXMiN+RKzLqI1oxuXWt92I9+06w7oS1h17FfNlGXEnaMQAu6RrNFTCtu3+OwiNSqyy5QVsvhonpf0/OsHrDGkDm/ITc7JMxvi1tYjQIll4oUKRk/fsr7++IEv/L9hPdAF7oOuYzLDlA3q/Nppxyv8w7I+NgMJRy7IH7wsb2JGOewcokq133Ah9ZR4tUNkm7iI/o8TeImXvGmqCWvDZSg3TKs2Pc+CYHykCjoWvJVJH3qOlkJy6kV3rFhGJa2RSEbHvFY/NkZ2JE3J6ryFmjGWutObmluVIWJmfX/kT74wQNqXwmDk5XjmnGszSRM2g2+VCpxyy23IITgX//1X+vRpkmjVBjc90G1BlZRL+RGk24v2q3m/02gaXZwAFYsWzzVTXCYqfAtAdJetB/vhxu2gA+8damq/WsSXmWMWxzK0toCbNHxlkkhdByWrNHGubTJmhFgU96+s1ZXFAaJNvUVlWD8usMU6Q5DeHun8iC4cwvcuxVOXgDzBfyqT8Xk6yQ7pPXetlYaEt8C7M5Dt3bZtd1uQ1m/HHMVkp4gy9tL0JOrdhW292OFbU23+9qRgg1RaZ2kG3xdYvNtN19bMbFdJ4wzLtGV+HMRhbCZ9hy/EB6LSvVw4qJ4tv/RYvLbMjDS2Jj8FcsWqzjRWqRt2VxA51NYmoKlc7VrqhdZ1m0iK4HBALq1AmpMbuJZ1cckkZ1KN/EkQbfltnxJjTv7XoGW2WRcfgNo82BLOTpPgqfXNX/EeGAUUFWWdWDdHjiku1qhZO7hnDTsLsTHYtIVfmqT3FcgdRuXH7xo6q61w75hPJjsZKqP9cM12gj68HPwdmBVr14njayQapqxNhOxV7JeKBT2eYKxHNN0sBcee3ErBJDRnyddxNpEZHlPKmOdRsnBwWGGQJVpCeNCZCBVpvQfbbEOLEckPasJazmMBMpF7bCpAMuoJurBxOfMSobacqCUCkaY1+RYppUltRZp32vcc39eJWoS6ERxuiTW8llwcBes3wM/3wjakMUDw3DU9iju2SZ8NtGbnYHdZViK5VZcX6IHVj9iAjuwowxz29R7W9DX7Rx3ciD78IobfAryxahfNsEzn01WNjeu3jHCLmFbAXoz1QnjbPJt2n1kL5wn4IF+OKE3yvjvCaV4QdaOyW+x4p3t+1Zvz7pYbgerv0b2ePUiuHOzej4DEbes2y7rEhguqeR4VUSW6BrZ+7YmdRNPKg3M8z5Ujizr9j0TUOmwTeTbUlAsR+dtFu9IWyFqE/YghI15OH1RnKxX5hcBs9tgiPiYgUgZWZcHb3KQhvTZY9TT2cTTnktO1nSoMQfdvyV+yANb4IgF1nylv+dydzUMeyXrr371q6el9qu1vWfvByRjn8ykVvaVBd3AXuAyaSiEie83QOBycBgj1j70JKuPOWyqm+Ew05AkfMZtfW1//Li/boWjF+ra4tr93Q8jYXJxBzw3FCdvFZIskaEck6Bmj3MVS28S3gVRsjeICFpagvSQ2XQ1Yd9b3PPWQTi8MxLujVu/H0JZwKGzYelz8JgVn/dgPxyzKLKuG9j9mt0Ku8rx61q5Fvvs/pgwqvs0wLZhWN4VJ20VUjvOSLhk7LMhRm0Z2GWti2afJLeTQS1lhAS2lWB+R3RcxTNOQEZQifYzROeoRXD0orhHiNnKQbVVHZSnyLCds6bOfUON82NXrqi2qksJfYMqAdzRPXDzZhWesbRbu6t60Tgyx4POEt4aj1E3/UrK1QJVCmx3o0MZxolaP2/CR4ZQiQ2ryu0Rv3cV78iUCmWode/qpVCaCJJlLc093DyoJHQT3mGUgWApybR1aaCoEizWcIWfSsiSrnFvPLOAtY8+zeqjDlXZxLMeMptqynrwByySuVVAlWB92PJIWq2rUVQ8nGR9vcQcqrDPJ0RKuc+t2ZBrnbX3A+wJ2kYhjJLL2RM/KLJetOLCHBymGI8/uXGqm+AwEyGJC5Do/bGJBGwvWKhj1b0osZxt+VmSg03DcRJpx66PcR6NjXM/VLlDTKZak/CuEKjkWIUgSoRXCmqsT7I2YfdDFWO/sD2yPqeEWg/Mlk0pN2obJyystqonCW2XVWs9SYLqlQQqeW6b6O0egXmZuHXObt94UIsECVQtb3Nda5GgSS6a0rj31/KI2DIM83JxF2+T6C+dgpz2/MiloDWtSFtLSr23NpG2AoKTSeZaMyq5UrJv9n6SePzJjaOXpttchN52rWyYBQ8Pxt1V7fFs2pQvQoe2x9jKo+QYMP1sS8HgKKEMMEWyXo15CKKEVh01SrfVCmVAqJj1oeTp6690GQ8qXkz2/Gju+foRWN4ReYyY8W3nIBACZqNqrY/mCj9FkH4YJSk18/KIz+NPPBMlKssHUPCV9d2hOVBrDC2fCy/oVO9P7FRhObU8Xhwahn3GrAsh6OnpIZWqrTKRUrJ169a6N2wy2L396X0fZA+sSoK5UJHyijeBtcC1ast6YgFrBu2lw4GJN7/h9KlugsNMxGikaG43sAVWCjhhERwyP7JOZlNKMLNdNBd1qhJZgyWY3VJDIB2bKcuMcxnKKMGdXU7O1+dKibiV3Q8htFyjIfISMAoD09+tI0rZ0GVlFDd9M0Q8kMqN+nxPZeM+fqGqd22ssmkRxc/bhGFWGp7dE7WhRhKoSXuwVfWJ6DrvBuZYydeSSebGhYQVs1L2S4sSw2VFfmsRh8nAHodJZcT2ETh5brUywty3bAY8ncXffNdcCx2+IUxS2RjRs65NW0oRIqhB8GRd7uHfnnOaztxfSyExokI0AI7qgus3wlmLlCu8iV03P2+u965QVWiw79neksy1j+ImjtXXqbA8214UBkO6nS17yXYPcaVLW0bl2khWZkiee3+iUqJNxl9LYMMeOGpOtQt8KOPzbGcb7PLj4wXGpRCtN2QoVY6nZNnPQPLml56sQ0514wSQDmEUjuGwn2FXlrCJeEsbMAiZ1vjcbvZO4dJQ7JWsL1y4kL6+Pi688EKOO+64msfs2bOHc845pxFtaxzMIl95rbdiCNnEJam4UKXVxJM8j713cHBwmO4YjRRtG1FZsc85RpFzW0C2ywlVSmelYK4Hm4ZUCbPkeQM5vhSnhqyXwyjxTTGAJ7fCA33wvF5Fpg3RLguV0d6WAQ2hTZLb/gIszIHw4v3IeCqPia/d4dMeHLVQ1bj2iBLLZTzVXxnELV8As9Oq5vVolq96kKCqc+rXu3VOmW4r+ZpN3CbyuzHrujmPgCwwWITZuagddvsmBTl6LPcIsKCjWhmBei1SAtmSgjCl3MbN9dbjJEayk4oWs7V5Ohu8aY6l6KnX+m+E5FrPXt8gHDdLtW1ptzp24x5YMTtea92MLz9Udbu7c7Xj1ZPKCIBWT1UtqGVtnioLrf2zttfAcEmHLIq4AsK8TOYcgkihVAzVs1rT1X8/ayNMzG8yXr0cwKYinN0ZucDHcmEQ9XFuK+xKlBWcast6KJUS1czXptynUWYmc0uUAmRaOHf4ZoDx9rKVZBIY1PPfrkLtNaxOSstxN/cASVa41yfjiCOOQErJI488sr/as/9gT2wGRalc5GyYiTGbVoJBrbmvCUMBHBwcHCaE0Vxx+0swt722hTZV4zMhVA32TUUq2apjVsNwfK61RtgzAq0fKqL+g03wSADf36Sy1SdKWknbjddOnFdJhgb05WFRl/qdpOU558Xd4VtSap1oTVsu8lbMuk2EhYDuVuV+K62+Q5yMTRZJS6w5744CzBWRaz9Er2sRtn3B7luSEHV7o9fpnixpGC3PwLZhyKFcnJNtS4lK/4RQpF1kU4hcSu3TXm0hr5Zltj0FhVK1kh/qR9j3llxuAFio8yl4Hhw9Bx4ZjAh+JSO8boixPLdabvBJkmcTPwS0ZSM38VrKiKkQc+xrYbdhyFdJDaGaoCfHp9ln9fMZU7pYvzMVsEm6Pa6fG1DKiNm5SBFqh9nYyrLZGdiej/phxmaoXkxJ+EKtuboUwBP9cN2Dap42RN4c6yyzU47KWEmuI6A8ixZlVSlQ81kyZn0/3UIZSmQpQOZ9FUaR95HFABnM3HrveyXrr371q3njG9/I/PnzRz2mpaWF8847j3e+8511b9xEMX/x6r0fMNriUwwhZy9u1qqdFVFpt5oaWQeH/YvLvnbtVDfBYYYhVtc4qTnfnocF7dWkyC4nFCPtwKI22LQnOk+tZEr7wGVfu1aXaUuUkgukqpNt4/6+uOBr/0aSpFdeS+gfhN5stCLahD2TIOYtyfdptW7Y3gU2ETZWbRMPnLSw12P5GM0qu70EsxIKFrOspUScmI4FFXKnYSsAWnIwmFgjzevJ9tHcL/O6okAqwryWuAIiuR8PasU9g4pZH0gQxjrHO1/29WtHt6q3ocacp3NDrOqEh3epZ8KQIWMRkxKGiors2Uoa0y97bCbdxGEveQemADZZsOek4QBastVeLGB5Eljn8fTAzaJCNWxSYv/WfkQUr06CtAPr87CiO/L0MZtdVtjcyzkZGLRi1qfYFT5WccOeq5/eBtdu5rLf/0EpVp/ojysqgnEqb5sQ0739VYoxex4aKihPnn5dwrqWq/x+6L4sBUrhlvf1FlivNWmfKuVbA7FXJ8Tjjz+e448/fq8nyOVynHfeeXVt1GSxo//xvR+QTAxjBlnJjzT0SbRYVgPzHWt/oLhiODQP3v6WV051ExxmGmoRWtBWzCE41MqWniTsxpJZESoFLG6DW0pUSk0lifoY4tbf/pZXRm6VtrUmkCrp3aNWWZnVC+ICoCH5qRTVJN163efDgjbVFttF07hKZ1JIU3vdKO8FqtyXpyy3MrCuC9ZrIaAd2JVXsftJgXqSgoXKBJ9wXTTn31mEntba9wsx7jVLCKGaXcvNuDsLQ4k63XUQ4iqkBuL3TgLbitCrY7mTHhGC+pSlEwLaM1AmsiBFjaubgPqON55VW+FikssJrQCTAg7qUtLb+j1w2Gz9PBC1bdCH7nSkpLH74wnV7qRSyVjh83513gGJ/tMYGUfaz4N93+zft+W1oUDll4DafawQ9sT7Dsvoknz+9reAnyTpFa8KCc/sgufPjysAU6K2QnB2C+yU8bFpWzr3N2+JrRtE7VirFKvv6Fql/veXPpXzwyb0TVQXfqyQpsyenpukQCnVpqNbf63nTXtosFPC8ja4G0WQ06n4fGVKaTYwlESWgyhpoe29YUJFTN4Y0sjsKJ5T0xTTbCSNDYG/r9rvMraLEswFkasUxN3EcrqsS9WpZp4Gx2F6YN7cWVPdBIeZhph1JkFotwYwv5VKnKhNAO2YSkPaBTBP18LcOhJZsZPW9X1g3txZ1UTdtC/TEh34Ap2l1gh9FVKv/2+EYoiTPuNC2tMSCcBJwg7KjTqj3aiNK7Ud82wT9aRAPSsHexJWZ5sMTQbmHLVIx/YRmJuNk5kYYZ8IEtZMc872rLZaUr22TmadtMkrRPcOYOsQzB/FI2K8ZekMasY7a6uzqXeejOec5E2UUjJ3TnciTETvTXI5c99SQvXtqB54dCAa6ybEQwIDPrTlavQpMS5NP+2xO1yqff8aIOrIIEQWjaUs2iouraMZVkbKaryZttt9RFT3DbT3RwZGEiV4zXn3N2qFPQRSjbE+X5dbFAn3dyuhXsVzR8+BJvQh6Qq/v2XUWr8dSjhmAQBzU23qs6Ri1ZDeaQRZCqCQsPKOaEvvyHS08lprp72m5PW8N78NWlDrymieHI1qmXk2TNLCYhBVFSj40Ws7qeEMwowk63uDtCd9ew/Kcp6zsqraC1qLp+qwj+Y+NZ2eRwcHh2kNGUikrwRdWdJbEE5eMLAXX1vY2qUVoHMsQhsja9rqkyTtngeLc7BZE2KbaBtSva8m1XKB97WF+/EhWNUFx/dAOWMJGpYgbGLjK6TGIn1I6M9Db4ZYiSQjJNtrwL6QJD02GZ7dEmVsJnGN637PrGuwrQRztAXSrj8umPjqX8vVH6AjpUrUQVwRMdnYWQmxnAfovQyhr6Tc4CHev4kmz0PUvocZfbGGa8Q714PI7iu53KJElQIPOLIT/rpbJ5OzniWJsjx356I+2IYHatw/s+9Cx3Rb9y9J3OsEWTakpqxdWe1NC99J675pw2BJ5REwSNZar9U30GQ9qN23/S3DJRPLmWd24wDMAjqzca8lE1qUdIVPCeW5s3MUArW/yWLSqm9+v6crOsZWrCa3aYKKldcuIWq5Y6sSoj6Up5F7v/2M2QrJXQXl8ZBJQU8OdpQSx8j4mGsEjPeCnbSwYBF2OweCH86IsAobM5Kst3f17v0Ae0DaN9P3o1IgyYU+50XapSTRn0EDwmH64O41a6e6CQ77GVLKKGZruKwE3RG/osmvJFspBYrQj3duGo30bc3DPK+axCYTyyUt7QCLu2DzSJyQVEj7vhfUe36/Nu7yFkbf5fFtcEQXHNwKz+6KhNVaibqM5dEmyCHQV4ReXUM22adxxHULkbB8mb1AEaeB4igW8MkmgZLV/ZUoAcYH5rZFhMWOWZ6oZb2WVVaganqPFKPj6qXQlvY9J9oPltX9m2f1Lzk2xwuR2EN0ndpQz1tNhf0kZQApuefeB6vHbCy5nHm29HO4pFO1ad3uuHIKVFb+jswobv3Uvn9CKA+CESPnWDLSZO5fre6Wg7iVzCY6xlJWCnX2/hqy2ogm6zElBNa4TpJ3fUB7BvKWhrDOeQfGilh9dbt0WwhsGIGlsy2lWmJehVFc4Wt47jSaQNWCPb/ZSqcdeeiGe5YOwiBx5WnFuh5Oi5rre7XymvFsrLyasE8LJC3qUv8ZKEGPVo7NbYOd5Ug5WEsxU2dIKSOy7lukvBSoZIX/uxYe6bOIulTeeNPKq2HvmJFkPZXKjv7P5L2zCXdZW9YhrqlFqGzw+eR3p2aid3AAGBwcmeomOOxHSCnjmmRbszxibUboHSkr8l4MlBV+LEJQLdInUZng53XUJn2VWEqvWrj0gCU52LInbvWJkfa9N2lgYDjhKqlf948oIrNiFhzcBTtk7TrVtlt8UlkAsGUQeltUW5NEzxtn3FuyhB36nLMyKmbdIGYhZnLrhy1Y2YL69mGVUCuXqo7n9kzDJoAkATL9bE+pWGnbSlnLNX+8GM3ivG1YWSDTVhIu057J9G+0JHMdqdGz3U92/Q8lA0Mjta3qleRylpU1pRVDq+bBo3uI1UYGRdY7U9Uu4sYLJkbYreuU027iSbmmjpZnKbXAXSE6YZzg2CTIlMu1nxMplaKyw2SDt/phE/fY//TWklHkye5LPUI1xosQRSZic5TUlvVdsKw9mktsy3otjyZQeSl2l+PjssEEalSY+dW8Nm3ZWYbuNgbmCnhsMCJfyW06GL9sK2+phpW3FCYy3U8TK689Xuy5aLcPndqDaU5OucGbY+y5edKK51Fg53eokbSQRwK45jl4sr9aqT9DMCPJ+sCujXs/YDRX+HwYxazHtLWoxHO+PngGDQCH6YtXnfXiqW6Cw/6E0STbwkFBu43aGn1b8B0JFGkf1rGgeV+5y9dYUKWJKa9lxdw2our5GrJn79Fx27HYSiJhcnEnbJcq50ctIr2XxV2GkledemKcpBvy/dggHNYRZWufI+DZgXgfLItNTTd4GaoEXgssV2qbsI+X741GZLvTuhZyQoi29xOF7fpv+gWws6Tj1S0SM5lM6QbJBHqgfqMzp2qeJ9fI5Do7Xuy1lGCN+uoxhcQ4kSR7dv9y2cjqXKt/k0EgedXLTqzuo51czu5X2soK/8iAerbspI1DReiyKtuYPiTlmkqf9ZtOy7IOjTFIGKJuyIyZrx7ZAt+/X+2NW6ufeDYqbvCoUnNJ93fTz1p5B0DVkh+xYrux+7Ufy5wFYfUcFUp4tB+2hSDKCUWoiHsr2a7wApXccWe+el5pJIEaDaGtYLHGz44izGvjVWe8WJVbfHZP9VxtLKJNjCorr7H02lbeRy0rrx9OHytvLeWqBPaUYbbOP9OTgd17iVlvSDdlRNhN+0IJ92+JH3bfluj/9ZyzmgAzkqzvFfbCk9So5oFsippSTIte+MxEUhFAGjU4HRwcHBRkKJUwYIRbszeW9GKCvNuxc7Ws8KUahN22ziUtfNuHYEG2NilKxgont/aMsg5uHqxtXd+bECPl6MnlntgGR3Rri7iAg2bBM4XInXQ0q7pN2HfrZFrz2+vjSl2VCV6fZ3arWl9s4mmus4RJLSK1rGgS2FGGue26PUmLHBMn6+YcJM7RoZOwFWpkpg9No8aHqlKC9n5bXrvAU504T4w/0z0QfadW/zozMBzW9hqYxO3bq5IsmVxOoNzgDXFb2K7izJ/eHZ0DCXvQCdhqkFnPehNzjQdaszpWvGZDJ95JG8nn2Q9VGa9rNsHDAVz9HDzeZ1kmE9Z1k+i30/KgrKWQqOUh0ZaKyDpU38v9hVi8OpGV8Gf96v8/7YcN22rMp9R+judkYE8+ukd2fyarDBwHZJLA2XL29hFF9ISAI2bD48NR32PXow65VxoJyTitvETHNjFiJfeS68muvFL+CaG8OHZac5a5x/bremO0CjWL58SPO6632hgwQzAhsr5r1y6eeeaZerelbhBinN0ywlJAonSbiAS4rHa5MtlgqzTOM2dQOEwPFIulqW6Cw/6CLRiEMiLrj1ma/FoE3Sbx5r1JfFNF2C3B0fxmqIXp3USEthZhByoxlcn/C6EIx3NWzPZYF1RfUiyUEoJRqOIfd0g4fBaV5HYHt0Vx6zaxN5b1KsInoW9YxeLbXgEQWbQmYlq3hWhzPkNkB3RMd9JVPHEJpNQJBAuB8oawMmTb9ywmYNXyhujJxYlaRbEymbI2opoMCZSHAygX7CQJGkWpLaVEhnJ04dwIZzYJMOfbZimQkoR9IvHqdv9Mv+x9LSJbD7KnhflisVytJEsml7MJW8pTrvBHzoOH96jzSBm5jnftJRv8aJbnlhqW50rfJm+hlea5SxKdv/TFD7xvi5UsKjF2TNbzXCret2T4g923St4BD0p7qbO+H8S4qoSZ5p4/kLgGa/vjCTvTIh5qhNkLmJ1T1Tpsr5YYYW58v9RvEp+H7LG8qwA9GYq+rzyintgBMuFhYCzrzewyXkUa0VbeGmPYjPcxJlOdUsTmV+Jz7XABZuscGCZx5Z5Rkok24tYl1wFz7bO6LQJ4yyJYPk+9t5Tg0yL8YAwYF6t96KGHeO9738ub3vQm3v3udwPw6U9/mgsuuIBHHnmkIQ2cCOYvXr33A8zkYV5DZDFvSZSeTwo5pkZn7HyNHQwyVEmllOBWthJINfvT79BIfOkb/zvVTXDYX0i6gfshPLEVfrhJafK/v0lZp0raHS/pIp8k8cZtr8oCI6PfA02KdHxaZ2ZUKyagaiPb1nX72MUd8NxQNWHWv1mLrElNsr98+Y/iQq1Elaxa1qZyiZhScQd3KoHV9Cv2O4nfNcJFXxEW2Mm7rD5VCPs4kCTpEJ2vC9hTiBPPGm6HMpBKmTJiMmWbkkBlGFb3UNqCYlK5Yta33caSZd0r057J+NQJe7NIIKg+DpeoWMNtoiDjfZRGaZQvxxMj2uupLZwlX28LVSlBUWO8TTR5HtQmsgJllR0enchOGFqY//J3fhIfF7WSyxmSnrLG51Hd8MSgGvcQZeQ3+Xdqkdkqwqf72J6qnfG+XpZOQ1yScaXHzo8fd/SCeHbnGHEoqfJRySSJlZcyGnbJe9mSUpnya/Vtf1lzQ1ntXRDUuAbHL4y7v3te5EUEcVf4OTqMJx9Uz7FB5WrsB1i/C3GF7xAwp40v/+xGWNat3m/NVyuizfVpViT7Z+arFT3x41brRNeV8JQmj1u35+ukMmtbCF2W0nAWOuxi72tZXZplkjFCQnEL9BdVSMX8dETUbdllP3qVNBpjXrLXrVvHRz/6UdavXx8bcEuXLuWBBx7gjjvuaEgDJ4Ktm9bu5b+y9qA02RqzVtKSpEtchnhykphQUY+W12htWWd+jpU4iRJJydJ0q+PoUC98+P1/N9VNcLAgpVQkJNDWwnouzEnhR1JtifnfLXDjM/DQdlXaqGRZ0Qs6kVM5uVltrBXTDbCtAAuzyoqXtKaapGwGtiXIJu2Lc7BpuNqSYpOvJLRg/6F3vqFaoHtiO6yaFbXBE8otthN4rkbcepIcmN/ePAQLWuPkpeIGPwHrc5IE2d4FXbp8G9RQkuguB1IphPP6vtmhDgXrfhZ9dWyVxZlIgNwplcviaDHrE0WMpNubgI6sRYYsocniC5VqBkYJkQ/iiRGTyoikYCyBnbqU4GxNUmoR9sn0bzQX6mHLmylB9ib8vOv7/6F3nFNtVU8mlxOoEkoVsi6UwmKOgCd3qWd4qKiUJsbLA6IxYPpi7+1+tqegWGqc5bkq94TeOnS4xgJ9XHtbPOuz7Zkx7EOXkdOi9gdACRiRMKz3ecC3r0FrRudVoLb8tj9EqZjHj4zGdU7HBK/04NzFcOj86L6b+42odoX3hPJqyaI8jux7lxijDUfyeTWfmdKfnRk+9IazVXtXtMPjA3GyVxkfTUxsayl9pYT2lugYY+W172/TW9clVaFwksibeJY1185qU+Xb7HsHjYlZr/kb+nX/IKyaA1v9SLaw216POatJMGay/t3vfpdSqUR3d3fs85NPPhmABx54oK4Nmwyk3McTUWsSKGghytZWJtGG1l7XGAgNmFikb2VLrSSMqhGDOp3qODrUDbncXqoejAERuQwnVubLAVAW4JiV0GyJTOwTvb6xmFYz54QSVi+IH/iSWSrb8Zot8OVH4MqH4Teb4a6N8KMHozjQmMBsKftGK222rQwLOtT7WKZ0UU2MRnWD71SS9EA5/hv2loS2PuVS6biAv6eoLOiHz7bcgfXvLO2O4tbN7yRJbWUvoS8PC1uqrc8TsaqDLt9GIhZYv56z94zNUsrIK8LOMlwrU3ZJJy6q1SeA3drdfpZxE6wjmU32y1ZotGdhMIiPU6uvsmT1oVJuMNG/vA8lX3tW1LhvSGWRm5+KxqNpjz3mJts/gwqR9aDYABdqPbZzmUxCkVQruZyIlGYpEbnCHzFP1VyXUl3/jr3Eq4+mjABoTcFgGPXJ7uckCV8lMVfS6iuBdUNwUCu861h40Ty44ekoN0c5VCGK5veHAmjJVu6x9ARFYEgqR4QBqbZB1DaMIu0SVP4Mc82T8tt+WP6ikm0kFIjAk0NweCe84RhF1A1Br2T/Tzy/driNEDrxV4361/uTsCSJrHledxTU84ogl9WhOUd0w1M7R7esN6sRKjmvmb7uKKuQKoAlc6oJ5gTzduw3SKrnNkmkaMlZ1SXmtqkEpvbYsuWIercraUgIpSLnW0pwRIc6Zsq9ShqLMYsjDz74IEIIvvCFL8Q+P/jggwHYtm1bfVvWKNj3zXaFL/hgPOCTC5iZDFvSUfKcWueoZzONK2SyjqPZG0uLcWedLnUcHaYclVrdhlyOWK6ozlNjXJBBqC3XvsqinE9ufiUT+4TJ+2iJ35bNVZ8tBN66GE5ZCmcsgvccDf98JJzYC89sg7t3weMh/HCzcpWPuV9CxQ09udCZ3+wbgrmjxD5XlTazhUsigpH2lCCzaSiyMti/UzWtaqE2aYmTEh7bA0talMXRzpbsAQe1w8bd0bWyhfJkH4fLSoGwoAYhsvs4XiRrrZvr1p3VbvA12oKMwhtCGeUkMJZ1O9+AyTJcCqpj8Y3AtSOvrK02gTVtmiSZVfe7BnEAlRF+eC9x3cZaapfnspMkmizhZm+Pd7uPW0sw3yolONks/jZGI7JtaUWEk32y9+PEuJPLeSKyrFdcpFGu8OuG1ZgY8Pcer273Kfn/tgwUdAeTygh7PxHYBNV+riXw1B44tFu14ZReyKXhtk1UymOZkD8JDAfKJVe3uSiUsXxEqPx/Q1IwLAVDIYxIyaCAESEoANKEOeZNCT77uZlsB8dyDSwial8HKeHpHXBYF7GSbRXLuoeojHGqvT4B5rTBrnLt+W5/JdoaLdxoR1lZY01+EU/AYbOg31c5CKos6/unzTFvuDGvx4kEmqaPu0qwrEc9n33D0dhKWtf3E+LGmDHIHLXuG1LlWTFKCKFDMXoyUfm2GjHrdTX81DJUSCLF/+Iu5Qq/YySubEjO0dMcYybrQ0NDACxfvjz2eamkNHkjI81T87lr9sGj/9Mm1/aALPnKcm7DFkIAMmll5YbaC1k9YddxLFsWlhGLpNtCzXSp4+hQN9x065pxf0cpgYK4C2ryddER9rGgolCzvVwqW4048UrccTmuHNnnAm4t+hAXbADecAQcMk+F8ORSat+Vg9VzYXYqfqoH+qLv2udJCnc28duWh/nZ2mQ2SYo8IiuQIRNGuFzUDZsKETGP/XZi/rKE2pt+98e4EPfYDlg12yIvnhW33gFbylEpK7uPNiGSUikhZqFcMpNx9sbldCJI1lo3p5qVht2FeB8hEnbsMkD2vP94P1y7NioHVEm8FUb9MuezrTxGOB7LfRt3HxNE1rxuT8NQwrpn99Nuf7LUoK2MKIfqHo5GZPuH46UETZsETC55HnsnsnmoK5G1yM1Nv/tjYnwOwqJctaeKZ1vW9fjvaVUC9eO7YciHjly8/fq7UgrNmSWBUK9j/W3TJLickHNspdJEUStePZDqPj+bhxUdVMrSnbMCHtwFj+yI5CBbydam5iNfQBFFxvPACIIhqazsw0K9L4SQF1DwoGyux4jl4ZIM12gkaikrQqn6tDWIFBa2MqbiAl9DUQbRuJiVU1ZQ85xA7L41Wj5UiqdRxs2ugg7JgZv+eJ9qc1tGhVc9sbv2mtRAmbaSMyNvecONmCSeo/9mTaW2aeP2EZWVf1Er9Fn3wRxr7nmDIaVU4bMFP8pzMmwMMnvJdWWPG7uPu33l4m8ULaD6ubNG/pXK6zp2KGlAMPNj/7BSSKc96MkqSz9Ux6zv09FaKzT8sJILbN8y2f7HmMm6cX9fv3597PObb74ZgDlz5lR9Z6oQBHvJkp2coA2KoUo+AqMLMtmUsqwnF+c6T/JVdRxt4aZWHUeTQXM/GdellIRS4ktJMZQU9FbWnzvsH3R2JrVLe0fFzTZW5suP7y2h2RH20VG5lqUwbgVNXlc7fGUkSdwjYaEqsVbsx6hBfFAJXiDKNJ7xlBtri96yKTi+N36uYxdY1mwjGIWRIJ1cGAuBsrQZK2Yt4mdBuYFrt3SbtHsoIWbTQNQPW0mQjHUzgo0f0tXSGhdqt5ThiFlxy6IRWGfnVPKpTQN7EST06y2leHK5JGGfaBI2Q86TFtruLOwsx9eLpNCXtD4+vVWVA3o0iJII2sK+EbzsGG8J7CyOXtaMiZU1q+pjLQt0Z0plgzew+xnK6jXN1Ca+7kF4LKmMGOW+SQnbh6sVSJO9bzZqKSMaQWSt566rrS3qZyW5XI3nzijEbDLnCeUK/9AuGChAp1XVRgik0PHcAoZCGJCCQSkZ1CQ3MP01SelGrES69j2cDGrmjZAqx0QLMK818sLpboHXLYGfPacUXL4ldw2WVGw9iqgXhKCMpCgVOR+RiqyPSPX/ku57QVvhw04gv+8kiPVGTK5LKhGf3AO9mXh+ArtChT3PJvOCmPlmdkaV2LKvt+mT3ceGdZD4WmUTnh1Rssuu9rZIYXj4bHhsd3wdiOU0aEAz/RAKiZwZMcOFWo9H7eNoSu1dBUViF3cqr5jksaE6uJFKEyWXhKMnl81Hua6qEPMUsF7v8VUIF1ghF+0qvsR4gtVTqZdELblEAv0lmKfD83ralII6ua7a47EGlGekls+G9ZgYUsobmZCBp5rbjHlZe97zngfARRddVPnsox/9KP/zP/+DEKLy/2bA8EDf3g+wr7m5AUUJ6VS1e5EZnKDc4IohIVAG8lIyDAxLKISKuPpSEshJPpC13MUCGa/j+D1dxzG58DUAhpiXQkk+lAxLFdY2EMKgjLaBUF2LYjg94p+N0mE6tLUWXvLi1eP7ghGO7Trddh4E+3MXWrF3hJp0+DJuBTXXsxZxT36WVJBY19uMzUBKwkAqectegJBKsz3PiywxoAh7i0XYD1sAb12kEk51A8vmxQUhy4pR6ZdNirYOKUG6ZRzWZ9u6bkg7Aha1KYJsBFbzG6Yt+jmMxbaGkpOPXRXNh4/uVqWs2rMWefHi8bxLO2FjwrJRyzrbNwwL6lunW/VfVL8WQmVsLjG6gFPLPTaZRPAvW6JM0vY9rJxHv942HGWCN+1IKhEmC/s05pwdKUWEkjkCTPvs9Sy01rRHA1Vn21ZGjOY5UA4Vka0VvlCX/iVkALNv0eLScB2JrDUmTz52VfRMjJZczuxtkq7HK0d1w8YR2DGslCb6fkuh9G0jqATcA2b9BoalZFB/XjbnyaAS6dXq2wS7GSOqFbKK2p7OK5doE4uf0Z4yR/bA6tlww7q4K3y+BB0pAqEs62UBZQQlTcbzwJ+BLyJ4IICSVI9dWSjiXu5IQ37/hDPGYMt1NlGXwBN74NA51QoYT+iSbYJQy2BFKckDBU/gA9KMz1lZ2F6OLIpQPec1EvbvJOekbWWYo5RdJx93VDRmV3bBxrzybK2yrFvrUr2aaMLWimE8pNQms7qiiizXIuw1+mdkgWEUaVycgy2jKIsbnWSuZPpnhc4mc4KY/vlxeQNkvK2mj7vz0J2J1g+ADh1OYjw5oHrM1QF7DRPqH4b52mA1J6eTKxI/bi8KEpXotIb3Y+V66USums/kJeTDqTNIjpmsv/3tbyebzdLf318RYv7yl78gpSSbzfLWt761YY2cCGJuDXpT/yA+MZutGKoyQDZEYp9L45dCRtCJTDCEVTIQyAphHdKkdVgT+LIRusd8k63Jyh50f9kSP+wvfbWtbpOE1OQ8H0qGbXKu+zdoSHpokXbd78FQabULkqYkwVKq+zEcSuUup+/VSDizPQNqemsUA3ikD374gNrHXFCVG6orDzgKjEU96bb8RD/8+EFlLYxlYq9B0ouWcKAXV98PyOuxaZ6p4UAypJ/DIf1M5oHCTp9iTwdloTIhSyPctaSVO7wR/FbMg789FPYQJ0AxSwbVbvYSFRs8r3V0UlSLF9mWH/v1XK2d7zfxfLKatJvftwmpLdQ+uhOOmBMnLCpvUfQ7B3fAM1aW4eQ8an6vfwgW1nIzFlUeA+ODqE0e2/T6sseyPCeFvuS2cl781Mf0RvfQPMu2gGL6tr1UEY6jpKli9Hs2XlS5nut+t2Vht1lfrb2EWJIgc1/+nFzTtsSTIJp7Z1sJtw2re96eHlXRMmkk9VDaI4EsmsjWWHMnsnSMZjUaNbkcyvKcTrrCC5WtuQXYjSrbp9tdQLmJD4GeQyLL8wiQR7uQe+ADdAod020J3ZOVMZLPoR3Hu2EHLG+PPGRSXkTYz1wMvg939UUKveEydKTwoTL3+SgDShn4C/BJAXcI+DcheCiEQP+vJASllixhPqjuT6OXfjsMwDbG+KHKN3BYR/xeV0i7R0mqezcoYVAItQcGPKEMnEIoN/MyOnyExNyyXzpYPZ4laq3zUUTWzjGREspiOwt4ek/8+thrU71aZ6zOdh6oWsk7rdwZVd6FteRtSZSErSOtvGF2SnUfkiQzMJN0/SFNSIltiEnKHLH+Wd58dr9ifZMwWIDudCXEqKJ8n59SiQOpcc/rxEVGzdcjJWwbgl6daLInA3v2ErOevI1BGHlGJmWz2JhQ46UUSgr6GRyRUJ4CnjBmsn7wwQfzhS98gSVLligff70tWbKE//zP/6wkmmsGpNItcbeGER/8MD4wIW6JLoZKi22QXKwF+LkUw2HIsNBkHBgJQ4YDKoTWENk9oXE3U2TWWJ3zoSLue0UtoVlKWDQ7ftxxC/Y6ICcCX0bkfEi3fY9FxmMkQi/8wzEFBeSlIuul/T+e94pQSuUiZ+6Nvj+mf0bRMl2I+7btu8d+cNJboxzCY/1wzXPwcKD2STdUo4Gt18Q7QyCDMLL8VkiTjFyWHwvV/rpHYd2uKFFk0rpuL57lkGI5ZLgYxrxWBkLJQBAyGEgGQmUFG5SSAWBwuMjgvDb2eFpoE1DyBDJFtRvlvFZFNJ7bU63xr2igqXan3laAXu1qlrTOCqFqqydhYtvM70NF6GRJC2zOW1YGGRfSoEpY275zt3o9UoZNRThyVrx/dnZsIeDgdniuUK2YsPtcDJS021vDzdgm2BOBsDeL1CJUjN1uK9bPFmySQqqUEKSVpTMN9KKSChpLjh9SldDJ9K0EzG2P/77p0qQUEXYfLSWA+awrq9pklAj2+hQajwKi/vV0xs97TG9coWjGhxkvAFuL0JuL7rtN2OsRj2+v/Ul3+C7PSk5m9c3ejxFJq9H2XXuiezlacjmjjLCtr+b1M9t1cjjgt7tgw3Z8lAW2ABQQjCB0EjYYloI8ggKSglBfLXiCsDUDI6FppNXgcXUvjtHyRwyXVQ3nFd1Rv9JCkfWMp5SOrzsE/rAN1u9S5xqAsC1LyRPKUg6asAsCIfgBqLkJZXm/U0REvgwUuzKU87L2/WvkUucn+m7G9jN7oBXl5VPDsl7yiMstUs31wyiPiGFPMOxBqVWHce60rJ1JV/hGwiavNtnbPqLWHp1NfPvAgDV3CzhsHjw5GFfmVebCGoR5Mu2zFZ1mTU56v9kyUPK3k6RU6g4bLzeECktrAbYMjW5dbwRszxXj8VcMVMjsDx+AR7ZE/auEzibWe/vemf2OQIVwISLGKATMtlzP7WtSUQ7VA9Z6Ydpk7uNuYH67DgFpUfOIrfS3Y9aTl9xW2tiEvWjJZdoTNSj6FHxN1sPoOdzfVvb0vg+JcMwxx3D11VezadMmdu3axezZs1m8eHGj2jZh9CxYqR6+tNYwpvUCYAsPyWtcDFUGUrAEtUhLHwL5thSFgaJe+CR+ICvKXhFKRCBJeQIhleLfE+BJS26VSu7KCWgRkqygtqvlaFautE4akwPesAhWzK8t9E0QZSkZCTXRRpVgNk0JsIwcWB6Y+r0HpCW0CPWhSRqZkpJ0PSwdk4SU6mHL660ko/4YGS8t9VDR+6yAtJRkhFH6T30/bFxz7c185J/eMsajbSEZNVbuT1i17u9TbtOeUBNVRXAIVfyzg4Ivo81Y1/1QebrYeKoEz21UUnBvBpbOgoNbICjDo1vhuIVwhLrexUAyEkjyQUgxkPjaYkQIXqjnFy3EVLjEQAGxrLMiy2c8oecWj5ZUiFdxE9eE9pAuWJ+HZbPjQpEkIlIQESlQbvDPmxct0mMgtMITkZXfPFzm9ZIa8XwWaZdaQLOF2u/dfAcfee3ZKnnWgrSqp25bn9JAYP3G3FY1AW8ZgqVdCcss7NPN2JD+icK+NjbZEgI6dK11u//mmld5AQDrh+C4eXB0F3znaVWDPZWJW+WEqBaO06jQhSTZm0zivGQnaykljMJ7pKw8PGLx+RAnKyhz7tIUbA/UeZb2aIHai/oXWuMxBLYVVQ4FiLwFsK/z5LsWu/92KEMuo3JNwOStsglFy/d+9Rs+8vrXROPzuNmje31IoazrKWueXtsfO71c20fxyF5NaKWK25bKTfwB4C7gNSEcpztt5JRUe5aWkQBhC/AwOcJXy6IspbKoLkirsWI/02bCCaUSyF+xCK7fCO9R3jlBR5YyymAboFzcfaGmgUHTXB2rfxKCMpBGUAIybVlK5YCMtKxVlTHaGOFb2sqq2LUAnhpWsdtG+WRdh7IXxeEXpIrW9DUnSUvICNX/0ChPe9NkdhWVoiephGi00t2QIvOsmjl3ZxHmZivP6vduuYOPnHtOlG9kZTvyh9sIzw4pBYJQXxsRSDKBJB2ECK8O8odRlhhFoNk/tRXW9sHz9HoceHGjRtqyadZSjkoUaZ1tKUcXtivvmGWJ4yrW9fqiynPS9O2JrfDDTeqgh5+DdwlYtTA+x6aAWu79Ep2oFeW1Y6ZEMxfNaa2d0BBAhkg5yUSfEM0TsTVcKu+8FNCZidoCKt58diquTKmsH6ot0oRX2Pe4GCivyPv74Pm9cEQvCJApQSGQFHxJ2VPPoE807/hAC5I0o3C5OmJMZL1UKvHKV74SIQRXXHEFy5Yta0qSbrB101p18TNaAEjpbtoTSdIVvhQoQpK83vp9UUCxJUWhHGiyrjW6gR5LoSLjIqxN1IVUFzsjIk1wgLrRNgmsZNS0B6cZeP06ecih3VHsqfl/pTMTQyAlecsqXpCKrPtYxhC9mTnZvP8rcCtwNvACqcOspLpGaQkpZMMH8r5QlBFRz4fRQxda7TVE3SbuGfReE/esgFSTkPaxE3WNpBbwuF54eFP0ftX8iKR7QrHElIBUgEwJRKoemZsaCyllTElsemzEv8kqXCquZhXLpiWAdneggmM03rJIlXLZXYSNQ7BxGH5klbh8dBOcC/6qheRDyUgolWd8KCl7Qq1TIaQCqQk7lcVHSIk3UoZZaTXFpZRA6gtBKCShJ2jxBOmKsA8s64D7t4FcmLBe6EFvL7rmx7eU4awW9VmyvvrehoPnqfFjEw0B4eIWyndtJ0ApOjFKCD3fCT9UE495HUje98bXUi6FpB7dhXd4T7X1SXh68tVtDDxY2q7idw/uioQl/XtIoK+k4t3G494/RgghkCLe71it9T1WabOKstW6HxXhLlQlrc45WMVnL0jDwzvh+PmJe0d0z0BlxZ0XCceVe1aHvkkptbyqfkt4ItJNGEtZDhgoKWsHxMdUVf92w2sPhkWdcNnDKtnY0m41D1lZsGP3sH8Yjpqjxp+5tqOWEhxf33zAD7X3m1AENiOiSAvas6p0mLl/k7HK2vdcwkfe/LrIujNacjn7Htou8J6A5y+ER56rnD54/kJKKRXLXRbKCl0Ugr8AnxCCnBD8Hvh8AM9DkjKEvTuHVwjJ2e1MTqjj6WbMq8IiBSGqvvryOdXeAp513wMJz+uBdQNw+eMAlLbuptw1H99Tcdu+EPgS+oRgM/BR4AohWCVghaes7oqwQ7k1TXFPQRl7k/exUebnpIu3/Qw8uQPOOigKA9DzW+gJikJQEEIpWSxDCgjSQilns7b3zJw22naVydhExfSvbtbOUZC8vxAR2Z4oGe5H3naOCnXw1DMWLu6kmIXCpkH8Zd34+jyeJus5X5JNKaPJZJ7t2Bg048p4w4Faj98h4KiF0X1CeRALISLZ3PTV7CWwq6hykpjmLWqHzcM1LM5SKaVlnWXimCLUep3MefLnLYqImvbYSuwqwo2SXUAlroWofwLler5hV3TuJF+RTGqtqbShFmG3vavM3NEB7BxRVRHs6233CYiVhDVy3BP9KoErwCOb4J1KqVEKJMVAUgpCioGnkllKpRQMRKQkbBGQRTaUG4yJrGezWTo7OxkaGmLRokUNa0xdkfch4ytreWWislYbW1gCZbHozMTPoS984CmNbLHVoywD9TpUyT4eC+A3IbxEwko0UYfIum69TgvlDWQIryG7rVjW59EGp5TQPwgHt8bL/9iLjWRCk4CUkpLUmVWlIrQjIRXNdVhjk/p/twHf0ue5A/hv4IVSDawUmvSivAmmCr5UmWLtBS+v+yuxFCmytoU9JSNLe1ZCVkhyovks7QZGoLbnSy+U0bxpJq5lc+HlebhjpxqYzwZwqIwEZQ81G3masOdGcXueAoRWH83jHXsvJWGoNiEVqcikBFkhyXhi4vfOdjWzJ/wwhGdGYFUrUFKC8yFaoTa3TcUTrp4HwUPwaCQ1hQ/0UTiyl2IgKYe6ukKg3FID1L1Mact6KlTWBkKg5CN8ELNbEUKQDpViSSJR5ZkkgSdo9QRZYyle3gU3bVZkIO1VC85JQWuwrPbzErGGECeCtZCss+7pBFAHdVIcEgSlgNBuQyDxfAleiNB16M1i64USr+ST2VIg+6qDyAoReQ2YmPWYFwEqydzTA3Byb7RoGwu0BPr37mY86XFuk2SISHt3FjYNaWcGGXllSfWMxgT6bXml8VzSrdq+eh48sE15OtjHxSzrwI6SGnP2vTBtMe2YAMw8apxKQM+dnqisbynA604hRspRe6A2Yd+WV2beg7pU+bwXzIPfbYWDuuP9M+cxFpL+ApyaTfRJTMoFPtCeVyUJZSkIpAApFVkHcp4gB6TaLRdxg2Qfx4paFrqxen146EXK0yZWqayCbwce2ALPW0jx8AWU0h6Bp2K7S55H2RP8yjRbCAIP7kRwlCbqHpBqyeCNlJXiOiknTcTtU0rLHU9aisIQnhqAv5tTRVSryLqUcEwHPDmkLFr/u5nyO1MEhy8gEIqIh56SR14AnAwsBy4E+iUsQhkN0kCpLUW6z6ckICMlXqWPprkNMC7YLvD2ddhRUK4Ay7urFBZFT1BMCSWbafmlAPxZCO4UgldLWC1V4rnK/NzTBsNl2qUaFoAlQ4ZEmr36YtQEZRKV+Gtxe9zjSFuxwpQgH3rkV82m8EyB8tJulVDVl3gZSdqXlMohLWmPbEqQY4KemnqNsdcbRWbj3ijc3wdH9kbPtO1+aQSqWgRwxwgcNDeafxa3wENbIzm+lqKqnreiljIokHDUPOUGb3Bcb7w9WhlRpXyQqD97iip0i2htrLR7TlYlDqz1/YkoL6u6pOcIiHOiENhqhecJ3a7ZLSrB4orE7yfbYmQdeyzcn0zk2kdwRG+F55UMh1BXomJVj1vYIasNeo3AmN3gTz75ZG655RYeeughjj/++Ma0pp4o6gfCXmTMGpuYnAFF7nOepTmKrngJlUXUz3mUwwBfSnwpeDyAf89AUUpuRnK+hNM0IRfWZhbBtBZyAgFhYjNu8ZV2msFpC3BbAzhzFvxpS3wSSA7KcQ4Wn8jFyl4UisCDwC3AGcAc4Am9PQ48XeNcvwSeJzVZF0qGKKKs0lNhkZYWUS9KKgtfEbgP5RFwFnAMus267UminpZqDGSEeiiNV0QzuPgbGMuQEjhVG0Gvi4ESSjJSC9RSD5N5HTB7J7z+EOVmu7JDuSobkm6so03iDm8IQ0hUrdA8BhWvDz9ElgPCskRq9y4hBJk0ZFMeuaxHS0qQ8cbnKSBDGWWAt13NQgnPDkK/D29fCa0Z5YJsyKgtoB2/UGnwNYqrF1IIVJ+MFrcYQCENa4E7Q8krQskqaUid2uTuPKJLsCHlcXcAL0nBUQgkSgCXUqi5RVtocp5AdGVVRviNAypJW9LCkyQNW4dV8h+TzMoIWkaRs7eJxpB5TTSKnmAkJSi0pSnN9Qj6hwmXdVcWSxFEbv4VBYh5LSWpZwZJL0qTm9NCLq0UENmUJtWep9wObGJzcBvc0ae16EINDGH1rX8Qjuy2JukEYZ8sYoKpOrcUEM5OU3qqiI9U2vlQ6ucTUqEkq5UyngSeHlLK2bSOKTp6Dty6RVmWF3Vov1/dd3st2F5DOK4oWSZmeS6GMvK4Qsv/Ul1SD0XYFXcUpLpyZIYDUqg+CXt9qpAvlFX14FZd5x540Vz46jboG1L9K+t5x1bq5H3VgGQmeNOlCcTj+1b4VxE1fxrVpoe2xgK+B63taTK7i3Erc0VoH6d0apMH+9nbW3I5vRdCIG2ibtqwqhdW9aos6WmPcsajnPIop72KFbrbaoIEXiyUjGOcZVIdabwdI6QFtEmZcIefgFWwVpUDKVU1Bh9Y3EmoXdbx1DPtZSw3eHOdHlNeSb6AsgfBo9soH75ACcxSWc9vAz6IWuMWe3Aygl8JwbvRQrUAv92jXPYpalktZ8uI47yFY8GoVl0JPDEYPQOWV0E5JSh6UPC8SG5BySyfQFnTfy/gP0I42soZ4fVkEQ8NgIB2KUknSJQM5YQUkfu853oer7wOrWu6ZwSOnZVQ3npIT1L0BHkPRg7vpHTvFkpyPkEYIkOPVDkknRYEgYcfSrJC4AvIaVl5XAr30cjs0fPhUSsccPWCaI0w98i4UNtzrE1qpYwn9BRCecUMoDxlkorxSphZHWXHWPiU1e5MNjrmLYtg+TyLqOvv2UIUxPu321ehW/ZcZBTEPW2aPIzSx8ma1u3+VPqoX/cPwXFzI3IFSkG9q2zxvMT8ahCG1ec+dgE8sjn66dULKIaSIorfqVx0klJKVGRPw+VMVQpjYVfzUf0nkjGT9ZNOOonf//73fOYzn+Hv/u7vOOSQQ8jlcrFjVq9eXfcGTgSz5h4C67bBnO7qiaPy8CVQ8qMao0aAQ134otCLeNaj7Ieq+g7waxlZzQXKwvxNlBZ3GUqzuxz13T8BrwCeT6RYM5Z1o6FpBXKBxKtlVd86rF4f3K7Ux8jqfumPxwNDZg2JLZkNuB/4//Rxd+r9UuAIlMv7YcAu4N+s852O+m5aRlb1tCbtLex/d/iSjIh6WferiMoYe6E+5k7g74FXYylWMC78lku8VNb1wNr2mnugwbju+tt58xtOB9TkYPpakpZAjZ5jJWRCNbYy6FwCQLoU4rVk8Ba0w4vnw682wPlHRWQrJSyX1Kl1hzeEoaj755t5GEvpXQpUfUw/RIYhoTJPk/IEpZSgnA7xyx5+xqMlK8mlBN5YSbsd65aMO1yzTVkGs+lI6Mrq89ruaYfMh7dIuG4z5eUZCst6KKAXAnPvpOTPwCVANoR7pWSpL1nuw1xf0h1KVgwGtHe28zWpkgvdK+AjIRyNElqlB6EQ+J4i64EHrULgLZsN60fg8DkJSw/Vi31/CeaOUl99X27wgoqls+QJRjzBiFDZmIuLuvC3+oRL0UQ9hNBD+mpC9fR1lXpxvv3Oe3hlfgnpQ+fhC0FZewvkPEEuJUh7ynMilrSot121o38EFnfElZt+CDtkRIiSVvl6JGCzyFVI5J3lz8lSGgwoCZTnB6hcJ+mQdAjpQJLVz2Zm3W5Sh85SemPPU15iR3fDA7uVVcEoNTw7Rk/C7mFV8mq892wUFEOVmNOESKnwKCW8KsWf1A4OQu3ntJLJS1JQmWs8/aB6eswJCTy9G3HYLEU+PQ/RkUUcNwfWbIVzOqKxaZQRUiohrQNN8BMkdgLx+CZPi+mbWQMDaXlcISrrtexI07J5WCnkY/H46sVYiWytkkTX/eZ3vPmkk6qSy4VCjZ/QU/lwhLmmaS9O1I1iQ6owmpIn8FOCctqjlE5RSnuUUbLI64BHPehHMNdT1ltPSnUZOz1E2a/o5FonQWZrElVDHNcN4x/aQSntEaZVW0VKec1k0oIMniKbhog8fyHhI8+pUm0CykfPq8xxQUrwJ0+Q9gTPI5LJXi/gUwJeBSxBubCmsx5p36coJVmo9iCQ1JVHRYl/7DVD/86TO2FVT2wMhynl/l4UQpOFaM272TRTz+93eoLDI66O6PKgWEIg9b2jirCPFTIIrSRkUimw9BirIvyVBVhG8rUhV9tCHVOsntXrfv1b3nz2yymlBIWUIO8LSgd1UbxtM4WBPH53G/ghXlqQ8SFIS/ySxG+Jsv7nUEqWMbvG22TWJuG5luiYs+aq8FJD1M01C2UU122ssvb/yjqhp8l27wnlFdMBbBmEQ2dXr60WebSrJsnEXg2Lvfcv9ozFwixQOWoW51Ri1iWWgt5cE+NxnFQ+GMRqrFtzrUAlDMyicqS0d0XXxJ4TJ2Pb0WtGNWEPYXMJztT3zoRDzckqTx27HdaYlDL5mXXu5fOga7NSsLxiHuVl85SncShVLjotX5dQBsxfozjQ8TJuYa94TY9znhwLxkzWL7roospDcfnll9c85vbbb69PqyaJYn43/HgzzOqEo7Tbvn3DDWyy6weRr7bupxTKIlREuZGVcynKJSqZwrcnTvPvwFxgPfAM8BTwE6IErXcCn0MldKnM2R4x9/IgkLQEknSSsPcXVH3hbq0gKYaqLnxs4oDxrjS2i1WFsKMG39WJY18GXEDkLSBQHif/AfwQNYjnor6fQi2Atiu8iQGvBWkmedP8OriiBpYiokQkiNmLnsH/A34GvET3c5nuh3GDTEm1N2EBlXlEbznkqJOqlNa9qWP/Vh52cCWEwSQPMgu7rycR9M+lAiXXedqSV3H1L0vSrVnlBfGSBaSe3o53Tz+csjAi6YK4O3zLJGpQTxCGMJgQBtO/ypwLhFY5DlkOkL5EylCRBO0GH6YEQUbiByGB7xGkPXI5STq1d4tjVZ3givU3hJ15VXrnVQepa5T2omzG5h77UmWF9wSsmEdwuqSwboCC0AtBKCkF6l76oeTroVRWJm3Z6pFwbKiSRA1ICHfAI3PayHsqh0JeCH7rwSGo2M1QaCEfCD2hLFcetKxoJ/3bTSAXR/OLmTuSVoPteR3XTW1X8b1cL+GpuG3fE+Q9QUGoeNkCUOrtoNQ3RCh7IAwRoVBEPa3dH7XngvDV+95FveR/N0T6xLlKg+2pGNyyp4m7MKTdItuBBwe1qjwBizSx9URk0UsTJaep0bdJQ0AglCWzrIl62ROUZ7fiS4HvB/gpD6kVaF6gvF/SoQqDyPgBmf4imVd2khGCdFo5uYjjZsP3N8DpC3U/taCGuW8StksdPylqew6MA8VQ1ZetPHthlHwU4ZEmII2o5DlLA15HlnTB1wlG9Zwfas8Jsw8CvP4ivKpTxb2nleNO6sXzSH/rcbydeby5rYiUiCsjtmoXf9230FPJDENh5DCJCHVpavYuyBvln+mb2Yp6bvGkIIsg0F4QoQDZmSYMysobDk3YDYwgOJZLnHzeQsnKJYsxbvDyuNkEQim6yp6yKAJIT+CpR4WsgFzWU8PVjPuMJJBRXfGy51HOpCilPHwhuBs1J7wDda++KuBK4MMCSiZmPSsQga+UMETGe9UAOT4Rw0iullU9CKXKzblxN6Wj5uq4T1FJkpYSkBGCXApaMh5ZIwMd2UtwHpQe3kp59QL8QxZQTqvrEwrBrSnBmVgheEKwELWm3wS8Wyg5LtPi4Re1FxqKb6RsQb6OgnYgJUEQ4vs6JCtUnjPpQJIq+Ip0vL4r5v5fFNpAlPIoISoyWRlYYi6rvlY7haoxryDUcz9MjBi2oeYW4xmxr5snQ1kp3Uo5jI9rna1f5tIIO/GabcU0YxqiUKrZLRW5Z+Xyg/A9VXkgr5XoxUyKwrJOCs8Weaqzld+VJS8RkpXpED/wSIchmcCrPAsmVjgLY3ONH82L5dkRWNEOIyXI5VTjk0TdWGqTighzObfntVYrZbnUCpWHY1MRDlHfDUKpdcXq+kp9/SqPlvUzBp5QSrSsMNFeNfppP2M2YZcSntmtwqe2bIatI3BQZ9R+iaWYSKz9Zr+nAL1tMQNmtJ4IlThwV0lZ8WzjohHKJoOkZdxcmAGVtSEKz9NrW08W7huJK+aTiioj81T1NVTPDRB0tFBEVhTT5VBXcJOStUQGzDuAS1F5utL6upiQX38fw3EiGFc2+L3VzZ7qBGI28sM71Iu/9KnMh/YkXNESE98XgsiyruEL7QKP1ui1pCuhR49KZaH9qJT8AclLQmVplijL+kmosfolIqs0wHeBVVgEw3hpCgiRhH5IIKkQdpO0jr4CLOyK3JAHitCmqW8tC/sYYMis0dqWzR41bp9KHH82yvpvyLpRmh0HHKn7+j/ARVjWdeIW6lSC1EpDenydddLEX6UFMuUpLe4ELF12HH7SY8AkmrHxKZRS5bfAh1H38BTUQr+LSJP2fD13BzW2Wm7xMrCssSYsw0v0b4Kk/eijD2VERgQ96SGhK+VGCpNQkpbakodWppQlqe6McmPNCTJnLyN99ToyR3SSWtiBVyHpkijh3P51h/dl5IIby4orLcWJlPH6qNq6/lRJcreUnOJ5rMwK/IwgG0gCQ9rTIWXfoyWt3ONFehTSHshq93ejmf7DdjiyC7pyOnYiErxoSekH3a+QQSmgND9L4b58pLENpbJYBpKHpWQn6OdZkgnhb6XksBTgK6uKLOaZPbeVX4c6pZ0wiaTA9zxCxVQqGZGldocPlnfT8rPnyAyXlWWuIpBYrmHmt7cNweFdtQnfGJ7JIKWUCHmUYGZKLRXnpSg+OsD6IORuPE7yYHlGT6xBAIEir4Qh64OQdek59HRvo3tWq8qSrz0FAs8QdyXsZ73INd4TwLIuldjvhQusfqEUn70tNKL0l5SSAKMUlJV7YoTMIOdRbhX4A0WCuZmKAJ8OJakgVIK8lJQ2D5GanSIzt4VMCjKeR9qTpJd04s0ReI/vwjtmbpTDwPRvjxZkTHI3bemRgBQCgbIwjMWFtCyjCho2mS2gvK5ul/A3Eo5CK2fN1pUhtSuv3+s1TAuFnhEiNw0ielLQ06JyBKU8vAyk57TgrZ5F+r4dpM9aghdI0mFYcacPtxcIF7br+6/Gtm+UUVpwE1IrCYQW5InLJ2ZtsJV/Bet1CXgI+B3wSu2tUpHvWj1CP1RrNcpyWYl5ThoD9j5QqgjEscuXEQyX8YegvKhDKXn02FHygSDUipG0VhYEQtCa9fBSQvtlhmoKROIjKKVSFLVyKwCuA16PIjmeEPwD8GngLgkvF1BEkGpNIYphZY1Po70nbDlqnP2UgVIilEOlmCz7PuVtZcor2tUznVLPtQrbViFKgaeJY9bDOPOWVi2kfORCZU0XEGRSBGmPvrTHfSmPf9BtzqCMLZ4QvMqDf0ewWcJBSMqtGdIlFZpXDJV1PUNkPJ0MTL4Yo0z2JfjlsELYvUCSCiQZKcmu30NunofXlausDX5KxaoXPG1Zt2SWYVRI4itQSocTBdwg4EcS3myCqlsziAwwUICe9grhaUOFpOyrf1JqdlLwo/JlhoSZeT/jgfSRuRQio+QAaZGiSsJQKVXCry4sryc45vAVjAiPgheqmHyhlJmlFZ3semIP31jZzbAn+aOU/HMZVqZV7LqfVlVSjCXTR+UQ8oXKIzRa8t+qBIc2Wd8wCCu6VMb6/lKcmCet4Gbs2wQQqZLLzUuDies2a8nCNnh2iFCv7yqTvyT0JVIrpqWZm4l+wuwFkXdPsjpRCmtOs138TfsCqZQtW8rw+k5YmFNx3gd1VhN1+35V+qWxJw9HWDKAWSsNeqLybaG+1lK3QQSS1Bg9jWoiqTgwbewfgR4RD88TWlG1mzjJt8+TJPH2PR4sQwDy4FZKu/3I2zGQlNIqn1A5hKsSTbwVOFkogm5vYQP48JjJ+nnnnVf3H284jutVez34pJQq0boRHrC8AkdQLqxaSyOFJnpCTZQl0PFfEJQDfik8zgJWpeA4Aa2e1qKiHj7jDnE2cbL+GMqKez6WNV1a+1BZ/cqgylZoYSPdP0jq+PnqJLOBwRL0qoEmpXpIKg9LKCs5aFTeltoDx5BZQ2QrpB34EUoheL5u/2uA1WhhzDq3yRsTAO8G3gfcjSK6RTQh1BNOUe9bzRwThBHB8q1FAaJFIeshs+lxE3Y7Dt+OUy8B/Sit2HnARuBvUAqUAHgxKufRH1DC2g+tc94JfAFN2KVSsASJrUXIqEqgHxIWAmQ5VMmkAllRuqZSHl46xMukoCU1LsIeSkXsjIBpew3Y8W0PoDwIXgUcF0Im1NZ1vaUBL4B0R1bHnXqkFnaSPqmX9K83kn3rEaSFIOMJUimB8NBxpPvPHT60iHpFoA4jwnAzcCZwlFQCJb7E00LGo8WQH2/dxvJni3z34BzvmDePlb4gzEjCtCAMJYEvlBCQUaUYc2lJKqPcMU2tXowAYwQX21KUL8MDO+G8FeZhi9xRjXXdzrAvlCt4YUEHhZKgVPIppTxd9lMyIiXfDuHdUrICwb1S8mopOVKA1EQLINw+xJKlbXzAg7sQLPPgF0LwXwj+3oPOlKcsjtrCXbFAtqTwl2TIbBwkfXSWTKAS2HlGkSSJuy8usFz7koR9X/dNqGep6On6xijrerGnnZEyXJkvsqOzld+FkpW+ZGEQaOIjaSuHDJYl94Vw4h74/up5nIbgMC2kK4u6p4U3RYizArKecqP1BHhLW0n9sR9PKuu9p06thJaF2sKQdKVGeWGMFyZfhAm3KWsLtMpvosNSPNVWf04Gf6iM3yN5ugx3peBlUrIqkKRDPV8+WyR12BxKwqs8f6m0cgv2nr+Q9EM7SR0zVwn/fkjKrGk7R5BzRMziHKKUNSb5oAghJWSl0kWt9cG4h9vu7+a5+zMqbjbjwe8RfDYUHG7mFSDdBl6xrOYXNEnwTbiDGmNiYxFxyJyKwsTzPDyh3bBPnIv3/fV4J88n3Zkj5Zs1RxLuHiE4dEHFayTQwq7SVwhVlYUobKmohaeMcZklqgxiW9TzoR6fqHnlYqGypf8JuCgwCnaBbEsj8+b3VOWJFimjZF7WEjbaOIG4UCtDTWSlxN86RHlOilJbWsWYe0Kvr0LLFEIpImSk5McTtKWVd0IYesoSJJWlvCyjqi5/QOUyOwtjeYYOIfgHAV9FcKgULEVSassgSpqgh5KCPr5VWvkHxvhMhGVJEGjPoVDNsSUp8TcN4s/z8Lta8FNCWdb191J6zQk9gSq4FuB5ak5WxSKUQixIqaR5ftrj9myK53mCeSjibTz4Ag/mowTq26TgPKCcS6tpuRySSacohepZaA3tmzj2OcAm6Cb8rLIPJb4fEmrLOlLn7wFanhkiOHwuOdPflCLpJe01VDT3D7V9DyX6/SNKUSM9OFQIvuQJuoFXmOd4TgYGSog5bRWSI0JJq9TP4t5giLqpPZ2sNZ5RCl4J2ltL3bsgkIRavklJFXKXkiC2l2FWa8UTRmpFRF6oZ9MocEtCUF7Szq61mykHPumMRyGU/DgM+WjoEQQSP9SeZ3rsmzhhH6V8ykpIixpWaCkjQdVYyo1H0sYROKVXTTBP7FbHJz0EpFSyatI6b44x2e7N75n1ZFGO4E/95FHPUFGP/1AqWVDJ7dVE3TZIG3k7Xk5YKSIrc1rM9V1W2syzA9ABsjuH6O2A/mJk3bBd/ZMWbKxjdvnQZSfzFBWDUyggnJMj6BvRXo5qrQs1UVdKVk8pF5IKhrFgNG+IviLM64x7jkHkdby7qKzuyX6NupfK265H4C/soDBYVt7UUq3fxpAyEIY8lfDrfx3aw0moePUWobyC8mPv5ZgxI8l6tqWT8psWUloxrxIXKPXNDqWsjEcPZW3MAGkfVetT3/iSUO5IJald4P9/6v48TrKjOvOHvyfi3lyqqqur16peJfWqXWhBCyB2i33HYMCMbTyescdjj41tPMae8cx4A4zBNswYG48XQEYSIJCQBAJaEtpaElpbUmtpqdX7vlQvVZWZ90bE+8eJyLxZXVowmPm99/NJ3exSZdaNeyNOnOec5zwHKKyhtPBIu8TUcl6CbtKpBYgYNaDdZAdwYdCM83XAq1Fxl4+hrUV+DxgjAvugFPjgdLIXTo1d5gJZ8OQHS7KxJjlgZjUIx0q1P9FwOjRL7cqgqyI6TrW4qKfXVadsZR/IQ1+7gKtRisda4CJgMBqKpHCfElCtZDzj2H4J+Ds02z6HJC7XL96Wpyh9xymjIQGhtCBTBtL1jJrUbS8KGegLRkw3AL7CGKhmnBND4m+BS4F3oLVPzXRP4n3M0dr7VwJ/DtxR+e4bUBZBNUjhKy+HRkOD84RWqSJnhSMUoUv1N0YwWSAro+NFIGtYjMysUl5tR+bpjenJZ3ax6KTF/Vn1+AwfivMLNDDxiRA4M6iIWRYChphd7wRMPdfnY8AGwb50Adn2g7TuO0jtogVkzpMXgjVCbrzSVo1D8hg1tT8eWnyoRnrjJtaWQMsYWkiP5k8PMADcBLzRB4YdHHaBidJzvAgMbt/Pu+/dTbMInLdNePACOHnZPEofKAuhzAO1TB0NV3pcFGSyhSC5RWoKJMQFQuFVBM2l9mLx3/cdQpY1kEVDGryIAN3E+kux0aOOG7gzqvDbaliKEaGzf5JiWU7Ha7uoKx0sDoE3+UDDqKrxgNGnH0Ka/wEOFoSROqdZw6oMOhbOMfAZI3xEhI8IrKhk1n2M9joRipPmYXZPkp85TyP1Matb8xW9jIMtFXwaqasTkZznGG2yaNR8pvnqg1KnpxBaJtlS6YJ2Z4UnRpsMHS85OhTwBKYKz0Ccw94HJgk8HQIdPPO2b2bTK9bw/SAsF8Eh2Jix1oyz0MBTimbwjSjgtktmYcRgDrewCwbjIwhw6DhcMNqL1CbAjtoS8aELZp4r2JnmrGNm9k6JXmtyKFOtt5s3iGsFnvGBvzSB4wHuDPCRTmCN8+rM7z1Mdt5CbHRkcyOYWM9rzxpB1u/FjE+RzW1ivcHEa/bjDr9gUMG5QUsgjESnMDmvCvYyUfuXnL40ziS4NhNQb6EiovFr8AKfFQUQq0mtsSzWFUhQuq94paZ3WQAhwL7DyAWjUchXM6omMyquN38Qs3oW9oFxzKULsd5jXEAI+HFHWFDHoeAm2cQQ7zlep2jVse2kQA76PPuy6r7HFkh6Jp9Cg/UIdAzcjrCKCCYHcmWqRGfPxz2gGXSMeE8Q00/mq9yv7rwpfBewB69AZPPuvSzab3CLhygkMjGIwISYHQ+QeXUO0/elOvZmnCsdE8k/oceWc8CVwFvRZ57FsxhYJfA6gS8F+G3A1DPEgikcNrPduZUC7xIiHbCbyVO/pzvfIvAOPuBLR+EiSHeBMsTAxPY25fL5XSV3BzyGcBOGVyCcGxQYmNzoGnRCZg2FVzqxAwXqInRqlm9nhl+mx+7IREtxtPe68DoDfyLq2yzNNOmStQqKZk6bqEfDCwCzqH1Lcy75PsW0c8qsuzLgXfTTSk8odU3k3uO3HqN863JKA/XICGpboWWhLUr5Tn7ZY6jv8VliMEIgiLDYCL9m4G8QBoPwMhGYO4BMhC5IlxB9Eh+ox6z+jH6GC+qTpb7T6Rz3ZG+0B3pJYrOggZbM4l0MRsTvz4h+8eEO2YLYmSIC88d37mbhiqVa4iESz1DWM0J9gBVHJniillPzgQMO/qwM/EwWOKX0SGa0vChU2KDSE/9Ndk0792jixKTgcwqwR8Ya+yY12bVoEJwn3DGlvla8V94rVvBlNJiRfZZ5HV+XqXC41aP5V/bIctEspkpharKglRkNVnn10X2mc4NMevYhnJhZNxWgnmxZel8TDYpkpesGIDRZF79ge5uweo7mH8camIcPdDVGjNNyyBkZBOlnZYw4z2lowB9d3yXqxzgBN1rHPXNIS4WI89zTLfewLmonhtgCM+01nLiv9rXdDaGbeEzXl2xu2D+lfezTDYpJEhFB5hvk8BQyv6nzP45L4lp41oDL7jZ+dBbteTVaT41HLJSCjPqxfwhwQQi8XYRbUFv64gjUE2D/t+x69UPR4P//5Zg1spRjJ83rAjsfH7qPE8mH0KWY5HFR1y3U6xaDzvsEXFP7srShUIN7WyVvGE412JFGFR2frmNMnO+igP2c0PvOvwD+L6pa+ptoNjfQCyi4qAycaPDZ4SlsbsjnN8msYOY38ZO+BxB9UDsS9Ox9j6peixOpgdK0rWi/yFSj3icsF8f4eTT6vorYtiZ+z0A0iIkel2yCk96m9QoUHP5THF9SJ09U7DZq7JpFwLQ9vvDquLQdrtTMoTeizmZavCkzmNte1DF+ZzXCmBZ/VVSumlUvgfXARlQIMNHl6nFcGknrF4t4K/1g/UngADCPSsCv8vsl+sOUUafj8Z04xtKru2wEmwVszXQpTjYzZFawEmmb9L43VP5WcghaAW699T7e/LOLTwi2OLTconp8KgT+Q4AXBWgEzaSaEDRr0cwj3VEzeFkI2NcsI/vaNjorB7ALBrVuNmXYC69R0o4Cd2PU4TZZpCCbXj1+sl0nnKcb6tLHGrkATjfFDmh21gpta2lbQxvVkJiuOXBzzECfGmAUWGDAPjXOfoQi16zU6XftZPPoCCdnkX7mA74UXBZwudG9yQVMFh3R0iA1q6C80OdpYnZdfECcQx7eB29YClkPnKd7oMENBZYmOo8to/XbHRE6cwcpxj2dpeAIPFTC/VngvwWlvtdEg4CaMYiZUYBjbUIbwqw6HQEb7/dsgd8WuFzgwyL8tjFcKk7p8Ei380RxUgN76wE6wZN5wfigTk5IYkSBcKhFWJbrfUoORQT/hoAEUaaG9NPykmBlylxqnboC9Q6aKbwhCHNnDTN6rGDbKAyWgfc7xwqJ44v/2RLgxh372brpMdxFJ/PgLJiL8BorNEQoxFCI9ht2AnXR7LnELJzJDGZ5A7N7Cpk/gHEx+3zQwVizx4KIzlWakanao+ckzUA9JEbdp9nPZFPLIBGs94J6+gq4ZpOD44G/j75QzQfa3nOzD5ziA+VkBztRYhbPIkNV1gs0AGGsYJo55tRh7GPHMC9pIs73+oAf7xAWDvUyX1KxHwg+xJrnaUA2gXYr/WJr1axzArPb0pqNmZalAl9E8B7O9nBuI+O0tmeLC9xB4CUlrDSp7aCHiTYy5bSmM1oFYzVwmZI39ry52Ou3YS+cixi1T3Ksrd0N5jQJQpfF5tEyCCeCr+w1RbLr8bnk8d994wq9IEQb+Cs0+xykR099QuAIMEwg1DNcBr5VEHKr+1XcNyRly5MPWPEFq054CkqGMlRAf+CWhx7m7WYtxaJZcQ/SMZUxMLVBhBuM8EZU2CjZU/EKuoUoolp5Jb9lAwpU3whdIFWLwMJHqvjTAl/38B5roAamVWCbta72QEADLtLRQKUqfFYc7GgrfG7x1mgLLhdrtp1m2FO2qtw7TnnhmGbkBJ4Iwp+KcNzCN63h40a4MMRATm4wuVCPoL/0QVkDIhTW8IO411xAj7afx3nkUBX/OSJcCKzzwgeBYlDIp0qKEU3WFF71QBroc/Td2oaeL9cVkKq8D1R8htCjvqd92pcaCA6l0p/FeWwI1PYex+WCWzTUZVBk3cy6oVMB6i3gM8D70Zr1GmrrglG22zKBX7Hwd4U+p0sGBuCY0/nRdVLU/+34QD30fKZEG+/S32OdZ4gBal943Ka9lA/vw58zRrl6oQL0yARwHU8p+qzTzbFBbWZdoBxvUVs1m3p8FlMi3HLPQ7x91VLaXveFtuj3fScIw8tG+MATU3x33ggX+sASPN/yhj/xgReHwE8HGEnPNd1nFEvn04FsBO95DKx3mSwu7jO7pgin6D4QRgfxTvCdkpCbbltNH5l0Pj5wcV7nlwvqFwPm0CSsnNVHFS+NMFm3TC20tPZP0JlVoxXnb+F1LYQy4G1/EK9rI9JXBfVRq4A9jbOT9uyYQEjBktRGL+w5AueO6jwZrWNuKbDisV66nTqMD2Qu+YKKQbr7xdE23oIbyhTXxOCXF7pBMD+nhjsSk6Cx1EXBiGDKGODzvWvvP4fu+urakGhnvAfvvAaZE2BPE/rYFFwwh5CYjGKQuGnL/EFk3EW7qH6aSe9LLaeyXsvOumsjALsnaK8YpjU3p5hoU4QkLKfr+kEfeIDAJwMsFLgYxUNdfBX30H/Lds4vGKx/+MMfft7f+dSnPvUjXcxzHSEE/umf/onrr7+eiYkJ1qxZw2/8xm9wyimnnPC7B/c8xvEY9vYQozIQykgxiVE2iRHATuEoc4OrW+ro5tWugDet/4rU6ixjQek5LYLWXJJibKAhyn5NLBsXv6Nbyxd62eBfQWvh/gKtQfp59Bp93Iwyp9GvjIAd75AtqdOxRp2WWXVtTUWPxaHK1wbnPN4rVcPGBV2TamsBnfRVUbm0qSeq3GNo3baOKxo99HsGo6EQenXRKXOU7PV/An4ZeBVwdmXs3dr1GMHVFlse33aUbUd4eh/h4X34sxfiV45GZ9MjVvAd0YxFzK4LPYc6ZU1qQWmUJ2TV49iOo1n/f492pFJxkspii0GHar3Zi1GGwfWoDsE64L+gGYiz6W3ePkQgJJo1MWXc7Nqe0FGgF7bshycOYE6dj1mxMJY2C7b0mLbHNk2313uctl3HwE/7dzvAGz7wFiajI52ocgfiGB/rXzysAr4a4B8DnFUqLf7UALl3PNSAk31gBYHcGIwxZGOzsBeMkt2yC/vOlXQiWDdGQY24oEEHiUDdKpiQSHmQzCIJvEcDltjFugnF8g6ioFiK5MdyiDIoUJ80MfJuoZNBu2a7c7V6/PcAZwcQCXGNBVgzh8VXb+dQDrMF2sOWzrWbeOSsUdasGKbhA6UzuLKXWe/kBuOk54yWQen/Zcyo+9CjnW06iowY5OTZPYZBAopWsMZoaQFen7PpCa11gM7CITqHOpQhcMzBFSbw/hBYECD3nrox1AjUglJtJcSA3KEWzFLGT/p7IjGLb+ADIqwA/soKO4zhZ4yPlGh1cO2SIWwLsqNt7MgA1mvWK/MaHAwAh0rCouFuvTNWwb76IloXnISnsugYZXHDTxnZNkJbDC1xtFHQcbtX4PDr8y3n3LeTc/cdZOykuSxPSrWtEg5PESY8a7ceZOWjExwYPIvZN+xg9+uEq04a5WaENxrDy+KcyyJwK5FKi2Z1SGT5HMz+KQ1ehoAcnlJtkpFKTXd3tWlQo1om0htbLzBopQeKukGy0P8ztYeRuhyDJeMCD3gww8LS/ZO8iDnc5VUw0DjYEAJ/XQbesHuSU+YNkuWGUiJLwBqM95F9A/b02cj3d2Auno91Ot8ECOMtwmlz+0B6gEgb1wy70HP4EpBNoD0Lvdrtbi03PYr4p6Mt+ihwD/B6gdMFgoUdRthi4PZGjRUBPleUHM9qrA9wmYO1TsVT5+yZYmD+IEVmqYmwBbjTCy8BVhuDwSOjQ5hFg9hHjmLOn6t25nALP5prhg8IEvCRveCBB0T4DvB6lNlVhJ4T33XcpfeMqmObBD4O7EMDufuB2wxcirBehE8H3TcWA34QwlSBH2p0g+VFTAQER/fep1kVTXDPKU8bd0T5CRi84XWvYeIrj1OeNtzNqKsfITyK8FGjWeibUcbXBaFCDgn6XAO9bHqXlo3Wqr8NGCTOa/R5I3T1LT5o4K8RNgY4fcDSmSqxIz1nt4g+E22101rWUBmfBZ8bBeiZ1fE6vS+l81re5wLueJtiyuEXD+EFjorhS0ZrtRHBG2UinhMSi0/3HWwi4QWKIN2g+nfQ1rJJWC75ZFb0HtYiwHiDhY8LbA9wUi2n6Gh7wSLoHMh9Ahu9h1UNxk8H7NWfV0F676waRMGpX/d0EbizCLzSBdZsK3Br5uCMwVkdcyZJkFL3iLSnfzWO6530KP51iUFJAbHCMiP8ewtfKGDpHGHZ7jaE2OrTK4ArvfpebReoG4ndbRKV2uM6TjWTCq+6DIXHPbUfd9UuHc8TO3AfENzqUaX1xzpyVyrbgRA00Ok0+OtCoNNq01hQU8GtuP+9851vYIoE1A2l8TyKcA/Cry/PmfvtXfwco2C0pOOtBC50gX8uA79Wet5XsyyJ6+BNcZ6k+5KAYArOZSGQR0ZcYml2A0y7J2DFHPUpG5YwzxIOTBIG8m6SL4FfH4P0JkQhULQco0GgfrAkm1vvJmIKY5g0nimjnU9a+xztU+hq02wsYV0WeGkIrJ1mJ9LxCKqTlNoKJ5HjpAGVbFpWaj0/yf4ku1I4wiGn3aMEWDCAsQZ7vIPMbipbJihLx7qg2iKJSRBQTY6JDn4sU6ZM9AN8tEcOtXNuTlMB/VSBn2UjwDYEF8uiyoDNdI9OjJe0NrPK2APTQHtkGQfvu/Yytc4NE0xr3Uk32C4LhpAJ9Q4T4yhppZjIKrVe13rdRw2nECj3T9B+yXxacxt0jtPtrV56mAyBL4XAz3tYEAI1RLsRyHT6O/+mxwsG6w8++OCzUl1/6L6b/4rjyiuv5Fvf+haf+MQnWLJkCV/4whf4yEc+whe+8AWazeYJvz/VcRjiQ4/GKu2RCf2YuMhdu9TWIbl0Ra9TJqGQHtg7CkzYjEtKj6EnTJLOdQIDJk1onWOt0NPmMvQmkKCq4ytRNfX/GAJnes/bPJzuVITExollDzrs6LBS4AVkTg2/+Uic4Ik1oNGoVDOCCFmIYgf0FoOnB+K7jhq9CO7/RWu5Rypjq1I8EqgljqEkOhX0NqkxVG32s8Bf0wtW5NFYtQqHKxxlRzcEX3jC5v34L+/QCN7GHYT3CawaVXpdKXhj8Lm2D0mGLTnSKSCRHLJqVr1a8/Ul1Nl6dWVsaVypjr6UXoQ80QgvDArM22j0/luoiN7PAD9NJbMeDbm0HUGLkCFuemHLfuw3t6tX+Nh2eBfYFaNYI9hCMFYBvo0ZJqEXue+yduK/Xein26bzt4F/BC6M591ocOG1wFlBH9h+YBOBjSFwrYeXzs55YlbGdQF+2cHKXDBeX9n5c7DbD2AfGseeO5fMeaRQmnAS8VKQGCOK8b2IIJkHY7p0cjHqwaa5rwGcQK3jqBWevPTdWnPvAi0f67wyQ8dAO8/0eRrhvsxwJxoUegzdsM8OKmZVBWuyeC5y1lHqW45QvGYpsngO5dYjLHnoIJ2H93L07FHmnzJbxddiXZwpA5IbUu9B4wMhMxpQcKH7TCV45NG9cN5ixBiwUZwuAXYjujn6WFoQN6fSpBo96CywdB4+iguBr/rAaSFwCRrxroX4QktYGl57cIcAYX9BGKjTlh7l22R6Thn0lwDLjPCXFh4SYQ3Cq4NSlcUa7OJB7J4W2eymOh9lDHLEaHc4OgWLZnWZLWnyBQAxGEQ3eul3Hky0ea2YtZySXubkIeA6EX7FCkOupLnLsXTHJOaeScKCndCxhBIVJBoagEMT4GHAQTkOS58e5zdWjXGPFf7FwtXW8n4jNIBbjeFNeE4XwSC9MvQlOXL7XkxYjMHAeAcWNcGYblZd966kKK413V2HIpwI2G20D1UbM92ePgh818DrEEIQbg2w2QnnAa9swuLDLVabwIUEvk/gJT6wnMBjBrJdLe4am83mIJyJMOiFu4P2jF5DdEqWzMLUDXb7UczJI4gTfXatFn627QfqMZBBfIwSbXEe1N5VQXsWAxFd+nvo7YV/i4qO/hmwAHilaNu8pItwsoGTBC6tGbYOQq3skFGjReAm73nK6T71ll1T7Fk0m+94OB6ESRE6Fr5nhQ+UwqXW0AwOzpmDuWMH5uzZGvw7DH7BMNALgATR8d0hwp9FG34z2nXlbHoOfBe0R3vaCqqn0EGz5v8r7ikfQ8u5lqKB2sLAWRa+K/A3XvhAgLWNGrSdMr9iDaoJ6gc5pwizev+rjnhADbhUa2hLzUqVhaOc8PgFA11BuUNGuA34ktFMajpuiONLID2doTIn0Xn6WHz9Lr0AfApwa9cGBbNzDbzbwDdKWJPnmLbTlm6RtScuZmoLjxROHefkSCc2XAk+h5CDj6J3ml1Xca3Se9zeKcLCIbZay51BuAdYEMs1ykzw1vBq1B+REP2myB7QvbwHZPejvcf/Iz2mXAqyZeh+kcffnyXKYrzFCx9s1ijKmFUPCi6Ph0iV9Zo4Scd0YD7T++QzuMorMTqD89xSBL7ilSL+qAv84a7DzDlnngZ2RAOpNSH2Vze0jQZ0t6CBlk9CN5ObaLfGKFA3MUB+sgg/a4U76sLbD03SCLqPEgJlCXneoyYX9MpgMh+QlqOMyRNXVAD74/u0vCFDn+Hj+/ErFqo+Uxkoy0ApXpOpMeCbxcBO7gO14+DmNShiYD+VQyW2VSGwX4QvivCzFkZGBsicp3bto8iFSzErFmBdYLH1/I4z3F06/twKraiXc3O0R+dAt/NEVlnrmVOwjvNdIKtsFk/YNwHnzYVo9/3oIOGwIyyLGeZIf3dOaevi6WZlsxjYKTolhRHq85vUY7BlyiiDoA20Fw7S3nGUNvNpO88ThfCnNjDlAzf6wEofGDTaJWUCtUl74/wB1Un6NbQsMzFaU0lpLURdq5j9D87HgESAXcdh1HTLdsQazJjFHGxhhhuKSSLO0A5BoccIitl1f9wThhtdhlY6Ox+z6hHEu/kWP97CDdYJHp4sA7dZeKkLnB4TAFno7afVc7KJKXHeBeyRvdgF7AGNCB6YJAyjrfEEBexxrYoAC3LkiYnoZ4YuUBcXn58D672yyqKflbdLirbQHh2iqBs6ORTHWhRzBilD4FoXWOTh1XEcCRN1cVH89781Bv6xqcH/Wx/XXHMN73nPe1ixYgUAH/rQh7j++uu57bbbuOyyy074/YljLe0jFhend6q0rAIJPfGUMoDrlLihKP4TF3nKriZxFgd8OwivrGXMd2CRuDFIlyquRlS6u6YLoZtJN6ZX89V9ActQYbb/FeCeEHjIB37GwZtSdp2AOTiBXT3cbYlmhgTX6XTrOnykv7s41gcCfEcUxJwf+inaSYyjWmOZMpVfR2lgl3EimE3Z5+qkrBNpbdLLsKfs+ttQQ/MV4APQE5grPO348gmslx7/+H6t+c+VAVE+cYCwYmGMpoG3AVcEfK1HEUpZ9WokNY/XUO2pXgCb6NV8ZfRvemls3c9K/+eFntPQQe/rWlRs7hG0nd38+LxtzKKbWDQYOkp/D08ehhYcngdzDoN9/BB2+UJMBITWabbaiHQlLNTR7hkzX/l3ajtToG0CP4M6nb9Ljw64GHVOUqQ0EFgssMjCywxcHgJDbYcRpZp/GuGngnChEcas4LzBXLoE+e42sgGH3TWOnDYPs2xBt9YU2w/aNbOuFGSyqAxbCmRWW73EzLwtHbZw5KWnVgbqhadWeLLC0/GBKRcUJOSBTiZ0cMocMI6/sMJ/EuGyOM8aKB07lS+pG6/vgx0gWzmAXTqPjgjDJ4/gl89m07YjzHroIK0Ne8nOGmVrzbF/xzijK+Zw0kkLwBvdLHxAosqyUuBjdn3HUSgcsnoYREsBMCDGqOq2UQ2CKqBNm1PHCB2Ezpwa5cQU93nYJYHfQO1SLQQacX3VAtR9/HeaEPvbhNkDkTYsXYaGEZSOH+fQSaJZ9k8bYY+Bu0X4uSC8DCiXzcbsncKsGSFzSo3L0A0thADHJ/HzRnoIwKhT6YLaNzMDta1Kz+sKAkYa7zPAP4jwC1Y42UO2c1zpmBnUOiiaet1J2tPV6j1k+0HKr+4ga0HRgHD6XIpMuDATzjGGa63wx/HyMivcYYQ/RlhrRLP/AowOYTogEx1ksI4cdLB4WANHobfOtCZPA4Em9KjU1THmleeYAmYpi57saIEC9Y+imbL1oiDhzQI/Y2GuF8xwjplokQOnGzjVJIc/cE4IhL2HWfDypSDC1Qh7jNC2hpuC5xcK4RIx1CTA6jFk63HM8tmIeKR0hDYwpxlBonSDmx5V234Yzdi8HjiXXvY5gfYaOraqMnoSt7oHBbPzo/1sELOzBlVnt3Rp22MhZ6jjOAwMePjPwIpUPLv7MGtPm8VLM+HLItxiBTHKIvhqFvi2CywPnlNGZ3FZs4lsPsqeVbM52mkxNrdBCLAjwGYvbA/CExb2xWBhOj6NZsrnUgFx0cH19JgCB9DA64JoOwfRvbwhurZMzGZfZmGJga844dfrOcNttcSp9CzEYLknEvcqNrw7x+L7VDtpKtQ4HwL+wAR+OKOsWR5BuDPAwwgrRXiHgX+pgPVT4/VDojormLWc6Ld8BRW6nU0/W04V4YlOt57PEHjMCLubNZYWyiqUmGEiBEIRMIVT25do0wENqmcGn4Wenpc33WDEpo7nziJwkYf5u6bYuGiYmzycaYWPWmF+Bk9Y4Wsi3CFailDQY+WlgESX9RbHti7O44X0GAMJqOdxb3eizUu8CK8ywqeAqYEcU0TmY/KDEpgrlSWQnluXCMEMgL3yKis/awEP+cADPvCkh6mQarkDRdFhv2vTXDJLS2VE1483WvbQiXOug5ZlvJ1pJYlx3dnEZBO9/wisMGBm18imOnzfwQ4JvLSAtblm1HOv403rviOQR1/Fdxwu+is+lmi4WUN4cwjxqLjy2gWqGVAGLR9zgTJTcPWUg7vLwCuKwNoA7sgUrgHlQE4JZEa0DjjO3UI0MPE54zlPhDOtIdt5kMYBT2MfmC3byd8HnRULsQ46pecSAy81nnWmt97/AQ3O1eI962bYA9ScBg3ihFRau4dwtK0/Gx3UgEkA5g8Rxjs9jatI7fYeLdH0gZqLJQRB7XV5qEU5bCjrliJ2XJkyaMtngfbCjPajE3S8lgtcHfS7s6ABjfEQOB9hAG2x10RZJQ/ROz6DJoheh3YnasZ1UYRAXvqu75hq1vHA3pKweJ4Gn+MmbkZnYw567Mn6+wmoW99jz/hYIuADhAmHnz/Y20tSwrM7z7VO3c8dJEyqh7nZBf7Cw9EQuCEE/sBrt5CMHlvNxv3Uhp4/211rIQU0IZUb4nsBBI6VMH9QjV33U70SNoYt0p6KjBJiF5KYhHA61txpgErXQKC2b5IwYmg3rCYu52UURzq4kSbPBMP6AL8bekmU6crvdemVk/xbHi8YrN900019/3bOsXv3bv7v//2/3H333XzmM5/5sV9cOo4fP86ePXs47bTTuj+z1rJ69Wo2bdp0AlifN3Ya7SmHDZ4QTFcB3ntAAps83OPgUgerg4JAN2S6lMVUB1MQhS8QdiE8FuAdAxmm7EVwk6JuDuSh/4FZEQYIXXpWEmdLEbJEi7+NFDzQyXWND6x3cJ4LnOsCq48dp5wzN2a+gEELZYGPdP7gdHzO63d9El0EN9NTL0+0/FS32q1Xh65C+hXAn9BjCiQgW6WJV2syrAgNCV3nwCXQHm3jr6N08Zeh/diN82RlFFsrell1Xwb8innIhp3gdKMs1szTaGgpeKsUf+88LhgeFuG7aP3duaGXNamhBlqkv6d6BzV476FX89XHGKBXk+8l0gelx4qYKciyGnUIP4vS4t8B7Co9l5We04tAq/AcLTxThWey9Bwbm8WsYy1qLc/WeZbZK+dwsvdIaZAyIFb7ShtLF6xXHQHoZ0c8DFx5+TcZ+MBbuBNV638/6mx2qXL0qI5OiFkour3iX27gSQKdumYvX2vhGQN/YgwnebhYAmcvGGJ4WZPyxl2M12Bk8yT2DQFZPE/p7wmoRypSUu3FeaSIgD0C92ANJjfaWqlwZKWnKJUa2SkVrNcL/Vlr6wHaTxygc+YC2isWan2yCfx1CFwc4KekF1BqiOoxxEvQrHYE7KHVoTOroest0761RelZc/IIB5fP5u5tR1h1z04ODwiDLc/uYwVlgGUnLehFuTK9+890And2Apf6wElPHEXOWKwZdSNR4MTwBMJ3jOGVVmK2Pwb0IoA20a50BMphZQStP9Lip+cOMETcDALUE90qRFAUnQcA9k8gZ86jKSkQmO47XbGuBOTXG4M3HmMM3nouF+FOL7x0oeXiJw5j/RjOh1jPrRt2KD1MeJjfYyxFtQU2inADGih5UejR8qqg1tOrBe6IsNcInzKGt2WeF3nBekN97TzyDZPUOgqgai9ZCqOzVNgrZvvCioUU7xOu/Np3eMt7X485ZSFFrqUKkglvN8KTqKaEN4K38D+McEkQlgLL0aDT4rkD7Ns7xS3La7zp8ASzVg9XOHLSrU92xvBItC2JSm2njxEF657+YGcKeLbR9pUQ6dBGuNjAOzMhKzQLlg01sJMauMwiXbj0akfdwQnKMjB7/hCXWnjGCjutBoOcFb5ohWtLYVkQTl3R5LJv7mLn5HxajTqPH5rilYPga5ZDKBA96GEPwnYDD4twJF7bLaitPyfaiipoT4ywtDd8FWXtfBxYRE+Us2GgaaUL9rotuLxQtxn/4bDneyOBi0xgldEgbNh3XKfxvEEygUutsN4IRyI753dyYSwIW73hGR/4/plzOO++vfz1KcO8OXiuGxXGAyxBGBO4wAhvRhg3wv+gdzTRIPhrUPrwEqKDSyzhAnaiLTvXoja8TtJ20X0hs6pYbaJhOdMIcwzsHaqxpQOnR2ezSM6kD5QOQvSqkhP6CErVvgxVlTdOhRyT8B4h8IwL3PidW3ntivO50gt1A+eL8H4LwzF7ehbqtDu0S8l5KIstMfYSU7DKutoM3I8GS1LQorevq/12At7oGRHeZmBLPefBKXi8hEtMYFWujrSUXkF6bJHJtgPw5CFYO5ewbH5PNA/NxooLbCoDn/Xq3P/Ae/7n7sPMWTuLj2RCPWp9WGs40wqrjOH7InwSFeY9qTK+VDefAhEl8F20PKFaq94bo5b9JN0CKzBoVBl+h81ZPaGAJwswFVFCdKnUV0zrmN5WUN2Dk1jxo8B3QuASEY4Dd4gKoJ5cel7mAm+KlN7/E+uVV49P0RkcYkduWRJthBMVTgsRwBbAtSgR733Qx3JMfkstCVWomEa3ZOmkoQatADe2OxzNG/zAB/5zCWtq+sis0xazuWjmuRafpVLbPa7QLK0vHWHHUdwl8/BPHcQtaOIXz1FA55UG37bwsA/cHGBDgLqHBwL8F+dZdbRDObfWtQsZaiOu/tq3edX730zHCF+wGnR4Z65M0NqmQxrEtZAXUD66D3vSAm1b6TydEt5iPLdaoYht47YBv4B2hXk9qlmT/O2iDOSRJq4G1mswel+LsGiAYC2CaDJjoSVsOAreE7x0xdq8C2zMArd6+KkycLqLZR2AO17i5mr2uRN9rTaGtngtd1swSKeEcrLD7YMNdnSBOhgf+PWggsVV5DBEP1j/PWAPcA26t7wi2pJTAzzqA+vLwCsLWB2ZOiF4rVc/Zy4igc3BcJfzXDa3weihKYiJygTUxUWSWbRhSbQ6tAvCrGYE1Mpq9UHvFSR2E0wODTB+KHCbg9tFM9Z5HOM/hcDvooHChH0ScK/C7cpyU00x53nCwfoycGknsCoF0g47mD+sC1WdTjYFYb0XXu7hlDkNpBWU/WgEcQaJQRcTmRE1r3Mii8na4kCBGR3UjgRAMXeAYlL1aK5ygbdbWCRB9clCP25ICb+fxPGvFpiz1rJ06VJ+//d/n7e85S18/vOf52Mf+9iP89q6x+TkJABDQ0N9Px8aGur+v+pxbHwHW9pqOA74wCEH+1xgJ4HNCJNBHcQfBPiwD6wqPT7PenVi6CvVInrgOg8XCeSSkbV6gCiPkZYavcxZ9RARBbkh9AG+Ki3+rcCtMaxU9/DREKgT2ADcfLTFKSVcPzzAWQABHmjWeXMBW0vPPmPY5mCLCzxF4GiKJsXlP5N6eaovT63aHEp/fxnqTFQjuAkE12TmyZLE67otNELv/q1CQeRnUDXyvPB0Es2qG8GNbc32BY4usWwfcCydtAwtnqvqpDEq6svAoSyw3gf+Jt7om1AK1Hn0qH9d4aSKw3JtfJbvpgJkpTe+RO9PGUkrsTYVZn6FnuH5HeDvgS/5QK3w3FN4BgrPQNsz0PHMc57ZLnDhrkk2jM5j+dED7Bieyx1jczmzgDUSWJEFlmQoz8wbNhrh26hBPoP+rMwE2gv+b4H8ZedToBTAN1TGVmUNpJKFLl2P0G2Tc7oRlj8xTrFmhDMMnGSVujhphIccPOgCN/jAO52jvjyjgW6My2/bweyXWlgwBLn2JRdg+85D7N06zujKOZy0fKE+CKeGk9wgWWxfFwJZ6amVSn8vXaAoPWUE7/7pA3Su3qlz6onttN9jKFcs5OvO0HLwH30gN9JjftATexF6lFAByvEOsqDZFfy2uSUzho73zC89rzh5hNt2HmJs9yR5bph1vOThzYf4yuhcrA36yjyTxvC081gJPH38OL+9/xibXzKGiUA8M4adInwmFzqZ4ZtG+DNUl8JKj4WTiRAk6LoTODjU5OKjbVbPa2pZQECp71Qy6j6KoQR0kzrUhnnanKhu4pw1WhNvsl4plwR4U8w4FxYGjPAbVuuWH5o3SOHhX/ZPMLxwFmd7zSDcXQZefmiSpYPQqWdMApMIUwE2IFwuqrj+PXpU42qnh9TCKtUCHzHCH1vDBdbzWmvIrKdRM9RPXkD+Hsg37qd52gKapyxQSi6QHpYXaK9dxKU//zoGlo3RsYLNLTY3mNxijHQFIJPa/c8aYTBmWu9GOOKFixeMsKNTcq+FsVmWPUMZ3gtTXumHBapWv8PA03Gd3QL8MT3NjeoYE2hI5UMJONwK/Etco0BXif81qCBeZsGWkOWWzEA2PoVt5FEsLWYNt3Zwo7MprcEb4RUCtxvhqFGa7H+1wsJM2BmEvYN1di6azeObprjujBrLPBSr5nO7F2YbzdY0jQoPniXCIeiCdVC9lD9HxTILeqA9Pb8OCtKvRO3sSVSAerT7DVGfqTQRqCc7M1hj5fHAChsFCuP3hm0FLJ4DxhCs4eya1mKvE+HlmWFNUKAwOzOcFTzhpNlseuIAq/dNMm+yzaHBeZwrwgciMhNLFNpSgPdtFKCfhjKOrgZ+FaW0vwvNSG8EvobSp98E/CK9/S6NqWl6wpBWCUF0BJYKtGs5Dx+DTzsYK+FcC/OdPvcj8TWJZoefAu6szKnlITAWg2O4gCkCEwVMBDj/pLXcclKTVwm8xAomT2KVGpA73yhgb6N76v9EAyjdwyvonp5Vfx3KMOj6LNKrWc+MaFY3JimC0b1ioJ5zWwMeMHB3gHeVgZMd1EpPs1DbXdu2H7lxB4dLGNkywZ7LAnuWLuCwg70OdtcC+0Q46NR5bwALjk1yuCGcvmBQGUdWyDLBWiit4DLhUnQd/gmaeICeXTf0xvZAnLcvrqzRLmCXHrB1BvLI+HDAJQbuzTIWFY5houpzYilWs3jQbYlL6KmDhwDiPfsC3ELg6og07gLmGHgtws8LLPexlJGAEc9vEljv4XVPTnBw+TCf9/BKhJeLZtdLo0GZjqgY4BfQ8owmMyQYBBqxjj8Jf2q7RkMwnl0jGbMnC6aGGrSAvyXw6w6WxAEYNDhXKz1FLD8LieVYOhVAe+QovtFk84WL2bRkiEvu3ctACOzxnk2F4X4TeDD3NJ1RKOc149xCge1Jk+DmDypjNQaSgsCZF51LIcItmeHOwvCxzFPzQu4MtbXzyO6fJC+g6cGtnE+n9Foe6PR8rvN8soDrrOHVRlgb58K3UF/oXNQfOt8HHvWBOx28ugisTpSXEPB7OrB4BCHwTDDc4QMvH6mxbHKK4wEOh8C4g0Nl4N48cJdXH/7uAP+thLUh2uvDgdrCQcq4tsQIbQIdiewBI5SzGzy4f4rbmnV+W1S47E4feFkInOpCN7iXfJaLUUbF9agPmPz3t0Z78l2UDTQQhRvrPnCH97ymCIy5QG2q5GXHWly/YJCtXthowVjYMib86qbjDAftymC6jIOgNsb15jkh4I+1CUubKFSHpzzcEuBklGH3jIf9Di4cMZy+a4KlzOG9IfCVAEeC+h9HfeDnQuBUUYHHi1HG58Y4jhTAhEq5UICNIfAJH6h5ZRy/twwsDbDo0HEOrZnNkYhfngnCtUbXxf3A+2sZ59fAH5vCzh3qRt+edPA9H3hdCad7HX8WA+TZ0RbZ2FCvrHRwkPKo51avLblfbvR360A9eOpi+9q1/VvT39Nhnv9Xnvs4dOgQZVmyYcOGH8f1zHgMDGjrh+PHj/f9/Pjx493/Vz3EZHzsc3/Af/uL/87ffeIPuPemb7P9n67i7HbBkjgjauvvpXh0I1cFaLnAPunw5a9fR8sHpoI+xO996/tsenIzT3jYIXD6vr2se/wu8infzT5ffc2N7N6+mzpAgIce3sRVV6/ru55Pf/YKxg8eYUA0e/vI3Ru456b1DBiN9J7b6fCOz36J17U7/A8fOA04cPe9rNi4kf9wtI2f1aR97BifufqbfAr4fjPj7lOGuXLdbTz21BbGCLw+wG9s281br7q+rxfq5su/ycatu2ihDsTDj2zi+q+v62aDCuAfPncFDxwc5xdQ2//E3Ru496b13QkpnQ5//ZdfotMput97w413cvvtD0LbU2uVTOzaz5c++2Vq3nfBxt3XrONlj27iCPDd0rNz806uveJ6JgpPqwy0Ss91N3yH7Rs3c2zzPj75hhV8bmWTq45v4YqJDpeXgb/sBD78pav5pYPj/JoP/L0PNO/ewOC69QB8Azja7vAvn/kSR9odJoMKXN2+bj0P3b2BvSiF8+cPjvPdz13R3fRyge9ds46nH91EQxRQbd6yk7//52t1DnlolJ6r/vEa9j+5lYFWQaPj2Prwk9x+zfd6GRhg5+euoLb3UJfGffp9D/Oz63/AJ0Lgdwn84tMH2LT+Jh45fTa3n3ES8/C8/N77mfPoozwZAn/hAr9x8DB/+Pdf4R+8RiJvBv70mnX88aOb+AuUofBzW3fxny7/Jn8bn0Fx0mJmX/5NHt26iwa6qe98dBN3XrOuO9cGBL78uStpHT7CAIGmEZ7YsJH777mfAR+YNwXvzODBr3wdW5TUBWZlhvp99/GKJx7j93LDY6vn0m5PsH7j3eQhsGF+g/F79nH7X32djf90O9tu28eG23fx1B2P88Qd69n7wF42PLOX8Y7juq99ix1bdlG2HZ2WY91DT/BH197EIy3HVMcx2XH805euZs++w0wWnsm9x1n/xbv5/rHNFHUoC5jauJ+//cJXublT8JshMBgCD61bz5N3b+hGOKcOjfOFf/4aw8BwCMwO8J1b7uCZPVsZrBuawMHde/jW9d+l0TA0apZ6LWPdd29ieFbJsaGMovBsndpP7e4Hee/+Y7w+eF7qHP7Kb9A5eBgJSqlbcOvjfIUD3FPL+Z4IV5Ylf3X5V/k/vsRZg8sMgzfdxf++ewNPokJ5+w4f4YovXM0kWq9XivDPt97Jw8URzj2sIPfA7j1865obu2KJjQBfvuoGtu7YQ1J+eejJzVy173FY0BNY+cyXv8Hk+BGaIgxYYeM9G7gv2pcXW+FjruDUf7yKD5clp2dwmhFWPvAgm8Nh3nCwpB0Cnz14hE999RrWm8DVlDwxNMTvf/9O/ujpLfwl8HkRvrZzNwNfuaG7qX4G+Nrl32Tr1l1MRfvyyKOb+M4167oaGH8GDPzDVbz12FFsbqjVLY9vfJwf3P8A9bVjNN9xFmbFPD571dex4hkcyBhsWG69934efOxxhpqW01cuoTV1nCu+/A0GaoZm3dLMhLuvWcfcRzfxSeC1IvzWjj3Urr6BV1rhPZnwqxm8+Lvf41B2gGVHOsydanF811Y2PfogJxlYa4SzRJDLr2b1+FFcpBkn+/IHqMO0p93his98iaPtTgxewK3r1nP/3Rtoo6Kcv35wnKs+dwXvQZ3sPwMuuHYdv/H407wogwEDh/bs5dvf/h5NYGDA0jxWcu23vsuB7btphsAAsP3Bx7ht/2MMAk1rOKtmuPSKr/PKI0f5Q2s4NRd2P/Y4U/fdz6stLFsxyPLtu3FXf4PR420mTY0XAW+4735ev/ExfsXC+6xw6eFx1v7dlX370vA16/hPj27i71Bm1Zatu7jm8m92gfqtwBWXf5P/snUXq6Ot2/HoJm67Zp3qfFihaYQv/tPXaB85yhAwIMJjjz7GvbueZOBowQCQdTpc+eWvkXc6DGw7yMBok/vvvZ8nH32MphHOqwm/ePwoT37xqwxmQjMzNDLhrtvuZPuWbcxdPZ8zntzHwZ07ya//Di8XDVI1BW76+rc4unM3TSNcBLz/0U1MXrOOBsrm+k3gA5+7gnkHx/ko8B+AP7p7A4/H/eMSwLQ7XPOZL2HaHZpGHbS71q3nkXsfpmFVebt15CjXfPVachHqWcZy79h+2x2s3/wMfxUCHyXwyW27+fsvX8eV8d49ATx1+TfJt+7q3nN55CmWXH8Tr/WBt3l4L4HBq68hHDvCyuYAB+sZD218jAd/cD91gQErZGXJ1X/7L9hOp7t/vWTdembfvYGPEen8B8f58ueu6AtS33DNOu5/dBPvjPv6/q27+Pbl3+wC2brAVV++nn07dkcgKGx7egt33Hon2xuG5mQM4Fx9LV8YP8InfeCPOp7/ft8j/P4d93LHE+M8Midj71z4/K4f8NTG/dxVevYVnuO338Pyex/m553nP/pA8/ARiq9dy+Lxkvlz5tAQw/rb7mTH5i00jdqtAzt2s+7L15GjmjfzgT+9/Jvs3LpLqdMBHn9kE7dcsw4H3IhmU2/83BUcPzjeBekP3r2B7393vQaujeCKgi/941X4TkEmuk8e3fUItz3zBJc7ZQ/sO3yEq7709ShKq7o6N331u3zngcf57GTB9ydLvv3kdj71xWv581bBf2o5/mvL8b3Lr6Px1HYGWiW1VskZDz7JkmvWsbLtaJSehg9cf/nVFIeOcKbAz+HZ8/AjHN7/OP/eakDxk0XJP//zV5jolLRiO7q/Xreel9y9gbPi8546OM7X/vaKPkGrb35jHU8//jRNI9StcGD3Xm781nepG8PirMGIKym+9V1qu3azxMMfh8AfP/YUV1x7E22UTTBVOC7/v19l9/7DTBbaQvP+DRu584576Dy+iy0Xzud/FyXfWL+OuxfU+PR4i//j4M677mX0oUf5Xw4+EwL//uARBv/l6giCFIx94667eez4ATpoSdszu/byja/fyLzli9gmwl8Z4WVfvQG3ey+ZFWq5YaubYN3KvdRPz2hmMLjXcflXr2Xq4DhNF2iWnifv3UB50138fuE4PwRsu8POz3yJ3213+DyaJPq7dev5hbsf4g994GYf+JOD4/zpv3yDW13g+y4wtX+cf952L596agufEGG9gU8eP8J1Wx/k78dbfMHBd13glmu/zbZtuyGOS558mr9bdyvHPXRCoNVu86WNt7PnyFFaIrQ9/OChjdx21310RGiJsGnOAHdc+20+VBacBJxmAuevv4fsvkcYxDNEwB0a55t/ewVDoiLOlwi8/Jp1zHt0U5ceP751Fzsu/ya/Gn3aJR4Gv3I9te27MB6eCIEtTz/D9hu/z8RQg5F6xoQI4evXYo4e48BQkyOu4I8e3Min7rqPGx08UgYOtDv8zeev5PNTBY8Vyqr67g/u56Edm3ikafmaFz52+Bh/ftU3uMUI/yzCBoHG9+/g9Vu3ctmQsOzwJGv27qF943f5rRB4rYf/FQLvuvI6PrZlF5ei5WG/+egmfumadXw0+ri/B/ze567gzw6O8weoDtEv3P0Qn7z5bgiaBS86BVddeTVXtzrI0QluH8r4+g8e4IZHHuOmyHrKjhyh/Y1v8qUAuwaafPVIwX+95Xb+8InN/F4JfxTg9m27+dOv3cCjBYrzfOAr3/ouT2/fQWs0pxB4bPMWbtl+H+2JSW4P8G4C1135DSYPH+kKUj9810Pc/r31XdzQbnf4+Ke/yHXXXceHP/xhPvzhD/OBD36IH/chN998c3j+X5tZDb7T6bB582ZarRbz58/nqquu+rFfYDre97738e53v5t3vetdgNLw3/3ud/Mrv/IrfTT4iYkJ3vzmN/Oh/30f2YuX8jN1qz266xYaGY+L8MmpElqOoXbJ0sJx4VPjXLBngoGXLyHLLHndYpuWqczS6Xg+MeW4tFNyqXPU7jlMs13QfPkozdwy2LQMNSz1ZgbNDGk+N1khBKVXVNvjtAO4VoGbclo/P6Xia2XhcPccwhcl4SUL+KJY7iJQ944337WT8qRhfmrJbExuoWGRRkaoWR5pZlyfWy4Bvo9GHX8NdUxS5tWgzvRU/H+XoXTBBlo7M2DUaAzGc7NSLxech46j24AQHcuEwIQIU1Y4bi1TRo3VD3zgL1oFL217XttyDBWOPW3HwcJxpHC89ltb+N7Jc7nrrBFqBH7qvgMcH8lZtHKE4cwy2MgYqhlmNzKeaFj+ayPrq0+8JF77anrZb1Cn5Y9QWtFv0ssKDVTGlc7V6Fgo4/iiAqiL42ubKBySWdpJCCbAA6XnD1oledsxq+P46JRjldfPy1QHuXoTcukSNi+dzT2l561feZza65YT5s/C5xZXs2yuWe5vWr7cyOnUbfdaBtHsz6L4Woxmt/+gMqc+hdapV8sWqmKAxnncpKNslZQtRzlV4toON9HB/f2TuF85laKW4eoZrm4oa1ZLszslru15quP54v79nLy9zfaldd40dy4jEphql7BvkvxAwG/aBtaQ54ai8GxcPMDdF6/AGe05XssMbWvYk2t8sFl4fqf0rA4eW3oy76k9eYT8tl2Yk+p0HpmgFGjPhgNvXsYfnTTGO5oZlzQs+UBGI7c04vNrhsBgu2Sg7bBTDuL6puMI/2cDnTcvp3XKHFqNjHbDUuba87RTeooyUBSezVv3s2/zYRYuG2HZhCHcvwvWLIZzZ0MmbMbwNz5Qdlq87b79nHL6XJbNGYTcQC0j1C2P1Sy/37C04/xcDuyIc+7CtuPFrYKzpxyHphy3t0s2Fo7ff2qckX2TNC5dQj03NBsZjYZlsGEZzA2NtkMmS1XLn3Kw4yh8YTP87lnKFWxm0NBzaFg6zYwpkT6RxbJV4qZKXMfhWo6yXSq75fHD+B3HCK9ZxhfFsN4I9dJx7hPjrD3mOfvFc6lnaj+pWzbWs77xLQO2o5HxV6OidgP06mY/hWY3Pw7MKhwDHUez8DS8OrGNOL+bUXyo2y6gqw6n/3ZWtFe7gY41dHLbo6DHl4/rNrRLmCoJHYdvOXyn5Jmpgq337Obhk+ewfP8EZ75oISfnOibqGb6u9vOhRs7vVezcZajWxTPA+cArUfHGlN1YiWZNt6AlNm+K9rNbFxwC9U5J3nLknRLb9mStkrzw5N94hnzRIPlFC/G50V7UkwXl3zxG8YtrcCMNXN1S1tU++Ia2rfRTOibf8vgo1Dnxlcf49GVLWbnVc2Qu/NSyEVbWLVLTuSF1S2jkSN2yAQ1AvBrN2DyNlj/9AKWQvgsF7v+COty/H8ecKOJNSZnnGAzsOPKpktB2FJMlruUoOg539z7cgSn8m07C50brKSc68LdPEH5pDcyq655ct4SGxdctLrNqc1q+a3t8x+GeOUDn6h0criudsvmOZZiVC7GNDBO/wzRzxChjKM2J1MYysceOoUyo3RXb+RrUYUzjakjvfdZxTE2VtKZK2i1Pp1XS7jg6Gw9z75FJPnfRYkymfsJLBywfbKodcHF9CEqR/mjl73289Jw1VSLtEmk7pOV4pl3y962Cd922jWsuXcYvNWqc2sjImhZbt2SNDGlklJlhyuue3Yrj+Qi67/06PXaAQ3/nr9B18ZvRBlX39SEDQwLS8UxMFky0HFNTjnarZKpwbHv8MDd3OtxyxkLqxvIrNcvKhoG2wxeOjvP84N7djG0/SO60nrkYyjj9NWuRKLZJbiCzmNLxzJTjntLxtm8+w9wz55KtmaMMk7olb1hMw9KqZUzWMyaDju8QGqR+LfDeOL4cDU7sQRkRn0NLHAbp7edDcXxNgcm249hkydRUyWTLMdlytDslW54a5+6JDrectZBgDCfVMvKmpdXIOFIzOB845gLjPiqqBxgLcK4PnBRgGYElwBYHnw6BqXiPPyLCaRasVUfeArbjsC1HKBydLeN07tlD511rcNbQyTOurlm+17S8s5Ex2sz4e2t4BrgcFfqtx7ENiD6/NL5MBDdZMDml83Sq7WhPOdqFo7h1L7vrGTdcMJcLMsvJTcuResa3G5ZrGhnDdct7Op4FrZIftB0vbzkWFY69hWN36Vl2536K4PjMS8ZwmZD7wGvuP0ht2PKq1SNkNYupZbr26hYTApsmHbe2Si7tOOZ7T+vbW7lpzWzmrxjhpXUNjpuG5Xg947cbGefXLf+ucDSmSgZKR6PjaRR6Huo4BrceQb60hc4vr6E1r0mnZmk3LEXNaqvVmqVTs3Qy22VbFJXzHxaOLVMlAy2HbZUsaDnOLxxzjrd47bVPc8e713JnLWNzzVJ3nuAc/+mmLaxaNYfs5BHdX2sZT9Usf9DMkNIz1HKc0irxHcfbnOOs67dgzp5DdvIc8pqu13ZuKdqOyU7Jl1qOU58e5+Ktx6i9dhl5ZqjXLfVGRr1hsQ21zUnLJ72goj0ReuWlqdyqDIHHpkr+tOWw7ZLZk44PF45TvCPcc1Ar1S+cy2Zj+UtrKMuSWYXnv33jcY6+fClPLRhme2Z5rGnZVs8oLNSmHLW2Y6BTsqDj+L2vPM5X3rqSwVkNHs0zHq9byqbFAa+fcvxcUSKFQ461MF99GvvB0zC5xcb9qqxZykamL2vwaEem/xn31XSMoEyIufH9vNJzaKrk81Ml0iqZ3XL8euk45XgLrn0a3nua2pZcn82fWyFMOYY7jv/sHCfdsYdiXoPDp40wmVu+lmdsaFhcw4LzrJpy/G7HMViU2I7DXP44+U+vgqEG7RDo7DrC8bv28tBbV3FpzVKvWxr1jOaApdGwDDRzhjJh4Dmy6kePHmX27Nlcd911DA4Ozvg7P+zxI6vBJ9G5V73qVT+WC3q2421vextXXXUV5513HosXL+aLX/wiWZZx6aWXnvC7zcF5NH2Hi41SZIXQzTafJ4E/BL4flPZ9soGtBTwjGZs8vDGoU2K8iuWsRzeHi40qCeYNIZ8sI6UsxP603bvxvOOYTotPfRLV2ISKqmiqYTxGecowToSXG3jQa0ukiUaNl7S89vYjxHZDyv99MdruoUAdrVtQx/kV6AaX6ppL4JuocXgLPeG16aCvXnnswXkFQ6lmzSvVuQbd/psuE5plwGcWZ4WhUul+9xWeDaVnpONZW3rGfODlm44yNwQuOH2YDUGYFNi5MOc9Tx9n9qoRIKjydjAEHzjXB/4iwPWijtY8NLv+Oyjl+J0oDUp49p7qVYr4dBpL6LheICKCdesDAwLGqtq3dV77ohuLtcKLS8enSs/3C8+rC8+pSYUS4K79yOLZyPIRzjJwprH4pSO4pzu4eVqf40JgLYFVHk53nv/qTVf59/fjuNIVGlQM6ZPANY9u4t1nrOYC6afIJSHABNbViQ3devXuxjaloK2wRp9frFtMdESHxQmcZoWfHxvl1oWBnyWwQnTdB2vgpByWw/ZRz96H9zHreEm7YXj1zinedPg4rblDTDihFVRV85Dz5Ajeeb5Yen41eOaXjvKufZS7D5O/cSnZ4mGK8Y10Qkn7ZUv5h7H5XABcIkoprIX+YEQTXbM20cTpneUo1Os5Fm0fkgm0MqOibNZgrcca4bQVC1m7fIHObx8IYzW4eRdh+wF41WJOGxnk1wnsf2ySU1swe2SQxJENmeAz4azM8CeZ4QYRfgoFQyXwOPCwge8h/JMI1mjGpyHC8SHD/EeOd9koWrOeKFdRjAqiXGqkwC/MlHs8DdyK0YyjifM9lYSUWXyepaotu9JQlh43WsPddQznA68wIdoWGO50WDlSY0h0wiUhwXMM/JnR8SWq8SE0IPgNVL/hZcDJKJjdD3weDZbVM6M2xULdCw0faKLZ0S5Qn/FseOTRpzjnnNXURG1fJzrzWgPZ08gImRCKeC61ht0bw2n1jMUH2iwf38mCkTnMNaZb44lBuwGI8GJRO/ktFCCchoKdXXGMl6PU8XTcggYofh+YRQWkk7pTCHURahasMeTiyUR1CPKhBtmhNtYnvZGAe+YIxSyhGKpRGKEwKgqn41CqrM+F4I2KO3ntYtA8eZTffOQ4u49OMmdkPotjjbNE+jQ26RnARaiGSaLvr4nXvxmtg/4l+o8Bei0upwPaAdH5JnEeZrGMwQGuIbhDre60DT7A5qP4OQLNXNXDjSqI+0j5L3OjXRnygAsW71Al5qcOMOBhpAQpgMcPYNaMqWhrbJOoY43Cf3Fe5KHn4Bbx+fwa/eD5LZVxpfNAPNvUEtHo90v0pKUOa/Z1GPIqpNQg8HKv94nQ7wVcQG9OvTEEzo5lQCqapjfndAMfPjDJph3b+NXaKZyaG6zVkpnMqr2wmQpWBUOfUvkfooD9SrQ7CfH+70MzV5+lF8CuUsNT9xQx0Ig07KRr4oDlNXjLY8fhtIVcaAMrM9WyUPvoqU20ufipw/zzJQtoHnBsX1Lnw3eNU7ttF3Lp4q5+iBG1YWcInOU8dl+LbMmganhYHV8tCo+GLM7xGHybA/xXFLCvQH0Z4rxdh5aojHGiAnwapxHp7olFLEFSv0fYlMGstrIAW6JE3wvi/iEdpfnf7AIbY41rGeBFBH6WVL6oz/EM4PdKuD3AKwROy9E+1qWC9cxIVMNW385unSIbnaOlWMZgMmUBnWYMf2REM6FxnNtQdsH0NlF1UaAOYIyhGYuOA3F+AnZWzrKDE/yinUdh9JnOIfCeoOLF33OBfyxUAb5eeNaXWr63rPScfuA4F+3Yz6Y3reADRrgSQxvH3gWWn94yQWP1iNY8B08WDAbtwvIiA2daTWo4HxiamOSVs+by9SDc6nVPnI/wySeeRs5dy/uBLAb4a6JaLbUQaHpouEC2bDacO4/mtVvIP7iWllHdj45RIWhnhbyEWmYoRPrWeg78vIc/irTuWR5+OQRWmEA4OAWzB3h5zbDMCJ+O2gazvLCkNkjjAMhJPbHaswx8zAXFDD6wEniYwLc9nDo5xbHhhcxF56wRtT9HBf7eC3NFuHhuRu3+Y1oKEohaNHGfj3Yg2dAqwkrizV3AHve6FIw8LwT+yAdud/DKEFgdQY7sOAjnLwQRTs/UN74d4WVWGB4eYuioY/FoIFilt38uBG73Qi3ovD4vwAfbbTDwnsEaYrQ9558LjMc19grRMgwjghmoYUowx1rYuYOY6B+moEl6Lj4+lw+hAdJ0fIRpPm6spR8LcIfXsa0Q4OAUMpDrfiZ6IWdkwu8h3G6EVxhYESA0G+SHCgZEbfG7QuBJAscC2FjO8Mdl4LUOXnJ4gsag4Ju5ajsBdw/VuWiy4BJUXyAPWpqYxTLFBoG6yE+M/p6OH0kNPssyxsbGeM1rXsP73//+H+uFTT/e+973Mjk5yW/91m8xOTnJ2rVr+fjHPz5j27Z6c4Q3Pn2IsZesQKi28lFtxPMsnJnF5KmDk6agVc+4M8CnArzba9akHVQh/b2m53zlOdSOFeTQVWg20N2hX2gbOxWcirWpRik1Jb3IYOkDLnjKvcfxL5pDKXBmJvxWAXcFeN3xkgWSR79WHXQt9dTvMfQEgl6FOp5/gUbZfwuNxh9CHdA/4MSaqF49cE9ULoTQD2TbjtR+xqCOW5EZCic4q0IVzgi3ehVTahQqTnO+8/wsASbbyIZdyKuWcUZm+M9GhTBePlJn4bZdGrUzRmtrUMBOCFzoPecY29UV+GVUhOUGFMTOQ+vYr0HVwkfoOZzTs85Z5VkFF3RCdHyv73fhVTlaoGk8WW6wmcE6H5XcDTXnuSB4Lki6mT6qWG4dR54ax3xgtTp61hCCxy0bwN+7F3fh3Hj7VA249J5zg+ETIXAjwuvRoIupvCJ+4iJg6qltXHLm6q7jNX1DzyvPLX0+i/V43oObLChMFNkwKq5RxlrhMlfBRRWH8ZxVC5wZkpihPnPvI2gPgZUnzSczsPeZw4wuHmHOfgPf2kbj5AWMXDBCaOS81Qe2eMOUwGDpOdkHrt5/nJ9dv4vayAD+bWvw9YwCwS9dQFnLuX5sBAK8S3ptM3o1e73a2VwHGh8kPWlRgMFapc+ngvZ2bjBZwJZCzQq+ELwN4ESZFXMHCW9bCfcegq9uwV+0mLOHHOHmnfAqbSlIZgiZiV6iwWXCi63hfHoifg4V8TpbVATu80ZV2bNYR37vnCZrjpTkhaNmjfb/DNqqzQTfL5EagEMFzKuU/iShjK5nrHRW291koMi0nrgTAbuzCgLLkSbOQrn7GKcvm81vh8BdPvD2jQcYfOWyKCCom6KIAqsLra6tFPAZRbOx70AB3+Voi8R07ENFHesi1HJLPTc0vKfpQw+oE98kgI70ggTAk1t28KLz1sZ6cW1ll4eoxB5UDDLE++2tXqezEKzBmUAQoZEFRje14YJ29GZF75mNgD3TANklwItDf1BrGSre+DNoVuDByvjqKKhIgc6qgFcuULNCzQi1mAmrEYVGZ1l4Usu6xEPmIXt6gtrSERxR6MaKKgxbg4/PzDuvzzAzKvRUetyaAZZctZclAnJJTbMq00As8X26X3kl+1yi+8Hvo0yk+yrjuxkNSCSbUhfN7jXj+wRg0yFGhaSygQyOtRSkJwXmTcdgyRyVfoz3PhgVp3O54HKh9Eb3Phc0wOQEf+oCwv3boRN1Ac9YiLHaGjEzKhxprO6BpfTmRU0isyTEM8qQ+CRKoX4z8GLpB+rNOL48gqYBQ7dDh6R9NjOMdlr8pgRu8/BSYK1V/8KjAmvGxPuB1mleAhr4dQ6J8vFSWddrnjrItp37OHvXYeyKBQrSrVATIbfSXd4B1WdI5bejaP3q78T3r4rP4Wvx7y5Nc5Ke+FpPCV41FeomqfirzgKAzQ2j7Q6/aOkGBUMZA5k+ENbtorlkPm9ZvpA7ThJ+IQQWvHEEue4ZzPd2IK9dGpdz7AVOwOw4hpltyJs51ui6yK2+0rpNArjJlK9Cxf/+HBWcWxrX5HfRFrNVYblqvXripuVGNUVyq4JqZQx6nZ4bHg6qHTLg4acDrJQYVHIOcYH5ncCnvacdYDgoaGiY1OIympEA52w/wIueOIBdOx+zfH7ca1KXjrjn+EAZPO2nDmFes7TbHz0F086ycKE13FRh9qyL86batWZ68gSjeiXNuPZsZCnls4XiyQnKEMgNlIQoPhiwheNtIbDbee4sPHWnc/EC7/mgBLj/ILJmMWfMamCsMIpwtxdeMZAxuu0I1i9W7SVPryZfZwidoPe+U3iKicDYyAD/MYMNRvgHhP1GVd7Hzz+VJ1GByHrdarDaB5rB0PSBWlJDfvUY/M1BsgcOMHj+QnLj1VexQscFchtU6yY3lEa6eg2FD5znPH/m4PYQeIULrBEIQZBdBbJwGMRwWib8jogGWwwsmldDdh/HyJxe20ACF1g4JwQKqzbzHIG1RUFewt8ONDg7qFbBdi9cj/AMwkVGeK+FbGSQehtqx1rURwa7IrJNJDKxQk9nBjWNPvS6EpUVO9YF7KXHEzhfAucbrzfdAa0CDpTIolndZMI5mXAWBl8E3MgAfm+BXyXRhgQuC4EfBKEkMNtrUi87ViC1TMVrRTgjg4+KcLMIrwLOrgkSok6OCHaWxYx3MHMGMCF2HyF2jCJ0r7tEk4l/geqLvB4NuklvOmOCdsE61wTOjSJS4oEDHuYNdX0dTSLAeQZe5NQwhiCEORAeOU6QhSBwllVV+pt84GU+sAp4xgRuDoGpccdFc2YxgLDXa9BtY6PGxQbyiTb5yGDs4qB6XI0Q2XM/YaAOP4Ia/E/6EBE+9KEP8aEPPX8twPiBp1lwKDAQouoq8flGsO4lJVVURKbjSoxk/JJVNcP/g7AkCNvR6OiFEoGOQF6DrF10wW1WzeSFZ72kGQ8Ts+y50wx5NwqVVAqPF/gjgXL+oG6mVjgnwDlBMLaGHOuoE4E6Bxrx1ax8X6s4lD79Z6iy7+8Al6KCDMtR1eO8+qpsCnl1TqY+01U12ATYRcgzoVF6XKZ1u84GnDG8KShVPDjPrNLzCuepBY9Zvw+zdD4yNoyxhjMz4azSYIabyFCGbDuGrJ4TVarj8/MB7z0ZRqPl0BX3eD8KGv4RBerE80tRAzE9q16fvt6cTw9AXy3XYw/ETTX3AVNqZt14Q56pYEhwGsE1saenFA5ZtxO5eAwGakhmMFYdbLd0Fu76XfjDU/h5A5TBdJVlSx+42AUushVMQQWox39b4K3veE23pVRSRe/2YK0akyqIjXPEErBtR56H1F1HAYJEdoSFQgwug7KU2FO4B859H2hXB/XUFaMxOx3glEA4bYBw3wHCVzbBOYs5/YxhfisE7kS40HuWP3WE8MAuHjlrMd9YM5vzMsMrjTDkPaGec7hT8nCAX5EkuqYZ50YIfbV79bT2uq840Fap51iaklgtViDLDJkVFTw00VksA6GQqEauLy6aT1hag288Q5jSe+9v2gujNcKq0S5QD5nga3ruCjmGXisfZ4Rgtbb6QaM9dIcDXNDIqNUhPzBJbcmwbgY+tpvx0gPq6XywpSrtaTJQmRT0or1WNGtdC4EyaEa9KNTJcSlrKwY3NozbUVAuhbMFzi4djIPMG6i05lNPWOJ96rZqrIDaBPhmTVtSN8X1l6jTDREame22SkzP5bmO97zzNd33ErNjFp0DRaiIZ1ohZAZXONUOsEE7IGw/hH9ySpfADw7DiiFYvZDU5g6rzwYTRYMrjsX0VlHvpR+svwlldpwA0uOarFtlUeTEtZye1ZwMjk/FfUPBG08fRt6wTMXnrFA3MbBiBZ8rYC8Lzap7FyhLwVmDn9MkNEqlMhybQhYMxVaKCtitUZEyMf09uGcC7e+mH6y/hWlZ5wjUm9HGhOlzMM5DBnM4nJywAN4jm47Au5arMUvBmS6isWAFXzeULmh23eurXLUQ/wHgkX3I2aPYVQs1o54lwUHNPgs6lrpE8dQQGWSVcdaAi4IGO6v7QBrTgKk4YpGa2oiXKtFnMHVDNu452whnx5Rud+gxKpq+Ivke+IBxTvcYF8vHnKoey7aDcO8x3t44FXPFDvIPCNmpYwowMyGPwZoE0INBgx/RzK1A2QL/C6WSLkODEX/BiSrpaW/v7uvSG6OPgxBEqayHfTSpat+7PaofPAyTU4Q3LufszHB2ph0+xArmzacg1zyN3LANeeNyNVNW/795ZgK7aI6CZ9EgaR7BZREBuyNm+NOaRstPNtETnHsMpflfVBlfEsxL6667/0WbX0C0eSqmt2ogY/Txwxw7f4wLs8Bqq/M09Y8XHzjTB36v8CoGBqw1yriU6FMZQLYfxF61Q1ld923Hvidgl8/r7xYUX+09k9jDHrtkSCnyUVzPGO0b/jorVL3sN0+bo2m/69vb47qzpsdSyhCKwRrtvSWOoCU2uVB6T95BEyoBLis9D7mAL6JfFgL51iPIsQnsa5ciRhMTZxrhbAQzb1DFdfccxy4d1nsQVF3eGg3uG4kA/vAUeQ6dmqVAs+7nGuFGhKk3vYogOtaXoayrurc0QkVQNQb4qGfw5uVw1TZk9WzqI3XVIbCxxZ0RSusURGe2B2ZRP/h8EziP+AB8ZLPsOgQvHlUxcSO8qAYvEoN0PDJskAePIjHBIdBtZ6rMDW2/1w5gjrQpmxm/UDN8HeGjAQ6JUMYAyoVCN9hWH6pT29+mPjJA3QUtSwkqDmfosZO6R9y7Xdzj1DfrBVvLEHBokkc3uaAGYccEMpJBzep3RvuagmB+rsVvGMfJwuheBF4k8D+CigK+msAaC2bCI3mtt48Y4bwcLoi2zngikFdfwww0sPtLspM1M+5DoBB9Bnlc06m1c4kGEi9S2NC1nYmxYrr3PgEqxXAcOI4sHOrN+/hKiQRvdaGHwYwwPqX+aVAV+3MtnGmglEARAisDnGLg+OGSrbOG+JKHY91kB0wO1Bk50iEfGSAnihnH/eNfrcr+Ix4v+O/eeOONiMiMPc337t0LwOjo6I/vyn7Eo1kEBqdKZJbtLrxEDeyQjJr2fLSdgs5wRgFcajVb8tdxcmXA0wHOjE5ingl5p6AWM2BVMTdAd5nn9j1POCTE9mMR+Dgf6PhAuWeScrZQZobCpF6ocXIPCGbbVIzuJlpddFgIkZokJ6iXvxd1qP8u/u3N6OY3Hcx2KdTVjSGpsyuqVMDe8fDUPnhoL5w3Rn31qKp7+6COpPW8SAz/s/DcWnhe5QNrBeSZI5h9xzA/vVifixVMZjHBIU6QZXORJ48iq+Yovd+HLmB3MdJVmF7WpEp1bNN/fBd4mfQ284b0MwYgAs/kRJW+B9g7Dp7eDxv2wrljsGYUmxkGnCpEFt7QEW3vQem7G725fT9St8jpc7StVqL6WaHMM8rFTcpNE7i5A/gYnPHB44PBBw9i9L7QD9Cr/+4GkOht6jNG/KaD2HS0PNLIdJ7Ee5PokKUVioalLD2l8zgflXGDelAhhG67Ih+igm5sUu+dKjoz3CC8cilh5zCs30PYuJuzT57NacePURwuKY2lfPUyzlo4i3ki3CCGPwFe72HZEGw/1OElwLzqGNFobYOgwC+Bg2n0dwIwEQURU8Qj3posjbdmNNtsItAzXh1hQ6+FWOkJS4YJyzJ4rCRYNGjx6D7CqWOEPNVnCiE3+Hj/PL2Nqdc2UTgng48K3CrwaiOcJob6YJPagZL6YgXq9d4epYevjO3QBJw6XNnhpHe2Jz57K4LNhJo1OOspI4WwFG1L6cYGKB49gL9ongYn9k9G9Gl7LekqgJ0I1lPEfzqofQtKD0/HW+h3NpPoYX26c/JDHolNlEeHI7Ul9JY+oF5awT+yR59Zyj5s3AtrFuo9S4A90yxjaj85nXqYnuOF9LICb0IztX0AXaa1WLKVevzuHBSY3YBDcWEGgcNtLehbPrubOUgt+XIrkBsdY01bWCb1dW8Et/UQfm/ceq7cifmAYNaOqcNjU2ss/fsFqmqewGyVMl6E/qxHyjxXs85VoE4cSg+ZVn42XNf3pdcC3r2T+seWzu55aBWHK1EbjTXU6nSBoSe25Vs7BqeOqTq6FUzdIplBcoHMVIJU6uTWUKc26Tbk8d9pLaZ4QQpyNmMQos9+VoZTj/PNCrQHarQn1BYmc5No8gIK1k0lUwZI3BtIQKTw+jMf4JYdurcJGAfZhr3kpy8ik1jGkEVnPrKiAjH7TI8yfh6qev+HaOZnGcoOrLb8qgaRpj8/i4oDCrqnlAM1ylYE50GfY3Ae9h4n3LYbfvokyDNlFuWmN84GmLetxHztKczXt2DefnJ07j3miUPYNy5TABsBTQra5JmlYYQUowz0gnABpc7+N5T9sRNNMCSWSsqmp70wq5qW+Ewb0mu9JoBt5NSn4N8LPQpyCtZHH0ec55xtBznnif2Yk+cr3fe4wxwuMZMdzIEpzJaJ7j2zDuy/7CBbdohspE4+q4YZyTCzc5jTxN6xU3UrdoxjVy/QLHgMOhkD5xvpsj6SbZlesneCw57WETpXEsusHGlQn3J0vvEonQsWU6xYQBkMpYXce8pgOBfhDwrPbWXgVd6z2nvMPbsx5y9G8gybCZJHP8R5rDeYsWHs1hZ2yTDWKzU4Cz1fuuOUrdA5WlI06loKYPXvvlzge9Jr+dW3N9QMDUwsQQ09X9MJrJwDZxyBb26D969ECi2fyKINLEuhtJ5OpMMXggb8iIkEFLSJD9AuYa9DxjRDKylY6IKOc/4AckCDNmKN+nJxbylDwIbYglWgOO4wAw0Wi/ArFj4hcFDUZw4G7hThLCPUvFBfMER9ZogGKgABAABJREFUV5v6KhgIus83XAShXltMTw9ai0i3vKMeQg+oO81WO6f7ErEkgwBsmUAWjeh3JeaYxL2iEPzsHLenjfce70TLqgicb5VxLFaQAuSww8yu9UB02keinTPGYGNZlwGy4TrmwBSZV7xRQmxHKji0x3wp0vWJfNz2kt1I7oDaQS1dxtPViyAE2HscThvpfkAqAd9Q6hcEEcKcJhwJWtJqTbfUNCfEEgm9f0UIDO87xhlnzuF0gfUW8qAJja0LGiw4HtmJQZMnddFEkZmO+X5CxwsG6x//+MefFay/733vQ0RYt27dDJ/8f3MMiWfWkTZmsBajY4mqoz5DK/QAj5koMPOaWFH64eNx4hh0Qt0pcF40lHlmqE1oJtxOd6b9v/IpJsMU1FCZCN79jhblyCAFycHWthwI2AGLOdrSPomA9dpqDNHesFlcpzP1CH9y2p9PEc4qmK1Nc1w0i+p7Ie9kUJ/aB1dEtdvHdmLeF2isXKjgNQ+IFTIbOI/AuUT9gHaJ/X6sbatnSCaY3GjbKafOrZzcxNyxB/kppzWDPvWm1XqoIng6YvuyQykC+Vb6AcPbqUSo6TkufUfX8wk9pOWDAvU0vo07lW+/eiFSCnUXyPNAw0q3b7wpPbLrOKzfi3xoFWKNOpPRofGiIkhu5SyKDftxL55P6TVTVgRipFRdMu0XTndzSIYtRfWNVGqTef4MZfdI83TKQ553f9zdHNBsoM+FIs9wKXser1Mz6Zpp9wm0O6WuhrjxhSJmpp0nLB2Gdw7hb9uGv+OA0lMFirePUYwOUxphqTX8+9zwTMdxdQl3j8BZR3O+D6x0gTPo1arX6AEIK0JIRZyh8iLAZKEF0zq43vjjPpZbQ57FmuVOIFgHhfTqaY160F4Ezh4jPLKDxEznzFEF85EGH1JmkB54dREclKI0U28hGOG8GpzrBQmGrHDU5g3SONDSrHpQGpgWOFaelYsD2+dgTl0HMT2r+VwAOAI2W83YFkKxbIjy2ztVyKuewb4OMtgA0ah5Ao1EiqUXDZKl9dYFs/F8MfCZoCJmbwEukH4wlGzLj/NIwMNCfA6+8gwFf8Yo/v4dhEi04PSFvYyu8lS1bVys7ZyJeugqY7wEfaW1V5OZ9TBsejbV5wT6rEYimJ1yms59+hgsbWhRf3JCqplnibT2LGAzZfRQeLwV/EO7dWyCluw8sAc5fZHaTeg6pCKiQDboGqqC9lT/n4cebdsyLdBipgH1NJhkmKpzsBGJyMcLFWp6+jicPBBR2rSxxfFBdHRzA04d5QRokpBp97O5Uf52LTvB7nUZaxG0dyQGJuIzTIDNTBufncl+Vp5ZLoINUGtk1AuvAoZDNjrLleyQTKtBjdl08RGkJ6BeBmSyRHbE55Y+/6LRHohIL3ReeaKJi9l1T4/UtzhecgsVfkxB+CpFPNHhZ3p+VmBQtHa1qGeEjidMloTZVgOxbUf41lbCuQtg0SwtHYlgva9Uqw7yjlWYq57EXPk05t0rkPE2Zjwgi4f1eU0P1GQKqDU4o66Gp0IsQu1JalV3N6pHcxG9evUE1O20+SnxGac+8gbIaxmuQNlXudU/0onPJSUHHtwD39unt+eBnRgLZlEDO9LEDtYxa+ZglzSw3z+oGeYA9tI5mMEmZryA/VOwaUpLlzp6b5pAdvkOsp8XWqeNYazpA+wXpTFFO5LKTZLdPHGPn2b7o522Ow5pPfdGT/H4Dtrvg3LFfDpZoMwNpfeUVjjXBF5ktQe1PDCOMRazYnY3wWDzBFj1PuaLB7AP7SO7eAHWB/Ko6WOMUPOhq9pv9xXkIw06cSyFCGfn8EdG+JbAZQIXVsbWMEKjZrX1Zx9Yj37nTy2F//0oPHoIzpyviZRoG6xRlkYtCxS5ahIUQdtzJZOPj0KBO4/DbJB61gtGG4OYSEVvZBjrMXsnMcuGI6tTv6sjWrqaEmDZQUc22KCDZvjfLcLHjGZoB0V4lRHqQW1RfUGdxoP7aIQxBkKg1gXqoReReo59Mekv5CHgJUS6fwymVdh38tQh+KllOme7TqLgJOpSzB3AtzzuSJty3kCX0ekJGmSMWWxzdAoZqsepFQMUKXCPmnFj1F+0gBnOMJvH9WIjuFWooAHXQuL+GU25j2u9u23ES5VIH+r+PAXOOg72OWRusz/Ya+PeLRrURcDXrBYkHZwiLMl0aaN7dxYCBWrHc6A4OEUxd4yXG+F+tO3esIflWZPaodh9I9BlfGSg87FbaPOTO37kjL5z7sdxHT/WY+GScxgeMMw63IHFdDdSfFAqMz1qUgvIjhdkmW7qVoRXAreIip01UOVcrTcU8txQP+ZjVr0CzsO08ws8QqKvTFt0BDC7J6idPEsVXmO0zkscT9Ni9nW6FHGofC5U9kF6r9QHeTqYTXSrKuVqRoc6XVt6H4Jm1KvHd3aR/9I8GhHEGSN0cqMfi2M1d+xFhhvYlbop2AhmrRVsqY6OLBjADHjM0+PIqfMivTxEw6mlAh1TyapLD0BchAKGG9AN/kLTX3M5Y2/EKtBLz9UHeGhP/+99fyecPD/ym5X2bqzEIqOYPblhK1y0EBYOqlXLFbDj9XeNEbJVI9Su34U/2sHPafTqNLtR/YDJZwbo6Wd/+b+v4MP/+X3POb9OeG7V59fyXYo40NssjG7MmTFkaMAqWOneHu3FSQW8e6XFl15BegTtwQqhNPpzETg+qYSFTOvdsi0HydYupLRGqXnAShHGEHaEjCE3wYTR3qbnisTSk5hVp1eT/6zMgSkHg1kl5cUJwElEkMwiNvTSI1VHMgbHOHUUfhZ4cA9csIhw6phmOzMFDlLT9akbVC+LV8ZNqQgp4+u0H641IF6dzHk5zQcO0wyLtawmAZMUHEvPbCK6HvOavfHYynieY7PvqwmPDo41Qm1WDTcQ8FuOwqo5hD1TyNymRrOjg9aLYmtgIkX4U33g9Hq6l0hsiYUCg8a01w8rzPLpz17Bb/7nn3n+X4Qu3USsZoVwAbt2VHtBPbCny47pA41ZZEegQclEPayK+yQKYik9M63srBNtZzVwFuAEZzr9TWrAwSldg08dgRWz+5wQzLT30IvCxnlnfMCcvwge2dHbe85f1PucpjD7yiNsdPpmAu116cfFKXibMuszAtrq+NIYJW6ex9samNg8DqfNnTY+6b6XCitEjBDqcd12VDxL13Zv/lIzSvWcgU3Su4yeg1sVInRpf6T3/Gaek9I/tni5dWvIO4FwtEOIyYCuoGWyz+nrAl3GVZetVcZJ5QLcvBuWNOClc/j0167jNz/4djh1UW/PyKTPVjUIXcCeMtDJ9E1PlaxDS1CqrdpOKJFKz68bLInz2QihCITjBcyqKe3+5t16Ay9ZoOUPaW/LlTUmla8SgJ9eA19+Eq58GgbjpNpxCNaOzhiMqo4vOfPeaIWIRwF69UglNilYnQDuTI/RiGinCtH7URjVfwgTBQzVNJOqFDHYehRZvw+2TcWJFLeF0zLsm9Z2A+iJsGUWN5CH9sA5Y+obpOfe9QkDfP1heEJ/kAP2gT3YMxZhrdC26gPlVrprL9nOulQED59r7aVzem3Yq8EooOah/q0ddP7DHO2C4oOWBOQGF30Wmehg79qNvHM5xhpMBOomU7E8YwVbCnb5LLJv7sBMOS1v6CY41CfOvWYj8wOTdBYN9HRijLYrPT+DJ//xq1z8q+/rsy0NgVpuevtdH1gPMJDBm5bCdTvUTpq8z46IFfLCkWcZ3qg+QAfpglnx6CR6ZgpZMAxUApmJFSOCCYLMriN7WsjSYdUfinaj4yOLIERG7sFYDiDKEjk9Ez4qwk0CP2WEc2pQ6wiNQqjNrzGwo03DeWWVVcfZ9V2ef18UEYynK04XXM9f5Ehb2VpLZ9ETUI37kERGgwhuRCj3TOHnNLXUKE3XmPgTwOybxIw2K2W2GrxP56Tf0fU/5tbgYKcXOQwa5MjifK6hazntoWl5dP9eeh+CspLi59P3sGdCPzGgySWpznmhW46lmhtCGM4IB9uweBZlDCJ1iCyroMGO4vAUtoR8VoPTrPBhEW4NgVcaWDLbUHtyKjKTVBiwXsFmL1Sb7Md5PCdYf/rpp3nqqaf6fnbjjTf2/fuZZ54BIK9k6P5fHwf3PoFtNjBHyz7wm44MIoVHBbdanQLJom9ktIblfwDrRHiNwNm50PBxw6tn1AoV1fhhgfmMR/X6qoA9BNg7ARfP06h31RkXUZpha9pn0M9ZVMU3bWJdoId+xYUB/hoFs2+il/3q0jeZYWOYPtYEIM4Zhcd6fWQ5CPzT49RfuxS7bJjcqKiJB3VYth3F3n8Q+4trENGaKJPHCC66CEVUFpAVC+DxY7BmXjRsHrzRiK5XNc2OkV4dpvSc65eKCiMlmly15mvGTS+NsUqjDmgG9bFKs59dwFefhtcsgTmNmAGN3+cC/GC/RutftrDnLOemsrPHDWYgR5bUsY+PYy8aJXcxc91lZ2gpg8izq05+8GfeMPM4ZhpX9ZyOtuuB9Sotsv9NfB6VQ6QHHoisiwTUK5l1pf17/ZkV/NmjdDbsUGqqQHb6ArKapci1fjwvPYXAyw18sQnZVIdBB6/Me8Cijqqo12YaXzrSPZx0UK/YpSqgSLtEZYzUbLxW15/VSpm9Mxfpy0QgmGuQiZpFsl6kNRN1klJUOWXZS6sCR94agniwqm5bm1ujvr1NHnxM/9DjiVXtwYEJbeUQSypOyKw/12afKHFVhy561vakOdjNk7BqDuw5Dhcs7A9upHsVs7OJalwFtQmwF9IPZlN2tidI9sNvcD/7M69/wb+rmVmr5TmRPg7A6WNw2piOoxpAS2Cj8vnk+Ps4xq4Cb3zv022Pv5fYHvlM45vuTKeficDcHI52dG5tmYRXLTrR6VYPqfe9RucpkbmED3D6IviQwH174IKxHthLdic78Z4/G2hPAaa0X2TPZzer46qOD2DYaoCpcLCzDW+ZdeI8VE/3xK+1QmjY+CCI2Yz45fG5vtC5lHQOUskE3ct9ns/LtLN+mX52CGXuTN8vKn8TICTB0i5Qr7y2H4EHD8F/XAPzm3zw194LY3P652bWP04RoUnop8LHP/3WwAk1z9Va9XQ+YYzdV3p+epZZIFMd8IPwzGG496Bea15ZNzFoNFMJDgDvXwN/+6im+kFZav/OwBmLZgxG2Ti+BNbTOH3Q8dxS+eo3MY01IDPkuyrP0IgKsdUQdSVyr+0E/SB4h2w8hPxgLxwq4cJR5JzZ8PU9PUBx1miXIdc350+LtgV6fhyVcwAuWAxP7OxelrlwMY3ckGVClhlqmej6i1/bVe+HqO8x8/1VRpDpD3xkAuctgo07urcgPwTZP2ykftky2stnx0CkZlUlgNy2BzlpiGzxcBesmxhEMMEry08EGcxhrsCWI3DGvK54ZKJBGKLmyv5jdE4dJkPtSsdGgUwjvPOnL4ut53plNWlvSKyaE8C6C3DqHNhwGG7cAe84RddTlaVjBKzD1KzatMgGrJZvyjOH4KKxil2W3jxMz3R0Fuxr90XCrFPAlsVgRCsE7OEJ8tNnqy8jQpnBizLhRTEhWPMqENkQaMxtMlAG8v1TsGhI7UYC6uka4+TtJvC6E3favuJ6Y5Iu4A+w5RiM5coUqQbnjWafbVzj2bwh6rvbhFNTnCWoMFs0JtYF5EALGbJdn1wvRfptYvXn8we0/rRw3cRUdw3EFHrac+rQJ1be140J6Y2nupb2tmFhoxeEqO6ryT+t2qA5A7C/gLhN1nygE3qlGh0C+YEOxewahVH/86wcziw1YJMPGupHJ7pBkboPUei6MqafcHL9OcH67bffzhe+8IXuv0MIfOITnzjh90SExYsXn/Dz/1eHK1swuwbHXH90s7KzCRopyQJkxwoya2hDNC7Ci3O4wILkkLlIcwQatYy6Qw1FZvsnZYDn5bNMP0Jv4fUB9qkSJoGxWf3h+jSxhyIIOV7AXNsX0VILrHWhqZ49vbKgtI5LgtIdU3aoLj2q6rPSVGfahE6eD+zSZqeXLoYlc+HOffClZ8hOG8a+ejGN4TreoDSzb21FLhlFZjdizWFl44/MBzKjzszaQfiX/fAm3+MUx5eWC4TYHolu3+VUgxk17xB6CuINea5a2cr9S+AIYHQE2K3qMueOwYLZcPMu+NwTcNECeOlCFUExwNE23LQH3rdcHerkzCTQUPp+I3raXHjsEFw42o2O2soYCRVDOcOxYP7Is/6//qFNR7NxjG0HtawfuP4rwJSI6AaRGSTzvXFaUYSTRaRz6hj5zwm1B/fSOW+M9ppR2rlmFAqE0int9Uwj/JLNyXdMsYbA6Ua6TksjRjlPuM6Z5uak760TKmOsZKpOGIs1hLpoRt1UsuxpU0ybRHKma/1gr3okzYhc1Hb6TCiNwYvSl7sZmnkDGA8c6WjWvJutoH/DOljA3EZvYldB9/Nk1k9w6rpAEDhlEG7bCSyGPQUsaNAFRdD/u5VnXgW1jbgGU01wSGOTnt7AvzYS/YLneTqs6JrUC43BlmhfqhnnmJ19NqBRrYuvh9AnGgjRtkgMhj7b2NLaqoLtdMxuwOESdhxRIzU60Lve6jOqgG2RWHqRi6Yq0neeuRjOWNwfjIiBJJ7DhlRBeyP0lPWhl917zhKbqu2ojk8EGnXdg7cchWFgpDHNuab3fqavTnYFCMH0fvYjHM8L0E/8QP85PcvBTJk7cKKPkUyQ87HlTLSJLvQLmF6/BV4xCnObkBnmLxipgPQ4R7MTbYtJgD1mndMlXAj8ddASlDcD50uP7ZGy6jMHXKpjq4xxIFMbOlXCN7bBZYu619oH2NP1PtuxWGBTZQ96aC+ctbgSsOkPSGiNeeh200j25MLQa4P3JrQtXpUxkPMsz3daECkFEZkCbtwGiw/Clgn9IxcvghfN6wGewQweVj0eVo/OHJxKtncmoJ78utPG4BcM3L8HLlwMp41pNtioSGIZmWUViNYNdD7vnE0Bk7RHgQYnfw64bzecNQpL5iLr95F9aQvZmbNxr16MG6zhDMjOY8gDh7G/vFa3FqO0/MTK6SYkErg9eR5snoDT5lWSRfEaI9Cy+zyNkTo5Qssow6W0SlceWjAHa3r7QpVtJUYIKRhZDUgmAPem5fDZx+DJQ7B2bpcO32dXRHpgtupTF0qlZnk1aAjaMiPeNwMsrMH9+/Tfofe3JURWhFP6f77b0R6uY0TITCx1MyAWbNBa/bp4BqzQLA3ZWA12TcKiwf6MerzW4LxGhb3v/X+jEzYkW5A+U83KJ19h6wScNNIDtNU9pOojLGjCtmMqlOgVH/T5GiGofsrINMp5moZ2hu9sRB/4wBQszXpzgcr1VsDts7YBT0HZPsAO7G/D2DRxuedai3Maei1xTDZAM4RuqUbHQ7G7RXv+oNLhEbxRjS1bCnakTu1AYMAHBlzotedO9/yHxXk/huN5afApAtKNFM/g+GdZxr/7d//ux3xpP+IxlMORlr6vAmHoAy8WGDgaVB0aiVEyuj1HBc1q10TFO5o1rc+i5aAZgUB3s/5XXOezZdV3H1cluLqtTM7qAhGlGR5txRrWyvjSe6sb3wCh12uVXoYIom8n/ZnnGR2imcboK57Jm9fAgthS6pWL4Ly5cPMu5H8/jr1kIXaxgW/tUc76RQt6ALZK9yvp3xSWzNIL3nZERUa6ICZ0HR/JU1lD6IL25FQLvezQ9Br8Gcc3o0hZR9+/48xoLAO85WQ4/xh8dwd8Zj+8ejHMDnDVbm38evKcSpQ7OTRCtw1BGuPa2fC93ZqhsbXeuKrR5B9L9G4GBwKUATB/GiMm3aLncPCf7ehlpw3a1yWC3bTZW8Gcvoj66Ys005MZapmKvLWdqlsrXQ7OaNaQ45AVjryeUY9gohkSZqwYyypArw55qoRmrX883XE9+/jECNRjlj1zvcx69R5lphuQea6ASvXeGDHUUtY+XUuaD/MF9k0qGE/LKvjeXPQoWJ8/kL6w51jHDep5ryOh5wS8k2Nz8mz4xg7Yoa3EmD/QvzFXr3WGY7rYWyUHGmt4f7KbmogQaikUgo6hahuN9IDsC8zQVsf4w1DgRGIVYNWxSeeRhmbWN3tYNaxO4wlZZ04ITIlNNHFHYjz0+LMVu1OzUHth4+uKTHLinv/846uMSSrXO7sGEw4OtGHl3BODTFXn+gX8nZ/4kcaTjur8r+c6NuifW9HB1DanXl+J9l4F7bfvVUB48cL+vbCaVa/ZZx13NQOd/rpFS1AuDnGK01/GcEL3k5nGKDOM8YZtGkg6b/60fTuto/jvZ3tGL14Mm3pZZS4Y6wdXMwRrUn2+g259vqDlNRfTz5h7ztK9Z3uGWw5oJrANHJyAC2bBa05WcFpdQ6ePwTmL++1gOqe5Xv3+6l40fb89c3EvSNENphlMTXVEaiH0gfUXPOet7rtd/zFd/+mLNMAQBQ15+SI4Zw58Zyf2rx/DvmpM952v7IaVuQYPpwdiMqIiY9wzDLBiAK7fBmFpj/aQXqAJJEDmNslEyWAu7us+M1r7LzPpC0wbT1XQOL0fqsHrFsPXtsOqHXDRYi1rmg5Mqz51AqDbj6mGzaxavw0ylb+LaAZ3d6H7b6I6hN53GqB+rEPWCeSzG9oST7RbU7Axi221VWDDKhPQAiwehj2tLguhL7vuAhRlr/vQdHtuvd6TzPTfl+74PGw+Am9b3s8UmL5/CzBWg3sn+rPXXa0k4Fj0eWdF32kGX+MEoCwCC3M41FYa/vRg1QvBRtVnBj3ADrD3GJy3sPesquOZHlAQYF4Omw5W/KegrAEftDVggM72o+RnzdOSPtF4fgiapc8HatRKT2O8TW3+QC/gUB3TT/h4TrD+0pe+tKvw/olPfAIR4SMf+Uj3/4sIw8PDrF69mvnz5//bXukPcQwOj8HsDHZM9n44HYhB9+ZLAfW61aw6ceF1jZMhw3eVqLtRzlbJCUf4VzzEmbLqAdjdhtGhaQ5O/EyaoLMzOFb2jWWmxWFE23rkIXTVcdMmb+hl1nN5rihu5Rqrf68dXfPBCPpqVunqI3V42ylw/lG4+hlYX/mqbYe0Bnh6FiFUoqQpG3baXHj8OJwypy+znuqkgg9d6nzK9IUQulRV4QVmU6bTGUP8x1ShWSHoZgFwQQ3Sv1sLjx9WoJOOPcDWA1qXV930rIn0hsomMasGoxk8MQ7nLThxc3Izq4Sm4/b1D/GyS855nmFNe17V+TlRwlJzIkD/VwD16qHiSFbruW2q15QePSo6kw0r5JlR4O690uUkBsqMaIT+WId8sE4DbXWS6aCmrbNpY0znqUIzQX3O6LSxPtc4MqOAPY/OTvo7sXYb8+wlCjMeCSCnv1/dbObPgj1tWEt/tqK65vZPwprZ/aCo+8xmzu73//1pYDC9GhYWWrj3gFIcq79DvGaBFxJJTqD2x3m8kHk+/dC65+jcFL4XsQe9D5G6+68BgT/0Z2ZycAQYyWDjMWgXcOFYz8nq2nsBM3MwSDKj9XnW0O1ikQx6AhrZC6eK/0jjEwO4HlhLYx2swfEObBmHy5bRl0m3zz2+/y8cfYEI6J/+s2paZpPsUNW+BnqdRE6oV/ewbwLW74OfW9FHd7/jkcd46UVnxejyc9fjgwafB03oiptlaWuU3jRIoqontPx6IWPsTMH3Yt32r5+mc216Rr0S9OoD69XvWTsKHxTV+3jxIi3TqO79M81v0fr1EL9KjJphh5p/IxVGoDzf+OTENbhhmtbO1GSXHdbThTD952cDB+n+zeSDTafzQm/+5wYamYrQxmv916yELn08NbKdnlUtfe88pwE/vRI2H4artvXm79MFbDsAUYulr3yvKoIkAsuHYQJtI7pw8MRE06FJBcXxGsRE3yxmsu+45xFe9tJnt+cnsIemZ9hnx4t+KsBTO1VL5tSxEwFqn28NbJ2Ck2bPEDSk9xmhFxCfznSrPtODU9hhaIom8joSZYyMCgWaoIr1NROfqQEW1eGevT1fs5pdb7uY/ff91y305qQPvaCMr4zPo91EpoClwyeOD/rn7uiQZs47Vcp65VrGW1pHW/VRqt+R5gGV+wYwb0ATCuk+VXFNNdnxbEcUlzsBsHuvwZOFz8L4S++7Z4G5ddhb6oVMt80uYIOnub1F7VV1jaNa7QqEU98hE6E2BPbgFDKv2T8m6F/PP6HjOcH6qlWrWLVqFQDf/va3ERFe//oXXj/4/+qwtgZDGRwpesaye6OngZY0ieoZFmJNU/yIEcSEbkCxO0EbaAuI6UDohzxSH8A+Y5DOeydhbPDZo1kAQ3VIdfmVoT1b5CcTVbNMqqtp01Mf6gVsEzMBvsnYHqtm0h/R8oCUUV0+DMsMPF5xlh/eC2ct6t8UU8Swz5ED1g7BNdvgdUt6VPhKZr1Lba0ckiKZP8xRNcRUzpNORS2SAcxNj55QCJw+T2v2n5g2vjMXcUK2pAxgfP8Y18yDx8bh3AWVcflK3RbPml0/dmxy5v8x09i67yv/KApoxOc2/fH/GPxnsYbQEB1L5nugIh2xJq7pPLUiBslQ5VgPSA2yqbJbV5tV53gcx3MGI44VsGxw5mDECxxfauuV6Kg/irBIn+M4Pcu6oKkiKlUb0Pc+wPgkzJt/oqNoX+B4klNSdWrSxnvSXNVbWDNr5s2+Ulf6kz5e8DyfdnRbsllBe+7BC2Ig/LiP6XY7vR/JYXdLGUUroxNpZ3g929emoJg3lXWtz+knmomW6qvi9A5ZDUQeA04e7o2vOv+eiz79/4ljJmcQGJgG1qHfNiWnu5pRT+frt8KLF8DiWT0AnAlHp6b6GDsv5EjMOYP6LVW1+1TLXZdnyWA+1xif2a+B53TsOwJzRp8VqPcA47QjzeGK3ke/nsKzB5RSfX4aS0ciIzCaoqpi+nOy5qYHKK0orX1jJdt//iINWlYB+nTQXgXs1QDA9Gxu1decbs/TOkllY88TkHmhh9LHDUimdO+iYj9K0wuYJ9C+cg6s2dHvt2zYq1oCM9mg6r3LrXau2HxM2ZTTO5ccKGBOc+Z9xAhHJyaefzw2ao/0gdLoHz28r/+X798DKxeeuK+FymdBNSLOnt8fFLUSg42+//MzMt3oPcuDBYw0NUkkkBnpqpGTGUz6vu7fEFg8qACymnBK2fVkL6pgPfm2edCgxXQfv1oesOUYLK7116unsaR5l37WzDSCt3dCWXWBHkgGGC9gpNZ7ftX9K4Hh6T8TTqCe950Jz+87Tf9cup4jsRlzYvylfST97XRPqgGXuU19P1mqdkpiH3S/swMB7MJBrGiZpReDGF0PBoFZTe3k0DcOKlT4n+zxgtXg//Iv//Lf8DJ+vMfRw9tUgG2SHhjubqTpHN8UkcpWj4hIkhBD5QunT7AB0ahU3/dN+94XcnTpMJwYndxzDF400r/Ipi+c4YZm1qt/u7qYZzgSkLVMG+PzHdWv6wKjoL2s6/HL0nWlOtAki33+Ini8SoNb1NsEE40uk6hsVDEyIhoJbQM7j8NJw/2UqOQM/cg9DZgG1CuvSX+iSFl183ZBx/PEtPFNd2pOyCjF53naMNy2Fzol2Lyf2hSz69iZ0fobLrvkhY1rpn+HoH+zC9ald/7x+A/x66QHmHwvs94FiQK0tEyjKfSEhYJon9Ojpc7VahClumlV30P/vO8U0Iz3rgqWfoTx/cggaHq9V3o/VtMgTzUTU60jcwGOEpXgZ3aCXsi1a9266w+IGeCUJvwA2HEMtuzXTEXf3/jXZaF/HMcLmufPcciPeU7/0Ef1GVUzHCMNur2F9o7D7IpKdtcOPj9ok+RA/b860njS+zTeIQuHgSV11caozv1kC/8fzakXfMyUcRbUbu6rlNlNPxfTQHpywu87oHvmK0Z72dUYrH7Dqy+KOgo/HCPCijAodAUtu5fO84H0GcaYfn965vmRGQLQSZE/fuYEwJ7mcMrepbmRPt/IZqzJrx4SWYG1ELqMwHQ8r15EOtJcy2J6PqD27edEO0Scv6iXma0EEXqfiWdjuj7YC3k+oW+vquxLIv8mAcO+MrQsMjuM9CcIrPRalTyf35ISMNXsc1q/K0fgqaNdvZ2ueIIHDnV6JZHT/VaBN172khc2oNjNg8z3Z9gr4nkArJ7fYw9Ug4BVP6pwsKsDbxmim51NPkgC71XbPBPTLR0BOHziGE11v5y+x4OWqwoKkpfN0p+5EBk4oZKoCfDkXmWinLtIWahVv9BW/Kh0/v+x9+ZxclT13v+7ep99kskyE8KSsCQgEARcQGRH5cqi4oMgq+DyCPqg8f5A8argDuoFF7yIhMUVI7JG2USEC8YNNOyBkIRAyCSZbLP3Wr8/Tp2qU9XVk5lkZrp65vt+vfrVW3X1OV2nq87nfLfVvbBHq/edcaNfWvTr42BZMKNOJW3bHW+uofu2raCuTZqgKA8zNliEu56DX4MNNeyDfdKLGev7YXrAuwU8I4V5zdFtS8aUUXXTgPKCMhckbFsZRox9WjFVQ963r7Z62JL3z5mjalkPsmbNGu69915ee+01crlc2fv//d//PWoN22kanXiL3jxMCSRgM39n7c6uV/j1QDAneBb+gZ6Kq1o3UFlEDAtDeJqCPVtUE/P2gBu8XgHUbWpKQKdjdRrmSpZt/nG0aX04F4/gINX9HChAc8A6q63r2lK+r3NhfEqVvWJ+u2c90KvzbpyzFbjFYL8WWN4LuzYHrM42yhXec6Xc4f6ZY8NccOkrQpMj1vWxCHoP7NsO51rq5HpIh3oezDYds1T8YizQt6l10Gap0k37t/ld/Z3bTpeJqHTs+m1jkQr//ShPJizXauh/3dbZmZ3++dyoU0nPeuUT6Lb/fxbWP9tWbv71wf4F/ufjTdgFz7KUO+FW1Ph2wwWMmPUtjjDQcWRlk6BhdijMDd6yoOScz/uBX78BH4mrmEfz4i/sGOYEwBjrbO7xtvFlyXaOS8KZcEUdc0yD99/a4lybmi3/ONJjsIreGsMmOBHUrzXElejW6PNRyVYLrPnArVBSFqI/roMzdvOuf1pYGNdCaxgLNGHohJYjxudx4zx+c4jlORhTnyx31XcFY8zCraqhLVH6t0xYygI4gkWJuCPad4iYZbgP216f3zRLxZGb41JfqwOu4DscTuJ+bPzOn74wtJxxDLRlfXvzlqR3fJXQKwWuF8DcBni000sma1pmN/bDPq3+a677Hxr+2Fa5R5ywyhKeK/z8mXCWreaTm4vw5DaYP8P7Hr14ac4D3+hRridT0vjCcfRidVB8hnm6Mcw+WsY+zcXJYkyVaVw3oMIo9Rw2a4j0fAle2aCuwQDPva76us9Mb/sUAct6CVb1wCFT/XOLWLBNxvOORrXYaIpiPcfqzilDYNi5Ty90lL1nhbuem2EI29NGQS2k29OZg+nBkGDnu4OeA3pOZFnQllbl5PbQvxf+fc4IehHinx9OScJLW/39MH6v8S7fNmyxvnz5cj772c+SzWbL3qtGzbmhsCznhJtCXSBbAwnYTAvqYNGZMFjl51Pzudm/ZELVqNb72FF82RyNE8v6XrUqVJ8MrGLhH5AtCXh50Ntf2MKB0WyVnTbgjuysLNpO8oohRW2YQOovKlGlfx/9+ZSzQKIvEPt1qJs+SeqkNKmY+712PFZ+YYgB85rgj6/Dce34Eppoy7ptq4XdgtM37R6v+5fQMVBDTA7CchrYqMWcupT3m+s+6omWvgi+qcObaAcsD24WT+1WFzPuLQv2ng4vbFMu9abngJ74leKhrvDZbI50OlX+RtgxM4+d7uMAkAk5duOIGzNp4T/RghMXatiKwhbchupfLyoJZDCWFhi2uB1tzAmFeYFpSqqxvqHfW3V3Ly42bB5QK8GmC5hl+c8Hw/3+MNfG5zb6t3uq0xvP5oW5CgxrnEeawG+oHz8bsF7qLNnuJHLHYs7HHbOJuo+ru+DRzerxC4Pw5i4lBnzn9hruX0McsrlyKxI4CeUCYr1YgiVrYP8WlX/FFIfOLWsXSCeqMM7NXBba+jy/XcWZ/8tYYA+LU6+Am1MhoecazmTE+Y7Rcv8eDm4MtLYUa+HkCnfLfzzizrax6nkTjQZuGJrOG2MaQYaat7gGlIA4Mr1hZtar+fXr3TC31X+t2joAbdP91zdw9zeS87kVN7PDW5533j4zYY/pKi/NT59TOSDe0e5lh7di/nn1mkHYvVG9HhSzsRhYxrzTItzTjWH2MWaBHbjG68e7NMG6fm+fpvu7nu/d/4b/R/hXJ8yZ7j03Fw5sGzYOqGRbu4TEq+u5gSlwY8DMFPx9S0AzOI+3DMIuRpLZMsMA3vzJdD1vC3M9x1gkCwgSg6FDgh1PBPP7zUUZy/YvHOi2Tav33Nh1H/U+3+iFPZsDfYqBVfSetyVh24B/DAQXIcbx9DDsZa5f/vKXDA4OYjsrCuYtaszYZYE6YFMSKm4VjB8ZY2JvK1dgZ4yFugKHWeIyjlgvEwz2yMT7kMnl6sNXksw2NTr9K4vLxz95AFXvdaCgboNF76afDxQgW1A1HsMI27eNsjw3GCde96SFstpm4qoETJ1zy8TVfTKmHqcS3gKBeTHRbmiWpS4G3cCGAcM93BCzuZLKITBQUOV0BovGvdHfXCl0vKrXjN/Q7GNfHuoDfxPLaWs67vXR7F/Ged2I57NiluM9YJVbluY1wks9ylXLdPF3+1kijGt//JvwYxV27Mpc/J3ndSHrdePuNmz87/RTCyW0+/P+41K2qGKH96/g/GYNRgjDGLn6jwg9doIXHiumEtBo11qdr0CfE7ry0FrvX1gJTIKGhWlFM91wD273b/fWWf5wjypOWoc9zqNK0HKjf9ODOvzbHWJkya41b4bghO7fnf73n+4sXySKfLw65ZYl3eS6BPQEFuy19SZoVS/a8PxmNUk/frYhiv237y/6XXWS7cVQnmLmInMmrkTc2W9WiyypmLqmGdnftydkrbiFlYpj1SVUIrW6BFZ6+4nzxgIrbqlyjhnjGm1erzNxZRxxXrPiNbKQtB0sSx0DX9+3O28xjq9l4a8ioq8HMVXBYmW/c50qefOWboYM1xrx+VwvHpjemGYoxfvmwGPr1cJBMOxEXz9f3Qa7VxB8ZeLW8nu6BQVkyenj1CFC0nTIRFA0d6RViKtOpjZYVJ60+SL8eyP8zzMqdMhkW0ltk3O2zRa9uaGNKtk2O+NPhBiWbwDnOGI5bvBO3i030R3qefegSn6q+6Jx5xyWd01z++uc0+qBrn6/wNXnx6GSzA0VEryxTy2ehB0zN+cA/oUDC2Xp7zIWRmxjn+v7YWY6fJ96DEypg234RT742zaODFusP/fcc1iWxWc+8xlAnQQWLVrE4YcfzuzZs/nJT34yVm0cMRvWLlMPggnYgnEnoLKZazGmx6V7b/zJ9HNQJ4jcdix+28EViKErSf0wqzFkQo9/MDWnlfXQjKXQfTPaYhf1n92510K2v6CeG2K2kqAtc6HWDJQ8QRRc3dKCPOxWl4DghTsoZl1BEYc9G2B5N75skfqElTf6NGgsSpj9yxaVlTwfLnzLBJ+mL6dcqXUzzT6GXfTNBYl03D/5CvZLP+9oUPVNVm/zTp7BuPwQPnPRh8L7UtYxo0+6j9nyXA1l43+8MCfC5gSp3nA1LfuPGQuF5uuu14AT3pIx6m3r/7K+4FQD/f1hK8EzG1U9UdNKoc8JW7LOBAj/ucBZXR5JKTGfCNdeLvu2w/m7woIkXLiryuDsXvjH1xIWZHjjPLqoEJCYfzKVjKnf+OxdYP8EfGRXmNfunRsqZMmOJNpbwzy3HRpciOjwTyQTFtVcABo2ZhPd85SlrnmD4F7DNea1Nu94eb3QCfeshTc3qeuC6fZuWDI/86kzxrFjHpa+Vmtvt3T4tdrdJnhdG+53VBkrZmGl42oRuC6hjAj1SXUs65LOQsLEEOlBrLjue8BoEjpv8QwolhaeZcIWmNsEq7d4whNUJnEYMlxrpOdzHVrhjs9g4t7ZzXDkTLhrlTfHM0uglUrw2iDsWu8tlut2hS6c4/d0CxoIdB+bhwhJM8+H5uu7NEKXERpjivTH34AjZsFlB8CZs2C/OLx3BhTi8LMXYGvWqTJh9M8GVnXDnJaAgDUem0Jdz4OmORbKzTrvBp6g7UaV8au0EBGqR1DbT80oazb4PZlNsRuKHW68zBVVgtKZDeXtMcdicOHAAqYmodtcOHD2O1BQ5+5gmHHM6Aeo0qOgfnfdD1NLjq9WH75Y7+7uBuCEE05wX5szZw6f+9zneP3117n99ttHv3U7iK2TXbRmPLHuvem/z5UgkfBb9YIE30sn1AU57GANd7WlhLfSFFxJ2tADHanACYByi6A+IWphEhK37vYxFxTshpDVJze9whe6Ama0VT+1gYGcOsGH/W4xy7gwBu4zIbF5QaufGUe3byu81BUuZrMlb8XRFOfBx045HTvYv2B3zZNMNu/FPfu8G3BWEo2Lvn5cl1DxeMEJjbYmBeOGrRjMnwbLe8oXIxzvgbI2w/Bdg8MWWvSYCeZqMFdPxws9xvVjfauPQb+RGyMY5gGBRRajn/358osJlP+HxhnLciY/4L94xoAZaeh0ap3rxTxNVx+0pcqPU9DrZjjEAxNzPTnXlrQ3zfJeTxnuo1Witl3gHfT/3ieKYio06MMHwb4dniDS8cA1ItZ9XkO6/fM71ALEgc5CRNCNOh7dkm1lBK3qoM734JUu1efYfMl/vXllA9zlhDv8vUeVxworf5aMVXWcu5ZnLczT8XLLsyPmdjSmPiq4Fv9UXAn0cXbLryZWPOb3dqw3Fi4qzVvK8gg51605zco6O1DwhN7mQZgWwx/Dbfmuwzsyzq24VW5Z1+fRuAWHzVAC8w9roOj890qoNq3rU989o95ri8/DJ+afK+g5WdDTTc81Ng+qEqdD9NEX7mYKSJ3/6FfPwgOv+EX6Jw+Ag6Yr49T8dvg/Byrvq3Pmw4xG+MmLsGqLd47RCxGr+mD3ev98wP1Oy1iUCDyeEVfeqraNmyCwz5kXNqe9fgXmHJb5O7mvO4+nOeXb9OJNMNa7EhW1UJ8Kt6hPlh8j3Y+hFg66bP9igW2rOVYT6hwX9KgA/+JKKyosoJIr/Dgy7LNuOq0OXiqVch+vWbOGQkEd3L/85S9j0LydwAIak7DNyNhqClj9Ow+W1J/D/ZxV/tg8d1moSVa24N+Pe+CGewDtcMFeKKkBpld9wibl+rVETLkobcuWt8MZXLbOKK7Fn/6jv9AJv/o3PL/Om1iY2SjNlpZld8QTRj15v+XZtGDGLO/CmIl7bnAVyrW4FqiwC8PerbCxpFY1g67ipneAFudu/zq9vrm3EOt6mIs/KFdH7SpunrTQ/Yt5/csk1OMKq/NqUhv3L0a4rvANqoRbKXAcXHenHTwxhC5UoVagE06nojBp9v3HnCcNcRjM+9vt/s1s/zi0zfdt9bmmwP7KrOtVIuziCY5Yz+KWGDFXuzfmYaozyYkH+jPCubMVs1R27rq45/IanJi7lrQdT3gleFhxw43YdEF1rVnGBNTJ41FTBN269ULE2QereyMsyA1zqglCJqag+gde6VJQ1xXtoZYvQaEIdwbiT59ZX56oLRWNhRkrbnlCrj6pzg8NznlCu7LLuaDmsSxn3pI25mVDzFuIx8pFYMxSHgnTY7Bqm3c97sp54VqmgIKRhWuFtdssaxhmYX//HFjRA09v8ua6NvBaP+xWj5ubwRR72po6HE83rSE25bffRwv/d+n71ZvUduuAp3ph70a/SE8b1199zswk4KTd4bhZ8Os18Jf16txSspUXbgllsQ8uRLgaIWSuYVlqAWB91u+VuHVA5csy94HZR/07VXA9n5JSrucYv5cRs14xbNomXLCvz8LMTLgoD3o0BI+fzmjf4xh8Ss54WJdVx7bMUm+Mbcv5jZrrI1O+bdhn3tbWVkBZ2GfOnAnAwoUL+dSnPgUQKdeh5im7qR+7JQ69RgI2c/CAepw1xBiUCzJThGrSMc8yGbTyQeUBaaIFmBadel+dfUqANyf9AylsNQtgakxlvMdohyk8S4boKziuNy+th1+uheeL8Iu16nlAzPr6YIok3U5NNqdElf6tzN9rR4ZE2IUhbqkT1q518GK3Z10v2eXW82wRlpv9ex2Wd5aLX5OwdRadECOLuiiFJWHbkf4FLetxZxV6VyfZxZpub1yYFvZcEXuwiJ0tYueK2Pkif7j/L5VzDLh9qyBmswXlem9SLTEbHNP6olCXhO7A4knQHd680GDc95ec1diQPlXZul754tkARaC34Llt2ajxXcCpM2pelPAuMCNEWSoS6jc2XSHd/BLqNSsVktlwnLnvwaXVbsLooGMsgzGjwcUSM49HjeBavnRsszumjMd6ISKTqB1LphW4B+f/ZqlJbZ+RZE6Xa8s77q33r1XXD5O3BMt6xt1zQBTGuWVZWEkl4lyBXpdUYq7GxqQwSsRwwlYIiEEL9mhTll19rdq8/XCtnRrnpkU9KNabUvD+XeEPb8Cmfk+cre7xx6v7brHhe7q5IWk5VdaLyn20guJP34IlEQcHwkW6Pl+6nkgWHDwdzpkD/+iE361Sc7hX+/wLEdol3PRMtWL+uYZu84w65XVgzu+35aE1MG8KimOM1/X+9HvTkrAtELOu56gVBK6q4FTytgGvTRsGob2p/HtMK79eUDUXDvRv0IxKzmvOG9f3Q3tDyBilXPxPr1PH25x/Rt2yPnfuXABWrlzJYYcdhm3bbNmyha6uLizL4tBDDx2zRo6UYtFZSWlOwtZCqKB2yZX8ca3gH5Bhr2UMy7rJSKyfQau6HsjrB6Ejg5u1MvgnAb/rTV1G1UXU+zEFu16tMleqirbKLmnyVGf4Z8P6FhRI/QUj5t9o144KPn1hCCbIsFCu8Ms3lVvVtWDPlZSlI2jNeKoz0K/gCl9gEUffaxdH7fKI0acdnbgErepuH2Ow7xRVok6PDfM2WFR968+r37y/QHMiBf157IGCyksQhnmSMRl0xn0lMTuehI5tlGdMAf8JEsr/z2GW974ipEOSywW/ryo4Fwbz4qnd8VqBDb242VltW61UJ1EX8bALzA52yIpb3qTcDOGod+IWk9UX6gBNTfXVbsKoYFmBuNG6eODm/O61ImQDWKm4sdDjjKNMsL8JZSGrJUIXE4GmmMqVAriJ5XJOKNm9r8LKzXDRPBV/qvMSzO8wvBAsX6K2qI1zy6rtbOjC6OCGbgVDE2PAnnWwYitumdFN/SqLtjlPCgignRnnyiusQvx63IK9psKh0+CulWo+WCp5gtYU1aag00IvzNNtneHppunqV/HQ+jQWFLaasHleMJHrIR3lIj3secbxKNi1GT62n5oH3vw8LO1UJTJXbww1cln6WAXnGhYqI/xGR1jrxZatBRVOoDG1hjlHrOh6Xgebbf/iBgydlC1U1DuP1/eqdurf2nf8nBf1AkXwfcuC1jqVnNc1ftiw3ggz9u1P98c4z09JqWz7vj7ox+ObYH3YV81zzz2XL37xi7S3t3POOedw6KGHug09+OCD+fSnPz1mjRwpfd2d6gdvyahEAiW7ggBFCb1UIlysBAWnHhCpGOQL3oAKS+42BLaOEdHiWe9Di/VZFVaSgn8MUHUje4y4/LIkCCErXAfO9DfooJn+z+p+BPvkE0bOfTeqtBlm25zP7cCF3nWFj5n3Tt/ntcK6vEo6VrID8YFFeGoD/PA5FeNisqC9LDygjLC4bu3iqF0efa424B8cw+xfWL/0CXV+I7y4SY0NX0x+IKu9k/X+HQfs50uoZ+eK4V9q9kn3c7CkShC6DQuI2fGeowUnwuAtkgzqCbHtH4vYFcYmahKt48OCcVdQ3UnoUBeXaY2qBqi5eLQ5C9NT3kp9ULDvZFeseExZ03QcZ8TiiY84bEG1mzCqWImYypBdpxJbUZ9UFswJYL1U7v4Jx306kMujFt2oK80BLAvSKbUoCE5VEmfB+LcrVd6Z8/ZVrpj7zFR5CfbrCFgG/QlWJ9o4FyYQwTw7WtTMblYlYLscD9auXHi4lruwvPPj3Iob7vBB0R634BgnueWf1kHXgBJpHYbbczDB3FCebiWcikt4c4zNg0qsQ7mHm3muMEM6tQv//HY4b7aXy0OHCAVD0LSHUvCWjCkjxtn7KM/hQVQCtl+/4Ql2PS+Ih8xbzfbObIJ+1PxKeyF059Q5yyJ0vmuZ2sg3B3Fe12Wyb3sGVm30i3bTi9ik4CTi1HNeUI9XboDOPGSz6guDCw6ujdDy//5m26fXe5bxkuPxtJWQ5HLGid7sW1mSOqON45xkbth11vfaay/22msv9/nVV19Nb28v8Xicurq6IT5ZRRqdP1RvHqbGvRUk8H7kXFFNJEyswIPgxD4T8wREUNwOZ6VFi3Q9AHxu8N3w9vbwlSTbaIseW41Jla3QnNyb8fPBbPMlW9VsbHpD/clPa1f1KssGoI3vzBMUQ2a7G4yV1KB1fUcoszo7t4YkdCRh+VY4dIY6diVU0o0/vq4mSifPhn2mwOOvweNb4YxZMHe6fxFF/+66fWFi1rbVokAataE5ibYC9yMlWG9dXyx2b4X+1+ANp66kFuo+96OA8NSfd9ptxy3/hDh43PT9YIXwj6qIWIuyiwN4ca19eS+ZoiYYs+57D+gvqkUkc7Id29kDNzpYlqVqEIe4dTGzXq3kmosQm/Ke2x2UX0RrW99NWmpdmFfCdU2MhmPG6BC2mNiYVGLdRk04B4vwmxVqIf/s/dSCRSLmTxxo5IIYqk65IEQKyyqfj8Ut5cK9ax2s7FHX6BwwrcGbR5hzl9E83yVjfgEYTEz2/j3hJy/B6i61/WubVPUNs+163mWzHU+3PiVCS6j/eT/qelwpZl3/ZHELOxn3h17GUAlc3zTL8SKNeYk5Y5bn0p+IKWEZ/MlMcZwJzH2e6oQDZvn7CN6xCxr+MnFVam19D8ydorbdPAjzW8vnm+b8zHzdPC/GLHjVicl/FXh1LZxnqQWJfMlZtChiJzxjgG3baqHT9CItlGDlRvjNOrWvh7qUl8N+HeXHSOObExltmpKCl7Z62613EtZpzRL8TYILGlMyStwP6SkwPtfxEV8tNm/ezCOPPMLdd99NY2NjJIV6PJExBjSqbmAwk7RZ4ilt/AxhVnXLfG4pS3x/4EvDXHEroRcNgoK9aMOGoirlpf9gwYEU/IM0J7xSEvr7wRDolLvB2yVV8g1genP4Z/0NDrdgDo5ReayY5ZUuMk+sMQvmt8Hf1sGdz8CTb8CvX4bb1sD+M+ATB6j34zHYu019/R7TQo49hAr0oHV9oKBcHc2uBAXlDvUvVr4goVdf5zerhYY7nlWx9tlioH58wc3k37Vuk3qsExrlnGz3YfkGgsJ2sKSsehAy5sfZ/dEK3IP3+zagMsKHebGUjAMZPIYDObWoFvY9URBJwYun/u1npmBjr//isGlAZTY1//vuhXhilhoy2di1tdpNECYp6r8VOOfr+7qUOi/bqNCkXy1X/9uz5ymhnjSsYTqRoxOzT6r8fyvjXIgsWswG52MWsFcLrNimrlNx1DgPCqG49z8ajXFeVm4wGL8+tQ4OaQRHO3LbG8rSG0wwZzF8TzfbVpnBARqNOuTmHD0459ULc2ZeGDPsyXR51yFomThW0vFQyoQkftWW90MCLvVvm+UtMpilMcNEqe7f9HpYb/SvdwCmBPoWfKz3GeZavywQk/9kZ3kZ4oIRslkwStEVSl4y6GCo7rL1XpvjRvvD2mP2ty2pkubpuX9nFmbWUTmLPP59a0+BbU5odRXLt41IrC9evJgzzzyTr3/96/zgBz8A4MILL+S4447j0UcfHZMG7ghtM+d5P3hrUiVNAM8t3CRbUJN6n8ik3MJoDvxMXMXS6n1qhnvggiJdx6ZudFYA9ADx/bHw/1n0yaUpAX1Zv5uGKbrLMjICW50/ZwLorSCEzL74rLOGoO11BrCZARP81t8dIDRGSq+C1hdhG/BCCe7fCPlBuGQ/OGymdxKzLGhMGb+v0R/XDT5wsMLEe78T9xyWXA52uI9W3KqQYRVoAVbm4QUn+d/y9V65PfP2fCc/v+Y3Kuu9zuav3YmC8d1BbNRn0hXCP6pBcCKsm9KYUMcByheiMJ6b74PypmmIhy+yREHbBi8UenFxRoOqw1p0Bq1tw9Y+lbjFNynAGzMTnF/cdn+1myBMZoJ5a/Tj+jgMOHlEfvECpJJw5t6OGDfiak0X1gpCHWScC9HFF54YFLtzG2HNgEoGNj3pCSEov84xeuN8u/Hr/QP+DyxbH5hvxby8DMPxdANleZ7uZCILq8oSnCLGLMfNPUR0BxO7ZvwZ+VU5xbg/KalO0pmOK0vzR3aFBUn4+O5eecyEOlbael2W7M7sX0eDU74NwIYtQLNRY11vi3GPMUc3F28SsfKY/ANmekk39fy0UMIuOfHeOvGzmYeqYMM+0/z7OaQ9RA8Y71dabGmrU6G6bk6wAZjVWL6tnksFPQUsS83JzSR1VSrfNuyp3uOPP871119PPp/3We7e9773Yds2TzzxxJg0cEfYsHaZ96Qp7dVaD7MwFopeHeGwuN0wAaMtycWASKgUD21gl4l0Yz/rB2BWyhOq4D+56OeuwLKU69FWpxHBuOxS2L2tMs5Pj6nQgP4KJejCBJ/5G2Kr8ljaMB+WXG5nRFFYkrm4BSs3+bdrcYS5tlxo12kd2qDjzoMrYibma6bw6y9Cg+F+bYranRV8YZZ1y4LNPf7tbnsDfvkyLHkVHn4D/rYeHloFv1rLZ4uHwM9eh5edbP7ai8IXFxTol5s8L+/3KDH7N96W5+BYiRljKZ304kKDx62iaLchl/cSH/rct0ax3TtDUKjrNrY4462r3ztXddmOZT1wATUvpBOYz37qjGo3QZjMmOcnczLX0wfPbYPvPw9TG+BDe/pL1GmhntLWtcpCHWScCxEnOBfT163pdcqDdVmXqlhibg/+6xajO8798etxv2APCsdD28vj1c22VvJ06+rx5o9deZgyhJt/yF/biunEokkvj0eDk8vDqcYyZLnfVCw8jj0Th/1nwXkHe7HvpneBSZhQt4CZaS+hrU6WqY2F+nOV+hYcD3EL9pqhQk8TwHSUZ2vQxV0L96KtKmjo1/TrJRvWlWAKsF8czt4F5rV7izCOscv3e1WKWdfhk1sd7+r1PdCe9hZWfL+LMV80BX9LXSTKtw1brN9+++1YlsWBBx7oe/0tb3kLAMuXLx/dlu0sumctGX8CNvCLdm1ZNwkV7cbrupyRTuhV5l4dfgTtku26KnsZ4LWQBjoHoaPJa4Mp2PWfQj/XbWtx/lg6c3kw9twsAabbty4L7c0qQU5PiBAKiqDgIoe+7ysOXR5rZzDjbMyTwUEd/u0ObleiU5/M3D+apTJo94TUoNd9IvB68LD1l9RJFfy/uaUe7JT7sU4+ErP8CecODfTvbc2wT4takBgswCvd8Pdu/zZPrvOOj3ECse1Av8z+9RseJcH+jTOWFTKuNY1JtWgStphUaZEFoNfIRRHsYxQErmV5K7mma3sspvIybBxU54Rux3tlSsb43BAXUEEQRhfz2g/qf7eyC57u815b0OhY+eKeSM8YE2zn8UQPWREmMGFx6zELrJhyhV+XU9cpUyy5omcMx36YUE87ydzOdZK5XRCoxKDnipohPd2MedXWrD8kzRR825kTWnFLJRFNOzcnweT2fhfLsgKVNnTlkICV3rgvqygSr9C/mXUq9Na2lfU4gfqNwo5hcLKhFxL04oAW03tOh4/Pg42o6gBFLcSDor1YXlK5aKvQzr9vhPfuAe/fH/ae6V8USFjlixGmSPctpFgwzVIeESVb9bW93i/uTc/WMME/rR625P1G2SpY1oedYG7FihUA/Nd//Renn366+/r06dMB2LRpU+jnqoqFchN/1bFWhsUY9KNiyzAmvqbgNC/U+nU9UAYL4YmvQrALuqyLsYqkB6f+TGcPvHm6f9XHtzppl/+B9MJBd9bLnh0mvE3B/kavyqxu216CHHNbd9FBN97ol/lef2no8lg7cW62YhZ2XJ8EnN8pacP8mXA28O/1yjVmXruXoAOUp4T+3pYY9BVUg8PEnq+D+AWfjYp7bkr7+2F6EOwMMRzBXlInn2RMff8+M+EsC/7dqbLYz5nmbxOo2KvbjPJ0B7X7vTrKqhMEFlkAcgWoC8Tj635VZT4ZENL6vj7lF+tQ/h8OW3jpR61aVwphqDa+izyeZwXAjEYVR7a/reIAW4xtdTdcN7CI9UsQJhphFqmnAzGVz22AN3X4rekBF3gR6kItY8WMxKjBSjZzGuHZbfDiepidgH1nlrsYj1W7LAs7FfeLKFBtfFOHumlh6XpsBiqehIpv/J5uMxuU+Nx1Wrk13fzMWPUzHsNOW2rOWChB0Zkz6kUUJzFdaOnPMKEOnhGgawC689BmxKsH+xfYrTtHj5f8rvBFWxlJ92+BpRvhpN1VOwslKFiQN8aPGceuhfs/NioP49nNahtzMUBX0Qj+1hbhMeuWBc31yjLePESYcZjI1/uakoQVjoGsQvm28Ti3D/svlM8rd+KWlhbf65s3bwagUAipO14lWqft6R2EFiOmG/yusqCyV2YS5dY3CBdk+v0ESqybqy0a82HJxg6W3tI3HWtctOGVDaosWSEHZjyMeWLUE4WgYJwC9ORwRakrzo3H7n0J1g0oV5D6lLKwmkIwTNiZAt4U7X1jXB4rYZxctaBNxZTLjy6FY64qmidMy4JMKtyF2nxYNi6MPvY4cc+a0XLxBy9Binki0hO7fdvhzINgv3Yv/tGMWZo7HfZOs7j3RSfb/YxAHwNW5mC/bVuJde0GH1xkqQZhVnULtZLc71iXw6odhFnXdQKTBnMhSd9XazHCjxvzBf6LjAXMyECnkwGyKwetgcyz5oV0EsSsL77j4Wo3QZjMBL28YhYcHPCAOrTDn0TOcFe1UvFhXQtlnAuRx2dZx1tkjjnz/43Ar9cqg0JQIDqMxTh347vTMb9nSybuuJsbcd+ZRHklhu15um3YTmk6i3G5Flsxx8qeceLcG5JumUwrzKLuftDon26vPnYzEypufWsemjLlBo5AGIMPU0TrzPZ6bBw2A57ZCtuyfjGub24cu/F6rgh/3QBHtHvivyxktPyHdhOBhrn7T6tX5W/XD6j66qFhxlQW/BEp3zbs4TVzpqrF/be//c19rVgscuONNwLQ3t4e+rlqkB3Y6g2sxiRsCcRlm4IWVKKtIMEM2cGLbT1K8JgCOSB47WJJudkPFsoThOlbrqhijhc7ZQoe7FL1EoNu8MHVHnPlqCGj4vIhIErtgFBHCdACMLNRCdHurLetrx+24UZdQcAPFsa0PJYVtzzXQn3y1Rk0g8k6EiFirzml3KHDrOrBseD2y3iSdeKegwJ9tASf2z/j4qJrEptuTmaf9XHfYyrzZs9SZfhCrOplixBBN/H+ktoflB+7alihzQu6Kdwb4qp0m6aSh4R5DHUehnS8fH+WfhABzIuDeZGZmVYXT4DNOZWxVW9jCnZrnLP2V4l5e+9W7SYIkxktSrQHVzKmFlTP37W8XrJpWXeE+nCRcS5EnrDEuHELXuryb/dUZ4gbtWKsxrkVjykRqzOtp817PV9MhHu5BBfCg55uG3Jqrp5Dib9KMevjhBVTJXqtREzdb++7Xc1g+ecdlqXqra/PKcv6FKe6V5lFPXyuYcUCgtpN8BdTv9NejfDXjV71q2DWd1O4F214qgva4jC3xe8x4Bq1hliQCHNh12K7qx/WZ6G9QphxzFgECBpGp9apxHtBzw3Tyj4ODFusH3744di2zZVXXum+dsopp/DHP/4Ry7J4xzveMSYN3BEG+hyXfMuC1oz6g+mMg6blNOdY4Hyl24x7U6QHNWgmrspfmRhWZzsXKLlVyarem/fqCWqWrfdWwcwyBcFBqGlJ++PyzX76YtZtlVxuqvOnaowrV++y9nviT4m+wKDUA7bPSOIV/P1G68SVjPlLVrjlLxJG6YsYZbG8oDwH+kLyFZh9UJ303jM9CPoNy3pYAr2dxLWuV4o9cjKEqgtNwp+3oCHOgvRUb2dlru9GX8MWI/pxssGHjKdqYbbB6CfZ4VQsMD0+cqqETHBRJSJWdZcwoW5ZML0BsqjzR1c/tKW8M3VYltYJzoID9q52E4RJjDpPB5LGZeLKvfZsI7mT6f00QqEOMs6FGiCG4e1oiKhgGbG3zvLmr6bwZWzHuSvYtdXZnCtq63PIdXP7nm49KiQthueJawpaozRdFFEZ72PlBgLdv3W9sGlQeSK7WmeYcw1zHPiSQgPvmAFPbVJzaVOca7d4M9lcoQRLO+HwDnUszMz+lWLVfZ3EW5DQ/QMl1jdnYV0guZxPsIfF6TuPdV6wbsPD0zT4Vgh9Hm2GLdbPPvtsOjo6KBaL7grLwMAAtm3T3t7OmWeeOWaN3CHcyb5jNe8x6uRpso4FTrvEBFcCg/8/0y0kmfCSugUtzkXbL8qzRa+WoJv10IaXN8P/PA9tgba/pcPvUhLXcSiBQajb2ZRSFvOgdd83oJzH64zVpUbHahlWf7zM+hxiwezLqfI1QYEeEt+yo7jJNeqdLJpujcq4t4KaDFiI9eOGuGqj2R+3X7aXmd8U6Bj33UAmqXYWHA+jZNH0SnsYFvR6w5KuV4aDngP1cegthFrVK8esB55nDI+S4GLEeBNmVQd1jLv1/8x5Lcyq7o5dW4lcZ4iPepWCUcXy/uP6QqHHQyMqS+vmQXWxgfJV/Mj0QxAmNlYi5vfwcs/ZxnNdVimTwEqOTKgLQi3glnAzBVTK8TTRZcQ+trt67gq4YVh+R7mNViKmhHldQt1SKuP60B+ksqfb+kEl+GYkyg1DkZtXVEB7CEG4J1//gCfWRzDXcK3rWkyb1vVZTbBbnbKum9ngg5b1kg1Pb4I6YN4Uf/hvYhhWdfAvspjGj2n1MAC8kVMJ9fS2pmC3nA9aIfuJWarq1Zbqlm8btlhvbGzkuuuu46STTmLq1KnEYjHa2to46aST+NGPfkRjY+NYtnNEpDLOTF2vjtQD3YN+YWOj3LjNg1SGMdEv+5KEsqyXWTFtx13GEej6ljXE+0AB/rAGfvsaHD8LPnYAfHgXOMBxqdP1Es2kDW5/KLf4NyVUaQL9/a5Ip1ykvtGrakdalrI8dxvtNj+vf6PgOCwrjxVwNTZ+ttHEisewMnGn/IVzy6iTcFkcr/6NGhPQm/V2EtZHCBe0up8NqXKBPsqC1rIsNbnLxNWCRH1ChW9ol3jzBKu/vyHFyq1bVWPDrM228cQcm+AtMvnEeuB+vKm0KNaQUlbmsH4GPWX0/UDRSy4XtsgSlYuqG0NGuXV9Wj28llUeENMqxKwPdeGaQKxcvbbaTRAELyY9uJDqLq6qUkzWUNafIZBxLtQEiZiXQFEvYNUllIfJuQcrjxMdEpKKlVlDIzvOh/J0ywGvD8DUCqXpamHxvFL/ZjqefF22Y0U25k3DDY2MG/mlTI+KGHDkTPjbRqW3zJrqPpf4Eix9Aw6bpfZl5nJKWN5tSKxy44eFVxUIVEihnscHBbuej4X9Ri11sMkJxzQNmeMYsz7sbPAAra2tLFy4cKzaMmo0tc72i9qWpBfTbdvOwXJEtbPQEppkq9I9qAGQNdzgTbFXsMOt6UUbXu+Ge1Ypofx/56lsjHEL5s2E/Tv85Sd0vLZpVY2FPG5OwEAgiZ4WMb6ybTas74fDpnsWeVBtS8RCYrpt9UWV4oO7S+okbf42Yxz3XHGF1reA4dw3OMnJwjwHbKOPYdb1AWe8uP0LCr/R75/lCkl9MkHlPQgLfWhI8Uj/GubmS5CIVzh2hMd0DzonnWTgWMWsMevbsAjrp65wkA3pJ4SHMPQXVXJBTbW9BipgWUZ23eAFpr3RiwNsCHG7i5krEBObPz36JHP32KXazRAmOdod3o7HIGVcVy3cSeLO5JCQcS7UAlbMwk4ZWcPjlprbarRQ0+EggUXl6I7zELFnerq9sBkOmVEuYp05U/Tzx1ToX8rpXy8qU3pwLj+MeZMVt7ATca9yk67eVCiprO6zUvCPLnhnu9IbZjb4kg3Pb1bGxf3b/GLfNVgO0zMidJHBggwwCLy2SWktbcjVIt05frY5zzI1xbQ6Vb5NS76g5/I4MKRYv+qqq7Asi0svvdR97YknnsCyLA4//PAxb9yOsqnzBb/4bs7AtkK5YMsVoT4gEMrEZoigAWVZz5bCLbS6nmDesai/tAGeWgelJLychXfOhMNnGO4dFW6OWC+rQ20OJixlhd0UqLNu2+UuGwMF5Q7S3qg+qxNw9eU8UWquGJnPzX6WnB8xi4oLCiuPNZ7nLVPkmb9LQxK2OdsErephAt0X9+wI2rj5W1MFwWeFnHyATIwLWw5UOQ/qHEFb6diBv28DBeefb/mPWVWp0E+dT6I/72V3D3p+mMcQVPK8xkCVAmNcROqiGibULWBmCv5aVJlazePkbstk0ep89LxTqt0EQXCxYmNz3pRxLtQKVtwR7LGSKpdbCIj1ZLxiGbHIjvPtebqt7lchaaYg1Pe14OU2VP/SKLH+xhbYe0bAwgzDmmyEZW7XRsAj2uGONfC26d7ijtZIpRIsXQeHdXiaKJhlPjmM73ePSWAOubpLCXVQJY/PiSnDqO67K9hB5S0olmuKKSlY6bghB8thMz7l24ZcqnjggQd44IEHfK996Utf4ktf+tKYNmrUcC3PGSVqghP7wZKKPa+UZMtcWQm+no4rsQ/l1tqSI9jzJXh5gyplsbykhPpxbWrgJuP+klzBWyZRvipptsdsc2tGrfgUSv6VHv1Y93ldr4q9SMe9fWWA3qESeNn+fep77VWgLZ/m7zfeArDS79KUcjwdjHAFCFjVQyyz2CrxXjOBfQaF3zgQWDMC/KuFfUMcu0p9yxVUaIjve6rQN9/3B+5heP2E8n4OFBw3eHO/Eb2Y6sUg8yKKBTMcl5+pAbctoGbc7gRBEIQJiRW3sNJxldenMemUEXNCFFMV6n1HGOXZaIUvoMcdT8t+R/WFGs6iTcX+rd4ITk5ubnsDVjkefSOMx7eMRRpfGK9lqezuU+Mq27uZ/d224eWtykt3gWNV1+70Zsz6MDSFW74tOJ96er1/w2Wd6t41xBnVAdw5GP7fqS0J3YGYdT0NLRqPx5AdC66qBXyiLQ5bAjHd4LjWhiTZ0p/T9+7NeD9tqRgMvU/AjRPXrh0lG/7V6W9X51Z/Te2yW8yt1Vru8h02sccrwdVjZnbHi1nXA0snl9OZIQGa4ypjuv4MlAvz0PJYjuVZWz6r6kpthR8n7S3QbxynoOtKJet6f0mFOlSKex5PgtZm/fVNMaNvzmuh5ekCZ5JBJ3zB9BKIgqjdkX4GF2FAjc26QIKnai0kbY/g/1kfk6kZ9f6r3epiWpNud4IgCMJExoobZcQca3rNXpvChPqqLnjFmVs/vElZaqF88bwWCOvfshAxa/ZnJIYBnWjOrBaQjCmL9eEdKtu7zv6uY9Wf6ITDZiqhb5aA059PhZTaq0TQqp+w4OAO/zaHOuHGrrt94PcxfxutJ6ZkYLPthRaD99icg44hE1Kst7Xv6//BWxLQn/WLFhsl1utCkmw5A9WNIQ4r35aJeXHNen8AtlGGoGjDATP8jTuko7xGuFHuhUwSKxkPH5xhq1x6gt+IP4leyVbuJeYq0Lo+J7kcXr8yTi1y2H4NQXOQ9uWV60zQlToo/saL4HHSv0sSlWSuovWZcAt0XxHSIXHP7neNSS/KCTveTnsWdT0LfYHwBygPzdDobbRHSXCfYd83XgzRT9IptXgCQ3sPaPpy0BArF+hRtEabieP047gFrzpL3f3Ar9+AVRtrz+1ulLjx1nuq3QRBGHNknAuTgUiP8zBPt6cDBrdl63fMTTwKxANziEQsXMz6SrANXyz7rOsJQxDHLJXlvd5SWd91ybNXt8H6PBw6zS/STcE9koUQs1JB3FLey/sZlQou2BX27TD6b3n11aHcsu6Wb3OMJz2BJHOuvhp7tT6iBHO1Qs/W19UDfYybUrDZEKT69aztxW2XucJXGCD65XQM8qZY12IQf13zuCP45seUUJ/XHhKb7sSnJ4fxpwhzv7Esp3ybdss3Lf22J2rW98IhU/3CqNkR66bF0hStlazrAwVl8TR/k7J4/3HCXMQIWmVbY0N7Dph99cU9F6EpEPcM/oWcccCyLNXsYL+AY3bdRy0qDMeq7j5HifVMyF+/iqvhQ/WTxmTlfhJ4TVcp0Jb1auVRGC5anOuLvn4cdN36VyccMKvcq2YScOxRh1S7CYIw5sg4FyYDkR7n+tpq3t7cAc+97m1zcLtxzTau3bVAzBHEBcegmIwpMXsuao5xaIeqRqVF8o4YBszs7cmYl2yuZKts7/+7Fg5qU/PN/90Ab5+hcoAFM8k7+mgkc20rbmEn437X9JilKhXs11Fu8U/GAx7MhsHEeeq2qQnY0g9T0oGYdcYlydywxPqtt946rNfOO++8nW/RKJAb7PFb5lrTUEANTl1GwkbFnKcD2cyDA8MUxOb76ZiK/Q2KIV/tQOClXjigFU7aXYlyPQjNuqzDqQEZ1hZzkDWn/Un0SrZ6Xw+owSL04CSXM4R+Q0q5DYe5E9u22ijMOttfhHSF5HK6reNFULwErbJhngOVXMT1ewMFqEv5Fzbc7xhvoRT4jZ37uTPalXt4mCW9ZKv+hy1EDJaGzHJfPRe28H5Sn1Ll2LbnMaBf6xn/KgU7imVZKrt03Dk3JZwL26Ed8LwxQXjrLP+Kca26Ge4A0cwcLAiji4xzYTIQ6XFuxkwnYupavK8jZp/qhEPalcHNl0htZIKymlgxCzsRg0RJGQidKT5v6lA3LeZNQ+IIxboVj6nM8PFSwEJvwZumwqNrVfb31hS8PggfnFsuok13+pGSikFJG2HxwpLBE97JmDJYJQO6a6jyba0ZVb5tLlUp3zYssf6zn/3MfawHpfmaJipiHfALOD1x78mpA6R/2FxB1RUMLKwAfsFnvq7v03HoD4gEc5WlaCuX+Bc2wXt39QaBuXLkJJirWI4s2CXLwjbj1s12mkn0ND6reo9KKlaX8LsD18dhY7/Tj4ClGdvzFDD7Z6PEeoPpJu42cty17JBW2eZUZats0VihCPaxLw/tRvI8c7/jLfjC+mWhjt1659iVrfBVOIHYqAoF21ukqgaV+lln5JzweQ/YIaLdVpk/o1ClYLiYrltJJ3vqfh1wgaUmCG+dpVa73aQttZe8RxAEQRCijG/xXF+LQQnZ/ZwM4gnPyDa8+t8RIxkDOwEUHDEb80rv6f7FLSd3VmLHFiKSFuRj/lJuCW1d74A/rIUisHtcJSQMivqEY/Xege+2LAs77cS/J5xa7uAtTBjx8MH9D1m+ra0ethSqVr5tu2LdHqYv/litLD3wwAPce++9rFmzBsuymDNnDhdeeCEHHHBAxc/UNbR5T4Ix3dPqcGfsAwWYXudtWykrvPu+sV064ZUDMH8jPTBtW8WI9wN7tOKWCDBdPRLWsIW6rz+6LWZ7G+PwqiHcTDcNG+jMQXuDIaYt73P9ZmI6w6peyZIJKoZYl9LytUk9GP+VxgpW2Ya0Et5D9aVSAr2GeLhlthpdC0m+tqx3HQt6jfEbXOmzKixEZAv+epr6O8z9V4uwJHMNcViT97Yx1iPK+paPUJWCYaLK4MS9funV4P1nqZu56px2qkhMIpY98zILDti72s0QhDFFxrkwGYj8OA+KWbOOvGV5Ft+ReMVGCMuysJMxIAHxoqdZwBPrzoLEDhsFtODOG9b1hAUFC1psJdQBXi3Cmi7PGOFa162dystjxZQx1I7H/EnhHIPpkLprqPJtr/ao16pQvm1IsR4FS3l/fz/nnnsu+++/P6lUirvuuovLLruMW2+9lenTp4d+Jl3XWr4y0pxSbuIm2aJyZ3dFuL63/K8FXeDBi/kNWqO1xbYELO+BeU3h9QedxA0jxhRu5gpQSwL6AonUtBu8DXT2Q0eDPyYHlFjvy4evEpVsL1NiWXmsHDQFBV/I7zReDGV9fmNAPTf/YNpzINSd2oZsTn3W3Hdw/+OJ+b1Oe5b3bmRBtr1C8jzbc4OHQAK2PHQYtdu2t0g1XgS/33WDj6vjUbF0m/FY5yeIRJWCEZCM+WOsTNcq0+oeLOc4CVj+8ppoT+4EYRSQcS5MBqI+zn1iNlZU83dtgAt6xgbdqGsEK2ZBOq5c4oslpVds22dM3BnhaVkWdioGBSNmveAI9+c2+jdetl55LgQyuY+G8FVzpRHuJ2gc03PHqUl4ut/TSmHl28ZwahZ5sf7+97/f9/yDH/wgt9xyCy+++GJFsb616xX1wBRZLRnodtyhtRtDvqCyuge3Df7gQTEPXmK6XEllP9SrNzo+wrbhpS545y5+F3jXFT62Y0kpggmmdJsak7A1JJGajecG/6YWv8C3LBUP7CwWlWXLNx+7N+eN3jy0BwSfuziyA/3aWYJ/MN2OxrjKDq4Jeg5USqDXU/KSlAUts9Vyg/cdc4vT334Y/Hqleq3smOM/XuaxzTnjPni8qhDC4EO3JTi26+Ne3gGznwQe2ygvkZTz4SgssgwTy9IXT0udU3QlB/AW9pJh5RwnPqd/4LhqN0EQxhwZ58JkoBbGuSdmLZWMTV+PLdS1ODExQtGsuAXxMfLU09Z1HbuucwAc3A4vrPW2O7TDs+a7cfJVXAQxNZZp8J2agU2231I/juXbai4b/PPPP8/AwAB77rnn0BsGhVtzWsWsu5ZGW7kDpwKDIiwrfFAIgreili147uC2I9aLJdg8oOry7dXid4E3bju0chRiYcWyVOx9Fr/rux5I+ZJqS0djuSBrcuLO884KYmim9BDBN5iH+ogJPv2nwrjXbv5l8fj4vQU0vrjnlLefagq/0GMONKYgj/+EAeUhDOB/L1/wLM/BknTVxGyLObYbUiqcBMqTBPoWWWynSkHgP2z+p6vdx+1gxWNQF8M2j2eMmklgIwiCIAgTASsegzjYtpovyXV4+LgeCqZ1vWTDvJlwjqWyzx/SHsjHowyZVTVKlBn+nMetTvm23jxMiVco3zZ27a6aWP/2t7/NAw88UPH9BQsWcO211/pe27BhA1/96lf58Ic/zKxZs4b+AlO4ATQlVAw5eCJtAC/+M2g9H+pPae57wMjGrZOx2cAL3bBbvb8kgS/B3I6uHFnhyQ/0gkFvHqbGDXFqq5JtKWcbcyCC5yHQm1eJHsBvvdTNDFpr+/Oem7gpkKsliILxJY71mfokbHW2CVrVzT8axn0ugnHPYbkK6p2/72DR8+4Yql/6uPaXVPIQvT9z/9U+SYa55OuxnS+VLyhp9LHtL/mrFERlIWmETEYLuiAIgiBEDRHpO4iuu649jnV47ps6VMm4uJP1PWl5VvVEFa3qgGugDSvf1ghs7lc5n/Qce5zKt1XtV7nkkku46667Kt6+/vWv+7Zfu3Ytl1xyCUcffTQXXnjhkPtum7kvZ/+/i1j4jctZ+J3/YsnjD3H1vx4m29frTOpt7vvnUzyx9XUlVi2Lrq3buObXd3k7sWDxHQ+z7NmX3ecrX+9k0b0PGmIJFj36Z1au61TPSzbLXlrJ4kcfh5c3wX6tYME1v7uHrp5uN3b9iSef5b6Hl7pflc3muOqan5PNeu7a9z24lMeXLnOfb+zayjU/us1tCzGLxQ8+xrIVq9xFgJXWVhbd/5AvtnfRfX9k5Ytrob0OLItlq1az+E//q953Vo2u6fknXes3uZ974qlnue+xv6ttbMhm81x902/I5vLuNvetW8kTa1ejB3bX1m1cc+vvnPap32fxHQ+z7JmX3T6sXL2WG2+9x3esbrz1Hlau9lxilj3zMovveNi3zTU/uo2NXVvd548vXcZ9D/p/v6u//wuy+bz7/ff99UmeeO4F13Oga/NWrvndPb6FiMX3PMKyZ1e4/Vz5RieL7ntIxXQDpGMsuu8hVnaud3+vZS+sYPGdfxpx+0Z0fB2830/9xivXdrLozvtdAXrNkt+zaNvTrFz1utuvZctfYfF9j/q8Bq75xZ10bd3mHd+u17nv5efRyjWbz3P1T53ju0PtU+z88VX9fOKpZ7nviX+4CwfZWImrN/+N7LZ+9zP3Pf4PnnjyWbePXVu6ueaOe1WVAmfRafGfH1f/DwDLYuWaN1h067070T7F6B/f0fr9Jmb79Oej2j6I9u8n7auN9un9R7V9GmmftG9n2mduF8X2mUj7dq59i352LyvXdioRnowp/fHnx5WxqC4BmTjX/Pouunp73YR9T/zt6er+fnc97DNeXfObu+nq7kaXb3ti2XLu+8dTrmE2m8tz9Y9/zZIlv2fhwoUsXLiQs865gNHGeuSRR8bY037neeWVV7j00ks59dRTOffcc4fctq+vj1Pf90E2vbCK5kS9sjoOFOH1bvj5Srj0QLVCUijBVc/AxfNhSsY3eKhLQENC1Qss2TBYUPWsB4vqPltUtxufgaNnw7ypKuGchdpmyyBc9yJcsp8SixlVoo26hIqDrktg7WBG54rtyZXgpufg7e2wf5v6vqKtXr93NTSm4dgO9XrGeU/346bn4PAOeFOb6kcm7v0OMadP+nccKKj69Fc/A5/aV60wVfjtxhO76Fj7Bwr+tuaL6jhfNA+m1vnbqq3L5u84UIBXu2HxKlh4oPK80NvWO5+rT46r5dMuOX0z+zVYpGvjFqb9cjW8dzeYO8U7dnqcxazKv8d2xn01sIs2DOR9fWSwqMbbd5+GD8+BXVtU39JxdV/C2zZbhD+9oZ7/x27eNu5vksCqq7nIn0nPxq6tTJ/WWu1mCMKYIuNcmAzIOJ982MWSmsflSuF1z1NOqbaqW9UVdnAeOuDML+97TXkKHD/Lr5Ocez2/7O7upqWlhSVLltDQ0DAqbYrGLzMEzz77LJ/97Gc588wztyvUNcWCU1PNdIVtzaiJvS7tpF2dtWDT25n3wce+bSxIJiCra/jZ3iBcvg1mpZQbtVmqzXy8owTd303R2JCG7kK5y/r6HuhI+V3EzZjgjFOLHMJjn4Ox6wNOIjstfMqSy1XJZSjoRq3jTVI4+QoquKsE3cQHCtAc8/YD1XUT9x0v7zattUWNMTf5WtDNP3AsYfjjvhqYYyjoDt/sLDyYGfx9+RSc20DBWzgz/6vmvVBTyMROmAzIOBcmAzLOJx9WPKbmZY7RhIaEMn7p5+lEZIQ64FXqCivftqlCiWynfNtYEXkz06JFi+jt7WXRokUsWrTIff2ss87i7LPPrvzBYNZ0ndm7OwuZerVKAl58RJkYMyb2PvFuPEkmYFCLdbyD9+IWmD/VH+tg1FbfGcFnWRa2jqkICu+WDPQUPBFTspUHwcaSU7bN8gSsZXt9aU4pwRcm0jFe0/3UbuJxq1wUVUsPueKc8mziLTFlOYfybOJmH/VrA0V/3HPweFWjjz4BazSgzlloMRdVwDmGznZmHwed3yEZMu6rudCiv7pSrHkm6S0oBasWmKK9Lw9T08Y+gwtJgiAIgiAIwnhhWZabI0yL2sjmAjB1RLB82zMDfsOfqSlsxmyeGXmxfs0114z4Mw3N7SHWZwuagZ4sTKv3REuYwDR1umWpYxFWx7vOEetaLBRtZdl7fRBOacHNAm8K9tgo1A8Ms/JaQGMC1jurPrpNG/qV/0Rzyr94ULI9AdOQUm7WQbGn8QlBW9VYb3Z/IO++mqIo+L1Bz4Few3NAUykJW19J/SbmvvW+qmFYD1ugsSyeeO4F3tHcoOK0NdtbaBkoOP40VVxYGYpKixL1KXVcgosS4B+r/TmV+DA4FmsouZzg5/GlyzjisAXVboYgjCkyzoXJgIxzIbIiXVOpfFtrGrpKcNezcEiHSpSnDaMl/PPS0W7S2O26esTjjtAKiBua0rDNEem5AtQ5HwgrX+UbSwGhrrfPJDy3Yi38XtoCM+KqVFzQBV5b1neW4KqP7mNLAnoGvfYArB+AWRmwYuFZ5AEa4spNHEJc3/G7V4PKuF2fCBfoVfoTWkEruNmMphT0mln7QwS6SX/RywQfdINhB0vu7SxBAWtB98CASqbWX9j+Qot+ks2DDqGJykKL2xynAcH/LagydZUWJcx+Z52SgkDo/1qoOXp6+re/kSDUODLOhcmAjHMh8gQ1lmZbr7p/sQS/XAsvrw9UXxo7tT4hxXr3ljXhLsytGSem21Zu8HUBYRcm9CBUKGGhyrJlHRdkvary4jbYu608Tl0/Hw2hFxQy+r4pAT15/0pP5yB0NHn98wl259bg1CLX+GKfAzHBoNyRU6blOSCKqiaMAsdc3zekPUGrCSv7pfs4mFdeE2Y/qh33HCJgT3zLwdAQq7zQol/DeJ4teSEhwYWpKKx2Vvqv1SWUR0eZq3+gfz22kUvBeS0KZemEHebEdx1W7SYIwpgj41yYDMg4F6KPYVkHTzs9t8G/2VOd/vJtRRHrO0bQ+tyUUmIWlGhJJfyiQBN0mQ21tgPpGGQdS33JyXa4sg/mN3sH2o1Vj0E8NjpZxMuSqDmvNaehF3R5OmwbOp3kcvpIxyxlZTf30xhXddZNsVcKCFhTFPUXoTnp7SMgiqrm4hK22KIXI7SgLQUEbZgHQU9OfcbdRwQsz77FGePWEFciVhNMMhd8fbCkci2ELWZV2bLua4PZX3COofPfDXP116uaOZTLfKX+CYIgCIIgCEIYprYyDZwHdfi3O2im97gUmHOPMhNSrFtWzPtxTQHXlFBl1QCythIt3oeMx2E7DdkuE/MyowO8shVagel14Zb10XCB122p5O4Nqk1acK8veMnldEK4GH5B1OCIfOzymO5gdkMd91yX8ou7sMR8401wJUy3r3E4ngNGPwfzUBfzC0coX8QZT4IC1rJUXfmGuJNvIMSqXrbgAgyUVPhG2f4jomQrLUrUxyAbOIbB7P66MkOD+b927sWqXrOY9VUFYaIi41yYDMg4F6KOFUxWrTXc/JnwkV1hQRIu2BXmtYcbOceACSnWZ+yywD85d7OlJ6Bfi/VShfJVIZP6SgIiHVOx76Bczl/qhn2mK8t1PBawrFujKIhCBpKFY70HtmXVwNnoxAa1pr3tgoMQVDwweGXtgjHdwfs+R8wGmuR+R7UIEbSAErR9uXBBC5RZ1/vznmU9LK67GoSMv+/fuURZkbudbcKs6sEFl8GSF48fUnKv6ok/hjyGhfCcCpp+x/IexUz3wg5z7Y9/U+0mCMKYI+NcmAzIOBdqAu2BrI2cuqb6fh1wzpthf6fWespJaDzG5dsinw1+R9iwdpl6YFpXsZTleZNhhdMWxrJyUSGixXzqJpiLQb7gxYi/0A1nzVFLIGZSuZg1ei7wZjuDgh1gaky5tJdsJ7lcStUMjJvCJfCZjDMoe/MqYRn4xZ55D0oU6Yzb5n5cUVQlwhZUsFRm923ONqGCNmBd78H5HYJi1viO8SZEwF7ygZNh0GlzoaQWa0yrenApzkaFaqQDMd3VFugmlY5hXUodF/AvPpSMY9eXh4yzfZj7e4S6KQyfz1z0oWo3QRDGHBnnwmRAxrlQE8Tw5pFakAe1TlB/BQ1Io8iEFOu2XSq3zFmoOuSgBEuuqGLW9XvmtkGCB0Rvloopt2KAV7dBGtilEbeeeTAb/GgRtIybZcrqjIz367JecjnLaIMV/KylMuP35WCakyI/6M5hiqKsEdMdpZjgMIushRceECZodZtNNxYbJfCD46Kq5b8CCweWRTqZBJwM6f15tfgUjFUPZrzPFqAlHVh8cu6j4Cpe6Rg2OItIRVudtYKeEaDCM5pi3mdAkstNANLp1PY3EoQaR8a5MBmQcS7UBFqQJ2OQxJtD+gyf5n1sTPXBhBTrgLcqYgpbbUHellWipamCaBnK0mgZD1Jx0FUolvfC/KmeFdsU6glrVMWCr/a7Id4AmJKBHkesd3bDwTO8GHV3AYHyhYemuCpvBn4xq2uym6/3hGQUj4QoCgha97g7be0LEbTB5HI6B0Gd4XURtPJWC5+QxfOSSAK9OZgSWGgJc4XvL8CMOneXoQkWq0r5ogTgHY/+PKTj/mOo+ztQhFSy3HPE2LUgCIIgCIIgVMTC0XJxb65dlnRO3Y9H+OiEjFlvnrJb+WRfW5BbUdm+B4ueeAfK3G9NfILe2K4u4ZRss+GFzTC/MdwFPjaKLvBuOwIZ3XW7G5NKuNk2rMtDe516w1wN0pgW+Uwaeh0rrZnVsGR8p864PYhjeQ7ZZ7UFkXnMwfuTpVDHPZiUDAKZ7p24Zx2nYi7gVHkdIrgIcd8/nlTvtVhKhBMiYINkC2rc+xYgqH7/TIKLErrPMdSCixm+YC5I9JXUuCzbX4T6JoyY+x5cWu0mCMKYI+NcmAzIOBdqAstSGq8+CXUJrLoEVjqOlYpjJWJYTmjzeOV5mpBivVjMhVggUa81ZpSb+GBBubG7YkXfV5jYh2Vf1zHvr26DPLBbi7f6EkwuN9qEeQ5YqIz3Wwdhs5NIb1qd1/d4oA+mKGpJqfrpQSEUFLc5R73rJGXm/qrtamwe6+DxajEy95uC1peozFZZ45v0/ozFjOA4GW9CFiGa6+vVa2nn2EG4SDdDGHJ5wysiQossmjCrur5vBgbyuIsSweR5A8VoJ88TdoimpvpqN0EQxhwZ58JkQMa5UAtYMWvcBflQTEix3tfdGS7YQGVG7y5AoeBZ1rcrMoMi13mQckTP01th3xaVAd60qrvW9TH6mc1m6z40J6AvC5390J7wRLop2PWCgt6HhRI5/Xl/ggRdHiss43Y6ghm3TUsxBDwHUp6bf5hVXdNfUqW/wmqrR2Uxwnn8jv33VY8bU8orImhVtyl3iR8oeccu2K9q9w/Crer6tbok9DuLEuZx02N2IK9WQoMeA+a9UHMccdiCajdBEMYcGefCZEDGuSCMnAkp1gHPTTwoJpvSyk08V/REi/sZq1zwue8R7poL8Hw3zGvyrN0+y3oMazSTy2nC6oljqWRqW1HJ5dqbnT4FBHvQcgkqYVy3U//SLI8Ffstsb165lGP5xV0EtJC7+hW2SNOcDhe04Be1fUVIGa7UQetzlfqp+hbon75vTCmrcjDpmu+57h9ONviQ3ygqhFnVQWWE194fZjJAt2+BkoJhCy6CIAiCIAiCUCNMSLEeT2RCY3yxUJbnLYPQbys3eP267z4wsw++b26jdd3cVk8UJwIW9rHA7Jevf05N9TVbYGbGSy4XFOx6e31rjMNAztu/HbDI6vvBAjQHhF7QSl9VQgSthapH3l8oz5Ruij0bJXqbAq7Uxv6q6g4TWITo2tqNmzuh3zl2etGhZIdYn53+1iXDLc9VP3bGokTQqg5qUUJb1jU+N/i8WnQKCvSI9E3YMTZ2ba12EwRhzJFxLkwGZJwLwsiZkGK9beY8v5jFeNwSh75BlSQtnfCEwPZcgCsJea1vX99sJJQzhHp8rH5iq1ywW3jeAhuK0O6Uqitzg4cyy2VDXFnNTau6aX3Wj/uLKkY6NLlcBESRb+Eg4DnQYwjaoOUZ53l/QQl7U+y5faxy5wLH++cPPaJeM/sGRr8q5BvQ2fH1Ps37KBBWuk0vSgwUAqEaeAsRg7nyePyhvGWEmuAXt91f7SYIwpgj41yYDMg4F4SRMyHF+oa1y4ZwE0/DFmfDTEjlujDBWckavbrL2+a2N2D1xvKybWOo1cMTcVkq4z3AjAbvvTCrui/xXhp6AewhaqyjMm6byeXc9kRAqEO5J4XpOdAX4jlQCtz35/1VAvR+YPsLOuOB0YTPfuh96kFjXAnV0Ez3xmezTsx+MoL5BkzCxjZAvbEo4csE7zzowSnxFrDME9iPUFN89lNnVLsJgjDmyDgXJgMyzgVh5ExIsQ5UdhNvSXvbpIZnYbR03HcwHv3p9f4N/70+kFwuNnZu00MJb11u7bVN3sKBtqqH1VgHr+RV3vmwK2ID39tf9Lb11XlXO6x61sTQBQyUoO3P+T0Hgi7+oOKetSs1hAjaKhI2nkEJ1G7nQJVlujdd/AtOWEQE+jIUlRbHGuJONngH37G0oYBTUlDvx/LvUxAEQRAEQRBqiIkr1iu5iZsC3Y1ZD4rXkJm9K3qdx8kYHNrh3+atswLx6mP381pWoH+6yas2Qrfz+LY3YOXGcDf4oPDT1uReUwzhF3s2MGhk3PYa47+vJmEiD0u5tm9ztnH7FLBE2zZkc0oUQuQS6PnaYGa6b0xCFtX+oFXddInPFkBXTQlzE49CH6Hygku9k1chKNIBsk4se33Cvx+IhkeEIAiCIAiCIIyQCSnWW6ftOYSbODA1RKiYz8OIx1S99GRMCf5kDPZthwt2hYOS8PHd1fNkTAn2ZHxsssCb6Iz3Zjm2oLV/WadfpOsOlgk/Swm53qA7dcBC22OIWYie2As73hYqSz5AoVQh073zvKdkxD07r0WptJmxOLP4T/+rHjc4YQnZgFeERj/Nlrxs6e6Y1/cR6Jum0oJLXcJbiAqW3OtzFpkSEXfxF0bM4jsernYTBGHMkXEuTAZknAvCyAkJ2q59sgNby63Oppt4Qwb6B5z3QqynIfN6K25hp+JQtL1tijHYf5a6xRwhn4xB0vJEw1gSxx8fn4zBwR3w/OveNod2qEUGM+mdHRCfur9NCehz4pp9CbwMYTTolMcKCvTIuFYHFg9czwFHgPflVa4CbZ3VbdYLE4M4rtQhAr3q/fN7RczbfVf1so5B78spKzsE3PydBwNFSCXD++bsPhKEem2gssGX8I6d6RExkPe8BsKOWVT6JoyYeXvvVu0mCMKYI+NcmAzIOBeEkTMhxfpA3yZ/ze2ghb0woETZ6i7YZ6Z6rcwVPoRkDEhAvKj2q+OC9fdoy3t6HKzqALFAibhkDPZrh49Y8FQnHNoO8zv878djUDQC0U136nRK1SIHf8Z00+VYl8fSn9H3UbGsg1+kgxezn0J5Bkx1suSXbPW7aNGn4/XNBHpRcqUOCM8Fe8+BwaJ6oQEl1m1HsYYdv8GSU2M9uN+oLLQYhGX1r3PaPlCApDMG9f+vv6DyEujPmPuIwrETdpgFB+xd7SYIwpgj41yYDMg4F4SRMyHFuosVA4p+Ib56I6xz3r/tDTg7Bm9qH5aF2LIsSMWxYxbES1AqBcS6EsPjItQJWPu1lThuwX4d6qZrvqdirnu+FbdUk8MWMVpS0FcMWGQt4zHKDbkuSZkFG2M/1cQU6kHPgZaYyvYOlZPLgVf+Loqu1GF9syxoTHg1yM3jZ3pFZEteTHdI+ELVkwO6+D0I3DZqb5W+vKrqAEYW/1Jlr4EoLSQJgiAIgiAIwjCZkDHrqUyTeqAzn5sT/2UVYro1w5jUW4kYVl1CiVZ9yySwUuNkUTfRMfSpmHLvTseVBTITV4/TTnx9JuG5S+tY92BscH1SidnQOtZ41tr6ZLlAj4p1NijMTM+BTFotRkB5yTbbViIw5ewkUu7vDoG+rVxnjOUwrwiToGW9bIElKp0k3HXdzeqPyuqP7R+jfUUvBMD8rHMco7MQIYyUlavXVrsJgjDmyDgXJgMyzgVh5ExIsd7UOls9MIW6jtl+c7t/44PbPYt0zAJr+OXWrJiFFXduVXK1tSxLCfO6hEqMlomr+/qE97guASmjX6ZF1exrQxy2ZdXjsIzbA048u3YTL7POVl8QWUHLqtmkZkfQVkouN1CA5sDngtbdKhLs2yNPLtuOV0Sgf9m8WrzxiWB352PX8B0h6NWgx2pDQlnRIZBLoQR1qfLPAlU/cMJO8adHn6x2EwRhzJFxLkwGZJwLwsiZkG7wmzpfUA90FnQzZnt+O5xtwb87lVCf52Rw12K+BpcvXPf8RAzStnKL14sUVshCginSTbHdlIDBnLed6UZt47mQxy2/eI2KVd0lINa04KtPqQR6vpJmeH3sLyoLdagrdVT66LXtwlPfrWLWtVfEQKGCV4TuXwFm1Bm7is5ChI9ge8yFhHTK844wvT4GctCSDu9H1BYihBHx0fNOqXYTBGHMkXEuTAZknAvCyJmQYl1jxS3seEzFlydjniV1v3Z10zHdOot7whrT2uhjjaVLsMW3tyF+wa5FaX0cegt+q7rrbmwr9+MmvY8Q9/eoaKKw5GSgEpC95lQBMDOK6772lfzJ5TSREeqE5xoAdew2BfoWdIXPFiAT5Uz+Cssy8iqAv6/NSbWoEsx035OH9vryPkVtIUIQBEEQBEEQhsmEFuuAiufW4gWUOC+UvMl8wl8/fdxjzquBaVE1Y7obU9ALYJe7iINyP65PhAuhKGXc9vXLuDXEoS/rbWfbfsE7UFRl2yDUxT8Scc+VvCIa4k4st4MWsWZMft4R6+DvdwS6VU5IOIOFcnV3PQjM5Hl5qI/5t4XILUQIgiAIgiAIwnCpXTPyELS17+s+tuKWk3TNiefOOPHc5nOdjG08aqNHgaCY1TQ6QjXnxASXDOszeG7i7n4Cgi8qoihoeXaTk8VVErmg5dl1pc6r+P6g2DPvq43Rt0V3PeC1S4t1X64B5zNuTH5RjXO9HwgfB1GgUrvqY17W/mBJwfqIlxQUdogbb72n2k0QhDFHxrkwGZBxLggjZ0Ja1nu2vu57bsVj2GlLucMXS54IjVuqVnli/MqtRQPLL9j1fdoojRV0B7dRYr2pBjJuh1mesZTVvNvZxozFd12pczAj499P1Fypjb4d89YFXt/qk7DN2cYOeEXo53042eBDhHBUjp0mbHy63hEhHgQ9RLukoLDDHHvUIdVugiCMOTLOhcmAjHNBGDkTUqznBnvKXrNilkrCZsc8i1wsQgJzPAmLMdfx7vVATxamOYnITOtsf1ElaXO3J5oZt8Os6hae50ChpLwoSra/2VnHOhsm9qLSPaNvc2d3KJdw3TcblVwwgX8RQuccKOF5DgCRd4UvG5+o45PNlS+2lIh2SUFhh5m7xy7VboIgjDkyzoXJgIxzQRg5k8Tv28NysqNb8YjEIFeLMKulZamM8P2BbNuuG3zOS1CmiWLMetC6qtuWcdyke/PepqYrdX9eWW4hwq7Ugb7pdtY56246Y38wZj3vhDZkjPW5SB47h7DxCaqf3QHPgcGi9x5E0yNCEARBEARBEEbIhBTrdQ1t1W5CtAmKGFOsZYxa5CWjdBso9/iGeLnI0xnKo4Qp0sEtY0ca6DUts7bflTpTA67Ujkhf9tJK/4JEDKdvekOzDrkjaFPOX74sJjxC/YPw8Wk5oQw5HGu6079exy0+ESs/ZlZwZ0KtseyZl6vdBEEYc2ScC5MBGeeCMHImpFhP17VWuwmRxvUoCCsD1uyIdRdD1GZznuXZV4N8jBs8UirFOwM0xwzrM37vgRLQEHFXamMRYflqJzeDbmcLyi1el9szQxgGCt62wVj1qPQtSFiSuQbHep51PAV0crlG5/0w1/6o9k8YFstfXlPtJgjCmCPjXJgMyDgXhJEzIcX61q5Xqt2E6GMFSnhpEdiQVGLWFLJa9PWUVBZ9vT2ExK5HgEqeA5YFmbS3GFEyLc+OmNWJ9UJKt0UCY2Hl9Pcc5V9sqUtBnw5hsP0W9sE8NOh91IKgtcIXXZI6CaKRZK6/6In4KI9LYYc4/QPHVbsJgjDmyDgXJgMyzgVh5ExIsS4Mg7C4Z1CW826nFrkv7tmGQZQbshUihCKkiaxg+8y2NTuC1qwfb+OVA4sHYtSjaHk2j5l57OqNvgXLtmVL/jrkEG1BG7aIYCZB7M9743OgCKlk5XEZwe4JgiAIgiAIwvYQsT5Z8Qk+49aYgAGzNJZzrxOU1VUu3RYtAsJNu/zXp6CvEPAasFXyvKArtSnUI9JFtRARsPrrPjYZlnVQbv1a0A6WIJnwH3Pfjsey1TtIpVCGxjj0O54QNtBXqo2SgoIgCIIgCIIwAiakWJ+xy4JqNyH6BK3qWhA1xKG34LlRa7He54ijTCBBmZtcLmKCKJjlXtMYV6XpwJ88b6CkXKnDMolHbTHC6c81P7/TeA2odxZazAz++hgOFiGdLNtHJD0HYOhQhnTKX7FgoOgtIkW5pKCwQ1zzo9uq3QRBGHNknAuTARnngjByJqRY37R+ebWbEH1MC2sw23YfqLrcWrDbKkY45Xwgou7vPnz9Mm6NcWVF12hR21dBzJqfjwpOe8455Th/H+vj0G16RZgx+SUl5s19GPdRsz4PGcrQlFTWdN29gZy/fry5fdQWWoQRc/YZ76l2EwRhzJFxLkwGZJwLwsipKbF+++23c8wxx7Bo0aIhtysWBsepRTVMUMxqGlPq3sy2DSoBW3Ng+6AYjhJBzwF93xBX8em2sRBhoyy1TSn/5yGartROv6ZNaVHPTa+IQaMsHYZ1PVvyaqzXjPU5JJQBlBV9oOCJ9d68isevhVh8YcRMn9Za7SYIwpgj41yYDMg4F4SRUzNifc2aNdxxxx3MnTu32k2ZIFjh2bbTwWzbpuW5UnK5CLpSh8Xj43gOdDvb2IaY7a8hV+pgrLpuXkPCy3QfzOSfLUAqHt6VKC1EmIQtJlkoK7pOCAiQzSuvAvMz5vaCIAiCIAiCUIPUhFgvFot861vf4qKLLqKpqWm72zc0t49Dq2qcMB1qZtvuzQXEbMkra+bbTwSFOoRb1S08z4F8yS9mB3KqLF0tuFI77XniyWcDIQxJ6Ac3hAGMjOkFL9+A3j4Ymx81whaTLJy8Cs5ikm2rfAp1gVOZ2T+hpnl86bJqN0EQxhwZ58JkQMa5IIycmhDrv/rVr5g1axZHHHHEsLaPx1Pb30gIF0KWBU0JL6u44w2valk7v2tIDfJIuYkDFTOmZxwLrFmnG5QrdUO8XKC7CfQiRsyiu6/f3zZ9fHI6hMF4b9AR68FFmqgutmjKFpOAhhhkjcWkXlSW/+Axh+h6DQjDpqenv9pNEIQxR8a5MBmQcS4IIyex/U3Ghm9/+9s88MADFd9fsGAB1157LStWrGDJkiXccMMNw95395Y1o9HEiU3Q6mhaj+sCtchtYCCvrNJhQiiKgigo0nEeWxakUZbZtjq1kW0r8VcfyHSv9xM5lCg98ei3KYt5WQhDXnlBuMfPhly+PJO/s6vIUql0W30CepwFiaLTyfpk+LiMcv+EYXHiuw6rdhMEYcyRcS5MBmScC8LIqZpl/ZJLLuGuu+6qePv6179OoVDgW9/6FhdffDEtLS3D3ne6fgpnnXMBCxcuZOHChSxZsoSrrvk52axnTb3vwaU+d5yNXVvLSkosvuNhlj3zsvt85eq13HjrPb5tbrz1HlauXus+X/bMyyy+42HfNtf86DY2dm11nz++dBn3PbjUfZ7N5sa9fWa27Wt+cQdd27a5IueJgTe47/ln1fs2ZPN5rv7Xw2RTJXc/9y19kif+9awriiP3+z20lCf++azbx66t27jmd853t6g63YsffYJlK1ap13pKrOzfwqL7/+izri+67fesXLNu9Nu3M8fXsI4vuvN+Vr7R6YYwLLM3sPh/n/CV3rvmrnvp6ulxxfoTTz/PfX/5p3u8s7nxH3/D+v2cfmZzea7+2W/J5vKqzfVJ7tu0kieef0F5DABduX6uueMen9fH4iWPsOzZFWPXPodq/H+lfdI+aZ+0T9on7ZP2SfukfdVv35IlS1zNedY5FzDaWI888oi9/c2qQ2dnJ2eeeSbNzc3ua319fSQSCdrb27nlllvKPtPX18fJJ5/C1q1bfJ8TyrEHi9CfVzW4BwrqPluEP61TbuIn7Q6JGBRKcMvzcOgMOHAapOMqyVfGua9PYKXi1e6OD9u2lZDrc/ql+5grwS9egvmt8NYZStwVivDtZ+Dje8OMBq9fmbi6NSax4tGJGLFLqm/ZrQOkSzHoL6jjli3CTc/BER2wbxukE5Avqvj87zwNZ8+F2c0qNt/sY0MSKxGd/mnsYkn1Tfev3zmWvXm49jn43JtgSxZuWgGfPxCSMf+4rItDXRIrLub1WiabzZFOS2iTMLGRcS5MBmScCxOd7u5uWlpaWLJkCQ0NDaOyz+jN0A2mT5/O4sWLufHGG93bvHnzeO9738v3vve9ip+bscuCcWxlDWPG95qu7I1x6DESeNm2coNvcAR50M04glpoyDrdzYabv20rMQtO3DP+7aOWXA7c3/z7t/xOPTeTzKVTXr4BW9cit6GIynYfFssdwS4qrPAkc9qdvy+vEgPqNbmwcRnZvgnD5dof/6baTRCEMUfGuTAZkHEuCCOnajHrwyEejzN9+nTfa8lkkvr6etra2ip+bsNayTY5LEyRboqbhrgSQYAb+NwNZJLUVhKvgMjTyeIaUspKazub9ClXajfmuyy5XLT6Z1kWNnDJBR+EAv7mNSVV+TYz071ejMgYf/coL0YEKcutYEEKZWHvL6kY9jCBHtlxKYyEz1z0oWo3QRDGHBnnwmRAxrkgjJxIi/Uwrr322u1uY9ul7W4jUG5Vd7Ntx6Gn4GTbdhKwlVClwWopiVfMKu8jqP51GRlJ+3NK/FlWbYhXACzSqSSUHCu6e+zSKnO/LxO8s41ejDAXaPwPooUpvIMeEs0xFdbQX4SU6RFhhX9eqFnEZVKYDMg4FyYDMs4FYeRE2g1eGGNM0Wa6UjemvHrdNkoUgVdnPaR0WySp5DnQaHoOoPrXFBCDUXelDnPvt1AZ7XVZOm1dd5KwlYUtRHmhBcoXWXzu/kkl1PuLypvA/IyxbfRKCgqCIAiCIAjC8JiQYr15ym7VbkJt4BPpxuu6XnfW8VDoy6v7eC2KPfxeAKDEel/eq9PdV4RMyu9hEPU+WnDfY39Xj81j2BAP1JC3IVuAev25kFj1KPZPE1xw0TQ4sfkDRRWLD+Wx7ZHumDBczMyrgjBRkXEuTAZknAvCyJmQYr1YzG1/I4GKCby0u3RvTrm/9+egUX+khsRemFUdSyWS63a2KaHinuuS4Z+Pat+A5sZ674kZwjCQ80q3gXKD1zXkg27lEXb7V1bxCmO0IQkDJVXNoC5e7mFgbivUNE1N9dvfSBBqHBnnwmRAxrkgjJwJKdb7ujur3YTaIExs6wReDXgW2oESNASSeNWA2Au1qlsoN3/wEq8NFJX409sFxH0kXaljFu94ywH+uHwsFarQ7ah0V6yXIJUIt1CHPY8SYb+9hUoq159TY7Q+Hr4IEeV+CcPmiMOkuocw8ZFxLkwGZJwLwsiZkGJdGAFB0a0FbmPCKW9mq/u0GRdcK0m8DKusucCQcUrQ9TkW6P68ErlBF3/zPmr4LMmBhYgCXsk9G0+sl21fA4LWXDgxx2i9U14wm4eGQBZ/vY0gCIIgCIIg1DATUqzHE5lqN6E2CAptU+zUpaDXSUzWX4SmyjXII2l5hvAEcTFLidQMys0fVAmwOuOvEPXkcg5dW7eVx+XXOaJ8oODF5A865c00AY+KyB4/qJxkriGuhHpv0etzDbn4C8NnY9fWajdBEMYcGefCZEDGuSCMnAkp1ttmzqt2E2oCNyY4rMRZc1pZ1EGJ9VpN4hXmOQDQHPfqqw/mlPgLCvRIW54tfn7HQ+Vx+Qmdb8BJCmijEgWma/T4Bcelbm6dc/z6cbwiRKBPVH5x2/3VboIgjDkyzoXJgIxzQRg5E1Ksb1i7rNpNqB3CYrotlADSWeAHcrWZxKuS54Blqezvvc5ixEBeuVXr9/R9lC3rFnz24/8nPC6/GRXPrRnMK9f/sL5E2aoO5eNSv1afhF7neX3tJQcUhs9nP3VGtZsgCGOOjHNhMiDjXBBGzoQU68IIMK3JpnBrjEO34SbeUHtJvKygtdXnOWCI9W4cz4EQ9/eoitmgtdk8hg1JzysClEt8pvbc/IHwxQjwkgSCl4MgJDmgIAiCIAiCINQqItYnO0HRpwV4Y1y5hwNkc17pr5pL4hUm2FHl2/qdWusllMANCvSoW2crCdk6pwa5mw2+oMrxBT3fo94/oGwBRfdTC/QY5V4QNdEvQRAEQRAEQRiaCSnWW6ftWe0m1A5a5ARjuuvj0OPEdPcaCcrCrOtRJiweH5SnQE9O1SAHI0lZbVidLcti8d2PhAvZppTfsp43LOs1t9hCBS8CCxIol3/M92vj+AnDZ/EdD1e7CYIw5sg4FyYDMs4FYeRMSLGeHdha7SbUDmGZti0LmtIqeRc2DFA5iVfUBVEld/HGuIrr1hnhE7EK1tnodnDe3rurB2H5BvrzyrJu28qyngn81SvVXI8aYYsR7qIEKnwhTKCLdX3CMG/v3ardBEEYc2ScC5MBGeeCMHImpFgf6NtU7SbUDmFWdVBu4QA9TpK5+sql2yJNJaHXGFcJ9Prz0Ij/Pf058z6CLNh/r6G9BjR9QDpBTcXkayottliWcvdPG8nlaiV8QRgRCw7Yu9pNEIQxR8a5MBmQcS4II2dCinVhJFh+wa7vU87Q2Nin7tMBN2o3uVzEVVEloVefgh5goAgNCb/AqxUX/0pCtsHJN2DbgA0FIJMIF+gR7yJQOTY/m4M1/bBqY6h1PdL14wVBEARBEARhO0xIsZ7KNFW7CbVDmAU55iieRmB9HpIoMRR18RqGKfTM9jc5ngJbCn7rbNDFP8JdXvnqG+FCtj4GvU6+gYKTZU7H5ENNeUYowR0Q4palBPomVHLA296AlRv0B/Qnq9BaYSxYuXpttZsgCGOOjHNhMiDjXBBGzoQU602ts6vdhNoiaC3XgqgxAV0D0Bxwk6+pJF4VPAfSTjbxrgFPuDubm9tF2Tr7yONPqQdhXgO6BrlOoJcO1pHXe4lu/1xixjGMWRC34On1/m2WrfdvF6+BfgnD4k+PPlntJgjCmCPjXJgMyDgXhJEzIcX6ps4Xqt2E2qFSTDdAXRo29irLc9DdWm8bdU0UtqgQs1TbM6j+1SW91837iHfuwnNPDj9uugZ5vgQDee/9Wjt2mrjlF+pxCw7t8G9zaHv5dsKE4KPnnVLtJgjCmCPjXJgMyDgXhJEzIcW6MHwquhkDNKdgQzGQXM4Qh7Wih4IiXLe7Oa76Vxf396Vm3MQDx023V9cg789DtgB1evOQWPWodxFUv5Ix75aOw77tcMGusCAJH9sd9pvlvZ+wop84TxAEQRAEQRC2Q2L7mwgTnqB1Vou/esfirDPDl7m/W5F2EwfCrergWNZTwICqKR8U6G4CvYhjLq6A5zWQQpWlyxahIbBIUSsJ9BysmIWdikPRhpITgx+3YP9Z6qYt6amYc4tj1UjfBEEQBEEQBKESE9Ky3ta+b7WbUFuEWdVBZRUHp8Y65dnEoy7UMWLOTau66TkA0BDIdK+3iziLfn5vuVXd9RqIQX8BBkuQDIQxmNRAPwGshGNRz8S9e/OWdm6puNpWmDDceOs91W6CIIw5Ms6FyYCMc0EYORPSst6z9fVqN6G28MWs41mVGx2xXmeIn5pKLqcJE+xAgyPW6xO+zWrF8nzMUYeUW9XB8xroK6ps8CkzE3wNhjE4WKk4dtyCeAlKJZUJHtSSY8yxqEus+oTj2KMOqXYTBGHMkXEuTAZknAvCyJmQYj032FPtJtQWlayzDc7waIiXC/RaEnvBLPeaetNzIESgR7x/e87ZBXsgX37cABqTSqyDtxhhbuNq9oh3MoAVj2FnLLDjTh15dWzF7X3iMnePXardBEEYc2ScC5MBGeeCMHLEX1TwC1TTOquziv9jLazqKrfK1oo+CnoO6Ftvn3ptQ49/W4i8Vd0jsMig7xtSnht8JhG+Tc0cQD+WZWHFLKx4DCtuiVAXBEEQBEEQJiQTUqzXNbRVuwm1R5h1tqtb3XcCv1oLKzeEx65HnaBV3bLU4sM/HJF+Vyes2lhzYnbZMy+HHzcLZU3vy0OuoGK5w7pSK8dPmNQse+blajdBEMYcGefCZEDGuSCMnAkp1tN1rdVuQo1h+d3gtdv4cxv8mz3VWZsxz2Hx+Ms6/dssW29sT030bfnLa8qPGzjx+HGVDX7AEeuamsw5IExmlr+8ptpNEIQxR8a5MBmQcS4II2dCivWtXa9Uuwm1RQxPxOoyWIkYHNzh3+4tHeq9uKU+UyuWWcvy2q37GOzbwe1OvyzvN4j4v+P0DxynHpiHwXWDj0M2BwN5yMTKYtVrarFFmNS441wQJjAyzoXJgIxzQRg5EzLBnDAyLMvCjsc8QRu3IBmDeTPhHAv+3amE+jxD0NZSrHAMr92JGCRt2LcdzgX+1amEuu6bK9hjtZF8LcyqDlCXgG0liBW8bP41lDxPEARBEARBECY7ItYFRcIR6EVbPdfW6Dd1wP4dnrU96dxqqJa1uxiRtKHk3ED1bb8OJVwTMUg5tbwTVu30L8yqrpMD5lBu8JlAXyrVXBcEQRAEQRAEITLUiCIZGTN2WVDtJtQcVlzVqSYdV/cZ45aOK0ttJq6EeiqOlYxvf6dRwmk3yZjqR11C9cvsZ8roXw3U677mR7epB2FJ5hqS6r4bp856SKx6LXgOCJMed5wLwgRGxrkwGZBxLggjZ0Ja1jetX17tJtQmSe0uDeQdS7ttK1EXs5TFWQvaGsOyLOxkDEhAvAgFG0pG/+JO/5K107+zz3gPFZMDmn2oS4QLdNHqQg2gxrkgTGxknAuTARnngjByJqRYLxYGq92EmsSylBhXLuMlxyXeBrxYditeG0I2DCtmQTqOnbAcsR7sX6wmLOqa6dNasbVLv690m/OkEejFq7NubidWdaFGmD6ttdpNEIQxR8a5MBmQcS4II2dCinVh57DiFsSVm7tt27WRaG0EWPEYOF78E6J/Qau6rinfkIBeo3SbGatu6QeCIAiCIAiCIESR2jWTDkFDc3u1mzBhqHkhux1quX+PL11WXi/d7E8mpe5NEa+3qd1uC5OMx5cuq3YTBGHMkXEuTAZknAvCyJmQYj0eT1W7CYIw5vT09HuLDUGrOkBzCjLOxmGx6iLYhRqgp6e/2k0QhDFHxrkwGZBxLggjZ0KK9e4ta6rdBEEYc05812HqgeX8jYNu7n19MAis7vKEeVjmeEGIMO44F4QJjIxzYTIg41wQRs6EFOuCMKkwS7Jpwb5qI6zMq8e3vQGvbCx3lxfBLgiCIAiCIAiRZUKKdcuakN0SBB/ZbE49MEW6LuO2bL1/42WdhlVdhLpQO7jjXBAmMDLOhcmAjHNBGDk1oWo3btzI17/+dU499VT+4z/+g/PPP59XXnml4vYzdlkwjq0ThOpw7Y9/ox7ELSXEY16JPQ7u8G98aIf3fgyIxWo6uZ4weXDHuSBMYGScC5MBGeeCMHIiX7qtu7ubT3/60xx55JH87Gc/o7m5mbVr19LQ0FDxM+tf//f4NVAQqsSb9p6iHliWKkWnRXsyBvNnwrnAvzqVUJ/fDomYX9QLQg3gjnNBmMDIOBcmAzLOBWHkRN6yfvvtt9PS0sJFF11ES0sLlmUxe/ZspkwZ6g9vj1v7BKFa/OlPfwLAilmQjCuRnnbuM3F4Uwec/WbYr0O9lop59yLWhRpBj3NBmMjIOBcmAzLOBWHkRN6y/s9//pOOjg6+9KUvsWzZMlpbWzn++OM566yziMfj1W6eIESDZAyKzv/BAooxKNre87ilLOupGKQS4gIvCIIgCIIgCBGnamL929/+Ng888EDF9xcsWMC1117Ltm3bePHFF/nCF77AV77yFVavXs3ll19OMpnkzDPPLPucbduk0k10d3ePZfMFoeq8/Moa3zi3SzbkS5AvQsGGkiHWYxbYcbBiWKXIO9QIgktwnAvCRETGuTAZkHEuTHT0+Lbt0fPyth555JGq+IwPDAyQy1XOChmPx2lsbOTjH/848Xic//mf/3Hf++Uvf8njjz/ue02zceNGTj/99DFpsyAIgiAIgiAIgiBUYvHixUyfPn1U9lU1y3pdXR11dXXb3W7vvfdm1apVw95vW1sbixcvpq6uTlx9BUEQBEEQBEEQhDHHtm0GBgZoa2sbtX1GPmb9lFNO4VOf+hR/+tOfOOqoo1izZg333nsvH/jAB0K3j8Vio7aSIQiCIAiCIAiCIAjDobGxcVT3VzU3+JHwl7/8hRtvvJF169YxdepU3vve93LGGWcQi0nsrSAIgiAIgiAIgjDxqAmxLgiCIAiCIAiCIAiTCTFNC4IgCIIgCIIgCELEiHzM+kiwbZtbbrmF3//+9/T19bHPPvvwmc98hjlz5lS7aYIwYm644Qb++te/sn79ejKZDAcddBCf+MQnmDFjhrvN+vXrufbaa1m2bBnJZJJjjz2Wiy66iGQyWcWWC8KO86UvfYnHH3+c7373uxxyyCEA/Pvf/+bHP/4xa9asYcqUKZxxxhmceuqpVW6pIIyc5557jkWLFvHiiy8Si8XYY489+MEPfkAsFuOVV17hBz/4AS+99BINDQ2cdNJJnHfeeZIsV6gpNm/ezHXXXce//vUvcrkcu+++Ox/72Mc46KCDADmfC7XJn/70J+666y5eeeUV+vv7+eMf/0g8Hnff3975e2c06oSyrP/mN7/hvvvu4+qrr+auu+5i//3359JLL2VgYKDaTROEEWNZFpdddhl33XUXt956KwCXX365+36pVOLyyy+nqamJ3/72t/zkJz/h6aef5vrrr69WkwVhp3jggQcYHBz0vdbZ2ckXvvAFTjzxRO69914uu+wyfvrTn/K///u/VWqlIOwYzz33HJdddhnvfve7ueOOO7j77ru56KKLsCyL/v5+Lr30Uvbff3/uuusurr76an7/+99z++23V7vZgjAirr32WjZu3MhNN93E3XffzVFHHcXll19Od3e3nM+FmqWxsZFTTz2Viy++uOy94Zy/d0ajTiixfvfdd3P66aczd+5c0uk0F1xwAfl8Xk4CQk3ysY99jHnz5pFMJmlsbOTMM8/klVdeoaenB4Cnn36aV199lYsvvpiGhgba29v5yEc+wh/+8AdyuVyVWy8II0NP7v7zP//T9/oDDzzA7Nmzef/7308ymeSggw7ixBNP5M4776xSSwVhx/jJT37Cf/zHf/Dud7+bTCZDPB5nv/32w7IsHnvsMUqlEhdccAHpdJq5c+fyoQ99iLvuuqvazRaEEbF27VqOPPJIWltbicfjnHzyyQwMDPD666/L+VyoWd761rdy3HHHMWvWrLL3hnP+3hmNOmHEem9vL52dney7777ua/F4nL333puXX365ii0ThNHhH//4BzNnzqSpqQmAFStWMGvWLFpaWtxt5s+fz+DgIK+99lq1mikII8a2ba6++mrOPvtsZs6c6XtvxYoVzJ8/3/favHnzWLFixXg2URB2isHBQZ577jlisRif/OQnOfXUU/n4xz/Oo48+CigXyr322svnVjl//nzeeOMN+vr6qtVsQRgxZ555Jk888QSbNm2iUChw1113MWvWLPbcc085nwsTku2dv3dWo06YmPX+/n6gvLZdY2Oj+54g1CpPPvkkP/vZz7jyyivd1/r7+2loaPBtp4W8jHmhlrj77ruxbZuTTz657L2+vj5mz57te62pqUkEjFBT9PT0UCqVePDBB/nmN7/J3nvvzRNPPMHXvvY1pk2bRl9fX9n8xTyfB8/1ghBV9t9/fx566CE++MEPEovFaG5u5qtf/SrpdFrO58KEZHvnb9tWhdd2VKNOGMt6fX09oCzsJr29ve57glCLLF26lK985StcfvnlvPWtb3Vfr6+vL7vAaRd5GfNCrbB27Vp+/vOfl7m/axoaGsrO6z09PSJehJqirq4OgHe/+93Mnz+feDzOkUceyUEHHcTjjz9ecZyDnM+F2qFUKvG5z32OqVOncvfdd/Pggw/yuc99ji984QusWLFCzufChGR75++d1agTRqw3NjbS3t7Oiy++6L5WLBZZsWIFe++9dxVbJgg7zkMPPcQ3vvENvvzlL/POd77T995ee+3FunXr2LZtm/va8uXLyWQy7LrrruPdVEHYIZ555hm6u7v5xCc+wamnnupmBf7KV77Cd7/7Xfbaay+WL1/u+8zy5cvZa6+9qtFcQdghGhsbmTVrVsXM7tpFuFgsuq8tX76cWbNmiZARaoaenh7eeOMNPvCBD9Dc3Ew8HueII45g1qxZ/OMf/5DzuTAh2d75e2c16oQR6wCnnnoqixcvZtWqVWSzWW6++WYSiUSZyBGEWuDOO+/kBz/4Ad/85jd9FnXNgQceyG677cb//M//0N/fz/r167n55ps58cQTSaVSVWixIIyco48+ml/96lfceOON7g1g4cKFfPzjH+fd7343a9as4e677yafz/P0009z33338b73va+6DReEEfL+97+f+++/nxUrVlAqlXjiiSdYtmwZ73znOznyyCOJxWLcfPPNZLNZVq1axeLFi6WklVBTtLS0sPvuu3PXXXfR19dHqVRi6dKlrF69mn322UfO50LNUiwWyeVy5PN5AHK5HLlcjlKpNKzz985oVOuRRx6xx6xn44xt29x8880sWbKE/v5+5s2bxyWXXMLcuXOr3TRBGDHHHHMM8Xi8rGb6VVddxYEHHgiosla6znoqleLYY4/lk5/8pIh1oaY55phjyuqsX3fddb66vDK5E2qRX/7yl9x999309vYye/Zszj33XI444ghAJSn6/ve/z0svvUR9fT2nnHKK1FkXao7XX3+d66+/nueee45cLsf06dM57bTT3Jwkcj4XapH777+fq666quz1a665hoMOOmi75++d0agTSqwLgiAIgiAIgiAIwkRgQrnBC4IgCIIgCIIgCMJEQMS6IAiCIAiCIAiCIEQMEeuCIAiCIAiCIAiCEDFErAuCIAiCIAiCIAhCxBCxLgiCIAiCIAiCIAgRQ8S6IAiCIAiCIAiCIEQMEeuCIAiCIAiCIAiCEDFErAuCIAiCIAiCIAhCxBCxLgiCIAiCIAiCIAgRQ8S6IAiCIAiCIAiCIEQMEeuCIAiCIAiCIAiCEDFErAuCIAiCIAiCIAhCxBCxLgiCIAiCIAiCIAgRQ8S6IAiCIAiCIAiCIEQMEeuCIAiCIAiCIAiCEDFErAuCIAiCIAiCIAhCxBCxLgiCIAiCIAiCIAgRQ8S6IAiCIAiCIAiCIEQMEeuCIAiCIAiCIAiCEDFErAuCIAiCIAiCIAhCxBCxLgiCIAiCIAiCIAgRQ8S6IAiCIAiCIAiCIEQMEeuCIAiCIAiCIAiCEDFErAuCIAiCIAiCIAhCxBCxLgiCIAiCIAiCIAgRQ8S6IAiCIAiCIAiCIEQMEeuCIAiCIAiCIAiCEDFErAuCIAiCIAiCIAhCxBCxLgiCIAiCIAiCIAgRQ8S6IAiCIAiCIAiCIEQMEeuCIAiCIAiCIAiCEDFErAuCIAiCIAiCIAhCxBCxLgiCIAiCIAiCIAgRQ8S6IAiCIAiCIAiCIEQMEeuCIAiCIAiCIAiCEDFErAuCIAiCIAiCIAhCxKhJsf6lL32JY445hieffLLaTREEQRAEQRAEQRCEUafmxPoDDzzA4OBgtZshCIIgCIIgCIIgCGNGTYn1jRs3ctNNN/Gf//mf1W6KIAiCIAiCIAiCIIwZNSPWbdvm6quv5uyzz2bmzJnVbo4gCIIgCIIgCIIgjBmJajdguNx9993Yts3JJ5885HalUolNmzZRV1eHZVnj1DpBEARBEARBEARhsmLbNgMDA7S1tRGLjY5NvCbE+tq1a/n5z3/Oddddt91tN23axDnnfwK7WCCX7XFetZg5+yA2rF2GbZcAaJ6yG8Vijr7uTgDiiQxtM+exYe0yd1+t0/YkO7CVgb5NAKQyTTS1zmZT5wvuNm3t+9Kz9XVyg+q76hraSNe1srXrFXebGbssYNP65RQLKta+obmdeDxF95Y1qnVWjBm7LJD2SfukfdI+aZ+0T9on7ZP2SfukfdI+aV+NtG/96/8GbPVd6SZy2R4WL17M9OnTGQ1qQqw/88wzdHd384lPfML3+le+8hWOPvpoXwx7XV0ddrHAKyuep7m5ebybKgjjxlnnXMAvf35TtZshCGOKjHNhMiDjXJgMyDgXJjrd3d3suuuu1NXVjdo+a0KsH3300RxyyCG+104//XQWLlzIoYce6nvdsixKdpHm5mYR68KEpr6uTsa4MOGRcS5MBmScC5MBGefCZGE0Q7FrQqxnMhkymUzZ6y0tLaF/+kKufzyaJQhVZZdZo+NeIwhRRsa5MBmQcS5MBmScC8LIqQmxHsYjjzxS7SYIQlV597vfXe0mCMKYI+NcmAzIOBcmAzLOBWHk1EzptpEQT5Rb4QVhonHwIW+rdhMEYcyRcS5MBmScC5MBGeeCMHImpFhvmzmv2k0QhDHnF7fdX+0mCMKYI+NcmAzIOBcmAzLOBWHkWI888ohd7UaMJn19fZx00kls27ZNklgIgiAIgiAIwg4wODhILperdjMEIVKkUqnQXGqgssG3tLSwZMkSGhoaRuX7ajZmXRAEQRAEQRCE0WdwcJA5c+bQ2dlZ7aYIQqRob29n1apVFQX7aCNiXRAEQRAEQRAEl1wuR2dnJ6+99pp4qgqCg66jnsvlRKzvDK3T9qx2EwRhzFl8x8Oc/oHjqt0MQRhTZJwLkwEZ50JUaW5uFrEuCFVkQiaYyw5srXYTBGHMmbf3btVugiCMOTLOhcmAjHNBEAQhjAkp1gf6NlW7CYIw5iw4YO9qN0EQxhwZ58JkQMa5IAiCEMaEFOuCIAiCIAiCIAiCUMtMSLGeyjRVuwmCMOasXL222k0QhDFHxrkwGZBxLgiCIIQxIcV6U+vsajdBEMacPz36ZLWbIAhjjoxzYTIg41wQxodbbrkFy7LcW1NTEwsWLOBHP/oRhUJhTL979erVWJbFLbfc4r52/vnns8cee4xoP3/+85+54oorKJVKo9q+K664Asuyduizt99+O6eddhq77747dXV1zJs3jy984Qv09PSMahsnIxNSrG/qfKHaTRCEMeej551S7SYIwpgj41yYDMg4F4Tx5be//S1Lly7ld7/7HW9961v59Kc/zVe/+tVxb8eXvvQl7rzzzhF95s9//jNXXnnlqIv1neG73/0u8Xicb37zm9x///188pOf5H/+53844YQTItXOWmRClm4TBEEQBEEQoo1t22ADtq1esCyw2GHrniAMl4MOOoi99toLgHe9612sWLGC73//+xUFez6fJ5FIjPrY3HPPiVFu+t5772X69Onu86OOOoqpU6dy3nnn8ec//5ljjz22iq2rbSakZV0QBEEQBEGILnaxBINF6M9Df8G55WGwqN4ThHHkLW95C93d3WzYsMF1V//xj3/MpZdeyqxZs0in02zduhWAO+64g7e//e3U19fT2trK//k//4c1a9b49tff389FF11EW1sbjY2NnHLKKbz++utl3xvmBt/X18fnP/959txzT9LpNO3t7Zx22mmsX7+eK664giuvvBKAZDLpuvOb33vZZZcxZ84cUqkUc+bM4Rvf+EaZdftf//oX73znO8lkMuyyyy587WtfU4tnO4gp1DVvectbAFi7VnJy7AwTUqy3te9b7SYIwphz4633VLsJgjDmyDgXJgOTbZzbuSIMFNRtsOiJ9UHvdTtXrHYzhRGwrGjzjbzNsuKOC77x3G+QVatWEY/HaWxsdF/7xje+wUsvvcQNN9zAnXfeSSaT4frrr+e0005jv/324/bbb+cnP/kJzz77LEcddZQvPvsTn/gEN954IwsXLuSOO+5g3rx5fPjDH95uO3K5HCeccAI//OEPOf/881myZAk/+tGPmDp1Klu2bOGjH/0oF154IQCPP/44S5cuZenSpQAUCgXe/e53c+ONN3LJJZdw33338dGPfpSvfe1r/H//3//nfkdXVxfHHnssXV1d3HrrrVx33XXcf//93HTTTWXtOf/883fYm+DRRx8FYN99RZftDBPSDb5na/nKlSBMNI496pBqN0EQxhwZ58JkoNI4t20bSig3cduGmAWWhRWrXTdxO1+ErHPLl6BoQ8kRYjEL4pZ6boMds7ASE9KuNKFYVrR5fx7WATcW4Re2zQHxnd/vM0U4uwCdwKIi3InNgvjojP1isUihUKCnp4fFixdzxx13cPLJJ1NfX+9uM3PmTO68805XrPb29nLZZZfxkY98xCds3/rWtzJv3jwWLVrEZz7zGZYvX86vfvUrvvGNb/D5z38eUK72vb29XH/99UO26xe/+AVLly7l7rvv5pRTvFwWH/zgB93Hs2erRNpve9vbSCQ8KffrX/+axx9/nEcffZQjjzwSgOOOOw6AK6+8kssuu4wZM2ZwzTXX0NfXx4MPPsiuu+4KwAknnMDuu+9e1p54PE48PvKDuXbtWr785S9z/PHHc+ihh47484LHhDwD5gYl86Aw8Zm7xy7VboIgjDkyzoXJQNg4V27ijmt4n+Mq3leAgTx2rrhTLqvVwi7ZkHNEer7kWdL7CzDgPM6VvPdzRfUZIdIsKSmhDkpYH1+Amdmdvx3vCHVQ+//9KEZHzJ8/n2QyydSpU7nooos466yzyizL73vf+3xW5aVLl9Ld3c1ZZ51FoVBwb7vuuivz58/nscceA+Bvf/sbpVKJ008/3be/M844Y7vtevDBB2lvb/cJ9eFy//33s/vuu3P44Yf72veud72LfD7PX//6V7cfb3/7212hDtDQ0MDJJ59cts9FixaNOEt+b28vp556KolEgptvvnnE/RD8TEjLuiAIgiAIQq1i5ypYngESFhRsKMax0/HasrKXbNX2fMl/e2k9/LsTDumA+e1g4VnZ0zbqBSGqnBRTlu91QDvwiwSjblnvAN47iibGO++8k9mzZ9PU1MTuu+9OJpMp26ajo8P3fMOGDQAcf/zxofucMmUKAOvWqaWLmTNn+t4PPg9j06ZN7LLLji1Sb9iwgVdffZVkMllx37p9+++/f9n7w2nf9hgYGODkk09m5cqVPProo64XgLDjTEixXtfQVu0mCMKYs+yZl1lwwN7VboYgjCkyzoXJgDnO7YKyKLtiXQt2UOK1YEHScBtPj4IqGi/0wkPJVo8LJVi+Hn7lJKB67nX4iAX7dbiu8BRtqKEuTkYWxC3uxOb3JSWoR8tV/R0JuMsa/f0C7L///m42+EoEY7Xb2pS+uOWWW3jTm95Utn1TUxPgifz169czd+5c9/3169dvt13Tpk3j2Wef3e52YbS1tTFnzhwWL14c+r5OZNfR0RHaluG0byjy+Twf/OAH+ec//8lDDz3EAQccsFP7ExQT0g0+Xdda7SYIwpiz/OU1299IEGocGefC9rBtG7tkYxftmnWZ1uPctm3IFz1X8GxRuYrr+0HnvZzhJl5LmdO1ANeCvQT8q9O/zT/X+bcb48RiwuiwIG5xedIaVUE9lvvdEQ4//HCamppYsWIFhx56aNlt3rx5gIolj8ViZaL5tttu2+53vOtd76Kzs5N777234jbpdBpQVmyT97znPbz22ms0NjaGtm/atGkAHHbYYfz1r3/ltddecz/b19c35Hduj1KpxFlnncWf/vQn7rrrLt7+9rfv8L4EPxPSsr6165VqN0EQxpzTP3BctZsgCGPOzo5zW0/6cVxpLWrLbVioiBK2JSg6lmcbiIEdiylX8USsZup1u+Ncu4kXnb7lDDfxf3XCwR0w33FVjas+1orlWcXY67rqePXVF8yEF97wNnxzu/7A+DdSEIagubmZ73znO1x88cVs3LiRE088kZaWFtauXcujjz7K0UcfzYc//GE38/uXv/xlSqUSb3nLW3jwwQf5wx/+sN3vOPvss/npT3/KmWeeyRe+8AXe9ra30dPTwwMPPMBnPvMZ5s+fz3777QfA9773PU488UTi8TiHHnooZ511FjfffDPHHXccn/vc51iwYAG5XI5XXnmFe+65h7vuuov6+no++9nP8uMf/5h3vetdXHHFFaTTab7zne9QV1dX1p4LL7yQW2+9dbtx6xdffDG//e1v+eIXv0hDQ4MbHw8qIZ64w+84E1KsC4IgCJMbu+S42Ba0kLPBUjGwdiKmhJyI9prFLtqQc5KRFQ3rqwXESpCMQQrsZI0dZ+0mrvtUspVQ/6XjJv7863Au8KYOw528RE2odfAEOsb9nOnQ8Ab0AWfMUs9NQY+Nbds1s/AiTGw+8YlPsOuuu/Kd73yHX/3qVxQKBXbZZRfe+c53ctBBB7nb/eQnP6GxsZHvfve75HI5jj32WH71q19xxBFHDLn/ZDLJgw8+yJVXXskNN9zAlVdeSVtbG+94xzuYOnUqACeddBIXXXQRP/7xj/nqV7+qvItsm2QyyQMPPMC3v/1tbrjhBlatWkVDQwN77rkn733ve0mlUoBytX/44Ye55JJLOO+882hra+P//t//S6FQ4Ktf/aqvPcVikWJx+2UU77vvPkCVu/vGN77he+8rX/kKV1xxxXb3IYRjPfLIIxNq6bKvr4+TTjqJbdu20dzcXO3mCIIgCOOMT8gVHNEOSsglYsoimYpBKoEVAddKYWTYJRuyBcg6buIFI6ZbJyVLxNQxziSwaiim284WVfb3waKXHf03y+B5Y7K8fwLOOgjqEpCJQ30C6hKRF7N2yYaBvNOvoldjPVeE65+GxgycM08dN923TBwaEuo4Rrx/E43u7m5aWlpkPi0IBtv7X+j3lyxZQkNDw6h854SMWZ+xy4JqN0EQxpxrfrT92CdBqHVGOs5VaaiCF987UPDH+2qBkHXifcXVtvbQ7uE6AVuuFHJ8i15MdyH6Md3uOA+6iINyEzc5qN2xOBvUwjAO65u+3wbkDTdbM/eAa2EXBEGYfExIN/hN65dXuwmCMOacfcZ7qt0EQRhzRjzOCyV/Aq5s0XMnjjkWVz3xt3Cs7LVjeZ3s2LYNpZIX061F+Yvr4V/rnJhuJ+Y5bqljnrQjP9txx7ntLCy4YhbYYzp0vKHqYp0xC+ZOV+9pQVtLSfV8Qh0v27uNWmixbe//6d7XUP8EQRBGmYhfvhS33norDz74INu2bSMej7PPPvvwiU98omLJhWJhcJxbKAjjz/RprdVugiCMOSMZ57Zte8nGirYScrkSLO9Uybne3O6v4VxU29t27SQim/ToBGyFkhfb/WIn/MIo/XUOKqbbLRMW/WM8fVqr5+WhkyKawjZZD/TDHtP84jUobCNNSHI5UCIdVMw6+K3uvth1QRCEyUdNiPVjjjmGD3zgAzQ1NZHP57nzzju59NJL+e1vf0s8LhYRQRAEAVUGSgt1Hce8fL0h5NbC2Rbs164s7Frs1VB+rkmPFuC28fipQOmvf3XCvu2BMmFE/xgHRWnJEK2DWe+xuU3weZQJc3+3gd6celx0XqiV/giCIIwDNRGzvttuu9HU1AQoy0ksFmPLli309PSEbt/Q3D6ezROEqvD40mXVboIgjDkjG+e2X8yVbOUabfJvXcPZEOqiDmoH89jq5wsC1/xgjDcQ9WP8+NJl5f0Cr9nbnARzuVL4+xHvH1Du/u5keqc/75mO8oH++UovCoIgTD5qwrIOsHTpUr7xjW/Q19eHZVl88IMfpLW1NXTbeDw1vo0ThCrQ09Nf7SYIwpgzonFeNMSAnuQvaFcWdY0WdqbVUnRA7WAeW30/ZxrstRFW5OC0dlX6q0zsRRt3nJuCHbyFJcewTrYADUlvWwLbR5mg+7u+7y/C9CSsc7Lg1wX6VyPdEwRBGAtqRqwfdthhLFmyhO7ubh544AGmT59ecdvuLWvGsWWCUB1OfNdh1W6CIIw5IxrnroAzhNqcaXDQVvh3HxzW4sT8Em7FFCKNiunWcegBwR5LAzlobzU+ELiPMCe+6zDsYslvddbjcsDIkj5QCE+8VgN9DE0uZwN9RWhIA3nVv1a9vSyoCYIg1IQbvElzczOnnXYa3/3ud1mxYkXoNun6KZx1zgUsXLiQhQsXsmTJEq665udkszl3m/seXOpzr9zYtbWsRNDiOx5m2TMvu89Xrl7Ljbfe49vmxlvvYeVqz2qz7JmXWXzHw75trvnRbWzs2uo+f3zpMu57cKn7PJvNSfukfdI+aZ+0byfbt+jn9/qEzqLfP8TKdeshXa/a17uZxY8+4bO2XvPT39Ilv19NtG/Rrff6vCcW3f0AK9/oVGJucx/LshtY/L9PeDuxba655Xd0bdrqHu9I/342PPH3p7nvsb+7QjWby3P1b+8iaxegERgscN8/nuSJp593+9S1eRvX/LgGjq+ROG/xQ4+xbMUqtUF/kZWlbhb1Pw2DeXTHFt35ACtf88JYqj3+qv77VaF9giBURv9/lyxZ4mrOs865YNS/x3rkkUdqbr2yWCzy3ve+ly984QscddRRvvf6+vo4+eRT2Lp1S2ixekGYKGSzOdJpCfkQJjbDHee2bcNgAfoCNdZzJfjtK7CiFw6dBifsApm4utUl3HurrmYczSYtdrEE/QWvlvqAc4zzRbjqGbXR2XvA7i3q2KbjUO8c44YkViK69olsNkfKiqv+9BtjeLAAL2+GP76ukiIe0QH7tkEm4Y3j+oQawxEvQWgP5L1jpo9ftghLXoXGFKzogiN3gflTa7J/E43u7m5aWlrYtm2bzKcFwWF7/wv9/pIlS2hoaBiV74zulcvg9ttvZ/PmzQBs3bqVa665hkQiwf777x+6/YxdFoxn8wShKlz7499UuwmCMOYMe5ybbsO+xzZs64eOFGx1ynoGXaixvbJZQnQpi1d3jtk2J6C7FSX+9LbmfcRDHdxxbjZTt7mnCHUpSCZgMFCHPfiZiDJkWbqeHDTEVf8G9PGrrf4JgiCMFTUh1p988kk++tGPcuKJJ3LhhReyZcsWvve979HW1ha6/Ya1kiVbmPh85qIPVbsJgjDmDHucmzGweqJfdF7YWII9WqF7wB/PDv5azkK0CS6y6GPdNQBTLZWYLChmayTe+TMXfahyNvieIjSlIe2IdXOsQ230MfgfM8X4oCPW08na7Z9QcyxdupTTTz+dWbNmkUqlaGtr44QTTuDWW2+lWCxWtW2rV6/miiuuYOXKlWOy/6VLl/K2t72NhoYGLMvi3//+96jte+vWrVxxxRU89dRTo7bPSpx//vnsscceO/TZX/ziF7zjHe9g+vTppNNp9thjDy688ELWrIle3rOa8Pv71re+NaLtbbs0Ri0RhOggLvDCZGD449wuL9sGnqVuTh383XkczBReIxnDJz0l/MdOH7euPEypV2W/XLFerUbuGOl0ClsnkjO9AGxUaEdjSsVzDxrzm2CytqgT/N/pxZbeAtTHlLt7tkL/BGEUufbaa1m4cCHHHnssV111FbvvvjtbtmzhwQcf5JOf/CStra2ceuqpVWvf6tWrufLKKzniiCOYO3fuqO//wgsvpK6ujnvvvZf6+nr22WefUdv31q1bufLKK5k9ezYHH3zwqO13tNm0aRPHHXccl156Ka2trSxfvpyvfe1rPPjggzz//PNuyfAoUBNiXRAEQRCGpJIL/KZ+yADTG6CIim9OxCrUcbbGu9XCMLFtG/RCfDFw7DYNwrR6FeagLbP6fXO7CONmujetyq4bfBZmN6rxnC0GLNTuDsazuSMnGJYAXpt7gfqUilM3j5+5fcTDGITa4bHHHmPhwoV86lOf4gc/+IHvvVNPPZWFCxfS19dXpdaNHcViEdu2icViLF++nC9+8Ysce+yx1W5W1bjkkkt8z4866ih233133vOe9/Dggw9y2mmnVall5dSEG/xIaZ6yW7WbIAhjjmRsFSYDwx7nJUJc4IHNOZiagjonOdXWbE2KuUlPUMAWjQPW1QfTHbGXK5V/zryPKPc9tDRQ2sxocF8WGuMqYV7Wsb6XifSId1AvRJiLajZQcI5XY8rpX957H2qof0KtcNVVVzF16lSuvvrq0Pf33HNPDjzwQPf53//+d44//ngaGxtpaGjguOOO4+9//7vvM0cffTRHH3102b722GMPzj//fPf5LbfcgmVZ/PWvf+Wss86iubmZWbNm8f/+3/9jcFDlVPnzn//MMcccA8AJJ5yAZVlYlsWf//xndz833HADCxYsIJPJMG3aNC688EI3t5fGsiy++MUv8u1vf5s5c+aQSqX44Q9/SDwep1Qq8bWvfQ3Lslw38n/84x988IMfZPbs2dTV1TFv3jwuv/xyBgYGyvp155138o53vIPGxkaam5t561vfyj333MPq1auZM2cOAB/72Mfctt9yyy2hv4fZ1iuuuMJ9vmLFCs455xzmzJlDXV0dc+fO5ZOf/CRbtmwp++xoosOrE4lo2bInpFgvFnPb30gQapympvpqN0EQxpxhj/Ng7W1Qj7cUoK0esKDNcpKR2eXiTyx30cYMV/AtstiwIQ9TnZjuMstziPiNIM2NDeVCVov3vjw0xSETU5niwZ9rwe1itPvo75/zuN8R55kJ0L9Jjr2qG3vxK9iruiO732KxyCOPPMK73vUuMpnMdrd/+umnOeqoo9iyZQu33HILP/vZz+ju7uaoo45i2bIdz491zjnnsOeee3LHHXfwyU9+kuuuu84N+T344IO57rrrAPjBD37A0qVLWbp0qetS/vnPf56LL76Y448/nnvuuYfvfOc73H///Zx44ollsfa33HILv//97/nud7/L73//ez784Q/z+OOPA8oVfunSpdx5550ArFmzhoMOOojrr7+e+++/n0suuYSbbrqJj3zkI759/vCHP+QDH/gAM2bM4NZbb+W3v/0t73//+1m9ejUdHR3ccccdAHzhC19w2/7e9753RL/PG2+8wa677sq1117LAw88wJe//GUefvhh/uM//mO7nz366KNHFMdeLBbJZrM8/fTTLFy4kP322493v/vdI2rvWBOtpYNRoq+7s9pNEIQx54jDFlS7CYIw5gxnnPtciINx6FsGYLoj+BvqYGuhPE5dLOs1gF2ek8BGlQErAtPrYFUfdDuZ4U1h6H8QSd7xtgNhIO8XsiVnXHcDDWnIFDzLukktJGAz22cem948JAHLUmK9Vvs3ybFXdcM3/w1bcvDQWuzPHgB7jELM7+oe+O9nYKuz38sPwpqz42Xkurq6GBgYYPfddx/W9l/96ldJp9M8/PDDtLa2Asravccee3DllVe6wnSkfPjDH+bKK68E4Pjjj+dvf/sbv/71r7nyyitpbm5mv/32A2Dffffl7W9/u/u51atX853vfIevfOUrfPnLX3Zf32effTjiiCO49957ed/73ue+bts2Dz74IHV1de5r2no8e/Zs375Nt2/btnnHO95Bc3Mz5557Ltdddx1tbW10d3dz+eWX8/73v9/Xd1PcvvnNbwZg7ty5vv2PhCOPPJIjjzzSfX744Yez11578c53vpN//etf7neEEY/HR2QZnzlzJps2bQLg0EMP5Y9//OOwFnLGkwkp1gVBEIRJhCveAlZy21ZifV6Let6WgW2F8izTprVWiCZmnLqboMyGjX1QByTjkDYss1DmAm/bNpYV1bwEIV4D4Ln1N6YgMwC5fPk4N3YR2bQLYVnusdUCRYvT6Eysdvs32fnHRiXUQd1/+cnR/44tOfjnRtgJsT5SHnvsMU466SRXqAM0NzdzyimncO+99+7wfoOW5gMOOIA//vGP2/3cQw89RKlU4qyzzqJQ8M51b3vb22hqauKxxx7zifX3vOc9PqE+FN3d3XzjG9/g9ttv57XXXiOfz7vvvfzyy7S1tfGXv/yF3t5ePv7xjw9rnztKLpfju9/9Lj/72c949dVX3RABgOXLlw8p1h9++OERfdfDDz9Mf38/L7zwAt/61rc44YQTePzxx33HvNpMSLEeT0RrRUQQxoKNXVuZPq212s0QhDFlWOPcdJcNioKNBWh1Mso3p2Btr/e+z8JuR1zMTXKC4Q368aa8WoQBJfbyplg3Fm0ivhbT1bWVaZkG9cRsa68jgDIxFdM9EMh2b3qHRJ0w63pfEXTFh0wc+gP9q/EwFbvoLCLq9sctsCys2AQ7z7xlOjy0VgnqKSkYTcv6Nc94+z10+k7trq2tjbq6Ol599dVhbb9582Y6OjrKXm9vb9+p+OmpU6f6nqfTabLZ7HY/t2HDBgD22muv0Pe1hVgT1vZKfOQjH+GPf/wjX/3qVznooINoaGjg73//OxdffLErlvX+Z8+ePez97ghf+MIX+OEPf8iXv/xlDj/8cJqamnj99df5wAc+4BPuo8GCBcp777DDDuPoo49mr7324vrrr+fzn//8qH7PzjAhxXrbzHnVboIgjDm/uO1+PvupM6rdDEEYU4Y3zm2vrJcpwAeL6vWpdRCzoDUBLw6GW+C12J9gc+gJg+/Y6uMHbMp5YQ5arFcq+RXh4/vz39zPZ887zT9+bRt6ctAIYKkEejpJddhCRJT1bNhCmo0S6w2OWE+H9E9vZ97XAHbJVqUE80XlFaLHnmVB0sJOxiFuTZjFQWtOM/blBynL96HTd8pV3cd+U0Z1v4lEgqOPPpqHHnqIbDZLOp0ecvupU6fS2VkeWtvZ2cmUKVPc55lMhu7u8pj6YNK3nUW7sD/44IO+7w++rxnu+BocHOTuu+/miiuu8GVJf+aZZ3zbTZs2DYC1a9ey//77j6jtoH6nXM6fVyy4wABw2223ce655/Jf//Vf7mu9vb0j/r6RMnfuXKZOncqKFSvG/LtGwoQU6xvW7njSB0GoFUSoC5OBYY3zSi7wm/vVVS4dVxPlliRsCtSyllrrkUeVbTPd3/GO34Y+2KdVPU7XrmX2s//3Q8qFP5gQr7cAjUn1uC7hifhod6ecshwCzuP+kifW65x+motn5vMawS7ZKvY+V1KCXedaAGVZL8SgYKvxmopXt7GjiDWneUxc1Ed7v5///Oc5+uijufTSS/n+979f9v6qVavo6enhwAMP5KijjuIPf/gDPT09bt3tnp4e7r33Xl/29913353f/e535HI5Uik1nh977DF6enp2qI16ESGYif2EE04gFouxZs0aTjjhhB3adxjZbJZisUgymfS9rrO4aw4//HAaGxu54YYbKiZhq9R2UL/Ts88+63vt97//fdl2/f39ZW25+eabt9uPneW5555j06ZN7LnnnmP+XSNhQop1QRAEYRJRyQV+Sw6mJZU1C2BKHRRQE2iptV47BL0mTMvz5gGYPl0d43QC+p3P1JplVvfHfezceouqBjmo/oESgcl4jY3fwH9T3/fnoDXtJJhzhGvW6V+Zh0SU+6ewbVsdn2xJVSYIE+tJ77kds7ASE7IwU2Q58sgj+e///m8WLlzI888/z/nnn89uu+3Gli1bePjhh7nxxhv51a9+xYEHHsiXvvQllixZwnHHHcdll12GZVlcddVV9Pf3+xK8nXHGGdxwww1ccMEFnH/++axatYr//u//pqWlZYfauM8++5BIJLjpppuYOnUq6XSaefPmseeee3LZZZfxqU99iuXLl3PUUUeRyWR47bXXeOihh/joRz/qln0bCS0tLbz97W/ne9/7Hh0dHUybNo2bbrqJtWvX+rZramriW9/6Fp/+9Kc57bTTOOuss2hqauLf//43mUyGT3/608ycOZO2tjZuu+02DjzwQBoaGpgzZw5tbW2cccYZXHDBBXz2s5/lpJNOYtmyZWULAqBi7W+99VYOOOAA9tprL+644w7+8pe/DKsvxx13HK+++up2reNHHHEE73//+5k/fz6ZTIann36a733ve8yePZuPfexjw/7txgM5QwiCIAi1TViWcBvYnFcu8KDm+G6t9cFwy2uUxdykxghzAE+wF0rQC7Q1qNlMxhGzYZbYqB9bc9yaCw29RWh2xGzKmbJlKyfRiyJ2mdeL8WZPDhoczxfdv8GQ/kXcM8KlqK3qjlDPlVTFgoGCCssZLHoi3nGTl5J0489nPvMZN4nYf/7nf3Lsscdy/vnn88ILL/CTn/yEk08+GYADDzyQP//5zzQ3N3Peeedxzjnn0NjYyKOPPurGOgMcc8wxXH/99fztb3/j5JNP5uabb+YXv/jFDicpa2tr40c/+hHLli3jqKOO4i1veQtPPqmS9n3zm9/khhtu4LHHHuP000/n1FNP5aqrrmLKlCnsvffeO/yb/PrXv+aQQw7h4osv5vzzz6e9vT3U8+BTn/oUv/3tb3n99dc566yzOO2007j99tvd+uqxWIwbb7yRLVu2cPzxx/OWt7zFTcZ33nnnuVn0Tz75ZB544AG3dJzJD3/4Q0455RS++MUv8qEPfYienh5+/etfD6sfxWLRl3yvEm9729u45ZZbOPPMMzn11FP56U9/yplnnsmTTz7puvtHBeuRRx6ZUGeJvr4+zj7/El595Smam8cvY6QgjDeL73iY0z9wXLWbIQhjyvbGuW3banI/UFRuxFnnPleCe1Yrq91RHRCPqfjRG56B42bDPlOVuMvE1a0+AXUJrAnkljpRsPPOMR00jvFAEd7ogZtfgc8foI5vfwGueQ4++yZoSHrHNe3c1yew4tG0Ufzmtgc5/V1Hlo/hu1fBlAwc2aFE/FVPw/l7wqwmtfiUiSv3+EwcGpKRtNLaJec/GjyG2SLc9By8owP2a1NC9+qn4Zy5MLu5ZvpnYmeLqna8KcyzRVixEZ7uhEM6YH67v1/1Sax49DwGuru7aWlpYdu2bTKfFgSH7f0v9PtLliyhoaFhVL4z2me9HSQ7sLXaTRCEMWfe3rtVuwmCMOZsd5xXcoEHFbM+JamsdjGUdbIxA1uMuHXTcjehlq4nEKHH2IZNgzAzAVh+y2y26P+seR9BbNtm3l67hlueu3PQmPBmaw04lvWQbaNMaOk2HDd/IyKzAcg5/TPDAcDvcRBBbNuGkuP2rr19Cja8vAF+vRaeK8LPXoeX13vvl5zPCIIgVGBCivWBvvLMgoIw0VhwwI67OwlCrbDdcW66vgddiTflvbJtmql1Umu91qgU5rAxD9MavJwE+n6wUC7wopykzIYF++7pPvYlSRzMQpPh7VEXU/HQelsIX6iKEmELJnrBpR/lBaGpM8rTuZ+vkYUJ37HDyQJvw7JANvEn16l7cywLgiBUYEKKdUEQBGGyUCGeOV+EHDCtTok4C3VrTsK2wXCR79RaF6KDOh6GFdI8XpsGYGrGObbOdKae2rM8mxbkYHz3FtsTs5YFqaQKAcDYVu8jsth+Iavv844o19ngdf8GS/7tnF1EnkrHcUG7f7uD2iVXhiAIw2ZCivVUpqnaTRCEMWfl6rXb30gQapztjnNzYlw0BNqmQSXiMnGvvrGFcovfZpSUCau1LkQHbaHUj83jtaUPpie9hRiA+piKFdbbQ/Qtz9isfPWN8mzwRRuKQJNRCzqdUGI2zEU8qt2DcBf/3ry6T8e845dJKM+BoDU+6v0DQhclbGAXpx52EjhjFuw5w93c3U4QBKECE1KsN7XOrnYTBGHM+dOjT1a7CYIw5mx3nJdCJsjYsDULM5x45phzA2VZ31zwT/6l1np0sc1jYyzK2DZsLEGb6TlhQTJhuInXjmX2kcefKrfK9jtitiFhLEYY/QNqwkW8zP0d1e6+PGTAt9pSl/As63q74MJEVAnzHgDYllP3ezTCnOni0SMIwoiYkGJ9U+cL1W6CIIw5Hz3vlGo3QRDGnO2O82ANbj2p35SH1jojnhn1eGod5FFlv7RrNfgmzkKECB5Xfby0AJqS8W+fNMRe8FBG9dDacOEZ71WPTTHbnVXWWMvy3PxNy7rxed9no0al5HIDBWhy+qUXXDJJf84Bk6gL2uC5RC+89GTV6705b9tayKUgCEIkmJBiXRAEQZj42LYNdiC+VU+Ut2aVkLNQVnVtmXRrrWe9HUn8aHQxF2JcEWTDpn6Ygt9rAjzLc824wFNZzPYXoNWYplmoMnTZvH+7qItYCLeu9xYhnfKEOiiX+GzBv5177CLez6D1311YcvrTlwv3FJDzjiAIQ5DY/iaCIAiCEEGC1lZf2bYB2LXeEwFatGMpkdc9CDPrh96HUH3CkgfaQFcepjR4Qk8L9kzATRzK45+jhjn+MB73FCCT9ovZTAw6HfFXJvyUO7VlGYsXUSDs/2UD/UVo0snlnFsmBn0F/2eN+0j2T2N6gZj97CmoEoPrncSHwTwZeruI0t3dXe0mCEJkqMb/YUKK9bb2favdBEEYc2689R5xhRcmPEOO8+Dk2HQ93ZyFKY4QiDluxFbJqbVeJ7XWawCf50TREHs2sCkL0+v9Ql1bnrUbddDyHFULtA2LbvsDF5767oDIK0JLiJjNFkL2EdG+QXhyORvlOVAfKK2YiTl11vV2NeQubgdyJegx2JOHWc2wfjPkSpCIVwi/idYiRCqVor29nV133bXaTRGESNHe3k4qldr+hqPEhBTrPVtfr3YTBGHMOfaoQ6rdBEEYc4Ye5wErlra8FkowgIpPdy2vePHrUzNSa70WGMrroasPDppWrm9SMdhqWJ71fvwPooVtc8xhby4Xef15VdbMzHafiUG+4G0bLG8WPc2H+7sHj2NfHqbX+ftXF4NcvnLivEj2Dy9BXHDREGDLIMxvVY97clDvlOKL+CJhJpNh1apV5HK57W88TFa9+gZzdp81avsThGqQSqXIZDLb33CUmJBiPTfYU+0mCMKYM3ePXardBEEYc4Yc55Xca7cMqscNziXOtLxaQHMK1veHW+aj6ko8GQk7Pjor/IYctDklzeKWsrxry/NAiBu1Mz6idmx1Hfm5s9tVyTlT5G3LwjSnj2ZMd3+gNF3QgyBC2MFFBbOJvTmVId0U6+k49AW2rYUQlaDru+nqPjAIzQloBHqzMKM+cM4hkscOlGAfTVGy4IDmUduXIEwWJMGcIAiCUJuEucBjK7E+PQZYSsiBJwgsYEoCuqXWevSxlQgPHueBAhRw3OCN4wue5dndRcDyHDWC480UpAM5aDTKtmFBOgn9+rMh4zZqfazUP9uGbA4anISPWOpYphMwiLeNuR/zPmqYv39wgWKTrRYIm5IqqR6EHztBEIQQJqRYr2toq3YTBGHMWfbMy9VugiCMOUOO8zAXeBsVj95iCLmYIwTcWuspqbVeC+g4dd+CjK0ywWeAVNzL9K+PtY55DnOjjmrcc+n/Z+/P4yS7yvt+/H3uraX37umemZ5NM6ORhPaVxQZhCCZgsI3xgjGOIY6x88vvGye/xOTnOCGJE9uJY+sbW7HjmG9iFBswBsmYVTCAQAIhIbFImtG+jpbZZ3qm967t3nO+fzzn3HvurdutHmm6u3qo5/Wqqeqaqlvnueec5zyfZzXsf+yZrGfWGJiJBKwDAmaRPuSazuUlT4tFvwDMaOHHp95y+lkfxHY8v6adVwO0bLTEcBX6qwLWHV8/gF0ounpLl7p05nROgvVq78haD6FLXVpxeuKpF9Z6CF3q0orTkutc59q2OSV4sgkberNt25JQeCUt3Zp0e613Ovlh7z64OWlD4JUH1P0w6oVFwqg7cVrtmn3iwMH0PcdzDRhwrc28avcArUVaFnYkkxR41w00gIFyjj/raW/kPdB0Pn9F4fozNt+7J5TK97O5HvL5NXqOU1dv6VKXzpzWRc76//7f/5t7772X48eP09PTwzXXXMM/+Sf/hM2bNxd+fmrimVUeYZe6tPr07p9981oPoUtdWnFabJ0bH8Dlw08nFuDyUa9tWw6wu1z26UYKfn4AvVwdT/k8dRCv8qkmbO6Xv13EhDZImHhJQC6skzBq4fHdb3uj5Ky7dVi3YHXAqwYPUkDP/X++UFnH8QaFHmeAujU29FseHH8l+6IepW3dfO96p1LeYOjk0WwDhgCU8DpRy37e6yHfafUUVoK6ekuXunTmtC4860opfuu3fovPfvazfOQjHwHggx/84BqPqktd6lKXurRmtFj/bWNgqg6jXnE5X/91vdZHELBeVAn+B8TL1ckkxhiTNca4eTmxYD3rZIuTKVLjSz4XuFPDqH0jk+9FnrUe2XKQ5dOBuVqrHcR2Io/+vPljm/f4A8+YpqBMlr98xftOJX8u3ZinIxi0RQIHQwHv/ufdZzuZry51qUtrSusCrP/jf/yPufjiiymXywwMDPCLv/iLPPPMM8zOdqu+d6lLXerSDyZZBTef1xwbmANG+7Iedf9ZKRjshamWfLfba73zaCljzOQCbCxn59RREkZd0PM6+6IzqMgjixEwO2I/kxTRc5Eh2F7rHRze78j3hvvF5eab0Afg1ZJw1I+NLPD2Yqd71916zRsnZiLJVwcB6wuegTBfDb5DWetSl7q0trQuwHqevve97zE+Ps7g4GDh/2/efvUqj6hLXVp9uvHPPrnWQ+hSl1acFl3neU940u7KlpIesOG1PkD3PZPdXusdTjljjAPskYZZYKwvO6cO8DlPbWPx9m0dRwZu/Ku/s6/tGGcj6Kt4PJIaJfoCzxhh3+vUqJD8nnLDW4hh0EZB5CMHekopf8l1cpESnUamwDhkgLlW6lnvr8Akuc95fHUqb2eRunpLl7p05rTuwPp9993HRz/6UT7wgQ8s+plTx59YxRF1qUtrQ+99z9vWeghd6tKK06LrPJ9jnnhd6zCaq/6uClq4DVUE2Pserlyv9S6tIfkAz4+eOG2NMYO+McZv36ZEs6nnDDH+dTuJLJ/v+6k3Z9fybAwD1fRzfv2FcinN+e5k3iAbGg7pnM7H0oYuHzUAUC6nOfudZnwooEwveV8WgcijoZLwN2TnM9IFxkbozAk8u9TVW7rUpTOndQXW77nnHv7jf/yPfPCDH+Q1r3nNop8rVXr5pfe9nw984AN84AMf4NZbb+UPb/wYjUYz+czer97DXffsT/4+OTHVZvG75dNfz7SZOPDcYT78kc9nPvPhj3yeA88dTv7e/9BT3PLpr2c+c+OffZKTE1PJ33fds5+9X70n+bvRaHbH1x3fGY9v08aRjh4fdPb9645vfYxv08aR4vF95nb2P/y0/KENBw4d5aa9X4PTLRjqBaW4ae9tHDh6PAE6+59+llu+cZf8PVKCqTo3fuYLTEzPJIrz3d9/iL1f/06iN6/3+7eux/dI2s7swKGj3PTl2+BUHcZLgOKmr3yNA0eOpfN74Dlu+dbdEl5dlzDxG2/+HBOT08l17773wc66fx+6mYnT02wcGZbxPfQoe793PyxIgbVGq8UNN3+aRjONFNg7/Sx3P/1UAgwnJqe58SOfzoRSd8z8Gpg4Zcfneddv2f999ken0vEdOcZNX7pN/ugtQU1z0147v/Z7+x95mls+c/vZHR9nYX4t8N7/2DPc8uVvZsL9b3zqLibCuq2nEHJ37RB7v/09b3wtbviLm2nUz8H9WzC+TRtHOnp8PnXH1x3fcsd36623Jpjzl973fs42qTvuuGNdmPJuu+02/uRP/oTf/u3fXhKoz8/P85M/+ZNMT08zNDS0iiPsUpe61KUurRaZWgTuUY/Tx1cOiRfrrdslf9k9QgW1WFpC1SJ4fhr+9jn4jaukX7f7XG8JekPoLaOcN75Lq07Gn1v33Ijhm0fFW/nO86Uyel9JQt/d/zdiuOlheMN2uGRUQqrd3PaVoLeEqoRrzR5gPbL1SELCa5GMfSGCpoa/OwDjffAjW6QdXSVM+fv8czBShTdulf9zvFVD6C+jqp3BHyyxT798EEohvGVbO39fekHm7c3bUv567Tz2lVE9ncMfgImNFMSrxdk129Jww4Pwvj2wY1AiRP7kQfi53bBrWHiq2rmzc6jKncVbl7rUpTOjmZkZhoeHufXWW+nv7z8r11wXnvXPfOYz/Omf/im///u/vyRQd9Q/tGUVRtWlLq0t+ZbFLnXpXKWidb5kpfCJBdhQzoYNu1DpTK/1Xunz7Hqt+7m/PyAhqZ1KElZssoXl3POpGoz2ZlvxZSrCr88w8bsfeCQb8j3XkIJk+Wr3kOZ0m9x1oKPCxpN59HOykzD4luTe++R47SmlaQz5VIaOTE8xFIa1t7QUnhvpST86VIK5KPla5vOdyNpZpq7e0qUunTmtiz7rf/qnf0oYhvzWb/1W5v0//MM/5Kqrrmr7fBhWVmtoXerSmtHs7MJaD6FLXVpxKlznecXYrxQ+U4PRTe2Vwh0QcACvzx5/M7bXugP/7po/AIpzx5Khvco/yBydmodLh7Pz6RcOBKh4YDYP+DppXr3c5pm5hWy+80LTK8CWW8eVEOaa6TWgQ0Es7Tnrjuab0D/YXjwPJGJiygFabx1kX3QOZdao9/6MbdPWG6ZrtLcixQN9AxR03tpcIerqLV3q0pnTugDrd9xxxxl9fmbyhRUaSZe61Dn09re+dq2H0KUurTgVrnO/9RF4iq+BKaTSu9+2zT0cOU/7MDDVgE197Z6/DvJQ/sCRPxcOrMX29UkNY70kLb/yXmcQQ0zdqybeBvg6hDxjwtuvf5WET7uxTiHVw1HtYLYngBO27WBbNXEpjqh848VakQ/U80aXehP6bch33hjRG0g6gH8d0u93DH+O2uQQwuNsA4ZA5jAAtLRxm4vT7/6AdaHo6i1d6tKZ07oIg+9Sl7rUpS51KaGMUkwKCKatt9H1NVY5oBOoXK91274Nsopy17O+trRYisOsnd8NPdmWbcqqMs4gUy1q/WWfOwoQLRE+DTBYaY8McWC2HuUv1nnedd+IkDeYTBvoLZMYIyCdv94QWi3vOh5fHcZiQj6Pbj5nImnb5ncr6C9LVEGhYbBTmetSl7q0lnROgnWlzkm2utSlDPnVMbvUpXOVCtf5YiHwUzXxZCmV9bq2hcPbP0Z7YapVnDvaUaDuB4z8PHV/ficWYAQpFriYV10hRbsai+Q8dxrZddZoeODUhbi7Qmp+rQUQz3orageH0Hm5z0XedWMgAgYqxXNYtcaIoh7knRgursmuWZDX01FqOAwQHgfD1KjoPgeZqIFzmbp6S5e6dOZ0TqLazduvXushdKlLK07//c9vXushdKlLK06F67woBB7gVAuGe9tD4CFXYA6v13qj2LtJt9f6mpEDP5AF7CdbsKG/fX7zOetVz/PcyTnPHsj+k49/Rl4YI2C9l/Y166gaSOVx8EAs6fc7hnJg243N9VDvy+XkK+Sfagj51OZOTWUAb2zeGA0w17KeddL5GyhBvVFsaPkBiOjp6i1d6tKZ0zkJ1k8c7lab7NK5T//yn/7CWg+hS11acSpc50Uh8BqYbMHGXvnbBwA+qAu89zeUYLqWvS5kPXpdWlWSSv82DDzOgZ/Ttr6AP495MKsQz3Nt6ZznjiAviuNf/OJPp+Oci6RquJ/LDR6YLcO8u0bBmu0Q9rJedW8uXeRAKciCdPfUW4Km/XA+asB/7gDKdC7Iy6TJhlck0P7TX4ZJ16nAXkR34NytEHX1li516czpnATrxugX/1CXurTOqVrtdj3o0rlP+XW+aFsvkLZeGyrteeqQ9b6694bLAvDzRZ785y6tLuXTEPwicyfnYWM5O7dtYBbxPLd8sF4A+DqBPGBXLZfTNTcXSdVwR35evkK6F2h7gU7iJ095T7ONWJFK9/YzST63N5G9ZXmOct70JAS+g5j21ypkDX61OgyXUqCukDoEEVn55T7fQWytFHX1li516czpnATrXepSl7rUpXOUDO1tvRzomVmA0XJ7CLwP2P2w+OEeqNvrdXutdwYVGUwcYD/ZhFGbAxx685gHfD0hNNdBznORNxakWvhiRRJBwDqkhegKUjg6gvK8uecFLR7mPG9u/io2V78Rp9/rVM+zP658wbhTGgZcET3L24A1RMwXVPPXnchgl7rUpbWmcxKsD23YudZD6FKXVpz2fvWetR5Cl7q04tS2zjMe8Jz39ZSxlcJzIfD58Pcgpzi7fsg+kDsHPevGdEYevjEGE2lMI8bUIkw9xjRjTKzlvvvGE/dcj6GFDYP3jDAZsGefKyHMm/yP2ueV5u5MKF2/e7/9/XRtzzehr9zOm+O7alW3etx2qY7iLwPUvcd8DD3l9HP+flWkhpjaIhXvO4lHTDtQN0CkJfphpCcnixSUEZmzWIHAc5i6ekuXunTmtC76rJ8pxXG32mSXzn0aHOxb6yF0qUsrTu3r3GQ9kk7RnbOeqpEeefaLc+Xzm5P3lFSPn65Lrru73jnUa93EBmJtoxEMoDCBgpJChatvrzexhmYMTZ01iLg5ckAtHzUxMQ9VpPhYvgaBNtmIiZ4SNNwPFgChDphWkwNqQ3196Vinm7Ctb5FUDlLQXoukOr5cMH3uAP6ALED352E+lnBwWNy73gPUW8WAtpPIl0H+EF2bwV7XS56Ux5HA86zb984hmbMUdfWWLnXpzOmcBOvzM8fWeghd6tKK0+tfe/VaD6FLXVpxalvni4XAn65BP+1tvcIcUM9XEB/qgclzr9e6MUbCpJux3DPnrXa8lwNMOYRKgPLzhVdyTLEWgNnU4nl0Y/Kru7v5yoO0iSZsrBZHTeTJhYn7Rh3oTCBr6forL5Wwb2OkWvhArm2bIzdXfQiYpQAodgotViV9odUeOeDI/d2vvDB4ss+dBGjb2tLZ92bqNi8/J4+Ugp4qzFreziGZsxzq6i1d6tKZ0zkJ1rvUpS51qUvnKBWFwIMUiisKgYfiyuEO9GzogenO67VunDc88TwDQYAKXxxYG2MEEDsPtg+MQapwOwBPCbMKgN1ok46npQWI+WNyQN0ZUzIRDkhbvk398ndRSzN/+FULdJuxhMQXtm9bHQPFouSDu7xndsrmdEM7fwmYDaBRUFXcf15DSgpBFnnX57zaA1DsXa+UoO7468CoAUd53ty9n44keiAT4m8ZHK5IXYIimdNp/HWpS11aczonc9bDUs9aD6FLXVpxOjkxtdZD6FKXVpza1nkRmDYIWB/z2rblgTre3+5PhRTy6qBe60YbTCMWD3QtknDZ+RYsRFBrSZ73i4Ex51Fv2EfdXq9u/3av3eeiVeigEussUG/qdGzuUfPG2tLZOTkxD2O5Sv+hap9rgLJ9ri/evq0jyAN5E5PTqRGqBQxV27sX+GC2XABm3TU7hXwQ649xoQX9YTZP3QezAOUy1HLGCHedTuJR024kMcBMLAUsE/JAe39F9nQ+6sN/PkepU/QWYwwmtrUzYi2vz/F736X1S+ckWB8bv3ith9ClLq04/fUnv7zWQ+hSl1ac/HW+aNs2g7RtG6m2gzmQtld+eLxfmGykBFP19AfXsNe60QYakYBMB2B9wF2P5f8akeSiF10j8oC6A8R5wN7S2Ue0CopqZFJPemzkd+sxPHYMbt4vz85A4fiOdAr4JhdgY6W90n8+IsAZZkLkWnkwBB0C9rLe1I99+Q55e94aGPqcZ91L2fB5rZTkPuU9sp0CZjNA3X8YqDUFrEOWJ38qB6wxIm9k6QTefMp71B2fs00YrGYLyzkaLImB0H0/Y3w8t0FjJ+gtJtYiR2vWEDrXEgNSPRLwfg7f/y6tTzonw+BPHN6/1kPoUpdWnH7jn71nrYfQpS6tOGXWed6b7gPr6QW4aqQdzAVKzNJ5753fa32q2a40+8+rQGmOuU4BtQtfV5YHF75u+TaVUiYsPlFCmzkw7oDvMyfhwePwyq1w6RYoBxY8a9ChANyV4s14QD02Mp6nT8Anj8iHHj0Mv6Bhz2Y7X144fKRhBtjYl81vz8xtDrz3Ie3b8qHYMqCVYfRMKOd1/o1feKdEFsw2ZB5c7r4PYP3X/eXUs45/rRUd9fIpD9DxnmewvdT9EPEA0Om+rJbSMH//mtAx0REZ42Ge16kGXOR51gNSI+FACLUlqsEb1jxLY6VorfUW4wyZLV2chhMZqISrkhrUpS4tl85JsN6lLnWpS106B6kIALgq5ye15J/7ACDvScd7HwTYjfRAjRfptb4KSpsGWp7X2+WcOw+6A+qOLNumGqLCQDztfk64A+kO9D9yDD57XL776CH4FQVXbPNy11eQT9+w4kdF7M8Vg735KFw2D3sG4YJh6C3JHE3ayIdB6232IyMWy+nuDQvAXgcB2nzKhVtr8y3YkA9/Lwj1d2DW56XDwGyhdz02stYHKu0V4B0phL/5ZucZWXzy1zVkjYcLdRgaba+VARI1MJMrnteWgtOls02ZqCMH1p1MVaTGSycKKytkvexSl86QumC9S13qUpe6tE7ItPfgBvFIgi0wZz9alLP+Yr3WN/Vlw4hXU3GOddbr7JTKp08KqL1uC1y8pf17xmCqJQvOcznhPvB3QN3R/cfgsq3edVaQN5ObL/f6ynF47Gj6uTeOQiOE7x6DWw/DeAnOHwWX5/rcKbh4XF4rlTXCQBbcrpecbkfu3szGUi0830veJ4UU0ZtrZq/TUWA2F9HgxuZ6p/da9bOoABtATwAT9rMmdy0bKr7mnk9/TPm89dPatqdzBkP7HaUkPL5OGm3iqAvUV4wKC1w6wA6yz3xPewimFKDy3Ri61KU1oHMyZ31k4wVrPYQudWnF6ZZPf32th9ClLq04Zdb5YiHwpxakL3MpaA+Bd0A9D9KT/1dpr3UfVK62l9IBdf/x9En4xGF4NIa/PgyPH8vmoTuAXo+yHiNXOK6lIYrhi8/L/fHpui1Z/laST/+e+sBtbEieLwngH2yH158Hb9oG778c/n+XwqvG4cAJeNqC0k8egQMns6338rncjipeznPeO7sKU2q0sYWr7CN/f3OFyW654y4Z11wEQ5X0c37EQB7M1pYGs2tKGa+6t2/nm8JLPsw//7onyBYITK7bSWjWtAN1g01fQYpXJlPmrVNX6b8WZb/nR1ico7Rmeosxaa2MJHJJS62MT+yTZ9/bHpnVKbzZpS4tg85JsN6oTa31ELrUpRWniy/audZD6FKXVpwy61xTEAIPnG7CaK5NUlExucV6rQ9WYSrXa915vVYD2PltrnzFf18uTPyBYzmgHmcVTz9PvWkVz28dh+dm4B9fCsPACPCL22H3Jm8AK8xg3sji5nCqBgPAT18BF26W0OeeUMJPh6pwzUYYy4Wi7j8mQC/0Abv9Px/Q9uVynlcpBN5oI3mxtZYUi5uzBaxcJf/YW1+Q3JuLz9tuwWwE/dX29QrrC8wWFZfDSCGvYfuZfJ0BSHntCaDZWjqve60pHy3iaNYal1z0gDMKOjlUCkT7nmm2R0V0SoHAFaI101scCPfrZjx5HD5+GB6J4WOH4IkcYF+kiGeXurTadE6C9dr8qbUeQpe6tOJ09ZUXrfUQutSlFafMOs9XgQd5PRnBWF/6ubxnXSEhs/n8UQcSRnulL7LvTc+Ht64k5T3O7jevHs9+LuwRBdIVofO97M04GwIfG3h4Au4+Ae+5ULx524fg8s1w/sbs72gjhpDV5m8yst5HOzclJWDdPSqhFMPz6dVb08r+oUq1mDygXYOc7qSafy2S1IxalG1LV7OV/CNrdfKA7NV7dstFZhpSgMyRb4yA9QNm83Punudj6M33Hy/4fm8g981dK/O81sxZ8g0SvhFqpi5GKL/WQD4/f0RJlIG/DlYjymWNac30lnz6lDZi/PTpvmPp/9k2ii/aJrNLXVoF6uasd6lLXepSlzqe2rzP/vNkTfLNC72RXlVfFQBxe6/1oYoUMStUmFchPzb/u055370ROAJbgVeMwp2nYeQYXO+BeD/KIGnFpuHgNHzhMPz8eTDeL5/pr4rn1gdzfiTBStFiRpapSAwljkIFlYC0EJmBy7fA+5Uo0q/ZJjnr5UAepUWQ3hrkdAtQj1MjSktni1UFCsomB6oL7v1CU8B6Hsjm119Ph4PZDFD3HvNx2pYOPO+690BJGsO8u1bO69wJxghY3CAxE4tMyRsk/GievqrUJ4B2Q8s6I2PSdb7mdQQWpZxc1wauGodHj6QfuXo8C+ZjY+e0U3nq0g8KnZOe9UrP4FoPoUtdWnE68NzhtR5Cl7q04pSs8wSc55QuYwSsj5aLQ+D9Uy6gODx+pFzcaz1TqXuFKQ9kfV5/5mJ43Xnwjy6Ae4/D149KLnq+1VvTAvXTdfjkc/D3t8KFo2nI+EAorcGgAPisTJ7zoiH+BvFADnm90wHCAHpKEsbeax9XbINfvg4u3yogvGLBeiXMVYb3lOrqKud0x7q9gJXrbV+Ls+kLDsh79+LAkWMyzrmWVAvH46fNC70OwGxRjQKAhVgqwUOWL/c39u/esuR9u7XTiZSrO5DwOxNJGoejIMcnyLqfi9uNZisd5XIWycQa03ARJBJRYmpL9ypfC70lMSbkUxbO35SmZPzYJkkNciDdzW03FL5LHUDnJFgfHNmx1kPoUpdWnG7/5n1rPYQudWnFKVnnPgjJe79PRjBiKy/nQ+D9gnJ5UJf0Wi8V91p3v7Hi+popBjdzLXkeqEjv7a0D8P5XwCMn4UuHsq3eWlr+XojglifhqjF49WYB6mUPrC80vZ8tAHkrwFphCDyIkWVDgZGlHGTD4R1o7wkFrNuHKofZ+fRzuqurl9NtjLFFxew8uvmox1K46m8egEePZucqt67uuP9BwMActq1ZzqgE6w/MQrt3faElnvU8SM+H+/dYg0XLIte2/dgBTLcZDu1jtgWDPe1pN5DOZ39V2vT5+241olzOAhlj6zIsRDKfC1H6qNlHs6CoImukt2SiH8imLCRrsCz/mYTLm27eepc6hs5JsH7q2GNrPYQudWnF6dd++afWeghd6tKKU7rOPW+Hr3DVY3l/tDerEMPi+b4q95kNvbBANlwbVg8YLFblfrouVdwDBYH1Jo/1wq9cAi9Mwmeey+artzT87TMw0ANv2WaBeiDfBQHrc63FjRIrQf5c5Q0Sky2JaoBcT3EEkPeWpF96rwXtnrddLdYD2c/pbnlgPd++7Wyyq2kH6i2dLWD1EVvAKileRebe/+rb35K2mhssqAaff93BYDYTTZE31sw2oX+JnHxnkKjaNetC/SFlqQPwU8JjkZFtqg5DOR79avAge3FmdaNczgYZY9JoHhc94moyZN6zgD3Hx5roLUXrUNs3poDdfXBoPnu+eKC9U+eiSz84dE6C9S4tTSbOtZQ5hwSRMeac5q9LXfqBpcVC4B+0fbqPTi4SAp9DO0v2Wm+m1/XB7EqLkMW8z9MWzDpA43K1R6rwy5fB1ALc/LQoyFEMXzkE9Sb8/B6pOO0+77zP/VWYtT9YlCe7DD5TGbvc4kseUHe/oY14ouvASG820sFNVzlA9ZbEg9xbFm9sTwnVW0KFnupSFAIPAtYbUXFo+Fk/EzwvnOMvNnD/0ezHvn/UMwjlQDakOfYVy19bC0LWB5jNr2f/ftdb0Bd482bfz9eRcHwutNrnrRMqpucNPr5MWmjAUKk9T93neSC0BeZIv+eez7Yx6WySawvpUj4cQPeLKbqUj0bUIe3PTLuhF1Lj2JUb4NB0eu/zNTY6gYUu/UBTt8DcDxCZ2EiYZKRtCySTVNQ1VrHr3OIgL04mst6M2OPPtvgx5RBCta7561KXfqDJtW3zPYgHJuD20/L3J4/AewO4bEt7XrqjPEjHfUZJ9ebpGoz1tIP0ZXqdjV9JWCPGAlu5fEnZk+fLKetTEQx5DdLDIGtg+KVL4Oan4EMP2xBj4J9eIl7XSpiC9YYFdC5XuKmhFC7ijS0ep3FeY63T0FAFJgyhrLIAeknenCHCehX7/fZWePMj41DBi8jsohB4EP4X8mPxDAZnk2KPPz/EdtsGePJ0+rmrt9hw+SBdzz6wnW/AoGUin76Bx6cPZuteF4NOArP50PCEx1bqWc/n5DtK+pEjgI8VmreXQ76MyEennI7T6Ij8unS8DZQkXH41o1xeJpnYpFE8rhOFn9ahlC36iMi9WIxyprTGumWR4ciQRjZcMCLFOGuRGDn9ee0WmetSB9A56Vkf23LpWg+h48hEWvq+Ouun/+zyjOrxumxTkeRPuVwpv2XOgvd3QUjWeqYPf+Tzaz2ELnVpxSlZ53lvh0F6bvvkenBDe/EqyAL1fGGy4UV6rS/Dy2WMwbRs6Od8Sx41L5ezHmPiJdwzeSXd/eZsC4Z70vEGCPiu2rZmfSV43agUGnPAdHIm61UPVTY0HFIPrvst99uL8GliLaCpHqXhrjX3kHPFNOPiLxcZIVyI/whk21vlIh+WQ4VpDkoMFo7NlxhFsGwyFAP2sldk7Oe3wq6N2R7OHoC46ctfk+rgA+Xs2s3nPDv+APqwefkdBmb9e5wHSbNAn60vsZR3HcQD39DZa3YMoM0Bdbe2Iw0RaUtCKChqqQTMz9svrvT6PAsk4e9eAUX3cF70J47DLfvh8ePp/8UGoix/a6K3FBYMNVJsc0xJis2ogoMzsk517tHNW+/SGtOyPOvPPPMMpVKJXbt2Je/dddddHDp0iG3btnH99dcThovkj60BzU4dWushdBSZ2Iii5QtZzzOSWBIBAoWprDMPe2yylXb9oiCKtF2ONqCsx2mdknGeKQNvuv46UaJfzGvXpS6tY/rRN74ymx/qA/Z8651rt8hzohRnZZlSCpMH7I429AhYz4NX95tLUavAy+SoFEAo3lSTD+GGpXNfJ+tw0XDWK5eXX4+ezP790Ampmu5AvQtDdd7qfgSsb+rL8on3u/74nHx1Fecj7/xwvc5t+LeB9lzyPKBxrycjGOwtLqSWj4h4MSqSfy6nOzai6fg8nkXd2xgj0QZ5wG6AE3V49SYpCGhKJEWrnHddpZ9909VXwoFYUhUW46sIzObbt3UEmF0CyIItoGc/uiiPCsolMQhBdm12AnZq488ZI6yFqK8gYsRn1Xne61pC4tuqwRvObBOsMLnwd789pHt+5Bh87rh87tFD8CsKLtuaBbtWLPzoG1+5+mP35wrv9XQEfdYYet4IvFCHiyFTCd4AWmPMOtOLu3RO0ZJgfXZ2ln/1r/4VzzzzDADXXXcd/+W//Bf+w3/4D3z/+99PPnfFFVfw3/7bf6NcLi92qZdFt99+O5/97Gd55plnWFhY4Gtf+9qSxoFmfXZFxrEeKbGGNjwrqGvvA17vVxteGcSifJXWh1Ay2mQPEB+wg/DkBK5S0IwxYYAK1wd/jowxWUVZG/Zs2iQRAzbMX5XOyUCZLv2A057d22Wfx55i7MDQ7o0QHoEx4M3b4aLxxdu2Ocr3WnefH67CVGORcNTFe60bv2VX05M/2lgwqwU0AwQxpqqy8mcxRdIYWKjD8FguFx/xBLlLvGqrKMiOXm3bm5WD1BDrRxAMlqTXdf63Eo+TN7Tk/IgXl6/lbP54m3wtMkIYxDAyZnus5z3JijNQjHNgKMnptve8GcvrfFXyswWGkvVosoDdGDg+C68eBzbBw9Nw0WgKAmKTRoEAe8bH4cHDKYjLrGOVzlXGcFPyPM8dBmaLgOyCjVzp8cLgl4qi6CkLmE3Wj32/E8L8F6suPtOQlBo/YgTavexlew9mG9Bvdef8fuwQMlEOqPuPSKdA3dF9R+HSrdm1bmnP7u2rPHqyMshflzOx1P8A2N4L958Esy01qrnPu1Zu69fP06V1Tktq9x//+Md5+umnJcTPGO6//35+53d+h+9973vJe8YYHn74YT73uc+t2CAHBgZ45zvfya//+q+v2G+cs6SxOdwmm2f02DH4xD549FjWI2Qf6yZc3AlVN/amfTj+HjuWPVQi0yEFT5ZPRhtRyPzQflfIxYX51yUMdd3M2yJktC0OGLkCgeubny6dJfIL/+Rfx8DPvAIu2NQG+DLKsqN8r3Xsd4ZL0krMUWHoZAE5meNArZ9m5IyjvozNh8P7QCRvJDilLXjLgVnnNa+G4sH6lfPg6jK8/zz524XAuxPeB769VZiNlgeA3Pnhy1ifx6KIJo+/th7r/vNUDYZzLbyS+ThDw6MP0t21nMHZb9/m83q2yFhFPvbWpnt9LILNvXDFEDw+I2vEGXJim/8P6XzPNQW4+cs274H257JSSotkdRKY9X/bB0fzTXER+ekOkAXt/lz2efxBgcFlDanNAGWfZyPZs4WpDLnnYWyROdO+H9c8zF8ocYjkw9/dnv/uyfYvXb3FA7myF9Y2xTInV50Mmm2kc7VzAI61si0YfWPDOteturS+ackT8d577wWgVCpx0UUXEYZh8t7Y2Bg/93M/x6ZNmzDGcOedd67YIF/zmtfw5je/mW3bti3r8739Yys2lnVHfq9IF37nt5P560OSa+QLKFegbT1Q7B0I7vUTHn8fs+1yIu9wiYv7f3YsRTpNY3AK8kLE/v1PZlulNOJ1m1uV1h2web7zLWkxVWthXizft0vnNO1/6KkCsGfX+ZQtEOS8Iz4IWCyUOg8Ikl7rZZg+s17rxoFTJ38iC2ofPw437xdjYQGYzRrVTPFvtWxLupFqO2BzYN31Ib9iG7zvWnmueP+Xz8sHGKqknnUo5teR1tnzwxlEnzwOn3pQZK2vuOf7EucBje85nKnbSve01xJ4uUFCLuS/hMjMIpB+tkSlnybhG5NO1+W9jb0w3ic5sU9OZs9kD5ztP/CcBQ9e1ERhNXjvt/tsmHiev1U4BpKuK86wWhQd4gN1jFR2H8oZVRJQq9oNLtWS7J/cdpHnNT7rivasQUKrh7xUhnwbSX8/9lekTgFkQX+HHONJRF8RUI80HJuDO47Be3fD64blS+/ZBudvyqYseWB3/0NPrT4P/lz593baq9o/UoUKcGQ2axDWue93qUtrQEseicePH0cpxb//9/+e//W//hcf/OAHk1DAf/Nv/g2//uu/zr/9t/8WgOeff35VBrwcqvaOrPUQOocyeVBW6DyQK8r0wFEvjy5VKNcFudwiX7Duy/F337EU0DvQvk4EbxJi66cwWGD+xNMvpB725BBdf0UCTWxs4SobJeBHDtQtgK9HEorXpR84euKpF9q9sg4ATtRgo8qC9PzrPOV7rbvPbeiRgk/GZMF58roIrZtiY+jfHIZHYzEaPnUi/T8/pDK5BsV5xs4Q4UKG82HRlRxgt/3HpfhckIan+wBIIZ7b+eYiv5sH62Rla2zgmZNSef8xLXw+dSJbjMn3ovlzlv+tiQiGvZDvPI/LpSKPrKM+oGkLsCXrxrF6luSkO4N8YIKBYwswXrIgLYDLNsODk9l8WNdr3cAThw5BrSn5y1BQDZ7sfQKoltMweEf+ul0BMrHGOLk8Z4spzkvxQdOIs3OffMn+MR9Db6U9JNxR/nU1tNXgKeBrjc+5IoOEQe7JkFcU0j0XRbkM5KJcXsQ4uOqUz1PPF5b73AF47WY4bxheu0O+MzqUlRf+a6w8X03KA3U/ZWGuLhFVCtmjOwfgYL0YqK9TR0inkDFGDHuNGFNryaMRY1rrPyJ0NWhJsB7HYvH74R/+4cwzwGWXXQbApZdK5fWFhXyPlLWjqYln1noInUX+PtBGQpR8unI86zmxoeLrAvQVteO4ajz7mas8/rTH53ogHwT4aQyPHuPdxwfh8WPZA7RZEGbbwSSWe1tTwe/R6vdsbWr5/0bUDYv/AaR3/+ybi41yBjjRhA39qdfKV/7DRTzrri1WHuC5XOGbH4JnT7Z7nIuW3nKMofuOpt913lT/YkXeOWPEy7rBGy94fCIF1BxY7/VAe58F7UX95BUCBqcXqQYPWcWpCGznK/DvO1YQ+eBdQNPOYysWoDra0x7hkG/jtRxarH1bT5gNoxYGU97OBuXXJQjPx5swPmiNR8AVI/D8goDcJDw4zTd/949cD5NGvK35tIciUpa/hgf2fP5WgExso7tqrZxB1XU9iGQ8bdEGdnzzseXP4wGyc+6D2Z5ADAGOrxxOXysl/0WLQvrRET5veWPUYEX4yxg27PMa61+ZNm1F4e9fOyJpGG8Yt10qQthSgudnUyOmD3Tt2f3un33zKjPiPWcifAxMAYMuKgs4bwCen8nu5+SxTnTiDiQpUmplx0Ir7SQyn8qRbvTk0rQkWB8cHASgVpM8vp6etN9rb68Uhmm1Wpm/O4GqfRv4pfe9nw984AN84AMf4NZbb+UPb/wYjUaqoOz96j3cdc/+5O+TE1Pc+GefzFznlk9/PROyc+C5w21tJz78kc9z4LnDyd/7H3qKWz799cxnbvyzT3JyYir5+6579rP3q/ckfzcazRUb300fu5UDz9lqydqw/+lnueXgE3CxncthuPGBe5k4PZ0oEHd/50H23nZvclis5Phezv1zB2aj0eKGm26h0bA9S8/fxF51gLtrh+D8EuzayMSpKW78689kQv1v/tTXOn9+H3wq8cQdOHiUmz73FXjyhHi0Hom56X98iQPffiTha//DT3PL3309o8Ss5fp70fsXG27885uZOHY6MTbc/d2H2PuN7yYh/43ZOjf8+SdozDeTegOdsP4cder+OFfGZ4xhYuI0N970qQwAuOWbd7P/mWdhYx8oOHDsODd9/iup5xnFTR/9Qvv4PvP1jMJ8482fZWJ2Fp4/BcDdjx1i7//+FjwjHuNGo8UNH/oEjVqjfXxWqZuYnObGj38mYwy9ZfZx9jdOyN/GyP791N4MmJX7dyTha/+TB7jl69+S/5yOYKCHGz97KxMzM4mif/d9D7P3ju9CqFC9JRqh4Ya/uJlG2SRA/cvf+C53f++hhMeJqWlu/JSdu4EQ6g1uufMuuX/2tw8cPMpNH/9iBjjc9Ndf4MALR9PxPf0st+hst5UbTz/MxOmp5F7cfe+D7L3Nzq+R+b3hL26mUW8m7+2987sin22hvImZGbl/iQdSLX/9PX8kAUP7nzjALbffJX/YauI33vk1JqZnEh7uvv9h9t7xneQaL2d/7Nv/ZBKJceDgUW767FfSNXp0jpuO3s+B48chCGCkyv7+09zyd1/PRFjc+MnPMjE1I7LNwN1HnmXv9+9PeGg07fprtRLj0t7v3MfdjzwmYLYWMTE9w41/+7lM9MAtn7udfQ8++eL3b5n710VA3f3tB9n7tXsTJbsxVeOG/+cTNGbqyXt7b7uXu7//cLKWJqZmuPEzX4AFnRRTu+Wbd7P/qQOJUeLAwWPc9Hd7M5ESNz12LwemTqTje+oAt3zlmxngvibyz97jm275EgcOefvjmWe55bl9aWh1oLjxE59hYnJa1rWCu/c/yt7v3GejXEo0pha44W8/I+Oze2jvN77L3d99MDnHV1s+f+mr307y1BvzDW74i0/SmG8kQH3vF+7k7nsehJ/eA6WAifk5bvzsrbBzA7wwDxpuuf1b7H/imUQ3OfDcYT78V2txvhkmJqa48f98KmN0vOX2u0U+D0ukx4Fjx7nphe/BwVqS/nPT578q8s/u1R/E8/flju+ZA4cluqnWYv++J7nls7enxr1GzI0fupmJw6egEWNis27v36233ppgzl963/s526TuuOOORU1F//yf/3MeffRR/uiP/ohrrrkGgH379gEkfz/++OP803/6T9m1axd/+Zd/edYH6NO+ffv4jd/4jSWrwc/Pz/OTP/mTTE9PMzQ0tKLjWQ9kXO9xv+hRPYavHhKr1uMz8P+9GMZ6xFPjvDNVCatUvcvq7rcmZIzxLPoef00Nf/UYjPbCU9PwL6+Udkd+uKh9bmsz1EFkjChHLMTZObzlQXjMyzm9sgT/4JqUr2oIfeV1UfHe1GOxtPp5900tQGnfMal0fdnWXLjv+uCtE8j43mGrAHdK+5nFqqu3fU4b28vbK6roCpv95aPwmnG4amMis/yQcFVt39+Lyo38vrqqBO+7zvNYl9uut6h8/ZuH4flY8jjftDsrW3tL0JfKnsJrNGK4/YjI6J/cZXlze7sEvSGqd+nuKybSqefC3bNaJJ6jW56FD1zVLhd70/3Vdp/c+Joa/nw/TANvHIXXn5flzxoMVCWUOhQLUfbe1CN4/DTceRh+9Yq0UF7y+3YMywyFX1RONjXc/DTsGoTXjmd/Y5H5PFMysbc2/d9uafjjB+Hdu2HXsKQkNDV89wQ8egr+4SXpvddGvneqBh96An7rSvFS9nn3tCcUb71fZLQZw30n4eHT8L6LJfWh1/tOfwl6Smdtvxu3fvyigi5CzbXwcykY1VAAjlt3C8HMUSEAAQAASURBVHY+Pv+c5Aa/0ZPpbsyhyqVALbJO3H3ps/ydScrEWaLCea/HMid/9CC853zYOZSmpfSVZA3kizPum4AHTsIvXyr3zb8fbh+tgbyW+jFRmmLX8PibacKHHoO3bYcrN8q4AyX/99Rp+NJB+Gc52eLLvVzryhXnxZeDyR6NJTf9L5+Bf3OVzI1BeLjhIfjVC2HLQCpzE9nU2Tpjp5F0E9Gyl/10TWfQDJQUAq3Y7iV27XeKjvJSaWZmhuHhYW699Vb6+/vPyjWX3DVvfOMbueqqq3jhhTTH5JprrkmAOsC3viVeABcWvxIUxzHNZjPx4jebTZrNJtpVUs3R5u1Xr9hY1hMloVrQnl8114RNvbCnH/adFkXAz1m33ueODjv2w5qM/zCw0ITLh6EMPDWZhmVlcvPXQdX7DI/2+WoJ879x0rZPdGH+LoXB8djhlPQn9sPkWrkCiB85JKH+67GewhqS0bZgX92FnbXkuR5L3thahY/GMi7j6hDUWvL3EnLmxv/5yWzuNKR5wccj2NhDJlTcb3FWQMoPmU8+r5J9ldA1W7JhrrkQyEV7vwMENnKpp7cgRDr1Ci4qow3Sr3moknoa3ViBZVVL9/UdP8R8qApNEo9wJnzaZzEvX/1cT2cs66m28ZSG+pO9J/41Jlsw0Fucu3yGPdZVPiffT23o81qbOR4T3pb/G4uSO1fyKQDzLbnH4zZFI7CA5rIRONIUwOO+Z69z4+dvhSppzQVHLlKkaD57Amh51e79NXq2eMSC01acpmO1bNrSY8fgb/bBo0e9wmMmx5t3odkm9IXtc922vu3f1UC88f51iuo7rDqZ4rUdG2gBI4uld3ivQcLl53NFLX0+14DFF23T9tnn4MJBuGJM5EA5sClHCs4bgjmkfZ2fq+7dn7wHdMWpKB0DI2txozdHoYIwgO1VODif3du5UP4uLZM0Ijf8OgeJwcpzziTdmtZPPanVpiXdpu9617t417veteQF3vSmN/HqV7962ZXaXwrddttt/OEf/mHy94//+I8DcOONN2YMB45OHX9ixcay7ih/oDiaa8IFg/DKUfjCQXjjFoiVBUVBFhgt0dN+TSkP0PGep4GBClyzGe47BZeMtYPCUiA95ju1p3xeZrm/bW/p9w1dBq8chF0bswX04sBWvA/WxOuwbPLXpg948jmx9x2FS7ZYYa6skSVY99bXlaIk19C1iXIKhgICDVEAlRBTWb17mFYV9sZkvDGVFKYsXrn8mN737h8rBsRzFqSM9Wbz1KEd8OTJ9VoPPXCwZxNcNgmP1tKKxhmgneu1bkjvbR7MzizACDDZzO7jIqCR3weOpuqwq78433W5zqmi3HzX03khguGwACjYiVlUvho4bWBHD5xspoYUB/5B8jtNkFOUvXs13ZJ89fwYbfrCma/LHAhKwN4KVxMvqqNgDByfl7Zc5TCdr1BJvvZ5vfDwJLx+i6wfu07fd/mrYd9sdvyZll+mvYBeb2Cr3XvA7mzy5yhfSNE3qgI8ehjeq+CyLcJn5O0/zyBBowX9RQX0/Nfei56yFH3M85PndS3I16uStm02VabPqtaZ/Zd7YNfDtL1eUTX4VeZvWW3aTtfgXZcLsHUtImNjgbvNW39uVgp2FoDd977nbavMFO1GFZA0o76cUUUBO4fh0Dy8koL9LcUzO1qv6iQq6ibSiOHpE7DvOFy3BS7dkhpLXEeVDoUca0kvO8b5wgsvPBvjWJLe9ra38ba3LX+Dx1F9BUezjiijZJE9NOtNOTT3jIA6CE9PwSWjqVc2Uino61hgZNoFsSH1Kg+U4ZpRuPuEWHpHeqBkssA2MmdhF6wg5ZV4d3hXYeOuTXCsmTVCOL5aCipmacCy1lSkkLic38eOpO9dtSVXcdvy2Q2FbyNRtrx0EBeRANkDURugtHqA3beq+2vVeQ1LClchPT+mjRuGBZDkAdHEPAwiRrckT51M3vOi5HqtJ5+3itqlG+HEITGI+QAcsgYGSOWND0Td61MGXjkGJxa897Ofb2splC9WNdOQSsVujHCGxddUFqQ7kBDa+zPbTFtMFbaNMhQWh3Oe6guG4Znp9Ht577J218jxDhLyvWcoW4QrX+n8TKhoDSskvNIBqJUAsXmvunt9tAGbBryCgN4au3IDfO8YvG48jRABNupe6Gm0e2TBqyROFuxVSpCv7VvkpT0bfOZ5LOoqc4lXzFWp9nNrNhLPuuMFCirCe+vVpeH5PPl/rxUVRYu4PdtHcXREmwGGtLhZKxY51hZ94wucVaAib3pRm7beUgrUSwGg0wilXRskb/3qTSkfyT4xbBwdXj1+oF2uYl/PRKITQjpfCjivBx46ka4xf83Ha7zu1htpsoWdYwNPn4RPWP3uscPwDxVcvtUz7Gi6aL2dVjd55AeMTGxbFTRjaVEQrXJYuX9g5yvgThvoK4uQct5np5j54eIOGHUqFVm3a9bj1luSaqs7+2yov8mCPm0gWjoEd03J5J4h5XEB+KExONyQ6rNxPoXBrI+K93mPG8B5Y+n/v3NcgFPRujyHyWiTPs4EXERSpC/xjLhWf/l8aL8lzwpT0n7Q/W4md9BVkI6z0QCZC5C+5ytOEy3Y0FcMiF7M+5zvxe5A7WgPTJisl9gHovm9WARE5yRdi/P7YLrWrvQ5Pnz57MtYtydmkRZQRZXulwNoM568nOd5REn4LQXjL5Kp/nvTFvye1wsn61kglQHsJvs9/37O1WFDuZivl4JNiniFpABb8rv+PSe7t4yxfcMbMaYWyaMhVYqL9uCiaRAGMdJs6U/5C+0jUHDJBjip4eSCyG03nrkYhl1lam9d5uc6D2Yj0nGsALWlKzl+F+u64n/OkY1MYQHxJhcaJDy+HLm2hc5A1FbJf43OgTa9yj7PRDBcLp4//7WfxgCpzHDXhqyhcBXIWH1oWW3aSoEYWB1Y91OPdvXCc9Ptci8JiV/tOcvJMHdf55owWG6XHTsGJZR/rpUde/JYB3pVp1DRWZJvrXz/sba56Vbdb6dzEqz3D2158Q+tIBlj80UbkeSuuQI785I7mulFuuKDIXvAOSUqQsLEAwXXbIDnFsTTkreCtTS0OnTj+MPyhcJsU7zlzlr6qlF44IQIWZcX44P2Ts6Bzs+f9/fdJw/CRQOwb5J1WXPAeQ3yik/TFvnaWoEplVX+vDk7FwW6AwtJjvmCze1uvrjMMH60SK7NHx9/QJ79Fn/WY7Li9zEy6ZgyOWteBEAu7NIHR3ffu19exLl9MNGQnGBoD6VWLxJKnVecExBrPS2zVnku8Ign5CsYvnft9AIMAJv6YCb3/5lremDP/w2QMwPSdnJF7Z9ejPJedb+nfG9FwKHPBxTL1IyhwoinelTBxn5oIHOYB6yx9x1/bzvQNqEtMM3PGy/Rs57j1T1XbVGvPOUAg1Q6t4XQFlq2PVmUKbDXtk+c18jx5c/riVnYUmnnK1QSmv+KQXhk2hrI5Zbc/eyTFsj6PHjMFIJZm9LQ8u8vOc/syyTfO+bL4vM3gV87addYcc66e3aGwaLWbfm5d89lq6LWFwGza0X+XvX3x3QEg2nXpIyRzJ9XSFI+6Ef2lMnPHasLbLXJzp0zjD99Av77w1A30qbN5am7R4hnKFVw3uCSeet3f3v/qrFUGL3kaKqeVu2HNNqqEsKmAA4u0oKug9VFn4w2qcPQ6oKrWasmMWYmZ6d9bqsNM15g6F21Ya4bOifBehhWXvxDK0RJ9cN8teF8NdxVAeyLKEy+51khCup5PbD/dBpmvB68z0WeIIwAnWF36AMXbhDjxLPTqfDNFSzrzEJzJvOUglk5LWaiBlw7KtVknWe9zRjR4SdL0X1fsIrZtRvhkeOpkSUfNXAOgfXEwLfgjHpxWv3cVRx+sT7z2qQhiw64P34M/vqQFOv72CEpCOU+43tOVoovazTKrEnn1X/iONy8X8YUeUp+rBOFyGjDzOxCTjG2r0/Ow1jZCxFWZwD4VBoSbv9MwNQQArgX84gnzJGVPe716ZbI1CF7DjlPdJEH2p9O3/M8WYcKWa8VeK+XCWjznj1Hg1UB63ngkwEKOX7d6+kI+qu28wSSjlB4r+w85pWwmgXPG6oFocHLNEQsxqujMyjAJjUebIRHviq/H43Stv9MMWCPNEySFpdTSH6v86wHwBXD8PBJMDrx1M3MzEtbvYQfD+D5Bgj3fyDGCJCx+3z5zy+X/Hx1H7S0Yskn/9ULZVyHLLhJZHVuDPOt7JjzBSHz5NZ5iM3L98aTjO0s8XimtJg8mGulqSVt0Ts5ft17g+W0/oYvA/LyYaUpb2yLDTxzEj55RPSnBeCF01mgXg5kbfvysxzClrLkrRcUaZuZnl96HGeT8jLa14XncmlGKvC86yO2hRvZe2JA6nF0ru5hjMG0vOKy8y1Zl7XW6vYzz+MONw/nbwJnz/q5LbB7U87w7b7cJZ/OSbA+M/nCi39opailZZM0tYRuJQA997AhqCu66f2N4ntnXchVKbAKLvDKjVLwYb15n4uU3fkYemyonbKHybWb4P7TZEL9HZ+dHOqfMURYasjB/vYfeiWcPywV75+ezCpV66Hi/WJApRYJCLh0g4QkH1tIleD1Fua/XPK9zr7nOdMSKoZ6a3HAXlDMh/vzIWdH20Mcmyt4gBdV1HXemk8egUetEeHJ4zkvTLru3/73XtMOcI2Bkw3YaAGxrxAvx/O8WM66UjDcC6da7Vb+fL5ifjwg8uV0ZHu/K1tkbolQeF9BxnuebcEGq0gWeR+XAWglsiDnqXTPAxWYj7L8uNdFHkNfDs3EaQTCph6ZB//z7l5p/754+3uyLpFP5bDdm/pitQYWZTZhOvu+C4NfrACbwe49L32kKG2kEctn/C4bbp0avKgPI8XlSqQhtm6+Sl7V7As2CNA9NJesn7cP7hSwnp/jDGj3DC/+3xmwngN8L5f8/etHDxyakfzsTb1SG8ZFeCWyWmfnfa5VXO3eN0RkeLTP/YgxJe988HldRcqkP+T3x3Qj661V+XnM8QbQV4HZuJ231fYwFtVfyIcsP3S8AKyrFKgneesjSb/15Jr2+m//0R9a3chS95yP7plGjJZJmhGpDNrRC4emSFJ5vJz7Tvaup87CnAzzZVpNIvVWfjC0n2/+PAAM9KV/+zK0U/XxNaRzEqyvFSVhqM5z5PI0E896lFOU45Xd9G3h0/aPhaZUqoVUuF60AWrAC+vI+1yk5Brk4BtwSrx9XLMBnp4TS2M+pLpTc6AzirTHXy3ygElgaw7kDBHroeZAPv/QPTdj6LcW+suH4aGp1IO1rsL8l0dJ9XYfqC+WZ94yhW350rxSls4rvXK83avuAPtK7G9fwfeVwXuPZj9339EsIIi9RVGkRDZiaY210fNe+gDnRYoPKqc4t1UiR8LXT3tV3H3lwT4v2bbt1AJssPJnqE/Au6+4QDZMvAgcz9hw2sL2TywfzxZ51RVSXHSumf3dZHyGpVvKNdLw/PF+mFikIvxiIajTTRjLFc47Q0NEGxW1b0MtXoAN0rEt1lrIB+pJNIpn2HJrOg/YT9RhS48YivMh8O5RCuCKEXhkJtUBZmIYWMxAE2Tf93nuQwy4bfncL58SueLvX+f9eq4mxmIUXL0BHp6Wcfjnqz+eWgRDOT6KUlF88A4SwVHLybwV4HXZ5G0NIGeQ8EKriyJiMg/7n0PVNCXFXcfkrr3CZBwQzcuz/Plx3ZZsGHwlSCOUFstb17nHquatG9qieyCN7nFRENhxJy3oBuFEbHX03Bm2Jnn3y6TEWVigQ7hWaQ173q94e1+Tngn2z+Re1hHv+mnP0OueDR1rDFlLeklgfXJykueff/5sj+WskVpOD9qVIG3SFhfO89eI4fHj8Mn9Eu7ZiNtDPleK3KGS967Px2LNTUL0rPJw7Sa4f7Ld++xC4zsN9BV5nQ0ilBxYV4hnfbRX+mf6heZ8YNvq0FB/R8Z70YigDxqtljVEjMLzC5Ij5qcwrIeaA0Xrsx6Lkg1w5TA8eCob5r8eIj7OhHx54Od216IsWMgAhtycam+P+ut690Y5FF1uqSlljTn5HPazTU6WuL3qFJ3Ng9nPuZ7myWFtjYOxodFsZRUtYyQEvoIo8r5i7EDRchDfYkBhtAIna3b8Jl2nVqFty4M0/ueMtG0btbnEm3qz7dvywH8xGTbTguFcazMvBH7ZFfx9I4QPGAZKEgaa/KZ3b52ylOfRkcv1BIlsOD6f5c2/H0WGiMlWWjjPjQvO3BCR5zN57c1lUoCN7PnlXvqF0/z+4Y8fkxSNx49ljVq2/kICYiEL2DVwvAFbB1Pe3H13fZyTUPghePiUBcOGRi2CgWr7fXGUj45w/90XyJgzfJns80ulvPHPz0V/fgp29st4tvTD5hAeyZ2v/nqfj6G6SHG5/Lz7a6JShrpu52etjrWi9e3GMhVLFxooAOoF86eQz883ig1bq8Vknif3evdG+f+twD/YDheNZyNF/E4cRXnr0x5f1kDZqDc9Y+wq8FUUXTrdkD1Y9kL4fePaUEWMYIdns0ZHH7R3GCVGfyfDGjnA7nqaJ635VshA75Mv991vJQVYh6RIbOZ8JXsudimhM0K1Dz30EL/2a7/Gu971Lt7//vcD8Lu/+7t84AMf4NFHH12RAb4U2rz96rX54YzXzyrDT52Avzks4Z5/fVjCPfNAcaUoI6i8x1wsleAdlQIL+kbgiVnJbcnz0ZHe59zBligFzTQfX1nlXQHXbZQe3tpTvDoZ+BVFDYBYRvsC/uRztwp/Q1XY2Qv7J7PrqtNrDuTJDbGmBawrBbuGJcz/wBTrJuLjDCiT0+3nkjdjkR23PCi53e7/FlurRQq1NrZAHfBrl8Hf3wp7X0gP9Mi7n5Gx4fBn714WeuXAAkHPo+F6mudzYq28+pMPfyqVY258E03YVM16x8/UO+sAlHvtvjdahuklctYTIEsKSPBeTxjpMayUeNiXAP4s5p2frC8eTnsmBdjyXjz3PBiKnPRzYxN84I0Lf7z2/+ZcqK+SOVisInycA1ju/6ebMNK7yJy9lB7rjteC7/VYo4LzIvk8ujnM751nTkhrIf/MzuwrvbgRCuDYLIxXUu3KBzLOs66U9HMOkVoqtYg/mbzPA3oFXtkMrx7PlVIKZs92Pvdi+erNGI62YNdgOn9Xb4Z9J7NnUHK/EbDujOg+DxnQvsgc1nX2Wm5sayL6vb3gxpPcFyRFZDGDRJHBZSCEmWbm8kCyj1blfPPTlXyZ5+rHvOdy2LMp5SExQAXemqY9b/359rz1P/nwp1YP7BYZCzFShHg0XzuBdoPDwXr2fiSPDtQ7/I5ATo9oxOIk/MQ+ePRoNkpopR1w/rV9Q/tMXRwIG3ulhad/ZiQydXWL4a0HWjZYP3DgAL/5m7/Js88+m7mJu3btYt++fdxxxx0rMsCXQicO71/132yztDulLt+L9P5jOSvdCi7KIqsWwEKc9vd0OethAGO9UoH7wUW8z9EqVrF/ETK+ggzZQ3u2meb+QRqidfEGqc58MFcIp5OBnz+cxPOsoVziX/z0O1IvzXVj66/mgNsHkJ3Huk6NSUEAV26yhgiyBqROjfg4E3Ie8fxec4V9Hovh44fhqeNLr9W2FAELHp6ehvGSGK9euVE80XefyB7okclUkT9reyBz+JIF7Edm4FXWa7NrrB0MaBKv3L/4lZ/LrRUkp3yTDRfI9+hWoJYDaBfLWR/tlXxGH0S78TtlD5OVr25szmswUk2B/8wSwN+/1b5CM1eX4kd548OZhokvFh7eXxEe3e+554Qf93/e/1slimnEQBiwdEV4/9m/zuk6jBQYInwwc8aksjw6viu2YJvL0WwzTpj2ce87nr30/cdyxmvvfG9b3xqOtWC8VwYSemvMD4EPlci2KzZKVfjZJv9iwyttHRmWCJ/OGV0gB9ZJ19TZALOZ0PdUZ0ny1Ucq6f65YhSOR9K2zgEHfx0txNDv5HoezFoGi3jt9fjz+fJ5XW0qWtezFnD3u1SG3Lr25xVS3gdDWGhkZcTZnMPlkC9//Xk+PCd1N6phVk4mOep4hRNVe9768+156//il39W9N7VOLd92ey/nomgLxfFkp+r8wbg+ZnsuZR/3UmU0Q/kLOfJE6I/PBLDRw8V6BEryET+bEzufQtGylIcdnI+e7644eTPxi4tH6x/9KMfpdlsMjw8nHn/+uuvB2Dfvn1ndWAvh4xZA2BStDCNKW5TUOSpWbFBkRVWhpznGVEanJC9diPsX6QCt1PqO4HyB7Wv6DaakpMJ2UOkHMI1Y+2FcDoV+PmKgK+cNMTzXC2XU6Xmog2iND8/nVqyO90DbXLPjho69YgFwFUj8NSchHLlIz7cvK1XcoaUTESEhm8fyX7uvmPth6zTz/1rZB7AUzNwwajsgVIAb98F95yQvOq8N9/V0ThbB7gxWc+lca81HGlKigOIcm9Mum7durcGh2qplAVTACfmYSzX5ioBRss81hbLWR8uqOKeB9ix97fvdT69ICkHDnRt6IEp7xp5ZSTPl/v/0zEMLRJOe8ae9RzAU6QezpYuOLdI5y4/Ppfr6e7RYhXhfflsctedrUmPdZ+n/OuXQhle7XtuTfgF2BzlCxm51/kz++rx7P7U3n5zvLnvTtbleaw3G9kFKbBxgD0ALh8SsD7VoDrqgTz33AbSyT4D9OU9z7m19BKpMDLGQCZf3YUOh0pk9mVDqWE10ki1ezuQBU/vcOTPffJezsDUU7Y5+YWDfHlMvhQqAn/OY9hHVq5Ae92BDHC3hrMp7zru2T/zV5qKDG0GONKAbUPpWswD9sAanRTteeu7i/PWq6VSNhJlpflK7qM3bzORyGZoN6q4KIEdfXCoLntgMWNyh5Bx52eb4THnLPz+0ez/rzRYbztXsLU5qjDWAyd1etYLI6nu0jm3tyNo2WD9wQcfRCnFDTfckHl/586dAJw8efLsjmy9kTvQ8grY7rH0M+/KtSnIeGrO8nCKPM/uvZmWgNnkMCEVtJeNwikjVWq1KQgX7xDQt5SiO61FKYD0EHFW4Gs2iHJUXyfAL6+AgfU8l9K/nfJ3zSZ4YJJ144EuyiUziGJWDVMFZ6xXvMOPFkR82KrDnRLxcSaUhMDnPeIaqFazH04Agw/svdDXPJB3///UHFw4kIYsbhuEa8fgSwfl/zP5uClgPyv30/ekO+XMABM2LHxzH+zogUMLOUBgsvcE2kHx5AJsqmSVRkgVreVQxpPie1iU9BE/5VVxz8sbX+7gvT4dpSHwCvGwg4R+w+LX83mMtORZF4XTnnFrM0+x9oF+jzVmzi0SfuvGmnlGDBiKtJK7UsUV4TOKo6+wGTFejFTblWSfzzOlIhDrrlUh2/orM2+0z4HL0wW4ph92bcyC9HxYePJs4HhNcrd9pd8B9tADtu683dovnsv7TqWePn++wJvz3D1yz9WSGDh9KuL1TKkoRcDx+fwU7OrPhg4HSKG5B05l27c5mm3m9A5/z3l/55dANUiNLXkv3Vpo9G7/5nWs2UgMbEut6yLD2VDFM27QbtBbYR7bisv5svbwLGzpa5chVk4qt7aL8tZ3DEnHg4K89RUHijgdODdHjq/ZhqScJEYTUqeVKz463ifvH3OGSNN+RnUK5Q2r7nWbs3BLzsC4wpG9kF2+Bul0MtwjEWyQRqP5gN4/N7oEnAFYn5ubA+D888/PvN9symG/sJAvubp2NLRh5+r/aJFVy5D2zwQYGkgXru+ZWYk16Qt99zuOGs20n2s+rKkcSsEyP+zY99B2EujzD0xIN3gTqVbsK7ol28Jtcx9sKcHDiwC/Dgr1LxR2IIpZtcTe79+f8raeaw4kepd9UYtSMOGUwSs3wUMTBR6uDluTZ0LOGJYJgbfeqIkGvGZIPvfqQQEQBWDc+ApEHtAenBGgsrXfAwwK/t4WyTN+5HQaLpepDK/PTrE5Q7tXHQNHFyTdRinYMQhHFrIy01eIDOy94zvp/XLyaAYY62v3+MDyAZ8z5LnXfij8cF+2fVte2csrFo7fyZYYl0C8jkpJ542l2re57zqascDXGRwL8rqXTYqsQppcT0neoMtb98fiv/b5xAjgGnMVve3z5kUqwucNEyDt4iAtnleQwvCSyQe3PvVhw+C9s9Y9F53ZrljbD2+GU17kQd4QVrQWjjVgfDAdgw/YfaO4A+8qgMs3wws19s49185LHrQX8VwtQd0r1ARnR9FdLF+9FUuo/67BrFxRCnYNwQDwhHe+ums1mtCfyxP2ec3z7f7uCdJ1A9m5g5UDG4uRv579uZ+OpHCio3yEREB2P/ph/pD2ofdD31fjXMufIcma1nCkBtt62r3qbs4df0V565UQtrb3W9/7ze+ufAh2whsFBh7EgDBcat9nPn9BAOf1wOFa8Vm2AuM3scY0Y0wtwtRamHqMWZbx3LTzqg3sGE0/4mrD+OfPCoXzJ4YSXz6633TtDUMFg0iU31JnY5eAMwDrLvz92Wefzbz/5S9/GYDR0dG276wVxXHzxT90tqnIqmUMnJgTZW1zCKfqwCKK30qNyX92Y5qNoM+CIXdoJP0ygatHpF1W0/M+58PF15y8Q9K/h07Rcrlx0O7NuHoz7D+RNUT4wK/T8rsLPc8lhvosKPBrDmw7B2oO1FqioDkFJ1BwxQYpaDRZb/dGd6QhYhlUlKuujfSVnwTesBOut4DBj5Yo8qAXeeefXoBXDKceg7LdA70leNsO+PLhNLWgrZ3by+u93hZC6xf0OloXDz/A9h44PN1+WHvK0VB/n6f0Ix5vkD7WUOjxWQ4lfcjzoZ0gfdJdFXe3tBIDq0WlRUDv1AJsqGYVcte3He9z/vX87xsjYH2ILJAFCoH3cqioqBWIsuqMyW5MixkhEkUrynmAkQiHoorwbdcxMFUTI4EfMuvGdqaGiDwV5ecrtYjnOScvMgaXmhR+u3oEDtayUVj5Oc/P/9E5yVf315IDMX4xLj/n94oRAIYmYnj2ZIHRyXowi4AepL3kHV/+vX85nrM8z84Ac3BWAPlwNeXTVQZXgXjz7j/l7X17vVkvIiwPyn1DmSP3sjeAVit93+dnLcR+EZgwWM+6jaQpNLDlZEzy/0r2xGyj2HC20jz669df0zNNifDZMlBsFM2nd+Tz1gF2jrT1Wx/q7U3W0orqI77sycgkI/d6yDOGOkqAuuV35xC8MLfIPTp74zfGYFwHmAXb6rkWS4G/hQga0dKt1vK8uvdcWg7AzrH288fdj7NN/r32xwQw63UT2dCbVoQvGluXElo2WL/22msB+O3f/u3kvd/8zd/kQx/6EEqp5P87geZnjr34h842ZXK6vNfHm7BpAMas98FXYNzzSlgYTe4Z+1sY6Ts7kPM8J3l0CrYOiHHh4cl20NcpYce+IPDBrAvrdDmjbQVRLPA7EYtitQhgX+tQ/0wIVzKX9kWtBdWA6y+/VP72aw5csxEeXKLmQKcYIjz25G/vj2YkChqI8hcq6C3Dnn54cIrCnuvrpeK9JQmBj3PGFAvKH5mBS4ZkDV86DAfms4azfCj8YqGqBybggsHU4BHa3riBgks3wJZe+MZRb20Yrxq9PF7yPkgUdZN7beDoLGztST3rUxQXKLOvr7/2crmmk1+n6pIWgcoW8HLg8UzwXlHOeoAUhpuw0WJFOetFQNYYmKnBqFcPBCQCYLJFWmzLZL+fV2imIykAulg47Znwlwf3fjhuT0U6g+QVJePNW0bOIoAkyfW0n1+qInyet6mW5KsXFd96OZ71PJ8+6CuXFm/95c+fW1/TTdhYEj43BfD0FG2pJi5kOQ9kT9RgvFoMbPKAxnnXpyVq8fryDikqeeBE9v764K4od70nWDwn/yXSkvnqz9dg93BqTEr0B/t8zajk+k7VvVQWI10p+pdo3dbGo33uCUT+FeXi+17oVaCMxzC/fqbrMLhEB4f8Pob0/4fCxQ1nK61rFXrVDRyZl/Xvt2dzYNZrj6mUoi1v3aVF7O6VbgeudoE2XH/1ZelZtZJ6lsk9Q7oWZxDDSt4IkQnlB3b2pAWJ84arszR+Y4wYE+tR2mqtHluQ7lqvxVCPFjeg542G/lm5yepSrvK6H8Lve7LPJrWNhfS3pyPZJwCb+uCUh4syZ22H6KodQssG6+9973upVCocP348aa1y//33Y4yhUqnwi7/4iys2yE6nRIAXWdpP1iT0erRHNk5+ERvg5Vi/Fx9VsbWtaTdAf66FSh6wX70Z9p1o9/q5sNm1Bn15b7O9jyw0JbQGsgqb4ytUUj33yhHYP5UCv3wrq7U2Rjgq8jzXo9TzDLTVHJgwi9cciDqk5gAUz6ExEjnQ48A66cF/zQZ46ETWEJEB7etIuGtT7Fk3Gh45CZcPC98be2FMwZNT7YAhvy99pWumIbUn9gynYYqBErBetikhP34e7Dst4fIuf93fA67F20shY9K95QN2bSSEdlufzGlvSbzIh2fSzxXJUd8zcrIlVcj9UGNIwcOZgtl8zjoIWD+9CADVlje3XiEN8T+pLZhVqeFgtCwed3J85PnEvj/tAWJ/TJa3M2ltlokecPq1+/6QBeuOiopa5Y0UM7lcT6XOrCL8ZEu8KXneXk6P9SzD7e/1WM+64yl5Nu38GeB0S6IhAC7aCI9N0xbZUsRfLRJAOt5f7IkMAi+CzQPsD+aqz+873u6VT/jzXrvP9ATQ8sB6kUHiTOnF8tV3evnqPkgLlTgCdvfZQq72Oy6ywY94yxsj8gDWPVdDmM+dg0Xn4mqQf0754wDplT7sGeryQD2/vv2131tdwnC2UszkjDKZvQscbsCWoXQt+5XeXVSIo3zeupMNO4bEOTTVTH8jn1axctyxZJHMIa8ujD9X/vi3DUENiTIoktlnQ090rVqb2gL1KO2L7vqlW+M59ajYUZbn063TUy0Y7Rfj9okaCU6B7FyfdTLZfeLfrzqSBqUUjFakOCkUnrUdo6t2AC0brO/cuZMbbriBHTt2SMiGfezYsYM/+IM/SArNdQKFpZ4X/9DZJEN7SCPI4js5Jz1XN1XgdEGbAj9s8GxT0YHm8qKqudyxTGieStuwHJ8n6QOdA+xr6l3PH5rued62hymq8JlYiJFCOPtOi5D0w6kToNIBoNb/eX8sLQGzE9Mz7ZED66XmgKF9Dh3NIaGrLmzQ5UNesEEOzoMW2OUBewdERCybCnPVDRyalcNsz4gFewou2QSPTLUDhti7B77yo41Ugd9WEaDi7+2SBQylQAq8XL8ZvvJ8e2V4B9pbLzFiYTGv+gkLWjf0ZBW6Q43sge49Jk5NZZWQUzUxfrp1D5lw0zPq071YzvrGPlEyneGuyLOeVwKdZ8zx5tbvaFk87kV5eW1ediQvfLDazl8y0DMkpWQalCIGYgVGIQbb+VyovykYly8vpr2Wcs44slhF+KL7Nt2wihovf+4yLFph74Oi5bT+8vlz7003U2PJxYPw9FzaJSEPXv1z/NicGJ4qi7W5UmIkK3mgvRzAK7cCMBHbvfGqLdnzyl+jeHw5cp51H9jl5/NM6cXy1Xd7+er58OcAeOWYNfbb+z5vI94qOb3DDxNfDMj2lEUm5vnJ87oa5MuhvMdwMhJDFrTzF6ilDWfD1Wx9o6J6DyvJj+MpiYRA2mtu602NMuDVYAiye/UM8tYnTk9lz7CV5K0o3W6qLjz50Zd4Y87oU4EA3YN+3j3eOfwyh6jtnvLT0Oq+N92B9Tg9l3Ph8FIJPhc55OZzsi7n/OYBOLlIZO9KrS/faODmwRWTGyjLHGzMGcXbjCErM7T1SMsG6wBXXnklH/nIR/jYxz7Gn/7pn/Kxj32Mj370o1x99dUrNb6XRGPjF6/uD7YppaRC76QWz/pYj4Re+yEoSWgNZ//A8a/nK4bzTeiF5NBwlFEolCj5VwzD156DTz8MT50oLEK1ZuDIFwDGe8zF0OtHDbhDBgnTc2HAOwbkvb98GJ45kQXsztJ5NopsvVRajD9jRDGrBnzs69+U/1+XNQcKSFsmI2T9ueXptzu6ahQemm43RGhjw8PXbvjLpUyrtYyHHHhkFi4fSQsiBiwdCp8H8O6ge2Ja2vn5iodTPhxYDxW8blzW+XdPphEmmcrw5qVFY/hedd+DcrQG26viZXShk9v6rQGGQhD8sVu/ngVFp+dhUznrufT5PCNS7deAtFfyZL0d1PmKX2ZcC1LMLBM2qkRZOu3dC7zruT/9/T5pc/ocK/7YgjPjzxhD0xjmgTkFM0oxC8wraAyF6JnFqtTnlD43vpmmgHV/XElF+GY7X/79cryNnB3eFqV8qHi1JApv0RIuUihP16QPcKCkIvQQcGAqC2B9EOuucawBmwq86slrbG53bi9eugV+5Tw+1vM4/NpOuGxbKs9LyuPH48s9UMLffI6voiiJM6EXy1cfqmZBut8/Xim4cERkwLNT8jzfkr2R1ztU/rlgDbgCbLHJ8rPKIfD2R9vPZiffmtg8fg/8Ocrzl5/L/rLcI5+/ZN+sIJMuAsoHbS5K7XBDUqVgaa86sGTe+q4Ryfu2v/OxL92RWVMr5vQpktcYAYxjixmN8EC7fewYltoViffaP2tfpg7s6u3kW6g+fgxu3i/PruBrIntyv+nLbcgaQE4tSD/zjT22qj1kzlc3B2dbj8+fc2DPj7rUZ3Drf6xfZNdiRvHV3+AdS8sC681mkx/90R/lzW9+M8899xzbt2/niiuuYPv27Ss9vpdEJw7vX90fzAs6d4i4Qkgj1dRSv1ptCgoFFVJVddArLgepgHVFYpxiMRbCwRgei+Fjh+CJYznAvoaA1ldE/Hu3EEsleMh51z0vRSmA50+JVfQ08Ikj8OTxgqrYL6/I1ssmXynxaQGohvzGz74jC2jzNQcemcx6gfyaA2ue322yB4wbjjMkOAUNsq33rhwWQ4Tv6YqzB1nHk9ZZpT8xOGh45JT0XvbzzJcMhddZxdp5v15YgAsHs6Ah7113j7fvhDuOSYhzvtCcC4c/g/WSWPoNudw44FhNQgshDRPf3rtEP1vDb/zSz2Tl5ISWe7JY3vOZkPLGkQmrV+1FQfOKTt5rc7pli8t544I03HI2B2Z9XdwH/XP1LCD2x3oG7GljqBkB6XPAjIFZBbOBkufhMgtxk7gopNcfXzJmIxca8lrTuXu2uV86GLjt5+d4+nJ6uiFg3eftbIXA58Oo3etqIKk1ji+fH/fav//TddjgogcCuHiTdNlIDGM6+x33fLwGW/rb16MFOUoplPM2lgMJ7+6xjyu28Rt/8H/BFdvE+1wO7HOIKuTLe6+nJAZOt05fJiWh0X4ovIGkv7rLV/f5c8XzHGAPAmklev+kdRJEaQcaX+/wnxeLjKja7zVjN8CcIWKVz7JCj6Hd286z3lZvosDQ4s/rQCh7A7JGCDufK9peK+9VN4i3E7yUDgdgSV979KJ568/N4PLWf+MX3pk9r14iby96T/L6RRLdE0FvQVtM9zrfL/68Xjg8lc5LnL9nL2n4Mn5fd3Gg/akTopM+FsPHD8vfeeOZz3r+XIJUvp1sSaj5eKW46nry+qXxsDhztI8HpG30iBf5OmDPApdPD1mdYZW3difTssB6pVJhcFASgbdt27aiA1qX5DzjmYVpbLGZkizMUiAW+olValPgj8e//nwshYXygsoJWXfgKgXHp7LXvO9o5wDafPi7Ew4LEfTl+mcWtc3J5wk+cKyAN8vfSll+lyKTe4Z0DptYz7M3h44/B9iv2gz7TqYHog/Y6zE0o7UH7D6Pbh5dNX+noDlFwfG1bUB6YD8xmeUtCYk/M0u3sZZ991gVKsxVN/D8tPz/ruFcWKFaPBTe94po7zr9wKberOcrUNar7r0XKti9AS4bgpsflyiaIsPVmfReL/Kquzk+OgPbqlmAvKVfvjdRywJ1/8B3czplFdqkyJkq9o4slxJglQP7SsGI174trxDllRGD5GNv7Eu/767nWtScLgiF99e+OzemSD10ecV+mcYIB9TnDSygWEAiiReABSXOjIX+kIUFTU15tpgi5da95yqOD+brnZCtCJ9XKP05nANGerP3Jw/eXg75Mt9RNWivlu6PKz/GGW+MAXBxv+StZ4yCpn0OT8zCllxxOX8NOCoHIr+rYRaw94TZ9yohqpRT0YqAuzNsRh4v4M3BGco1H6T7xl5j4IXJ4nz1kKz+4GqMPD1nK1zHUF2iuJzyX+d4dPeg5lWEd7TakX359eLGMNOQiMV83Yy8TPL3Mt7rwRBqS1SDXyk2/bnGvsZIO80t5WxouO9VL4qAeNG89Vy/df8sWyaZ2NjWZi3J365F8nfRNYqMKmCLZFoDalG6pL+ulYLzBiVCtlFQk8OlhL7UVLGWSY3izrv8QK5A9r6jKT8OWGfWvb9HPb7rsRjxxvok4mcW+a1CoH6WF5i/P/x5mI5hwN17qwRsDuF0g4yxMX/2dGn5YfDXX389AA899NCKDWbdUpGV3QAnmpIr4gDHhr60InybN/4sj8l4D/+AmY/blS3IhbNZpf7ardlrXjHeEYC2sCKrE14zjbSXK2Q9QInVX8F1Od7OGy1oX7X64f7GGLTL7/X5cj/vDoWeUvaLYZA9bK4cldzCjz8IT59o56uhBbCvlTDM8OaNwSlki9YcCKQv8b7T2QPTAfZl5uQbY6QVSj2W31yQR3L4r9B8t4fAe+Hsj8zA5WMk1f3dnC4VCt8GIICn5+GiUTkM27zqKutVd4r1Rb0wQWrNzwP2pm7LlVuCy1QJhFTWRVpSgVzf96SLQSD59YcXyCoehjaFa6ImUQZ5pdhXKM+AMrnOQe55tDerYJJ7zsv8UzUYqWQ9g+55pFc873if918ngLig+NEZGiOMMdQN1AwsaFgwUDNKgLuBmjbUlaIxWKbWUtQw1I1JjyBD6mnxz46pBpRIcz194LGxChMvUhF+2nofh4oin5bH25KUB3ru0eN51vOUPz9c9MOwN8btg1AGXpgmEwIL2bV92ljPureOCiI+lFLiNa+G0BtKO7OeUEB3r3suoSphAYPpU5vnuZ7zPDv+zpQyYb54oCSGYxHsHvKAm3sEWR0iDMSgtr0K+0+L3jG0iN7h7onK/Z/3/1QQ0O/vm2S8L4HHFyGj5XwwzRjTsI9mLOeLv158j+FwQa0cx0OO3zajS38ZpnWWn7x8Ods8uggKaI+gOFKHrUPtXnUfvOdpsbz1cghbK/DcXHZt+Wf3MsZqmvasdm3NarbVWS2CWitzbme66eQB4ExDdGA3T27skN237tFfFmNrvghqbJKib/nfX9a9dyA9o8MYeMXG7Iev3tJuIPZ/ZjED0sSC7JtqKGldJeDEInWzzrbjxh9TwjQSWTzsdRNRSgrgrWanrHVKywbrr3vd6xgcHOT3fu/3+MQnPsF3v/td9u/fn3l0Co1svCDz90p6zYwDVkXK27F5yeVzAmFzf7ZNAXiC5OV7px3Qi4wh1sYazHKH2kIEfZVib41ffKocwCs2w3u2wZj9/tjQkoB21SivYPk81lsSWuMra+AdHJa3i8fhvdvhshDOL8EDp1M+CqIHVpI/Y+dsQRvmDcxpmDOGBS2GV+Pz2Ew9z7d8825PMSQbOXB0Uj53EPgbC76a1jrcss8Nee6INnwgPDYim9tI+wHqLN1XbZAcstlmu4c6kpu21KFpXHRBctB7xVzce40VShXIg2t/3A9PweWD6Vwm3qqlQuHJedY1PHUaLvS8X75nPR8C7/b7kxPZcd53tH2vLzeKZjGv+vF54ckBWr9w0Y5hAevO22JIvnvLV+9M35towoZFqm0vpkS+GHmgygRSjA2F5Pq59m3QDtjzytH0ghSTS8CnStfwxl4pQOWHibv7kgHEdblH5YLiR8oNbHHygXrNQMNA3aTe9Adj+J+x4mFtqPdVaIaKeiOmDjTyhoOMwmVkv23wcj19Y8SmfnHdF3mfHJ/TNcl3Xsz7+BKLyzm+XfG82A3ZXc9VS1/Ma+mPcTI3RmdMunQUHk/zbjMgwxgpnBgAg/78kwmD90kpJWC8R4A5A2Vu+co3pUVlT4gKF1HN/Pukcn8v5nk+UzG2aL76jICWoUrWABhYWVUK2uXNtbaV6EIkvEFBlIhKx5oHT476kLWFx49/bpwlSkBhPZIc8lqUGHKTVlpFHsOZWIpCOvJz0zOg0PsxP4pnqCoRc76B0vG2Usezk7EZeWt/7OgMbOvJRkC56JAgV1wO0MZglEHnjcOORy9v/Zbbv5XuO7u2ltJBEmDrqqP7rc38vxs5Pa1IloGkuQyF7fLHpXNk9q3lvQ/4/EE4YKMVEx0qTnWpWrR0e7XsDcsV/vWA+wkDI/Zzrx2G3Rtz9yvHj4vsdXPn5NLpBmy00SwqkJaSJxvpZ/zz5yyusYwzLT/e6UZaj8U9xnrS2jD5vcU6Khq8wlR68Y8I/fZv/3ayQT/84Q8XfubrX//62RnVy6RGbSqxiCZtKUqB5IqdbfKVS38zOcvW6zZ6i7IMD83I90xu4xkxKiT5aWdIkTE0Eh3CgNYEGkIDPQZCtwlmm1JczZFv0XYHbtk7pC/cDOdvgi88B599Ft77iqwiA1Yox5hQtYftnSXSVhmLDGhtMLGhhPBVcgemMWK56wtS3nweSwp0kB5QrxiH3ZtE2H7kUbjjKLxluwji/IGjwISB5ByeRXLKdd1AixScKw0lbSgj81fFWtZcP91SwMU7tnlKQIC9ITLeojD/8ze16/r2MDLV9gN4RakQECCHbjJ/9j1fuQutYrOjBx46DddvaQfsjQhMiKmGmf1kjElzsJs6razqvu/mvKTsegowldJZm/P2HDWdKkgHpkQh2OGqLNsoglCnRoqLbSj8FRuznvlEuUZyrOdI80rzRX/c/vTvmTZw3RZ47HA62CvH5f6U7Dhb7hoa0/MiVbt9IOPLxKN1qS7sPP5KgTKysHdU4ZsTWc+FXRsX79ruea/r0pu1CBDx0qqJx0qiBSMlQF2FSmqBjVYITzcJCmS1ndCUX4yESo7atm0KT9FFDBTPzab3xF3LjdcqJsw2pVYItAN1X+lfhJpWltQM1LS8rqNoAo8axR8rhVGwz8D/Xymu6AU13yToq4jtxBgqQFJd2Od5OoL+glzPQKUV4U/OQ99wsaI8GS0d3v8Stpk2RiJJgcitGaUkAABxiAfVII1YSOaO9MzIj3HEy8l3kS2XDMBnXoAf224tAkb+363z43XYWvXWtsfTEkYk5YGgSy7ZvbSsKQJ8bi56sXIvx88ZUmG+ukYez9Zh90i7oUwh8kprkS8tncqdSzbArYeheRquG8+NXaYgAmIt5zv2tpaVV1tPKVsR3osccM9uHs8CGWOSSMHEQLnYffTxmAFmW1LLAdrnPyOXVG4/2/f7rCFjrgUbwixv2r04y+ezMWRSlgzpmeLaa6LaPeWB+7ohQmSOYD9hKlSKUqgoB4rA7Z/dPfC5E2A0F2/fljUEJUaCRfjzgbGbHwc2FVa3T/VO487LIqOKsTI2XxPEd3rkI2KeOwlOnfrEEfglJXqxP/6ygUglZ58pS12KRfV5p3s4g7g7M1sxfO8E/OxOaX1Y6ikG6r4joQjEGySSa6wv/dzmfgHrvsFYG5n6WKNMYJfky1xni8lWgNk6DI1kz8exMjx9ut3Y4J+7q6iadiotG6wDS1o4VlXRfxGqzZ8SK1do8w2dxewsUWyM7DXAaI2JDEobQgOBNgTaoBoxah7U5gG5N8aIlWtC8pKSKB27WYjlGqgzu5fGgnTnQWkhslZpGUvJCJDvQSJi1EJTipnklb9ASbiS0e2CFA0/tgP+4hH49gl4/Zb0QIbkYDZBLHs0VJnAAWf4g6zTcLl8RhbQJsYIy5vSNsoHqBgjZ8gc0J9TCN3PVMKsNdk3rLxzD/zFU3BBn7QIa2nxsvnW4SAm6AlQwdlZSw6oL1jlummsMUJ+ipI7A6yhotdAWIuSXXv1RXvSi7kbW7bGiOu2wqOH0v8fGkjDtiDn3YhAlTCVVQbsvjhxsqWuoeLl47vheDnWJoL4mjH4zlHMazdDpFBxkFjVlTevQSWAMJD3IpNVxPwiam4s5UAMOsnYIky19JKNaBnyFeBM3ivwyDRcvkmU/YRXwKgUMFw6JPuvGUFYzoJtp/A8NQs7e2Uv54G689I7kOGUDGe4+kXg24fheaBSlY3WUphAEZcMUaSJG7EMsRxSUlDKrZfEqu571ZNIowXYPpBV/LRVrLYPSl/4RizKlzeHV+8533rVEAPo+QNZsOcDhzOg2BiaRhxaLadrBUouFyhKm/ooG0WpGVMuBYTaEOQVIvd6XoxoZkMP2oIQFKhAiW1ztAwP5uqVuDXm/z21CCB2r5dgsaENC1aeOHnZMNICvQV8RkFdQb+CmlLcZeAVgyGqFhEgvLlHxgDqaDYWIAvt8lWptCL8LrKy1fE41ZLUAvf9HFA/U9kTG8nLrxuZvxiFNirBxxUFVaWoVEuUF+ytKwJ6dg6NgXi6RbyxD215UqGAD7VzGBWBOjyL2jUs8sRNtAZO1GHrYMpPDrAtR35cfeVFS/KKMWiVrk+LA4X6VbpH/MPXf/bI6XJt9zwD0j35Yozkq79qPAtofBlTUmmaTaTTEOhrRiVt6aHjsL0El4xDoIiAhlI0SO2WykCg5YirKEUP9rgre+33FldDXzIlQL0eZc8GP0UxP4X+/p+uw87BNmME0C6X3H5JXmMNqQiQdHssHwFytikP0l2UqGuv6bfHTLzqMteRp3c6Y5lB1rn4fBTVQFFRUFaKYMeQtF2dbIg8T9YW6esCX5qJPeOJHxnoDCmBSs8wkHFGxjO4exdz63iWbJHMfJRP/tzcn3N8fOcI7NzYfoa6cys53wNMQd0J40C5rwO454dPw5CCPcNwuA4nF7LnQ2LE9j3O3n71P3uqJp1W3BrbXJWiw/ZeaG0Nnfa7OjKEoSI0hvIZ6uhZBnPjde8ZIwbfQQc77cBGe6RNtOMD//uszNp/meQMVS0DvS/h7HoptGyw/su//MsrOY6zT/UYSl6xKq0plAbLJOfZbXnCKTYQW6CuYgvSDSgMwakFgiFF0FeSIplaYTb1QawkzKocpEDdblZlDMrIZqkoCF9kAfhgzylnLePAuiE0Dqw747ihZ6GJ6vOKd7lnJ7TKnsDxLXi6BO88Hz72LJzfj9kxiG7Zvr2hQgcKY8M+dSVAK5VG55DKVYUoghUFVcyL8tjUqUJWN2Ig0bEh0BBoLYq2NvQCvS0tgN1VZIWs5TQMoGLIg3WtDWZjH+Zt29CffwH9TwaI+8uYQKFDASsAQRDLXFZUxjDoG8ql9sryNm6RFyxChhdoQ9WlMxinYxp6mxFhf+5C7vdKCmIbGXHJOLzXwP3HMMMDmHumMbsnMedvSGSgexhAmYhAhygL2PNnWFYvPwuCyQnv5LV9OLCe5y2QeWiFimaoaF06gv7qYcynHkL98A64cFM22tDIHlCRRlVCglgTtAylSBO2NEEesBv7Zc+jm1Lc5qUvIm1MwkYaPeh9J1+13u2vVgyPz8A/ugATQFwKiEKFDgOM0alHfHMfbAnh6Wm4YixZx8oa+koGgqcnCS4ZlduWD0l1XpEgkE1Y0iSRJmUjaS+7N8KdR2Hv8/ArlxMrRSNUNFqKKFBopSGAMAhEIVOGqi+rnLIPmT2GMXBsBt6wHaNIHm15gUdm4cINqdCw1xUDjEYda6HGrPc675Vdpg0tAelGgHoTRUt5Q1dKsEdPSNAXUJ6qUeorUUYieSqQgHbJSDDoyRp6UKHLAdrKQ7cgS4EiGOuhNCkyOdDWsGiMBXzePpiJpHuIz5e7T0tEDrS8CJ26J09qQEPBIRQPKkUZObsGgFcrRbOnimqI3AytwTM0hj6jCHKKk5muE2/pk0gEJ1YDAbMhEGzuJ8hXhPe+z1TDVvGnHcioMzOARhaoL1g+naFTIdEBAYoW0FRQ6S0JcMBQNh6esuG32ohXvgW05pvEm4VHlGwVVVIEOiC8cgPBgQXUzmGCSBOEcq8UEByfJbh2c7oGM4D9pRt3/bUqW0CMKiHifS4DgVJQLntg1pNfJnutxMlg31Nu/Nih2o4Myuky2joRmrEo1H5/9byMIRCknVSFF1nBmL3jk8AnDsOvBLQu28oC0LDrVmpuKpRJ7ZRVJUEMPUClr4SqeUbVvFLvkS5wKvm7Jr+H2oB6Pc6C9eVEKcw1YGhDbr/Ks2xxVxPCpGdrxmCOpJjMW9hbxKcdq9teL/s8LvKqQ7a9pg/SQ+Gl6W6Xk5+ejhmgpKkQ0ArEu14tKSrlkPK2CsHzczDW224QKkg5M27d5dMTGzE8eQL2HYNrtiTGn4x3OlDFoNFFZyxWt8kZEa3zwwQKfd1WjO/4eNqgHp5AXT4q+2cR77rj0VTCbP2JfCpcYnzQ8P2j8OqtMqjxCjxRHG2WMSIlnmiPT2NgagGuHEn521QVo6IxRNo6wLShFRtiez1nKCsr+7DAPTijNZae+cYflzaSKjXsDCVWhoxZA+58hBkO2wwTgXnp2M3hNndbAitbzowfjzML0h3WglQOrzSdk2C90jOIqUXokoBiY71XKtYJ8HK0FAhxgrFpDzgfqCeHXoRdUG6x20PudItgax/KhgIFGExvCTOoYLKG6SvJQtYGY8E1kRG8rARTVqwiXLSwtMnmJtaNnNVNxEodaLlGSRtbPNKIt6AG1b4yASrLPKQRCC78xPeOxQZ2DGF+ZJz4C8/S+NXLiEJRiOJQoW0IaaKIl8KMYcxtWoUD6hADPRjKi2ychs56nhNjhBE9oGQgik2ao7jQohcIqouEkQYKKiE6EmEVayPsWStjfO0Y+uAc5ssHiX92NzpSaOtZdOtD5LkiCINUl3ZKIrbQ9jKMLXFOuXaPhr1ngZP12tPlFZiWobevREkpDhw7xp7zt6fzVxLgpXUgUdaXbEGfv0kqqG4+hf7MQfR7Sugdg+goBesgSlvgeHEedo8vt0xClX429G6tv4ecYuI/nAM5URK1RKKEiHKdUC0W4ObI8haFAY2Sod7SNENFdGxaxv4C8MIheA+oPZuSdeu864FWEIsSGkaGsKUptwSwVyxoD2MDB07AgyckHPzSLYVzthhgdwq1M7S4YZcUVDCpkC3KVzcGnpqCDRBt6aNhjRFRqNABAvpcWF+g4JLN8PSMgHVBikk0T9CKCE80CX9qUDzDoSIMVKIYqjCNnDCVMB2Pnx4SG+m9/thJWt89Qe11W6hHmkagJEzc7iMVaMrVgJZSxIG/j33eSOVIS2MmDK1tAzQDRRyIzBDjgV1Iu4fhaBMu9L4XKF44dJTdY5sIFiJUWcGmXok2BoIwtzeNyYg0X6ZHNmQ6AelWnjS1hMDHButRhdCB0M1VmnMRJUS2lxGZWrJrOdYGo0DPRMSbe9FOOVcAAUrJXilt6CGsBIQLLUojYRL1FBpNYGUQgJmpw7Z+uaYdtw5Uepvs3gtyfNV09ixwHvUmUjfwvyp4p4JrA7hZKSIUWwJoDPegFkTehMbuS2Rf9th9apC13aw3aI6OEAUWrAdKvmePjXBLlfDRSfGs2T3oZAeAma4l7QTdOkrWkxLelgM8nEd9QWfz8l26amhEyWwhSlSrt0SzrKhqkctVI/cywthINENLSaZHNN8gHh1O1oEKAgJlUAGoSwdRdx4hZJzAKILYyTFNaSIiHO+hhCK0aRTKAfZlYvUDzx1mz25ph2usTHFz2US2K05mIp7nqpLosnLFglnIgldjJEBGy/VcqpVbW/72U4BqeY4H7RwQhtKhGcIRCAYrIkuKPJDugHB/u5D4I5MZPlv7jrNw+VYWlKRnNFA0tOgDoChrmT85n2Q/6f4y1abO3kqTPvueLl85F9mQvnb3JJEPxqCaGtOIxbBbj1EtjbKgUD0toDC4apxgz6biiXv2pBgypheAsUTvMIGijqzXlpZ77rJ+XIpGyXqiJdS/CnM2zc0zEBgjcx9pW5fBpLblQKUyIX8eOxmRP4/dezqOxR5qHUVyjkBw1G+vKXNpFESBoqlsaQpPH2t4Z19goIyiohQtDKVQ0VSKSgCVCzZQPTTPwa2aC3duzZ4PWlIbM2kgfj0k//HUCTH6AOaxw/BLYC7bKrWpYtGnTaxFNkMihwIDwVQdVQJVClKDtuPTKjtxqNClgKhkiMuG+JJx4l9WmIeOwaWbCeohwVcPoh6aJHjbDhjtTfZK4HvXrTHXaFlnlEMZoy1UqGxUn7v/PD8NMwZ15ajch819cFqj/WuB1fEEz6BUEkVbdtGlTq84qW0kk+Vtcz80IapFLJQr1LShYWWDjkFHhqCkJDiG1KlWNlBW7d52f10lARJYfdotUmMXsEIMUWXl1fVAIlcrAYwoqRcyVMmuCwNBbAgDY1NjXvx8cGNrujVqx+d0deFJzoLlgvY8SHc6RAV5XWJ5Z9fLoTMKg18vNDiyg7lmTNDS6NBqPbHGaAFxCWAgd1DlrMwRNnKWFKi79yJc+IhGxRakxzoBbmq6RTA+lIIYa7Uzm3rFe7IdCYcRjU+0xAgIrZKvRFmKEQ+0D2hdW57koVOFpQHsA+7U8PbIcLWxwssqhEYF6KEKvU6HyHnXVaisIm8yYN1YcNu4fjPNQzM0v3mM1lt3EEeauGUVbwXGetQ1ChMGmWgWd29byhoglbDdo2Tj+Iu9obM8Om+RU1oCbajGqTcTY6Qi56CiVwlISchNgjE0A0WzEtCMjAhjLZ51HUtYkXnbecSffALz0BTmqlFMpIU3ZGOLQTBGiRWlzcMeWGFQNZavAnDn56k37MZvGOsFAx4EvmngHTFc60LT7MFD00C1Qi9wxwMPsWfPjuS6cRjQLKcGJW3EGKGbMfqKMUwE5vPPY37+fPSmfpkX57nEAnW3OcphRtH2DRNOWRRwlNZBc3soEeAm67137xlEAAfGGpQQoRcapFBLNc0n00DDKQmBolEKaEWa6KkJTADOVWgeOArnjaG80PJAGygFqJJVQCNNKRKAXravS7Gm9PXnKH13VgDZY4dR7wUu2ZLuDXeDyAJ2X6F24M+BdRedV1HQo6CiNYFr2ebnyWswD03SvHycehBQDwIB6zZSxWAkYiW08uHifmnJ14ogKKeedWMID84SbAkJRnoSoB46wB7YQ9gIGMvscxeOaMP5jDY0f3wX9VueZ+HyEZobemgq8T7HVvsNVSx/V0LB/Ap6laEci7Ey71WPjs9RH1A0hsqy/wPrfXbec4XU0nh2xm0SK380X7vvQX7hLT8KkzXUxpCgHEgYsG9EwxAYUVzcXnTrMbBrr2XnqWGsXLf7pImdFiu7FLZUABCO91M6rcWwZCTSpxQbAqVEnjpWZ2P0lj4r62TulBIgHwaKIFSEmwKC6TrhcFWAujbyf1oODa3ANJqY0Q2ytpUo/MaQdEty4wqUzGNJWdlhPKOfFjlSR7KC/pNSXKQU71ICDj4Ywl8o+HQM76lWaNZMZv8rDYE90wLjwugNzVpMc7gkinkiExFjtIJgU5VwvkHJGSisbFCAwQgQGa2IHLN7G5sipoxJQPZSnpzY2FB/7Z0L9vkBpfiGhrdpuNL+fgxElZCoFNBqxlSqJVpG+HIhoBFyBkTGENUi4qGSNTxbeR8okf07hwjqR1ATC6jNA0mEhJptEJYDSpv6CAMJ+w1DiWIIlVp23cPbv3kfe3ZvR9sQYxcx5zzrsb2KM3K2lFUYA6gOl6k2NCWrf6BT8OqAujNOWf9CItaUleOBsZFIcRqto+x6Kx1pElw4KjIlkDVdcvMeqDT3vhykNV8cYL92a1IPownUXrWFhUDRUFBXippSiVKtjLK6T2o8ixXE/WXihZakgrkzygL6ONY0TZDhz31EPucZ7/BeW6BOM0a1xIOrvGKa6pmTcPNhMUg9doTw6hmqmwYFMLiD//gs3GdrUXzjNGzvhUu3oAMl57mRmhGRTj3PgT3znAdTjLpQGq6gZuNk8LE2tvW2OBciK7ecc8LtWR+ou6gLZ7j0bkH2PNZYYGuSMyREQEcwMUvpNVuSZiQmUDQCSVdoENA0KtFb3LnXtNcNlKJMQEtpKkpRUopWIGdHY3cvzUdO8pX9T7F9x5asQ8gVD6yW5EdbMabhAXQftD94zMpGq9c+cgJ9yRbR4bSt4h+qFDRigboyBLWI0njJBlqKUS20BlY5BuXsjZQYzONyIPf74nHMnk0CrrVBnT+I+vYJ1MeeIfjhcYJXjSVRKCpSotv7Xm6MxFRog2mZpJic22cA3D+J+qFxiQQOQG2oYiqBOPfGB8RTHdto3Ehj4hAwiS5VNVDREvml5myxyQ1eKkMlJBqA2sQ8tcGy1T8NsvRNErVTMjabRVkg6tan1WdKzltNCtC197eOnB6RGqExBuYbmJEgNfC5zRgoMUxMR2K8TfQGJCIyCimVRFcswgp58h2ZSdSO/T93ZlaVOAyr9rxZ7HrGGfhJ5bDTG2IjMqBp78tKe9eXDdY/8IEPvOhn/viP//hlDWYpMsbwV3/1V3zxi19kfn6eV7ziFfzLf/kvOf/889s+e+rYY8w2tCwUIwtGxVY4ecemf1A52euD99iklug2oG73m1O6wwgbOmateKcXUFdssOBOJSCG8X6YjtOc9UhjygEmJrNZHJh1Fv8e62U3pAB2wQPpUkgI7gf+vTFUgXuB32vBlQ7o1VqYkhKvvkJArdswyt0RsTqaSphYO2Mj4LmpDU0MzXfsIvr400TP9NO6YAPaAVplLeGAJiYW01XGoxpirbCkIM49V611yuVe5oG6HBbwkDHcZeDtMVxlSGoh0Yhgg1Sa7FU2cMYCq8jmxjUMNIOAZskQa00cS166Lgdibe4pYd5yHnrvQfSOKmasH4PClp6SywUKlEaV05Bx5R2UiTECmdNqDrD7HhM/r7QJ3AXcgAimezH8QQxXmlQQEgEDZbSCf/jjbxFbD9CyluxmJaBprOJpwtS42YzR14xhGgb9pecwP70HM9yb8azLPlDJpJhymIbCm/b9ERjaQDvefDoFweTew3431Ia6lrXaNDaipBkR9ku18AhrxUfCWZshtAJolgJaV2xCP3GQoAE6BH0oRj07CedvQDW1BYwqCVELYwHLYaQJI00zNoT1iPC2Q5QfnSUsYcOcobzvOOU9m60xyxMWyESbqhzgbg5dzqzzroMolO6Qi4Ce2FDVAmZ9Q5iuRzSen6f2lm3UAiTEX0nEivbCTY2Lehnrg/EQDs5KbQXnFTEQHKkRnL+JUAm4CEIB6S5MuYSipF3kjqFUUqhKkI4nUphSQD021HcOU3vlGI3bj9D4md00I2XXtezpUEmIYxwG4omw67CnpenRaW53rA1NoH68SXPHAA0VJMqQwfLlFtTWKjxQkw0dq8TC9xM//hbmmzHBtIaxPtlzFkQJUJcJEsDhGZ5I5TpkZbnvZWyhiJGUnqe04t5Y8SMGLjSGcLCXcLYmtRuNAPWSkUgqrVNjoa430aN96Vo3gEnTSQKlCIf6COa0GAG0sZ5sGZ94TQzUYsyQHMvayQ37FNiIqUCl6yuwssEpJw3j7Rng/0ayC35dqSSdWCnFe0P4UAue7w/YdbqRgLXQuPUkXswYC/YwRA1FNFQRRZbs/Q2UItzUR9AMCFoxYRgQWC+90gYTa0ysMKM94lGHxLOukHkM7dp0NUjySpnvUXd7z50P3wf+DaKE3YPidyK4xM55OVBEPVBqRESDVZp2zLHtxOVAURzFxC2IRnrQVg4qlESxB4qgFKIuGiI40EBtGhBwawzB6Trh9rIYxkJlo8IFzJYxdt8ZibpicUPEr/3yTyX1WTIREiY1MGGUKM12HZetrGj2V2jqNGrNrW0JWTZSV9Nb84ncJwV8Ssu6DGKDigRIYNd6cGya8OrNNjLaAvVQnkukSnAQBOJddHm8sZHOK+9TNB48Tu3VW6m9YouAPwvUnZF6P3AH8JMGriJ7dujekHi6gVbQaw2O6V42guWMl57o8+e9dqSMeDaVBerGAsH0PS39rQNQoRivyo/O0TrP0NPSVJ039HAjO4n7j6Ev30pNSWvxOlA3CmenVUDJWEMOLp1BUQ6gMlylvBAReGdJy4YsR9oQtTSt2DoWsEbKAIkuspFFgXs2qdzzz17nnTWxEeN9rEkiQrUh1JrSpCbc3m8NM7JHm1Z/agYq9ViatB5GC3gI+Brw9lBxrVK0UALykHOjtG2AqKb56doWZp6fgItsK2AXxWfswiyHSfi78UF6ZL1OpR4I5+35AfrK8aTjkzNAGOd8sQwreyYF8xo11JtEnIXW4Ot+OjKgw4C4ZFJnB6TRUqESg1ZQRr1pG+qSQdSdh1HPTqB+ZDtKt+DJk9Je9sJxMfi5zYbUdEqKyiUFbjXq9IKkH/z4DjnfnFK1o4KebsK4SfCMijXGBOiWTHJoDEEk+nnVQJ8xVE8tEAyRRrooMbDWtgywcLpFfTfUtaEZGRolQyM2mBiU7fBWMmkofMlIKlXFgndnY/d1eHefDEjGcUb5s1pfLcZs8OpJ+btyfACmUkOVM9QTBwSxoaRJUtU0EslXBLDzjkxnVHJOlFCl+Mrp6VL3ymS89j5Id9dw8sW9VlgDPqvjXV82WN+3b9+S1oeVDgG4+eab2bt3LzfccAPbt2/nox/9KP/6X/9rPvrRj9Lb29v2+dqh04SjI2hrvUqsbEHWs54cVKRGHmeJNaQemAxQRxZqDDyu4Z7Y8KbIcFEsG0lpDQs11MimDIgBMGM9mJPzmcVsYsmbc+G7ZaWS60febzkg4JQVX2FxQPazjie71r+J4SJjr7/QxAxYAG2FTy+klmKfSoqoHNCITXLgN533YbBK68e20brzCK3xPvRA1QuHsWFrKHSgiW2uzsPAV4AfB66z57ixc+FveuUUMpPLv0Q2xX3A7xmxIt5vDL/dgsucIaQO9FUFACjotYK4QTans4WiWQ6JI40OwYQGUzLoKBDgt20Ic+VW9DeOYH5qj4PpKOe2UwpFLIK4pDLrqKTSOXNrDA+wRybrVXePpp3fvLnrTgMXadJiIi0Dg2U5OKwC3lRy3SaKqBRKDpI2RFpjSoGNiggkSuA1YzJXX30e8xN7MH0Vm4YRZDwQYD1LtjCjHz3g1nQCRHJ7KF0LxaAdYwi15I+GRhTlEFHOy62Ycn+IUnJP6krRMgL4WiqgVTICHs7fzIGfhePPTDK+c4RdOoBvH4HTwLXD4q3TgRyUIQLWY8lZD4yhdHCa4BuHKG3op/Fz2yl95nASIVDePEwl0pQhUaoUcr81EU0T0iwH1FGp54s0d8/Y71SU9QphiJqaVmToiTVVqxBH2lB/eorajgr1sV6aYUDTeiGagaIVBKBBBdorGq7g/HE4OC+GCatsKa0JD00SvHFHGplqxxEEoFRA6IN1JcW3yqWAUllC+HRspAd3pKgZRfP14zQ+8QSNA9M092ygqQxPGc1dRnE9issCRRxo4mooe15JOonWYpjQRiz3DaBxukZrx6BV7BQRJvWsG1lrbLbFGKbrsKHfhvmlAltNNaVgJxZEWYtnYmQSa2FbtItb074sd8Alsg8dKG5H8deBhBZ/H/iXBs7fAMHBOoHWlLSygN2uc61tPQmDnqpj9vTbfW94MoZvBfDGCF5h5XGwsZ9wRidF3MJYEwYBypC2F20pzEhVoircQWUAozCoxMPvjGRubfqGI8nDh/8FHEOMf1UloKAHUbwGFfxCCN/pgfF6E4VJPM6BNoRa+rLHzkNbaxGVodVfSeWbEcAQWpCgKiHhMFKvZduQjNPefzPXgEqA6bMqh1KJIq0tf25ttlQKOnusEpUH6n6tljrwJXublP3+15ViD+m52RqAcjMmMpLKoLSRHO5YJ15LPdsg6gddDnlGG+7U8DoNF6tAjLOAOn8AtW+CwIwKqDUQntQE4+JxdZ66MNl/MmdlTVL0rmSKQ0qdEdc/H/yUhgeAO1D8BAJmS1YJjYCot0yr1qSKLcSKnNmxlhDshk7T95pkzycH6sLYSERFZMPfbT2eoBUTno4IzuuTYnthyl/Cr7bGyZKiVFKUtBRkVIhQbVyxlYUrtlIPFPVyQKMcUCsF1MOAhlI8APx7ZP7vRfH7MVxux2kUmP6SGJytTC3ZexLFFqhrQwvVFjmAx2cSROgB9aAVQ8uC85ZJX8814JgtpmkEsLfetYPWzjEZk5EuLerZk/DJI8nvmOuEx1pgIwYCZXOD03teRklosV0fTayXfahMeWIBFdgUDTu/sYZWZIhakaTuRSZhygfqknIpHWtctAvOKEoOtEdibDBSil+MhsYQnpgnGAoIhytp1EQg8rqJeNQb2kabkkYmfQgB6gB3Boo/COBKa5QtBxJJVTo6RctA5YBGHTgEv6jggs35WZIBWoDujCi0YgG2R2fh+Qb82DjsP46phpidY2I0tR4NbdsGaadY2ojXAFALmnBjn133YvQNk/ujiIzo3rocWse/RI3GbmyhtvfVesW3DaLe9QrUQ9OoTz9L0LLy7pGDmF9Ezmo7XdoAQYCKBKgb56U3wMOzcNUIqq8iGwm7YLcOYk7H6QTGGqMDdGQwZQNaEcSGipF97kL/48mIng29iW4fB0oMSFsHqE+3bCqDoW4MzdjwkIavas3fMwFXKWuAMzby0e63lrIdGkwK0J3+7nS8GBmnc1wmkQAG6R062pPOtlJoF8o5VoUXZtIb5YWBKG0oayPReKSGxjxgd8W28+eES9OA1Ajhzv0I4TFSknZcUSIjW6QgPaMzeH+X7Xeb1ohRVSsbqn7WqsGvNH3uc5/j3e9+N3v27AHg/e9/P1/84hf51re+xVvf+ta2zy984RBqZAD2bMGUZNHoWLxwjvyDyg/zdYqewctRpx08f04bPmWgquHbBn42MlxhYONCkwEDjEiLoWe14m4Nr9eG3UMKnqqL98ioxKT3eGy4zRjeYOBau2Aik3rYnZc9ILUYJdZ35PEc8B0klNBYT+kFuOI0BlOP0UM2FcAucq2UVDPEKp3aCnWlaJUCmiVNM5bCXlEpoBVLQYrW+RuIDzZpfeMoB962k7s0vDZWnG+FQzMIOBlpTpQCvhcoPmvv8zeAPwSuQ26BO3wdcA9JlbC09VDqLfp9HFgUEPBNAxc4c/GCgQ2p4cDYfdywYXZNVLL5GhbYaheqow2mhAj7AMyrRjAnpuG+aZ571Qbu1prXGs2eBKEqTChpFs6750I/YyP8ZEiLgpYJfyd9biEKZ6JEWZ6qCBDHWKt4pDGVcsJfgPAlHjBbLKtcIo4htsX9Tck+G4M2CvPqUUwrxnzlBZ5/2y7urpT4YQ0XKAsGnQIZSI0HJxCD3P4Ivb8deIDFPepJhIURD3ZV20PA2II0QCnWVPqlW0FTeR4iFK2SzF+k4YlY8d93jhNt30RfFPNebbjox8r0feMwar6G+uHNQMizkeGuwPAjWnMBGhUZwvsmCZ84RvhD2whfMUwYBIS/FFB67CRhqYfS/VM0dg5R2T5EKbI5oZbnBrY9vYZGOUjWlFOo9wFfRoxSr3SKtJZKq3GkiW0xl5KW9Vt/Yor6JZtoKmUfAtQbKuDhQPFNBW8xigut9xEFZk8F9h6BaAvPUeIeDW84Pc8uBWrLoHg57UO80NJCpmQV6rKVCU0FlSCgWhKPcatswXpsaBhDs1Ki8YZtNO89QmvHAE9R5o8N1IOAb0Wa32oqLgtjKcJYCkR2WNDvakLIfjO0Ts/RvHRIDEsKIiRvWjROTwhv6oNTDRjpFeEgrk8B5LM11EXD9lsS76Kwec8WqPtGo3zUVIznXSSV5w8DfxconlJy4IaBpF78KYqf6yvxulpNvq9Nmqfs5FespaBVo4EekkC4A1rx3wJYCBTfVYoPaLgAQzBWhpPzAri16x7iPCVgFpqYChjXj9odD3YvKVRSs8t5112IdWRSWdkE/g6JrPpvwDDCV08gec6EIvd3KkWjopibb9A0hhFjgYyW++aAemQMrdkm0TC0AhuBEMNdWvE6BReDeGBRhGMDBLOxgDgt6QIYAzNNzGYxLcjZY+wsWvngwB5e5JpdK1UlYZeZSKscv67mplPk7lWwScNbjXia4mqZqKXl2tYrGhuIkqLMGj3bRA/08ISGD5VEub1DKd5vDK9BwrPZMQj3HEHN1nluoJd7teEdc/Ns2DZojX0CzkuJTAwIjY1sMen+c14rV3m5leMrH3V1P/BvkftzF/D7MVyG6ARlIOorUZqtESEentjNmxZDdUMbWjYiIkJSrW4D3gpc4faLM2ZaoB5I6AjB0TmCjSFhX8V6bj35ImZs4dmI4b9SCiQCpRJSDhSUAhaMRMs1AylYWQsD6mFIvRTQsOs0WfPAbUpxYaqvE/dAbKLEsK9MWiyvadzZl+5tX1NN1Hkj61Q1NUFLgLpqSq66C7NWsYb5BmrvAbhsC2p3CfXMaYJLxqictzE5n931ei4eR703gH3HMNdtoX7JFmqhgPVmAI0gSHLz77f3/CcVXGMUFRQlTJIqURoOKceR8GblTWy96q1mnAD12BpEk8iiQIB6GCgItHiL7XsEgdTRCFxalb03foRXZA10BoLTMcHWfkIlqUbOGBg5w4M1Ljin1RPAnwEHvduiFfzfSvGfleI8JekbkYLSM6fpUaAroFoQPzkB541ZYzO4LizGIAYTm6JgnFe9GcE3XoDrt8FVI5iNvXDnIZG/cRq9o7VXlNeCYZfiGkYtVH9P2tDAylODHadxBjAlgF3J+fIoijuV4kdbileUxXETBM4Cowiu3oA6eZzyww2ogmlA9Ogp2L4xWSsGMCEo61FXzrveiODZCdSP70ydQW4Bj/Vijs2lhai1zJ02Em5uAqkTG2lDRetkfuO5iHjrAH2IwaUGzAdQH6/QfHDC6jHigHs8ht/VcuZ/1cC/VfAabJSok1uk0Y+KFKC3AXbE+ag09hyRiTAGqMeYgb7UKWTSbclQAAs162QxCa/aiOGwHFvZHmT3tAPs+c5KiaPPk59fBX4CuMak2Mp52FtI2rEPzItAupMv7pxpWrnndPlwBb3rywbrt99+e+bvOI45evQoN910E9/5znf4H//jf5z1wTmam5vj2LFjXHrppcl7YRhy0UUX8dRTT7WB9bEtl9KMQT0+CeeP21wWMLFGm4CHlOIrwNsQC7VbOBnwLm8lh5s7JI4BXwduB2asB6lkRNh9w8CjsWH7RJ239FX4hFHEWvFESRxE30fx2oEKPz/f4FORYVYZ5iM4EhoOGin28FVj+F0U15Dsy0SptCnt2fxEZPE8DPwO8G5kMd5jZKF/VsN2Y9iN5MqYnh7JK7carcaF15GEsLhNFwcBzVJIHEGrZIhiI6A9FG9n/NqNzN56gG88eoKgpfmr3T2YLZupK8XJkqYWB/TEmhNBtpLjlxBFQ0NaNMMC91B5Ye8mBeo1BORXgbqNFFAGttpwFWMMphVDr62k7BkjWsbQNIq6Ti1mLeD+UsDtGn4sNlwaGpolOBEbJmLDnDLMvn6c13/lWb443mT4tOavdvUwtHUz24OAnsAwFGr6ygGjoeI4ohz/GPAqy0++sJALnc63VWoih92Hgf+EKGTfNIaLDHwRw7YY3oBdpLEGq8z/7Rdv4+d+7m1SwMZIKHzDPkfVEo8YuBN4s4aLyiIZm8BpAzM/vJHqt2Meuf8QplThY3t6uGDzJs6LFSUUfSj6Qk1fqBgshzyDWM7fguSDOnGUeNjt8AJSQZYH6th1+lUDP2HgKmOoxFDSEhpcNoYSMa3+IFEQWtaiXzfQKgVWCYW/QjGnFD0txbyCD0eakaF+Bt66h/fcfZSeLz3PX79xGwcHe9AlwwOR4Zen57n6ruNEShG883yCoV6CMKAUKkq7NxHsGJNw1bFJSl84SPOnd1LaMpiE8gXY+bIgtKGhWQ5oIKGoTqEGkRE3YKNIWjadJBKgHmsB6/V6i+axBs23D0pOeIAUmAsCHgwUvx0owjDgrpLmVS3FdgtDy4O9vKWvyvcPzvLZXSPECmoLEe/cvoExG02ibJJzEjJuQYTLoy+rNKSrGQZUQk0UKuqhEiNELBb3+q5hWs/PE983yS2v2YRRmp5Ys9CC24OAC1qaWMXESlmlSeSOdKWQKIhWK6Y5a2iN9xPZexUFisc03AO8Xiv2OIPQ+AhMxGjrFj1g4DNfvI1feOuPsnuhBoOjiWfdRZc8huLLCv4+AjwcYHfr0a1VQ9bweh9wC2Lk/BkF7wwUfx5IyOcwincqODncS9CCP1uI2Nlf4UoNUSR7/XURbDdwshFxXgy39/dw0MD3bHivUlBT8H9QvNPAJX0wMNkgNhplq60HriaIMZjZpvRYJjVqGRRPoPiKEhlwFa4oI0nRpNDuLxeS+k3gE4i83GLlSY9S0sbMyiRtZf+F/SVarSY3xfBroTVGGDEERNoaZkFyuft6iY3hSQ1/VJI2cLcF8H9pxWuVAjRqbAA1qa3ynxZe1XUDI334KUUi/xXaebhySpQDBDb7MvGWJKDdyrPbgb3AP1JwDMVblQDrLwL/1cBbjeJ1lTJBrImNpDEQQxQ4J46s1xM10Bt6+Z9IAcQSinoINxHwKaXZbBSbg5Cf2DbM8RfqfPySHhqBYWygxKXDAee5+QiQAnTW4+miIZyHyn92YaYx8JGPfoF3vvcdmVasbk4/69awNajeBlxgJDUgAqI+KDW0BesQxzbf2ckpUifD54H/Yx0v3wBejxjPx7Vms4ZN1lN3IILvRIa3HdOMbR9Nc6PBdoB0hurUs14y0AhDylVFScWy3gzUY2OLkynxPIch9Yp41f8EmUu37o2CBxQcAM63erupBGgjhjFtDxUHZBvOux6kepILyXYyQS4uQD20IP2ZRsw9Lc3rm5oLtBbLzUITvvIc7NiI+qExnlUB39q1iTeUAq4oW0niRyIaQ8/lW1BXbKWpEKBeDmmEgQB1m+t9P/BB+5U7kbPhClzuus0X7wtpNiMxDNq9EMcyrKil0ZEmjjVPt+DbxvBapbiwTALaxdMegLJe9lBgVRwGUiSuFBCXQ3HkWMXymdjw7ZbhjZHhAmNTOjYP2blWSYpLhAD1RiDyexb4KAKA3oOknPwnd5+V4rwg4LcCzfVBwDsDw47AEF0yhnlyga88/yA/sfEqop5+G58cixc2UTwRPadpHzZUnHuPw9ggXDksczA+gG5YI+dAj+SJ2zQBbeOyn4ng2y3DGyx/zDQJtvemxTqVjUL1gLobglYC2B8OA34n1JRaMV8LFP8u1lwZ2IUWKJTSYvC5fDMLLxxkKoINZVAXjdpcWWdeBlOGZ5qGbzcMP9Iy7NEanp6VqLKxfgv0FM/EhntieNOQYtsTC6lzTxtrJDYYDI9p+HYMb2lJSmjSkeZ0DX3+sIB5ZF02WormaJnabJOG0TR0QKThFusFD7WM9PeBNyHA9kIrf0K7Vq0amdwjyAF1Y3jcGO7W8ObYcGGi/BloNGFzL2B4Noa7QsXrYzhfARuqUlw4Nklu19OR4Rux4XUarjSGpOpqTq/uIQvUazoL1O/z9t4dwB8A15JGSjvPeqxsZKxZJGXOTvl+u+7fAfywvc5qeNdf8nXDMGTHjh38u3/373jHO97BX/zFX/AHf/AHZ3NsCS0sSN/HgYGBzPsDAwPJ//k0O3WI+WFQr9iQuCVcT8HvGfh9K2hvB/4zqTBX3uNhZELegnin70GE/8PAK4F/DAxqwx8iVs5eA79uDOcHoOcNrbEBfiJUfFqJRbOMKAfPD0jBh1fMN6iP9FHCcLsxHNI239JInuGfI+11HDiJjCwmB2bdQd60Y7sB+P8Ab0cW33UY4gDuNvD/aPhHGi5uAsNVr8WsgPYW1oOjnTKQGvFaQSDhj7EhDqUom9aSA3dfaHj8oiFe+8QJyhquPaS4/zXw+gu3MBwbhrQU9XsY+Hfe/DwBTCEeH7zfMlhjRA6ozwP/FZgG/swYjhnJWd+I4UvANutloBXBSE9qPQY0omzWE++6PPYDH1QKVQ64UwcMGClYNxQadoSGHdqwbbiX712wgbfef5JyDNceVHzvhxXlPeOc1AGPasNBbXjBs0V8w461CLD7ec5++HvDzt9PAlcDPcZwHSJALgP+l5EUrr9v7FX6JXrg2muvTNq9NUzqXYiB/YHiP1ZDyogRaQeSd9dUhj4F4wH07qzwpvtPUY7hmqOKu18Fz+7azGRLcSJUTLYUJwPxgrguCt8Afgh4NbAdue6g5e9Rb89cbt+rI9WoTyAKy63I/roHw3/VcCmy7ssWFJS0plwOpBAhaZidgErF46USN6lI8rsDWa8DCn5DKfYE4n1vvXk7pfumeNedz3Lr1VvYNFGnUeph+MBRvr19G6evG+LSMOD8UPIro1KQKKJhpClfsYEwhtLeFyj91G5aY/2UEAVIQknTgk11DY1qSAv4FFn6EjZFI9YS2aNTz3qoDa2nZmluq9Lor0gBHiRs8KSC37MVaQNt0EHAiZJmT0vZCtCKEzvH6DlRI949QgXDthMtvrS1l1MxbAsV20zAThTblOKxIGBvoHg7cA0219XYkFwlxp1mKcREhmbJ0IhMUpW+pQPmX7WR0q3PsOO8Kqe3DjEbaMIWPBFojoSwJQiIS9oa3SSCKdLWc2kMzZPztDYENCsSLt9E8ddGcVuoCIzi24Giz8CAhqs3wY88NM2HolHmMNQxhNdcyZ+3NL9X13xuqBcM9BvFoFYcBT6lBAB8law8h1SeP4Kk4bwZKbr2CeAU8E7gPwIDSlENYDOKu5TiDQrOt7Us6Al452yde/oq/Kk2zFjpcrcx9Mfwqsk67+wJmQ0DLlCKXQo+oRQLNgT0EiWG2nv7y/yThTqfiWFPYNgTi+HsnshI1FU9Rvf3MomEoC9oeNjAp5WigWIv8LuIsSwJ8ydNs2ogIOVGRN5ehC2iA1SFDUqBRE3F9kFfBZoQaM2ndcC7AZenjPXKxtoQNSDe0MM9RnEzArDDQPIgbwoUew1crOGHRgN2vDBHyYxysGW4Wyl+RBt2TQFD/YhVXISiA2YPK/iyUvwYAhozdWEscFcUe9TvBP6HncNrkWKOKpCz8p+VFM+24GsGtveUiFuwy8ChGO6K4TWBGKAfiuDJGH5mWjNS7eVXFXzUwIyCCorfDA1bSwGnYs2Uhukd/ZiDUzQuG2YgihiZq/PxDZt5J7BHKcpY4GQUKK+gmAfUXe6kKzCmDVz7+lcmiqY721uIYeg73oI2Cu5VinEDb0PRhyEuQxjHAtYdiI/T1JymgfuM4bOx5qlIU7VyVyt4HJhXimltmIsNvTFUrAc3CAyD5RaXbKqwB5dSI7sqUPKGbwh0/JWDgFJV0YzFcNPUhho2Tz1Q1MOAOuJRPwj8T3tG3K4UbwUOAf8d+HkjxgRTDTBxnBp/DZk8/AZy7s0A/xuJPgA5r4aATcYw3NQMtmJ6GzGNpubxlqbU1HyvpXlTHPOKWpOLbnue+pZRpl4zxjEV8DdhwEIp4O5KyL8uKa52m02l0YnYfbgQOI+6ohkG1CsWtAM3ezLJBIq/VYqLEA+uFAVUlAfKhA0BkS3rPY+MkQKxsaYWGfa2DF+LJS3qHgMXNBUXhYrNCraGivFA02O7hzyt4C6leF1Jc2EpwMQSzTUZBsxgeDg2fCmW+hD7teGfacPuU3Oo63oJMCjr9Q+wZ4SS8+8bwE3AHkRP3YZEd/wRElX2o8BlJcVEWXFbpPjPJcU1ccBPnLcJ3gHRA02e2TbO+GOnYFsfaudIem+Apw18O7JGlFiAujkwDcdn4B0XooKAZ1Hci+InxnoZOLEA/RUwilkNpyLD8ZLhCW24w4g+/ICBX4sNlzUb0BskBl8QY4R2gM2OYQY5Mx4GvhgoqEhLzjiM+d2WYjQIGFOazdaIN2wUte0befSnDBcdqDFeb7F5LmAuMkRGqu4vaHjewHdjTdkYvq81b2hp3vH4cQ6/cpwFxEB4VCk+rQw6hMdH/1/23jtOjuO88/5WdU/ahAUWi0UGSQAEQTCAJEiKUaSoQEpUzpIlW+F0su/OQXI823f2+1p3Fh1oy/ad7Nd0kmRSoBIpikEURTGLIikRzAFEzlgAi8WGCd1d7x9PVXd17ywCsSDBOz2fz2BmFjM9VV1Vz/P8nljj98YiXooShpUmjmFfbBgxhpcS+JkWw9pPDfxe07DceqOTxjhxXx+JkpoddST9qT6jQ3TP0SZRd5UHYsPGUCIMMOJ0/I9a8SLwW8AJCCi9GFhLFo2zwvFv+xgENiJ78gEDlcTwUAKnRYZZsaSOvWl/g+fn1/hJAi8GwuPv14rFEfRUynw6gG8OjbNzRieDkWFLKEa4OxLDfzOiu6RWAU+vThA+4Bfbdo6wBhP1spsRvTPFVmSP0L1vA9IjhA//D4+3/LWBCxDe53vXjwUdtRFg7969RFHEE088MRXjaUsdHR2AeNh9GhkZYebMmRM+r3TIf3jyy5RGFoHWVC6+HLVjhKFPv5+xqky5866HSLo6+YPzz2Ah0LdnCH3j7Zz82Q8xBtwEdN90Fw8uWUhjxVLmABds3Mbr7n+Mqz/6dglfM4Z3r76V/WedwVXT+1miYe3ajWx+6BkuPe8Clin4gII//8ZNtN74enpqXXxIw/OjO0h+vI8Lr7oIgJ56i3XXf5O9n3w/qhpQAT5310O8rauTt59/BjGwd88Q9954Ox/87IfSTXjPTXexcclCVq9Yym8DJ23cxj33P8bV771KGKyB8e/dwVtPW8HX+/r59DA09u9i+70v8cY3XpqmNXztn7/JlR94Cz1zZmIMPP7wE4yOjHLeGy4gQjEWRXz7H7/O2z/6bgg0D2vDbY88RrVc4aODJUYDzWg0xqPPPsW7p7+eWYsHwBjuu/VHzFu2iFVnncKfK8V3Nm5j1v2PsfGjb+e3gD8Env/adzn74nNYuGguBlj/5IusXbuJC955BQ3Egvvfv3wD6v1X8oW+XnqAPY88yXlDI5x17tmcDHyt2WTRt27mE9NWwjwxhjz08GNM6+3ijPNOp2EUO/cM8f3v3Mlb7f37G7u+zSULiU5ZzMnG8MGN21n/4E95y1vfhFIG1TJ8+5H72NEznzldvSQGznzgGUbXv8D73naZFCBJZHxPvv9K4r5eAL798BM0R0a58IoLIIFmq8l1f7+aT//yBzDlMg0D9/3gIcKuTk46/wxuAOI9Q/TfeDulz35I2mYouPO2HzFn7lz+y8JF/LMx7N6+k5mPP8RVb7sCA/TNnc03br6D0y44m5knzaelYO3TL/LQ2k2sfucVEGhUOaTnn66n461v5Jc6u5mlYNNTzzA+MsrC4R52aE1kIu575hHe0X0Jcxb1AwmP3f8YtWmdLD3/TP6ylXD/yAF6brydfZ/9EM8ihpM9N93F8JKFhCuW0gEMbdxGx/2P8aOPvp1ehHmVvvZdxi4+hxmL5rILqDz9IpUXN9J686X8uYFfi+GlG27iDZdfwvSuLoI44aeb11HfAedcuIpWAuPNFjf+643s+OUP8oOOKh9VIYvveZD9lRrbz1jO6zXMGtnPLd/7Ie9+z9tFsz9vBi/+849Z8aMdLOjsp1HVDPfBpr2PEoZv4t+1ZizQ9N52J+ecdxZz583msRgWv7QOtXkLb7jkIoLIEN6+gRv181z91jcyc2YvLQOP/uxZhht1Vl52Pi0Dw3GLL133DX76mQ9ApZzyl+1dnQyvOo1psWFo9z7uuekHfPS9bxfPujHc+sN7mXfGSSxUUjF3y86d3P74kzz0oatZrhWPakXPjbcSn3MGn5o5i6WhYsOLG9iyfjOLz1jJvFu38b2zZrH/5ltQ00/hguUnEgeKHz/9LHe3Gmy5/HUMBYp63KL7b27gns98gC9UypwBrLnrIbq7Ojnr/DOIFBzYt5/bbrid93/8PTQCKTrzozvvpTJ7DvcuXMTlK+fyhh89R3nGfqKr3sy5KH4aJPyPG2/n7RedwxuXzAOteenptex4cSNXvv5i8coa+Pot3+f1J5xJt1I8bxT/9uSz7GnVSa64gFArkqjFrK9/m//0rrdRGajR8WCdqx59jMe6unh25WmU5gzQvXkbN2z9CSdXljMG7FHw0x/ex7qlC0lWniwG0Y3b+LP7H6Ni9990wHztuwQXn8NDi+YC8NDTL1Jeu4n3vvMKrkRqdtz65Ru44r1voaeri7NCRfjU0xzYP0L1rJXESlMvl3jku9/j3Z94L42wyj0JlH78KKpcYeXJJ/PhesxwKUHdfAuXvu+dqBAWKfjmnffwurlzuXTRIpIEtozv50cbHmdufQk/CSr8awKtW+9An76CR/r6uXIYSqN7+ME9m+m5/FK0UmzWUPu3b9J6/5sxc2fyh8CpDz/B7JFRzr/iApYBnY0m//YPq9n6mQ/w00qZzwLhXQ+xtquTs88/g5qCsX37+fYNt/KZX3gPRovn+M57H2DOnNnMN/ChVou/3LOH6556mk+97ypp2Z0YbvvenSw9fQV6f5ltlQqPrNvAWdu38/ibXs8QElZ/0ervcN4Vr2dftZPNnQHDLz7L1zp30Th/FUbDY40Wpz3wPc58w5t5IoGRGHY9+Bhj07vYfsEZjGtNvGeINTfezm999kOciShLD9x0FyctWciK05cSAC9t2MaP73uMN3z07TSBB4HrvvZd/vPF53DWorlUgC3PrmXbCxu55PKLaQGLteKJm79LtXM565pd/GsM+559lmarwQ8vPo++BC5rNjnhWzdzSv/ZlBZM40QNOx95jBemdXP1eaezJNDs37OPJ2+5i3e+62rMgi7qD2+j8677qE7vZ29PL/NCzY3bd7H7yadY/N63ciqKUwNYc/0t1C5ZxSOL5vJWoOepF9m2dhNXvPOKFNh+/cs38NYPXMmMhXMZM/Czh59geGSUFVdcwL8B32s0edM/rObiz3yA+3XAW4ANDz7Cz0oVHl26jKsSxamNUe577n7em5xIkEgl9R/deS9zlixk+8qT+XqUMLJuC6c/8FM++J6ruNaIstrxzVv59OvO4vwFcwBY/9xaNqzdxPqLLuJxZehoJWy55/v8+H1XEhjFQKKoPfEM01sN3nTF63hRwx2NJtP+YTX/4TMfoFopEwKP/eAhurs7WfW6MwiAXYNDfHf17bzjsx+ijhRf++Ob7mJkyUL+54qlzADCjds4895HOf1dV3KqhiVK8fffu5O1p6/go53dmAhefGk927fv4PVvujQN8//2dTdy6ofeyp3907kVqD38BJ0jo4xecQEA8xpNFn75BpZ/7L0oo4maCffe+zClcpXKqaeQmJjntu+h9dXvEV58FXec28e40my8/0HiRQvg1CUcKAd8d+dOXnrkZ7znvW9NPes3fuNWLrvgLE5aMIeGgieeW8fz6zdzybvfyJgF6l/78g089f4rweoH1Z88wQt7D/Bb55/D5Qmc34y4b/V3eNfVV0kjlGbMIz99nGp3FyefdRrPRzE/3rufp+68m+BdV9O/ex/LN4/zs+1PM75sKfUlJ/BTpdi2YycH1jxF39veTFnDS0qhb/0+965aSe8Jc2mUYd+zL6E2baHrza+nbmztmBtvon75JfxDqYMvjDa5ZXATtV0RV1x4LpFWPNeI+Pd/+wav++UPcjcBm4G33fUQK7s6WXD+GZSBsT1DbLzxdv7wsx8Sh0GgWXvbPVy0YB5vO+kE7jTwhW07UE88TvDWN/C9yPDuaRVGrr+VjrechzpjCc0EXnxxAz/bug0uu4iHo4QLo4R9N3yLD7cWsu6NJ7O/FPLc08/z7NgY6pyV1JdNY9m2Jt99+NtE73sn4zpAlwzBPT9htKMKpyyXtK/h/fzv7/+Ia5uL+Va1RGjgwN33s3jxQjpPX8rdStG5eTvbH/oZ2z76drYAc4B5X/suV118DrctmksUKsJnX+KtL2zg4qtez1Ag3cgeueHbtN50GU92dDM+ayZ7dzxN9/gQn3p6jKGqYuNABxtv/h4nfOBdvKQq6NhQeugR4kqFsY45NJXiB12Kzd+5hZ4PvJsXbJ2Ayg8fYO+8OWztgqf3jrMnGWP/k0+z4D1XohLYlRi6Vt+KOvsM6n2zuAfgxXXs2LSFNx+YTjJDomj/cfVNXHXV5dRqXTS04qfRdkbu30fpzRdxi4LPNZvcf/3NxJ98P5dWA5YCj971EBd1dbLl/DO4Efi7PUOp/nc3YvQevuku9ixZyOYVS2kBszduI7rvUdR7rhQDlIGhW77PqaefxvRZM5nWqBPv2cbopmcwb7xUjJQKRr79XS6/7BKijioXjjR5dvtGHms00ZecJyHmjRZf/eevs/SzHxL9ysCDdz7E9O5OLrzgDBJg++AQN379dt7/Hz8kRl3ghzfdRbhkIT9dsRSAktVPH/zo27kZSVW842vf5ayLz2H+orlEBtY//SIb1m7i4ndekYL073z5Bla+/0p+2NfLNy1/0Za/3AKc0WjytX9YzSlLp/OTu++irOCldX5iyNSQuvvuuw/LDNCuGnyz2WTdunXU63VmzpzJ6tWrp3yAjj784Q/zvve9j/e+972AhOG/733v45d/+ZdzYfCjo6NcffXVnHHnM5w+fSZvqAToSkipGlCuhqyrhfxRmJllPg30Il6WvYiF6IHCb5+JhPi4gk0hko9XrrcoN2N0PRbrZz3GRDHmWy+QnDOAObEXUwp4Xgfckxgub8UsSRK4dytqegecMV0qildCng0D7ugIuKBaYnEl4HbEenkp8CnEOuzafThv4/VIeNx/R7xJJSTvotZooeoxzUZEfTwmbsRsaMWM3L+LWk+Zk87slXyyckipFpBUApJqiaQc5Cq0Q2ZRakYJ99Uj7mjEdDZj3tFMOLcVoTcOor69mWElrRLL715AcNIsVDmEaoCqBJhqicSGgzmPyL8inq7fQyxmZbLcYPeZ/cB/Q/IR/ysSaVBNDNV6i6QZ0xiPiRsRL9Rjvt6M+c3vraN6zkzCBb1UygHlWkBcDhmvBLSqIc1SwDNIjtUB+3D0xVbMmfUY3bQPl8+2fjfRjVsYKsM0BaX3LsCcOEBSDUgqIaYcsKYW8luelX0hYmWu4YokQU2L16dhLazjdp5P2bn9FRLBUQVqiaHUjGjWIxrjMVEjYrAe8y/NmE/etoGeM6dTXtRLUA6JywFRNaRRCfhRLeTGUsABxMt0rx1PGCX8aTNiRTNB20q3QRTDhl3E397M/hh6GxC8cx7mpJlQ0phyiKloknLIMxXNb1ZCCadDLIun2muPAFsRb8ZL3v1chpytmcj5ct7N30est5XxFm8cj9kwHtHTiLmsFXFunFC+/ln0uxaju2skpYC4EvBANeBfKiFzO0I+HWjmIH2cK82YcixhjVlBmhhjc8LMXS8QPz7GYA9MOwCs7CR5w1JpKRgoNgSaR0qae0qa/QmUmgkdzZjPt2KWGClIFzyyj3DDDsK3nYTuqhJZT3yrpGmVA14oBfxdJaBRDflVLfl8P0Cib+4A9jZifq0esaIZU2pElBox5VZCMFKnecNamh9ZStRRphUGfLMc8KNKyEeqAedXQ56rBNwdJVxdjzi1EaEasbS4acYSFvitF9l+Vj9PGzj3ib10vPNEkjDAlAJMNSQqB/xZNeDBWrZ2fUjkzgy8Xr/27JEYmvUWUTMhasQ8WY+5vhFzZRTz+iQhuGUD5R6AhNbyGUSLZvFYGPCP1YCLKgEfKGnKjZhKI6LcjInqMa0oJrpvB/W+Kt86pZfnwoA3V0L6qwH/T0X6zvaOR/xOI2ZxFNl5PQ8XzGXdnGn8daBpJjErdg3xCz/dT8+ViyDQUlioEvJ8OeD3aiGNaojRiv8M9CO8fA8SwXMXct4cXQp8noyfujSHSqNFuRGjGhFRIyGux0StmPjencSVkPj8Pl5Umj8vB4wrRU8j4tfimMWPDaHqTfTFA+hQo6sBqhpAGGAawqOSRkwcxSTffoHkwrkwp4ev6ID7Qk01Ernx8UcHOUeH6HN6pSJyJeTFUsB/qwXUqzLHzyC8+QXgRWC7HXvkze8L9vxXka4YNSUVtDsaLUrNhNGxiHo9ZrwR02jFjK9+hublC3mpv5t/CAOurgZsCDSn1UVuPNmK+cUHd9DdX2XGKb3ocsC6IOS+WsDFgWJpM8bUY0wrIqlHcOPzfOW9J/NwrUSgFCaO+cwPN1BePJ39i3oplQLKlZBSNeRb1YAHO0JaJXFZzgH+2o7drU2ZrEWdM1Q7D8fvABfaz1SBjmZEqR7RakRE4zHNRkyrFZP8eJCkHPJPZ/byaDnAlEPqJc0bGhEfj2J0FKO+8xKlVf3oRb2EpYCgFpCUQ2kDVY8xzYi4Ifwl+d56di7t5bkmrNg3Rs8lczGBZns55MlKwGPVkMeqAboWMuLJhv+JbStHpkuESP6snxa1C4m2GkNk5AJ7VstRQlKPiOsRph7xUj3mjkZMx64DfPS+zWx69yn8OAg4rxywuxrynVrA/lrA24A3NRJqcUIQG16KDfcZeL2CpYGLcrBFDRsxL41H/O9WzPRdI5y1ZYSlZw1QKQWsCwNeqIY8VQ3YXA2oe7zlT8jSNNz83NpFJqs7c8Du0QaiV02zn6sBQZLQqkc0x+VeD4/HXN+IYLTJZ77zInzwFMKyrEtSDdhcDripGnJHLeScQPM+e//+wDsPX4wSTm9G0JCicrRi1tUT/q6V0DAxM8ea/Ob3N9E5cxpcOFPCT0LNS0rzF+WAA+WAVlnzKxXNxUoqnNeUyPMK8hwqCfEfU4pxraWQHrDT7tHLkKiRu4A3JYbl9RZPjMU8VI9ZX484rRlxQZKw6BvPcvcbFjJjZjebg4CnES/lKpNwpjE0t+xh75M76RxLGK9qZi2eycCy/rRgzBiwUym+aRTrAilA2wg0S0qa95UDuisBPZWAsJWwth7zpbrc555mzEd27GfZj7dzwztP5qUgICoHdFVDnq4GNKsB9Y4SZ2rFbyLRdP75lAKWZHWejC1w2IyJmjGmGfOPjYSfNJOU382PDJdtHGLVI9v48aXz2TbQw1qt2VQOKCcJSZywsBHxK7dtYPu8Pp46u5eWVjxTCtllEipRzJwdI7zt6d10XH4C3aHMrVyRvbE2MfzVmOjmPY2IXx5vcOK317LmA8vYVArZUg55phKwtybyu1ELOT3QXIF4jmeQRS89Q96rLFX/XKs/kckv1RP+ppUQRTFdUcKvbx5i9k+2wRsXoWZ0QhiwTmv+GohaEd2thN+/fSNdJ/fCyZbnlwPWas2XmjFxK6anlfB7d22iZ0kPLO5FlYR3UQ14rhLw35SiXI8p1yPeVI/5cBwTDI1Rvnk95V9YTjkMCKshkSLl9637drCjr8o/LOvlw+WAk2shYTWgUg1QlZBmJcyl/8aIHv6kd6bKSJj8QvtYYP/2TJzwJ+MR5XpE73jMbzm5HiXw78/Ce5awvqPCtaWQA5WAzlbC51oxJyUx3Lcd+mpwai/rgoC/KIfsrwY0OgLK1RJ/Vgno93hFVYleXbEh6GmalOUB2y3vvBjJwb8LMTKMISmnJeCzCHZyvCqw83VAfR/iuL3Zrvsq4J+9+3Ct/VtVQ4eCTgVdGqIDw/T29nLLLbfQ2dnJVNBRV4N33tnLL798SgY0Gb3zne9k9erVnH322cydO5evfOUrhGHIJZdcMuGztc4+Zo3WedN0OFFGKf8mhn5juIYsXNeBDuM9F8O2P0SmPGQPY5U8yXsxibEF2gxmZ0TSJ1YtoxUrK7AyVhijUC2gWkUNjaOYDkg2y9mh4TSgniQ0jOZtSrEKCQ/7T8CvIOHHMVn1zUcRgX4iWbhjFQlzBtLevA0MJyhoRE3u6yjzqIH3YcPcjVS8dFWs3cPdi58B/wRsCTUnlAI+nBguSAxhnBBEitK8PoIrE6bdtJXgXfNQc/tsOyKTFvUAQ9MWzXDM75PIAf8j4D8i4fvGm99eRODOQoRdza5BFTmkxl6nnsDJGD6qIWk1eaYSpGuauDAWA0NK8S8Iw/0o8G5E2f0hwnTOCDVB2RCYBJ0ogsSGMC7oQ11Qp/eBQcwH5mPmzbQFbsBgiDGcb+AvlORIvg74il2X3/E3pQ3daZosD3EEAekfQ8KNym4dlbSScEVQ6gpmKvhMAEkUcV+omZ8o7nh+PZedtoT1RsLLYySs93J7nbchwPGtoeZME2S9WBUSObBwFurtMO35QdjdxGxpYU7CVlVNpJ1gnHBOBF/SCTdrxZVKZffXjnkaAsxdvjbALyF5bH647irEiPF9Y3iLgVMwtLQUZftxAg81En4T2FcK2ZsYfpRISNwY8Ekl33dMtaQVlWpAuSUKSToxrUiCROJMl/VhHh+jez+0ShAtn0FcCkgs4F5c0pwQagZDzT02b34M+CsDH47gXJ0QnttLi4Tg9o2EK2fQ2rKfePkM6otmcZNRfF8rrkw0bzOGMpLussru4QuN4c444S9jw1uihPfGNrRx6yDhfVtodQfE1RJ7UPyzUjS05g8CxexAEYSKc4ALtaIUKnSsJU8lVpjYJtvO72PxSwc4saxJ5k4n1lraEIaKOIAgVLwjUNynM77dac/eW4H3IMaUAJt+pxWtUkAcw61BwvdDzSdjw1nKEEaG8sldVG7bLkUNnx1l/P2watEAcyPFXwWKtVrxq7GhL4E4ktY3TWOIBof55gkdlJTid0JFZwhhqPiTQHEfcIVWLC8rjKsy2dcNuxJWzIPfwnD72g18aG8PfV01Cc5066zhtFDxpwpuUZki5QyNjpddSJazhj0XVTLjoCv2VQ40YRCjA02sElvJH6LukHjPGBF9rAjgdw3cbQxvAE7WCj06hppWk3MVSOEtrRVoiLVU4k20ItaauFLFjMTEwOsxPIqkCvQkcOpwnfLCLgmhFvbDihC+oOBWpbgMCd/z+fQIAgCf9ub3Q0RWVFUGKmpKumOUQApOIV4NAyRhiWQsYrEyrDTwL0a21/0YlhvDpzTMG66jF1QlfBs4owRnh4okUCSRIgkgjhRxOSApKd44NM7T5RIjgaE7hiV7xqmt7JeiV1mpdN6l4AFPrxgF/guSZraKTFkMvXDnx+ycP48NQSSTC1WkPZ3r7xwo6fUc6YBWFPFGDU8bGDaGmpGCrs5YEw41CXrKUvDLriNa7pcJIYkURmsSFZOc0MsJz+9nQW9ZcvmVrPH8QDEnULwxgGGt+COleMFbmy8htWVmkaUwhEhI+vNPv8j8FUt5zPLJ8xHZ2EkGiso29aeF1PRYqmCxhvW1gFbT8CUDsTLcC3Qaw7sNnBdDOU4Io0S6bcSGlcZwDsKbTWyzBZUrQGZYESh+I4IdW5ssqWumBXLu5pcUF4eQBIo/01J0y9EfIMrvpUAH+QJVCcIThxDnQgfw/2IN8HigV7v+9PLdXgWf1nBPRYw599YjNgcBC2N4IoJHy5KS9SUkLSuw++FabPeZxHC6q/Ae2bz0VsKKJOE3kpifjbd4yx0b6ZrZjbloJgQBrsfhKaWAzwcBPyhrdlc0/1wOOSFQzPXPoJKHA+uuc00dCaX+IwQM/IJdP6fDGWCVhlUBDAXwhFLcmMCqxTN4KoYtCZyqEn7JGE7EQBSj1x0g+MFWTmzCcA/M2JKg1+4geWyQZGYXyaweemZrumZ18gGt+erufSzc0mDdoirvmzOLJaES+dFSaAynKcNvJ/BAYrhIGU4YSjD93fxSIOd5S6D4VyVh+0bL3piGGN9Du2Zl5TqLZH2mW8oVI1O0yoEU8ULC4x8FGmvX0bVwER8KYk48qRdj4OL7tsAbFrKxr4u/aUEdQ3dk+A8/20dXKWTp2dM4OVQQBrykFX8TSYvTek+Jk7ePU0kSNFqqhxthYKcDv4vh/sRwKXDCWJOkDGeFmpUajIavKMVtyDk3SjTyy7yzqezzeZbXgE3ZtKmBrvMQwHIFnwPuN4ZLMSw8YTrqAHDXJnjbYlRnhVM1/FYsHaQuGxyhb/8YnLgAo6UILKF0WfnNluIBFJdqmDmtAwYTOElZfcqAMawEvmDDzhcnUmz567HhvfsbmJ5KypOkw4YUr42AwWlVBvc0+aCGk5XUCqpgqBoIlKFs6wQ5wN4CPkJev/vvZLWLnH6nESfFnxm438DlBk5WRj4x3hQGUCuxPFD8loK7FVyuFSeHdtNUqrCnDkqxQsPvGMPdGM5O4LYk4Q+M5gtKkcZSW6+i0bbgr2fs3IMYGM5CdNEywifcnM5EQPh/s+v6CcTIr+353AN8G9Grz0KMi8vtXjgVwY/vAM6x+77sfddvjTmVdFTV4MMwZPbs2VxxxRV85CMfmdKBFemDH/wgY2NjfP7zn2dsbIxly5bxxS9+sW3btkqtl0/vNJy4MNtMYDBKili8DmGavtLje5RXIblUdyAFw1aSWYhD9xwbShhpzZLIfUkMJINj0q6gq2wPtZKDjcGmeqFmaHhcQvqVDE1yADFopH1OoMTL8EeIRegvEIbxOkQwOYE0mwyo15S0NKvY+abXdwL1QIsLK/D/GfjLWDHLwOuMYrqCXVqswLuRjbobyVHZ493XT5U0Z7Wkt2o50JSChCBRlE7qozSwk0CHtkevIH9tpF8vxhBq23LI3nCFGEvmIB6STQjgC5Hohj9EwPxvkXmnnUJWA9LsNSX56CcCNAx3VkrsNXCxzauMgAeV4n8rud7/RnKsQrvOF2Gr8iqFLmmCWKOjRIq2BAodKfTKAfjJPpK+7tQoY6xAMMbQSBLO1QGnI8xiGWLsuQb4bXvvFLK5nDGiBfx/CIN4NxlwqCgL2rX3PXvseoA4brEl1HwTaG3dyqOnLWEG8ItKepv60R/nIUAlVKDL0jNdmKrsMxJQJ/Sj583A7K9jvvoSLO3CzO2WnsgxAtoTxflJwqpEk4QqV9PAnZtzkbZzt0HaWshn5A5PX2DHFSvJEQuB8xWcq2FzEmGA/6E0o1ihD/wGSgSD9Wo4S35ZKcoVTcmGmxgrgF1vUbN4FnwIomd3UzptFtGJswTIljRRoFMv+eVhwA8iOSM1ZIz3At+L4DwDF6yaQf/QPqJbt7G3Cj0bRvnnqxTjJw7w/8QwO5ZCYaVA9qoT8IGBtyWGsxLDV2P4i5bhE5sHmf/9LST7QVdjnt+6l39Z0M/pSvGuwLY+CqSHeUVBJVSUE42KY4iEl0glLmBxFb66hSSC5IpQioZpm1unFbGGcwPNXyrJd34DInDWIjmUn0b423vJwEM91Px9ybA+0fxmAidgCBtSSLO8fYiaARVCUAfz9B5a82cxL0j440hyl//YGN4dGTbHMD8yPDMe8Z/GIi6b1cG8QEBUGChCLWDvfGUIKgpTV1k7gekdsHU/nDWdM7Vi17ZtLBzVmAU9ohxbJGsCqbmxKtCcrVS+NZH3OIeMn1+FCN8SWaG9khO4gewprWzVcy1t9OJpmviFEckDVnBmSYS9MqCaBr17BL2gA+VAdgr0pBhnoiU/PAGSnirx3pgEWBEofsdIbt/FyjB7aAy1tNsWBZTDqpTinFCx0ub4OYOmU/hLCBDwFam343n+PLBe1aLs1cgAu1GKpFImach3I6R6cmj5Tr+BBRiC8TqlamDXTwsgthpaEohBIg4USaJIOjpYeiDmVwcMDySKi5OE6SOgumtZ0UPLjM4OFX+hRCl6A3AyUuvhGkQZ/DQiI0I75ycQD+6vApdQ8LIoqGhF1a6fawPXBKLAEI61WKYUv44U4bvMwAottTzCekRQh7CrklV1D2SPESpp6xnaHtexwizqILlnG/HwKMnFc4kU1iAjBpqWUvRqxScKa6OR2jLLEaPqhQhgfRb4xtpNVFYs5SHEQP9GMkXQGXHLSowspUBq4DSV7NGTKiU2lwGVEKJp2X1+CTbUOUooRTFhKyaMJA3HKX9yTlRqvDGIrneaguUb95Cc1S/7xe3lQOb59kBzj2cIfAtisP57O7e32PV0ad57EbnezgBfUeIlKyVSi0Rr181C+OnlgWIsgLtMiz26wn0WrPy5gel20H6kzPkKLjIGFcXSbcEVKYtdL+6EM9bv4fTvboW5IebiAYmECbSz3GFKAaeVNEtLmno55O9DzX9FFPd53poa+7t+rYE6YlDqQ4xPbg1rViBGFkjFwEyteL2GrUphKNFnYIsyTI8Mi1st9JMjBGu3E1YrhGfPJHxkkJlD9ty9Zz6ms0qyq4nZPU5y/xDJiOGUmuG/74olIvBhqLwP9AkDqbHMdWlYGRjOCCA2imT3KMn0zhTknRgoPqwVf+gMVlpxNZmh0+1H/9lga6Jgz55SRCqgZQynKzkL39i2jQ8sOYmTE8SAsni63LQ7N7HsyhP4jd4OHjJwxaYh5ry0C965WFL6Qg0lzYqS5nNjhociuLhaZlpZoXaNouZPyzmJNHBWCGeGSjqVjEaYsCwV3rUYJC5R8H0l+rdB6gbVyKJoPbtirtuNccatsraFTg0owxkGzghANe3cTp8GQ3XUbRtkHkq896cHCp7ZDyfNEk95KHzGaA2h4oyy4nQj3RaYFsLa/SjVB/iYBlYqw6la6lOdpQ3XG/jxAThvRicVO07nlGshBVsf6YF3bBihSj+BB9TLSP67k4l+7ZBzERl6O1KY26+b4hs1tDGcow3naSAUXgkGdaApG8fKxZUleaCNeKMU0KdgzajMUcFpgeFkpKD0UgPXGPgDJeevzz98sbRsqyuJZtmPgPATgV/2zl5VZcXjAqQY92WIM/I/IvJknKyrzzlIFOJSvAJ7iP56kd3zTo8IVaa7l1VWMHMq6bDBerEa/CtNSik++clP8slPfvKQnx0afIlF++q2nYsUylCpvzjBKI3rP2nrz+VCvxMjYP58ZA+lVVvJALsLHy1ZoSf9BA3J7gbJ9JBEWS8XSEeKRJQ41QK6QtS2Bsr1LkMK+bjQMe0xiCYCalcixYVc4RRnPVqE51VQsik7MKLQmuxQa0A16qhqwFuU4loFz1pG1UKUkx5EkM5ENuge8mD9HuACrSgHilIIYUvZAjmK0sA0Spsa6BNIW2VIxWKFMQkBWnrx2nvqegWfjhgi/l9EAZuNeInOBX4dP2LAhpInRg6dNy5jgGZEy8B7O0r8E1LIYzQRI8B2JWD29eRDt8re4SopGasO7ToF0gpFa4WqBDBdYTaPYk4p20qcDqiKB1xcFDKeGQhD+X3ksP822Tq4EJuHkHSLv8VTyJTzqmd8TRYxU4ioQ60SkmgIL7uYBorlSvaqVpnC4nsMXbuNoBJYISabXhkJSdfGQE+VZGU/5odbMB9eJoIoUMJsbUsUE8cCdpVKC3Pa1FYMAnJfR8bElR2TKvzNeSxjoKUMEVLReFEzIqnAaQoetoywqRSPIV6IkLxyUEKqXJeDABUojIqttTsRAarBLJtNtGw2kQVfSSgtCJNQ0wo1USngXK35YqC4C8MVBpZqMMqwoQk/bkoRkXeUNbWFIVWk+NEVLwyx5MQBNIYQUX7dflLKVn9OpD/8Agy/ieFu4MXnh5g1DHtnwIx9sGvtfj5w4ixOLyuCkhZDWElTdmBdCWDXkcakjZWVlGMerWMaAg6SH+wkmVUmXjogfKckBepageJ1ClYZ0pY7zpi0AbgBAQ9vRKI7/lEp+kuaP0s0sxIom4SK0XJOls2k8thmuZCC2pIZ0p4rTtBa88txwvUJfDWReh6hMXxkcAw6SywoO6AngLgUSMXuklMcrYEFBfSH8OMRYZoG3nnphfDVZ0hW9KZg3dgiSiaQKALXKrHIzx3Xf53l6c4z7ARsjgcEwtu0VmmrzAhFq6tMvDWSYmuxSa+rEzF6qZ0tVFdJqidracOkrJaXBCprvwnEnSHJrjHbXcSwMlSsTGRh1N4I1SVNAl2vZAfYYxtJ4LqDuHMXI/NyhrKrgVXK86Yr6NBQU64gmBi8Ek9BTbpKJEMJBsXrDfzEwIgxTANerwzVBEpDCUF3hZISnl/S2raIUhlQR+RdPK1GsrPJGScrTlOg9tbFSF3WUlsuEBDmtN/ztHQ/cUbMdyCK01cQZev9CLi9CSkM+p8QMOhC3/0Igg4tPCFWwjsalh+2yopwV4tIwekBnBlCEBp0AqExBPvqhBUIAk1Jq7TFmouOi0LhhS7fP+kqk5Qj4u0QN1pSsC+wa2SNNC2tUiX3NnvGliOg9V7EQPG/kEJd6wDeeQXY+b2JiUC9qqBiDVSu3VCgbeRAKWDuKPQ1YnaFITUDlxjrrTaGskkEpEdGAPvGPZSe3oU6dRZmUV/e0KWskr9+D8n6cZIzohTAJYEAtyhQrAokMux73twSJGLtDiSaZQ4C2qtIlOASBLBNMMBreS5rW03fsQNt+QOwsyugEhkp1qugE0O/EnnmPOq+8S1sJegokdTERAp92mbUsG4Q8+2tAJjNEWwfwpzYL2EZZY0pBSQljSppklJIHGo+I2yP30cMRvMtbzHWUOCqTzeQ+zJM1sHGBwwBEAe2oJl7VoqLNTzKGCc8v5uxqI93rDdU1w0SzOkmvHQ+4bxuAqUJF9UIntsNp/Rj5tse432dxMunY8wczFiT5JbnUAlMjwU4Jk8NohbMQll+rUIt7cGc0d0Yku37iRd3i9FGC189I5QWbLdpxRsRB0dJ5QG6AylVq6a4ythNB9pDRUuFxCribAznvP0yWw3XWP6cwKnTRWG7dQOnr5rF6Rt2w9oWvG0hdFVlXUoBqiy6+8qy4kw0qgV6Zg9qWws1z3cQ2KhOo2zLWjAHDEm1LAU2tRR+PjOELyjFbQrepOBs5XU8UAXAbs+FOyNyZpTgCROk56dI6qIBuGkcbt0Cb18o9/1AHfPsMHysX4oVBjI/UdbEMIa2+vK0APaOgjHpmim7ZhpFaAwNDNMMfCqArcMRP6lWmWNsO14DUQAbUfwrig9Or1AdqRMaa3gxirIxVIxJHWGRVlLg01heY+B8I0DV1+tSoK6yZ/c3g/1xgNEYyiWc9U05V7xRWRhNZwiDDTAGk8jccPfUGD6P6NO/D/yPxNAX2yr82OJuWjMeKv5EK2YoxefwonYQGeH0b9dubTZiOPw2kprr6FeQSD3HV9J0OXVwkF5WgqVabaLQj5YOG6zfcccdKKXa9jTfuXMnAAMDA1M3sqOk2s4ROlwYtgFQac8/rUirnmeHjgy8qwy4u0Prin6lAgFp2RYmYrk2WN1yewMzvUPaKxhR1hKlUvOyQqFm1GA8QY1GqO6AxLWCMg6sGxHCxrZ9AQYQob7Jm+MPEc+w86DUNNQMVO0md1ZpEmusGDbojhKPyUCkNY2CS5TiP6qM0TiGt4KCx0YraqGiHEMpUoShptRKxBA9UKP8+C7CeJb0aY2lX6Lrh6rJAzcNaVj8fCQM5QtI/jPIQXEHrUImzGvIHFsO/tprqrEmhLAgkGqy/4xT1hS/qsVK5pQfHxj7gkcrUX5UoNE6EcAOBEZh+qdh1o+RnDxdhGMijyhBogeUhaOWmc9ABPrvI8rab9p5JYgB5G8QhjDQZkxVY6giXjC03bcAsUG34NxqyI8TGFbiRXqDkpyZgExRcYzE7dfQ3aeKJkgUykilcVUSr7CJDGZVH2bNTsyaPZiV/ZgoEYt6oFJlJ4kTknKQteswpG2givvH96i7v4EVBsqknvVIC6CJ6gmRCni9hieMYtgqqFcoK1QKSoJ7lgrQ2obAx1ZiSLh4EktF3UgrAeyBkhZwYUCppImVRF+8TmnOJiQhEq+/FXQnKsOogm8t6eXcR7dTigzNsuK5JdNYjoSMlRB+UMJQtt5LlyoTIkXWAgxvwrBmyTTWjI7TMZawYWnI9JN7WR4oAi0goRJmXvWqdkY4CYs3kdukItBZs0P4DNZp9NROklNmEwXaesAE6LeU7cdsXM9665gHfhep4vp3SMoEwO5AsysMmBcbqkZTMVBODOUTZlL9gEH/aAt6H6jZvag4sX3cJUQ/SuRcl4wRg8mQIezrpqTEAFHSYugrawnvL8cSEq9cyW+lpI3NSAJDDcz0GiZKMLsSzHSbWqSErxobmkugMDrj3SnoIM/T3d50xlffUFdRIsAdgAy0VN6Pgbi3RqtliEZaRL3Cr3H8azwmGE8Ieqs4Nq+DrFJ2RGKjHCxonxYQPyde+tjeb2NANRPUuIHuSsa3rdHQ6oIC+JUH1O3r2GSGMscDil71QCmnvkrxIjIDgglKJI0mBjglgN8yhnuM4g2J4VSlCMebhBGUOkpWDkoLuLI95JGVcS5aJukNMS8OETMgPOFAC9VpuYG23tJAC2APRLl3RvCmlXczEY/kW5BWOzeS0VwyoO4MEqlxIpAIApDrlpU8N0IojTYlOkFhW45JhJwGSkMRYS20va+t8dYaS4wF6s6rnGiF2biHeFC829F3thN1hsTLBogDTWIBWGQNNecbkT/OQDmApKC8C5Hnf0KenkUMFjmZkMoG8ag2lJwld+8iLeP+bCPiR7UKFxnDcuewQ/oUu6K45Q17KF+/hZIB9fgWzJytmNnTSSolkrLG1DTJ/hHMT/bLnv3ONpKPBsRLB0gCcUIIL9W8TsE5Jl9R+RTE2P8pxLlwA5nRfy1S2+Rst34pj5Ocz7LdX87gpZScJxUr5rc0NVvxviOBS40Nt7dzDLWnn0Ux5djW9oiMeNZtKHySGLhlq7SZtEmq5pldmJMHoBJgShpV1kQljSmFEhlphdt/IAPsXyAD7E75byEtzV5AgLoL8/fnWtbS9SOyhp2WXb9Tt+3lpPv2MVSBq3+2neoJFcJ3nEAwo5PQnuEw1ASLZ1FeNhuMEY+xNSI6UJp0VzEXzsd8fQvKRsyoxX0C0iPhl0pLpKeyukxcj0gGIR7oFDAbZMaZVaHiLGuEdPpFaki2a+dACgjvLyMyp2GyTi5RNQSV+qeEOTtQEyWwagbs3AO3bMt8H2FivRDiVVclscqayEboAPTV0Ov3o86dKV51C2qVlnD/NAJwX4uks2zf29B+DeeHcJ7VGYrg3Mly9zer4uVSrRKlpIaRknZqRgnPdptGGYN620JY/Tz8aCfq8tnws/2YBR0wrYoJdRrBY+z88OVhXwdqn4FGJHzTXrdlOXrWR17eLxgeI1naw78Yads72yhuN4oXUbxfw/LuKmEClQN1KtM7qWKoGKihJHJOZcbApvLaaVrDjmXbkwJ2jWAsr+0Uak8E5XLG5FwYmnFvFcyoidyvR7Q6y3ae8pBAVsNvGfjLKOELrYQ/ihJ6E5N2gohVwpcCRVgK+N2SpmoN0z5+QNne6PbMulSdjeTpOYQHO5Cei8Bz+oOaCNKPJR02WP/iF784KVj/8Ic/jFKKu+66a0oHdzTUta1BFwZiB9iz0BilxBOTsybbjVgE74o2QN0YCza9zZjY39kxIsUiFFncTKBEu3Lm4tDGy+4agy6pblhOXGiafVZeERq7qd6KtAtw9E7yVmlXSKgCFqBn41LNBFqgqiVer+AnKPZbQf8mlYXvQgayzkOK/dyGbNxVCsrW+xSGmnIrEW9UpKjM7SS4uSmWrtBpzkBsKCdGQvy1QiUZcFOQ9gt+sLB+P0IUUHfQUqUMQ01l+VHW7AZjMZQCGkrxkkXwgZL1fBQxahRDt0pkikJZSR40YYCyQF259dLA/Bo8uA2SuamGbCyjUMZaiDU51NpHBtj/Esln0ghQX4mE4BS96mWVGSVChBGn1IxQESwrB/yqlkiH1yOhnIESgOF7030wEtrf1qGCaogyESoSMCBlOSWe1Vw+D769GXNyL0aVQSeYlgsbU8RxgkHytWIPqPseTbf10/PmfttusJbOiiSGFhC1gKgZE6mA5Vrx61r2wGXAygAbGi7pAS76wN2vtJZGaL2RQQJBbKWLnIcY6/EqKeIwoBVI71jXpiNSUC5pWogHIEGEYRwbQp1wybwZ/LDeYvkLg9x97hw+NtBHDWPTF0QJdvvJbQVp2WRoKmOjZAzPzJ5Bc6/ilK3buO3s2Zw8MIMztYCfSmA9zqG0EXN7s6oVuhSIsuk80KGCMwbgya0pYE9OHyAKbJiqjR6IQyUtSJwyqSaC9pMQAOTn1v4g1FyQaKpGzm/ZaGqJoXbiTNT86ejrn0f/ZA/6wlmS7pIYgiTh9YniscQQ2zzss/aMUB3okv1owXpZKcoBVAPZr5VYZbxRK9AaZgSweRSm1WCwTtJMMJ0l2WdaWQ87Ns3IAnjVBqSTN74qe65SYWvPhlLWQ6Ksscd+ONASDl2uGuLBMZKeirQGVsJbg91jUv8hDMQD6Da5PQAlnY0tMYqoW7z00lrLSESAAbWvLoaPMBAlWnvGOq3SEGsHziPv3MVt5pcCIC1nzB+TYGZF1Z6LpEOTbBsDZOpnhrAyNKiSotQwhMNNShW5TsXymDIiC1SgSZD8/kjbFki9JeJdY8TGYFCiqJWqmXKtrTKrhf/UAxellilRDbs3lyMpNT/y9ubdiGzwPeqpVz1R6fLVkCiOpoFySdGqN2kZUd4lRUtlv7unSamrkkZ85dbRgYUgSd+bx3dYoCS8K35iJ9Ep9vxpRRRKxEuks9arKa8hK950IhJB5tdUcKG4PiCqpPJPwIED6sK+hY+FASxvxCwLQJckra6E6CuBO8exofzoNjGS2f1i9htYEGDGW5j9EWY8wqyT6I8osHvsiZ3Ey2bbEPisLkakSD1wbn6uOFMJMbY8XVi/HyDh/zm9RVmwblmb2ytO/GqlCHTIp4YNd84wXKgNy4NMNwu1J/eShLIN9w+iBJMWH5UWmjwxCCP2zCRWXJ9hgXpZY8oBpiT90k2oMyu0ff60vW//FUnhm0+W3vZdJKrgzxGDUzEywu3XOFC0tDVU2RoZ0fODdCQwIwKVQNCt0H2dhIFEsZRCTRgqyloR2vamcWJTMxJplRlbJ0J8Ur+EpNyzBbUL9IxuiBIxUgUKrSUyCIPUUdk+QtIJUSnwamzYVKMAklAMkO4e+wYkxz8daSXGZicTHWiPlSK23ZhQwsdpkicdkbbmSoCnd8HiWdazLmDdxMYaHKwxZ6CM+tEoKknQsbItkCWyE0iNGPH+cZJZHcJDHU8ONCYQfqv0RHAeumcy9unLlxQzaAUqsHw4ybzgbt9UQL1tMfzrCzB8AJ4dh8tmWD+iHOQUsMfWuGx5vyoFUEpQO8dgUUnqJSXSW9wZFFzMqgIYHmVR9ww+qRV/oxR7tPCMsoJ5SNRQpbNCZW+D6vQOyokRY5L1rOsEkpLXY9ye8Vhl+p3T6RxoT18Lx8+3Qjeg9jehVrZo34uscrhIKWFgKoFdY9QXlchfwtYDSwy/2Yj5u1bCX7QSfjdO6LRb5TqtGQkVf5gYOgmplDVVpXJ8JnWkKJEzoZ3jO8jzqHcghsDjAaQ7OqKc9XYUx/GhP/QK06x5Z9LdSOjZ30RNrwlw9UCPRjZI7tCpiR52yCxGTihoZXN5HVBPjKcVGtg9DhfPyhBLQXlLrWUzqrCnKZpyYgiMbA63gayhT8JpjTyfb/Lg+VyVVUN0wq4KqUWvZryfHGmiYlCh5rRA8TtKcuEvRYo5GE84+ofxAuBilXlsyqFKi3pVAhEcAaB6y/LjW4fhpOkT7k2QQEcoerg28kiBuz0sd3tr+Hby1uia9ygjggBIrYxqPAEtYTaXKqkWPIwcpLei6FCTe2UrKlNoTWpSVZ65UMHCbrgpgXqcGiOUkUqtsnFMxrU8wD6TDLD/V6SA2RbE+h5QCH9XWZGk0JjUYpk+xiO5d0pxmlY8/c2bWPmL7yXUyhmeCXVmCSyCEUempG3lK7s+sX1ohVraC/MHUXdvh7cuFO0rDb+WhTTNBKo6LTrjAIM7Ym7v5LY8mTHI9WwtKdtpwAn1OkRavN1nhJLTFJZlDcsqA+pFS75PSitRukKd5iiCBV0ayqEWGxKZgulC9iIFrbImIiBODKVIEdl83FMCTa23k3h8D5/om84pCspI+JirN1C1xgSFM7Al4im0ynKAFIz5UTnhxUXzqPf18not0RGSLy05txWtUqXOGSOM00hDI+giNnDyAPyCQj2+g+Cc2QRLByg58BpIj/BIZSC94YN0lQftV1MwBGpFtRRQteFxFaRLQTW2wPzSeQSrN6BP6yGYVpUcXy19iH/HGB5IDK9Xhtk7hiktm5Yaw0qBohIoKlpTDVSqmOfOmlIwZxpsGYcVhmtv/h6/0b+C1AKHbC7nGVHaAncObnh1e9PxsqBwLnIWJce7Hb+eXiUYbBGcBCUnHAD2taCvTOoOLzJRuycdWyn1VjEtI/mTPUFa/0Ltb6K65RCloDZVauThwuB9oO6/NvajLlSv6vG1dPLuvZLP1UBQ7oG6eJixIMbtW6A0HFOuBGkBxbKS8+Suo7XUMako62Xq6yAeSkjqMUk1RO1rorrL2dwUaU2Q2ALPurHAxWSPlgXtRSP11Xg56naendag64bl5hnYOZZCRetARGxsJIO7V4kR593eOvRW8kb24l7QKhXM6uw5BE9vkf7iQHLmQJp2EoeaONBEoUp7xcfG6xtfAO7nIODu3798Ax//7Ic4h7w88L3PoREZU1bQtJ6jhj3jYajEqJVuQ1mvUkIK1CuJIejsRHm9UNTb58KJ/XnD8PrdlG7YJt5nIDljgDiwNRhCN8dsfilgV1mPYmeUKPKWd+HSFfJyvaKlGr1LRRExrNJIvCDULK7DiaFEGolcEEdA2Yj8qxhDuRUTWKDuuoTQtM/bR8Sr/oGFAgyf2gXnzcGcMhtrMcWUNHElQAUeUHdk33/K3uPfQwD7PMTh8E9kAL5Cvmq1H0FAKL3Ym4GhFRjZN8v7SX62GdUUnShY3k9YCghLmlIgYL0UiPFQOw+sBerGAjiTeKk6J8yEhX2omzegb96E/uBJKKyBXitx5CTWG7+5TjSjkxiJkElTW2z6gwnIwDp+NOJEGezIgfayMVTsvki04m//5Rv8p0++D6MSJnx9xQCs2UIadnT6QArUKWsJFSdOdTSFQs/sRI8nqN3jqIEumVdsIwcS55UFs2eceFFXCtaNlrkaGxLlbOA+YBfn3iRzLPzZKI2p5gMGHJBQxsD0Kpw3HX60V/7vh3thbg2zfA6uA4EYh5JUvin7Q6qnCjsasFDmlCQmTZVVOOOEQbdi9LChMa3GIg2nK8XdiO6TKMVDKFYoTWVmB9XdMeWTJFqnIzHUDFJ/yxhJWbNr50LhY5N3xqTn0r5XxuSieXMW873jokP796woK5WC6WXY00QtItXdnIfdJAYVJwRRwq82Y/6hkfB3seFtieHfFTTChP+WaLqNET0qgEopyPEZB9JTw7Ad//nA3xhJ6bkaKRzndGc/+s7Jv1cSpDs6KFh/6aWXWLt2be5vd9xxR+79+vXrASiV8paQV5P27HyeyjRFedcY9FbbgOrCAfReuiJ6xvvbRIZkMqDjX7seS4WCWV2Z8uYDOGdBAujvFLCextMI46xgN5HVy92GcgUTLzBilfYtnB2e4uIPUVmLmUoMaqSF6rA5Ltrm/JQUukR66rRur286BbCEeMfKoZIweF+JURpO6IaNdXEXuHuSPqRap7NuKfLA/XwDX7KH5W2IF9+3Rrs5llCQSGRDLdXOQR2IoSZ78LRA8bso7tJwmYIzA1KvrFNiXY5VzjOLG5Sa+OgsSRnUzcNwyox0XioRMKMSk52mAmDvRyq+X+MtzxakPkBa/V3lvfxuW1ZcxEZi0I2YoCQ/Y7Ti3VddnjIgJ8t8698EMGJJKYUpB6nnOQfajYGrFsDfvwArp8P8btl4QfZQYQKJFi+9G+gRkOQAyV5PrbcGWiMxrTBIc3KVlnzM0K6dA8NF40M7kpzhoP3/IUtUUhJaVUGAglM8m6Hkm8aBeAtbVnAtm94BeyFoRpRKgYT7KUXFiMCrIu/BggCk6FBdVCQUhhVaMfulER5dPI03algeSrHGis68zVXtBEuOCWXevUDJYivg1NnyCFTO+6DKGh1KaH3ZSJpN2c7TgfaQDLSfb6Rw5W2Ioex8LR79itHUjBSgqcaSNkFsqM7vITi5B33XdoJ3nyhe4USjAymwc3qgCOoR4RCUZkkl+IrKjBFljSickSH1Zjumo4F5VXh4BzCfjy04S+KY3f2wgF2pTPHUk/BzyHh6+t+T7B1lQ+wnKBAAMzsEmCfeFwywtyXhe/46ued24D/UqCoEe8ahu0zKJIYiqFay33NjcPN1Z0FhCweZ1MDsIlzc1EvpTxfmWZyTBXuqplH7mpSMyVWydUbiylCTcqWcRnhlgN+TcfZZa4WuBoQhsGsU5vdIBNlJPf6NTudWCm2xOssH6uTlXWjgXJPPyT/X45VZTr4N9feMEdk+UITlkHC/tWM7BTpndBmHE7smCkD3XFLiJnd8cvls+EXgZzvgnDnoU2ajA5GJJpDCU5HKlFznncoBdpUB9vMNLHv/lcxUeUOy/5BUBgNKjD81XKQfNFG0TEA0LlFeytbAKSkoxYZKLOl6KgH2Gzi5AqUIzp4DS2Zl98Hdk2UD8AsaHt+BPmc2+uQBwkDObmLd2G5+Kd/0AHvZzRUp0jmBt3hyvWr5gmwNMQCHSpwX7hhJ3YGAaCQG41QWQ0lJpE5V29TEyKAjMxGkt2IYj+CbL8FFs6SoWajgtDlQCVDlIBWiqhIQlAJbVZyJZG/RJ+1W+U9IStFLSP7rqWTpe75s77CPipZCoaVA0p5akaJVCYgWzyL5CPDULvQZA4SLZxFab3qopaaJhFLoLK8tIQWnbm+GrSTbp80Y3jgfvvw0PL4HzuqX++H4knUUBZtGKC3usZFIUhdBIkQ82U8WlXQkQEU5o5H9yic/8lY6ayGoKP9BY2DpLPiIgcd3yN482QPrJW0tY56skJBCmFOBzWOSQpXq5kp0QyOGR4aahF3Os58V2DR2flofApwfxjxVKUhTJlLd1702wM79+S+t2Yk6fW6mWxW9HG6dBrpgdz3VdzUij7XC1k5BwPrecYIy6LJEmV6s4EGtGFWKaUoKGVYTqHRXqWwZpspMOowH1C1YN8aglBjEAiWg3aWYQfv7lM7beHN2NNKAnukT54Wbr33f3wl7WpT9e4j8sMGgIqlDoeKEz8Qxf91M+F/WOx/GmsEE+gNFNU4ox4qa9a47fuPyzZuWb9ZNZhi+UIlz0hkgfJDuO8BeaZDu6KBg/f777+ff/u3f0vfGGK655poJn1NKMXfu3Kkf3cukOKrD9E7Y2ZTkKR+oOyY2CbkNeNDliL3N6HvVd41YU2pQ8Mxo0Ene+9JXhueHsus44GlDxjuw1i0ya5BTyhyPcoAz54FLAWymkFQBNRKhS4FtZWNDRoMsLFFbD5Uis5j5urMLpS4pRRDZ+RQVmgVd8MxeMHM88EfutdaKKib3Oy7MyOVdKjLrlTNGdGj5beMYgBHmlKrJoxHUQltjQLGyDCtDwWuBkggAB9SdAG176DRe8o2/hgoW9MKmupS49ealjDAzawXKruMB9kcKP3OXnW/Rq15R2XcwFrDb92E9phHYsEsFtd5p1quusrAcfXjMRAUS7kdshGv5oH1GDV43C+7YBL+4HBemlXqWWgpCKeam9KF/awJZASoeNPFMRwaaYxGtsgPrKv3ZklZUrQfuYJb8l0Paeu1LxkhRMSOVpJtBFgEQBi5fVUMNgsFxSh1lykaMKRVjpGaAyfhHWWVnSFurd+DmOzTK1d0zUIHMKdQSrlvTSnJu1USgJQYWGxEB2d50Z12rvAci1OnaBEo89WUjHigH2p2RxBVsuhBJF8kK+SlqlSANhXf5jgQKYihdNhf9N88SnDWEPqGXIEoo6UDCn41B7xgjmKYohYHkj1nva+j2EYq09YWvfCkF87vguzFECTNHAxio5YV8CmbVoQ03R7JntAbiTIFw/Hp6GV4als94PIh94wLki2OTH27vPeirwL6mVPRzPGI4Es+L/730mhPnqFTW+aF0uNPzgaw3xlJXBT0kXtdWYnIKWSmBcG8L3V3J5qYO8uzmOKsKu5viYhwZh+l9+c951wpVFrLt+qk78O6A+wX24ZSoNJpMi3wI/Lm1m281FGCDyYc1u/Oztwm9pWxc/joESoSjM24a+7fT5sKpc/JnzxrKlDPAWaOKX6jJRfM4YBsb4edd/b1o8mDdGeEncy44HaFsICagNRql8yohtr3Q6SmxEdC6dgQ+sRjmdsl9Kev8PnH35NTZAmYVlq8IoNUlBaGmomR+Kd/EM0q4uZrJeEtmgC9PkCHyXmsllbmVsnnPAUm9RWL3gSv+VEb2i3bzc0C94b2OE7hpA/TW4OIBq0AFeSBYDqAcSNgxom906Ayw50Zp99B5SA/ml+yfe+yYXOV351X3I6XAGpPLAaXEUIpNWgMmPmU2nDJbjF6BQofaGp7tHguUeJdDy5+MySLjjBHjBOTleUcI71gAqzfDid0S1encyIkRT+6OMbh0VpaCo61hUNs8ane8p0D+9s/slVtYDcFE2XhBxnXqnOxcSQhnJtcCu7HcuXR7Z0EPbB2Fs/vz+rS7tjHSF7Knkp5rXeBFUzE3AFWWYnMTxgFwzmx4dmv2/tw5mV5lvetEcSbfQRjxrDL8dEje2zVXiG4YkAF2NRShamVcx40VJfgdBfdpxRs0nFbSVJoJ1RkB1Z+N0pEYOhIfqJPF93u+jjTa62Dkvuue3d+MEWN0t4WbKX8ll3KGAmZUYOMBMBINZIzgTmWvqYwAdmx3h4FWwoHBfSzbOs4Tizp4aM5MzooVlURRtWl8HUqlRjIgTdFwhZgbiD4Ue1vQyRk/lfTVAumODhkG77wSbiMXvRQAYRjy8Y9/fIqHdpTUX4PB8YkbyABklqOXRc6dAXnAvqspv5vzqis5bDF5ZaW/BD8ep204vbUKVgKp9FiyCnaksnPvFxLKeeDc4Uhfy6MyEhOEIaFVFiLrRVJaQmR00bPuPWdOIrsHnPBw80tDxTvhzu1ykFyevh9mbQxO8awqMSSkYF1lBSycJ9/lJtcsUM8mRcoMtIFaAnq4gZ5Wleq/SqzCkp+F9QhkCtDBPLNK2fYZujBHDSzogJ/uzhsjch520nBcGRypMn41E8P8J4S/K+c9Ka6jjbgYjQmVJsZ+xt72kpK8tyA4QoHjEv1cSHzJW6uLZ8ETu+CJPbDSs8b7oD1IRME5UirwECniB6WxiERrosQ3SonSoKdQmLYj5RnGyjaMqhkoWoGiqcWLlCiFqlXQeyLKC0WYVOzZVM4wlU2S0Eh4WYAozI3E0IoSoj0GM0NyeCUqQolHXcmZn3RvBhpTC0HHmXB3/MMJvpIWT1Fp4rr4VvKWybzsZcsTrIEajb8vFWE5yO9399xVJrh0gNqdmwk+2UMpkvvljrre3KA0vYsSUtAsdMadVNFCBu4DPvd6Wllu7PYR2DcKp02b+JkU9E8hFRUI91szS/DTsfz9NkbA+rJpeXCd4/1O4VIZeJxRE4+8x58ZrkN/R3Yd9x3IvjcVc/MVJUddJTmD9YRyKGtttJKcVoD9dVjkhTB6nvG0UFA6d/sf/Z1S2RcDg0ZCzFONv3CfkPNXVmLMkoKNokSVlCikEdlXndzzi+flqN0cXa5sK5HcSN/jFSXi0p9e84ytKr8OWuV5nZNv/tkLtRjqy0FqKEuNKvbcOWBb9EQ71lEE66XC3JznuTjHEAirAZXROA3zT0GKL3/X75eqZwMd2flJ+/CR94b599N9riygNnVqeHyzYkNmm4U5ujQNt9y+vCvOz140e4noACUk6ig50BI+ZZzcsJFnyghQdY+W94gNPLQLdozCZ04lzRnLAXWdgUKPfMA+YaRGivz6dDdZPQW/1oCLIMjx9pKGJAADgdWpQnf73c1KAbpdo8CCd/8O2W1pYgNEeb3LvV48A84cgZvWw8eW2TMsv82Bli2NXYwIldfqSPWKwyQVaAHsrreP+00fuHsyjbIdr3MU+d6kBVX4/u6J+rS71pj9jR5rdPR5mH/Wp4pKGoydmw9cl8+BX1QSkbNqjrx3ezBUE+WGW+uZFdjeEsNKbP/mPMqJocOeCb27ie6tpjbTklasLMFZGsKyImyITK/21ajtiam1EoJA5/mhy4M64ptiJuIPtwYNYFq1wF9V5mhwa9BXgjWZnK2471t561onE8n+fsPWPZy5ZgfVesKp2/exYJWhcvIAlUT4UYcxqUfdJ20dGCXrwGiaLJXTOSed8fjVBumODgrWL7roorTC+zXXXINSit/+7d9O/18pRU9PD0uXLmXmzJnHdqRHQJ09s6G/DD87kA/JcBvJT744QjKSHCRv4sK1d9eF4UHB00B+QyoFfZ0wgigK4eSHxfeKudRoOEg+ja8A+qBoNCbsLBMY8Vombly2UIcOsrZqh2TMRU9YaoCoieDYPgKLeqyp2GT3JzY5a11FZ8YI/7AoMgu8H3Zi/LVM5yqAv7qvgZ5dk9xnpJiJEzJ+OMtheWadd73o7VvUDbduswqfzs/L7oVq8fIWsJ9npN6AC/M/V+VzLp0RoS25Na8n1FRgrY3wwBPPcsn5p2e/c4SkAoUpBZnGGChn6RDB+Ob5cMsWWDYdgpLsVRdVESgIYswE5eFwqLCOzvBSj9C9FUL/cr5AfYUoCDTaer1dC69YCQhVvTX0YJ1SDGHJhtcV5pG+tnuzFrtCT9AcHJciQNVQIge0y8cXD77EwU1OKtCYioIwyeXki2JjPeqHWA+/AJCr2uu8ey7axbcm52ocFCMxzp+Ffnwn1ccGKa2aRaQTXEkPvWWYcHGPGMeKINYa7YzPQ/yH0jC/EzaN88CmTVzUtzhTsNx13PNUkg+ufX49owZDdmJOecDArgh6y6RGB/dd9z3/mm7svRXYOZb3uuyvw5Ke/PzScUzV5NTEaysygDLStK3jyELEjYGROkybnr/vxbE55Ushf+svwzP7YNwmn7p8cP9+tFGStTXkhkaMXWUj+9N3aIccLDpK5Z7SNajYgdazdKmU9tuS2Z2e56fdXnWpJ5pUWUw/78C69aq3Ix/YJkZakLq0g9jAwz9+ggsvOCMNGZ5cVhX2lXuuhlBPCh5gD7QkwAsHYNlMOV/+eSvr7DpF3aEAmiabX7soJT9ywBnmDxlOqvyHfEYDuqxhtJWNz9d1YmOBepwH6lECG/bBPTvh4ydCRykP1n2vbUm31X2KHnaf3mHygN2vp+CKHraNjkB4oqnYKMxWnNcD3bqUPL5+CF6nApVFyxWNqyaBN86Fv38aHtkN5w/IvTEGto5AvzUG+HwvDX+fWh57/0NruPiCM2XMYRsDtLsHbgyhTlMVTJRMNIYqBfN6pMH2eORdw+Nh++s21EQxgYcp92NTR8rJTWuMSUkjETkrstD3zGjkIibsRkuNxkoMuSCGlemB59hLxNiTGHFaDY4RzO60DjBJ4TNaQajQsddppiOkIzGEu8ZgQbdc2+Eih5Fehh8mF03geMiIrSJoZcuk9V2Ugr4a7DUZ3zJirJMxiUHKOCOkMSz96VYWrjfs74GZmxO6OgcpLxmQdm0GqnFCRQWTYpo0tcziK8hY/LF0Dr0cOihYX7JkCUuWLAHg9ttvRynFlVde+YoM7GgoCMrQV4VdQ3lw7m0A5+U9YjLkLXZ+SP3OEVg1K6/AOGaSuqrtb7rcmT3jMLc7fy03zpwhX6WtIw4+PlN4to+xFnSU0tDiXO6hbi+kJiU3nyKgjTUs6oRNY7Cw57DSDwIXomIPi+/dm3BgfOUWPNBuUI0WlVogKU0WZMnUbDGaI1HqJzNGTCtLIt3WYcl58/eCVRhUqKnaQbqhKi2e4wtM1ofc9w45K3w6V3fd3ByBegK1MOVtI2NjdpLKLsvL2M+TFZuLFJwyHR4dhHt2wJXzLai3QD02ogyVEibLDW9Hxt+X/jOIIjanI3vfLrT1lSKtUcSSZmC9WQmgukuo54c8zxXZenm5Xml4s12/MJEic5XBOsm0gMRoXPGkQHuFxA5jri4f3+TCODjilAS/AJCrpI4dhg8UlFZS+CZIMmOOD9rftAC+vZlgxQyCwArkJJEcwosGJhorvRxIpW2ecdFjroB5XfDcboaTpoRuAqknF+9zU0ntFAiAadYjM9QQxckgwM8AM2vZOHwFy7+Wf82+EjzvvAf2sb8FPcUwQe87UzU396y830BBNzDaANORB0MAQ7GnaJGN0c2rGIkA0F+BwboUFgoRRdT//0MoyS40PlEW0Nr96VdoPmjhJ593+O/rXp6sm+dQHWbYD7a79+mfFJRd8UozEVTow/dAurNfUqT1B6LRUTrVQeaVzq/N/ysEeI5HeTnpLAGxkTP57BB8YFEmv/0ouWqQLYfxrguHDRhleHmjRDHX9ZAG8+L6pfPT+fVz5DxtaZ56nAH14SZ8cxO8eY4AulBn4e9lz6vuRUO0o3aAXSFh8F8ycCv5Wjt+GoMUPmx/baWtESgNLfTAenhkewrIwvsngHWgEsI7FsG/b4TF3TCrQ+azvQGze7I974eXpxFQU0cHDozl3ouHXYl8STwDtEKiYEKVGYicAls0qFUDOcNbDng1hcg23rAFue66MJE3TzGlxhj3m05Hbhc54PakITub7jNayb7tReqA9FYy3UIpL8rUUB0cRS/rSY1iTZvCp7ToGSFSi6aKJpxVFh69oHsi9pioqh+afF3VN/YON6Rqsh+F5ebmFH63x3uLclbGU/GNCLEUmtOJoTSqqZqYGfvlHpdP7qOSGGrWq15xe+AQ6+v48fFMh10N/q/+6q+O4TCmlob3bcry/wqLng+HfxlkTBbX5QP2JIEdLZhVA1T+sAXepgR5HykYCGFPXXLHfHBWBKWHPTT7Rff91CgBHGhKrqSjNsrI4ZLSLlTcC0dyh3BRt+R2XjQ7H4qUyD0yiWkrFA/bGNEOxAIciKAzTMP2Q8gryEc0QU8gFL19i3qkiN5JtJ+fEcOHA+zOmxCSRQ44hbNMZnnPCfN2QBbEc5C2PlFcdeEqb24vT9qIBfgQxeb+vxdhZa/sU1dsLn2OMYfhzc2Rvy99D04zkipyxX3ph6y9UuSEq32ttG0Jdaj0FZfrVfy7QfL0d7dgumeQ8MHdESoNaoruiwvVPSiVNMRB3pjjzsjSXpg3CPdshysXyKYfbkp04+zOyZVAR+2UL4WENt6XcNWCxRPvj6srMdXWbx9kg6fMKZiOgM+ZtlLG4LitPOPVKMHNgfyc3N9RML0Cu2yWqgPrY0gx1MnCsKdkboV5pQ8lYHzEesGNQUrp27Vuthmbf7/SOXtr0t8poeW76tBXMEIcppLsh5Af0Rz9Z3+MVaARZTzHnc99EXQX0teK+8y/nL/WU0Bunm9984WH+YXCs6NKAHvr8trNMbYROMbAVlsBfkFPdp7cw4I8Feq8QVUdhvHgIPSya4z4X3P3uqah2cqvnyPfm+6HwX/zJVg6TXKZA2WBeTEEfvJoAZ/aAfYAuEjB60w+6sP3qh/qHqicB+XoKPXoFg3wiYFEw6JeWDUKN6+HX7L1aLYegOXT8/wh5clH6Mg5DLrqzRdMHLdWUonf9VSGVO7myAHZoqxQCuZNK9QUIjvjwxF0TsbDOGb6RS56Iogz+ekbrkuBROQoJWcvJ0e8+c3sklRbvw6XY46xKPxqV0xlRpUSioaWKKW0gJ6SlNASFpjOstdz9zunsxSS1g+HipgjTaNqST2QokfdzTHHd5UYXfZYOeuumUiRTKIE1RKgHmw7QLRfkVzSj75nN8H75lGaL2C9I5HONcrNaQr59atFR9S6bdOmTXz3u99l8+bNNJvFBonwl3/5l1M2sKMmpSS0Z9eYLHoRqPuM/kioeI10Q9r70VfLDleueILHBN34+jpgsJXbkO280CYxInAT5BC5hpDtQpAnA0LjTegMpg4ITaZgL+yAu3dYC6nKGGZsSONjCz9oYm9+xptf0ZLfDsS6cKcxpGJ7O2Z8hAf1oN6+BZ3w9F7yeevkXwciNGsqC+ds2eljZ+9CHduGcrZbP4MUzKmEE9fPf3455Kzxft6685rO7IDz+mH1S7BAwzlzpBKysxK7tTtc73rx2KVraqAVZeGq/nxeDT47mcA8WPqKATB22QztADt7xiVfdILAAji2eflHQ2kYsF8R2zfqXDlfjDpnzYCBTtg2OjG0EtqHVrbjI0rBHBtxtNfAhkGpUF281lTfLqdAuXH545nWAXtamaV+qCle8nZhfakSUuT7ZNXjx2Po0jDSkvddZfuZNkrNVM6vHc/orAhYd7LI0YFCiPiEuarJPV1l4IVhmFbIBS9eZ6ppAm+07zuU8FDIy5KhlshtN77cvT8Oz2SRd7i/VTWMt7LPubV0cun5UThlGmidhRcXvet44PzVmnZx/RxVdZZW4a9fgvDjYp76D7eLTLlqQfs8dd+jeZhUUopOLT28QyPVpGNr23Kso1jB/5Um8da3CYdPjISoXDYb/mkPPLBLKuNvqcMVtWwCuXP9Co9dqYNiREmd0pmBKTU4AfM74PFBYK6VtxaFGuBAnHltX+EzPqGdrNu7igk6vMxP5WWPe+7vkNbQOaxApoOM2KiT6VW0klrXrr0uCrRL53Rz76/Ac/vkO210lckca5OSj6t8p+NwDF0FR6F7dgU2fDnb68lZP4XHAvYgNhLk9/Ag8Wl9xOfMQv94D0GpQimRzjVlB9Qd/zvqJuWvPh32FJ5//nl+4zd+g0ajMeH/jqpY2zEgpXTeErWcg4LhI6Ki8u3A8e4xmKkn5sQERcZA9v99NTEmtDUA2EIKrsJp0wsPcn0mXY6Sy7XKAXXy4xttQZcLyZkChclnlD6Dn90p/79rTDyxbg4uz8TLhTHGZOFqrTbzC8Xrq9LCPmYiQwBoWKbcWc7G5+b0cpVdX4Fxc1QKFnbB9wtF9PwiPoWYm5IXzhnZ4WYRiJONzeSe0nnWI+jO8i0bzRaVDqdEv7xpghUQrh1MrCUf2jV1jg0sCOAnwHMJPLdVCqScOsdW5BQB5CIKDosmi44YTUTJ9+dTVEpfKWonMOHg6Ss+T4i9ufkhYX6xNF9IuT12HNOEDgJFo86qmXDHZvjYyUcWWpl6lrx7oRVs3QtAw0RUbtgGH9ewYo4H2KdeyZICXpOs/cwOqeLu9uuelhhcHbXzHOvC37WyubLAnjHomCb5lFXyv+nui4KpQk3p3Nze8+fWXc7AOmRyY38DOsnOg38uFRMjCNJrK1EG14+Ksa+41+28plxvcL+dvk4nD2XJ6Zb5mexc7h3PF9Bz8/OfXwFqNJpUKuVDf7BIOc+zH+bv6yoJPL9bUlbcmvmyOzi8EPdXhCakMNg35VAqekPeoB23A+rr4dFhuKo/y0svFpTzdacjoFApOpFq0q7wbwK5rjmHXR/nGJEKLa8ugnUDJAFcfSL82zoxNoK0PPMNi+4cHQOZ9LL3uaPUu+7JFpQ4Um7b5ulmeM60emYkT6/zyp7xg7WTzVHR+OnOwEAZXtpTiAxKMl69Z1SKR3oGcoU1FigNrkqiu+asCtxbz/hEEYccKUQq6nPu9YGWFJeDNvNqM9eZHbC3kTccmyRNdQnjhI7dY1SeP0B0xTwSFMztJHxpjHBud1bZvk3E62uZDttu9rWvfY16vY6xeZn+43ijWfPOtItea2OJKoDhIyW/YJrPAHc0xDjgh3SkzEC3P3wzS7B3tHD4vN+JjAC08VjyIxu2V2g9zh7jETQTW/iOiaEo7nkY6LCFkHJCkIkW7MMhpWibt641LKjBplHPqm+y176RxLVXKc7HvW5I/plpxtl32jGEMetNcF7ZNh7LI6bJ8tZnVkUabz+QMbniHAukleQ9V7VKW1hNBtQPmtM91srCxIG//vpN+fkeBblWMtInsOBxeWZ3/sOP7fDCoZN8rt2hqN283JzHsGH+nrL2apEDIj6gcUrBQCjCBG/e7Yx4zpADmQd6d2I9q22E1PGiLB+MXAcBZ9xJqxQruGQAdjXEWr/1AMypTbx/VnHICU5f+dLevntiJwB/ve8x+dzjOyZ6cI8FFUGnG2NfSYyyYD2ydRseTp7nAFkfzDZ8Xylp3bm3SZqv3i5M0H+eKposDLQjlJx1yO/bAxH0lCeOLb1Pbfaw+41ZtthqbzjRAHEs97t/WX+flcLMsJvyIQMHxmFGqY3cnuJ7fwj6q//19cP7YHFvOqrqLMzfNxomRvSgYeDEaXnjmH/ejhdqt34KKQzoiu/68qNYUO6JbfDwsPzfbbth456JYL0SHDJP/WCklbTa7NLQo2Gafe5UUNNT32L0ZZGfl+/4tHue1w0XzIKbtshnN+9p71U/BvM47H0+GaVOFPK62YwqaYFjU9gjB+owLZyEhx3dcKac2ukFSkkB511x5hwy5A0Se1qS/lvEIE6X8d8rJQaaBoIxip711PF0eJRLwS1GL++vSz2W3Ln2nv31UFg5O+ouLNeJkLNtvez6x7spnTqNWneFTqXoXNBFZd0+An/8xYjX1zgdNlh/+umnUUrx67/+6wAopbjuuuu48MILmT9/Pn//939/rMZ4xLRr6xprOSrDHu/g+mHrE1otHZrSDdkuvHX3uG3bxkSFsq1SrsSzvjvJDp/8SHbNpgBxGnEe1I5HKUjPFVQpep7deYvsTu0qTwToLzMMXvlW+Zx3HZvXPdLeSGJs+4XYjruZtDdEuDk7wO6HD+HP0cBoUwq/OQCUDrLwfEQTLCg0qXddSxG9jeOFednX8RRwhXbGFpCQvqoLE4df+/C7vPEe/c+6asY5pSbUcPbs/OfOHPBSGzzAfriUm1/hfTWcsj16VFQEHtobS18HDDbbW6MdKC+CdpC6EWAFKhk4ddc/3pSGNqRcjl07o041hCvmwne2SGhl3CwYuzwl0L+mUtagSR5A2H33a9PPkQ+umjPRiHZMJkleeXCvZ5Rgn/NEGNg7BjMKCmDK92mvGDqaUZNcaZAetD1V7/cL+34qp1n09Ls5dodSZ8CR27v7o6zdUe473ti0ZyRNFUUgsfnTY+Pe/zPx9RSSmnBevf/ssJ51x29cCtXu5JCt5V4J+vVf+eDhfbAYpq7sP77nGfJ86PkDcFKnnN2iTAsUHEbO9itK7davZqOa/F7ihnxxuSiB7xWMy0/ubF9Qbgr4hzPEl+zzcQHSLSmtbO/4NoA9UDDf8/LesA3W757oVT8G0znsfT4Z+ak3vixQWtrrbrW6Weyddb+A57Hkr1NBRZnhxuuKrBbrUoCA0b0t8UrDwQ2/7r5VAomV3zU6OUY6XCrqcb7zZqSRgfXi3Pz5ufPYV7b6la9DJZkD80ATnhyC8/szOXtCF2xtSBSyH0nit618jdNhc+jhYbFUvulNb0r/duKJJ/L5z3+eLVu28I1vfGPqR/cyyZjEWqI6YI/Jez4hXx3+SMhVVoU8SDMGBkdgdrmNRUu1P3yKrAieU5KKCn7LE0JFMOtAfBr6lbQB6va18zxXvTB4d3CcoH85FOiJDEABi2oWrCfZffIPT2IyoN6M5ZEaIrx5Nuz/RSbz3hbnCJKr0zW14dPKrVO7tVzUDRuH88zNe5jD9TK3o+JX3XuX052CdUWlXKjQfJSktBJlrlQAYYtnwYfmyodOqcLCmVnrohSwx4c578LauT3qPF6ugB4cnbHlKEmU/jZn2J3bPfWJQN1AaswrGnKMkYJkvUyeKnPcaQ2TUDujjtsz07w9cNceyTWHQ4dWOvDv55aeMht+cT6VM6vwyQXSk9btyZI+tp519+x7ImZ0CBhyxs/dkRSLK37HbR1lFch2/z+9Kj3a4eBhghyjUPHiXLsCqDfyypaxY+tpEz3gj80py+7aWsH6QVhjkeP9Q7IPfDnh//aUk8o9pcpg1fOsg8wvbS1XbS87XsEjedihwe3WTyFgtgU5HuTk7Yt7JF/drUHRs35cYfXC+rk5lu0g636kXSGN7v6dE9fs/Ln5/HRbSO//BlKBzmS66+XtXj+9K/9hF7mUpiMdm9DhowqBp41u5vPpBd2w6cDE6LYxLB8r8ldeUYPcYZHPU4uvZwU2Wtjpm2T68O4xmFHOGyDc3AKd579OpvXXJFW4HVA/EjW2qAu5vxkjxujuSYqMQl62KCUGhyai+7sxuU5EiYGHB+GEDokMcBikryqpZFuHJxoejibt+Tiiw+ZYlYooJeVyOX29adMmoki8Aw8++OAxGN5R0jTLFPaOZxunCLaPiEx7wB4lUgTJ5f0UD4U7KEWFJlCivO8Za7PByBdNadrHszvg62vk2c/RKoYi+57nkaYkVxXzDo/WY9kOqCslubwtBNAUQ1Hc/WqZbH4uQuD5nTK353dm80o9t3E+PNOf42gM1XKmlBW96y93jpNWqe6ATeOZta9tEb2jID+0GjKmOWrEGgpTZpSYQLZWwASv6eJ+eMc82F4XI0yUFMC6yUDMoahdKkPdGpRKhfl4wOAVp8lyx/rL7dNXUgFq8mvo/n+wKcVT2qbKHG8K8+SUM+r4oZUlDU8WFMA1Oyd61dspgFpN7H9cCaQf7cfOlme/L/JhtpF6eRMsKIDud1y9iH11AQwJ4iFvF32Rrivt99CMUgbWh7wQTfd997mpnmM7rzpKinMOFfiOG1uP54FrN7Z2BfnW7Mj/7podeXnzSgDhYu5zORQDsG8o3Dtuq33qiefx1eI7h0PtzpAzdLooJyeXDjRhZwQn93rg3OPtwXGYz+l0iXbvx1vZGjqHRpTAlmEpmvbxk+DDc+H0ED61QIx+KV8Jj6ig3P8RNCEcXsnzqjn5z53rRS45+X+80qS6WRU2j2aOIoBRG8HUXSjgCccfUIeJQD0HZDszcG0gl7O+f0y80kXdwq8FU+TdA12wu55dDzx8kxxBqrCnA9m3qe7TQIzR7fTzdjpWNZR0hsGxvI4VGwnZf2Q3XGxbZHupdZzUA+vHM76XRjoe6VyOTzpsrtXb2wuIh31gYACAz33uc/zn//yfAY4rZt8zfWG22QdCsUS1zS89wgs7sOgs1kBaXE6RKXPFQ+EfjiKw7e2A3YXKhyBAsFV4vLhTwpWeieErW+R9rtLnZCAvkoQqmKgsKe9vR0qThYqHGuaWbd66aR+WUgR7L+yEf98Kz8by/II3NweIjffw5zgaS16lG1OBEb/svXmoIno7RjOAVpzjyyVTeIaMYY0jyoad4G0PPvryf2cSkmqsOlvHtPCXgpOnS97jFpuvX1zD+DAYYrt5GSSaIkTmdrwI0LbRMUqsuK71VjF9JSGbl19kziA5yv2dE69t99XxxEMPSW5/hCqfv352QQE8Z3YG0n2vTYGUUhagW0BeDSRsuRZw2yM/lfdVC9Srx1jhVpCFsXsKD0oq3O+ri4E1RMZa3CPaXYT2/B8FvWXxzAOMemB9Ko2pk82tXah4V1nyAv0INGMOc2wqb9gL1MR9cPacPEg8RvmwE+blU0VLTjdkcyxW9HffL873FaDbvv/QYX6yILvdfXSFWF3F+8QCluf3w7yK5Hzn1sB7fTyRKjxDNscubK91u4Bp5GEEN62Xuhlzu2HpAHx4JZwyp1BU7jg0TBxjmhAO7yIMTpkNn1gAZ5bg0wslcimNlDp2cvjw9/lB6GCOoiZyrh14HKqLs6oY0XacGuQOGtU3s1CU2gemQ9huVIV7AxPvFwgP7i/BrhF5386ZeSSqrB8Z7HSgERs13OWiQD3e1c4g7nTsWSXRl8AW2ba65mODMKcE83usUcnxMSQUfsPQRJ3c6aev8bz1w9Z4TjrpJADWrVvHBRdcgDGGffv2MTg4iFKKVatWHbNBHinFsV1kpUQ5dmDYbfAiMD5ccgejqIzvrsOcslh3il6G1LOi2m/O/s6JlQ+dp9IH6omBH2zPj+cx+97LB2+b131Qz/NRKCS+ZatY7GNhL2yeJG+92GYlSuCnBU/M4zvywDfxblAx33ksgtok4T9Hw4iVIm30m5ujhoU12DyWn5d7fbQhNz6zKzI/L6e7p6uQnzRVFHgg3QfspQBWzoA1Q/koCd+7fqgz1a5bAUaUrc7CZyeka7zCVBQi7m8ufeWAjQYopq/4xiSfX+weFWDguG47S/drhJRSmfLnAHtJwykD8PH54tX6xfmwbHa+CN1BvHiiVIYSzuvAeTWgZ3pX9r4WHnuF21+P3Gsl7dsGW6IM9pcyvg7tQZ4PpvzIqpk1OUP1CPYkVplpo0hO+b4onCk3tk6rTI16expgb2I9UpOPTbmcZ99Ye8ps2QenhfJ8yuyCYfcYVx8vygGFpBCNeWDdIHUDemvZ99I1Uq843+nu7jj0hxz5a+fG6cZeL8zxuX2wbHq2Zr5RxSm7xxu1jQBBKt6nxggyJf4H28TgdOGsLE2mTfX346bi/StMKrAgvWJBu+Olp82Fj9vIJb9q/jHsDnBE+3wy8h1F/r4ONcwOYcuIBxhb0NsmIrHIq48nmixyYKAsKbd+PjeIQQIyp9VkDsNiNFR/Fba38pEIvjPzcFVZ33nmR/UONyQ8vRjV20738Y2GMzu9ttYmc/A9vBMunO1Ff+jMmXRCD+xo5fPWfZ38/xbP+sc//nF+//d/n9mzZ/Oxj32MVatWpV60s88+m//yX/7LMRvkkdLo8I7MMzKzBjtH24PGI61mnyT574Ns6F3NrPKtn5NZBOfFzamRivDFyoeQFe1yQKgRwZ7CeFbOLgBF2nvXR+Oshy9MODAvV/HNCkOp/EMBi6o2r7t4z2njkTWwbGb+4mfMnmjlK3rXfetdV5tQTTfHl0mqOK/c/Hpg44HJ95W9/8ZIMT3TiDHjLfuIMK3JcrxN7mliTnc2z4vOWmEH+rKn2J40E5Vv5w07o1eKezQ9hlgE7Aej4rwc1RNriCiACTh2HrhDksorwW79Qw3dtE9fgfx+8PfqYANm2nPog4LjVWE4BOXyISve84o58NGzpL1fNciHXx6ikJUKFKpiFclaCB0lLrr0LAGTtRKqHBxzz1jq2WjHv/tqsK8hlXdneErnpCBPMaGom0LuWxnYMSJ8zRUdxPvssSqsWAR66b5GQqbdno0SSetpl89dHFux5kBZy/p/ZKXsh3Y9ro8V+fNz70HAeqsAZPc32lf0V/LFV9ILe/EFZx7eB1XhGbL5VpEoJafgjkdS7HHZtEw3ycmz49DTXByOv+fKpaz9XmzlzvN7YM0+eNeJk/dTL/3fk6c+KfnpRZUgZxClFuT+L2uXO/V02Pv8YOQcJ05+pmHjCub1wpbxTF/cH0HXJGHYOV59HNFkkQOzOsWDnlZGtyB0Tx36vPsBed1C6zZGYyV1vUAcD5PosodFRZ3c6UKTdTpxc6SwJm680ytWv0JkUGLgyT3SbmFJr2d09O5RTxl6gE3DXqSj93iN560fdp/1JUuWsGTJkvT9Nddcw8jICEEQUKvVDvLNV4ncos8qw88mqXboAGAbvpRrhebCXdttZoCdI7B8et5bkSr4IgxNqvAVDoxf+bCo5EdebvC9uyS0fFYJHh+Vgl8n9hfGY4WYvycN4k3o9EL0/eej5VS+ZdNnKvO7pRjTcEPyOnOh4mTedTe/rQlMA0aABSGcYMG7D/JdFWbIM5GxJnQGE0HeVICgQINOJs5xUQ0e2ikWyVhNDPM3BuMs/82CpU/Z+1bWmFCjSoUN2C6n24VvOiW3jWI5VSR91z3FzgH2VgJzOiUU+Nm9sLK/ANi1hMInh7DK+/Nyc60n0lopG4T3ekqnd/hUBFn+/p5eE8vvSeTDxYo919O8rVhyt2Z25JUGN6/jLRT1cKmswYRAlO1rdw/c3nHgrRIedgVmFei2fPkVo3ZRUAqJjNi8X4DC9MMAeYr8dXw50FeSHDvIjHA5Jc1dYArJ55FFr2Wvtp51y6SGG5OPrchzQi29443J7wOf36VezuDY73f/8m4tKlo6rPhyZO84zPf6L7fzQh2PlIrvwhp2qKzXujGwdkj49bRKm1x1JUaW45Ecny1SxavoHyViqL95C7x9nuTF+mDdNxz935an3oaUUhhXmyG0RYldaLAz0Je18N7jnJRSGK1BxwUvNJK3/sA2MPMBJe0np3mFQHP87zhNPztU3ZTdY6JjO5yytyVRX+0K6KVpaLR3PPQiFeF7K+0jRQ+H/M/6TorhGLq8biIpv1KZXGhnmJhZgmedM8Tu1R9vgwvmyj5No/VE50z5xYnTRaYugYn1sl7b/daP+FTu3buXu+++m5tuuomurq7jEqgHodcaqb8D9pO3RIGXw5DfjM4LSj2SKupjLQmjca3SioDdGNhZh1mV9oekqIznlCQl4R5NpGBRelDIg9ndY1JU4aqFcMaAXOOEvrwBwQcMRe/6aEvyP3MKjH0+WoVksnCkUiD1AjaNZFZ+N1YXNeCMEcMNmd+7ToIr5kAUZuMv3muY6F13YN2Nxz07pnw0VJyX21dzuiXH068KXpyj20d+Jf/xKGvDNy4V741fmC1naPHmOx5lyrud0+C+/Uc5uYPN23lCPQUv1GKhPW0WPD6YN07463owBu/WzL12z+MJdJSyz03V/jwKUs5S3y4qpr8T9jTy+9Cfty+8jJFiKSFZGoMu7Kvj0rx/aErD4athIdfcC2W3eegv17O1e3Boagd9OOQis4rG1RnWuLrX683ddj0tqcJ1/P08owM2DsF0+8Gi1/pYbAt/D/vjUUpSpUZsiLELYewmOwMT5uT9SamsnkCl4LFL90Eg/3+s0xiKBmn3UxUNYz6vNdazXqhU/CqEwMMR7HN/P/njVErA7LidYwI8tx+WzszLaacUO2/kcUa5nN3i+emw8zOIkv6dDbCkG06b+fPw98MgpZTw4WogNQw6Q3nUSlANXhGgPmX83BnTHe91+3l+t7RjbMYeHyvlz/MEp9VxRopMBvlh4kpLzvagNaQ6/WNvQ7BOURY577VvfCw6HmZ2TawI7+u0h0PtHEyGQ3Y6mfA3N6ZcW2vgxX1QB07rKxgc/cheYFEHbNyb6WPFWlKv4bz1IzqZq1ev5sMf/jB/8id/wpe+9CUAPvWpT3HFFVdwzz33HJMBvhzqG1iWLb5viZpQ+ClTsI0xmGYsXujxCMa8nuZ+S7FWAbCPRwK221WCB09xUxOtSAobJkqh8qGXzx0ncPtmOKdPfmNWhw3t8dq9FXNmIX9oRjzPM7TxBB0FHSwcaeF0yesuVmf0C8wlSLuVpV0wpwsGqrDNVhwvRhqkYfDe+oEYYzq8nM+iAnNU5DEGf46hlqI9vjHCn2NkMlBeb7OXXB95277OJIU5gbeGRjzrLurWzukrt/7Qm+dRTrM4a60gDLwQeG//njEDtjWl0JYLRfQBe+sgHLFoaHHUiLM+ukVv0atp/S56Q4EsfWVM3hejYnzDkuM1e5sS5ZMLTSsKr9cmKW1D1zskbJ1aAB1eKHutNDF65AjoqzfcPoWjPUzygZ4P4vpsW5kdrYO2bXOUtm9TbT7XW5HruBDN4l44BmHwB+1D3lOWNpjuWA5Hkq8+WQhjYWy5fVC1IKDDAwMdIapy7NMY8oPyXlRCaeEE2ZkdAaYfxCP1CtIR7XN/aP79LFnPc4Lkbq4dgWXdeWDjV4E/XsGKo6IsqJQyEPboIOwZFyeGpn34e/mVAaCvNVJKScpRoO3jlZOxU8bP26VgaiX1P7qArQfkc8NekcxD8LDjhtrhCLc+syy4TsjA5+BYZjyGCQ6GnOOhqHfM6rDt4Jioc3PoVsSSSlzU1Z1uXs96rPtz88eYWw/7utfVBWoKFnhwJ5w/O9NHXdRMQB6DnNAjIL8etQ+DT167aP2wudj999/Pl7/8ZVqtVi7P+13vehfGGB544IFjMsCXQ7u2rpEXWk20RLXLgwYBTeOeF3Q8ElA1AWh5gN0YqaTYhYT2FQ+C7zFrp5y7zdlfFsuYG5/fV/y5fbCrDpfOltUKNczU+UrkKUjwboIP/upeTnfRQ3KUlOWtky/EpoGFVdi0LwvVcffcLyy3d1zyzS6bI98d6JR5DBcq5Kc5654xwpB5s7vKEwH6VCi7xXnliuhNsxXvmQjWnGc9rVbr7yO7l4pF9ty8YKLRpZlIcR1I5/QbH3uPHeMxkjjOs14E7B0lWNwp6+aiQHzAHieYySyy7XKgDHJ/yp5AhePD65MDa97rvrKNqigYytoJLIN4Y/u8HOeDALzXKqlACxirlaAaomqh5Jgf5f78jf/8oSka4ZGQam9crXlGT1d5F/KAvjhfzcTrKES5gkwxKdbaUBwjBbowZjemzop0DnH7eX+Uja3d5ye7eqBRNQvY7UO9Ql47GYD/2ju7zhiYGnmtzJ2si8srfCgPd58f1ODSYXO6jYEN+0U3GejIg3QftB+v1G5uCqk7UI/EUPqD7fDORbKuk+aq/xyoH280ZfxcMXka5oIe2GyLrg23Jvb5fpWiZw6XUr0a8lG5CikKt9Or4G6MRPn1ecXl5CITjY/t5NCsMgxO0orW1ssy4xGmKVGgptj1p+h88cH9SCMD677+5HvX3TrifSZQkhY7OC456Dta4rB00TMpLysYbDpKMFPBhuGJEb2utfJrlA6bk33jG99AKcUZZ5yR+/u5554LwPPPPz+1Izta8q00viUKJniiTWRDZlpJBs7bhS6Pee8jC9h3NrM81CLTcAAPJtms9nW/V/kQMs9zI4bvb4E3zhWlxxWJGOiGHc02ICGZCBIA9ifi4XAHg8I4jpYmFK1RGcPch9yv1LrlAzvgnh1weq/cQ61E6PYpKbw0IY/fTGQMY7Z6cYfnlXX32jGDo6DDLqJXtOIVgXozged2wOonsj7yfi95H9z6eDZt2xaL16RdOO3RT7M9adUesGtsVfjdpL3m27Rxa08Fhp7mrEeiiLWb06vp/WlXLFIp2a/jiPeqWAejHXAfHJOWbz4PSAXUazePajJ6zc/H5yE5nq1hVnh4bduK1yry3BnWM98zSScLdYyAhg+E/HXqCuCAF1450oLuSvuxH0a0i1JKvO2vxl5oB/YqVkY4Y/v+uiiERQPLa8KAVpifG381zIqRPn8AlvXJPvJll1N4j3uvunv2xlnR4m27eR2c1w8n9LYH6i78/bXOh35Ok5JyemY7b/G8zqzQ2BgT+3wfD7rFocgHsf4c+8sCYh1Qb8USIt53iAihyZyFs2rSitYHt+51PRYD7ngk+Ge0ZXGQBe+mjb4D2TWGoomGkpxRtPB3X8fq7RAnxwO74fx+4d8T0jLJ3rvvLZoBG7yIXt+R9Brut37Y2sDatWsB+IM/+IPc3/v7+wHYs6dYqvw4ILch+qtSER7ah6u2Cl5OH7T7AL3phy7bMO1nd8COMdiwu6C0yUFwwiINh4SJlrIZFRumT+aVjY2Eh08rwel9WeVDhRyubW3aovkg1ge4LfKe5yn2rqf5cMX5VwOJAtjoWbkisvD+HSPw3DBcMptcKMtAN2xvY4wohr8bJMQ/YKKldCpDSCez3s7rEUEw3ChY74zsDx+ov7ATrt8mfeS/thVe3JUH966CfHEN3aORiOe53b0/RvIm13PdB+xKSUXOGFi/31vbJAfWi0zRFC2v/n+PtgSsF/foIbx4x57a7G1FVgPCCU2YaHDx13PfmITO+/sI9/qVnM/P6bDIV2ag4IWMhI9tGJy4T9vtV/86vtdjhq338uwuWD848TrHal+467vX7tEVSP0PR/sKIYztwuGPS1K5p/Tel+0Nbdj6MPta0FNIQThu+M4hyI8eS/+GGJAatojec0NwclcmW1/J1nlHS07Gpq/tY/8obBqHoQReP7t9nnoa/n4cz+/nNDXUrl6SAhZ0SBeEA67Pt/U6v2Z4GJM7CgY6Re90LQwHx+WM19oYjw8a3Wv/7lrR7rWRCKlHPZ48unjMez8Z9oiNFNUtGkoc6YOE54Pk4D+/DzaOwXkzM2de2l5QZXNMjZHACR2wYe/EiF5DBtpfg3TY6kCrJR7MadOm5f6+d+9eAKIomsJhHR31zlxcsESV2rdZSsGxyff+bsTw3E64cQ28uBOGGrBxP6wZhHu2w3c3wL8+C3/6BGxHrFrXb4P1bQC7T5NZkfpLsM+FtZOFhz+8G96y0MvPsGBmdgV2TjKf9OE8lvZAu+JdxVDLqaAUaDPRyrWgV4Sryzd3nvUEuHu7hLZMq1grmf3eQAdsn8QY4c8TI571aW0UYV/AHy1NWkRPS0/PjYUierG3j9yeum9b/pqP72g/L/CePaZST7KK/si8Vt9xT8aHj5UHwQfrOQ+7hjP74fF9eQumA+yTFZrz/+TPr+V51o8nGervo6KHdaCUpa/4nnXX09M3mO01Wdi0f73XgtLwKtPqb931iv9mrsiVv+4bdsNO+6EbtsG63Z7xVU3CcxRtQ+G375P/3gtcv1Wu7V/nWFG6p71xg4D1kVbmsRmzYB1vzMXXxyu1BXv2vWttti/KDCZtzuUr7ZU9on2uCs+Oqlrmt/WA8OWFPXllOPVKHe8LSH5uSsG6QXjM5iG3gC17s5aQBaB+XIf4/19OU8rPJ6uXNMumnL00LC0yfYM7eDz2eN4naqKjQCtbxBNp+ZwgOsiskDSCBvLe6+KcHVBXZPdsVmDz1gtA3Qfo/nP6iLLi3UXsMeoMJQXskcrUdmN1fwOicdjagLlKjC0uyrPY1cLna0oJzxtCDDW5fHXv9WuQDhusDwwMAPDwww+nf4vjmH/8x38EYPbs2VM8NKG1a9fyO7/zO7znPe/h8ssv57HHHjvkdxrjQ3lL1KwuaSPmh6z61h8/HDkxsHaXKE/PJvD17fC3z8I3NsBjuwW4d1dg5UyYU/jhn+0oWIgK/z/B827H19chm8sVQIgTuHWzhBrP6cpaFbjPz+4SA4EfXu7mAxM9zyAgyz+4KeM6emaVRg20s3ItqMGWoSxU3IVIb94voSoXD2QWMzem2WXYNYkxwpGb62gMtXLecjeBIR8l+V5/f45KwYLpkrfuF9Frmcyz3krE8LC1cM0zB/Kg3L1u53U25D3rliEvO2mBm+gUTLI9Kb/ipg/YNbCyF144IPswNu0Bu09F66s//0bk5eR7IMLfs68G+cIN8krgzI4sfSVnSDIZSAfhGSAFxSDbRx4w+DlNTsuWLnx1frioKAUKntiZ/8yaHQUDZZuUBn+dU8VCw5rCtX66I7uO+/1jQT6I9eVQZwUOQHowB40UmHNGi1TJ8p6PR1KFZ8jm3EHWBnPfOPS+wikIB6Ej2uft1kIh0WzjETw/CsuniVHVN7b6xVKPZ2rn1HhiR/4zT+5sH/5e+j8vrej/JJpSfq6URFb6vNo5E+ZX4am9MD3M64KvFdlblBuOTykl0cK7GtYR0JLOIo5843FOH8YzaJB3bukY7tgCL+2WCGI//bcdUHdpw7ZAMjARg+xvQK3NOIr3PTcW+3r9oLSoBthmYONgpnv6LRnbGTMqthPVxgOZ8aFY4Po1SIctkS688EKMMfzxH/9x+rd3vOMd/OAHP0ApxUUXXXRMBlgqlbjkkkv4n//zfx72d8ZH9+Q3eC2UiuvOGw0T8tbTRWwlojT5tEzDr58Bv7Qc3nECXD4HzuqHy+flP3fe3EK4WTEHV+UPndugPTZEZ19dQN8L+2D7OGnRNb+FltuM3VjvcxtAm/M8N6HH+3333E6hORpqxzCdlWuXTR9wxeXiBH64DS6YJR5/Nz/HiAa6JcynPokxwge0ozF0lr177M11iubWtoiegrSI3uah/Dq43uqtRIwOX30JLhmA91vrzttnwYn92XfSuXlMpNjerBGJIubN6cxli7O5Hksqhhw5AN9Xg9klEYi+9TIF7MnESqI+QPffj5nMGFHcm6+i4nXQat7Tq1KN2Afq7SJcBselDkPu/Bde/5wmpTNPX/rq/HAxmiRQsKpgoT13TiGPbuJaKu34h3d+QgXnFK513tz8dY7VvigqR466LR9tJmLYBjEwFc/hsfb8TwW1A7Igfchd+Oj+cZheaL/nvvMqpKYc1T53Y69qaLbg+d1wslcFPvB5uD7+Q8T9aLaDnb2ft2l7zdGU8nMfpDm9071e0COe2U6vz3e76MvjlFQRqPvRugNdsNs6AfbWRRdpp6NQSMWlzTU37IYdSA2eG7bBDzdIWm7LS/ttxPDsTrj+cXhmRxY16tr1+o4Yp/MNtySNt13qgQ/Yi+H+WokR3KcndlqgXtBBi551hzsWTYcNI5kTzZDpp+bQFe6PR2qTBNuefuEXfoH77ruP7du3p4s/Pj4OwJw5c/jwhz98TAa4aNEiFi1adORfzG10JX3QBxuwiHwRhcRuNrfxYiN9pJ/dnl1r1RwJrVLetQGWz4ZPaAH358+FU2Z7lQrbCER/w/qeukhBvxbFv7eSFZWrhbI5nTXJJB6g7YLtDVhCwfNc8K6PxBI+3S40fCotiwdro9EDbBmGk2fI8NbtlwJ5H+z3rGVK8kC1ElDaheS0L54+uXe9CNYPwqiOmg5WRG8IybkOdQZUW4ms51dfhFWz4OLZsibhdpjeNZGxgS2A6IE9yD43HkmBMkdTHep/MNJK9nUryTNFrSQU/mc7YVV/oSK8PVNlk61LOifv2mm6BrLf2+U2vdoCtRjC7F73l+C5NlVU3eu0uFwLphdaO/qC6tWe38+pPfmG0rLtpnHqHPikgsd2CLh2PN89JgMKvpLhKlSfOhs+oUR+nDdX5ElqGDuWOcVqouIEUrwLJBrL1Yesel1E0v1vr3G8UnFo7r1SUqTTFWAbjGGajRwoyo7jHfClvL8wzqqGnTZy4KTePOj1effxThob0ZXImUgCOWvuvJwzG5YXwfrP27T930ZKKYy2+ySnmwELqvAQWUeLCR71V7El7OGS1qDiPGbQSAX3NbbOyd4xOLmngC/IzrtP7TzRxQivh/bLAwSX9HVC0oQXrHHg6S3wC4j8CpTou25svrNiOIYuz1AyWcSkUnn5GCrBXE9vyb7rDHMOL5QcJkKiAopOtBNr8N3dgpkSla8P5dIU7QCMH/UL6b0+3gyahw3Wu7q6+Lu/+zv+6Z/+iYceeoihoSF6e3u54IIL+MQnPkFXV9exHOcRUbnaLS/8DT7LWqKcEpIuEFnOhQMaDcvwT9Hi/Vg+e6IQd8+nzYXT52aApqTF8+2UO58UXoiKdw2lRJkfbMGOXdKX9kyvTYHbpA7MKmB2p40UIO/VC1Tes+fCxNMxFA7MVJGbWxHQKAWLemFjXQwLJoEfbRVPczXMW8kSzxgxq1OMESdxcO/6WFPyDlVhLDC1CtfBiuj1a9h8QCIkImv02d+Ar74AK2bCZQPCQGJguhZgD21C34vP3u/XI1GmUwYH67Zs56SlC4653qy0wgSWOQYeYNcKVkyHO7ZJAce5XRDriYA99BQo3wLr9qhjkrU27Oh4EKaThaL11aSnp/EYvTFZexC3Z/fWYWZtEiv5a0BheJVp3YatnHTCvEN/cIpJKYUpB9naunU7ba483DkoB4f26gUqq0ZuvL+tmHP48mPKJlZ4hnQv0omA9chAr/1Q0RtV/O7xSDl54L1xfcgbsegCvuxoN89XkI5on/upDOmzkr0DcFInlIL2nqfXAKCVs6dFnoDwUnf2TvWiWcreefl5m7bXBE05P59M75xnccALe2BZRYw9cGz0w2NFqc6g8vihvyKdqDBinJtR4bCMju1SYs6ZA894wPhDc2FRn0T6Do7DrhbcfyB/nZ9th5NnQaQh9HCHIwMcaElxueJ4LK9KPf5aYYJADC4O8yyfkxnmzp6dGcWdYy/U9nsefys60caAfQ1JV0zxHelro52OGk+ssRQoTBhASR03BsDDBusAvb29fO5zn5uSH/7TP/1T7rjjjkn//8wzz+Sv/uqvXta1u3vnF3IzEEvU0/vkA7nqgB5Qd6D9J7vg8tlwwYAIgdCGWBUPgu8p02QWn0r7SqRKKQwqz1Tcc9KA++yB+PiJE9uRBIXvzSnDUzsnhsFrlS/cNRpn4Y0TvLFTBxSUVphcoQ/vvizogJ/uBjNH+sYPx3Bu/8GNEXMmMUZAnikcaMKCrokMeCqjBoCDFtGb3wsbx2E5socONOFrz8GS6fCmORBapSlJoFaBYev5mMwT66hYgM3ldNs53v3w4wLWXwnKtXDzAHslhFN74IkhqaUQJRIpEmt7rqTnupwHkzckufm5nCcHUNrs01eVfKHnGwCdxX64KcDdz1n386IGx2BRf36P+srFz+mg9MN7HntVwDqACjTGtWhzyo1bWkWmPJQDVDi5UE/Bh7F73EWqOPK97q9EJesJsgzZ192hyIxGAl2FSunF/XuckshZPPDt/afrQ77XVlA+3PZ7rwAd0T73h+fPc7ftvzy9IKucvArc/I5/UoEWYxnI2Iv5pt7Zo/LzNm2vFZpyfj6ZI8UV8BxBCkD/UiDGUTjueVhKPo7xc9H7O8UpsGNM/uYbHf3PFefo+EGooWTP03IbsfLodlg5W1I0EyMOs/4OOAWYH0iIvKPTBzLMFClJgy3q6fvrsLD78BxpJZV163BFAk+dIw835kJdivSzfuRQ+tkA5pYlFL6v1j5v3XjpqlFii2Abj2cmEGlMSTDgq+1pPyjb/uIXv8g111yT+9sDDzzAgw8+eNQ//Gu/9mt85zvfmfTxJ3/yJy/72iPDO/iFX/0VPveF/8rn/uwPuOW+O7nm8R/S2JnleN/24KM88NhTskCthMHdQ1z7jZth2wHY0YKVfay+70HWbNiQbpR1u3dx3Xe/L97UWgi1gOu+czvrdu2UVk7VkDUvrufGm+7Ojefav72B3YND8iZQPPDYU9x2/yMpw2i8uINrfnIfDWNBXLPBbY/9jAeefS4NgR/cP8y1138nU6pmd7F683OseWFdugnXbdnBdd+4Ta5hAdF1TzzAumg4VcjWvLiO1XfcK5+xwi03PuD+h9Zw2/cfSt83Gk2+eO1XaDSytj63ff8h7n9oTfp+9+AQ1/7D6tyhWX3P/axZtwEWdsGOFuu2bOO61bfCpXNSq/9137uTdTt2pt9bs24Dq+99wFa8lwIR137jZgb3DqVM4IHHn+a2nzwma1lv0qgkXLP62zS8jgS3/ehhHnj4ifz4/vaG3Lqs/tZdrHnyxfT9ug1b+cd/vTn3mX/815tZt2Frmre+5vl1rL7zXs+SB9dufojB9VtlPKMtHvjfd3Gb2g5XzocwoGFirrnhWzRaLal8PxJz209+ygNPPpPux8E9+7n2y6tzXufVP7iPNWvXpwXY1o3s4brbf5CO7VPveyvXff17rNuYMdE1T744odrqVKzv4N79XHvdjbkiH6vveUDOx5m9sGYP67Zs57pbvp8rMnfd125h3brMarvm6bWsvu2e/Pi+810G47HUA//Ak89w2wOPpMLmsPffUazvQe/f//o6g/uGUiH4wJPPcNujP5X3vdDYOcw1X/8WjUYrFVi3PfQoDzxh13d3k8Fyg2u/9d1cftbq793NmmfWHv34pur8Hqv7d5Tj+/QvvuNVHV8zibnmy1+noRLh87VA1vfJZyQ6qFZicPjAIce3ftM2rvv6rSI7qgF0hCI/du+yMqXEmpc2cOPNB5EfL+P+QWF9rSxYfes9rHl+XSoH1u3YyXW7n4IDEeyPoLfCdXf8gHXbd6RK1prn17H65rtzwOj43H8ZgL32+u8wOGwN4dWQBzau5bZHfgYzBQg24ohrvvoNkR/23tz2g1f+fHz6F99x+Pfvzh/zwKNPpe8Hh/Zz7T/dALfZjgKPjbD623ewZv2GVPlct3Un111/a27tjnf+ct3132Pdzl1yzqqB6Ac/uDc9h9RCrv3HGxncu/9VGd/xfv+Ox/G5fT5l42s1ueZ/Xy/6ld3rtz36Ux6469H0M4PxGNd+7aacw2v1TT88/u/fU2txaXjrtuzguu/dmUVh9cB137mTdXooTcFa89IGVn//Xnyjoz8+pTz8UdJQDWjohGseuZ/GB04TY0Y14LY1j/PAC8/byvMBg7NrXDv3OXC+of5prL7rfpEf1mO9bst2rrvJc8CONLjuhYdFv7dGlDXPvcTqW3+UA/DX/u0NDO4blt8qax544hnR7ztCqIUyvn+7UeRvNYByyO13/ljun3WiDQ4Nc+3XvpUz2qyO1rPm8RdSA0KKj6wTiXrEdV/5Lute2pIW0FvzxIusvvlued9IoB5z7d9ez+DW3dJXPjGTru8tt9zC5z73OT73uc/x0Y99kqkmdffdd5vJ/vMNb3gDSinuuuuug/7tlaLLL7+cP//zP+ecc86Z9DOjo6NcffXVDL24nZ5SZ1bBcLQF1z4Nv75C8qgd4FbYhbGFFL6zXjbNlQuyECv32WpgCwhlQC0NH9QclmXXtLze7WO22uK/Pw7PxNmHVgTwgTPl99zvG/JVGVsJ/OUT8IETYNG0VJhRUuI5GI9kPv/+IiydBufNkmtZI4MoiyWUC5ubAjJxInPyq0aORxJm8ldPwkk9krv+2dPFGu7PT6t8xcl9dfi75+Dzp2X33l8vV5Hy2ifg/SfCoh75/0pgDScBdJYO6u064vn5a+fPcX8D/uZZ+JVT4JtrJU/nfSeJQcJZA10rt7u3S5jp1YvsegQ54w+xyfaGP8+/fAI+dCIsmCafO4bznHT+zTatO9z6/t2T8Mb5sKIvW1t/XtVQ5jbayu/98Qg2DsPq9fC5M/LfdfPrKL2qRYOMMba3aGFfNxO4/kXZ168byPZyqLP7dKAJf/0MfG6FePV8XlILoTM8bsKsfk6HJuPaawIoXva+NH4UhjPAqsOTIVNBZtzy6VSmWBl46yY5q2MtaZdz+ZyJMrAWotqlrBxHZOqxzMHn1Y0Y7tomKUW9Zdg2Cu9bLHLeP5Mdwq+OZ0+tiQ2Mt/Ky4t8fh6e8FrqnhfCRlfm163ht8pv03Dljtj0zPy8m93MCMH7V8rqVzc/ugK944d3/YVEKRp1x9NX2lh6KDqp73LAWhsckWvNjy4SPFc461XDCGTHGZFXc/VpdfhRr2tGGzBtdt5//2gvSpeoNc/MYCdro5icIPinq5h0hqjQRe5jYVpj328G5qAKrT0+Yj1v7nG4awYb9sHoDfP50iW51v+3SZlpxvmuT/3vF/Hjfs2//djD5MDw8zLRp07jlllvo7Ox82evv03HPtY0xNJtNmk2xSkVRRLPZJI7jg3+xGBJTCaSNwK5CBXUXEhEZUayfHYbzZmZhz25xXOGDqigqqhKgSlLQRAVHEE7uh7I7K9DZhSqnZxcKp7i2bbnQeQUDNdjRmFiAzc+9qDehsxDqB+1DZI6W/HCkXA6JWAF5Zlgq1Ib5TZ9r2+aeu0uSpLGzsF6OXGusBmJ8eSUKk01WRM/1P/9fz0nV9vecJMzBD/F34+kKBNxDNq/i3Hzzmft7E1Gi3ZyO5Twno2LPdcfMtIYzZ8HP9uZygrIwKZOtF0wsNNeMoaswiWJO5qtIyoVlFdNXQMLR9jTyRQF9gbdnDKqIcCh+/1UKt/05vXxStvCMCo4OKChtrxFqkSH6Fa5d4NcugSwUvrMk/XH31aGnUFTVfea1AJBU4dlRWQuP3t+C3jZ1JJR86XgG6gC5ziROjp57kGrpTn95LaxdG0rPXahzZ+bn9HMCvFxm7zwsnw2fWABnlgSouwKeWtniha/2oA9Nk+oeChjogD1GcrLlwxPSm9qdEaXUREekA/jVggPJgds01By4eBY8vBuahZa9kMdVDSRnvZ1uPsnZVYHODA2dpey5VoLyJGd+spoFc7uhRdY/3q9L1iwA9UYsxp3rH5dn51lvxJmh1zeW1CNMlIjh4xWi43677ty5k7e85S285S1vAeB3f/d3ectb3sJXvvKVSb/TN3t5flO7xZtZg93NPLiNPCvOo3tgYYfkf6QFtfLA5KiFuPYYigM/pwzAL8yH0wL42PyMqZQKYDYHgJGCXjvH82DPB0LGwGgkYB0mAvUplnXKGRGKjGXDbthlP/Togaxnov8WLbSJAAEAAElEQVSYoDRpmFM9uDHCVfVt17rtWAjyYt66G++GwewzQ8DWvVleTcUDaQDdAYw38hXEHTnAVwS1jhFW896s675xW8YIXwFSgRIjhC6snVZw5gzYOAZfXwNrd+UBe5ojRGF+9rkeS9u2dhXuj5c2Ue3Aigb6SpKTDp412mTrOtiEvkp+bhPAwc/pYFQMTfw5TQEV96H7W1cA+5sw1oAey2+KStZrYc/mzqk3v6oWL9Wecdt/2X3+1TdGHMk+V0pl+kOoRNacOgc+ZcHJpxbI+5xX6Od53T+nV5+OBT9Xnuc1F9V3+lz4xbPFo17x/r/8GjoL7YC6QupwAUwv53WmNNVucninlEKVbcRjR5iGnNMZ5oF6NfQKu1kcsrAHZofw2J6siLAr3uZ0ulEb8t9Vcj9Y4K+T33sxzFmjnK0Fc1CHaLHNo5+Xv6AG60eyQsaJHWcjzj9e2Alf2yoRzl/bCs/tFO+8D9RzgD2L5DBx0n5cU0zHdywbMHv2bO6+++4j+s6BoS3Z5vCB0kCnVIRPQQNef/UYHt0F712YgbKi5XoKwseUspW1g0SErANzp86WR7GYgl9crnhYZ1fgob3ZAYmNFHqArG/3CAJmfeuWr6BMNbUr9vBEoTXEEzuFiabGCCXF5YrrNad7ojHCB7cjliH4kQe5OU7t/LI2IQXm8GRhfk/uhNOscAi1WPHcULpKMGQPd9ET265HN0xagO3y1608JvM8KDlDUyvJ34O9w/L/64B1W/n/2fvzODmqev8ff1bvPVuWyTIJ+xpAIFxZ3FA2UVAQtw8XBGVRrx+X+0Vz/YHiRwX9uID6CeJylUuEKFcxeCFAlH29cIMiQtgDSQiQwEwySSaz9fRavz9Ona5T1TWTmaR7urrn/Xw8eqqX6pr36TpdfV7n/T7vN5+y1A+kOdPqHwTr9o+U3Brr4O2XYfk9LX/3HIP0D+KshCoJafvOHagfhS155X2Hcc98C15OPG70ZU/CTuIfL+l+2BaFkSxstaHDyTBcMUnVgH1Wm5yKqGSdw3mYMVs9Z/4m1nEyYsL9PB6BYtS93kQseMt8ddMDWJ2QSTseBKHO1Ox6nogAMYgU1XdBJ1DT1y491pyMBJ7VJELA9deC2Wn1+Plu6Iq6+kHvM44mWvpYztDSLo9jtKgtQNFyJwV1eeJ3dMEdG9xE0YWS6/q1bRU9msYd89Ty+mpGGVm++/t0wCsD8La5rsNPh/5rj3rRhkfe8B7zwY2w9ywoOa/HLLWN206yaKdvRUtQnJwkdOMS60uXLh3Xc+edd96uW1QFciMDlcIvgpqJesrxguoa63q25bmt0GHBPtPcH7qYISZjVQy7ikWU8NI/shbqf9hUinUdPluutYgrGrpaYFPR57k0vHr5MTzPtfJY+mf7i3ZwzURPXcUIFIuV56srAY/5JiMiGFEDOVWPXbenoo01aJ+225y9O9LXvmPmOaWcHGFfsFwb25MqNMef/d28SPrJOKXe9Lp053D77jl/8geWZmSIKdj9EzJPdivPjm6nzgTvn3SxgYyTuEtjXtghHDPg5lKGiHE+Z7WocK9sUX0muiKDbt/mIbWm3RRH45j5FlzqlQm+qQnyOoMKOdzs/G50JCsjlcIS6TIeTDv1NSSlw+BR1RyCJvXrNBkx0X5eLi0IzhjChpJxDdK/UUmVuCkU11FhylOr63m54kbUgljRHRODGjfGwpHVe8KY1yYzO3z/kHquB/jDRrgg4pYUNccpE8AqX9+VgLdLUbWMMeZEIeux74Ez4IEN8NwWOGK2o0Fwxz39eZgWD45YqrJgLztAI6XK6OO9W+HhHkfrWWoCQq/V1xEBL26B130HfROV7+u981VW/CKuzooGCPeCEvS2ju6oAeMS67/97W/L9/UF33xOExaxDoziBXNqE9olKFnqBORL6kT+vRuO6lIDaNOjXb5V7wRYEf0j68z66TJXpu1aqCeMH1//oGJ6Um03D8NubY7QMz3PjshLRdzj6m2N1staUeOLE3dsP2QeXGjBE91wzHw40CmJp2ujRn1fMH1B0pMRehbL73EeLkJbbPQLQi3Q50ZP8thUtu+gLjcMvuScY90XdVjQUN6ZsDHa5QmJN8TsSAHixv/X1OE3p1xzPVrynreFXfC8mzWVhV2Vpem07f75iGwJUk4D/eIhNMrA8s7Y6m0qpq6ivcPQ0qF2NdesbxuGWbMqv7t6OYUg1AOz75lCvD3pPm+WNdP7NUqehdEmI5JRFTUAqjIHVP5+NEDzNFbUwk45a0qLJW9pM6Nyhwh1YSpgWZYSTVFHmOnBRiMnIzRLt+lrcNSC5zZ593uyW0WslsfSVWivPxdAzBGpJRveNh8eexMO64S8Mz7SY9n+gve3xMyRoq+11cQfzavbP69V/a83B1Xt9aKtxmW5opp8eLgHVm6CD+8OqZKKij1sLsydrl5bsgYOnwHHdamEq1qslz3rhnAvOPeLEWyzLGuV2KECtW17XLcwkW7t9HZwwFObcKjgiKOSOnGv9sOWEhze6T3ZWqjHqx82Y0Utp+yPLkFiJHdIO2tI9Gy45XxB/YP9SETVEuzJqOf0uhFwPc8pACtY5NXq2qW9ynrNdjKqZvz02qFU1N1H17EPmoyY4dSx3jzsih8z1HioCCkzasDXxhq0zypPpDht0xk4/e3T66PMBE76ApJAhQkFrVsHbxtxLiz+hJKWxaoX1tasnWPizzFgAfvOhvd2qtfPmg/7zFL3zXOmMScibJSnSwsDjT8BVr0x2+uZIbZgdgK2Oksy/PU8t6O87yHy4DUaZnkdoYqY31/9PdPJMmf6vn9B+SQaBXPiL+n4J1rxThBDzZZPjZed7eee9afpuHtLqYzLItSFMDEZ13M3EWjjJyO0IpaTEM/yRvwe6Usoecx8bzLsKvgXy3mK/DmmIhYcNhMGbVjTp8Z0ZpK5gQJ0OON3v4ODGiTwtCwVyu+f0IhEYJ9WeMXREAUnC36mAMvWwbOb4ML94eBO2H+OqsK1YK4S5qfsDp87UC2Z+tkL8OCbKsp1dY9KRPf8m+6a9xEjYV3Jrspn72dMz3qoPOUTIJme7opbcH+U4xFoR4WmdiTcsIi/9sJRs8u1v80Z6fLMUg1QWRmj2HbEFS4WlRcW/yBfe54ButpVEraS8369BZVIp8OXXG4ShIIVjWCnjbVDsYia9TcFi44ciDttD5qMKEZgXlxNRsxv867JBxgsQrsj1gMSWNRqkGLFo260uoUr0MwJIi3U86VK7870qLoAQOW6dYvKUPiRkhpk+gbMq195nYVHLqhJG8fEHNybbTusC+7dAvNmeNfg66QeUeNiDm47M04pJf//MLf1xtO38K7/nNWiEsl5JiSArc4kWrsRNWAeRwbR42L1y6+x8LAD6m1Gk2F5v8e6X+qMv62+EPHy99EKz3dyLDxtM9qok3ROD0j6CEb0wOSzq/3c0gNWQQgxcj3fCeIR5b0uRpQXF1Qi6gst+IcT0XnIPE8kcNXGv3EL8oZXXYfDx6NqLfj/9MABM5x1687/7BuBvdp9DhhnWwPtYUV0PqmAUPh92uGlPji2S43Ht2bgppehJQmffotyjJo5wspr0W2VlPx/7Qevb4f7NiovvOa5DfBJ1HmIYUykRLFK1f8RaUqx3te7ttJTq3+8O1tgUw72RQnIbSOwbghO3cMVllqgl0tT1XZ0Yu1gAFRObEbRu2Ylgkoy96SxDt8uuZ7aoSIkfcnlygelpoMuKxrBTlpOpy+ptXRlUa4807req41dKdTNyYgeYzLC9NRm8qp2tdmWSfLIWomoCrWK21Aoujbp2by45SaGA2+oaSoJ/c5r/nXr5knR53GkBPHKBGxnfuD4Onm6rMrJMAvXO75tRJ0X8GZ+t63KqgWgzmMqWnkxD1FIqmVZ2JbxHQTXvpkp2DjoTkxYADZsHYE5Uco5MNSBXEEQkraFnTM/elK9TWg+LPMWcM3cmIFXNqslPeb30qJxPLVBE35JR83OdJIzBSV9rFP7pJ8LUwHp5zuBzj1hF9zHcWeN+qHzXa2ia4hXc9201kV66WMs4ibvO2oW/HcPbOhX9dT1tXMoCx0zgidDa3V59VeW0vf3boP7utVkwqt9cNPrcOQsOGmeq/d0JKxeulqIuJMPRVu17bx2WPIMbDb+56pulUy67OR1Pp9s9ZvXvBmORq1N2AqbR1wv9N+3wAFtKpmOmfRMn+x4SNZ7BWU8xFK11t/MucnyysIP5XnuGL2sWa3bZUUtrKQRnteiwvOsdKws1Mt26GRb/smIuSl4c8Bpk6OItQAcyLll6dSBvIPQGmNFI6p9OuywxQk9TEXd9gWFmk5PwmAhILkceELE9XakVFG2TRlQp35pfsb+SI1ZEejPUk4oZ3rYg0LhQdXrTPvyKoSRoGgdC5gVh21D7nnU7e3Nw4wW72SZT/gIQl3wiHTc/ri+V/0uloAb34B1jiehPNnYYEMG//VJD2LX9qmSov4JQvlSCoIQMizLcqNR9dJSs0Z6uSZ6pOpl6cr/28zjpfVRKqYywj+62fndcJYW9xWg3Vf60xwL14LR1q3rrPk/egaWvQ4f2A1O3k1FBujPs5zQWy/djbglAJ1Sf8SiKuGcydHzvF75GlYaaLBf3gngDznFuT8nocLgbVuJhL/3wttmuQPx8jr1iJvNOwwEeZ4tYHaLeq7PmcoxRd5wAVoS7vvN7SQOSqyIXj80RpIPPQHhzzUwNwVvGJMRZt6GYUes+wX6JIdqjto+PbD1h5q2xlXZOVPAmh5nU7SDSsCWjrnH8rS3duH+o2J+pzDuWxa0p9WF2hStOPdLRsk6s53ZgpsEsfw/anxh3xn8E39a8MxKwxbbrcSg27Z1BDrT3veUv8d1OG+C4FCO5jJ/GyNWZVWHp7oD1hw2AgG2WsCrW9T9YeAPb6jogYZsnyAIUwkrYinh2GLkufLcYspZVAuxaHqNyyWXHX30tlnwypCbW6poK8/ytJTXUaGplaYy662bon39Fu9+7bar8cyJj5R5P+a+Zr5+UBecsxu8JQoX7AEHzav8TGpEU4r1ObstDF4DjQWzUtCdB2xYtVWFqe7e7q6j1mERet1HWMS6KWL92SHnRKF72E3yUA6Dz0OLP3GXsw1LuzRBQt2yVNkE8E5GaJE3nFd1gfW+ehsWkWeKanNQ3BGF7U5CMtuuFOwmNiqBhU6MZExILP7Nn2pk+NgokWkROCE2IwXb896oAU+WeyrX5A/h1Fn3T0RQv+iBIPyi24yUALePgmpj75DyulsB72208jF1ZPHPb6y3Cc1JxEhapLf/1OXd56h5ARFdDYB5HTEHjKu6vfs92e2+Vuf2ST8XpgLSz3cey7KwYhFvMkkd0Vllj7r//5Z1kenUjFkqb9Rh0+Gvm5X+GHLGtrryUUA+qZrYqMdk/ohq/wT0s5sMj7npTddRwDHlPEr5RLy+HdylEtEdMNebdK+a5b0DaEqxvqVndYBQxwlZdTzR23Pw9zfhGKdcW1mgm7cQfTxBQh3U47lGkjmTwSy0RoJDlkM35rLcUH/9hdPnYXYEeoYNz6Uj9vpxIgdCKvLMzxzjflsMRsbIBu+vRZ4tqLAc36TLJz98cv0mXTx9yfh+TYurNevg9TKbXnaNrr+eR10gg85dCE5jmdG8kZalsmdvyRhZUW3oKUBnivLEBuCZ4BDGxblnnVJvE5oTc9mX9gwc3AWf2h0Oj8GFe8DB89xrccyq3/VmoujvpinCIxb8ky+D8pFd3nWOdWyf9HNhKiD9fNexnFJ0OppzUqL0ohG3ylPM8KxHgLfPhmf61NLU7VlI447jtWmToTuiAb9pFVnz53nFt67q5GxVZQ01AeL1thvCXecFMMPna+hVh3HWWW80ioURygLOTAalBx0zgMd6VSjcwTMrvQs6o1+IvAjlBFdWQIKruWlY3aeeM2s8jwR4niGcQsEU6kGTEW9m4RBcT3TBmZloS1SKvLBkLPYvPbCcP21x2ObYbwpzm+AEbMMFdY41TjtndU6rkeHjIFC0AtNjMJAJnogIal/BuZM2E+g527AJg6DriYU6H9Nb1Br1AwFsVR4S3DB48PbpsLUtxMyeNb3eJjQnOnFQIup+HyOWKj956Hx1TfYk34mGJ9JsB5STskZK3sHbgrlwrqU87EfNU5MR5eov9f1eSj8XpgLSzxsTK2JhR81Ec5abPX1WiyqR9rct0JVQTpvRqm3U8hKrQ9ILtlv//OAuuMBSWfOPngcLulyRbQh1Tx6tqAXRKHYs4pZ7i1hubXVd5akcAl/738amFOuAK/6gcmAdBZ7cAgcmjbqExiyJ7ohhY7Q2dSXhoYyTCd6wu89WYTKM8qUJETucjHh5u3eN95BT+iwV9e5b9lqGoH26v4EvDD4JBdQXP4Y3ZDxohjTnrOn2tI/6TkqYYUbgfuYdSegdZSJCY4bCjzhZ8ZP+5Qx65xCcRwfLsrC1l9y/znV2C2zNuuX3eodULefy7LP5vYUwtUuYmliWhZ2IOhOgtitqNXryOh5Ry3CqmWF4MogZA0p9/YlacEiXm8HXkzgpJMlkBUEQwogphvPGRGgReNdsuGG98rK3J933TOISVStiKYGdcH7TtINFZ82PGL8JOmHfGEnhXNFuqTrqhZIqoRex3N9MrSFrTIP9+o6P1o4u77pac2C9fjM4lc54KQuv9XpD4PVsScjELDD65MPcVhVKrDOMaw9miXB7nv2MOhmRgu6MNwx+MAcJKr2UoWqbbwJBf/4tzhzZkG/duiloyx5oG3J5NwGbMZh89O/P1M70HTHaRMSMlLvO3vSk6/4I3jXrGWfSxX8hD9V5NAhap28BnXEl0DW9eVUeygyd9ySZm3TLG5ZHVq6qtwlNi6VLAqXjasIsHatMqpOKqfDABhOyVtTInpyIuG1rifnWLNag3NFOIP1cmApIP29cLK2PtODV4j1iwe4dMC8Bj22G9YOjJO+chJB9M3Gc/3pvrj93ksiNJ4LaikaM7PtGhngnBH4yfhubcsgYjRoZ0P2dZZUv2cCqnookAaEp11aBMaFgCoB4VIX2dw+6QmjYCcNtCUjy4HxpQsdokxFdrZBDedO1zhsuwDQtYHHf52ljCPCLOr3GOYUqcTZauLi5zZQMz7M+rkX/4HAd2+kITv/3S9vZNzJ64jwzkiBbUOubwBtVYPm2YaHcZscw3WdnJmFTzplQArbmYI6TH8Mv8C1Cen0JJwMDw/U2oalRgj2iBjUtMfWb0Rp3BiZxrGTjhL9XoAduepCWjnkHbcbkRL2/k9LPhamA9PMGJxqQ30s7PPd2BnN5vKU/zTF6jSmXmjOFtb6ZmfMTE0sI503uFysLdmuScps1pVjv3/aaumMmjtEd6q2+ZAO6Tp5OmBC3wpvxtryumwDvurOuW4cYD+a8+4fdYwmMORkxDe9kxFARkolK766+H4Y2mkLdEy4OTIupSAjwilozRLw88YKTDd44hgWnnvC24LD5ycCcFPGfg9kR6M9RWWvdrlyzPlJUSRD1Mc3jhFEgaKHumYSxVBh8AdUe24ZNwzAz4V5hzQiQSFNedmvGqe97R71NaHosy8KKquQ6ViqqBHoNa8ZOFpZlqYRBaWfyocUZrLV66xOHYTJC+rkwFZB+3thYUWdMrr3qWrBbFmwb8O78ZPfkrVc3bfRnzW9zbmknc35s5x2y5d+UVKzmSeVMmnvUGLHczqTv62y3h8WcOnldvkzwYfWqa2+cFRwxMLcFuocMz3NeCVz1RncbNs+zid9TWzEZYdQmHyqqkhEan9ALxTn0f86muEsnYNAIFfd708v3HU9tKmTZ0j1iFW/b2tKwLR+QBd6MHtBr1kuqbFvFWnWCH9cdK7ifJqNqWYYOhd+WUWXbwPsjFbVC2CZBaG6sqIVVLs3jDNjSuzZoEwRBmJLoUHh/vi9/tY2j5lXqlUlETUI7E9HRiLpfpeu9zsY/WTRlgjnLUnMQ5eyF8Yg3FPct89StnA3XSL8f9iQ6QZ5nC5iXhCd6HBFkKTGbTgQL9JB611WSuTEmI940JyMKTtk2Ajyx4WicJyGZ3ws9LQkDBXdn2+dV1/017yz0TlVmS88W8iSJ17AFoxPYNv35z0jB9oI33N1ck2/e12LdPbC7Dcdp9GL2Sf95nZWALTnoKsEgMKvV64UPc8RAiMlmcySTiR3vKAg7wArrdQXp58LUQPp542NFLex4VI1PYxE38/pBc+Fc4KkeJdQXdHnD5WXss9OEXJnuHHN2W+g+SDiZbPW6tbQ/2YAh1BP1X7e2Q0bzPHe1KYGQLSpP7FDRFbMQfhGkGWsyYpMZBp9TIY1mW3ze9VBgfu7giru2uFqq4E/Chu31rpezpUcqjvPTa/+Lup7MIPFp4dRaz6jHZkk6U7yDepwpugn39PuNbdi+j5Z/hthcvz67FbbkVb11UKG2fnFv7i+Mi6t++cd6myAINUf6uTAVkH7eJJSTzFneUmiHzINPHKGimP3VNsI0Nm8wmlKsb9q4qnzfsiwlxFOGSDfWqqkkM+q5yUoUsEtYVrCgTcWgBegeUGLIDBOvSLw2CRkZd5bRJiPmtUE/TpZxGwZyqoa8X6CHZb26xi/W9HNtMdiedfcLCoMHGHG87wHZ0i/67MdqZPQ48YtW3c7pMRgcqYwS8Ge8t4FsCVJGuLi5DdWJNHAid9y66c5tZhI2D8OWEZjr5Bjw98sIoW1WWPnyF/653iYIQs2Rfi5MBaSfNwflahsJp6qG6QQ1k3ia2dmFnaYpw+Btu+R5bDlrSu2YpeoDag9mxF2rHlrx6ifQU4cSc3NaoDsHewHDOZie9HmefV7eMDLaZEQ6pjKo9wzCntMgm4NWo8Z6+f31MHoMTIENrq0dURjxZYP3Z0/fQbb0ZCJR3/YGTUJgQUcCep2IAH+tddOrDqp9baO0I6z9VK9ZB+93cFYcnhyCLa1uCDwYot4K32RSAyAhk8JUQPq5MBWQft5E6GXDekxkOmYiuMuME+FI4tnINKVYHw0rGoEGn9yxImOs657XBj1OWYz+HOzW4vU8m/uGlR1ORmRhT6DPdsrSWd42mtsw4PesakHbEoetfs+zDbazf1nMFqHFFMOEp536vIBXsM9Iq6UYuaK6WJfbV3K961q0ZwowK2Uc0x8FEkJG65+dLdCH+g52tQaEy0Ooo1oEQRAEQRDGgYpcjmJHLYiWvBV/nNB3YhL+Xg0aIO574nTM2LPeJtSWIKFuAfMSsMkpnTCW5znE3xtLr+kNauNubdCTUReEAl6PbFi966agNdetT0sqQVsoVYaHw7iypd9x/1/r3FarMjO6BaScy0pftrIsnZ9MXu2v21HehnhSyf+9031vmuMxWDOovOyWb9+IFd6ykCHmjrtX1tsEQag50s+FqYD08+bDikaw0jG32kaLU3FDPOpVoynFerGYq7cJtSVqVYoAnWSu11YCcKCoElxB+DyyO2K0yYguZzJCJ13TicmsAOEUGnyeYm1f2rF9MK+2QRnTQYn1eEC2dKCjvaVmVo8Ls10eD7ulaq1vz+KptR4U5p8vQDpivNc4dlixfN87cOuMznLa0pmivGbd/10VJkR7vfu5IEwC0s+FqYD08+ZFlzOzIhJBWG2aUqwP9XfX24TaYvlEgL7fEVdntGcIMkBrojJMGcIthGCMyYhW2FyCbSNqv1jEGylQ9saGqIFBkwi6PWlgMGDdurnuZ6QUnC09YvGuYw6r7wXRbJfnvgWtKegLqLXu32aKRqZ73Pebj8OGhTe5nNluy8mX0T/kTmKENflhg3DsOxbueCdBaHCknwtTAenngjBxmlKsNz1aLFR4oCMwPwWvOuvWW+Pe90BjePb8Qt0MM44A64egQ+9rCiXCGebvj2jQIq4jBoNOtnfT22ySM7KlV4jY+jZUTRQYfdAUrjPSo9Ra97VzCEg6uQegcvIlhHjabfbT9Zths7PTTW+qx7oJegIqdJ1TEARBEARBCCtNKdajsdSOd2pgPLWe/YJ2Xjus7VP3E77w4kiDCAbLctdCa9ujzmTEvKRqX2s8WKCHba1z2b6ACIeWJPQXfGHivjJnIwVV8iJAxPZu3V5z83dI0NIKC5g+Sq11jRbuJdSSgCCBHqbz6CdoqcaqHu8+q3q8fThiNekVt7Zs7u2rtwmCUHOknwtTAenngjBxmnLo2Dl3Qb1NqD2RSKVQj6DWdW/MqprrWJUiytyGFbNdZhQBqMmIjVlIG+U//N71EFH2wpqTCtreaUkYLLo7m151fT9bcCddygdVm9/96a7aGD0RTG+6ec6mxWDAV2vdX3c974SMp4LD/EONuVQjaqklGW/t8u5z5LxyaUi99EHWcU2cG268s94mCELNkX4uTAWknwvCxAl96ba77rqL22+/nddeew3Lsthnn3349Kc/zWGHHTbqezZtXDWJFtaJIM8zFsx1kne0N2hyOZTAtSMRsIoBkxFJdb89oXf2eddDKIiCssFbqASA20Yq16mbkfDDBW+2dOM8fuXz/1xry3fMaLXWpyVgi6/Wur9tOlFgUASIe7BwErEgZgjxqAUHdcEnLXiyG46aBwvmel+PN+XcaM35ypfOqrcJglBzpJ8LUwHp54IwcUIv1oeHh/nUpz7FoYceSiKRYPny5VxyySUsXbqU2bNn19u8+lERIu6Ipk5nCUBPAdb3KsHQQKXbyvijBsqTEWn1+KVtcEhaCSQI7fpmoLK8Gaj77TF41ahc4K9BDipbesqXgC1MBIX4W6g160Ug76+1bgj3TN59v79tYWyrgRWxsGNRiNtQdNoUseDQefCWecr+eAQSUbWNRxpiokwQBEEQBEEID6F39XzkIx/hmGOOoaWlhVgsxsc//nEikQgvvvhivU2rL1rgmEI9asGrW9x9bnwDXtlc4ZUNnec5iNEmIwaG1HMZ4A9vwLpNXu96WAWRaZa2sSMKw1k3+Zpe220mZcuZYj2M4f7WTtZat9V6/FZ9mIC2haaNoxCPqKiAZFRtU1F1PxVV6/D1884+Um9UEARBEARBmAihF+t+nn/+eTKZDPvtt9+o+0yfNfprTYMW5+a6bsuqTHL1pFPGrhFCi0387dL3n9nk3e+pnvAml9P4E/zpUPHWBGwL8Dib2yFbiT6oELHLbr2/llaPD3MJgr/W+ixLiXX8kxDONluEluC2hXbSxcCKWJBwRHna2KZjSrDrWzKKFW24S21oWHbzffU2QRBqjvRzYSog/VwQJk7dwuB/+MMfctddoyfIWrhwIVdddZXnuU2bNvGd73yHT3ziE8yfP3/U92YzfVWyMryU13VT9K6LfWsXvLDR3fGoeV6vZzT8IgjwTkZEjPv/5GvfkV3eSYswijxTyJrr1juSSrgWSm6ouL+02QiQjAVmk19wwF6TYPwO8If2e2qtG+XbtFfdwmhbCeLBbWuU5RpW1MJORaEYUSHxdkm/Uk48Jx71XWPBAXvW2wRBqDnSz4WpgPRzQZg4dXP3XHTRRSxfvnzU2//9v//Xs//GjRu56KKLOP744/n0pz895rFLdolzPnkhixYtYtGiRaxYsYIrFv+ObNZdH3zH3St5ZOWq8uPNvX0s/vmNnuMsu/k+Vj3zcvnxuvUbuXbpbZ59rl16G+vWu+Jx1TMvV8wcLv75jZ5yFY+sXMUdd68sP85mcztn3233s+rldWURvq6nhyUvPw3n7gaHxuC83Vny4irWvdlTzkq96oW1k2ffLnx+lmVBNAJRi8U33ELvwIAKO14wl0ffMcIdM1+FC/aABV1kCwWuXPJHssV8WfCF6/zmufLf/0C2UCgL2jse/wePrnP+90CO3u39LP7jreqx44Ve9vCjrMpuKmdLX/dGN0tucTKpWhYLD9u/vv3v5vt4+tk16KoD6za+yZLb7nLF98wUS/76iOp/ALbNqtVrWXb/I05ZuhIkYyy+5XZ6t/eXj/voE89xx31/rYp9k3F+c7k8V/7sP8lZRXWuUjHu/O/HefSJZ8tCvSGvLyGxb+FhB4TaPgj35yf2NYZ9Cw87INT2acQ+sW9X7NP9PKz2mYh9Yt947VuxYkVZc57zyQupNtYDDzxg73i3+rJ27VouvvhizjjjDD71qU+Nue/Q0BCnnXYa27dvp6OjY5IsrA+27az7zRRVSHG+pG464ZXOQJ1w1s6mo5CKNcaadcAu2ioJ2UgRciXIFaFgu8nKopazJjhaDkG2dMh4iLBLNgw77RguqO1IUbXn6qfhw3vBPtOdUOoIZEvq9cE8XPUc/NtbIB1XIdUtTrh1SwxaYqEIr7azRRjKqz6o25ctwv/0wIZB+F/7Of3PqaeuX3/gTRjIwul7O+fPWO+djmGlQ5//UhAEQRAEQRAA6O/vZ9q0aaxYsYLW1tYdv2Ec1H+kvwOeffZZvvKVr3D22WfvUKhrEqn2GlsVDizLgnjUTXKVNBJcpYzHOslVItowQh1UiHFZiOs2mmuB0zE323YiEu7SWEHr1i0LOuIwWFCveRKwoSZiwG2X7xjr1r85CYaPAzP83Wzf9IBa6xobNVmRirvHgHBn9RfqgjnzLQjNivRzYSog/VwQJk6I1Y1iyZIlDA4OsmTJEk499dTy7YYbbhj1Pe3Td59EC+uLFYt4xaxOcNViJLlKRho3yVV8FJFuti8dDXe2bX8CNlOQtiZgoGiUbXOe16XNIs4BApr2wMNP1M7mieDPF6C30xKwxZiI0Oj7IwXVN822NVCCOWFyuP+hkPRzQagh0s+FqYD0c0GYOKGPM128ePGE37Ol+4UaWBJerHhUJZsrlKBY8oaJRyIqyVWjJJbzYVnKu25HLYjZUCy6gjbqrGsPeRIvy7KwMTzOprDtSMJgsTJTOk7ZtpbyQdytc4xPn3f65DRgR1RkgnceT09BAW+tdfM8DRegK20cx0hUJwgOnznvQ/U2QRBqjvRzYSog/VwQJk7oxbowPqyoBdEoth1xPbSRBqmpPg6saASiYJciblZxq4HaN1rG89Y4bMmox/4669nS6KXNQtVuq7LWOqiIB1Dl23S4u+lhz+ZVZIQ5iQHhLcEnCIIgCIIgCJNIA8ZFC2NhWRZWxMKKWo0jZCdAuW2RBmufFrMYWwvoiEJ/1rvveEqb6feHAVNs+2utd1qw3ai1rrFtyBcg5VyCLN8khiAIgiAIgiBMcZpSrHd2HVxvEwShElOEauHdFoOhrBKvNqpOt/auj5QgERD84nielyy9vfY2jwfTm67va+HemoY+s9a6IdqHSsqzrt8HlRMawpTHX25FEJoR6efCVED6uSBMnKYU6wN9G+ptgiB4CcqWjgXtCehz9rF93udsSSXSA29ouLM98fgja2z0+FARDlZlpnuAzhRsL1R61QGGcWrIy1p1YXROPC4c/VwQaon0c2EqIP1cECZOU4r13MhAvU0QBC9B2eAtlFgHlYTNnw0+W4JkzN0XDI+zxb5771ZjoydAUIi/BXQkoC9gTb4W7KlY5Tp8WbMuGISqnwtCjZB+LkwFpJ8LwsRpSrEuCOFjlCRsOgx8MO/uWk4wV1Bl64KEa9jW6/tLt2mxPj0G/UatdU22pLapmPcY5lYQBEEQBEEQpjBNKdbTrZ31NkEQvAQJUZ2ErQ2VZK68bt0RthkjARt4yrZhwapnXp4Ew8fJqLXW495a61qzjziTE3Hf/vo4otgFh1D1c0GoEdLPhamA9HNBmDhNKdaT6en1NkEQKgnyPFsWtMdh0BC0mpECJCPBZdssWP3ya5Nj93gYrdb6jLRTa91InGejJiJizhslmZwwBqHq54JQI6SfC1MB6eeCMHGaUqz39a6ttwmC4MWfeM0MY29NwmDRm4QNvKXN/PXZgTM/elKNjN0ZdlRrfcSIGrBViH+L/xDeyAFBgLD1c0GoDdLPhamA9HNBmDhNKdYFIWyUM6abpc20oO1IwkDBFbN6O+ILg1cHcraTZvr4GKvW+kzLqSVvZNAbKUE6FpjlPnTr8QVBEARBEAShDohYF4TJIhIgtC2gNQaDWfXY9K4PA4koZZFvepzDJmjHqrXellK11sFYs16CuJFczh85ELLmCYIgCIIgCMJk05Rifc5uC+ttgiBUEpSAzQLao47n2UGvW88D6XiwQLdg8c9vrK29E2DMWusz00qsm2vWtWe9fIDygSbRaqERCFM/F4RaIf1cmApIPxeEidOUYn1Lz+p6myAIwQQlYuuIwVDODYEHKASUNisfQ73v3LNOqampE6YiwZxz64jD9hFvHfmRopqIMN9X9qhbjvgXhBD2c0GoAdLPhamA9HNBmDhNKdaLhZF6myAIlfhFrBburQnY7uyjy7blimqbcBK0VSRfs5g9a/qkmD1udII58HrYZ8Rhe0Y9rwV7tgjJWLhD+4VQELp+Lgg1QPq5MBWQfi4IE6cpxboghJIgrzqoBHMAeSMjfMZZ4x31rXM3E7KFDS28/aH+HXHYWnAiB5yIgcDkeXjfJwiCIAiCIAhTmKYU660dXfU2QRACsCq9z6BqqQP059TWRonZBN79nEPo7SMrV9XW3Ili2mnWWp+ZVuvvdWg/wJAj1v0CXYS64CN0/VwQaoD0c2EqIP1cECZOU4r1aDSx450EYbLxlygDt7xZOyojvK5DnisG1yE33j8wMFxLa3cCJ8HcaLXWt2fdyIF83vWs+/W56HXBIHz9XBCqj/RzYSog/VwQJk5TivX+ba/V2wRBqMQfIm6uW29LwEDR3Xek5KzpHr1s26nve8ekmT4udlRrfbuTS8K2IVuAtBbrhhdeyrYJPkLXzwWhBkg/F6YC0s8FYeI0pVgXhNBiClkzoVp7Uol1sw55wixt1gB1yMeqtd6agm0Ft33Dtts+f8SBJJoTBEEQBEEQhOYU65bVlM0SGpxyLXJTyGpx256AwYK3Dnlq7Drk2WxuUuweL5bla5un1noKthtifQRVZz0o4Z5odcEgbP1cEGqB9HNhKiD9XBAmTlOq2jm7Lay3CYIQjOl51lhAawwGsu5zWUOsj1KH/Kpf/rHm5k4YPVFWUWs9AX0jKgS+6Cj2MWrIC4ImlP1cEKqM9HNhKiD9XBAmTlOK9U0bJdukEFJGW7feEVMJ5sCtQ56Ku++BCiH75S/8c+3tnSij1lqPQb9Ta13XkE+OXkNeEDSh7OeCUGWknwtTAenngjBxmlKs23ZpxzsJQj3wh4frbXsUBnNONnggm4eEVemBh7IYTiZDWPVg1FrrCVVrHSCTV9uYLxt8mGvIC3UjlP1cEKqM9HNhKiD9XBAmTlOKdUEILf6Q9nI2+CT0A9hKsA8X3NJm/veFmVFrracgh6q1ntlxDXlBEARBEARBmOo0pVjvmLFnvU0QhGCCvM6gEsyBWqsOkCtAKhpcts25f8fdK2tv74QZpdZ6i7M+fXtWhfi3+t/WIJMRwqQTzn4uCNVF+rkwFZB+LggTJyDDU7h45JFHuO6669i0aRO2bTN//nzOOeccjjvuuFHfUyxKtkkhrFjBgj3hzJsN5CCZhrzhWfeXbXNob2+pubUTZqxa69NRYn2kCMn46DXkRbALBqHs54JQZaSfC1MB6eeCMHFCL9YXLFjAD3/4Q2bNmgXA008/zcUXX8xuu+3G/vvvH/ieof7uyTRREMaPGertF7MdqCRzs9KQKUHSt6bbl0n+2HeEsOrBWLXW29PQ56xXH6uGvCAYhLKfC0KVkX4uTAWknwvCxAl9GPzs2bOZPXs2lmVh2zaRSATbttm4cWO9TROEieMXs5516wkYcDKlDwHJGGX16kk0F15FO65a65mSGxYPFZMRVojbJwiCIAiCIAiTReg96wCDg4OcddZZjIyMUCwWOeyww3j7298+6v7RWGoSrROECVLhVXdoT0J/AZVkDlWHPKhsm3N3c28fs2dNr7m5E8aKAMXgWuubhmFayihL55+MEKEueAltPxeEKiL9XJgKSD8XhIlTN7H+wx/+kLvuumvU1xcuXMhVV10FQFtbGytWrCCXy7Fy5Uo2bNhALDa66Z1zF1TbXEGoCpZlYY+2br09qbLA550kc6nRvc8AN9x4J1/50lk1t3nCjFZrfXoMXh5R7dITEf7JCPGqCz5C288FoYpIPxemAtLPBWHi1C0M/qKLLmL58uWj3v7v//2/Fe9JJBIcd9xxPPPMM9x6662jHnv7ttc455MXsmjRIhYtWsSKFSu4YvHvyGbdxHN33L2SR1auKj/e3NvH4p/f6DnOspvvY9UzL5cfr1u/kWuX3ubZ59qlt7FuvRuSv+qZl1l2832efRb//EY29/aVHz+ycpUnI2Y2mxP7ppJ9EYs7Hvwbjz75bHmf3v5+Fq/+b+h3ErABy/76GKvWvlIWsOs2vMmSP/wZrXC/8qWzwvn5GbXWlyy/i3XdPWqHaQlWvbGRZS8/6SlLt/gPy+nt264eWE1wfsW+qtr3lS+dFWr7INyfn9jXGPZpARNW+zRin9i3K/aZQj2M9pmIfWLfeO1bsWJFWXOe88kLqTbWAw88YFf9qDXmq1/9KnvssQcXXXRRxWtDQ0OcdtppbN++nY6OjjpYJwhjY+eKyoOeKShhnimocmZP98LfN8EH9oIla+Brh0M8AumYKuOWjkE6Cuk4VjS8Hmi7WILBvGqbbt9IUWWC/9kLMD8Bh82Co2ZDIqrWr+v2tcSwEtF6N0EQBEEQBEEQJkR/fz/Tpk1jxYoVtLb66xTvHKFPMHfXXXfx+uuvUywWyWaz3HbbbTz55JMcc8wx9TZNEHYOf+I1vW2LwkAesgXQ1U2CMqWHV6c7WN7wd3+t9e6c61mPhL4xgiAIgiAIglAXQi/W33jjDS6++GJOO+00zjzzTO666y6+8Y1v8I53vGPU90yftd8kWigIE8RMquYpbZaEQZQXusWXeM2/vh0qwnVCgynSzUR6llNrvYQnDF69x/KuYRcEh9D2c0GoItLPhamA9HNBmDihzwZ/wQUXcMEFF0zoPdlMX22MEYRq4C/fpmlPqG1fAeLxgEzpeB4vOGDPGhq5C4xZaz0FfSNuWTqzfB1IgjmhgtD2c0GoItLPhamA9HNBmDih96zvDJmhLfU2QRDGICAbvAXEnbXavVmIm5ngA0LhgYWHHVBrQ3eKsWutp9U2PXZZOkHQhLWfC0I1kX4uTAWknwvCxGlKsS4Iocb0JvvXrU8HNg+567v1/lAW91YjeJ8t35p0s9Y67LAsnSAIgiAIgiBMdZpSrCdS7fU2QRBGxyPS8Qr31iRszrpitiJc3hW0ZsmJ0DFarfWRYfXcG9vUtiLUXwS74CXU/VwQqoT0c2EqIP1cECZOU4r19um719sEQRgbfxi8pj0JOSAZ9epWvwceuP+hJ2pt5c7jjxyIWPBKLzw+oB7f9Cas3+wNhRedLgQQ6n4uCFVC+rkwFZB+LggTpynF+pbuF+ptgiCMigpj9wl1vW1Pqm3Cny3dtwU+c96HamXirmNGBESdTPCrur37PNUTsLZ9cs0Uwk+o+7kgVAnp58JUQPq5IEycphTrghB6PGu5jfttTpK5dCS4bFujiFnLgpilhHrEuX/UPO8+R8+DWES9HrEgEsGSdeuCIAiCIAiCADRA6TZBaEr85c30rd0R68mI+1oDYkUs7GgUoiWIR6Bkw8Hz4AIL/tENb+2Cg7rUa1HLvQmCIAiCIAiCADSpZ72z6+B6myAIYzNaNvg2Z/4sHfE+r9d0G3r22qW3TYKhu0A8osL5484tFYVD58O5/6S2yaj7WsK5Lwg+Qt/PBaEKSD8XpgLSzwVh4jSlZ32gb0O9TRCEsTFD38trti13zfojr0OsBId0ufuZ7wNOPO7IybJ2p7CiFnYyBnZBPVGyoWiDjbuW3RDrDVGSTph0wt7PBaEaSD8XpgLSzwVh4jSlKys3MlBvEwRhbPxh8JrefrV9A/j9Rli7adT64/vuvVstLawKViwC6Zi6JaPKu552tqmoKlGXimFJCLwwCo3QzwVhV5F+LkwFpJ8LwsRpSs+6IIQfq7J8W8SC5zd7d/tHNxw2392nATWtFY1gpywoRcG2lYc9qmL6RaQLgiAIgiAIQjBN6VlPt3bW2wRBGJsIblK1iJFg7a1d3v2Ome++HsETBr/qmZcn1eRdwbKUMLdiEaxEFCsaEaEujItG6ueCsLNIPxemAtLPBWHiNKVYT6an19sEQRgTy1KlyoiY67YjKkP6p3aHw2Pw6T1gwVxX0PtKm61++bU6tkAQJgfp58JUQPq5MBWQfi4IE8d64IEH7HobUU2GhoY47bTT2L59Ox0dHfU2RxBGxS7aMJKHbAmyRciXVAK2ku1607WIT0YhHcOKNuX8miAIgiAIgiA0NP39/UybNo0VK1bQ2tpalWPKmnVBqBMV2dKjlhLrGo/XPSpCXRAEQRAEQRCmECLWBaGOWLEIdjoG0SLkLOVV16XNtFhPRJ2EbIIgCIIgCIIgTBWa0lU3Z7eF9TZBEMaNFY2oEmatcXVrcW6tcVXWLBYJrEG++Oc31sFaQZhcpJ8LUwHp58JUQPq5IEycpvSsb+lZXW8TBGFCWJYFsYl5z88965QaWSMI4UH6uTAVkH4uTAWknwvCxGlKz3qxMFJvEwSh5syeNb3eJghCzZF+LkwFpJ8LUwHp54IwcZpSrAuCIAiCIAiCIAhCI9OUYr21o6veJghCzXlk5ap6myAINUf6uTAVkH4uTAWknwvCxGlKsR6NJuptgiDUnIGB4XqbIAg1R/q5MBWQfi5MBaSfC8LEaUqx3r/ttXqbIAg159T3vaPeJghCzZF+LkwFpJ8LUwHp54IwcZpSrAuCIAiCIAiCIAhCI9OUYt2ymrJZguAhm83V2wRBqDnSz4WpgPRzYSog/VwQJk5Dqdo//elPnHDCCSxZsmTM/ebstnCSLBKE+nHVL/9YbxMEoeZIPxemAtLPhamA9HNBmDgNI9Zfe+01br75Zvbdd98d7tuz4anaGyQIdeYtB8yotwmCUHOknwtTAennwlRA+rkgTJyGEOvFYpEf/OAHfOELX6C9vX0c77BrbpMg1Jv777+/3iYIQs2Rfi5MBaSfC1MB6eeCMHEaQqz//ve/Z/78+Rx77LH1NkUQBEEQBEEQBEEQak6sXv/4hz/8IXfdddeory9cuJCrrrqKNWvWsGLFCq655ppxHde2bRLJdvr7+6tlqiCEkpfXvib9XGh6pJ8LUwHp58JUQPq50Ozo/m3b1YvyrptYv+iii/j85z8/6uvRaJRCocAPfvADvvjFLzJt2rRxHTeTyZDLDrDHHntUy1RBCC3Tpv1XvU0QhJoj/VyYCkg/F6YC0s+FqUAmk6Gtra0qx7IeeOCB0C7w7u7u5uyzz6ajo6P83NDQELFYjK6uLq6//vqK95RKJbZs2UI6ncayrEm0VhAEQRAEQRAEQZiK2LZNJpOhs7OTSKQ6q81DLdaLxSJbt271PHfZZZdx0EEH8YlPfILOzs46WSYIgiAIgiAIgiAItaNuYfDjIRqNMnv2bM9z8XiclpYWEeqCIAiCIAiCIAhC0xJqz7ogCIIgCIIgCIIgTEUaonSbIAiCIAiCIAiCIEwlQh0GP1Fs2+b666/nz3/+M0NDQxx44IF8+ctfZp999qm3aYIwYa655hoee+wxenp6SKVSHHHEEXzuc59jzpw55X16enq46qqrWLVqFfF4nBNPPJEvfOELxOPxOlouCDvPN7/5TR555BF+/OMfc+SRRwLw1FNP8ctf/pLXXnuNGTNmcNZZZ3HGGWfU2VJBmDjPPfccS5Ys4cUXXyQSibD33ntz9dVXE4lEWLt2LVdffTUvvfQSra2tnHbaaZx33nmSLFdoKLZu3covfvELnnzySXK5HHvttRef/exnOeKIIwC5nguNyf3338/y5ctZu3Ytw8PD3HvvvUSj0fLrO7p+74pGbSrP+h//+EfuuOMOrrzySpYvX86hhx7KxRdfTCaTqbdpgjBhLMvikksuYfny5SxduhSASy+9tPx6qVTi0ksvpb29nZtuuolf//rXPP300/zqV7+ql8mCsEvcddddjIyMeJ7r7u7m61//Oqeeeiq33347l1xyCf/xH//Bf//3f9fJSkHYOZ577jkuueQS3v/+93PzzTdz66238oUvfAHLshgeHubiiy/m0EMPZfny5Vx55ZX8+c9/5k9/+lO9zRaECXHVVVexefNmfvOb33Drrbdy3HHHcemll9Lf3y/Xc6FhaWtr44wzzuCLX/xixWvjuX7vikZtKrF+6623cuaZZ7LvvvuSTCa58MILyefzchEQGpLPfvazLFiwgHg8TltbG2effTZr165lYGAAgKeffppXX32VL37xi7S2ttLV1cUFF1zAX/7yF3K5XJ2tF4SJoQd3X/3qVz3P33XXXey+++585CMfIR6Pc8QRR3Dqqadyyy231MlSQdg5fv3rX/OBD3yA97///aRSKaLRKIcccgiWZfHwww9TKpW48MILSSaT7LvvvvzzP/8zy5cvr7fZgjAhNm7cyHve8x6mT59ONBrl9NNPJ5PJsGHDBrmeCw3LMcccw0knncT8+fMrXhvP9XtXNGrTiPXBwUG6u7s5+OCDy89Fo1EOOOAAXn755TpaJgjV4fHHH2fu3Lm0t7cDsGbNGubPn8+0adPK+xx00EGMjIzw+uuv18tMQZgwtm1z5ZVXcu655zJ37lzPa2vWrOGggw7yPLdgwQLWrFkzmSYKwi4xMjLCc889RyQS4fOf/zxnnHEG//Iv/8JDDz0EqBDK/fff3xNWedBBB/HGG28wNDRUL7MFYcKcffbZPProo2zZsoVCocDy5cuZP38+++23n1zPhaZkR9fvXdWoTbNmfXh4GFBhCiZtbW3l1wShUXniiSf47W9/y+WXX15+bnh4mNbWVs9+WshLnxcaiVtvvRXbtjn99NMrXhsaGmL33Xf3PNfe3i4CRmgoBgYGKJVK3H333Xz/+9/ngAMO4NFHH+W73/0us2bNYmhoqGL8Yl7P/dd6QQgrhx56KPfccw8f//jHiUQidHR08J3vfIdkMinXc6Ep2dH127ZV4bWd1ahN41lvaWkBlIfdZHBwsPyaIDQiK1eu5Nvf/jaXXnopxxxzTPn5lpaWih84HSIvfV5oFDZu3Mjvfve7ivB3TWtra8V1fWBgQMSL0FCk02kA3v/+93PQQQcRjUZ5z3vewxFHHMEjjzwyaj8HuZ4LjUOpVOLf/u3fmDlzJrfeeit33303//Zv/8bXv/511qxZI9dzoSnZ0fV7VzVq04j1trY2urq6ePHFF8vPFYtF1qxZwwEHHFBHywRh57nnnnv43ve+x7e+9S3e/e53e17bf//9efPNN9m+fXv5udWrV5NKpdhjjz0m21RB2CmeeeYZ+vv7+dznPscZZ5xRzgr87W9/mx//+Mfsv//+rF692vOe1atXs//++9fDXEHYKdra2pg/f/6omd11iHCxWCw/t3r1aubPny9CRmgYBgYGeOONN/joRz9KR0cH0WiUY489lvnz5/P444/L9VxoSnZ0/d5Vjdo0Yh3gjDPOYNmyZbzyyitks1muu+46YrFYhcgRhEbglltu4eqrr+b73/++x6OuOfzww9lzzz3593//d4aHh+np6eG6667j1FNPJZFI1MFiQZg4xx9/PL///e+59tpryzeARYsW8S//8i+8//3v57XXXuPWW28ln8/z9NNPc8cdd/DhD3+4voYLwgT5yEc+wp133smaNWsolUo8+uijrFq1ine/+9285z3vIRKJcN1115HNZnnllVdYtmyZlLQSGopp06ax1157sXz5coaGhiiVSqxcuZL169dz4IEHyvVcaFiKxSK5XI58Pg9ALpcjl8tRKpXGdf3eFY1qPfDAA3bNWjbJ2LbNddddx4oVKxgeHmbBggVcdNFF7LvvvvU2TRAmzAknnEA0Gq2omX7FFVdw+OGHA6qsla6znkgkOPHEE/n85z8vYl1oaE444YSKOuu/+MUvPHV5ZXAnNCL/+Z//ya233srg4CC77747n/rUpzj22GMBlaTopz/9KS+99BItLS186EMfkjrrQsOxYcMGfvWrX/Hcc8+Ry+WYPXs2H/vYx8o5SeR6LjQid955J1dccUXF84sXL+aII47Y4fV7VzRqU4l1QRAEQRAEQRAEQWgGmioMXhAEQRAEQRAEQRCaARHrgiAIgiAIgiAIghAyRKwLgiAIgiAIgiAIQsgQsS4IgiAIgiAIgiAIIUPEuiAIgiAIgiAIgiCEDBHrgiAIgiAIgiAIghAyRKwLgiAIgiAIgiAIQsgQsS4IgiAIgiAIgiAIIUPEuiAIgiAIgiAIgiCEDBHrgiAIgiAIgiAIghAyRKwLgiAIgiAIgiAIQsgQsS4IgiAIgiAIgiAIIUPEuiAIgiAIgiAIgiCEDBHrgiAIgiAIgiAIghAyRKwLgiAIgiAIgiAIQsgQsS4IgiAIgiAIgiAIIUPEuiAIgiAIgiAIgiCEDBHrgiAIgiAIgiAIghAyRKwLgiAIgiAIgiAIQsgQsS4IgiAIgiAIgiAIIUPEuiAIgiAIgiAIgiCEDBHrgiAIgiAIgiAIghAyRKwLgiAIgiAIgiAIQsgQsS4IgiAIgiAIgiAIIUPEuiAIgiAIgiAIgiCEDBHrgiAIgiAIgiAIghAyRKwLgiAIgiAIgiAIQsgQsS4IgiAIgiAIgiAIIUPEuiAIgiAIgiAIgiCEDBHrgiAIgiAIgiAIghAyRKwLgiAIgiAIgiAIQsgQsS4IgiAIgiAIgiAIIUPEuiAIgiAIgiAIgiCEDBHrgiAIgiAIgiAIghAyRKwLgiAIgiAIgiAIQsgQsS4IgiAIgiAIgiAIIaMhxfo3v/lNTjjhBJ544ol6myIIgiAIgiAIgiAIVafhxPpdd93FyMhIvc0QBEEQBEEQBEEQhJrRUGJ98+bN/OY3v+GrX/1qvU0RBEEQBEEQBEEQhJrRMGLdtm2uvPJKzj33XObOnVtvcwRBEARBEARBEAShZsTqbcB4ufXWW7Ftm9NPP33M/UqlElu2bCGdTmNZ1iRZJwiCIAiCIAiCIExVbNsmk8nQ2dlJJFIdn3hDiPWNGzfyu9/9jl/84hc73HfLli188vzPYRcL5LIDzrMWc3c/gk0bV2HbJQA6ZuxJsZhjqL8bgGgsRefcBWzauKp8rOmz9iOb6SMztAWARKqd9um7s6X7hfI+nV0HM9C3gdyI+l/p1k6S6en09a4t7zNnt4Vs6VlNsaDW2rd2dBGNJujf9pqyzoowZ7eFYp/YJ/aJfWKf2Cf2iX1in9gn9ol9Yl+D2Nez4SnAVv8r2U4uO8CyZcuYPXs21aAhxPozzzxDf38/n/vc5zzPf/vb3+b444/3rGFPp9PYxQJr1zxPR0fHZJsqCJPGOZ+8kP/83W/qbYYg1BTp50KtsDN5yBQhU4BsUd2/5VlYXXR3OiQG/3w4pGOQjEI6hpWu/tBJ+rkwFZB+LjQ7/f397LHHHqTT6aodsyHE+vHHH8+RRx7pee7MM89k0aJFHHXUUZ7nLcuiZBfp6OgQsS40NS3ptPRxoemRfi7UAtu2IV6AaAFiRYgX1f1j9oV1b7g7vmN3aO+AlBLqtRLr0s+FqYD0c2GqUM2l2A0h1lOpFKlUquL5adOmBX7pC7nhyTBLEOrKbvOrE14jCGFG+rlQE2x01KLz2Hmwz2xIvwEZ4Kz56rFt7m9j23bVc+JIPxemAtLPBWHiNIRYD+KBBx6otwmCUFfe//7319sEQag50s+FmqEFuinGbRviQGdKCfWg/WuA9HNhKiD9XBAmTsOUbpsI0VilF14Qmo23Hvm2epsgCDVH+rlQE/wCHWM7CBSMdeumSK+RXpd+LkwFpJ8LwsRpSrHeOXdBvU0QhJpzw4131tsEQag50s+FmuER6sbjEpAreF8rv8euiWCfzH5u1zBCQBDGQq7ngjBxGjYMfizM9P2C0Kx85Utn1dsEQag50s+F2mAHe9dHHI96xifUSwHCvYrUup/bJRsKJTURYZdUMyIRiFlY0ab02whVYGRkhFwuV7XjffpTH6C/v79qxxOEepBIJAJzqdWKphTrgiAIgiAIYxLkYR7Oq20mYB/bt20Q7EIJ8kXIlaBoGG8VIRbBTkQhHsGKVDdpntDYjIyMsM8++9Dd3V1vUwQhVHR1dfHKK69MmmAXsS4IgiAIwtTCFNwlY816Ju/dqcGEuR+7WIKRghLqeUes6/ZGLYg7j0tR7FS06lnuhcYll8vR3d3N66+/LuXWBMFB11HP5XIi1neF6bP2q7cJglBzlt18H2d+9KR6myEINUX6uVATtGD1h7dnitACDKPEbSzq3dfWO1dX1Nain9slG7KORz1XglwRCo44t4CIVSneE9Gq2iA0Ph0dHSLWBaGONKVYz2b66m2CINScBQfsWW8TBKHmSD8XakaQd324CNMTMJyDbAnSvn1r5GmvST8vOt70vCPUtXAv2UqoR40Jh4gF8RJ2TMLhBUEQwkRTZhXJDG2ptwmCUHMWHnZAvU0QhJoj/VyoCTbB3vXhErQm1ONsIeB9tVHrNennRVzPecF2Q+FX98AfV8GLPepxydmnaNe0lrwgCIIwcZpSrAuCIAiCIIzKaJ7ykSK0xCGOEuvl/Wpfa72a2LYNpZIrwrUgX7MJbnwDni/CDRvg5R71etEQ7IIgCEJoaEqxnki119sEQag569ZvrLcJglBzpJ8LNaFcQ91XZz1TgHRMhb/nilSUeDPfU0Wq3s/9NeT1evtVvszeT7zpfY8gCIIQKppSrLdP373eJghCzbn/oSfqbYIg1Bzp50K1sW1HeQfVWR/KQToKqahas+59o7Otvk1V7+dBbQNY2OXd75+6vJMQItiFJuf666/Hsqzyrb29nYULF/Lzn/+cQiFg6UsVWb9+PZZlcf3115efO//889l7770ndJwHH3yQyy67jFKptOOdJ8Bll1220xUh/vSnP/Gxj32Mvfbai3Q6zYIFC/j617/OwMBAVW2cijSlWN/S/UK9TRCEmvOZ8z5UbxMEoeZIPxdqgsfzbCjUTB5aohCPuWJ9EkLgJ6Wfl2zYu1PdTwNnz4d957gi3YweEIQm56abbmLlypX813/9F8cccwz/+q//yne+851Jt+Ob3/wmt9xyy4Te8+CDD3L55ZdXXazvCj/+8Y+JRqN8//vf58477+Tzn/88//7v/87JJ58cKjsbkabMBi8IgiAIghCI39tsepZzeWiJQDwKuVFC4BtC0NrBSfRyzqD5oJmw9+yAtzVE4wRhlzniiCPYf//9AXjf+97HmjVr+OlPfzqqYM/n88RisZ32PI/Gfvs1R7np22+/ndmz3WvKcccdx8yZMznvvPN48MEHOfHEE+toXWPTlJ51QRAEQRCEUdGa1F9nvd+GZEytWx8xvEE1DIGvGf62gVqTDzBS8O5TKs9GTIZlQhOyqmjzvbzNqionKazVcf0cffTR9Pf3s2nTpnK4+i9/+Usuvvhi5s+fTzKZpK+vD4Cbb76Zt7/97bS0tDB9+nT+1//6X7z22mue4w0PD/OFL3yBzs5O2tra+NCHPsSGDRsq/m9QGPzQ0BBf+9rX2G+//Ugmk3R1dfGxj32Mnp4eLrvsMi6//HIA4vF4OZzf/L+XXHIJ++yzD4lEgn322Yfvfe97Fd7tJ598kne/+92kUil22203vvvd7zpLhHYOU6hrjj76aAA2bpTcM7tCU3rWO7sOrrcJglBzrl16m4QIC02P9HOh6gTp0pLjPs8BrXEl2HP+NesB76sSVe/npo3mRMNwXt0fylfu6wh227ar7j0UmptVRZuP5OFN4Noi3GDbHBbd9eM+U4RzC9ANLCnCLdgsjNamb77yyitEo1Ha2toYHh4G4Hvf+x5HH30011xzDcVikVQqxa9+9Ss+//nPc8EFF/Ctb32LgYEBLrvsMo477jiefvpp2ttVkuvPfe5z/PGPf+Tb3/42Rx99NPfccw+f+MQndmhHLpfj5JNPZtWqVXzta1/j7W9/O9u3b+euu+5i27ZtfOYzn2HDhg0sWbKERx55hGjU/aALhQLvf//7ef755/nmN7/JYYcdxmOPPcZ3v/tdtm7dyk9+8hMAent7OfHEE+nq6mLp0qUkk0l+9KMfVUw4gJpMWLp06U4J+YceegiAgw8WXbYrNKVYH+irnLkShGbjxOOOrLcJglBzpJ8L1WeUEPG8I87TcUhEVTb4oPFpDULFq97P/VnubeeB9qjnCpX76v0FYYKsKCmhDkpYv7cAVDlX25vAn0uwsAqTAADFYpFCocDAwADLli3j5ptv5vTTT6elpaW8z9y5c7nlllvKk1eDg4NccsklXHDBBfzmN78p73fMMcewYMEClixZwpe//GVWr17N73//e773ve/xta99DVCh9oODg/zqV78a064bbriBlStXcuutt/KhD7kTeB//+MfL93ffXSXSftvb3kYs5kq5P/zhDzzyyCM89NBDvOc97wHgpJNOAuDyyy/nkksuYc6cOSxevJihoSHuvvtu9thjDwBOPvlk9tprrwp7otGoZ0JgvGzcuJFvfetbvPe97+Woo46a8PsFl6YMg8+NSOZBofnZd+/d6m2CINQc6edCTQgKER921EUyAomIK2gnIVS86v3cnwleb4eLapvNByeWa5g1+UKYOC0C85z7XcC9MehJ7vrt3pg6Hqjjf7CKquWggw4iHo8zc+ZMvvCFL3DOOed4BDjAhz/8YU+UycqVK+nv7+ecc86hUCiUb3vssQcHHXQQDz/8MAB//etfKZVKnHnmmZ7jnXXWWTu06+6776arq8sj1MfLnXfeyV577cU73/lOj33ve9/7yOfzPPbYY+V2vP3tby8LdYDW1lZOP/30imMuWbJkwlnyBwcHOeOMM4jFYlx33XUTbofgpSk964IgCIIgCIGMFSIeAywLkpYr3s33lLVvyEPF/XXWtf2ZEiSAIf/+DbgmXwgNC6MWt2Dz55IS1NUKVX9XDJZb1T8uwC233MLuu+9Oe3s7e+21F6lUqmKfefPmeR5v2rQJgPe+972Bx5wxYwYAb76p4gzmzp3red3/OIgtW7aw2247N3m3adMmXn31VeLx+KjH1vYdeuihFa+Px74dkclkOP3001m3bh0PPfRQOQpA2HmaUqynWzvrbYIg1JxVz7zMwsMOqLcZglBTpJ8LVWe0EPFMAdqdfZIRyBdHf2+VqXo/93vL9XOZInTG4c28eqJke99jbgVhAiyMWlULUZ+M4x566KHlbPCj4Z+Q6+xU+uL666/nLW95S8X+er26Fvk9PT3su+++5dd7enp2aNesWbN49tlnd7hfEJ2dneyzzz4sW7Ys8HWdyG7evHmBtozHvrHI5/N8/OMf5+9//zv33HMPhx122C4dT1A0ZRh8Mj293iYIQs1Z/XJlIhBBaDaknwtVZ7QQ8UwRUo5HKhmBfMF9zS9qqyxoq97PgzzlNjBShJnOmtyCb5+S7U5cCIJQwTvf+U7a29tZs2YNRx11VMVtwYIFgFpLHolEKkTzjTfeuMP/8b73vY/u7m5uv/32UfdJJpOA8mKbnHLKKbz++uu0tbUF2jdr1iwA3vGOd/DYY4/x+uuvl987NDQ05v/cEaVSiXPOOYf777+f5cuX8/a3v32njyV4aUrPel/v2nqbIAg158yPnlRvEwSh5kg/F6pOUIi4jQoRTxpiPVt09/Fsqy9mq9/PfZMMepvJw3Qn3DdTgFTMu05ddLogjEpHRwc/+tGP+OIXv8jmzZs59dRTmTZtGhs3buShhx7i+OOP5xOf+AQLFizgE5/4BN/61rcolUocffTR3H333fzlL3/Z4f8499xz+Y//+A/OPvtsvv71r/O2t72NgYEB7rrrLr785S9z0EEHccghhwDwk5/8hFNPPZVoNMpRRx3FOeecw3XXXcdJJ53Ev/3bv7Fw4UJyuRxr167ltttuY/ny5bS0tPCVr3yFX/7yl7zvfe/jsssuK2eDT6fTFfZ8+tOfZunSpTtct/7FL36Rm266iW984xu0traW18eDSogn4fA7T1OKdUEQBEEQqott21ACV9FZEKkMFQ09pkA3hfdQEdocsR6PQsb/vsZY1237owFMewfzsFuruj9SCAiVlwRzgjAWn/vc59hjjz340Y9+xO9//3sKhQK77bYb7373uzniiCPK+/3617+mra2NH//4x+RyOU488UR+//vfc+yxx455/Hg8zt13383ll1/ONddcw+WXX05nZyfvete7mDlzJgCnnXYaX/jCF/jlL3/Jd77zHWzbxrZt4vE4d911Fz/84Q+55ppreOWVV2htbWW//fbjgx/8IIlEAlCh9vfddx8XXXQR5513Hp2dnfzv//2/KRQKfOc73/HYUywWKRYDlgT5uOOOOwBV7u573/ue57Vvf/vbXHbZZTs8hhCM9cADDzTVZXloaIjTTjuN7du309HRUW9zBEEQBKHhsYu2Km1WKLplz6KWusUiEIs0jGi3MwXlVR4putuRItz5OsSicNI82JKB/3gZvnY4xCOQjkEqqrbpKKTjWDWq97yr2CWnRNuwr425Elz3HLytC+7ZAB/eC/aZrtqUjEKL08bWOFasKVdJChOgv7+fadOmyXhaEAx29L3Qr69YsYLW1taq/M+mvBrP2W1hvU0QhJqz+Oc7XvskCI2O9PP6Y+eLKnw6k1eiT4vA4YJa5+0IQbtGydeqzxgh4qmIygafcDJameXNzMdVpur9PCjM33aS6KUj0BqBbMndBwJK1AmCIAj1pinD4Lf0rK63CYJQc84965R6myAINUf6eX2xiyW1djvnbIu2m4jMAuLO45INVswVuSFlzBDxoTzs5difcrbZkgqJrwiB1x9AdahqPw8K89fbASAZg0RcTbSYr+n3CoIgCKGhIcT60qVLufvuu9m+fTvRaJQDDzyQz33uc6OWXCgWRibZQkGYfGbPml5vEwSh5kg/rx+2bUPOEOr5krpftJXAi1iueAeIFrGjFlY0xEF7/kzuJUPMZvPK62yhQvsBcgUg7r4XaiJoq97P/evx9eMS0JpQgj1T8pWvQ9asC4IghIyGEOsnnHACH/3oR2lvbyefz3PLLbdw8cUXc9NNNxGNhnsWXxAEQRAakhJKjOub9rC/1ANPdcNb58HBXUrcRiOqFFjRhrD/LPvDvbU4HS6q9egWKhQeVJsbLglbQEk2cMPe02pdOiMl4y12pXAXBEEQ6k6Ip79d9txzT9rb2wE10x+JRNi2bRsDAwOB+7d2dE2meYJQFx5ZuareJghCzZF+XkeKJVeo5537L/XAf26E54rwuw3wYrfrXS85+4aZIO+4FuGDQEvcfT4FZAtUiN8aUPV+HhTmn8mrbTyiPOvmRIRJw+QeEARBaH4awrMOsHLlSr73ve8xNDSEZVl8/OMfZ/r06YH7RqOJyTVOEOrAwMBwvU0QhJoj/byOaPGtva5FG57s9u7zj244ZJ4r1p0SQqHODO9Zy43bNvCK9RZLLQPQ+3m21RW0Ve3no4X5D+UhCWCpNflbM959SkEzGYIgCEI9aRix/o53vIMVK1bQ39/PXXfdxezZs0fdt3/ba5NomSDUh1Pf9456myAINUf6eR0xw6i1OD18Ljz/hrvPEV2V2cOrm3utyvjCvXW7Rgpqm4q5YfCJKGT9bfNlh68SVe3no4X5ZwvQ5pyYVASGCu57fDo99BMugiAIU4SGCIM36ejo4GMf+xg//vGPWbNmTeA+yZYZnPPJC1m0aBGLFi1ixYoVXLH4d2SzufI+d9y90hN2trm3r6J0yrKb72PVMy+XH69bv5Frl97m2efapbexbv3G8uNVz7zMspvv8+yz+Oc3srm3r/z4kZWruOPuleXH2WxO7BP7xD6xT+wT+0Jjn23bLPnPFax79Y2yOF318jqWvf4SzHR2Oms+i59cSW/f9rIwfPSxp7njnvB+fo+ufJo77n9MN5JsLs+Vf7yZ7HbHsx21uOPxf/Docy9ALAbZEr3b+1n8x+Ve+5bfH+7ze/sDrHpxbbmd697sYckj/w1JJ3IgHWHJK4+zrrunvM+q1etY9ucHPBMR8v2Y2vYJgjA6+vu7YsWKsuY855MXVv3/WA888EDDxTsVi0U++MEP8vWvf53jjjvO89rQ0BCnn/4h+vq2BRarF4RmIZvNkUzKkg+huZF+Xh/skg3DTl31TFHV5x4pqrDwa56BrTZ87XC1/jkdU2HV6ZhKXpaOY0XD6ZW180Z9+ExBrdvOFGBdH9z+KnzpcJUJvmjDsjWwZzu8Yy4kjfalotASx0pWL5NeNfu5nS1WnrtsER7rgfUDcOZ+sG4b3LsB/uUw1TazffocRsJ5DoXJob+/n2nTprF9+3YZTwuCw46+F/r1FStW0NraWpX/2RCe9T/96U9s3boVgL6+PhYvXkwsFuPQQw8N3H/Obgsn0zxBqAtX/fKP9TZBEGqO9PM6oUO9zRB4fX+rLyt6I5X9qsjs7jzOFKHFEd86/DsdczOoB72nilS1nweF+YMq1dbqeNYTMRjytaeG7RMEQRB2joYQ60888QSf+cxnOPXUU/n0pz/Ntm3b+MlPfkJnZ2fg/ps2SvZgofn58hf+ud4mCELNkX5eJ2ydMA5XtAMM5N19tJCtEHkhV3tBCdgyJRUibq7TTsRUqTo74L3+dfq7SFX7uVlirvwcal1+SofBxyDrvFby7WduBaFJWblyJWeeeSbz588nkUjQ2dnJySefzNKlSykWi3W1bf369Vx22WWsW7euJsdfuXIlb3vb22htbcWyLJ566qmqHbuvr4/LLruMf/zjH1U75micf/757L333jv13htuuIF3vetdzJ49m2Qyyd57782nP/1pXnstfHnPGiLB3A9+8IMJ7W/bpR3vJAgNjoQGC1MB6ed1wkxSVhbtNmwbhjZUmbNMHtoc8VcjEVt1zIkHMwHbcNH1OlvOLRFV4eR6H6hZWbPq9nPf5Ilu53Ae5jgTEjrrfaGkwv4bKTpCEHaRq666ikWLFnHiiSdyxRVXsNdee7Ft2zbuvvtuPv/5zzN9+nTOOOOMutm3fv16Lr/8co499lj23Xffqh//05/+NOl0mttvv52WlhYOPPDAqh27r6+Pyy+/nN133523vvWtVTtutdmyZQsnnXQSF198MdOnT2f16tV897vf5e677+b5558vlwwPAw0h1gVBEARBmERMUWve35qHGSkYGVGe2iARG2axF1R/3AZGSpB2BLN2rics2OpkTG+Q6AHbDpiI0Azl3VB/vd4+W1QZ8M0lDbZ+o6xZF5qPhx9+mEWLFvGlL32Jq6++2vPaGWecwaJFixgaGqqTdbWjWCxi2zaRSITVq1fzjW98gxNPPLHeZtWNiy66yPP4uOOOY6+99uKUU07h7rvv5mMf+1idLKukIcLgJ0rHjD3rbYIg1BzJ2CpMBaSf1wkzBL4sAFHitbMFWlGlwPyl0KBm3ufqMIqYzeRUYjWtTy0gGXFLupn7Ou+1q9jOqvVzf1k5s856Lg/piBr56eRxw3kqEO+6sBPYr/RjL1uL/Up/qI97xRVXMHPmTK688srA1/fbbz8OP/zw8uO//e1vvPe976WtrY3W1lZOOukk/va3v3nec/zxx3P88cdXHGvvvffm/PPPLz++/vrrsSyLxx57jHPOOYeOjg7mz5/P//f//X+MjIwA8OCDD3LCCScAcPLJJ2NZFpZl8eCDD5aPc80117Bw4UJSqRSzZs3i05/+dDm3l8ayLL7xjW/wwx/+kH322YdEIsHPfvYzotEopVKJ7373u1iWVQ4jf/zxx/n4xz/O7rvvTjqdZsGCBVx66aVkMpmKdt1yyy28613voq2tjY6ODo455hhuu+021q9fzz777APAZz/72bLt119/feDnYdp62WWXlR+vWbOGT37yk+yzzz6k02n23XdfPv/5z7Nt27aK91YTvbw6FguXL7spxXqxmNvxToLQ4LS3t9TbBEGoOdLPJx8lQm1vCLwWfVuGYUZCeWMzJf8ba1KDvFrYfu+4ORExaHidtWBPRSBfNA9g3K+ubVXt56PVWR8uqgkJTRo14eL3xgvCBLFf6YfvPwXLXoHvP4X9/Dbs4cKu357fBt8zjruLgr1YLPLAAw/wvve9j1QqtcP9n376aY477ji2bdvG9ddfz29/+1v6+/s57rjjWLVq5/NjffKTn2S//fbj5ptv5vOf/zy/+MUvykt+3/rWt/KLX/wCgKuvvpqVK1eycuXKckj51772Nb74xS/y3ve+l9tuu40f/ehH3HnnnZx66qkVa+2vv/56/vznP/PjH/+YP//5z3ziE5/gkUceAVQo/MqVK7nlllsAeO211zjiiCP41a9+xZ133slFF13Eb37zGy644ALPMX/2s5/x0Y9+lDlz5rB06VJuuukmPvKRj7B+/XrmzZvHzTffDMDXv/71su0f/OAHJ/T5vPHGG+yxxx5cddVV3HXXXXzrW9/ivvvu4wMf+MAO33v88cdPaB17sVgkm83y9NNPs2jRIg455BDe//73T8jeWhOuqYMqMdTfXW8TBKHmHPuOhfU2QRBqjvTzOhAUAq+FbX8GZs6ERFyVBoPGEnmmQDfFd9bxOuv16gCJCBQMMetvZhUjxavWz4MSxJUnJHDXqgO0RlQWfHN/v9AXhPHw+GbY5jjKtuXgW09U/39sy8HfN8M+O19Grre3l0wmw1577TWu/b/zne+QTCa57777mD59OqC83XvvvTeXX355WZhOlE984hNcfvnlALz3ve/lr3/9K3/4wx+4/PLL6ejo4JBDDgHg4IMP5u1vf3v5fevXr+dHP/oR3/72t/nWt75Vfv7AAw/k2GOP5fbbb+fDH/5w+Xnbtrn77rtJp9Pl57T3ePfdd/cc2wz7tm2bd73rXXR0dPCpT32KX/ziF3R2dtLf38+ll17KRz7yEU/bTXH7T//0TwDsu+++nuNPhPe85z285z3vKT9+5zvfyf7778+73/1unnzyyfL/CCIajU7IMz537ly2bNkCwFFHHcW99947romcyaQpxbogCIIgCDuJjQp595dtw4beklqznnY860EiL6w6zyPUzZutkuWVvc6OAk9E3OgBvwgOc6h/UDv1+UnrJHqWynY/4svor98jCBPh6Nlwz0YlqGck4CuHwd5VSNC1fgAWP+Me96jZu37MCfDwww9z2mmnlYU6QEdHBx/60Ie4/fbbd/q4fk/zYYcdxr333rvD991zzz2USiXOOeccCgV3ic7b3vY22tvbefjhhz1i/ZRTTvEI9bHo7+/ne9/7Hn/60594/fXXyefdJTIvv/wynZ2d/M///A+Dg4P8y7/8y7iOubPkcjl+/OMf89vf/pZXX321vEQAYPXq1WOK9fvuu29C/+u+++5jeHiYF154gR/84AecfPLJPPLII55zXm+aUqxHY+GaERGEWrC5t4/Zs6bX2wxBqCnSz+uB7V2zroXeoDM4nJ6srEHuvM2zDRt+gW4yiGqTuWg9EYVh/V7DG+9fo18FqtfP7eB26rX36ZjbxGRcedaDcg6E9RwKocTapwP70iOU5/uo2Vi74P32cMiMqh63s7OTdDrNq6++Oq79t27dyrx58yqe7+rq2qX10zNnzvQ8TiaTZLPZUfZ22bRpEwD7779/4OvaQ6wJsn00LrjgAu69916+853vcMQRR9Da2srf/vY3vvjFL5bFsj7+7rvvPu7j7gxf//rX+dnPfsa3vvUt3vnOd9Le3s6GDRv46Ec/6hHu1WDhQhXV9I53vIPjjz+e/fffn1/96ld87Wtfq+r/2RWaUqx3zl1QbxMEoebccOOdfOVLZ9XbDEGoKdLP60BxlBD4rcPQgir1lYq52eD93uZG8TqDGz1QQIWIWyivs4VqY8l5U42bVLV+HjQRATDsiPWoEbff6ptw8XvjBWECWPt07FKI+mQcNxaLcfzxx3PPPfeQzWZJJpNj7j9z5ky6uyuX1nZ3dzNjxozy41QqRX9/5Xp6f9K3XUWHsN99992e/+9/XWNZ41unMzIywq233spll13myZL+zDPPePabNWsWABs3buTQQw+dkO2gPqdczptXzD/BAHDjjTfyqU99iv/zf/5P+bnBwcEJ/7+Jsu+++zJz5kzWrFlT8/81EZoywdymjTuf9EEQGgURMMJUQPp5HSiLdN/65a15mOEMblMRyIxe1qyamdKrh89O3S4tWFt8/ouU87jgT0xXffFek35uZoLP5NVEC4DlDP2STt4Bz/p23PcIQhPyta99jS1btnDxxRcHvv7KK6/w9NNPA6qc11/+8hcGBgbKrw8MDHD77bd7sr/vtddevPTSSx4h+vDDD3veNxH0JII/E/vJJ59MJBLhtdde46ijjqq46UzsEyWbzVIsFonH457ndRZ3zTvf+U7a2tq45pprJmw7qM/p2Wef9Tz35z//uWK/4eHhCluuu+66MdtQDZ577jm2bNnCfvvtV/P/NRGa0rMuCIIgCMJOEhQCbwPb8jDLUXypqBKAGr8ADitB9cd1O+KOiNXOKP04X4IUASHwVcwwVy1GywQ/UlQJ5TQWasKlLxv8PnGtC03Ke97zHv7f//t/LFq0iOeff57zzz+fPffck23btnHfffdx7bXX8vvf/57DDz+cb37zm6xYsYKTTjqJSy65BMuyuOKKKxgeHvYkeDvrrLO45ppruPDCCzn//PN55ZVX+H//7/8xbdq0nbLxwAMPJBaL8Zvf/IaZM2eSTCZZsGAB++23H5dccglf+tKXWL16NccddxypVIrXX3+de+65h8985jPlsm8TYdq0abz97W/nJz/5CfPmzWPWrFn85je/YePGjZ792tvb+cEPfsC//uu/8rGPfYxzzjmH9vZ2nnrqKVKpFP/6r//K3Llz6ezs5MYbb+Twww+ntbWVffbZh87OTs466ywuvPBCvvKVr3DaaaexatWqigkBUGvtly5dymGHHcb+++/PzTffzP/8z/+Mqy0nnXQSr7766g6948ceeywf+chHOOigg0ilUjz99NP85Cc/Yffdd+ezn/3suD+7yaApPeuCIAiCIEycUcu22cCWDExPqB3TEciZNch9CcrCqPVMm0yv81AekgCWqj+u9XfMuWPWWi8fK4wNdAhq53BRZfC3jPalo6rt/veVP5oQt1EQdoEvf/nL5SRiX/3qVznxxBM5//zzeeGFF/j1r3/N6aefDsDhhx/Ogw8+SEdHB+eddx6f/OQnaWtr46GHHiqvdQY44YQT+NWvfsVf//pXTj/9dK677jpuuOGGnU5S1tnZyc9//nNWrVrFcccdx9FHH80TT6gM+9///ve55pprePjhhznzzDM544wzuOKKK5gxYwYHHHDATn8mf/jDHzjyyCP54he/yPnnn09XVxc//elPK/b70pe+xE033cSGDRs455xz+NjHPsaf/vSnslc/Eolw7bXXsm3bNt773vdy9NFHl5PxnXfeeeUs+qeffjp33XVXuXScyc9+9jM+9KEP8Y1vfIN//ud/ZmBggD/84Q/jakexWPQk3xuNt73tbVx//fWcffbZnHHGGfzHf/wHZ599Nk888UQ53D8sWA888EBTXY2HhoY49/yLeHXtP+joqP7aGUEIC8tuvo8zP3pSvc0QhJoi/XxysUtOyHSm6NwKkC2q25Jn4d3zYUEnvLIN/vIafOFwlYgtFVXJy9JR5xbHioTL62znnPYMF5SneaSohPjqrfDgBvjMYZCMKo96tqg86j96Gs7dF3bvUO3S7UxFoTWOFauOz6Na/dzOFpUAz/rO36M98MYgfHw/pyRdCVb1wj82w3kHq+fMtrXEIB0b95pXofno7+9n2rRpbN++XcbTguCwo++Ffn3FihW0trZW5X82pWc9m+mrtwmCUHMWHLBnvU0QhJoj/XySsVFJ1cxEZUXHVb7ZKdtmAckYDOn31DZTelXxrM8O8DqDm2QOIA3kiu4bg95fBarWz03vuGnfSNFbYx2c6Ih8QM4Bgh8LgiAIk05TivXMUGVmQUFoNhYetvPhToLQKEg/n2wCQuDBzSauxXo6DkVn/0YRdaaANScVMiW3/jg4Yt25n45AzldrPWjd+y5StX7uz8iv2zhSUAnzzLYlozA4StK9sOceEARBmCI0pVgXBEEQBGEnMIWoua57a0YlWdNh3zpTer7kfZ8W+WFU8KZAN73OmSK0OmvxzbBvy4JYzBDrvnX5IaOcbyConUN5aImq+zpyIBWHkfKbjQP5toIgCELdaEqxnki119sEQag569Zv3PFOgtDgSD+fZEp4y7bpmutbczAz4SYoSzrDh0zRfW/YRd5oXudMQa3VLnudDcEej8KIz7NeA6rWz/0TEZpMXkUJmEvQ086ES9EQ+FCT0nSCIAjCztGUYr19+u71NkEQas79Dz1RbxMEoeZIP59kRivbtrUAnS3uflq0Z/KVtblDKPbG9DoP51VSNY3pXU/FVB32oDDxKraxKv3cb48ZGZHLqwR5QFmx6+iIbMHdz5NzIGQnURAEYQrSlGJ9S/cL9TZBEGrOZ877UL1NEISaI/188vAIWn/Ztm0ZmJ50vM/O0KEVGMnjSb7mF+5hYjSv83AeWnxeZ8sQtDoM3jyOua0CVevno9VZHyy5Yl23LepsMw1Wmk4QBGEKEau3AYIgCIIghICyOPcLPhv6MnDwNG+Cspao8jrr9+p9zcdhYUdeZ72eW9dZ121MRJVYD2pP2ARt0CSCbmcGlURPR0TosnopnOiIgMRyIWueUB/6+/vrbYIghIZ6fB9ErAuCIAiC4A2B9nhobegpKM86lpugLB5TmdShMUTeaF7nAdPrjCvU9dr87Vnv/naQKg4Dtjd6QJtXcM6RLt1mtrHVUnXYzf0lI7wAJBIJurq62GOPPeptiiCEiq6uLhKJxKT9v6YU651dB9fbBEGoOdcuvU1ChIWmR/r5ZGKrZGP+EHidRK4z5UtQFlfJ1/zaNYRr1sf0Oo/gep39JCJumHhAHXnbtrGC3jdBqtbPg9bka/vNdfmg2puIuxMuIc92L0wuqVSKV155hVwuV7VjLv39XzjvEx+o2vEEoR4kEglSqdSk/b+mFOsDfRvqbYIg1JwTjzuy3iYIQs2Rfj6JjFa2bUsGEqjM6BFDmKYNz7re1ydmw4NNZcQAlV5nqPSsZ42M9+XDVbeBVennHq+6cS6H8+q+5QvxB0jG3AkXf86B0J1DYbJJpVJVFSUfPOXddHR0VO14gjAVaMoEc7mRgXqbIAg1Z9+9d6u3CYJQc6SfTyIlvIJPl23ry0Fnwiv2LFSd7myhMdZzQ7B33e911l5yPSmRjEDBSMBWI+9zVfq5vySdzug+kgdd0VafQ01r3Fd+L6Q5B4SmQK7ngjBxmlKsC4IgCIIwQUq+EHhQ97fkoTPt7mcZQnak4L7X3IZN7Y3mdR7Kq5GQfyJCk7QgVwyOGgib99kf/q7JlKAl5hXq5QRzvtJ0+jgga9YFQRBCQFOK9XRrZ71NEISas+qZl+ttgiDUHOnnk0NF2TZwhXvfCExPebOIW0A6osRu+SC47ysfMySM5XVuc/Yx156b2eCHfe2ogfe5Jv28nAm+pNamlzHOYTLqlN+jARLoCY2OXM8FYeI0pVhPpqfX2wRBqDmrX36t3iYIQs2Rfj5J+L2yOgTetmHbMMyMVXqeUxHI1T5EvCr422cbQtb0OlvgilnLWdON9z36eOZ2F6lKPw9ak28Dw0VoNVIUmZMSqQgMj51ATxCqhVzPBWHiNESCuWuuuYbHHnuMnp4eUqkURxxxBJ/73OeYM2dO4P59vWsn2UJBmHzO/OhJ9TZBEGqO9PNJwsz+7hd8mwswI6nuRyxXoKYdsT5WiPiuJ0qvDv7wcH13uAhmCR7L8orZpDNMCgp5r6KOrUo/95ek04yUVLZ78EZGWKiSdSNmdIQxmSE6Xagycj0XhInTEJ51y7K45JJLWL58OUuXLgXg0ksvrbNVgiAIgtAs2CrBnL9s20gRisDMtCtiyyHiMRisfYh41fCvxdZe53ZfJnhzgiHhJJ4r+OrJh3JtfsCafBslxlMxb5Z7fS5TEcgXRj9vYWqeIAjCFKQhxPpnP/tZFixYQDwep62tjbPPPpu1a9cyMCBZ3wVBEARhlynZrmAzy7ZtzagYvGTUt2bdUuHjObzvgaqHiFeFIK+znoxIBXmdjSR6OPuZ7/Mfq87YQWvy9XODeRUFofEsZYjCUMl9LwRMSAiCIAj1oiHEup/HH3+cuXPn0t7eHvj6nN0WTrJFgjD5LP75jfU2QRBqjvTzSUILPL9Q25aFWXElXiO+mHYdWl3wib1yCHWYxJ6vXeXka3kVCu4P1y+vz3deyNW21npV+nnQmnxQnvWWaGXUgGUpj/swle8J4YSE0PjI9VwQJk7DifUnnniC3/72tyxatGjUfbb0rJ5EiwShPpx71in1NkEQao7080miaFeGwNvA1rwKgddEjTXdSSdEPOsI2aC16yHArogYMF7UXmd/STNw25lAlajzH8d/rF1gl/u5R6jjnTjJ5qHFGe5ZlnfkpydczHOu3xeicyg0B3I9F4SJ01BifeXKlXz729/m0ksv5Zhjjhl1v1gizTmfvJBFixaxaNEiVqxYwRWLf0c2myvvc8fdK3lk5ary4829fRUzfstuvs9TZmLd+o1cu/Q2zz7XLr2Ndes3lh+veuZllt18n2efxT+/kc29feXHj6xcxR13ryw/zmZzYp/YN2H7Zs+aHmr7INyfn9jXGPbNnjU91PZB5edn2zZ//NO9PPX0S6G0D7yfn23brHt1I0v++BeP53nJnfeybsOb5bJtq9atZ9m9/+16aCMWi7f9nd6ereXjPvrUc9zx8N/KYi8M/a+3t68sPB998jnu+J/H3c8vk+HKv99LNp8vC/U7Hn2cR59+vrxPb2yYxffepR44x1n2l4dY9fzaskDe1fM7e9Z0YBfO7y9u9AjtZff9N6vWvKIeD9qsG9jGkjvvNdatWyy54x7W9fU6/6jIqrWvsOy+hz0TLot/2dzXF7Fvcu3T/Tys9pmIfWLfeO1bsWJFWXOe88kLqTbWAw880BBzp/fccw8//elP+da3vjWmUB8aGuK0005j+/btdHR0TKKFgiAIwlTFLtlQLKlkbKWSEnERCyIRiFlY0fDOjdslW3mOhwtqbfZwQXnLcyW4/nk4ag4cPkt50lNRKNhqv1wRfvo0fGxv2GsapGNqn5aY2q81jhWrf7vtkq3C3TNF51Zw7f/l0/DBPWHfGSokPBWFmKX205/BkmfhnfPgLZ3uPimnnekYlk5CV882Fs02GuexUIQfPgOfOxBmtyi7k1HIl5zXS/DDp+FfDoA5rer1tNHGtnio+66JbUZ2OBNKlpnZXxAEocb09/czbdo0VqxYQWtra1WO2RBX4FtuuYWrr76a73//+2MKdU1rR9ckWCUI9cWcWRSEZiXM/dy2bexiCTtbdMXucF5tM0WVaXw4D5kCdq4Y3prVZui7uabbtqE3D9Od0mYRy5tRHKA1otqqjwPhS1AWlHRNbwdwEsxZ3jXdZjh8PKZEu/k+fdwqsev9POD8gRLl4Ia7gxver9uYQPXZGob51xLbtrELJec7mFeTFsN5GAn5924KEubruSCElYaos3711VcTjUa55JJLPM9fccUVHH744RX7R6OJiucEodkYGBje8U6CMEnYxZJa91x0VJEVUdPBsQiWPzHZBAhjP7dLzvrufEl50wu28lDqdd9F2/XuRS3jc4m5pcBChe2WbQNXuOeKkAc6W4yybRGwHHFuWap8W7a2QrYqBK3p1p7YlrgnPBy/N1a30b8ev4rruqvSz4PW5A8X1FZntQ/6LrZZkCt432u2McTYJVtFQORL6jtYMs5J1IJoCYoR7EQMKype9noTxuu5IISdhhDrDzzwwIT279/2Wo0sEYTwcOr73lFvE4QJYGsRV7SNEGkgumtitt7YWrTmiq5YBaCoBsuJCHYsghXfOZEapn5uF3WoewnytisOCr77WsxHnQzqZfFQxI6GMCTeFLJFQ/Btyag+mjLKtpkZ0kEJ2UyxpkJ217EJ9K7rcmxpZyhkBUQOgMoWnzUnIgJE8S6yy/3ctMW0bzivRnr+tpnZ7pMxyPgmXMyQ8pBi28a1J1fyTpiB+v7FIk4bitjJaENfa5uBMF3PBaFRaAixLgiC0MjYuSLki0rIFY3RbxXEbD2xbVsNkrMFNWjOG54tLVSLNiRsbMsKxfrlncEuOmI8X3QnXHRb/fe1YADV/rjOwo36TOI2hO1UB4XAY0NfDmY7wwRPDXLjva1xGCm5j2sgZHcZU6CbDOXVNhYJDoEvh4kbYfDmMc1tvQmqs46tQsPbnH0s8xyaYf5xQ6z7jhmW9gVRtNW1J1dyvet54zzFI679+vsXysgWQRCE0WlKsW5ZjTkgFISJkM3mSCZlyUfYsXNF70BSCyPtqdRi1iYUiaomhOnV0m3Ugs+yVKKu8uMCdiQ+Yc9Wvfu5nXcSkeUNIa63/vva8752M6zqhiPmwUFz3VD4ElAqYduRcCW+0iHwtrG1UWXbZqS9a5z9gjYVUx5qj8jTxw2h0iuHittqbXOL8/xo58NCJWTLGtED+v3mdhfZ5X7ujxrQ20xRrcnXnvWgyIG2mJpw8Z+3EJ4+D3ljCUreuAat2QSreuDoeXBQl3udLYbwuzfFqPf1vBbYtnNt1z/sFhLBIVSVplS1c3ZbWG8TBKHmXPXLP9bbBGEH2EVHzGaNm5mtWT+XU/vZxdKODxoSVPi7MQmhB8tmNnFzkkIPqidIPfu5XXTalDXaNtot64j6v26AG9+AF0rwh43wco8bmqu97yE6zSqDtmOQf816X9YR6wSHwFuoEPmsb71zWaSHRO35k65pszIFlSAPvJMQ/nF2PGK00S9kq9PGXe7n/ugBfXe4BAlfcjn/hEsy7q7J978/jBMu4FZfMCNa8iV4qQf+cyM8W4DrXoeXuo1JNju07ZkqNNO4xbZtNZk7UlATf0POdqSAnS2qPioIVaApPeubNkq2SaH5+fIX/rneJgg7omB7haxeV6k96zEjTDNiqf0bxbleMAR4wRDsL/XAUz3w1i44cK5qVyyy056t0fq5rbOVmyHnllW1JFJ2ya6MGtA3Lb714L9Qghe3wt83wZt574Ge6oaD5zkHDWFYsfbIBmVw3zIMe7RUijvz/CUjapAK3vaVHbx2ODyZ5ueu2zhcgmSiMjs6eEPGUxEl7P3HqmIbq3I9D/KMZ4rQbop1vJMResJlMOc9RsgTy6G9meWJMOf+P7q9+/3d+f7pybKQN6vZaZZxS0ViQ52LBtzlT8WIypMQthwlQsPRlGLdtkPkthCEGtFsoWTNhl20vWuctXBf3QNPdrtiNmqpW0ElLrNL4U84Z2uBanq08iV4aRP84Q210wsb4VwLDunyepb1RMU48fdz2/b9T9+aVDsehXgVPsNCSQl1/2RLvuQKhe1ZeGIL/GOzCqd+axe8HbjFEAwLu7zJumyY8IdQS8zQdzME3rZhaw5mOp9/1BDqZoKydBSyxgSFP0FZGAiajNBCtsUnZM37+nHCUt/liuNWr427fD0PCl23UVEfKaeN5e+EL+N9KgKbnHMY0FdDM+FiosWRbd63YY8ZsHqLu99buyr7uFA3mmHc4klsmC26k9b6sl5edqH6mp2yQv+bLoSbphTrgiAIdUd7fc21zS/1wO83qtdf2AjnAofM84ZI2yEScqNR9HmZtRh/yufVeupNONgRq9r7tQvtcxPaFV3BrgffEctYGx7BTsZ2eoBkFx2vuvaamBESL/fAQ29CDtgK7NMKH9kT9pkGUSdRWTKiQuFP6oS9Z2vj3W2o9IJdWbZNZ/gfwVu2TVcwAPe5VESV/RotsVwYuvNoa7AzJVesm550jdnG/Ch1yPVx691GfLbpbSYPM1KV9nkmXCIqlLfikGHrqwYekY4bYZNIqm0bcPp89f0zhbr4coRdxfx9MCd0S7b7O+T5XSqpvBeCsJM0ZWxGx4w9622CINScO+5eWW8ThLHQmd9Lxu1Jn5h9stvrzWyAMM2yZ9uTVM15bt+Z3p0XGkK9PFieWAM9/bygE9oZ68QD14+rQZS9E6G8Za+JPn/lUH9bJa7645vQjRLqH5wNZ+0PB8yAeBQSESXY954FM1BC1182DMLl3dNedPCWbduaUffTvrJtGn0/HVXh5Pp9EBxSHwb8GdMzeZUgz5N4LUB1JyJumTfdpPK2Om3cleu57Z9EME0aLEBL1Lcm37ecIRWBXH7syYgQoRJ6OX3OFOwloDurnt97mivUwbjO7tx1QagOTTFu0RVAzKirbBFe6IbfP6W25VwtOmJO+pyw8zSlWC8Wc/U2QRBqTnt7y453EuqCXXIGk2Zt9aINh8/17nh4l1fENkKYpkfAGgOSEvBmCRxHMsd0KNHqD7GeoGdL9/NyPXd/Mjud0C5TcL0culTeznyWevmC2ba8GnDxyBvefddvVUIuEVXrfhNRNwlbOgGDWuCF1avO6GXbtmVhThSwvKXM/MI2GYNh53FQgrM6t1cJM9+EibZzKA8txjBIh/h72umU+8pUHNjZVsfOXb6em3aY5yGXV55zCPaug+q7jTLhApUTf+Z64e4B2CMFvUPu/kXj+9cAE6LNTKOPW2zb9iY21LlLzMSG178Oq7uN5Ic21ZrUE6YmTSnWh/q7d7yTIDQ4x75jYb1NEEbDtiu96jZKvGoOTsE+syqFepXDNG3brponqex19oe/F23lpfzHFvjAvnDYdLCSlREDO+FZL/dz/ZkWfIL9hW744yp4sdsNTTTzBEykfUEZ7vOGWO/zveGY+Sq8MRVVHloz7L4tCUNF72cA4RML/hB4be/WPEz3hcBDZUb4dLzyvRCuiQlToJvfhZG863WuSLxmtDcZA70s3+y/VZyQ2KXruad95s35XrY4IbieOuv6zZZa0661bQgnXCrQOSP8gr1UgjdycNhM6C6AXars2yXC154pRMOPW/zXy9GWgD3R7Uwi4U4SCcJO0pRiXRAEoa74Q8T1j/q2EfX6kbMgmgwWcVUK07SLJeysLitTwM7kVTmZ4i4c20wsZwrnog2P98JuSZjXBrNT8OZQsFC37Z0LCTQ/R31bs0nlAHi+CDdsVN4Nc5/SBD9Lf1I5cy3ic1uVYPtoF7wlChfsobJMpxyxHo+4XlmA1oQr1jX6fh0GbrbzuVd8HjohqxkCbwN9OXetc8TwOOMr4ZZyhGDWiCIwBWO9lVGQkMV5bsT0Oo+x6DzlpPfxh5mHZULCL9AxtoOoyQYs76SEKdzTMfc9YZ1wMRltArDPCYFfMENtBwujXoMEYacxvyOg+pQ/au6fupx97cr9BWGCNKVYj8ZS9TZBEGrO5t6+epsgBOAJk/Mnjnu5X4Vozk/WLEzTLtlKpA8XVJjvsA4Td+q7Z/LYueLOTQjkbW/4uxbF+SL8bRO8a44SAV1J2DRsrCW1vQPmCfzrcj83Jzb0fX8OgH90ez/LCQySyknldIi/OSmQLcA9G+Hk3eCgufDxw+GAuRCzlGc9GfX+mlpAawyGnSVZFSHFkzdy807aODWAMwX1fFAIvO4XW4ZhZryy/rjpYQdVlg9GT1BWb/ziE+PxoO0K8YrydMYxEk4bczpU3HecKpzPXb6em0LdfFwEWo3zaGbz1+jPIOtftmEeLEQUbSpEuG1D97BaupGMqgRzvUOV1yAQL2cdafxxS0DfA+hyJohagbPnwz6+fAmS2FDYBZpSrHfOXVBvEwSh5txw4531NkEIIqj2r/5hf7kPDpgOnSk3TLNo/KDb7FKYZjlMfaTgJr3JFNS67oyRkE3Xh53IsYs2FIrBUQPPbIFpEdh3uvpVmdumMolnCpVC3VxfOg7K/dwMs9bvX+jzZhwx17vvRCYGPHXjbW/93Ec2wYwEHDrTraFr3rRgNYVeaxT6jfwp2g5nAFfrJFe27UzaZJz1/MNOHxjSjwtqcsL/WenPd1sWZvhKfmmhp9HPJ4DhURKUhUUX+T1h2Cqjf0u8MtTfv4075zcbUGu9SsJv167nPnGtbco63/G0UfjHFOrl9jnboFryYRS25kSo2W+7szC3Xe0zMw29+crrQNEOT5+cgjT8uMX8/TEntQada/3+M1RiQ//3R0pKC7tAU4r1TRtX1dsEQag5X/nSWfU2QQii5FvPrQVqrgivj8ABHTArrfYdcBbCVitM06wHPmII80xBCfgRo9xMrohdnMAAoixmbZ93vQSPvQnHdEEkom7JqPIw9AyO7l0fJ24/9wnBkq0GRU60If9rXuUgyTbeNwZ20UlK508qVygpD/NfN8Mpe6hM736RHhtFwLZFIZsbXcCOYZZt28rznSsqL/hIUd2fyPnSkzYjhmA3+4SeuNH9VNuolzoM45Zt82eD94eMt2J4ZfFt662MfH1Ob7WXfLQ6657nnBeyxeB2VaGJu3w994fog4qkAHeywayzrtFLG+LO/kEivd6n0MDW18eKaybw5iDMda6tc1qhN+udgCpPjIpwqhcNP24Jyg2BDUOOWNdL3czIrkmaoBWal6YU64IgCHXDX7JNe5LXb4dpqHXAsQi0o4RglcI0y+H3ZgI2U7SbIq0c7j2+/2ObGdILvsmIl7ZBFnhLp1uH27LUYLknFyzUJ7hufszSVHFn2dPMdr1zgGDfwbF1YrqgpHJ3bIB/mgldba5Yj+mtpUq2QWX4dDoG2wMybPs9fX57irY6b8MFN8v9cL782M4Wd7jm3y6W3OgJ3QfMKAuzP+gJAPOz1QPO1pjbNn8IvLn2ORlXXnv1gbrbHUxKTBpB/WbY8SInfUK2okSd86AFVU/e78UOA6YtJePzH8qrqAczo78maMJlpEh5csM8bphEhs0YYfAZtQTHsqAzAZudpUZmgi/nPVJKS9gpzMkfjO2Qc/0bGvH+pk/gt0gQRiO2410EQRCE8eDx+ni868CaQdi/0x0kz2yBTTnYF69Q39kwTR1ybyZ+yxVV0rWnelTCmwVzIWr5ErBFsMZKrgVK0AXVVS/ZsLIH3t6lBGzUcsVOVytsylQOqp0QZNu2d/x/yx8s3gkMU5BkHI9G/4iKWPAPknYkNLSg9dTFdex8uQ/ezMDH9lXtilmqjfoWd9qsMcPF2xMqzNqfh2CMpF12yVaCUHu88yV3X/3/izaUItjJGJZfgGl0GH/eEO06UZ7lHKd8LqLeUGJslahrdgSw3Pb5Q+DNc5eIwYhvYqLcqFE+98kiUMii8gnEIFDIQuXkS8oKb/SAf5JPm5MtQLuvHZblXbeuJ1xScaOWfAgnXDT6++Sf+BrKq+/b3FbVptkJ2Jyt9HDuYLJMEMbEI9SN22BRTcZv8Yn4ioSbgjBxmtKzPn3WfvU2QRBqzrKb76u3CYIf2670rJdssEvw8jbYr9W96s5phS1Z74+4EaY54ZC5oHJxazbBH96AF4oqa/rLPZVe/x1EhNo6LNpcx62F34Z+6M7DWztd8aoFQFcCNg0ERw6M4/9qlt18n3ew4xcmfc6Bthe8z49DaJQjBjyTELY70XHX63DSfOUlj1muR13fElF3ggK8WbZbnfBqUwB5Bm1ew8r5BrK+iAgdwq694nqZwyg5B+ySXVkHWLdndQ8sW6XK3eWc/5Mt4imDZaPKtnWkvWu5x0rA1hJXYl03KUyJvPwCVn/2IwUV3WJSMSFhPJ+IQW6MgfgussvXc9MGbV+mpKIeAku2UTnhkhllwiVMBIW/2zZ0D8J0VKSLBcxqVeI9WxwlsifMjWxeGn7cEpQ7BZRnfV6Huq+Xy3iWF4H0OWFnaUqxns301dsEQag5Cw7Ys94mCH4KPiGsxdLmjFoDvGeHGiBHgNnxMcM0J/y7HvR+f7b0p7or99vRPzLXb3vahUq8dvRsVRpKi9aI47mb2wKbS97JATCE+vgaWO7n5uBIt69oQwHYPaXEuikWywP6HbXNrlynXrRh5SYVBn6EMRHhEeo6sdwoIeI66dxArtIDG+RdL9nedfPmunK/SM+XID9KGT79uZj9MF9SEzc3vqHK3P3nRlWXXh8/Z3iMbWBrVkV+mGvV9bmFym3a8Kybduh21RtP33G2wyVIJSq9zCammI1HR48eqAK7dD0P+m7YqKSCKXNNvt/LbhxjrAmXEJzCMmbCTs969RzMaXfPZyqq1uFvHnI/G7Mtu1LCUthpGn/c4puILEd25GCmsyRre7byexTWMohCQ9CUYj0ztKXeJghCzVl42AH1NkEwsG1bJS4yPdv6h/ylAdi7RQ34dVjxzKQKg/cnSzK3EzbCuF+yYWGX93X9eJwD8fI6eNPrXHDWcvcOw/pheNssJ0TbWcOtBdy0pNr2DruDZX+JunGg+rnpRcM93pCTQGu3dpV53ZzkKA+SRvFAF0vuOnxznXqhBH0j8OgmOHkPY326bxuPqjB0fzgxxrYDp3ybaXv5w/UapEWI/oy1YH+xG/64Sm1z/mz8QW3zfVb6c/jbm97d/vGmV/ybWfq3ZILLtgVF3VuoyZqR/NjtqxcTFrJWcM31ZEx9XuX26W11BuG7dD0322V+7pmSG+Hhn5RotAkXnOvRaGHw3UNqgtACrIhq7+wE9DrLZKpYHlPYeRp53DJm7pT+nEoq2mlBfxbPNT9MkUZCQ9KUYl0QBGHSMdeMm151G1i7DQ6c5hV1c1qUVzhTqBTqOxOmqUOZzcHBPrPgQEc0Hzsd9p41sQGETnamRWx5PTfw2GY4dJpam63XckecnxR9f14CejLusfT/25HH249/EgLUoLs/qxJoTY8rga2fN0WGbQyy9OFs2w0D9wv1EnD3BjhsOuzRYSSVMyYk9Pp88Il0vOe4Na7WMmq7TPv8H7vZZ/R9vYzh+SLc4Cxj8CT4C/isyqIEQ7TbsPsM7369JbWmOVd0Q4X1vn0jMNNILqfxTE4Yz6cjbtmvgHD/yciCbNt2+eZ9wbz5hGzbKEI2aAImFfWKWf8EQD0J+nxtVKh/Ku6daAmaiNATLtlCOCdcNP5rnNlnNw3CvKQzEeHsP7sVtuTd70nQJJYgjBf/d938Lco6Yr015V2S5fstEoSdoSnFeiLlX4gmCM3HuvUb622CYKI90KZXvWirAfMbOdh/mhNKHFHbRBRSuGGa5gAUJh6mqT3IfhGRblGPW52SRuMcQKg11MVKAVmwVU3ZZ/rgbbPVr0jZs44SsVoQdLWpjPDmYLk82B6fWl+3fmPlxIK2eTiv6rtPi8HABLLw6gR5pvDVt7XbYO0QnDhftU0nk9NC3QmB9yTHC/KqA7Qk1FpGj3ilwhurBKZvoqVkq8SAJv/o9n0OAbkNyu33fWatabVG+5AInDEXYgn47QsqmZxOsqfP8yBOGHxACHxQKHUyovq5n8moJV8sYY8U1f93ShR6ytz5w99hfELW385kzJvwTx/Hf+ydZNeu575zrbeZPKR8w7ygiQhQEy7DTqRKnSZcdoztnQTV15NsEfqBeW3uMiML6EzCJmepUYXID0ubphYNPW7xX5/1cwDbi9ASU9Ve+guV13qZIBJ2gaYU6+3Td6+3CYJQc+5/6Il6m9AU2LaNXarCwC3IM2rbsG47zLKgI6EETxR3oDwr5YZp+tdTTsAcT3heeZDtPLctq7Z9ExxA6JBsvebZXLf+t17Ys0UlyTM9z5GIIfCAOSnoHnCP5wtdHU/5pPsfesJrp3l/oAjpJHQkoc95MWiNoP/f6Hbptumw85c3wbLX4NAWtYbXn1BOh79H3Z9OJdpHCYdvT7olfXb0uZvnTL+2cK53n4VdwbkJTIK8hzawLQ/7zoAzDoNDu+DcBTC3Hf7jRXhtuyNEbTdCQXudK0L9jf9VDqGOQC5faX+5XVQdlTm/5JS0y8OQLnVXVMsjMkq0l/+5OXkD6j1BQjYICzW5ltXRA9qI6jVsZ6/nY4bmDuWhJTp6csAQTLhMCH90jv7O9Ayqic90zOmvETcj/LYxymNOJLpHqAoNP27xX7v1xGgWaEuqSDO9Zj0gP4xMEAk7Q1OK9S3dL9TbBEGoOZ8570P1NqGhsYsl7KzjkXNudqbgeuQmcqyS7a5XN2sAl4C1Ayoc3bLc5Gt60DynFbYYnmdPorkJ2BE0gNDHy4xAVxy2j4x7AFEOE/eXMivaqrTY3zbDu2Z7Pc+mqNMh4nOT8GZWef39a0zHOSHxmfM+5PXymZEDg0W1Nl6vj9e1vku+c2D8I7Xu1deugq1Czm9y1nU/Owyv9QYIdefmx+9V159DS0ytWfd/7uUGGHeDRPjes9x9zpoP+872foa+qIGyhz5oTe/WDExLuMnvklH44J7wnnlww3p4arP6PLaNqHWXZj/V9/3edU0qotaAm82qgaD1tDNfUt9bfyK+4YK3trwOnTZtgtGFbFBmf4CEZZRu8x9v19u409dz/2SIJzQ3ryZSwFeezre0Aeoy4TJh9FIjU3jbQHdWLSsyJwotC2a1KI+7nmQ0o5aca58wuTT2uMW4NpvXbF3xoy0O02Pqt1bjnzyWLifsBE0p1gVBEEbDtm0l0nU5LO2RG3JE+3ABO1scl9e3jOmFNj3rpRKs3g77t7jCtiwKgFkJ6DHCNHfC86waReUAQm+3lmD3aRMbQJTwlv8qGu37xxaYE4O9Oozwd0fERixvXe45repYA/lKkWmGau+wfaOE+A/m1LrweERFLPSNVHpQ/QnA9ESBeb9kwypf5vyne7xJ5Zz7gbXNTa+zKfZaoyrxkPm/Ddtsv+irEF3GE/NnVPYRf1Z98/z7P4PtRtK4iOW26+g5cNaecNcbcM8b8HyvqhW8vtebDR586/SdG5YKJx/G/V96a/bLamIK9ZGit8ydfk6LeHPSy/w8cnloCRCy/nOot0ljXT6Mfi7rgX8yQm+Hi5COqvv+UH9/mP9YEy4hCN8tT7IFTURtysD8tsr+2u5Eh2zJuG0xvfP1b5bQSNh4r2/6uUHnGh+LQEcMtue817+KCXJBmBgi1gVBmFrkncRaenA/Ugy4FSA/gVrnprenvKbShjeHII9KVGZ6fbQYmJWALSOVP+zmdlzYwYOCQgmKwJ4pFQY93v9jZoA3k8ut2QQPdKvM9pGIu447atzA9cLGIjDTUpma/aGofmE5WsvGCvHfnoM2JxFaZ1SVScNoT9D/8bTfOPbhvpDzo+Z526XFbRCmwMO43xaFkdw4vJU2gQkCtccGHMHhO44/q74pjj2TNjZsKsKMpDI2ainPejKq2rXPDPjsgfBkLzzvJAS88Q14ZbNvzbopag2xl44p+ysmRqo/OPVUKCjYbtb8EeO7nC06WfVtVZqv/Dng2jMYIGRHm4gBJdYLplj3fe71whTWfiExCKTjlBthLtPwnE5nwmUI7/vHWkoy2WivOgSEwQ9AV8I7iRR17syNqWusjjjR77eN4wnCeAiqKoGtyrZ1OPtMS6mJS3/VARHqwi7QlGK9s+vgepsgCDXn2qW31duEhsMultx61Wao7LBvoJ8rlQX7Do+pS7aZa9b1D/PaQTigTa3rLoeLR9wB8+xWyKAycu/IazqmEQSH+g44M/7z2mAEb3Im8ITCe/BntC/asNYIE/9rP7za60YKxAwhW661rtvoJJkLEurjGCwvWXp7gMcZNRgaySpBDCoLr16XP+YgyRzoG8ebNU1tF0TgnN1g/7lu+4KSypkEhVCDqtPe7/NWVoTDM7rHZruTb2BuzM09EBQubx7In4DLxl0eMDPt2hZzasXr26w07Odr31PdlZnS/W0ESDkTJrmS10ZzMqJa6CgWPYGk8yms7oFlT8OLPZU5FvwTCKAG1Ol4pYe54r7zIBlRCRcrQuAJfjxBdul67uk/ePt1i1GCz99/PRMucfc4Zr+qwYTLzmEHC/aiDZtL0NVqLNdwrkWWBbNaYXPe+7mY1yJhUmnocUtZpPuu1UNFt0Rie0JtBwOSNfqjpQRhnOy0WF+zZg0nnngiJ510UjXtqQoDfRvqbYIg1JwTjzuy3iY0Hv4a1nlDsOutWXe6OA7vesk5rjl41IJp7VY4oMPrndSede2RjAGbjVrkpsdo3GHwxkDdfH9/Ftpwk4X1Z939RxGzFZnJ9dafmdwTJm6pMHRTqOvtnBYV6h80UB5HRuYT3n1kpcdZv6Wv6HrWp4+ShRe8n+Nopc22ZqAV+MihsN8cr7dVh3uPhvmSua67NaEmSUyvnml/kIAvj+dsFV4501KZ2beMIjjMCY+Sr236c9gyrErc6aUKuh9q73oyqhKoHT3f2y4dXeCZgKFyciLhDCXGCBOvGuZkhL6vS9y9UIQ/bISXfCXu/EJWf2Z6gA2VQtY/KZGIqHJvZtuq2Madv54bfcYUEnp9fUpHD5jnz3mr2WQdZZANWHLivVMf9Hk0z59tq2zvFjDdEUn+68/MlBsGXyHUJeHXZNPQ4xb/b5C+DRZV5Q89WZTCyRFjXNc1MkEk7ASxsV5cvnz5qK/19vZW7PfhD3+4GjZVcP/997N8+XLWrl3L8PAw9957L9FodNT9cyMDNbFDEMLEvnvvVm8TGgq7ZEOh6PUa50vKq712sxKfb50Hh3QpgVKMuLWsR7/cuGu7zRD4kq2ES3cB9pvmruX2Cx7LgjkJ2JKFPfEOQsve9fE0Du9AXW8HCmqm37JUmN72EeVB9QxYqRSS/hBxUJnJX3jD3e/Ied7kcrGI+izMiQkLVWv96R53oB0UQTDG57vv3vNV5u6KCQkbcqhM8JYFHXHYOOjabA7OnUG5ZVmjt29bXpXdsfznyNiORZDHWU+SjJRUBID5eZcjJ6xKD7ner78ILUllV9/YGYYty3JC0XHbVjTa1pmobFsi6rV3wVw411Lr94+aBwu6vEsBopHKaBM9kRFFlQqznRKBtQoTN0W6vv+kL9/AU91w4FxHsDv5DMzPRU8q6IgA/+eiP2MzTDwRU1EwZtuqGCa+09dzs10mQ45nLxZx2wbupIR/wkUnThzJu/22VhMuO4M+137B3jMC85NgRbw5FfR3dnYcXvAtw9HN0cuXdvTdFqpGQ49bPELd+E4MFlXlD1Dfr+lx2J73vicwEkoQxseYYv3qq68ePewPyq/97Gc/A2on1tva2jjjjDPIZrP86Ec/qsn/EATBi1obaiuvsf5hcgbtZumqhsG23XXB+lYu1+WEdz+/AS6w4ND5rvi2dzCaCwoZt21Ys12FL7fGXfGqa5BroQ4qFH5zHk8tcv2jPm7POsGDgv6CErMAHSnYVnD30VSECVP5/0u2k5n8DdgdeM9usP8c9Zp/IsIfBj+3DbajQohjkQCv8I5Gy7bXpnIYs9OWVmet6vQYvLiDJHoWwZ+vjSNoHaFpZkJ32hKYWK6M0XaoFECDuUoB5Bd6QdED/QWYnoTOOKzb5v674hhtCzrOVqNtpn1RIBJ1z2HUgrd0waHz3HX6eq1+POor42ZEEICKSsgVqDhf2s4qUF5y4hduh8+F542JpMPmuv2rUFJh0eZkj64nbrZHt8U8zWaYeCrqTrCEdcDtWSKShxbneU/9eCq/bjofQQw1kRF03urY5vJ5B+95L6HEelebes0yrrG6j85KQ2/JnQDV1xDzvqh1YVwYv4d6a6MqfkxPqm5ko35rtxeCf0fDeu0QQs24Rty2E6oYdNOv15JjjjmGk046ifnz5+94ZyDd2llTewQhDKx65uWaHdsulsqZ0RnOu5nTnduEs6WHAb8g0vb/9U3vfv/oDhY9QYcs2V7PevkGrOmHfWe6A0gtaP0ZtTuTKpSTAPvGESZefp+51e0dKLgz/jOMAYT5vyraaFOR7MzGTXb2v96iSoiBr7RXxCvU9bbVCfXvCUgyBztct77qmTVeT6ZuW3/WzbBvoTI/byt4RbCvDTssbTY94RUz5XO1g59Ky7ctfzaWWoYwlA327JXbM0a2+7YEzEhAb94VGWO1LWhw2Deilgn4JxQsS4V361D4VFQtzUg597VYTxol6/xrvLUoSsfcMHHNaOu7d5Zy6S7bK9j3nuXU2Xb2mzfDO3lWjjhwjMnk1HnxtMcQ6kFREknHt1HwtalKa7p3+nru/+5rWzJFaNXnzHnOU5aOytD/Vpxa8sa1IUi4TzZB1wxtT/eAKhEZwe3fWrCDuu6BikwBr1AX8TTp1HLcUks8iU7B22/6c6ryh/46TUu5FVDM3yJzKwgTYEzPuiadTnP66aeTTrsz81u3buX2228H4LzzzquNdTtJMj293iYIQs1Z/fJrLDzsgKoftyzUs87abT1I0t7GmOUIrBj2WEm3wkbRN0DTodBdHfBqv7vfEXPHPxOuxUBQybaXB+ATs9w16qZQN0XtnAQ8PlwpZMv3GTNM3CPS/OJ7+wjs1a7udyRUDe0gMecJpTYGwqanbuuw+sVIRitDxPVAOWpVvmZFoCsFPU6ov3/QvYNQ/9UvvcrCffbyhRHaKsx3htH3ZqRUWPxYSfRsqzKqQLdvewbeMj14XfZ4prV9nviyGGqLqQRE+v/orT5tY2a7z0JXGjpboIBah+yPTih7ey3ve81JkG3DsH97cHh/Igox2136oT8T3V8Taj27FbGUrRUTEg5xQ6z7J42qhu0V7Kb3fAT43wfCLevg2a2qJF15WYqvk2VKahLJFOimoC0a7dTXt4TzJcwVVfi8GdWg+9cueGh36Xpufsb6s88UIWEk0POUp/OLdue51CgTLqboqAf+qChwr7Nv5uHUFtRSDF8EgZ6Q6rSgN+MuAfL/DgiTRq3GLTXH/x3wRLEYiU4toCMKa4fc1z2/y8ZvrSCMkzGHIJdffjkzZ84kk8nw4IMPcuCBB3Leeedx3nnncfrpp5f308+Fhb7etfU2QRBqzpkfrX5yR7tkq8GoFupmHWPtWS8nZBtftvTQEORNtYGI43mJAmfNh32c8O5y1uExksyZa9T1ZIBtw4YBdXXdrc2d5DATdZlh4p0tMICbudoU0uPJCO8XeObgcygL05w52RlxJdbNzwMqB+N+wa+323IwKx4YIh7oUY8Y+81rh02+iYJyKPfYSfzO/PCJwYOkgSKkk67ganHaOVYSvaAJDWcA5SltFtS+sfB7Ks2BWCqh1jR6hB0Bgzhf+2wbMllVtzcZVRMlW4Yrz3OQp9AzGWPD5oLTNirbFnVEWtq5tcSUkNX3U1GsqK/9QRnUW+Jqbb7Zj8o2jP3xjRu/SNf9vntIfT7Tk3D4bHhms2/yzLAFVD3xhJFczl9n3XMunef1Z6ATt5lUweu809dz83ybn/1wySnb5mO0jPCgPhMdQRMmEWteu/U1F9zr2ay0e84qEiJaMKMVNo9SkaKBfsKagVqMWyaFoN9E/RXpL6nrH6g+Ny0GQ2MkmJuEr5Zt29hFG7tYUreSJFNsZMYU6+9+97tZunQpp59+Ops3b+b//J//w3e/+122b98+WfbtFMmWGZzzyQtZtGgRixYtYsWKFVyx+Hdks7nyPnfcvZJHVq4qP97c28fin9/oOc6ym+/zhOysW7+xouzEtUtvY936jeXHq555mWU33+fZZ/HPb2Rzb1/58SMrV3HH3SvLj7PZnNgn9oXDvpINuRJ33PcYjz72dFms93ZvY/HvblalmfIlKNgsu+0BVj39UjkcPsyfn23brFu/kSU3/tkzUFty572sW/c6zLJgboJV9hDLHvhvz4/y4l8vozfAPl3vOZvJceV//JHsSK4sDO64/+88OmOrCg2PWvQO9LP4P2/xrO1e9sAjrFr7igrfBta9+BpL7rhH/RNHyC75wwrWrdvB5/eLG+nt3VZu06NPP88df31CDRT6CmRTcOWflpNtsVVdctvmjr8+waOrni+3s7d3G4t/caP7v0s2y+54iFWr15YF5bpXulmy7Vn3H0ctltx8J+s2dJcFzqrn17Hszw96hPri5bfT25aDnkGwbR599gXueOTx8uebzWS5cvENo5/fEvT29rF46c2eQdKyJx9nVXGL8w6LdT2bWDLyNPS7deuX3Hwn6157s/y/Vj37Mstuvd/TBxb/12309mxT+8xM8+hzL3DHY0+UxVk2n+fKn45hH9C7ZTuLf32Tx1O57MFHWbVuvcoZMFRkXXcPS/58j0ekL7lhBeteeaP8eNWLa1l2n9H/tpZY/NcH6N3eryZKtuWUfSv/7n5+2TxX/vQ/yWazZe/jHY88zqNPPaeOmy3Smxtm8f/c7/GyLrvjIVa9sBYiFlbE4pU3ulmy7C9OGHwMKx1jye//zCuvumvBn352DctufcCzVGDxn25T9qVjMFJU9un+Z0M2l+fKq/+zKte/Jb+93RMhs+T2u1n3Zg+8mYH5aVate5Vl21erxI69GSiWWPyH5fRu6St/po8++wJ3PP9sORN8Np/nyt/9iWwuX+6zd9z/Vx59wu3rvQMDLF5+u5oQGFFLSZbd/9/q+6Hte+WN+lz/bOjdul19P4zB+LJnn2BVdrN6YFmse6ObJbfc6QrYiPP9fcNNzrcqt5llq57wTLQsXnqzuv7ZO2kfVfh9c/r1qufXsOyeh91Jm+5hFuf+Qe/AQDmq59GnnueOR/9enmTLFvJcuWEl2c2D5X5zx//8XZ1fG7BLbN68LRy/v7X6/MS+6tj33Br1+6Yp2Sy+5XZ6h4fVciXL4tHnXuSO11bDllLZvitv+JMaHzjX+Vp+fn/8r3uxC050ZCbP4p/+gd4NvWo540iRRx59Ss5vDexbsWJFWXOe88kLqTbWAw88MK6plmeffZaf/OQnvPrqq3R0dHDKKaewbNkyLMvivvvu2/EBqsBTTz3FV77ylTGzwQ8NDXHaaaexfft2Ojo6JsUuQWgWbO091x71TEEJ9DWbvNnSU8Ya19Y4Vmw8ccL1wy7aKlN1puhGB4wUVRTBL56Gw+fAXzfBVw9Xa3P1ut10TJU0SscrvIt2seTWZ/cfc8mz8PZ5cPgsFT5rrgUu2Wq/4YJb0/265+DouWr/ZNT3/2NYydHj4O2i7eYVGCm6bcwV4cpn4IsHKY9jXxZ+8SL8/w5z/0fasK0lpsTKSEF5HnU/GHb6wG3r1XGOm1e5vjmtxJ2dN2rW6/ZlitA9CEvWwCWHqURlLca6aOd/j5a00DbzJej2ZYvwl9dUhu6T56ss5YUS/PZFWNgJ/zRbfe4tMW/7LJRdGaN9mYJaBrHsFVh0uHu+dnD+K+wcKZYHRJ4IlPvfhKEcnLaX87n7jp2IOrkhjM8rU1Dn4cfPwv93sPLa3P4qTEvC8cGfPzEr4LMvqCiP362Di8fft3eqnfe+ofrcqXsEtFP1j8DjjTMk1LZt9f+GC95on1wJbn1Frck/fp4aEP/XOrVu9L3z1Zr8tHPu9fvu2agE3ym7e8+13pZKznkw2qivFaftCfvOUPsljT7WEsOKj1U2Yuco58UwR2rRCETAsqyxvx+pGJw0v7K/JKNu/zDfc8fr6rWg97TEsVLVb9+4PoOga/dIEe57Q31PPrinOs8tzjmJWm7/yBbh6V54vAcueIubo6F8bXC+AzuKnhGmNHaxBEPm98zZDuTgp8/DVw91q0vo5/7tLSq6xbk+lPvdGL93u2SjrZwt5Ipu+Vk98avz5sQjallToj7f5Wpg+6OrjEi+MHyP+/v7mTZtGitWrKC1tbUqxxx3bzn00EO59tprOf/888lkMtx0001VMWA8FItFcrkc+bzK4JrL5cjlcpT869Ac5uy2EHDCQEo6DETCP4Tmwj+TuKvYOmTWXAdatJVQv/ENeL4IN2yAl3sqSyeFHttrsw6FzBdVCPqh09WaYMdr5tmvnLHcR8U6dec2kIPNJdhvuje5nL5pYWIKpFlORnj9r/x27qhtQeuddekmXUtaZyMf8IWJm//Pfwzz3G4Zhpnx4HXP/rX4un06RF1nItdhq0FLEoJaZtss/vUfg23rz7nrBPUv2fRRkujpcNfRSpv15YJLm5nbHWGZN+MNbVHVJyA49N1/v1x2z3lP2llbPT05Zs6Bctsqli9kYXYsePmC4SEfN5Zvq0lG1ISYbqduj/eOelSysXNFJTRHCtiZvEpaWRxjSYQ/6WG5z9qwsR92c7IxR4AjZsDTm5Xo1tcy87PJ5KHFV7bOc98XAq+3qQjkfG3zh8TuJP7ruW2rz4hM3p3MGdLJPtVkia2vTUHfj6G8Wztdt8l/zv1r15NR9xqo2+NP7jjJ2EFLPPRn/uYAzPUlTowa31ed5LEzpaIt7JKxvEkfj0kJSxYU1R63TBrmd8u8vg0612ldIhHc79121xtcec2uAXrpor55li1qZ4IS83axMdd/qJxKRfeaOJx3r40jBex8sSnD/ceVYE4TjUb51Kc+xQknnMDvfvc7MpnMjt9UBe655x6uuOKK8uMPfOADACxevJgjjjiiYv8tPavVICBecL8YiSiMUZtdEBqNc886pboH1KXa/ELqKV8N47+/CQd1ufuVSth2yBPNmQM0c5DfMwQJVHKyJNA7rMStX0QWbU+St3JZO/+a9ZKtssDPc2bTA9epUymaOlOwcWiUQekOEtKMtt55+4jKkG2u3WxDPd+ZrmxjyVb7jLbuuTevsqVru037zcG/hVeo689gThR6MjC7pVKoF+3gXyMbPvmx97mDI7Otw1nomOEVVO1JJeJNsVH+TEqUE8z5BfKWUUqb+ds3FqZIN0VRa1RlHy+3yWhDkGjXfXMgq0pvWZYSoJ1xWLO1cqKhnCHervxcbWBrAWa0uP/Tk8F/nBMR/nb6S9RZQEvELaen24PbPt2H7YLP86P3i5bKnh/bSWjnwbw+md+PkaIqDTi/3f3895mmbFrXBwfOrPj+MpiHeS2ji1ZzrGfuE4+pfB7aHn9bdwHzel72kGUdj77pIdOTYzFTqAcYkMmrc+KfcPAn1fPkV4i45R39lQl2dB2qFfr64L822iV4cwSOM8S62bfNqhuznO/2YAGmRwMmfWwm/kUQdoaqj1smC//3wflOMJQDHcRb/m5ZMB2VP2VuS+UEbQ3yQdhFW10rckU3Yk8nCAan/Kbhn40WsVNWuMdtPuyikUdJT8JqdGLQoq3Gcg0cORDEhMS6Zo899uDSSy+tti2jcsopp3DKKeP/ghcLI2pGKVZUX7CIBbHmOnGCMHvW9OoeMEgo2sB+nfDiZne/hV3ewZMZihRW9IBP39c/YJuyMMdJMDcrqZIQ7YVXNAXNhJfwlmwzRcTL22G/md4M8OU61hHl7TMHlxYwOwHPbHI9r6b3aEef72gDgYGCSnRjOQrEQoVR9/lqrXsSzNmVHkwb9QNZQCXD82eXNj22QUJd7zOnTWWEfwvBfW0UZs2Ypn6c/d7ngYISwuBmo58Wgw393nbpttqAZVd+VjZqAmNGQGkzAGucE1Flge57f2tUiYQgr7oWCqbgKnvWC9BhZPOekVSJ4vC/H/fcBb3W52ubuaUKgzX99lQUnOg3Tzu0aTZupQlzIKkzr0csT6Z7O+kT7KN51d8YUIPldMxtVzECC2fDU9tg/5nlScUy2TykjbJmppCNWOq4QckCY6ZY36VPrQLP9TxfchN4+gfd4JTUc/qOOQA3v9M5w7PuT6BnJlE0hXsq6tagB7eNdS3bZgdH4gzk1TVpbqt7vTEnRjEexyJqorJ3CKYlKq87NRBPQjBVH7dMFmWR7rtODxXVBL9nEsyCNifKCyon1GvR3YolV6wWbNfLvmaTcrgcOU85WSzU96Hg9P8JLIGqJ+XkxyPORK++6bFR1HK/0xbYESv0yzMnQvO0xI8OAck5J3MHGYcFYcoT5FW3bYgn3X3OnKdqGuvXyzWMw/vdUuubnAG2WaO5hBLrXU7B5TmtsCVHOTuwP8u296DuD6MZDr9mE6wbglTBO3g0BbtfqFuW8vxs9X3+ZXsZ+/M17bONW38BWp1zZ9Yc7hstTNx2zzl4B/5bM+rXIjVK2TZnlGJZFlgRr1Avl6hLwxujRA84S5YC21YWo4bN2DCM8qTryQhQYn1wBM+kh7+tQSH+WzOjh/iP91fS9M6aExmtCRhyGmO20Ta2QeK7v6jap5mVVn1ztKUa/uOYbZsR84YG+z2RE8E/KaG3qYhjm1153mynX+WKrsdYr8831yBrr0mu6PWaQLBX3QY2jrhedT0QjQCHT4eXB9U4wFNr3YYRJwzetN8cbOt2mltQ4tfMeO8/b1WgvEa9aHs/KzMXQbZYTvTpiRoC147BkivWzXOvH5vt0s+nI5A3oiP8/bUel/nRJml6huD/z96fh8txHffd+Oec7lnuhosLXKwkuJPgTmrfJWu1ZMuWI9narHh/kzi2X1tyHL+xf5blOIll2UkcK44V27I2SqJIbZRE7ZRIiRQp7gQXkAQJkASxL3e/M9Pd59TvjzpnpqfvXBAkAZrUo/M8g1kwt6er+5xT9a36VtUE6qw4UjeKOFdXDSk7qHws6Gd3/Hj8eCw3ltOz8w6G60u/P7FMStYge+JYjLI9UgQge/9++OQuuNvBx0spjEXJUfpMGa7kuKxS/ct0/66D80eLDv8jCdZHVqzvFRaJxufx8mb9ePx4/AuNcjXMYzK8X2oUeWBPB84f1+8MDfXWU5UC/nQdA42z8HrfvPY5B1jdgP2hN2pVsUql7ckgA/LBA3B5qDz+7UPw0MFenrqtPMqgEDTiDXC43TNGjxYIVCPO8fVcoUW2oBd5XtFQat5AYFcCNNX/m86OPu/ZMrif/LoGHDhCP/mBMgrX3XjnUqdJy+nzaLh3xuhjvAHTUZZ4LWSpwVSNbB/MYeIxKP6PNfpAeunzeI5ZpQd5X1ScfvkFpWqviO3WrBbmq6NVzqVyjKpsXWNS1AG1KpxDmelgeGIWwCCqPwYaKcxXvlsG7oXvj4jE9o9VQ6sIIDR3XQdOXz2NPscS8Og8bBjpd64kVtMa1te053oEwF3WAqEY1IA5bEtvypEywt9kFSfCoPv3BEav+4GUum6UrtXWvfCZO/Q5L/1/tfhclLGFFrca2Ge9IlccQ1bvR3nNdJ//hfb45Zw0ezqwruSkGQTYy2ty7Qgc7PSvuVJ7zh+Pp2Ycc7vlqRqD9CwoWB8rOcXj3FtR11Sm5XTtMRzL7o/VFMZb9jwjnVQi0nNMRuZAdGDeuw8uvQPu3dv7TjmQ9CMyfiTBepLU9UaWwcSPi4gc8yFOtJhDFh6FHxwd+/E4LmNubvGYHUuqBnAZ3O6a0/zOk4Zg5+JgoPW0B+sMAOwe9mQa8TUG1tQ0CrkcmCxv/IMMyDsqinHLvv7IekJ/ZL1caM4YWGMViFE5dlnZV0WTYHkO+u5sB8bSfjCyMoWpUq2RKnAcBKAFzek+2rznQUDdGFg3qgCiXQyeP4PAgMDs3EIUtvtZt/hazfYDrQhuI5iv3r8jUfxXPQbF/zGH6QcH8bkR1OzCAHqxP8L9m+loUcByJHt1XfvdQ3/OenXNxte5hw5L0xeqkdbHM/qizyVQO5TqdawyCOLw9NZNpGlmHu7bpyD03n29PPYI2GMRpOXqaYiH3YtwQonmn9ieg+yiUs/1cmTdEairFTmOJJ9Buw9kFXAcx5MEs939vMrWKTxs2w+f2qVFPj+5S69ZuYd8NZ82shJi7+fyiI6tslzR4VIvOVzKdN943Kd4m5fIyBi0L+1d0HzgMjhfAtjjnAcm63CgtJdU9r4f2y5PzTiWdstTO0rzJT4LsJjBSNqvhwzK8ppu9/68Ot+OpfOrqj/iWr1oXf/3Ll6/9FyeCUNQh1rcB8rFjz8d9sWPPwr37e1nGPw4sv70HrNTj8ADBwZGx348nvwQL0inUqW2W6k2V+D+42t93McbXveiY3cwiWCmZBRFQLu7DRuG4OQV8Mj8UsUQI89P142/SmfvgtkAetYMB2NuRA3Vwvd/rwvU9f0SL3Y87oUVxfis9f0GpLUlKnwF2BkDq0c1Z75vz+LIzpCuEV0yrOOYa4ecdXpGxHit22t9CSUvAkdYYlg8vrxn09dPvit/M4ERuv3WBzoHqsMLb3jlCypRaNEKvCvjz5WiaDWrTpHpdgUQh2uzhOLPUVP8H3OYyjP0orRD6DkPKpS33P2b78CKpP/+rR6Cw3m/bOW5UpUtVt8v5y53QW35wI9zDGIQDAVgmC8zh8qMHFcytsqdJu7fVwGq5TU4YM7MZpCjqSzdOgn05t+5E7CvUEZHBP6d4Mgpt5KrOi8GyQdQN5DFAmz0y/kkkewbXveiHgW+GxkKe89tFUfgbXt6Bms3VYbe/GkHGZslqn8fMC+NMnAfrvXAf1Wcf4nt/UgdAPYtwIZG/x7T97qyx07W4UBn6d5XXT8/Hsd1HFO75SkaMkhvxDGbaV2S6h6yIg2R9WV07bGcb8sV31y/svedt2+EU9dUzkWeGbZ61T4FlbfKHLh172PbFM/Q8SMJ1gG4bDc8uP9H9sb9Sw3xAp3QA7jc67barzX7cY2AZ9QYZAyD9ub2aBGfTc0A1ktgNj6ezl7MQR5nEdi3CKtNL9o9Eoz3A4s9Rbqk4jbLOCvQXH6ADcA7T4Az1y0BR6Zc7K0Kelc34VB78PGPpFSXgKJwvnM5jEZAEozXlU3Nn66mBlUdm+XjAhwq5XTDUsO4PJaLdBmjjpG92WCgfiSHRFXW+ULzBKut1gBWJ8ERczTySY/iD/1gbTlwc6SxHNgbS7RHb1meql6q3r/ZXJkR8TgGdZgcbi0fSak6NabaytiIDhQ4MnA7qlGRLYK9yCBoD6gIv9z5Vtkot+ypdFkIbK2BjkTRDgprk5CnHudaySnWTOGcFXDHdA+ExgJqsTBb9Z4vJx9oj+5WqVp6WT548jqvyiCIr6sRsgvK3Tik3xEl9GQs3+u+92awQyL2iR6UslEW9Kkay4GQjlPHatlJU95roH8fMkadsRm99Mgle8/TVH/9ePzLj+r0KDuA251SC9HSfBtvwiz9tkP5WMdyuvUFFuL+KuoYB9UB0T4pn8szxUk1SM+BFj8uj4vXLdWvPyLjCYH1qakpHn744WN9LsdsGBPEivkZj2UM/ngc1RCRHnWxXBSoXBwoFsSJlWx/PI7b6HSyx/7S0Y7ljOE9i2oMJ0aLOGVo3+bymnq6r6/lch73ZbAmGntWH+trcLgDSL8CFOgrPDfomNGIf/t5cNqawREfWBp1jsb0mjocmu8Z3WVls1x+WVV5df9O1Jhd0einva4IucvL9f1ezrFxKIOJWu/8oWQk95+SiVGtQTmkG0Zh/wCwuZxDQqDTznpyRZnnKsXXykXCRkqFfaoOiUHyHc5hYqhEmS0dq0rxP9Kogt/ycZp1zW2M59HFPiXAFUe8f4uU7l849uoaTC32z5HycapyHs5h/AgU+CcE1qOsJbBXft8q+uXrnh9L7/k5a/uPe+G6fqAaKxbHehrlFmYeLS63YUUpqm60x023TgRw0Uq442Avsr6Ya0tDKo6mMsiryhefG1aL31XHMXBUdjpZP4WzDNonxnpfPCEY3n10T0r7g2irwNF43pX1Wpap6lyqH8Hh8i8R7Bi0b4vA3jlta9hMl+4z5Toh5T24GWo+HFhYfo/98Tju45jaLU/VKOvYsh4CmPW9dJPyfjoWdG1sZzlA3x2zEVOM4u/E39qf6V536Aj1Up4J0365fWA41OSpo8yB09b2O1H/Jfas4zQeF1i/8847+Y3f+A1+/ud/nl/7tV8D4D//5//Me97zHu65557jcoJPZKw94SJ9cVEpP0NgoDH4DBniBXFe88ILr/niT7UsXnrVfCNoj1H1cpGgrJd3+LSlRv8IjL/5P585dgerFpcDVQC7Oz1juJZo//Cd88tEgI7d6RyrccScx/2LGuktg6zJYTiQL41U9l2X5QzIeRgDGslgA7IKmPpAvIE1Q3DA964t9M49/sZSCfuVbjzH6DiIBoONv2eUij61TMV0V5HTC+ROnTSPJ+95uWJP6+qwf67/t+PvDXJIeOF/feRz/Z8LGlmPYL3sHACNPs9WAKP0H7P7LCh7ZGJoMNthCcV/+WGWgH36nSQLbuk5VR/V+9ctoBei4xMN2O8Y6EzqmzfhMZ0pdb4qW5hzT6htWxXwUZJzBK20Tuk84hjkYBgt9bZ/1ep+EBrnRqR7l+dJfL17FjYO9c9vYzXSHtfcyeNQAx6c1j2q5WC01LYNloLWqnzx82alWnp5TT5Jw/dv/u4zPQp8nAtR1m2zcEID3nES7Pe6X7vStenOq/Dc8j2m0CCAXnUsxf83wcGxmPfP1bKMT+VYztG6N4O1w4Oj6svtPcbAmgYcHFDz4UcsCvd0HsfUbnkqR3l/hp5TtYPu0+X935rQ15yQklXZ++LxjsVpiYCUnJndcwP2t+GsCd33crfU6SDH8ESO54iOXujfBw4GBtGJI0rxP5oAwDN0HDVY3759O3/wB3/Ajh07+oQ/+eSTuf322/nud797XE7wiYz9u+6At2zQ6Fa59dEzcEMWL0gWItUxL3yx0HzxjkOeSm9wtS1EFsD51lCNMVapLVf9dU9DBPcjMn7v37/tmBxnSXG5qjG8fqi3U5y4UovMlaNkZcrq021jXG6TF4EDc7C+3osOG5SKfrBURG/Qxn/E6sTL0DK7+c/0R9nLuZUTwUs80+mdbxnEDbq0UZb4/fjZTEcjjKmtRAyN9hmeySt/Uzl+GfQdKuU9V0HfcnnPfYX0SnKuG1aHRBmMxd8rywLd4nm/+ytv6b/eoLmAsahPeRi0N3ks7FO9T9XoCMChxWPY2mwQYEfbty2WnED0y9p3TvH+JfTuX3ysCuC25ZbOUSkdJx77UAtWDkhfKM/BJzKWo/sP26V9yMtyle83wOFMHYBnj8Gipa8IXRm0l/eZ7msPuzPYOKwn0J1zhAh7LDRn4cK1cPthvS4tB41lqqRHWbprpvJ/das564OKrj3Jve93/91bl5f9/hk4YyWcNK7n9sjMUodp+Vq3vBaLW7YSfAXElmUdJeTlH3sZH8/oFs8c5Gjdt6gsnUFOqGquevwMYM2IFsuMZkl1j/3xOO7jWNktT+2orIU4V2JtiNFKIce43Falmo4G/Wv0WM637rqo7K0icGAeTg6FYac7S/fkZwAm6jojYKkz4mAbVhmYe4wOKT8C46jB+sc//nGyLGN8fLzv85e85CUA3H777cf0xJ7MEPGwadVSz2m5auozYGh+eMgJj0XcYo54N1c8R6r9aI/X6KuuL0urMX7iCAWCfjyO+Wg0BvT2fCJjueId4mFXB9aX2n+d1ISd0z1jtWpIPcmpKKFQnTg5RuwRYSBFrPAwhbbzMSUDb7IOhxeWygcl43kZA3LvIqwfWdaANFU6apdOXvreKtNrzTXo+lZH1UiX8M9cBhOlnNzyTj8xNLj/a/V3goOC6Y6mQpRpw4+V0z3oGgCsDNHwgwPqApSvdRwCjVqIEJbnwkJH88C7wLN0LuOpFterXqN4fcoGuogCxtjazFbu0eNNFKtG8uIYTganHlSNp3j/5nNYZfuPaY3mWTdRB8MgZkRVtqm2GoxV2Z4sBb4qczxuvdarxF+NyFbnl6CRkckR2DwODxzsra1qNfQySI9smf2hqvTkUO96R/pzpELHnusXrYQHF4LO9L1ieH1yla7JIAo8hJz1yt+Vc8WfxGjUa0tZBU40IvbIIpwR2pSdtwrumevt2fGalK/rotNq913ZwvMg1kdVxqFUr9FxkPFxjeWovSLKztlQ73c8lfcaG9ZOeY81aDeFfZX2nN1j/+hE4Z7O45jZLU/liPMO+tfCfNjTo1O1rOuMgdFGT9dWdeuxmmrL2m8CewvtdjOBOrjLTodBjuun46iebzlAeXABTp/UAECZbTZIxz7Dx1GbIlu2bMEYwwc+8IG+z0866SQADhw4cGzP7MmO2VJ0alD04Wk+RESBeuwlGF9HoN6XI14c9wh7n5e7vHhu39f/xSUFgp7GVcKPMMSHtnRth7QKpJXrc6fSqs75HrB8BsoJDADcQY6psIbKgHbTCu1j3Xoc7bceY4iE6xcZJK1co5CtHNqFXusnem27xj0Vj/Oi7n5jtZ7haowa/odLxq+UjwNHrk48Bxvr/Uo7vo5GI/QD9WoBtlUjvYrwR+MIqYKf+P1ZB0PNEmAs/c6KhkZuByns6l4paCRq5RHamg0E66ZHTe7L1bcaSd0XWtRVjfGyjIOMm3it53MF6/G3ypG0sRpMVXpFD3JERKdNm17OetnwL8t6tKMKguJjNNE84q5spbk4KPI8W8BQo3TNS8deVVcHA6XvVynwcT0u0GtJ92RlW07O8mgEoFc1lJZzcB1cVGr/6eNwUNS5UAbqcU6UAWmUc3dLqeHW9jM5qoA9scpa2ViHOw/3A9klxfYGpAaU53sj1fkSZYpDKs9PZJR7BJcAJI/MaH72miGV55wxuHuKPip8dW9olxwSSyj+JZkHyVgrgfWqo+spHaV7H88lrtmDEhyjlX027q3L7bFr6r2aD1V9dwyczU90RP0nnWBzZA75EWElqn73KlPb9WyoZ1KNgDJA7+5rAgsZrAjfKe/7Xed0UwuFlkUt66Rjcm4Mtt8iQ2/1kKYbzVRy56uvn66jKh/xvYd9OZwR2GZtP+BaxAM888dRg/X5ea0qeOqpp/Z9nmVqNCwuPn16J66YOEnpEdXiSeWb/XQfZbp5tahbBOzl3PF8QNGbYz36Npzwplql9qJqgSD/hADcv+SQwvfSDhbzEI0J172bhhBeLxQ9YBkB/ZMBl49jfO2b1x+bAy1XXG73AqxL+wv2NBOtoP7IbL8BXr7nRzl6AD20AexeZ9frLLAQrvUTdUiV5YmvQXO51tfpVo6OO2GM/MaWV9XCXcvR4DMHMyxfnbgEjLoV4QflVq4Z7q8I3/1dQAakGVRBbBxzhYIg/cF+Q2I87ckXj7Hcs6CR9VVH27YtClmSH/pz9teNaXG/MhW1ez1LBmo4ja9dfWPlXAXmgJFK8bUo60RTc+zLEdlB8gm96zBSij73nfsTAeuUrnd4Hk10vxhIn6b//gl6/8ZL94/S9Vs9rA6UqsHVdTCF/4ipAKMl0BbPr0wNfpyjr6NBVd6RmhpNcZTljbKVz3d6ESZrUE9g0xDcN9u/xlzldZTXE/qrr+jJVgbssTp8ee+6cBLu3K97e7PaF7lyv5ZzRjRLLI+qPnwSW7544Wvfvr5f5lgHZNsCnLVK9yqDOkwt8PBM71p1+9GHRzvvyVgdfT3lS/LGMVzrGb7xmPDUG/bLOVr3B0frimUco+X6FVVn6Oph3Tuq7Tm7ef9Pra3S1wa3a1/0WuLKU53qeIyHONG0mMWePfW1K6/rsUI7T42t9KTHkj06PM8Hx19VDxFeHykli2PE5Kg6QKMO2L8Ik2EfnGjC9IA6LmU742k7BthcgtqHHi18nABTFSo8POl9+ek0jhqsR/r7jh07+j7/+te/DsCqVauO4Wk9ueFcpkVEygsjvn4GbHzdquvl/O8YYd+6Fz59O2zdU8oLV2V9XDe98qIuG5uxHQTAa1bDyZUCQcIzigovuetvSxfZDOUCehFUltvWRZDZKoPL4+sZHxsbftLHEBGWLS63pwPrx5YasCeuhJ3tAPIpRcHgsfLWxYsyEoKy7ru27RJI717H0mdZ8fjneAR/ZRDjgf0dBY3QHwU2RhVcmYpeVhDL0TL3zis9ebg2OKo+KFo3qAjSZE2pXXE8ZhGkinKK35nrKEjrgjN6BuxEqsyjQQq7+gxKuT7atm3ES2r6qahlWvm6plZzrl7H8Ny7x/p+xfBQ/znFnOixMp2ydC7DAVBVaefl6xMN8yO1NovR7MczBkXVMdpmbjaKVTEkljiEUHrlWInmWzYGJxpHbt8WjzkV8vn62nSZ/vn2ZEcV7DVSXbPVeVp1JMTXB30ogGfgnJVw3+GlIL18bcq1DfbOwsZG7z6V11SXAl8C6+dNKF3y4ale3/koQ9/9ip9XnkGdCtDrdFLWif0vHt8Q0Xm+JLLu4YHDcPqIyplYXVfnrYKtJSp8YIF2r+9CDkMl864i4xKHS/wOKA0+5uKGczsmzIHHO+J+WwXs+9qhv7pduhdFh82gbhSgrBvQWg5RliOl4RzH0WVPVu2NaGN0n4+/LXGkcywzBx8PuBQnWvug3a/fVzQapfdPwhF/DEZfyt2R7v1y9u+CU6dxHNW9ZDyF+c5SEFk+zpMdg4Cs0Ot2Azrv5waw6YIefKz72psH/wLFrZezuQ4swBBa+Hgy1WKq8XvxuSzvM3wcNVh/1rOeBcB73/ve7md/8Ad/wN///d9jjOn+/9NhLMzu7W3G1Ul8rLxZx3N4elVhC+mB8vv3wSd3wd0OPvYo3Lu3VPTtOCua8qGr16+GVgFuJf2gr2twPQ0Ljw0Y4qXHVCinIPT1kx/QW77MdqgAzuNZT+ClL7royR+kfL+iQRTn0Z452FCqtBwj0JuGS3nrJaO6+3rAzzivEYR2iB5Ur1ef46N0nduuN/87/nG1A5RBHuco2955WFsy9GPUqktFzwc7+8qAofx/eztaPG25qHoVGJUBBvHZwGRT88zELy2mEg3yKF+Zykn//zHTgRXpUvBhjPZ/naMfJPb9TknhV3O6H6NtW9+IoKmao7+2oddL/NLfrFa29sJLnnN+/3lGEB77epejxPH1GDBbqXhfVuLx96YKWFFp21Z1SjyeEa8x5Wd6Vd0Lz2CDif77N93RHuvdcymdz+qaRqSXK6gT3x/Oe7JV52HyBGQrj2phufi6YUM1+IqMUb6y7DPhPk40Vb7NK2FP1p9iU44yl+9j7hV4nzDa74Aog7YqYK+ncN64pvHcsRd2HFwKVrvyVOSL9zK2NuuUwWzl+YkMJ7zk2eeXHJ9hHz3U1rV6ynjJqYhS4e+aoo8KX9ax7VzrJFSdEAPz8kuyGvodLl3ZpP/5OI+uExn6AbsngPXgaC3ts2INjtBKXYQOUITPgV4xzHWpMi+RpevwqcTEWalIb9R/5dpE7f7/k0EtAweMvs5BAVw93tGN+LcDczA+2iH97yjAHZlb6oBoFbzk7LOX2kqdo7eVug7/KN8TsHvFVeQLqXfSXib9oG8PK/3evCt17Kg4ikBB8uGi97fxWGWd9yTGY3a7mQyO7pWlCH+fPNK/zqvH94H9GIMrsbh1TE98KvaDaBfE1/HcD2ZaEBhgRROmKl18oLeP/giMowbr73rXu6jX6+zbt69Le7z11lsREer1Ou94xzuO20k+oXFoQC/NCCaeGn3zxIfzSyMLTuC2Pf3fu3Xv0kV6vEf5J3xYGTlwwVqNAAyKihxvR8KxGuW0g8hmWELNHgDS4/9FenysJZApnf5pnXu2XHESH4rLbQibfTR+jYFNo7Cv6LE6ykCrkrcuUt7sS4bIIEdI2UC5Zw986nZlknRcj2XyeJRzGfz1KTKvYHFtoydbGcysHoLDy1HRl1GM+1qwcfnqxKYagS4DzHIRpNXhepcryJZByqCiXeXX8RwXAliPv2Xp/V5seTZf+Y0lSk56Od2rjgBolxuDgLoxsG4EXJCxem/KMg7KE4yyjYYL1lcwi56xtKLRn6MXRxU4TmWa012Wq0SBf/ytzUz/ucTza4aIbLzm8RzKr8v3b7EDK5L+8zLh+KuavYI6ZeZF2SgX1HiZHF56jCcs21JR9bl0D4YSTV2pyth3f8P5Hl6ElfTWwkgN1tfgvukKaJWlf7tnTpksYxUqdHykAwC7pVd0cQotjLqjVGunejn6HC+V92Ww3pX1idkW2mHC98sZ99EH5jQ9oJ708u9j7ZAUeGimZNeU5kK7FFnvo72z9HVV7oZVgzweC0pyPUV6POaq9znxwm/vnYP1jZ71ag3OGhaBOQxzov6NeaPvF4C8vP9Mjmhhw/KeV56fT8HQwIArpTFWUh07lUcIIEhneYDU5xCPnYPmS+l5R2mHiNM6SHqcin6Oejx7DMAedUcMNg0KfkS9nke5lweA3bz3VgDXC6VHpNMfpVNC2ZOldINou7VdN+1xqWOkpBfjswCLWa8rSVUnGqM56zmDU7KkdNwnOqLtFo9Z3iMPzodUP6O2wEzWD86rztSqxE50HnTvfcUeDp8f9zSG5diRhzKtpwSwcijIR/81BrqV5J/h46jB+kknncQHPvABTjzxRF044XHiiSfy/ve/v1to7ukwkrSp9LoyOJfKRH6ajm5rqG7E3PcU1aoV/V++eN1T6EGSwQs8UtwvGFcAN58vjYrE10/3EZ0kRUl5Zl4ZDJ+5Q5+7SmdAlL1cDDBzfVH640HzOnBw+skfpLzBl42jw8ELuyZGi0vRq/G60o92z5YiHpXjEL3rfmkUvay0q86PzMF9gUFyVwEf3Qn37e3Nofxx1EBYDlgvFAoW142UACg9hbsmUNHj71Sp6NXrJgL7Zo9cnXjJCOChWgQptVqw5uARiiB15Ss999HsRKOHY6WcbkrnlRi9f9X+r0uUHL15MPxEcrqPIOMEWpV50PypAOqDh6fD+/D5nAuFAZcBxqBG0qCK991H+I+DgeLfbatXBbVPYFT/NoLROkpvX5JXVzqf+HxYQsTG9BuChl6Lv4WSMyIeo3z9Di3CRCl9oZrL+2TGICALChCzMlivrNXyfT5YKlwYz+3MVbB1uifHoKi6oI7EjaUCY1UKfGJLBebCnDMGDs70n8+te/uvR5Ux0Aduw5sGuv8PorY+kRGA6cED00tTyLZNw1njS1kD1sJ5q+Ge2Z7BXjZU56WXX18FEWUZB302bBW8xFHZF56SaFq0e6o0+Af3w94c8o6ebGLIgQWjoHzewLyHWTHMiWHBCPNGgXwe58eq5mDmZdg7nxL5ygGZqNc6Du7dp7bG1r2VIsIlu6PTc1h3QWxZly4WS3Vuuzgqpp84GWzbVJ0IbXXWL3utYrHEcgCk7eDevRz8+PWaxlmWqyxnyREgIqGGkBssVzeQUmia3GM4JNQR4ZSlF50jVfnCs4Q6UDJov45jNtN6JOU1Vl5XR5OS9aSGsGwRxikUzFpUHy7Qj4PK51A5D/ESWB9+6Twovw7MkOO1ZpawI8v6bf+CdncAWJn2bJUB6YvPBGbvY4308Xz5ggsu4GMf+xi7du1iamqKiYkJTjjhhON1bk94rF63WV9MtXWylifoMVkgx3GUKfB9D2AmnHgC/MJGOGWNvu+CCY+IffIRk+WGVJ5BFy2oAtxQg20z8Jw1S1kB7jif2xMYcQEbY5bvNf7Afrh0t/7B1t1w7hScugpGEs3tG61rnvLOQ3DHPnj2ejhrXX80A5SmV08xybGT/5JLv867f/vtRyXfsmNQVB0JbcjS/jzArkFs4aQxeKQNpzJgruq9pvA9p0Xb9RtgVUeURyMN26bhit3953jLXjhnQ/85Jkch35KILQFYL2hErxtxKytYo9SqfYVeh0FU9EGK8aCEvr+V40XwUB3lHPJqEaSJYa0If/qAe9Nni8hSzzr0CnyNl3K6jQXjer+x8gi91rvKW55cTvcgoB5/f80Y7M3grMr9KTv2wvtPfOkq3v0LP9s7rzm3NE+wFGXDoJH12QGe9upcmKm0NqsaXY93LAeAAMatRm6ibPGcKL0WesVCxxulcygB0tRqdfBDi1pkK143YyqytWBiTf9chCdPgS/L2n0d3jQtZHnJ+RBlo/++CppesSZERpLwnbNXwPf3KeBPamE+eP2xsv7ePR8o8PSvt+gYWQLWjba9e9YGuHdX77yfs76X016952UnR3kM0btHVZ34RIzCQGX/xBe/xbvf/nO9NZAV8GgbfnpFkKn0sMC5Y/Dph+ANm8CZ0l4gygUfXqaX/HL3vswCycoMkJJM8d4dRzUuzveizt26PB62H4DLArvwGwdhskFx7gYWE8OigcwYOhiykGlijaGGoQ5KhbeGEQPp2jpsPdDv3IoiRsfQ8TZTHP2BjNzD/aENLsA9u+AXUVuivC8KCAV4q/O5CPon6tL4Pn4/6u+aDTIWyFBteTuk8JBLz3kQ2XNx1GzvvXW9+Vga3RSGeA7x+cH98OndfGLqTt79YKMnXxU8egFJkYT+6HzZZojHjGs32hSANAYw2eJ5ZSWnQLnmE+hxav3tTiUJ78vLuqwv2x21BePflEfci1agKVmTQ0vn25N29Em/Myue14FQ8DvWaIj1XeZzmEiWAtrqpI+2W6eyDr30rlP5TxLTq+dxLEf5elV196G2tto1Rp3Ssdf6oGv8VKzp4zyOCqxnWcbrX/96jDF8+MMf5pRTTnlagvQ49u+6A37SwoGWRgarQP3JLpDjOaoe1zKwuWcWnrMads/BqRWgXvY8HY9JGRcI5WfUowm6YM5YpRTGZ6/pj4p0N23UKPsXHoUIuai+BECEmhcSD0l5fnjR3MbyuKcF0we0DdMMLGEzbC0p2SWGe4E00oGK5ImMQUBdRCgIju2yfEDNqAFT/m63uFw5V90DuzuwfkUv6lUGXQalwt87BbKhz5DoU9DlTb7P8AoGuEd//5EZuGsW7pyGceCsBtzf6Ql18bruxuud4JyQe+nuxSbIl1bkW1J4Jb7e14HJStV2Y1VwQz8VfSIZvH+UGTv7FnRexzZwVUruAGeCMQZZrgjS2hE41OkHmoMccuU1Wfb6x7aVtWQpmIljZak6bFk2U7lWh3MYr7RtO0pAa4xBGCCjQfP79y4so4xDdCvI9O5fenPPKShoRDlS+bvnYPrB8YoUdoaKblV6cvkezqHOkWqtgXjsxzsM/dekTIls1rUgESzVQeW3syEK0yzT4E2JRWBCkbm85yyryiai+9Oq5rGTrTyWc0g0UlgozUVK51N9fWABLlhNN0Ujsbr2JoAHZzRyHHWINf2G2u55eO6qCkinC05MYpBaovtNGgBGTeDsdfAu1LH63A3qBCw71ZarlF6+9o20V+QwjiV08ccxQhRS57nrOTB3zKhTcaJZakdnVUkZDyeMab2Yh2bgzAm6dNFY16PcS768ZsufRZnKY8j2mANxf4hyHecIVR+g6hbZFX3c1q+Liy37aJ23gZYxZEDLQBtDJ+i+FENdQEwE75BYw/DkEDYyL8tzqvz6OFr2mmdc0rvxt2+v2Bq37NECvuG0HMqodiWAX3NC6oQkgtgIqMr6PLW919ZoRNwuDZyIE3WSlKPhHae1km7bC8/eAOes1y9HtkohS2268l4OvXMJbX7fPfFc/fy2vT07doleLfQWlAF6lC9+BvqdsnyJgcQPBo5OevOqkB5o3xbke84GOHt93z7S5wSFfj0LMOPVKRbPJT6X19bYgJSsJ5gys2R0WTWlaw1woB3ayNpeAKGJOqdjx5sqoE3iqUk/DimzPm7bow7Ps0MXKGsglePInJWlAQkf5ukiJeZAQ9mEZfZj35o+Tqf3FI6jAuv1ep2xsTHm5+fZuHHj8T6nYzNWjcD+DM5hsKH9dB2DgLoI7JjWIm7nj8Nth3Sz92F3KEeDnwrRpPSilWuUB+CsMY2K5K630fWBdg/Jvxxa9yJ0BNpCF6x7dK3XBGpeqInQAGxc4BesU8pWHG/fqAqmbHx+9k7YXvqhqIQGGsQOaSTHDLD3HTnI15IeWBd0D04N1AUaRqgbemBvkFIF2DMLF032oqfl3GODFpn79p4QFTL9a8uzNP+/rPhv3wsnroJpA3cdCDUPVsO/PlWjZRj45N2wz8GbN8Jpa0GEwgttgcx5Cp9QhFOL8jWBJkJiTIi6y9KorQD7W6EYHCUjn8FU9JWNCpAMRkL5uHvbsKHJkurE5es1aHQjzZTAD0rDv31G31ep93FeRlBd/RzRqq+rSiARlgLs8VKv9bLCjiN+Pp2Fat30yxZYCI/JlIkgowqq1td1r/jinWoknbuhAtrjSVTkBK2uu2Z4cGQ3XsfxFOYHFJgrGzbRqRGjD9X78QRYQOqgKJ1H+RBjdS1IVL3e1YjBfCf07jX986J8TpPDCtbLx7KmJ1ss3lZu/9Yn2+MWrSJo6XXZITFU6kNedUiU56mIOqQijdGGPcQYOGsN3D8L56wu3Td6rxdzpXTGThWDADvoOo6RQGdAQrT93A1w/sZexDE+Utvbl+O16spbepMmauhXZXwCulcZXRWAFeXdNg+nT1ZkpBfNdIEKv3UWTp/oOY6jY6tcgDHKVH4xyBmBCQ6X6omW793jl/OoRzmHu0ylLjysG4ethwHVbe3nalS9Y6BjDO1Ad8+AO4CrDLwJw3ODqB1jSIBkosEQaBHHNcP9Rn0ZwByv0bXVSnYbaNvbrSVW2R4PCwUyDG0R2l51YCwBpLhUqDuhmXvqTjDdCHtgIty+V51S527oAdDC6XyvmmJlgBb1d0xJA7j7Ufgl4LwNve/4AYxJgW4x1PIed+HafltqRtQxU9ZxcZT/rhpVL6QHsJ+9HjavD4DUhzXtkfJajqNcYyfKd39Fvl8xKl/JIUI96ZclnpeITrbResWZXdq3YfmUrK6eexJjuU4++zNYGyrBx4DLRO3IbLruMVk6D+7dB5c82rtO7wLOXa/zyIsyZ50cU+Zo9zwHpSMebOleGLt6jIfUsPlKgKV736LR9MwdR52z/pKXvASAO++887idzDEdq4dC+yWWRm54elaEl27EUboLoLug752FcybVSPNo/s4g2Y6XXMt5FjseRsI0WjOkVZh3zNCtF1COrC/Twq2bd5U7LTCSa0XOY3mPJADZhfCYF5jzsOA1x23eCfPh/xaBXELkduOEHmCzgV88ATav04rA9UQ3qnoCL6qwTNKmyhspROXnQAs/1vPPi9ASlWUxyDcf5Yuvw+eLouyCLv28DNKjU2V3BhuGIdKfu8AzPNYGD83ehZ6y7UaypWdolal525QGx1YP3zoIDx+AN26C91wArz8RTlqhhrA1cPZabfF1qrI0inDei06Y9zDnpHfvgnxRdlc1gqpg6MA8rFsmv9xAHxV9kCKssln2tbXXJwyMIi/rmKkCsKjoVjdU2Q4yIsvG5BIlG97MOhhu9Bv5ZRBjgPFafy/56nHKOd3lvOdBDoYjjUFA3RjoBDC51cMlu9T4ivJVGRFl2UDz/8YqeYJRrnj88eBpR/r/Nl4zEe3LOsFS46os4xMaFcdBPN5Io7dvx9F3buH1TNEzAPuAVOn1RENp8OU54Xy/bCtKsi25f8fAcBl0jKHg/y9T3suylSMjbVSflR2BFjhzVPVdX6FV35uXu+bVGdVIBkbV43mZSM2sWf1ufAynylpoJmEvL+3nRyNjIx3ch/yJRMtE+inR3eii15SgM4f7AXqZ3h+rwt893btWghbdSuhd17Isfe8HyGnQe1gEwaog6jgObfXlesVEqw7fLVNwdhN/bkLrlzaxeOY62okls4Z2YmhZS8cYbgH+E3CVMfxHC3eIITOGzEDbKqjP19rl23Meb5nLeresOzet1v8/GXjLepgYRj5yN62DiywUnoXMMZ95FjqOVrtgoe1YjI+Oo91xmrseneLVzkFllkIld70vmlqOZFfYDNy6d4C9MEi+Abpr3Ur9/80GfnoNdIBP3q9MqXIRuvJjUJ2b+/aqbPc41R337e2n/kd2QfmUyrZ1GYjeWpHvlj39diuy1FEVjx3bG45WGCxVFtrYMilZwJMpfnbEbjf75mFNoxeIAK2YXmXTxXMpn4bIUh1cLW59+57KfkVJuGM4qk6fqFcOdWBdrcccONo6PM/gcdRg/cUvfjFjY2P8+Z//OZ/+9Ke58cYbueOOO/oeT5excvJ07Vd8aL4/shLv11MVgX68w5c2ySoF/u4ZOHtUDYpRlEJYjRrB8Z2U5UPHBdFyUEuDIWDhrNUaEShHQrqGyNJK3uJ8r3hILCBSKiRyrCqpZ6IR57bAYgCxEbwuSAB6HhZFQfs8aku6GKX4V+crcKzbnqE3lOrjnPXwrhPh3AResQq2LMA9h/ppV/ERKsQ/ZjXVoxiXff6q7uvIGGiV5JuXHpBdDHJGgLvgoVN4fJ/SDfPpUCwuN9RTPt28dXoFjjYNwc7F/jko9Htky/l0VcU/mcBZq9RQrgeDuh5A2GRdz0MEEeh4jSy0RGh5YbEk34JXueP9bQv00fuhHwge9Eqf6ssvt/0AdAAVXaJh0ndcgX1zGimOLARbOe5yo0xvLkcn1wyrsdwa4JBz5ROq/F/8bLboUd2gH+zF31mZwtxykWdKoK+jBdjKf1sFgEcag6j+Brj/QP/3yp0tINw/fX3Z16/pP6eFDoyW8syBvhoAoDnroPsT9MsVXx8uYMURKPBPFM8OiqqDttKKhYbK51N9P+d6518+l/J1XF3TnPSqYRKv3+EcxoeOvWzdUXEkdIuvhfvSiWkLJbn6cipjZCStyGaUXZMCO2dKYIbecXZ1YMOKwVH1CGLjqFn9jfKeHV834vsUGklfdNCYyj0sX69m0k+Df7IU+DDvL/v6NT0At29RFdCm8f411AXuwUg9YUwL3j00Hc5D9NqPdQXpPZfvVxyD5mozrPdqL/muDXXsbYw++nt08OYl3fGDfZAY/M+eSestF9A6cy3t1JKlhlZiaRlDJ7HkwN/EYxrwxnCVMeRGg6BdwD45iq86Y7uvH995d3t1+6MMAg2KqotowSyAd1wAZ69D3nY67XPX0rrkQRYfnqHthFamwHwhgPbFjoL1hY6jlTnahUPuOQSfqYCrmwO46gLxii3mpQfiy2D1wnX9x7moVNR4OZDWBwLj+he1WUfgsslZuHgj/PI52k7xn+/WNmOlAnNLKuO3Xdd28l/drf6t8JDb9vafcwTsfdfcL7WpnWgXoz751g/GCoNSQOfDXp5WbIeyLjIoy2uQYzz8zhO2A6v6v6wj97VhXaN/za9o9jqwlM+hLFf5s/L9u2h9/2/H90v2hmM8qmuTcO4HMu3qACXmQB2mA3OgvK7K8j6Dx1EXmHvve9/bVWD/9E//NPA7V1111cDPn+rRaU1rMYeD00s3jL7F96QtlmM7YjSy7P0TgYdnVCGfEGh/q4a0D/Sp9Bu4x9MJ0bdhlXB45nGj9Z49sXkE84VHsP5EjDOYamTdS3cj0yqfRU9BR3m7xXQ8eIs0U0xy1H6lJcOLhN6rPTDXEmVfezQI0fD6Pe9RqhlQIDTaBY0RqBOKlhijRp4xvevhRHN4TlujSmLtCFy+U3P/Tp1YekKGcPQUaiF3mf5b17OBl5+jm888CdAoeRbkijT4dpBPgny5aM9ZZwiyaXCr4YSG15zvLhDcs6gtlKztgfR4T6zvGcYnr4Cd8/CCdf0bqg+sBCdIMACk8HD6ati6v3v+9tkbMLElUWpVyWVef2vtSKA4OIrUBrAOmQgdDwteKMK1qaFK26DpnClQ85rW0L0/cdM+GAqvjJfot9XIs0WdfXfMICjLwnnR3xCPFSEVSJxgvWgxug1V8F8yrpcdphRdL/1NPVEv8YEF9dqXrmtXngT6KPnQU0rzWagEX5LJWL138V6ubGpO83IUxGjYLaKtzapRehhcOG+AiEta41kDF6+He0uUz4srRmB0ighsPuXEIF/4/2m0zVcVMFL6jZrViTDd7vXBjZHZeK2msl4f2gEU+CdcDLNvLpWOO5poq584qvUG4nnN5zDW7P090FcgEKN5zOWOJ+XhCW3bgmwDKPDHpNBnGaTH48c50Sr6HQ5l4xfgcAfW1nprBvrp3edMwL0LcMqE/k3qe3vMrlk4e6J/TsV0C8xS0F1PkMRorlN0iMe9vKZ73ODrUbqH5edGqt7f8qgav0cxqoW4Np90Qk/GB+bh1BHdF7v56kZBupP+a3XuJGydg9NX6X6y6BRwD2RmlNZvfFH+P+jR51uul/f+BOR7XKNczySC9Ph8YBGu24/80ml0apZWamnVFKh3EkMntbRrCZk1fB441BVP7/GLLXTCvLCBCt+eHCadadMUMFXAcRSFertde3LXD1QSixxxTtED6VXAvrcNJzR0rSeWzBjar9xAa2OT7MpH6bzUk10wTiZqqyQeXHQQOA/3TsMNu2HR0TxvGHP3Yu83L1rXTwEvbJ8tNhCoO4E140DYp1+zemlR46grypT6skxRdwna/WHVEJtPHFfbopnCW0+Dq/fCP22DX9ikdY/EdY/rC3WC+HZBccsh/M378FanvRiwAsnF66kVnrqzJXuzR8tekoNdLmxbhkBv3dCtEdDPavM9WeIDgYUspCvR7xSL40gpWeX1JDwxKDIoAu4ltNZDi3eW94DxFO6f7/1tlMXrCxHppUdW79+pk3DhtAaiXjxeuk709oRjvDccMZXxwKIWOTb0bKyJIQXr1WvbDXI8s8fjqgZ/JA/Q06nKd2vhEMV4Q43rw23MuhHMoNzPp9FYQtPpRrpAts7iz1uNxCjd+lE41MGIblYGSptnhJ/H+PzKLCMRLd5twGXgVyil2FqwJ41jMdj9CyQbxzBeSJyQeMF4wRaCTVQuOkXPm1pIj8YJvTxCAAp8I8Unpl8vdrHOkedeLmpblR8d4FbgG8BPAs8WiW28qYvovg4UeUExkVIYaJiwYCKgMuhFKXtxRVThvNHDpY/ALyW4E1bgDRTWqNPehrxW4wCLpEm/HqAXQKmJLCkMF8dFF5zZky88d8KjDdwGfDPKR9BTaO56gVAUnsILuROaXqiL+kc0BztooXJUvQwoDXBSE27ahxOP94bCi0bqQ6QhgnSNOIDs88gmA6tTkovWYTevp5EY0tQqZTV69w0a8UpADrTINqXaqlQkdBMRMi/clqh8PwU8L9gLabgWdSekYc4BPUfEgbZ2LYiOiHg/qwB0dZ3iUEYboSMSpqdgnNH5LFrfoHZwUe3plQ3VGVXwfySqeBXAdg1roxXpD2Y9h1ycGMEh121tE+Qz0cAAzcXcMLQUwJbBVQRSCwWsLOd4lZR0jAaUo9h9cj32nm+sQapyWqMslVP3wyPF0s4W0RgSle/Cs07r0cfjWltRqpReZSfE51VJKNZWkq1sXBxswZnj/cepHuOJjj4gG55HEmQx02hctBXDqVhBHT+gtQROHltePkOvfVs5R8+anmyHWnDq2FJHBhyZ7fF45Cs/h/MUQIZAWnnPXvASaqKV5tahUg94qHScADaPwld2wk9uVA9jpIqL1wrprxqqgHQGVqbunlpiQwcJ273mj1k3ZJBeMeje3y76N+wnEh2LVOig7y867VTVhV7ggcNwYamSf7difUnOLhV+FD71ELx+k4L7lod6mZqrcgi6/zsvWu5GJNT7UADbt0cYtB6NNJfK9zhElWArDBrdq+sEyZzmWwfQbrrF5Txc+RDy3EnaJ46xGIF6YuhYq1F1q4D9u8Angb9C9fuHgGljONFoezeL6ojEQLK2TvrwYaxojZq+SNxjAKgldP3y963X8H0jQepam8aHlDoJxzfOa02cMmD3aDR0g1Ii8sTQTg2t3NM5e4JsPCX77iO0ZjIeeOEk1xWWlxg403mt73D7bj2BF2yEs1dCYmmesRdzxT6lnJ+8ph+IxyrradAhfSknpectU+pAKBwMNemCJyiBocoFqvbFjsIfymDtMBeddqIWmSEEPV61EdbW4fKduFfl+OevwQUbzC9kFLccxt96AL+uQfFzm3CnjCM7p5DrH8XsgnTTKupeaBaeprMk3Qi61xpJ0a4oA/VgW3PHNDx3Em4+CBNjS+dANWJN6XnewUgvXUm66ycsubiWVgxIySpH2J/A1tG9vvG5rL/3z8MISCPBW4OE4rl2PMUsthULle9f+bWpHLf7XaDWBBZgZHj5vz+WI66RQTJOLcBzVuFL192saGCmFRctdSCUnBHP0HHUYP2Xf/mXj+d5HPMxZw3Jphp2qo1ZN6xAUbQghxUwTkHjYwG9QUNEo2xFWO8GVQSpgaRyPJHSlziCgeDVE+idAh1feJwTvHj89hn8vzq5601kXQN716GguwMIRo29xAnWeYw1ocjuE5+cPoJyAee9MtMIIJZoPwkypJErYyw2AXP2OHZHC7NxjMQHoO6EpBCS3JGkBttx2I4nyT0295jMq7IORqcPwM+hIFdST2GSLhvSoAZuzWhRsXQZWUWEHAXoebhnGQrU/1P4ztXAXwDPCj8fo+sOKDIomnVya7qAvYbau6aZ9HvsuhuxQy6YxC06sst2kP/ymRSTw3ijU8FDACL6N9IAakmfPjBGgWfdKKliCFkytwjXPzogcgkRc+B24I9K8v034GJ6heecoNfXaWX8wglNhDqQ7pkluXgNfcXlKu2NvDG4jWNkzlDMdshXD+s9c5ESCFKEHqmFh/kOsnUKeefpsHYEW0tIEkPeSGjULE1jsFmgLMeo19o67nCHbNMYmZOga4XMCVt8v3z/HXhhkC83WoSuLpCWI9Ie2FcpvNIF7JTAkCFfM8KiGNodRye16ohwgrGCEbQCr4HawQ7pSU1qiSVNDDW04rCJhvUR1t+yQBa0B/zBrGcIlZyN3nmcM2SFdHGt8boGUhGSVlurocdrCf3gKhr/DWC61WMZlMEUoqB/MkyCx9u2rTxsiAr3UbGB89dBa5966aEL1J0IRSEUriQf2qY8mc/UKdJXKT0KJn33kNFSYZ8lxpfA7CKsWt3vLIEn39osOOUkGBK67g1+tIZv6z336N4aDYjEK7ulDiQLHRif6I+KlgF3vH+jwOFeEcSYwygiMLcIE6t688v2Ct8ZA8mTMFzU2SC9jJAgrw/6SVamuMJ39zkDpKLrsRb0L4cqRR4h5GMHZs3JK2FxJ+xZgBPHen2lp0JqSkhjEejuTWKMEhBEltV9ppq3faRhKs9x1C3MxNZt5TXT92LJNYv/Gx/eeaRQPRdbhxonmI7D7svhzBUYq5XtiXtKotFD06XCe2XcNVEq/OkTGlkfK4N11QkdY8i9UIg6vY3XeZACDaMtzrr20AjQDtys8kmXZR4gYzlLKBZwjUSZQZfUiIRUMVGQHgB7tAXs7YcwrRz5ifWal55aOtbQSQ3t1NJJLVk94RZj+F/An6DdIBPgb4E/s/BxA/8uzPvUgMWQTNRIDhckJlRTh97e4FBHc21AxfTc9aja1Uh0WJc+td1GJ0XDqq6MWMYrIysVoRb0SNdzt2cWnr8OZ9XZ3qondKwhyz2dDWO033QGU1ftYsvNi1ibcs1QjXX3HoJaA168EU4eDxGTwNY7bz3NO+cxh00PoDtbAuwOcVZ/u1x8LYJa7+HuffD8DfDIgkbGu5NXentOkEEIDrkl+22YL/sX4LyJXiQ0BjwyT3H+JNlEnfyLD1E8eADfFJxPcLs9/qQR/FtPxm0cQ6zR63nKJJw4gfnkVpJHZslPW6m2R+EZKgyJs8R2wQOBuhNoF8h9c8ivr4OHD2u0NrZXC+feBX6+p4vi7fKLDj/W6AJGCfuRMWoDpCjAMlG/tp2yq/oi4XFXeAJ7cVxcce7Ge7Ivo1g7QmaNEiiCHWInGiRzar8mETOUnSlRd5SdFfE8odcOrlwsb0mE/hiOJaki+hveC8UM5JPDig2CfrSTNezuGfW5o3jIonPSeH1/zAvgPYXjRxKs15tjzFuDXT+KmSrUoyrhZgkBOHrSmiURrY6dHqXh4iRUpBYFRnF+RpZd3QgNEyJdEajESWeN9m2MkcRwvEKgyLy2pfL68E7wCO7ROXzT4jfpRiUiMFnHzGU9oB5ks3FC+l6F7CREZo9WvuiIyIKyjVXTtQppjw7swve8ePxwQ8WLTNuzVmBv3YeVNbpQnDoRjPMkzmI7TkF6IdhcAXvScST378fcsRf3rPW4M9bq71iDt4bCGhwWH6PTBLqzUXr3cADS1VFAH5iN9+0ble/9jYcPIoyK9EfXM/Bj9a6DIg9RiJox1A0ktaTHboCuEyfPHPkL15HlkF+xA/e2M3BjjT6bJyo4QY15KVH9jah8daOBJWMVsJedS9sf2sXGkzaSh/sUnwfJ93+A/0Uvz6vwKqfzgnNedZkTauKpHSxINw6TYkgTozjGGiQxOIM6LlJDVrcUmxrke1q4VUM4pxFDgtKUYHCJgNw2hZw7rtSsxGJSSy21FKnF1yxG1N7s20zXjJAfyku0fU9RsziBb1UMxq8BzxZVRDUnNARyr3T1Pgr53nmNPJQBUBIusFGKf8ca2s2ExTFD+/Ai2fCKoO91LlvnlW4v0JnKSTeNa5tRY7qAvWYMiTGkj6WIrdU7Eh0UoJpmsg53T+n7cP4+yJQHZkHhA6AN4KQW9rL6jFAbq5NUaeLVCPug6rBlD/ahUt4z9APa8uvHGtERUo6AYmDtEOwNLaKCMyYTdcYUQU7n4ZGdezhtcg0pQn0hoz6m19eWHZ9Vqjco1X+2UtAtyigCUyh1btDfPoHIuog6vvISM8fFaLNVBpK3Rh2c0YYN6yVBgXodoTFfUB9Ne0wNSufWvYcGWdnETeXdaKnYCAoFmQWZbAbDPUYfTJeNZUX3uOVYO4OGj/LRb/MK9ByR1uBHakgRfjPovtRD3aturItQn1rAnD/eL1c5apxa/FljuAfmKU4YC9dMYO8inNRAUoOkPZAu1mAQEIPxoa26yEAH+uMa1flgUJp4rGUCSyJkEvb1skO/aw+X3vtca4ZIcHA+snMPJ69Zg3l4Fk5MMSvqmERBug2A3RqwiSG1utckfVT4WQXrbacU43A/OmiedoaQiekFGQQSDDURcqOZN0PhNjCcaBG98qg4JqIzvwrMy6+LKGv4m/KtMIQLlDmlk2e9qLopPHa+A9fuxf7cydBIyBJLJzFkqSVLLK3E0EkT7kss/w34XeA56Dqqhd/9bWv4T1Yrwj/PGjL0GiarhkgwJAsFyXjCcLCbKHzw+wlIqoDdGgWlue9F1MNDco8vvK4FwNUsrhZsONR+KdLgvItr3Qk1J9RF9VS9lE7lNwzTMkar3CeGjk00hVugGKnznQtXsPnWPdQd5An8YPMaXn3B2i5IJ7E6+aOH5DmraV75CObl69SQKAP2GH2uRtSD3vZ7FnCHBX/uBL4lyO65LjugC9S9YMQj3vb2F6eOiCSC3TjxD7dhdZ3te/Zx2qknBM9JQm4Ni7mnvWkF+evW4760BzHg8PifXI+/YJ3uL9bgrFXA7rT9nN28ntp9s8ipK7t6xDhhqPDYIgL1pTJ6L+T3TpFvqiFrh/Frx+BwoXPSS5/TwZScxnHOewOSCbJKwbo3ptucyaA2Yt0amgYatUTV/FRbI/GUFkQ5wo6yB+O6gVIQkP59ekn7v3DMQqAz1SE7YZTMqL3qw2KzKxskiSHNHWnNknrVO7WAHRLxiuyXi9hPt+DEprZ/i4u6/Hyso9fljcNLT/9MtenULcXKuqZ6BtvNTNQx7QKLdDGfibI5j5UEG4Iaj0fvPV3G46LBP1PG2MoTaQHpqhHswQW1bUS6G4l1PQCZGl1QzXJLq2VGIVrYqiU92nFcZ4n02kcVhafWcdS9YArpLUiD0tRSgwvKJwsGeOG8RiOKEJ0Mi1YeXsSfO4m3Fp8YxIGZHNJ88E6BTeolz5FuUMYpqEtEJ2Vd1IlQP4LhEvtzl6ni3X7dokBBWfoajS1QXVDkBX5McyM12GZINo1hvrMbs5BhVzTDNfdYZ/XaEyLqmcNkGlm32/eTfOZRLFDc9yjuFw3+rHXqtHAeV1iKmuBKCCE1qpi7Xnsv1G3/htaRUsQ5GJoF8AI0IhvHEPD/Ab/mlDIu4W9cSyhG69SBAo2uR2BUw5DULDXxpN52r1dOAFV4ipetwYmnuHIH/udOxzdrSEkGvRogOHxdjU6B4BDoyWZFf3eodPuuuvoW3v5LG+lIzxkR5Tulcn8PA+8Gfgc4E7pRcO/U0C+C0yidapHULenkkHY+CgA0RZ0imTUUiVbXdcZQbJrA7W+Tn6tzQwoFvFIIkgfAvtBBth2Cf3VKN9Jno9c3gC7rhSTR6E4EJG6yQb5rgQy6tLjCCT6FVRFwhfn8anq5+IUoVb4WAEJSNhj2t+AV65ZGsgOg7BhoWWhZQ3tyiM6cox3up3PBa+6VBp8AycF5kvNXkxplP6ZWDema0T6/NQw1fwTQYChFremdz+o6HNQ8Nx/ubeY1X7/wQlZEG0SjcjY4JjqFo5FY6isb1E3wopejieVzGNRrHbrvZaqDrBruGUoGnZ/WkHpVHlaOgp1UBerxfEJOtTvcJls7QiaaktEJ91ltSeH7N93Bup98NSmQdTz1VXXq1nTls2VmQvm6rqjBoyFHr2xYAMzl+naFOtCcUadgvEaJaPTraIFedOLqfmO69TAEjbg4QIbU+JdWjq8lxF7yGukO9xUhd5bmeJOG0XVXbSfmjdG9ev0I+azvzvvu7VvMNYVooqn6ycS6GPoFiwaw66bX7vCxnLlFkK/b9rJkx6nxanqAdKSOj6QQCY5Hrwyn3Al1IzSnhMaqIdKyQyl4e7015Bbyc8fp3LIXx3rVPYAczOCkcWIahpRYEELPGRF1X02gFnUfR9bvS0b1q/F9w0JeBut6XX1w9GrNk94ccKXr1F1qwaFJ7oO+h+/euoW3vO7VmF0L2FPW0K2bEAE7gDW6lySGWmKoJ4a6heTsMfjkDniDKEV/ZYPCaIQ2PnIgwyh7G70vdaAWALwEx86QMST1mtLpVbCSrCEVzktXp1aBeQTs1dfdYwldUGRztQG6kepuVN1jrtmDOX8lnLISkxh8qhH1TqJF5bLUsjO1vA94J/BKVJ4meq8dsNYYfs3CxzBsxvRS5xJLUnfYr24leeGJpGeupVFuIyYABfhEc9BLzgQfHkV4uJBO5q3pMvK8ASkMznpc0JWCXpBaeGROyEVoAo2Di6RAZ1WTtkEj6gby1NDxNtw7mHxolo61mBB9r08tMJtYViRWUz1SA6lBMq8K+/RxMNDcMYM5c6IUYY6AvRJtDuzO3EN23yzZxRP4eoLfUINtbSQwLSJQ76a8aUYfNtrVXuVqRuAb+2KvGeG7197MaaedANaQ1ywL1tACOgbynVOKF2sgBeQHZ/DJBlyiescnBo/hgVy4zsMrzh7mzM/uxbcysI0+ORSw+14+fvi/3AltETr3HiY/fy3OAOuHtb5JXM9BV1gXNhMfCgiGdS6AFAV+VNPJus6YsK6sMWq3JAZXwPCkxc6VUrJKayEC0Szoj4xe0D2mbWgAoGTDR10W9x4X6jIhtKcWyU4f0zRV1EeDAVtPSIYsdrZNMlTTgF6wj+rOk/iE1HglN7kQlY6/4wRmgWeNw32Hl+x9fRH2Y4WBw/XxXrr2T2aEbLZDvjGlMEavr6HLHDBtEwKW0ksT9h7rFXskqG2m+8TyjNyn4zhqsP6e97znMb/zP/7H/3hSJ3OkISJ89KMf5corr2RhYYGzzjqL3/u93+PUU09d8t1De7eyYCBZk2B2tLARqAcvmQ0bsnVQS3qUbo/ewEE3LwL1RekV8orRZ0P05EPhPXlWUMuFRuFp5l6puADWUNTUGMu9kNUTOmlCUQiuCACqCJ5aJ4j3uEcOIz9xYpdKKQaoJdhVYA63MEO1EFH3mMJiarqwrO1F1yOVehBoj5H0KE8WNotMSpRprw/x4J1eC+9FAVTHs6cO33HCiyycYYB6gt04jNm1iB1t9IB6cF5YgSRTD7oNG6q99yBJAibR33D3HsCdsRbvPL5Qb3XhhML09rqaqD7CljyQJQM7MgOiY6VLhQceBE5AgetPAueK8AMPH0O4pRDeJjAugheHazTUMYHq6xQ9TuL1Oqa1lJovAiXdKvht9OZV/rJ1uKsLis/fh6yrI2dPwsmTYX8LHllj8MbjGwl3Ad8C3ijw/DC/EgkbtvQM61/6pZ9hLtynaDjF37wDeBFquLwOOB34LPAHwBuBf+1hzIf76AgOGCE5nJGe0MAGWncS5kotMBo6NoB0EwrWbaqT33QYJxs0sh42dnFeHx5kyyycOYFMDLNDDNeI4eUYzjcWkxqSxJJ4Rw0FuxF8FWtqZPe2KIJHtRAJ7DxhC8IbBO4xmg52Nj1mgTq/NMJZiIJrvGg0rEN/4ZVIETY6TxatoYWhDXTWjtKZLuh4Peb9uXCdCC/N4SznSbwnme+QTmoUO7XqUY/0t8RoRLEMGmqm4iUv582XoqasHcG3If/CXWTP30hn87ogmycvLLkN1yJYwpGJUVvIKGqGzlCiUcwIao0liQXm4u+MN5HQUqZrnwTDwRnwM23ceZoXpgaoCRE5XWOJj3IGCr5hMP04XusyUE8MrjBkJ9TIDrbI1w3TCZGBvPAUqVFnqAiv/5nX0eo4XQOLnnxsiCzsa3WrDp5a+O0+9sB4imxVA0xQA1Onp+BmWsgqi0tV4UcZ9dSDUvc9ptSRHBK5CC1PP5ilZ0t56NI3ZRz8QoaMNbvVo630aPC1xRyXGvKxGrlRtkYzrEFnwx5kILOQrW5S7JrXNS+CiNEfnOkgk2rcxrltBIj6Q9TZkhs15JxZ3lkt0ite2ZUPKMT0RZsiBdoDsqKOZNKVP/FCLQCZAsjndY7mq5s0jFKwrVX5ssSQJ4bMGvIzxsm/vYdipo2fGFLnxoE5uHhNH1tA55hGWASjkZQwJ6Je1jXwBKLt5a/Fv2kYzeEtRZa77J+w98SgXjmyHG1ZDyECqOtNWUjCG17/GlqFg12zmNdu0p8Lhcp0bgdnuLEkxpMmhnpiqVtPfdMotRFIH5rGz+dkJ4wo6EPp75kXLaZdtlsChtFM5GD06/RgaCgl7fg+1oAQHIZOyNKejRDv+yCQHtPZYjqgCV06YvAEL938dJO5LqgyD81gDi/AW89Sv0wAo1mkvieWA7WE91nDq4C30APqzbAXONG5/VIMt1vDxwR+J4Aou+sw6QIk89B5+FHSt0Fyxlp16FC6aV6QwuJzj8s9eQWoF4XH7TiIv3c/7ty1+NPWKLvEGlwuFNbj0kT3UyBxGsmseyH1Pb2bH+hQP6lBOzAGtHK9oZ0kZDV1zn1OoNi8krd/Y47Zjnan/NoLJvi7JOU364aVSWDnGYLHymik9Fnr4M5pmqdPKHAuA/ZY9DewO4rC0/FCRzzZfYfJf+YkdTRMDsFsD6RL6fpQKFgEgymEmtfIunO6PoZEsAdauiiHUn79p16rtrCBxdTQwqpDyRiyC9bg79sJGfhR6Jw/CTWLTzRY5RMF6v87MRTecMdwkz/ZMMraBxYwF9S7jgdTBewhONFxQtt52jNt8gM52ZvHEWPwa2uw83A3n7t7nbxOZON0L4xNZgSQhQI5YUQdM3EPEt1DU5ESq8pgxocYmik0BajrDNLX3veKHpdxhYiqs1R6galow9e8xwYlU3hR9owXOgj5VEE+WScLwSUX9i4LJJMpyaJGn9MAZpPgIE+cqP0VmIMxKJEK2MMt1e2bhuCGvB+cL4mwLz/KqTLVLbb67IvAIhQNvuRBt+aHHMWaUQoTbYTwd8M1TAPMfAc7EVKfQ2TdeMCFWGnQBzGttcHRO+UHjci2OFr28hMdRw3Wb7/99mU9EE9F4v5nPvMZvva1r/GBD3yAE044gY9//OP8x//4H/n4xz/O0NDQku/f5+G81U3MYtG9aV2g7uINFOrGaK5d6W+rgN2J9LWGis+doIwNwSBAtDp67qllupnnuafp1BDLEtOlsGZilQEmhjz3uJi/5iTQiQW/bx5J0FydEB3Z7jw3OHjjxBjjC06pbN5jnNWNJmhJkwQnq+ikzIOxUgbtqakUXqOngCOwjfu6+GiU9YxQEWEmL/jImGFXYrgew68KPAvgjJWwawF71kq93s5DbjGJer3SQH/vAvZTVpHcsRsbdcjmSb0eSYj8FkKRCC6FLQQwSygsJr3iYikafY5R9W7EuWRQLQJfRnOen41ugiLCy42+/xLw106DFC/qOPzqlAKoEaKp4TctClhqxpDUU43Gi8N5zXEuUkMR7nNx+hDursNMzbUYf3gn5vXASWu64MUbgxjH7YnhT1Klw38L+KAoCyAV9aSnAkkwrcr093j/cuAhtLjcPwNrUZBfoNGHlwL/W4T/4D3/xsNzgsfYea0umxwsSDaMB9CpANQava7eWAo8uUG9mhiKDSMU8w7XKXiwUeP7mfAiEc4I1VhZ7MBD++H1p7BDDB9MDHOJ5Xup4T9Zy0XGkFhLgqcTnAINo9HIfHKYfFqjFkqLBoewXYT9Ht4ngmD4VXROPDvIX3iNWGRO11pNQm7W/nnN8630ZxarTIHFxLCIevg7QGeyQWfXHDnC/YXwfqtr4CYvvNvDqXNtbALJyiFda5QKGGEUwEtP2SpgDyBCFLgb0ah1tdCc2zdNZqHzoCff/ij5ryRkZ63D+X6quA9KMvFa8K6YzynWGFI0daRDWPP0qF/RIJdVNeS+BX1NBLLR+BZcJ8OvqqkxEiLr0AN06qxSuRLTi2YmARDFpA5BFDiWgHqOsjSyjWNkBwsF6RLAjijgyVAnoVL0dA8tOkI+0aAG5JgeaA/AHfR6CiDjdWTB6e+Hfdx7La7lZhxuciiAaP0bbxTlGww23LdmWDt1WQpmpRRtjvqgI9rVK0ZThXhtA5gdqSFtp1RpD9tyuNYIr8qFc0Uo5jLcuN67IqyFAnViOS8KYq22oiomU/IHW91Uqhj50Zzl4W6XiW70BYMPNPGaKdUdoQe4GvSYEj7I16rIF/dTERMObfrttUYdXwg7vPC9QniZFc5G6b5OBD/Vwa215ImydCJbqbAK0iN7p2ik5CcP4x5p41YOqXzTOaxtqtY1EWRqtM0b1VPRSV1j8NqL6Wq1kl9noDOmaz2aMI/Do2HxmVOHZdxzhO4+1S2sTc/hDfQB9tglwxTaMUNicdn9C5gEzPpRNbAl/Lw1aKqOAvV6YF0UgS7d8Jb6heuo3T+Hl4L2WELHBMdOWCsdTHdv2wJ80xjehFEmWXetBn00Vme444mZ75FZ0SHoGt9j3y0H0iX3SlcWrept6E2SWBBTAbvHhpx1KQTTKTA37sa8dCM0ahirTl2TKg26nVhmagnvTS1nAr8K3XoPypLUW6dzW51Wv2rgP1vDD8TwksSQPTBF3UBeg6QD7dv3Yk9erecYo3JBducEVwh5obZdkXlc7nCFxz18CH/5o0rb3voo7q0Gf+pafKp/U6SRDWbYIsLVzvPGAi7yCrhcsLeKwx2KTSvUBgv7WseECHs94VqBm8Twn05fR/pGy7qth3HnruL1m9ZwwFg+kBp+v2aZSEzYNI0yVYyH81fARw/g2wW1pEYaI8YRsHsNhHQKTxaizvnDM+QjlvyEMd0fR+rIEDDTQlaPEqniEkCsC1GrxGsnlnqhshEitM3DHUyp+4NHUzM61pDVTOjWI3ROXccDbzXseWCatWeu5KST10FqmDGGBxPLA9bwPXF0csOQNcxbuGnzCl5z+0E4f1wZp+WgldPiuc4J7fgAsvvnyc4aI2/WlDE20YBZ17OhgyPCOEFSwucg3of/EigyfLMHFnV9K3Jvojo0biJm9RAseobivApg1wFt52mJZdH3wHp08kXGbipqw3eM2u+14PRB1IHW9qE202xHnZ0rh7p22n2F4boCXiFwxvgwSVu6acGpCyxBL5gCEqt2oA0R90TUGZ/MdEhOSLErm6Q53U44Nm4cXaDekzmOCNC7Na9K+4WpPLokMhFEPO0QKInpZTng2h3ylcO67wYnmG7TBrMqxc5lmPGhkPYc0lvCfE29Xs8uCxNlezXFU/P0CgPGOiEVvRBZFVGe6JS3BoY5CpbhkxjHrBr88R5XXHEFb33rWznttNMA+LVf+zWuvPJKvv/97/O6171uyfc/BPy/zTqnNIDZFnZipOtBNF6VZepEi7Z5ujtzvFeNANidCItCl/5efmRoBDNWpH6WC4XhcgXtRe7JO47Ca+QptyYY2QE8CmQ4p94JLwAA9L9JREFUMqfKzOfSLTKHF/wjOf60tcQWJPcKfChEWNqnjvLGw55VQeHpxhksbacEmlR6QC1GF4qgwOuEytmyFKRHoF4uJmcJ/a4F7nfqDHnEwc8kBT5JSFH68P8Vw1pnOGdtg7feuptrs/VM1A1zOWyzwvMLYTPqwTW5YHKni/7RDvb0Oqad4W2KO2E13nlwBuesemm957te+J9hRX8H7an6fAnRzO6zEs3Ledxleb4JrAMuRA27hohGcsP7X0xgmxG+5OHELKdoNLghMgfCZmvFdOmkaQBnkiaq2BNwaWRjOZwY9u+YYe9JKU1gJ1DcN8Wt61czh2EGmMFw0BjmrcPaHiX3SwQQGgylWpDR0M+G6LIggM8BrwFWofe/GT5P0eLi7xe4RoR/8MLpDtYXwssK4XQEe3Aee/7KXmSYnvHrRDf/mA7gDLhagptosGvvPB/ctJIFhGud5+xcWFkIz7trjvoJq/j82DA7jSFP1PBaTCzfSA3n1hOyYERn4VGzShvOxupq0E+3cJOjmgfohW96eI0XhoN++CngCuAiYnSLAGAUrNe95gayN9MK1KWougTqextlzXSsUQ+/gc64pbNVI/uXoAqk5g0Fwt954dcPdThzfJg0XN/cqAPHohF2Kxqdjco2PvcAO10rWSAAWpDEIFsPkCVQpCE98p79FKetJU+FrBByo5Tb+wvhhhxeVghnCuokHBoiDewHTV9QY6gWNrhId/WrakieKZiVXuS5Gw1bNPhVzW5EvQs0xGDElJR5cCKVAHtM2yjvqj4oQUHBcWagWDdCvn0mrFOtn5AXlqym9/IBJ1xfCC8v4EyBtJNTH653r3eNHnjshGsYr6Vf1UC8QbzmVMYotxfwsw6/bjTIFSs2K/UeCSkMvufojKC5gTJbIu29CmQ74TwKMX1gtmvQjTZ1sSLc74S/CRHK2wTe44SzOgVurK4gKBgiuVH2QBbo711n2USdfM53a4l0qZhTgkyOlOZWD2zeDXzVGt4o8Dx6ID0EHnCosxp6spXla/sgHwr+DeGPg5EqCNJImFrM+TsPsyn8EHh3AWcHp0Ix56lNjAZ6sOpFa1W2IjgjCqMOHbd5gvz+adwFK/GHF9TZNtZQtoAx9NKIDHcaw9eBNwAXS2+tddccpSiVlHNBA1uEXtp8NLkipdmZQG02BtdMVSeZko4Ma6fbHtz2Iu7RGdJd56L1W3rV14TtuXBDIbxuV8HkSavU8CScULRKwt6Q+oTceOrBaZMmViOim0eoX3YAGTV0hpMu8MuJFFl93AT853A+PwD+SuDiMEdj3q0fqUOnoBnWTIcwB4KTsFu3p6R3ogHuvVZ3J3NdqvV9Dq4T4eUinNm7ED3qSe55KPNc74TX33qYiTXjmFPGMfGGWAuJZWti+WpquatmWQP8HuqMbKBO+gjW471zAj4xrEgM/zoxfDSBs71l8pxV5PctYBfC/d9ZUEy1MBNDak8Rov9ecImlcBpRd5nS3l3h8Z2C4huPYiz4BvgMsvsP40+exBUWn2oKX+GELSn8iUBThB964c9zOC84Jh3gDizgLpzERZBuVA/lBu5OLR8G/sgaVnlD7fR1NE9fp/m61vCuxPIP1vDnqeWPDKzx0itwmlhYNYSc2KC4b5r0WZOkLkS/nWAKTy7QDkA9Cyy2/P5ZirPXkVlLYSxiRGtgzGSwSu+pOKuO/nChJVUQ13C9yHu0pzmU05wcwYRb30qU+t42Wsm/gyETwz3i+atT1tM+ZT1iDWckcCixHEwtq1PDqQLP98J1qSdz6pROTxwjv2m3OrrWj4V0CguJYBJlqRYBqHecJ/Oe7MH9ZC/eSIamN8qKpm4Q8x0YH1ZnhpfAJu1RqiXoR0TwroDhtLeugfsErhZ4nTdciOllnY3VYe8CxsBQcAY5L2GPFRad0MHQLjydQNUXEYy11BNIEnVuphJsJKd2DSEqrhFoIZ9uU6ytqVMXuN/D/zTqk9lSwB+ONZmcCVNDeulzxmlAI/XKCugGNwNot9MOu2aUdKxGUrfKKGwOYyXUJ4BuTbA4uvW4KKWHSm9dxmHomWTEtedRpofz3To9yh4V8kMtipOGNaAAbBPDDR5e6uGUiWFoe2ygC9oibPrBQ5CkuvdrC2O1N4pC12hDlEWXhtQjn1io63PXCUlvz5PwWoBhAtPrOI6jBuvf+c53+t4759izZw8f/vCH+eEPf8gHP/jBY35ycczPz7N3717OOeec7mdJknDmmWeybdu2JWB99fpzWLSGDwr84cgwD05l5OPDNJ2w2sPBQri1Bi/zauB3XSW27zDUCBF1308DjED9VuD/F777XeAvvfCsInhUnacW8pncQwexW/dTnLuO4vQ1XQXfU6aG+4NR+uJcONl79nthzc4DbHnBeu718LDAQ8aQWu0JPjdW495909zrVjFqhFVWGE1h0sN+geu88DpruAhdIBqJ0kdN1OBLzGCQrhuYPu5EgdCkwLyHnU44UeA8Ef6VhY3zyi3JgSGB37KqGA+NN+kM1WH3HFeetJKHvCfzlm874WInvKDjObnwbPCCfWQaDszyyBvPYOtMm1dcs5Om92Atux1sL4Q7asKdHnaJUPbcfYVgmEGvx3bYPLoRZynlraNR9V8mUCXpFaSJRk0uwmYDv2uF/Ys5l4zBbgs/wPCbAudEb2k4Rozsi7UUtRQvRWAfCHMebnZw8+YJfvrG3dQyRTG3T45yvniazjCUK0CtW8Mj1vAB6+iEXu6vDTJE8NwJhqcBPv7xL/Oz7/qZ7kaYAfuB7wN/F85NK/32wL1FnRmv9bBShA954UGBm0V4S+F5xcIirFoXHDS9KLFB6e8+GNgSXh/A0F4/zi1T0DkpzC3vyZ3w3MUO5zy4j10/eTLvTAz7E8NHEstcanCp5aWpIbO2R1lFjZQaKBXYG4p1KcVMRj6pUblZD7cK/KnQbXX1U8BvAI8CJ4toITpXToHQtnTmQEvbHkagbtS73zL66IQ8wAxVnJ2JIXyr4LO5x9YtQwILIox5/U0OwC2TY9wSFPOFxrAfuArDy43h/AheZTBgT8Is6vOB2pBffOE68q2P4gWyGuRnT6rCKoQ81bn8A4R/AJoCtwj8nhdOW4R81ZCmiITfcagBloatrlu5dkUd5kJ00ofob7Cd/VwbaYIfrnUj8THgoKetVOokAPM4P7uFLUurtCweni49OzeQr0nJ71zEiRooRRIiTU74jjF8QmDoK9/k9te+it/xwmmdnGJDU4sv0nMmFsaoQ5ESYB9KoWaRhQypp93q6x7w7TZ+3ZhGA8N9cF3gZ0l8D6B3610EZ2fd6PUsUxfLQD0D7jJwHQqIVwlMi2Fe4ORmnd3zcHUBD9f0uKmBthG+7+GUDriJZmCuqFy1cP8KNA0oJwDb0SZ5Cn4x48GRJt/3hpc64ZROJ0Sfg+WDMkfuMPBfrSUDvg38D1Fmkjc9QBof0A/U2xX5bkdrfjwfWCtwwMNseGxsgmsVLFjdV1sC1yCcJjEFoaCYHOnKV5i4XwdHoI1OEkNx0jDupt3saOc8crjgwnUrWFGivhP2odssvDfQTq9Cu3tcBF2HdTfCHtZfFtamLTmWukA97ueCtkEH3fvQayPNRCP5BNZXMLy9KFCP+iYC2LvQgp+vBc5DHeuZE6YLYbGAe3Ph217w3/o2o+su5JQTmowBTWsYMlZzyBPDXdbydWt4Q2K42NguYE+tITeG2oYR8gkLs5A1LHkE6nEfxHC3MV2gDroPfNvA2WFtR6ecbyYw39F5IRqNjGlFHS+0vR7zNuCraKrVuajDL88cj3YcO3PHrtxzVyEc9spmvEG0sNoKQYureSFBKfoHnLB+ep47fMa+Z69mJZYhY7HGUrOWA9by0Zolq1kKa/h11BFdR8F6BOpNQ3ddOwMusUhquLBmeZ5L+Cjwe5vW0vpX4O85hDl1FX6nw35+O+b1m+CEFaEOkFri3oqC82jPecHvm8NdsxM3nmC8Q1rgU8jOnOiyDh91wv0ebveeq8QGcKTRue974QxHKPTqKWYy3JpGWKt0i4PtNYb31yzvsnBmYkidUZZPmP5iLWIMv14zfDBJeJ/z/FkhTNoQXQ+BHrlwDfmWfaQXr8Y6T81pgbE0sM86LgAiJ2SdnHznPPmL1FbdJnC9gzesGmXlNN2oMGF9iKju2CLC90X4WafMgUjBNKDFyTaM0jTwf7/2bX7hLa/XNA0D7cTQDlT4b1vDjChALIxhJjH8SmI4JTUMJQmJc1hneEli+YH1TFrLd23CRaesY3RHG7N2jG6BpcJgU4O4wLIrvLLS9swrM2TTOIWBBwRu8PDGFQ1GpzqwogliNZKuIrDNCTcWwosLOFWEeYEVmXBvM+WgwG4HD3jD3WEvvdEY/tTpeseAmUgx27Poc6MmQgtoOU/bW9oe2rmjkzs6hXC3F64W+AnrOC+xJIknqyfUU0sq0AgUceNVb8aGCtkhIV8z1mWVfBZ1+gwBCxZuHEl55VSHumjQMNbxMqB1vIyQuh4F3kqoGt/OSCaHscZg11rsfEayekid9F1mH6TO9xyvUmIdlZ7z3vTpbePhjQ3v8WAKunZBHuQsRCjaHfzKOvMYPucN1yXKPLuxgF8fGmLsEOw9DVY7GPfCKq/3+FsivBJl/hZe13RkyOTeq5PVhDpYsauDs7gG+MQum/ITbWwNkR6/8YQLzCVJwoknnsgf//Ef8zM/8zP84z/+I+9///uP5bl1x+KitgwYHR3t+3x0dLT7f+UxN/0oJ4jhLdaQToyw8TD88GQ46OHBQjhQU8rNN0V4Hxq5HATYCxhIf1eQrYCoPK50wvmiEW5XqMFZPHKQ+uWPqoFwz06Kt0FxyhpVpKIRmHsSw18U6pH8gfMMF3D+vnne4R0Prx/j5MTwgsSyaA0fLVQxzwwJF+xfoGmEw8A+0ejMPV6YRXNYvgv8F9Ro6UaYgwGfo0ZKmfJeBukd4MOokWFRQPAmhH9jYLUNjDwHtgO/kqRc6+FFqeHUmgExrPcG2TjJS3dn7NwEDwONQPGfyT23FZ5vFp6htuO3btrHrc/awJdqNbI1CY1N4+w7sMCDa8aYMcKGVDjZwcud0HLC+0or4tXhvGN17nKEvSOlDSLI9f0gz4sJwD48N0NaQGqDogzfayc5kqSkxtCy8N8NXCA6Zy5AO9xYgnEHuNTiJGGLwLUCWz2c74ULTlrL5+pw2kNtqFnefP8Mo5tXa06iAM5gnOHEwvBn1vAnieHltYTNQb60JF8tGJfPf+lz+pwsHo3EPx/Nx6/FhynlUAvBey7c49WbWhelBv9wusWLDHxxpMlFwOkY0hDhMRhciPxmxnAbhptFHUNvWJPy0q3T/PD8cWYTYcTD2xBO2ToPJ67ilFUjmMRwas2yMjV8KbHckBpW1hIyq8W8MqO/lRh1XIAaK25ylOKQpzhNN8jrHJzrhRPQ6ADAJPAy1Kn0W0LIcdfIQe6k26O9tn8eTh/TCFUA6osGNRoE2ihtPDOhcnIzxdeA6Ra/v26MfSJcK/ByEU6x4GfnyE4dAws3A5eIYcEYMgtfs5Y/NYYLy/ePfsDe64ZmMdZ3U12wBjlpNe6VOcU1+8jffCLFxtXK2hBhj/N8wVm+50NFbxEyA5/w8PuLjuFmExeBnaBF7sI8FUq21ooGpCDtAhlOepRGEfyMUuDF9LoveGO4D8PXDbw87CvRURXTUGJ0Pa16mY06fKI284To8Jph8g5k7Rw/XMd72OGEz3nhFqsGffKsC2gbuMwLv7+Q4RsGF7zqUb5CVOF3ZQtOD1ljkbkMVg7pvhwMaT/XwZ851gMnotHZrRi+ZhV8PCvuHyZ64mN0PUTyK4922DfvMIY/N1or4DoMq7zWjFgncHKjzqltYb2FOeD/hgi9DaCwPQPpyFC3oGLsumFFja9CFIAp0AW3osYj0x3+11CTLBFu9sJ7plrcvKnJ/R5mnUa32xhmMUhJv30FNSbLUYOoBj0V2Up671bgT8O+cj2G1cawGdgIbDRwcg2GZnO+5mEueKJuEuEMJ7xIwC22SE4d67UAFTXQckOgxVuc8UpxHKoxMzHMl2YXmGzDfaeNss8B1jDvDVNom9YFE3L0w7gEbeEV64tEZ250nNVkKVC3JaBujV4MZWJIH5B1QylS0/aiLqRpOZROWQQQG6/hlcA/hXO6Gi1kKl5oeGHYCyd4z7wXnBFGzz2bdQ8u8KUzJ0jEMCWGeaN1NBaMoR3SR66xhvcncIHVtKRY66PwlnRtHQ4uks+2ydav6DpA2sBlwGcM/AS94qpioI4eVz8QdeaNJMiuotviPvdKty2CHZSJcKsx3fan30Ud+K3ccyhzrM4dZ3Q8p+WejYXKWEP//oVeeLWJ81vn+DUekv1TvOHm3dy5aSN7R5tYaziYWA6lltmaZUvNUtQSipAm9gPgFShgH7I9oD5kSkwRgxahqiWIhzd74c9RVt5rTl5LcsIk7UJIThaYrGG+vhPzExvh9AlN0RO0I02hqYrOedy9M7hbd+OfsxHZPM7O3VPMbt3NxinDXesneDAXtlphPoETnbDJC+8SuDRSqz3MijAf5oCbaeHq4FY2sUG/doxGnj9gDS9MLa+uJSS5p+Fcl0mQoHuytxZXs/x7a/j7DvyXxPNea1kdapR4Y8jOGKN27W7s/nnS9WNkhSctLDZVVk7mhDwAwHzHPPnaIdxYkwcw/K1ooHr25DqvfrjNXR46BSxYYTYVWg62i7DHqy1xsyhz4KLuZiyw2MKum0AMvPA5F9KympaRYTRPPzXk1jNf83QCiPQJ/LIxnJNabGJ1vXaEWuK5sG7Y7CyFeMa94TMnN/jVax4hf84qsAZbeE2dKLSGUB6BukD24ALZmetw1nCPWP43YBKDnDHG2mnhjhPAGV3bRSHsT4VDqC66TmDYwbpWwR8KXNeoMQoMWdPXW71j4BoLZ8QcmNFEWyEG50UqmmPelkBjzxydzNHJPFtz4S+8tr78gTH8UerZXLNYEXJSdc45oe40Op57oRMYEcVCGzc5xKMCnxXYH9IYc6PBNDcM+x5uc7mDk4xwXiGcXocdhfCNGrxG4AInJAGw28COSA63sRcOq607OoRd9Kr3Y+Rd9HVaaPTaST9Qd1JKRS0BXVN5EPdep8d1RXB8BqDuFnPw8NWRJj8QXStiNSVILOwZTZicavOQwPUedjmYEWFBFPN9Q4T/ZgzPKjySOXzudG0XXpt3iRapdqnVOl1BD/tGqEMRdWXQBwYYsT0AX6vaPcdw2Mf+ypHH4cOHKYqCLVu2HIvzGTiGh4cBjbCXx/z8fPf/ysPYlPS9v8sdf/NePvO1v2bPTd8g/ewX+H9czsWi9Kaha26keeMWviwaTd17aJpP/P2l3Sj6gsCln7+KW7ds6wL1HQ/t5suf/DIZCor2AOOf/DK1h3eDCDeK8LF7HuQ737iGjggtL7S3HebjB25mb7JIDrTuP8xNt93FddfeRJF7bs88H1jMGPrIZ2i0tIfwxSJceM0dbGeWt6SWlyeW9fMzPPzZL/J71vASD7/UHGLLA3ey+oEdvM4I7zLwr3fv4YzPfxXr6BbK+KtPfplvPbxbC1AAd9+9ja998SoWPSx4lfOTH7qUvYemaQMLwEd+uIXfvur6bvsv0+4w9g+fpp3lrAuepztuuo0HttzNUAHnNlLetjDHPZ+/ghGruURNY7hh3608eufdvBxhxHmK3XsY+eLX+GXn+S2E9yFccMlX2W9a3HDyOJ3UYHc8wp3bt7LiQMG/NsJ/M8Kpn/kCrz48xYUivMB5/v0P7+CUq64nQaueL3YyLvngJcy3s65x+Y1vXc8Pr9/Sja4fOjTNlz50KZ8D3oSC2OuvuIqH796mBfgMHNi5h69+4es0MaoQjWHblpvJpw92mQM/t2079W9ew5eM4ZeN4c+AD37oUr59aJo/Bz4A/Ltb7+ZD193E+prlz2uWf4+jddnnedfKldSfvZFXnruW7ft38MDnbqTpoemE7NA0X77k8zSd58LC82e549YvfJs77t7WpTA+9NBuLv3El7sUxPWnbORzn/gyOx/eTYEa/1fdvY2zr7iqG1WvGbj07y+lNTXNiNEWd9tu3MKWa37Ia7ww5MFlGbXPfJ53HlpEVo6y0ho+ddNt/OGd9/DPYvihMXxveoY//OfL+UtjeLcxfNPA6Peu4x0PP8yL1g6xdnqRt+/Zw2lf/Rbv9sLZ7Yzm1n185+BtTO3bTzO1DNUs9Yd28NyrvseLUsPHE4sDPvt/P8OBwzMaUQOu3XIPX7/xVnWyjA+xOD/PpZ/5PK1OznVeeDXCbdfcyL03belWZX/toWlu/tClzIoWbCm88NVvXMNd23aoVx3hwV2H+PC9N+KN6QL1j33u6zzwyB5aRq/x3ffv4Nvf/T6LxvARB1PDw9S++nWKmRnOscJvWfD3bGXLTbdSPzDH8HjKc13B+ss/z7OLvJub3bzmBv77D7dwe1h3+w5Nc+mHLmURXXMLAl/5wlXccec25oxhDsO2XXu4/IpvaNqNMbQuWsMX2nfxUGeeTIR9XvjQ1gf5069fgxfhtyUUh7rsizSnZjkNeLTV4YqpB/jmTbeSoSBtJsv58D9eynRWsIjm5V99463cdO99LKyEhbkOe6Zn+ORlX2RRNP+t3RauOvwA921/iAzDI2L4yKN7+W+f/xrfMYb/ZOAW4Cuf/DIPPbxb5QLuvGsbX/3iVcx5ZeLMe/jI/7mURw/OMA8siOGG2+/h6htv0dSDxDK3Aj7z6c/zQCfnQ4Xwt15ofv8m3n7rXQwJFBvW05iaYeGKr5DlHa5tJkxhuOq713LPtu3d335g514u/8LXWRTRB4bP7bmLB3fvY0Fg0Qv33L+db15zHe1ORmdcW79cfvkV3Dk9w6cE/sTA9Tfdyfuuup6b0PoWM+2Mf/jbS5huZbpnet1ffnDDFr1XAnsOTXP5hy5lFnWQijEMff1q7LbtPMcYfieFV+zfx733Xsf6TofTDFxs4aVXfpPn7d7LbwSnwPd27uArD96mDlMDLQwfv+QL7J6aYQHDAnDrnVv5wY23cgjD/vEhvjvTIfvs50nyDJ+A9y1Gd2zlRffey+8khvdZ+NOZGV7zsc/28tiBiSuu4r67t2lPZ4EHHtrNpz7xZRal56S+7BNf5oGHditlFbjp7m389RVXBcWgYO+ET36eX5ub4W2J4eUWFh5+kEcevJvfMsJLBH4/y3jOpz/HDZ2cv3NCPrvID3fcw213b9XCUhZ2T81yyUc/x6IxtI3WM7jimuv4pwcf5ssnreTEXbBiz0623/gDNhp4RwL/NjW8+opv8P/t2st/sGrKNO7extgVV3E38G+BS4FPf+hS9h2aphXmyU03bOE7376+Oz+n2hkf+ttLOBzu77zA1795Pd+/YYvOG4HdU9P882euYAFopQmLNbjy6mu564EdtMJ3Ht65hysvu5L7RfgI8G+Ay6N9EMYpd2/jl674Dh9ywj964T8DF3/2CoYPzbCxvpJ9K0d40UMP8Jpbb+P9dcP/TC1/URSc+k+X4gutQC/W8Bffu4kv3XYXWUjb2Ts7xyUfv4zO/YuaS/+d3Xzrim9w37Yd7BB4L3Dro3t456e+wruB96PV03/i0q9w/c49XC4aDbv3wR184+rr6AxpLm0b+KfLv8SeqWk6XuW87cY7uf6qG/h8tA86Gas+eAnTi23enjv+Jvf8yjU/5HW33cXPOcebs4KN27az/oOXcOLeA7zCeU5ynp1XfQ9z092c+eA0b7nmQV5+9Vbuvfd2Lty7j3fuP8xb65a13/gWv3BwH39Ut/xJzZDcv52xLynL86dR0Pr5/3sprcPTDAX9dvsPt/C9b1+vbbMMmCzjsx/6FCKOZiPhVxsJn73pVq65+17yWkInNeyem+OSe65l8SdPZPGG3bRunOKr3/k+W+59kFbmWCw8Ox7axZc+9AU6W/dTvHYTezev5K++8R3ebws+/LKz2LJxnNvv3Y5871p+U4S/QfhDhNEPX85PHTjMf/PwahHedOtdTP3gZj7ghDu90DqwwCV7bmK2cN06AzdefzP//fa7GbPw68bQmprhyx+5nNpQjfpQSn045Tvf+h47tz9EvZHQsIbph3dz9mVXclpi+AtruNFY/uzKb/G93ftopSkLm1dx5/UP8OWrr6PlhcXC0yo8//Sxz7Hn0LTaqyLccu3t/MDuYt4YPm0MLV9gLv8Ch43QWZxnVITsplsYufNunuPhpSKsPjTNxD98psccEOGb3/4+92zbrpH7abi3mOPD3/g2a09Yr0UPgc9d/lUeeWQPWWK5tpFw3YMP8+pvfY8XDqf8l0bKxc2Ur334cvKpGUaMYSQ1bLv9bm67/maaNUNqLc/zOYtXf4s9acrcI7MU3vP962/mplvvpuM87cKz99A0H7vsCtqFo/PoYfLTGnzxez/gf+/YgQ8MoOnOPA/feA0/Z9VGfKMIG7/4NSZ27tE6Hwg8uJ2N37uOP8gyqMGv1yxDX/wyr5yd4a1G69TYW+8ive4mTgms2fm84J+/803mFgs6XnHBV6+/metuu1txgoN9+6e49J8up8gcX+oU1FqO0a9eTf2ubXyw7dnS9ux6cBdXfvxLtJx0ddxln/06Dz66h7YXMvHc/8CDfOy+m/kngXON4S8SePFlX+R5M3P8rjH81EjC3K77OfOWWxEU0P9WK+evPvwZrsky/kSEOzxcf91N3Hr7PTonvGfPzGEuuf47tIDF1UO0ZoQvX30ddzywg0WnMt3/8G4+9smv6L4qqic/+Ykvc/+O3cwHrHHnXdv4xhVXcSPw52iK1Kc+dCm7D02zEPTtjTds4ZqrrmfeaQryXCvjU5/6HLs7OdcdbnFwpMb2W2/n9ffcy781wXk+O0v6hS/zrFE4YabNOy284PvX8jvbt/N8r2ym2sO7WfnJL/MRUedNJ/d84TNfZfuOXSx2PK1Wwe13PcDlX7uahczRajsWc88//cNlPLpvirkgww3Xq/5YCM6Hdifjg39zCV/5ypW85z3v4T3veQ+/+K9/jWM9zHe/+105mi8OqgafZRnbt2+n3W4zOTnJZZdddsxPMI53vOMd/PzP/zxvectbAKXh//zP/zy/+Zu/2UeDX1hY4I1vfCNX37CD4cYI/uFp5KZ9+DefBYllW5rwF42U6aGEbCih3qzxt9awCgWhQwTvbFjAnZLh0kK95t8F/jfwX1GPyrfRHNpaO+eTLUfScryzU3BO4bCPHKT52UcDrQfar1yHXLiOe6zlq2nC/nrCuXXLD3OP7zjGs4Lfdp7Tvng/9vnrMSetJKlZbDPFJgbTcUjHaeGWS+9BXnkSsn4MqSdIM+HeWsofNhM6Qyl5LeEV6II4GXgXGg2O9G9DfyT9G2i+8wjwDmAc+BMgcZ6hxYK/ahecnztsu9De6IcXsJ/ZQfpvzoXE4psp1AyuE7xWhcNfshV57SbuX7+C7yYJL00tZ4jD5R6/bw759iPIz5zG9tEm/9smdLzjgkenecf9c6x89SZMYkmaCbaeYocSpJ6w2KzRtoY/RKuARzrcMDBsVWHXjNYZiMZWC83V++9o4bXR8P0RAyMII60c23G0O46s5cjbBXnuyP95Kw+84wyuHm7wwnrKycMJvpHgmimPDqV8P7F8Fa1IHsfbgLcCtY4j7RSkuaOeedLcYTNPUjiY72AvfwBethFz+oTSdWsJnZplsZaQ1S1/XU8oGin/warzYBiNGozYnnzzXg3QNvAZlJb4F+gGNhKux0j4GwnexaxVkLcdWafg7jnH9zLHS5zj5BsP4k2CPH8CSRMerif8sJHwzWbKoWZCUU9otAr+bbvgNR1H0nHYrMA6T3r5vaQvPYHkxHEtivS9fZg8h1efiEkt1BN8XWVbrCfsHkr5jVrCXwObgeHMMZIVDHcczcxhWoUaSdunaN12kM7Pnc5tScKXagl/PJxSayQMNRNo1li0Gjn6Y+BZheftizlD4XhDmbI3Rg4sMPYP27D/8QJa9YRWM6U1lNCpW7J6qp7+jiNvFcx3HB9edEw4xy/ecIC0WaPxnAnqtYRGYiBzuNkW7lMPUvz6OZq3X0u4r5bwvqGEhWZKZyjlwsRyb5hrrwyPDfSYGF3Y5AXbzqHtsB2nYYuOY3vuaX3/YeonjnPTqSu5uZZwcT3lVUMJa4cSEifsaDmuaxe8LHOc5B3uKw9x64UTfGXTSk6vpbxyKKHdSLmqmfDqwrM56x1fnEe+8hBcsBJOWcl2m3CdwKmF47SbD7OA5ZvPWcnOWkJWT5gfSpkNe0sn9HF+Gdrb+FlhvzAl+fqGCLalv2vaBSZzPNByXJ87fuIHe9i1aoivnr2S59UTXtZMGW0mJIlhe8txbcfx0qzgZOfh0q1c/qYz2DLS4IJ6yk8OJexrJlzVSHlV4Tm7U2A6TuUrHHLdARir8dAFK7nWJlwknuHFDqd/4QEu+4XNPFpPebSWQjNhdihhOtw7l1hegBahjAyVOr1idk76aeE5sA34qyD/wczRaBWsaBW8t+04sygg99gHpjD3zmDfeAomtUgj0Ty8tnr4F771CN87fQUPn7qSNzYSTmykJM0EaaSaV98ueKjt+EHbcX/ueNcth2lg+D/PmWAhNUy2Mv7o8m003nE2tp5ALYWhRNdfM+X2oZSvJJYDwG60O8SFUbawbzSMRj2q8l0P/E+U7nw7kBae5mLOX7YdZ+cFpu0wmcPsnsVe+yjmF87BJZa8nigrNS+4oV3w4svv4/KfO5OfHK0zXo/y6V7nvHBH2/G9dsG+tuMFheOc6QX2bz3MSCvjKy/exK8O1Tm1kWgv8YZeGxlKuTO1fB2t13EWcCPwNTSV64VoLvuFwL1o3ZL4Ps7Z+BwfeEHauc6lVoF0HC7oNS7ZykM/dxrfGx3ihbWExlDKD5oJ1zZTdgynPD+xvDzopfeVlsH7vXBRO8e2HSbsnyas9dkbdnNCfZjJ5/b0gTT0vt3dSPj9ZtotdvfKwnNfq2Bjp+BftRwXZw777fto3jqPaULRgfazV/DNV5/JVxq6Z/z0UELarCl1PtzTLHfsaRV8sO24oF3wi5mjljvqO2eo37CH2s9vpkgTpdXXU/JGQquZ8LlmjU+VmAyJ87y/U3Be5kkyh81U19ncYR45SPH5R5lOYCKD2oZEQ94tYAxkbAQOzOAOw6EVMDELybNH4Q1na9uwutV73Ei4s5bwjXDvnkvPVotAfdhAw2oNigXpBSQWPQo8Ck/WcXwu91yfeS7OPS/NHKd7D4XTkNn0Inx3F2ZyjEdPqrF/1wwbx0dZe980C2tG+f7z1nJ3LWUqsRSJZcF7Gt7x0zfugfXDvOaUlZhaggk2i60nmGYKIhQdRxHm0i1tx7cyx8/dMsUpCEPPX0VSUz375XrCd5opf9JMGG+mNAOVeTjIGtkDke256GNdASFvF/x123Fv21HvOFZ0Cv7fwnHa/jnsd3eS/MLZpPWUtJaQNDWCmHUceeZwM4vIlTu44c1n8e16jXot4VHAO8fauRZ/eMV2mm8/B1OzUNd9U+oJdzdT/riekLYLGm3H77YLXpA7armnObVA4zM7aPw/59BIE/KhlE7d0q4nLDRS2s2UBxLL7wP/AXhJWDdD9NLFuin4Xkg6Oa7taWcF7Zaj03EUueO++6YZ3jHL2E9uYlWaUK8nNJoJaeHpdDxZ7ii2T+G3HOLaN57G1xPL+bWUG70nd47N+6f5tRsOM/Yzp0Kqa49Gyn31hL9wgmkXjLccv1c4Ttszg7lhH+bNZ2ITi2nq/b6znvCNesJQp+CuluM9mWNTXpA6z9CHt1J/++k0xodIGgl5I6HTSNTeK4Qic9zadnw08xjnu5Ts56UJdzQSbMPy2kbCi+oJzcJTaxckmaNoOXxecEen4ILL7uOzP3s6r17RZHU9IW2meg3bune5+Tb+sw/gf/EcbSNaS/n7esL3hxLyZgoC9U7BsxYdZ3YcZ+UFJ3dyhj97P4/8wmauTxJed8c0axc62JetJ0nVPk+aCbaRYpsJtpkqC4xeNL1c12ILaqvF8T7g4oq5YDqOB9s5N7Qcm1uOh7OCrZnjLQ9Mc/b+Reov26gdi5op2zFc13G8onCcdmAOueoR3NvPRRLdQ7fVU/60mbAwnNBp1jAivLBV8Ottx/rMkWYFtcxT33mQ9L6D2M2T+FPXIg2Lqye4RoJrpBSNtK/GSwqMmp59PR5sbWsMs7OzjI+P85WvfIWRkRGOxXjS1eBj0blXvvKVx+SElhtvetObuOyyy3j2s5/Nxo0b+cQnPkGaprzsZS9b8t2hkdUMJYZhY5BVQ/iDBeI8PrFcYOCPRPi2CM/xcIUIf4zhv6IFuVQowGvuSTcvkZ7B8rcoDfAc1Lh5PoR2ZvDnIlwvwiUeNjvhjetWMjLyKPed1WR9fYxV9x/mklNWsm+0wUuM4fkO6t7wE074gRNeBZxxeIFk0WFOWIG1RgFrElpaWaNFmrxBmkPITIHf0KNyXmyEvxLhy14pYmcD8ygT4M/COb9TxeNb6HcepQfSf4MeRTwF/gdwlcCbRLjYaqE5a0MRikVHkmhk08SiVdYiqeCdwXuLnDCOf6jDhRvg/ATEaE6/dx65dg/u3I34sSHOSQ2/K4brveEVozXW7p7Tlm+JVUoOmj8Tq+46a/ht4HeDDJvRexTz1qE/T8YBX0AryDfpUeBjO59orCpVUtMIksyR5nBuM2VzarRoXMinLAycBLwdNXqvLs2/A6iiSWqWulhqSKDba6FBi2BGGvCKjZiv7cb84hBmZZPc6DUsjBbj+hVj+PfWc2ddq6Zn4bxjzs/dd25j43lndp0tXwF+m16ueqyIHPtKphZSp+fREa36eXEKF3ityeJ3z1BcvFrpyRZOtYaTE8MhC9+wNlDuDA9bS816aom2XUsFkjUrSHflpCeAne9gthyEt5+iKXPWIKkhSw311JKlhsnE8jPAx9FiR7ntFUGLvaULDG5lg2Ihw6N1GF4pdHtg19B86xQt6PYm4B+d8BbRXMjcQ+qEFKE41CE7oYa3RovbGGUndAL1vRWUywyGv/OGTQbeYSFdWaNxcJEGE9QRGl5z/ov9LYqJBGe1ardL4MLU8GdGadQvMYZzUKBzE5pHe1lYj2eife/fgIKKIlAVI+VcMGwXw+cFzjtxJUmWkQn8IbDa6jqI8/wiCxcnSlPMxVB02jxvJGVzonT1/wIsGI3SXm0NvwCsc1rMZ9bDs8eb7J2H7xTwSA0Mwk0Cvzu3iD9plJ+wsDaB1anhAQN/YulGZ38VdVJ9Di30eCqao70CBa6vCetSq7ZqGoVWnjfs8IbL0fU0d/IQr364wx8kamwnCBahjuGiBIa3b+fkk04mX8hwAr8wXOMlCXzTwB+I7m85cLWFN4thozcsepjzcE6zRj6X889eiz7+MIcXzHTYOJSwMbVcZA3rEhhPDPdj+KOSfD8EPg/8LD1DIxYGFXq09wLN2/1H1Mn5C8A2AzcYeL0xnF8D45SOaGoG22pr8SrTy3NL0FoJowsZrx2yXG0MH/RaqXszhuuMpntsx3BIDC828G4LK1da7J4FfttMcIOHV0+3WVlDHWTWamVxo/3IxcJzjOGCMC+/jkZcfxFtfdWlwku5porK+REU4P4u6qC5D3Va/5wxXGjprnNjDLaZYGaVPlmEPShDKwe/eK6F1EEaKX8t8GqBDV7rPKQG7kwMNoGfsoZ/lxqtnrxyiNN3zHB40fE7Z82x6dQ12FCtV0KhBG8Nz0cBXKwJ8zJUl+0OssYkvVZ4/i66Ps6nB9ShBNbD5+LDK+nZO4tN+JgU7LHwPfTz80SdtBdKj6acAH8drt1PiXBR4bWgatBnJvBBzxdh2y33cfJbn9dtSSeJgdTiEsNzEsv/MoavhHV1tjV0EvietXwy9XytsLxl8wRnbZ9nOoPxcbj0zHEespY/SGBTYrTNaIhEaZtTNSxPBP4/o0V5P+TVBpCmxTvXbQsY21VvFfj7MC/eH67zd73wxsxxYejskhQe6xRwWC8kN+8myWE1OsE8DnnVabB6SHvnGoPsPIT53KOMT4OvgT9/NdQt1C2+bvE1i0/VgfYC1AyqA81Afy8DdVC5miEVqFus0Sod3gFnWfichQMGvmtgXWY4QQwrxDG8YpgNP3kKZ115P4dnDKNtz8HDbe6ZHOeOF23g9MTypsRyas3yMIa/z7TGyZ4VNd60r6BxslbxjzaLOmYFQnqWtpEVnotwnoWFQ7N8+axxNgis83CFaG2B91kYt1bbNwZZGybIa0v1Q+Kk9TpvTGpZmXh8YkisYSGxfNp53rlmlJObNYpHZylOWYn1hqSweNFcdS/Cgfs6TJ+4ihvTlLclhjNrhh0ObizgpUMNVgow14JVo8reDOvh2SL8Vy9cE4IjV3qtgzAuHjPdgclQCT4x3L1tByedd0a3gN5Bo/b3W8N6jY7RKGu5EKS1BusSOqm21CP1SK57weZTRvC37uaj023eumqYFU4weWj/5bzmP++Y5+bTV3Mzhn+bWDbVDS/uGG4Uw6tqNdYebvflUoNwEcL7BL7v4VUIZyZg2x6TpLrfhZakxsIFieFMo4Uyv24MHxL4fzGsA9orLcxlmBVNbJgDbY8WnXae6zqeL+We33aO4Z0HOfTQFGtOneDEU9bwNme4oYAvJbreX++F1wvsL4TvO+FQAesPtzivDm8drWONphPWQtAxtVpryA/VcDm4VoarDeHR4/xQVLcZEX7T63zdJcI3PAwfbvHmpuVvrCW3cOhEeNftHcbRautajE6p8MZpcThvloL0WNyyWt3sfeFaT6ABqXHRttWPei3+fJ0IzxX4XQurZhy2MaytVRPtmX5xzfBsrwVd/YomMos66hOLABclwn9B+KqHF4mmpXzWC+9zws8XnlcVgn/0IHx5J7IIsnUnxZtBTluLsxaXCD4N3Xes4S40QPvTwAsk1DEh2AVLIfIxG0+qGnyapqxfv55Xv/rVvPOd7zymJ1Ydb3vb21hcXOT3f//3WVxcZPPmzfzlX/7lwLZtjaGVDFvDMGirHAE53ELWjVFYuCARzkJzRs70wl8mWijuv6CA3QAEgyVGFzpoNOEDaDTiWfSqkDZML0/WAS81wrOMcCXw0alFnn3uaj7/oo0YB++QGj//vT0033ASNTEkDtLCcYGFi61Q82AfaGM2jZMkFpNokQyThpydRCvgCiCrh/D7MmRzr2CDIDwPuDAUS4sA753o5PoidPPMQEHmGEoZLIP0GE16oYGXIVqRslAlqIoIjRqnWqHSBsPTW4JRHnoXbxrB37Qb/8JJzf/wodL0bVM45/AXjiOJwaUJFxi4AAMTw9oSa+88yabxbm5h4rX/ZxFyBE9Gjcy/RSM+Cb1ibNDfzuwBNMLyH6gAdQN1r++Hwued+J3FnLzQarAO3YA9mgOXG82XcagD4OrSNf1ZdNOpJYa0nlALIL0WFHfqQ6XNUydg8yLmKw8hbz+LRaPAr248hYU1heFd1vGPFv5HLelrTyfA9gceYe15Z6rBhEZwn0uPOVGj1NYqKr4AbrWYW6hY7PS+uH0d3OqGOgusOidya3htAKBiNT/otRZGUkNaqDGQ/P/Z+/N4Sa7qzhf9rh0ROZy55kGleR7QzChmjDE2g0cMNmADtl/fbtoGfNvt+7r78677up9tXt8Wdrv7elJ322AbBAaMMUJgLAMSmJlCSEJIqioNNZ5T05lziNjvj7V3xI7IPKUazqlzSuT6fLIyT1Zm5N6xp/Vbw28B8cYh4keOET17A8lXDyMXDiMbh5HIQGLoJAYbG7qJkNQiEgccfwmNBni2OEIp41jVRYmnOmMNUuDAbIsDI03ejs1zTxOnK3jG+luBv7LKtvtiZ9TpWucFnWwTbxmlbRSct4zmli+KJ5cTDiH8vigx3M/FQq0DyYhQf2iWmrU0rLKB1yx0n2rTXTesIFTQTT2GW2LhWcYxnbsx8KDhKPCXKMEhKAEZACLUjGHIpAyLMORIhuIIJocjbplsc8haNmOJHfFLYq2r226xojnpnczSnrZ0h+usE3hDpHnK9xgH2MRyN8KNDviNA1JvcNFcymbgSdGyO5mxSHuBq4bHECNajsTAdZHwOyL8vdEogavRNf8LwGG3P97l1hrA5ylLYoRhEUad4pAYoZHB0VqMnZ9i1G52Jdq0xEoSqaK2/6m9XHXBBSSzHTpuTu4Q4RcjmBPhPjRf0CL8o8BNAusFNgg0JqCzv4U1WuomNZbz51OaI01e7DgYjHOrXhfB7yD8HfByt2/8EWpo+ZeoRzmiyLdro6kn/xV4EA3re5Yb81tFeKGBegxRpgqddASpR8jRVD25mSruvnpAJNCZaxMNJ/xQBNdH8MduvrScAeG1Irw7gmbk6ok3hXhqjmsNXG8gmk2RWkMVY+MAdAS4fVko8gN/FLgM+D3U2/xu1NDiPQcdNNXrd9zff0DBhXEL8AJRp30co30T97O1GDPvwYneJ+P6157u0m0O8YZYeLYR/lRgn3ElxQz8OMIbjaGWZMSZEGWG6MnDjB9KOQ/go0/BzwpctkUNER6wO4Qdkhj5qLHz0eirN6Nn32PBnPz3bsx2uM+d717vdeP+fLdODmdwKIOpTJhO4fVDMZK6aiui6/utxjGI+/6ie9PzgNsEBbHdFHFg1lp3v6xFvnmAgwcnuWGxraR5sVbNsDF6PkbC8wRudv1qGyGJI34ktvxQZvhqCn9ywRbqrxeuerLFQ+fXuWLrZv5Nw1BL1NifxIaakbyMowdAYoQNAu82wv9EAfs7ahEjqeNMsJbZDD6eWu6x8KMWfgTVfRJreX4no55mxJn2y7iSdFGaIYsdzBMZUQbS0ntubzsfto/iy3hZAXvpZnijYB+agmdtxl66BXEAnUQBu3WVJPz9jUV1L88CX6soyokIDbFF7rpbu2kS8TkjdNB1aI3uFc91Z09HhKNNeGB7nfP3L5IkBhYzhta3eFfNILE+TGy4xmqlg6+m8MONhB0PHsI8Z2NRWSDT8TWOgFDPX+uMc/p/jek5blu/kT9HeFxEDa9GmBehbtS54IFrM+hvWRunAOyR4eWx8GVX1m9YhM3G8Fep5UWXbOLKx2bpXDDB9q7l+2Tca+GSbsaDXcubnjjI8Wdv5Z0RxLFgIsO1JuNGa4iwMJQgR5UR3u8jOKPITZnlOjS3+C8t/GnX8i8tMAuyaSR39j32xFNsve4yzVcX4XdF96Gfpahe41MYfOSEoeDdsTXBdByK7xiyxCqhXD2hu2M9tz3a4n/c3OSXHX27cRUMHp5rcemBaWaes5l/FQv1WMkZr0mEG6yQjA+pZXK2BRNDuj6tkpbeElluidXoKm2QGYs04zwiR4w6OKwoUBURfjRSPpw/s/C/IawbbsKiJrEryaSrH57BpzsZ96SWf2kzLt57mObfPUVtEbLvzNH+SSG6cDMvssIL0oxvdYW7reXXUnW41LDUsbxptksyOkwkSlacGC1nmlh11GTGkQQ3IZtu0x1rkAHXx5bfsvAZa3mp1WpNANZYbGRpL6R8b/OQstEb4biJ2dtd5O7UcoWBSzMYscrFIdi8qkTm9t9voQbN+1C941YC3Qf4DbfnzgLTqLHnLutC1zMdgxFr2SQQTc4QXzVBYpS1PYmNcgC5vcHWI7IU7PEWdlOSl+W+SeBqlDm/m1p+yVp2ZZYPpbAztfzy94+yYRGyIWAR2t8/ir1wM1jL8Qy+n1keQnkynnDt/ifg94EXOB3TV29ZKZK502aDP9siIrz97W/n7W9/+lyAY1OPMQyMRILNDNlYTHa4Q7pFCafUSu7YjzOdLL+HHtz/CbXwgA6Azxf+HuoB/FcU1j9fLqQunlDBOtCum/IbxPLpmS6tWkKM0EmEPbeu4/mfniH6xlGi52wkSS1JNyN23urEZkSPHUJu2+6c6OpRjyJxZ5sqmBlgRxKyx46TsSWv42vx7LrqfYxFchb4GFWs96MRAl5uQQmjQpBeE/27Juiid/pQgvdsQjyXEWO0XJUtNiqvXKRdwZ4/Sva3KemxRdL1TQW7xxZI79tP9tMXYCNDGqvl3AI2zZDMYLaOYZ5sEe3wNR99WSmo24yONXRFeANwL+pV/nEKoiuRMiPv36AKxjgVsO6ea+JYOjM9SJPM0p7v0kkyVf6MB2UeaBSl8J5jddHeBbwWuFkKUrc4McREBdkb5HVOpZMhL9oK/+sI7fsO0X3xVrrdjBQtBZ6K8GMi/KOBv4sMP+m8z7E7pV/0+lcwj26IH0M9er5vNd8GKcJ3RYSaLcavllrH8GvpTs5rFYPRRs6gm4pQi+DmWPgvRvgU8PpIuCVRVto4FqJUvTXx5hrJ5+ZIplvEX5vC/OKl+SFmI2HOaNm2ONI8s9iNxRtQr90NzuvTdnlfkTimaCNkIzUePdri+pEGDT//0DUGNq+d3M0sr80sf2/hRQ4IxVYJ5pLD8yzsGKWDAh/vVV8AWsbwj0b4EyM8V+DnIqilkIihPlGnPtnVsh6ZZSgSGhbSfdN0Ll/nSmmpkSEzQjeCJFKlOAQMqRuXbmWvegEKBJNIaBhDHGdIIjzWMfxxN+OpDU2e98hRXtxqU681FaSjYF1ruwvi+hjNtUk60GnEakgy8HLRg7KNrol/I3B5rLW2JQO7HuSpBX5IlJxyEct413LxoQ6N8ToiQmTUoyEGbo2EG0Vc6S7y560oKdv9FGA97J9GdqgSIRE8ZoT/5u5dayzh0v1t6plGSyQZJGKJRcf59S97EZ1Wl+5ClzhJ1DAhWh7rR0Q92C0jRJnlfxfh8hikK0gm2KZhfnKBkdQyY2AkhZuOWurNhu5bxj0c8LvVwHVSVM74A9TA+f9GDRS/CEy4vj2CGm+3out/A0E4uVHSoXqk/RZcUNRwDTOb5UzTvlpBG4jbGdECdIZqGIStIlwkwve8RojuPSORro9YDPF4nfhw150dQnSki6yrFykWkbgyTjofTFRUsDBo5MN/QY2d70HPwstRBedLaMTEy1Cw2wz7J4VXM3LeJe+RNrUY6VhoZSzGkZJG4gypUxnt8SYd4FIjXC3CXuMjs4SjImoAiISa8wwm3z+sFT6cwZiHJpGrtoERJPY3VnvclaBMEGWC0QQ1DobG6re5/jwJ/DPwETTqBXfLv4ywGbhW4HyB5xnYEsFYN6KRqed5KNPzs+6bgs3BZE7umWWYNEWcx1m6WjZLuhmy5zByzyQ/MXYV9s6nsD8vcOVWbGSchx1srOOXOA9YYqETG7qxIbaWFwKPCXx+x1YO77B0EK6OhUZiSNyjFpvccBuLrn8RNVa1RUlj/1+R8Ddd+J9Rwi9b+NtOxqgY7st0nv8nLJusgswEoZFm1NKUWpoRu/5EriSYSTOiTz5BfOE4csMI5qFDcMNW7EWb8vHy5SoxAlduw161TUF5rMZdaoasHmlaAGVSKn/ONaU436pS9yDdPzud4Mciwz0NNRQkIvwEwhXOwiIdsF148uL1HJo5xOhsl9mRmB2XaCqUSYyG/yYG00m5vma4CYvZPkJ01z7MYlcjAl0EhRrPbX52Rzjng4X27CKdDuwYH+J8gT1GIyCsUSLBm41QdzqmB68N12bEcRNlQYeN6og3xxG/FWfcFxtekGRchpBa4fFLh9jw3X38wUyL2dEGB8SSieWrmeWn9k8zjOWyHWPERkiMIYmFpCtuLguybggmu8glxU8K6iW2+HQSy88Zywcs/K8UfuVYG0bVqWYRXvRDL2bR6al/4ozlv0WhU4d9bRqNmPD6p0GdJTYWbFcnctYVXSuphYubXPmVA3zrpnHuSDN+qG34WqrlTq98bIHzto3xypGa9i/WPaZmJa+qYMYEe3gRxpsOskq+l1oJyNCmO0gjdlNXdfO2GxPrzsq2wE/Gwp0d4X9k8KsjDWROJ3FkbV414s5Oxrc6ll/NMi7ILPH3j1Bf1CwDWYDooSm6F2wi7Vo6JuOWzHAT8F+t5buZ6nJdgQPHLZdODJOIG7vIUIskL9tsRXXKtFYjnUlz3TizcIux3KCwSJ1sWEfSKMSH4cK4yXCmjPKdRszFx7o8ZS33ZJb/lcGG1HJJZrk002v+nbtPj+qS4kVoJM5lbgwfRI2hP4xjzKc8jS+wlt91IHjEwkuwahw8Pk88vFH1aOdZj50Bkkg0ondMyKbb2E02rwzZxp97llampHGXYfm3YvmShb+6eIJf+e4sxwyMj8I3Lp3ge13L97uwL7aMWNjuPOuh/D1qjPX30VfgWQk5abB+9913IyJ9a5ofPHgQgC1btixfy85Qxoww4sBdNtEkO7hI92oXAudCEPWlbjK/gU4mD9gnKAZ5Dxr2/mY0BK1GYf3zj4zCixA55VkQnjsFnxrT0mYNK7wgjqi/bDvxxx8j3hRRu2SdltBASDJL7cAc8aEMc/5YoQTFLgw+s8qU6Dy82bqI7NCseqqdZct7+GOshsA40BrWTn89ZbD+oxRe5RJId5tkzTqQKR6su41zLlXqRycihRcucQqircfYLXWyh6fJntMkJSP91JNkV42Tbh9ToB4b0lhIM4eyBaKtw8TfnsQ8b5N6E1O/yLSPvlZiE/jfUK/W89Gc4AgQWzDcH3D9/WMKb4fvn4aIKyjwcWXGOq/BXJcsMQq6nALvvepdp/z6kPgXWAUmvja5B8oJkNRMDijDGpY6ASN47SXwvx6lduEQnQvHNISoK9TISI3wKx34jyblRfWILSK55c4z3H8FNQh7g0seHREA9chP+Ayi1NK0Wns8TR2L6IFFOhtrdI2hGyko6MZGAaiB5xvhBQZMLNS6QhT5zdI9Ng2RLGTEf/gw0SZg0zA4r3qWGLqJoRML3VpELZJciX4tuuF9UeAVooQsiYtB7YoDhBuGac1absMZoTJctILW9fSh8xHwYiyfzCyPpHCVixjoWiW1yjavdwQ+zquOlrT6lIE/cQrCdww8jnCtUTbv+midRhcax1s0NgwxlCpot0/Okz5/s84Jo7WhO8640I0USHZtmQG1i0Zd/FOw9n4cl37jAaNoKPFVCfxqV/iKMTx/qs36gwvEow03h7R8T4w+e2WpM9Om09SxTox6aJ7lQvPvNvBKK1wdCcZ52hFB6gJHFrjawK+Lluh52VyL9R2QoZqWsoqMAnaNWCWLJa8j7RVgb5CoRpnk/fN9FFVuro7Vk/flLry0UWNdrAaVeOtoURvbqnHJZpqW0p22xElCV1Sx6orwrAj+owh3CbxKhKsjMF2X2iuCjCQ0pzu8y2gaxW0GLphfQEabRVhlANjTyBAZoWWLOfWzaKrNn6ARSC9Hy3E9QRH2noduUlaqayIulNN5tRuJ8lbMdbHjEYsOqEcWopmWRo0kkVakMKrkfBaNUhLgZUYV2MioohKN1ok7kMy0icfq1A7PI+ua+X7s7zuRGsuMkZzB39gi/PA/AB9GI49+1O2XR93fL+zTv7poyHHDaB996oqxGv1l2hnpfIdkONF0AasANjo+T7R+WI3IBl4kwhcQFo2O16tjQzMz1LKMOFXAE1+9keQbTxKnuofKdVsgFiQxiDFIospx5tZZR4oqJzl4d3P0VjQs/dNoKbVryLfF3FP5/0M9Pz6k8WYRfsXNf7pujZqIX5y2/OM6y/ON5SpDHh0RoVtfLL4ChCVup2qgdV5n6bh87m6Gue8pDYd3yjLfOUh29TYFJImBWEuP5SVYxZcSFNr1KA/1fqEI92Saqx25e1uvGQ0XrSnfhp+bkQPpuZElwMxvMPChesRXLxzjq1mXRRvzOuCVUnjjE6CWZdQ7KbVuRq2TkXQtkQ+FTy3xvYcwU3OYX7iGuBkjV2xRK7Tzgvkftc67jnHesdjoe4lxVnGj3ndbjJEpnbNLa8c+HN5Xc7DO+/xc4PeN8Kl6zI+ZjOui1Lm6nd5i4LKLNhEb4eCuI5x3yXouvXizAnUP1iMhSi0m0tTAqB4TTQjRE7NEV60jcp7PyKUteQ4k9bhrybposkUy0qBttNznVwWmXTTTq4yW7wu96tUIgkSEIVMAdkHHqBULtySGG9OMNDOkNqPbFS4drpHtmOCdTyxwx9V19qNVVTKBdQdaJOdvIfJAz3mea0bP+Bg1NsrBOWCTRpG4daWlt2xQjsPy88byF1gOH51nw3k1vLnFr9FPifB1I/wOmoLpI1XDvvpIAhOMcSxCsxZhO5mW14qt5vEZwZ43RsZ+fubANL+/fZw/SDOMzYit5Wd2TTFy40bV/yKNZqsZoSburBchGm7CoY7mdGU2r47gJ14eOTPbwozWc8+6RUlhidwcE90P2yK8wcCdAt+q17lpPlXuAqtG2vdnlu9h+d+tZYvNiDNLffMYtWyOWstFFFy2IXeqJFZL03aM8JoMHnORL2MZ3HBwmsYl44XublQPqGc2Tw9JLXSGa6RH2zkru48US8UBdIeJvCE+m5ll29YR/rVRNvznN2oMZfDKVpdX1iJmsTxk4UEL/4+Fw9aSOhPHL6A6j6Z/Fmfqc1FuAhs88K+t5WYL/xHLvZmmBl8tQtLqEB+HeENTdU60j76fugyErF7HTnVIL4HMRVcagVg0LSX2TlU0GvHFYhnfvo5/uH6azZOz3HfzJtKt67kBeD6W7UAzU+fuA5SNva+mAOreILhSctJg/fd+7/eWBOtvetObEBE+97nPLWvjzkRidCARYKKO3T1N2yfkBbMjs1YBuwi/iQL2fwf8f9Hw8P1oXt9rgZ+gDNT9hjIkOpC59cYBqhjYPjPLj46NUMvgBTXhShORmAbJi84juXsv0U/XSTYOUYtcOPb3Z6lfMoKJIg1hNIJEklui/QEXicCmEU0abbv8DBce3kIBdgtLIgouvUW+bTXH/v9GFZZXo2XI+oJ093fNOJCOhqaAu3+LGYwEU8jvp769xoVGXj6BefgYPHszPHAEu3cB++OXkBkfbi2kiSHrZNhIMF1BdgwTf+JJ4oVUFTLniepaXYAda7UmL0pO8QIUjP8HilJuHkB83P3/Foqa6h5Ie2OEr/PoJoXe6oUUE8fEiHr1jUYpdJ13vRvpb6UWl4tbBuv+d2oiRGKKHK/MmQz9b20ZpvbybTQ+sYfuL11DKjGJaIh9R4RrgOeZjL+IhPckUVF2z/Xvw25+1twYhaHv3iABLo3FZm5ntnl4XpJB9tQ86aYRZ5gQOpFavtNIc40zB9RMJMQRxJGhZpxByAjRnsPFPZwEHp+CK7eA41qoR0InVsBQE3LFs4mmaPylCC+UwoKvVmDt375mkwuOddkmGlYY+6iRDIzNSDAkaGRKM1Ur7N2Z5Qo355NOSncGOpuHXLkYaKPr4isi/KlorWaM3u97jXCzUTBSF6GxDpqHF2mua1IXgbkO0oZ4i4IOKw6wRwrWO7EL4ZdKWK5VK+x/tWqg+FGU4AqKnN8odp3uCtcmhuuwRNvGSfYuEl9alGpLrHpva24OtS20j3dp12I6bs0raIebI7jeBEp5/kLBrDnaAdSyfmMEZrqNGVGFUYx6ccUoiDWxS3URVzrMHVL+4H+e1bDwnv65Z+NykjHC9QncgCHuQDzcIJnqEm+FJFVjnKYcqOJQs9A+3qY1nNBFIwq6RkgiuCmC60XBlHFe2nzvGa4ji/CsTsqzmgaTgRyaI9ox5KNwS4C9awrA1XH7SActS/YfUHbxDwZbxXUE6VBUgGykCmDD7QeCa5sFZtowVifGeZytJZnt0BpymMFoNNX1ifDbAp8SeLXATT79JFIFJRYhGYHk6CK10TrJ5BzRBcPeEa+/5wBRS3FSKRTepzQZ1CgRA+8P+reeMvlcQ4LcWev6KcU11Jrs3pjvkmTktc5b1tKemiW+dMQdEcKzEvgPRvgswsuNcFMsJKlQSwxx5lJ6rtxK7a2G2rcPkNy8FXOFhkgTCVIz+tqFO7ZtAdi958oD9rZbi891Z2AWPGzw/HqKME0rCuq9wVMccJDEcHEHfjnWNDUF5jY/+mJD7lFN2qkCt07mQLo+SydDZjuwu1gfAPYG3TetM7JY179WcIa3Xf9qiaFthG5suL6T8v9J4R+s5YeMcgkkSUQtMTlQz8E67jzP143bD/xZAUS2y4Zul71NOOQievz5mViopylJlpF0M+qppd7JiN3D7DqKfPEg5hcvVSLAJMqBN4nJjfIlKwHkekNeR9WVafNjYcO95AQgPZRYNBzee+7E6H7yAlEjtDWGHHUZCYwHhqsv3cLVl27RZsWiQN09TApRHl0mml62dRyze5b48nVEUWGYl0xLQiWZguNFq+uiva9Ne8MwRoRrEsNviKYtvcQIN0QuDF7KpemqEQQhYDfuFsax06tiQ5pmdLuGrivT1r1wiPgbh3j11eM8lmbMC6xvpzzr4SnqP3qhDlNkSGL1rMdWqDvvZbwuQe6fUX0sQ8+ezCdmUvzrAPubDTA3z90jG3kVOse6Bu5H+GuB3zSS62V+f6lGEfQb5zgyNGOD7dp8wdlupofT+Vtg9zybt42zy2q01qa5OY7bNhvPH1OQ7owR9VhIUmi4fbo+0cAenIdMjcRAQQ7g9ETJQA4vIFsa+T6aOgNPMa8JNln4aQPfWAd79y6ymMFXu5YDBmYj+E0s69JMzz2gsWeB5IoGtbRD7dGUzugwcTdTR4A1JJmlK7q+f8PClzPLS8Sy7fAc8Y3rcxAbnkU1tG0ZkDYTuseU/yWvgY4vR2bJkAKAWks2NUd22SjPioRrjdGyqTUhm2mRjtSZAJ5rLM8WmLOWT2c2jwV/EsffROBUcTqyL+/q1cacg0HzD7hV4NbYIl110iRTCyQ13dMS4+ak02+9ExMLjNaxR9rYzDlcreqLLeucPWi5PE1HUd1pV6vLjo5l6oJt1KTOiIWXGetSot38Ti3PTspRtDdKkX3i71lmQzCxfHJKOev9JE1X0pZwerL5vBtyCykCbK4h35inbosNxg+AFfVK+xPg36KA/V8Dl6BhnS9HAYX3LoRAvSE6GZEwRNyHuFiiqWkuunqMX0oEkzgPa2aJLpogubpF7e93U3vjldRqsXoTvnsIeekOcs06kvKBFj43XUzj5AJyvgvJSYuwmARL2x3yMZRA+/PQ8G2/cPqCdPfIczDCOWjR/Jt6on/7wzZsoyPe4Ipx+McDcKwFd+1FfmyH5vtEgkN76kXIfF8FM1LTBMonpuGq9ZBaGs5L2rX6Oo2LzeaXgH+BeoRuo6gZfxw1SvxnCgXFA+mif5ITpZRMfAsZNLV/PgQrxtU2dWDWK4JeEYgoDAGxBB7tSLA1/Goug/XUIrdupL7rON1PPUHnJy8i7SpIrklGZoS3djPe2YHvRIYbHfD62B99kAv/xRt5Eg3xj+lvjCiNX2oLg1Xu3beYAzOY52whEbfxBOAziw2ZMxbFKFCInWcvJz38zkFK8p2DcN22fHzjxGiJmUg9RB6wd936+hjwWRFe68A0Innt+O+sh5d/bw7DRvVGoCAqduH8bTemNZfa8sMZ/AcsB61lu7V0Ds8Tj0Nai2lJQXj2KYQPGPgpI3xINESsKZqTXzeGumQ0RBgaHqK5v0XtUncT98+qOzKJFBQap6wbnReZUc+9Bw15ZIY7HG8TjQKBUElXIkmJUqesGuhmuo1tjUm+NElit6qSnFlqmVVrsjNiJRZqxzq067Wcq6LjxjDzxhYL4kLEnd6EjDZgAWWmbhr9zJEupt7AOOOJGA2Fj0TH3keUpK5/GYF33aphrLd/uidI182ZCGxkiLouZHjjCMnBBWrXrqNuC6OEALff+bf86uteQ22mTW1U+9fya0+0b5kRBJuTnOVgPTKIATm6iDQT3ZoOtZGh2HlAJQfskUAn0lJisS34L1pO9/BROqH8k+trqGDmQFbU85x7/vzzODCvBpLIQiNTBaJ1rEscJ+p1FvJUhltiDYc1qGIeu/XnDYG1Zp3aZJv4fIgOdGC8nt/v/Fm8UaIIwfUPYwvQ/mSlf/cE/etRpN37kQR98zIMtLqqEFmIuwpSWvu6LI7WcoKgroFbYrjVaW+JUZ6PGi4lIoKkK9Su2Up8zVY3d9y54cKjJSoAXSKqYHYCwO7XYc291jBPB9BtBbA7IO8VstfhDFiRgjxjRPlGIkHmbV6nPRY19iQ+Lcc3s+UI1zop0slcwfJUn7sZ/M0uuGwEbhnl9o98kne/9ceRK7cWBu9YIDKIiHqEROdjze17bdE50Yki2rHh5sxyI65NRsN8Q+BTlyLly7gFavxeIN64I9xm4OF6HduyjAzBSyIlNfORaEmmTN+1rqXhPOt151Vnug1/8wS8ajtsGymDdD9uXjcoufWNcw379VueU5UZdkpSk+Jo97pQEdymgN16i5MBG0PWyXJXmbiUjMgB9jg2RJIRpy5Vwxn5zHlNzOeeBLsjmGC6R0eZ1QhGR3raAqL9x4mu26QRkAI31IQbEjWKes9v6GHuF+qv814YNgWfS8cIncSQdjPSVIF6N3VkqOeP071vH1cdnOFXt43xzxn88JMzrB9KSNYPE0cu/D2W/Pdrbq+JNjTgYKY3L9J+xbjFg8X6u+yUarvQIevC7rEmH7HwBoS/+uuP88W3/TS/bISrpdcQ6Ps7FO6dFRHHwTAUZbpGfCh8N4OrmvCx/bzk2Ru5X2rMi+XC/Yts2riRZhxR8+HvLl2t4fpYB8zGGjxyuNAHU1tYiLKgbwttGHKaldGogyEoIkWcXhQC+Fsawv7ji/w/maUTQxfLO61lXZZplIq11A7MUN8zS+1tVzDUiKl/4nG6Xz9M54fOo51Z0q561VNj6WK5IYKbIiFqpcTHobZxiLqLFGgYHb8os/lZEAlEozG1J2dyYOnP7oIUzr3nvMnZwS7peJ3MnUeZCFlSI51P1aEiBbB/lYW7A5yQ8zdJAdBDwC4EvlMp9mFxc8m6NL8YSA53SUZq1Cl4N3L9Mz9jgfEE2TWtW0pWrAnvRItcVGbbn4FYXjo5zzdGmuxdFzM+M89tZoR65lKaxLq9UjHj80W4zW1dPprKz1JP0roSckKw/thjj/Hoo4+W3rv77rtLf+/evRuAJEmWuWmnL4cPPlwcACKweViZC7oZ9diUaDStBSsBWkcn2P+J1hEGBX9+QwlBumflbGZqOU0ceGhlliizJJ2UzhSkG4awogpvnGiOWa2TUbttE7UnjlH7+6eIX3cBMrmgnvLLJvDMmSVTfSerKGAGttRgahHOH81PH7GqGMVWckDasgXhmle0fQ5OLP1But8o87tVBbStLozUek/R0MgQCUzUdVb/0cMKcq5e52LpigNclWpbHreL1sOuebhiPWRKrlVPlZk2tRkdjDKGo2kLv4R6169HF1KKsjQ/C82VCcsvFSHwTmnxO0ZoFVtIYdjNa28xFW8HEpJImVS9xd9SgPp+h6rEBluLnDuyDNaxlvi1F1G740Ean9tDmrbpPmsz6aWbSVNhYyr8XEf4H1HGf65HGOCFP/Mj/D5KHDhCEAIv5XHM2+KNVR6w+99OLRzswvZhNZREkrOJZj4/zAQeuThCIlsYxCKBm7bCg3uLzt6ytTQHJBbqsaaD1CjSCryx5a3A/2M0xzoW/f1MhO8hHB2OGZqb0xAm60OkIUHy/HU1ginR4ziW56fw+dTyBmvpzqS0N4zQdYaAjhE+aOHLRvg/RbgEZcn+ogivM3BzItQzVU6GgKF1DZLDi8W839+CLWNl75AHRLHev0TEpWyUAXvbFvbC0txAB046mq9JanPFOdo2SnLgKerzXWojaln3ID1fchbq0x2SoYRa5kL9RSMFUh+7Glu9vvMii+CIKzPkyCKcp2A2PtzGjNcViHjALuoVF1GiJx9y7BnSvXe9K7lu2ts/FDwTaSSQRPqpRCBen1D/1hFq2XYF6V5JsvCWV75UD8UjiySbG7mnty2afpAJOfIQ51oSd5ALIEMGmemCBbOYEs1nRBNNzcenAOxERkl0pCCZjPW25Y/XUg7zfy3lM6EUAu8AdsmVLQLNGsx28zUp6HyOjnVIhuu5ASoyajTL3KZixEW1iN/DhFoG8XgDc7gNrVQX0/pmobz488IZWpqhkkHhETduDlX79zocy3alfz5PuLh+pY+NWCOvALGZphVNd4g7GclEU2upi9CNTB5bHTlHai0yJBLlIbhxbJEMnQx+rTnQJ7WIqkSihpeatTSkAOxtKeasx1GeyTcH7e7vF1h4gbtnxt0zMYLgIlSiCFnoFkRybh+KRfLKG9LRHG4F6O7Zv06tGrDnW/Cz6n1+y6/+LGxZB7UoOBsjjaxD93FfVcTvJf5M96A9tQUJmz/jwjkZgp+6aMc9D45ExfPVqbBt7xy1zU2uWG+5KioiLJLMUu+k6pF0ID0ODRAffUwN9DdtLAwr1YcH7LjfNEW7VkJEXDqK87CFhFCgudQ2ihzQSrFdBfCZD3sWiGLHuVLTuRlZm0fk+L2aC8ZUh5vtwIQpwHpmtZ+OlyPqWuI0I3lykcWXJprPHinXj1YA0rVeF9Uxl/IwhxKLMIyl7s4b5TQQul2hHStw70ZCmhnNgX5slmedN67lfL97hPiyjS7fWSPhakY5a+pGjYNAYQg8sghbhsHpmg1wBMI+SkXhVnZskc5QzFsTw39H+G8WvvnqV3CdCC9yBuCQ+yk0TCRPFzmRGJK2gm0b+coQBjvWgIkmV+6e41evSvhqN+Mnv3mIiZeenxsdarGhEasxtYFL20RgYwMOaah66MwoOXEAjmcw5HVDd/+N0Mw3C33OnF5gxZCNJHRtiyyCxOkG384sz8ksNZdeV/vyFPXrNtJsJjSB5i0byP5iF53nb6Y9WqOTaiWf1FpN60D1/XhynmgIGkmkEYGmMLTnykY+hgnMLmpkpUX1ar//4VVCR8x4rEXasaSj9RKzezpaJzuckl4ahNEDN4nldqscUq9D+ZvydKDKs482s8EDyB2omdPHBQXVtalFahNNEqeX5FjBj4H/e532z+vyis2CfdpqlS9fqcFYuPRgl5EWfFUstz18nHXXbsYH3Gjar6veIWpTDEG6Nz74c7Sq+yyXnBCs33vvvfzFX/xF/re1lve+9709nxMRtm/fvvytO01Ju4vlwRuO9S5OzsOOUeqQW8zEhcETke/cn69c759Q70I1j8bXvDTuezU38ZUkydKeXKAdWbJ6nHs24shQq+ln65klet3FyB8/BN+YgtlUrexJFAAdE8wENzO9VRo0N3iqU5w6XlN2fVM2SOuUWwXtXqn24LLqaQ4PdK0AYMsrygPa+Y5ubl48eAmBuhHYM1UkcxwFnjiiIdLh4e0/779jgIuG4At7wZ6Xe4LrmW5SXedlT0VyBezlwD+iYZz/As3j/juUvd+nJYQbhbfOFUaIwBhhgYWuKp1eCfV9DJ5PNhQvl8RAGvWC9czCcEL9xnV0v3SUTgTd7z5J+hZIL95CKsKrRfhcJ+UTsfCTkeHohgm+gRJ4+TCjPPydwpqZyxJedQ7N6et1gUcu8MYp+AnmRCyFASlx7b9iC7xZ4NsHFKhfubWioDnl2+rc91EeCQranwt8wgifNMIbUZCZIXwRuGZdE1oQtbrEcZSz6tdcLmDNWne9THPIXR7Sf880hzqe6tJaN0oXy7wY/iyDgwb+vcAmp4g8G3hxJDQToZaqgtIUZxVen8CjR3JvAfvn1DgW7jH+nlHcqxA0pFIAdg8SCKYVoGDdEeeIu6YxgtQiknEh2TONuXZDYe33KQ3+MD7ewuwYoe7Gv47mPadeGXcGQK8Y+xxjGYmQY23MdjTEb/8scsVEXr4qjxfXTmEcyE3EKWjiPOtSKMH+wKqujpzB213PRMrsW9tYJ36ijWRZcXOcVWPj+JgC0YUW0YhWRUiMegw7AlZUURMH5ryHUCwKrmo1ONLWEPjD81puphZp20rjh+ZrGkpGoZAH4nnAH1g1Ar4OuFV6wzYbbm/JlTaCZ4DhGsyllT0VzGyH+lCiYXoO9HW8d8bNhdioZ73uxkAEWFeD7x+DIwu6ETSiPnNTR8Pn8OYA3Y2RB53PtUqq5/v3bCmXjAoJrsKItJ4+JknOfAxo9M7heZrDOnaxUWNSKrhwbzRix+9f9UhTQmoRWv86mFBxBImUPOr9xIi4aCjNyfWGM7/9pcFrz16cB94Fw6ZedYMhC45iIVpIC886RV6miLuIB7DVR2rhwcPwtUn45cv1jKlFbByewJcry73RcW8fQ9Bel8IQ76O8SmAdXD5u/7Oq5vYDK8GegzM6mIgf7xbjkqAcGfVOpnM+g5oL588NEPccgFYHfuQKdz70edT6G1nOhsTO+OgJeaFQaSwo63ws2E6GzTIt22dVQY+NIaopQ7pk9EY9GlEjxOYI9kzDDRvd5CIH6/6sN0DzaIukbYk3DKnhSoSu04FiowSuPgw+6jN2/cTPjUScpzQytGN1cnRio9Vtuhnp1cN0P7QH+7wt2IUu0VOLxD8ySmJcNIYD7HFkEJ/fFolOss0RTC3AlqFc36xnOuusm/vW39DjGYwNMSbCDwv8dxG668f5hgiPIFwf7J89hsCnE2e0q3ctuBRK64wm5pp1mO8c4tqrx7lu77RGAm4fKYB6JDQiNRREXp8W1NAJGh2yoVno0749LiqXNjBa6zGKJhRGr9DDjgAjdbbPwHg742jD0LTwslSj5OrWUt8/Q/2pOZo/soMh0TEw20cx5zWIvzpF7SXbaJuMWlcj5nxlJbEQH2yTjDaoWx1/E/5u7gBD2ztWVz0cW+gODrgb5xTDgs0s2dQC2bDNS6+mOO97PaEzvZhP7dRoCH0KPF8ynm+iPMq0Gm2a66ZSgFuvL2Ru7ngPO1bBdpxBtHcWc8VEuS+lvqH/TNRhyl0hLfevCUVVJmf4iIHOU8c5/5r1nL++jhzsqCEjLSKncqMszkBHGaSH4P3Ep9Lpy9OGwftybV4BrZZvA4jjmLe+9a3L3LQzlH4e6MlF2KEe6DqUwZm/y6nl9akSG4g7tF/rNq+GU+Dz8HfRzd/6E99NiEaqgL19sEV3rKZWRuMYfCNIRIlzJLO64H/6Qvirx7UtzxktgHkJvDpfceS1CPfYUIdd0/qe31jy0Cud+OLCYmKrh7v37vnLeMX7REQt9Bl3FruaTFVaLO4+hoD9aUKk1Q1B2VMrAheNw8efgrmOfsZ5FOtZQTTXNUX4bYoC13+FMhg/gjI030gB1j2YrUth2SsZI8K+LnR14XsRKfp4cmdnj4iI8667EQjBemYxh6epZVCLVa/LvjtJ94LNJFFGNzP8SprxW+2UFzWEj4nwMtfHnG1eCmNEXSiB7L5edYADC3BeXddJvuP4eUdZCcf9X2wgynT8vCJyzVZ99POmxBrKWUeBtYaiF+RrKfBWEf6TgVchrEPYB+xBeHNiiJsRyZEF4qGahjW5Q0XZ75UJO7Ga49y1sAPLRVi+mcELj8wh145zFC2j0jDC/2EkD7Or4Sz7DpTUI0OTjCGjeYhsbGjkgZ8nB+fguRvK98m/jnonhoawkiuJPhKj9Bn3j42NWv+cd0XfFmT7ODyx4Oql+fki5XU524KxcXz0hy/TlPnxSjMQ5202vhECzToc7RZa6/EFWL+pfNBDOd6rT9/quP6xtGed2IUrSuaUGud93uCUpGMt2OSVQLdG/MUCb0bklICa86pILFhrEH/vfNstMFqHY13t25E2bEjKBoiKUuM9VHkZRynAe8dqGoOSHZKXjwqBrO6jgiXrBc2g0UgerEMxhkdbcEWDCMe8LppqY52RRUn+HMFkeN31iY7Z0RZsjE/YNz9mdSEnvgofNat9u43CuFntnwcOIgFRWGmQUQP5fO5m0+fDHZgYInaGhobRsFyv0MaRX0LuQnEEMZqzHVgGpM8aO5HkERRCzoHg16AH6v287f63jBTe9dzTIoLMtdXYVR1HUKDeroB0//ehOfjbp+CnzoeNQ/1Bbc2BWrN0X/3aixxo92kpXiKKXPsTSWJg2CmgXh+IUODKbKbeNwu1robqNvA8LJQNEN8/Al+dhF+6XA1GS/SJ2kqpsycv3pCTi5T+E2Kjum5q83M/HAtrbKCbSQDcBS5cD4/PwbM2ltPe/Lz1Z/C+OeLNsXqXjaa+ZG6tm8hVQ6ie4afYx6QekXSVqLYbOZAXGTobhuisi8i+dxzmU+JtTeJm4ojX9LfFG4rCvUsENg7DZLvQmTxg9wuKYClMtWF0CIvwXVEwH4mmMf2jEZ5rJI/Y8c6vHr1lCdFKM6qH1H3kqYtMiC4eI/6HfdhDc/Dd40SXbCIWQz0qgHotKpjeS+f3elHH3vpG0T8jBbD1Rshq1KXedGJjaJhMx1IoKh4khnGBfzW3yBdqI9xmLdeChsBnlvp9hxi6YRPNRkLDG9VT4LbN8JEniJ6/mWYk1FNLmjrPusMp0YF54nVKmtpvzyfcR3x0xEIKo1EZN0A+Z8VCNNUhGhsiUVO4hsAD3ZGI9KFpV3HJhc2780BPbavpIZBXA/GG2IilnVw2fBGkkOjZvQCb+ugl4XknFDp7v/5lCtKHnbc9Ti3tNKPz5DzdF22FsQbSsZgji0SbhjV6JlNvvIc13lclePX49NbnqcoJwfptt92WM7y/973vRUT4jd/4jfz/RYSxsTEuv/xyNm7cuLItPQUZHtuqL0IP9OZhmCx7oOt5vKZjfOxmSCflOV3LH3Qs/4DlhxBuTJSIoi4Rjdj05tNkAfByFsUog+bBRbINQ6rjiy6+POcunIhZp2j8V2fg8im4OshbC0E7lAHC5hp8fT4wDdvKogOftOwPKO8R83LCyVbVvMO8nXZH3S56keIzYsAfZpHALdvgwaeK/3/2tgKke8p6S6+VuhHBlhh2B1bqVMOulODG5a1TAL7zgDeiBIHHUVLA0Otczecu+un7Fbw339GBzjcFivt/ButTIgfYc+2wAOvcvJXaQ3tpdJVRPL1cy/tl3YyuZFwj8AJj+L+6GZPffIBfeu71uSEiD+13B164uKvkckAxPw4swvaxom+VcagqjGpwMGpO9eLnNMXB1E/pjEWoi83BehgKfxVwI8LfGuEXBe5Fa4IPIZixIeLjGfF5Gr1Ss45Qz4VwtUStr7HLdU4zeCmWe588wgt3H2fqsiH+1AqXiPBTEcqQbFyYn3iQLgw55aEZgiIPJGc62qc5YMtocUhX79kJ5ISRGCJYn14QKoIGuGAIvrSvFGVCROCZtXC8A6MVDgkHNJQFpXKI+89MNOB4O7gOqqhU+xde93T6B47MKS32ZqHo6+YIDs7DxsCjYeG+7zzIbVdeod6MsXrJmyGQe8jFO+vCJgga9vfkrP59pAOOLR0IjJ9SMjh6QKvzibwkos919bfF7yNe4Sz1P/eqV9ozFMPRRf27lAe5CGPr84t7g0RpPpCW55uIeoOOo2B43VA4GH375iUWYQhbcHm4/oVRk3UpeFr6l8eq9NH/ZiOBVmBsscDhFmzW9nniwsjfyEiZ3fuJ7h1nsOGG1xIpXSkO/qimNPn+5A6csO81o8Zc6D07MluA2FYI2lP9zkcehedv1vSuwLB53wMPcdvzrte/G/HTRg6EfcrTnyrOlZP5rkW9zUNuPFqokS89PgtPHcdsgOTiTdRsSt2SlyLMAUw3g2OL8LEn4bXnqbGtnwGiHulZcJaU2zMVESlPkMr/lfay0JpzUQM+PQn2gv46Gbhztw1bR4vx8wjA/67pzds/ZTE6v6JORuRAeGZEyXmv3ED27UPIQhd58XlON1JDQbE46QV/G5q6TwdA3esSNRRA+tx1OzmLvW49GHipwD8bYW7ng/D86/kxkZLj60SEcktKXLS1Hhukk2kkSBLRvXyc9KuHkcdmiV+0hZooT0Yj0uikfP727KfOGHFFMHa+SRYlB4XCyRTufe7vWgTWqN6f4a6LYJoRV852uXIjxLFzMGSW+lMzDD05T/PHLqJunKHEt+ficdgQwc7D8JzNmK7FxKoHg2vjgVl4zpaiPfmYOeN/2L7E6IZ/bFENx/4apdB/9zjSUoMibs82LqpuNMYeWyDLVNfqZjaIVrL5nplXkJKTjQ6x5TxBf/+7mRZi3zjcq5dUDdOJGnk5sgAjSXGdvJ8gqUYzxJmlfWiebtfS3dBEEFhviCYXMRuHXNUG1NOOGmZXOmVnKTkhWL/sssu47LLLAPj0pz+NiPAjP/IjZ6VhZyJRVOv1QG+swyPH9b1AEaxbqyzd3Qw6XUwrI0oznt2FW7EIrk6hNdSxDEnMUM3k+TQ23KzyZzcxDs5irttAbsLNZ7Apg/X7+3ier92mIfBeUYsMSB9FbWORj59fF4rwq1IMTyGndAhUDxqvlMxnegD7+wzFoeU9rqlVw8PbBL55AG7eCld7sO76ljhPc18r9TrYM1tYqd1CawTe9Q5S5MyizkfP2PwxNIXhOZQ9Rd7jkI9fta/eGNE0Rb/ym3fyt25JSUwvWE8tXLYZeaOl/pl9dGehs22CNM1ITURiMtJUeG434wsdiGfm+K/Aha5/Yd34hMoYL+VV3z0JO4/Cc8aKeVoCn0so0JHBNuNCWUmDuef7F+vYSiWU0zPwt8WFwot6biIj/LwR/p1oqayvCLzLCCaFeHyIeKqtoMlqKFOcaT5TnGXUxdDB5Yij+UVX7DvMRZ97iiMNGP7yfl45GnHLxVs071AUnCdGAqZdPcibzsuU34fYaGmIw/PagRHUkFQF6aFx8HQljEoRimteMAp/m6lV36/z0EBnrdalrIDZnnUJxd7hX08k8OhxB9Rb+r63vodA7wyNVPnvVYG6/50to3CgpfW0AiPE9MICzDlg1IdDomRVrx7cAozH8KADx8dbapzo91l6leNINJoqsUVd3Mx/jWI/0ZD0ys3xEVJQbuNIDI+3i8/5ZXM0K5SLcNykz3M4huNO4dp9DC6c6P/5Pn3Ty2tYfCyUcnnFNd8b/5aMusrnUWV/rEcaeRUi38l5uHZd73kYjsUqSj+QkBNEQTEmgg56KczfPXvFsl/4ezeDj+6G8Sa8WBnfPUkeiWF6cTEHtdU982TlTMBdJKJhogLdXVOke7R/5gNPkbwxI75ok59K7seA3VPwjf3weAbXr4frKnnqYUh/LTrlqIg1LSWDaqCzXDAGM8B0Sw1p/rwVysB93zR4/dB/NwfsZlmMGrn32UXCiVEehsgI9avXYT+9Tz8XdYvf9ylukRTqY9VB9NChyvkDWI0WrVvnF7AWe3gBRjXl6LpY+D8MfHhhgZ8R4aa4HLXTlJMP98/FI0LX7lqshok60LlqDPtXuzW16+gctQ3DxJGLWPPntb9GuFduGlIeKN83CPYxC/NtJQmF8v4X7stGQ+z9dY3rWyeuk87oNSOr5Q5rWUbjC/sZunUztUZcVH+KpNANn7sV7tkLt2ws6gUbKXS6g13Y3NQfLDn1oOesAwX/023tj9+7wj3MY5ipeXhWiGFc/8bryDGN6okyTbMtouo8Z8wpGl6qvx0aDiad7jUc9z/fSme5wIZYHRD+mvlzWQeOLDSfnCfbXMeKFheU8SFkXwtzFX0MUiFYOLty0mzw73vf+1awGcsr00ef0BfVDeafF3o90NZZAzuphj+40ipZZgujW2Zc+JelISmxr8sCfYA6xYQ72IKXOaW3ZDWtAJtbt8EDT5X/DsGsT4zo58HzpdOmFuC8UX0d5iNntmjr6Uh1IfvrgnoYG57TsXgCCrAO2v5rtunDb5KBpT0Hrv2s1Jc04ROTuvtnko+b96h2sUqiRREOf0+lC59FQ1er+dy5LGWMmE2hGZf7dpIexqcTEVeSJzVlsJ4pYI8v3EDt/Q/R+MoU6W1b6GYZaQppKjzUcTmfL3oOAJ9x/QvD35Oe5tmyV90Cjx6CD+phzVeni4iO8HA+gc4okcE2BOJMjS1+/kdup45NX+UsEqEmmorSkaK0WQpsE+HFBn5b1MvdcZdLJiLiB6eLsHcXpkVmSRBl2HXzIkkVXB38/jH2bYhpAHuBCx47TnyZWtiVQEcBe04WKY4UrKqciKjHcrKtFqEtfay7+etTnQkVMaZXATSiIHUCeHJaqyPkYN2N56yLzvGW8qcDs+FBNx4rIQsocdA4ZSAF5XtxBiIiWHGGx6qytKkBj06XPDUAr771ZnhqupwYJvkFczC6pGIymmiYP8DhBbhopD8YPsGa9rmuvgYt/qd4GoAU/le+Z0fQahdj59d+FxhvlI0t4XXCOZc3wCkn64B9bbgpOeW+hTnQnmAN/JHzNOMtwXP42UZURA/4eXpkEdbXym2rvl7r4ttZM9DtFu+HIfAh47v3rqcWvngQjs7D26/t63l+9Q89D+qx/n02JZhPgjsfdx4oohAB/nofbJvU+TnWgLEY5ubhy8eLz1xe758C5fPUT9MAsWbFg9uqwTaJYGsCe2ZgXaM418PcC5vBvhb8kOP8CfVDr+8tl4QcM1FWtHP/0WLZfXg/vCXSNDYP1D1YrBoINzZhKgA9Dqh73VoydaawmMKMRdYPYUSNBLckwq0vezYmdl5uKaeUnqqIOELWKMtjlKPEEHUzaq1FbNc1+6/2wltFnWDeAB8bHYfwLBRgUwK7jlACjUJw1qYwVKsA9LxBpX2t7v4vwpVzHquRHWmrh9ZqJEz98Wnqexep/8SlxTj5PcDPr2vWK1h/8Ig6rtJgvznmDOwbmuU5BPQ9f0RguAHHu2XcQvDaj+nhFmyslb8PhTF/vgtjGmpuQuwjp2k49ClTVYB9pKVrSkwfI3ulf6AG0aOBsTiMaPGcP76v++Yx540V19rY1LXbD6gHqcVnW06pdNsTTzzB3/3d3/Hkk0/Sbrd7/v+//Jf/smwNO2OpKtubRxRcdkLPFLmiVE8tUTvVRd7JSB1gN5EQRRkJkZbhiUWBSeQQsA8dqQL2+Y4qX1uGysqX1/D8Ysysgti3C3zDkXPlnmd/2EVOeaasrHmP5tYEDi/CeSPlEGdL+cA9XfELN38d/D2UlDcq/+zz0vw4hLGV/kCvRepFEMfk2c9KvWMM5lFFb9NwAGpx+cmat+5Zqesoqdg/Bc1/LWWPcyk//0TGiHkcwVyfjW8ZRIwH7K5PSfBsLfWXn0/3zj10rhunO9EgFSHtZrxchHu6QtZNSWPhtZEpyu6JY7ivbibhhuXH79uVQlQ7DxSH2Uko+b4P1CKsNcXcME+/UfvSbdXnyMC1InzeAd8/RPj1THjWaER8fEErKbhb5Od45EKVa5kvx6EW069dOsElX9tHkkInEb56+QQ/a4R6rKBceSgKZaEuUtk3KPq/ZRgOt2Gho+WIwgM+mK9nHrZIkBBV2cPOn4AnFl14HsXatla9ODXKyiMsDWZzBUP04PWELEc6etBVjRFAz+F4pn301/TX3VqHL4UpPVnhzZjtwLrgO2F7QmUp/41gL5pouDIYmY7hhPNeV0PgT0JBPiXPT9Vo4L/ajDX/3nUNgFl3ng5542B1Dkp5PlbnxviQAsF1p983n9t9ShK2SYL3msaVp0PHs5PpfrppqP/cWsseV3+PCZ4bBjrd8rnon7tZOV/d53N/6RC8/TId4yQqAVk1XqsH+qwrgkIR7eLP52p1j5esh7Gmcj9Mt+H7s8qhEcqDh8pcNL5vvn/PNPH7WOip9XrLhROat37DpkIX83oiKMCyaHqmBGvAz7XlXA+h9zkE7FUuoZ0H4PrtQX8qYNavVZ8THDDC58ZV1z+xlsaheTAZphYpX4QRx44uRBEkpihLVzsT50cUOLZM0U+5/1D5WNh5EJ61vWyM6FLZp0XBmueoqYaFWxSsD9eK6/b1rht8ylKdIhw8rcWkR9VrH6UaxVu7Zx/Rc7eorllNe02thh1mFp63Db5yAK5d78gpjN77Q/OwyfSeCaEeUTpLUCPSdDfYtyxhirCm8qTK0ryhz54dG+3QkUXl3fLfI7jG6TgJw4jj0HAw1cnD8YE+51vleV1D9yn/fShSB8PfsBb2HodXnl+cX5tr8PW5vo7damrx2ZSTBusPP/ww7373u2m1Wj3/t1qWhqVEvPUlHLxmrL09NK9hSlAGtJ2MuJMx3M5IWynp9w9idx5EbthCdMUWIuNydyOBJMPGpiiLUB1Qa5VEZgR8LeYe62uYC2UErtsO124vDk7vWfcbi/9cuLF72eTy8f2kXNawjaoy4l74fMRGMGtDZS02xYbhAan/f299TkyR/xGGYPn75T93Xh12z+piDfK7JbXUU+jGBWGZRevHvw9lNH4tBWNzSC7X08WqMcJv0r48h2+jf16u6R4bFwPu0hjiDDK9X+b8MWpXjVP/3D66P3kJWVdrrl8fZ/ynruHu+RY/bISbm8oO7fNL+6bZhf3zc+KGrfBAoJDduLV4fYqeVDnFexKJ5q63ISecq1noGuHbogzYMcJ8JHylCzdtaBJPW2qtlMSYonSZM94k6K2LM/W61zLLjVsneGT8KIeGYh6+bJS3bd2kDLCiueqNyNB0CkPdzUNb2jf8ukNJye6fhrkWXD/RC6b9fD1DKXIhK2vBABcOw9cOgt3mDtesWJczHZjok5IS7oH6A8X/+c965Wsxg6Pt4lCsHvLLYYyA/kBdBLaMqHKw0HVeDyCztDod6rNdaNR72x+200rvmEABgKcWFLRv6GNArV5zOSS8XLjPjda0HblnyhlbmhSAqTqGuLlRNSj561p3Ls8sgEysfN9C6ddPD2a9TLkwxqE+YYxeSV6L0s8QAQpA5ytnoz9vvfHVh75/ex/cNQnPHlVw0xMero+WTWmYVSiBG0az+Yi4vLrHfj0nLtpY9NX3d/dkEZkFcNO2ct/C8Pc1pB8ul+R7taS9e/XFfSICDcV63z+vHB2hzlPyqi/f/VJnSOB99vrYrX24hEqGB3rPwkhU0dpkYHJBOShCUAW57iRHWjQnakRoulkqkEZCq9tl2MRFwYMzjdYygo2jQofqOuLbKlfSc7aXI1b7GQuFgqNmul2kMYRn+1xaANQeg7G4eUHJCBCJbu/ZaIR9VPP9TQby2DE42IE39Slz6Nvl6shz4wa4Zz/sPg6XrSvu+8E2bBrpBa5ATkwd7v8CjCXwlONxyccvK0flTi3oHGhG5bPGn9frY9U7/DVK1zrZ0SskrzzVD7BPzrvSwuX7Wrr3oVNtIoEHZoq+5Ht0RgkbLXa11OJ5o8X3Nw9rGks/x+4JUotXWk7a3PmXf/mXLC4uah5K5bHWZPN5N/SxtohaTKacUpOXP7LqKXdWcOlkxN8/SP0v99L4bpf6X+4lfuSg1v0ND+I8hJHyRA0X0MY+Fin/uh4r0K1H+uwfzVgtbPUofxavJIspwDxB/zY0YHLuhGEbZyTV8HBQDyMUm0qP901LTtGItU9D7nk4gWaC1CtMt95K7Q+70EN48QTsnin3yz1iqwy1YSm9YQPPF/i/BJ4n5TrB1Vqz+PDw/OE6uegUzUYfT5fr33KI+CiEWsU44w7L2su203hshsaeY9RdeFkzhVvI2PHnH+F51tJMs5zgqi5LeP+q/cssXLxRFUiAN26HSzf3boYrKD5kP6wJXxfhlUbDxtpGaAAvNpDUYuIEkqkFkrAP7mXkCEPqmdYsrVnLNftneclki+jWC/jlTRu4vm6oR0oW2TSGoVgZ4evVg8zvF+Fa21jTsMVjOM/6Eut6OaQ6/8O89YNdPUTCkkAWtZIPLQFmwzlbUSIQFHgY4OiCHtDrKtEyyz4fpNw/fw/rkRo4D86WDtjf/+gnYSYtQu98n4I2Sc/6DP5fBMZQTxeUlQ//HFW/uExSVXCgyLsPc55nOpqOUAmjLPpA+XV4vT1T8Li71t8eVBB1Nvrm+0XQFi9No0YXv1aPtJQsFOntl2HFmresIsGLWqSGJSj6CM4jlRV5698/pEAd4Gsz8MTUkmHiv//HHz6LnQnEe8rC0PyGC4l+002aGtV0Ool/1IyWX33zeXBdBG/ZoZ8LIwWeiXnqValGBPp16SMCj7aKfToP8QX2twqSUn8d/93lDoOH3rSLmtEourefDzck8MsXwjXbK1wDUXH2hOebCGwc6cMIn5XDjSc7sGmYGjCMMGKEMeDP/+KjDEdCM5IzBuo9/fPlHhOj89f371cuLOZn7OZo1Eef9vvlBAoQc+8qxVk71yqMjl6qkTfVPdo9m9GY6FibyFokzeDz++GFW7T8T2go8VEQoT6YRPDczXDfoQCHoA7Ijc3+RtB+570AEzHMLJb1wdDoCLpnb+4Teu5ltAHHOuU5UL3WqYilHMkQOj+PzsGmWn+dKzxj/et1MUwvnsA77jDcUzM61o24uOawc+wenO+9PyEJ31mWk94SHnjgAUSEd73rXYAqR3fccQcveMEL2LFjB3/8x3+8Um08ZTm0d2dZafWvt7gNJgwf9YdrJ3OFWDMlQgvlWweC8OsCtC/JsG1Rgootw/0XkDi2x7oDsM0A1DYiGIry1z2ANlw0/rqbEjjSJ2zDt+dMQuHDeRl6Zxe7Li5Dygu4ImK0r+Jqq8oSecwiQt98XUHrre+aVatYCFJcvbYGliEhB+zDooB9xD2G3cOXBenpX96voLM+hHPJHNnlE4lMOSwyLHc2lNB48Taan3mKoW5Gs5sxlGY0U8s7fu4naKYZI2lG0xkslqxP2m8ztcDwMFw2AhdvKvoX9nMF9Swjyjrsox18SNzNRvhtgVcI/DuB6xKjeeYTNeqHWxqBFFqAU0dsk1oaDqg3LTT3LLB5+wb+RWK4PtGSLfXI0IwUqA/HkhNF5hJa2EvKybDerzpF6kefdb0sUo0u8a/HajCMHjChtRgUzE40ivb6sXNeyx4wWz18NzrCmel5LQUW9s+3abnmgt/HqgeviFq1D7RLh/Wv/fhrtHzjSK1/23PXc+X/QoVp1JW43BxR2rOWAvnLIlKZR+7hc3dn2sU4zqQwHBgj+rWv2kf/emc1neVg73dXah33KKfuj1qsaWeg+/XhTjmiIQxjDOfZWpOwXWFf63HhZQnXYbWe+qf3l693/8E+5Gt6Nr7rX/7sinZlKVGDcVS0p17oHzSjAqj3e++abfBzNykwqpkeA8QzLk+9KieKCNxeU3LcPFUyALP7ZmBrs7yec11j+VMhxEg5NcE7hK7bDr9wswL3RmCISaKiCkP1rBPU+zy1UHEQUdYzJue0tLA7GiOU8f7db/spIrO8fZRIykYi7/jy/btmW0Hm6J0iS+nTIrBhGA51gv4Fi3ymrbwjvvnVewO9e7S/7nhD90Vr4ZFjcKQLt27q9ap7kO7b6v9+9kZ4ahH2e4O2halZ2LoEkK0aWvzzaKK/DUHULGXdcMrt2V6iyrUmGjAdgHUo65inKlXC3PD1YesMEhXdJrzf1fs8TRC95j4Xpixb9F6eN16+T2JgSx0m+zl2T9MQsQxy0jvp9PQ0AK985Svz9y6++GJ+/dd/naeeeoqPfOQjy9+60xTr6/OGVkFBGeEPOg0iHLAqY+vm8fIFr99SHmRv1cqtbW70QgBxaFY9+f0WtPcGRYLUI2gmas0Zdh7oRqzAtrqZLaXgbhqCo5Tb6Ntj4YxmV0+uuvuj1VXgEMqZKodx0L8wNOy8Eb3XB+aKxRcaTjIFeiMCo6LAfMzAqAfsogC+KQoQl+5r0OeFTtG/8DtSeV4u6edtSXSDNrdsZEgsw/88yWhqGe5mjHYz1sUxw6llOM0Y6ap3fckDsF90hAVmu8ogDn0OnWUKez6B1ITc0FIXdcgNR/CcRPg3NbipbmiioL6+vkntUBsJc6uCTTTKLM3MMpJahmxG8+HDDF3YZEhgyAhDkTAS6/NQZIj6lkYK5x7FWvPpHi3Uk1k1KC0nmK3mm4Vr/aJxeHwh8NZ4sLeoB3C49kLA57pWMqyF/z/SUEKWo2joXw/gr3z3jLonBUirzrltw+opCA7qepIoi/twmHLT2z5ZSjEBzWF7fL7Ixyf4zerr5ZJwL6x6XsZQVmFw49dVBSNsSz6WwTqs5hZHohU2Qrllay+AWKllHF43nGdDiRKJ+A3n8IKbV/QaVM7CPnNGEireXvx+0K2cj12rOkTXqsF3pnKt557Xm8/t+F3q9RqrJRJJ4Dhwj6G4EvG3xHvV1zWjYPCZmKdelRNFBF44AY+HEYEUHuh9i7CtUZwdXtdZCa+6E0l8ZEQAaMOHj/ALqxFUz0K/J23u5yCifCYfndeItPAcA+qN2sr00ZU8zKM/+s1N97dEcuJzaNOw7lm58SHQ7RfbBbFzeMaEZy9U9nH3Hz58frYDX9wHL9zqvPwScApIGbCHj6EEbtoA/zzpSEkzjfbbdALS27A9uLZMNFzuaFbSo0uA/ciCK+Fa+a7v60SiOev+vlhK9+uUI3pLhp8AV3miUp+uJ5X+lYzh7rWPwvPEu9aWdMX8d56agfOGysYNcI7dVnFPPO4A8lLdZ1lOesnU69r5Wq2Wv37iiSfoOkbUL33pSyvQvDOQqodM0DCKqQojvM8t80C91YVvHoFrmgrWNgAXbeoJv86tpKHSDP1LKVTD1it3XYwgkSkeSyku4SQNF5DfAI4s9IZqnG5IipccpFcuspAV5GslxZIyuD0V6bFS414buHgYdgeh/uEj1cVTN8KIgXEDY6IgfdwB9qaR/kC9agn03VxMC3AQKvTh8zJKbvkOwxGDZ/PKC2h+/gAjx1uMdTJG3WOsmzGUWmppYLWvSJ4LlG+kwfNMqyiHkTem0t8VFF/PuinOsBIJw8ZocImRnKV9BGiO14gOVYxt1dz11DKUWUb2zjE+nTJ63igjIowZYdRoKN5QJJjaEltfuF+Ea23PVPGZD+7TUOPSwdhbj/6074k/NDwgy38HOH8Ynjhe3AMv0y0YjfoDbNdV3VeW2EPWNeEJhyzGlzgUl3M6LKUEbqnBoT6RAwttGI377zWldlXWqL/2qOvT+iXCBVcCMIbKQ9huEQ2FnwvC4KdbqgCGTei334gEniG3Z1y1VcOQr4vhF3bAlRVG5xOdKcshfcGsU2bbWaC4J+V555/XdJh0pW/+PibeeOfG0Ctz3axQBr9wAC4c0hSj6yJ42/maC75G87klqkb7naSH3f+dg6R4dYjyVkFOHBHYhF0z5OHhXvE/7qI7zwa5XLW9NTdmQ0mRmujTFIcSBbJ+bkPvHu3Ppk1DMJmVPZc21MksHOfEqaDL3Tfxzq9gTvq5POTTS2Od52H/+p1DmxKXWur1JYrz6Hh2ElWCgvH0n/N7XQP46mE4nmopthCc5550cUzIgR7oDTnP2wgPzyhJ4eS8vjd6gmi/fvfd87j4mvFQBqR+z96wxJ4taNrW3EJwj4Iz+3RwR1Wn83NqagE2mgr+qegxVbxnBIbQ1D7b57o+0uWpxQKs57oWsKmu6XjhfQmuYU8ncuAM5aTB+sTEBKAe9i1btgDwnve8h3e+850Aa2pjHlt3gb6oeqU2D2st4lZaBt1h2No/7FPw+9rL4KcuVk/TEuHXPYPoB9DXKvaKYbgBh5agUxU/kUILkPe0bIk19J7QAlQBaMsh/lqLKdT6kK/5dp5GF5XAb4mD75JR2HW8bGTJKq8BIxraXDdaLzsR6Z/DHUp4e3z/5jPtX+iFO8P+Pa2Em3IYAhUZuGAcrhkj+uxeahk0uhn3fPFrJJ2MqOPYh9vZ0tbM0OASzoeZlpbhCTdkWFlvXEWMiAJyUcA+GsOIuBw3IwwbYQhINtTgyHx58/VKUMApEWXQfHiG4YtGGDWGMSNqBIiEWuTqrC4xJ6SfcmKkD3Puwf7W3eUSPwdC0I7AhSNaosvnrftxnWnr4QmBgiC9c7U0vsEBNx7Drjn1+Fa9sYEHdNlkKSVw67CWBfIWfwt3fe0bmpNf9WaYJfpXVUx8/6Ccj9/PaLHc4vd/KM+5oZqyCvuleJLrMN8jYylAXz3SMNY336Thnt5Llu8lK+nhrOyP/tkbwxZTwMKhVLlVkP5jv5alNIbuPX+etwODS5ivfmgOvnUEfvg8uHQT/MwNalQJgXq9nM9912e+fFa6cyIRE3DNDCX6GHHALgB0DDsQ5B+NACT9gAD1XJaKgtoxpkSSU4sO7Dlwu39OCdpiUz47VoBcrp9IZJBGZYwbsfIIVfeKfns0FF7OsDxj7n1GHUegRGZQ2mvv+vxXlzx/l6V/sUGasUasDilHUtG/yu8aevdbBDY2yozwOVCzOqajtaV1Q+hz3whAJvC1SbhiuOAFCHPUfQWoqmfd//9EA64aha9MwqFFFwJves8ME/SvekaK6Fl/PMjr9uOXurHst2fn1xJNy5tynw1Bfg60T3HgqlW1/OvJDqyvRA6E+3A/fUAEJmqaUw+9zlTPog9KklhNz9pU19LbNqPHiLBKofAnfYpfcsklAOzatYvnP//5WGs5evQoU1NTiAi33nrrijXyVCVN2/09N41Y6bIng/CdjjtgMwuPHIGdR+HHL1YFZ9vThF9X6/V5xXlyATZKuQ1Qtp6ejoQbplDO+9s43Ifwg6Kdpysh2A+9zwuBddG3DfKFc9qHdXXcPGC5aEStYDm5VjAGIeHfqcqS/UsrTPDueQUVyxLZXGhp9Yf4K86D78/A7qOQWsYajaL/3cDodKI+hhuptVoyatRHEATzqbrBr7CIM7AMC4xFog/jPOHiSPM2DWkeUhi6BUWUS77ZW3h0CnPFmDvfpKjm4MDOCUmPogDk5KHG28qfuXVrb57ickq/0EoDrKtr3vzemcASbjXcdrTe/0CrGtJCEOs/N+HW8onKti0n5gst/qGSO+bCJj25T2YZazbVyDqyhIJ0IkOa/79ZdzDPLZTfX8Gc6TySIVRy8nDIunrWQ2PLya5D55EtQo7DcNa4TALWT0Fd9o72+dsrpQudgjF4XaN3Hz2LRsEzkn5zKka5W/zRExr9P7sXbt6gnsUquVesyngVGI2ODrFWRFykkEQu6i9xnDONSIFQw4Eh/xhKlGMn/gED6sCSeeuxgR2NIm/de2dDcjmvx3m9bgXD4HuanY/vCaLCSudJ0F4RNTj4SNUwyhSrpYQ9P0iFn2JsdOisrPm8byfqX9VYgjY5Z4T3e5df454U1JOEhpFd/c6hqqF296QSDwLcP1cQToa6XhzoH0E6ZEkPeO4mNQY+Pqsh2/43qk5BkcoZLkW7RutaihEq48fSe3aoO3iOnMWsF3PkrOknJ0tGf1o01H7D0hFxvcYWJ+uDWut5HwPctndeK00ZQwn0i2jJ7S4w1+3TtzPAG2cgJ70tvPWtb+Xf/bt/x9atW3nLW97Crbfemnvxbr75Zv71v/7XK9bIU5W56QNLe242NxTUQtkSPteBTzwJP7pdcwcjo4N40RDsma8MVPC6nyXoYBs29GGMhjPKbS0pf1VlZ32jD+FHocyfNiO8rTx7aYWhQMECLr84dQk3pXBz2tR0IGW6j2f1DAwSS/VvMSvAep/+rZRCciKyOUZq8LKt8JknoZtx21VXFSDd50qmWW+ITtjHknfdKvgNQV4IDlZB6TIiGGOIjRAb0Wnu5/qoGw+fSwZFVEVYreHYolp8L5soK1Lh40RSjWyoO2bktzlm2XecD1dtKzPQLjcgEikrf/lBa+DCUa1x7MdzwSkQPtQbygdsFWiE91TcPz70fWOz+H0/F9x3lnXOC2WvRv5sYHsdDhYem9suudz1r1b+vu9PKP0Ukz1TcO8xff+LR/Xv8Hdh5UJPq8qav6fNuMhZx8IsMNZ4emMLbhzqURGyXMrPdM91F2IdhrSuSP/CR6Wvw8BiBw7Pwyj9PYl+/q1VOdF+OAS0nffNUuxBu47CUwvw4oA7ICeMMkV4a0Ve+PwbVrYvyyhlMO9e/6CBdC9Vg2rocLhoHPb4vHX0ed8sbA3yZGFFyeXOSITeEGPQtRCSsIX9s6iOvSEI8w9A4m3Pu34NLXkp99HvT7FxjPDesefWuA8bj015b8j3a32jR1f3z9UIve8cLIfBO33Pr6/yvuGBu4Hto3B+Ax6cht1HijOtBNhNOVKwaJ7KugYc71b0Q7SvR+Y197C6Z4d9rbuz5dhicA1bPJ+KSp7jFvelUgm5uaVTqLzO4NsVtm+87iIHKDurPD7aNw/njxXXCvWtJNLIg0MnqLd+liV++o+oXHbZZVx22WX53+9973uZnZ0liiKazeaKNO6MpEcJdAO5eVjLt5VC2jP45OOwYxiu3+AOWDTU/ZIxePQ4vGBLr2c9y3oH0KJeoU1D/SfWmQK9qufZv95cg4cOlSdWCGgsp7dBVpnS/YJe7Lqc9eC6/cI9T1X6Wan9grx0DHYvwEXryiA9A7IMa0/joFuqfwvdojzHcvbvZCQxkJrCa54EfX32Jt3gP/ko2LbWEr3GKYWp0XD4WnWwKxuMf245L3wIgtaCx0ugJzwtEq01uiVWq/32kf6edWvh4Wk9yOpx7zw6mbBgv1n7te5//5pt+vCHa8jav8xzQswSNbUFuGAEvncU7Db9+3hLnxPT35AXDqQ/0Ak+JxRW8kePwJ6GhuyGnzHL7O6p7l+hQrB1REPQMnQeTLu0ovgk+xf2ywh8u8qWfkDDxsPDf6Umu1D5Hfd6JIK97YqxZQljRJ+miRFs3YfDW/KqJIKO1RJVN1ZEqsZM/9yM1Og5kyonwtmI2FgJWap/dVPsod7wn2bwD0/BS125szx8NXhOnuHlzH7AJK+3brKKzoLmrX/5IHl9Z5vB/gV4ydbetXAWveonKyKCZYlzaONQxUEU6MKHF1y+Or3fW0FnxymLTyuFXs/z+mENwb4M8jD/uTaMu+/2i4AKu9Uv2uKmrfDg3uIzt24rh7v7115K0ZVSfC4FLmzCk4tKMPfXe+FtRvUT/9v5fmUo1Vr3fRyta/pViBf881Sn/57tMYW/1iaj5/N5I/2jevuIDUPlJX+TnmoCPhz/YFfTEvw8DPtg3Hf6GSXWJbDrWPHD1Qjop47DK87vPaP9+G8chkNtuJQ+jtm+XVtROeWt4ciRI9xzzz387d/+LSMjI2sSqEdxo1AuPVD3A7upFjDCoxPiO4fhyTl47YVF6ImvwXjRiHqx0oye8OuQlTok2ZiaVaKkfgrpmR7S1Y0vn1hN9SZWCT/CvNbTElt6yq+z0IVGn/ym8Pk0pESuVVLk0bHYc6zo41LjcZJSCr0JFzEok29zCfbpFT5ncotqrtwFVtfYwNUT8OACU9+dgQ88BY8cLELhLb1RBv2AOhQgqBasFf/sDtVVkXx+B0oMFBvoZKW2Z+hZt8DDR+DKdeU1Fz6eZtcTkYKt2XstQ2KlkEzJl4NZCcnz1oN+iMCFw5oSkmaFtX9DMHb+XvWdr1IoKOE+sv+o/vcM8Nf7YM/kihpucmKm6lgbtGzKwYJGe+rgEViXf/HE/asa+yJRg1Yot2wL/t+cUbTT00qoQBC8Ho6UVRjU2GI4OWNEeGlxZTF9+HsjRppJ/9zMlZLq/Q/nXy1RsH64rcZr//8lxWgNKe79pNq0/IwTSGJoB/tqauEbU/q6Xzkmn6u+RDmzyaljK9WLgay09OzT6BzZPqrA6tC8nlMzHQ2v3dqHvdtfZ61Jv5RSQUnYDs/2cXhY9cwu4Q2dOnZ8NXrRV07ICL95SPkGvK4Bmro0VOt//oQh8VA+g/z6v3orvHUHPCvWSL2Qx8LtD+F+qLpgVHIM6DkhMFW5j9880H8uVe5//t5EXHAOgBqScH090tb+Q3nMS9cQGG5oKH0I0qm8zi9vse1UHX0LneKx2FXuj36eax+O78PgS/2SStsq/Z5I4GhQHjXXF62mMxwDdowW14lM+V5tGdaU5qr+7Ixupx2tfJpySlrmnXfeyZve9CZ++7d/mz/4gz8A4B3veAeveMUr+PznP78iDTwd2bDlSr3ZXrkNJ9imOkw6UoUs0zCJT+2D152veSghyZeIhl/HaF1MP+g5SCQI16A4sA9b/V6fUNKS4nY6Ur2Wv54n/AhLKVQn2ClKPhnDEBIvCx0FLb47y6nYl4CVFGNx8Rgc6ChBYJWM4nTz1pcyZCx0tI7Y023IKyXVepuh1fXwNADvn35QP/uN/Sce66Xy1XMrsZQ34LyvK9W5E8vTpnscrqR7hCHwCx0lYLtyvJg7Jc/6yXnBxUgB0EP245xB14H2ZAXDFqtW+dyj0dTIn32z2v/pLjQbAeCV8roMm1c9dP2zr83tJTz4l2Pf6ifhHub3awS2NHUMnTfq/f/8ZRg6QT5+0DTlJaismau2wi+eD9fH+nzl1nL6QmSWjcm/R8L56/sMSpY37Tzqs21YX/1cRUF6GsnDJldL+q2BRqxgfXIONgTlmqp5lGtdQkUw7Gfi+gdqKF3owj371VvTp6KHJ45aapw+8MFPr2w/BrJyEhqFwz07MnB+Ex6f0zNq/6zyGYXhxX7vi05ysZ9tqYJYb1zd1CwY4cN0NGtPSCj5/g9/ZlW70yP9zjlBHXuTgWPPoqSgw2EEVB+9KbxumNLojfshGWg9+P9a1H8/7CGaE/181Qj9nO3lz1VTr6oRdeOx86xXwCyocWl9rXzOVg2toN73Uih9BbD7t9PMgfSuRpKFj/mu5oaHXEReR10qhco78Eq6K+Xzc6IJi5Sdev66e6dV923G/Q01gkYrHwqMUatcb/2kwfq9997LH/3RH9HpdEoWhR//8R/HWst99923Ig08HTm0d2d/q5KI1iNsoZaVbgZ/uweuXweXr3eLyy2cXEE2ykS+u5K37sPgIWAYRIEEFDmg/SbCmUiV8AOWJvwIAc3p5FiEFkUog9p2V8EslDeY5Thr+oEUIxomOgE8MR0cEAFQO9W89SVBrYV24FmXZe7fSUgP2ZwHF7GBG7Qaw7vXOVLHG7eW299vrEOjhH+e7urB0w8YrIA39ZRkqXSPTf3quwZz4fvHNFR+tFZRmoLHSUqJGXkkCUrcuBIwyQqXXRJ3IIX3wu9JFw7DE46EbaZbrkFaOVB7LPUm2N+8IlCt1b3Uwb+cEl433K83Oov+cQ3Re/c1Lzm5fHwviRTKkSdgu3Yb/PxN+uyMLNQit6ZWcgyD1yWPRE0VCeypGVvWmJyQRG8oUSLSI4taAgjK/VnJiIZlEgkV3vAZdD9oeXIl4N6DWjv78on++041xLUi737nG1emEwNZecn35oreIqiTYbeLFNrfhi1jZT0u9ISusTB4oI/R3L1e51KnjrkIPa92TLuIobAaUvD9d/+rnz0LjT4F6Zdyh2jo9YGOepy913kuLdKVqh5nylFCuQ7n69ovVfs90PP66RMSScEOH0boXL1VS3V6Hp0rtxTzLg6MglUw68dkvKGcRaVoXPf30YWibFv1PMobBowncMxhniW4snKgvpjqY9699sDdv7+QUiqFbVHug3UnKP8XAvaK3sOwy/I+HkQP+Os+1YId470OgPz7oqW3D6W9Ecoh6D+LctJbw0c+8hFEhOuvv770/rOf/WwAHn744eVt2RmL9Ff465HWOTw0C1+d1FDgV24vh6rElQG8aAT2HC97cTMosSf6/IrJBQULJaIHKSbWmSq9/lDwr0MFcEOfEOGwzU5sZrFp8DjRpKvmcvtJ2jcMvqLYnHYfpVDkwsUpAhetV8NJuKg9UGun2HZ6auEpVYDrvzqbBWDdvXeWvUESGQ2BCqMLAC7ZBNc5QPPG7XDxpopltDKmobEm3JRnUhgLQFA/7/pqST9LZ57uUanvGkZZfO84XLa+19Phw51PY+xyRmRH2CUr6YkNfzcE1uFDUJK5PU4BnG07pnTKlnC9SO+Fwxw4T6B3tfM+9zv4n449//R7WBgjwlDESNTweMAZI+Y62j/oswZ7w6glckDcK0heSRqq1IPO2dJXWEOuetVBjT9Q5HRXjS3B99Z0mHgoVU9OPdbonXk0fWWpnPU1L5Xx8/2sR8oRklktVfX1KXjVDkoszqWa6muMPGwgyyYi7ozpZ2C+aBh2OwPz3hmNHArPtnw9rNGUEL9uq5GqIlr/2lfu8KXpDs+rUyXUvyEwzq2xPlYdX6BNDBnhvc401yq4jMLvQ1/dXoxAzVVOCMsbhul0QwnU4hPrFH4P8fuJr/px7Xb10l+7vXyuJcG1SjghuKY3Osx7RngKfXoW2NAHJEN5bk/EMLNY4ISsondadI9sOSLkVqqPEmB3r1tpUV3DPw63NRw9HydK8096opeDNoroPDzmogd8/yzw5DRsr3Aq5OvX/b3eGaOq0cohtjqLctJayqOPPgrAv//3/770/qZNmwA4fPjwMjZrGaS6GYYKfx2483G45wC8/iJVKqrM2yFAungU9rb6lA3LykDIooQEm0f6LP7KxnW63fKejH4e+w3NEzPCpxnWL4j5jj5czojt9AG5VYBO8DyH3reqV8X39Uz6WPX+5RZrlJ3/24fh4/fDY4cKj7rfCBa6J643Xu1f+AzFWC6gG2w1dAjOeAxPSXx+sf9dP9ZXrNfSKBdt1P8LN8nqRtIvjcECs10YCSJA/LM7UFdVcQgPmBNa8wODTSfVWuFXBgyfJQ/XOagsLxVhcMFQ4Vk/FtToht59oeeawcEfWvx9eF714K+tEJj1QB0q+7TA5lGtqgGakz9SUZDCvvYTr9D4dIVGRC9rerzybOlI71z27QM1tPQztuRrfi262irSTxEENebuP66vvZejZy6fQ+uxaoyoxUWd9c/shRvWKYFtFOgRJyjVNpBnmPT1rAtsc2DjwBwcWIDtjd79/BSjvs6q+Pb51+E+HTqIfKj4ZAfWncA4t+aWgZTPIt/e2Cgj+OR88dHqWXQS/ZJI1LvuI/M8YB9O9O/a0xvDFfSHBmhTqf4R8OfUqntNnzPI96+G5q2HjPdHnKd8tBINFY6jb+5YAkfcHlh1CHm9rJsVOno7K4D5QuBtX+gWAL6VFjhjck49/NUUqrA//V77+TnahKO+/J7nHcuU8+e8oWJuh9/x74mojj25RLTymZTEPg056WXT6WiHx8fHS+8fOXIEgG63u4zNOjOZ2HhpuWRBONF2T8JxlOQDoNsuSBt6QuDdAlxXhybw1HQ5/Lbf88E5DZ8JJ1BOOLJMYGFJwo9amfCjygi/EOaMVPJHFlMFuU8XLm/dPym64fjuLHeoeETv4ScCdPVQeCiDD+yF7x1wFjltP50i5OZp+0Iwdnnf0M0FynXW876d5QO138aEwGiNO3c/oO/185rnthX3R3WuguYrjVbG8OlA0NmScNOEsuV0gxTpHn7TtBZ2H9dyI5ubfQw9srLhzislSymAWwMFcG4Rxh3orBqV+nQ5t/aX6nQH1v7GiQ7+5ZMTGh43NzW/E7hz17e0BrnvT49hqf+1JTZqUBxO9NEMXtdj/f+VFqk8Q+5FYwT11BxrwViF/8P39VyYstUx8e81jJKebnFG3agybj78dK3LUsaImihYf/yYek5fuq3YZ6o5picx1+786OeWvekDOYtSTVvKXxt1Mnx3Gtqop/BcIZfjafbpjaGDCAf2WkpO1k//FuHDH/vH1etMPwkdImEfc2NEu3BYLba1kgf0nrUnkJwMtBYhzVgf7mw9WUwgsQn4coKynSGnjrtu+Yv01yNFYF1ckLh5xfHwooLUcM/upxuKaM56F9W7Q90yB7RZAdh9mexOBg8fhI98B75/UPX2dgXIdzPFantbsLBY/K5vd3D2S7iW8nPT/eeGZkGA5x+TzhixxUcOeN2Kyj0S2DSiTgP/3R4n6NmTky7dtmXLFvbu3ctXvvKV/L00TfmzP/szALZu3brUV89IHn30Uf70T/+URx55hKNHj/Kf//N/5pZbbjnhd1oLx/SFMSBp2YJfrXN4/0H1KHnSBu/x8IvWiHo3LhnXsmEXr+sNvy4xwc/D8zaurEWxnyGiH+EHFBahvA63s3CFEy0xweSLi/qJVTDrnzsOzDYCMFtdyGfcR9Pfq/jwofLnvrEfLt1c/B2OBxZbi09stQy96yHTPegGCMVGlSvPZ/FQDTeecKOdaHBlvF7HIjZ9COasfnCpyAiA2RaMjvcCg2WIADljEXot3fkB4w7QKwn4I4Dvz8CVG3S9huvXK8znkhfPi0jFcOVepwYuaKp3/SgupzuYp1XwVL1sJNh6rOusm5YJUww5GdaKK5BLRQ5srcFX1KNxJeOFglQl9Hk6JSncg1dLqsYFP49HYs2BXFhUo1n42fDz55r4NntOEx9OCcseaXbWxLcz3EPqRlM0/uEpeMkWNe56YF4KgT85dv4rL79gZdo+kLMiYgQbGfqWcLt4TCM514vuq1Xgu1bJ5bycyEH0yOHCMwvqDb1xY3/jo5E1N89FTlAmNWSEBzieKTiGXp33LJwzEhlsQ7Q8b1iS2c2hvsA/PHOq7RwNaq17Y8vhTpEn7j9fHUt/DZ8qemwRmiP6uqSLBhjJY6bHDsEH9+lnHtoHzX1aLWQ00WjWZgQzs/BtR+73+SOwo6mpemFbwj3VGErl6XyfxxPYNxf0z8LeOTivXmCMXPdwazcc/41NeHKmP1C3mm56tqI1Txo+vuAFL8Bay2/91m/l773uda/jH/7hHxARbrvtthVpYJIkvOhFL+J3fud3Tvo7C3MuJN9bzEIl96aKUeGWbb35Zbknl+K7Fw6rBb1aNiwcvE6quR6b+1hOwwl+plJVxqshwsddiHAIXH2uyGLwHJI7LKYuTCVVQggvtvIMRV3gemDY8O0qvzh9KVmopfBS3FhhwLxyk3o3WoFnvZ0Ffe2W+xNKPxBrKcB6FRCsSi63FPO4skneUN9clF+DPoB9ifd9v6c7ChgIrnuSIGil5YTW/E1Dmkfk154PbfreMbhipJg7Jc/62ckzX27JwWb1IcCFY/DIMf3gaL2/5fsEXe4bnjcUlzzPK34Q9QPqIrBlVHOdF1NuyDZrukbVgu77uJalqiiF7W3UFKwfsS4nv6zUAst3Zqy09OujN3aua/T2SfRL50RaSqlvwePoLOyZVwP5czaXeW+qaXUnITc86/IV6sBAzposZXy8yEVCHbGwZ6r3/9cquZyXfg4iRB1EnoTLPw61YYNLr6sa58wanecVgwJQGCMm54q+tYGxWn/ge5a2MpGAQ6ce6fMJzuqe6jphHycacDzIybeobuXJAZc6n6GYA+tQPbQfq3xYqce//nbFYTqMVu+ZqOv/Ty4UQN3LzoMnNm71O18ErbU+vVhu29552DFWfDbHevT2dUsNpvoQGuevn260lk9Oent485vfzLZt20jTNJ8UCwsLWGvZunUrb3rTm1akgRdeeCGvec1ruPLKK0/9y9USPolR4qQ374DrIq13eNXWslfdl20LQaJIUTas3adsGOhgHpzXWIWhpHeiLyej8lIhwkY0RHhyoTw5u9aB9QDEPrgf/upb8NABBbj+kTovPJwAzHaKRSt92rUsXZRi/DyLbmLgis3wpvPgCrdJfOGghpE6Q0NulAjzYxa62G6fVdWPPA8LC20tF+H7FPatskesuEjwXN0kJ3CM2X02yaxf3yj+z1oFQ6P1pS2oqy39gLqg9Vsngw3UE/ekwAVjgWIQrOFzMQTey1LERRc2NfcKCrLH8MAy8HSTNT/4k+DgP0sEeq4B/RXcRgRDKLEnFARz0GvlX8NyQrb0sbqG6GVo9ZB8rVf2nLUuIZDNnwUmNY2B7mJZEQ6fzxWpnnO7puBbs8V7Tx0u10EOdI5z0Ug4kNOUfg4GEZgP8p4/uE9DfMP9bq0brnrAkFu/VQ6Zha6GRW/s45n15/JalNCxB4VuvaGuej9WdUko0iPXUtrg00nJ4xy8HovVKw6Fjnh4XnWsfns2lfdEYMSFmkPZURSC9NCxcs2mctteeZ4aO1+yTQk6f+JiJU4O5eat/aM7wv5V5yjAeA0mXds8AeLe47Cj0QecB2vX923zsDLm+2jkUL/Owpu28nLSYH1kZIT/9t/+G695zWtYv349xhg2bNjAa17zGv7wD/+QkZGRlWznKUmtoUhLHKlUyeJdj+CarfBzN2mdQ0/Y4MmWwnp+4cY7WtO6fL5sWGhh8SHnky3YUi8GfaWUE2HpEOH1QY6Nb2M78Ki3UvjeQc33fiCF9z+led8l65cjaKuCWf/HYletYdBfsVyufsamKK1Ui4rxu2oL/Mz18CvPgvMm4I7vaX6r96j75xJo72I9GVDQFX2uLLiFTD2MYV+qivTZkhNskrvMgpZ9gv4snP4PPxdCMO8PntElQNBakGoOkTdSbGjAwS7gPOoZ8PAcXD1eNtCFj7WsCD2dhFE+UbDWt40Wn9lzuH90xFrvdnWPLB2UQ/DYLLs6x3qjeALv7JqXqsfZj8tQAgcco38zyIMsnRfnQv+C13589kzCPcpnw1em1ZtYHbu1ss88nVT3RQF2Hih/5v6DvTnqp+BVB9i1Z++yNHcgqyjVtCWvq32nkr7X11O4hqVKvBXu1xtF89YzNA20geppVWO7Mx6vyXnuwRqUowE2uao7s90iijE25bP1XNirl9IjJ2LlvAnZ/A91YP0SxMOh08Tfr/UN1UNDfdrroNXyytYCzthxjYE3n6f6fC0ggK2FTtW4cKrmjhejZMHVqIaedFHRnPoMxUAW1XuPAjtGe506/ZxDI7HOW+8cgt5662dJTjpnHWBiYoL3vOc9y/LDv/u7v8vdd9+95P/fcMMNvO997zuta49O7Cj+qEXF5AGX7+n+8IOf1+R1tQy7GX2Vx4vWwZ4FuBxKZdus+3uqBVuc0aIPYF8uC7uIYFlicm0cUoKIMEyjkxZe89TCvZXN8psHdDH4CRiGS0MZtIOC4KFKWbOqQrMc/YwEW4uWNl6JwKt3aFjS/3wM3nABXLoObFoe8wDIWleGq3gjuF7OBJ8pAddSoU5ncU/WfCrKG61r1z0LT3LJ8QvL/QyNNLB0dMR0S6/lD561CIL6HqBoHhEoMcpEXfv1yCS8dEfZQp4b3Vaq9NhZEu99DkucRQJPBhU4PrgP3mzgum1lw9Ia77aYE+QLbhuBbx/inuwJLvH7HayMYXAlRcJH0OBhowQ6I+5D/faZc6V/4f4E8O0KmN15QHMOQyPzubImw7npQdjN2+DBp4rP9EunO8VSbf/4+W9wyUXnLX/7B3LWRIxgfe5rHl1h1TP4UKB33bq116C8lsXPff+65CAa0dD3yy1MtR3BcgDqKvv62pznQl+iuZwR3oVlj/uPV86itb5X9/OOI+qsmXKOG4tGRmSojlXVvcJr+WsIqn9Pzvc6hUJAm4N2tPTyjevh1ecXzlIjZaeZRZ2q124txiEsrd0TKRmMXzjnfCrW0UWoj8DeaR3PZtzfmNQzX43y5xxqwfn0r7d+luSEZt/f+73f473vfW/pvfvuu48vfelLZ/zDv/Zrv8bHP/7xJR+//du/fdrXnp0+wM+/5e285z3v4df/za/zyc9+mvf+2YdomSzPy7zrq9/kvgceytmPp2ZneN+ffLhUNuzOz36BnY/uzgdy19gCd/zzPaW89Ts+fje79u3XHz4wy85skju/eF+xkRnh9v/xEaaOTuftu/fLO7nrM1/O/2612vze7e+n1Wrn7931mS9z75d35n9PTh3j9j/8YNFJI9z5qX9i58OP5ZNr14GD3PHE14ocC+COj32aXbv3KVhf6LDzQ1/jzge/V7pftx/9LlPHjucA976v3F+0z0Kr3eG9f/5hWouufQsZdx3fw33+OkaYOnqc2//n35Q2rTs/+jl23v9I/ju79uzlz/78E6Xf/rM//0TJ0rrz/kfKrLiJ0fs3N5MzV9/30Pe46xvfdAs3ovXcDbx34gFaH9oF35qE1HLXfV/nvq/fn7PETx04wu1/dKfm5Dsge+fH/pGdD2hJQjLLrn0HuOOuf4D5VPN2gTs+9Vl27TuQ93PnA4/2sJne/ocfZHLq2PKOb3j/XPmmXfsOcMff3p3f43fc9ELu+Pa97Np/MAfnOx96jDv//p/Id5HMcvuffZipw8dyA8x9DzzIXV//JqzTgWp1u7z3Ax+h1enm177rH06hfU5Oa3xPeP903bW6Xd77P++k1e3mG/dd6S7u+9p3dPM/vMDU4Xluf+DeAtjGhjs/8wV2PrwrP2yWv30qZzy+T3f/Ht+Xg4Sdj+ziznvu1fvgyDJvP/p1ptJ5BUQC933rAe76wtfUQCiy8u070/vX6fDeP/kgrU4n38vu+vo3uW/xCViAd1x0K1PTM9z+N58o7y+f/Cd2fvcstO+M1y8gwq6n9pfWLyMxdxz/DrviuVzp2/nobu787Bf0Ak4pWvX593T3779/iKmjx/I5et93H+Ku+pGifbbLe6e+Qyvt5iD9rnu+wn1fuf/stO9M758IU8eOc/uff7Qw7l+1hTuvPcjOHYfhF3bAlVvZdfCQjm9s8ioKp9K+X/qF151e+9b6/ftBa98n7ymV/739I59galtTPYTXx9z34hZ3Hdmbp0y00g7v/f2/XNP3773v+wCtVicHOHd9+euqPwuwqcnUvilu//jfaV1s542+85/uY+dju3Pgs+uJfdzx/r/L5/lytu+Mx9fArif3c8eHP1UCcXd85nPsarQ0WnUuZWd2lDu/+KUSQL/9f/4NU0eO5+fSqs+/Pvdv6sixHHzf950Hueufv6HtXdeglXZ574c+Sqvd0RD4Bty1c6fq9+4Mmjo2ze13fLhkzLjzn+5l5+496p0/tqj441OfLTmH7vjQp9j1xP4c2O58bDd3fu0+uGQoB9e3f+jjTM3P5rw59z34PdVP3d8tyXjv+z9CizR3qn76c18p3b+pI8e4/U8/XDKI3/mF+9i5aw9sMnC8xa79B7jjs5/XfHV33t7xyc+ofu/m6M6Hd3Hn3Z8vOYpun/omU08ezvPT7/v2A9z1ha86o0SWj+8nP/lJ3vOe9/Ce97yHn3/L21lukXvuuWdJ28DLX/5yRITPfe5zJ3zvbMnLXvayp2WDn5ub4zWveQ3Hjx9nbGwsf99m1uUdZIVnXYAogqTsbbWdtKj5F9YCnGnD7z8I77pGcygbziK00NVr/9/fgZ+9WImfwrIKS5VUOAOx3UyZaBddW1uOMO7ALNzxKPzmsyB2UQVpBg8dhbufgvU1ePUFSo7z0QPwk1vVgtWIdHHU3fNQrLnr852CjG7B/c6XD8KTs/AzlyqAzktHxOpxb8TLmn9lrS3qqIfPbZen3nZjuucofPAJeN5mZeeNo8IaF9ZZHk6Q2GB9+bpwnFspfHafMmT/yPlBXeaij9I8pYCUM++/r0np2zjf1X5/cxK+cxjeelVRgsu30xOGtbP+3/3GJHz3CLzlyvIYBt9d7Rw6a225/qYfp3YGf/l9uHwcnr0ZvnQQ9szAz19eWGrzEicRNJNz27NOnznQSpVv4i8Db80vnq+VLfxcH06Q+vLtOSslpb0s3G+nFuCPHobLR+Cnz85esxKSnyfhHrrQhV3H4K8fhytG4acuOWf7B2AXOgVhqU9BevggfOuAkrpetbXYo+qrs4+eidh2sPf488d7VoRyml3dQOPc33MGcnpirUsVXEjLfECZLYCgT7t09bGXUzdcKbFtv48FOlMrhQcOw5f2w9uvhb96BK6Y0Bzk8Bw+B86jJfXBz+3Tv9fVYe/Z03uXU2xqlWtqIS3rgt0Ufvd+eMdlmp/9rUm4fwmdshlr1HH1HHv8OHxkD7zreo1ODnVmXzLac2UdWYT//j1497XqEAuvnxQYrJTWmTtgJE+Hrd7nfM3N9dEVP/QoXDgKz90MH/g+XLWumJ/h7zeioAa8/34KXz8EDxwtdOWqnt2Ie6Kmp6enGR8f55Of/CTDw8Msh6z509Jam9d4B63n3m63iaKIKDr5hS9GoB5hrSkY/GSJ0HQT5K2Hj2YMGw3smYZrNwTl0XCAHVdfsrA+5aExy31w+zCN8NqCsjiCMn2PG80huutJOLgIP3wePGu95vFvagIHYF3ANbBUve4wlBo0TDwvXyGVMKDlJ0oR0UVqfR8J+u7vQzvTNIW31+CvH4Xdh7T/t27T/JfUlHNnwplfzc1f7Kgxpl83VmMzzu9vMK8AxmOtlb4UwVz4Xvh/FpjpKqlV+Bv+2s4ju9qyZEkV0IPlsLNUP3IErt9U/H/IAr/WWXZPVnztZh9WmVq4Ygu8GWVXvWWr/h32+1wBC37c/LMf4wnHp7BnVgmZrt5a/uwK7DUrImGuehjK70nzxoL8wHOxf6Bnip+Xfp+5dltRbqcfU/q5JImBNEj9Wiqdrma0ksK5svYGsuwiIthawHlTTfnwf9eigovnXJDq/mScYrIxYIQ/sgCbNlX2MQqulbUsYT52qF9urME3j0E9Ljh+Srnb+sE1vVeHba0SFa8X1SM3DWnZto0uTz8kBPRh4v5a4Tk23oBFysTb0FuyLbOwaxq2JVonvkoYV9Nc9PwCNvw9jUJZal9dMjUYFBMd6+j8fGoRXtEs9vBqelOVkwFgU13xUxj6Xn0+C7Lmd4mDBw/yqle9ile96lUA/OZv/iavetWreP/737/kdzZsvXrJ/1P2Y/dYKr/a4OoyEwwgOogXrtNyLT5n3QPZQ7NKulY7WzU0g0kGQX6u+/vD34MPPQh/+ghsGoZ3XgvXb1Rvs3HJGePAbPsEYK/PLLRAq6s11sNunYWNSmpqvaQeejHcgVdzitKWYXjlFjgAPJyp5/GRQwHBBQWBHra/QWKuU9QI9n0rbcxnWaqGCTcX7/j2PytTpd9EvPTrU9UgMRsYJMINOf+hNSL9DlCDHqCTcxr5sb+jpT9ycB6shegslB87G2KkDNi9hfeabfBzN+qzJ8oMS1CeCyJCXzbePZqTf8fUdzQn/zFH0uS7dc70j0quoJNhp/g9PKWEbOHn4dzpH+T1xHNvYTUiyT/8584xMCsirl9BxJyPQAv7V9cySqcj1RDXgZy7IpEo700j7r8O/Lw5RV6DVZWqruD1ovWOEX5qQUsXb+hTupjiu2t2nvc7gwA21uFgB+ZaOm7hcIWgdS1LCNIreiTDrtY6qHNvfb2s6+Z7tfTXx0YcYZwn4Aur9ISA3QK7ZuCSdWVsFDoXGhHSdGC+4SI8mxqR8bQG0FIuffB6IlEj0tSCvrfVz8/g90PDRPX+bBlWR+xCtxeo56R5Ky9r3rO+detW7rnnnlP6zsyxp57+QycQEU8SUlH+DXDREPzjk2B35MAPCxxsF+Uqwk0qf31GTeqVfmQYgrLuAkwCkx14xQZ4zo5iMSRGQ7JEtHbxCdnEbfn/cibxLmxIyu05SwqmxAYrMUha3jTDzeORqfKXvnVAQ/0hWGj0B7OgnvWhqBegrxZh1xLK/stuvQG+N6mbSBL1J/fAlr3svp/HW7CpEfxGn014LUi+cVYP0JpWX3j4OGxNlFm7BNKD188AUW9NVE7hMVKsSR9a6YF8LTp3SkZV90s/di4n/2VDF+jndh6EZ7mSLmaV1uJpiZTXlX/e7/K6Z4C/3ge/GKk32n/mnOmfm5+JAWIwKXSkfKbkob/nGEAJJI/Oi0VTxLIgRM8Z0c5kzb38JUun9w3k3BOJBNuIIDOFowCc7nYOkp6GjPBQ3rfXC3zP8TKNxL0e+OAMX7PzvJ+e4RnhM9Qhd/5Ir667Evr9MkuJqDjXa1371zWK0mvH52Hj+v6GlpCAzYu/Z6NoPfONzV5Am5FXmeLRGXjOhvL1c4xVnAtyOrp2v7kpaE797AI8NQ/ba+QVg/xnfPRl2JawfUmkJLAHZ2FkXZnEOXRwrrCcFFj/8z//85N67xd+4RfOvEXLIO3FmTO/SKjwh+ERF4wp9f9sByaMvmeByUVnsaHvJrUSoeF9Q4SdgpvLgWOQXFCUkzGiYB00DDosudCPTTwMnfYy14Edw/03rbMgEhlsXXo3FNBN4cat8GCQy3vjlt6oASoWMf/SWmgFnvVw3FbtbO2j7Bvhkh3bIJ7UGqc+PCsfrwCgewn/b74FI1F5vsLqGSSWkurmC+4AHYY28J1JuHx9L0j3nuhzBbCehEhksI0YpCDaI7PFePlSh7XT9+6thogINjIog7KByDEpO8btS5IJ/eC5xqDsRSrP0H+v/tYBBeuh4ewcEjGCrRlVfGJTeFa8QlfT8+dcBOqhSGQgQlPqYNn6s/YYsgdypiJ5JY/VbskySAiGQr1TRL3p35+CLTG5B9Z/TiiAHmt5ngegDQI9wigYncpUZ4KyXnGubGdigLTsdRaUzf3IgktjsBo23pfN34AJnAP+/0U0letoxfGXg3Sna++f0/fOC8qmVUPRz0Sqc05cJycacNjCvnk4f7z4TA9g7wPUff82DqlD9hKWqLe+8nJSYP0v/uIv8tf+YArf87JWwPqyiEh/K0s90g1pzzTcsBE1VwGTs/DsLWUAG072lZCqBzESLRESAtVbHOFU6FX3bRutq9EhBHX9AGz1/XYXGh7MVtp0ljYuiQRbj0EyoFuEpAhwySb4sTb8/ST87Da4aFPxxapn3b9H8Pes1fwkWDWDRElKG2aw0QKsj2Da5W73GF2yXuuf/8zxtAhfqs7ZNQVwT7AOQUPgr6+UWszXxbnpwTuRaGRJAnGmxJGhZz06cV7XmpbIFCVZYgN1NBrmbaKlJW/dCldtK6IHvPH0XBCviEhlft64rVzO6ZatZQViTa3DkxMRUU9EQl51A1k+QLuW5JnYp4EMZCl52pLBj8zCtaP9vdPnQqSQB+r9wNr6IZiZ1zB4WBt64alKtX+gr8dj2LWoTh/QcrhQHrd+nvWwz+tcKH1JB83KHujdc3DpcOHZDr3ZXsc7E+nXNgn6871j8Lrzy/0IDBEnLCO7ZRimFsu6dF7GLcPaldc1n9b9Yq09qcdakubwhjO/iKHXs+49BBeug8edlShzDPMHulpf0oMLKL67Uk4uP8m9gpsYZd11JUJ4m2OH9rndsSkruKNxsUB78tYDz7MNH1bBetXzvAreIDECiZQXpm+PD3vf6CxpVcI1Lz2eZwstlKmySujmf+NsS/W+uvbs3P04jASbZJXcoxr6nn/G9XGsvnb6uJRUDRX+XuwJUh3unoTHp/p71p+BIpEoq24z1vD/ZqK5XSeT17VWxeBAngvj9xUcrtnGzueMw7Xbi5xn9zhXwvxFpFBQ/PxMDFyxGd58Hlzn9uort5aVl3McDIpRXpgBqD05Ccs0DWQga1L6ARkBNrvIvvWNXtAkgBRgZq3Oc/F5zNU+goI10AjGta4zLSV+rKrtH4vheBsOL2g6Q9W4EhotXBnhnvEdrWvOeimClTLp3K5jcMlYGSjn+Go5znPpnXs+MqKG5p3vGC2PcYjvwu9U5/eWmqZBeF16Feqtn9Czfq56yuvNiTO+RpG3ngYAAH1c1IRPTYK9QD3rx51nc+NQMamrg78SYkQV3K5VJl7/3rXb9JGzRztFsZOVJ+FYBAutYgL2zVunl0Bh1ip5ChQLOn8+27tWZYH615FAAzi+WFjWSmA26xMaD3TcczPIyQ83rVWQpSzaDz+1lxvWXVhOZbBBH0MAH4L2OReulHvWg01pjQEgtXZSORxE85dD2XkQrttejH187oOdp5PTyutao6I5+QayIMzQHfQP79vPDTdeUQD1WoQk51hcqScHTEyx1whKDHjNtoJrwPdxWZSXgZxL8vAjT3DDsy5f7WYMZCBLSyS9gAhxjiq0XOOOWJ0lVa+skzU9z/tFxBogdeRkh46Xw8RhzelMS8pSBHMTDZhDa8lP9OHdgoBkm/K4+utNxPDE8eK3fHi4j3htd2FvC147WuCjaiTkGfdvibaJKNJtAwePwfiW8udCw3jf6AHR6lkHu6pD51XAbNFPa1lpZewZCdaPTT22PBcqkctJARTOH1PWy2OLsK4Jk/NqkQrDdf33BVZqEHNSH6/g+knvwZr3LvrJGJJTgYK1I6m+7gmhroRNE7zXxrFihhPaN2q5eneSUl2gfkMRgXUJHHdl//rlcvfr44IDsvVq5ED4g6sgptoOeMNLbitq3kOfchJBx8K+Ti9CQhn8Q3AArbHDxxiQwGjm0z3CEOJbt1XSQgZg51wTEcHWfcpOlnNrvOEnX+4OXDknmcQBx7MRldMW0gC4h4ZVD9oH8gMlb/jJV6x2EwYykBNLCGTCMlfTc/reIeCv98LbjDqMquCJNT7P81DxoI+7p+AbTsf6yAF4s6vCAoH+dA6cSf10ZCj4jnZPw9aRXp3aAdacpC78rh/XiVhJi0v6dVZEcj4+DWOoYSDU48JQ+OXoX9g2f83dkzDvPvPBffCWPnPTH7c9Bgr3mQ2uJPYxV+KuSjB3FjzrA43gRJKTg1SsMLVIWQV3u7CIg23YOLK0RWoF77JnqO1bIqTpS4UE5SZy0CdaH7FL//qI/UKoAbqOTaFZYYP31zzbstTmATDeVJbLEJz3W1xhH+c7zroWbGoEf6+WhAdeuOGOxTCz2BsdYW1BfFEyStiCHNFft3rNtXbuuBJsJSvsFVuKEOJf2KEhxD6X2UeSDOScEzFSlGgcSdQo2IxhWEu5SHwO8xAkpij95cubNePi4ffsWjwwNA1kIANZexIywnuQEwl891D5c9880OtEORckdGBUqpLksvNg/3DpNS9S1pVDrNIEnljQKk/9dMKSp5lyvz2WmKUcFm5x2ALYPQ8Xr+vFSFXP9pn0TqToY9jenvE7UG5DSAAezu9qWzcZODRf7uNZZIQfgPUTyZJ568CFE/C4Y52fmtcwiXACVyxSKykK2E259utQ4pTAJGfh7QG2nixjxhOULQXYKcBgy3niPcFXCGoFOMu71pILVHBs9+0lQvoDAJv/v9WybSP5xYvn1QayVQu1fx5NChbOnuiIrAzU/euZFJpL5KuvxYPHiHIT+BBhb4wKa4zXTMHdEA/A+rkuYgSJDJJESC3S1+c4gBUJuAb8Xt2MgoczSAzm7kAGMpA1KGIqhnMfDXTLtvIHn7u9+P9zqSpL6KDzfby10rdqFJ85R86mKj4J8cCEc75tcF72pcgB+30XNGcd1BEERbi4xw67j8Alw/QllVvO+xdWivF64M19xs//XzUE3wP1nr4KbBqBQwGeqNZbX2F5RoL1zefdsCzXyYmBQqDuB+/iJuyaASxMzSoBQclaw/KFd5xkWyUyqtg2YqThldyKhQiCSSgwBMxU8tZ7gG0g824xhgtWG7D6QDbcPARluTyyqH9Xw9+rdda9LGRFiH8VoK+mRy/8aTeOt3/s75SFs83TREdQjh6YSdWQAeV+uuuuNc+lGMnrM+deydAzGb5XM+dsHeeB9Jfb//CDq92EZRWJDeKAOc1EDauNWPfrwbz9gZVn2jwfyDNUfGqlj2KrR65yx/lwYwK/cmHBw+Gi4sJ9bS3P89wY4R0D9Qiu3gpvPx9uSOAd52vfAqLTc4bItkdHDto95jgHNg6VnTj+IzmOkV492+OcBpoaHGKJzKoz8IiFi8YLY0gpX30Z+xhVQHg9gqu3wC+er6Tbbz8frt5W/kxUwODc+dcvcmJjEw7O9wJ1F+q/0kTrJ1W67VyTwwcfXr6LVUvp+Il63piCpAPzMGU1j6FvbcI1spD7hVCLwFgC00vkdfumh++3uhoyA+XFLpXnsyn9DBGg1sLZhaI/JzJE+D4upFALyeUqfVy14ZTy2BnhLa94aREdMe1yaaoEc1D2rltgrg0jtf6GCFmb9ru8xjjdXmuoX5s1Rz4Wrc0+DOT05M1v/JHVbsKKyDnhjRnIWZNn6jwfyDNMYlOUtoXCG/ms7frwXk1vPI/L5/Gan+eJgcyUOZ6u264P///eUHEOcajkRMVVfCJA2xHoHTgGl2/u43CsOvroxRJVjiivc++ahm2JzodqGV5XYnfZ+hgJNokK5xXudzzptv/Nuq8s06eCTr9SwYI6ZL9zsIwnqvXWV5D39hkJ1tPu4vJdrBoWE4b/7GjAt47o5zzj+FrMZTmRRW2krp7W0OuMe46kl4RtIYXhPvnO4fPZlqUMEeN1OApgew0R1YXmPsZ8VrCkQ08fV83zFRqBnGxcNw7tFEZR0riNzV6jRAmou9fHWrCtWe6bBL+xRkVig20mypuQZMVY+g3/XK0xPpATyqaNE6vdhIEMZMVlMM8Hci5IXrnDOmQSO2BrbVlfrpm+/BtrfZ6LEayvdhQJdCUA7oH+70uInkvRUP2iUHdPwm6XSvnBffBm08vmHzrjwu+eDEfUrhm4aF1vOnGOq5a5jyHptpFe4J5HhMQ6R6vSD6iLwOZhOIbqn3FADuvz8ksezuWXZyRYX1Yp5a1TtrpcPA5fPAhb4mIRQ0CewOqGTjtZ0qIGCmhnOhXCtcozBDnrmZZt62FJp//fZ0PC/pQ2D2dAWUhhNOpPMFft92IKjaR8rfyaqziW1T6Gm+ZYXWutQ3+Cuer7Cy0YjYtreVkrxqUTiEQCUYS1Rvvn7sM5dWAOZCADGchABnKOihjBNpynNM2K/GSvpzjumHM1ekgiwdZjiDIFZ1nQPx86fa4BdQgwgBR96UfA9qwK233u56tgifAzIUeUz+POMnh0Bt60oQyAw3z1Zb6HYoKqMlFazE3ff08SvhRZbViHPcRMo458b3Je67VDb731FfSsPyPjRYfHti7btUSkINQwlUG8aEg/NNmFPVP6eilihtWWMEzciwAjsYZQQy+YDfOc/WMhLWqsQ9lbv2p9XWLziI2ao44u9LKle6lGDix2lOypep9g9Q0vlT7e992H9PVEQ8F6T756MJ4Ez0d99EAwZqsdHXGKohwNokRkqz0uA1lRuffLO1e7CQMZyIrLYJ4P5FwSkaByR9NX7lBiY6lFSwL1c2WelyqThP07l/lFqlV1jPSSA3oCvSU4B07IEXV0ofictXBgDlLgvNGygcAEr1dA8rFrJjCclMm3m8kJ56fq2fTBFAa21WDSRW73q7e+gvKMBOtRVFvmCwZgMJ9oAi03aBkaPrJ7svx5WUOWt6U8s2OxEsx5scEE7JffvZjp5IcyQA8sb2ddQutXFXRuiHtz8kPyNSgbJmYdWM+vHWxGqziUOfEF5H2bXlhwFr8+rPe+vmXV4JJa3TzH6r1AfbXL0w1kIH1kZmb+6T80kIGc4zKY5wM5FyU3nEeahvZ0OuC5Ns+1MsnJ929Ni6EgCMzJAbcpOWBIoOdZ/Kv8QFDWs8PXE0EZYU/gvGvOscCbsoEgfL2CIpEooWvdEW73y1Hv+RKFUxbKpeU2O0b4sCxyWH1pBeUZGQY/ffSJ5b1gT946+vr+Sm3JnQeVYAOKz60VqVrC/EQcdWC2ypbupW+YeFxcM7zWaiG9pfomAqMNLW3WLyc/NEx4aXWgaYJrUlxrtffoCsHcq597i+asj0ewt8J6D/3Z4GddmT5PTLfKpfcGMpCnk1f/8PNXuwkDGciKy2CeD+QHQQbzfPVE+QaicqkxI0qeFxKw1QoCth5AvWQ6ZkNzurFgMwfWj8E168sAOA+FX5tpEiKCNQZIy/XWBdhUh4eO6gdLQN26btsV69NagpNrVvrWlowN3FwJt791a6/laK1IP0uYz3eepwjl8OLBbDVMvNVVa1zYtRDQroL01FovWfsa/b3OXqqAttUtPOv96qyvpoT9Ing9HsNcqz/rPZTz1WdaWmKjmqaxllI2BjKQgQxkIAMZyEAGsqwikSmXwm1UyuA247yyTt8yuP0iWKEg2V5whNXtFPa24JLRwuEZ5qyvJXxUFaF/vfUtdXhqET5+Pzx2qLeMm13yimcsz0iwLitRfsqXawjZBK/eCm/dUdTvu2pb8X/xyod4nLKEgN0vwBGXMjAfEJSFABbKntm5LjSC+7tGwsSXzKOZSODoErXWw355mbG6cYX53KtsjMilYtFsdToueqCudSyXYr2HYixnuwruw0iBqqV0IANZQ9JqtVe7CQMZyIrLYJ4P5AdBBvN89UXzuWN1TDUDwD4UF8C9sVRevvQCdqHgiDqyoGHiTxyHEWBdQ5FmnkYcvF6rUiUL97hi3mGJhzL4wF545GCZUG8Fa60/I8H65vNuWP6LGlFrUxJYo+qRho78/E2a5+GtUf1IGVZdKgvMA1u/wKZb/T3P0CdMPFp7YeJVkJ4zVMYwu1gmmOu3njIHdjvAUNInxJ/VB7KVDfL3P/wJfe0tmosuZybrA9T9e9NdGKoX16z2b7X7OJCBVOR9//1Dq92EgQxkxWUwzwfygyCDeb42RCJTkOcNu8dQ/PQEev0iWKscUdbCrnm4dF0RxVkKgZfVd36dUIJIAN9PI/BQJfX5mwf6l4FeAXlGgvVDe3cu+zXFiALxhsvlqJnCAjUUFyEkNbcAkjV2a0NwXV1g6wzMtNGkC/f5fnnr1kI78KxLBeitplTLLAj6z1gNpgIQC0uzpLfd55pL11lfXSlvkL/2s6/Xv5NIV/KxxfJY5ZEEwVjOpEVJuzC83+iLtWVgGshA4F3/8mdXuwkDGciKy2CeD+QHQQbzfO1ITg4YG32cTB55NYK1yhF1zEXp7j4CFw8XnvRqybY1oVMvIVWDhH99YyX1+cYtfeqtr4w8IwnmrF2ZOyaRwdbRQesarb/ocZDPwUiitVl/MQTpUF5gzQZMp/1rkFfDqOezIKe7cq3VXHx9Nw80Zx2glWoUQT+vs5cFt8nUTfk6eXj4Ko9pxeBSryXaL4ANFYNLX0I9NLd9fbPsRQ/nwkAGssakXl/m6h4DGcgalME8H8gPggzm+bktPbXWQ2zhOaJm2pqaefF4ka9e4vNazR48vYgRbL9661dsgV8w8O2Dyll2+Rb9Ql5vPcPalXHUPiPB+kqKRAbbEFcCy4U/5DUDzdOXBVgl0QVG/9zudXWY6RYfDnO7w/dAyejqcTnkfE2IFBY8KPrpyfCOLmp4O5Q9zWFps/mOWxGyRjzpFTmRwWU4qLVeDfUPXx9vwYUj/Q0taywYZCADGchABjKQgQxkIGtI+vFfCZp2+tg07J6GrYnq31XAG6lnfc1LpfpSzlt2zTZlz6963j0h9wpFwp8Dd+zUZWzdBSt6fZGgdl8zLmr4rVGgnotUwtf9RBxJtKRXjyfWRShUvbSlMPEAMK5m90Ovc9XDvtFoTn7ode4h0rOw2FVCjNJ1pXztVZSc9d5tEnd9+etFXyccWPeyFJnefEvL9cHayscfyECWkLs+8+XVbsJABrLiMpjnA/lBkME8fwZI6DgKPewTiXJE7ZqBi9eVmd9Lr1ex7Scr1fD9IZfq7En4AiI+Go6rrB9p9TLJM9KznqYDtsm+4idfdaGNxrDnePG56lzzk8+HXDeC0mZrBMj23Tyg8Dof6+N1rtZZn0+hkfTv12obI7wEnvCx4aGijaMJHJrvU0qi0sejuAoAFatheO2BDGQNyejo0Go3YSADWXEZzPOB/CDIYJ4/A+TpOKKOzcAbN5Q9z2G++rmQchkS4jVchIDHAd4xWyKhM84IsTJ9e0aC9bnpA6vdhLUr4Tzy4GxsiTrd1VD4Ree5jb2H3l9TisW6SpLn0VRDV0BztKe7FfI195mwjwsZ1Ndg1EAoQb9uu+lazbMXYCKGRxeLz9kAqPvx7Dhjy1itPHb+ea30cSADCeSFz1+B6h4DGcgak8E8H8gPggzm+TNA+kWwCgVHVBfYPloGt0bKQHfNi2tvzRRpokY0Qjl/rZ85G2R5z0iwPpAlpJrP7QH2aA2OgYaJh55YKTOoz3egVrkWBMBvRVv/9NLPQyzAeAJPzOjfodc5knLO+kKqKQHhd4PnNWENzD3+lb6OJ3CsUw5/rxpbZjv67CMjSjk3/uIDGchABjKQgQxkIAMZSD8JwCuUOaK8PHEYrtzSJwT+HNEzDVoBLKyzLquHA86FzIFTlihurHYT1qYsZQ0bc6W8Wll/pnT/3EphuHrN4DqrLdWQbg9sx2OYqdRah14StkUXBg99gP9a6CClcZs6Pu1eC4w3YIGi5qPvW5ivPr3ocvJlbRpbBjKQPjI5dWy1mzCQgay4DOb5QH4QZDDPnwEi9Hcc7ZkqPvPBfbB7shxOfjKl4daIiIhykQUl7VbTYbfmwfrdd9/NO9/5Tl73utfx+te/nne9613cf//9J/zOhi1XnqXWnWvSxxoGRamy6VYvyIMC5C6kGia+VnO6q/n4eZh/DY64EPCQQK9aZ32hozXkw37412tmgynCid7/qX8sNkofETDr+Bpsn/GbTTW3vae+OmuofwMZSFk+8MFPr3YTBjKQFZfBPB/ID4IM5vkzQLzuWA1z/87B8ud2HiyHv58zIfBrT9Y8WJ+fn+etb30rH/zgB/mbv/kbXvjCF/Jv/+2/ZXJycsnvHNq78yy28ByS0INa8rALTNC/TjfB82IGtSBzIrQyrYU12DdyQGBdQ3NoOpXIAaiEiXdhKOoF6Guhb6G4jfLdb/6J8qY5BByrRBCE/APTKYzUg+sE9yg0vAxkIGtI3v3ON652EwYykBWXwTwfyA+CDOb5uS8iooRqVab3m7eVP/ic7VryLDbFZwZyWrLmwfpP/MRP8JznPIehoSHiOOanf/qnMcbwve99b7Wbdu5J6EnNQR4K1oaDWuthnnoYMr6YFbXK/TUorrn6Od1B5EDY16bLozm2WIkcCHL0AdodaFbI82BtRA14WSrUXwTGa0qkB2WDBGi/Z7tFykOVzZPVDfEZyEAGMpCBDGQgAxnIOSCxA9+J0Uc9gmu2wtvOhxsS+OUL4aqtBaD3gH0gpyXnHMHcgw8+yMLCApdeeulqN+WcExHBVgG7l/F6mTG9CvZAwXqzUqN7LeV0L5VHg8B60TD/rcO9BGw+p3uxo551WLte5779czJe11rrYX11gueZFmwdWuNh/gMZyEAGMpCBDGQgA1mzYkQJ2Hz0pg91v2YbXLfdAXT3mZqB2jlSsm2NyqqB9d/93d/l7rvvXvL/b7jhBt73vveV3jt06BD/8T/+R37u536O7du3L/ndiY0DIL+0VECe96yO1pUtvMQgHnjVLQpmh2v9getaWIQhiK1GDoy4WutQzseHIKcbqMf65RD4w9roHxQl6gTu/MwXeMNLbiv6OdaAmcoYhkaX2RaMjfXPV18b3RvIQHrkzo9+jjf85CtWuxkDGciKymCeD+QHQQbz/JkhIoJNDGTOwRWJppp68eHxNfW6S7TmA7nXtKza3fu1X/s1Pv7xjy/5+O3f/u3S5/fu3cuv/dqv8dKXvpR3vOMdJ7x2t7PIz7/l7bznPe/hPe95D5/85Cf5vdvfT6vVzj9z12e+zL1fLnLbJ6eOcfsffrB0nTs/+jl23v9I/veuPXv5sz//ROkzf/bnn2DXnr353zvvf4Q7P/q50mdu/8MPlhgw7/3yTu76zJfzv1ut9tlr34OPceff/1MJ2N7+sb9jKlqEoy0A7rv/Qe760tchAyy02m3e++GP0ZpdzMPE7/rKN7hv54M58Js6svr3r93u5CD0rvu+xn3feTDv41Qz5fZ7P1ciXbvzM19g5yO7c8/6roVj3PG1+0oA/Y6P3MWuJ/bn762J8XXg+sqLd3DHJz7Drn0HHFiP2blnD3d+4b5SCbfbP/IJpo4dV/K50Yj7HniIu77yzbyPrU6H9/7BXw7Wx6B9a7J9V15+wZpuH6zt+zdo37nRvisvv2BNt8/LoH2D9p1J+/w8X6vtC2XQvhO37zsPPKqlgJsxuw4e5I6P361/u8cdH/00uw4eQpJoVdp3Nu/fJz/5yRxz/vxb3s5yi9xzzz194p3Xljz22GP8xm/8Bq9//et561vfesLPzs3N8ZrXvIbjx48zNjZ2llp47ohtpzDfhYWulipbTGGxCw8dhi/ug3dcp7kndbfg2pl+tp3B+x+G69bDLZs0tGUozhcqQzFSi56+ASvdv8VU68G3XD8XU339xQNwaB5+8hK19DVjzaFZdJ+Z68DtD8CvXwvNRPs1FOt9GHL9WyOWQdtOdUzmK2P4vSPw+b3wS8EYgn6um8Lv3g+/fDlsGS7GzW+swwkSr43+DWQgAxnIQAYykIEM5NwQm/NAkfMgYdYCl9XZl+npacbHx/nkJz/J8HC13vXpyZrXzr/73e/y7ne/mze96U1PC9QHchJSJV/z62ikBkddCEue60yZbC4kYOtXp3stSLU0nQ/5nojh+GLxOVuxUc139Dmp9C8gYFsz0q9/iJaom6qOoXtedO+P1YrrhPnqa6h7AxnIQAYykIEMZCADOTdEjGg9cl+XPBqQFi+nrHmwfscddzA7O8sdd9zBq1/96vzxgQ98YMnv1BqjZ7GF55iEaycsbzZe1/Jm3ayStx68nk+1Dnnpen3I6lZTliJgG0/gaKcUHo51ANaiNdZr7gJr1RDhxfVv15P7y0aXiYa+bqVlgjmLkssBJNES+eprsaMDGQilMLWBDOSZKoN5PpAfBBnM84EM5NRlzbPB///bu/cgqcpz3+O/1Zfpuc9wExxBEwQhBoFs97FibZVAqsLGwhCSlIF4SenZaolWkaCBklRiYhJFQxXoCUZUgiTHG/HojGIUzGZODGysuCMBwonooIiAMyiXuU/3THefP1av7tWXERpo11rd308V6Znu1Z3npZ90ePp93+ddsWJF3s+pqR9dgEiKhZE+I2sVbZWJVOiKSOWB9GPNrNtuSeVBubkBW9bRdJIZW32FFJYUjac3mIsn/qNvQKrOGIP9iwiXDM9kLi9q/uvfNXb211LvZyjxRUpHOHXEnjW+rohUbz3d9vdipF4ScKPNf/6bxn7uHKfDAAqKPEcpIM+B/Ll+Zv1UHGn9p9MhuFdmka7Ez4YhVcos9OJplWzqaLO4zH3OuQp01xR7g3wZUZX4MqIjMcOcnGFPjLE3JoWC6Ue12cfpmvEpGdv/vPrK9MJbhjTMSIwxnj673jkgVYVyj49l8HCx//je150OASg48hylgDwH8leUxTpOINeeZ8OQaoNmUSelZp+tYi+SWDJebluMYWS8nht82pcRtTL3racthU/86Ykmjm2zXifH7LNbZPYcsB9RV1lunrUuZSyDj5rH81k4tg0AAABwNYr1UpO5p9s+O14dkjqi6UWspTdRAJa5vAFb5n5seyFbm3HWuu1ISPXGpOrE0vEcs89uapRhGBl/9/b3c2iiWM/sOdDVnyrW7X8/5iu6anwAAAAAirRYHzbqC06H4FqGtVzaPiObbMIWMou6zMP8rAZsfqWe61KGYWTPPFuG5ChkpcT4oon9+LbnGKli1nUMn9Y8+8fsffU1ZWYzOWtVhDW73h6Wqv25l/a7aWUEkCHzbFSgGJHnKAXkOZC/oizWO48fcDoEd8tVyBoyZ5bbE3u6rZlnq0FZZECyjgvMXCLutgZsxiCz/7VliT35SizztxWzff1ShT/778T+Om7ik6b/279kLIOXVBeQjvdlX98TlmoD7FeH58yYdrHTIQAFR56jFJDnQP6KsliP9HU6HYK7ZS4Vt4q3Wr/UFU5dZz+LvDeWaC5nK+6yZqBdwjprPXOGvS4gHeu1XWgbX1fiDPnMAt2txawhjT3v7OztDLUBqSOSsS8/LnUMSNWJPfn2Lvlu+6IFyEDnYJQC8hylgDwH8uf6o9tQAJn7nK3irSYgdfSnd0q3Zp57Y1LQli6ZZ5G7qeAbbHx1Qak9o5C1RPqlSn/69W5mX/5u35dfVy51Kf29i8elHplL5DP3u1s/AwAAAHCVopxZr6ga5nQI7jbYWeS15WZRZy/0JLOo7Yumzu62nmt/LTcZrJCtLzfPirfGZ5957h0wZ9YzX8dtX0RYDGnH23uzv5ioKTNvu/pT1/ZFzdvqsrTnS3Ln+wfY7Nj1rtMhAAVHnqMUkOdA/oqyWA9V1DsdgvvZC/bMQq8n0THdPvPcl1gGL6UXw4kfXNVNPHMfd+b4OiPmrf2c9S4lGszl2IfvprElGdqz98PsLyb8hlQus/eAtYKgPWz+Lz3gy70FwpXfRgCmPe/udzoEoODIc5QC8hzIX1EW68c/2et0CC6XYz+3IbPQCyhV6Emp2edw4hzyXEWs64rZHOOzjnGrlNmALXNPd0zmyoFcY3Pb8CTJkK7+xowc76Mh1QekTmtmPS51RaQhGVsC3NocEMhw9Te/6nQIQMGR5ygF5DmQv6Is1nEC9pnnzDO3h/jM4k5Kn3nu7ZdCmcvEM27dYrAGeoYh1ZeZx7dJUjxx0Ho4sUzcvnLArWOzDLYvX5JqEufJWysjOqNSZSj3fnW3fhkBAAAAlDiK9VKUOZtqn22tKJc6oqnjzSw9A1KlR7qlW+PL/CJCMvetH+9PbzDXk5iFDmQs73fxMnFz24GR+4uXuvJEo0CZfzoHpLqQ7cmJ28TzXLWFAQAAAICkIi3WzzpnitMhuFqy0Mu1r3tIyCzuMvX3S+Xe6JaeHJ+U46z18sTRZkqtHOgZMPd5W38nyRfKuHWZFY+uN3+wv3+GzOPbrLPW45K6+6WqskG+wHDp4ICEFb9+xukQgIIjz1EKyHMgf0VZrB9p2+N0CO6Xud/cqm+rg1JnODWzbhW0fQNSuYe6pdu/iMg6a70v/drwgFSdY1bdfutC1109M3tfviFzz3p3X2oLw/GweSyfxcjxdwO41LXz/t3pEICCI89RCshzIH9FWaxHB/pOfFGp8yl7+bQ1K9sezr6+S2aDOa90S88sRK2f6wNSp63BnCT1xKSyYI4u98r9u0sMHzEk+/2TYXa9P5LYhx+PS71hqcafXtBL7FeHJ4wYXu90CEDBkecoBeQ5kL+iLNZxknLtW68JSN22Y79iifXiAzIbsOUq0N1Y8Nlnxu1nrdeFpHaln7XeG00c25bg9k7wllwN5gyZ+/KjkgYSDfSOR6WqYOpx63pm1gEAAADXKspivap2lNMhuF+ubunWrOxxSYqnGsz1J24r7AVtxuu4TeaMs1XU1iYarfUM2Drdx2zFbObKAZedIW+z9Y1duVdIVCR6C7SHzfcwIvNLilyd4905NCBpy7YdTocAFBx5jlJAngP5K8pi3e8vczoE98vVbMxQqpgNx1LX9iUazllHt2UtF3djxZdjib/PkAI+qUypfetxJfbjB92/tD9DR1e3+UPWDLsh1UvqCJvN5aTcX0b47AMG3Kmzs8fpEICCI89RCshzIH9FWax3HNvvdAgeYGQX7IZSBXlHONUxvTdRrGc2lHPzMnH7/uzMGfahAak9krq2p1+qGOQMebeuHJA062uX5m4wZxhSdbl5nnxH2Pxywr4dQHL3ewfYzPrapU6HABQceY5SQJ4D+SvKYh0nwb7UO60zfGJWtjOiZLXe1y9VyXaN7TXst26SOTZ70V1bIR0fSD9nvcKfuxO8G8eWYFgFd1qDuYQhiWK9u1+q96c/bv8Sw8XjAwAAAEpZURbrhlGUwzqz0op0Zc/KdtjOWg/HpEpf6lrJ9UebJc9az5xhNyTVlUud/alj6cK2mXUP7ecOhyOSkRG3NcaaMvMIvo6oVP4p+9VdPkYgHI6c+CLA48hzlALyHMhfUVa1Z50zxekQXO9TZ2XrQlKnbea5N5p+tFlmge7Wgs/ePM++IqAuIB3tTf3eE001Zcv8MsKtY5O08uFnB1/ub50n3zUg1Sf6EOQ4X92tzfMAy8qHn3U6BKDgyHOUAvIcyF9RFuuHD9Jt8uRkFN9W0VddJnX12/asxxJnrGc+3eXLqHM1mDNknrXe1ZfqBt+lRKf7HAW6i4vZ7y/4zuDL/esCUldY6oqYzeUyew1IqVl5wMW+v+A7TocAFBx5jlJAngP5K8p/rcfjsRNfhNwzz4bMs9aPhVPX9XnzaLNBj6erC0lHE99EWMfTVQZzFLPu/jIiFCobvMFcXbl5nvzxsFSbsR8/7f0D3C0U4nQPFD/yHKWAPAfyV5TFOk5SrplnySzuehMzz3FJ4WhqZj2zoHUz+5js47SWhfdFzbFJUrm1DD77ywhXG2wrQ03i/xDb+qTqxHtn375AczkAAADA1YqyWK8dcq7TIXhDrkJWhlnoHbOfs95vHumWtjw84zVcycgu2A1JQb+Z+cf6zE7wknn+euZScTcPTdIrm7Zp0DEGfFJAUr+k6mDqOin7fQdczMxzoLiR5ygF5DmQvxwbkd1ly5YtWrt2rQ4fPqx4PK6GhgZdc801mjZt2qDPiUbpNnlScu11NiTVhqQBSQMxs+jrHpAa/Nmz6m6v9ewz5JkF6nC/edZ6dUCqsK430p9rv3WhmprK3A3mrNuhfulw1Fz2n1moe+DLCEBK5DlQ5MhzlALyHMif64v1CRMmaNmyZRo+fLgkaefOnVq8eLHOOeccjRs3LudzujtaP8sQPczIXdBWJtKiKyLVl0sR29FmXpp9to9JSi9UqxPnkPsNqdpbx9JZLrt0iuLxePp7kDnGw91ShW0ZvJeW+AMy8xwoduQ5SgF5DuTP9cvgR4wYoREjRsgwDMXjcfl8PsXjcR08eNDp0Lwvs0hX4mfDkColdSSazEUGpHKroPXOzGzyrHWfkT37PKRcau//9GPpPNCE7VPHONBn3n5wJPd+dZePDQAAAChlrp9Zl6Suri7NmzdPfX19ikajuuiii/TlL3950Ov9gfLPMDqPy9Ux3TCkuqB51rokdcdzNJjLeL5b2Zf325fv1walfZ3mOCuC2c/zQAO9jz85rhHD63M3mNv3sbQ/0TzvmUPStT7pwlGeWTUAWJJ5DhQx8hylgDwH8udYsb5s2TJt3Lhx0MenTJmilStXSpKqq6u1YcMGRSIRbdu2TQcOHFAgMHjow0ZOONPhFid7cS6lF6jVIakjUaz3yVxKPdjss5vZZ5rt+7uHBKR/9Eo9ld48lk7S/37mVf3g9nnZ+9V9hrSjLf3iHa3SRWebP9vHCbhcMs+BIkaeoxSQ50D+HFsGv3DhQjU2Ng765xe/+EXWc8rKyjRt2jTt2rVLTU1Ng752+7H9uua6G7Vo0SItWrRIGzZs0P0rfq9wONV47pVN27Rl247k7x9/clwrfv1M2uusf/4/tWPXu8nf39t3UI+vezHtmsfXvaj39qWW5O/Y9a7WP/+fades+PUz+viT48nft2zbkdYRMxyOOBKftYR6xdrn9El7R7Lo27r7n3ql432pa0CKxhWOD+iBTX9UuL8/Fd/rf9XW//5HQeOznNbfX6I4/6S9QyueeiGt4/369/+fdhzaL5UHJEN676NWrWnamPblhZvf3x/cPs+M78OPkkX6jr3va/3/3SL9y9mp+I79tz6ZUGNe4ze09a1/6JXmvya/iHAq/5z++yM+b8T3g9vnuTo+yd1/f8TnjfisAsat8VmIj/hOJz57oe7G+OyIj/hONr4NGzYka85rrrtRZ5rR3NwcP+OvWmB33nmnxowZo4ULF2Y91t3drdmzZ6u9vV21tbUOROct8XBU6u43zxvvGUidPf5fbdKBLmnWGOl//VP64UVSyG/OsFf4zXPJKwJSZVCG371TtPFozOxm35sYm3Xb1S+t3C2NqZDG1kn/NjJ9fCG/VBWUEfI7PYQTisfiUt+A+f6Fo1IkJvXHpD2t0vZW6eKzpYmjzDGV+VJjC7i+ZQUAAADgCR0dHaqrq9OGDRtUVVV1Rl7T9f9a37hxoz788ENFo1GFw2G9+OKL2r59uy655BKnQysOmUuoreXRNX6pK2wWgZLZNd2+dNoDDeZMhpnl9uZrhlIN81p7pUrbGfL2vfieGJ9k+AzziL2yxJcM1u2kBumaL0kXnm3+HvSZf8r85vsJAAAAwLVcX6wfOnRIixcv1uzZs3X11Vdr48aN+tGPfqRLL7100OfUDz//M4zQ4zL3rVuFe21Q6uiXevslq1+fx84hl5S+Bz1tb74hDTekfqWOpfPSXnwpfblO0JcqyEM+c+VDud88hs/62ZpVL/O7ei8+YJe5LA0oRuQ5SgF5DuTP9d3gb7jhBt1www15PSfce7wwwRSjzOZrklnM1oSkHplHm1VldBvP1X3crQZrMGcYUmWFpJ7UOeSZ43N5x/QJ489N/mwYhuJlPskISP6oFI1LsbgUlzmL7jOkoFnMu3nbApDJnudAsSLPUQrIcyB/ri/WT0Vv9xGnQ/CWXMeb1ZSZt5/0p59Dbq/zPLAU3jAMxa1zyDNn2IeWS/t7Eg3mvFGg2025aHza74ZhSGV+xf0+KRaTYjKLdZ+SBTsz6vCazDwHihF5jlJAngP5K8piHfkwcs8++w0zOz7pTZ2xLqUvJfdK3Zc5U24V7XWJI9uqBjln3Svjy2D4Dcnv/sZ4AAAAAAbn+j3rp6KsvMbpELzDvjQ8c3n7UL/0cZe579l+ve3WEzO1gzXR6+017/voeOI6++y79UT3sh85ARQr8hylgDxHKSDPgfwVZbFeUz/a6RC8w97hXUrft14Rkg5HpfJg+mO+jIrd7awx2uN//xPprx3m73/4SNr3sec63W/+89+cDgEoOPIcpYA8Rykgz4H8FWWxfqT1n06H4BmG1Rk9157u+pB5G/LnLl69MKsuJcaWiNVqtrajNf2aHW3ZqwxcPrz/+N7XnQ4BKDjyHKWAPEcpIM+B/BVlsY48pR1pplTRXp2YUa/wpV+btlTcAwxDChipQt1vSP96dvo1/3q2eVa5dY1hmOeXAwAAAIADaDAH8yubXPvW6xLpUe7LLtA9slRckgyfYXZI9xvmOeSxuHTh2dINhvRWq3TxKGni2eZjfqu5nkcGBwAAAKAoFeXM+rBRX3A6BO/JtW+9JlGsVyQ6i9uXvXutlg34zOX8wcRtyC9d1CBd9yVpUoNU5jMfK/ObfwLu/5/G4+tedDoEoODIc5QC8hylgDwH8leUM+udxw84HYK35OqUbhhSdeKs9f/6UArFpAtHZV/vEYbfUDzkl+Jxc3x+Q4rGUxdYs+5lZsHuhS73M6Zd7HQIQMGR5ygF5DlKAXkO5M/904enINLX6XQI3pLZKd1yrMu8/UjSUwelvYe9N6NuY/h9Zmf7yqBU7pcqAuZtZcBcPVARkEIB85xyDxj7uXOcDgEoOPIcpYA8Rykgz4H8FeXMOvJlZBfsPkP65+H0y95qNZeOS57as25n+A3J71c84JMUl+JKriSgoRwAAAAAtyjKmfWKqmFOh+AtPqW6oFvd0v2G9KWMjun/42zb4/LO0W05GH5Dht8nI+Azbz1YqO/Y9a7TIQAFR56jFJDnKAXkOZC/oizWQxX1TofgKYZhSD57J/REs7UJI6XrRkuTA9KNY6QJo2xFvTcL3GKy5939TocAFBx5jlJAnqMUkOdA/ozm5ub4iS/zju7ubs2ePVvt7e2qra11OhzPiEdjUu+AFIlJ4ajUH5MG4mZDNsks0sv8ZgO2cr9UHpDhgY7pAAAAAFBoHR0dqqur04YNG1RVVXVGXpM965BkNl8zu6Un7vAZUiBRrBu2GfeAWbRTqAMAAABA4VCsI8kI+s1a3VoOn3m0mTW7HqRQBwAAAIBCKsqq66xzpjgdgmcZQXOJuyoCUlXQPNKsMmj+XhGU4ZEzyEvBil8/43QIQMGR5ygF5DlKAXkO5K8oZ9aPtO1xOgRPM3yJGXRJZtt3uNG18/7d6RCAgiPPUQrIc5QC8hzIX1HOrEcH+pwOASi4EcPrnQ4BKDjyHKWAPEcpIM+B/BVlsQ4AAAAAgJcVZbFeVTvK6RCAgtuybYfTIQAFR56jFJDnKAXkOZC/oizW/f4yp0MACq6zs8fpEICCI89RCshzlALyHMhfURbrHcf2Ox0CUHCzvnap0yEABUeeoxSQ5ygF5DmQv6Is1gEAAAAA8LKiLNYNoyiHBaQJhyNOhwAUHHmOUkCeoxSQ50D+PFXVPvfcc5o+fbrWrFnzqdeddc6UzygiwDkrH37W6RCAgiPPUQrIc5QC8hzIn2eK9f379+v555/X2LFjT3ht24G/Fz4gwGFfHD/E6RCAgiPPUQrIc5QC8hzInyeK9Wg0qvvuu08LFixQTU3NSTwjXvCYAKdt3rzZ6RCAgiPPUQrIc5QC8hzInyeK9aeeekoNDQ267LLLnA4FAAAAAICCCzj1X7xs2TJt3Lhx0MenTJmilStXqqWlRRs2bNCjjz56Uq8bj8dVFqpRR0fHmQoVcKV39+4nz1H0yHOUAvIcpYA8R7Gz8jseP3OrvB0r1hcuXKhbb7110Mf9fr8GBgZ033336bbbblNdXd1JvW5vb68i4U6NGTPmTIUKuFZd3f9xOgSg4MhzlALyHKWAPEcp6O3tVXV19Rl5LaO5udm1G7xbW1s1f/581dbWJu/r7u5WIBDQqFGj9MQTT2Q9JxaL6ciRI6qoqJBhGJ9htAAAAACAUhSPx9Xb26thw4bJ5zszu81dXaxHo1EdPXo07b6f/vSnmjhxor773e9q2LBhDkUGAAAAAEDhOLYM/mT4/X6NGDEi7b5gMKjKykoKdQAAAABA0XL1zDoAAAAAAKXIE0e3AQAAAABQSly9DD5f8XhcTzzxhF5++WV1d3frggsu0Pe//319/vOfdzo0IG+PPvqo3njjDbW1tam8vFxTp07VLbfcorPOOit5TVtbm1auXKkdO3YoGAxqxowZWrBggYLBoIORA6fuxz/+sbZs2aLly5fr4osvliT9/e9/18MPP6z9+/dryJAhmjdvnubMmeNwpED+du/erTVr1ujtt9+Wz+fT5z73OT300EPy+Xzau3evHnroIb3zzjuqqqrS7Nmz9b3vfY9mufCUo0ePatWqVdq+fbsikYjOO+883XTTTZo6daokPs/hTZs3b1ZjY6P27t2rnp4e/elPf5Lf708+fqLP79OpUYtqZv3ZZ5/VK6+8ogceeECNjY2aNGmSFi9erN7eXqdDA/JmGIaWLFmixsZGrVu3TpK0dOnS5OOxWExLly5VTU2N/vCHP2j16tXauXOnHnnkEadCBk7Lxo0b1dfXl3Zfa2ur7rrrLs2aNUsvvfSSlixZoscee0x/+ctfHIoSODW7d+/WkiVLNHPmTD3//PNqamrSggULZBiGenp6tHjxYk2aNEmNjY164IEH9PLLL+u5555zOmwgLytXrtTHH3+s3/72t2pqatK0adO0dOlSdXR08HkOz6qurtacOXN02223ZT12Mp/fp1OjFlWx3tTUpKuvvlpjx45VKBTSjTfeqP7+fj4E4Ek33XSTJkyYoGAwqOrqas2fP1979+5VZ2enJGnnzp364IMPdNttt6mqqkqjRo3SDTfcoD/+8Y+KRCIORw/kx/rH3Z133pl2/8aNGzV69GjNnTtXwWBQU6dO1axZs/TCCy84FClwalavXq0rr7xSM2fOVHl5ufx+vy688EIZhqHXX39dsVhMN954o0KhkMaOHavvfOc7amxsdDpsIC8HDx7UFVdcofr6evn9fl111VXq7e3VgQMH+DyHZ11yySX66le/qoaGhqzHTubz+3Rq1KIp1ru6utTa2qovfOELyfv8fr/Gjx+vd99918HIgDPjzTff1MiRI1VTUyNJamlpUUNDg+rq6pLXTJw4UX19ffrwww+dChPIWzwe1wMPPKBrr71WI0eOTHuspaVFEydOTLtvwoQJamlp+SxDBE5LX1+fdu/eLZ/Pp1tvvVVz5szRzTffrD//+c+SzCWU48aNS1tWOXHiRB06dEjd3d1OhQ3kbf78+dq6dauOHDmigYEBNTY2qqGhQeeffz6f5yhKJ/r8Pt0atWj2rPf09EgylynYVVdXJx8DvOpvf/ubfve73+lnP/tZ8r6enh5VVVWlXWcV8uQ8vKSpqUnxeFxXXXVV1mPd3d0aPXp02n01NTUUMPCUzs5OxWIxbdq0Sffee6/Gjx+vrVu36uc//7mGDx+u7u7urH+/2D/PMz/rAbeaNGmSXnvtNX3729+Wz+dTbW2t7rnnHoVCIT7PUZRO9Pkdj5sHr51qjVo0M+uVlZWSzBl2u66uruRjgBdt27ZNd999t5YuXapLLrkkeX9lZWXW/8FZS+TJeXjFwYMH9fvf/z5r+bulqqoq63O9s7OT4gWeUlFRIUmaOXOmJk6cKL/fryuuuEJTp07Vli1bBs1zic9zeEcsFtMdd9yhoUOHqqmpSZs2bdIdd9yhu+66Sy0tLXyeoyid6PP7dGvUoinWq6urNWrUKL399tvJ+6LRqFpaWjR+/HgHIwNO3WuvvaZf/vKX+slPfqLLL7887bFx48bpo48+Unt7e/K+PXv2qLy8XGPGjPmsQwVOya5du9TR0aFbbrlFc+bMSXYFvvvuu7V8+XKNGzdOe/bsSXvOnj17NG7cOCfCBU5JdXW1GhoaBu3sbi0Rjkajyfv27NmjhoYGChl4Rmdnpw4dOqRvfvObqq2tld/v12WXXaaGhga9+eabfJ6jKJ3o8/t0a9SiKdYlac6cOVq/fr3ef/99hcNhrV27VoFAIKvIAbzghRde0EMPPaR77703bUbdMnnyZJ177rn6zW9+o56eHrW1tWnt2rWaNWuWysrKHIgYyN9XvvIVPfXUU3r88ceTfyRp0aJFuvnmmzVz5kzt379fTU1N6u/v186dO/XKK6/oG9/4hrOBA3maO3euXn31VbW0tCgWi2nr1q3asWOHLr/8cl1xxRXy+Xxau3atwuGw3n//fa1fv54jreApdXV1Ou+889TY2Kju7m7FYjFt27ZN+/bt0wUXXMDnOTwrGo0qEomov79fkhSJRBSJRBSLxU7q8/t0alSjubk5XrCRfcbi8bjWrl2rDRs2qKenRxMmTNDChQs1duxYp0MD8jZ9+nT5/f6sM9Pvv/9+TZ48WZJ5rJV1znpZWZlmzJihW2+9lWIdnjZ9+vSsc9ZXrVqVdi4v/7iDFz355JNqampSV1eXRo8ereuvv16XXXaZJLNJ0YMPPqh33nlHlZWV+vrXv8456/CcAwcO6JFHHtHu3bsViUQ0YsQIfetb30r2JOHzHF706quv6v7778+6f8WKFZo6deoJP79Pp0YtqmIdAAAAAIBiUFTL4AEAAAAAKAYU6wAAAAAAuAzFOgAAAAAALkOxDgAAAACAy1CsAwAAAADgMhTrAAAAAAC4DMU6AAAAAAAuQ7EOAAAAAIDLBJwOAAAA5G/evHlqa2s74XUjR47U1KlTtXHjRknS008/rVGjRhU6PAAAcJqYWQcAAAAAwGWM5ubmuNNBAACA0zN9+vTkz83NzQ5GAgAAzgSWwQMAUOSWLVuWtQy+tbVV8+fPlyRNmTJFc+fO1Zo1a9TW1qaJEyfqjjvuUFVVlR588EG9+eabqqur06xZs3TdddfJ50stzPvggw/05JNPavv27Tp+/Liqq6s1efJkXX/99Tr//PMdGS8AAMWAYh0AgBL33nvv6Z577lEsFpMk7dy5U3fddZfKysq0b98+SVJfX5+eeOIJjRgxQldeeaUkadeuXfrhD3+ocDicfK3jx4/r9ddf1xtvvKFf/epXmjx58mc+HgAAigF71gEAKHGdnZ26/fbb9dJLL+mLX/yiJOnQoUPq6urSunXr9PDDD8swDEnS5s2bk89bvny5wuGwRo4cqdWrV2vTpk167LHHVF9fr0gkogcffNCR8QAAUAyYWQcAoMSNGDFCc+fOlSRddNFF2r17tyRp1qxZOvfccyVJQ4cO1ZEjR3T48GFJ0oEDB7R//35JUltbm2655Zas133vvfd09OhRDR069LMYBgAARYWZdQAAStzIkSOTP4dCoZz3BwLm9/uRSESSdOzYsZN67fb29jMRIgAAJYeZdQAASpzf78/rfkkaMmRI8ueLL75Yy5cvz7omHo8nl88DAID8MLMOAADyNnr0aI0ZM0aS9NZbb+m5555TV1eXIpGIWlpatG7dOt1zzz0ORwkAgHcxsw4AAE7JokWLtGTJEkUiEa1atUqrVq1Ke3zKlCkORQYAgPdRrAMAgFMydepUrV69Wk8//bS2b9+uY8eOqbKyUsOHD9eUKVM0Y8YMp0MEAMCzjObm5rjTQQAAAAAAgBT2rAMAAAAA4DIU6wAAAAAAuAzFOgAAAAAALkOxDgAAAACAy1CsAwAAAADgMhTrAAAAAAC4DMU6AAAAAAAuQ7EOAAAAAIDLUKwDAAAAAOAy/x9KSy0GeujkoAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -12336,8 +12365,8 @@ "org_label=np.argmax(y_target)\n", "cf_label=label[0]\n", "exp=array\n", - "\n", - "exp_model.plot_in_one(item,org_label,exp,cf_label,figsize=(15,15))" + "print(exp.shape)\n", + "exp_model.plot_in_one(np.array(item[0]),org_label,np.array(exp[0]),cf_label)" ] } ], @@ -12357,7 +12386,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.15" + "version": "3.9.17" }, "orig_nbformat": 4, "vscode": { diff --git a/docs/Notebooks/Ates_torch.ipynb b/docs/Notebooks/Ates_torch.ipynb index 9a6dbad..391cbd6 100644 --- a/docs/Notebooks/Ates_torch.ipynb +++ b/docs/Notebooks/Ates_torch.ipynb @@ -206,24068 +206,7 @@ "cell_type": "code", "execution_count": 9, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Current may 1\n", - "0\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.9024999396403626\n", - "FROM GET FITNESS 0.9024999396403626\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.9024999861036808\n", - "FROM GET FITNESS 0.9024999861036808\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.9024999396403626\n", - "FROM GET FITNESS 0.9024999396403626\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024998891449928\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024983268508424\n", - "FROM GET FITNESS 0.9024983268508424\n", - "FROM GET FITNESS 0.9024845087881035\n", - "FROM GET FITNESS 0.9024845087881035\n", - "FROM GET FITNESS 0.8918057751713906\n", - "FROM GET FITNESS 0.8918057751713906\n", - "FROM GET FITNESS 0.8918057751713906\n", - "FROM GET FITNESS 0.8918057751713906\n", - "FROM GET FITNESS 0.8918057751713906\n", - "FROM GET FITNESS 0.8918057751713906\n", - "FROM GET FITNESS 0.8\n", - "FROM GET FITNESS 0.8\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024983268508424\n", - "FROM GET FITNESS 0.9024983268508424\n", - "FROM GET FITNESS 0.902463033070003\n", - "FROM GET FITNESS 0.902463033070003\n", - "FROM GET FITNESS 0.902463033070003\n", - "FROM GET FITNESS 0.902463033070003\n", - "FROM GET FITNESS 0.902463033070003\n", - "FROM GET FITNESS 0.902463033070003\n", - "FROM GET FITNESS 0.902463033070003\n", - "FROM GET FITNESS 0.902463033070003\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.9024999929628577\n", - "FROM GET FITNESS 0.8983653289494377\n", - "FROM GET FITNESS 0.8983653289494377\n", - "FROM GET FITNESS 0.8983653289494377\n", - "FROM GET FITNESS 0.8983653289494377\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAi7UlEQVR4nO3dfXCU1cH38d8mYTdkIAkas4EYiFYEkVeTkkbk9plxa3wZWjptJ4NUaGpxQPIUjbUQBaK1Emorg7VIKoo4UzVUR6gtGEsjwVojKQEUFEEEDDeYBKSQEDSB7Hn+8GFxIcEsEM9eu9/PTGZg92z27BnIfnO9rcsYYwQAAGBJjO0JAACA6EaMAAAAq4gRAABgFTECAACsIkYAAIBVxAgAALCKGAEAAFYRIwAAwKo42xPoCr/fr/3796t3795yuVy2pwMAALrAGKPm5mb169dPMTGdb/9wRIzs379fGRkZtqcBAADOwd69e3XppZd2er8jYqR3796SvnwxiYmJlmcDAAC6oqmpSRkZGYH38c44IkZO7ppJTEwkRgAAcJivO8SCA1gBAIBVxAgAALCKGAEAAFYRIwAAwCpiBAAAWEWMAAAAq4gRAABgFTECAACsIkYAAIBVxAgAALCKGAEAAFYRIwAAwCpHfFBed3nmrd363/8esz0NIKq55NItw9KUnXmR7amEvb+9u1+fHW3VpNxMxcSc/YPHot2bOw7oQHOrfpjV+cfWI3xEdYysem+/NtYdtj0NIOqt29Goynv/j+1phLVDLW36vy9ukiQNz0jWNf37WJ5ReJu0tEaSNOzSJF3pPfvH18O+qI6RH2ZdqtxvXWx7GkDUOtTSphdr9urwseO2pxL2jrWdOPXn1naLM3GW9/73CDHiAFEdIxNzBtieAhDV6j47phdr9urz47y5ont8wb8tR+AAVgDWxLu//BF0rK1dxhjLswFgCzECwJrenh6BP/+XXTVA1CJGAFjT0x0b+PPxdr/FmQCwiRgBYFXc/z9Flb00QPQiRgBY5eJyGUDUI0YAhAUjNo0A0YoYAWCVS+ymCRXhhkhDjACwi9006EZkmzMQIwDCAm8aQPQiRgBYxYYRAMQIgLDAFViB6EWMALCKU3sBECMAwgIbRoDoRYwAsMrFUSNA1CNGAMBh2IqESEOMALDq5DEjvMGeHeuDSEaMALCKnTQAiBEAYYFLnAPRixgBYJWLc3uBqEeMAAgLHBMBRC9iBIBVbBcBQIwACAtsGAGiFzECwC42jQBRjxgBEBb4oLyuY6UQaYgRAFad3DDCGywQvYgRAFZxai+6FVvcHIEYARAWeM8AohcxAsAqNowAIEYAhAk2jQDRihgBYBUbRgAQIwDCAseMANHrnGJk0aJFyszMVHx8vHJyclRTU3PW8QsXLtSgQYPUs2dPZWRk6J577tEXX3xxThMGEFk4myZ0XJMFkSbkGFm+fLmKiopUUlKijRs3asSIEcrLy1NjY2OH41944QXNmjVLJSUl2rZtm5555hktX75c999//3lPHkDk4O0ViF4hx8iCBQs0ZcoUFRQUaMiQISorK1NCQoKWLl3a4fi3335bY8aM0W233abMzEzdeOONmjBhwtduTQEQHQIXPaNG0B3Y8uYIIcVIW1ubamtr5fP5Tn2DmBj5fD5VV1d3+Jhrr71WtbW1gfjYtWuXVq9erVtuueU8pg0gUvBegW5F5TpCXCiDDx48qPb2dnm93qDbvV6vPvzwww4fc9ttt+ngwYO67rrrZIzRiRMnNHXq1LPupmltbVVra2vg701NTaFME4ADGXbUAFGr28+mqaqq0rx58/Tkk09q48aNeuWVV7Rq1So9/PDDnT6mtLRUSUlJga+MjIzuniYAa9g0AkS7kLaMpKSkKDY2Vg0NDUG3NzQ0KC0trcPHzJkzR7fffrt+/vOfS5KGDRumlpYW3XnnnXrggQcUE3NmDxUXF6uoqCjw96amJoIEAIAIFdKWEbfbraysLFVWVgZu8/v9qqysVG5uboePOXbs2BnBERsbK6nz09M8Ho8SExODvgAAQGQKacuIJBUVFWny5MnKzs7W6NGjtXDhQrW0tKigoECSNGnSJKWnp6u0tFSSNG7cOC1YsECjRo1STk6Odu7cqTlz5mjcuHGBKAEAANEr5BjJz8/XgQMHNHfuXNXX12vkyJGqqKgIHNRaV1cXtCVk9uzZcrlcmj17tvbt26dLLrlE48aN0yOPPHLhXgUARBEO9UWkCTlGJKmwsFCFhYUd3ldVVRX8BHFxKikpUUlJybk8FQAAiHB8Ng0AIGKxFckZiBEAYYFrUwHRixgBYBVXYAVAjAAAAKuIEQAAYBUxAgAArCJGAACAVcQIADgNZx4hwhAjAMICp/aeHeuDSEaMALCKM3sBECMAAMAqYgQAAFhFjAAAAKuIEQAAYBUxAgAArCJGAMBhDBcaQYQhRgCEBd5ggehFjACwysWFRoCoR4wAACIWV651BmIEAABYRYwAAACriBEAAGAVMQIAAKwiRgAAgFXECICwwFkPXcdaIdIQIwCscokLjXQFF4VDJCNGAACAVcQIAACwihgBAABWESMAAMAqYgQAAFhFjAAAAKuIEQBWuTizN2RcZwSRhhgBAABWESMAAMAqYgQAELEM+7QcgRgBAABWESMAAMAqYgQAAFhFjAAIC+zaB6IXMQLAKi4zAoAYAQCHYSMSIg0xAgAArCJGAMABOKYGkYwYAQAAVhEjAADAKmIEQFgwHJYJRC1iBAAAWEWMALDK5eJKI0C0I0YAwGH4JFpEGmIEAABYRYwAAACriBEAAGAVMQIAiFgcXeMMxAiAsMAxmUD0IkYAAIBVxAgAALCKGAEAAFYRIwDgMBxeg0hDjAAAAKuIEQAAYBUxAgAOwK4ZRDJiBEBY4M0WiF7ECACrXC7bMwBg2znFyKJFi5SZman4+Hjl5OSopqbmrOMPHz6s6dOnq2/fvvJ4PLryyiu1evXqc5owAACILHGhPmD58uUqKipSWVmZcnJytHDhQuXl5Wn79u1KTU09Y3xbW5u++93vKjU1VS+//LLS09P1ySefKDk5+ULMHwAAOFzIMbJgwQJNmTJFBQUFkqSysjKtWrVKS5cu1axZs84Yv3TpUh06dEhvv/22evToIUnKzMw8v1kDAICIEdJumra2NtXW1srn8536BjEx8vl8qq6u7vAxr776qnJzczV9+nR5vV4NHTpU8+bNU3t7e6fP09raqqampqAvAMCX+FBBRJqQYuTgwYNqb2+X1+sNut3r9aq+vr7Dx+zatUsvv/yy2tvbtXr1as2ZM0ePPfaYfvOb33T6PKWlpUpKSgp8ZWRkhDJNAADgIN1+No3f71dqaqqeeuopZWVlKT8/Xw888IDKyso6fUxxcbGOHDkS+Nq7d293TxOAZYZf94GoFdIxIykpKYqNjVVDQ0PQ7Q0NDUpLS+vwMX379lWPHj0UGxsbuO2qq65SfX292tra5Ha7z3iMx+ORx+MJZWoAAMChQtoy4na7lZWVpcrKysBtfr9flZWVys3N7fAxY8aM0c6dO+X3+wO37dixQ3379u0wRABEF64zgu7EBjdnCHk3TVFRkZYsWaLnnntO27Zt07Rp09TS0hI4u2bSpEkqLi4OjJ82bZoOHTqkGTNmaMeOHVq1apXmzZun6dOnX7hXAQAAHCvkU3vz8/N14MABzZ07V/X19Ro5cqQqKioCB7XW1dUpJuZU42RkZOj111/XPffco+HDhys9PV0zZszQzJkzL9yrAAAAjhVyjEhSYWGhCgsLO7yvqqrqjNtyc3P1zjvvnMtTAQCACMdn0wCA43AgBCILMQIAAKwiRgCEBX7XB6IXMQLAKpc4t7cruCgcIhkxAgAArCJGAACAVcQIAACwihgBAABWESMAAMAqYgRAWOBkka5jrRBpiBEAAGAVMQLAKheXGQGiHjECAACsIkYAABGLw2ucgRgBAABWESMAAMAqYgQAAFhFjAAIE+zd7ypWCpGGGAFgFWf2AiBGAACAVcQIAACwihgBAAfgOBFEMmIEAABYRYwAAACriBEAAGAVMQIgLBgOigCiFjECwCqXiyuNhIpwQ6QhRgAAgFXECAAAsIoYAQAAVhEjAADAKmIEABCxDEf7OgIxAiAs8JYBRC9iBAAAWEWMALCKq4wAIEYAwGEMO7UQYYgRAABgFTECAACsIkYAAIBVxAgAOACXy0AkI0YAhAXebIHoRYwAsItze4GoR4wAAACriBEAcBh2aSHSECMAAMAqYgQAAFhFjAAAAKuIEQAAYBUxAiAsGI7KBKIWMQLAKi4zAoAYAQAAVhEjAADAKmIEAByGo2sQaYgRAABgFTECAACsIkYAhAV2PQDRixgBAEcg1xC5iBEAVrlcXGkEiHbECAAAsIoYAQAAVhEjAOAwfI4PIg0xAgAArCJGAACAVecUI4sWLVJmZqbi4+OVk5OjmpqaLj2uvLxcLpdL48ePP5enBRDB2PMARK+QY2T58uUqKipSSUmJNm7cqBEjRigvL0+NjY1nfdyePXv0y1/+UmPHjj3nyQKIPJzYCyDkGFmwYIGmTJmigoICDRkyRGVlZUpISNDSpUs7fUx7e7smTpyohx56SJdffvl5TRgAAESWkGKkra1NtbW18vl8p75BTIx8Pp+qq6s7fdyvf/1rpaam6o477jj3mQIAECJ2/zlDXCiDDx48qPb2dnm93qDbvV6vPvzwww4f89Zbb+mZZ57R5s2bu/w8ra2tam1tDfy9qakplGkCAAAH6dazaZqbm3X77bdryZIlSklJ6fLjSktLlZSUFPjKyMjoxlkCAACbQtoykpKSotjYWDU0NATd3tDQoLS0tDPGf/zxx9qzZ4/GjRsXuM3v93/5xHFx2r59u771rW+d8bji4mIVFRUF/t7U1ESQAAAQoUKKEbfbraysLFVWVgZOz/X7/aqsrFRhYeEZ4wcPHqwtW7YE3TZ79mw1Nzfr8ccf7zQwPB6PPB5PKFMD4HCGT6UFolZIMSJJRUVFmjx5srKzszV69GgtXLhQLS0tKigokCRNmjRJ6enpKi0tVXx8vIYOHRr0+OTkZEk643YAABCdQo6R/Px8HThwQHPnzlV9fb1GjhypioqKwEGtdXV1ionhwq4AusbFhUaAqBdyjEhSYWFhh7tlJKmqquqsj122bNm5PCUAAIhQbMIAAAfgehmIZMQIAACwihgBAABWESMAAMAqYgRAeOCYiC7j+BFEGmIEAABYRYwAsMolLjQCRDtiBAAAWEWMAAAAq4gRAEDE4gMYnYEYAQAAVhEjAADAKmIEQFhgY3rXsesBkYYYAWCVizN7gahHjAAAAKuIEQAAYBUxAgAArCJGAACAVcQIADgA5890neFjjR2HGAEQFnj/AKIXMQIAAKwiRgDAYdiKhEhDjAAAAKuIEQAAYBUxAgAArCJGAACAVcQIAACwihgBEBYMl/VCN+DMI2cgRgBY5XK5bE8BgGXECAA4DL/tI9IQIwAAwCpiBAAAWEWMAAAAq4gRAABgFTECICxwUCYQvYgRAHAAYq3rWCvnIUYAWMVVRgAQIwAAwCpiBAAchr0QiDTECAAAsIoYAQAAVhEjAADAKmIEQFjgOAggehEjAADAKmIEgFUuLjSCbsQWN2cgRgAAgFXECAA4jOF654gwxAgAALCKGAEAAFYRIwAAwCpiBEBY4DgIIHoRIwCs4tReAMQIAACwihgBAAcwXL6ry766Uuz9cwZiBAAAWEWMAIDD8Mt+13FMkjMQIwAAwCpiBEBY4Ld9IHoRIwAAwCpiBIBVLrFTH4h2xAgAALCKGAEAAFYRIwCAiMVFz5yBGAEAAFadU4wsWrRImZmZio+PV05Ojmpqajodu2TJEo0dO1Z9+vRRnz595PP5zjoeAPA1+G0fESbkGFm+fLmKiopUUlKijRs3asSIEcrLy1NjY2OH46uqqjRhwgStXbtW1dXVysjI0I033qh9+/ad9+QBRBDeYIGoFXKMLFiwQFOmTFFBQYGGDBmisrIyJSQkaOnSpR2Of/7553XXXXdp5MiRGjx4sJ5++mn5/X5VVlae9+QBAIDzhRQjbW1tqq2tlc/nO/UNYmLk8/lUXV3dpe9x7NgxHT9+XBdddFGnY1pbW9XU1BT0BSAy8dkhAEKKkYMHD6q9vV1erzfodq/Xq/r6+i59j5kzZ6pfv35BQXO60tJSJSUlBb4yMjJCmSYAAHCQb/Rsmvnz56u8vFwrVqxQfHx8p+OKi4t15MiRwNfevXu/wVkCAIBvUlwog1NSUhQbG6uGhoag2xsaGpSWlnbWx/7+97/X/Pnz9c9//lPDhw8/61iPxyOPxxPK1AAgonG9jK4zLJbjhLRlxO12KysrK+jg05MHo+bm5nb6uEcffVQPP/ywKioqlJ2dfe6zBQAAESekLSOSVFRUpMmTJys7O1ujR4/WwoUL1dLSooKCAknSpEmTlJ6ertLSUknSb3/7W82dO1cvvPCCMjMzA8eW9OrVS7169bqALwWAkxnO7e0y1gqRJuQYyc/P14EDBzR37lzV19dr5MiRqqioCBzUWldXp5iYUxtcFi9erLa2Nv3oRz8K+j4lJSV68MEHz2/2AADA8UKOEUkqLCxUYWFhh/dVVVUF/X3Pnj3n8hQAogRn9gLgs2kAAIBVxAgAALCKGAEAAFYRIwAAwCpiBAAAWEWMAAgLXDQT3YFrsjgDMQIADkO4IdIQIwDscnGlESDaESMAAMAqYgQAAFhFjAAAAKuIEQAAYBUxAgAArCJGAIQFTlc9O9an6766VKybMxAjAOAwvL8i0hAjAKziKiPoTlzGxhmIEQAAYBUxAgAArCJGAACAVcQIAACwihgBEBY4QwSIXsQIAACwihgBYBWnXqI7cdEzZyBGAMBheINFpCFGAACAVcQIAACwihgBAABWESMAAMAqYgRAWDAclQlELWIEAABYRYwAsIrLjAAgRgDAAQwXzO8y9vg5DzECAA5DmCDSECMAAMAqYgQAAFhFjAAIC+x4AKIXMQIAAKwiRgBY5XJxci8Q7YgRAABgFTECAACsIkYAwGG4qBciDTECAACsIkYAAIBVxAiAsMCuByB6ESMAAMAqYgSAVVxlBAAxAgAArCJGAACAVcQIADgAB/h2nfnKxy4aFs4RiBEAcBjeXhFpiBEAQMTigxidgRgBECb4fR+IVsQIAACwihgBYBVb0QEQIwAAwCpiBAAAWEWMAAAAq4gRAHAaLuTVZVz0zBmIEQBhgfcMIHoRIwAAwCpiBIBVLnFuLxDtiBEAAGAVMQIAAKw6pxhZtGiRMjMzFR8fr5ycHNXU1Jx1/EsvvaTBgwcrPj5ew4YN0+rVq89psgAAIPKEHCPLly9XUVGRSkpKtHHjRo0YMUJ5eXlqbGzscPzbb7+tCRMm6I477tCmTZs0fvx4jR8/Xlu3bj3vyQMAAOcLOUYWLFigKVOmqKCgQEOGDFFZWZkSEhK0dOnSDsc//vjjuummm3Tffffpqquu0sMPP6xrrrlGf/zjH8978gAAwPniQhnc1tam2tpaFRcXB26LiYmRz+dTdXV1h4+prq5WUVFR0G15eXlauXJlp8/T2tqq1tbWwN+bmppCmSYAB/rLhr2q2XPI9jTC1mdH2wJ/XrXlU+062GJxNuGt3X/qojWvba3XZy1tZxmNk3425jJlXJRg5blDipGDBw+qvb1dXq836Hav16sPP/yww8fU19d3OL6+vr7T5yktLdVDDz0UytQAOFTv+C9/DK3dfkDafsDybJzhnV2H9M4uwq0r3t/fpPf38wttV4wb0c8ZMfJNKS4uDtqa0tTUpIyMDIszAtBdHrj1Kl2dnqR2v9/2VMLep4e/UNMXxzUorbftqYS9T498od0HW3Ttty62PRXH8CbGW3vukGIkJSVFsbGxamhoCLq9oaFBaWlpHT4mLS0tpPGS5PF45PF4QpkaAIe6/JJeKvrulbanAcCikA5gdbvdysrKUmVlZeA2v9+vyspK5ebmdviY3NzcoPGStGbNmk7HAwCA6BLybpqioiJNnjxZ2dnZGj16tBYuXKiWlhYVFBRIkiZNmqT09HSVlpZKkmbMmKHrr79ejz32mG699VaVl5drw4YNeuqppy7sKwEAAI4Ucozk5+frwIEDmjt3rurr6zVy5EhVVFQEDlKtq6tTTMypDS7XXnutXnjhBc2ePVv333+/Bg4cqJUrV2ro0KEX7lUAAADHchkT/h/c3dTUpKSkJB05ckSJiYm2pwMAALqgq+/ffDYNAACwihgBAABWESMAAMAqYgQAAFhFjAAAAKuIEQAAYBUxAgAArCJGAACAVcQIAACwKuTLwdtw8iKxTU1NlmcCAAC66uT79tdd7N0RMdLc3CxJysjIsDwTAAAQqubmZiUlJXV6vyM+m8bv92v//v3q3bu3XC7XBfu+TU1NysjI0N69e/nMm6/BWoWG9eo61qrrWKuuY626rjvXyhij5uZm9evXL+hDdE/niC0jMTExuvTSS7vt+ycmJvKPtYtYq9CwXl3HWnUda9V1rFXXdddanW2LyEkcwAoAAKwiRgAAgFVRHSMej0clJSXyeDy2pxL2WKvQsF5dx1p1HWvVdaxV14XDWjniAFYAABC5onrLCAAAsI8YAQAAVhEjAADAKmIEAABYFdUxsmjRImVmZio+Pl45OTmqqamxPaVu9eabb2rcuHHq16+fXC6XVq5cGXS/MUZz585V37591bNnT/l8Pn300UdBYw4dOqSJEycqMTFRycnJuuOOO3T06NGgMe+9957Gjh2r+Ph4ZWRk6NFHH+3ul3bBlZaW6tvf/rZ69+6t1NRUjR8/Xtu3bw8a88UXX2j69Om6+OKL1atXL/3whz9UQ0ND0Ji6ujrdeuutSkhIUGpqqu677z6dOHEiaExVVZWuueYaeTweXXHFFVq2bFl3v7wLavHixRo+fHjggkm5ubl67bXXAvezTp2bP3++XC6X7r777sBtrNcpDz74oFwuV9DX4MGDA/ezVsH27dunn/zkJ7r44ovVs2dPDRs2TBs2bAjcH9Y/402UKi8vN2632yxdutS8//77ZsqUKSY5Odk0NDTYnlq3Wb16tXnggQfMK6+8YiSZFStWBN0/f/58k5SUZFauXGneffdd873vfc9cdtll5vPPPw+Muemmm8yIESPMO++8Y/71r3+ZK664wkyYMCFw/5EjR4zX6zUTJ040W7duNS+++KLp2bOn+dOf/vRNvcwLIi8vzzz77LNm69atZvPmzeaWW24x/fv3N0ePHg2MmTp1qsnIyDCVlZVmw4YN5jvf+Y659tprA/efOHHCDB061Ph8PrNp0yazevVqk5KSYoqLiwNjdu3aZRISEkxRUZH54IMPzBNPPGFiY2NNRUXFN/p6z8err75qVq1aZXbs2GG2b99u7r//ftOjRw+zdetWYwzr1JmamhqTmZlphg8fbmbMmBG4nfU6paSkxFx99dXm008/DXwdOHAgcD9rdcqhQ4fMgAEDzE9/+lOzfv16s2vXLvP666+bnTt3BsaE88/4qI2R0aNHm+nTpwf+3t7ebvr162dKS0stzuqbc3qM+P1+k5aWZn73u98Fbjt8+LDxeDzmxRdfNMYY88EHHxhJ5j//+U9gzGuvvWZcLpfZt2+fMcaYJ5980vTp08e0trYGxsycOdMMGjSom19R92psbDSSzLp164wxX65Njx49zEsvvRQYs23bNiPJVFdXG2O+jL+YmBhTX18fGLN48WKTmJgYWJ9f/epX5uqrrw56rvz8fJOXl9fdL6lb9enTxzz99NOsUyeam5vNwIEDzZo1a8z1118fiBHWK1hJSYkZMWJEh/exVsFmzpxprrvuuk7vD/ef8VG5m6atrU21tbXy+XyB22JiYuTz+VRdXW1xZvbs3r1b9fX1QWuSlJSknJycwJpUV1crOTlZ2dnZgTE+n08xMTFav359YMz//M//yO12B8bk5eVp+/bt+u9///sNvZoL78iRI5Kkiy66SJJUW1ur48ePB63X4MGD1b9//6D1GjZsmLxeb2BMXl6empqa9P777wfGfPV7nBzj1H+H7e3tKi8vV0tLi3Jzc1mnTkyfPl233nrrGa+J9TrTRx99pH79+unyyy/XxIkTVVdXJ4m1Ot2rr76q7Oxs/fjHP1ZqaqpGjRqlJUuWBO4P95/xURkjBw8eVHt7e9A/UEnyer2qr6+3NCu7Tr7us61JfX29UlNTg+6Pi4vTRRddFDSmo+/x1edwGr/fr7vvvltjxozR0KFDJX35Wtxut5KTk4PGnr5eX7cWnY1pamrS559/3h0vp1ts2bJFvXr1ksfj0dSpU7VixQoNGTKEdepAeXm5Nm7cqNLS0jPuY72C5eTkaNmyZaqoqNDixYu1e/dujR07Vs3NzazVaXbt2qXFixdr4MCBev311zVt2jT94he/0HPPPScp/H/GO+JTewGbpk+frq1bt+qtt96yPZWwNWjQIG3evFlHjhzRyy+/rMmTJ2vdunW2pxV29u7dqxkzZmjNmjWKj4+3PZ2wd/PNNwf+PHz4cOXk5GjAgAH6y1/+op49e1qcWfjx+/3Kzs7WvHnzJEmjRo3S1q1bVVZWpsmTJ1ue3deLyi0jKSkpio2NPeOo64aGBqWlpVmalV0nX/fZ1iQtLU2NjY1B9584cUKHDh0KGtPR9/jqczhJYWGh/v73v2vt2rW69NJLA7enpaWpra1Nhw8fDhp/+np93Vp0NiYxMdFRP2zdbreuuOIKZWVlqbS0VCNGjNDjjz/OOp2mtrZWjY2NuuaaaxQXF6e4uDitW7dOf/jDHxQXFyev18t6nUVycrKuvPJK7dy5k39bp+nbt6+GDBkSdNtVV10V2K0V7j/jozJG3G63srKyVFlZGbjN7/ersrJSubm5Fmdmz2WXXaa0tLSgNWlqatL69esDa5Kbm6vDhw+rtrY2MOaNN96Q3+9XTk5OYMybb76p48ePB8asWbNGgwYNUp8+fb6hV3P+jDEqLCzUihUr9MYbb+iyyy4Luj8rK0s9evQIWq/t27errq4uaL22bNkS9J97zZo1SkxMDPzQyM3NDfoeJ8c4/d+h3+9Xa2sr63SaG264QVu2bNHmzZsDX9nZ2Zo4cWLgz6xX544ePaqPP/5Yffv25d/WacaMGXPG5Qd27NihAQMGSHLAz/jzOvzVwcrLy43H4zHLli0zH3zwgbnzzjtNcnJy0FHXkaa5udls2rTJbNq0yUgyCxYsMJs2bTKffPKJMebL076Sk5PNX//6V/Pee++Z73//+x2e9jVq1Cizfv1689Zbb5mBAwcGnfZ1+PBh4/V6ze233262bt1qysvLTUJCguNO7Z02bZpJSkoyVVVVQacVHjt2LDBm6tSppn///uaNN94wGzZsMLm5uSY3Nzdw/8nTCm+88UazefNmU1FRYS655JIOTyu87777zLZt28yiRYscd1rhrFmzzLp168zu3bvNe++9Z2bNmmVcLpf5xz/+YYxhnb7OV8+mMYb1+qp7773XVFVVmd27d5t///vfxufzmZSUFNPY2GiMYa2+qqamxsTFxZlHHnnEfPTRR+b55583CQkJ5s9//nNgTDj/jI/aGDHGmCeeeML079/fuN1uM3r0aPPOO+/YnlK3Wrt2rZF0xtfkyZONMV+e+jVnzhzj9XqNx+MxN9xwg9m+fXvQ9/jss8/MhAkTTK9evUxiYqIpKCgwzc3NQWPeffddc9111xmPx2PS09PN/Pnzv6mXeMF0tE6SzLPPPhsY8/nnn5u77rrL9OnTxyQkJJgf/OAH5tNPPw36Pnv27DE333yz6dmzp0lJSTH33nuvOX78eNCYtWvXmpEjRxq3220uv/zyoOdwgp/97GdmwIABxu12m0suucTccMMNgRAxhnX6OqfHCOt1Sn5+vunbt69xu90mPT3d5OfnB103g7UK9re//c0MHTrUeDweM3jwYPPUU08F3R/OP+Ndxhhz7ttVAAAAzk9UHjMCAADCBzECAACsIkYAAIBVxAgAALCKGAEAAFYRIwAAwCpiBAAAWEWMAAAAq4gRAABgFTECAACsIkYAAIBVxAgAALDq/wEDuc9Mm7LknQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "probas [[9.9874288e-01 1.2571664e-03 3.7379964e-25 4.9104913e-12]]\n", - "probas 0\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024999875412337\n", - "FROM GET FITNESS 0.9024999875412337\n", - "FROM GET FITNESS 0.9024286846133042\n", - "FROM GET FITNESS 0.9024286846133042\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024999998385225\n", - "FROM GET FITNESS 0.9024999998385225\n", - "FROM GET FITNESS 0.9024995710216166\n", - "FROM GET FITNESS 0.9024995710216166\n", - "FROM GET FITNESS 0.8958099319602787\n", - "FROM GET FITNESS 0.8958099319602787\n", - "FROM GET FITNESS 0.8958099319602787\n", - "FROM GET FITNESS 0.8958099319602787\n", - "FROM GET FITNESS 0.8958099319602787\n", - "FROM GET FITNESS 0.8958099319602787\n", - "FROM GET FITNESS 0.8958099319602787\n", - "FROM GET FITNESS 0.8958099319602787\n", - "FROM GET FITNESS 0.8\n", - "FROM GET FITNESS 0.8\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.027434677342171327\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024998495280939\n", - "FROM GET FITNESS 0.9024998495280939\n", - "FROM GET FITNESS 0.9024998495280939\n", - "FROM GET FITNESS 0.9024998495280939\n", - "FROM GET FITNESS 0.8972624049197336\n", - "FROM GET FITNESS 0.8972624049197336\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024999813182835\n", - "FROM GET FITNESS 0.9024999813182835\n", - "FROM GET FITNESS 0.8972624049197336\n", - "FROM GET FITNESS 0.8972624049197336\n", - "FROM GET FITNESS 0.8972624049197336\n", - "FROM GET FITNESS 0.8972624049197336\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.5174134323637193\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024999998385225\n", - "FROM GET FITNESS 0.9024999998385225\n", - "FROM GET FITNESS 0.9024999998385225\n", - "FROM GET FITNESS 0.9024999998385225\n", - "FROM GET FITNESS 0.9024999736666138\n", - "FROM GET FITNESS 0.9024999736666138\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.9023953025624325\n", - "FROM GET FITNESS 0.8\n", - "FROM GET FITNESS 0.8\n", - "FROM GET FITNESS 0.8\n", - "FROM GET FITNESS 0.8\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.6179281382556702\n", - "FROM GET FITNESS 0.9024999999956079\n", - "FROM GET FITNESS 0.9024998495280939\n", - "FROM GET FITNESS 0.9024998495280939\n", - "FROM GET FITNESS 0.6444867102667609\n", - "FROM GET FITNESS 0.6444867102667609\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n", - "FROM GET FITNESS 0.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoNElEQVR4nO3df3RU9Z3/8dckIRNSSILGTAAD0foDKfLDZMlGdP2eY2q0Ll373d2Tg6ywqYsHSs5S03UBf5BaV0N/cbAWYaWinm9rofoV11aMZaPRWiNZAygoPwWEokmgFBJQE8h8vn/4dWQgCfeGGT5z7zwf5+QcuHNn5jPvc+fe1/18PvdOwBhjBAAAYEmK7QYAAIDkRhgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYFWa7QY4EQ6H9dFHH2nw4MEKBAK2mwMAABwwxqijo0PDhg1TSkrv/R+eCCMfffSRCgoKbDcDAAD0w759+3ThhRf2+rgnwsjgwYMlff5hsrKyLLcGAAA40d7eroKCgshxvDeeCCNfDM1kZWURRgAA8JgzTbFgAisAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMCqpA4jT725Rz+s26rPjnfbbkrC++jwp/r5KzvU1vGZ7aYkvM+Od2v567u0s+2o7aYkvO6w0Yo3dmvTn47Yboon/P69Fv38lR068ulx201JeH/YcUDPrf+T7WbAIU/8am88GGP0k99vU8dnJ3TF0Cx9c9ww201KaA/87n29tLlF21qP6pEpE2w3J6E92vCBfla/Qw+u2aI9C2+23ZyEtnrDfv3gd+9LErU6g84T3brj/zRLktJSUzTzuq9ablFiu+3xJknS2AtzdEneIMutwZkkbc+IMVJqyuc/afxZFz0jZ/LS5hZJ0m/f+chySxLfu386bLsJnkHvkXMnuk3k34c/oWfEKXpzvSFpw0hKSkBFI4bYbgZ8KJiWtF8r19KpFQAlcRgB4iUlELDdBM/IHZRuuwmeZGTOvBLgIYQROHJx7ldsNwFIasQP+BlhBM5wsg/Ai0hxnkAYAQCv4QALnyGMwBE6RhAPbFfOGfNlAiGLuMBG5gmEETEZDAAAm5I6jHDRg3MBiuWYIdsCgCtJHUYAWEbI7RdD4nWOUnkCYQSOcMgA7OKYCj8jjAAxxsk+4o2OERf4PnoCYQSOcIAFAMQLYQSANWTc/qFjBH5DGIEjAQ4bgFUMzfQTdfMEwggAALCKMCLOOJxgzohzbE/OsV31D9sY/CbJwwh7QsAmDqr9w12jXWA37wlJHkYAwCPIH/AxwggQYww9AAmEEOcJhBEA1hDc+ofhLfgNYQSO8EN5gF3ME4GfEUYAAP7FeZQnEEbgCN9nAEC8EEbE/CbAFu7s2z+GSSPOUSpPSOowwjQI56iVcxwnEA9sV/CzpA4jAADAPsIIHKFnBPHAdtU/dJLAbwgjQIxxgEW8MWTjAt9HTyCMwBEmGgJ2kT/6icJ5AmEEAABYRRiBIww9IB7YrPqHu7HCbwgjYvwVgLewz4Lf9CuMLFmyRIWFhcrIyFBJSYmampr6XH/x4sW6/PLLNXDgQBUUFOjOO+/UZ5991q8GxxJnZc5RK+c4UCAeuNFZP7Hz8gTXYWTVqlWqrq5WTU2N1q9fr3Hjxqm8vFxtbW09rv/0009r3rx5qqmp0ZYtW/T4449r1apVuvvuu8+68QAA9IkM5wmuw8iiRYs0Y8YMVVZWavTo0Vq2bJkyMzO1YsWKHtd/8803NWnSJN16660qLCzUDTfcoClTppyxNwUA0DOOr/AbV2Gkq6tLzc3NKisr+/IFUlJUVlamxsbGHp9z9dVXq7m5ORI+du3apTVr1ugb3/jGWTQb5xwzWB2jVIiHkwMIIzbwmzQ3Kx88eFDd3d0KhUJRy0OhkLZu3drjc2699VYdPHhQ11xzjYwxOnHihGbOnNnnME1nZ6c6Ozsj/29vb3fTTAAA4CFxv5qmoaFBDz30kB599FGtX79ezz33nF588UU98MADvT6ntrZW2dnZkb+CgoJ4NxNnwMk+4oFepP6iawT+4qpnJDc3V6mpqWptbY1a3traqvz8/B6fc9999+m2227Tv/zLv0iSrrzySh07dkx33HGH7rnnHqWknJ6H5s+fr+rq6sj/29vbCSQA8P8xTAO/cdUzkp6erqKiItXX10eWhcNh1dfXq7S0tMfnfPLJJ6cFjtTUVEm9X6oWDAaVlZUV9QcAyezk3SVhBH7jqmdEkqqrqzV9+nQVFxdr4sSJWrx4sY4dO6bKykpJ0rRp0zR8+HDV1tZKkiZPnqxFixZpwoQJKikp0c6dO3Xfffdp8uTJkVBiG3czBADAHtdhpKKiQgcOHNCCBQvU0tKi8ePHq66uLjKpde/evVE9Iffee68CgYDuvfde7d+/XxdccIEmT56sBx98MHafop8Yr0Y8cNbqHD/A2D+cQMFvXIcRSaqqqlJVVVWPjzU0NES/QVqaampqVFNT05+3AgCcgsALv+G3aQDAA+gNgZ8RRoAYY/jPBWrVL8QS+A1hBI5wgAUSB8M08BvCCAB4DEM28BvCCAB4AfkDPkYYEV2egC0nj/71dhNE9IBSwWeSOoxwjwPnOE44R60Qb2xi8JukDiMA4BUnBxB6keA3hBEAAGAVYQSOcGmvc9SqfzjZd45SwW8IIwDgMQQ3+A1hBAA8gAACPyOMALAmcNKYFsda56gV/IYwIr7YALyFq2ngN0kdRphoCMCLiCLwm6QOI0A8cNKKeOD3aOBnhBE4QicS4oHbwfcTpYLPEEYAwGPoJYHfEEaAGGMuEuKNTiT4DWEEADyAAAI/I4wAsObkXiSOtc4RTOA3hBEA8BjmjPTt5MnQVMobCCMSpxkAEh57KfhZUocRJhoiHsi2zkUN01A3x6iVc+zmvSGpwwgAeBFZBH5DGAFgDWf4/UPd4DeEESDGGP5DPHCH2v6hat5AGAFgTfSlvRw2nKNWfSG3eQ9hBAA8hoOtc3RUegNhBAAAWEUYER2egC0BzlsdO7k3hH0W/Capwwg7QucCzMpEnDH04ByTWZ2jUt6Q1GEEiAeOE4g3NrG+UR/vIYwAAACrCCMArGH0r3/ofXOOTcwbCCNAjHGARbyRReA3hBEA8BgmsDpHpbyBMAIAHkD+gJ8RRsSX3AlGHhBvfA8RK/QceQ9hBAA8hmMt/Ca5wwin+46x73OOAwWQONjNe0NyhxEAVnFnX+dO/lVjfuHYOSrlDYQRAAmBA6xz9L7BbwgjAKxhomH/ULa+UR7vIYwAMcbIAwC4QxgBYA1zRpw7uTeEIS3n2MK8gTACR/hCI94YenCOWjlHqbyBMCLGrQF4C3ss+E1ShxHO9gEAsC+pwwgQD3S0OXfyCQFl65vp9T84Fd9B7yGMAIDHMIEVfkMYAQAAVhFGgBjjalXnqJVzJ0+0ZxgCfkMYgSMcNBBvXNXmHJWC3xBGAMBjCG59Y06N9xBGxFkGAAA2JXUY4VbUgF0B7vbjmOnl3+gbW5g3JHUYAZA4OMA6xyiNc5TKGwgjcISdn3PUCgDcIYwAsIaR0v4h78Jv0mw3AAAkepTO5OT67P3zMd31zDv2GpPgutmYPIcwAkc4g3WOWjnHMaN//vLJcT3T/CfbzfCE9DQGALyAMAIAHjP3xlG2m5Dwfli3VZKUnkoY8QLCiDg7A2yhF8m9nMwBmvW/vmq7GQnvl299qP2HP2V+jUf0KzIuWbJEhYWFysjIUElJiZqamvpc//Dhw5o9e7aGDh2qYDCoyy67TGvWrOlXgwH4FEeNM6BAbhB0vcV1z8iqVatUXV2tZcuWqaSkRIsXL1Z5ebm2bdumvLy809bv6urS17/+deXl5enZZ5/V8OHD9eGHHyonJycW7T8rbKsAvIb9FvzIdRhZtGiRZsyYocrKSknSsmXL9OKLL2rFihWaN2/eaeuvWLFChw4d0ptvvqkBAwZIkgoLC8+u1UACY9gPANxxNUzT1dWl5uZmlZWVffkCKSkqKytTY2Njj8954YUXVFpaqtmzZysUCmnMmDF66KGH1N3d3ev7dHZ2qr29PeoPgP9wlu8cIRd+5iqMHDx4UN3d3QqFQlHLQ6GQWlpaenzOrl279Oyzz6q7u1tr1qzRfffdp5/+9Kf6j//4j17fp7a2VtnZ2ZG/goICN81EHPAbIog3fmkVSF5xv+YpHA4rLy9Pjz32mIqKilRRUaF77rlHy5Yt6/U58+fP15EjRyJ/+/bti3czgZhh4hziiR/4dMfQpeQJruaM5ObmKjU1Va2trVHLW1tblZ+f3+Nzhg4dqgEDBig1NTWy7IorrlBLS4u6urqUnp5+2nOCwaCCwaCbpgHwII6riBe2LW9x1TOSnp6uoqIi1dfXR5aFw2HV19ertLS0x+dMmjRJO3fuVDgcjizbvn27hg4d2mMQAZCcOIHtG+WBn7kepqmurtby5cv11FNPacuWLZo1a5aOHTsWubpm2rRpmj9/fmT9WbNm6dChQ5ozZ462b9+uF198UQ899JBmz54du09xlviSAwBgj+tLeysqKnTgwAEtWLBALS0tGj9+vOrq6iKTWvfu3auUlC8zTkFBgV5++WXdeeedGjt2rIYPH645c+Zo7ty5sfsU/UQ3HgCvYbcFP+rX7eCrqqpUVVXV42MNDQ2nLSstLdVbb73Vn7cC4GscWgGcg6tpgGTD3If+oWx9Y7uCnxFGAAC+RYbzBsIIAHgIc92c4UaN3kIYAWKMgwUAuEMYAZAQuFNm37hdPvyMMCJ2ggC8hK43+E9ShxG+0oBdDGkBkJI8jACAV9CB2z/UzRsII3CGM1jH2Pn1D2VDLNHr5i2EEQDwEA6y8CPCCAAAsIowAsQYZ679w/BW36gP/IwwAgAArCKMAICH0PHmFl1KXkAYAQD4DqHNW5I6jAQY3HeMSiHeuN1536gP/CypwwgAALCPMAJHOCdzjqseEE906MKPCCMAAMAqwgiAxECPUp/ocesf6uYNhBEgxuhGB+zjAgVvIYwAsIazVvcCXNsGH0qz3YBEwA7xzNj9Id62tHSoraPTdjMS1gcHjtpuAhA3SR1GOMACiWP6iibbTfAERh/gR0kdRgAkjqHZGbabkPACkm4tGWG7GUDMEUaAGGPYz73ikUP07KyrbTcDPsTX0RuYwAoA8B1Gs7yFMAIAAKwijAAAAKsII0CMcbUDALhDGBE/ze0EB1gAQLwkdxjhAAsAvsbVbd6Q3GEEAOBPnGx6CmEEAABYRRiBI3R1OketAMAdwggAALCKMAIAAKwijMARLu11jloBicMwbuoJhBExxg8AgE2EEQAWcSaA+KCD0luSOowE2FyBhMDQFpDckjqMAAAA+wgjQIwxBwkA3CGMAAB8i3MDbyCMAAAAqwgjcITJvgC8JMCsaE8hjAAxxj4QANwhjIgxRQAAbErqMMIZLAAA9iV1GAEAAPYRRgAAvsV9f7yBMALEGDs/wD5G4b2FMAIAAKwijAAAAKsII0CMcZUWALhDGBFj/AAA2JTUYYQTWMAuTgQQb4bbWnpCUocRAIA/MVzqLYQRANbxQ4xAciOMwBHOMpxj6AEA3CGMAAAAqwgjAADAKsIIAMC/GDb1hH6FkSVLlqiwsFAZGRkqKSlRU1OTo+etXLlSgUBAt9xyS3/eNm649AuxxPwawD4mRXuL6zCyatUqVVdXq6amRuvXr9e4ceNUXl6utra2Pp+3Z88e/du//ZuuvfbafjcWAAD4j+swsmjRIs2YMUOVlZUaPXq0li1bpszMTK1YsaLX53R3d2vq1Km6//77dfHFF59Vg2OJM1gAAOxzFUa6urrU3NyssrKyL18gJUVlZWVqbGzs9Xk/+MEPlJeXp9tvv73/LQUAAL6U5mblgwcPqru7W6FQKGp5KBTS1q1be3zOG2+8occff1wbN250/D6dnZ3q7OyM/L+9vd1NMxEH9CIBAOIlrlfTdHR06LbbbtPy5cuVm5vr+Hm1tbXKzs6O/BUUFMSxlXCCG3k5R62AxMHX0Rtc9Yzk5uYqNTVVra2tUctbW1uVn59/2voffPCB9uzZo8mTJ0eWhcPhz984LU3btm3TV7/61dOeN3/+fFVXV0f+397eTiBJIMYYBegqAZDA2EV5i6swkp6erqKiItXX10cuzw2Hw6qvr1dVVdVp648aNUqbNm2KWnbvvfeqo6NDDz/8cK8BIxgMKhgMumkaAADwKFdhRJKqq6s1ffp0FRcXa+LEiVq8eLGOHTumyspKSdK0adM0fPhw1dbWKiMjQ2PGjIl6fk5OjiSdthzwC87IAMAd12GkoqJCBw4c0IIFC9TS0qLx48errq4uMql17969Sknx1o1dGeMHAMAe12FEkqqqqnoclpGkhoaGPp/75JNP9uct44I79AEAYJ+3ujBgDUMPiAc6JRFv9Hx7A2EEAABYRRgBYB89b0BSI4zANbo9+0Z9AMAdwggAALCKMAIAAKwijAAxxpVHQOIwXLPlCUkdRjhoOMc9WQAA8ZLUYQQA4E/8mKe3EEYAAIBVhBG4xggsACCWCCNwhElgznGfEQBwhzACAPAtTg68gTACAACsIoxIMkRnAPAVrqXxFsIIHOE+I85xRSEAuJPUYYSDBgAA9iV1GAEAAPYRRuAac2wQK2xKiDc2MW8gjACwjhFTILkRRoAY42wfsI85gd5CGAEAAFYRRsSZrBOcZQAA4oUwAsQYwQ0A3EnyMMJRAwAA25I8jKA/GNUC4BXcisAbCCMAAN9huNRbCCMAAMAqwggcoafTOWoFAO4QRgAAgFWEETjC+CsAIF4II+LqEADwK/bv3kAYAWKMXiTAvgD3kfKUpA4jHDT6hwmaAIBYSuowAgAA7COMALDGMKIPQIQRAABgGWEEiDHm1LjH/C3EDd9HTyCMAAB8h4DrLYQRcSYLAIBNhBG4xqTDvnFGBgDuJHUY4ZgBAIB9SR1GAACAfYQRAIBvMazsDYQROBJgIgQAIE4II3DEcMmRY5QKsI/TJ28hjAAAAKsII2JMEQAAmwgjcI1hCABALCV1GGFOJuKB7QpIHJw8eUNShxEAAGAfYQQA4D90UXoKYQSOcJ8RAEC8EEYAWMN4PgCJMALEHAdYAHCHMALAugD3y0SccHLgDYQRsbECAGATYQSIMeb6AvbxNfSWpA4jdA0DAGBfUocROEdsAwDEC2EEAABYRRgBAPgW1yd4A2EEjvCFdo6rswDAHcIIXONgCyDRcVWbt/QrjCxZskSFhYXKyMhQSUmJmpqael13+fLluvbaazVkyBANGTJEZWVlfa5vA8dWAADscR1GVq1aperqatXU1Gj9+vUaN26cysvL1dbW1uP6DQ0NmjJlil599VU1NjaqoKBAN9xwg/bv33/WjQcAAN7nOowsWrRIM2bMUGVlpUaPHq1ly5YpMzNTK1as6HH9X/3qV/rOd76j8ePHa9SoUfrFL36hcDis+vr6s2782aIbzzlK5RzbFQC44yqMdHV1qbm5WWVlZV++QEqKysrK1NjY6Og1PvnkEx0/flznnXder+t0dnaqvb096g8AALcMk9w8wVUYOXjwoLq7uxUKhaKWh0IhtbS0OHqNuXPnatiwYVGB5lS1tbXKzs6O/BUUFLhpJgAA8JBzejXNwoULtXLlSq1evVoZGRm9rjd//nwdOXIk8rdv375z2EoAgNcxWuotaW5Wzs3NVWpqqlpbW6OWt7a2Kj8/v8/n/uQnP9HChQv13//93xo7dmyf6waDQQWDQTdNwzlkuP4IMcKWBEBy2TOSnp6uoqKiqMmnX0xGLS0t7fV5P/rRj/TAAw+orq5OxcXF/W8t4AEMUQOAO656RiSpurpa06dPV3FxsSZOnKjFixfr2LFjqqyslCRNmzZNw4cPV21trSTphz/8oRYsWKCnn35ahYWFkbklgwYN0qBBg2L4Uc4CRw/AKq5AApKb6zBSUVGhAwcOaMGCBWppadH48eNVV1cXmdS6d+9epaR82eGydOlSdXV16R/+4R+iXqempkbf//73z671AADA81yHEUmqqqpSVVVVj481NDRE/X/Pnj39eYtzgpMx5zhzdY5aAYmDfm9v4LdpAAC+E+CswFMIIwAAwCrCCAAAsIowAte4+AgAEEuEEThCAHGOWgGAO4QRAIBvcXLgDYQRcemXE0xMB+Al7LK8hTACAACsSuowwnXoiAc2KwBwJ6nDCAAAsI8wAteYYwMAiCXCCADAxzh98gLCCAAAsIowAsQY9zVwzlAsxAkTyb2FMCIOHk7wvQYAxAthBIB1nMUCyY0wAgAArCKMADHGWT6QOBiG9wbCCFxj0iEAIJYIIwAA3wkw7d5TCCMAAMAqwggc4UcFAQDxQhiRZLhd8BkxT8Q5SgUA7hBGAAC+xbmBNyR1GGHkAQAA+5I6jADxQMgFEgDfQ08hjMA1uj0BALFEGAEAAFYRRuAIl/YCAOKFMAIA8C0utfcGwggQY+z8AMAdwog4eACA3zCw7C2EEQAAYFVShxF+1bF/6ElCrPFdBJJbUocRIB648AgA3CGMAAB8ix9C9QbCCBzhZB8AEC+EEQCA7zBc6i2EEQAAYBVhRPzwmxPUyDmuNgIAdwgjAADAqqQOI4wp9hNn/gA8gp5Kb0jqMALEAyEXANwhjMARjq8AvIS7+noLYQQAAFhFGAEAAFYRRgAAgFWEETHbGrHF9gQA7hBG4Bo/PIVYIbgh3tjEvCGpwwhzrQEAsC+pwwic494ZiCe2L8Qa25S3EEaAGGMnCADuEEYAAIBVhBEAAGAVYQQA4FuGS7Y8gTACAACsSrPdgETw3Po/ad3uP9tuRkLb2Xo08u/bHm9SWiqzNHuzYe9h200Akh4Tyb0lqcPI0JyBkqS2jk61dXRabo13bNp/xHYTAAA+ktRhZHrpSF0xdLCOdXbbboondIfDSgkEFOCUo0+7DhxV7Utb9ZX0VNtNAQBPSOowkpaaoqu/mmu7GfCZXQe+otqXtio1hdAGAE4wgRUAAFhFGAEAAFYRRgAAvhPgp1A9pV9hZMmSJSosLFRGRoZKSkrU1NTU5/rPPPOMRo0apYyMDF155ZVas2ZNvxoLAAD8x3UYWbVqlaqrq1VTU6P169dr3LhxKi8vV1tbW4/rv/nmm5oyZYpuv/12bdiwQbfccotuueUWbd68+awbDwAAvM91GFm0aJFmzJihyspKjR49WsuWLVNmZqZWrFjR4/oPP/ywbrzxRt1111264oor9MADD+iqq67Sz3/+87NuPAAA8D5Xl/Z2dXWpublZ8+fPjyxLSUlRWVmZGhsbe3xOY2Ojqquro5aVl5fr+eef7/V9Ojs71dn55U3I2tvb3TQTSAifHQ/r/t++Z7sZCe2DA8dsNwE+93/X79fGfYdtN8MTvj3pIhWcl2nlvV2FkYMHD6q7u1uhUChqeSgU0tatW3t8TktLS4/rt7S09Po+tbW1uv/++900DUgYg4Kff626usN64o977DbGI76oGRArgzM+36Ze335Ar28/YLk13jB53DBvhJFzZf78+VG9Ke3t7SooKLDYIsC5vKwM/fzWCdryMT16TqSlpOh/XzXcdjPgM/NuGqXLQoN1Ihy23RTPCGVlWHtvV2EkNzdXqampam1tjVre2tqq/Pz8Hp+Tn5/van1JCgaDCgaDbpoGJJS/HTtMfzt2mO1mAElr5Plf0Z1fv8x2M+CQqwms6enpKioqUn19fWRZOBxWfX29SktLe3xOaWlp1PqStHbt2l7XBwAAycX1ME11dbWmT5+u4uJiTZw4UYsXL9axY8dUWVkpSZo2bZqGDx+u2tpaSdKcOXN03XXX6ac//aluvvlmrVy5Um+//bYee+yx2H4SAADgSa7DSEVFhQ4cOKAFCxaopaVF48ePV11dXWSS6t69e5WS8mWHy9VXX62nn35a9957r+6++25deumlev755zVmzJjYfQoAAOBZAWOMsd2IM2lvb1d2draOHDmirKws280BAAAOOD1+89s0AADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrXt4O34YubxLa385PsAAB4xRfH7TPd7N0TYaSjo0OSVFBQYLklAADArY6ODmVnZ/f6uCd+myYcDuujjz7S4MGDFQgEYva67e3tKigo0L59+/jNmzOgVu5QL+eolXPUyjlq5Vw8a2WMUUdHh4YNGxb1I7qn8kTPSEpKii688MK4vX5WVhYbq0PUyh3q5Ry1co5aOUetnItXrfrqEfkCE1gBAIBVhBEAAGBVUoeRYDCompoaBYNB201JeNTKHerlHLVyjlo5R62cS4RaeWICKwAA8K+k7hkBAAD2EUYAAIBVhBEAAGAVYQQAAFiV1GFkyZIlKiwsVEZGhkpKStTU1GS7SXH1+uuva/LkyRo2bJgCgYCef/75qMeNMVqwYIGGDh2qgQMHqqysTDt27Iha59ChQ5o6daqysrKUk5Oj22+/XUePHo1a591339W1116rjIwMFRQU6Ec/+lG8P1rM1dbW6q/+6q80ePBg5eXl6ZZbbtG2bdui1vnss880e/ZsnX/++Ro0aJD+/u//Xq2trVHr7N27VzfffLMyMzOVl5enu+66SydOnIhap6GhQVdddZWCwaAuueQSPfnkk/H+eDG1dOlSjR07NnLDpNLSUr300kuRx6lT7xYuXKhAIKDvfve7kWXU60vf//73FQgEov5GjRoVeZxaRdu/f7/+6Z/+Seeff74GDhyoK6+8Um+//Xbk8YTex5sktXLlSpOenm5WrFhh3nvvPTNjxgyTk5NjWltbbTctbtasWWPuuece89xzzxlJZvXq1VGPL1y40GRnZ5vnn3/evPPOO+ab3/ymueiii8ynn34aWefGG28048aNM2+99Zb5wx/+YC655BIzZcqUyONHjhwxoVDITJ061WzevNn8+te/NgMHDjT/+Z//ea4+ZkyUl5ebJ554wmzevNls3LjRfOMb3zAjRowwR48ejawzc+ZMU1BQYOrr683bb79t/vqv/9pcffXVkcdPnDhhxowZY8rKysyGDRvMmjVrTG5urpk/f35knV27dpnMzExTXV1t3n//ffPII4+Y1NRUU1dXd04/79l44YUXzIsvvmi2b99utm3bZu6++24zYMAAs3nzZmMMdepNU1OTKSwsNGPHjjVz5syJLKdeX6qpqTFf+9rXzMcffxz5O3DgQORxavWlQ4cOmZEjR5p//ud/NuvWrTO7du0yL7/8stm5c2dknUTexydtGJk4caKZPXt25P/d3d1m2LBhpra21mKrzp1Tw0g4HDb5+fnmxz/+cWTZ4cOHTTAYNL/+9a+NMca8//77RpL5n//5n8g6L730kgkEAmb//v3GGGMeffRRM2TIENPZ2RlZZ+7cuebyyy+P8yeKr7a2NiPJvPbaa8aYz2szYMAA88wzz0TW2bJli5FkGhsbjTGfh7+UlBTT0tISWWfp0qUmKysrUp9///d/N1/72tei3quiosKUl5fH+yPF1ZAhQ8wvfvEL6tSLjo4Oc+mll5q1a9ea6667LhJGqFe0mpoaM27cuB4fo1bR5s6da6655ppeH0/0fXxSDtN0dXWpublZZWVlkWUpKSkqKytTY2OjxZbZs3v3brW0tETVJDs7WyUlJZGaNDY2KicnR8XFxZF1ysrKlJKSonXr1kXW+Zu/+Rulp6dH1ikvL9e2bdv0l7/85Rx9mtg7cuSIJOm8886TJDU3N+v48eNR9Ro1apRGjBgRVa8rr7xSoVAosk55ebna29v13nvvRdY5+TW+WMer22F3d7dWrlypY8eOqbS0lDr1Yvbs2br55ptP+0zU63Q7duzQsGHDdPHFF2vq1Knau3evJGp1qhdeeEHFxcX6x3/8R+Xl5WnChAlavnx55PFE38cnZRg5ePCguru7ozZQSQqFQmppabHUKru++Nx91aSlpUV5eXlRj6elpem8886LWqen1zj5PbwmHA7ru9/9riZNmqQxY8ZI+vyzpKenKycnJ2rdU+t1plr0tk57e7s+/fTTeHycuNi0aZMGDRqkYDComTNnavXq1Ro9ejR16sHKlSu1fv161dbWnvYY9YpWUlKiJ598UnV1dVq6dKl2796ta6+9Vh0dHdTqFLt27dLSpUt16aWX6uWXX9asWbP0r//6r3rqqackJf4+3hO/2gvYNHv2bG3evFlvvPGG7aYkrMsvv1wbN27UkSNH9Oyzz2r69Ol67bXXbDcr4ezbt09z5szR2rVrlZGRYbs5Ce+mm26K/Hvs2LEqKSnRyJEj9Zvf/EYDBw602LLEEw6HVVxcrIceekiSNGHCBG3evFnLli3T9OnTLbfuzJKyZyQ3N1epqamnzbpubW1Vfn6+pVbZ9cXn7qsm+fn5amtri3r8xIkTOnToUNQ6Pb3Gye/hJVVVVfrd736nV199VRdeeGFkeX5+vrq6unT48OGo9U+t15lq0ds6WVlZntrZpqen65JLLlFRUZFqa2s1btw4Pfzww9TpFM3NzWpra9NVV12ltLQ0paWl6bXXXtPPfvYzpaWlKRQKUa8+5OTk6LLLLtPOnTvZtk4xdOhQjR49OmrZFVdcERnWSvR9fFKGkfT0dBUVFam+vj6yLBwOq76+XqWlpRZbZs9FF12k/Pz8qJq0t7dr3bp1kZqUlpbq8OHDam5ujqzzyiuvKBwOq6SkJLLO66+/ruPHj0fWWbt2rS6//HINGTLkHH2as2eMUVVVlVavXq1XXnlFF110UdTjRUVFGjBgQFS9tm3bpr1790bVa9OmTVFf7rVr1yorKyuy0ygtLY16jS/W8fp2GA6H1dnZSZ1Ocf3112vTpk3auHFj5K+4uFhTp06N/Jt69e7o0aP64IMPNHToULatU0yaNOm02w9s375dI0eOlOSBffxZTX/1sJUrV5pgMGiefPJJ8/7775s77rjD5OTkRM269puOjg6zYcMGs2HDBiPJLFq0yGzYsMF8+OGHxpjPL/vKyckx//Vf/2Xeffdd83d/93c9XvY1YcIEs27dOvPGG2+YSy+9NOqyr8OHD5tQKGRuu+02s3nzZrNy5UqTmZnpuUt7Z82aZbKzs01DQ0PUZYWffPJJZJ2ZM2eaESNGmFdeecW8/fbbprS01JSWlkYe/+KywhtuuMFs3LjR1NXVmQsuuKDHywrvuusus2XLFrNkyRLPXVY4b94889prr5ndu3ebd99918ybN88EAgHz+9//3hhDnc7k5KtpjKFeJ/ve975nGhoazO7du80f//hHU1ZWZnJzc01bW5sxhlqdrKmpyaSlpZkHH3zQ7Nixw/zqV78ymZmZ5pe//GVknUTexydtGDHGmEceecSMGDHCpKenm4kTJ5q33nrLdpPi6tVXXzWSTvubPn26MebzS7/uu+8+EwqFTDAYNNdff73Ztm1b1Gv8+c9/NlOmTDGDBg0yWVlZprKy0nR0dESt884775hrrrnGBINBM3z4cLNw4cJz9RFjpqc6STJPPPFEZJ1PP/3UfOc73zFDhgwxmZmZ5lvf+pb5+OOPo15nz5495qabbjIDBw40ubm55nvf+545fvx41DqvvvqqGT9+vElPTzcXX3xx1Ht4wbe//W0zcuRIk56ebi644AJz/fXXR4KIMdTpTE4NI9TrSxUVFWbo0KEmPT3dDB8+3FRUVETdN4NaRfvtb39rxowZY4LBoBk1apR57LHHoh5P5H18wBhj+t+vAgAAcHaScs4IAABIHIQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVv0/CW88BZLG2LwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "probas [[9.9990904e-01 9.0992915e-05 3.4435804e-30 1.3855685e-13]]\n", - "probas 0\n" - ] - } - ], + "outputs": [], "source": [ "exp = exp_model.explain(item)\n" ] @@ -24305,9 +244,19 @@ "execution_count": 11, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "(6, 100)\n", + "(6, 100)\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/QAAAP8CAYAAADodvUPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOy9eZwkRZn//46ss885eu4ZhhlmOERg8FZQUC5BEVfxRgSP/brrsSq7irq/dUHXVXG98FhlUUFREFlQAeUQQRYdQTkGEBxgmBmY++zps47MiN8fEZEZWVVzd3dVT8f79aqu6qrMrMjKyIj4xPPE84g777xT4fF4PB6Px+PxeDwej2dcETS7AB6Px+PxeDwej8fj8Xj2Hi/oPR6Px+PxeDwej8fjGYd4Qe/xeDwej8fj8Xg8Hs84xAt6j8fj8Xg8Ho/H4/F4xiFe0Hs8Ho/H4/F4PB6PxzMO8YLe4/F4PB6Px+PxeDyecYgX9B6Px+PxeDwej8fj8YxDvKD3eDwej8fj8Xg8Ho9nHJJtdgH2hCuvvJLbbruNHTt2kMlkOOyww3j/+9/P4sWL421WrFjBpZdeyhNPPEFHRwdnnnkm5513HkKIJpbc4/F4PB6Px+PxeDye0UHceeedqtmF2B3PPPMMU6ZMoauri2q1yg033MA111zDz3/+czKZDENDQ5x77rmcfvrpvOtd72Lt2rVceOGFvOUtb+HNb35zs4vv8Xg8Ho/H4/F4PB7PiDMuXO7nz59PV1cXAEopgiBg+/bt9Pf3A3D33XcjpeQ973kPhUKBQw45hLe+9a384he/aGKpPR6Px+PxeDwej8fjGT3Ghcs9wNKlS/n85z/P4OAgQgje9KY3MXnyZEC72y9evJhMJhNvf8QRR7Bu3ToGBwfp6OhoUqk9Ho/H4/F4PB6Px+MZHcaNoH/Zy17GTTfdRF9fH7feeivTp0+PPxscHKSzszO1vbXoDw0NpQS9lJKtW7fS1tbm19d7PB6Px+PxeDwej2fUUUoxPDxMT08PQTByjvLjRtBburu7OfvssznrrLOYN28eixcvpqOjg82bN6e2s+747e3tqfe3bt3Kuee/HxWFVMr95l3BzHnHsmntMpSS+numzCeKKgz2bQAgky3SM/NwNq1dFh9r8rRFlId7GR7cCkC+2EXX5Hls3fB4vE3PrOfQ37uGSkl/V1tHD4W2yfRuWRFvM2PuErZuXE4UlgDo6J5FJpOnb/szunQiYMbcJb58vny+fL58vny+fL58vny+fL58vny+fL5846R8G9c8BOiQdflCF5VyP9dee23KOL2/jDtBD3p2IwxD1q5dy+LFi1m0aBG//e1viaIodrtfvnw5c+bMqXO3b2trQ0UhK556jO7u7mYU3+MZE8459z385Mc/aHYxPJ5Rxddzz0TA13PPRMDXc8+BTl9fHwcddBBtbW0jetxxIeivu+46TjrpJKZOnUpvby+XX3452WyWo446CoATTjiB//mf/+GHP/wh5557LuvWrePaa6/l7LPPrjuWEAKpIrq7u72g9xzQtLe1+TruOeDx9dwzEfD13DMR8PXcM1EY6WXf40LQ33///fz0pz9leHiY9vZ2jjjiCL7yla/Q09MDaLf6Sy65hG984xu8/vWvp729nbPOOmunKevCytBYFt/jaQpz54ycK4/H06r4eu6ZCPh67pkI+Hru8ewb40LQf+ELX9jtNosWLeLSSy8dg9J4POODV7/61c0ugscz6vh67pkI+HrumQj4eu7x7BvjIg/9SJPJFptdBI9n1Hn+C17S7CJ4PKOOr+eeiYCv556JgK/nHs++MSEFfc/Mw5tdBI9n1LnqmluaXQSPZ9Tx9dwzEfD13DMR8PXc49k3xJ133qmaXYixZHBwkDPPPJMdO3bsNPBGqVSiUqmMcck8ntYmn89TLHrvFo/H4/F4PB6PZ2/p6+tj0qRJ3HTTTXWZ2PaHcbGGfiwplUosXLiQDRs2NLsoHk9LMWvWLFauXOlFvcfj8Xg8Ho9nwqCUtn+PdHT6kcIL+hoqlQobNmzg2Wef9akzPB6DzZtZqVS8oPd4PB6Px+PxHNAoqSCUEClAC3oVBJAVEIiWEvcTUtBPnrZot9v4PPUej8fT+lx7/R285Y0nN7sYHs+o4uu5ZyLg67mnVVChhGoEFSPopYJAgIggG0A+g8oFiKA1RP2EFPTl4d5mF8Hj8Xg8I8Dhh85vdhE8nlHH13PPRMDXc08roEIJpVCL+aoj6AEyAnLKvJdBFTItIeonpKAfHtza7CJ4PB6PZwRYcvShzS6CxzPq+HrumQj4eu5pNkoqqBjLfDnSgj40gl6grfSR0qJeoAV+PtPsYk9MQe/xeDwej8fj8Xg8Hk9MaKzy9lE24t663Gcca3xGQDZCZZvvej8h89Dni13NLoLH4/F4RoCnV61tdhE8nlHH13PPRMDXc0/TiVTiYl+Vidv98o3ws2Xwt436f2m3A1TzM8BPSEHfNXles4sw5lxxxRUIIeJHV1cXS5Ys4Vvf+hZhGI7qd69atQohBFdccUX83vnnn8+CBQv26jh33XUXF110EVLKES3fRRddtM+RKtesWcOHP/xhXvayl9He3o4QglWrVo1o+Twez8753e/vb3YRPJ5Rx9dzz0TA13NPM1FKaXFuxbpCv35qE1yzDh6L4Ko18OTGRPTbbZvMhBT0Wzc83uwiNI2f//znLF26lP/93//lxS9+MR/+8If57Gc/O+bl+Ld/+zduuOGGvdrnrrvu4uKLLx5xQb8/PPXUU1x77bVMmTKFV7ziFc0ujscz4XjfeWc1uwgez6jj67lnIuDruaep1OpyGwhv2Yb0+/ev3/k+TcKvoZ9gHHvssSxevBiA0047jaeeeopvfOMbOxX11WqVbDY74rkWFy3aferA8cAJJ5zAxo0bAbj88su57bbbmlwij8fj8Xg8Ho/Hs9dY93kr1BWwZBY8vi7Z5nmz0tu3gKifkBZ6T8KLXvQi+vr62LRpU+wa/53vfIdPfOITzJkzh0KhQG9vLwDXX389L33pS2lvb2fy5Mm8+c1v5plnnkkdb2hoiA984AP09PTQ2dnJWWedxZo1a+q+t5HL/eDgIJ/85CdZtGgRhUKBWbNmcfbZZ7Nx40YuuugiLr74YgByuVy8dMD93gsvvJCFCxeSz+dZuHAhn//85+us+Q8++CCveMUrKBaLzJ07l8997nPaxWYfCQJ/C3k8Ho/H4/F4POMa5T4cbbBgmn7uAN4+Bw6ZkVjvW0DMwwQV9D2znjNix1oWKT5fVSwb4fUTo3XcWlauXEkmk6GzszN+7/Of/zxPPPEEl112GTfccAPFYpHvfve7nH322Rx55JFcd911fO973+PRRx/lxBNPpL+/P973/e9/P5dffjkXXHAB119/PYcffjjveMc7dluOSqXCqaeeyje/+U3OP/98brrpJr71rW8xdepUtm/fzvve9z7e+973AnDPPfewdOlSli5dCkAYhrz61a/m8ssv5yMf+Qi/+c1veN/73sfnPvc5Pv7xj8ffsWXLFk466SS2bNnClVdeybe//W1uueUWfvCDH9SV5/zzzx9xrwSPxzPyXH7lr5pdBI9n1PH13DMR8PXc03JIR4cdPR0WTk/+VzXPTWRCutz399ZbjPeFZZHiDVVYD1wewVVKcfQIpCJ8JIJ3hrAB+H4EN6BYkhkZcRlFEWEY0t/fz7XXXsv111/P6173Otrb2+NtZs6cyQ033BAL2oGBAS688ELe/e53p8Tvi1/8Yg4//HC+//3v89GPfpTly5fz05/+lM9//vN88pOfBLRb/8DAAN/97nd3Wa6rrrqKpUuX8stf/pKzzkrWUL3pTW+KX8+bp4MZvuQlLyGbTaru1VdfzT333MPvf/97TjjhBABOPvlkAC6++GIuvPBCZsyYwde+9jUGBwe57bbbOOiggwA49dRTOfjgg+vKk8lkyGSan1fS4/HsmpNOfEGzi+DxjDq+nnsmAr6ee5qOa52PBbt5UZGNxbuPct8cKqX+3W+0B9wktZgHLb5PCWFmef8fpxgxD/r4N49gDLgjjjiCXC7H1KlT+cAHPsA555xTZ6H+u7/7u5R1eunSpfT19XHOOecQhmH8OOiggzjiiCO4++67Abj33nuRUvKWt7wldby3ve1tuy3XbbfdxqxZs1Jifk+55ZZbOPjggznuuONS5TvttNOoVqv86U9/is/jpS99aSzmATo6Onjd615Xd8zvf//7ox793+Px7D+HLJjb7CJ4PKOOr+eeiYCv557msgshD1CNGn/eAkxIC/1IcWagLejrgVnAVVlG3EI/G3jtCE673HDDDcybN4+uri4OPvhgisVi3TazZ89O/b9p0yYATjnllIbHnDJlCgDr1+vpjZkzZ6Y+r/2/EVu3bmXu3H1ryDdt2sTq1avJ5XI7PbYt31FHHVX3+Z6Uz+PxeDwej8fj8RzANHKjrxghXzKGPteCr/QLpVRTl+pOSEHf1tEzIsdZkhHcgOJmqUX3SLnFH5+FX4iRPy7AUUcdFUe53xm1FbKnR/9eV1xxBc997nPrtu/q6gKSiYCNGzdyyCGHxJ/bKPC7Ytq0aTz66KO73a4RPT09LFy4kGuvvbbh5zb43uzZsxuWZU/K5/F4WpNljzzJkqMPbXYxPJ5Rxddzz0TA13NP02lkdS9bQR852+1i+yYwIV3uC22TR+xYSzKCT+fEiIru0TzuvnDcccfR1dXFU089xQtf+MK6x+GHHw7ote1BENQJ62uuuWa333HaaaexYcMGbrzxxp1uUygUABgeHk69f/rpp/Pss8/S2dnZsHzTpunolC972cv405/+xLPPPhvvOzg4uMvv9Hg8rc3yJ5/Z/UYezzjH13PPRMDXc09TcbW5a4WvGMu8uxTXFfItoOknpIW+d8uKZhdhXNHd3c2Xv/xlPvjBD7J582bOOOMMJk2axNq1a/n973/PK1/5St7xjnfEEe0/85nPIKXkRS96Ebfddhu//vWvd/sd73znO/mf//kf3v72t/OpT32Kl7zkJfT393Prrbfy0Y9+lCOOOIIjjzwSgK985SucccYZZDIZXvjCF3LOOefwwx/+kJNPPpl//ud/ZsmSJVQqFVasWMGvfvUrfvGLX9De3s7HPvYxvvOd73Daaadx0UUXUSgU+PKXv0xbW1tded773vdy5ZVX7tE6+uuuuw6A+++/H4Df/OY3TJ8+nenTp3PiiSfuzU/t8Xj2kre88eRmF8HjGXV8PfdMBHw99zSVWld6404fr50Po/qAefG+QBNtsBNS0Hv2nve///0cdNBBfPnLX+anP/0pYRgyd+5cXvGKV3DsscfG233ve9+js7OT//qv/6JSqXDSSSfx05/+lJe//OW7PH4ul+O2227j4osv5rLLLuPiiy+mp6eH448/nqlTpwJw5pln8oEPfIDvfOc7fPazn0UpvWYll8tx66238sUvfpHLLruMlStX0tHRwaJFi3jta19LPp8HtFv/HXfcwUc+8hHOO+88enp6+Id/+AfCMOSzn/1sqjxRFBFFUV05G/HmN7859f8HPvABAE488UTuuuuuPTqGx+PxeDwej8fjaRI7c6OvmP9Lsma7nWzfBMSdd97Z/FKMIYODg5x55pns2LGD7u7uus/7+vqYNGnSTj/3eCYi/r7weDwej8fj8RyoqEoEQyEMh3q9/HCo188/vAVuXKvN4P9yDOQzUDSPtiy0ZaAth9iDZdJ2PH3TTTfR0dExYmWfkGvoZ8xd0uwieDwej2cE+Nq3dh+jw+MZ7/h67pkI+HruaSmsybssoQuwq3Bl69nCJ6Sg37pxebOL4PF4PJ4R4J1vO73ZRfB4Rh1fzz0TAV/PPU1FUb9GXqFd7jtNauy6z1VLBMWbkII+CkvNLoLH4/F4RoDp0yY3uwgez6jj67lnIuDruafpNFoXX5HQUUheu5+r2h2bw4QU9B6Px+PxeDwej8fj8QCJK30qfR1axHfpANtUGuWiH4Oy7YYJKeg7umc1uwgej8fjGQHuWbqs2UXweEYdX889EwFfzz0tQa31vRrpQHgApQbprFvA7X5CCvpMJt/sIng8Ho9nBOjvH2p2ETyeUcfXc89EwNdzT3NpsD4edKT7fAB5tIXevt9CwfEmpKDv2/5Ms4vg8Xg8nhHgjNNe1uwieDyjjq/nnomAr+eeZqEaBcOzlEIoBNCGttY32q7JuegnpKD3eDwej8fj8Xg8Ho8nppEwr0aQF1DIJEHxarf3LvdjjxAT8rQ9Ho/ngKNcrjS7CB7PqOPruWci4Ou5p6mkguE5/4TG5T6bgbKq/7wFPO8npLKdMXdJs4vg8Xg8nhHg69/5WbOL4PGMOr6eeyYCvp57mkZtDnrXlb5qBX3WSVvXhDLuggkp6DetnbhRNJcuXcpb3vIW5syZQz6fp6enh1NPPZUrr7ySKIp2f4BRZNWqVVx00UU8/fTTo3L8pUuX8pKXvISOjg6EEDz00EMjduze3l4uuugiHnjggRE75s44//zzWbBgwT7v/9e//pXTTjuNzs5Oenp6ePe73822bdtGroAezxjy0Q+8tdlF8HhGHV/PPRMBX889TaV2Pbz9v6S0oG/LQFkm70snOJ53uR97lJK73+gA5Otf/zrHH38827Zt40tf+hK//e1v+cEPfsBhhx3GP/7jP3LTTTc1tXyrVq3i4osvHjVB/973vpcwDLnxxhtZunQphx122Igdu7e3l4svvnhMBP3+sG7dOl75ylcyPDzMddddx7e//W1++9vfcuaZZyLlxLwvPOObQsFnLfEc+Ph67pkI+HruaRqNguFZYT8M5DI6dV1F7X6/JpBt7td7xoq7776bCy64gA996ENceumlqc9e//rXc8EFFzA4ONik0o0eURShlCIIApYvX86//uu/ctJJJzW7WE3jy1/+MtVqlRtvvJHJkycDMGfOHE488UR+8Ytf8MY3vrG5BfR4PB6Px+PxeJqNMn8UOiBePqvd7xuJdx/lfuzpnjK/2UUYc770pS8xdepULrnkkoafL1q0iGOOOSb+/7777uOUU06hs7OTjo4OTj75ZO67777UPq985St55StfWXesBQsWcP7558f/X3HFFQgh+NOf/sQ555xDd3c3c+bM4Z/+6Z8olUoA3HXXXbzqVa8C4NRTT0UIgRCCu+66Kz7OZZddxpIlSygWi0ybNo33vve9da7iQgj+9V//lS9+8YssXLiQfD7PN7/5TTKZDFJKPve5zyGEiF3W//znP/OmN72JefPm0dbWxuGHH86nP/1phoeH687rhhtu4Pjjj6ezs5Pu7m5e/OIX86tf/YpVq1axcOFCAP7+7/8+LvsVV1zR8Pdwy3rRRRfF/z/11FOce+65LFy4kLa2Ng455BD+8R//ke3bt9ftu6/86le/4rWvfW0s5gFOOOEE5s+fzy9/+csR+x6PZ6z4zW1Lm10Ej2fU8fXcMxHw9dzTVGrX0QOE5kUhq93uK7Vp61pjMf2EFPRRNHJRNNXKPtS1K1Ar+0bsmCN93CiKuPPOOznttNMoFou73f7hhx/mxBNPZPv27VxxxRX86Ec/oq+vjxNPPJFly/Y9/sC5557LokWLuP766/nHf/xHvv3tb/OFL3wBgOc///l8+9vfBuDSSy9l6dKlLF26lOc///kAfPKTn+SDH/wgp5xyCr/61a/48pe/zC233MIZZ5xRt/b/iiuu4Oabb+a//uu/uPnmm3nHO97BPffcA2i3+6VLl3LDDTcA8Mwzz3Dsscfy3e9+l1tuuYWPfOQj/OAHP+Dd73536pjf/OY3eeMb38iMGTO48sor+fnPf84b3vAGVq1axezZs7n++usB+NSnPhWX/bWvfe1e/T7r1q3joIMO4utf/zq33norn/nMZ7jjjjt4zWtes9t9X/nKV+52Xf3w8DArV67kqKOOqvvsuc99Lo899theldfjaQW6utqbXQSPZ9Tx9dwzEfD13NM8avPQmxdVsxw1F2hBX47Sn6ua/ZvEhHS5H+zbMCLHUSv74D8fgu0VuH0t6mNHw4Ku/T/wqn746iPQa4776WMRC7v3+XBbtmxheHiYgw8+eI+2/+xnP0uhUOCOO+6ILbmnnnoqCxYs4OKLL47F697yjne8g4svvhiAU045hXvvvZerr76aiy++mO7ubo488kgAnvOc5/DSl7403m/VqlV8+ctf5t///d/5zGc+E79/2GGH8fKXv5wbb7yRv/u7v4vfV0px22230dbWFr/X09MDwLx581LHPvvss1P7HX/88XR3d/Oud72Lb3/72/T09NDX18enP/1p3vCGN6TO/dWvfnX8+nnPex4AhxxySOr4e8MJJ5zACSecEP9/3HHHsXjxYl7xilfw4IMPxt/RiEwmQza769t5+/btKKWYMmVK3WdTp05l+fLl+1Ruj6eZvPxlPmuJ58DH13PPRMDXc09TkbUincQinxU6F30pTD6rCY6nlEIIMerFbMSEFPQjxp83azEP+vkz94/8d2yvwF82w34I+r3l7rvv5swzz0y5ZXd3d3PWWWdx44037vNxay3WRx99NL/97W93u9/tt9+OlJJzzjmHMExupJe85CV0dXVx9913pwT96aefnhLzu6Kvr4/Pf/7zXHfddTz77LNUq9X4syeffJKenh7++Mc/MjAwwP/7f/9vj465r1QqFf7rv/6LH/3oR6xevTpejgCwfPnyXQr6O+64Y1TL5vF4PB6Px+PxHJA0CoanSCzyCCgEeg197Xa1+zeBCSnoM9ndu53vES+aDrev1aJ7Sh5G0kL/tUeS475w+n4drqenh7a2NlavXr1H22/bto3Zs2fXvT9r1qz9Ws89derU1P+FQoFyubzb/TZt2gTA4sWLG36+devW1P+Nyr4z3v3ud/Pb3/6Wz372sxx77LF0dHRw33338cEPfjAW1Pb48+bN2+Pj7guf+tSn+OY3v8lnPvMZjjvuOLq6ulizZg1vfOMbU+J+X5k8eTJCiIbXcNu2bXXXx+MZD2ze0sv0aZObXQyPZ1Tx9dwzEfD13NMSuG70lRCsbCwEEIYN3O2d/ZpjoJ+Ygr5n5uEjchyxsBv16WO1Bf2F0/fLLT7FkVNG9LjZbJZXvvKV3H777ZTLZQqFwi63nzp1Khs21C9L2LBhQ8pdu1gs0tdXv8Z/pHOaW3f52267raG7uP3csqfuLqVSiV/+8pdcdNFFfOQjH4nff+SRR1LbTZs2DYC1a9c2XH++O4rFIpVKOm5D7SQEwDXXXMO73vUu/r//7/+L3xsYGNjr79sZ7e3tLFiwgL/+9a91nz322GOceOKJI/ZdHs9YcdU1t/CxD72t2cXweEYVX889EwFfzz1No1ak2+eqTAR9Xug89I2281Hux55Na/c9sFstYmE34s2LRk7Mj9JxP/nJT7J161Y+8YlPNPx85cqVPPzwwwCceOKJ/PrXv6a/vz/+vL+/nxtvvDEV1f7ggw/miSeeSInVu+++O7Xf3mAnGmojzJ966qkEQcAzzzzDC1/4wrqHjTC/t5TLZaIoIpfLpd630ektxx13HJ2dnVx22WV7XXbQv9Ojjz6aeu/mm2+u225oaKiuLD/84Q93eQ57y1lnncXNN9/Mjh074vfuueceVq9ezVlnnTWi3+XxjAV+8OeZCPh67pkI+HruaRo7E+ZlqSPcg85FXzvM35m1foyZkBb6icgJJ5zAV7/6VS644AIee+wxzj//fObPn8/27du54447uPzyy/npT3/KMcccw7/9279x0003cfLJJ3PhhRcihOBLX/oSQ0NDqaB0b3vb27jssst4z3vew/nnn8/KlSv56le/yqRJk/apjIcddhjZbJYf/OAHTJ06lUKhwOGHH86iRYu48MIL+dCHPsTy5cs58cQTKRaLPPvss9x+++28733vi1Pe7Q2TJk3ipS99KV/5yleYPXs206ZN4wc/+AFr165NbdfV1cUXvvAFPvzhD3P22Wdzzjnn0NXVxUMPPUSxWOTDH/4wM2fOpKenh2uuuYZjjjmGjo4OFi5cSE9PD29729t4z3vew8c+9jHOPPNMli1bVjdpAHrt/5VXXsnRRx/N4sWLuf766/njH/+4R+dy8skns3r1ap566qldbvfxj3+cq666irPOOotPfepT7Nixg0984hO85CUv4Q1veMMe/3Yej8fj8Xg8Hs8BQ6N19BUJ2Yx+XciCDbUlG6yfb6Kon5AW+onKRz/6Ue655x4mT57Mv/zLv3DSSSdx/vnn8/jjj/O9732P173udQAcc8wx3HXXXXR3d3Peeedx7rnn0tnZye9//3uWLEkikL7qVa/iu9/9Lvfeey+ve93r+OEPf8hVV12VCqa3N/T09PCtb32LZcuWceKJJ/KiF72I++/XgQb/8z//k8suu4y7776bt7zlLbz+9a/nS1/6ElOmTOHQQw/d59/k6quv5gUveAEf/OAHOf/885k1axbf+MY36rb70Ic+xM9//nPWrFnDOeecw9lnn811110XewcEQcDll1/O9u3bOeWUU3jRi14UBxA877zz4uwAr3vd67j11lvjtHku3/zmNznrrLP413/9V9761rfS39/P1VdfvUfnEUVRKmDgzpg7dy533nkn+Xyes88+m3/4h3/gVa96FTfffDNB4JsDj8fj8Xg8Hs8Eo9F6eICK0pZ5gLx5rnPPV0230Is777yzyUUYWwYHB3nn+R9h9YoH6O6ud2fv6+tj0qRJ7Nixo+HnHs9ExN8Xnlbl2uvv4C1vPLnZxfB4RhVfzz0TAV/PPc1ClSMYrOqo9kMhlCL9+v82wOYh+LuFOoXdV/8KH3sudOSgmIH2LBTMc3sWkdm1ccyOp2+66SY6OjpGrPzjwuX+sssu409/+hMbN26kWCxy7LHH8v73v58ZM2bE22zcuJGvf/3rLFu2jFwux0knncQHPvCBujXJAOXh3jEsvcfj8XhGi8MPnd/sIng8o46v556JgK/nnqaxM7f5qoJ8FoSAnBHrlUgL+l3tN8aMCx9bIQQXXnghv/jFL7jyyisB+PSnPx1/LqXk05/+NF1dXfz85z/ne9/7Hg8//DDf/e53Gx5veLA+wrjH4/F4xh9Ljt73JTcez3jB13PPRMDXc0/TaBSlXqHzzltXe5tFqxw12NZHud8tf//3f8/hhx9OLpejs7OTt7/97axYsSKOpv7www+zevVqPvjBD9LR0cGsWbN497vfza9//eu6dGEej8fj8Xg8Ho/H4/GkqF0fX4kSyzxAHp2b3m7XKDheExgXgr6WP//5z8ycOZOuri4AnnrqKebMmZOKrn7EEUdQKpV49tln6/bPF7vGrKwej8fjGT2eXrV29xt5POMcX889EwFfzz3No0GgO9DW+LwAY5yniLbap7at2acJjDtBf//99/OjH/2ICy64IH5vaGioLrCAFftDQ0N1x+iaPG90C+nxeDyeMeF3v7+/2UXweEYdX889EwFfzz3NQNVFrXc+LIWQDxJBXwh0bvr0Aer3G2PGlaBfunQp//7v/86nP/1pXvziF8fvt7e3Mzg4mNrWuuO3t7fXHWegbwPnnPseLrjgAi644AJuuukmvvS1H1Mue/d8j2dP+M1tS7ln6bL4/81bevnat65JbXPt9Xew7JEn4/+fXrWWy6/8VWqby6/8VWpGftkjT3Lt9Xektvnat65h85be+P97li7jN7ctjf8vlyt1968v38Qp3/vOO6ulywet/fv58o2P8r3vvLNaunwWXz5fvv0pn63nrVo+F1++A6l86/j+T252hLni+7++nac3bIQwgkLAsqdXce3//RFyWZ3KDvjaz37Blt4dZh/4w70PNyzfTTfdFGvOc859D6PBuElbd/vtt/ONb3yDz3zmMykxD/DQQw/x8Y9/nOuuuy52u//DH/7Af/zHf/DLX/6SfD4fbzs4OMiZZ5650/RbPj2Xx1OPvy88Ho/H4/F4PAcaSiptibfp6oZC7WpfjuAHf4WXz4bn9IAEfvIEHD4ZXjxDB8trz+r0dW0mbZ0NoLcTJnTauhtuuIEf/OAH/Od//ifHHHNM3efHHHMM8+fP57//+7/5p3/6J/r7+/nhD3/IGWeckRLze0NfX9/+FtvjOWDw94PH4/F4PB6P54BkZ2735Ui73FuKWajI+u2kaqrL/bgQ9JdeeimZTIYLL7ww9f6XvvQljjnmGIIg4POf/zxf//rXOfvss8nn85x00kn8wz/8Q8Pj9cx6zk6/K5/PM2vWLA466KARPQePZ7wza9asfZ4g83hGi1o3TY/nQMTXc89EwNdzT9PYWWC7EpB1rO6FTOxyH2/fArnox4Wgv/POO3e7zaxZs/jiF7+4R8fr712z08+KxSIrV6706e4OIFQkYTjUM2qVCKpSPywZoVNSFDLafaYti8iOq/ASDVm5eh0LD54zYsfL5/MUi8URO57HMxKcdOILml0Ej2fU8fXcAzp4l7C5sA9AfD33NIVGgjyOco/WB5Z8RmuJRuK9iVHux4WgH2kqpf5dfl4sFncrXJRS8bUMDuDG9UBAlSMQoXlIIAKkdo8JjJjPBXoNTMEI+rbxf2ssOdqvdfcc+ByyYG6zi+DxjDq+nk9cVKQgkhApQKEQ2hCRCRCZA2v86eu5p2VQJAK9YDSBQAv6gUqyDTRVyFvGv2oZY6RSlJWRhOb6BUKRRacp9OK+tVBKgZQQms4wNNb5SgQrNsPDG+EFs+HIWRAF+qJGEiUVIvDX0uPxeDwez9ijlDIehRGEygh6QyAgK1D5DOSCA9pq7/GMPsZt3go7e6uFxpvXDXSXF3pdPTRIV+fz0I8pbR09+7RfRSoGFQwq6JfQp/SjX8KAeb/aArM0HgeJ7gTtjRqZx4rNcM06eCyCH6+BJzYmn0laYrZtf3FTcng8Byq+nnsmAr6eT0CqUguHktSRt2307ZKJvl2KkuWEBwi+nnuahut2bzWAvbdyAQhhLPSBjohfu5+ZDFBN0g8TUtAX2ibv9T6hUgwrGJDJY9A+lH4ekDAkIToAxOABhXtzWmH/4Pr0Ng9sSOWfbGZgi5Fi+ZPPNLsIHs+o4+u5ZyLg6/nEQkVOzJ+KEfDDYSLirZA3n6tq1Owijwi+nnuaRiPtVjH3lbu0pRDo3PSN9vNB8caW3i0r9mp7pRQlRepRVtoDCiAroCD0dQyArIJ2DuzAJeMHI87jh7loh8+A5RuTzZ4/K9kGDggL/VveeHKzi+DxjDq+nnsmAr6eTzBCM8i0ubCteHdj/yi0xTAQkA0g1+xC7z++nnuaQqNgeAptibfe9sK8lxdQDRu42zvHaoL8m5CCfm+J0BkKykbMD0mdxcDOz2SMlzZoQZ9XWuD7H7cFSFnnnZtvehewEXqA0+bCwunJNq6w93g8Ho/H4xkj6mL/RGrPYv9E6oALkufxjDnuevhqBDZGujCKvhBAWaa3bQFj4IR0ud9bqmaiNEQ/V9BZDP4CfAG4Hy34QxMsLyIdu8TTIrg36XBVv1wyCxZOq7fO++vn8Xg8Ho9nrGkU+yeU8NSmncf+ibwlwuPZZ2qt7fa5KqFoJsmE+ZPNaKvurvZvAhNS0M+Yu2SvtndFemheLwP+FbgLuBB4sGa7A2M10wGAjVhZG7myZK7QUM06GNc9f5zztW9d0+wieDyjjq/nnomAr+cTiZqI29L8/8CG9GYPbEi2MbuNd3w99zSF2mW5loqCXNZY59GivpDVll1qtq+dDBhjJqSg37px+R5va/PNS5LrLYHbarb7DUldsNt6WgT3YtjOb8i4ywyFjdfOHwBr6N/5ttObXQSPZ9Tx9dwzEfD1fALhinl3KLJoWnq758/Sz7JmAmAc4+u5pyWw91JZaou8S8H8X7tEt8nevRNS0Edhra/EzpEkbWXkvD6lZjvbBDV5gsZTS6OOUQHDRtAPmGm2Ouu8alrqiZFi+rTJzS6CxzPq+HrumQj4ej6BqM3KY61FU9r1+93A2+fAguktIyZGCl/PPU0hFW/Lea8i0znoIfm/atfR106+NedGnJCCfm+wFvl4AtQ8jjCf54DPA0fRKDbCAdC6jnfci+JeD+tyP1xxtnWs8/7SeTwej8fjGWtq3X/t84DJfX349MaBfA8AC73H0zQaBbarKCjWCnojncvukt2a5yYwIQV9R/esPd7WFfGu6/0m8/khwHPttgfWEuwDg0YR7hU6FcXMrA6O1+jCHQCi/p6ly5pdBI9n1PH13DMR8PV8AlHrWWgfA0ZADJTr19ibjce7IcnXc09T2Jkgr0rIm5xlwj7MevpKg2hpPsr92JLJ5Pd425Rl3nm9znw+6GxbZ6Hfz3J69g/dsTVY4wIwVIWp7dBX8/4BNCvT3z/U7CJ4PKOOr+eeiYCv5xOIlJh3BiJW0O8o1W9rB6jjHF/PPU2hkRBXaNGeyyR55a2YzwHlsLFVv0n34YQU9H3bn9njbVPZQ0gs9OvReeZts1or4r3nUwvRKJ3EcAhTi+mZmgPIOg9wxmkva3YRPJ5Rx9dzz0TA1/OJRI3l3Y5RBsswt6Bj/zRytT8ARL2v557m0MCbF7Sgz4v6zdvQOepdo2EjcT+GTEhBvzdYES9VOtL9euAwoN9sp2hwTce2qJ5aaq3s0rlhK1Xoyen/h8Pk/dRF9FfQ4/F4PB7P2KDsOKRRlPu+CszpNp6FqnHKOj9s8Xj2ClW7JNf1jClHyZp5IRJLfSHQ6+vTB0qO0wQmpKAXYs9OWymVssq7a+jXA4uAMo1FvG9TW4Sd5aEfjKDTrIsZqNTPrB0AVvpyubL7jTyecY6v556JgK/nEwRXTKSEvYLhMswp6P9tYF83ZZ20O41ffD33NI1GlvVyqAW9a6QXArJZndKudr8m3n4TUtDPmLtkj7azbaQinbIOtKBfbF5bt3tpn2s8uD1NotHsir3xBoG2nE7/MlylldxmRoqvf+dnzS6CxzPq+HrumQj4ej5BaGQltKJ+u4LJJgbUjvIBaYjw9dzTFBrpBIDQcbl3RX0u4wj60S7cnjEhBf2mtXsWRdN1t3fX0EfABhJBP4C30LcstbPd7ox3Ww7ac9paD/Wd4ji/iB/9wFubXQSPZ9Tx9dwzEfD1fKKgGo9bImOB7y5Aj9Ceha4hoi7i/fjE13PPmFN7y7gTZdVIu9dDEhAPoJjVLvd14q95k2oTUtArJXe/EfWB8GpT1tnkd0PO9jR47WkWNVZ3d00M6NySxRwMRY2t8+P8IhYKe57NweMZr/h67pkI+Ho+gXDdPGOvQuOK3p6F9gL0hcm2tfuNY3w99zSF2vXv9rkkIWcFPYmoL2SgItP71+qIMSbbnK8dH+wqZd1MIIP22B6ixt1eHBAG3t2i3AocgBANIkE2m0Zu80NV/ZwNoCsPQ611U3o8Ho/H45mAuOMOd/18XwXyaEExuQh9UbKt9OMWj2ef2dVS2xKQzxD721uZkzeCvtH95qPcjx3dU+bv0Xa7Slk3x2zTQZKLvpHnxYGIihSqEuno8ENVvQa9FKLKESpqoZPeWcc4XIWieb89p8+h0Q09zi/gb25b2uwieDyjjq/nnomAr+cTBDfIHSTjksEqTM7o1535JJivK+oB9tADtVXx9dzTNBpphhBtjU8FxUOvoa+E6f2arBkmpIU+ivYsiuauUtZZd/siMOzsoziwJ0pVJLXLelXq2Y5IJRU9G0BWoAoZRC7T1HICO49wPxxBp5nLas/AVnMFG6StU0q1pufBHtDV1d7sIng8o46v556JgK/nE4Ta9fN2/DIQQdG4o3dnYI0Jx+wuDzTb+nGLZyxRStVkWBCt67W7M2rvO5z/8w2kcl7A9tr4W+7Bxp4JKegH+zbsdpvdpaw71mzXRWKht/OitZb6AwUVSW2Vr0gt6Ksy6WwCATkFUgtlJQQi2wIOIKnABuaf4Si5QdszMFSp3+YAWEP/8pctaXYRPJ5Rx9dzz0TA1/MJQqO4Pwot6CeZlHXdWRgqJ+MUd+28fT2OtJSLr+fjB6WMUa8aJQY+gIyAjEDlM4hMC+iA3bITIW/XyOdrzkGgA+UNR3WHiA/VhEm1CSno9wS3jWyUsu4M87qNnUS5N2vpDxSUUrpyVxwLvbXSg76BI+UI/AgVCETQxB+htkO0j2Gpg+EBdAQwXGm8dt6+dwBdR4/H4/F4PC2KdZmvHbsMVKDDWOg787C1Zmmgj//jGUMSTeB47LoGvoyAUGlRX2gBj93d0cgSWzGCPecI+ngNfQBh6OzffGPgeJg6GXEy2eJut7EW+UYp69YDc8127SR56Gvd7Q+oNlUqCB03+4qEUpR+uELftd43i0Yz3aCjVnYYQd+Wgz67/YHVMW7e0tvsIng8o46v556JgK/nBz7KzTtfO3bZUYHOjA6KZy311Sjtlh9bnsbvwMXX83FC1Yj5snkMh/V6oBxBJUJVo90fr9k0Wv9uBb0QJsI9TpR7oXPU17nb0/j/MWBCCvqemYfvdpududtvMZ/PMM82KF6dhZ7x3KQ2IDRCPjRi3T4/sRF+vgyWb0zEvjSPZgfIa3SDKqAUJhb6zryepanNPX8AuNxfdc0tzS6CxzPq+HrumQj4ej4BqB04usF8S2Uj6NEpd0FHvnf3tfuM47GLr+etj7Ju9tZr14r44TB5lBwDXyVCNdvAtyvcorkCvRzqzBKQzkEP2kJvU2A3ctFuAhNS0G9au2y32zRyt7cp62ag1yoENI5yL9WBJeh1wAuZFuyRghWb4Jp18LiEn66FJzcmnyn0Ps0tuX6qDY43XIVioG/QNrPqpOQEt0hZ58fvVfzYh97W7CJ4PKOOr+eeiYCv5xOAWmu7fQ9gRwSdWePyK3TO5P5drKMfp/h6Pg5QShv5QscjtxzB4xvg6ofgbxvS3rqhaprI3SMaLc3FTFq4Dt3WUo/QUe6Hd3GcJjAhBf2e0MjdHrS7/WxnuzZ0HvpaD+1koqaFK/GeIklc6K1gjxQ8VBNc8MENDQNDNIOU65pTHgAGQ2gP9I1pA/fZFDB65+T5ALh8Ho/Hs79ESlGWiiGpGJSKYamoKoU8EPo4j6dVcEV9LNQVlIEu42ovhPYu7DNreKUfs3jGkFpv3KqEJzfBT9bCXyP40Rpt4LPbKLSob1V2ZlmvKB38DurT1uUzUGmwX60IHEO8oN8Jdr28624vSVLW2eUUHdRP0sAB1qZGMulY3Mfh09PbLZnVOmK41kXCveEqVWhz8kp2YiLd11rnqb/BPS2B8kLC4xkTlBHygxL6FfRL/egzj0EFVX8vejwjQM0YxNxXajikGkCpM8dgAMMCqlPakH1RvVXe5ln2eEaLVF0zdfbBGgPfX9Y7VlHV+l4jjfRCRUI2m7jbu6K+mE22rdUM3kI/dkyetmiXnyulGgbFU2iX+9kk17Ud6Hf2lbXt8cgWvTnUutpHZsY4cpIkvG0OLJreEoEhku9u4EajlF7f02Zn3QR0ZGFI1u87zi/gtdff0ewijChKKSrGOjigtJAYMJbCyAuKCcuBVs9bCaUUZQVDSov5AUfUD5j/ByQMSqi0+oBtnOPr+QTAEfH2OVQwOFChry2gLxcwgKBfQN/UIoPlkKpy7A4yve94xNfz1kZ7v6oasaNgycz0hsfO0s9xvzCO6qQtakVC1onQ766jz5v3wwZZKdIvxowJmbauPNy7y88VzjJw6lPWvZpE0HegPaHsfqlnxbhPeaak0mvhU2vjzQzw0wMwJw/bKrBgWuOZ4mbRYJY7fh4ACrlk20IeBs0aevdiN9vLYD85/ND5zS7CiBEpRUlBSZmlW+b9AMgKvcypoBT5ZqZJ9DSFA6metxohMGwmz0oKygotIICM0veejV8cABmlyIxx7t2Jgq/nE4CaaPVVBYMoSqUqlWkZ3e8JASiyXVkqW4YIBbQrRcGOd6R+0Yw82COBr+ctTq2hy9bZhdOhuE6n/XrbHDhkep0maNk6mdIJzntlBW7KPTfKvc1NX5Z67XXtvk1gQgr64cGtu/zcFfKuu70NijcHPXhRaEE/0GB/+zyO9aBGKT1iq41eLyU8sQNeORtuX59sG+9X89wM3JvU/V8C7Y6g785pQV8r5MfpBVRmzd0xRy5CRRKEQIxjoSuV0qJCGkFPshwrAHICQvMQSpFrxQ7DM2osOfrQZhfhgEQpRUXpZYRlBcPm/jOLkwiAvHlhJ9ZyCtr87Tcq+Ho+QTB9WwQMS8WwgNIQVNoLhEIgAwgkZCZnyFcrKJRO+y1VMqC3Y5dxeC/6ej4OaBS4USnIADOzWty7n8fb0Lp1MmWJNVRkklGi1u3e/l8OgULNsZojHCakoN8dtSnr7Fp6m7JuJmmX+0FnP8W41oL1hDVC3rrbbxiEKnDoJC3oa0P7N926XTPbZhuWsnGPabM3KdCW1274bnlrrfrjgDiVSChNZVQQCAhA5TKQDcalsC8b66B9lI2ol8ZCmCdZMphVkEEReFHv8ewXEi3mK+huoKK08eV+4FbgDOAFaEt9zmwTiRa2wng8rY61JKGXsJQxE2pDktK0IlW0LUUoyLdnkcMRAuMtA2TdNcvjZ+jiGU80MtYZrxAGgSBMj/9rx+CtSKPg2aBdZHJGJrtdmh1HZ9HR/RtNBjThdCfkGvp8sWuXn+8sZd16YDp68GJ/OOtpEQc7tM8HQHsap6uLrfIq+UGeGoBFHdBuKnu5BdO+NbhJ5XCVagDD+YChQOjgMh0Z5GAl2aem/OMhU4EKJZSqRKWIailieDjksSfXUBoKqQ5HqOEQyqEW/eMIaayEVsgPK72ed0Dp7BKDSoc/sJ+XVWsHU/WMPE+vWtvsIhyQRCpxzqoqPX/7IPAp4C7gQuAh83lIsq2//UYHX88nADYInlRE6PuqClSGQyqFImWleFzC5RKWd+SpViCUilAqPUSzx2j22Gs/8PW81XEmjXCeK8asYoOKNQqQ3epVsjbuViXUrvU7m59uA6oh8W9Sa9QcYyakoO+aPG+Xn+8sZd06dIR7SKLcd5r/B6m3zo97K72kPiCeFfVPb4fFk5K0b0PV+v2bKYTrZg/1oHSoFNLfJegX+tEnoK87y2A1olyz23iZlVGRQpUjymXJUDliRymivxRx2z0P0FfWrwdLEdWyhEo0LiYoLHZQExlB4VoJvwD8GR3DInTER7jTo3kORH73+/ubXYQDEnvfRSRZX26p2eYWDrA+r4UZq3oulSI0j0iNjwntA4E42Jgz3AqVFvZRpUK1O+ApBV8F/hjA1ws5BgREQxXT96nYUNrS1tDd4NvzFsetX241G6gkr+3Mbp2Fs1XrZc35xFHuo2StvIsV+MVAD0pTh9qJtX8MmJAu91s3PL7Lz3eVsm4O6cmavHkeMs/uNWzVqrs7IqX0REYYQagIpCIjFcL2MqUI1lfhjd16hwLGZb1mxg6a9yPU3FRVBUMohsKI6pSsHqQKk4q+K0NFVimajQuNAuO1sgdpKCmXI4YrklIlolqVhKHidaefwkApIpsV5M3AvF1ALisgl9ntYVsBa3VwxfpDwKfN53cBXwFeaj8XdrWBd/udKLzvvLOaXYQDDmX6AHvfWVF/KnCns91pJBPeUuk2dbz2e63OaNfzyHhDuTFKBDY2giIv8G3qaBLPiJksS+ZZAXKggirCPaaPyyvBYAZWT4MpfRVUd1H3e+7YRSq9pnmcMdHbc3cCrSXvN3eCz82qMFDRWqCMNvAVMg08dlsPVSvA3XKWIsjXXAN3DX02k3gmNNndHiaooN8Vu0pZtx44En09bVA80IHxhqjRgOait2gdbog0KYpsp65ChTJiPichHynySsHKHTBNQJeZzugQ2jUF6m+KZs3uO51jBAwpxZCAUkVRKeQIhSASur/LFDPky3owCvq97DhoiEB34NVQUooUQ6GkVJVUSxHRqs3I5VsIjphG9pAZSAQqIxCRIqgqsrndH7sVsJPB7n14a802twAvqbnnWn0OxuNpZaxzlivqFbr/mwpsA/4ZeK7ZvtFYyDM+kEpRVUnAw4pygo4KHZekYCZKCz4+yejiuDGb2LZ6TFqtQCHgaCH4A4KqUHRLwSwKWnRgxDykRZRnXKCXt5obT8p4AKOCALICkWkhZ+paLxBbz4YimJyFzaEW9JOL5vOaetmqNNIqlRAKQeKS7Ua5B52j3sblaoFz84K+BsXOU9atA04mEfQ2XU8nu3C5HyfKIjKRxOPURJFChRJRlYhQkZOKNqVQEgor+mHhtKRiF7I6BDLU37xNs9AnZakq/agoKFeg1FXQXjISQJDvzCGrOkJ6VioqmBuj1RsgAKUoR4qyNM+horx6M/KXz2rf9MefJfNGUItnISJFLlIUpdQeF+MgQF6jQJOnoS3zllfXbjNO7jmPp1VRJC73sahHG1+2mW3mkr7nxuMk9kQnNOlAbeDRiukrzapQAqWziFQVKKMpfBaDUcKZFYuHTlKhUDAgkR05Jmt9x3Ol4DUCuqYUUf2Jq72sSXvnaX2UUtrKW4nSgaeFgCCCXIDKZyAXtIbF3hlbp4T9QKRTQHeFMFwlVZGbbeDbHW6x3DKGjst9bZR70BHwKyp178bHaMKpttC0z9jRM+s5O/3MFfK1KevWkqSss5M1oL1MhmqPoxREElWN9COUyQxqi6GMZd6mBtMPxVCkn0uRZFgqBiPFkJJUV+yAxW1J7cnlHEGfOnBzOxVzDatKi3QdXEZSactTQfGYhMul4rF8lmoGwmpEFaiagDRJQ9Sa1w10By4jbWGJpKIqFeXl2xiowE+GH2awApW/baUqFWGkg+dU3Ea4xamdDJZoq+Dh5vP/AI4i3W9448TE4vIrf9XsIhxwhI6Ql87rJ4FudHDYAXYxie0ZcUaynkulGJaKAdPf2+chpQONuu/ZdIV2wj/0F3iUUHFnZ93nJaCqEiWBtjxDQE4Inh/AggBUsQD9od07PVwZJ318LROpPY/FfCnUgaWHQ/0oRcmzfW1du5tNo8ZeoVM/T8rrlNCDTpBs+9yqA7Pa83BFebVmDX0s6s1z0bHQ232aOAjdbwv98PAwl156KUIIPvGJT4xEmUad/t41O/3MCnhV89pmrp9FYqG3dJFeQ69CCZEOPiZda2FWoLJmpq2FrKNVZ4a+rHSnXq1qoZiJIBMp8qGeNcxuHqIcCrLzJiWeJ51ZKMn6jqSZN68pg1JJBOYQiKqSaiHHkxK+JrSb/SMi4JIc5AerRG35OCVaxh6gFRshg1QQopBS6fOTipWLp7BpsMzMzQv4y8w8cw6byhFKEaHMuemBQqsvr7Nrm2xz6U6C2qyfz93J556Jw0knvqDZRTjgiEiLehtT5m/oybSNJMGMLf7+G11Gop4rpfuAWqt8WSXjgDI6m8EtwGuAF5oLal3vq0pbiT0jjDNzLWWyfl4NVlAZIBuw3bwXhx/ryKI2DhhNorQuia3zalzGkplQ7XmktGW+KrVwr8ok8HQg9MMOcIJIL5vMNtkOW5vS2VbUoaoW8wVj4KsVtq08lnbL6P5fUo6F3tnevs5l9DVrdF7jMcp9pVLh1ltv5dZba1e2ti6VUu1QJMG627uWCQlsAKahg+BZC72ljcRaQTXS6y4qEaoUocoRDNtZtiieiWsVa70y1mvbsZcUlKRiKJI8GCq+U5U8WlZUpLYCl1cPU13USZQNQJjqU8ilZ6mgBWaJk45RX0sT5CkMUcWAexREAWTRwWWemRIgh8Nku9rAeC2KjfkQr7UD7po9lXufM5vu7sncsmQmd87q0dkHsRGMIWrZljWh1vLnViXr9lsyz25grladCPaMDocsmNvsIhxQxG0gTpIT9ONxtKCfhO7zoPGyGM/Is7/1PDLu9QOuRd59VjAM/AX4BPA74F+AB0gC5VWVmdxp4T5x3OKICaWcPn2wiurU0+9ldCTfIdBrrDtA7Sg7BlNHbI3Tm3GitOfKWoCrMv2wVnkr8Cs12zS7zLWu9LbO9VWgI6Nja1kLPTTdar1bGs1E23MqYQJIN3C3F2ixX7HeCDX7NoFdWuhLpdKuPt7jbcYT7rp5RSIU1lOfss4+2tEdoYgkwt6goURGMjlYICAjUol6VTHT9NnTkGTNXEUlj0eU4vORohDBn5XiU6FkCRA900t46BSqgclYJ9DrSAYq9bNxTcKNWmmt7XHWgnIV2V5krjAeNQK6I5ihcshKhCRJgTYeOkW73EqhZ+clcJyAmzoEg5M6KE/q4DiRDnJlY6/kd3PsZuOK+ForfJ95HkC7ALuftfDl8nhaHtsG2nbTinmFttCfDaxAW+iVsw+Y7m58GQRjlAmgatudjNCT9wdCELiyVLH1vaySR9znQ7ws7bqafX8DvEhpb7Z4fCR8mJIRxxFIug6ayfqyROXzKCHYbDbpFQKFgLYMqlLW+5ixQF1+cM9+o6SCkc7yEA82VSLWyxE8sQke2gDHzoLDZmjtYFNGKx2oumkevrUi3h3nD5ehczIM5EzWKxpYvsdJnVTmj0RH63cj27sjzFzgBARXzr7QjJHoLgX9a17zmqYLztGgraNnp5+5gxfbuSuSHPRuoENhrlcHMKhUahZNmnXz0gr4jBH0kIh7GSTvNQFl0tTYR2gEcBRJfmvS1eWlpCIV90SK54Yh0cYK4au7iAKBMsEfKQawqWoPWjMb1yS3L5UM0GwavghQQyEyq1O/ZAV0Sfj7QNDRmUeWzPU3a9ckxoWlhdsg1zJvz3mhgJdvg9LTq3j5sTNZ2FlIUhGir3MLn1KKWuufPQcr6FPBKM1As8XnYDwjzLJHnmTJ0Yc2uxgHDK6Qd1PWrUffb4vRy8yshb52Im083ntVE0fGWqAhCQiXb5GUbftSz934ONbN3rrYW4EfosV8CfgZUJsF/DTq2+BWu8Z2KYGtr4F5ZAVkxssY1ohxhRaQsTF0ENTkAgooIegUQnvYCZCdeegzYwCzLzCuXdVapT1XkYJQjl7UeWvwcx9PbYKr1+rPH18L5wDPnZ187hgEm0Zt4EU7+BoItYW+LQO9xtDbKnpgd6QmKcx7tiMo1MhkO5ki0BHwh11vhPTzWJ/rbmulXpez68d4o9A2ueH7VhhZd3tXQKwDZpOsn48nbNAW+pJUiFDqRiCSOuVbRcLfNsLVD8Fj6xPBH5rnJge5iDBRbTHudOiOPYoUBaXzzkcS2qXiZSjk2n6i6QFhV54oEEjj/kVboJcS1NKsupGa5U6s2FIpoqgK+YDVCI5H0IZgQQCykEcOqtiKHdrOscWjxcbtpUpeA3QPQXX7VsKqTJaOKH09IxPbQbb4vRsPIG3/Yd63C2bacZa6NHj2TAyWP/lMs4twQOEKozgwHrAcOATt2dNJg6B4qjXF3u4om+Bw/RIGVOKS3m8fSseVaXZ7uS/1vKKSQHdDta/RIr4EPAz8E/Bn4CvAhWb/z5DEKbFtcavpxFAphpS+Vn3m2vWZ6zYgYViOk3GqE/fHnThRgyGqoP3pegXMENAXCH0N2vN6ErsU6v7RmQiIQ9+PM5rdniulUJVIR2ofDnU6tqEQBk3AuqEQtZ/LZnXQbDNhYNc1RQoe3JDecNmGGuEMTb2mjQZZtp4NAB0F6AhgsNJg31YdS9cIedtWWFf6nBPl3hV+oHPUV3eifZpwrrsNiieEoKenh0ymcQgtpRSbNm0a8YKNJr1bVjR83+2wrGuZZR3wKtKC3l7TNmCDO8sWSS3qV2xC/XQNSoJ4bC2cK+DIWXrxtlQgZVPdZ9x0bvZhI6U/FsHpkeL3keL9EhYIiJ4tI+f2IIWgKgRRIHRgtWKgK7W9EdwfzjZCY3mK5ju1hUmlBqWyGqHyAWuB0zLwFwU7FPQU8kTG5T7eXjmB8VoVc376lM2AAJCh4uVzjuRnZtLIjQdhJyxiD4QWxe3D3D6tF12dplJvJXRdf71P6MTgLW88udlFOGBQpj2pTVln188fabbrQGd9gRpRbx+taIVpQFlqMThsHhWVGMEyJgd70XT6AVCkeee1t/VcOvFxbKR6a5WvoK9xH/BD9Hr5dwFnATlgoTnGbGq0BEkb2wpYMT8szbIBZxydVdrDwmTDbuq12x3x2mTARrmP+/ZKFTW5DdD93WIhWIcCIVCBQLUBfWXoyCdGiPjAY3gSI0TT2/Oq1AaqijRuq06Nz0gt8KQCsqj8PqaSk2idYAc39nHMTHhsXbLdklnp/ZouilVSZpxnu7a/Mw/tJShXG+sBc4iWG5s1CuRtBb2NAJpaP29Tdgc6tV2LnOsuBf3s2bPZsGEDn/70pzn22GMbbrNjxw7e8IY3jEbZxhyFs9a65n+bss4KeSuEBNpaUTVmYCUVKtLuOuqxmomOB9fDEbMSs7GOLkMzandk3e1JXO1D8/69UucqfzuK1UoRIbV1d/02ouPmEgk9J1EVZh12IaNnMcHp9XdSwccQ18qk3egVqqLYWsiigPnoAcsaBVM6BXJrRV9zO6iVihzQqm5C2qNEmaVVTnA8ILDreiLJdqWYTjyHlJqwaLmG1aHWW8vel73otFndaBdgnM9rX3s8nj3HjbVhg+LZ++kx4G1mu27S3jGW8XTfRcYd3aZks6LX5mC3Ud1Bu99n0AJxv1MDjRE2ar3t50tKx/p5ALgVHeT3NrR4/290X5hDdwkSmAxsB+aZ49m1863SvkoT5G9YJksK7JIJgb5eeQHKCVJdbOH+LuVy79x37Cij5mlB3yv0OPRJkexCex41FKb2E7FlqhWu1PhBRWYde0Wmc8PbsZJdzw4gIi0EcvuQL0jWWObt46AetPkQeOVUWDDNbN9C17GR+B0wS26LgU7l1ifT29S66bcSbnlct3sr6K0nciMKga4v7nHi57E/0V0a6I444giUUjz22GNjVZ6mYgWDa6VX6IjaCr2G3rXO2x+vUyoG42S9xr1LKThiRrruHuOIeXdNTBOoc7U3z1GouDFSnBlBoBRHRIpHJcjeIaKKIprTRSQEYSCMtVfoGzg2lTrnU1vBxwx9ASMb4d6uiQ8lSsG6fFYvnxCCeQLWALIIqr9at3ZUtWIDZKgV8SZmivlQC/q5EaxVINHu9rZ+23WyrUytmLentgM9idZOEpgr9WjdS+bxtDTWOh93Z+a9IXQ7eQTJJHafu1+DybdWRhkxGFutzesScB/wOfM87IhiG0B2PKCUokoS8LZqRP0DwKeAu9DB704CLgLmoi3ZRZJxTTdJNhF3QrVVdGIE6QkZpZcTDJiHvXaud0LYqt52tuMyT8kaeoWslCEvKAlBhGBmAEM6QhsgUJ0FlAkmE+8XH6g5pzNusRb5qiPs3ZzwFZleOhvKfVvOYYPhpdbGK1i9Q7v8ThUwvUNv20gUNwv3q2Nhr7SLfRFAQGfO5FVU489bRDkvymHi3mOMefGSMivws5kk1VK8a4MJjzFil4L+Na95DWeffTYzZszY6TbFYpHzzjuPd73rXSNeOMvvfvc7/umf/onXvva1vOpVryKK0lJkxYoVfOQjH+GMM87gTW96E1dcccUub7IZc5c0fN9OxMWix7xej3bvLaB/MCeJAQBtSqd1E5FMrPRSoeZPQQXmuj6nqGfbaoNgRPvYIOwHUqn07L1KrPPLpGRQKl4qJUGkOAbFKqlgQ5Vo3iRkJiDKaHf7KiAFOvck1Ewr09QORRkR76ZcisohMoAVmQwHmQs4XwhWKyAniCrVOLKsnQxw7+9WRJoWJpk70a+yQ1V+ufI+pkSw2rksEkVk19JDS68tlDS20m8HpqBFxZCz/XgSFJ6R42vfuqbZRThgqLXO29dPoC2609B9YBfa2gvOeNM+j4Obz6ZoTUV9R6dsuxC4k9ZL2bY39VySFvM2c0ttcuEd6HFNm3nknYHNdIjznifLuohjJTQbN5BvVSUeCH8BPo+ekKmbsFHNj4XQEKfjsste4gn74Qg6svSjl4FMEjAQW+gVtBVRA2HS77md5ni4GWtoVnuu4uWyjti2aeOWb4SfLYO/bTBiXqVzeu7t90jpeOqqRHA8MQCHT4WiyeUOjY1kzaLW88OWZyCEbuOpYPWATWVdZ51v9knUUCvA7XNVQlG3m8Nom+UgMBAIBoGKEKhCRncc7nEaHWuM2KX32Ate8AJe8IIX7PIAhUKB8847b0QLVUtnZyevf/3rKZfLfPnLX059NjQ0xCc+8QlOP/10LrnkEtauXcuFF15IR0cHb37zmxseb+vG5Q3fd4W87cRAC/rZ5rW7dt4+d0ot6AHT2ymUBLaVUIGAE2fA0zuSG8HNH2Zf74PXzr5iZ+tthx9Ht1fwa6U4JVLklbbQL0DpNXdr+ggWduvthNCiXmorQLZoCl+W2v2oboZKMaa+3XYgajpv614uS1UoCNYDJ5jiHBzALQhkIUBWq+lJALvOvEWt9Em/bVPWKBOfRJEph7zy4KMYqMCzKl31FI47bQunH6oV6PYS9KHdQYvUW+ipee058Hnn205vdhEOGGx/EIt69L30N8DGnbYW+u3m/9p7z31uRWw+9nLNo0K94G2llG17U8+tgI9Ueknd8WjrvOVMtJAvCC3mKyoZ40ym/hrHOnH/TmW/cWM9xKIeeAj4tNnmTuCrwIsVZJQeYtnntpbr9JJO2k6aKAUqkqgKyPYCA8AkIegIBEpAxSz/kJ056B00+znBfM1xW3G54K5oWnuuqLeah1JHnv/Zer3NY2vg3QKOmpO2rO9NiyDVTiz0EpZvg9fN11Hih6MGg5smj0Vt5bSvbT0bjKBoEiHnjZ14qAoduWRbnO1bCfe3dalIym1ZygLKgfFcE3r7LHr5VaGYpQhkaq9Lk65TK8fEinnxi1/MySefzJw5c+o+u/vuu5FS8p73vIdCocAhhxzCW9/6Vn7xi1/s9HhRWOsjobGWXCt47H1Um7IuEEnmggDojBRD5qZUNj6CUqg1wzCniFrcBc+WkoiW7k0cNwhjg6xxxbPr66rAykiyPFScqhRZpchIyCrF4dWI7OYB1Ow2pAmGFwkIzbOyUSBL1eSLmnkDm04tdh1VEKF0Ptdslg3AXCHIZPR1RcCWthyyrNfZWyFvB0Stiu3AbZBRW9QSUIxCurqnMLUEGzBLtkgGY258gVbFlrXWSr8dPdh0U2e51kEv6CcW06dNbnYRDgikaUti67xK+sTHgefgLDNDb2fXm8cP1eJtiuNq76Zvs31gV832p5K0Q7LJbeae1nPX3d56FdjHADAJeCXwX8CLgA4B7UbQ2zGODTq6nRohrxy30yZSuzTSvr6tZrub0dfWtdLr9ITNPoMGmLGSnZxXgBqq6t86n9FBxIWejJAChuyF6gbVq6OKp8R8ixoidkfT2nNjjEtVdgXctz693QMbkoEl7P0Yd2caYP2gNgUfPEkL4ZLT0jTRjTtFbWNv3xuIoDsfLwOhCAzuJDBes8+hEbViHKhUJEPFHAOBYAgYFMJkClHaUg8MFjIM5wTSBk6siy8wtic7LgT9rlixYgWLFy9OReE/4ogjWLduHYODg7vYM83epqyLLfVS0WYCXEipUvlA1Zp+5ILJML1NR49bsyNRJ/aGVoypagxVjau90+HfGClOUYoupchIRSAlgVK8YGM/fe15VHteWyoESCH07LhNX5dFrzNqNNs11jewwqT4VEnKOkBWJJVcjg4hmGIHL0IwR8DaQk5b9isyXncfoV3vW9JNiOS8bNtqJ5L6gfYwJOgu0CYjcuh19Fr8K6IosXC06oSFvR9Trp7msQM9KO1Au9zHVa72uRUHbR5Pi+JOYtamrLOC3vaBVvg2jGFBK7aWmtjV3u0H0Y8NaIv8W822H0WnbIs9vGgNMbs7IhzvO5I+XgJ3A68FLgCWoAM4FwS0B0nu9loLfe01tTKjme2r7RtcjzMJnFiz3Ukk0e/t9bbXv6Vc752iyNhKr1CDFejU1qMdCLqAQAjydh09AlUMUOWSSSNtxwH2YONT1DcFV6DHwl7B3Mnp7Y6dmWy7l3nhdbq6Grd+193+0E69rqKY1Wv2U0KzppzNIBbxjnBVGGt8PnFU6Aq0HrDbwL5PgIw2tcUx7WUphFIhSwk9zzKsFIPKxOtAUAZKhYBSRlCuyvrjNeE0x72gHxwcpLOzM/VeV5cebgwNDTXahY7uWXXvWY0dC3nnYqwjiXDvdnqg3dK7pH4uWSu9XSPz7ADML6IQsKgbVpYcv373hh6bdfRKqbhzi9cFoju8TVLxJ6k4PYJMpMhKRUbp6L4HbQh5dE6PDspiLfTmd7KDBjrQQSSsqdjtVJrQcaYCOxnLk4pgqCPHQWYbIQRCwMHAk5kAmYGoVElSu1nB3GoNkCHdb6ukbVWQr8Bj29dBOWKOgGfswMcO7sxkR4MMmi1BnUBwLsE2kjX0A+4+Daqe58DnnqXLml2EA4KUkHdeP4vuIxaSrAwrmGc3ywQNXrcSoWudp946fylwAvB2kiBx7vK7OBZLk05wT+u5bddDlXa37wMeBF5BEgsoixb1WeqD/U4FtjrHbaXAh1bE147bpprP7ULRgGTCxl1eYUV9y+CsTXY9DlQpQuW1K/MA0GUGnh1oTzwlgK4c9OmMN9aYlHL5baXz3AOa1p7bARKkRX1RZxggC7xtDiw0McXibffCZyc17ldpC/1TW+DwSXq7YkYrSlsuu2/qjbElTq3YaGDWX4F20zsIAYV8kvmq1a3zUDfZECqoRIpKRzaVIWQIPb4uoSih19GXM4JqJaz33GqC7hn3gr6jo4OBgYHUe/39/QC0t7c33CebbeOcc9/DBRdcwAUXXMBNN93EJV+7iqFyJe4Y/nTHUh6592EUWtBP2trLjd+9JtXh/f6Xd7Dy0SdpixSZCJ55dj233nSbnindOoSqwlWP3MvKjZtgQSes2s6yFSu59nf/l9zUkeJr372WLZt74/Lds3QZv7ltafx/uVzhS1/7MeVyJX7vN7ctTTV8m7f01gUTufb6O1j2yJPx/0+uWscPr7wxcbVXcNNPbmT96nXcrBQvlYrS40/yh9t+b1zuFUIpfnPnzazuHGSFAhnAsocf554//kWnrxMwGIVcsvHPlAec8v3xL/zh/kfiG39Pyvf0qrVcfuWvUttcfuWveHrV2vj/ZY88ybXX35Ha5mvfuobNW9zf72Fuu/NeLeqlolSpcvW1N1AZrNKXyTE/gAf+/ACPP/IYQsD8QLC2t49fPvNn5HCIMuvub7r19yx7fIXJCTuS5RuZ6/vzG+7g0b+uiK3Z69Zs4Nbf/JahUBIAw1S4/a9/oGfDRm2hB5544mlu/81d2l3WWOm/+q2rR6V8+3t9bRv74/++hu1be+O+YPjeh9l2x1I60IOcarnCdd+8Ki6fAm6/fSn3LH14VMtnGa3r68u3Z+Xr7x9q6fJBa/9+tnzf+PY1qUB4v/vlHaz865P8DW2d37p6Hb/9yY1x/zcJ+D/Tf4C+Xx9/9El+ecMdqXFbK/x+1tX+gUd0+Vwxf8N3r+H6rb1sBN4L/O3eh5lxx1JWo9uSUrnCj755FaVyJXa7b8b17e8f2u3vZ93tb799KX/+08OxmN++tZcrv3sNB6O9DbPA//3yDlb89Um9tlzA2lXr+OVVN8bGiilA5Sc3snH1uvh6/u3RJ7nphjtSht9mXF/7/df++EaeNeVTwCN/fZL5v7yDfwPOAb6Bvr5btvbGov5Pf3qYW25fatLcqZa4f7ds6Y0FwNIH/8qdS/+iNfkwlDsyXPfzX9AbhkyyKbT+dD/LH3lcn3d7nu3lIa647kaAODPPtTffxbJHn8JeqWa3L3v6+9l6Publ+29TPjPwuPZ397BsxSrYWoYsPN01yPefWEbsmg98/5qbeXrVutjos9vyRYo//OlhfnPXfbEGKJcrXPKT6yhvqsDiySAEv1m/nD88+5TeRym2bN/B1358fXzTKaXGvv8oVWIR/5t7/swfHvprvM2W3l6+9vBdiaWzPce1D/1F/37mN316zXq+f/XNKVHfEvXPlOfpZ9fz/V/eikKn5K6W4WdP/4VV6zfGbcdv//Y0/3Hb//HXEELjpXz51vvYuLU3Hq/+4cFH+c3d9+l/VFK+m266Kdac55z7HkYDceedd7bqnEkdDz30EB/72Mf47W9/G7vY33LLLXzve9/juuuui9/73//9X66//np+8pOf1B1jcHCQM888kx07dtDd3R2/HyrFDgkD0qQ9kdr6sBF4D3A1egDTjvYmEehthkohYSnko8MRH69ELKyEFENJ+8Pb6Hiql843HkI3kNtehu/8DS54ro4CWcxAW1Y/FzPQkUNkR29+RSnFkErOb0jqFC9DaLe6/1eO+I9SyHMqEW2VkLayRFVChrYNUrplFXeefTibc1neWshSaMvQHgjaqpK2ckh3RdJ51XKC50yFF06HfAbas8k5tmcR+bGL+hcOhfQPh/SXIoaGQ4ZKEUPViOq923kISdeLpnJoPkOxkKEiFdvKEf9VjrjoN6vIL5lC24IptBeydBQzdBQzdLdnybWN7TnsCcPViP7BkIFSyNBwxOBwRKkS8pcdJZ7/qxXwsjkET/Xx+KnzuSkI+Of2LLlCho5ilrb2DB1tWboDQWcAmRYLmhMpRb+EfgX9EgalFu8V4O/Q1rQB4BLgCrQ1rQPoCPT92SX0c9Bi5+XxtCJKKQaUTh88KJPUXyXg6+i+793oAGoKba34IHAe8DL0vdcp9P3Xbe6/QtA6915ZqrhfLynT95nzewb4EDp92/PM9lcDq9ER74voc7PnNynQa5lbMdBYaNrNeAwjdR8/DPwbcCzwZvR17BDmEej87HZs0C+TNIXvB/7Xbg90Bvp36DLXuVn9xpBMzrPfGctcCzyJTs0XAZ8ADjPnYaP5t5slBu1Cn0+HaH4/oYZDGA5RpYjB4ZAdpYihSsTQvVsYrEoqx0/n8iDDEfkML2/P8PUQXlIKOT4MKUpFxw8fo+3Mg+ma2UVXMUPRHV+O8tjyQEBJpS3iQ2F9mrofL4cpRXi8F/7lGMgFyW/bloW2DLTlEJld1yGlzHcMO8cvRTo93n2b4PFt8K4jtMVw2Ra4fzOc/xwdZM69nu1ZaMuOefujpNKu9aUofQ6VCL79MJw5Hw6ZomeEb3lWp3Q7dQ4UMunyt2URbbuMxz6m2HvPXndZihgsR+z4v/UMk2HwhBkM5wIeCzJc3JYlkIruUsinqhHHSEn7jx+j68R5dB08iUJbVp9ve3KtRK5eN/T19TFp0iRuuukmOjo6RuxcxsVdHkURlUqFalUHXatUKlQqFaSUnHDCCQRBwA9/+EPK5TIrV67k2muv5fWvf/1efUejACsSva5uErojqHW3F2adOVLpSPeRTNyz1/TD/G49+RMEOmDEJGB1n57ha+R2sxv0Gql9m3+JaJB7Hj17f4tSLJaSw5QiE0lykQmKpyBYUyGYNYkF2QxPCIEM9MxUFGjrvETPZsm2XBKV0/6g7g87hsRrP40FWgdWU4RRlYFMwFxhrqUQCCHoBrqFoNKRQ1aJI9zH1qoWjfIkjadWHETHuNkNV0LCHJAFUQqZi2IjUJJ6jV2Esis9tBdDk8+jEdbiElcj875NlTUZPcDcUbO9+3rczFR6PE3Gze7hxpFR6Aj3R5D0f5Yu0i737v3XSqRc7VXidm37wK8BZ2DWlKP79/kQW+htO2RdvPdy2eyYUpuqLrbQA4+QuNtnSdzta4Ph2THOFHPMHTRYAkXzfgPl9OvuGnqF9qachz6HPDpWwC3AMvT1dtMUuuvpmx9vRX9/HH/JWmLLVWjTkcL7gUmBQAlBQehxl82PrboyMBRiM96kO89mn9s4wP5e7rO9EFtLcFiXvpFKYf220R7eDfFaJudhj/O37XDYlERctAVQcYLK1R6+GZc0NcCy5TLP/UC7iXIv0OJ9uJJuKJq8ZGC3mHNRtq2vRkSFIL7MfzT3Whbdjtxjf4JCgAqlWepijlUXHG9s2CdBv337dlavXj3SZdkpt99+O69+9av5xCc+AcBrXvMaXv3qV/Pwww/T3t7OJZdcwsMPP8zrX/96/vmf/5kzzjhjpynrAISoP2038I3tIECnrLOx9d019AHE65SEVLRLFXcMSkrU+gHkvAII7aaOELBwKqwaaryOfif56JVUqErkzCKFqOEQVY32qhOyEW8rziNCD2h+reAspQgiRU6ZtXVK6XV2q3oJ5nRwsICSEDwbBEi7hl4pIoQW9R25JO9kXPia5zFAKUWkZBLESKpY2JfCEDq1xSUQxK6GCME8Ab25PGrYCYBk1plHTUpBsTt0Q6PqlsupiiTMZgiJEFFEJ9Cj4FnprAM1Qf9aOTBeHHzJefSa9zrNQ9E40naLnpJnBLEBSEtD5ZaNczFecAPixa/R667Xk0S4d20NnexE7KnWmSSUjph311BbMX8D2tPnXUDOPAJ0XJW16O3cYHhxStMmnIvrUtoIu1SsVsxHwB/RaQdnoAektu/LOv+LGmGfR/eV26hvW5sZHNCWxV1Db9+34zWBvpbz0B6Wl6LrshX17sROyYyNmkU8jjNiXms8k4t+oILqAgT0G48CBHQLHSQPQCFQxQJq0EwGuG3hOAyKt7t6PjqoZFwOyfi8GmkrwrwufTNsHnJuAue33ZNBlA2GJ51HpPQkwZoSHN4dT9BQyGi3E1O0uEzu85ij0jecPX8bEK4rn2zanoF+k/XKHZBJK5pbqVKmf2ellDZWliUqr/WNErBE6OcQ7e1znAApBAQZZMWJXVFz2LFkr/weHnnkEb7xjW+wcuVKAO644w4++9nP0tvby/ve9z6OPPLIUSnk6aefzumn7zw35aJFi7j00kv3+Hgz5i6pe8/ttN3I2m7KOtBCUJjPAntDKmiXimFTwdWWQT0qmNGBEiKZAVjQDv+3FtRcZ3Sg0iMFZ8SkQqkblIrTENhCZAPIKVQ+s1tXn0ipOJqv29GHwD1AeyR5cait8jmlyEb6QTUks2GI4MRZBEKwOBA8Ztac66BJJn0dELVlUQNVhP3hoH4Wb4zQ8yNJCiYbzTYcrJLNtWEviQhARPrnnCdgRyHHrCFV5zwhARkpWsnhXhnTvPY+cOutgopEZnP86q47eGvxaEBbnJ4FDlPpQWmotKdFq+EKBNdK34t2dAnQggL0gLy9Zh+3GnoOLJRSehChU1nwjW9dwyc+9HZUEEAuOCDcS5UbCRlMrlQgG4yKq2Uq97xtN4HlwEz0PZchHQW9C+3mDHt37ynroVbXpwkIxIienxVsVtBXMIIOWAVcBXwB3X7k0SKwiklniu7/F+FYg0Uy+T/Wyei//p2fceHHzt3p566Yr72O9wAnSO2Bl5XaazgbQDYXkAMkIiXm7ak1TF1nPmvGbwBJn2DLYj3whFRsjhQHKSPoMyCDgNcGgvuAy9GZCypAVqXz0meFziXdlCUENTeMG+We4TKqoPv4HWhvQoQgJxTDAlQgUJFCTSqiBsJEY9ZGMBxH7K6ejwrW3RGSNlcp2DKsG722DEwrwpYKLMD5fZ0x/O6otc7bYHgremGagMlFPcsm0V4ZNrt2o6ByzbqmjSzPg2YCppAxExIKOjJQdtNY15xDk9qOWuKJBed3jVOWVyJUPkAK/X9HoAXzNAH/iGBxgE5Tns2hKjKOtdVM9njk8/TTT/Pxj3+clStXpmZXDj74YB566CHuvPPOUSngaLBp7bLU/26KrNg6SyLobcq6DEkeeqEUwqR1QyqKkRX0CjaEMLsLFQSojEBmAl3RF0yCrUrnZ3Rn6WL1mMz7q0gm623cNT12zY212FfC3Vqn6lztzXMEXAe8XpKIeanISUVGKYK/bCDTH5LtGyIIBIcFgkeF0LNUIrHihEC1mEHGUTlrb/qxq+VK2hzyylivbdRYBeUqU7ICgSAQQlvpTaT7ecDmooByVc+OG2uHVIpQGaHc4LtUJPWNX4m0280YmbtrB8/SKnsgihTkM7z+taeTqWhPi4OEYoVKzyO5wr6lUvhQ72pvS9cL2MgXbqTt2nFLa52NZ6RQ1qIxbNciRnzk3Dcka/qGQ1R577yXWgklFcq270Nh0s4PVhMPrRFeA2Qtu6FtF0j6v78Bh+O4YztW3E601bN2jLkrDaGvnz2/anJ+9nzLI9eGhkqlrPJx6jK0qP8K8Aa090HePDIkExcHk7jdu5579nms+egH3rrLz2tT1Vnr/BapWFGOOGG4Sm44JFeukitVyZVDcqUqQUXq8Qx2KVpa0Pea166ho5k60f7+saiXCsoR5eGQcDhkXqlKtlQlVwoplqrkqxEfVoo/AH9C/y6u670b9b4p7YYzQ5FEqTdvl6tQzDJkxl2ThL33BMPW3V6go4oPawEVn0IsvlrFX2bP2F09HxVia16NqN9ahpk5QMD0DthSdgYlyq2Euzy8ilQ8AZ1+AE/0weJpiYsM6DhbADa/edy47uHkwWjgfm9ctxQMVLT3gtATsoAOUjFUTcrrNhit1jcrUmWKl52FIbKQnMJ6qfXCYQIWZUFZD5liBlVpIHeacK32WND/6Ec/olKpMGnSpNT7xx9/PKAD1o0XVE0DZ+/j2ntaod3urAuX63KP0q72SD0zPMkuZgbUun7kXJ06L7HQCx0kYUYGVrnr6EnUlWlElFQ60ERF6ke5gaivSv0oy8TlpQFSKarOgMamrIuAB4BepXiVlARG1GelsdSv2krmnq3kFGR/tYZg/VaOygqezAr6gkAX2VorBERtGUIr6O2PR/JjjlVHKYFQJmvEXS+qbBgyqRjEA9MMyeBljoD17RBWK8nAzVr5pYqtAPZcVDXSafoGawbdpaoWFGPgFiUjwImrELcjIQTtOXLtbQjjjz5PaAu9dVOOGy0S61wrUTt4tOXrJUlNBNpK2O98Po4NE57dELeLZZm0g8MhhVAkE53lSAv+SqvV6N2jlErKb8/PtvvlKJ7AoByNqKi3k3zuEhw70Wcj3LsT2nbM2Ym+96Dx/Vf3PVJBJUyfnxOMSL+3Z5PUuz0n42pfK+htirprTRnfjrbK59Frya2zm0Cn6XMFvRXzzWovC4X8Tj+TSjVcOx9Jxb2ViBeWQ3rKEZlKRK4ckS1HZMqSTFmSq0SIcqQ9DnFiBKFjlViXe0hf52bdYamlkZGCcogqh2wuhfSUIrqHI4JyRKYUUaxI8uWIWRXJPyjFt9EeB3ZSp1bQV5opllSyfl5J3a+rIVAdeXYARSHImgFLp3HBV8Z6qCYHqO1lc01UnagfTxOcu6rno4YV2LUCYGsVeky2rGl52DSUbB8PTpLJmJ3ieiWlHhL+1q/zzwdAxkiygvEHLUfJ/qmBTROuZ63Lvy3CYAjdNmWd+dOW17O94Bj4WnBwVlsOqZBCt6cyksisLa5gndB9Rb/ZLb73ihlkKJPDuQbNVhX0Dz/8MEIILrnkktT78+fPB2Dz5s0jW7IxxHbYsZBz/nfXZLnuhkIqhDRu90qRkzAglZ6J29wPc/N65jQjtCtoIPQM1sFTYeWA4w5ghb0+jpJKz8pVjFC3wr52cFc2ot645e/MqlG1gxhVP3P/C+B1CopKi/hspCtsVkHu0Q3aWpGFbAnEE9vpDgSzhOARs3YkAiKTuiFqCwgjV9A75RnDiu1amKQy+eeVYjtQrERMK2QSl3tjpQ+EIC90HI9wsJKy7GvNrIhct6qqTEf6HHKjo5pB6SiLereO2kGAdfkRwxCILEEuQCgIIsk8dERgOziLIA78F7uQthBuv+pa6fvQFnpXVAw4n6eeW+ycPPtJaNpD2/ZZkdtosrMysqJ3TKg452fPyT2vSpS0PZWRa18audpb76vHSK+ftwMG63JvvWNwnhMDVlK+eLKiXDNJ7V4726+VZTKQ3UdsataUdR4t5p9EC/oL0MFurXW+INITF/PRgj61HM+Z7GglkWQnZmMxr2xgJ8kD5YiXVyKCSkS2HJIpRwQl/TpnhC9ViajK2MDmBsazfYarX+zv0QzisZpSeoLI3Bcby5KDyiFBJSJTjhCViFw1pBhG5KsRJ4eSw4DvYOoHac+Nkhkrjb23WiJ07HhFgfbGEaCKOQYxOejN9ckLwbAVT4AqCqiU4n2VO14Zh+vox5I4v3qtqFfAliGYWtQbTsvB1uFEmDbafmeEzjg/3k/BMzu0q+GcznQQC3sjDlXrj9UsK707KMN5PRBpDxG7XEUAHblkG3f834oBjhwBnmrfogiVCWJNuEHoOCQDJOepADJZVFWmT61Jg9A9FvQ21/vChQtT71cqev3E0NBQ3T6tSveU+an/Y4FjL6h52CAqs0k6uIwVg1IZt3sQoQ6KN6BAbRlAZUFNaUMJgQwEyo2kt7ANnt4BqoH7jZ21C6XpmR1RX5WwfCNc+zD8bYNZQ+rs08Dlx+aktWLetVCsQEe9fU0s5BVZdO75vFTkDp+hi1wFkYXMET2QETw3EDwYCD2LJZLfqloIiMpSd4Zu768LMnIXbzdESmnLvBXk5uZcZ9YOZot5AgQBIrbQ62srmFzMQLUa39SRAhUl7qjElvmaR6nBw3w2WoM+XRyVbi+Vjt+SKUOmkOUvDy4jkCAqEVlgLrAySlvhbL1vhgvprqibsDCPbWirkaWd+kjbtdXPM/7R665l0j46999vfn9f4qlkH7YNHScou+Sq6kzmxsK+RujabUZI0KcC4TmvV6LF7UGkg8HaybQuEiMMpMdqdSWzE9VV59zK9e1lfO2i/XO9t5Zq2/9V0I+/AB8HXg4cgp7ALqDFfFak4wQcjE5pZ88nPVk89hZqN/dyLa67vZ2YiSLJ5ijimVDywqokW5Fky5JMWQvebCkiY4V8KBFRhIhk6hpPIVlD36g9bsakRjxWi7QBRRoDSH854qBShKiEiHJIUJVkq4pCKClEknxV8iGpeAT4PUlgRNd7saya0GyYsQUQu9xLBWqgjCoCgb7PtM+njjHRZSz0CLQXaEcWtUPGx9AvGozFxgG7quejgsJZN48jQhVsH4LpRqzO6NRBQ6pRMmYHpzFo/COr2F1U1YzZgScG4YgpOhNWLC6s2zomqr7zPc3ErUuulX4w0lm8XIomPNuwsww3VRdbqEI6OsXqGQnIqkLmdJR7BGwBFmO80oRIfopCAGGUrgJNmuzdY0FvXe1tQDzLLbfcAsDUqVPr9mlVoigdRTMl5J3X69DWwNqUdQKTri7S6+iFUnSj112zMULNnaIjrmX0mpKUhX5+t0n+Xk6+MOV67wxIY4Gv4KlNcM06eDyCq9bCkxtrZvzqzzOetScdLOdhkpy0k6QiQHsYZDHWeanIForkBIgleYI3H0R2/jQCAUsCwSPo+qpdD02k+0JAtaTSwnCMOxS7FtQ+pFOE7XY5QC6jRXyQWOdtGzqlmCVbjpwJHqXPT5GkhXMHpXVCPqwXFaPUCCcDKqdsQJ+C9igkkwtob2sjyENQDRHAQUrxNIlbX9y3kHgitAKxlYH0/Qg6qvYk0qLCFfSNnj0HAFIlk5y24ppJzu77N8DyBpOcbhrRVkeqpPz2dVXqydufLYPHN6Q/t+c/AlgR6FrmFdrd/kjS68prXe53GhRP1dx/teW27ac9PztJ7V7fffSwsN5VVZL2rYpOXXax2eYedMA/a5nPC93/2SVYATr21Sb0JGnsrUUi7Me6ZnV1tTd837rbVxQpd3sZKu6tKpaEis5IkgklmWpEZsUmsjf9leyTG8mZyaOgKglChQhVKjDeVPQkqqW2Sx/r38D2Ddb7QJl7XIWSrVXJvCiC1ZsRtz+BeHojmVCSN4I+JxU9keSDwNeB/0QvO3SDBUfmeUxxhGGilRRyKEKZlHXDQjDJuTAdAQzFV0mhugqoEJP9yBH1seV4nLSD7Lyejxquxb329RYJPcUkMF4AbB5OBJvNm2jX0+/s+A0t9BKWb4XDOtPBK2wD2xHoNhKSy1fr9j6WuK7zkDQAQyF05NMRNe3apcFqvchtJSt9zWBRoY2CClBlLdaV0PppK4LDBezQt1ziiZYNUJUwPcGpar9gbNhjQf+85z0PgM985jPxex//+Mf57//+b4QQ8efjgcG+Dan/a93srSjdQBLt1nbyARCYGziwfs5KB5GrKmBjP8xqM7M6OpAJAajALNDLZWBuAZ7uT1RVnYW+RjhGEpauS5/EAxvSvWuDG7yR1eUh4F/RA7GHgCck2iJPEhAvD+Q2DpM5qJ3sqc8hMGI+EIJFAiqBYBU4bvcQtWWRIYRiFw3bKKNIjHhKGmu90uvJ1pV0bnZrkdfzK1rMZ4SO8DutPUdW6oGCVEo7UaCPEymQja5NOdKD7asf0s+ulWkUrYRWyNvztn3KENAVhtAOzz3qOYgcZEoRQsF8AWtIGi03h2+r5VauFQf2vR3oQabtNzrQLvdxf2efW+x8PPtJ3E46r80k5/Fb5sDV6/Qk5964QbYSbpmtF8KTm/R5PR7BT9bCExsd644ecO7vJJz1ZApxfl50UR4nnX8+I9JjNhsUDxoIehoI+tq+boU5v8fMJLV7fm6E/709J2jYtt1Ws91vScS8tdBbl/sA3c4U0W2m/U3c+AJjFP805uUvW9LwfUnN2nll3NGl5M9S8WIpCSJthMg8s4XMz9aQfahM7sdryCzfAFIhzO8dRJH2PjTHnoJuc8EZasDOhhyjjv1eKXV6YBkpVKjPdYtUzFqzldyv1pB7cJDMz54leHoTOQn5SFGMtLifbO6Ze4FPocdBtUtOxnxy2+o0SHLRlxW0FVBCsFVBwVwVIQRFBEPCuc/yGe0J2l+p1xLjqR1k5/V81HD7CnfAscMY/iYXTaMX6AB5W8v6fTca/q5cdmy0UXeMLxVsHNLWiIMnaYtSxlHzQkAuq72z7He45R1j4mUJjQZm/WUd1R7MsgFzDt3oXPS1+0H6fFqIxKirkBGonPY02ICgAMwN9CmUzClKARQCVEnWOx/E1WPsznWPBf073/lO8vk8GzdujNPKPPDAAyilyOfzvP3tbx+1Qo427gDAdStbR7J+HpzZe6kQxu9LKN0LdChFOYpgSz9qpm6EVUbotCJ2NGQPsHAyrOx3eifnYYVgagCEXgDocuys9P7UD+4apSK6xd1AKX4vpVk3r3RwIBMPILu+RHZml86UJAQZIQgCCDKCo4AHBCaFjxH1xRxVAVFVV+zUTGKqlo8eifhWqckZCQyVI0Qua8S8SOWhDwJ9WWbkMoQCtpYq5niO6JXodfQplymlRcVP16YHpamGW47KDR1bsZX7UAwAxUoIWdMH5bIEoY50v0DoNaGxHkDVDWRagfi8qO8Hekmi3MOu19C3yvl4RgCrpmzFiBQ8mJ6Y5cEN9cJ4vIxkk5syeX5oJ+fnbreflVxR30/YX+0Jkgj3sZXeWSbZhZ5AtG0tDZ7BGQzWlv2hjfXn5/Zp+zhhYdt9V9RL4MSa7c7EBMQTUKwR89YbYQG6zYT0xH8zXO53Rm2quhAdGHZ9pFgXKZ6vIFCKjITM8i3kFOQE5CSIB9ZrT8PIEfVSxgaMqcBm6sdGte3yWBGXQykiSRw8DgnblGT2U72IMtozLYTMI5vIhZJ8pMgrvZzwdzUzEbeQHv+Nuf41X2ot67FW6pPIDu3KPIygx9F7XcbVvmzcCyUCJoEarJrfpOZExounUjNItae2AVSwdUjPaAVCi3mAaR06dZ2q2dfuX4MyE2t1E5oKeKIfFnVoI5/VB7aBBSjmoCQbi+FmXM64YjrPAEMV6Myko2kKoSP1D8n09u7AriVQqWsX9xmhQgmQuQwS7ak1S5j0yELEwWAVoPKgqpEW96lDj/112mNBP3/+fC655BLmzZsXu/gqpZg3bx5f/OIX4+B444FMthi/3qeUdcYErAPj6YFHm4LOTYM6OmVXMa7UKiMgE2gLvRX0C9rh6YHkRndd762gd922tw1rd4GjjCvS2+bAwun1DXZN5bFrv62LoAROcz4XCk4z3gUZCZnIWOeVItjYT3Z6TqcGBjIZHWE1EPBC4FHzG0XCDAZzAVEgqJajxO2+0ehuFLE/pYI4Q4hSsF4p2quSTFa7r9mlSkGg19LryVFtpa8UArYOh8lKCLNOPTIDiDrBUCsqHtiQHpzbQo0wEl19FJg2Sf/IOxS0lbSg79vRhxAZMqH+VWai8+6ulWkrU7MsTjuj0aDRFm07yRp6ayUcrN22hQbbnv0nHhRBWtQfMxOALZFx/F7iTHLaCtMqlXoXpKwf7kSoOb+YJTPr25/9tdDjTPiqxOV+G1rIHc6uLfSQuN3XesfEJbPtoH1tN1iyk/PbzwmL2jZNmXOy5X0lcAnwPHNOWbTATfXxJOvoV+P0KyT96VjHHdm8pbfuvTi6PemAt1IqlkrFsVLRLiWZSHvgZQ7u0dcy0ufL0bN0QLxQGkOFIoiSNHZTzPfYZU07vcZjRHwNTN2XRtQPScWwgsKcLgIFogIIEEdMJy910N9MqMhEktNrvOZOc45rx4Jjel6O2HFvDzUcogoFFNAroF3o9fMi0BHvpYAhW1AhUIUiasAIC5kcs3XE057RqJ6PKnZcB+n2Z0sVpnSkg9VNK+pI9+6F2tUEpFQ7t9A/tQ0On5Q0OnEDa5RhRw6GnQZwjJewpnD7ptrB1mA1sdC7ExKFnF5f7+4DrVcnHZ1i01Vbga6yWiJvRht3QU9ka69Qfa4qB0RhEsyydmJnDM91jwU9wNFHH82VV17Jj3/8Yy699FJ+/OMf86Mf/YglS5aMVvlGhZ6Zh8ev3XFDbZ1dQ4OUdUohlEQYV3sbHK+oFPPWS5gxBSW0gJdm3bwUOBZ6AXM79RduGCR217E3uV1r41rn/7ARnjsJXjpXF25BT32DXdMLxUKU9GTFc8w5zQe+oBRHKXNO6PXzQWSWEmwMyc5oI4sgm3HWmwvBUQGsQtCH0EUGIiGQOYiGqskYeozXzEQkQl5iZvBRPKNgTgh05AhEYJb4aCEvgsRiLwCZy7OtFKFQqcmB0PymqnbAOQaD7kZYC7u73hygpBTFagjZgDt+93tELoOooicuUBysYLW5HpFM6ocdzLcK5vZK9R0hUEILettttJO20Nc9WtS1y7MXuIMmSO6phdOhA37c9xgc2wELp6UtLOPF1dQdHEEifhdO1xUc4BVTYMG0mgEk+215q53wtY+/oYNodpJeQ4/z3GGeayfUoEaHK6es9hylgoN7km3eOAsWTK9vO/fhAtZNVJr3VwDPBT4KLMGJ3C+S/j2e7CUd6d52sbWT/mMZEf2qa26pey9iJ+72keK+SPGSSBFI9KS9UmTDDNluyBUgMxNdp4yQF6E2UhAqMqYO2mvcS33bOubCF+f2jpTOP2+Wxm1WislSkQtyhHMyyCKI509CzJtKJlIEkSIj9aTF0VHEv5n75kJ0nAh3/DeW8RHcybzY0w7rcl9Bdeuerl/AlMAJJB5AWwCDZkypADWlAP0ynhtMi9QxOqERoFE9Hy2UdovQ/7iTjgrYVobp7UnjIIDpOdg+mG7TdvU7x8topTOmV9BfgY0hHDo5EfOu+xNAIavX0DeqjE1aEpLqp+xzH3oNPTUTEl05GHLK38wJiV1Rs3Q1AlQlQgYgA4EENgIzAISgTdT0edkAGeleRrq/k3PssWKPBH2lUuGkk07i5JNPZtWqVcydO5ejjjqKuXPnjnb5RoVNa5fFr92OyZ2hBW0UtxZ6ez8HiiT/vI4khpCKPIqDNu2AOXlt+jajBG2ZtxZ6Eh/vBe2wajDdKMRWepVY57cPw6M74OUzYXJBF2zAhG2pnSF07pJaV3v7v0TPNv0TcJTUnXwg9TKCjFJkJbBlGIDMlKIprrbOZ43L/RQBBwn4q0JXenPssEsQViShLYdbpFGu2DYQkh3QuIOuZxXMrGj383gAJ+xgTiQBn4SAjjxRNRms6QkCE4hH6uOmBtQLphlTB/DyyaMy6G54vjh1Nx4IaMtaPgoRhYA3veF1iLYMQTmdimkletAQx1Ywg0HrythsageO9tFrPp9Mcj9at9/aUjf/LDwjhnIqasrzRcIgfOy5x0GuPWm43YHDeHA1teV0y2vFbwkdlTVbaNyu7IcHQiqIqEqL+sdJ8s/HBiSc5WfmdTtJXl59zPTYr+783HPsM2tU80Cx0HiQvJfnV3tO7iTF0+jI9vHkvEhEfdYxkLmC/mASl3tF+nhjHXfkYx96W917tanqbADcNVKyWSqeh3ahD5Q5zxV95J47i9w7D0VsRKfFioxhwrjdB1Kmot1PR/crruiN2+Uxvr1s8FYb4yaK9KT2lsh4E2yoIhbOQZw2n2DtIEKaCP6h1OcWanH/wkjSjQ6w6p5XPBYcq/Nyfkhlzi1+q99EuRdGMxmxJIzFuA1BSRHnw6ZYQJWq6eviGn7GCY3q+ahR2ya5k46bB6En57glCZjWrgcirjgHpzFIfuc4M0vt+F4qeMJohfZcIuZtIDnM9xUzUK4m5XKfx3yE06h/QmsUgM58jcs9Ohf9cNgaExI7wymG7TuUAlmJUIVkSLERmGkmKqZgYscIcxrZAFWpmaeIJz1G/QxS7JGgz+fzdHXppBlz5szZzdbjC0XiRhcLJPQFK1Ofsk5IRRCRpK0zNaA9lMzZMQgzizqNiMC429u0dSJ5COCQbpO+juRGd13uY+v8JjiyG6a2QTbQI6htQ+nBj600Ti9kB2iK9GBtLdo9bwGQcYR8RmnrfAYFG4Zhdo5MEJDLGMEbCDKBMIMewdHotHcS7XYfAbKYJQyjOMCS/oHHpmLXWmUcLyg2KJgyCKKQNcsnRNx+Jo4TOkBeIZ+jMqQHRa5FJlJKXxb7G6dcqICZWfRiGvfL2e9BdyOs6LZzOHr5i34uA9mKROQzenBayJIZlnEbuwi9Ntbtx1wrfStM5Cv34Qwee9FBqrLOth0kQZugZrCJF/YHBI2s8wrYWtLvHTpVD77stql7cP8Dx40+zkDPbdNLob4hj5wGm4brhb9pAPb1/FzPHPf+V2gLvQ2IZy30rsu9pYtE0Nc9akWF2y4qpXM6TwJmtcOGcn3buQ8NkrubK7oVOv/8ITj9OclERabmPSvqD0a3L33UeDE4/WuzcN3t7XUMASUVf4rg+ZGiKPVyuqxUZCNJ8HQ/2UXtZKe2wbwi3L9V71zVgfNiUR8Zaz06Zsk2852NrvOYnjNaI6lIxf0ekWK7UkxGwaZexKyAYMEkRAkyz/QRKBWfWyD1eQVVyUFSsdYct6nxEczvrKSKxyxKKVS1AsUMIYJBE+VeODdgh4D+wAReBlRnBrWjFE8MpMXqeGgHm0Btmxo/K71Wfqoxotk19F0mPdu24fpxd61HWNzAOg+7zd964bCpaXd7qxPACPogMd7ZstrvgbG/nvHkkPPegJlwKNqgeM5nbYGeMHT3dSYkWq0+Jt5XClmVyIIwE2yCDQJmmHuvDSezktAZvhhuYBBTNc9jwB673B9//PEAPPLII6NWmGbgCvl4HIFeP9+JFgwpC7292c3GyphH2zYOsKMtR6W9oF2gAu3SrVA6dZ174wpgYSc8W0q74iiSKOqhhN4SPNILx89M8lNOKcD2mpukgXtpI+u8Qou5Q9FB8DJSaiGvtJt9BggksLEMM7ti8ZvNCJPmTT8LAc8TgscESIQuvhBE2SxyWBEKbc2OGYMKLTFWZunkoVeKstIBLSapkCDIxnMqeoCqz0mYoH8CyBXytJdgXXyZlTPBaiz0rmvWFrOC9Mhp8OxOAh3KkU2f5Q6Y7dIAy6BxsSSfNW1rRqckQnuXLBCKzQqGVTIjaeu+tdI3m0aiXKEF/RSzjW24OtFGTKhvP1usv/DsK+4MHSSu2BuHYFYWZuSgt2aSs9aS0Mq4AyW3Td8ypK3XBxd19pSdWbD38aZVNE5ZV0GLX2uhrw0U54r63S15iT9otIZ+WxUmtcOczp1PWKi9CyrqCnnX5T5CeyYtcs7JFfCNxHwGPWExGZ2PvpGYb2aIhoiaVHW2v48U90nJS2Tiap5RisyafrIFRXZmB0Eg4MXT4IGNIGXich+Z10ohTFrEqSS56N3HWAvfOGVdJHU/H5lI90qxRSoOKlURQ1WCmZ2ITIA4cgbB/du0B6KyExVKW+wjxTwj6O35RM7zmJ1XTaclwQTGU6gBBR25WDx0mjGKVfXtQpg19Nrlnk6BGi5jrf3UjsFavR1sCmonk6mRbgintevfOw4iImBGBraU9L61/Yz7m0fO2N41AFVCeHYYDu8mjm7vBt6zjWtbAJWqU9SxHVOncL/P7aMGKlDA/EY1HgYdGb2+vvYYIzgW3m8cg2Oq+wklMqsnKbbpj5lhLs+kALY7vaDKZ1CyfixujzuW7LGgP+644+jq6uJzn/scV199Nffddx/Lli1LPcYLk6ctil/H7lbOM8B6kpR1Sbo6nXc+cHy0hGko8+sUT8+YQsmmbQhMQLwg0BZ7d51MIGB6mx6srelLBmqRdAQ+8MdNcES3blQCc6mmtmlB794cbg8Lsft5bco6SWJ5ESpZVycUZIylXgCs74eZOvemdkUUZAVkM/p1Blho6vNqpWepIiDqyBFWVOzCnVJWo1yxY8FtBbj5+rVSD8hy5RDR4QxOhUg8nUis9LQLZpYrPGuKrX83E49AKsJaUbGpBLNzMK8N1gxj8uXVCHtGVF0q9MSFfa0nlvRn1YpZMZrLcNfdf0QUAoIojM9buxkqnlakxLxrpWs2cXV2XoO2kk02r21z2sFepM7yjE9s9MeUUAfW64nHa596WM/2uNZdcMyzLV4L4tlkt20BtlVgWh5mdeh8yLHnlrOdhH2t5Skh77xegbZCzMGx0DvWeeGM2yax8ywTcalsQEP3HBWwtaLXqM7Kj9iERa3YtiJ8jfl8LvVB/lyX+4D05AUkbve2Tao9/lhx7fV3pP6vXTtvo9uvjiS9ETzPTtQrHQw1u2qI3MIp5Ai0djjUTI8+ud14G9qHzkmfMVZ6K+ihvl0eU0FPPMejxzhSu92jFFuUYt7mIURXAZHL6GHW0d0EqwcJeksENuifVGSkttTPCyVrapbnuWOHsbEgqvj+VxBP/KuK1AaFthx9QJfJMoRjpc8LKJn3FCDbstAfpYcbtUJ1HFBbz0eVXU2m5tCWZ3cGU4h0pPuUClTpAVStdd56l63YAVMFTCmm3e0D5ztA570vV5N20R3QjMGYOkWthd1+91AVup2JCFfYt2egXEkqYytOMMW/a9IOSNAeQEEWKQRb0Ovn7RLdNqAinFPIZfXrRhm+4i8ZG7K730Tzmc98Jk5Xd/nllzfc5o47xvBG3A/Kw73x61p3e9uYr6dByjpF3CmkHkrBpu08feQU5gFTTd55nboOnb7OFfN2Nm5RN6wchgWTk5GItc7vKMOy7fC+Q5NRVYReR7+xQZRNo+xiMV8zWLOV72/AWyAW8to6rzv8TKQD/rGuDKfoTACZjBbzQRBoEZwRBEqfwpHAowoOEab4xRyyIuNIu0olEx6jXaddS1PslgesQzEPoFwlyBdTeejjoEiBiF+LNpi0ucJ9xspvnR8iqZcWaA8AnQYOCWyqwMwumGUCHW4rwfSOpHF3G/pMfbn3FYnROfFXmLJWQgj0OR100FxEb4DoC2MLPegB6grguc5609g7TDT+vrHE7VvdweM2tICI+1a0Ba3kbEeDZ8/4JQ5CWWu5BT3xeFQPh0+aDw/2a4+mGR3ENy2Mj4Fsg0nZ2ILd0w7ded1YbRqEg7r15+5kxT62LbXWedfdvtY6H6esU+n7r4P0Gnor8KRCr+2tXRrmnuOWIThiMszugM011ix7jvGExZ41TG4UekXy/DTaOu8G+GsUBC8W9MLEy0HHHXnGFt0eV4EUTj8nRr/hPPzQ+fFrqVT92nlTlnul4oVSkldavGakIqskmRXbyJ0wh2wAZAJd+OfPhPu2wOE9sQVbSBBSImRAEEmmBhk9wU2D6zvqZ52gf3djlTeiPjIKfJuCaZsUYtZk7XUXBASdBcTCDoIHtxOcNNt4HwgCE6dobkZyWy7QyyLNOUmRXF8l9rTW7edJ2SV0pt5LBWqgjMoDmYBBdJo6IF4/jxB0uZZCIaC7gCrpwqvAafdi8bfn91Ezcev5qLPTydQyTM8nAlWQPPe07TzSPUkaxbr183a26Ik+WDwtObab0hqcoHiZxLfb0qS12XVjeNtGD0Y6/kkcrdEIJdATEv0y2d/dr5Ws9AabHUQCsgqyoOXxZmCGc99MQutDJczDRMKXVQlFc5c1aRC6V1Hu3XR1tY/xxPDgVoDEhYu0qFfAMrTb4WO47vY6/Utsmbc3aVVC3zCbp7dTFsJY5DFr6WvW0NuGIUC73a/aTlo1mpv+j5vgsC5twciY8KYCHaRjx3D9rJe7DIDGg7US8CwmFZEiDoinZ6z1TD59ZuZxunY1CoBsRpALIBNol3s7uDsKwXLze4UCokKOyKStq5rvjRnFOmJd4ZNlStZNXrFawTyhtCteljhdnbsuNIngDyILHQNVnrWdLEm0fCn1ICoWGQAb+mF6QR9odg7WmPiXtWJ+BE0Zdgygo9zrZ9Btf6ESQl7f1ocdskBb6Iei1IB1MXqAq2p/O2z/1tz72RXxbj+yA92YQtpCDzDs7Atp/eAZx9jBUa2otxOPs4osOWQh9Ai9pr527agrIFuQneZoV+g15lMLgIA5RdhoFpfUivl9aFvi+56de3G5ord2iae75GVna+glJNcO0ueoFPQOw7QcTHImLNyBtXuOe4AbEM8V9RI9gbmYpN2w55OpfU3itWXby4OBVc552aJFjH4bo6RChRJVjjjmsENQlQgVSSKl4lR1qeV1oY5u/9LIxMQxnneZLcNk+iSZ+d0EQugxRUbAC3pgTQm2DBFEOoAcKUu9ZIpS7HDOMx6b2/Mfo/4iHnJJnW1GmfhFfVJRVYripl7EjIzWSWbIlHneVIIHNxNUoyRGgJRkpGJepNgYOsvOcJoaRrTL3sVJJQLN6kqFgqEQ1a5n6XoRtFvrp0hWX7ahx12xsChqS6EcrOglnrVt4ThhydGHjt2X7WwydWtVG2YAJx0ScaT7bU5btTOvsEYW+hWb4LE+aI+cGUWRuPPHa+iFDphXMQWqtW67z2NBo/5UAQORnnC2uJ4MHXmzHrIFyr8zzLWK2xbMbVMF2Z4xRkHBTIjPrRMRjzcVaONtgG6bqTmtMR5L77GF/rzzzhvNcjSF1EUkGTc8Ciw323wK+DrwMtAz16At8tJ0DijE+n4dHb0tR9mKeBGkblLlzsTZ9xd2w6/XQSXSAe8CY53vK8ND2+C9i9MjKoSx0IekbhK3UXKEWeScXwQ8hXa5no7p7JWx0GNEvVI6ld60wJRHlzeLFvOZALJCB8cLgKMC+LEQ/DiCE6XiyHyGaKhsBhi6o8yOgduJwqRfcr5XmQ+eUXA8IKpVgnwmHpRmzDkFyop881zIkK9W2AEMKJgsnd9Qabd7qfTvhVJ6kH2iCZwydxKsHdY5kezncQMvUSoYEUuOHUTZfsOea7+CSRUJmWzs/STykKlU4/MWSrFYwa9NXXEt89L8jmr/i7hf1Pav9v7sBeaRtjHYrF4DJO747oDTM86pHUjY171m4nGGGXRNbtd5g93tILl5W5XaAZI7Qds7BEdP1v/P7oINpbRFaT/aFnuvWyFYGxDvTBILvWulh7QhqRvY4pyKLXrShqh052rPMVJ6JmBquz7S7II+v3ld9YPiPew64kOTtGv2nJ4GTiTtUu8KeSGEnuB2LPP2fA8mEfTxWIGk3xmt9lJVIqhGSW5BRTx+qAQQZjOEQaCT4qD7vhVSMiwVR5sUbRml09Fmnx4md1AHuWwGkRHJTEZ7Tgfd/cs2xOnt2uMwlIiMIMjoMc5UqdjqROB2Ldn2Wo9FlxEpPcEhI2NJU1rUb1WK6aFE9A0jZszVKVqDACEUwfxugi5B8LdexNE9BFJHuheBZFYUkI0iNsmA+SY9lb3GrsfXqBKP26yoMM9licppy2dFOEvNrL99oGgXgrUi+fGVENAFqr+CmlTUlkJXbEo1ol6C451dTqZuHoKDu5IZwDiAiNAW+s2ypg12jhFPtNY8VmyGa9frL79rG8xtgyNnN05ZB9Bm5FmotFJzr6Md9I2Vx0U88eTcFQoYDKE9n/ZgsLTn9HNV6vW6dV5zY1j+XRFf+kQ7yLJCBVrQb1LwoiApaTfQV9PXqgJQCh0v+5rfaYyYkII+X9QR+10Lheuid3vN9rcAxykdXEZEOkdr7GqvgI0RzJ5KXghKaPd6ZSz02t0+0C5Qtevou/La5Li6D46YmqiqP26CxZ16sJoJIBfom0AAPdoVnlKU3CTuIAlFaAPV2fMjGagdhrn3jDtegF5GkFXGJXu9cSG3HYVJWWcFcCbQlSYQgg0KqgKWBvDXED7dBgvXh/F3hkrHy7C1fLRcE2M3e2fsKBX0SehFMUdAUI4I2jJJmjqRrJ20LvcBAtGeRVQipgPPKkW3Mje60tZ6pfQ6xZxCrx+qADM79O81rwh/WJeo7DjYikpGlyPQoboiXqnk/yGl6IwU5LIgAtav38jiXIEgDOOJGwHME7BDKTYDM5Wpdiot7JvV78cR/O3/znMfujEVpPvZAlrQO2OjJPLv2BTbM1q4ni7xs9ITj9P1pOnTGzdxyLR2vdzFbmP3hRGdTBtxYgWhkkGAXWu5Wep1lkLodeZ/3l6zDelB5V6cnit83df/h/aEqeLGG0mLefsA7SGzktR8cupRN7liG6vtxtugM6fPb3aXnhxNzL7J9ZN7dv3cSexal/sngfeY7Rq53EPiZh+vr1d624PQGW+2orPexIM+pYXtaLSXqhJBOdKD4aqeVX56zXoOmTcbmQ0IM4JqpAhzWS3q0WL3l5GiEClWR/BcrLu9IrNyK7nn9JC1A+8gSE72+T1w1UqCk2ZBNqeXFUaSIAoIAsnUULEtk/zGDa/zGCDRHghK6bXzMtKvN0nFc7YMQjGLaM8jAkGQgUAFWsAfO5PgoU0ER03VbvcZoSc7pGReKFgXSeaZwbt7TeVY6A2nvUpFuR9QMKWAAjYgKGKs88YaL5SgG3jSsdAjBKo9jxo0vpHu5OAoXCjlCtdIkQSPC/Sk0T7y9Kq1HLJgDFJi2zEapEW9UjrX/AumpoWqbX+mmjF4r8lT74r52PojXZdR/d5DG9Lf//BGOHpOogvs9bLfUzA33XAIxawz8GNMBzbxxId7w9uyDlRgXmd6Bzs5UTAt62AV2oy4t+VuFY8R5xZJTdaGCpkzLvcC5ti5CqGXv/SZwWf8kxT1PtbQ1qyB51653B8odE2eB6TdjN3Xz63Z/rWYWfxIJXnozSBKKAXrtsHMgKKAAduwGrd6GVhLN467vdNALJwKq4aSRqC/Ag9ug1fMrPF3NPvkMjpYx9YGbvfoTq7WldI+nsC420vjigfx+nm7lp71AzCjLdWQBYHQ6etMNPhMoH+PP5iGJwsMBvBwjjgPql1bGJdsFCt4bJ0HHeFeKiSKZ4GZQF6CqEKmmIsvQ1aIOhfLQEBQzEMI86VkrUpudKm0ZSCUyoy3lXYR7UJfkwCY26kH4dUo3UG4AVFGgNgtCFCoOMLmIDAlAtq1hf7+hx5BZAOdkghznYVO/TYbeIp0IBA7GA6b2NbWDhTddn8biaXCDVrVjV5uoBodo0X6Dc8+0sh6otBpzszE450PP6KXIm0dSu9HzT6tSMqygzNQMtGBp7bpyj6zHTaEaQFf+3ovcIWvvfcfBr5qPv8serlZbJ0XNYHxzGMS6WWernaIi1V77VA67dP0IBEBswp6+ZI9SO2SpT04PdvvuJMUWhDpCYr5ONHtRVrUY98n6WrtuRfR/chqkkFf7YTISKIiqb32ys6jFHHn/z0ApYhoOKRaiYgqElmJCCNtWXpEKu6Xil6p+JqUPF3WYj4oheTWVcge0k3Giocs2lAQCD0gn5FBPLLNiHnd6QmpRcnUKKIiFRXqr+2YWbIxE+smY4w02Q+UUvQqWLBZwvTJBAjjbh8QZIQW90dPJdhQRawfiM8vMH2ydruXSewh0rpsDE4KqNfcajBEFvIoTLB1M14U6PGYEpAPBAPW/95Guu8qoPqj5N6rs4qODCqSOq3mcKgF23CoDRzDIQxXUeVon5di/O739+9X2XR8CUVZKipSv264jNA1vIBz4ZWOAtnTlhi2HAOXttIL2DKcvnBxPyUbLLlUsGRm+vufP8sx8uGsQ4fUBIKby921lI9ln+b2Me5vOViBzky6UwAj6oUO/D1YbahVWqJPNuVy+w4FyCiCIMsAun+baTJiIfSQv4zxzjLbq3xGL42yB4P0vTdG7LGF/oILLtjtNl/96ld3u00rsHXD40D9+kF3Vn8mOjDQmcCxQCYyqV/MDR8HxyuHiN4qzOqkKAShWU+REvVCoALjUp8KjgcsaIf/Wwtqrp4aXroJDunQQdasdT4TQBQ5jUlOu5zOp67BViotcN0llk/iulJqF/tY3FuVuGkIXjYtNfmgM2sIclmRWkv5CgF/CKCKYJIUHJEVyEg35PFMszL3uG2ARmHG23oDSJlOw7ZKahdtqqGeiMll4kiVyTyJXlIQB8bLBQgBi0pV7s1lsakoogiznt5E11UgNlT0Oivb2Hfl9cK2df1wyJR0B+F2rvuJ7TN0cpuk/egDuipANocAzjrjFMSGfoIhlUxYmBbrcKXXlb6EGsuWSCZjmmXRjKu0+d89v8nmtdt3tLEHkbY94w5lG5Fa10UFrBuAQyeBgPeefor2ctpcSQvk2udWxG2/XQvRtiG9QN2qaOuZtWVY9w0pC7bZdw/NxO5ac3ci+9aa7W4FjhOkLNpQb6Hvc49d+xwR5zNPnePWUKess23MzDbYUDWDYbGTCYtdt0d2gFW7JnoF2sqex3Gxx0xSOEd1g+HFwt4U/SC0oH8RTntJ0maOFEopqEj9qErtiVfVS/He++pToBxRzQZxjJwIgRSSKBdwY6hj/OQjRSWCPyjF86Uiu3KAzMws2fZcMvbIBPq3zgb6QM+fifjLesQLpkEoENkAESqCQDHFRLzvDTJ04Ap6nSI2JT5GCZtzXqokur221Cu2KXjp1n7Egq44W02Q0R53mUAQFLIEx0wleKSXYE6XjugvJSIKmBtJNkXaA1LWBMeLjCcAglHpC1OWT6ni31QBqlpBdevlRL3AYWYcpq2E+kUnMGhqrwqACFR7AYaq6aFGrcDY33JHMp5kirMy2dvTCtRIAVlUfu89o9533ln7Vi6lqCg9AVJ1xr2B0hkBckqRd6+lOyZzPaR6jffQJLOUMhXMGv37T+nQ/c3h1I/x3Ifrej9tErAOFgt4yRw4dKbT6Jj70WLL2AGUqsQXsRn9WNz+4tz85r2hik5PB8k4GBxri9ATEnZfaIrQ3Tm6DJFS6SFDGCHbc2xROm1nXoAwbved5toMoid7lRAokYVKcg/XHH7M2GNB/9BDD+30xmzm4H9fsYOaRsHjlqPXzL8bvUY3Y4RQnOYt9u9WsG4AMSmPyGcIAkG/icgiA6GFfEYPg1QqAhvJOvoFk+AXa5J8jfdvhfMXpc0idl/L1DYdAdneWE5jIiNFlHU8ocw5bUZPOh6KXtceKOKUNlbUUwphCJiVdrknEKa4wkwk6gByhwVwLnAt8H4Bs4sZVCVMrUVTbkMwCtgAeHG8AGecu1opngeIckgmgCATEAjjZm/OI7VGNDB56QuC2eUq6zrbQOl188r9LvMcbB427vboBllIbaVfU4aF1Df0exjcabfnTLpNtY8BBbOGABMrQAAUsgQlc77SLLFAcQhwh0qukxu1ecwi/DZANXjYgfkOtKC35wIYFygRWwkbuYR6ximKXbjcD8MJM5MB1rR2bYYtm3gktS6QozWbuL+4g0r39dYqTGmLrW8EAczKwcZhncauVszvhTnR/qyud5oCTgXucrZ7LU43ZN5zRT1YUZEcF5KiSKnQioi0FUwB28vGAmYONq3NnHdJt6n7MGEhqRf1inT+eVfI17rcCyF0n0gi5u1ExsEkke5dK65dojRiYyCpEpEUmtdVCcs3wkMbkM+bRXTYTB2EVkAkBKGIUEJQUNrIIKWiS0pepZSOf/NkL7mDp5K1YsudlbdjkqOmwu3rCJ7tRyyYpNfRByJO8zY1lGzLBMwGMFZyhUIJkIFAZVSc+29UxC+mH5Z2IsFMJijFVinp2tKPeGGPCYhnLPOB0EH+AgiOnULmJ08jTpxFEOT1+vqM5KBQ8PtIandZYdLeYtbnC4U0Fn8VBJAViMwIO7WaTlyh75e4z+qt8P+T9+fRlmR3fSf62TvinDtn3iHnoeZ5lEqlkoQQksCAGCwGMwkMahtW93vtAdv44eWm31r92jy7kRfG2O63sN0s2gwGBLIBCY2ApNaAEFKppqyqrMrKqsp5uDnc4UwRsffv/fHbO2LHuTerMiuzSkV7rxUrzr333HNiR+zh9/39vr/vT/arbbFqYCHuxwmonLXQC6/r/W62g5xUF5tscGjKVY9T8aLskehoSlJCarZNJ96jCkwO3Vc/gU9EGAoMBEYChTTzPwc6BibCXJ0k3IPx+xMNqnND1ZFqidTRpt9v3yTFq/482nT7iBUOr8CuHH7gLr0nqaMgzfuJ3wcKlochhaJeYKV9frVby6CK63g4r6Did9TepnRBhYku9F37f+Jnfp1bik3qxxQCeOI9TCq7a3HskWQGpgysYlgi3JZOhpSEyi6veVfqdkWr0/8dFO5jq0EMDRiMY3aDyq8XMvFkjkTlPijdHxth9i5ijGHSGHq2UbWXEF0RUGA/XrrOGq1zuSODF1bhz89qxH53Ep3PLXUN+riYzE9q/s4mi4kT345Uh+MZNFo9BU3+vNeUAc2fFzi1rhbaRLLYhEWspq8RsGugf91vDRPAdRZkMkPCZYmXho4Xh8irMFRSJoI+x2ZzPIaSGMywwk7SROcJtmG0Z2K/op2Td1gcejzCaaiphS7Q+XWtFjizBjujIIh+Hvtn4eja5t7aEFG42qbrqtQO3ZjYsApMeI8xeb2+2om81kmI/TbADQjPSsNM2SxN4+vR4n44HqVfR0H8QunIBiV2qEc2rFgYOda9bBhmrzUr7fXYVP8hGKh/1dbqNDqfGl69Me0Kg66jOSpmlNL7JPmc12Mbd1SADvrzZQNyo5G3a05TDXzyv/X/+8t+vnWKTTLXHRpsAngT8L+h2p4xop3S7VOl+zk0ghg/d9z220j7Da+Xe8o0q52hRo3d033CRtbu48ssSFG1v+5X0rfnaAD9eHQ+OnZjq33tJH9HAf1hmvWklc52LdeZqFQYy9c6gWdOw38+Dk863G8dp3juDK70VJXgKlXBp3Icd/BDTvgWJ/yshzsM2MrRObxOfvOMxgTSCH0o2UZmoJNhHtiO/er5upwt3qsyfOVZcMLaqCLrlzCsMKMKGTpk6PCBZs2ggsJfkz1uvHl07/VOU99EJOTQQ36+DxnYrVNql0QwnxlsrgxHu20au3sC+/iKsisFjBN2eeFsJdjKYUK/GFb4UYXrO2RQKSAZKL1cildOJd/QEoCUOua9iEbouzr6VjHMGNTBEuJAxsAkhoFpxPzEgGw1yFrRTJdxivbVXrqXhj0ylhISn399qIrwa7LvFAJ9gZ7Auk/OXgMdvfD3vuh7tS+MOX7D6+VCRVZbQS0SZwpanWM5STZyyX32fqPt54Hn1jTF1qSOteSILVW67+QwCE8znVev6XaW3KP43YKuT6DM1Hj5486i6Q70/cYIyzVdNK+yyUa8JCOHzzUQui28rd4rDMwYdR5JcKYxlSOFb2zOr5MRetmA/s/+7M9ax6c+9Sl+/dd/nXe+851MTk7yH/7Df3g1r/OatqVdd24AMBHYrKE1Bm8nAfRozpUlRLfjhiCCOXkBdmkOyayBMkxOHwwVH3KbJFoR9YYaAbOB6xe15vxXluGdu8ai85ssJosdpWTG5uOmILVjMI3ARNbB7eHfjZMNlPtaEG/HzNhCpq+NNa1LiK+3oIP8IsBER6ngzo85hl+9QZ0KGtaODIFTorbRbgQ78ti8064/HxbNaLA2oN5gJzrYUtgNvBCMBhfAuBeNFDgRzZffOd3ssAbYOwnH+qhqz9hmcQ3y6GvRuHBPa9q9KLlielRhpvVSPvzxP4GO1edcuLoWvSGkIgDHxg1hmnnx9Wjpup862VacZ2pUMTuosCNHVjgVOhw6loYV1bDElK71/9fCfvmr2EQ0d7DnpTZsopFT/lUC9psZW9HxOE/QrjD86sf/ROff9i5cKPR/UwNL+Pp5qF6iSWPBtwc9qGNiMXEWWmDnJJwMeeZNSKF9fy6jjUfn45x/EV0Lfw64jzaQT6npJK+jHFIR+1T3Lby+ZBSs0P7FDzNGNRFOFS2HRe1ADaXaLjV2hTEtFZqPOUwD6Dej3KctR+qotBFpAfojNJ8fh1TKgrvaJrq5bIzufU3FtH515TGNzB84o2C+9LjS40vPsUq46D3fJcLfQrjDav58fmyNbBryHdON3ZFW28lj0ADMmxYwh9YwayOoBONQo90Lu0rPcNCANxk5/Mjhh3owjH+roLz2IE5AwXwYA97pby964YYLFXbnVjAByEd7xZqg6G/IMoN5YDvmwGmM91jnMZWww3lWnTAqtTSgH1Z6HjjcSB0WEczXfSyv0WKSbFJN1Zqwv/cdzOQUoCr30fYKjB1jlM0sBoZh/gioY7OvOcuR0X9NI7qlb4/Nwut9efoU/O6j8OSpOkVEo/dyxd/7f/ynP7qi97sQnR8KDL2eexHUi+LJQfj9SHSt8t5Ts4fGI+znR8r4Sg1dkwTVMLBtMmia+LbzUUiAhSSLrIdn1+Dm6YRmn8zHaEOOt6mOdqpeWOP51bOpN20tMB9e9wOreDKh3McFs04ZSCL00L7u14OTXRpHdAwGCuBGFWSwLKo3pVtw83y2ABfD/BNBg5mlb2zOV5mZfKn2ivlDWZaxb98+fu7nfg4R4T/+x/94La/rVW1rF49tmmcege8OYAEaOraXOn/exgi9F3h2GXOswEgFxtDNLBes5s5LprR7CM/UhFJ2Nc/PNIbajVNwJAD00bAdnY/CNdCc57tKyUy9rj4AT9+UXnDJYH2GwDqQ2Bf96lyoHRSc7sPumfZCVufRm6ZWe4jORybootEoje9kOsBLV9MQfQtZXfvRXbOb4uuw9r0osI9QhqgSbNbR64e67J4+FtOqRWyBbLYLI43uvxjvpQ9RoOA08ecG2pv5JM/KGM1vrVBKadxMxw3vq2gCLWpefX/RsnUTUoFWu+HBN9ynir4CdlQFQ1bqyNMdouOi3oPG7ufXo6VDuu6jF3ojx97CYeIxVDBvRhVbh45q6DEjV4N6kv//b6n5YNxEIL/iYVX0WPda+aEvwSH0em91lQjaoPXEqJUW9O433qvv3zatQDE1GK7RvHtV2rixnTotVvqw1G0bR7smte/jRmQ0HC/zmW7myAbVWInMtBr00s41Hz/mwv9uWos+gorxPpZOVYWWphsj0Ib+BYeF88IgOKRWnbDmhPVKNMLmNwL71CkZ1zOPKtOvohlQ46r9EdSDgmkJVOJsUGKGJfmoIhtVZKVjn/MgwimSz0/u4TUZXV4amn3cN5zAfSqm9a7p66gMlLdtxzuPqwRXebwTvlx5HnDQTWyVTCB7vk/nxkXyWEd7PKBQBw4sZmEKrp/CPrpS55lHEbkdI8faqMKMHBKj8yONYEsE9EMXAF7VRO+uUfMu1p6XWt1enHAeuOXsALbP1DZKHaHPNUof0wCyW7ZiSzBHVrEiGPFs8cKM85wdOmRYwcjhIqgfOqRfNVHoIkSlC6d55FfdpLUGRG0eqTxSAtNd1tAgw1RYA6KZgTVMGA0crcc8egwy10XWgghcuualDrVXerWRYRPHZmSRHDoDv30CnnTwm8fg2dPt3PErjA588zvfdEXvd6LZVqUoWB8KDIAvAf8M+HL4XRGOkQSfTLo2pde43NMIfMRv0RZO1TOXAntqLYDa8b0m9jvesxPr+ve9cw2VPxW7roEw7TV/KonQw0YD6bVo6ffUwF5UwLtL059xj68hXH/Zvt7Xi+0hzSk6Z/UsOr8zo5VNgle7nnsGpjCMJP2oHBlJO3aQ2iGvUbvqhKDz589TVRWPPfbYtbie16QVw7VGSE0ao0ZQgHMrzXjMDOS+AcJWUBraC8uYPzqhBs9Hj8PJ8+QGCmuUhhEtB5qxbGplsuQwBnzRXNzvnIAXz9YbrWSGChhZQx8YGMNo2xSuoK2mTohQ+wbUpwZbXbJOIJcQfXDNxk+kkO+a2BCdJ3i6N6w9YXQvoNQUDEgHZFA2kyT261XwKI6LO/kAVESEowJ7Q3/tCOxM1tBHw/VjouBfm45v8hy7BtcZOCHRMA331mmOnVse4nd31KNRFzQ26oTZmcPxHi1Rp3qBv8o+xyPsE1HhHhH6QGdQQR6i8Lt3aim+DLKR03sR8kQNGrV6dswodaL+iOiQea3bZqDAlJ610rNUeEzhsSMHowpTaLR+fuQYFQ5TeSTMiWtgv/yVayLCSBTMx+hEz7eph31RqthAXt+gvhW9Ho/ynuwFZgxgDTft3a2vFyaC8jAbDSxeh8wESa4RkusW9ZAuRpXlcOyY0fdcDPvFZvfmZb+yXQVFaMDvs8AtJJHsuKzR+J9r0edw5OHvG8pGEkByvOdpDv3yQD9sKqojBzNk5yScGFKJpy8BzHth3QurlbAm6pDqiRro6fNspQ/EW4JG53cRUs1og/o89EFFvjQKq05CTzZyZEOngH5Y0R1U3DKoODZySOXrOugRF1wTRlOgKLfAvBOYVx7E9XcuUG4Fd9ZrtRXncbrh87XS85D3dTqd6v14sufOkd0yrVl74xH6PKHch4dt3rQN+9hpLe8Wvt9UnoWhYzTQdZehRudlWOGLEMWOkes6///aRum9CC4Ced+A+tNe2HdmBRazMJRCZN6Aza1Wecm1jJq1FnPvdrKvhbSC0L/9hedMAOp+6JCRxwWA70aJo2LkgsNFrl0pmGi7JdNX+gVY8N2MNaOReBOeX7S7YkBl1sAgAkADMqNOQBlUbYZMvc5cxXXHgT6+vo6XY/vKyfbfr3ByXGnJukYgUh9LATwM/FPg08DPhJ8Lad5bMdaH+meB0yUshUBNCuKhsYtzq2Hac/32Oj4O5uN3HO5pKerUXkznY/yCcaX7yY7Ouc1u4Wu1n40zPOLX9ivYGtbueH9SZwTAtFXgD5s4I14He3KIysdhLWEfEe+oOobzGLbTJkgbVCjvQuinGJAJi1C1CAxfD8fFVancF0XB4cOHcc6xsLBwTS/s1W71GCXxzKDA98000Qkt5+bJXQDyYZKax0/rGO4oYOTZi0zfsJP1mqeY5DaF7xTTUMBax4Gz7Yt75DTctxffsQytZeS9CuBYg7FgpzM6k4aJC0MmJlXRHBfp5tKsJ+gi90Loyz5U2K9OI5CgD+B1A+a8qODSZpT7zIyB+YYwsASsRS/xlNHNPlK5X0XvVEoZTQ05ETgi8M3hWm1PyCY6od9R4I96Ecpi5D6+v5tj+wV7Dbwg8BsOvtHB/V7q8VItl8jOpP5manjv2wrHB3AvzQXVG+HV18Ru9ujGGPDAugjZqFK9A9S4wYGZhKzw2CQ6b4CbRPg48Eto9YO3CLXIUxTJe63r0cdAY73ue8GUjn7pWSjUeDWl03KRTiAzzBpR2mEQZcJ5yLLad/JXUbTzlbQKauph37fFgQyq1OqMPldjdfGfeL3eljjRUkMpzqUzPXhoqVmjgDqv8ckxAysuP3H+vZ76O24YRwPg4kjPWwMlPTX+tls41VPV+3Ew7+Rld/TNUmviXHsG+OH4dTRAPq4ZjjG7Lbyep4nQk55bQCKeRdlLO3IdhKmnYMcMzsNgraC/OMXQC6VTIBej152OaVHcp8JFjDPtooPyMBqdj9ec9seaAOoSkS/jRHVyACNSl2q1xnCrMZzKHMZayEAyg88srmNweXpHrryJF6hcG8jHfj9+EW6YpvzBW3An13D/9Sj+7q1UcxM4A6eN5bzxvAGLraTe0/OzfTqr0Nm3Rde/8ZQ/CJR7gcyDMdgbt2ImTmAOr2BuXVA1+AKWKs8hIQjHRScy+BfPIY+dQu7fhblzV+PUjhTIa7SBxOoyPjDlJESz/dqQbuFh2wxZBPIGzZ8PdguZqvZbL9h75zFfOYtd6cPWaYwX9leOdREwjf0kIvgXz+EePQn37II7dmrfKo/mPXjEW91jX2lLbCMVGQx9Wy+RGf3cHiaktZg2IzswW6Yw9Ou0Tu28TAGrI2S2u+F7rsrDnTpY0zX5lm3w9JnmfW/YNbZu6/O6qnv1UpfFRjt+vGLHHwMPhilVGi0/7J2mnLbW0EGlH7AtCpLSBuA1sjOwMA1nCrgp6SvJxaSg/vAFuH97265O9SzSfSxtkxbOBtX9cWD9WoYr0q+K37/uVPQu3qe0D/GYzmBUJp8jzfk1vPxNW9iO6qg8NPR7V3E+t0wbZaHVXTIGg1ZLGBDAPCAdi6wGZnIa+m+/eNXbZUfoH3nkER599NHW8dRTTzEc6mB797vf/apd5LVuUzNLG0r2xPNTaLm6COjrGu1o/jw+0NPv3gkCpgQ/AdyxwJQ19KOnNAj9tIwb5Xs3G2qk1D+4u32Bb9mDywz9zNDPoIewFpS8162hh2F9d4f1tZI+jdBarJHuk8h1NNTujP3xuojZmnVAEMTrqTE412kWnRaoN7WhF2n30Q5bMlojXACfBXEIEht8w0J0bVr0tMbnGNXnn/JwUKRRKS4qTJ63DNTUE6prqmkMvlkD5YgLXqlcnxP4gMDTpdT31p/pUe2Y3ITNAOyZhOMr1GH0lHp1lVH6aCM3OXf6i364tXlVQVezfZ49/Lxe0qTFlk4dFvGehGezJsJngH8MfI1mL4pR+te6Ce0+qpHtueiEpQDmqTwcPgt/ehBeXGbaqUBUvM/iNgrk/bfQUkrhSDQK30O1FfroGBmJjukinL/uHvJLtda8oTGMhk7DwQnl/tHnng8L0RQs+8bwjJ/zeqVrjBuTcUKfH2geU41OaIzImGce37+BifDSTdi8sssQOIqy02xy1Gtm4sCt05XCeRoF9PHzCZ9JAGEb+niuhMXp5qLqkLml2JUxXB4wFGHo9eg7UZZJJfR9yIkNY7kK7Km6L4lR74FDKBNps+i8DetLKvJlhg4zqMgHlbKBhg47UibQTaOKMwNN85GQXy2jChdo51JdRaKS840gXh3l8yAeHj+DvGGRR154kWLvFtydW6m+fFb1airPk6Xn3tIz7TwZgWovYJ/vk183Q55nm1Dsx44QydYo9g7MI8tKu3dAWbFQOfqlg8oh/RFy6ALywQPIB48hT1TIbwSqdQvwXZsdROn1AWz75rUgcG5Ef34Gm2m5WZupEn1mwEYh4kwDKSYzZDNdzO1zmCfWVU/GefZVjrOlPj/vPLLSRz77Iu53jyEHHPLbxzenkV/t2pnMYY0Khj195JCu5s1dQAW4iDgyRukBULG8FYMyQgOUkC050q9iEFTbeDT6lbTNovMi0Ok27/mRPXDj9jbgTx2rl9EeffzZy35vbQeNHd869r5vhRabs/Jqx7XXJoHlvtYi6yTC0NA4H1Mn8o4ZODdqvhSafPl0nAwdnCzh5i3txbSVQ598bgqMpyz0qqTD4Rye42uyf0ejMPleBFivYEvy7FOfZp1DnwXKvbQfELw+QD1tplrcSyjhQm5ZBMUINikbiaZkr5ikS5NGtUVohhJQ9++1srOuiHI/rm4f8+jf//7381M/9VOv1jVe8zYxNd+K6kaj5ihq5N5Is/lnIljXgF98qD+/eysmA39PB/ne/di92+haQz+AX8nMxoXGGAXwaX78RAZ37oK/vR/e0IH//nrkrt0MO5ZhZukbwwDDAKVU90B/tzTL4GLFEDXO42ZQiQrGpFGKSLe3UJffq8XwooPi9FBzGMcXLkO94DRgPgZVdHPZguYqijFIp4OvEm9zuIZrPXFFRAVjAjBRtqLwpMAHwpf9lmiEPXMldsI2rAtoLTwW6lr0GWAnwK6XfEkAI3RQkbFP1/aWUF3oU+2cVLHDaHTH0P/+WTjjGvphGkG7SkOgNZ6kuberCFMAVQUTGQbDi0eOq+Mly8iGTcm6KIz32Nhl/DFtJ8m1YhVeSROSKH0wasUJReWZK8PcO7qM/f1jdB4Z0PnYUZaOLTP0vmbPSDzg9bJnvOot0n8r9LmVKEgbAV8B/gXwVRrQX4bj66WV8LLtUtH5U2tam3eyMbgOHjmu/zMfarWvFu3PSI3P11NLDey0n8tlU6PdQO11NMCOqSYfc8M92lhFQ7yqoGu+c4nrKxh1Xmrw69BI9iyqHzNOs09ZPfFIg21bYGPZyNpOGOujABeGsJA4QwNaccZQ7NrC6EypjikPfSc8WsEvVcJXvTTCVuE8ckEcbujwg1LZYaWr78MLbBTEq0F9zANOy28NK7JRFNysMIXTdKVhxfVDx/la/E3BvA+55NXI4QZXkVudgvl4XV7g2DqsgrtlnoPHT+AMVG/bgTuyQnViBe+FxyrPm8pGzC+TIIj33HnyW7foLd4MSORZG1Tkmn9u7l3AHu1jPnwAc+QsFI6l4ys88NWL8OHnkQ8+izyyrOr2gI9W5FdPNuPxGqSXxeZFFGi7YHBLqA8vsHCqpNq2NYBdGwTxFMxnqehfFpkWYO6ax371JObTB+HIMtuHJUsvXkS+fA750EH87x5GHrmIN9o3ARUmrIF80seraYnlX6fQCUgPJAClAYb5MD9MSBE0yWScMYYyOPuEYHtOTUCIFrbA9NVuhuPq7XFtPTmCm2b0PTvnN4L5K7R5Dj575Ioua9wmArgbZY4C/BQa0IqUfBe6UsXrSteo5UIF79LcotSpmno1t3fgbFj5Wk5kGnAhAi+saNRrrrsRyKdsmbTFX01lUG4S4Y7f81o0SfqVfne/gplEQwqoi7XHfWuyoyImrc+R9kP7ejZpAqA1kTasL2fznG0GDCHYZ1NHmmmVa5Uuuu8w1qXX2Oa4bMr9n/3Zn72a1/GatovLz+ECqEkj2bFcXas2uVdF+Ah+EaXicaoHCznm2+7UjdEYJq1h1RqtQZ/kz6fnWCKmnvwxH+eePXrkliozFB3LsGMZeTXMSzSXHqAD+PkpGBS1sJ0h5HcLOPF4yerB9QzwfvS6rffKriPkP0ZAf2YIu+eaaxoD9cYaBf80DMloi223houRcj+bI8PGfq73k2uMrBwKSKpwLrxQAZ8N39sVGBjhLzzcs1aSbZtuIjOpJ9TQiOVFp0U3IysK3h7+fyAwJcI3Caq0O6pwfYPbMY03JqRAJfdsS1fFQk6swY3zG4HJVXjJG9ZDWHiCV74nQXG6BDORY4Bvf/c3YkqPyXLykQsOqqgZILwT+HhyKd9O48F2pvFYvlZ09XFvOy6UZHLCRee53gfK/TPnyCQwY9Zh67MXGV63QwFNmJ/qETVf9/3itWrCRiq1Ax4D/ufwns8Avwy8TZQ1GsF//to83itrlxLEO1m0y9VZww/9tXdoFCQzsBU4N4DFyfb/wjVnCF11ixHM1BAUVKl/W4hgt/RWUI2TL/abxfUlImHivNLJYwkpgvMTlC5uM3xuEWNa2jHj0fncNMzp8aFi0HVnlbG9TrhEDr1o3uktc2MGs1HBtx1TuBPrQeRKeKqEf5EJqwIf9cI/98JbMqMOqcpRlY5M1Dj3ThAcPqzF652Ms7nlpjF2WUylM5WMKXJrtD577gz2qTPYe3dhrl8CFAjuQau5OGfxGYg1+I7oz/HWDytksqNU78tsMp47XzuCgQMrcO88ZTfju775G1kH/HQX98Ae/JfPsvLeWU6L4f7ckDlT0+2zQUnnZEnne7Yq1XlDVDBErzs2pC55sKE87ekVcJA967DPHcNOH2P79kmO7VyE+xaR3bMwkSPHziO/c6zp+xt2jYHeq08vA0LBGK0sI45QbUZ/3nF2he6btjcZbyE6H1/jpWYgZB3BOE9WlZgSuo8O8Y8f445pmN8+C7sX8A/tQnbP4U5d1L750Lf7dm0E81frsEhAcarHIH2HTEzoUoDmyUPokzHN/TSGrtE69fpzuKT5Sfz6JsriV2F7bKhpn647x9fh9nk411Ob57bFq7J5fuj7v+Xyr4uN+DB+U446G1dJ9kWCw9srm1W86klBeNO5QmvMQ9umizYeNAB8cQLOFm1Dd9xB64Hn1uHGpebzUjG8+NpL+zviedKqyORLRbhfxf1bIgV0/NkDrBewZ3aTTSH2AZjpJBGaTa7969qkIdHSBCB9pQzjE3nGHtp7YkzVnSPOu2BjZiAuidAHrBS+5lV/TrFddoT+E5/4BJ/85Cc3/dvp06c5ffr0Nbuo16JtRjuMgD4+wMw0OeaZUEcAEbDHRpgds7XXlMwwbcFbQzEO5pOxa4yBroVupufJTL1wkxlM58hkRjGRUXYsRSdjZAxDlC77hDf8BwcHvFAsZJTnh1RAgVAFQBudqFEYb52kDJ9odF4dFGCdqEcnRr52dZsR0QL1tv6V2l/tEnYLVjWcKkCyLjJIVdilNvCuZYsRxlIajRov8OZAtS8RpgS+wUI+KLGTDZivB32yEeYR7BtDNplh+54bDbwvXPjf93CjERxCtdzHzxuqiUwdN+OHsbBvBo4NN9/YrsKzrxtYAnzDgrQKLJVOHU7drKHoAWYqx45EKxoQxgFwF8JfD5fy86hXuxaX4ZoGWS6/b/FwvhZ9NJVnVAqz8T5OhGhAAXYa5JatDBNwE/Mrx/e//zu3cXstPrePjb3vI7QZGBXweqPdv6Qg3une5pU4ojE0P61RlnTeQWOMv07apgZyfA7LfS1NmnLbY/92zaqHt19u/P8kEibOh3Jbri63JYMKP6goR14jy0WFL1S87FnG6PYR99U/N1Tf9AAF9K1oBe21qe1QEThTqYBhZB5YBcelgXLnBOWFPk4E54XPiVCIprsZUc2PUqAqHdXQUZSi0fmhlhnzw0iF9xwdOXZVnq3SaIfUfXOCjcA5jdQfOoP57RPYxyvM7x7Dfu4IWW8ElWPROeZKx9kiqKEX8T46XOHwZaTNX+GqmZaqS4/Kw2PnkXu3amTeGFxuqazB3b0VL8L551a5RYRpL2ROnfWZF7LD62Q7O2ST+aWjgrW3xiTl6wz2gOoDmTw4cm6eQL73Vv7gLdvo3zAPUx18niHXLSFvWdBn/b49cMP2jbT0a7CB1DXnA5D3Ya5cHFVs6xVMh1K7dQTe6ussT/ocKPc2s5iDZ1UQsavDsbp5mv/9u25k/aEFuG4rfiJHbtyO/+F9uC0g+yzcsG2sXxIcFlezqIS5GuZHzWgcFchUB0Htt60BxCt+0FlnATGGWat59lpFKcy7iQ7SG+l02+DMfIVCZCLtZ1uvPR5ODJTduXtLqMLBNbV5XvKyLnGApoG+E1W5FxJHd1hbSp9UYYr3Jy0XGhe41NitI9FGgX9JANy0+1v338Ohi0m5OtrzLwsOr3ExvAAWmcx1ELQ6/RobN3ExJzkD9AqYzdr3Jk0PA61DD7oXbXrtX99NOY4Lkcbv4EsHBk7nlu2hb6mJYYA5A+sJQJfcIlVVs9JaXXsN7avLBvS/8Au/wC/8wi9s+rf3ve99/OiP/ug1u6jXoqU5d3FsxVrtdYTCiwqJeWki2fF8Yk0jRVBPyEljcFbz3MVuQrkP322sqQF8DeancpjMcJMZ5WRGMZlTBTpVYQxPY/gXFr5gDP9ODM/PWMrhgFKkEb+Knmvf1BZ/BthOKMMXDRsJ/RIF9YjA6Qp2TQOm8UDWIDVcNyn1slFc3YoO9BUBJnKlx4X+xkmiN/3aDGwXjLyCBpRUgENYBnYC7wB+GrjDQF4W5B1LTkJJGYsaZMY0zIyZLnkBxglvsfp5mQUh0FTPe9yiRuer8YUszvx9s0qX3Gyh34Qae7mt3nuk7SgaCMyVlQL5zLYpsl1LPvRkxNzRxlD/zvD/N9b3sGGLfT3y6Ov5WEmIXKmBPPTCFq/50eZkDx5cwOVQvnEHnd2LOBGtlBTAvHHSuj//LbT4rNL15s1j7/l2mmf79XDaXFaLOXvjhqEInF6D3ZtX4gDUyDpftBfc2qh9HfV0fF2oH5rA+SEsBUMori2xr91MWQin1psFYMx4Fi9NZD6W3Bo2NcN9VCcvgtOs8ByiidCnDLW8Wf5b7KzU7pxjk7J1XgXMNjguBup0VNGp+MEGZ6C0hmrnNK4PblRRCXyDqCPdi+q+fIsPzuvC4SpPOXKUI4cfVHVddCn0OFp4bhtp9QtDwsASIas8JpbdKhNA/bWTbYX/L1/A/Oaz2D84BF++wIPHVjhXVPijy/hPPY0cPqP1ykNN+Fh27nLXdxFpA/roZBCBwxdhAtz+LXpvcovLLD6zVJlF3ryd3Y+c4A1FhXVaWz0Kn+bPrtC5YYFsHMhHEG9DpDfJMyc3mI7F3L9Ln22FMs3u3kGeWWyecbGTKcMwC9V8HtipglB7FjYHcdfAmPVVE031AYR5Efqne5yfnYBupg6nLAQbrMFmwc7qZDXl3thQj/6eHYgBMwIzDfmdS0znGWezDOmEwxrk+iXk26/DjbjkXHuli2cNqv3G1DBZLZAtgNEo4HTYzE0IRiTThhkMA5NchgHZmiEro+QGNt/1ijfETe0YYKVQo2HXDOyeflVsnpdr4wFgIZSxA96Fpt1cJAlU+ADq0Vz61v5yoQ/buu39BdiQimqNpstOok6AdHykjo+zA1VP27+lidCPO9igHb1Nwf1UHiT55YrtZy3zqCmL8kodKvG+1K+T3/ULzZFPr7nuAw0DAaD3+hTGi8yYeriCaqFkmka8reWjaJzaMyaI4sUjN2qzkszFzVIVXuV2RTn0mzXnXrdZmJdsO/beX6/FkYazDpygqcOrlEMt7WalEcSLXjdzqofZrRM/0jDysMkNwiBOn+P4MzXGYDqZeuCmO3pMdagmMqpORolR0GoMDsOfGnAYcmtYz+ALWyao1gN1yEtNP29U7nVwxVJEgObNB8PIOn1tBC0jBEpTjW6ocVBPQj0xtPK5jDEsEmrRdy0yKttreuIdvhYt5gjHcykNlfRPBN4r8H4Dt1k1TPM1yLsZXQydlgeUepFWOydQ77tZqN2ui9DtAs9WEqh/4C4OcDtmdXOw6hlvLdYG2DcJx3rU/5QeV2HotDYvoabdXwAWiwq6atRg4Dd+7490MermWn5J2o5UC+wQYSfwBGyga1/L6jyX01IwIM5p/nwwttedZ8YL9sgKpizh7fsw9+8EP8EUYAT60Wjwgohv7T+vhxZrJ+sme/lG/2V9dnLEjxVgT/Ke/5kmlzA6baL+xOurJUZRahSWTjmou2cbVGkNv/Tbf6D/ZtHa7cv98DFjnxFAweujSfthxT5WXhUMY412Q9uYjMJ4J4u6P85LrSEisY55FHqLom9Dhx9oVNuPHK4UfOnwhWNQOZadb0Xos2SNiCkZNZAYO8+yURQv1qxuRegj3X5cdMoYBazWUHUz3IKhOtvHi7DDCB0RFjzc6YU7vOADeK7C4YbaLxlUGikfOSgdJwrHLaUnL7Wees26c1pb3dY0lQTUd6d0WHl1fJof3Id9/+2YB7YDjnd/9TR3/voB8v9yjOxrffzvH0VeOKuUfy8NOL/c9d1Lkz+faq544LELcO92nNU0vF/94B/ismbPWd+7haPbtnLvYyuhXJ3qAmSVI39+nfyW2bpmeTtCn9Dgo5ZP0PUxHYu9dQfmx/YjD0whP7Afe/126OZ0uxlr3RzfzZDgIJCZLjJr8CfWNge9V7m4aLlYBSU+jPfoJDKn4eKueTCmBvImU3sky7QiUM1A6IS+dSz25h3YH92Pf2Aa93374frtbOlmnOhkSDfHd62mTRqD3zOLP6/z55o6LNJ5QWMjeRGN0Hf1+axhWEjtrcSZhoFpAyuR5WIC/XfGIsOi0bBIN8EE1KuteJkR+02j86IlRLcHdseeSTjZ32jzxHFwmbfql/7d71zeG5OujR8r4e/XheNrNPZNJU1554iV6+e5iqY7JfvLpgGbuBZvm1RGGGxi4wGH1+G6qdoJtlEMLwHCtfMg6eBkcOyWY+lZPupIbPQoifPIoFIxun6lbK5BqaUMqyv0QLVubLKOgxr8Mx294NSuHk8bmCUwyqT9eelnjX/tlYzNV9paQ7nRlKFw+I6C98XQN0siiheCmELCTJvIkFFz7ZJ8R+v8KreXzKF/7rnnOHToUOt3n/hEuyDE888/D0Cn07nGl/bqtXOnD2oJnvAAI91+ByGSHY4IgDPR13FxMqsFZghm50yd02SDcNysNRqhD9/lhYYKtcm1mHqUKAgvvQL5OvIcohdzRj+nAGYE7p/qUk5AvjakXJxhFIzXmIoXKSRPA/cRGQfaDytKtbdOI/WcHsCupKZ6CurrxJFkPZME2Id+bDWwDNw6DXI+5pIkk6ReC64uJ1tEahAf8+cjmH/KwxrCm00szQe5CNkIulMdOuE+tBac0Ndo7OU2GAeTkPdLqtlJbkT4isB7RCn3/mwP98ZtmmduwFujkZDU6N4zpw9rtdB60hs8+9Ikpl5J/2kWu/gzaIT+htJjsk7omuG93/YufWa5xfZL1UyQWDta6j3qXuBR4K00Di4noToPV//MAPUQR4AVjHiCM6jVN8AXWj7KB/pqUQnee+YQePQ85t49GmHaPgHH1shYYFKEnhMWw+JcRyvt1V33tWhRrb9Wso4tM0imxvTVlvRJQXw8C2qf7A6vR9ASznOGuoxPd8Mnfh1bBAEbovM9vdCZdiWOH/+ub26MoaUOnBu2jYfxKPHroaUGffrwzocSRTNha97MmNw5jZzqBXHDUNnEK0DNvadTQMdpqooCeo3Cu+fO4A8u4+/fib9lJ17DfjxfefYWjvkJXcdSUF+LiCaXgLR/N4caNunYMyHvmWDcmPhMzxda4zlBJt5CFSj3zhiq7XO4Cx6/T3jECXdk8ANe+Kci9Lww4b0a4wmol9LhjpxDDp3H3bUEN+zghBjeZGNk1mOtVXZS5chidD6l3ZcODvYxb9uK7ffI3rgbe/02jBfsDQvY64WH/RL7Pv0stx4Y4ifBDMA/dRZ/8w5VYBea1LzLWd8jmI9HBAPDCp5dR35qN6WFKrN813d9My6zVLngveUJJxx5wyK3fuJ5zK2TZEuzuucdWyOfEfLtUxup9jFCH5+fNUgsXZd7jFe1eHPHLsztuzBCEGEzTGJYtoYYbRUD3hhk3yxydKQ0r3Hn9dXm0fsoL6D7QTS+RYSZMxdZuWu+znIzAdRnGRhjtbwgIF3VLLIuaABZg7l1F9ktO8lE59ciluMZ+Myo88Dp3uGmcvyihaOrcMfi5s75y1aiSloCbMRLy1HPsESmtYjuilE8VJssNkl9MYbZkJIZPxJjkNkOcjGo66TOtLAFl15tqLgEZUbZm12jTMXNn4Pf6KzxqCDerhB93jWrNs9aCQvZxnslQhutbt7+5o+855XcxtaSv4ZqTXVQltpXgHcTbJsA5kshiINq0I7zIbA1m7CjUqDaSvEK/dg+A8sjWkyN1Bl96CLcOt/834a0l/hPY2A+7mcT4Q0DB1MdHMrGdRDy/5VJnIMGq+J6Hx2U8Toyo15KZ3U+dC53Tib7b3rDo2Ngtpt4eJP7FftijO5lg7HAb/qwWrdOmv6Fj8hEyA10rtIG3di1Bp/U+hWow7iyOUvh8kPBsla3OgZyDGsY5o2uMVLq/389iQcvuRR9/vOf59d//dfrn0WED3zgAxveZ4xhz549G37/em2uGtbrXFraLVIODQHc+UDPi5HsCEqO9zA7cs1/scHqMUqz72bQM6Y1Vuvzy6xnleh6GEFqBPXOwgFj+FZreDEMpOsslLNdOisF5cI0HQkOimDcxXysg8APha+1EgTxRIF9DjqST420DBQ0QD4uQAlqN8aosB7UYMyGPy4SjLoOSL9s6jkGSsu1GuUVbZXuWrVUhE+gVPuuoabXd0pP7oV8Mqd2ObUWHOqFJ/5PBppHP1AhuTsMfCgYz7kX3EqBX5xQ49MardeeGt3WqMd6RwZH11XR+RoI6kTPX02tluZYFWGm8Jjc1pexML8VWzjMpMGergLlXmphqJh+cb8IvxPGbIzcxnr0pXBV9eilzk917WhNuEfStSpeFJpGuZxGGn2Izlf6DKdPrMJwiL091FVeyDGPaGRoGk098dFwcUFlm9dGGC8yYqK/IuYdi5daPbtlsMd5lVvdZCey1n14JU3GDlDDZg5NJfoK8I00TptKFMy7cN/s1TptasAcvt2YV+aoiIMQ2gbkqRHsCvWBE2Nr2+K85ugZo9GVAXrPczsWAY/X9vV38mxwMvjw1M4Pdd3AtNWPk7XY7Z5g+OQZhkaNn8or8yPzWkO962Gi9EzFKLQTOHQG98ETOAv+yaP4vwnuxh0InhcN3GIMxnrMRNYC8nErgLHlksYWnUWDNa2uSUIl9kEgSNCSdUtt0SlvQ21oo8KvbnGW6uIAzzyPeHizF/Yj3OThS154Tym4SnDOK+2+8vjnz+E/dAxjIX+uz+C9cH7/Tm7MDbYyZM6RObBilJ22WXT+q8swn8E7ryPLM+xkpjRnF6rBOGG383zujm3cduwYcjGsk7dtV7HUsPdm9Vh76dai20dV+7hGPHUBdmT4bVOUQSh36+JW+pnF5wpuH7PCXVunMDftIf/CWbLvniYzluxwj86Ni2SR2ZFGBfMEjMQWhfFEWROmNBgnYa/Xpy0GutayDPjSIUYj2AB+zyxy4DzIuCheMndf4ZSTEJ13cUxVGrQQJ2xd7XNi2y5dZ4xRwzs65NMNq2OJcvWZDZR8r/0zgWK5gOGANXgEL5pD64PDwu/bghwbYm6jvYcLV+ewCBMknSfiBT8Aprv00e/fYpv0xvEI/ZSBlYY2qSvvbDc4Bjwyk6mDKawTQ6cVY4rM4sI1W1GA0hWYNMLE2JodWW8bAhIAx9fgzoWAcixss1qFY35i4/sv0/mxfdv85d9C2bjvCRqhXwzveRPwz2j2vZpm7RpQbxF1BO/IGhsY2nsNzX2uH8K2Ljx9Uf82zt4oHRwdwnvmkgBZYltnY+MmAuDxny3QLxktTDICCtHr9gLGEcAuTDpPd+TIIisrrinxujPTdmp3L9Oq8+lNDv/cDznx03lzn9Jhk46hiQ70XPNZsSWYQEQrmMRU2jJZNjLUpp80woThqu2U5vvDePAN7d4LSCkUWcaO8DV1xhthDlq96DmjZDoBZWCA0u4z2qW6a5vo1bc7XtaCjN7QGIkeL10Xy9f9xE/8xKt+sdey1Q8wvD5II4hX55mLVyEx1yjc44FjQ8zuLWEjCVHG8NQ7xrTEEmAjsN+sbRZ5LtAo6dPGcMYYvt/CP8gMPWN4HoPfNk3Z18ldeqX8OdHDexXD66NlezIvIXe6YRxkcdCdXIOdk2mySEK5by86qa6HqQc57DCGZQHJDT6KQ9BeC172JlxGq8E8yRnNd/mKwDtFN6gcoQNkg5KuE7q55sjXC00aTYfafs7CgmHznKxUOLiIsCTCCx786kCN4i2TukEEqmjLAxtvzt6tcGJI4t0YMwSu7GbUGz/NUIyLRQ+YdMBEp35esXuma2HkyCUA+XCPMtHndx9wHGUzp4J4kXr/itOvnMAoUL6GQZwrEeliWMGg0pzXaNiUHqkEX2k0W5ywLp4tXuCJi5g794RyS2C2TWNGQL9gWqhZKpENEG+vf4XXfznNiTDwWid7xcOawKqHdYGBU9EshlVNe6ZfhftQJfchiJZdBT11szzCaNjM0UQpUjAfn21kuLzSJl6QwgWKXwnrgeo3DPW6r+ABKLsiRINSUC/AqX6jqlsDFduOnkQD49ygWWvi50SGyOuhtRL3kgd3roSF6WZdarxDYNCUrj2z9PqGXunoe6HvdQz2ROg76Hmvv4u5k5XHf+mE+knycBueXNbyopXnhdJzWyXklSNzvq0GT2NApcA+bbPQjhJKiA66xMkTz+cGKohnmg8qCXR7q2y0asngl9c5L8JxER4w+r/v8sJnArW9cp6qEioX9rwvHcMAfgJ8D9afusi8ExZLzS3PS4+tPFnllG4/Hp0vHHz+FLxjD9hAze5Y7IQC+2wiw0xk7OjmPL5vO/2/to9iG1R3TyP7F3W41msPl7e+x/0gVbiP///YMtyzXe+JNfjMUMXDGvq55RlruScz2AfmyNb75IdXyMTTeeY82c0zGlnPWhub7udjgM0Yozo+kzlmIsNM5urQnlSRXiYzZDJnejLjQsi/l6DyLwZk9yT+xLB2wLb2uqg4dYlW5/kG3QMp2+ugj6r2rh2dZ3md/kTG7OyETv8sgHqjr23SR2MNTOQwmWMnMu3bRIbt5poH3c1Ymsx4YVJp0TXd3mj//N4Z5NhK+5mlfXwJ501dNjL2r9ZXkHpOSOwXIENNV5TJDqsBqMUgrU3sFYOuBZrL2zhdBPB5Bhn41WG9BnovDL3QLzzrA0dv5FmvdN9a99DzWimnLxq4aHdCaCMewj3wat/snmqMjSiMl9o89RrwCqIYl7qvEX+wuSN7hVD1B3VmezT9VCP0qsMRBRar+I/LJSyOrb21PWzb+e7xb9u6Ya+J9yWhyB5Z0RKrS5PNGp5G51OHrUmPxJkAMANlUTJA6El4TmHd7zlhXaDnhfWhY1B6TTkqEntrEOyNUaKrEsbiy9/o5HXcO0VgfaT0h3GHh0kEt2Kb60LfNZ9Vf07z+YUoy3RdYC2MyXpsSnOMwly5Fq2ewjRzULMYhGEnY7dpNCsU95jW/86hwngCSJ7p/KuS0nWSvPk1ai/pL3v729/Ozp07AfjABz6AMYaf/dmfrf9ujGHLli3ceuutbNu27dW90mvYZrbsUso9TT7pk8DfpAH0CnpC/ny9gOmTMSdWMA/uCLnzIQoVBvWstQyi55rNF5vNWow8R8BaG9zG8DFj+CYDk1YdCO+y8CcV3DgxTbla0UH/B6hzQUSEZ4DrUZZqpJ/bcORC8Nx6pU19S6jhPE65H7Pe0hx6pa/rW+csPI2BrkWqslGMhLomuLlKY9qJtPLnK9q58/eLsNsomNdnKOSDirwLXRmLFqbWafRUhyh9BmRTXWxfJ7EBbhHhORFuvVjg5ydxJhhZ4RmJtZjMN55KC+ydgr88DbJXb0Y0BOJrzxWFvutx5JsNLd7SnsBsBWY6r/eFrz3xJN90++3YroEyRugD6yS8zkQ1tvYDj5PQ0uIh6lS6Ukq2CnMF0BpzeWP0yVALFaWTxFugCgad98H48QyccMOZNVjrYe7YV1Mr9eK7sDxgcv8E69FDF8C8OHlV19JKhJ4PdbFpHq9Bx+BE6akKx1ThyNKc5hjGjx5zCD97yF4ZF+JShs06WrrnLhR0PYc6LmtQb6gV7zvjSO1yvteF51wkzxgaoydEx6R7mQyEGJ2P4DudM6fX4JY9SYhYwe4XHn6St99+e7R4YWeuke69s+0I/cstwq9Rq50WsPH6Lgw1RSc1Gq1VY9hqBZXRdM5wi2V0tk+xbwtlYKOYCjq5Rq+lFGzp6VSergchozJO6y9b8LcuqdPMGE4B77Eem0FWujqKmZm2gWAMSsGmfczRROjjo9I1X+rXoeOw0of7F+r+eav582VgOjmj5UBdr+TJ0nN31zItupa/BeFXvXDcea53QTsgGOcUhsoIMgKZguM3bWVf5aEDWRX6E+qs55XHpLXnncBXlmExV3qsNTUotJ0gMBomyZzxTFaek3sXuf6tFjlwIWAdBZ2OoLeTLgaXapEhkFLuncDKEE4UyA8sUGaGMoD4rz3yJLc8dD8uFx6pYFfumXcWS0725j3YL54gm8zIe0Jn/9bG2B6P0G/SjDEwkSG5UcHA0iorMXRArGFO4HhYv0UjGRqp3z6txuzpPmbvbLK/SfN6k2VNChfSHqSZBwZNRepkkBvEe6o4nnwTqa/Oel7YsZUbjdH68+GZmeCwyMadFtYgE5YsB1vYIJQYRrCBndZw1AlV5ema4LDIDL40+L3T+D8u1AlURzmT57XJg67TrEqn/YvrjkHXxOT6on0kAqwXyJS+r4dhS/ynlGqffNSMgbXwy1rLB5DMwSeeQ96xF+7YyaDy9AvDMBNGIoy8UFYW383JMlPbUYaQmmmlod9fKjp/MQD3uoyoKIPqqQuX/D/x8rKsrc//+aN849vub9/PeM/rsaLX4AkC1NZucGTPh//NgAeAh4E7Ja4bun+rhkxIlTk/gKXxtTexh6HNWjUGdsxo1Kx0atMIjW33XB9uWYDNmDLj+fMk35E+YMBNZwxGwsDoHj5Mlg1En1fllbVjSk9Weqai3fXMaXjkFLxpN9yxq/lca8Aq0+YlS2ym+xM047hXwdYx8J7eM5LzVKcRQ60faDwLlQh9UUA/EBj4qAcWiJzBBsU2zNLuK7BVxlsLxNOYojgYTOTMx25gmsdvw5uMYQoN4ICujxg0gDEz5uO7Rg6Iy2kvCehvueUWbrlFJdU+/vGPY4zhPe+5/PyW12vLsi4uGCYeOIoCwxtJqIYE8TivlPuWN/1kCbunMYTJEHOBjaFr1Yiux2s8S1hwN2ki0gB5Eso9Gnn+gjH8u3pNMLw1gy8Cy4uw4+iQUgKI9cka6oWDItxpdCPQfoCJfQoRe1ZLvQk7Es/kOKhPWuqxMjQl4JaAiwY1CooYnW8o4jJ+Q15BK6QB85Fy79DffVKEvxOuS6nzgUI/rOhOWbUn6oUyXThjXyM+CKB+pkM2cJpNISos+EWvD8QtzarhCbhMle6Vdm9qg0Qj9DPwkUpX30j/TSMxiSFQBXDuoB0hG1v000hsvJ1eNN2hOwRDBPSGXn+orycslFWtnRAj83UevcD9RvPo38lGMB9paldEdUqEuWTkcEHIqsayuZB1gs8zRtZz04jGVWog44RVEd7+1Crcugc6OSZPKIhLW+AczO3XzaDO74xOAcnw12DxH29OhIHo5joQBfVxE8oM5AHM+8pjCs906TEjV5fG4pFT8OBuuGt3s8mXDsntFdWwji2dZ+nYiJT7HKUe/iVwG+1I/SvVSqidNgPXdlbEYW1NK+ooE1wGqJcG1EN7zpz1qqY8Rrlf7fXbFMmlaY10xymWGpVXwYK4Zi29Lmhf07k+3JDU9k2MJC2JCkNjKHbMUJx3DPbCU5XwmRG8wwj35Gr0WucpvFB4oVNU+KMO/+5t+OPnkWMe1+0i3rNWGXoC1+WerIQsM2S5V8o5beZkCihScD9LcGglXRNPXWas7qOEZ7g4WTs+Vd0+jMW4pk7kMGU5ca7PG3dvCQ5IYVrgISf8eSnsrxR8Vc7jzvYwaxn+e3cyeuQExbrhyOIcN3qPqVCwF6n3uWkE8eJ4KCr4win4vv1qsQUBtbxj9f8yi6kEazw4zw5jOI3h+qUu/uIA7z3emZpy33JCXQLRixeoXDM/6o1b4PGLcN0Ufqar+0uIGK8NBpSZwWP5ciXc6y0WIRdDdtNW8q8tk/3u8+QO7NFzcPvONoDYDESMNRNowDbXZ2hqKxcWvPCYpY5gixEkM4i3yN4pOBYYNGnubr3XJX0X0b2hGFs34njPjC5MudGtwUty1ve55XVO7JnlHkOdP2+sUu2t3TzVxxijFWAmwHYyCPYQaCUgh+e0NVwP7Qj90iTSQZmM129NQFvSx8RhoeuiV3Za6siO/Su9gvqwBsShIggycMhUt167Z8KES02Weu4ZVbkfGQ0s5OF65dh5pAd+Ffjt47gfg+q2nRQCo9wylEC9z3SvtN0cl1tMAEy5gY4onR+4RHRekJN93K4MlymLxIiQ7Zki+9OTZOJ1ckvyv7Uh+NJjcG2tr885tZW8bxwjyR4Tn5HkGZJZdTSh2jFbaGzVB4EPAz8qwfkW7S2noN6LkJ3rwy1zbYdxeh6nzBu0SpVF1ez350mAQuDwOXjXvoSzbVoMzg0BpvS2xL8ZQzXRpSiEAhh5dcYUIhSBXtwJz8R6TSXqOKHrheyZ0/Bbx/VzDhyDn0BB/ZhTQiayl3aypNO3jiA5mOy2HR2b9SPeo7OD9v/XwT2pbfmRKJgfSqP3Y4U6VTYL06xjQnDyKqn3Emy2ekgT1qYKep2MJQJbN86/xuTAoOUkU2aan0RZidEGS4H8a2R2XHbS5r/+1/+aX/qlX3o1r+U1a6sXjtQGrdDQ7WN01tIA+cyHzR+IwkwGMIuTTYTeNJN80hoGyXfJ2LFZq/NZaUeeK+ATwL0W9hitrZpbmMLwTdbw1a7BrwyoxAdHt+BcBNLC05KU4XNS6wFkQijDJ1r+aJupa9DWE7MW7BgD9Ol6ZqLz0bBojNai7+YqDhE24TpKnyKNV9C8qCJpLNEXqfYO+At00r9JguibNJT77lDo5lkz+dMFJ10Qwus8AOmsk2NHo7pu+20IpwG33kN2dGv2hAeqTKmiGxb9hQkdVJcqMRXoopGyvSpKOVoVpW33RBfwaMTU4yhGoAFEKVcGmBgCE1m96b/zbW9SpeZOBgOpve+xdF0K6u9HI/TxO5y065VfCVkuzQ2tnNCvPGsjx9rIsf7saVb/6+OsHjxFb+QoIxW/8PhC8GVQgo/1nL0nW15n59lVuGtWRYFCGogB2NmFlR6dsFEnA06v5SpZIZfq31Cg7xuvcl8aeli/8AwLx6j0DArHsPSU0XA9GDbZAw7+0zF4+tRYlO7KaYmpqmo8x0+Jhg3AQ8CXwnuiwyaug9E5dkUt5urFvsX0gTSdIDoxQuqBvFz/IvCLg1A7CGd6OsjnA1ekNkoM3/FNDzW/M6hmxbnhRjCvE+aaUfZecRu/LuLPAmdLWAh9HKN4xhKmDqh2zlJcGHLQC7/s4XNe+OcIj1dCWSkdvXRaa9k9dp5qVwf/0G7c99+L/4b9+M+dxFfC8cqzrxImK49xnrwSbOWw3us6MXbpZpNzUF+pFX/xutaE293MwfVQumg+sMGMMg4qaOj2wUgfbptjftVxO6HEqlNm0bu95ytO8M5TOWVsVU+v4O5dxN+0Dfnee+CGJW776nn2oMKAtlKKvQ2vs/Ho/JeXYVsHbp6vjW6TGUxuyXKL6WTYjorFYQ07rOEk4LdMIRb8hUHAHoIbp2NfqnlpBPHieytd7zhwBu5fpDJQRiZYBm9+51vw1jDILI/klntzi8ktNrNkmSW7ZZZuCXkF9ndOwAtn22J4mb0si6/GM7S3yy3WcDE408Siquom6AXtm0OOXmbJspjiMHKtsoqtI/zOVVKXqxOvoN57IT+zysWFHIzmzMeSdbXC/SX6lqYM2uTnDNhlDMeDw0IimM8M3lj8/hnNhx7fwzd7zlUA85v1Lf05rIWe4KwAZCAwraKRyq7SnpgQSU38mBhjmDMaTIg2pxiDPLOsr6PP4OFTVKXDFY6qcJRDz2jkOTDy/O8jz6PDiqJwASg2TFEXWIAbBPHQS++fKVjbP89qZli3sGYNa7tmWM8No4sjnf+pgyuN7m/SYnrCe975kKap9TUlT49kb4lHv0JCCU51njSpeyso8zDeqzei5etWaHwDzml01jmhQrR089IkdXQHEjBvN49AG6s2yLkocR6cU6sjzWG8YWsTGEvp9pdgyrSAcRxOsx3Koa8xQiEKeh8X4V8KfBUYek27rbyu+YUT+Nqp9md/9WSz7sW9OzjVLrknju9R8XfrTqn0sY13J+3HdAbrRfszw+fpMigt7DNCmQhfAf6/aP9G0tj+o1diq2zSgj+kxXYVYDSCASGHPj7+2KWEmTxl4LyhdiJJFxXUROq977VuV6TPeeTIET784Q9z9OhRiqLY8Pd/9a/+1TW7sFe7+eT8NAp84yYWS9tE8GvSRen4QEuSWY2kmbA7mLBDTBtTK/7Gg7HX4y3my5fSUO4d+ruPAz8dNq2OUe9zZeBBC7+6ZYJv65eaBytC7lFRF6feuyMi3B6i6GkJvixE6xG0/NGOuTpisjmob9r4Rh8H91z419VuxqRBhXM6WUNpqW+AsJmHNgX8m3kLq3BvavX/BIx8FPg2r33M0Sh0LgruO31H3knc52l+Uu2ZiB1qKPd2ypKdK2sHzyxa4s2fW8ffvkX7ZNQz7QQqa+mKH/N4WNg3DceHcN3WDYaAq4RhnkR4JaG9EYVA9O3xXDuAPfUivCKaqmV8Bd2Gcq+XYVT8JOz4eaDbjx/3AGeA08A+EsBnmteX2oM2tBBhrZzQqzzDSiOF1QvLyAePqRH1+FE6PwbVrTuZRin9qgERFsUQZReB3QfXOHrTHm7q5kp5yoxGVgzY+RweW2WKPawEo6/OrQtUZP8yEYErbXFTKdDzUBTQPwx8wgt/vXA8UHps6ckqVeMuC0e39PD5E+0P++pJ9ZpHEbfKa5T+ZWiJm7W4ptVrTnAWzaNj+AFj+DfWcA7YRTOPUur95T5jcWMRtpifd/CUGhJv3AW37dzkHytkKr90pF7YHNSfGsKeCZ1TqWhnpMCm83hbF54913jIa0MkmX+vYEj4xHFSz61X1KSJeqUAaOj0oSyN53FqNLS0hsIEAbkdGeXXLvB5Jwyt0EHz5z9nhfu84KogGOc95SOncN+wl8poOS73xnnkyHnk0RVOvWGe6/GYStXBbebJKrCFI8sa0dPY59qelWZrCPCcdZSpJdFp4kLEWtB7f66vG0UwbJ1JK7mIjkGrTtLjMzPcvlyS3x6dkOpcv1ugW3meqYS7RHDDkurgRfLvv0FFzKzFP7jE3o8cojoygb1+HuO0fzYTrBHylN4+quALp+EHr1OjPZRwUzAfIvsdi3FeI/3GsMfAkwHYuoVp/LkC2RaU0SWwmV4mt7oVua3BvGgZsPOC3L5AldDtnbV1LfqvCCw6z26s7nkiZGLJzqzonhcH6SOn4Z49rQj95TBwrGHT1IpF4LS1YLxSnK2v8+j9dZPIw6ebObZJRBeiSGiybkRqcHyPNY1IX25UANDF+vOBfXWhp2zHxZkQVEhAfaTeX6JvJgy/VqWecL92W8Nxa8H6BNTreHTXzcGLayA72/1LHBbGmpCC5DY6O+M6Fp+FF3A6g2owL+BXPTKtQOkihtlw85uAqqn7AdDJLC7zrGWWhSxExe/cjjx8tF7+3HGHXxnhtkwogHLCs6XwCx3dlz8n8L8IvFGEciKjNOo8LAUmYGMQwgt9A/0z6xR3L1FFUJMpwyff16U6PWB6aYpJFwQx0yj9WKuFcyvXUOrHHWNe2q8Fjcxbg+9YJCfYdJqusYLucaD2zSJavu4RL3yrKIh3KFXdAVW/0r5Gyn18VsTPpQ3mUxbd9hktXRcNNC/w3Crs6WpZ6g1ieEaZQOm4NAaJX2zqX+rHTee4oW8EiwUOOvhfUPD7KeDfOc+DXnHACJgQ8PftxD6Z2Bv37tCxGK8n9sM6/c7NRPJSEF8/MNTZMpM41+M5nXjx9zMWinLjfoz+qvLU2k3Rvn8E+H+H93wG+GXgraIO34gFcq6yYpbzjUkgjW09DIGxnMbxF/U54uwzaKDkbPgsD9DJtMwyjflSpxm/CoGlzdplA/qDBw/yD//hP2Q0Gm3427Uoa/VaNmMsPmxYggL6Hyfx1gaKX+ZiJJtmQTvZh31bEjG8BtRjDNPWsBy+pzGsuSTd3ou0gHwanf8Caiw9YBoHeyytNmXg/qBm6nsjqq1TVN7jRXOJXhQtb7cbaop9pI/XZfgEONWDG+ba4LYG9RsNABPvk20EAXXA66J5wVq2ZSBFhUx3W7n0m+WSKDAIU8nphi7GKLLIbS3EmHrw6vrzwBHgAPCzBDoO1OJvHaDTc2QznfjgNw8xJdF7a0IEe8qSDYoA6JXNcHfl6AwcfnFaFe4NrQi9tyG3O6U07Z9Tpfu37mwZ8OKFkfcMnKWP0bwoqFNBsmDsxv3P+uj12ygG0xcF9JQVdr4B9GVRYozFTOa1M0UFAxtfTQT0U2iVh0fRMaMgPtRrdUKVqQ4B9jKMwhCpGniNZA+Dx7h86ow+gg5kJbgnz0AsC+WTPpVehby8IBf6bD92kb987zZujpTJzEBcc5amMSNhoTfixJYpalqIk5olci2bF6mBfHo8DPwTL3RHFX9ZOv63keeNTlMNyphu0Cuxx8Y+8L6djZFS+VBDTprN8DKajB3ehVw65xl6YQF95kvWcEdmebhj+XZrWloJpcSvfvm1XCmlru3tLwOY/81I8TsOP8bmoJ4KmcwxeduoqaNB0Ab1Hjg9hN0hFtyiDMKoqpiooyoGFifgTOBfpdT9+FlXOCbqNZrGJlWPvaruXnE5nWhBxNfaeQW8OSpQNrYeV+jzKa1RNfjtU1RrBW/F8wWxFAERvN15paJ7Zf+UL65SDUFuX9D65ZnBi8W9axfyiRe5uC9n3/ZZjFNKegT0uTWYjsfkjYkwDvDiXmBQnL4Wbi8+gpSxHPpzJcxP1etwZUP9eRrKfXz91SX4nifWsLIt7Mchl1KEh5zw1Uq4Q4TqqXXcrhns0gw+5NGemuzy+Qf28ENfOQW7Z1UToNQIZ2bQ/PnIivnyMuzswI1b25G0GPnOM42MxrXdwN7M8GljFFRs34qcKvC36ThxkgjjyeYK6BKZOBGg1LRi4IkVuHsrvpPpvmI11aLKDANXUeVdPg+8yVnw6oDJM6t73t076Dx8tPHBP7SnydeOQOIyWusZmwb8LgBFZhhYQzeAKQlgTvbMIn1grVCGzDjo9WFT9tIGutEZeOhM2xHYEcRZ1SWwVp2zPgQHzlec3b6VPWEvMpba2WIj/f4SczKt1GOTvlnUkX0i2B/eaB69pheA3z8FnzsVIrCmHXFOHBa1JkAEqbF/z5yBR0/BA7vg1rDmd0T1AmiWOkYlfkLtuh6wEECqIQEVkgRTMsOcNfQzgw/rqdy0A34M5NFTyM1L+GeH+N94Bnnvdfj9WxFj+IJRR1AuwkCE/8tn3CPqGCwmckbG0AW64tV5HvrqgYEX+uIZnh9R7OgoU9IarFMnZ3fvVmS5UBagwEQLoLfnhLjEGRzm5GhYMJHlGwB8C9gHJ67E+0eMlKqhvGYNC7TXqDcDD4vwLZFuH86lCO5cHz8Hdpyp2iA6dSbjmnkU1+elCXhhrb2/HFqFmxbGQHyyvmzmz06DTWEiigE32UFc1aoc9UUE41GWrQgfB94oTfClQOjeuJ2JhRMazBkC5+MfffMdibNBMtNytEuMwsWxTnJeL2DXdBvA15tCc/2ACtWuh5h63HvD50SF+fgMXbiFHxm7NR9BGbiVQGEUL02YV1YxMjYd1vH7G7t6gKMbcmi0O8FBmD42Y5hFhRb12g1iO5oqCm2sc41t0Jdql025/63f+i2Gw2FNT0iPv2ptx9771duFRhVOkFDToa5BbwgCN2mU4fgK7JtoNruacq/CHFOwIULfOsbuV61mL+3IcxzU3wE11b5jVUVf9cQMD2aGi1MdTqwWIUpPnRt0SITbRRrWgSSCeD7kz4tobedd3TaQTxehsTZmZwY/hv5iC4bzABMGGTS5JHHSAvXgFhFklNBze1WjAp5QrCR4UtNyFoU0YPdjwNuBhTTyHCZ6V6A7qGCy01w8JGCpAQVxgTMhSp9PWuywDPdNN9FbLvRZn9IanlqDV2n39UK04cYA+ybg+PqGyEUhMHRC3zd52OteRTbWRenc8W/DCCbGxlJkwq0gquhaVNBp/Bb/5+/9kXZtInheKwljgdpRUVd0AN6AekY9gWExqvC9knJQ4XoVPiqXB2rbJZtTAD/0mqs39EJfhP7iPH2rj7ZvYLh3kWHpKQpHUWiuvQRl+xqMP7HGoZt3MjXdDd6WqFuhrBiTWZibZPuFoapMyyZRejbOu1faUhBf0xOBj4rQKT3dIErzudLjI5AP0VL/oUNw6yy8N4Dc79oO129r59E6USPwClu933rBFEo/NKGSwOKgwgwrspHjbaOKR0dKfY+pPjX1Xl46qFi3RB+BFBw9PEbx+9qpJgoX1XVj5GpYbVTZTY22+Do6aE6twu6JZsdK5tgv/6f/0qanL03p6/WquTmpAX4FY6EUVRaO1QvStJioxjvwV7gPNpaZ/hydDhcK2B4mcLKWiAlGjA1q8AaqmS5+EnZeHDDh4Tov7BDhZoSqUodaJeAePkfxpp243OIzg8stYi1+YQbu3MNbv3SG67zS7W2livCag6/U9PEUCTN2jm0WBfQQHTPhNkdWg0dr0G/XknViQxQQgnPU1HT75zCcX5hkYm2I9SGv1yn7yjrP20Q4IJ6+8/hDJ6numw8OVTVKj1vDyvVbYccW7F8sqxO7CoyZ0jel/IYhOv+u3a3oPLmFPOTbdyyZMVirlHtrDbus1gcfALLD4JdXNXos6vysBbwuNaFiqbp4xPnjPTx+Du7dSmWVbu9yqznKxvBff+1DFAb+3BreFBwNWcdiu3p0bt1B/v792Ps78JP7NYc+cVBcrpMwtctr4IhGpLw1XMgIuctRkMzgOxnszODIWtP3OMbT+7AZM+HZM5qG9KTT89OnterHyCFDp3uRUOfSc2rEkcUZtoSLtCbsBdbUgo4v1aKNZ5KzAfYCxzLtj/pLdO45Y5CdM/gKuDBqorBjfRQvzbMtk/MzZ+C3Q/9+87imXQU6vhS6iUeargxGyFa1KS4YzaEPviM2qzYhmaXTybgYxq10rAoT37oTvude/O278N9xHf4de5APH0Meu4B3jm8MlR8oPN2R55tGjqp0VIXHFU5p20A5th6PvDAERqsjCgyDbTP0jWEg0EMYGhjtmmR0ep2hgRJpqhak94zg2BpWG1IRfvnXPtSq/tKi2g9DKsPB08jvPoo8e6YOAEQnmXG+ru4Sn7dFNWQe9Y3jzXtCHXooL1S4WF1kM1s4zdVg7O/bu3ChF/aqcB3P9eDmmfZnpZUmNnM4bbK4CuAnLTJwNQAVNIVA36ABx3eJUIoEH1J4dgiSW/iu/fC+6+CTJ+HYati/k724PjapSBNxQnx+sa2PYDbbCOJJ7g/o/ZzuqHAg0v6MdGjR9rnfPnZr/hpNukGZHFfTHJE93LCIBShHju5Us/alZ0NDrpgx0E8elnQzKJpbdm0szitrlw3oDxw4gDGGf/AP/gGgwOdXf/VX+YZv+Ab27dvHv//3//7VusZr3s4cf7RVrm47Gl2OgDAKyEUwVxuCQ6dyvnvnahGWOpncKtCYhVYOfWybPdy0VF0860SEQ+H4VmLKjSE3BhV/NeQGpoyB+WkO9z1eVC3SBzDzjAh3+LB5+Y0l66wPi2kf2LkJ5b41SZsWc5fTAR7x8LzRHGLJO0jhdZOSZv8LndZzmnMbF/XxkmahvEbppRELlOD4QC/9U8B3o89KxfAkiLqEsnX9sol41Z0I5/js4u/CkWPIJnOyVWkcPCLsWfecWJpjlUCFshqZd8ao0RU/s+HHwZ45HRBrRb35Oy+MnB6l8w1tGxUt+2fAl0n0AsIhNAHMOkUhRIxnEeiXmDx8tTX85A++V7saUw5GTo0YkaAz0Ix5Q8ijF4GRw0djqqhwo4pq6LQEW3xGl8i7EtGSUkMPI6eUvpGHkYehn+D4nVN89s0znHjDHOWXzlK9eFHvQ6HfV5f2cR5Z7cOxc/z57TPMmJBDGESbjI3KowazbY65syGHV+K9iUbWlYPjS7VKpH5WEcyP0Dn7ttLTCWr2k6XnHYUC+tgX/+kTCmDfewPctVM3+2UCxSMx8INReCUl7CQeIrpRFzp/7KiiGjhmh46scNhRxUOF4+nCUY2cqv3Sprq93N1qUUrjdVfBcL1re/vNrtMYtWnJnEuB+jimxyn3InCqgp3TaAQmNaosP/23/kbycwAvM8C5XvM5cQ2Hy6K/iajx2vNNWad+eL0Wf5am1NPoSnbv1EmcUhrTGu2xPxByy40CPEJkG0u1MMfRixW3I/xjq2lWRyvBe0/lPe5Cn+rEkOoNC7jMqGhUpjnZWMP5ezR1aM8TqxgvoZybAnlb+VDPuHHexSWtte6HS51FneOECHVt1AiNkXh2AIvqPPaEddM2ufMuREa/Btwwp/oj2cVeEEDSfSz3wnZRlfuTR1ZxWQe3f0tdaURyy/PWsjOz8KZt2KPnsS9cxHhRUF95TBy3f3EWdndV6CyOm7wB9aaTkdsQFQ1RemMNUxa2GMMpY/Dbp/AXCnWQ+UaJvRGDaw+MVu35FMyLwOGLYMFfv1Vp9lm8P8pk+K7//gd52BiWgBtzLauX5Srel3czsqmc/K7d8DffCHfvqUuy0VWQd7ksys329/jzvIELRiOjZNTK6mIMft88HBs0G/54ZNY1oKvl0BjP9f38cQgOXlcosPfeB5FFD2cvcnibZcHE+vPJObMvWzgmzaGPoB4U0B81TUk+Hw7J1GEhezpwJEgeb+awEGkqF6R9fOQkrZHwF8frMqYyUuHU2jxaL5XnbkKFknB/a0Yk7XkH0OlY1roZvpvpdXYzpGObI7f4+5aQ77sOeeIE8vlT3FBV3Fw5bi61Cstk5fGFssnKylO6kE/v1ZFCsMEKpyr5xdkhw51dhlaFwQ54+A/e8KSHYluX6txI031cmA/pWIh2Q+WDceNbegM//X1/vbEzhmE/K7ymahxdgw8dhN85gTzpkN84ijx3RssbBuaLrTwroqlm8V5lhLRa7zkc+uTCXHWAXymodoW1N2F/xdeRjbvBRjYGtk0rLojj4PiaGlepgGtKu79UXltqc4ezN+AnM2RQtoI5cyjBYyvwBhFup7mVOgSDgv9FD7MduH4e3rULPvQ89MqGPVIm4H6k+3Jt16XPKv1yERgUMJvUoK/7kNjTsYUUkhqBJ/uwR50qAjUmA2Um7w2vvwu4k8bur0Rtrqjz8Eqa974xC5KzXkdFd6I9BOKja9gysDXMUUJQTyYzfCHBQUcz4V9DdH/ZgH51dRWAb/3Wb61/d+ONN/IzP/MzHDt2jN///d+/9lf3KjUR3xLEuzX83hDAs2si2SaNzp9Y05k0ldceYVNv9roJTNFEKqD9LMefaU11TY5Igf0I6pWapQHwudHIfMdAZnXj2jIzhb0Az9f7h37hUa+l1nQxUz0A65RxkMX+nF5Xw3cy2zw6fwkDoN4Q40Ya7t0eA2cwSKdTb1KN90vqPPo6/zYu1HWN8qqJ2Afj3xWOcuTb+fPhHn0GpYffEaLzXaHOn++gC55Zr2DKbozOx5/j7KQ5WwOd2Q62ohZHNBjy8xW96WmeI4D5eA7GaFUrCdPcz04G220TpY8bpahSaemafOyvAf8U+DTwMyiNO+1zXHDGKfdnJXijqwrbsXW3JiY62r0IgEYasYxiV7WzgmbDG1aeE6UCa1843NDjBgEAxlqmqdjZeIuOirCZl149x4V4LpxZ4dffuJ1f/Yab+V+/6UaOfNMeqk8cxz+8TOUCkA+OAhGQR1fhhu2cmp1kKhhrJgpWhedmDLCjw5a1dYZxhRbRDT5+jr/68nVRCC8VZhmJOt986fhK4bin9OSl430jz83eN7mfj11ADl7A/41bdK5lBt60BA+fTUCxbwP7y6kRG68tHmUAK2GzrkYeO3JsGemcsoXnusKzWHqergJzgCZCH6tHvNQ9aOWERiAfr/uY1534Dgt/bQmeG8JnT7app0VyHgf1KehOQf1ycJEuTTbztQb1Os43GFmLk1pXOH5u7FcSIbpU8+FZx9q3g+R1Wh+371WVN1Y7qC7DuNhAY0zP5wdKVx4z7EoTxONMyJ/H4BBk6xy9c453GF37HvTCX5Q67ioP1eOruHvmKYNaugu0XI3WW45by+ffugP71AnshR6Zj1F6IQslkOJzEuc1GsQGUhOg0ds1ov2nzy6WGvNxv1npw1IHTHBKmDCMTKxBrxoBjxnDfdZgt86SX6jIgY5TjZjMaZT+QYSZAxeRe7ZRGYPPlIEgueVkZtmTGex0F/uWPdjPH8eOKnVWVF5L0A0q+OIZeGeIzoeofBPRDvnzptnvsmR/3G4NJwCZ7iLT4M72EJEQaJc2y6Q9uBJajNR6IZWH4YFV1t+4g/XMMswMZW5xNqR0ZQYzNcmfA28l7L0TObabkXUt+YSlO6k11onHRKZFzC+3ZGTSbDO9gGa7nDOGczYy1EJ03iiwl31TcOxi2xmXAvvxEn3x53t3tL/8KPDJ40ivxAdg70OFFHoFDB3Pbpthe6TXW1Xlj6D+5YgI9RZNm4WwF63U06/ZB4S0At3rZd+8KvmPOyy8qKe9bDssfNgLe7dso2dh3ULPQnEY/JdOq7NsFJzYIXIs5QiZVBf7qjFsCWZYjNJvNvdmreFCN8NP5PhudOJkCjAmM/xEhuQW2T2HfP9tSK+AP36BG589y09+5hA/fPQsny3CfuAU0FelD+JqntIrWI7R+UKgOF1Sbd9KieFZMfyCNXzOGn4ZOLhlCmfBnR80Nuk4m8GJAvQUWA4dPHWSiQ8dULHYwsHKCL52Fv7r8/CLj8OvH4aDw7rv3oA8cVrXp0qQsP6NnNQq9zVzU4Q3CDySPDqHOrXL5QFusYvUA94kk8C2f5ciPYAtgQF6fqAf/FwPbt2i/7eZGN5LOdbSPwUbU6YszlXh9ikb7JSH20X4nwQeD/uS96L9Cft44TwjMbB1Qr/7rdu1CsWHDjf3fTx1LlZmgI0gnuS8gkbeGbsfmzglmAj3r182fQsfE9m7bUANx4H7gP8nyhp10Ap+piLir6TFoZiyAmorceiYyeO8Sx1ppuWvmAZWTfw8gW6OjPxGNvbVGp9X0C57lZ+YmACg2+3Wr48cOUJVKUj44he/+Cpc3qvXojcoKtyn4MbS0NJt+tSPD2HvXAMkAqiPHmqMPuS0lMH4nEifbarYngK3FRSsfne4phzoZpY8CyUbIqg3hnzecutowJ943VO8wJoXzgncJoFm71QTwIrU+fQIKohX1xBlI6i/xLqTboT15mIMswTK/awq3UendQ1E4wdEJa5o5Lei9QlYLHVjKSqn4DC5Tw74Y9R7l6HgPTdB4V6EbrhvFKUCehiL0sf+pR3R31vQCL0XskEZSuEJnF2nsw2eFWqDxhtwVimjYvV3jUMkfM+erXBsCMF7WgQqeulg5L2Ce+APxu7zH9OkX9SeZNpBPbyOozkDxlUaiSHRN4grUI7eV9Hnl4tgMWGjC/fQCw+WjqdKBdZVoQ4VP3JUA43S186WAOTGKVqlF4pKN//Kq9J25ZQCfHHU58W5STJrWMsNn7phHv/Xr8M9fBr/qeMajSkDsF8fwovn8HfPsmYMc7mBTMWqGmdamIdbc6bOrVFIBBK0IrP+MiKyL9dSEJ9WWaic50DpeLz0/L3S8VCpdaql0n74YyvI50/ivu96/PyEAgdjNGd3EnjmQu3oqaPZQeH/ShT6o0KwRCO59PRKx0ThmHnxDHzyabIXTmMrz5tLzxOVQOWoQuTFJfPKXwqY1kaYNEA+npf78KUz8MM3wd+4Fx7aB++/Bb5yBj59UgWPUlAfVa4jqC9d21CO34fAqQHs7jQGUlyfsrG1KrV0t80oxTv6RST53OS+ioQyicG4rgaOfuHoVZ6e19KEMf2lJ8qc+V/Ryhp1OkwyNl6Weh8tiXEaowhcaABv7FcUjisJz8kaKgRv4Oh22L68xm3ouv6QCE+4EHkqKqrnzlHdtaV2OPrM4nOr5SEzy2Frmdg2C7ftwX7mVKMEX/qaok7pa0VpXZddcHLXEk4Y1C/cg5DT2dwHSS2nFWBpCjEm0QOIonja10cwzBsVnrMLs+SnysCWo6k6I8J959aZ7/c5dcNc41TNDN5aXswte/JQm/zmrditM2SfP6X/X4Z59qWzKm57ieg8nQyb24Rpq+t6Fvb77QaOa+gOv30LsuwCrpOQ+kODGsbnUAB7ReXpe2HNCytVxdrza6zds4VVC73MUliN0JdWRfEqa/gS8A3hmnJryCZy7GSHfDIjm8iw07nmrE7lWi5qMsdsJnb1Es2MHSlA3gact9SCcRg0j9kY/L5ZLUtYuo0slJRmP85MiIWp7rDwI3vgJ2+BU2v4XzmAP3CuXktFBH92QLF1monMMmlUCC/uczYPjo7L6F9Ura6BPeqUmjCGY9YGJ0XjrPAW/HWTbYfFhj42DovKC30vrCOs9nNW9hpWH+iy/qP7WPvR6+k/eZbq1w7A8xfwlTLJRARZB5np4NHo31ab5M8nYn/jc2/dGnzXIhMZPtLuu+rU8RMasfcdi0x1kG+7DhYyfuiTJ9n52Drv+uRRzh05w3Kl6TpVYA6WgWEXhdZGToMQFVAur1Ps7uCM8KdhfckN9Kzhixjc9knkbKG05jQyH1+Pp52UXmum/2ZITfidE/CLj8G/fQq+ekYdnT9yA/yTe3WMkNiUd+wIpWo9xgs958kr31K5j3bOmxCeDM+spt2L4FaHlEt631u2b2baN7s2fk3zdwzsyGA5WP7PX4Cb5sY8Rqah21/K41R/T/N3D7gJixRVndYDKmC8E7gZ4XaBT0vqlA9Oil5BZcFNBXSaWfie66E3hM+cos6nH4/UB5Zk7Xgej9JHJsJcd+M1j3ct3qsOygyIy2EalZfmoyNWOAHsQcson0MrMLVAvZDo2ly5fZd2w4f9yoe93I5cnU2QEeZewAkpyN8SIvMR7/k8U2dVcqvS/r4W7bIB/fz8PKCR+p07NQf0H/2jf8Tf/bt/F+CvlCjeloXranD0FErniHM1GgxWkvz5OOKOrsEezYsxtnnAWGpgP0NIF0majJ1BF5HUy1QDBOCTwF3ADYRIMyGIgObQd7KQS28gnzQsne+zLMJzorlBhz3sEmFWktQBp33MhUYQ73Qfdid5Pi1Qv3ktV8J9SiPzNgTAF4zabNgOMkzAfPDCSX0/k8XcS7OYPHMaPvgY8vQpXNFQv8qoFB4mcBWe22l0wisgDVUJMHQFOl77zbBUwwbakfi40kMbCJgYADTkGdj1oskzX+2zdaHL80YVSVUBPpSuM6iKtKFhN8Twzt4pOL6CACMCmPcKfisnNTMjKmbG9u00C05klMT1NS5CgubQzwFmJBq1CV35zJ9/pVlfp9Ece0L6RThijec49u92cDBEGnzhcYXHHzqD+8PHqZ45jU+BXIxIhOYlpBKIUDl1XFTBIKjOrjNpMorOBBXQtRkPZRa/ew7/I7fgzq4jH3wW+qVuzo+uwvWL9OemcNYwY5oImsma+YcxmIVpskLo9FSwU/Pvmwhh3JfSJmGujLzm+A/CdW62OTiRJmeeJHfeC+XI8eul54dKz6Lz7Co9JyqPeI9fGyB/egz/7j34vVtwKWCwFt6wE766nHhswoON9/cyNwGJfa4COA35hL3Kc/PRZSY/cYzO13p0P3QEc+QM91TCY94jDqUKS0K7lwYDt77DS5tqX46NgY8eUdbBnrkmH3nnDLz/Vnj0LPzJGKgfjQH8UYjW1Dtt6LsHTo1gV8iIbEXn1UD62Ge+3BgOcV4vdeFsPw7MxGJQEBHHB4VXsNqvKHslvUFJr1fR61UMB45B4VXcES2f84+BP0UZNF+hnSpVeHVcxWcgmzllUqtl3HFxximzAFOjqMpGZfskf94YPIYvbemwa60fxKeEW1Cn3HNe8M+t4ZamqXbMUmWWqmORLNDcc6XhHrGWvdZg79+KFY99+EKoZax0e1PJWKkoTbkx/ZJsVGFKp3sJyiRbhYRm38xDb4CLweyZ05KfEcw72wjBemv4S2N4c7QBt1mys6tNKpVER7uhc7DPsRt285UsU2X74PA7lRkGHcvOMM+stdh378Y8dZHs8AXNnx+U6nx6164mv3wsOk8QGKsd/ZmC+ehMzI1e6/MCfmkWf34Qhm4of1TbDUnZUREI1Py+86x5YdUpoO8dWmV9T05/+zQDa+hboznImaGyliq3fPhP/5xJlEkVHf15Zsi7lnyqQ3cmAPkI6jcRnrycdsm0OlQY73wo4VUrwdsQqZ/rKro8trY56C19G8TFsNzjF+HN2+H77lXBuF0z8OO34b5jP/KFE7gP61LWJgABAABJREFUHUJOr+nafKbiwvZ55sP+qjT7aGQbsoSMd8n+0eC0mG4W+7oXOJ5p+oYzMZ8+OizmtBTZoNrcYRGYF5UXBk6BZU88g8Nn6L9tP4P33Mn6jdvo3TBP77+7i/79Oyl/7yjy4RdgdaRORYCpLuthb5tttrkNDpb4ZOcI7BijqQFuIkcmNPpT0+4nlIrv8wxySyGB5j8FrMJ3P3uRP6sCWyQ44cvKB79rSJ1DKfeF95QrA8qlDhVG0xSsltScwvCQBdm1BX92GG6NtMG895unnYTUi4/1DmvHtgA/fRf8rbvgXbvV+dbJdIz8yB5d0u+ZRvYtNsEFJ6xVQuY9k2FtinM4E+E+Dy8irAUWn5Z69vh1wW2bphoPbpHc8NpONu0HYYw6kJcLHRunK7h5S7NXRedzPC498ZrvMdSCk75rkUgMQdfWswI7wvbx3d7zZ4EdVPoghiqCWy8ptqhjUNmiVlX3/8atmm508FzjTEmrMhQhUj+OtqNtFCPt0wnl/lL2dGxzRm3xxBjz0U4LDgjf/IkT6FycBN4DfJiGvRyj9HV5xUvf0Us2Hxkxcb0OXTyNMOEck7nRwFjsnjWJfI/2bTL0fT1ctGQZUlWtrf1K9HquRbvs1f6mm24C4PDhw7ztbW9DRLhw4QLLy8sYY3jwwQdftYu81s25Ag8cQw2xG0loOYTybmkk2wUL5fgA9kzVgD5GCW2YsBbdz1bD98glDmjAQaS5prnhH6eJPGcE+8IYcmvo2iDaZqGDIdvaxfZHvMPAJwPye94LtwgYr+BdRc+kzp1vBPHWYNfEGJCnWYAu0RosZWpRPAMsmqB0PJEjg7anqp6s9f2UFv3KPXeW8ndOMHja0fvPx1k/dJpVJwyCSnhVOapIEUaj19+K4tScxvERy9Z14sWuo4vYeCQe2gtRC9QbVQ2etWQjrwZzEGjavWWSNQOnjRo0ztLkglqNoNU3KHpv983AyZKq8mFDFCrvAxVdN5VHw3j8vnBpPw/czcbIfE0jl4ZGvg7MOg8ezESjcj83M92sq5OZ5kiFv0UjOTPBYQQYJ9zvPYe84Kuw0b14Fve7R/GPFlS/eRT/zClapWUSzlPphZHzzabvwsYiwvFTnovb5/kGY9iK5e/klptCNMHPTeB+6Dalr/7eM8hXTyFfPonsyFg10M0MeVBrTmvQm1CGyWSGanaSHReGNYigBhRohCBpTjTyuuobsbP1ePYqcpbmZsVc+ZRuX4jgC8dHS89E4flrlceUnr2VZy1EfP2fHMXfsh25a0GN3xAlqcHDA0vK3Dg/aBs48d5eQqdgvMXoPKK59/EYeeEdz5zDr4GZBDsA++Q57hRhtRJOhLSAFu2eS9DuxxXtU+r94+e1Dm8NkEwjMLZ9Gt5/Gzy5DJ840YD6mGqTsnNSJ0YK6k+uws7JBGG0Qf2WLSH3sTa40LriFwctYBFTL2KZJBlWKt45cowGFb2hozdwDIaO0cgxGFUMRxXDYcWodHxkDJx/FAXxhVMNiHKon0Ov0mjEeqkOqpFLNBFkIxgA/R9QQB+65jOjDgNjqAiUezSa/aKBQ1umdY9YG5JhsCK80Xu+5jz+qdNBLE4dATF33ge6vcstL+SGfZlVavk7dmMfPkW23Gui85FFkaRE2aGKLZqRajJkwxJbOLZ6qXPoY6m6BtwLnBvCkhrDUdm+oumXN0oxfsrCvZnR/ix0yc6NyLwnd1p1JndC3h9hj5xj4o4pHiM6OlQ87nCuYD4L+eU2s9jZCew792A/ehQ7rODPz8L+Sdi3pTF0x6LzMU0pRnItwaizhkMYPmEN69bwKwLHlgxyZqUG85Vv7kENWtHXrhT6lafnhJ7TKO4A6B+8SP/2nfSMoWctAwP9zNAzGpl/zBr+eHamZavkJry2ho41ZLnFdDNMRyn2VxNkqUHu2Ba5iIplRxBfR+cD+GD/FjgyVq89He8RwMU1rqjgqVW4Z4t+YUdTBMgz/J2LuL91F7JvHv+HR5CPP4s8coLVzogF20TL1NGiaYhxb3i5vqUgPtXT3Asct4FtlzgsnDUa6ZyncViM9y+kTwydPuOhFwZnevQH0L9xCz1jGHYyhl09Bm/Zgfsf78DnBvlPzyIfew5Zq5DTF1lD61zn2sna3tpgspDoVxBsrNziujkSgL2fyJBuIpiXW87dNk81BwzATsL8zVv5ivdcjGA+OCaqYKNEUF8KlKtDCgvV1mm+CExYw7dYrfD0dwzcaA1+Z46cXsMFO2VDlD6tBBDX+vs0ULjFhpzrb9urUeBuTCPJ9ZwbuHk78v37kONDVJ9BP9M7z8AJu0pNGYrPOEcDFoteuM7DAaf1wr2Auzig6hrcTE61WVQ9zCOdT6a9z8Tz0pSmhh1e0Wj9dJIGVovhvRygT19r9Ncb8DMdfNnYfAKcFWEnYL2m4HiBr3lC5kdgUQwcxdaOOoANDQtp+zR8zz7kvxyjOj+grDyjsqnGIzGfvkqgctynBFW4r8sEJtdtTDtHJ7WrJzsqPAM1yI1LhPONn9ujNsjpMBct8J2ottRpmoBeKiJeBHt4vEVdsSIEbqItCk2AzNP2NV0QmHaVaqiES8/Srsa5CBirPqeeCfOua2sRWa3xQhJJenk77lq0ywb0P/ETP8HP/dzPsWvXLn78x3+cBx98sL6JDzzwAH/v7/29V+0ir3XrrZ5CULr97TTiYBbqnOlMCLVkw4O4MNJRsHu2fromS5+2juooaaSx0CQ6L81rH2hL0cMUo/MOpXIKOkkzGqAadG3oBoDTQen3ndkJ8goeGpUsCxwSLVl3m6j6Zaw5H0XjrA+6AJWH89IId2wG6i/Rms1eN1KD3oO5cM2j3ELlWg6+tIZz3NgFBQ99EdaeOMNKDmtdWM1g7cBpeqVnvfQUIUKvys3CBbSk33eG66jBvNF65l203xBm/VSnveikHWkB+eawxpB3c7KB1/FwfoSdmyA3hv3G8CxqhNbl64ypo2i1lRBfL07iMxid6TGSsCl6pdyXleaZ/0fgR4AfDJe2i8YjWQc1kjEV90YklK0rnZazyZWNYI3hLfffpRPcGMgzHWxhMNZjXsI+g9Lwr/ca7TsSwLA7eE5tl1wXv/KR02MUSh+EoESF8HzY+L1SvyonrAu45TXmd0/wVqspVTfnWj/W5xbXyXDdHP/e65FtXfjsGb2eL5ykPHWBqUxBsAmRNIOpwXwdpd8+x94zCryJICJGYX0jOuRE6EsQOhMVOKtBvW+qDERgX8jG3PkCKCvP6dLz0dLxU6WnWzps6djlPRcrD186jcxMIG/bpuJKeaA8RrXpzOimf9scPHyBWhwvNXCCk+blWkO3jwNFn8lABNvpaJWGIZgu2NsW6HrPXU54LFA9W7T7OM6SDVKcp1U7ula3F41IfOI4vGcfTORNxLMbDPOOVWPn/bdrbfiPHWNDHeo01SZdc50+O04UsCso16epLKH8z9vffG977TIGFqfxqxpRGngdgz1QICXQKz29wtMbOXpDx/rQ0RtUDIYVg5FjOHKMho7hoKIcOU4NHYdGFZ1AObde+NbS4YYV1bCkGlQUo4pyqOkprX4NKhiWQRQsMYzq0IBoybppGjVyq/mTIxMi9DbkmhuDt/BFMbwhMzA3Q3Z+pI5oLzwgAkdXFWTtD+Jqtqll7jKdd8cyi+tYdgS2iN0xh71vB+YPDpH94QGyZ063n0val8CosEOHKTzZsGJ+VKnavwcjwZwJThQAOV/C1mm8MVRWFfu19nwQ+7OGvzRwozEsxij4/JSWjr041FQqr2tx/sQ6dt88+0P6zgFjFBRZw4u5YX/HanpOZpU2bw32nnmyhUnMbx7Q6NTN081YTaNnSXRe19GGkh1F8T5nYWTVwb6eGb64bYZqVdXBnVfKfVlbq9JEaSplMA2qpvrH0Au9Q2fpvbBGf84zMIaBUepy31iGxvBwZvmfrGH5LffxCPAk0SEbfGf1dvPKAfx4S+3xNFK/AFwI0fkI4mP6GQZk/wwcXW1HrtPXqSieF3j6ImwLbB4b7v+k5n9LJ8NP5sjbduDfuQN7cEA+gtsfOc31J883NPQQVLGZqe2Sl+xbMMpT2n2M1O8DjoR+eWvwGS2HheyfV4dFyrKp2QYKhIfBmToUGB0a0L91kX6WMTAwyGDUsRQTGUXHMtrShe+8Hv/WJTg80n3vE8eoTpyva9Ab234mJGcIlHvGgkbW1JT7SL+XThDN62Sc37udD37LPqqd4PdOsrh3kfu98MlSy8WWPjAjfRDuBaXgIxTnR1Tz06wb+CSGHzTwkFWxyBvz4ARZmsSfVbadd2OVH8Yj8/Ee7l4A4O237YMf3Qt37Gz0IFJdiMCAlFsXlBlyeEW/J3zOivNsdYJ1rq4DnhllJBqBe7zwTIjQKt2+xC911FlqTZt2b8dudmrXpXvO9g6c78HhdbhxkZqhOS6G9xJ2NfF7wwMWwl48mev4q1T8GoFTwF5CJS6Bb0b4jEhdvcsJVOuCm5vU/QMa5lxmqO5aov/W7az98WFWCsda6VkN9nY/CCNKEYyPFMwjGqHfasau12y0sdN5ON2FvmsN0rp/cfoQo+TatqPzcgfwEBrE87Rp97U4XnILJTAU+sG+i4GbtCpNvE9CA+oRTVXuOleLiMaSddGOHgfMs0YZ2QLIJMigSv23yX3b3OlwrdtlA/pbbrmFb/7mb2bv3r1MT0/zgQ98gD/6oz/iIx/5CP/yX/7LmpL/9Woiwq/92q/xAz/wA3zHd3wHP/3TP83zzz9/yfd7tP787TTzNjOQ+ZCrFwBxvSEf78HOvCVyEcvVYZtNIgL6XryuTc7RqzReqi5Gnt9Ds2F3TMibt1r7tWu1PmgeDIo8s2RThu7qiHcDH3XCEYQbRA2r2BfrVVAo15ul5eoyYK6z0eOYeCU3a/F+1ZGL8BqrDuzeNHhXhj5LnTLq44IQImVDL6yKRnbWblLhmB7Qt9C7Y4dGMEpPP1Dvq1INpk8B96Cbr9adDwA1nDs+5HfGBWkqqVYZu5UurC1Qr2cLZBM52brTvp5xZItzWGO4yxieCoZMFHNyaKTeI1q+LgX2xlJeN83o1FAdOF6CHqCKmHzGaQ79e8P42Ys6m3xyxEVaEienjiWhB2wpKkyHRqjRNGMSgE4Ow/jPBF0AZaTkYcxbUTXpW4FDLjyzWxeVGuuCEvW9Oxs6adyYpRH6KwONLTosKhE+5Tz7z62xfVuXvdawYgznLGpgdAPQ7Vh8niEdVeKXCZB16BxaYTpQPAn586klFksUZds77FpbZxCMrFqE0QdRrvC7oaiQWV/UYRxVzPshSh9/l5YPrBXthbqfUnl+u/K8oxRurjRnz1Se7V54y9dWkHM95F178ZmCeJnIcBHQ1x574E0LKvqTCkbVUrVyWeJ4dam/QLn3lQLhQem48VSf4g2LlIB89z6y3UtYB29ywoHkf2raPW3avSrnJ3S8cUX+T59Q1tIdC020M0bZulYNsI7VHMj336H5hX98JKTXPKriR4nCcR2lj7vhRU2jYPt0M0dTUG9tAuSbeV3Odeh3DGsXB6wCayKsetFyc5VndeRZGzlWS8/qyNEfOYbDcARgPxw4qpHn4NDxz0cV3zh0/LNBxd3Dim3DkjsGFW7kcCMXgLyjCK9JQf3IacRjlOYWJ0AHVOF+cbI2jMQE0BvWlahyXxk4bwyPGsPbDNjts+RnnTKKRNiF8PanVzh2x47AIApieJlGUyOgf6Fj2ddplNKtMWS7DfYCZAcq7G8d12c0Vj7KjhwmimOGygmmcCwUnmHhsMF5VrMhIp49P4Jt0zijjINaSDSumxa+YAxvsSowGwVg86UO+ZkRHUT3r8qRHTxFfussxsKDmeEL1qohnluezS17I90+D+yD3JJZi713DhPzmj5zHl5cfsnoPDRgLzMaCc8MvNMYJqyhADIxPDCR4bdmuNO9QHelVryv2SGi1T9ipLNwwrAS+keXKT56QlMpPnuc4clzjDJDYS3PGfijzPD/GVPF/tP0mmhA/bVsaaCyNmhRQH8ONDJvtSoBWVIPfN900IvxG8H8+NohwGPn4O7t9fqulLGQC961+KjYfvwiADINdh2uf25V068CQysF9JfTUuZF6rDYCxw3BpcF4T9CHfoI6vdNax49Sb8CQHERzAcmXuk9oxfPUtwyzUER/g8xPCGWopNRdixVN6PqBMG6iysb9r2ZJNBiM9Oyt9JjC02EHpqlRaxp7mHXKnU7AO4LBty+Jfjmm7AXK2zleSfCVzysV8rcKuv9PNgsEUSddfgdW/ioqC10a27YaWHVGIYYBMFvmcBPgpzp1Srmrec+Dua9wBPn1cb+sfvglh06JycSID+ZJWUllWnEG3YiXzurzvvgMB1VwkKlKUPG+fq+ZYGp+oDAk8GWciL4c0q390YZUa6mbCR2XD0xEju5fggGtk2pfsSzK3DTdAMoIqjPdK96aWeTae1hEpwLPpZJDqLGq6LpujvRgEwOfItXbafjvhHFq3oV5dyEBiAC60Q6llHH0ssN6+/axfpkl96HnmLtE0+y/vxZ1gKoX3dCr9LKKbUFEveqNQeT3WY/Tu/RBgpJ+MNMRwF9MkgjiI9HBNfHaKLzFp2r70WZy32aFK1xQXH9WLXxYjWaGKhZ9U3wZs2rLVcPx8giQZ0JeamBsQbbmKa8ZTA5opE9DayI/lE6aClK2sHc15J2f9mAPrbz58/z6U9/mj/8wz9kdnaWqampV+O6rrj97u/+Lh/72Mf4wAc+wB/8wR9wzz338LM/+7MMBhuLyGX5JIIC+iiIFyd8Jl5BvZNa4EdlF4cqbhYpUEFp2wbwFsftZPiO2mtDEpkPr6NXaTx//kXgAPBtNDTy1AufWxXD6wZwr2Df0JmcIu873myEFxFWvYLlWHdenRMhdzpuQKeHsHtS3b/ji1QqBLJJq98aQGM6n+cNrHdQoatmr6traMb6xFqbPJZ+EvpbJugtQn839HcYBnsX6FeeQaWAvl8KrvI8UXr+swh3kuQRmghOTa10D6hRDY3KZgTx9QWbNo0qWYQMkM12yfuVGk/nethtXQxwXQbPhui8B418xWh9ZhtAHyNtBoppofjCCcqj56gCFahyQt/B73rhb3khZM9yJ21AH8F8HD9NxQB1hliBycJBJ9KEtJ/nV1aaxziVK6gIg9F6aco0xj1H9LPu8/Akmk/u9i7hdmV6Dd+6A3fdktLnks25KkM0wkXPfqB9eeGEhzPLPWwGdusUuYG9VmmrLje4jhpsLtDv5e4d+BwNtW+BI3fMM5VG0vI25Z7Y3605ey+s0a95vtTls2qDGhUxGwRwPgigPR5R+KwXXweQn0boS9RY/0snHHKe7xcJlGAPx84x+5EnePNTxzj7rr2qNJxndWRez6ahvhmjeYGzwNPn28ZNHa1/aXE8caIVJUIOoSTpLFuOrNGfnIR37MXs62LFBseN5y4RDgXar6u85hJGu5skkyJQr33lNbeyEqXlOQ9HV+DRC/Cd19Gq4x0BfXwdQf3WCfiJO+GJFfjgSTjg4NePwVOnEuA7BnpP9ZXCmKoFJ9F5DCxfuNhyQpaZ5iCv7c3prRX0kPqZ9mOE3nl6padfaERiWDiGh88w+sTTjJ4/SzFSUcjPDSp+Zej4kYHjvyscbygcPz90zPcdXx0qmK8GKh5ZBMp9MahwEdSnegGFbwGARhgPOF9q+SMd0DhrQu35kC9obJ1n/mkx3GlgwUK+mJGfXqsppeZ8j10rPT5/w2wN6Ku8AfaVtVRZxsHcJMBXQa85dE7XgLg8/s4J+PPTqjQdovJm6DBFOI88ptBUk7nSMSp1fZFgLCuoD8D+XB8WOwpcCWwDUHE8YzhhDIes4Q02GFBG89SzHbN0zozoeHXUZgdXyadzsj1zZMbwxtzyRGa4mFnEGg7mlutzi8kNthNAfXBaZIfPtyfPY6dfMjoPiaMfHeKZNdyVG/6xhZuNYZcxXGcN1Y4tuDNVCEJLyGWlNafLSkF9GSjNhRdGz56nL3B8CUY9OPLsCv8/b/j7Bn4+szyWGR6KTstzFwFlpnXM2N73UjjhFbR6qww/x49fIOrkxP2NJtfXGmRHGMOneo0XPwVu6ev1Ao4O4Z6FZE4bBfSTGS5E6l0nQ+5ewk8DAyi2gr1zHmN17KZlTC/3PqRK9+l5HwooxKqjSUziDDNGGQgnyzYgDevuyKnQYRXB8NFVyo7h0I45/rUxfD6zfMAanrAW181wXUs5qeXmuHsHLgcJ+96Lt8+zNehCqJ6Rre2S+Dzi6xihj02Sc51X38mRYJtIbjiRWaYNsDSDnczJjq2yD+Fm7/lMhe4JLtY2VwdUEYCkO7fOqW2WZ4DvznW+zmSGKWs4ZSJrwyKL0/izpdoxKfPK+w1jwnthdGCZwRt2cGR9jUFmKIPzUQUe8yY6H+eqNfh7F+BsiT+zXrPx+pUw7xomqhHR9MJgA98QgkpHwlLsBgPc3LSmNoZ1aaONmNz4lh0ZXi8Ey78AqqIBtqkteIWT1EHtVJJJ8MMSEa12u4CWZbZGccucgbcjfN4le/iooJrttvS5hh1Lv2tZzy393DJ40zy9E47h4wX9Dx5l8NwZeqVnrfCsV6rz0UOZlz4Oqp7TVIj0nozfj/ocjqmO7ocJIHLSMDdSUH8cFcSDJvB0N+rA+AxNauB4CbtSgohttOHCsZbYcvU5Tl2a7wZYdjpGTCdrOfviI6y7FB7vnFHtCADJwXt1WmjUP7HbWgj/1WtXBOg/+MEP8r73vY+f//mf59/8m38DwE/+5E/yLd/yLXz2s599VS7wctsf/uEf8kM/9EPcdNNNTExM8Lf/9t+mLEs+97nPbXjv0s7b6aEDJwX0UVzIoDSWOjovAidWYO9k6wmbYFQa0yy2BgX1PZKFVZrXUdQh5qoW0lZt/yY0yt2K0BNo9lY90RMQculDPv3WKbJl4VT4PCPwi6L0+8yD9QQhNEkE8YawOwhNpRHlcL6kEidN5LdxUkZQryIuqzman0ojhhe9caAGzxClvoy8TsLBmtC/boHej9xLf6pD/4UVBiEfalTpRvlEKfx8pfmUv4cK4+Wown0HLd+q6u3h5vfLgO6T2bh5h8bOenQmMuygVGPu/DrZVgWT+43SRo8SovO2ocRHxft0FShePMfo4ICigPL3j1EcWa7rs37EC9eJ8FaacnK3o84mgVovrV7wwuIX/7aKiuLYwmOyvLXY/P7HPt30aSJrGAuh5aI5eo3SvTqAbjXwAjFV3islfluOKzItn5dE6MUJhXNKs69U4b4UZSB4L3zMC++84LC75rFG798+Ay/YoEEQ6+fmVnP9btmJe99+ygfnKN97PUdu2MlcAMQ2a3LoyRr9BqyBhWkmCqHqjZoIYTAoJVCB66A31PXkB2h+1j9D013qyL00kfuRJPSuMG7/sxd+2MOc91pS6+g5uh8+Rv6CZ6r0rPSGGp3P1IDyHaVAuhRAdJTuzBt2wVfPbm70vpw4novl8SK4D6WwRNh9YJmjdy/qULxuJ+bQugI2LyyKZ69TVXRxShOuS0KGeySVpywcvUqFhlZLz2qlR895ik8dRb5xpxozMcqZHpObgfou3DzWh4dPar52jGgHYFgL4u2c2zw6HwDAb/yXT9Xz1lmlLPetYbg0S/+iD0r1Qt9pznK/iswfUTX7ytN/YZniQ8eoHu3jPn6U4Ytn+eDI8bnC8Q8rxzucozNydAtHt6h478jxmaFG4ctRRRlLO440Sl88dRp++xF48mSSouCpS5Ek0VtAqwQsdOu1p86dN1AaS2UVBA+N4YsWvilT5d18a05+vq+OaCB7so+/aSdPd3MuBjDijObMu0ydSr5jebJjua5jMR2tHJF1LPau7boO+GCjvXFWqzD826fgNw/CY8uYQQnPnsV85AA8dxoT0ie2BJqmSRx9AgHgC5wf4Rc72i8bqoOYJoXgc9Zyn4WZID6XW12X8oUJ8uNrmlblPfkjJ8nu2UFuFKwv5oabOoYvWsPZ3LCWW/Z1M+1XyKW3IVqfPbCzPe4e3D02btvRedD1Jaa3ZUavzVq4LTP8P3LDORPoztuncBd6wfkqNbCPjilfKEAq4lzzej6yb54nb8o5N2l5+NYu/9dt8+owyCz/3hr+SW75GWP4F8D9v/dxfhF4EJqUOxo2w7VsJjlq0wAF9GtQ5+V6G0XxwIcoJPuntLxbHN9xrG+IyF6AvROwZWJDNFMSdXYmLHLjTsq/cT29B7byi995HfM37MQE+nAWxnCkx15u/2LULQX3u9Fl51zYu32w93x47RcndaM+2Rb+q7wC+mEAvqVA8eKA6rrdfA5DmVkyY+hnhk/nhqqb4SbiYZHbd+H/5vVUD85RfM/1HL1hJ1Md3T9scChcyskyy0ZGaMOwCnZDvP7AdrtgDUuZ3jN743Y6h9axAt8mwue9Z+BRxXsf8+lDmqD3yEqPT23t8M3WMGcMNqSd7rJwElNHlmX3HH65X9cab8YALfth5Dzr5/qsn3es3rPAb/zZZ1nLDKtW71fVsSpsHKPzYaz43CCTOXLPInJwtXbiX/SeOSeYymvqpdO00zwEuTLgLoTDXvdJvzzALZnAHiKIILI5CI/GVaD91xPkxXPNe37vJLyw3I7Ox/e/3KCsjxCdNyGXfsoghbKfTnmloccHnIs6c98l8BcIfVF9gGptRLVV95DCwNAa+pml180YdiyD3DI4eoHCwnBKbZvewWUGTtPU+sHhv+51zq+j9pIbVDAzEQajaZ/H+lC3aasOvDgopVkanEjLrj2BOtYiLovpoe+lEcfbrITdKAHxdWWaJEiz7hv7ru90jkac7QMToRdK9tk8qwO2keERuynhujAwbeCcoMkPmUV8VQfcfAriX6Mo/WUD+s9//vP8yq/8CmVZtjwP3/u934uI8IUvfOFVucDLaevr65w6dYo777yz/l2WZdx66608++yzG95/5vijHEJzNBahJYiXeWql+5aBfbqCvTO1IanjNXjvbNtjOkcToYd2pD7SYcoEXFToZPkU8NeT64l0+5p2H5Kp8kxp992woXdmu3SGA77kwRvoes11+qyo8JlG6QPrAOD5sxpZk2F7pNY798sPi9oJEte18K+7Max2LFJVdW5KtM0FEKdq9bEMXSFa9mHQcxzfMsOveXjxgV0Uj5xl6DyHKs+fFp5/W3r+eeXJnNb6RpR6r0aNemA7aD3m2pIcVbrbpW2cEgSXXITsVEa+qqJP2QrYbdO6ARrDTcZwwBJq1JoGCAUjXML9rAwUB04ztFB1dEiVB89ReTjrhE+J8P4QfQpVPbkDeIakjBhtYJ/u2j0vzKCDyeQZdfUBA//j+76XSECgmytoStaVGsiLiuPlqONnN7BF4MXoOR16/C07cEcu4gKzoI46+eBwcZprV4kCe+89T3nhrMAty33ypWk6Rh1F12eW54Ih6DpBgXvC1uI95pZdyHfcgdy0k17HMtFt6LBR5V73DwNZGMKZ4fzsJPb8MGEwUNNevdsIWAu0xuk/BT4N/L9QcN+j2QR60q45XwL/1cOsCO8QTVfIAXvwHHZILT438dyK0gLzoDKc21pcqbXJWwP3L2qe+LkrE8eTEIFQun1Qt/chl/DEGnlZsnL9FnXO3T6JObxKNqqwHowT7vGeJ53mOPpK6jEWN8l+yDNfLz1rVaDiVZ51L6x97Ty9zDD8hh1IZFCk9OWOaUB9NwH1uYWH9rY7ctRr3m0UYisSJ8aJddg51Y6M1KBeUzD+4f/wwxDG08iEvHNgtDDNsDfSWvJODZ2eF9a90gn7pWcQgH3/2XOaTjENfh1Of+EY5bDk74vnxtLRKRyT4ZyPHN9YVKyPPM+OKvzIqShe6ShLT/HcWYrfPoY74OA/HdO0glp7IPQrgh1BF8mVvgr5BYOysNqHElNHsZ01fNHAkjHcaJT+nS9Okw8g7xXkgwL7wjKdO6a52RoeRSPyLkQXq+BEK6zhuW7GjbnFBEBkc0N2607sj+8nu7cDP7YXvuNm+Ik74O/coWUWv3QC84sHMP9/8v47zJLrOu+Ff2vvqhO7e3pyxCBjgEEkwAQxi5JISQyyRCWLpLLDJ/napu91kCzZ8rUsi7JFyRKvKZmUxCAKADNBEgAJEASRCBKBiANgBgNM7unpCR1Pqtr7+2PtXVXnzAwwiKTs/Tw1dfp0zzm1q3ZY71rvetfVe+H+HnL1HvyuQ5jM0c5Vub2IWFJWmfCZwy9BvqqlJdikTDHL0Wu6xcCVog7rGAlPBJJVNdIDHRLnSHfPkhzLSc6ZCPR3daq/2hhuSgw7rGW9UTq8hLJzEiP0dYtsWQe/dBpcmsKvnAYXrB8GCSdRhK9S261V5oAxwoSFzSJs80K+3JIfnif3rojQD1xYh4KDbRBAfCzjmXnPzjxh72SDu89eyTWvXI87bTVvSgxnWqFmhYYRmsCrgD/+Jz/HqwUaAnUJejrh9QvdIsCVkWN5+P1RI0XpurjXxXx6No/DnsXhMV5xApPruHAPT5NftlKdVlboWVGFf6u0YGo2lGEL9dTPWsvet27hyJnrqAVRIZOqSJpJTAHQn03/oskTNZTqaGm+vYFxoFoBgW5vBCcGNrdhd6fol3NeM2oyF1LNPP1BxmDXEdy5KdOiVSl6VsfrayKgD85sHyjxnL0W/7YL4Mx1zNQszeBkIgkih5XnUAX3Y8Cx0C9/ssMIzlrthzUcM8JkMN7k3BZ29xyml3Gm92zIPbdlMZdeI599p3ZbNtchAxaXtbjSUDBpRGC9CAcCGPZAvtbip1UYz3H8GCAwGpY8zD+6wMKFy1hsJPzcz7yTBSMsGhWeXBQU1Ecx2bDH+PhdFy+Dx47hun11rgTKPc5rGc7cYQe5pmQG2/484OFAtc6WerhlNXJCmUihUlEkCJ86na8OX4L8+CAEuD9mfof2wFQltU7B3qiz8MQDs/xsdXqGdI80DYDec9DDOqeBO+PV/rUCm4EzPNzrFCRngz5ZwxZVRbrAkkDXCr1E03q6F6xidgJ2WZhNobNlpQL6gdOAmvMsOccimra2ILDQzeiMaV7/0ISK59HovABtq9VFQouaWpGIV2yFlAr38b9GQP+GMM4fYATUe8UREcB3XFlSdomy1Oy3GbbrlipEEYAZD/VQhh1bodlDyUQOmC92dwLohR9cKtB3Q/NuqOTfS9BOGdB/+tOfRkS45JJLht5/xSteAcBjjz32wl7Zs2hLS1qeaGxsGL2NjY0Vvxtt24FzwmshbNphsifOa6QhGlsHFnRULa8owlsVhMOU5d3iQ25Qlq7zI+c4EKtgPgf+JvxNjxCRp/TAx7MEfrSgyqI1CUJwy4R0ZonXi6fpPBmepoMfdp409CfNneaW75hWKiXA3fPqSYwLTUEPeuZ7biDUfC2ZCQhMCOxPDIQceueityqIrKF51X1C9SuUxjWz1OHqjYbbrPBHm5exT4SvPDHHpzLPgczzsoHj13NPfeAwuSfJPW9jJCUheF+L1nGqrnlCEC/PuAiZtiXp9rDTS5gW2FpSrNEXGeGREF3KjRRgO4+e8LDZ9IzQvWydGuU59C30z1tJ7j2fdZ7XOTgjPqdwXzeG5/8kFcM33LsyKKAj6pgPPosMaCaV7pVlBQG1/PohhykMRuN8kUdvw70zeATPFmCnD57LAeRbmriDA7JuVlClXNjoenkoceMo6tb2c/iy87wRjz04i11pw/ASzjSw02hOsDOaSxhzJalbfD1RMaSaZbqRMFZXIR+fmGJRNURgL4VH6eiqcewhiqhgwQzx4JwrA0WUG8hXR8b1J9E52EXncKRuxej8Pu/5vHP8mtPxluJJPdhzNBJOB9wEPHzepNLsE6MGaVrm0A/l0VtRcbzzJ+DeI5xQHC+rANxqy4MibTC+oqGMB3bMs/2s9VhrFPhONJEVNeyT8wVT52XO85DT/+tyjSDGsTbIHAu9nIVMqemdQE1fzBxLCz063z7I4g+dxlLIyRsCRlaCMnFSAvkYoa9bFTv6hY2w1cJPrtMc2o89CZ/dqU6Nfui/d3CgA+saQ4wXoKTcU76fhfnWE41I9FdZ+ke69PFsyz3/a+B5OINe5ukNPN3cBQErR8826Vg4KNBpQlssv/DFx5n49lHSxR713NMY5Ni+OhTr/Zy3DjK+0c9xuWPQz8ifPMrg5r1kn97HwKiQHQB3HxiOTEYrpmrRHPGwogkSy9RR5JkrqFdW0HUivDFExRJRDZV0hcVOd7APzJOsGcdMNLnUCrcHhsjACIMwFnMRngDq1rAqUUV0k1pMTRXS7fnrMD93KVywrnxmkw147Tr4tYthsxqRYkMk/9HD4BxjuScdaI44lHRD78Ef6WhZq3aiRrKJdHsF99tFOGiEy2NUPp5FSFe3SHseOzcg+dZh0otXkyRWy7UlgrWGK6xw0ApfTYSz4pqXaITepAaphUh9M4EL18O7XwYXbagozSp4PJnBHZ3rUVHeBqeDiHCJFR4T8Cvb5F3IFwdFdD6PzrXAXsozFXaNEXrvPVufnGPHGSu447L1DFat4A0iNCy0EqGVCG0jtEXFl8YNtEWDXS2jKugNCUroL0KLjuHq1pmilc6OgZYLNFrCtaDcC7C5AbvnITg3srBPdPNKObeZJRaOeebPX67RWCvMG2EhMSwIzBuh17BFbfW8rvvB/qZlsqlieTGtR2pJEUk71TsRwfxQYCL8bj2w35QaAb7y2hngtPHQPwqndjd3uveFVIrB7nny8QYPLmvRM8I/t0LTCm9KhHOMYZBYBrWEvGZwdYOvJaGfykw40rBMhD2Q1AxrFYUWX0art88ws7eIzhOCAlbwoa7fISssM6Hs31idZEWT9KkFjPe8xXtuDqxIZZKEFDrvWDjSZ/9Em7dbdailcQ82wmoj7A9BDieCX93CzThc2J+qmhIEm2HJeZa8o7t9hqWty1gSWBShI0LXCl2jTp6OqK5BweAIwN5Zg1/ewm9s4x9ZxHt12LZytRPJPTZzyCDH9nOSzGEyz4Xes99Dd+dh/ExGNt8twHNmhHmU/Tjny2PWwYIXuo7jHfOXrxseYFesH6banxKYLx+qJwD5+EwbKS4w1o/iWR8esIGSfYDnDQK3B4ZQ1nFkE6mus0BHgsM7MfQSQzcRtq1fxe+/YxN3bW3wxSsmeHztCroByGu1Uk8ngOQOahPN9wcsTibqaKEyKIvoHhV7OpybFrr9Yt+LIF4rDZSl4+DElPsEdba9FfgiJe0+RukHXlMoY0plx+v13gv8GzRg86/RUrMdQpSeGONSR81hD+sHOaRQFcOL60Tsign9EjR4eyw+o5rFD4btc1/8Uzm/iO2UAf2OHTsA+Pf//t8Pvb969WoADh8+fNz/ealaq6V5WwsLC0PvLywsFL+rtnprOTf+yq9y+F+/j7/81+/jW1/5Mp/8s0+Qd3tK2fZww23f4fb7Hw4uow4zqxwf+PyXhyjpn7v+Fh599Ini4U7t2s9Nf3stbXTQAHzlb69l7y4F0B64/8HtXPu5m4ZKL/zVh67i5pAf9++B6+56gLu/fmcBVn2vzwf+5BP0BoNiVb/xjru576Ft1BFqYylLB4/x4Be+xP+DUm9+z3kOf/UWdj60gyT3pLlnz54DfOTT1w/di4989np2HjhYLDj3P/oE13zh60N/84E/v4pDM8eKn2+7836+9rU7i7k7GAy46uOfJutnLBOYqSfcs+cJHnpoW7GZHD46ywf/6tOKT7xGTK+78Zs8vv1JMu842O0yffQo8tWb6FnhW5et4m0PTvGyG77GD04d4PV43pg7/vEjT/CKa7/OnwxyXoGnLvCJv7iG+SOzxKye2+9/mOu+c6+KcNQSeoMB77/qs/QGWdGH675+F7ff+YD+IDBzdJYPfOyz4We9F9dsv49tU3tJDvUxk02mpqa5/vobESucY+BhI9xwzVfYt2t/scA8/NAOPvOlb+CC4do3wl985w4O/fgkvQnoXbach45M8ZU772a7g5/wHtfv85kP/i2u1y8iBefcdCe33/VAef8OH+Nv/udVgaqkK8OtN93K/iee1A29D1PdWa69/sahjf+vvvw1dk4dVB2BTsb9O5/imptvBV8aM3/9vz7F3OFjmpYBPPrdhzF33cPjHugN6JDxsa9/lc4qyHctkDvPV+64m1vufVgphs4zNXOUj3/kU4FZ7PmW8yzecjurH3qMpOtJV48xPTXNDV/5Gqut0LTwpBGu+9RX2HtgmqyW4BuWR3c+xdduulWj9fWEqbphx8c+w+z8nC6yItx790N847Zv67wTIcsHfPaaz3F4OTTndA349rfu4bv3PxJoeI6Zw8f4/z541ZAn+JtfuImLHy4ZPOmu/ez+22v5v4E7UWB/7d9ey85d+4tyKf/zoR28/Etf54xAdat5z6c+9QXmxhPyNZb8DMNXz+hy975dGrFKhE6W8ZG/vIquz1WYxgrX3XkPtz+0rdgtZs5L+MBNN6jXJxgi13zlG9z/0A6i/PzOp/bx4Y9+UdcSr0D/I5/8Mk/u2h/oi47tj+/kGzfcDPtneeC8FmMifP5z1zI7N49sWYV9+DAPP/QI93zrHs7IPSbz7Oj0+NSHPkm32ws6fJ7rb7iDW+96gE7f0R3k7J8+yt9c/XmWPHTunKZz4XK+sPNB7nvqKbqJIbPCzqkpPvLZ68uIfM3wkU+H9SUI5N3/1FNcc+sdChh/+hLYuo4PzN7DzHs36v/50OPc/vFbue6278DDByGD3sI877/mc7r+BUfIdTffxe3feVAfnIHpMH97qJjcAPjqtnt5dOoptueeP/ae2/ZP8f7PX88fZJ6/6Ds+2vO8/0tf5W927Wd2ao4/f/tart7U53c3HOTYT20ledNm6ktLfOH9n6R3w3bqR5ZInzrEIx/9KvdddwsvH2Qs23WM2W/s5Zo/+GuW7tpH1mow+OG13LC4k1uX9mpk6pK1zBw6ygc++pkyncDDNTd9k/ufeBJmlYq4s3OMD1/3NTIReiFS9Omrv8zu3fvJBe4VofP4TgZf/6bmmRuNjn1i/73Mbz+K3TaF2TrBtke20bvnXo5Ywy4jdF3OJ/7yKroDrZG7HTjzpjt59LsPaZmzmmV2cZG/ufrzJM0EE0SorrntDu7fs1uNsbpl58wh/to+pfc813Xpywe3MbV3ikbmSDLPo9u2883rbyGWjQTPh750HQdXDMhQ58LdDzzCbXferdVBDHy912frB/8Wkw1U4Azhrm/fw32PPEpqDclKYeaevfzPe24huWy5RgWt4Rs3385TTzxJLRVelRju33OAXX97LY+gkUNJLZ/7zPUcOHAQaVikEcbfN25TZ0VTQeEH/urTzMzODe1v1331zuLnfn/An/7JJ3D9vjobDNx9x3fYdv8jnGfgUYQjC/N8Zuoe8kNLSrl3ns989Zvc98iOorb3jt0H+NRnrycPOcN5L+Pu+27Ddue5EuFfGKG1+0nuvPFW2lYYs4YxK3zuL66if/QYbYG2gW13PcC3bryTVgD0vV6fP/zAx+n1+uX+9tU7ue3O+4ufD80c4wN/fhXVds1nb+L+B8v1r7q+RGxxzcevZd+u/YVx+9TD21n1hZu0dJ1VoPu3n/gsh2fnQlRRuH12P186spPF+T4LwHS3zx/81TUc7vSZyx1zwBdu+DZfX3WU+UbCvBV2z83x53/3eY0AijBvDJ+99hs8uGMXWT3BpZb9hw5xxxdvYFkA89JI+NKnr2PfngMF4H3woR1c89mbhvp5Ivvl+q99q+hT1uvzt3/2CbJeH0HBxCM33clD9z4YovPC4dk5/vLTX9T5fFoD9i5xzTdv477Hd6rGioOdew7w6S99VXVWnphncP4KrrrhJl49fZDzU+EnEuGp7U9y6/XfUD2L1DKoJ/zVxz7HkaV5dWI3Eh556BEOfOtumoGxlg0GfPzPPsEgXJ8Ad9x4Jw/d9UABKuzhY3zxQ1cNRQe//PmbeOih7cWet2/3AW741FfoWMN8IixPhBuuv5EDU9Mk5y8n2XaYp554kkPfuI0VzvOtTMfxVZ/8HIeOzeE87JlxPNGdZurue4NQc9h//+pqVmUZ08G5ftd37uW7Tz6BGwN/cJFDR2f5wNVfiCgOnzmuuvFWvrvjSXq75+jVYWeyxKevv5FOSE3oIFz16evYsXeKfgDa9z++k2tu+GZZMtEIH//ctRw9M4Edug8efvBhZr51N+RKuR90+vzV//d3uKUeduAwmePxO+9m8y13MXbTfozA7Bce5xN/czWZBG0d4Jov3cx3HnxCxdQcbNu5nw9/7FrNPw/X85Ev3sDO6Wk4by28exP3bzzMNRcfhPPXBSe36Ppy7OTrS5y//X6IYBvhutu+w50PPFLYf0dNj898/UbwGkleA9z+1Vt48tEdRWru9N4ppr78VfDwRFe1C754663sOnCQgQg9PA8++gTX3fBNOmLoGeFWI+y/9Q5u2bKSNR3PTQs97nnwEe68426WcmVPzHYHfPhjn+JYf8CS93SzjOt2b+OWh7fRMep0mDk6ywc+8qmhINk1N4b9DYFmws6ZY3zkhhshROdz77n6U9exd/eBgoX62MPbcV+4aUgU7zN/cRVLh49hgR8FHrnrAW6+6c5CF2Cp2+dDf/oJjnX7ap94uO2mO/nuXQ/w6XA59vAxln/oKv4SfbZd4KtfupmHHnuiKDzz5IGDHLv5G2BtIAAKn//SV9mzd4rgB+Oxh3Zw47VfL+zrJsLez3yRubk5ZRT14b6Ht/GNu+4t5mGvP+D9H/w7vvSlL/O+972P973vffzCe36FF6PJzTfffEp+g7e85S1kWcb111/PW97yFkSEm266iUOHDvGzP/uz1Go1rr/++mf+oBep/fzP/zzvete7+Kmf+ikA8jznXe96F//0n/5TfuRHfqT4u8XFRd79S/8c9/A9/OeJCS5ARUXGvGdskDHWyxnv5dSrJXo+t1NLL71hfaG26ZsJi3XLfN2yUEsKYa0Omo97GfBOVLV8TGDMqICCFc3liKWxFtGa43dW+vJW4D+F/zNm9P83jagQ1WJWiC3lSxkLvZyl7oD+hx5l8I+3kDVrULfYuiVpWmoIrV5Oq5dT72SwvRKhB3jPJo1axLIgTQvN9Glz6EGj7LMDx8JixlIvY6mTs7SUc2yQ8aeLGb/92cdIfmYLzUZKu25pNRPGG5ZG3RalohY7OUu9jM4gZ/Gqbfy/7ziT2fEWLQ+/mTvO+spTcOZy7EXLVYm5brC1BKkb0nqCbViaNUuzn9PuZbR6ObKUlQJb35zSGt/vPFMBRSsIq7QSaFqkqdrAPnNaN7qqTt3JYf882UefYP7ylcy3UpZet5ZOallMDf2a5Z81Ev5RM+GiRkIbCoNrop/R6ua4Xs5CJ2Opm9Pt5yx95wjdzoDB69bwp2K5pGb5wbYlbSY06xbTSFhE6ACfQD2V/xplfIyFKI2E593pqCL3NUsZ41nOW+89RrOf0XzNatqppd20fO2mW3nPa35A3ZD3HtJ64e/ZoveiqTVdew3LQsOyYC2LSxlLHa27PdPNeX8v5z8emad1026aP7OV1rcP0zrWof2W02iH0jsLjYRuzbCUWjoDR7ebM9fN+a/djF/Ocs7ZeYzGo7M03nYGPjF0aoZeLeG/1yxnNS1vb6S0YhQKjXBE4bKuFX5JhP/HCBejkYi2wHieU+uGMRfGXrefc+vUHK+6dS+1nzqfRmJpNRJaDct4w9JuJtpXMUNzbz/w66h2xVuAM9H64p9H6aU/C/wAurHcCnwkd3yok7G8m9Ho5zR6OY1At1766DY67zqLPRNN/sxa/ktTn22rYWk2E8brlrFM1xc7WtYsy+EvH4IrN8Clq45X920l0EiKeelzB0sZrqtjbK6bs9TPNYr+rUMMBo4PXLmGd6SG8xJDI3O0O32Sv3qcpfeezdJ4k35i+GhqaTYSfrphqDdSWg1LO9P5M+hlZD2nOeJ9x5NPHWJ2237Oe9Kx/L1bqTdTmqml1bCM1fUsDQVKYtVXXKrkV8ThojZAfB0ZCQ6tvnHjPqW0Vtu7N8LW9ZV7EdYpK1z96a/xzh9+AwvdLNSR19Jzne6A/tWP8bGfPJe72jUkTVisWc4xwut7WXCeOE6/9xgznXn++jWbMMbQN4bX5Y5fFWXK1I8sUbv/CMl9h+l6jf53DCyNwcLKFrtOW8WFZ6Wkky1axtAUaO6coX3NPsZfNUn9DacPP08rlbJ2GWw/Cl/dDf/kEno1nY+LdUunYVlMLQuNlK4R/ks3Y2sv42e65bhrD3KaX9sJ351naRks/drFLCWWfmL5ZKqiYj/fsNRCtK8L/De0LOZ7gKb3jOWO8TynlXvGPbQjm6BaLzyc84FjYfs0c/fuZ2m3Y+lXzmNpvMkgNfxrm/AbDcOZRmj3c12X+zljd07TOrjE4k+cwWJqWKondOqGxVrC3XXLbzcS3gP8XFfX8LFBRqPnaHczxvuO1kfuRw6CXwOLv3Yp8zXDUqjlvZAaOvWEzzYSPlyhzP8pcKVAG8947hjPHfVqGEgI1K4Q5X2GKHfmVWx2PvcsdTM6HS1zmPVy/nAp5ydczgV3zdAwhtarVtKqWdoNy1jDUmsmWjUj7AWdbs7SIGew4yj7H53l8I9u5tJU98ZWI6HRMCT1BNNMVMwvXOq1n7uJn/oHb1Zh3MAYeD615p+uea+lHudcKSQV7ZvfAV4L/JjztLsDxvs5zWA3jfVUNLHzt4/Sf/laBltXaKm0hsUNHL6X47Ic/4lt8PqNuDMnlX1VC6XqaiqG5+qJRnrDI+t4LfH3B8AWEX4Kin1j3JQMhtYz2C3V1nH6TON+sOA1avcFNLL3H3NHs5MxMdBx2ezmTPRyxro58kcP4n/9XDpr2iw2LUs1w1Jf97/OYo/+57Zz2zvO5pF2g39Ut5iGZSpN+BcNywcbCZN1W9iGLaOCsgt5ECAT4V0C/02Ecwj2abAH24ZCxTvuYT3gJ4D/gcqTtCjZHE2j0dXYv04vZ3c34/e7OR/qZ6T9nPbA0egOGHz0MTo/dxa9iSb3JpbPppbfrRkafa3m8UDmmPzKLtZvXUbjrEnqqe5rvZplsWY5kMPvdjI+OMhp9DJaztP68lO01o8xfvkqxmuWJOiq5N2chVAurXP9bpaWt+i8chWPGcOnbruDn/rRN7K1ZWk2LO1WStuKPt/MIR3d9+a7OfOdjMVezlKes/S5HQwuW837N0/yszXLWQ1Lq6k2YjtzDPoqgtrpZ3Qzx/7rH+G07RnSgPoSJJe1qL/tQkwjMCYq4xDU954Ade9p9DKaA0e7n2Ore5kwrMtRM9BKkbrlVJrXsDhZJ9P+xX391mmWagn9Vy7n3xrLv2kmrGlYGk1L2wpZV/e9bjfn1l7Ogel5fvqbe0jfdQEta6g3Elzd0q1buolh0MuZ7jn+uJux2M8R53jjQ9Oskhq3XDDJRanljU3LirrFOEh6mTIcckftY49Qe+tmGusmdO8P9g1h7x+q8BJfH+3CBx+Ff3MxpJZ+M2GuaVms6T4w30hZNMKjwG8DV6F2bxtoGHWYLaHrz39F02J+PfxNK/xNP0Toeyhb5X7gP4zc3za6br5zkPO2TsZ4P8d0M3w35+pezpZ9x7js7kM0fuIcWqmlVVfbcaxp6dUM8/WUhdyrjbGU8Xg35+pOzm/nGWlnQOtjj9P6lfNp1xLGGwnjTYuJmKNV2kVzc3MsW7aML33pS7Tb7VNes56pnXKEfu1aFZS56667ivfyPOfDH/4wAOvWrTvh/3up2jvf+U6uueYannzySXq9Hn/9139NkiS87nWvO+5ve51j9FDjPUZErSgF2Xil3g/lN+6bV0G8GPo0QdXelAqYFccUTUrKPQwzLqLHLTgqcWjOdLX9OEG9VkphvOLTIwcEpf81gXZiaRtP83CXtve0wjW0PLRyRyNz1KK4VhrELM4Vpb1uWTucz2vMM4L52E8jKhAUafeIgq48DcOqn5X5MbG/QynCgWrT6VMHVtbqXOnhnxnD+YmhcflK2t/dT6uf0fSeVq4GaNt5ms7Ryh1N72kSFOKrrimPLiSNUNCnSgsaemKcmCIkQLumi9nUHGZNrbhFiZEiSv+ASEHjjnTlDPXedkUVMAeiIGCwWsiOLnCv8/TwvN5olLfuPbWocxC+egsaSYtjJlLutbZ6iNKH1IUxAXEZkpiiKwJsOX1T2d+6gQpDIeb2DOXR4wvV+0lglYeDnRxXqylNfXOd/Kk58qDU3A/R+EEUAfKaYvGVzHOug7MF7P4uyZqJUCtZAkUezjbCYyE3MeoE5CJBDT7kF1rDUSNMMsyulpDmIpaidKQI5Cta2L7HL/WD0rbS/PL42pdzL87Dgyhwfx/wMmAZ8NPAh4EfDuffBD4C/Hfgzc4z5vS5pXhNjfEec2hRywaO1Vkj0DEq6uMohaOcV1EiX6XhJVIRx1sL904P5xnG1wOn+fWxhTJyPubQu1C6rp/hn5iGC1p0RMU0JYxXGilmUxv76FKRS3iB82xzTsdUnpMPHP3gGOgUh2fHrkNMPTiNPQYPbkzYfmiOQaL6B4PU0E+1rrkKi5XbioiU5esioI2vq7WFoyr++jb8w3OV91pt9x88KeX+3HNOpydeayVDUeItTwyuaejMdqnnOlabeH4uc7zee17vPa/rDdi8fT9rzp2k5TWvME0sb6glNGqWZmJorGzRfNMmamdaraKRqBCnPb0O7zybT102ydTyMZw1DKxhkBgGZ65i8EMb6T+1gHOudGAMXIUHGwbi4T4sa+FFGJjAMDBChtAPOfS7gPus8EMxMp9AagS75wjpvfNaenIOkv1HSaxgEuHlVrjDCoNEyBJTrCUx3axYw1MLjVTV4xumfC7RcVJ5bpIa5JzVyD+4GLl0FXLfbLFATeSOvippqiMnRGL8sS5uRaNS2lPXyEeA/xTm78dF1wNl1Yb8eRGSpw4hIT1VpqH21Aw1ERIr2ERIg1jmjhFK63XE1FXB1C22mRRGFa0ExlJ1CNXsKYFiQ1k+NhGDMZpPLyKcbdR4dKsT8pn5QhgvCp8OnC9Uw/OYi+s9/d0LbDtzGVtM1A4QrIXUGtqpMJ4IEwGojgtcdt7mArQmIi8amAdK4dv4c+U8SaCZSkmvxqoAoxPNfV48fZLFQ72iis1i4aj1LO2fV2r1aRMsiehhhUUJtHtjWEAKgL2IjpsHreFbViOLYuQ4FepTg0xli3Zf7Gf8rA2oo9eLrjExSq956FoekfU1sr2L9AhCeBkqCus92a5F+msnuKlZ5x1hLlprWGVhrRXuTqSoXhNTLvWzDT70LxPd9wSG9vR4MPJ6ORp5jDtEzNCK+1xheybCtBWWWUFsqBJgBVNPSDaPkzzawXjPpV5Znd/OVBCv4z3XZ46Nc4ukK+pYMYVIc0x7WyWahjmNPhAHuNVj+ENL2sci580XrJW8O2Dw5DyD81s87uFPRHjsjE38vhUeNqoBEinjuafYO308YilYMfiLVsNDR1nynrYPAp2Z5tETIvM2yzG5R44usnYqx9XBdyEfg+yi1XQtLCGa9iE6Dhd96fRZ8kpd76aWfir0a7Zk+7QqavxVMdiTaHOcsIU57St0ewdaCSHLOeoJ4pQ+lKUO+h4+5Jp7eDkev5SR1eqq3RHszy4ave6L8Lg1/IGBK4zhX4rwWgeva9d4w84j/LJRser/PPB8eOB50mnJwkdzz19njmMZ9MZq9EXB8yBcazmxKjZ0QbkPtae6QQXe++GUkLBX7A/zL85JoUyrjdpi7wBuoCxhl6EVmTsVMH8zCuZ/E/h94AeBPwA+DvwGcB/w/wP+LocZB0/kcK9XbZOoVxHTcKKpUVRXqqy7TWA2/OgTCwJ+EErXRS0n+P7Lof+BH/gBvPf83u/9XvHeO97xDm688UZEhNe85jUvygWeavvZn/1Z3vKWt/Cv/tW/4p3vfCcPPvggf/iHf3jCsnqdxcOcg+aDxUFiXJgcAdQXuY6dTCUeN4yXq2oF1Is9Xn20zcnr0FeBfJwEddR+fSMaPXkZ5QaTSOUhVUdZ+NKaEdoI7YmE8aN9xjyMO8846Ovc08hDCQ8H3DUDV6yEd12itT6r4CIuQqfQigkXBzvlfZgAsjpaZoPKhPWQozl1zscyWR4322OpmXKJFd5thfNSFTZqbZygOdagdc9RWhHEZ46mU62AsVwX7mbczEcFKLoDNUZPZPcMGUMju2VlETKAmcpIV9QwhA3MKKi8VITvmmHRuhzIrLDkPZ0A5jPRPNh8RQMWu9yced6Gp+YVDKYu5GHji+e+BZgGjlI6C/R7/BCtbtYrCJVeBo1Krh1wyXlnlV2sGxUJjLm74TBUxn/xGgTPGeI50ve4pgL6fG0bZyCbWmDBqxJqP9f80EEwWPfmnm97z4+J5uXXDh4jXW9Jw2ZvgxFwthEeD6V4qvcOynkRE2gmGX48cdAVYF5DVVhrmBtrwEynULiPwMl7VP2dMo+ecI+jYqxFF+gGSmN8J/CX6Hy8NvzNl3LPTu+p4anlKmZoPMihDLNiDBFDIsKkwHQwAvXZSWm4VXPNTeV8yUotiXRoScH7aK3eTIGS1yTd4n2Xh3ryzuMfm4eJFn5Fm1ljGDMm6H2EMpsXLMPuOIhBxYIucp6DmedI7nA55LmKxEUg3xs4urlj51PHGFvISFNDa8mxf/dRMqOlhTKr5350UBw31QSp2bL8UBXYj4L7COzfOCKcd8X64XuGAhrvPRdcdI46ztC89T6qI5KJcHS8xdalnN8Uz2u957dyuAhHwzkaHpoPzNJcPcG5ayf4Z9bwWmv4t6nh0ralWdeoaTO1tFND7Yr1mq84AJOAvXANY9awNbXcbC15LSGvW80RN8Lg0uX0Fx2D7UdHcujd8Dw80ofVrSKvfCC6Tg7QtJ1chGuB1xphMjhRE0SrHz46TepDJUQP9vEZNbStcE4Qu7vbWtX5CHNqCjiXco+xEfimlqQKfJu2fF4NW4hSSdgH5WUr4PHDyEIHnEb6FyvaM7F7HFnCrUxDPW+l2ecCXxfNu47ta1YruUQ1+dQIyYjYVPLAFGlqSBKj4DqA+h8dAbfvoCznloBWyEhtkWIg9tQc17HFWsT6WSHPX1RH52VW2OkFlifkxxbJnebKuwjmg/PThdd57sn7OcmBOeY3NqiF/tpESIzBWiE1hnErgaWn4niXX3KegqeXqMX1tmrfCCokfIQAOozRNCLUcdkXFYnqbmzQPTjHkvcsuSBKmTtVn97ZZem8tSwZU4D5+73wpyLca1UUrwPF0QO+haYjgkbvHqHc54rjWd6awpQaeb0JdfQOpArmKRwWHnCbl9E7sKSAxqv6e9/p2T1+hG+fMcYrBdbFMW1AEsMrrFZkiHt6FpaF6p5+LFzfRKWPUnlN5Ry73ELNVKjYmgwvMw7dfw5ZYWUAxBKERY1Aet44yZMHSb2WYv0h7/lacIp/xcHZs0vqyBpvqCCjNSSCVj4OTpZ1RjgQ7pkD/NoEd2ge7ytlHAOYd86TPzaHX1vHTTS5NYwF2XI2nUT4mgk58pR2s9qptgT0Yf90InDmBHQ7bJyeZyyss5J7ZKClNZOBw2YOu9jD3LQHeflp/MWPbuLwpeP03nk6vdPXsCiGBWt0bFphEV0z70KZt9/2GgXuW0M/tQxSIW+M7GFVtms9OTUxvNjCg3Zx7MVx0Ta4fMARYLUfsb19LMunNmRD4IIBTE/UtQoTZfR6IMKdRvh/rfA2a/iZFLakwi+lhtM3j5PMdzn92BI/L55/j2ci9/x3B3+Yw//wcGc+4LZzx3m0lpRl/sL1DuXQD4F6SqfGoqYVRHu2GvCLgH5TZVxbKTVMauj6ewGKl75O6RTroutED7ga+CDwu8APofbbb6HVQRoo4/L3gd/xWgLwtxz8EZ5FA3c0YSG1RQ69NTIEC6TSRUQdrjEdM5bwpP+9q0V/yoD+3e9+N+vXryfP88JD0emo4bxu3Tp+/ud//kW7yFNpIsKv/Mqv8NnPfpbrr7+eP/3TP+Wss8466d+fS7lAWlEFeK1DH8GvL6Pzk+gEjRGiMGBjpBCGvaZtjq9DH71RUZCr6n3bC1wC/MtwNjLsMS428VHAGRYKCzTHG4wd6jPhVaF83HlaTsXjJFJaj3bh8Xl45argLahQgxJTqoieyv2mvBUiBJCrP6wUyGyqio8ByMdFWZVCIx4J6qcdx8xEk9PC5DFWSBKjoP5Va2h9+yDtxT5jmWcsc4xnnvFcI6XNzCuGGL3ZoOkJzcoQP5Gbu9qh0fsc7kXiPHZFM+CJYHwB5xvhcaMU+SroHgBLInTQqGEUucrG6mQCm+c6XAiYiqhaDT8EqsdQT+VQPXrnC5GN2MUllJFBptSxooshglH0M7W66lVbFFWBUhwvOBUEZY7Md4FWTQGpMeRnL6O/u6ulQXJPP1dl32iwftp5rnSe1XhsZ0B6zFFb1w7K0ASHiHCWEWascIjheXEiwya65ApjJnxOAebR14kIh1eNw+FyGETxvij8Vhg24ZhCAX28TXXR+dsipDpQOucIa8OtuT6vFHXIWNAI/aqxgrmzUkJNXhPFlKQ0TKq16KugvpnAhctKcbwYmY9WX6RAZ+V7hbp97sA5/LYDcNGkiggZoV0BYSKCPXMCO+tIphcxHlrecW7ueSRUJugPHN2BUyCfOW4dOP544DiwcoJ+wzAYOObHElaevYIsMWRJGZXuJ0bFgk7SxJqSlte0x0V/h6L4569Vmv1FFt67SXMUq/cqOB4zoCsS5lmpCD8QYdrDExNtXnZE2SK/buFi62nluja2Fnu07p+mddlyWgYurRn+ed1weVNo1C31RqB8NhNaNUv9vLWkv3Aa5rIG9mdOIz1jNbaW8KaG5c66ZaZmGaSqJ5BbYZBY+leuZ/CtKU2RKMrX+eF1aqYDy1P6JhgH4fqjM3AWuBF4u0gBJlOrUer0wjXqGMzCPN66WhW/g6ryq63h64kUa9MTwEqGq7sUeyC614hVgTwaEdynxR4Ry8FJYmBZEzlvOdw3C17v6VJRaYEiUu+PDsiX1wqHVi4KBt8gwQAK7a1Gy9UllqJ/9mXDVA1zxXpSqwrwaWKoWaFmDa8A/hhNm/kg8AoZFpV9Icq6aaUZvf8msAmMEc4QoWtgz7KWTtvZTvC/BTDvPXleRuhz52DvPNPjTbaM1wtHZyIaoU+MkKZakvalBPCjbRRIxiuZJAB6UDAfGEhe1Jk9EGGwoU3vmKbTPZI5/mdf15hultM9MEPvrLruiwYe9MLvWeFrifDbxvCHRvgTNML2G8DPoCrV1fY1jgfiz/ZOVZ0BQsmOWx1+PxUcFlEszUsYuwYGpzXoTi+UJepyrfKSH+vglrrcvXGcN1sdz2mI0BsRrkgM3xGtYJFXjhhRd+HeLhu5tiF7K1xftb+xshIwBCSGwDw67w4mhkkbIvOW4OwVktOXkS447EEtYfdKHHO557/mqonzI3MZZlmbmjGkVgonvYJ5vcC1AgcD6vEiuLVt3DFwvZw8orcYofce/+gM+UUr8SK8xug+2UsEbwxvsOW+We2D2qmmYDTEfHoSQ/f0Dbz2iUUaHsg9EoRjZeAwg1yrvFz3FGb9SuTCZXQ3reRDbzqH7ZtWF0yz+cQwlVqeNMI24NNoJZybgH8B3OMDEyyxZM0UVw/gvVWJ0reSZw/m40OVWLIu9FvA18H3Mg56WBOervGVwB/KGotR+rPm4EC9zhLKbumjNugNwJ8I/IYRftCqFkktERqJ0EwT2puX09jeo+ZhtfP8jHj+ILABegbW9gd4cm4XKR206Pw46eCMa1gbWOrrnoDas2rz+SJCv5cS0FfZN7E8Z1S8fyfwJUqR8S7q/PszlJ31R8AVaLC0iZaXa0tp19UdnAf8pniuCJeYAHaQsGfcDn8/FAB/9GiHvsXgkz6nvMB7Q0D+JcD0pwzox8bG+OAHP8jb3vY2VqxYgTGGlStX8ra3vY0///M/P05h/vu51Rrj1KlEKEDr+DqPdQHQx1Vkbw82LjsuOk8AsTG4C+W5ydNE6BkG8x7Nla4O4rhRxWuLTR0pleuAcpVf3sAc65UsA9B+xNweB3x7BraMq2rxiaKEyTPnElavRa+3HOhxArSBfpoUdTOHaDVegV9Bt/ee7DDsH29yWmWDMIkhsYbWhnEmNrUYv32aiVw9huOZo505apnSqApXHwxPoN5AF9pREC8ysuBUDyn/BmAC7BqrdHEbQKnoZrjWwCoRHmKYct9BWECpWx3RqMV2Bx93wlPjLX54foBBafapD6DQawm06qYd69EXgJ6Kxz38MxfutyxlSDrcvacOHCzfqFcA/cgiEyNZxlMI4xkPZwmwAIN6iser6vbpbTp7j9IJEfpO7unl8Fju+aPc84SDHzNeFeAPLlFbnpIktojMR0XchoUNRgqHRcFAqBg2s2iuVHVsSRh7xpgiMh9LR44DB1alMLsQnB7RMaevnUej2ZUxOYV6e6tzr2UolKWbaLSPcE8Ez484T5qrIF7Dq2NGDsxh1tnCc77WCPsklnUyZeldNJI1VIKnSHcBXrYc7jtSiuMVAD4AwU7I/Q40wljL13uP3zWrfd68jEWjwCw1ulCJ1YcsicWeN4nZ3gk16eGy3HN/iPRnuaOXeW4dOP6g77krd/w4np890GNjs8HUhha3XbqWjZvXKJC3hoHVOst9a+jH+36SJiIKBhvJcPS3Cu7j663r4R++TDU+qjTG1IARnPf0POx4cj89MQrmUZq6A671MLbc0u52sEgx15reazrSd2ZonTFBa9UYLWtopXo0E6NaAo1E9T8aljQctS3rSN9xEck560jqmhO6umHZ2rB8pWHJo5MjRukvWU7vhFH6ykQ+2iFflWqE3sSybhKEoNQI2wqcZQQbjOkkANr03LWk79lEeklK+gunYc9eq1HrEJ1/rdWIzHyYY4+jebZx2Yt0wgjqZfRZ2WGnr4Q9QwUqQS5djjx1GOa7TDoFrrFvzgP9HNcHt6IZSnyCD8/nvAAEX4bSIS8Ja4OxIUqdGnXsvGcTXJzAL26CLeuopYZ6YqgnQj2xtBPNpb5SVHvm1Ub9uHUpy7u9EC0aztYEdkQE9hbOF2GnGNzyMdzhPjk6nwZx+lbU7R3Q3bfEjs3LOTesizGFwBZg6XhK/c6n9r0wHXkW/a3uR/GIEXpAAVVgIsWSiAMjDBop/UnLU1MLfNB57sTzZ85z+545Fmo1/m6yzZ94+HcY3m+FLIC4PDHcH77j1cB70bHxb0eu7Uep0HCldEw9m1Ya6yPGO1ppZh8UyvCFUzbM6+7mCXqznn43K0oU5t4z2NHnsY0reXPd0ggMksQYTYOxwplGWIGmaMToYuHfC9d1DAX08Rrjs4CRmERleLRRVXZ/gqOaYuaBKWtYnkgISumcFqtOh/TcFaTbOyQe9mRKtd+LLlv9mZxkxXgoo6xOxegMkMBWWWuEqeDc8YLmoC+D/OBCmfaWe1zmyKcXcUcy3Bnj5CKckQpnJgIHDvJeK5wXwPqoox8joVqMPngfrsOLcHhrg3P3HoWlHuJ8GaHPnAriXbsL26qT/MAqdolhe2J4IrH855rlFxPDu1PDe1LDL6eG3xDhPwAfHRk31xJTK4PzNTo/w54mzUTZQM+WMlIZmIU9FAMBKfhOxoz3rESj8saX5zgPEq82ebs3wDQT7g3XOUC42gufN/B7IrzS6vNrJELTGBoiKrJ5eovmjima3lH3nnruWQa8y4PJwS/CXKvBlUKZFhDA/fGUHin6o4PUwlI+xLjwYUskPNu9DFPu47yMYD4erwvj/T4U0M+jDIrHUDB/NgrcG6hwaEtKUB+PJiqq/UMeGl7nYT3P2Oxs6eyW8mwIzi/K+WfQz10InfQ10cpDkUn7EoD4akuezR9PTk7yvve978W6lpesjU9u4vMo9eKVEHLnPeJ1QgwZXHvn4Pzlwy7SAOoVWAi4YQpUVLk/EZiPC2v8eNCN450cP4ijsTXUovFfvR4Blqew82j5dxEIRCOyk8G9h+G9Z5W72CjV3j67LTH6NgrjLoD7NSIsNlMm8jhpK/nL0b8Qo6ZAt9chX9WkVVxWGc1NgOZr15J8ZAdcsQpWNsprL86Viypuug+APvyyuvuNrrPV3XHIehHIwEznJLsPY89dU+Q5xgjxRaKb8yupeAu95ohGytSOXPggQs+AP3uMHz8E9kwhRVQpHfWu5pQRc4MC+m9SjhktUe7DUqGlOrrAOB4ZZEhS5vgIcMu3v8t5b/0h7VcjKe9LdZEJeVix5F8sYWfQxXD1YMDhdsqGcA39TWPkN+8nX+ozGGvgcs/jA8d/MYbcexrOczCDSS+ke/ska5YppTQyGxJlYCDCeaIL8Oti/0LfI+X+KGVJnmKviD+b2E9BEpC+UBdh/4SFB+bx3oET7a4PugMhYuji4otS7i8d+fxY3znz6hl+FfBnHm5wnnfkcIX11DKoOS0J6Xo55ohH1rYLJf51RrjblHmXhXFFiPZYg1hXgvokzNdN47BK4OEj8LLVw5T7fq5cZWuK92P+PM7j7zsCF2zAG2FJDE2j4FmsIM4gmUcE7DljJDftxVy5CnFwvjFclXv+V6asl0f6jubA8TbnuAyP2TuLnZ5l1U9s4TX1hFuN4TvW8Cqr5dBsYkhSSypCz+u9e6aNRXPrtRShJoDnesOtQGaGS/UZKdlEQUFfjGjJRA+3fPMefvxnf4xeAPO5wANoLufZLSE5vKhMGCDNPI3Mkc4sqePkl84p11IrSKhpXUs07SfNRXMxB0LqPLVc8wlTPJkY+gJiDG818O9EeHvfscp4MuvInJCFKH3/rinSc5cjAylZUPG5LoBbOVyjXWn3wv0ifBIVZ7Sg99qZosxkHUi3rsdcsL6IHieJqJhaathQs5wuwm0oCHocjUxUo5NVQHSiiLAEA5rEhSh9uG7vNUp/xkp4cI7aqxsshH2nyKE/0oEGWk88GIEx7/pI+PnfEOjFRrTMnHOYxGjqG8BF69WpI0Cq/WoEBWmpGR0yovNL0LFXEzXkmvLClXXT3H4fAoQK5hOjRv15RrgjgzesnCA7lJGfEyL0XqtPxPrzWe7Js5x07zGW3jqpUXmjYC8xRp0xVgHgaPv6Lfdw1hkbT3BlL06TExygYHsuvPaU0WuMsoIy0ahgtnYZu456FjdpalJPgKklps5cxWYrXGYNY4lwJBH+yBgyq+XAfgu4qPJ9gtJsV6CR+R9F6bMxaqf6LM+ezRBtLPEV50UYcxtRcKF16BU0+kx/zozQb1iy1YbBwQUGZy4PxBtPtucg+1++jjeL7nOpURbJwChoFiO8AqVwR5vhRPveisp1nigyP3qMU2GScXxkPi6lHpgWeIUxYB0kgnG6Z6UC2Vlt0q/uYfCa1dwJOC/UvWdgPEdm5zjtnOW6P6IaHjGwFW3AdUZ4yMT7FaP047ipAe50Cl2bzIN/bIH8/GUqQBfW4KPGULv7fsbOOw2S46Pzzsf1KKRcBTvQJ/p9i+0GuzYt5+yHO8grG+CU+Uiek3xtD8lggH3H6RhruA1DN9E9ZVAzXFIzvDu1pPWElhFCfISHKNM9QFlA0REzCHaCC2vC825CCZIJThEIOfQDjqLO3aq9Ip5gw5UpRvlSl7VrU/7Cw5MOpjwcEfhdhHWiDKdG7mjkQj0RarlgMyE9bYJBZx/Zvnlqm5fR956e95xtPRcMPGsWM157uM9qYwqafQw4DfPRQytAvUC9Bp0A6F2sQx/LWlNQ7kdz6C06zweiqQN9yhJ2f406vB8FNgN/iDrDapRgviHq2LXhWfU9oXyqPseLrGoofcvDW6Y8azEhHVuKNUZjR9US3eWkHKPEez5JdP9D33DhDLwk6P5pEdwf/uEf8v73v3/ovdtvv5077rjjRb2oF7sdntoGKI2xBDEhsh1HlqJO2NuFjc0KwpbitYR80epCC0rrqBbQq2KomC8VPXB9FFTEMg2FbVl5PdRk5BfxPFmDw4NKCJeKmJaHe2ZgYx02jCkgKGj2pozOP8sFqdgEKwei+cOdWgL9imfVRxZxyJ0CzQcPESrTCh6vAOZtosadTQx2TVupyLdOlVTkKtApkq8ruxaokkk9GX44o/dt6L5WFh+AJw/BkkYx7Sf3keyaCcavUu7FGM2jp9x0Oj7UUTWGHjArwtUiLFk1PBbHG0wPFnShQPPnk7AYG68Mkfjsz0dzBat0figXiXmnUeNIuTepCYuN/v9f+cm3lv2rBa7HwB13rwxh0XJVxkrwE2V9DrXDxiJCp5bQWdOie2CJgXMccp5PBsGxWuAO3ulCKsHBo6SbagVVNUbo4727QJTSVh2uVTr8MYYNmyFWVxh4URhPRKgb2L28pSt2FMYLu0U0JKreftC5tzYODcqNJNZ7bodo/WsM/B6eVxlPwwWlWw9157EHF5BlYOpJEbFYbYQDJuRehihDTmmUKEVQSqdapOEbA5etg2/sh889CNsP6jPrVVTx+3mRU++CWJ6bXsTPdPFbxhXQB+97jF4QQIOIYDeOK3V77xzGezq5w+We23PPDQPPyzPHb3vPFd6RZo7Gt6doXr6BpJaQWMMbEsOXE42m9U2glovQ9xTiiKfaxMT8+nQ4Yh/z7avv1Y2Wq0otufeqaOvhne9+u9ZqN0pT7wJf8PAjRqhN1rFzfWXDOE/Neeoexr95kPELJhlf3mTcGsZTPSZSw0TN0G4k1FopUvl+U7fUQqQ+aSSkDUPaTLB1y8ZGykWp4bo00u01Sj8IUfrBUk5WjdKHuccRVfPPxlKdA0aKyN1DAv8hrFNXA9tA66+nljS11AJDwNQttqE/22aCrSVad91qrvgPoSJBoJT78ygNpVHK/UlbYoai9HEsiYBctgx5aoZV8x3mnccHjQAP+LkMt6Je1CmPNE0vsE+EVajhFdcdSQymZklqRpWhR1kbITWjVjO0GgljieaZTxgVjhuXsjpMS6D+QhjZ1dtAyJ83RrfOsKZdYGFKYGkN+Ok53ecglKijqD+fe6XbH2nVOXNZs6TbB0exNUKSygkNs1/7xXec4N0Xr1XX2yKGgAqwHSKsZcFp6S1FPm0uomJv6xuce3AeceqsXtkbcMXOY5xzdoPXGeFCK5xhhCus8B8s/KC1/JERrkCZUU00OBJToF6N5sW+OhjpkYURHbDPvn9SzINq/wzKmNyHjtOcAEzDWt4XTfPpb5xkMJUHcVjH0al5cue4aOM4xgg1o47B1IZIfaK0+1cD36bc16sR+rjvTXK8I2WYpRb6EH43hkYpq58DpV1Sfe+wCCusIvGYNmoSo3XlN4yR1CHZM8frvaedq1NqLPOcc6BDurJOEqLzCcEJZ1T4DyNsNDqvfXCsesCtbuMOLhbitC7X9C736Azu3HH9OyscM4ZZK5zz0z/GTKDbV689RnUBHXOJOsZ9IjhRO3YeePScNuzaD1mOBMaQ3HYIu2cO+/azSGuJCp+m6oju1CwuNbw9NWyoW1YboU0JCi8FfjF87++hzqWBr4B6yiX9eTeRiuM/PjvBNwwMMg57WCMecRV7xftAuQ+2JB4z38XXhCMId4jwqMBPi7BBdButW0PTSmA5GRqJlshsG0P77BW0Hl+g7ilSkAUVUt3ahbFmfSRAoQ6I4cE6MkABxlNYdEFLKzh3oGDrzqJ4aAPDQc0qqI9pVBYVNd+DOsdmgXehYL5BWD+kBPQto4zLdrDpWmiqqkbuPRdZ4VetsDnLaBhDHQrHVa0C5OPc07N2LuI9L4K3iQZZqDAVq5jsRW5PC+hvuOEGbrjhhqH3fud3foff+Z3feVEv6qVqbyUYMgHIJ6DRmGj1Hwkc5bXtErEWoF7PQw86fG7MoY+turhG4BInw370IURqcRXIx81lqFUNlKr3a2VTZ8MgLxkGEfhmDu46CFeuKQFE9Yhg4lm2GI0sNv1wKcuA+SSBpQqY976cyBHUh/vQWOqyfDxFkJICF6IU1oT8rNevg4dnYXpRQ9VV1ejMDU8WF+50D2in5e5XvXfVlyIh5EuF/izwQCnIlHiwD0+X1PFAv78Y9eQfQxf2KOLzgIH/IcK/RFi0YL0a90fbnvP2zWkOtlOV9HqIkovzQxTY09Dx8BQVClbY4RwaJZlAF1vpOy1rJuEeVscGaGQTFBjG5stbYeNGEJ9B+NyJhQFPJPqnA9FcrP5Zk8zu7/CxHN6fqVhhEgzWpofX40n7ObXpnHT9GA0RrBVdnCWAAaMMhB3hvkXjpnJZzBIE/0YOE56ZGIITStFIE2HBGhhr4GfUZ1rQ/KIoTxDGc+F7j6A59FVnmkE3jjEJ1PsA6sfxtLxuBGNOc4ZTD7K/j1k9XjJVrLDKwkEjhQJsNEwKp4URSOzxaS9GVASjA2xz8Il9sG2qLMUYj0DDj/3zDx+D81fiawmIcEyEZiW/0FiBkFdtjcGetRqzcwHjhTudxzhHPffYzLGYOdLcUXfQvG+Whkmpn72soI2+KjV0E+FOqyr3fWtUkM7rEtTzGq16Nk2sKICLIL4V8hKLIylUyaH01MdzVLcdAF9CmDDCFQaSdl3TI+Z7KkCZOxoHFqhvm6N55RotMWeFZhIMnNQEuropnQ2NRNeRVkLaSqgHUG/rKbaRYBoJpm55e2r5sjUsGqN6E1YFAzVKv4F+NZc+D2vU0S6sVkpvHpkcASTdaIaXta+hUbGkZkjqlnrdUAv5mqahgnb1miFpGGzdYmta8uz1aGR+Wxjv51CNyA+D+pM+n8iSSALro5JLL+NN2LyKcx5aKKst+BCQOJrhV7UKZ5Y6BrWPewQ2Vuy+yPYyNatH3Q6nZhSCigYalrRmaQksM2XZsqgI35YXHsxDJY8zgG8rCsSbIpwuwvYVDfL57lDOvEpcaDqC97C0p8tjm1Zylinp9kmFbv9iK9ifaivW2pFjefh9jAi7wLjyQhGhz0Rwq2osOzzPJbnjNZnnn+9eZGKiSXOsQcMIrURopUIzEa5IDf8uEa6U4JSpnKsl26KDtW1KBkZDlAL+XFrca6u2l6ABlqh0760pdB8yo6r8fYHBhib9qVkG3uEczOzsMbN5LWutITWGNCm1LowNqSQo+6CHstOqefTRPjwS7vHQnifD1zp6jFMGkQrHf8WUrabtHQJWWqP589E5Z3WPrhlDetZqao/PsdUI/wrPGx38q9klJj3Uxxtqs5hAuZfSoS5Wo7+ZUfYNEkD96gR/ZBGHOrcy73FPzpI3BL9hPAgPGnaJivWtssJ0ElI5GHZIVAF9FJf1xsSIAR0jLK4eh0YTeXJOwejDRzD3T2N/8mzSdk31mVLDJU3Db9UMb64Z/kvdcEUt0dQrQqlANBJs0bS7icqzimA+plkOntPoO0EL40ydIZX+11MYwJxXjQedm76w0yLDMg3gPlka8N1Wgrd6a7zAA6Ii2k0RmlZoWE1baiZC2wpjRlRMe8sY9QePYGJFgHDzxwRY9FCvlY4GIkMHvI/r1oi9Hc/NGnSyIfxTjFHv2Y86spoMj3UjQb+Eii4KcPfIrfsmwzT7plEg3wrO3VgCPDp9lXavJcGj07A1yGgkQr3yWZFtWMU6ES4AjCElO6Zm8YPhIOZL2Z4V5f5/p/afnOdS53Wh9DohYtm6wtjatwjrU0ItndI9E1BXBE3xwcZzm0q6cjhX6fbV8x7K/Hl7kvNwqxj+cbQLavSCOiE2BLJQdE48dFhH8tmT5fVHqn1iIHlu+T4mLuYF5UoH/HKBXTbRerO+VBb33pNHf4NTkJV1ByQ5rJlolHT7CABTg419mGzAy1bA53fAGgtXrNMc2+i0iC2+zMKLZmWIFw/qBH2NSUhGylJiL18Pj+wtf/2y9erJTjSiYqxhObqZ/j7qIdwPfBWYNcKPi/C7Fk6zwpNG+FYGr2+1mJyHtJdRszXSEDH0vsISMVJEz7aidKJzqSqD6vhcRMcaHqQP0kiGVHAl9jmOW9C616PNe6wP991FpX3BeE+932dPzfDxXLhYYMYLu1cnvPuho5zl1/IPRDeBJ5znDuf5QefYaiA9sEAyCbVGQs1obqWY8FyN5uZuRDfMnaGfVeB7skiFSOk4QgLlPuTSt0TL/bjV4zDt8WfoB8XovIJfh8PiUcMGVCRs1Hg16IbQiJ74XIVhJKwVNa9iibkHs3ceOWtZ8AepcbsyRHQOGmFzpKX5GPEJw7QQx/OBHhHm5bZ4ZaHdewDOWKXj3MrQ2ecetzSAR2bx//CMwinVtQoOJDF6r4LRJtao0u+WNslnD5G+Zh2vTxPuzj3zuWM897wpdzS8J13okN53gPSdm8EacqtR+Tw1/Ghi+FRqeHlqMUYKMK8Cjwq0TyB4/4xNrNG8SG90MITPqK5Pg0p0vh+PEB08IMLNIvybsCalRqiNW9KjPdLJprIrvj6FefkqmKiXLKX4LE7AVooMBxKD8Uq7rwMDr3n5NacG3flWOD0xXJc63uU0Sp/kXim6Fy+nf+d+6o8fJblgZWlpzwzwoWRdQbU0aiT9oAjXV+7hj4VxaY2Q1i0JcX1Uh6bSA0O0V4wy5FGn2BXAX6B6Ee34OZSgPuEZvPtQROklC0KrtqJ4f+kEa760E7lwDJa3CrE7P9vFTzbKVBOkMAD3GMNpIkNzLzojTUOFiRh48MFhW+xdphCbMsGB+VzG2nNp8buiyr214RpEuMDA/a06l9aF/PASbt14iEoquM8c5Jmjtu8I/NBmpfCHCL2VKAZ4Yrr996JVwWRkckFghFECz6gE70wow2ZEq9lMNMkMvHV2ic2r2jS2HaF+/org1NVygxIcRHF9qmKA6lpcNXUMw2kV9edxu4r8WF/aXKBRwqhYEFlWPjCABlbIM6G/tsHgzi658zzsHOfsPYR582adgzYIN5pKHn1lX38lGlncit6zlHLfO4o686vPYPRg5NwmRAnjNVfOVXvzSHh/lRG8tYhxZZTeGhoDR3beGP6ThzBvzLi4kXKRBXs4wy5rUDOGhhUa6I2LARedAzovVho4iLBaArNhTRs3D25pgGsrWy178Bh+yxpyo8CdRHjSCmdYYSLRsmpUrtt5CpG4wqa0Rqn9iVFxWCscEUPNeLhoOeaOvfDAHmSvh3edSbKyRSM1uJqW37Rh/7o8NfhQXSVGX2Prhv0lQVN0bwUup2RWVGn3ufcviPhm8byktBl8cGQvG+SM1Q3ijw9ypE41O9JBzqALl43VucXBnAgNEd4YwG0anGGNmqGZGxrG07RBt2rgYG2b3jKDPDWHnLscCRHmFYDp9WFlXR0PcXxJJUgRxgUwfCMjRjnSUeZBgQui0LNnH+pIi39uKkciOt8H4XXiNfXmG5WveDshOm/KyHxTSqefiJZDrXlPHU9PlFKvpe/0OmRxQNJMSso+pelcJSEUJrWoo6fIoW9afK8SlC8mov/eR+j/d20r113AK7oDat0BSXegtSm9kMS8wMjt2ddRQTwojYm4s4TXJ1pcWwznmFUXV8cwcNmH5n7E/z9E/RpZXIovGNpp41kU6B7t6SfHSJBzcNcBeOX6kmofgfzziM7HSxn1GiPq2cya0O8peNQcel8szLn3RcR+Zq7HQsOy0hoQVV3VHPqQB1oVDducwmFgW66Ry0enSnGw0RnUCcC1HrboKkctXmi1RS9vvD81ow6DXzkNLksxv3466Za1mFQNEZMYjCglfh6t7fwHwFdQVd6/EeEXLWwWoWaErSn8emq4sGZptqB+aKkQVasFhoj1quVQjdKfhwJ69TP5IeG4Y16dCQw0ti2pDV1Vz/lffe764b7X0ehuvEeuXGEMZQ6W8Uq1MiL0ehlHJhLusvCXIjws8IZVbWqJ4bWHFljuPXXvuFg8v2GUulT3UN/Tp752GQ100Yx5otHxE6fSBZX+nQjQL6uMtSGDRlTQh0C5R1RozwP91SqMFzd/ItXeaYTAB+2GKZRuXwAbymllUGDaNCq4NSFaBnIMtHpEcC2Ld5gDi5i1tZK4YzTysVaE3Xaknmx87SmdRwFEFnPyZeuGx+ZeB/sWdJz3Q4S+X0bo+e4R/IYmfkVbN1VjOGyFsVSjSxEASbiu1BrSlS1qk5barnkuEPi/vedNueffOs9FBBX4Ww7S3LKcxrpxEquR6yRVR9trUqGTGG61EkR3GIrS9/2zj9JXW4z4VCuJEJ5nBPK9cHz+E9fSF40KflKE1xh1oiUi1ERIx5vUjuTUnae+e5bkqUV4zZoCpBfrYXVtfJrriqJlMVpQRG1FeEdi+Io19IwhM6p4n9moeL+B3l1TQQwjgNSjPfzKZlmmSMChgPd8EZaJsIUgGlcZp0Z0TkndIiFdIWlYBfrWFGkuEUC8CWX6zFEp+SXDoP6ZdoEYpZfoKApjVhID4w3mN6/m0ocWij3Uew9zS/hVSYhwUvTTI+wSOJ3hCGlxTRLU9htl/6SZhJJzz99ofq5NJJSvM0HELoByY+ACEZ4Qwa2ewB3L1Mh3niykJOXe4ffNMV9P2bCirfe8EqFPQw79yUDBhz/6xZe2ryc44rNagwLPwgkV5l8WQK8T4TERplYvY9PRDLPQI5npUjtznHaIzjcTQ8sYWlYYSzSfvl1hWYyLplKMhffGKu+Nh/cb5vmxGU5kb1kUWCyEwxmlf+emLKW3BHTH6+Qt4clDi9y7d57Feo3ayrY63Gw4Apg3qSnSWiyqy3IX5b5QjUkcQcHTcfdfRs6UVkyk3MdWZfnGbd6hTuxJKEo5GmuCbojuz7XE0FrepLnS0np8jrbztD00D3ZorRzTsq4i1IPzRUwsRas30FtYKyqMhwnfn1r8SnBTi5pvvjQg37WIu2Bc1wOrDqEnrbA5EWY+dR3TRkq7udKXocMIzmgJO2cU3HeMsMIIkjqSQ45kt1cdpHyAJIZWEoRPU0OzZmjVVAB1rG6LCG4UxK1LKcJmUKbTHZSMwlgDPdLus+e+3VVaEA6NDt4QDFDxSdjYUy6AQYMLKoynwYVY1i1d6FMDzqtb/rlRjaLfAi6zGnluWdHotQ3z0AYtsOAsNWLgvFWYh4+p48CpXToOpJ2+aqLg1dFgSp2DomLJcdgkvNc2MD8o7SAfo/MBC3lfCBTHj4hz01JG5+uipuwVwH/znh8G/hStbNIyCuBblSOC+dgMsdw3RXnvCWDcw8RCxliiQaoGlUCCkTKYZGRo7rWkIkhpE3yvIgZe0O6f22h4tu3/SEA/f2wvY1lOq5+T9HJMT6klNtLUIzA8MAcbG8OWfgHqzTAFo7LIttCJXgUnhZfRDxv2e1BvbLGpUBo1+rkjm1Ux0kcnjMBkC44MKi4+D08c01zyi1YM03qLKP1zN5DKS5EiamrCL5IGuDwr+1/03Reg3uOZX8xZGGtCAHkaoSkNHVNEMQUenxm+gHsPlLT7KAFP+MKlwfEPhsrPo32xUtbATk2Zt3nRBnjv5ciF67F1SxoATcw5+9rI51wIvJlA+UTKxdNIUE8XGuNtGtMDGh4aIa9Xa4hS5NBX8+gfZ3gMERbBrveMeaCfFWCtupb+4CsuG764JgX4H3XlG+8Loa0oimczx2ELs42UBN14V4nhXCMk61bQ2JNRR2h6zUlqEnKTvKex9yjNtU2lQ8YolAmieCGX0IT+RSX/6iOEk0Toq4+0AubFKKugLsLShMUfUWG8gnIf8rUU3OuXHKSsQR/v22g0CMoooA0sniqXUeYH2C7IuiCIZ8LmKLDeCPtMJScuHl77KiIl+6fqXNuyFn5hI2y18JPr4PzV8DdPwJd2wVxfwXwvL8rWuQem8Ves0A3VKsW+G9RrS1Cs4EvFtxTo1s5ZTfPBI7SASwz8X8ZzWQDzzV2zNHct0HrlaloBtKRWlcdtouD+7anhaqkAel+JmPtnl0t/qi0C+W7lOy567RVkItwlwhMC7zSa35maYOCMN0mOdVW19+b9yJVrtBRbVcOgeAbPrCViRYq83ZqUFECL1iQfSwwfT4UPi/CwaCWA3AiDi5eTL+a4x46WXLzDS/hVaamvEMZLjoKiOeCfoqk91YhFeNRFk+DgimXaqorAllJcchE17rZR7jXRYD0lYJQoOIljKTpcRIS5i8c4e88hmO+W5YiOZDBRw6OCaco+UOPvKSNFJLJINaPc/6rt+4GCHlsqlQh9dFQapQsvBw4ta+MO9irOa0eeO5yHxd19tm1czRkhIhrV7Y1R5lf6NGPvB99wxUvXSY43qqvb6DIU0ANFiogLgD4XBcB3eZBVbTjYJXm8iz19nKSeUA/03jErtFPDeCKMp1rTuQrWI7BfZvT9+Lu2qKP1hRA7FCpR+ko/J1A7bh8hfUCELlq1piOida9FmFk7ydf6OePHPJ+/fBW70TKKNRtL7xpqNohVUs61K4ADqP0XAWJcLhco0xqq9330OVSfR7W8atXmjD/H5WYaTe/UD5cAVAxRY6VuhLYI7XNW0HrwEG3v9dg7S2tNyhjKBmiYWLUGVcoPEXqDsN4I+20YFzFKv3YZ7sBAqxo9fAy/oUE+0dAKMKJ71pOJcLo1XPC6K8qxVbn+aP/EfjnQPHojQfFeHdnWGOSJY3p/knDPHp1Gaoa0bmmnhrG6ZTxVID9eM6XTKIyzVtg7qqXSzg99v49h2n31/HQVXk61Kd2+TA2MbVAXNvTzIjpfBfXGQ81Dw3tqCwMaTWghXGgNv5nCy2oRxCvAbYsC+kZqQzpeiQvECGbrBPLUItIdaBoysAJPo9NnUJOhMeY9RVWDolVfxzWtZfE9LVuXE2wyX6bj7vcnEMSrzMtC4M5rmufYIOfKXsbv9QZcOchpOqd2qFTA/Mkcfl5t3hpBp8MroB9b6tO2QR9iFHpVoETEfogwSUUUr2Y1yDJyf4o3XuR2SpT7j370o6f03i/+4i8+/yt6CVq/O0+zm9NMcxwVAF1N6sgcTOewMeTPV6PzlXBGgRMr50hJW0K9PNXnWI2wRkB/JSOAnhMbNaADyVO5lup5eQOO9YfdvndMwyvXah3y46j25nlxFYUQjQzXNcQoSMAtDoYpUuGSclfeh/4R8OPNguYdc9StASMGk/sgAe/h8nWwrVK65+K1Cuajg6K40R66g4pEupTn0QdWbYlR119cSaJzB73HiVVVY5uqOFjq4McpBacA3obi5kSUclcTCi2ARALQmGxSO7hUAProYTUuAGvKXPbzUOA5iy7Y5SLhOew1ciz9DFMDQYa8h2dtXq9MBQl9ryfQG8nqCauNBIdCEs9A0huwbgnqkjCP0s9fb6DhBLupRvKdgySvXKEbngvl93JPLXPU9/ZovKWlgiK2pOOZ4LiJBvx5aH3X8NSKcQLq9YyGzagREz2lXiq59KLCeAsrWqzqA4t9mGhSFcXLgzvYh/u69gSfWxhN1RV9tNxYcC3LvgVktdW63yZElQOwX2+jQNCwIF4hduO9jrmaKT/f61jjgnVwzhp9f4uHy5fDTfvhz7bB69bCq1bjU4t/7Ci+aeC0iaJEnk8Mh63hrCTkGXrAOUym15VYoW0EOW8cc+sBkoUebryBWLC5w2Y56df3UbtyHbWmAt8s1Xz5JNEookksP2gNVwO3A29gJEovCrZr3r9gKuN5iM73/DAbYOXpG5hHWTE/H40xo1H0mkBtMqH+wFHqT85iD/ThZ1aXrIhqKbza00fnq60mOh97UlIBB16N/8sTw5cyQy3x3Jl7fm/guMwKLrFkP7ABd8cBzJblOidn+rjltSJSFcUnEeFweHTrOd7RdOJ0rEAy8qWAUJzP3xj5u+tRCqmBQhn5VJoY3T9MPw/59ILkOq5q400eOW01lzw4D1fWNb0nB7+8UdJlw3w4ZoSOlDohxdZKuf99vzYDhdK9DUwQG5hHFxrYvkJY+9Q8OWt1r8s0NcflnvqBGdwbTisi+4kdptvbp3Guv5QK97ENrbtCsTivQMlyBeCyhsy4IIgnHBFhJ8LPrzYkjx0lQUhfvi6MS3V0p4mWVpRQYrGMQL90Dz9u9VHpPu4BUObRbzWqhTIQdVb4AOrv9rBrZZPN033WzS9y+/nrmUC41CgLqmaEWiLYxKrt4KJWjdoIlwPfQlkqRTodGkVfXrmOqqM5PoNRM6YK6GMbBcMeBfQxBxujTENxDhPmsFhlFNoLJmncdIB8to9rp5g9fcxbm6QS9FhEgy427L+a9aa28SYLd1IREszBr26Rbz+KZxXu0WncKzbovmgUzB81wlFrON0I7TM2MsPxjL2hvTMeRsitwRul3C9Zw5j3sGU5/pEFRVqAXLZOHZGpIUkNtmZw9QRqgkOGCJwe6DjoSnhe4WyB16C0+1ihIAumaSYVtftnMwCPa37IXvCV/vZtyuQgH7ZVPEUefSMwEd1chtTq6ngOkTZT7IcK7Jth3yIV6BtU+VnK1JdlDWRdDXliAXOhWmENYGLQZ75haRLy5vHE7LjjBmU1Og/QtPilfKj8snPRaaE59G+u9K26LyThnDuH6+eYgSdzql0hgLE5aabaCI261fXlZOvIKLAOaaZ4D1le5vBU/3+cg2GtqAZza0YKdowXi+9F3BO+qiqO9yK3U9rHP/axjxWv42JbfS+2vy+AHqDdz2n38kKIK1IPy+j8gnJuJ2rDQL7y+rjxG85VQB8ByejiGhfw3ZwgQs/xEZihFq8jXku8iOWpltkDnSkHFmBfD3565TCQr0Sjno/lVNaip9AMNBLymlPBDDLwlZJ1PkboPXnAlabTo7WiHpwDoqAeCuXfoejZOWvg5z18db9aExtWlDn0VeVo0BW5NaJwP7rQnKA/1JTChXVFbmr8Pzaq1iKkTuf9Kz18AKXavw14GaVXt26C2FGGCs6E92urUuqPH1LaNnpjIs3dUqkrikZC1qECOiu9iiwVXfSwwQN9p3VPqQ6LEyxKidXoLgwvLl7/U4o6FlJCyaXFAZMp/KaBO7zwGoGtqcEOPMmGcZLp/di5LslkSwXHvOZxpXvnqFuPXVYvxmgSQL0JBkFcsM9DDZgjKLiuRioOc5IIfXyEUlL9NNqtrIiOMTBex8908OON0hOcV86JAvozKefeKKgobo+G+IdpNnEy7+th1k0Egz4Yh+GaNojwbalEFDxDOfQeHfM+teX4jR8yCOtNFLVc1YSfPht2HYMb98K9B+HCcfzd8/hXTKgwUMgpxKjK/ViM+HuP5Hp/JEQT60aQdo10bZ3s4Vncq+qQOWWI3HWYmoH6JSuwRlTNPtUjtYY0pMLUgZ8C/g41dKogO/Ul9f6Fym/u+yB+58tIfXQifBoF8q8v2ATKDEmBdDKhMd2jdvM+dYY0kuF1Ja4zz6LSh0bpNZe+Lwqc03AtB63eM586ljLhptRwSY7qHVy8HPfNffDYUThrGfTBra7k0EORQ7/fqAp8neMNnDheR1sEm1VQX/PqePxG5e/eTvn7KB9yqs1Eyn3mkcQhmQHraDvhxgvHuOT6J/EXj+Pn+/hlaB3v4HxzaLRzj4GVIoUAUpX6fzJnxfdLMyIk3pMGMG5E13cjWr7ucytavHaxTz7IyY0BEwzRA3N0Estpq8d0mpvg6D0Fuv33oomI6oYw4khF1+VjVOyaAHT7oo6pO71qCjRXjWFmBiQdsK9wOm+s0LC6J5Tz7tQcaS94Hxl2kFmhAMxF6TqgZ/UvDyHcAnzXC6d54WUrLYOpBRa6HZbPL/G6dovUah/rVhXEfSqFSncEhwal3X8V+GnKSGwE5ZMM73dQ7klDe2D4rHFK2m8V8FYFyDwwQ+nENqCCqcExFdlcWMG2a9hNTXjgKJzV1g+YrIcL0TXTCgU7Jd5DbzXVbF9YpGL6UL46xd/RYXBwEXfYkZ8zEdYEHS9PWsNqo+yGlWENPoraPkOgnnIbBooSsJpH7zmSesa8R05fjfsp8NsOI1tXI+esUYHTwL6UmoqGnmy9H4gv1tC4tvdR+vq/A/4ZCg+GaPdSVl59rs1L7Ge4Nz5Q20VYSBOWZXonYpntOGYjs7PlwRzLSFppcW0E2yu1QtOqpmhkAnmhZAYOXAnoc0HOX4l5ZAbZOqn2lYdmz3OwmbJawBMZGPq6CBVV17ACnwi0a/iFiAV8weLyTsfpflRPrMpCqTp4E+dp9nNk4EgGjkEQHRV0La0lulfWDSQ2efpNZJQKH8/9vBSQHunPqA2K6K8mqbBjGgK9PIzXsha9DH3Ji9eecRUt8p+f4fj71JrtlUx0HROdjPFuRrubYTsZ0slCjjGwrxui86YSla8Yf+EhF2A2fHYchAkK6AtPoh8G83FxhWcXgSm/pLyGYtKsSDWHPn7ZXTMqJNdMT0C1N0EE5PkZEJGOXPUxCNCuWUw2GKblOAXyznvwnhnvGZvtMN6OzgCKPGsL2Gr0LB5nr4FfvxjWpXD7dAl4Yh59XOk7DoLi99A9onKRJ7u91mi5qmZaHo1ES0MZ0RweKSlArxb4vXCOKrxjBlqp5l+3rdEcbCOMi9Ba3SSZCuqAYceNJeuMC9Tuyv08FwX0xdgJN3UWWIZXhXuTFrnz8Xnc/9jO4Y7VE+i6yqAM74f5G/Ow6l4XxkYnp1mzXGyEf1ITLqupImrTCq1aQnNNjfbORca9Zzz3jDtNAWjt6mJPGx+aO8ZEIcHy+Ro0srAh9K/qke+Fvi5jODpRfXQS5oGg5eEIHuieCKwaxx8s++pDTq8PImIepTyuqwyHUVBftFEgn1fG2b5Z7NpG6cySIBQksMYY9ofxN6qdUSV/SKJGBrUQJa6W6YqlumpWN94zJ+GXt8KWMfy357V7983BviN6DxIVCZpJhKYqdhVGmsRc+sAYaQHjW5cz9uBBxp1jLHeMH+sx8Y0DtN60iSSomdvEUEsNdSskIUqfGn2GP4wGQW6Hgnqf8cLl0sfmvCdjGMz3gXuB//jwdj4N/OPIghEtNVMTjQY2VjSpL3rMwRxWD69/zyU6H1sqsayNHtEJ9yOigH5gNb/89cHRklvBpZb8NRvgtv0w01Gjt5EUyu/RmMMou2N9+K7quDScYIzGv5PhdIC4Tr0S+BO0hvIH0XzDIl1Anl1USYxGVcWGc1CYbhjhyEST7IzV8N05/KLDt1uF0VdE14ywBy2hdLK+Pb9d6cVviRAEPimi7CKqmdJrJGStBHdIlb3zEDlb2DPg8U1rON0oxT6xUSTUaIT+GZxJ9z+4/SXqXdkKo3pkf19BKbAWn+lAtGRdLsK3DLzCCObgMepdnSfJZ/aS7j2sjpBqYMF+b8A8UKQLVvsYbS8PfBl4EHjQCH9shH9r4ZgI/8gK/zSBKwcD3vjgApftyvkPn97LRVOHC2X7mtU1M+ptxPUhHq9Ay0geobQJj4XrikGhapR+CEww/HMkI/bCOYIrP3IcoqyoJKhDOSrdD1GvBbh0BTw8Dfs7mnoaSsPFCRsp91EQT1BgtV6EOatCYaqvIPjVLRULu32a7MJJfGp1PQyl554wwulWIBH2P7ydNurQH6XajzosQJ0Izur6fTg11Ota2tSctRZ521bk3LWqNVILa30sf/o08y1qkFRp9wlqi60E7qGk3ccSdoPgYH4+eEidY5VzcIICLLZSJgvCZQymaVm5GIy0Hpqzfcbrmh4xIcIEMGGEcYGmaAWG2NQ2qMxFU9Gu2TKBHOwjC11Vuu9nCHC4ng5dZ3ztqjSHE+GKVhoYG66M0EPAAiDeDzmbivgpIM5DPyftO1oDx3gvZ6KXs6ybs6yXM97LafdDGnVMw32mGx2+e6h10MBX7EflXGW/Vudh08BC+MHXwReAvhqlj1/34mLlp43Q/32KuD+bVm9OkuyYpr61RZ3hPJWiPTyliPypQ3D+uorVIRAotRLpyuG/VB/yOCWgh8rArwzkvai3tMZwBCbmjZx0ubGViVOs9ALLm/qluYfFHjw6B//4PApe5SjV/vm4EkOLC7pG6GNeCbQalrTvywU4oFDnpQD1uz1s7S5hxldhxJQV46wa5RKvOdLuCwDs4Uc2wceehMuWw8pGuA+2vNndXPNkY5PKBcMpOTJOtODXRDdbb8CEy4osD6HcAGoSPLuJoZa5IpUAKD3dhzuwbixEUHVRTqI4HuV4uAAVY4mYUtBBtIjXjTxDN6zw93HheeypPVx6xunlxTdHKPdVL2V42YQiB0gWHYkkxUJtglc+lRD5PH0Z6baj1C5dhQ2eUjywaw7OXz40PmMUINZdjmIuQplH/wOVSzkWLnEinKte2+KQkP9n84Jy3zQw78CvrcGOOTwrFci7WEpLzzjPIVEBn+rnV89D9ymmsAyBegf7+5i3tjRFIoBlArDfYNRzO4/O8aEcehn210pqVdDOuuCgkjJCHzfbzOjvRKCrXEIfLtQ9PgPnrlFxICPMW0MrqYx1axDrwBpMoNeJEZLzlpNcuw8OLMG6NtywFy5cBqctI4poSqLRpn4o6VZLyzJ1DTRKfxVllD6qAr+QUXoXvq+as3gfGi0Z37EbLjyXfqAu100QrAvOt9rULEm82Z+egvcksHVdyVZKjWqJPEvnZoxsW1+u23gtS3WBFY4lhveljvO84AaCd0brkl+2Er65X9Oh1uj8yk2ohGBK2v0+ypzCwgCn6uA68fUWCuCooSWogXql1zlmpQT6ddGx+Wz7LsFZoSEpB4khcRqBnbtonMYXd+IHE7CiORxxMoQa9JxY4T4e30eR6hO1mJYU69Bbq8A+M8KZRpheNcGGI45sI3in+aL1fYcYvGajqi0bioof1kISaNlP1x7bvptLLz73JelfbNGwjpFgKAH9A5RrmBMta5ob4f5gE5xrBLPjqN6nBJIepA8dJN26XtfJCCa+d3geYEjpPo6/h4Fbwu//PTo/3mXhv4qwNhFMDjYXkh1HaXhY7rR/ySOHqW9Zr0rwFceFdWWEPqbBrEBLSH4brWAhaFS6LEt2gj2vclA5R0A/TxDKpbQzq3nn05S6McU8Swwmd5jE6FyOz2bLcrh2HzxwCM5YHv6TFHt6IYhnRdMFw31qWQWSB0VYZsHlCtpdK8c9sUD+plWlCKhR9s4uK2wJe9L+HbtZeeG5RcCrGGMMg6TiLIKrWXrOs4BnzIBPBMGrXWoCo6hwmifPqBtlqQiehi04jo/XoCXSrmRY7T4P2/Xzod17kaCfMuyI6QCLScrpvWA3VeynmEMf7TlzrEvtrIkyRTM4XMpNaqRVhXmtK1IvTCNFTm8jjy5hXt6ApT79GiyGtTl+tqb6VXGUjBpq+nbD6jNcynD1pGBOemDKa3AlakzEsR+xkHE+eEwctpdj+45aLFkNSGrKIIsVsDk+MSd+zn7kTHnv6KEBlBMEAofmnpR4Zzw8HweQDgP64p68REHv/yMB/bGZJ+AzB+CLcwo2nu5e/91++GWriucRoFQGyYk2O1BgVBUpAQrhr7gw7WWkTIMcT6s8cSsX1eKPAcYCgD3WhXuPwjljsKJZgvgqzTR5/tF5CBPPVC9FB3mrnmID8PGJGjU5VaoN7OvnXN4DJpqFsnH0PRgT8wmtTlpXAfa5h40TcNEyuHGfUpFDGaWidZ1G1qGcnMWvn3u/RYR6eKIpSreNQodJeGaRWp9apYQXZa8IncsNrEtguqMgKtCtk+BpNQ6tcxyudAvwESKg98V4nSPU7ByAhPSC6qLzMz/6Rs2hj99ds8crlRWDM2wGTsXtxEMyn5HVExVwgyIPPrUK6JMzxrBfO6BCe/HeOwd7u/DDrcqKHJgDJuaMUqQVGBTQf51hD/wxdKEcAjBQCi+Gn72JDgz9RZvg0V6W4I8u4L0DJ6XKfTj3uxlOYL0E2qxVR5JGbKS6jh8P5OMuNKOgWlY3g58v9C1c05gRxtB5Phn75iseeM/QUBRrlLKVG0jCPc19Ce6jsWUFrliPf2SvVvQy4C9ao7TDEOU4bIVxI+W9SgwScuilQq+jZmHrBDw0q7oTOxbg/7qgdAKGtcJGIJ8a+kZTTiLF/EdQyvsdqBLwUJReIhB/frn0uS8dInlwon0l/G7+nW8GVIvh1YRSUUbPdSPUvzs1POMfOAiXbCiphs/RuSmipR3jrYo6FAJcLsK21HBOZsitOpSc8aronBj8a9cjNx7QcbBrBnfumiAuFvJKRUHvZYyAXSmdv093XY1A9xOjDoeY3wkU9XwbosJBtWeIDB/3+VBG6QcOSQwm8ZAZ6tazONbAnbkavnsAvwzYk+LPXqN0+9C33cbwGiqGG+X+9z3Gd6fUTHAepUbPsdyqMXCxwM6VDTYc7uD8cjyO7OA8AxFOWzuu66g1x9Htn8mJ8TM/+eaXqHdlk5EjPptJGBIuyxFyY3DiuMUaXpk4jDfY81cgDy5iewEkXbZOHRfRjkqen0r9C9FMmLvVvWZU7PYHBN5rDEniSJ2QZIY08dgtK0i+u0itG/p3yRoaqaqp10L/LIEF44edgAZ4Nap2/1b0d0cpAXn1nldtQgXODJUuiw6mRSpA0FNQuOMxhQL6oWcaIrQmsiViPnVqFWVNZXBGb+RCwp5uzXCqaNik1xvhgIFzJbCO9h7BzQZH9i0z5Jua+LPWFOUAd1jhLcEm/YF3vpmbUAZr4ZQY6dNQHj3KEDnSSOgYoW1CumS8T1avU2rKdjsVEWgjQiK+APOjtPv3oSAu5cQl7J5rrEzT8oLzkyA+JzDjYVBPSBYZYpUIgg1Regg3aKkHE0nhdCmmV5VKPNzZcg8MR8G62LoMuWcKuWI50snJ0hoHoQDx8VmUzydcRzTWitf6s6tDvtTHTzaCDVRWHNpQ+a+jWEi9+K4M6g0c0sthxzTcf1DLWF+wXm2k3JRiXfYUXSu++KesjFVtMWhZ6VoMYo4BHmEJNad8P6sQAMoU2ZeAcf/3Yu988dom4JfOhl89B37tXPj1czWiffrI3907NUxFilHe8OvRM2gU9zjVUV8uUB6KuovVRbtqvJ10oyv+UIY9SSKwUjTads8MvHp1aQWOUO1fKJpbBPDVyxFgMpRQy/qDoZJ1CujVM7c02yWrB2EWoYhiawkoFBkV1zu84GCAN21QAPLU0TKPPt7sbqa5svHioLLAPD8DwojQNKKKqKLqqBOmLKkTVXitKSO2wPAqv3YcDvZLF54LlHvPUOk6C5xByegA7V8vOCyXCbAEYpPQVSkWm6EmBECfDUXkj8ulD9/ZcjA+N2A8TZnwMBaoW+NWBdXqRrArGxoaeGo2DG4PU2HUr2mVq16YO1FEKvar6rB4lFDDOFzKUYZL1sGwPVEaI1KifKOA9YiAX96CHvjFfpHu4Vyg3PdzjnQyJro5K7oZtjvAdjNMJ8P0Mkzmhve9iCLjBM7DDdy3BBtqSHA+xWiAMSoU5EUKYSWoCONBoXQ/2kQC4K4nyqioUu8bSUnB37oO/8un4S+v43/pdDhnrQL6xLBkDYPUMl6ZmxJunBmaQ+G+XTQJd8/AVbvhoha0a8cJxklqqKeWWmKG1N0TGMqlj7T7qtJ9HKvPpxUEifgadSRU248aLbuUWoZyWJPL1w//4Ss3jJSqe/bR+dgiEI1GdRyjpwG7jKY/OKtA1qWm/Hm5/n8PuL/bh981E/oWjThhv8iQ6u9o1OJpr0uEluhaNB7WqLhOxdJgbVE2w3NpRlDWR2JKymaiQmBLIrBWkD7IQfBX78Xtm1G6ZRiRTxlOqnD/98Uo0chziNAHYG8QzjbC45MGNz2L86puP7dnwJObVrPJSOGsrgri1V4AttyL0QqTh2EQuAKlRIOO4Qzop4bpVPiuFV6dajWE9Mw12J/bjLmiSfpLp5Oet244le57SLePrdiPwrKYoBHzanuH6FrSTExIOQviW2evofUPN9N4WYPWL51O+9y1tBOl2ktqiPouEdRXVdMNGuW9DyVWOsqSdbENgQhObHPG15OcuBZ9tDcX0XVzNSN7qRD2LCnmMUbgqRlFWgB3zenPFRu4oOtTzl0RFWZdY2BvpNsbcDsO61pnw/U8NqMioEY4YoQjiXCGNUV/VjE8vtzIedSm9sCsEd0bmwm+keJD6po0UkwrQRonidiepJ2Mdn8mmiZ7d7ierHI8X9q9BvykcPrnYT+YQZ2AuKyicg8SKu9IvFEAx/IyuFcYT+VzG21D1XaS0rljRJDTJzALDplZRHoO16wxH/coYpxDCgZW8Z1Dhkd5zicsrpcX1a7iJU95z4ag13EcFvIhQz+C+Zhmu2MartpflrF+fGpYUys/2TPw5cVX71s0UmoVQD8y4QpnWnwr3LI6IcXECt7nBRM0Hvo9lQ6/SO17v5p+L9sbNsKGcVg/ppHStW1Y3YLXjqjJvnLDkEd5lIYRz1WbcAxdpGF4ga3mAu1FjZpiceUUoxTRqouvC4QjMNGCW/bB+hpsGtffVan2MTr/HA25E12KOmylAJOgdTy7Kcz3sjB/NIc50u2XvEcWM0yzWRhEysCTIpKLcHw5uWqt6LEavGEdfG2PeuNiHj3A4kCTW4oLHdkZX4BmRYFtyyjIbRjNl4uRFi2pZoafV3xWqxsqWggFl954VNwk5tNTAt8LgMd9WcpkLkQGmwBZjqklpeew+O6RC64Z1YiA8j5VF5iKSJ8AyWKfRsPQQkt71NHhXzAOxMC5K2DHYrnT7l6CzU11xhR8KZ07umeULIw4zk9DweFTlCB3jlJQsnrbRo2a2M8YpV9moIcaGn5ZDQ51hij3DHLo5hzu5mzuZkgvx/ZzTDfH9vVn082KHCyv3oDh6HykZBzowMZlxXUUoD44MkRKYaU454dA/QlHVeibkRBRSCpA3pT59c0ELtqA+7lL8VvWQSr41OCtYS61ZFYKGqZBB4YkpihvWKwFIqgJEtpDS7B75vj5FmrQ1yTkwwrlazQ3ewG4kxc+l74oc8MwqN+KRrBXAP8FuBR18Fijwn311FALzg9++TS4NIVfP10rCKRmyIB5rq0aNauCn83AQRF6qcFZQx6+x1nN9/SPTEPohxNw2w4VZZ4cwsAIUwyLBMXvOolddoJrqzgeg/MxlgZry7OPzMdWzL/gsMCGcyLUrWHRCOyd079Lw3h/eKaIPB0zwoLISRXuv0+x7XEtEQo2iMpV6D5WE2ivbCNdh+sMcN7T2nOIwcYUiUPOVgTxQrT++7GN2ubx9XKCQCXlupYb4evWsjU1LE8Ntm6wNYs9Zx3JP7iY9Px1pI3hvfyFskOeTzOUpR7TsK69HPjvqEbIH6MaFE2jdbtbNUOzbmjVLc2Gpb1lHeM/dQljW9YxXjM0E8EEPZToKIyfHx0HERxuRMHhvVCkmi3neBBfPeIti9ZNvINNylr0BZivBJGm0X22TblOCQrmTaQnV48HIpoP7f6DRXQ+Xkh1iy+cjgY2SBDGi+vd+avUoec0Su8uWoOzqjWyIxHWWEvDSLEerGQ4Qh/7Ut03/chxDJiUsBbVLTRSaKSajmifPSPVEtiWUoL6aLO8DqXd55QR+phLn/mn39ufrlWj3bG8JwJHPSRjwGAQ7rMfYoRJGTHTSbmsXgKS6hw72S0YKp9bau2YxCLnrEB2dqELtGrMAlSo9rFkXQHQ42JRvNbDi+AbKa4TxeK8ag17OOh1LpwQCxVBlEofPXD/yPi8Z6r8vfOQuyJ99LhWBWXRLoklndOYQ1/pAxBl0KO9V7VFxySUrksNPsvLj6bi3HmRwTz8Hwro12y8FN69SQ275ogAVcPq+9EA/EenK92+AMWlmEZcIEYXVkEX12oO/aiHEdTQ3xRem+ohT/9g9HvluMVVv6irq/oZzWGDtZis8oJ6xWNwdOgc7kuWJCyM5JPEMhW7PWycBzPRQghe3gjqpZLzA8PRwuprK/DK1bqS3jNTWvsAnQDoqzthvOCX0oaoWqjV57W2Doc6Qy5mcSN14CsG/BYU0PuwAC0Ak2EgSS9T6iKVjVrgAx/9bDkuBAWE3ay8tlFPU/U9gPkBtO2Il1eGo7vntGHHkRL07p6H0yeqnp7iiPnzVTAfzxegtbHjWDmK5s9X51S8nfEs4Rcxf94brb3ajZvNqnH8tIpceg+u73DdHHoZi92MDUs50s0w3RzTz5Cu04oBA4d0c3zmhqPzFRFDLZw6CxvrpfZfZGUYtBZuiLDuY2Sj9hWl+2cAuWJFc/+ayXCEvmHxMWpfN/hagqtZXN1yNDW0guOkev8k1A6vbtxYgQenh7/0gYPlPEvKOSfWaM515TjVKH2f5x6lH71nVSLOInDFh67i4tBHawVTsyreF6KENCxcuB7ee7me63ZYHOl5MHaq67ZQGlgxCrbXKMXeWc0v9okhTw0+sAYKw+3StaoGHSb+wbBmrB753Op3nWqzoo7GutGSVKk8f5pzsawGMSpJVLshDQwRv2U5vgEMQt78pUqvdUbYZ2GZEdoj9y8acC/l8vx8moEiBz6WoTMB2J+eGo6ONfAzS2TTmvqzYf1YAP2mLHl3inR7gA/8+VUvfqdGmpzkWBZ+f5QS0GfA9anhtTWLqVlsPSFtWtK6JW0k1OqWpG4rIp/fH+aniKaQRQdlTEV5tcDvEsRuBdqJ0GokNGuWds3SbljGmwljDctYK6HdCP1raP+kYmcZKjn0lOl5gtLu7wx/d5QTAPrK344eVaw2QckKPS6SzfH580OfE8quDjE5Xz7CbLpiXbn3R5q+SKmTFw6sYV0i7Ks4+/xZa3C/cBru8gb+vafjzlyjQN+qwv3mpNTT+NKHrmI1JaCH4UDYiQ5Qszdq7hx3r56D2WcklBmmDEDEHO/XAt8J9ztG54vgMQrqn22LTNZcKkwtSmdMLQXpDIaevQkpmFHPi4XgnC8i9DIyWE5yF3QxK2214AARATmrheycxiw4knoA9FTSA6AUP4yfF2865dkBrpHiO3nhnPHacQ7g2eDKSxlyYlc1jOIXOw8XxtEc2qVrK/RHPyxefPzNPv69GOyqBkur95CRwJKUlc5ahABuzeAHpcOiGJ9VW/tFbKdafvZ/q3b44GNw/lpdeKEceNV20Qa4eEMZ4T6JEvIo4IjnNsdH6F3lWERVyqNXqgrkhVOIUgyPLH3vqRnYFQblnbNw1ow6J+ICHR0SL2AIRKAoWyKGYhEA6CcJ3Z7DB3qN4m0tU7Hbw5aFAYzXigh/zKNXnZzS6BSj0UcyD8lIPr3z8MOnwWf3wEXLoZ3qZO0P1FkDw8/3pbYWTwTmRWBNWz2enUyfS6hHb50ncQTafUln2+I911ChlzkdYwCSZ0ijXoLd0N/3vCPkXMY+141S7kdbdXGr5mL1+gro4/VX+xGju6cvg4U96pxY3YRdi3Dl6mFAH16bxOh/9ZXxHl5voVTyB50bk7E/lF9d7E3hNmrNd4NIXtRYnzNo/WvJ8PcdxG8Q3OaVxYbjgRkHq0UQF4aHNWB9+blG1GOb2OF0jriZZA4OOdgwBhWGSaTcG6tzYhNwc7zN8b9LBZieoqExnF/v1PucBUcDUggM5alhLqRHxEdfHCYo3Rs/bLhdvg627Su/7BXrh52AabnuxahFzWt+fE3KyMRbgb9Chep+CY1yReOm70P+pPfPGkwW2iNVUB/efwL4xZ9+awl6RbCpwYjVqKeVYepddGQkAvVnFkd6pha/N47r4jrQKP0eEc5NDS43+MQX159dsI70lwX33YO4l6/HnbO2YFg4I+w16gyq0vhHI2HfqzZUzsxIIY4niWEshTkPcsYasncJ2SOHSS5eha8Y8LuMYVN0isNxoP6lXqKfaxMRUvEaoRcF84lovfKtRtixapyJaTjqMmbWr+YCawLdXgX0Ik0/PUUH+7t/7q0vco9O3Irn4svnZFHwdAQVbgSljveN8LLgJDN5jvWGRLR6SpqEigjRQfg8nUovZKuK3YrXuRzX5+hcTwUtWdtMqGWONHMqYhs/xEigLg2Def1VKHUYPivWozdo+brfRdfKY6imzNA+x/Hz4kR3rk1Zug4YAoQeVbhfO3RNlc+3gsTyqdGuOn8d/LLAPQfgivWwZV0lsKLP0VjdQ+MaaLzag+ut5UDi6TlLglLt/bnr8OetV0aSFTKr7KXHU8vWCt3+DT/9VnZQVlEY7Uc1+616HKN0NMEwln2uI60qZFgtYbcZtd2/jdZOjw6tgnYvUHuWe120D0ZL14EwTcgg7Q4wBDslsjirNttcV9VQRYYHzTN4NEQEX8mjj5UPJBNkg+p+sPsg6QXryVBV98loT5lhh4uI4Bm5+eFv3XgN18mHTKmB0/SK0WpfQ+yDoXTH8HO7VXbgDSvgjFUlmC+i9P54lFsF1dXoeS8/PjpbvUec5HaKOqePAT5NNNWTUvDvubI1nkv7PxLQ51lXI17NZ+h+nBBxETuBoMYQuPDlQ4859NXFtdDVQqN2LcqyXM86SjEKmE5EkXrgoDolCqq9vPBecRM9q6WHVe+H4BpJgR+V9kzIn/c86eEH5juYDWlBQzNGgjaHHG9oJ0Y3mswMK38bgXOWw6YZuGUK3hoyMxddBdCX1zp0fkla5Tqrz6xuNS9jegHGlhcDJHFaY9TGPPoK4J3y2q1xDwsexuPoWsqQhn6VSLnYrFq+TNX+46ZSF8jychEb9V6ORukXcghie0MeqyqoT61S7Hcs6HsZsH68vIiRMWqp6K/4cqxvAW6pfPVR4CxG9gTK+TZ0SXH8i9A20EXgwFGSBw9ju8DVe/Fv6uPPX4FrasmVjhNOMyig338Eefww5vxVmHPWFrXtC6dFdfeJm8vUgoZzJlIIYzfmIUrYTA0K6PcxLIYZncixjNepzkiRcg77IPpSZAB4KaoRzFOqHh93/1KDRAdFNNwuWAfvFfjulBpuF6wfdmJWqKMiQg1fRLMyKVXtd4TvfAwF9X8EvMrHiEMpzHaKMjVFqwL4KqifCu9tWTk5RNcWEWzNanR+kJf/MYa6VM3sBXFsFkPcF0Nc2TYEQA+Bcm9xweTJ0Yg9W9eTb12vr63gEkseIvj7Artj6Dsov+OlXMFO1oKdFuj2HlKL9TBrwDmBs9bCOWshGO55anCp4cnUsIkTOym0r98PvTu1Zo1G2a3NSaQUxpsAltakdJ+apznfIX/52oJuXxXEq9ko/vrMbfWqyRe1Lydqcezhj193l1FWI8mBG1BwkxrB1C2JN1jvScQrGA7lDb8faPajrSp2a1FGURaW/pj2lkosVSkkiUWcLZlbUOzzJ60+EbaUCA7j/nceisEeQkHsZPj746LojDjTRo4xTqDbVDkOUTJ+jvtcdG/QxdqU6+XW9XrE/kV2U2B6DjniKg6fyZrBkbCXjHMNOGc0mCMKVFVXRNeDR1PDOyvXMrlyktXheocE157mAN33lp2gf8XxHNaVIe2DynMzqADsrcCbGKHdi55zeXYAq9znZKjENcBhhImawQyyAuSayrkYg/MZLBux2aq259PdgpgmWdDtDZI5xBnkrHXIfXux2/dw5jLHkTNXM0HF8WDKa9bvlpGzOiryZoLv50PR+YNeg1irwrgugDxhPJ1QwwiY7sKGGkw0oGcrhlUE9YBzeP80zkNfeTHIdSJWr3v0PlJZB4N5iGhVhwFAatUhk3u8LS/5pcifh/9DAT1Q5qKerEXjz8Rd+MQbkZzk3Ga4Tms8xwm6j2G6fXVhPSWDbSTnhcwpRerhveXfjEbaXuDofGwFZouR+gDuaaYMsmFvap7rwnfAe1qLS0hreUlXFgpK9ijKERF8zWiEsuqFixP9LZvgf22Hl61QQbYlNP/4RHlEL2Wrhp1Go/SrWjDVV5WVSh599LrGSIgFlnulyz3hPZcB82jJOvEe0xsgkbIWgRcML0oQKPcxh54TnwnXgtd72E6H72EcoFUnxXmTsO0INIwusNGBVAX+VkdGIqWTYtRhMU3Ig6PMoS/WUoYvoWpk+gJIQ8sIS0Zg+zHog6+hHtObp/H3HNGfxy1vqDcYn6iD72C/O0+SgdyzB/MewWxZNyysUiQiVl7v68KGFpFvX4jhSRCUCde+Llz3IVQrYDSH/rmu8WIFJ0YzHTzlmdKwKf42Drnw/0itak44U97UC9frEZ9dNNzS46NNsSzaaJT+xpFrvB6ttVwAcXlu/c3iPk553xywk1J/IUayi3EVWBMkprwxOinAPDfj7kQtKt0X4ngVJ9VmYHu41jw15GIDk8Jp/mC0OQRyUWp+nlhcatnPMHurWD547sbpC9mGwIYI1CzOq6NnyhpwTvc9AR/SDdRZYdltDa+vfEbVkf1snT3f62ZR/5AC+VLxXkRIJhNau47ienAaWUG3N1aZRKnIKdPtv1dtFBTFdRdUuOwIOi+PoBTkX0afZwokJlSbCNPw+1UnIDYjWh0iFRXyjDZLBBmxlnwx9yw8G9eaheEIvZSg/lUo7X6WUjvmRHsfld+NBpHGOF4UL+41oHvQ2QzbmkPONCv4mi0/wDrdA7wf3strBhrKbpKw9lWBWHQ8rEkNu0g4O8nJc4/HkxvwCJkIubUcTA2zRjir8v8FzaEn3I9YWjpuwYXKfeUZeUpW39CYrayZz6VVmRXVkoMGzaP/O3S/TSnZaNUSds+mXOuQ80KkwArH0H12rG6hl+vzqoLf6k2Yy6B9gvz5qhFwkiZWywtiXBmht0ZFgsdz0i74PZ5fm93L9h8zcNbaUpFfyudzAk9K0T/ftLhDvYKSHtMJ1oc+2cBqKPYE75FQsUAfvi8H9XRPxaU3NuDbU/DG9cM2mwsPw/lhyvNoTns893PNt6Fyn0aCgMU6WGAdPRoSUkQSo33LHL4WA5iV51MaIi9Ke4HDtX8/WntinQKVeIyd4GgnWvaskSA1+7ReZRk5g0bfO4xE6Cmf6x4oohRQgvjqova0rbRcA33UamTtV0Lu/6+epj/XTEWE5oUfSLHMVwHmpVxLrE0YLFbAPDqX9nnPROYwXYdMNrEEurJIif1O5DyxCjCG8nvjeVULXr4KbthTevCqdejLC34x59MJvi7ckBH6OYKKMR7qVFZCMM6rB7gSpY/j4Sw828PnDnmj80wjr5WPxgi33/tQZTAJpIkOymobjdbHcz8sou1apTOU968awT5nAvb1YPus1i+n+vvKa0PppBCGHBbj6KL+aPiqo5SgdDRSMTrfpLJ51Y0wZwQumMS3gH6IhP/sJvyvXoB719nwmvXcdsEyZGUD2TuPdSBpiLLeN4WJ9U3juQrkC0C/qKKToX8iwSkVwKIJEfoEBfV7GTZKqq+fa/MjR2wxQn/C+yWC1EyZix/z81vhiDoiwWijdvwWISJDefRRLGhUGfqHGL5lz7W/MbpfBfUeeBI1UB+76wGgHFNFpB7KNINENQDEvvBlsgq6KcMA/DR0nQd1OuWpJatbfMPg6hbXVB0EX9dzVktUCR8KQB+fX9Vo/n7YtKtLtEF/8PWERj3haMPg6gl53eIalrxmyesJrp7gU8seSoX76j2L9/DvU9Oa8rFUYulIMgJndXuYDszVYeLmfZgDRwq6vTGlIN6pttvuvP9F7MmJ24l0guIxSVm67ibgIpR+H3U1qvnitZdwz30+TURIREVu20JxNI2+/7z0NoJ9U4BDyvn8KpS+HR3Zow7s6jpuOPE+GAE9lCC+il0OMhyhr4L64rPSsB80R85xXwjM1ujkjf+/GoyK728ywlN1S9ZIyRsJeSPF11OyeqLv1Qw7jDKRGpT2wLa7HqCO6lAdZnjvGN3zRgH9SZlpz/x4TtpihD7aLVHQcAPqtP0WJeW+Gql/tmr3BYNXwh5nwIlwCGElYBs1ZAAS0jNjMESqD3khV0E8OMHgOYXxG7SpYi16ia+njup3NSCZg+bjs8PlA0UKuwbid1YGg4R+tS1uaRAcMgrQZxysqxgxQ6kgaH+H7a/wh1MLqkV19jKYzlUIeyhCX3ldbcWgGXm/71Xbo3rd1SbDc89Tro+TBGlhE4QCB9nwV3GC73sR2t+3/fMFadbW1MBLqobeiQ55RnqYeiOPXzyqKvcw7FhyqKEXDbbCWKsYhc808WJUhJopo2kNCxduCOJPG0qjPTUnzOt6odoowyCKRaRJqoCIOBfVS7vHw5aFLiRgajYwfZSqmIRI50mX4CQ4JmIebAT0VuB1a9Vrd9+M/m0jUo+OX9he0nYiMC/A2ppS7uNEz+NC7UmCMF7c5ATNrdsVVodZD+2wAkrfIXVNeqga2nOLS8OLU8OWguZVZDXqqQRdHEGj+rEP8VyN0FuBybpe6M5FSPrDlkIRqTeF57UK5qu34zzg8fD1xzje234yI0cC+wQrNBNDJxXc5jUM/sFpZJe38T93Gv7M1bjUwniDpXXL+O4Zk9S2TiJv3IS3YAbhOy5Yg2RuuDxKgcJ9uRHsn4eN9aKfUdBRqq/D9W5EGTlx/lfF3Z5PflUVyI8aNtUc+uPumZVh9fymLRlL1RJ5T5PnGlMnqvP+YuD3w+9/EjXwq2kG8fxsWqxTW7DuGI7Qnwl0FhaH1tAi7/wlinyeCMwbFLTuRw09jcQLPrXk9RTXSpR+2LC4ZkJeS9S7H645ljRl5DO/X0DvKJgQACM06paDjZQ8iDjmdX2d1yy5NcyhoGUzFVbFCQDB36eWBEeeCeA+OvVk5ywPbk44vDrhocmEI48dVXq+CRF6azS95xTb/PzSM//Ri9CqDpfquruCUhTvRrSMZFzXI2CNqvF/35gXEByzzxPEj7aqwFoEhxa4BJ0XUDLTqpHl6hVU9/iqo2WcE0fo48+HOV4Ur3ouPt8GZ24rKZ29zdLhW7Ujiz2dcnzEtTg6NF1wZuY1PbLUav15EZ6gZA3E6+guaOLASpRVUO3DcfT7is0yywki9FBE6Z9rMxxfwi6uXZF2H/ekzA/n0p+oNO3J2nF7nFc2wkG0GjWpVftwkBdA3jhGKPddDUhWB8xIlPnpOytFOpqYWObWIFtWI02gA24Z/P/Z+/N4OY7y3gP+VvesZ5Nsydq8b9gGYztADE6ABLiJMTE4K8tle+ESCJD3Bkguvjjbm4UECLkYEsAkJITFiTEB7NhgG2McEozMjmQbbEvyKsnaLZ39zDkz9f7xVHVX98zRcnTmzIzm+X4+rZ4z09Oq7q6pql89Tz3PlnOWYSOJ91I3qct9pn8P/jvJ3gKNqsHOziYeahZ5xuusJSL1UPUeWwZSD4SMqG/AEzOwqiJ1c3UBthyQChF67x40fZ2/8e7zWgMKgdN6C7f7zG8vaQ8NZdLfry0DM/XUgySspG3W9N0wNlhyRp98bFHPFza6/nWFdLYUsvURZMB2MmkjlrgrHUHnZ2In5r3FLdyqhdQC5wbn7UJSgpAGKXPXUhqA0sycDGgDQ+ejDctZE7OYasUJeeMcDYzXfvNq7sRl2McDCJcUVArwonXw9Sfk4Mf3Zh/KElvnE0JLdbI3sHpAZhZ9I+R6qEI9sNKT1o2nWOfCay0TBG7V02DKhcB4Lhd52fMvzpaj7Bqr/Fr5vJXeWpioufVEJtsR+PKHYv2RPWlLfteBNF9tOJHhRup+AFAgK+wNMmHxANIJTpJbD5cbTJLfu6Ung4WIWilmshTDaWvgV86Ds1eLK2EpxhZj9hRjCsWYUinGnLwSfv0k7ACY00vEp6yQNebeOu9dtkJRPzUnP+51aayAVMinAfF8NV6HCLuMsLXZJTgLIeznIH0EY8jgrmlgQzAAjIxM1iSDtaJsVfFMMuVDeyVlBoTu0POBn0OqTlK+3DUf6TVm8s8HbejDyGDwmS+6JFOP/IB5qfD3IT8Q8QGoniA3SIsM9Vi8i+rFmEYkEeK998EUMqG1LnfebhK9reoWuHW8kUS2bhRjmaSIIllqgAzwl7nj8tb5ODhPLyFxI42zvEMcRRRiw3fPWk5sLMXZBgUsdz31eOKCHFeKnbv9ESj6y375kjZexfzM96yXI4L+HmQw+xxIooInUeOdCOrmZQVLSSsLfYzEIznNHfMguTY799uYbz9EKipAunHfbs4ignclzZb5sP32GOM8m0pxus2T+m0+D6WTCDyUIIl/Eqaf2wKcRTARYOBZL5J6Hka6D93RW1nq4RBR7ptKffj4aPeZFHakgn4j0l4n+ehtGij2SDK7pMvJpC/wEeSfwE3yxG6ycGY20+eY0DgzOgMjheYHG1oYDoJkOhAjWVRMN3P6CdR/9WTmnjHMty87hQdOWS0eBLHkXs9MtPglGsH/K6ntDPVKATvVSI9vSMq6dbZ5TBEbiMI0dOHDH5uVm7VqQCrNGcfD5rG0kz1Y+rpwJiic/ZpppCnrMjclvXFN9co138sMTPobXDDYWQkG7v+rNuv4hL4U9IuJf9RR7u9BJIg5ZGcX/SB+O9kcw/lB4WH//8VYlgZUiyLkvdtsNU5T8pUOEhRiEUh+hG4225e/VIGBxhz73A2oO3eZRy2sngJznMtBD8ka+gIcuvEpRLmlBFGaxm5Z8NO5bjs8vDtb0HC/VIS9pxe5IJZtgD1TaSNTd+txG5KL3ovegrWcamEOK8HxrHMvqzek/pQLGfGb+b89JddYeXf6sFHLi/zJORiOsufIW+l9L75xZ/Z6fb5aExwbFCov5v1s97nAT0hjTyynuQENf2dhf2XiCFuKKZQipsoxoyXnzuwmuGxZUrrZSoGdpZjhcgGKsYjvk1cQ/eaZmK11otEZsdB7MR+6bvlntG1MCleOM5MWUSQprEyUrqGPyFroQ2GbDlCOvLn3s76Ja2WwHyeb8i/v2eDJDNoqsYj40uHF2fATd6Hlzl/zamRdXCjmQ1F+JPj2MrxndWQAtR8ZBIeW3lDULxUtRbfbTgYeIxystV56EVpmtiOD/uXBuVsN7DtJK680g0wkJZYKsoNxkHtxij8HWRHQLcH+jpQoioiLkbjeFyQNXakYccEpJ/Cl567jv89ewReefyLPOHk1xYIhjqPEQt8LSN/ePOA+HhFctwEvRNY6x6SW+YJJhb0iROTct93rnyLiFuCPgPuYX5TO9/4g6Yq6/GSq81lkBdlnGL5e8DWZZjEfIb/z7TTHPgnbwM3A2WTbAl+ulYhXQXg9liDla7BBGuW+1f052uFv0aRC3k8YFxCPhzOBb5ONdJ+spYfDcru3gSeaRQRw3QAY9uAy8gCmBNFkXdLVAZFPF+zHJmM1GHHjvMQ702QryqFwXrCRE/WmLGkozemrMZeeQ+H01ewpR9hi7FKyRokFPnke2YFGspTADhZpTLvrdfdlp7USa6iRi8MAEsE/NKb469wxAccbKWuEpE/eNCaWw3Ad/Xzp65IBU/B+zaaBtMNrSG5jqm0id13uETFgYMJ9ZuMittZwbvY5T5I2u933Ro+yyBizeJcdGn3D/QAyYwjNjauPRb+aoCEz2QbtiMoQG7G2VYsi6IeK6fr/4tHlWT6s/z/KehhIAyqt3sDkLAdwjZqFXQ2JIDsyWicqV9y1myTKfezc7Q9WZhMZmUnLr6MvRs05tX+8s3mmcqnxPl+hmPcid00BdrloC841KHLB8ZL0bm4rIJ3Hww2ZbR8EolpdAuMUouS++0ZmZs6lGPD/p4+hMNMiF73HN3wTDSiX0k4hvG+hu30hkrRnIWG+2kT8Z7/uRVi4zOQUKTb34gaCNHfK4e+jqdMuRNhyTLEcMVF2a5PLkp/dVkTQN8oxOysFBipxklvdxBHmhCGiM4cwd+/GeFOwF/Z5Ub9tBtaNpD9+d52yM5nfMqSR7v3tDkVO6LVzJOQHNGF/tR8RVpAdIB1Jn344hO1V4h6HtGs7W5XRvz7CdYWtRP3DiAVnCKjP1DKivsDSCkND4IRDMMmE1Omt5J45qbUqHKD6+7Mdsc5nBja5vztN5jcYXO8w4l3jrwWyz/8xOGYi3IeU44hSQQR9sRhRLsWcX41549pVxBefwu+cuJqnD7jPCoZSMT7s6PaemZlam0p/cPITdr7UxyFjmbuAS93nRbJi3udbVwTjrL2hQCzQHFD0NrJ9YzgZe7DJtLHgHOEyp11Ie5kXzeEk5IKviWw5w4ldkDqStG82Ffh7XHlPJ5iURdpzgwj60EKfsTvYbN9SRwxoGUGfu09HQ7KMxD+3YAzzPOBbpP1U3abi/nDd7sOxQD14jYG9Btb4aykVMbW69Ak2+G35QMZjwFA5OzYJK85h4L1gTVEm+6NyhKnERG5p3nHlAjtKMn6ysUu1StaADmQ6wuQZVosS02hWBO+0FQPEamy6jCDsE8IbE47BdtbghKH0OtcNyQPZOpZWjvnW0dvc3jMbWOib1tGb5N9kLOoG2hHhb89gCzE00lz0DchW2DbSl23tqhMvXLRzzTew8Rb6VoNav34+bMTyg5sjLofxQSzaF/xp3v8bckHxnKgsGgZrc+y1Nvk9PmSteCaMTxGtMGmnFUkEdOMboUPhxWQh2BcjeMba7HHPXJMKS+fqvuRpc5KG1aRlB/l71bA0Tt6E1bAYFxgvdrOwPiqusXBmA36KZc5acS+bmcOU3D03QfttDB/+ly9my4D7cHouO0PZ5HIPTNRhOBcQD7JC3psYzl0Drz0Jzi/A60+SfLXJRIuRNVhBXUws80Gn6C2a5yHRflcE/+3BtrBouDXKcaXIvmqBugvMZSuyr1ckMNf2SszxJbGuS152d++ecwLmx/swozOpmJ8LOgXfmWwdg3WD2Q7TTUYZ73Yf/JbXIa6pU6Sdvv89+NcLIe9q788zRfMa+qZ7tQiEA00/qAOxWvhptaQfpkWHfxjMBd8PA+JtIXVR/Y9/uD6xXoft6FLh27sCNAnUUxARm5/ECdPwhZ95QR8GTA0F1WF6Ti4JeW8ZQxqUyq/2TjwgcT8d5J6Eljx/z3pxnbUnjg3lckylFFEpxZTLMQPVmIuGCrxzqMBFQzHVckS5GFEqRZQX4DV39cc+36bSH5zw+YYWquORyXkQr4z5guF1OiNDtxFOdvgYAy/NHfNS0nuYj64/35jTp63z7QnBfg8i6JPvEU6iHV2b0mr86n/PJ+LW0ROIVbdtQfrGanC8Ab78D9cngn4faX9xsKB4B9wxGUEfbEdLZiLGpBMxMfBcxLNwL4GV3h6Z271/ZnWLixovudznkDXmK/y4uhATzQbiN5zl8BmMRuYZtx3BjTClmLgaExWNiPpKDCWJizJSiXiiGjNdltgoDWeBD9v5ZKzpGoyGW2NvCy5o3HQNC+y2lkHrgvjawIhlkEj+aV7e7ABi54RztweiSLazR2DzRHojk+B4IOnrgtmgVg+gVpdrzAwuTXZP0O8Ft3QwknswDVAu0EjSdaenXwr6UtDv2rZhUc/XamAz4N6bcftwlnEraco6X+cTS0wXDdgOFy/mk1QOfkBdiqjMzTEeVOrHLJyJhQOTxNUoEfOJ6/XhrvUxJnW796K+GMG5q+F1J8HTA3Hp3fGTEPpLi0S6j9IHDGkDu6oCT7hoC67hMk7Mxw0X6R7XyFnL6Yg7XoRb4j5TJyqb5P9J2iIDv/eG3wgLIfsqkm+TXEsTtjgWWSfuswTkvRu8kC9E4sZfjiXl2asvkpy1Pq5Dcs+zzYyv862s9Oci6Y/mXQtn5nlNWm3KkWG8GNNwAr5eLtDwkXYHCmwtF1hZMC4opsu3GkdEJwwSnT0M39qZdgpzjZxfdAO2TcG6SvDjlYKY2BDHJivAEEtWERFqrVysFxL5Pf/YwsnffaRr6Jvu4SJW/1ZCM0Ki+u8kK1KbO/xDY91EYF7UW9L18xHwa29+ecblPmLpRcTB1pF6QU9wHRlhb1v3D2EdCt3tu0EgtRJ4kPZ7PjhXeF2QdbnPeHgYenowYoyhUoqpVmIGKhEDlZhqucBgJWawIuJe/i4wUClQWIC7/Tve9oo2lPzwaDXG2R58/keIqMmL+V6epGkXsZEsIeVgu9jA3wEvBj4KPNu972MQ5BMUHWwyLe92b5EJVu9uD81eF0dDOG7NTzqeRNZDKZyU3UwuIJ5rA37jzS8HV16/VCDflliyRs9R0lgE+f5usbyaMl4VJhX0KxFDxF00u917C/2hvNL8ZEfSTxqSgHgxhuXuCuJKETNNGuU+HAAccGqjGOcaZ/9AjuwumEJEVC1iKgUXRDd2gr7IdLnA7nLclH8+eR0OPvy1RYY6BjsMjck5rJXrW51MAcg+45U2n8v9rnFYW8p2kmcOw8P75PN8pHtvmEluFs1qe7bevD4odx1N/Z57Q5YbGYmbVo2xs2n9TP9bqxb6dmDtka7knB8zz37Q7f2MKaQ/WJ+DPutq2F0DtiMiHMh6UWkMplKgOFtnH7h8jJbHrOUka4km5jDLXVA8g+SfdxMCh+sWn6SxK0ZpNP9EXP6MiEvnWp2us+9QlffKFTIikFUll7ou6J0aloKFiEDMO5eks5FOYrkFsBgXmTMjcN39K5eK6b30t7RqYKZFLvrE3Ov2E7OyfCN8FEklN6mQD6Ojh+lt/Oct1mQbFzehYHIiDIl0b5H1wwT/XV60Z4pDVqiOkAaktM5toWFM4h62tRhxnPMciAouf7x3mf/5VbDhSTgwHbjcN9L78uSM9FqrA3cvt7zAp6tLOqPgutaRjXSf6cBZGN6FMRy4zbrzZoLizXP/jpbw+sLXK93nPuVQRtRz+H1aYrEgK3y9oD/N/X+Vcim1CnVIRGQGtGQt9I/jXDHJTuKEEx7eI9AL+tDlPt9HdAv5Ps+Xc4BstG1/neOIJe1kWk9UdEOwv6MhMoaBUszgQJGRaoGhaszQQIHBasxwpcDQQMxAJaZcWFgfVC6XDn1QG8gLNd9e/1fuuK+RjWyvwfDmp2REfFaMrL8dNPBzEfxlJPuBCKqRdNcVIwGDPa1+d5COOVtFut9FdolnKKCPdszpDQmtJjV9+5f0d0G7lw+I5+tYybXnK2mOxTLfdgDxGPH3Jd/fLUYtjJG67T0mQg/D5yK/Bz9p4dfPh6L+YGQ8tbzFG7n+Ve5CIgymWpA19O7/TSLAY2G8JuvKgYxleYGdv0EMbFFJhDxlCbRtyjHHxxG7yXrepUvq3AkC1dvAraEHGqUidkZ6w311WGvlOgxQwKbjJ2ubU9Y1rLjGHyAdg0WR7A8jfZ0NRbzNFXi6nk3T2+R2H46pgjz07sUwovcaxDBt09+gM0wshZm+LwX9YhMKCv+QffKD0PUQ5Jk+TmqBCQf/vWyl8MI8M8gvFYjrsN+NVseBPRZOnpyRgVy1KIPwyCRG34xr+uFQiqShCSP9hyLTi84kdV+HBhitxLwx0ihNIxbxoPGKGpa4TpKL3nccyw0ULezD8kgDTN1i4kIycGo5F5L0akZy0c+42pifNQ7/HK/BYByMGnLl99kTfNrEMN1ZJZaYDi7IWiv82sp8x3iu+/xBxOKT75yTxtRfb/4SkYHNGM2DGj+Q2BEZTii6uhBFREUjwV+clZ5zhuGuXVkrfd3K/do+ISlSwtR9Rl5L35IGxAtz8p5MVtCHHeFCIt3PN7AZdZ+PzHfvFvB/zUd+oO8HGSXEK2EXrTv8w/VI8IPAjKhHvJ62A2fQbOEN582WkrAdDwe1fgGQH5jmYwHkJ3b8hK9PaRrlz71E13MoDlavRkh/f36rI9b5EbeFg/5Q1Pc6xkjqzMFKzLLBAssGCiwbLDI8UGCwFPdMILwQ/5sKg4IVgMtyx72MbCTwvFVZSYmNYTCCwcgJ+giGIhhyrweNbFUjlvo84oWU7fcixFKY/+1ZUpd7Q7ZdWaw2xdeRsB8wSDuW8VAia6EPA+KFcVgM6bK7UbLtY9713h/jJzTybdJirbAMDRF5t/ufc9fz18CPScW8z01/qMxpeU+tBnIzd2JkgtwPGeMC0XQ9EL2kHepoHQYPsn5+AfchM6YPxl3H0xywMIzZED4AC6kl3xgalRKNWV8vLaucqI5trv9siLjPPnQr7vYFYLCQHYRUCxKTavOBrJhvlb6ulcfEjBP04Y+qxb1LvdJk4sXfkwHj9N7MOPa+x7Fb94YradOb0UZ6r3dZBEaOO+XQBx0mBxs0j+BnbLIV3gt6CMR8sO89TLYN8dEgizKtMV2TBSWP1S1rrKUyWsMMlGStceRzk5vU3f4IGp7E9b4SpOnzluLQYlwtYBZoGVkcQgFIVhgPkuajd42XaTjrvE9dZ2XGcnPdMgZMG7jGwu4amGrcNHOIMdzyze+6/zq4ocUYZoJZypAw4syME/SQ7RG9SI2MiPZBl+5swOWpHYjT1GfziHnIivko+Ptx9/l+4CokQJ5xl5B3nWtqd91+iHQiLd/Z+E5oRRxB4m4v8SfEUg88b41Y6fdPB2LenWT7dBAQz6SjGGMwBfkdeEtFOHA6mRbB0WwQsfcIo5/mJ5j96zF3H4uQbZPM4jf24ZghHCCCDB79Ovp8+3e4Hgmt0tXVgUeR5SY+yNP371jfJOqXmnAyIRzUFhBr+2Nkrz+sA+F7o8i6ZJ+yzuTP2SUiydepVv2et9BD+sxAftsnu9d5T4ZeXGp2MCQnfUQxli0OBsML5ZavrV+k0h0ZoZApOoFZNfCzwIeQgHgfBS6OnHUedbc/HArGMGAkmcxIBMMm3Q87gV81zV4OBxtzLiO10IfeULtJPacyYn6R+oX8ODbs97yFPnS5bxkQz7UB33PteRWZoPCB8fJ9XSjoDyCTyJ752qajxbvd59fS++Un3wH+L7CBIOjpISbtwwj3yVDDWel3G4lwn9iBijGmPpuI+eS6LDA6B8vK6Yn9h35J4BG2P0kdIa0r/v3QeyI/2dIg+L/c2vKGCSz4wyXstDzLXTadaIpsNg99lNyQdFws7ibTsKYCJkorsB9bn3E8bB7NWvSD9HVNQXzCcdfcXOpyP8+tyo6pJE2pfGAYAOz2fRQenCDeA+aLW7GP7s7UU41y3wbq9cWNFpsXFJ4BssKigTQ8M6RB8bp1wHakRK7jCQd6kVNpjZk5Zi1stnLdTFmiZRXC6PZJNNwFjOxMZDDlWATlYFFE5aDLr12VQB6dFfPk1I9JXxsDJwzAjlqmEZL1UZZCI22zCkh6FGOhYCVNxuYZMFWZOMnM2hsYGRpsLke5IGnr8jOG+bR1ow25d77skLXS4yYPChIBNXOvD8MTImmDSYW9oTna761kO5TwrElnk+u8h8iu4Q0F006k4y9FRjrHgguM5/OtxpE8j3NHsmvpfUO8bRROrAajIhP8gKPEUyUvWNaRDmz87U7KletjDof8wAZSQZ93PaTFfjHw5w8t0/79MNJ93iPhcAV9EtuGdDAI8BDp2ssIGBwaTMpQ6JAwDNvxcEIHmge1oZjPi/ptyETwANn6041W7LBOhWPFZbTO8PIYWc+0MBie/N1NV9d9DA8PHPqgNlEy4vpddvuqEWvycwz8uYFLouzn5QUIiH4kNoZqZBg0Tsy7bdBA6SCTQHlvYL+vkJ1M8+3uDqRNzlvmw3b7aGgVBypCxntzSFyXsO1rFRDPf39waDARJmGk+7x4DPu9UZq90iAVOItVF73bfeitEgG35477ClkxL8vjWvfy/lrCNfT+vZ3AKncRBoirEWZ8TvoGH9DYHzxecxHuaRqrLaTnCN3K8xP3q5BJoszzCPrq8P+UtfNina8DtlCkMSlH7QZWYZPJCZ+OTwL+uftVz13nrhlYM5Renxf2BjhzEDaPk0lfF275wUdSiSzMBS73YX0JX7bwDPXjzxFgePN+7BzYMvJAf7pb7s8Smej7UtBPjO449EGHSfhA841JhWZBvxVZH9wLA7bDJtCp3nCZDM6KMcO1OvusBMR7ioHoyQbxUMUNfE2yltq4CBMLbXxNLDkzjU/ZV3XisgtmSUyU3JissDdI47R7Km3NkX3BQmwbFKyl4Cz1z7dQtZY5YLABT5uuU6DgLCji7eAb8Z//2fPD6UQ5b7UA00Grlg/U4dOfzCDpD4OZ1vRiWlyfG3wc7rMzrqyhC2eJZjfOy4PPI9yyjFwx8r+7vIUw7GR2IZ0RIPEU4kiCv0RGctL7Hvp5q+Ge/fBkYKWvN2DHLKwbkP8tDp6j+144mAn3PnVd2HHn90dCvntI5mGQQVJ4f3wjv9g/g0Plos+kKyLran4orLXJQCgU9Q1k/fzppP/fRc+5oOPC8IjWkdLa7R7SCPcQTPKSbS66gYMteQnX0IfP/3HS1JTJ/THpgF45OM+95MKO/d+xMZn13t5NfDhK3cb9ll/zrRwaMW4YCm5/0LS9uS1s15chXqGQ/v72u79X5r4TttdHS9j2Ja9JPam2khXiW2gOiOe/c+FzLkjOewJpYLywvcxPaB8gG+GeoCyLWRPni/9zae64S8n1WweZtA9FfHKNEYBhuzFJyrrIgKlAND0btJmBsWH/DAzHrW/AAjv/sP8Jt1YTLb784CYv3P9pTW5SvxLDzBzjSHyBE0wq5CPcGnpLun4eskaVnWOwupx2PknFM63T1+Wt9PlgeH4/3Wi20B90HX16jywy0fPoWcsxI8AM1Atgzz0hmejw/8+RemMeCX0p6BebjLAIHrzPyQtpnWmKcE92cNOr3WDiEu2Emgh7A4UCx8022AtsxUpApIkpomWFwDrr88+zaKqjK60DrcS8AdaUUpd7SPyuCtZSbNhE7JaBC2LL/wGeZ+GdEaybmaNQjqWTQVytM+QbpFIsQUXCNsW/TtKfuGZ5MDhb2EksEiUjm89dXDLixvm3wC8BH0Gi/xbJivqwSPmYf4Y0OEn+Er2lYpU/PvJr553rfVE24ghWDsBTR+CunX56XdZuGeC4IMJ9KOqjVOAasuJ+LSLa9tFa5C5E0LfqSMfIBhQMq9liD26gtZj3gt7P4EN2wCIDsoNfsb83odtifjCY3GfSwVUnhWErl3uDtPePkt6LcPlAuLdkA+KFzUQ3WrHzY0X/2/Q5ecP6CSLoT6X5/vRy7Jh+oujWfQ8FluQhI5bloWArd8EEej9gWuwHSdecg7S3u937FXKTzYZFE/Th5Fx+LBuuo/fCbjOtA+Ll+6oVpMFV85u/PhBBPxLch3Bb7Lal1fKCpwO/6z7/C+Cp4fXa1ErfCt8H5EX9lJFnKeMVZy0vGaLZWbFg+y+DjE+mZmDEeVWGv8GjEBb5/t3fy3BJHWTHMflc9D7CvcWJ+8kJGg/vYP+2fazAJssDkzX0iHU+yUEfivpGA56YlexQiVHFBDGNInjKSOv0df51eM9CpnDLhINBZV7YE4xzTDqR7+vq9hNXUHvxydSeMYj9rZOxp65M62ub3e192fqOuFBZ9HO2+r1UabZUbCUNeBQ2qmkj24OdoavYmQbZSCNEucCqOcu9DcuwheOxsH+SeMAkVvkkMvWxtpAyTyj+kr2BVVWJzmltoFwscd1SwFCylhKWihHrx0VFeFsBzo8M5ZlZyrGhjIj+OHAX2bPvQPb/N4ign/FJMt37eSv9hFuSUnTNQzjZYvyJjh6/Fs2vyawasf5cYuDPjKTuCd04S8ZdX3A5rTruQdK8tP7yQtfDteHxsbjax846b5KOAXius9Lvm5ITbJ+CEyvSaeSEvJ/FCgVmOFipIA3+NrKz9qFgPRJ8xwnBrDgyABiiebC32K6Hnrwngv9/8rno85MYh7rcZL2lzQpf7655Oun9PbB3f0bUd4r51pGeQjqgzYv4/CBuG9n6GQrebuusM+OdYD9Cs4fMBPAkx26E+6Vg9579nS4CBWOomuyaby/qB42IfqW9ZCJs+/fc3ueih7SN9SnroEV7vUhDLm/IyYxlSSc0ffwY3+61CojnDUEH9u5PvruSZtfu/OpAi0wgLqO5v2uHkSzfbvlr/kX3+YrgWvPpVlsRiuFkstcYdiDjnsGI1GBWjDATLoBc0rG6M+9riFclwUD8KA1l4WRtWOcOFSPHQnLjk/FOZGg8vo/oh/so7IdTvr6V07fvBetd7i1RI11Hb/IWdhAvBBCDixcambEYkr7uob00pa/LWwY8XmjPITGtkh9VcM9yL50zsbs/EjupGEfsKxbgtFVw6bnYM1djSzEN912b/NM+um2MsCSsWH3Oop0r37iG2yDNOUF9yjrfkB0rbocmCkR94IrLQJHj6hKx/HTkxxSNzxItKyfrjQsGCYgHi2oB7jrCHjQy6bUe5yaY9kwlYt4rvIq1DGAZiEQUVjFUMQwiE0bV0RqVoryuELRBxvDZG25PGz1PKQrS1gVdYhgQb3LWJZQ22eeRHz0cJca5cXox7904fYTfwcil7wmEfeb78xRnCFkx4K4s0/HvQvKkJ/1dZKDg0tcVojS9YSGCFQPwtGVipbcWnpiEk0ayzy94bbyF3mR/2758PnUdLHxduSd0Xwy3McRCCtlBTav7tBhkZu+D12uQgZgX4Ufqdh8K+FDUP+H2YdrPW79wa2YipVPkB3r+XpxIainLi/m8O+Z2shHuw/gE3dY/tOrzoDnLRB2xzg8ig+68V1rPLjVbYj533a2dLgKAWyZnqESy/rsaGYrG9KYxokdJBLPJ/v5axY/ZjXhMedrltZUIcy8+3XthhhfL/AHxfDtw2xduTa5xJalXG7nrCrOl7Ce10LdyEV9MfNuVD+hbcNf6MNklYoeatA+XXXlBDPCEMax24ze5JkNcKWAmbVbwWmRZYANYXmkWpElgpSMnqWdk+/cTEP0bBmCEnMehu/mNZA09NDbtgQbYKkSjcPGm/RiXzSmq+62BqYuwz6SssxZ2TsIJUTbANKQWemPgjGWwu9Gcvs4L+9lGel6/PbRbzrPjQIubkL15Tf2e6/AHSjFPBtm1bCndJ+PQNuei70tBv2vbhkU/Z6ib/OMfIHX99RW+laD3A8BefRjhesoIMWCmlT1maErWypxiwUzNEs9BNFQmwq37joK138fymMBPs3rLPKSN0OoC7JoCUjFPQ2YsKw2pS0NGOuwBLIPIAHlwqsZgWSJsxjk18843/Zb7f0n3ZQPTc+lBecULMDEHQ3H2u22acCkYw0CUTdvjXTqHTPp3y2i/LQYmflAzGlxS6NIerqFPOiq3jj4uRIHrlkmt9PcekLX020fhxHJ29jvZInd7TNNv22/ryK4lPBx3vPlI+qKctWKUrKUieXy056cVdvjhax9R2a+zCycgDmeJwZxNBznh4OghxOLt0wVFwGvf+squsGInItzVS1++EjKgfpzWExtJXSDtH/L31Dcb3UQrQWFottBD6m7vv5fv+7rs0rqSd/7uKztdBKVLyLfvfj9Ec0DK3QSRxAm6LvwYbXF+faFxKmyLTyLNXmOZPyCeH/79z995ZfJd73Lvvxt6NPn3ILXQQ7bPg8VvN8M2K2yXDXAa6fKqTIwUO3+k+1bu9tbAdoMIegJjWaUgVuy6DXLQA2POq7ISZCYKVfgCW9j8Nfo6M4g8tz1k+7RQIxMZSVMHNGIjkfvPXUljAJiCRhXGzlyGsSLgZRmBXFuczz/vT7qzBquG044nMwZzW7UAa4rN6esaViY+ZhsSGHrObQ/vhuufkAu8aZf8Hd6y3K1Lh8LywkRAKWZwIGZ3NaZRiqm79M22EmPKEQ1v+W+jmIfe1ZBdRStR4St9uIa+hgiKcMAWzkx224DtyHDRvZN1xM5zoVxkbjpNp2VGp4mGY+JIhLxfG52O6nr6JhycpIE1aa8ATtAPS2OVmeqUhixGOj8v6EcsDFsYbliGx2YZLBgKmf+nxQjZ/12OYDYU9EEL46e8J+pQKaWTDnkr/SI/ooKRKL/DTrz7aL9+bWbVZF3tw6IkRQo61SHEMyYzmw/MIrP9PtpvMgCJjES5LxixzIdW+uOrcP4yuH0b7LMSdCUMbhjlniXZAUooXE5CLLCtBK4s0z+81t4fZ1ts46QW+lZt0mITdvih+IyRQeROmkVs3rrSigbNot4i1g8fTAlyVpIOC8PwPuQj3Z9Edh1peE3eMuOGEaym9X3txpYx8xt0r72FHtK6/RhivUomKYL71K66qSjHKuF4MQreC+PH+PYlFPThttgToHmR689/ErIEbhxp6w4WEC8/kbmSFsFVaZ4c9hPZoYhvV7/nPVALwXX6duxUmi304aR9vo+31ja55zeAhjFswz23YMhoygVxt5+ek+vyke5HZ9xaO9N6vLbAmxD2PXkDRRgnJ/88GlbKYmNDIzKShz4y2JNXUrv8JGbXwAOnDVJZdzymgQTFq1tM3b327vJ5Uf/EuCxRDTsRPw4LjTFnHgebRoOBhxf01gn6uoj62Qb84InsRW/YmTVgtdAlad01zhJfoFopsK1SwFYKNMpxslkv7qsFic+kFvruJvy9hI+9SrZx3e4+99FGw8FMp61LR02Y4oL0d7Y3jrh7eBYbwY3WsmeiQTSQpqyLo1xAvJ6+CQfHGCPTeaEA9A3GqgrscHatcEbSuRoZJDjcgLUMAYMWBiyUxq2k7MM0V8KwMnrFW45gtt5s2g0Xpk3WYbgUfJe0rP46FhljDKXIMBgZhiIR+N6V82D/XziY8ZtP1ueXu4QDG5BZ/3wH5a30FFtY6X9+NTzkVibuPpAV8snrtIyhuAwHKetI89X6R5t3vz5cMkI+6CAOIIO6/ODNO4csNq1Ep78TqxBBD63X2c1Ho1VeXrc9DJxBtv30MTjEYtw5aZhZR5p7/ieTriPNTHAE17cNGSQVydYbP2nRbaK3laCAVFR4LGKhCz3TwuuK6exzU5Reo5U4h+b4MeBSn9HcHy32cMu3yXkr/TJXLr/cbDOpoM9Pfoc6zY+VITtBaIPXkHoDLaNZv7ZrOJkX877spyGTl5Dt45P4brnzzDfRbYFtBtYg4fBC40MExFNzwRmAsTkYLpJxmVoEr8qMbg5eg0w2+DFVq2V1JjI0oohGbLCGVNyfeDyN557KqtE5VlqLaTQwDR8Ir5H1Pgg7SWth96QEkc6MvQjGa+7v+dLXzTbSbaYu75lgrAvwjDVZl/7cDyWpX5HBlmOoFLHVAgPVApPVAuMDRRrVInOVIrZSpFEuiJh37viHSul8NBzD8ml+lq88c1HP5wfM/rXfe0uh53FSK0UYQOmYWEdo0kky7x4UAw9UoTpTpIjkTX903BIPu5R1mOR34388x/zAzqs9yDZAq0ricp8PBJJv5R3Gv1cDKoUm0Q1w/c13pn/7t0tRGsXeny+cMbTA5BwMlObpFJbm+RxOPciXyO+9oPfru0A6mDAXb0bMu47SeDGft9If8EMG4Lrt4pKV70yC4rbqAL2lYifiKZB3xzscN3SP79vy1nl/zUtqoTfZyP5hdfOBc1rN3h9M0If3pBG8BnG594LeD6ZuveGONLBmhwmtNeGE7amkqev89YUTFRYZ8K5z5/H3MvTe6rbOOiMoAnE/TJoqy9fLrWRT1uWDSimH5vov3dHpIihdwny98TAw7V77394e0mVm4QRA+LtdrDLlJ7JDt3s/oTlfQDw/Frz9hjuS8g0g4nkvgWU+1/eNuv/Dp2ttZaVfbDJiPrjm05E+forUEys/eR8S9ov13N9PGFjnzx2lE8amCvHUbPZGjM7BcBDsO79+foE3IVxOmx9LHCx1XdK/FxC3+8iJeudusH/VMNVaneX7J8BC5Dr5qA5Rw6Yp68Kx8ExdZopXD6XXFXpKJiLcwNohqTiPj2bH1KGgr1t4cB/8dBpetAKeFsNrT4Jz16RjQLE6ZsajyW8oNlCMMYUIW4gYjCPqccSo80jwG5EsN+AQxqnFoC/70pmp/Yt6vnxF9ze1SnYt7zZSQQ/zz3z1JAYJloPTRO739bQylKgxCww14PwnJyguKxMjEc4LkAbEM31QHVuJeWOkkZoGpuaaxXwQ+R5Ie4U512xWm5LVgTGcc8Yp7nXyJpQKwTqQXPeSuNzPSjS6zPlIy91FiFW2+fdXJPWO8Ve5kzQ4UCiSktexSYV8aKW/ZycZNuzIzRBLQLywTBkLK6nAhTSwWxgQ7Uhy0ec70PB7o8ga5lZCvl19SSurtEEC482Xi16qc+srTlzSA1HfQKKkH0CsIKFl56yzTkkGk50mHxTKTzKEqevy6+b9M9xOc4T7cHDcjZOdJvfaIBPZIHONDWRwuwcR9GFdOTaWmi0d55x9SqeLoHQJB4sfc8AdY5Hf3iTS9+Qt4Ivt9ePLEP6u/XsnIxOaPiDeGTQHxPPlOd21575sq2gWjmGGlwNIqtZ8u5nv/xaTfJ/ny388Mu5/nGwwvHByOsT3/fk19PuBGYx4VpjccxuIMElgY7eNz8Fw2RUu9wWOTkim/U/2HvtMNvn+PXlO1tIwhkZMKnBjWU6wN454/MTjME/I0gFjwTRkHb244NNsnd85LpGfK4Xs+DkU8/n0dVsm0xvvLfQzddnvmoAvPg5XnAQXnwS/cYGI+XAM6I06Le4JNPfR/vcXrpxtNU5rF32goJqZmth76IOOAJPbewaRQQ2kboehlSI/sOnGAduREDmBXkLS15SBUwuGyx86wIsalncZy7p9k5RGRPCXInGzTr7cF7UxaHxCUViOpcL4fPT5Bi3bUsqpaq5RL/kAdtle/sKnnpm+7/5rKrFrbWzWQh+2NhM1GAzSdzStJ+oOwt9dvvNeTnO039D1sEksASZ2jXfeSv/Mtdn/+Flrs6I/pyST8+aEnbfS+9R1eVF3qHXlIfmgQP48k6SCHpoHfu2glZg3yOTJzrCMucmL+S43TPUTivqHkec3SNay89Snn02QPbajhO6mYXC8k5DMC08SDO7IDoZ8hPtk4J07X7cx38DZe4j4SPePI4Pc5WR/b+FAXjk0Fz797E4XQekSMn1f0Mb7DC++TdnjjltGtn0O+6ZFK1Ow5CjO9QcnIu3AwQLi+XHwueef3eTa7a8j9GTz+wNkvdIga6VvBwYZw4Z9u7/WM4BH3HFhUNfQ08yT8dQK+rrtRiYHylHWA84YQ1woYKZyZzowLTnow+vNj98WSL5/96deiXhO5Pv3zLIIIwLer6FvGBk37QR2rqvCowfE1d7axDIfW5t6oIZj4J0zbv18buzc8jUt0tc5y/xcQ4xWn98Ml6yCp66QCluKZCu6fTmGUrOLfKs+z+9HyE6oQVbctxvtSxeBUC+F2yDZnKCPk01JlBf1PY1rNMqRkUk0I5NpA8WINdOzvCU2XBBBedcc5aESAxhKRhrFzA/xWCd/vaGV/oQB2FHLinmYvyXw0erjoAJC0MPn3gcou/B5c4G1P1ST1sK0E/SQfSZd+HjyKwr8vkI20rYldblvNbBJGsJQyBddo/7UtfCGk+HCIrzpFDhvbSr8W8zgGlpHwQX5/fsUPq0C5xwOYQcKzWsJ82voob0NfShA/QAHRHz7NXZJNSOtbvP1b3PkRL37zkOIdR7SZ5dfg9lpkgFebrBXRQZAPtK9BEjK3ocnEOEP2QFiN7ult/KQid02jlxnfiLbHxP+ThRFOTJCceX33jtmknQS26dpzbfTYf+wWLRq+wxp6rqDBcQL47yE5TuerIU+H4dlFJks9ES59qgd7UvY1oWC1yBt3SM09+++PwsJPwuvaTuwxp0wSQnt/69SETNZz86KT8zAcJy9sQQFOwry9cY/I+9yD6379wZQN4ZGIUoC49lY3O53GUNjzQA8OUE0Mydr6H30fu9yH2R7wgK7psWVvtUYOs5txsCZyyR93bhLXxdGuP/CZlgzBM9fnYr5Ym4rxbLP4YfW+VsNUg9Hc/dELfRtplQZPvRBR0Cm8QgExgDZYB6P0SIHPenA5lggwuUVBwYxVIsxA09KmrXq1ByDMw0Gl1eSY8wiNjy9gPFrfPIzigZpYHZPZQV23WZbglB4T82JOwS0FN4PPb49K/IhtebP+nX0ttmV/4B1bvzBM2laS9958p12WLQRspNpFhFMmRz0wfeSgURk5B6VonRfieHp6+B1z4Dz18nffga3EGXc7YFkXXmrAEHeQh9aqjMpzA4z0n1oofebb2uWci1heP78TP4qxCLtXa9bud3n8VF/86LeC/ozyd7PyMC2R7Z3jUt6WJ/C+wFp+qamyRzSDCjraLZg5+t2t2Ba7P3r40jr46Okgj4U8Rrh/sh46JFthz5I6QuadJt7f8Dt/WTaHtKlXmHbFA47FpNWbV+ECPodwP20DohXIP3e9ke3Z/p1b6FvJeYtYhHNeKX5svi/2xTEt1U2mwhZR/8oWVtJdj192vOF74eea1uNyUzEyL10a+gHYqIwDpK1cMAFxYPAyrE4HX/oah8+Ux8UL790rCklq1tD3ogkSJ6NDHswVKpFomVVzLZxsdK7dHVRGFTIi3prxXt1dSlb+VuJe79VcunrZp2o/9pWyfR0xWmpAceLd2/EcX/PV3fC+hm+5+PHhBMccHADxmLSl4J+ePlJhz7oCMk/WEgb11nSmaz8gC0c2PQ0wWxGwRiJxA4MlwsMTzcYbFiG904zVLQMRRFVl38eCHqWnr8Lh0crMW+Qxsq73EN27Xw4xef3M/W0knmCGaU7v/0jmqz0fuYozEXvz+ki6jMHDBWbxXx4ni6iVZH8ZFrYqO4mXUPfZFUOL7HgGvhylEQmzWzlYGsxg+vPn3c7NGSDA0H6iEP360MRivjQSj9KOrDJW2HaKZzy/59/vcJ9fiS56L1ror8n4UqThxELfWYwCKz/7x90jYdTFFpSyN6Pgwl6nzjHZ2DolQwoeUHh61iVVNCHwWDzXgca4f7w+cY3f9DpIihdRCsBa8gaklqlrAuPXezfXpOhilSUA9zD/AHx/AT4d//7B5n+ZAWSbjYc/oTbAdIc9Es1ie3/r0zaVPf+qcjkc9jO+/7dp2KFdPLaW+nD47cBa4xxth+TmYyJS0UZ+1nANpxxB1lDH6YabjV+WwD+WYWvDWkGgidp3b8n3geRoVHwbvdSnj2R4QRj4OTjMI9PEFkkXZ2z1CfX5UW9tbBzDlYPyP+eHz8XomZrfWQkfd3m0fQ8398NP3kSfuspzjATZ13si5GM+0pxk6EmuR9BRq/872oZ6W8vX18PZ2x3tHTrOKGt7N3x00U9X6uHa0ijbU8gg/hViEE1GcjQvSmJFkTQw3g306FygeGaZdl0nZG9MwwOFSm7KPgtZ9n6gdi0uHYDq6uwqw5fvhc270rFfD4onmem4SLcm+aWxRj+16t+JXt8IuoRQZ+cLrDSTzunsIFicp7F6hgWm/kaVoO4HvrYfw3S4EA+yn3m9tNc9UwphmpB7m/VvfapR6oFGCgcdAY3saySDmxAJvS8nS2ZhEYe8YyFaXtoK33e1d4fPcb8awnb+eQS0RlUQz/IWY1YZlpZ51utJAnvRyLqkXiRTyDrE/Oi8DWve2lXeTglA9WgbY8QK7WfzEnmz9zr7YjgD/sGf0+7dcI3/5sLm4dlpEtANML94vCm17+s00VQuoT5BAVIH+B/e7vIpqwLhWE7fnu+r2sVP2a5O2aarHU+31f+5mtfmhGRK8i6duf7Py/oW92TdrYvGTFv0ms9BRlv7CNvmU+Frr+W/Bp6C9wLfB+Y8RHmDUSka+mjcpQaZCww4V77VMOLPGabr38vIXXNW+nzfVrafxusiZiLDDaKuN8aHjeGcQzRSQWiRw9g6g1M3VnpvYXeC3kL7HW5G46v+JmoYDa5hZD3hT1zSNLX1Rvw8JPw9SfgFafB8nLz8kov7Fusm5/vnuSH3suQ+piZdMrZ49qJ9qeLhK9j/jWk3tCTyKDmxODYvDtl7z+IQJyS7qOioWChMDVHvG+O6Lhq+pW8hb4bR63tIC/m/X3Y77rhBxpw7TbYvDPrcuTxPdp0A4pBhPtQXGZ6NpP9vIoLqOfPHZRt3IVxLES5KX3fSXTfQ2r12xsitdBbZC1hhFiwM9bTYODRdN44wlQLsvxgoACD7nUlls8OYt1o5XoYI23AJPA3wEbEGWLWifnJBkwdhqgPO4fw9bi7vvC+hPenXU8uPzkSzs35SLjQ2i0vTz4isB8UPEq6Dr2VKOym9jPvhuknc3ykZ8haMSwyyXNieA6TraPd96tLyZfNIJPZY8jAdjdy7eHvoZuXEihKL9Aq0j1IO+kF/W5SQQ/N/d6il4nmvg/gJ6SpLP/C/d3kch/0IeE1nUCaLSXcIF1qFrrc56307SKcvAgnLqrIRPYjZIVumI8esv2cf70R+CN3/s8DDxLoV/d/RZVI1oV7RqdJ0kvlLfOLMGbL9+9hXTuO5oCFrSbv59wa+gcM/L/Y0IgNnzbwyPJBohKY7WOJhd6Eg4O6e9o7J2G1M1752ZPwdRwFwsrfBwNrnVn1H+6B6x6Dl6yDk5dlxby3zLvXJj70LyP/u/P3YwTxlMzX1dAro5100ziopzG5fej+NIkM2ML18yZ4LTM9x+DIxpvhC8h67yenYXmlpfDHHFwgHVNk8pC4a45Nc3q0HzxBmrYuJ74tIuirheC8bh+uoQrfT3r8SAKD+POEU4mTtTSyTn6CINx3CfO5lg+RrqEHGRDkU4Ll9/NhIiMCPo4w8eGlgAnFbeiG+Ij7/C7gSuCHiID325SFyUOI+vysr98OkD46aB7wtYt8LvpwCyPdZzp7Wgv6/ADHBxHy6+fDNtOLQh9tuFvIB0T0g72Tkc5+lKx3hhf03kLfSvh2Y9t4MNfDYVLPtDIS2KrVRJoOQBTlyAl/a17beELvmL2krtGt+r1FL9c88WO+ljvuNtL2zVu4M+PioA1dgTNEk7Vme54knchu1Qe1i7B/D4U9iJX+4aC8oZj3ix3r7rX3SGsAtwTntxF8EyMu95Fzv7dgqhHUAkE/PgvHuaeZF/OLMKsRapVw6A7Sv/vUdXkx769rDqhHhjkDdxpDLTIUjGEijrjbGMyJK4kfnsZYiBtipafRyM587KzB6uHseDkU9ZFJc2WH1vpHXUaz/a7AI6RB8EIhX5IllKZ4eIv3WlnnDfLbezI4rtU4rZ30ZX+6Ys15i3q++QY1kAqLraQDtnCwd8yk7cncgFwLMgTMzMH+STi+0KLVNsfITThMDNnZVP/6wjXZ4y5c0zzVGYq8mXoq6Jsi2hv+6V+/kv0//XGFQiDocx4Akw0Yyrnx5ydfuoz8XINBJtLCPPQ7kIB4nnZbQJPHSjpgMcDXc8d9BUkzNO2s9NOBlb42T+s/3+yvt9C3ao/aLQrz3gj+3q4iFfStZu7DSQtrbTLwCUV9AxkcnU7zREkMfPYzNxF1keBtNaCNkGZwBOkL/HVC6nLvM6CE96/b3dKTsuYGN95DJu9u7+9NuFcOj09++j86XQSlS/BtuW8bwr7Pe8fUSS30rTzS2tVkemu7b58LwEtyx/wKqVHZpxz17eS/f+4mCMrs05TuIevl5XuOCdI19Imezf3dDnzk+VZt/emkgfFCMZ8EvrOWOWRNvRf8c8AvB+e3wAszQ0STutzPzKVqcbQO1Ur6QPMxj45W0AcTt/n+PQxYGG7hNdWtrKOvRxHPLRjqsWEmlrTWlxiITiljHttDbBuphT7JWeue8hPjsCpnDExEvRhaiCKa4lNtzBnJ7tnZ2s3+IPGQWt6TFhtIPcwHYw7tZe2mm8cKbWNs/9ZFP+d8xtAyqct9PiVRODDtecIeIi/uKwVRKrvn4LiyHNOv7va4zjiKsmI+MnDmCfALx8tBr1gLp650raGbsQyxiKAvFbL3L+ilX/Dcnwn/0/R1MZbn4c8TbhN1KJdaf68Ln1MrMQFiIQyDk+yiOWVd5vViBwdyUXALyMRxEVmCk4tqwLk4QU/WUj/ptpkWC80TcZyb/T1Ac8o676rX7seW90bw/79fQ++vIlwzmJ+xDmf2bXCsRdIdnRGc2w+iYuAFz39mm6/uyMhP5oT3/xQk2wlkRf12xIME5o+/0I3k+zu/94L+UVJBD9m1pt2+lKDbeOEvdFc9VzpL/jfnx5HeO2af+9sH2mzV77UDL9KLRvq+koFnAB8Efgm4Gngm8pnvH0uBULzkec9ssrSvplk4+rZzLyKk/PWHQ8p2z/OGk/VhW38q4o3n+7dw/by3Ws8FVmw/gX0e0l6eCLzXGJ5qggCirr8z5QJMeEMMMBaMq5sMMYfnUXg419nK+2ElMmmUn7D3+/AaG7HhbGOoRIanRYb/HUU8pRARnzRMtB/ivdPELm2dBMXzJ7OwawpWl4NZqUDU+wcfpq0rRLI9I2cke9banGU+OmRE+1a0ss4bpB76310rw0u7NX3h0Id0ls2bN/OP//iPbNq0iSeffJIPfvCDPPOZ2Y5tbGyMD3/4w9x9990APOc5z+Ed73gHQ0NDrU5JbXqs5fsLJf9QI0Py5HzQiAPkXCqDgXY3BXQ6KsLryAjIIjw5K7/s46vNM4lhgIt+IRTySQ9k4Nknwjf3QaVKkqg6MVd6FyS3n5mDwWL2vEnvbjjj1HUwVc++D2LVn2lk3fc9E3UYyQVXSSr14gvfxSAc2PjXg2RnSncCTw+OyQvQdlB0A5USMGek+j/TwgeAryJ/XwtchATLAzAWTANMFLQV1lJ0991Hxm3VSYyReiHkJziWQtCb3B7EOnSwXLU2KFjimhiKerc9hAh6LwZDUXjmaevoJiJjMNZmvRaslNlHug8nNMaRZ3cizXFVgp9eVxL2d6FVbAT5/T1O+rtrFfegG9uTbuWM00489EFK35C0t6598e8NIR7Gu5FAdEVygixoW9pBjOv7rKQw9uV6toVnI7//soGK7x8NwdIiOPW0dUw00nYTRDg652kapG3NlNvnPdPIvW4XBVfGMOtKhGRjeZy0/8qslzdZ63Wd7LYdeB9wroE4Mol1XiY/DGagIFYAz9gMHFfJXbzJ7o+SsB8Lhf0q4D+D43yf7vvyZMICmIsjthcMs7Hhd4uGagOiWUNUiInXVYm3TFBYMZAd71pkue4MsHowHZPmRT3IOvqMqDdw7hp4rYEf7YBnroFz1mTT1LkUdfNFtJ+PjOYL+vdhJKvZLDLuC63zjSXo6rreOFwsFnne857HX//1X897zHvf+16efPJJrr32Wq699lqefPLJgx7fLlo9ryqwye39LGI40DtW3A5Nk0gPPhwowBMTcrHlOP1BhiPXY+IuHAHhOp/MFsGZg7BlIvBPtkFwvOAcE3NQiTIiHghuZe5v/4zKgcu9x7c8k7MS4b5V59CFzyhx9HB/+xK2WkOfyetKrvq1gQIyaPFb1e2fCbwbeBdwCfCnyKxujayl3q+nn2zAXOiaTvNMrxeGy2lhuTFLIOhNdu7H3+fVyJrxGbJB4Frlos8HDvKi3lv4wwnRvKW322iVo9gg6+jDSPd1JHp/lWzKwV7pH0xu87+lQURUPE7rCPf+2hRFWRj5355vJ7zL/S7S1KHh7zNso9tSLmOa+r1BA4OR29x7VQMD7pjImEwsFl9mvz8eEfT5iexRd4zP7tLKSt9Okj6IbHvtJ9a30jrIa5ibPhT1m5BxwxnuvH5I6K3zBZDAvCA51a2FAzMwXGju8BdxcJN3tfenXUm6Zjw/YT9rs8K+YWCDMZwTGQqRIY4iYufJGJ+5jMLmfUSJm55NlfDOcRnQleKsAcyPod2Fm9iI92kY7K4cw9PWwmt+Bp661qWqi9KtfOiI9q1o9dszpEs/DtBcV5fCQt/1gv7UU0/l8ssv55xzzmn5+Y4dO/jOd77DW9/6VpYtW8ayZct461vfyre//W127tzZ8jvVwRUt318oXszmB9IGWcu7iay7ffjD8APTY4N5BGS1KGtgVrq12Xl3+z70vTSRa6lDK72/D2eNwENPBj7INrXKhwtxak7QQ/b+uVnMDfdtTv8OjynFIugTC71NzzsxCwNx07m61VSYEROBuB9CGlWQy3yCVNC3Gty0pWzGUA6EvLdKVIzM3paANyMi78+QCYhpt001gnX1TtzXnXXeX5OvHp4DpEHxWrnHtZNEiOY6/uPc55nAeDbb8XtC63y4fv4hRBTGZC0h3tJ7zz2b2ntxC2A+V8xTSCPd+ym1MMJ9r/UP+T7PM4wI+l2kEe5DIe/rinL4bOjCeq50DkNz125IXe7zEe5Nrm1u58+vYAwDkQj2oUi2YbcNur+9mC8GVuQIuP/eTS3XanvX7rAP9H1e3iXcn6vdtPS4dduppOvo80FQE5d7mwbGs8AG4ILknCabCcCtoafsxmc+xfDEDIw4Z+v8+vlFIj/O8s/mBGTyqBZcYzhh75cTiKA3/KgQ8ZTIYGJDFEMUG6LIEJ8+RLxthmhqLlhm6gYKO2qwqoV1PnkdFDRcE1+ORcD7rVpI30/E/MJrSeIdE9ybAjKuGw3uRX5pZDvpekF/KDZv3kyxWOSss85K3jvrrLMoFots3ry55XfK1eWLXo5WogJE0O8gjXAPWevSUgy2l4y8m4+/uHIs5sPjBtJjQ3f7Y+omHAH5vJn+9ZkjsL0muUbrQcPmWwbc69lQ0Dc35A9seTzzd/K6HMlkALjzBc3MZA0G42Yl2M68Z0dJ/vJArBQgHc0o0rm0ykHfbgtoZIxYIqLUKlExUEHia5SB/4N0Ah9w5a2RBsqb8pZ6Fywvn/YG0qcXpq3LD2raLZ4yEyS5/VpE0Gc6fJonJPIu9/6Yh4CzyLafoah/cNNj7b24BZD3IPDlPRnxxpgkHcSFAfHy3+32pnG+tYTDyO+uQHOqwXYvdTlWeaAL67nSOfK/Of97GkJ+e6Ggz3ukyWRAe1uWojEMOYv8SATDRraRCIac0C/nOiYDbNn0WNPEwwpaW+gP0Nzn5e9LOzE090f+/TNI19H7vs2SCvnQJT1MW+cFfRInxlux3fAw6cynZuWM+3E56IPGeJEDGeefR37C3sc3CCfpWy0n2BAZnhq7TAiRSbbCcIl4ZYTZsl/GtuG4d9ckrBnMzSZ4UZ+NEWAiIx6oXrjnRX0llvFvpXDYEe3nux+tNtw9OcA8Fvo2K/qOraF/3/vex2233Tbv5xdeeCFXX331Ic8zOTnZcq380NAQk5OTLb+zf8+Wwy7nkWBa7H3J/IDtmF5HmGlRg2vyovO4SvOP0sgXjpl7cCQkYp6ssB8pS6vwyAF46op0mtPfI98oTDakgYJAwaUN+ct/9YXiQg/Z51GKZF0SuBbGpK3NVC210IcTNF2qLOZrWP3vbhzpbAYRt+b5BjftJDaGKhZr0k6PKI37YpHcs1cCfw/8b/9Fmy1vbOV1vpPwwn4/Mrhp5Xa4FAObcI1duP4xTF3X5HbvCtawNmOVD4MIPYwsU8i3n9568Yrf+B9tvrojx5c1c0+QJREDiCvmech92IqsuQyvL+Oq38VtY+Z35641/P2dSq4O5/bK4fPyX39Rp4ugdBFJl5/7exhZW74baTf9Z+FE61JNpvkJbWtt0tYfrE2LgF/99Rcx2shOUqwkG4vF93mjpG7O0KI9WrxLaYkxhsjaRHD79fQGafvuIdvn+TX0ifWadJsB7gPeSiro/VbEiTV/3wYQQT/jguGNlJvHgIt4A5J6E7Txvh5574mTCZxK3f8bXuNDQC0ynBkZojgibjSIY0NsJDVf8dTjYfMYnL8ya8TaPQ7njmQnK/y+hbu8iQy24lzvZ3N+gHEELv3w0d6PsL8Lx1h+Mhv6yOX+937v97jhhhvm3f7yL//ysM4zMDDA+Ph40/vj4+MMDAy0+AaUB47j1a99I+9617t417vexc0338z7P/RZZmZqyTG3fG0931q/Ifl79579fOjvr8uc5/ov3ZG4wRng8Ue286XP3pR5uHuvvYnio9s52b338H2buPOGOzKDtg/9/XXs3rM/Oe+31m/glq+tT/6emakddfkAHnpkW1Pqm09++j946JFtyd8b7tnE9V+6I3PMYZdveiZpTG5Z/33uuucnctGVmD31ST70wH9lGp3rb/smG+5/KHmv7eXrtvvncmjOzM3xgX/5AjP1uaSluKW0m7vuvi9RN3v27edDn/uynMBN812/83427NqOv4EPbd/BP/17kMnUwD99/qs8tPWJ5B5vePgRrt/yI4mQ78t33Y3s2X9A/jgAd217mFu+96OklZqZneUDH/83ZoLcp11x/xy1mRr/8JHPUZupJdXrvjvWU/3ORiYRMXnC3v3cfM11mUHNV798Bz+5d1PynXbWv7+9+nNEs7XESv/dO9bzwPc2JpZ6s3c/v3jNdWwA/hUJqvKNG+/gvns3MWXF9f7Bh7fzz5++KWPZvvnam9jx6Ham3f914L5N3HXjHZl+/BMfu449bf59GGN47JHtXB+0fwb4xrU3cdyj25NctVvu28TtN9yREff+/nlLxQ+/s5H1d6xPBm0PzdTY/XefY26mlgx0vvX19fzgOxuTddhd0f4F9++229fzve9sTMTr6N79/Mc1Ur6TEbf7u268g4fv28RWJCjirke3c+u1N2XcOD/zmZu6uv3750/fxGOPbAfkeW9x9c+vaT0F+Mo113Fg7/7E8+AHd2/kjq+vT+po17bPWj4tXxeXb/3dG5Pf0IG9+/niNdclk2n7gT033oG5b1PS3z3x6Ha++NmbMl7KS3X/9uw9wEc++nniwKLa6v59+jM3ZSYfbrn2JnY9up2VyPKdR+7bxH/deEcijvYD0TXXMbZXymcM/Pg7G/nmErYvjz2yPdGYD927if92/e/piMv9zddcx/69+5NJ6u/evZGv3b4+CYo3M1Pj3//uc9w3U2M5Yvz78R3r+cl3NxJH4ma//8AoH73uhnT8PBhx/fe+y4b7XPnKEQ89sZN/+srt8rd7yP/0mZsX5fn+zYc+x2ytljyb79yxnp9+ZyMgky1b9+7npmuuy3jhffXLd3D/vZsSz4T1j27nnH+9GRNHEvTXGG686Wts27lTUh2eNciGDZu5/pvfSi30dcuHHvwue6oN/HLduzbcxy3f+l4i6ls931tvv5u7vncPplqASoE94+N86J/+HVNK18wf7e/Xj3E+9/HrOLAvvX8D39nIpjvWJ/dhZqbGJz/8OW67+Sv8n98Xzfnq176RdmDuvPPOdk8aLBoveMELmqLc79ixg1e96lV88pOf5MwzzwRgy5YtvOlNb+K6665j9erVmXNMTExw+eWXc+DAAUZGRlgsJhuWCQujDZhowJiVWdKPIxGt34Gk7BggdTfya4pKXWyBORLszJys65l0++m6uI3ftxdu2AqvOQ1OXZauZakWoCp7U+rPEEl2pi7r1mfc/Zqak9eb9sFXHof/79Ml0Ee1IDOOtYYcM1uH998Dbz9XPB/8GiG/HyxIozg5J8eHz+PevfCdHfCGp4m1vhjJZ7U6fODg5zyaNUftoGEtY+73NuZ+e34t+uuA9wD3IrPD/xdxdR8y6W9wxLkELpUVtNawTFrJOjPtXOmnXVsxg1ij3w28wF3DrwAXIy77g0baCwOMN2Dcyn4CWYf9ZuCLiCfCIG7tovvOSCSeAu1kqmEZdeUaa8g1TgLXI3FE3uPK1ur+zyFtZ/66dgJvRCY5luPaz8Blc1kkawu7DWulPxhrpPdi3D3nv0OezxuRAd5vAP8PWVYwSHpt/vqKXXh9njlrGc/9/saRuvxryOD0d4GfJa2//voGdRG9oiyYOSvt7ViuzdwO/DYivP4WOJveaVfCa/Lt5yRinX8dkhXmOMRaPQ38M/L525mnb1mCNmbWlTnfd+0BXg98DgnqF/ZdBePGKjbtJz+NWLr/ADdOwTI0M8fgTJ3hWp3B6bqsMa814DP3w4UrYKgAX3sMfucCiY1UCcbVlRgGikccwb0VrfqzMSvP4G+QSepXuWscdPe/Hjy/KST47zOAX59rMDA9x/DsHNVag4HpOiPTcwzW6vC398DLT4XTl8t/vG0c/mUL/N+nQyGWANvhmviBzo1JJxq55+7696uQ5/hO4FkEes/1fwORYXR0lGXLlnHzzTczODh40P/nSOiu0XkLrLXUajVqNZl9mZubo1arUa+LhXHNmjU8+9nP5pprruHAgQMcOHCAa665hp/7uZ9rEvOeVSdeuOjlNC329yJiHiT35n1kA2gshbtvR8h3FHtcvPGxqfSzMBBeF3YsS0Z+Hb1bF8Qpy6RX2DsdLJy26SKcGWe/rAQTIblK+KFrPt+8/AHcGvp684Ie74Y/4KKoNiV4787n1Oq3B2KpGEdEYT4H/VKuJQwpRSYT3bcauT1iqT8NeDVwK5IO5v8APyLN5zrnHpn3RvOzwKPu++G6a//ol8y9ksAbLijDGiQooScfFC9xv6d5TeFDyLMbIFhX6P6fgjt/3rLSDRgXwMivpgnvSRjpfh9ynWvJ1k1v2e/OX1xK+Jz9FiF9HchE03vc3xrh/ujoxnqudJZWfZ/3jmkg7tD5dqWbx50G8SjLx6Ly15TPRX8Acblv1ect1TUm/VIwro9duUaAx2jO3pKPcG+Rfv5nyPZzPvta0zKJckEi547NwWC5xViN7Bj7KPEZCFrVo1WQeOCFy+l8sL864nG4AUnRS2RcPGgJiFeIJeo9UQTnLINNk+mail1TsLYEJkrd65OxMh3XDr4I/t78BOnrdiH93kbSsVo+CHC7ytPV7Ny5k0svvZRLL70UgP/7f/8vl156KZ/97GeTY6666ipGRkZ49atfzatf/WqWLVvGe97znnnPuXfnA4tezqaBNPC13DG3k/4wk6XTi16SDuJnysKb8Mge+NaT8v6NO+Hh3c2BLbq+FrYR53bfFByvGMPJFdgyFgQJCb4348R30d28fOYADK99xYvd/0F2X4okwhpkW+Fx57IUm2zH0OUB8Vr1ZSAicAJpXFcHnyfCgs5UvZLJBsgr+w3ZHsod/xWya+5arcsaQyzY0NwO5e9Lu5gvtc1qZMYagg6ftOO3SOcfrpv3nz+MTHJA2mTkU8K95pUvbvOVLYxkXSVpmb2g95HutyMBn8qk/UF+wqnbCScg/Ouv5465heyzO8oljH1Jt9ZzpTOEAgvS9tatqqaATGqHbXG3tysGeMUrXtzUjxhkYngP2WCwo2SD4i11n+f/3zAmVnh/TyMbGC+zlp5U8I4jfd3TCdbPG7e+PDIUwtkKgMEiTDdgdA6W+SdOi3Hg4hFeW7j5+AbheMSPV/w1PoBMypyCC4YXR8QFEfYFI+8RAWcPw5Y9qQLeWYM1LiKLHyv76+twdqxW9yIfFe5WWgXGa5+s71hQvMNlzZo13HnnnQc9ZmRkhD/+4z8+7HPW56YPfdAREhmIbDCrZsVdNiz5ZaQ//HCwd8yQmb5zP7gNudSBG3fC09flRv/H1F04MnyFyQfHM8BZy2HTAXj26uZc9FNzrpeevxKtXLFc3PndYcmLckF8gyCw0lsJsrLMH2bS/VL3kEdIOF9hDMk06DBZCz1kG+FOzSUZYyhj0wY+AhqpwL0Usc57fhkn5k26DzsIEEHvHbeaBjZL1M5kBmGGJEDQKqS6TSLR/EMxXzfp36Go9xMXDyHRgsPBUigMjTGcsHL5ElzdkRPegzA43snIJNMMYsFe545P6iXpdXbpTy4hMobYWgqk/V4JuJxsHX4ZEtgpNjLoOKYmspeIbq3nSmdoJWB9+ztMKnTzwrjbBf0JK5enQfFcuwky8bnPHef7vSeR62zV5y2ZZ5oxGGuzxjor5TiVZkFft1LIJJ0b4s27BvGo8IHwCiYN/posl/MXWCnK8smGhaFybmYnHREtpvdh0ifZrDHEB8WDYJLepJMVFrHOP5104jeODdGcC44XN4hiIw/tjGWyPHf/NCyvwI4xOH9FMHALRX3U0YCxydjKpo8lP3a7FOdJabLjtXbRz7bRRSVCBioFN2ApGlkv8kFk7fz/Q9ZTFN1nBSOvuzmC8RHjf2yhpflZa7PHPGtt1iIdx4uyxqdXMcY056P3Mz1nDMHjU7JePsxFjxUL/UByknTfqmfLHIMIen8ei4RbB5ioi7t9KxHfpVZ6//vxDVko7gdJBf0asmIzfN0JjDHiau+2kkld6y4E/sQd9y7gqaTp3LzbXl7Qj5KL9muy92IpSMSoyQ4cR5BOfBfNlvm8m32d7PU9ggQX8gOB0I2920VhXph76/tKpI/YRiro84GvAQYAAQAASURBVJNMaf3swh9dDt/vFRFPk6qRuA8fBl4MfAx4diT9nu//euG6FKXbma+NH0ImUj35Pq9bf33etTuceMftjydrCQbp35cFx+S3pcKLcD/Z7K/hdFJB7y3zfu8Fb4M0/7wvd5LFxYh1vmmcUo5E0O8PctBDduy2yIObVsvpDCLod5Adk+SXzm1A3O0TLzRnoS8Zsc5HftxbLsBJFdg0KmfaMQOrnAdC4jkajJE7SL5+GkTz/S2i+a52f2et8+0V9X0p6AdH1iz6OSNjKJrUfdYP1J8N/DHwbPd3JZLBe4ljz+3QRE6cFt1WiuC8NfDGk+HCouyfulY+86K+cIzdhIWQmeAIhP0JVRHtj406F6SgNZipB+nlyO3lxV13b2zd4/sAhLOBD79FBH21lL6XnyjoUvL9l2/UBpEosyCdTr4z6rSlwhhD2YkcL+b9wOAZiHtaKHpDyzW5/TipeyXBPpnoWAIBFd7TVu6S+U4/WUNvsxMW/lqnkLX3pwfnaZXzN4xW3E2EIj6/PwVZW7mdVNDnJ5y6fcLCU/T9XUQySTUYwSUG/jKCn4vS5SUVI/2fcuR0az1XOoPXNq1E7Cziwv2T3GepobN7f4R3372x5cTwCWTznYNY6JfRWswv5SXmxbxvu09FnoMXuYnYReLh+D5wI9n8896DV6z0Eo8lTUeHNLYTszA1A8Nx80xNG8ZsmXoUPJuVyHVMkO3X/XVOAQ8ihorw2mJjiAoRhXD8a4Czl8OD+2FsVk6wejB9mHlR30HC8aZBdN+QkX7vzw08x0iAwLI7Lm+EaUuZ2njuriWOS4c+aAGUg0FLxaSR7IciebADbmDjA2J1Y3Tmo8YL+WIkwrEcw/nr4HXPkH3JfV6OoVLo+I+yK2i1jj4yYCI4czk8NJlN0A2yfqpYSBu6cDbWtbqjY5Pp3/7/AZndhTSwnm9hJuswVEqPzYwSFtd9azEJBzLhfhjpTI9HRHNo+fTCsNNXlKyyILsMxwBPA35K4KpHOuudX5cVriX0jXqYh34pyHf0YZVcw0Fy0dNsna8DPrnOToKZfbKiHmDM1/MuIxTnvtz+/VOQdfTbkUjw/p7l19D3An5iygv5wSiNaD/o3htw/d5AdIz2e0tAt9ZzpXOE/Z3/Wd2HCN/9SMTt+2hui7qZibGJlgI9XKsNMmkxS87lPj9sWSLy7bwX9Se7Mu4mJ+oDC/0+xFMrs37eb1FuXbS/qGoEtTl4sg5Dxexn4bLXRSTfr/vrHULKuJtsjAB/ffci3iKrM9cl7vbp+nk3/jUGnjICj0/D1nGX0iDwYIV0ANDhmhzWs6IT72GWhXCruEfSOPgpj5peGTMsKqNPPtaW80bGNA1qBnOifsgc21YKExkR8j5tRn7zKetKMRQ7uwamWzA+sn3eQh8BZw7BQ3tTC713k59uBK7z4cnS+3nZL12S7enDXg/SwHpeFU7OSVqQjEI22X0X0qrzB3Fu2EHqeug/6ybXQ2NMdtaaVKyeh1hYEit96KbnRjW+gzjAPGsJWbpGvpW7pH+9ilTQh7P4DWTt/GxgnfeDgE+68/4RaYYQL3gLwbO77Jcvafu1LQQf6T4MFufLfxLiivkEIujz1vn8hEi3ExvDgBvU+PQ8yYS2F/dRd6bK6hW6tZ4rncG3t2GE9ZjmgJS3kp0o7HbPnxf/0iXZiWH3/gpE0EMa4R4OYqFfshKnbXs+CGoJ8cB6mNZit4FY50921xFDEo8kiTcS0TwOq8QwPutmNMrzG3YW+Rrznnf+v1hFOmkRWuf99Z0fHJ9cV8EQFyJZPx96qB5XkQi/d++AE4bTWZpQ1HfJjHeEjEUGcwJ+OOgHfV9YdUVWC30PERuTGdT4BzviRX0E1ah7rZ2LgYkjEZsVyRMpeTELaQ5Jl9u8n9fON1EIGjVvtjUGTl8G+yyM1XIu9w25n9ByWtrMt4ja17sSIujD1mWslrrxz3PebiQ/Z+H3PtXNquD9VuvAOk1ezPv9uYhb9hRZV3Qv5vMu917QQ9ZKv5SEYjSsOvOltglT+czZND1fPlrsbWQHrdK/d8PTOzj5wbavd6ciaYogrZ/hYKkXLGl5ImOoRibJAT1iJN/1sBvMqGVeURYXH7/CTwoXkWDMIS8jFVFeLHYzeQuw31aSDb42igxjCrnjljIgnicZspGdwAVp6x8lFbrhxHW4vtwE50kC40UmNUYnAxbjBL37DxILfdDpRos/uvGnTfqo4Bq9oIfU+OD7+R8j7vbNywlc+rp87Chj4KyVsHMOto3BIy0yY5nOayiD/PaGjPR1I1G6eSE/4vTfski2wai9dbMvBb0x7b1sYwzlyDAUmXSGxsBgZPpmUGMig/Fu9QNFGCxAtQjVAqYUd/zH2HVEUbPLfWzEm2FtETaPZqOFzQQW+kTFZhX8zEytxWeOKpKLPlT00zUYjJtFfI+soU/6Mve+S3bCmuD9pE/wx3dBPfRWk2SSGinfKsTj7EGCgUAYEC94dPtJJzD89efF/VIQdvShgPVr6D2NoMP3Yt4PcurA83PnvZzcusLgs5mZWluuZTHIW9x9PTyZNP986JVhct/pRSSQk6Hk+ru4CwZfxwLdXM+VzuCFuo/flA9I+VHgZ91nRbd1u4W+NlPLBDX3beZKoIZMcHsL/XHuO/kxwOLL2YPTylvCb6eRrqMPI937/u9e5hG85GK/hVaLqhPxFfd+qK7b5HoYBiDO32c/2RJ64NWRZ/Q4LeIDAHFsKPiA0JkYUkClLv/pBPBv25tFfRfMSkXIMrLEMm+8V7ZhIJLJ7bLbiq5PLBjTVkNEr44ZjopVJ164ZP9X5B5gvw5oTGQwscHEkez79D4ckmRq1mQbuMjAGcfBltFsNJiZOVm20Op2unv84Y9f39p0DTJREK6ht1aCrAzGmXNkZn27lPyl+b1P4+YFfV7Ud8vAxrttJR2eSRvmc4D7aXZjywdYmSIV9NC5gc18kXBXIy730JyLftambvdzyDXOIGOVXwT+BvgZcpao4KKu/tjn231ZC8bfC38/vHeBXwayh+wa1zBOQBf/5JQO0M31XOkMhTBbSiSbD0j5F5EEpByI0rhOZdMdk9gH4+8+dn3TBCikMWL2kgp6P2nfJOY70H6GfXfoSRZa6L1nmu/HdyBC+GlkxXw4eZ0Jhufxgn5ZIXuxoUt6G25A0pfl+nmfui4fxPceZEnZcTQvJ4iBQsYz1U9MGNh9IPsf/3BH8HlwnR3EuMnqONB4nf5t9aWg37VtQ6eLoCgZjDFipc+LeQOcOQibx6HRSFPMTc5KyoT0BE0K7vfe9vJso550DEYC6nlB7324R4GBkpwgrwa7eBDQMssesj4ZJEc7BK7awb4biIK11mGAvAhZR38/2ZiIGSu9O8eTzL+GfikfXX7SxP+9ClnuN0az270P9heuLfw2ksP1nbjouCZIj2ayz+4db3vF0lzcAkiepcmK+p+4z2eBP6R14KpODw6U7qKb67nSOXww5sFgS71CZe+DUvZCDIvfe9vLW3rd+YlQHxjvALLU2tPpFYKhmA/HGKcjwU9rZN3t64i7/TmIw2SS+o40/XXkryQ/DvOBjQfLaQHC8V2bbkJ+osX/N+FzgexyggtJjw+XFibpS+NgK0QSUPsZ+XTXa7Keqz1QjztBt4xplxTrRZGidBPeLBeKemNg7ZC0gtvGsmnrKlEL83Q6M1suBxHr8xRjqAVr8uvuxWCxufPoAZd7v/dFvQ/4uHv/U6Tpe0LB1AWTvAl+5jq/1vqpSNlbpa4LA9DMkqatC+/DUg9ufMed7/SHgDJipc/nop9zlnlvnZ8DvgM8x30/XPvpX4dua0k970LCOucHNHDwwFX++StKSDfXc6VzmCAgpY9fEQak9IGZy93U4R2ESrk0b6wbH+keZHJ43klsln5CNOn7yHpbrUL6rK3kMrqQXV+eXz+fCeY+X2DjZRXZ54PW0B5rcThRET6XFUi0fsiOTTZykOUEgClEUIjTMW9sRNCfuxpecxI8vSDprs9dm8aZitu8EL2H0duiKN1CZLLB8RIX/AjOHoYtLn2dtVALLPTzRDY1YSeQ+4yBgkTKx51vcjZ9X77c1EF0K/kOJgK+ljvm9hbHdNMV5Tty//p0xP38cbKp68JOc9SdY75ov0tJeG/znhDe7T4se3hNXtBvRCwW5xAEBzKphb7QTQ/uEPgsBomrIRLI6SW5414afO73iqIoh4OP2+St82GQrkHTewEpM/1HMIw5HnG5B7HQN/V5pnOiJvTGCidnDdKPP0p26ZxFXNIvCI5N+jrfB4QX3yrj0IN7ZX15UgiT3S8yoat9OOniXe5Do8MupL8/n+xywsxyAhBTfZLq2m2VGJ66Bl7zM3DeWvmsECVjYvVea01fCvqR407pdBEUpQkTmdTtPhPVEzhjGB7al0ZCm65nXe4hO4sL3PK19ekfvv3zDX2pALOBp8p4Lbs4KpkEMN2lfFtgSOdBvHDKR/p9Cako9J1JNzV+eZd7/3eB1O0+HAxA6lzhBb1bLNH06Jby8fkqa4LXnlDQh7no5wIx3wDuRqzz4QDH35sizWJX6nn34pcJ+OBVJQPPAv4W+CXgI0jgqiLZiQtFCen2eq50njAgZbFHA1Leevvdmf4jFPdhpPsDpOvq85PYnejbfXnzcVAMaWC8MBDso0igej9xnXdJT/qA/Bp6Azzi/BR80LiHd7d9/XxyjbnXBrHQg1jpfd9+D3AGEsvIW+T9NRaD8xAZ8Rgt57YBl+Lap7wuRRJku9hNI7fuoi/vTL2u0WKVLiVcTxSuFzpzmaTxmHK54ycRUY7J9mSQCPvh4YHWs7oGCag3Uw+iqs3JdHd4bKcXpR0mfg26F0JlAz8LXI0IpquRv0tOyJecaOqmgY4fAOTd7QySvu6ntE5d10BcD1cE52m1LRVhLvr8YGwNWUEf5uQNo9x7QR+62xe8mDdZd3tw9byL8UH8kuBVRqxmlxj4MwPPce/5tbClFteoKN1ezxVlMRgeHsisQw+3FaQW+lEk2FpTf9chG4Rx4xAvWsO+LwyMl0/n5iepQ0+uAqG7PalY9+PCjT7ErONHO5pn09txjTT37RFiTBghXUdfd9f3M8F3kkB4pOMbcOOwUpSKd5/muhKIeZ8xqxh11bit2+hLQT8xuuPQBylKJwgD4oWvB4twQgQPHQCcSbNaaBLx8lp2z73kwtbu9iANaG0u/XuiDtVSaxHfA1Z6L4aqbj8QiWD6cyecBqJUTJXIRknvBrxrduiy5zvLc0kt9GH+dj8XMwb4ob6/LN+wd2LZpPcuCAc0hjRXbd7lPhTzDyBLDJ5O8xIEL+rzPPeSpctashAiY6gGdXDAyLrWJIhVJNGpfTTqcpfVTaU76PZ6riiLwXMvubClaIRmC/28Ue6XrrgZfH9lyMbCOR14xB0TWrCfTm79vMlN6LcKlhyb5qBxP7tW1paHyzTbQDhnEFrqQZZD+PgGfv18U7o6k74OhbkxBlOKk9TWDDgL/aBLez1QwJRj8WJV5qXQ6QIoihLg19H7ljMMjnf6CnhoHM45To6tBD9fE3w/TyvRXzYw5Zy3LTBZdxHuc8f2gJgHn77HJln9CsCckUsz7u9SIPq7cU1hEvPFpnsv6HcgA5giMpdTIM1gOEY22m8+Ps5SX2kyGLNkLC2rSXPRJxMTxqWsQ67n20geZe+iF1ro/cx+LxIbQxWLiaBgZRKj4Y0upHmky0at84qi9DeRAWxWNBpkrbYXjQeQfi9jewi/3wFi1+8lmU3c61OR8h5AhK+PcP8qUvHvrfK+r0sErx8YFKM0ePFT18AbjKRz+9m1ss68EAj+Nplq/b3OxDdwRVqFrJuvIwEADyDLBUNX+3DJY8vzxwbiGGujZPCmFvnDpy8t9HGh0ukiKEpLkhnZppz0wJlV2HQgdbsv53PGJ2cBYPee/akPmn/bb+UWFvqhICp+Rg32xjq8cmQYiki2YZNuSdTfCEpdOsubX0fvZ7KXAWvJpa9z3/FB8XyEe4J9x4IDmWyn77fVSPqejMs9Mkbx1/Qd4OfIrZ836fryuEU93L1nf7svaVEoGBe0ykiwquFgG3LW+1bXpyjQO/VcUY6G3Xv2N4lG34esAKaBKWTVYRjlvinQewfwxoMws0mE9M8rELf7BvCgO+4MWluvQ8Fr4kiWSOaDxj1tLbzuGXD+utRlvSTHtmu85pfUhffbP6dwsuXHSDC8Unh95JYTHOr/iXpj3NlN9KWgX7H6nE4XQVHmJ3S1T3opAyctk2Smj7nM6ocIYPe562517wfnDvOYzjpBb4HJWurCb3LH9lCjWnSiaSQQSiNO3Hd7Hl4/i+3FfDhA8W73oaAPXe5HgnNAVtx3Kn1PvtNf5T4/QBAYL0hZ9wgyw/8MAut8OKs/z/+X1PMewLiAVVUXkXrIvS72YPAqZWnppXquKAvlc9fdOq9o9GF+HnF7H+WeYN9JUePLnF9LD3AKUu553dE5iOAtOlFfdmvM/T5cY+7FfNzeOzBffINwOUR4feH6+Uw6PmXR6cv7umvbhk4XQVHmx5jWwfEKEZw2APfuh0pwbPK97P6dv/vK1u72IIJ+pp5GzR+bhcG4eXKgk9PdCyQyIpCqkWEwMlQiEVHd7sqcT3GWCHvEde2nBNbtIHXdKDBMXsSnne5S4wdg+cFYFYl4G+ai92vnG8B6xN2+THaQ49fOz+em987ffWX7LqaNqIBXjoRereeKciS883df2dLDy4vDE4At7thK8Bm0PSbcIfEBevOB8SIk0v0j7riN5PKzGzIu6fmxiolMGjCu4taXh0HjXCA5U2p/wtNW8Q28hd673PvrM+SC/Znm9fPK4tGXgl5RuprEVBuIed+CnrUMHp6QaFrQvGgs3062zEVvJE3IlHvPWpiuiaD355rH6q+0l1Yu96GFPkzvFgr6bgoO1Mqy4jsa3+lDNiCeRdbPX0JWyIcp67SzUhRFOfZp1Yf4vux44CHEIgyt+7xODln8OngvZn15TkVS180A9wEX0Wyh9x5prUgCx1UKLmBcEYaKEkiu0n7LvGe+53ICkoHgIaRvP4vm5QQR3ReQ+FhCx0iK0mUYY9KIpb5nS9LXDctBpUKzWJcv5/4OXoeiv1IQ933PxJxEFs0WpPO9Y58Rdnzh65MQa8RDpILeM0bqepjZOiSCQ4uKr77+/TVIYLxMlHtkbf1WJL2gH+T4gHhFZ6HXWX1FUZT+IGOdD/qQFcBmuiuzS0iShz63Px2x0N+HpNtbR+v184cK/Goig4kjTCGSfby0y7Xyz8X39ScAE8D3EXf7OL+Zw1s/ryycvry3y1ee2ekiKMrBSXKfBBb62MBxztf+iVl42K1YauV2D1z/pTuaP/d41yzvcj+OpAfxIj5vpVeWhIwLXvC3d7v/CamrumcMcbmH7rBSHCoX/S6yYt5Ht78Q8TTwQj50Q5zP3R6Ceq4oxzBaz5V+4Pov3dHUh0DWtfsxRBR7Op3ZJcSnnfXDN++WfiLS730NCRjXtL7ceaR1uyibr29f7j6/k1x8AJNeowTi1/Fku+j2utMWZqb2d7oIinJwvJU+HxzvkT3pMddth4d2N7nd+9nac84+xZ2L7B5k3RVArQFzzt47FKStC8uh7e+SERmTzUUbDAjygfHyQfHCgUyuSiw54dq60DVvNamg9xMTDeBu4DnB97zroRfzB+uoknquKMcwWs+VfsDX81Z9CIiFHtI+j2CfBIXtoGgMhXoY6b6AeNrdDfwMZCbrfX8nQrm7B1z5Pj0R+KSp6y4i9U7IX6PSPvpS0E9N7O10ERTloJgoEPRhgLyNO7MHbthBEkRPvph8dOHTzybp6qLcvuCOm6nD5Ky89iK/Kf9Ld3cwxxrJTDbZdfTnAQ+4Y0JRP042KF43pO9pFTgHxLria7AX9HsRF8pnEwTQIV1Dfyh3e6nninJso/Vc6Qd8PY8IHAZJRaRfO+8j3ndLQDyPt8znLdkGCQoLks5tvgj33U7owJlfR+/3YzQvJ/Bed0r76EtBryg9gU/CHUa5f+ba7DHPWpv2GvNFDss3oobUjX5mDsZrXjVlTbpqne8ImaB4weuzgSeRGXC/hn7C7b2gDzvXTjburTr8CFiLrKH3ExJ1JPf8U5BgR5l0dUYHAYqiKP1I2IdA2q95QR96peWtxZ3ELxcI89HHyHI5PyH/QSRrjZ+4Dr3yup1wOYQX9yDX5yfr/wh3fcF19cJygl6nL+9vqTJ86IMUpdNERnKLFoPtvDXwhpPhwiL8r5PhvLXyfmLFT3/SDz2yrbW7vRfzFUTQT87BMpM9rhvMvH2Kd8/Lp66rIrlsf0oqiMfcdwaD70LnrRX5Dj9c/wgyMeGvIXS3zwcIKrrXB+OhR7Yt/gUoSpeh9VzpB3w9z/ch/m/vcv9tJMAcNPd7nSYv5iPg9twxt5GNldNLgjefmi+m9fX5Y4r+O12+nKDX6ZX6s6gMLz+p00VQlEOSuN17Me9zjj5tLbzmZ+Bp66AcS4C7YgSlGBNM8X7jmz9wJ/InzIn2ASNr6CfrUC6ln6uVvqOE6+9CK70BnkYq6MOUdXlreKfnYfLuhn4AUEJcJX0u+jEkZ+3PkU5keAu9F/OHWg+Z1HNFOYbReq70A76et7K8GyQjCkjE+Pcgor5b+j1PEsyVdNnYr+SOeSnyvv9cJgG6ofSHJglaS5qFptX1lQIvu15YTtDr9KWg37vjp50ugqIcHsVIRLvfqgXZBgryd8W9XynIsQFvev3Lsu71mcVORnLRzzRgvA6DQUC88Jje6F+OKYwxLfO35iPdgwj6kfz3g31HLfQt3O4hXUffQFLcnIxEv/dr58PB0OHkrH3T61+2yKVXlO5D67nSD/h6np8U9n/ncz3c4vbdkrYOAqFrRNSWDVwMfBj4ZeDvgIvdZ8Vg6xW81d1PRlSC67uU9Pp8H17usevrVXTSRFG6GGMMlGKsQVrPOQsNJ+fCtfXFaH5LZit3e4BiQQT9ZCDow+B5Rr6s+b+XnkTM26zb3rlIyp4pJA+vD4gHLdYTdnA+Jm9ViQxgyUS6B3Gb/DlSt71w3XwvuSAqiqIoi4fBeafZbH94KfCfwXG/QjaIbDeMVowxlKylYly8m0jKfomFS5D+sIgI3YoT9odaWtZNxMZQNpY5wEZgGvIM/PXF7poqbivSO94HvYwKekXpAUwxxhYiEfPePOuU0mEJ7lbHlJ2FfmoWlpdzwt/tu2G6uw+J3OAliYlo07QwxwGbkFyvB0gFPaQivtOuh8YYjLWphcWm4n4NEhhvGvge8GqyEX970QVRURRFWTyMMcTWUnSTu0ULZeBZSFC524DLEUtwGHitW4RxKTI0nPHFLyere3sJUtaKgarbes1wUjYS1BZkZeisTa/P9+MVIys7y711aT1LXxpAVqw5r9NFUJQjxhiDiSNMwW3xQazywCc//R/p53nTLYjrfq0BozUYjJtFvIr5jhEGyQnX0QOcg6yjh2zKupZbF+TjzbvdrwZ2Az90r08lu94wEfWHWfRPfvo/FrvoitJ1aD1X+oGwnheNxF0pG6hEInwHjaQ4/f8ZeI4TjWXv1k13CeOyK+9wJNuI24YjGHGfVU1vTlwbYxgwMOSubyi4Nv96yD2fbnomxzJ9aaEf27+100VQlLbzwl94pnvlRb3J/EmxADULMzUYCHLQE3xN2+GOEBlDZG0q5m3W7X6DO26MFul7usRVPbTOe1EP4mWwC1hPc3T7MCDe4V5DWs8V5dhF67nSD4T1vGAMFWMTS3AUuVWHzhPNe3NVndjvNkuwMUYCwzn3+3qwWlKC33ZZgY8QY4xMpFhLNXd9Mb05UdHL9KWgr02PHfogRelxzjjtRHnRqlE1QDmCqTkXFK+Qvg9qpe8CktR1gZg3SKT7f0PW5o2SpoIzuX2nRb0X83HwOiJdQ78f+DOy0e3DgHiHOxhI6rmiHMNoPVf6gXw9LxlZZRi717Vg1WGBNOhcN1uCI2MSr7tjkWP9+nqFvhT0itJX5JWepxTBk3MwCQwW50lbtwTlU1rigwDFudenAzPAVsRCv4xmEd8N+Xjzrvb5XPQ1YI7s2nlvodeBgaIoimKMoeKs3EVLYgn2Vu4i4tHVrWJeUZaKThtxOkJ1cEWni6AobWfDPZvkhaHZ4u4t9GMz8vdAi7R1ap3vKPn18/7vApK+7n4kKN5QcHx+DX0n8SI+n4v+/uCYP0biAfi18z4dzpEENkrquaIcw2g9V/qB+ep5wRgGIpOsSR80MBgZSocbGFhRjnH6UtCXq8s7XQRFaTsPbHqs9Qe+7ytHsK8mryuuKWiRtk7pDIY0D30o7A2yjv6nwARpHvpWVvpO4ueR8pb6r+eOu41g7Tw+sv/hF37eeq4oxxBaz5V+4FD13BgjLt4q4hUlQ18K+v17tnS6CIrSdl7+6y9K/wj7Pt8RliPJHVZxB7Rytdc+s2MYYxIxnwSZIQ2M91NgHxLlPi/iu+GxJevqSN3oC8BlueNeStbdvniE/0+mnivKMYrWc6Uf0HquKAtD19AryrFOIs5zaq/kXgxH2fc1IF7XUDDB+nmT5qM/F8nlDmke+vwcTDc8PW9xL1hZ51i2kkf4b4FbETF/sUnXQZZ0/byiKIqiKMoRoYJeUY518rno/R8l9/Mvl+YPiKfiqqNk1tHb1P1+GbAWeIIWaevonkdXMFAG5gySeigScf8c4BKkAyqbNFJxCU11oyiKoiiKciT0pcv9qhMv7HQRFKXtfOjvr5MXrdztDVBxgn5o/oB4Gmyms0iu2lTY+zXpBjjOHfNTmvPQd8tTi1yE4qrbBg0MRTBkZBuMYCCSfcWIlf5ISeq5ohzDaD1X+gGt54qyMPpS0O/d+UCni6Aobec1r3xx+kcrYV52scQH3arlJlf7bpGF/YsJ1qGHwv4nbgP4I+A+sqI+pnueXtEYBiJZ2THkohP710m0Yif4F2Kdz9RzRTlG0Xqu9ANazxVlYfSly319brrTRVCUtnPCyuXulWk24QKUnKAfKOSs+G6va+i7gkTMBy73t+eOuQ24JIiC301WehBRH2MpAbMGrHs/RqzyMQv3BknruaIcu2g9V/oBreeKsjD60kKvKH1HKOS9bvLRx+7ZCQ/vkddNaeuUTuNT1xXcWvMicHnumMtJhX+BoxPI7SIykjN40OUSHooM1chQMJpHWFEURVEUZaH0paAfHFnT6SIoStv51voN839ogEf2yuv9wL9tg0d2Zz9XuoIYEfIlUlH/s8CHgV8GPoJEii8Hqd+63fVqMQX8Qeu5ohwjaD1X+gGt54qyMLp93NcW4rh06IMUpccZG5uUF63c7SMDG3Zkv/DDHfDUtZq2rsswxlDCUjJQAYgkfd0lLlq8t8qXjQSYW2hwuV4lqeeKcgyj9VzpB7SeK8rC6EtBP/rkY50ugqK0nct++RJ5YRBxHpkgbLqBi9bCT7elX3jmmvSzyLQOpKd0hKIxDBgrjxJxu5/z8y649HBGxHzFdJ+7fTtJ6rmiHMNoPVf6Aa3nirIw+lLQK0o/YYzBRhFEDRHqsYFiBOeuhtc4S/2z1sJ5a+UzQxpSXekaypHBNCwFAzXr8rojj6tImstd87griqIoiqL0D30p6I1RpaIc+8zM1CiX3fKSgpGtGAUhxg08dQ2cvzYV+X4rRH1l5e0VSpGhaC1lAw0rjzLMVd+PzyxTzxXlGEXrudIPaD1XlIXR9cr2tttu43d/93d52ctexhVXXME73vEO7rnnnswxtVqNq6++miuuuIKXvOQlvOc972HXrl3znnPViRe2u9iK0nGu/tjnk9cmjiRNXTmGUgTVgrweKEAllq3kjinFIuqVrsQYQ9EYypGhEknk+LiPI8WH9VxRjlW0niv9gNZzRVkYXT9qn5yc5HWvex3XXXcdX/ziF3nuc5/LlVdeye7daUTuj33sY9xzzz184hOf4Atf+ALDw8P84R/+IY1Go+U5d2798RKVXlE6x9POPi77RjESEV9xwr4aiPnkbxH6/SoOld6jqZ4ryjGI1nOlH9B6rigLo+sF/a/92q9x8cUXMzAwQKFQ4Dd/8zeJooj7778fEOv8rbfeyhve8AbWrFnD4OAgb3/723n44Ye599575zmrned9RTl2+MY3vpH52xiDKcVQLYp4H4ihGsNgQf6uFqAcYTS6vdJD5Ou5ohyLaD1X+gGt54qyMLpe0Of5yU9+wtTUFGeeeSYAjz32GDMzM5x33nnJMcuWLWPt2rVs2rSpU8VUlK7FxAZTjsUaXy1CpYCpFjC6bl5RFEVRFEVReoqOBcV73/vex2233Tbv5xdeeCFXX3115r1du3bx53/+5/zP//k/WbduHSAu+QBDQ0OZY4eGhpLPQqy1lMrDjI6OHuUVKEp3s2nLY1rPlWMeredKP6D1XOkHtJ4rxzq+flu7uN7iHRP0v/d7v8db3/rWeT+P4zjz97Zt2/iDP/gDfvEXf5H/9b/+V/L+wMAAAOPj45TL5eT98fHx5LOQqakpajNjnHzyyUd7CYrS9Sxb9sVOF0FR2o7Wc6Uf0Hqu9ANaz5V+YGpqqskYfTR0TNBXq1Wq1ephHbtlyxbe/e53c8UVV/C6170u89kpp5xCuVzm/vvv5+d//ucBOHDgADt27ODss89uOteKFSu4/vrrqVar6l6sKIqiKIqiKIqitB1rLVNTU6xYsWJRz9v1eejvvfderrrqKl73utfxm7/5m02fl0olXvziF/OpT32Ks846i+HhYT72sY9x6qmncv755zcdH0URJ5xwwlIUXVEURVEURVEURVGA5mXii4G58847uzrk+zvf+U42bNiQcacHePWrX81rXvMaQCLdf+xjH+POO++kVqtx4YUX8q53vYtVq1Z1osiKoiiKoiiKoiiK0na6XtAriqIoiqIoiqIoitJMz6WtUxRFURRFURRFURSlB9bQLybWWv7lX/6Fr3zlK0xMTPCUpzyFd7zjHZx++umdLpqiLIh/+Id/4O6772bnzp1UKhUuuugi3vKWt2SWm+zcuZOrr76aDRs2UCwWeeELX8jb3vY2isViB0uuKAvnj//4j/nWt77FBz/4QZ75zGcC8OMf/5iPfexjPPbYYxx33HG88pWv5IorruhwSRXlyLnvvvv4p3/6J+6//36iKOK0007jIx/5CFEUsWXLFj7ykY/w4IMPMjg4yOWXX87rX/96DfKr9BT79u3jox/9KD/60Y+o1Wqceuqp/PZv/zYXXXQRoO250nt84xvf4IYbbmDLli1MTk7y9a9/PZOx7VBt99Fq1L6y0H/+85/nlltu4QMf+AA33HAD559/Pu9+97uZmprqdNEUZUEYY7jyyiu54YYb+PSnPw3AVVddlXzeaDS46qqrGB4e5gtf+AKf+MQn2LhxI9dcc02niqwoR8Vtt93G9PR05r0dO3bwnve8h8suu4ybbrqJK6+8kn/8x3/kv//7vztUSkVZGPfddx9XXnkll156KV/60pe48cYbedvb3oYxhsnJSd797ndz/vnnc8MNN/CBD3yAr3zlK/z7v/97p4utKEfE1Vdfze7du/nnf/5nbrzxRn7hF36Bq666itHRUW3PlZ5kaGiIK664gre//e1Nnx1O2320GrWvBP2NN97Iy1/+cs444wzK5TJvfOMbmZ2d1UZC6Vl++7d/m3POOYdiscjQ0BCvetWr2LJlC2NjYwBs3LiRRx99lLe//e0MDg6yZs0a3vCGN/DVr36VWq3W4dIrypHhB4B/8Ad/kHn/tttu46STTuLXfu3XKBaLXHTRRVx22WV8+ctf7lBJFWVhfOITn+AlL3kJl156KZVKhTiOeepTn4oxhv/6r/+i0Wjwxje+kXK5zBlnnMErXvEKbrjhhk4XW1GOiG3btvH85z+f5cuXE8cxL33pS5mammLr1q3anis9ycUXX8yLXvQi1q1b1/TZ4bTdR6tR+0bQj4+Ps2PHDs4777zkvTiOOfvss9m0aVMHS6Yoi8f3vvc9Vq9ezfDwMACbN29m3bp1LFu2LDnm3HPPZXp6mscff7xTxVSUI8Zaywc+8AFe85rXsHr16sxnmzdv5txzz828d84557B58+alLKKiHBXT09Pcd999RFHEW9/6Vq644gre/OY3881vfhMQl82zzjor48Z57rnnsn37diYmJjpVbEU5Yl71qldx1113sXfvXubm5rjhhhtYt24dZ555prbnyjHHodruxdCofbOGfnJyEmjO/Tc0NJR8pii9zA9+8AM+85nP8Gd/9mfJe5OTkwwODmaO82Jf673SS9x4441Ya3npS1/a9NnExAQnnXRS5r3h4WEVOUpPMTY2RqPR4Gtf+xp/9Vd/xdlnn81dd93FX/zFX7By5UomJiaaxjBhe55v6xWlWzn//PO5/fbb+c3f/E2iKGJkZIQ///M/p1wua3uuHHMcqu22VhLOHY1G7RsL/cDAACCW+pDx8fHkM0XpVdavX8+f/umfctVVV3HxxRcn7w8MDDR1gt4dX+u90its27aNz372s02u9p7BwcGmtn1sbEwFjtJTVKtVAC699FLOPfdc4jjm+c9/PhdddBHf+ta35q3noO250js0Gg1+//d/n+OPP54bb7yRr33ta/z+7/8+73nPe9i8ebO258oxx6Ha7sXQqH0j6IeGhlizZg33339/8l69Xmfz5s2cffbZHSyZohwdt99+O+9973v5kz/5E573vOdlPjvrrLN44oknOHDgQPLeAw88QKVS4eSTT17qoirKgrjnnnsYHR3lLW95C1dccUUS7fhP//RP+eAHP8hZZ53FAw88kPnOAw88wFlnndWJ4irKghgaGmLdunXzRqz37sj1ej1574EHHmDdunUqdpSeYWxsjO3bt/Prv/7rjIyMEMcxz33uc1m3bh3f+973tD1XjjkO1XYvhkbtG0EPcMUVV3D99dfz8MMPMzMzw6c+9SkKhUKTCFKUXuHLX/4yH/nIR/irv/qrjGXec8EFF3DKKafw8Y9/nMnJSXbu3MmnPvUpLrvsMkqlUgdKrChHzi/+4i/yr//6r3zyk59MNoB3vetdvPnNb+bSSy/lscce48Ybb2R2dpaNGzdyyy238Ku/+qudLbiiHCG/9mu/xq233srmzZtpNBrcddddbNiwgec973k8//nPJ4oiPvWpTzEzM8PDDz/M9ddfr+m8lJ5i2bJlnHrqqdxwww1MTEzQaDRYv349jzzyCE95ylO0PVd6knq9Tq1WY3Z2FoBarUatVqPRaBxW2320GtXceeedti1X1oVYa/nUpz7FzTffzOTkJOeccw6/93u/xxlnnNHpoinKgnjBC15AHMdNOeXf//73c8EFFwCS0svnoS+VSrzwhS/krW99qwp6pad5wQte0JSH/qMf/Wgmb7EOAJVe5Nprr+XGG29kfHyck046ide97nU897nPBSS40oc//GEefPBBBgYGeNnLXqZ56JWeY+vWrVxzzTXcd9991Go1TjjhBH7jN34jiZGi7bnSa9x66628//3vb3r/Qx/6EBdddNEh2+6j1ah9JegVRVEURVEURVEU5Vihr1zuFUVRFEVRFEVRFOVYQQW9oiiKoiiKoiiKovQgKugVRVEURVEURVEUpQdRQa8oiqIoiqIoiqIoPYgKekVRFEVRFEVRFEXpQVTQK4qiKIqiKIqiKEoPooJeURRFURRFURRFUXoQFfSKoiiKoiiKoiiK0oOooFcURVEURVEURVGUHkQFvaIoiqIoiqIoiqL0ICroFUVRFEVRFEVRFKUHUUGvKIqiKIqiKIqiKD2ICnpFURRFURRFURRF6UFU0CuKoiiKoiiKoihKD6KCXlEURVEURVEURVF6EBX0iqIoiqIoiqIoitKDqKBXFEVRFEVRFEVRlB5EBb2iKIqiKIqiKIqi9CAq6BVFURRFURRFURSlB1FBryiKoiiKoiiKoig9iAp6RVEURVEURVEURelBVNAriqIoiqIoiqIoSg+igl5RFEVRFEVRFEVRehAV9IqiKIqiKIqiKIrSg6igVxRFURRFURRFUZQeRAW9oiiKoiiKoiiKovQgKugVRVEURVEURVEUpQdRQa8oiqIoiqIoiqIoPYgKekVRFEVRFEVRFEXpQVTQK4qiKIqiKIqiKEoPooJeURRFURRFURRFUXoQFfSKoiiKoiiKoiiK0oOooFcURVEURVEURVGUHkQFvaIoiqIoiqIoiqL0ICroFUVRFEVRFEVRFKUHUUGvKIqiKIqiKIqiKD1IodMFOBz+4R/+gbvvvpudO3dSqVS46KKLeMtb3sKqVauSY3bu3MnVV1/Nhg0bKBaLvPCFL+Rtb3sbxWKxgyVXFEVRFEVRFEVRlPbQExZ6YwxXXnklN9xwA5/+9KcBuOqqq5LPG40GV111FcPDw3zhC1/gE5/4BBs3buSaa67pVJEVRVEURVEURVEUpa30hKD/7d/+bc455xyKxSJDQ0O86lWvYsuWLYyNjQGwceNGHn30Ud7+9rczODjImjVreMMb3sBXv/pVarVah0uvKIqiKIqiKIqiKItPTwj6PN/73vdYvXo1w8PDAGzevJl169axbNmy5Jhzzz2X6elpHn/88U4VU1EURVEURVEURVHaRk+soQ/5wQ9+wGc+8xn+7M/+LHlvcnKSwcHBzHFe7E9OTmbebzQa7N27l2q1ijGm/QVWFEVRFEVRFEVR+hprLVNTU6xYsYIoWjy7ek8J+vXr1/Pe976Xq666iosvvjh5f2BggImJicyx3h1/YGAg8/7evXt57f/nLdj6HLWZMfeuYfVJF7Fr2wasbQAwctwp1Os1JkZ3ABAXKqxYfQ67tm1IzrV85ZnMTO1namIvAKXKMMPLT2Lvjp8mx6xYcx5j+7dSm5b/qzq4gnJ1Ofv3bEmOWXXihezd+QD1uWkABkfWEMclRp98TEpnIladeKGWT8un5dPyafm0fFo+LZ+WT8un5dPyafl6pHw7t/4YsPJ/lYepzYxx/fXXc8IJJ7BY9Iygv/322/nwhz/Mn/zJn2TEPMBZZ53FE088wYEDBxK3+wceeIBKpcLJJ5+cObZarWLrc2zZ/BNGRkaWrPztxFoLcw2Ys4CVOmMMxAbiCBOrJ0I/8urXvpFrP/vPnS6GorQVredKP6D1XOkHtJ4rxzqjo6OcfPLJVKvVRT1vTwj6L3/5y/zzP/8zf/VXf8UFF1zQ9PkFF1zAKaecwsc//nH+9//+34yNjfGpT32Kyy67jFKplDnWGEPD1hkZGTkmBL2tW6jVwTRka8gMEJGRrRRBMcIU484WVFlyBqrVY6KOK8rB0Hqu9ANaz5V+QOu50i8s9rLvnhD0H/nIR4jjmCuvvDLz/vvf/34uuOACoijive99L1dffTW/8Ru/QalU4oUvfCG/8zu/0/J8c7XJlu/3GrZhoTYHU3WYdWK+7gS9AQpR8p41BlPoyRiIygI5cd3iufIoSrei9VzpB7SeK/2A1nNFWRg9IejvvPPOQx6zZs0a3ve+9y1BabqI2QbUGrL3W92KiI8NFG1qsY/r2MhgInW/7xcuvfTSThdBUdqO1nOlH9B6rvQDWs8VZWH0hKBfbOJCpdNFOGps3cJsPRXyM8FrEHf7euB+HxsoNKCkrvf9wjOe+exOF0FR2o7Wc6Uf0Hqu9ANazxVlYfSlD/aK1ed0ughHj3Xu9X6bsyLqH9gJ12+UfWixr1todLrQylLyuetu7XQRFKXtaD1X+gGt50o/oPVcURaGufPOO22nC7GUTExMcPnll3PgwIGeDrxha3WYnIOpOZiuy/6nO+HftqUHvfYkeNpaqMRQLcBADJXCogdiUBRFURRFURRFUeZndHSUZcuWcfPNNzM4OLho5+1LC/0xgUWs9MlrYMOO7DE/2hEcY30KREVRFEVRFEVRFOUYQAV9r2LDzSn1C1dnj7loTbOIV1GvKIqiKIqiKIpyTNCXgn75yjM7XYSjJ7S8e047AU50j/SV6+BMTf/Rz1z/pTs6XQRFaTtaz5V+QOu50g9oPVeUhdGXgn5man+ni7AI2MwuSU83NAhDwGkr08+SvZrn+4lzzj6l00VQlLaj9VzpB7SeK/2A1nNFWRh9KeinJvZ2ughHhfXCvJET9QCTs1Br+kLzccoxz4VPP7vTRVCUtqP1XOkHtJ4r/YDWc0VZGH0p6Hsev3be0wjc72tzqaAPLfJ5a72iKIqiKIqiKIrS0/SloC9VhjtdhKMnb3X3+8m54JilLJDSbTz0yLZDH6QoPY7Wc6Uf0Hqu9ANazxVlYfSloB9eflKni3B0tIpw7/fjZP8O18+rwO8rvvHNH3S6CIrSdrSeK/2A1nOlH9B6rigLoy8F/d4dP+10EY6eVnnoQ9E+Z5uPV/qKN73+ZZ0ugqK0Ha3nSj+g9VzpB7SeK8rC6EtB3/vY7Dp6L+xn6ukhc43sZ+F3FUVRFEVRFEVRlJ5HBX2v0ipy/VSwft4L+vAY1fKKoiiKoiiKoijHDH0p6FesOa/TRTg65otwPzELZfd+rZ7/luah7zM++en/6HQRFKXtaD1X+gGt50o/oPVcURZGXwr6sf1bO12Eo8OL+Hwe+pk5GDLyVGcbzS754bHKMc8Lf+GZnS6CorQdredKP6D1XOkHtJ4rysLoS0Ffmx7rdBGOnlCYe8E+1YByEUrAXD09SEV8X3LGaSd2ugiK0na0niv9gNZzpR/Qeq4oC6MvBX3P0zLCPTBVTwV9vZF+ntmrulcURVEURVEURTkW6EtBXx1c0ekiHB2t8tCDWOgHC1AyMKvCvd/ZcM+mThdBUdqO1nOlH9B6rvQDWs8VZWH0paAvV5d3ughHRysruwWm61ApQhy3yEOv7vf9xgObHut0ERSl7Wg9V/oBredKP6D1XFEWRl8K+v17tnS6CEdJLiie30/PQiWGOEot9BoQr295+a+/qNNFUJS2o/Vc6Qe0niv9gNZzRVkYfSnoexlrcyI+FOnjs1CNnIW+0fy5oiiKoiiKoiiKcsxQ6HQBlAXQKsI9QG0OBmIoOgt9q4B4KvAVRVEURVGUo8BaiwUagHFbZExnC6UofUpfWuhXnXhhp4uwcOaLcG+tuNxXIyjF2aB4un6+L/nQ31/X6SIoStvReq4cqzSspdawTDcsH/i7f2O6YZmzNvXUU5QOYK1l1lomLIw1YNRtExamGpb6UdRPbc8VZWH0pYV+784HOl2EhdMqwr3fjwPlgljom4Li5fbKMc9rXvniThdBUdqO1nPlWGSmYakBNQt1Cy97+YsZs1CwUDRQwVJQa6iyxFhrmbYwbWHGwizpEDQ2kmSpbKEaWYoLqJ/anivKwuhLQV+fm275vrVW1qbXA9f02EBkMFEXdZx5Ue7F/RwwUIRCC0Gv9B0nrFze6SIoStvReq4ca8w0LJNONNVc1148fjljDRm0lQ3UDQwsUDQpykKpWZi0MOUFvRWXe5DJpllXN2lAFFniI6yf2p4rysLoS0HfCltvQK0uQrjuhL0sCIJihC1GUIgwHe8854lwX3NNarUAhRjm6q2t8eqqpyiKoihdyawVMT8ZWEHnnGiKEev8nDs2shBjdd2ysiTMWcuUE/NTjbR+1pH1u4WgbhogtjCA7YJxs6Ic+/TlGvrBkTWZv229AVNzMFV3+znJ6Z7fvGjuNK0i3E+5ZrQUuVY1F+VehXzf8a31GzpdBEVpO1rPlWOJmrPKz1iYbMg2buG7d29kwgn9mZyFVFGWgjnnYl9zk03TFiaB7wJ/DnzX1Unviu8noo4Ebc8VZWH0paCP41Ly2jYszDixPtuQ19P1VNT7v2fqMFvHznVY1LeKcG+BqVnnb2FE0M/Wm49pOoFyLDM2NtnpIihK29F6rhwr1K1NRNOs208jgulz4xN8l1TIzwXHaJA8pd1Ya5kjdWKdA2aAHwLvBr4OvAP4vvvMH3OkI2ZtzxVlYfSloB998rH0jzkn5L2Yn5lH1M82nOivd7bzbBXhHgvTczDkjimarDdBLiCedv79wWW/fEmni6AobUfruXKs0CC1bHrB/iPgPcD3XnQJVwI/9p87V+cw5I+itAs/3Kwj9bTurO+35Y672X3mj2scYeXU9lxRFkZfCnqPtRbqDdf6uB6y5sT8/Tvgug3w0x2p4PcB8zpppJ8vwv1UHSpFeV00Ut6m72q3ryiKoijdyKyPy0sqim7JHXMrJLm/M/P6itJmktBN7m8L/I/cMS8hO0ztkoWqinLM05eC3hh32ck0oxVL/ZwT95t3wb9th5/U4bNbYdNONzXpI+B30kJP9v/3L6caUHKCvhBBvR4c0+J45ZhnZqbW6SIAMnFWd3lrZxqSV1lzKSuLRbfUc0U5Gqy1MiQha+H8Jfe5cfX8l0lFUsOqoFeWBttiawBPc5+vAv7a/Z0/7kjQ9lxRFkZfCvpVJ14oL7zF3fus+b9/9ET2Cz/ckfac0HlLt//vw+B4k3UYckkLikY8D5S+5uqPfb7TRaDuctaON+BAA8YsjFqYaEhwp7lO/5aUnqcb6rmiHC3evpB3aX4qsBI47h+u5x1kBZP/nqK0Gy/g81b6Mbe/AKmreev8kfbw2p4rysLoy7R1u7a5KJr1Rirkk6luC6uXwwNPpl/4GRcV3wbCv1O0inBvgekGVL2F3oiFvikgXnC8ZhE55nnH217R0f9/zlomXWqbGmnE2wiIDZQszGkuZeUo6XQ9V5TFwJIGE0ss9UjbuQcwb345q8lZ541a6JWlIWOZDzxD/Ej5ydwxmc0efuo6bc8VZWH0paC3Nkjp1rDNoh4XBX85cNmJcPoJuRMsVUlb4adHc2J9ehaWl+V10UhekfDzbvEuUJaMcrl06IPaRMNZ5n3OWh+VuW5F0BcN1I0bnDZgKLLEKuqVBdDJeq4oi0VGyAevtwADwHHlEgfcsXnrfEMn6ZU24+1ZeZf7/e7z/fljTfbYw62e2p4rysLoS0EPLl2dtVkh7/ePj8tBT18Np6+U141ASHdIeNi8xT1cTz8xC2sHpGxxLNP62S9nv6sobWTWpnlqp9y+5gapBpky81EeCm7+qaoDUkVR+pRW1nkL/AQ4D0kR5t2b8wHxtFtX2k0ryzukFvqxeY7TySZFWRr6cg39yHGniMD1AfHCzTZg6wScEIkbe0gyLd7B7jMU8aG1fWYWqu5xFqNU0LcKiKe9f19wy9fWd+T/tdZm8ijPOFE/CXwH+Avge85qXwv2dfUeURZAp+q5oiwWjVxAvAbpdj9wLlC8Yz37aW2d15ZTaTcNWlvpnwTWAHvdcfO53R8u2p4rysLoS0Ffr9eylvl68Hr/jKiQ01aIG3vYGnVacGTEfLhZmJnLCvowr4hyTNFwEeIPFSV+eHhgiUqUJQzuNGvTnMo/QvIpfwN4B/B9J/jr7nMN7qQshE7Vc0VZLBq4vPI2K+ot8ABioR8aGmSU+aONK0o78RNMNtgDHABORertDPOvtT9ctD1XlIXRl4J+YnRHNmWdF/XWinV+dQGGYpiaky/kpyXpUMqtg00ujFsoF8S1qRi3PqbTExLKgmm4lG8TDcuEhQkrUeJnGpbGPM/1uZdcuMSlFHyH75NHePfRfD7lm0nFfN0Jf0U5UjpVzxVlsfC55/OR7ncAo8DZwInPviBZp6xp65SlJuNCTyrq9yGCHkg8SMI6eaSTTdqeK8rC6EtBD0CjkRXyDTclvnUKTloGlQimZpu/1w2iOCxCwzWdNWCgKIK+4B5r3TYf3wXFXygNK/nL627rB+rWMtWwjLuUb+MNGHUp4Ebde92W/i2cwQ+3n8kddympNWoWZ6XvoutQFEVZCvykZiLqSd3tTwPKwAiyTjmZ03f7xBlP206lTfi6lXf8tIiF/jhgyL1uZZ3Xmqko7acvBX1cqGSFvDclWgvbD8BJVXFfr82mAj5cN9+xFsrmpkjdftY1s0naOvdY53w0/7yw763mdc6KZXqsAWNOyE5YmGzYrhKyi8lcIOQnbCrm/d6/P+HuyUSjWdTv3rO/I2VPYkzmXi8PjvlLJJ+yd8f3Fnp1HVWOlE7Vc0VZDGyL9fNe0P8Uye0NUNq7n33B9/KC6djsCZVuIF/PwuHwPqRvX0bWQg+5LAyHibbnirIw+lLQr1h9jpsODwRyw8JsHXbV4aQhqMQwGaS3g2Yh3Qla5aGfcvHCy+5xFlxI0dlAHuWn9XsAm7iZp2LWC/rRQMjOdPJ5LCLWeSBM+GsOhPxEQyzxXsh7UT9p02jy0zZr4f7cdbd25DpCIe/FPMBu4BT3+gRSV/xk3SipU4miHC6dqueKshiEbva+DfRt509IBf3jX7iVSff6aARTN1F3ffxUwzLp9tMNS61hmQ088hpuUy+EzhBa3PNWem+hP869hqPLwqDtuaIsjL5MW7dr24askE+s82NQBYZLsn5+wn2hWyLFZ1znA2E/OStTM8aIy71PqzfXwt7ZQx3irHMnn7QSCX3WpqnOYgslkwZqMQ1LKerN3CjWWuaQSO9+m3V/z+Ve18jeA/+EI6BooWzSWbp3/u4rl/ZCHK2C51hE0J+J5FT+AbCWYBCLi4pvoGQtRnPSK4dJp+q5oiwGDfxyo6x1fgLYikS4j4AX/s4rudF9Jy+Wes1Cb61NUpnOkkZQB4j8MMa6PXL9/v3IWgpAbCDWfmLJCKPc+z6+jsR4OA5ZErKf1pNN9ggek7bnirIw+lLQA9nc80n++RmxzgNU3a0JA+KFf3eCVhHusZKybij7tjEQ1eqtg+j1QM/fsJYZglzmDRGzPnBawYgAbPjA/gaKPSgE68HApuYE+6ybvKhZEqE/h2yzwEbgduAy4GctFIE549zXrdyLTmGtbVpD50X9LuBERMj/AHgJMiBIojsb53JqIO5Q+RdKeN0GiHqsHiqK0hn8UqO8y/2DwEq3RYhLM8A0UCLrOGhNT3TrQCrmvXeZn6j3bSfW2SfwbWn6voFEzJcsVIylaOi5fr/XmG8CadR9fhzidr9/nuN0KZ2itJ/+FfRJILxA0D82BmeOiBr2gn66LlHj82I67X6WsMx+y3bdjakGs0NFZiND3RgwlmjIEM81KCGz2T3T2ztmnVXeb9NWBjI/Am4DfsXCzyJW6gJyTAmx2vcKdSuu9dNW0r3UbCrmwzzus2QjxX/Cff8/gf8HPAcXCsKk1vtOEXbgXtT793cjgfFOB/4Vmbwo4UQ9bh2987roFUFvrU2tTG4wHhuxIpUMFHWgqSjKQchMapKK2/uBp7hjDDDsXo+616GdoZcEU82mnnfTwUS9v5ZQzLvhTGKlNzjLvBVvtDri8VXWZratZAR6YOPajxgUSsiE02Pu+Lx1vseGn4rSk/TlGvrlK89szkNvG7BtEk6syl3x69Cn59IvtrJ2d5KGuGpP1hqMDZUYMxIFd8zA6FDMuLVMkOYG7RWstYmg9RbqGeD7wLuBO4B3IVZef4x3Te8VGtYyZWHKD27cOvmJRpqSbhKYIr32PyYV855baJ4F9+sMr//SHUtyLSGtLPO+7u1B1s6fhszm30t23ah/jr2Svq5uJYXguHWxHazEPDjQSGMcTDV03We76UQ9V5TFQNaGp272flLQB8Q7j1TIfufGOxggG0m8KaNul9Owlhnr+nTf/7l4MeOWpD1NtqBfHGuk7/kJAW/l79bguNbFAJizEhOg3qNxAFoFYLRIQLwV7pjlyGRTMkz23/V/H+Z1a3uuKAujJyz03/jGN7jhhhvYsmULk5OTfP3rXyeOUxveli1b+MhHPsKDDz7I4OAgl19+Oa9//evndcOamdqfCnnfUu2bll51rXO5x8i048QsrHQNUT7S/VITmjwbljpO9NUsM8NlakDDGCwQVyNmrWXWpF8pd9uExDyE68lnncCrI5b5kK8gVvo5K2uv5XHannB3rhN4HriBzYx11gr3+SzwbeALiHX7pcCvAO8LznMp2Vlw/9oA55x9Cp0gH93eu5DuAVYhZXsmMknxTNLlBN5C79PXdfNzbDi3UT8g9RNQkM4Hlkk9Jqrdeyk9T6fquaIcLaGrfRhPpI4ExHsdqXV63VmnsIycoCfrer/UToNHyqzr4zKiHvgh0r9fCpzvjvXXDemkBla8t8pWlmaZSAaxRZvaYLoBHxfHx/7xojZGylm0lkIPxQAIjQZhnRslzV6zDHgy+E44LvHb4VyttueKsjB6QtAPDQ1xxRVXMDMzw9/8zd9kPpucnOTd7343L37xi/nABz7Atm3buPLKKxkcHOS3fuu3Wp5vamKvtDYRLqy2ha0TsLYoKd+MkfeGDNSchT4/7dgJUZyLcF9DrLfTMzA9UJSAaRasMcSlAgVrqeACygAFa8WVubv1fCrkybqdPwtxM/f8Etm117POBa8X3E58kDs/eeGXFPwY+CowiCwvaAAvQ651AOkQ34JY6n3qt3xH6x/vhU8/e8mux5Mvi3+9132+Ank+zwI+HRznxXySvs5093MMrUvTNh2gWqTcJSP1ksgN4qxV9/s20Yl6riiLQSb3vE0F/uNufzrSfhjgtKedzTLECw9aW0y7mbznnRf3PwTe4475T+AK4CLSyOkjyPXfh8SOuRTpP2JcH+r6/W6ZBPYxAvzmJ6tBlgsUrI/5A0UjS7NiujsOQMaWRFrf9pIK+uWka+rz1vkjCYyn7bmiLIyeEPQXX3wxAD/+8Y+bPvuv//ovGo0Gb3zjG4njmDPOOINXvOIVfPnLX55X0APSwsY29XHbNgUnLZfPjJGtXJBobBCsobed7z3d7G+y9roxx0y1zDRQR9K7FIoFyg235sxaCZyGXHI3I+5pIuC94PVryB9BAqo9AbwZcUdM3LQDMdjJoHCHQ8NamYDAeRe41z8GrgqO+1XgNYijSIz8WOeAZyOC/inkAs84IdzJR5zPQY97vQs4HrmGCLgQ2AFsR1LZJW73Jh0AdZPFJcRam3hYeGE/7QanDYJ5QuT3VqQ36qWiKEuLb+sSSz3Sfvr88zHZeCIjiBW0ScwfgWDqFD6TSTJRb1t73t0I3I14pYVZXPzr/wT+Bni2TWOuzHXR9fsJ+olgorduXaBi6zwKjPRvJS/undW+aLozoGqrNHSWNGUdpIK+0eL4XorxoCi9SjcbwQ6LLVu2cNZZZ2Vc8M8991y2b9/OxMREy++UKsMuiphNe8Nt++HEcmrOBigVA0FP1jq/xKpJ1h+lkwnSMboZ7+k5ZociatbyQAM+U4fd1ZhaIx0w+MBj3U4Y6d1b6uvIe7cBbwR+DpkZ9ul+vBicJXXX7mbybpb+76/ljjuAWOUrbl9GJmiWuc/3kbWC+3N7HnpkWzuKf1Dy6erCHPQr3esIuZ6nIXEQwufoB2ezHP6au6XGD0z9uv9ZN7H2A+D9iMVpmmAZgXvdrdfT63SinivK0WKtTdu+QNRbxN3ep6vz7ua7Ht3OMrJW0F4STaGYnwvaxZ/PHfdeZML6S8C/AR8Dnp475laygVc7bWPx+BgBk1aGjj42jo+z4mPkTNj0ff+Zjw8w1bBdFxMgNBpAWtf2IUI+HJd4D5KMdZ7Dfz7anivKwuh5QT8xMcHQ0FDmveFhiQc7OTnZ8jvDy08KTJoWZuqwx8LJw2kOd4DBAky1SP3WqbbWTT5YnCUbJ9SnZ5mrwBYLVwPfjuDWtWW2z5EE3PFRZG0n0+4dgkaQjz3p/JH9t4Eqsub6OcgMvh/E+MFB4q7dmeIfNnk3S//6/NxxL0WE76CRLUZ+sDEyK+4nNSDbafpO9xvf/EGbr6SZ/Pp5X6ZdSEA8vy4yAp5BKuiT52iz6Zu6EUs2iFUd2IB4V/wn4j56D+m1hMGulMWnE/VcUY6WvJt9PWjDH0QEfRjd/d5v/aD1GvoeaFvCvj0U83Vksvd44BcRy/uzkEnsMiISTwXymcl/icAzge4R9HM2jdo/i1jqJ4HvAn8BfAcX+K8RiPpG+t6YE/gTTth3g3HCp2RNgtsF+wPIszPI+Axax3g4kuej7bmiLIyeF/SDg4OMj49n3hsbkznCgYGBlt8ZH93Ba975dt71vj/kXR/8I26+6SY+MP4dZkokSU9v+f4PuevAVphpgIU9+0f50L/dEJhCLdd/6Q423LMpOe9Dj2zjk5/+j8z/9clP/0dmxnHDPZuaonh+6O+vY/ee/cnf31q/gVu+tj75e2amxgc+9DlmZmqAS1/27e9z9z0/pW4tjbk6e6fH+dcv38RsZCgCdq7EzT/8PpseegSQRvnhrU/wT9d9tS3le/+HPpuUD+CWr63nW+s3JH/v3rOfD/39dZnz5u/fgw9v51Ofvint8C3ccu1NPPHodr4CvBh47L5NNG68g22Iu/YccP0117F3z/5kkPBf6ze2pXyL9Xz/++6NfP329YmL5fRMjS/+3eeYnKmxBhnYvOWO9VS+s5EBJ+bH9+3n+muuS4LKLAN+cOMdPHLfpkQ4P/rIdq79zE1JFX3T61+25M/Xi/OGha/fcAeb79uUCPplj27njmtvSgaoPws8fO1NPP7o9uRe/PTeTdz05TvE06IN5QtZ8PP9otw/f9///Zrr+MretHzV72zk3+9YnwxiZqZrfPjqz3VN/ev4/Vvk8r3p9S/r6vJBd98/LV9nytcAPvOZm3jk4e2JqN983ya+fuMd7CS10H/5musY3buf//HqlzIC7P3ORn4Yti8zNT7+4c8xPVNLvIC67f6970OfY2y6lvTtd319Pfd8ZyMNxNr+sr37Ofua67gIN4kNfPfGO3jivk0MIOlO/+DR7Sy79iZeTRo75obP3cSjj2xPJrI7/nw/c1PiLViz8B/X3sQ3Ht3OlcA3gD+8bxOfufEOJhEr/oSFT33sOrbt3p8I/G9+eyM33b4+zXYzPdPZ38dHr2PPnv2JqN9w90a+f4fcvyeB4ZkaN/zd55idqXECIui/f8d67v3OxmRyf8/e/Xz4MMv3pte/7MjKp+2Llq8HynfzzTfzrne9i3e96128+rVvpB2YO++8s/NTgIfJj3/8Y975zndmotzfeuutfOITn+Df//3fk/e++MUv8qUvfYlrr7226RwTExNcfvnl7P/RY4wUB8U6/59PwL4p+LUzoBSJqJ+pw51PwNgMvPQ0KMdQjaESS476aoypFpfs2m3DwuQsTNeZmpxjfLrO+Eydqdk6k5//CdO/eDI/XjXCx6OIqFHnOffv5qWTRU5+1nEMlGIGKzHDAwWGyzHRYBFT7q5M39alABsLZq4n3Oz2JiRN3WcRy/Qc8KfIOuzfRGaGvRV7OJJt0HRnkJmGu87RcGbeSqTf9yPryV9N9poqkeTrHQ+OfS+yxvI3kAHQkIGhSPYjEVSjpb92ay3j7tomcuX9E+AS4HLE+jKHuKX/NhLk7znBdQy66xiOYKAD13EophqWMWdNmXD775EGdgL4AHAx6TMZjuS5FLqwTiqKsvTk25Fx1999C+nrPoa0lVWkvZxEROF/AH/r3h/EtTGufRnqwn7PWsuks0CP5671QeD3gWsR123vkebjpzSQdei+H/lD4AVIYLwqMOz6i5FIXlc62F/M1//9NdlgvucDf46spY+DfQm57gJQNrJV3fUNdPC51q1lvCFpWX06Vp8O+X8Cf4ZMPtWBdwK/jhglwnHJcAQjBspd2J8rylIzOjrKsmXLuPnmmxkcHFy08/aEhb5er1Or1ZidlUzjtVqNWq1Go9Hg+c9/PlEU8alPfYqZmRkefvhhrr/+eq644oqDn9Ta1Df48TE4acj5twUNTjWCibn0+Jzv0JKuiU3+zyBQnMtDX69BvVpgvxHLrWnAZWMRx7vIXKFrng3O1U20CpjjXfK+gnTiw6Ru589G3NiStGg2jRPg1913I961PElTZFNL731IZ29IgyH5Dt6Qdb88nnQNvZ85D193Am8l8WXwryF1uYf0GXq3+++TrqMP1537yMXdRtgM+Pv+NCS2A8D/l9SClP+OoiiKD6yZj6XSIM0/79v82KTpvkYA74/Y5NJsu7ONCeOi+CCw3gPra4j4G0T6uQLS5w1GshVJr90got/3e/7ckO1rOkV+CYUv0//IHXcv8Fbgi8i1TLltElKrvKUpUn4nadA8BPaTTMtJn9HxwH5a181uXxaiKL1OTwj622+/nUsvvZR3v/vdALzkJS/h0ksvZePGjQwMDPCBD3yAjRs3csUVV/D7v//7XHbZZQeNcL9izXluIayFRgMen4ITq6mg9z1pNYaZ2fSL+Uj3S4r8n37tfLJuvN5grgG2XGSjhcuMdPojxEAjs+4pERVdKJL8uvl8wJxx4A4k/3o4m30xcD/i3uWPza/B7kYy+YaD108gwY6eQrBW3qQpi8JqaZD0b/vcOVuto7fWNrkPtZtWQtfvdyA56P2EhL/GZ5Km5/MDovBZduMgIFxWEF5jyX2+hoUHBFKOnKWu54pytOTjp4QTu17Q+3gpvg/4+rU3sYy03W8STXRnO9MU6JbUQ+tO4JdJrzOJ+I5s3r7iB6rH0TrKv2+TO0ko5JO4CIjXHciE73uB64FXAeuB1wIfBh5AJrbfi3h7+VSo4SRIp5ivnu13nx9HOi4ZQcZk833vcND2XFEWRk+krXvxi1/Mi1/84nk/P/PMM/nIRz5y2Ocb279VWl0D7JmSN1cPunR1kMw3ViLJQz9fMDybHrokBIK37iLk1mt1Ggb2FyMeN/A6I7PecwVgqpGZue9GayfItfictD6Fm7fQ3g6c5bYiUmHrSMT005DO75cJRLI/h4GStV3nfjhfmqJ7gXOQQEBxuBnZsOmgxgv6H5EJ6YA12Yj3L/yFZy7BFaUkA6uc0N3vPvdB8QzpxMwFiPV+G/I8k4kOkwr7bkpfd7AAQX6gfbBcvEvaXvQJS13PFeVo8RbOfF9QQ5aYvYPsxKcBLnjuM7FI/ziLTCBmLKBd2Lb4YHih153v27+N9GPn4cQ8qUda0bhUb2S35cBmf24CrzCTTmR3zjU9G+DQTzJsQvq+dyP9uwVeiHgmPAR8FfiD4Dz/iSypeA5BSl7kXnYipV3Yl4dW+v3IsofQg3A5LSz0rm4e7uhT23NFWRg9YaFfbGrTY86Ea2HrJKwrQRyJcvKmUPj/s/fncZYkx30n+HWP915mVtaRWVVZd/VdfV9A42iAIEGQIHGQgCgRBCmR0uxQGmk10qyoYyVR0ow+0kozuxyNOLurc7QaSRQPgIRIkSAJkCBAEgeBxtmNvrv6rPs+8nhHRLjb/mHuER6RL6uru6syq9lpn09URL338r3wCA83+5n9zEwj9IvBHE+RU7pfLZG0UqxUlevdsMBPwmMYbiLkLAF5D7z34U/1XGtiwbUF7Jf1nU9A/afRvOsYreiY2sh5B+rljkr0Wq+S7ldoU+TRquiRbh+j83HMaeuiNFKxUqQmAuqbbti7GsOqJFX8Kag/jebTTZGML2xTaC2ErzGGdi/XXru3hoOMJtXzTNhHSmyaBnGtRs/+OMhqz/N1WZfXKuPAnwOeQ9fEPdTrZIwz7L5+T9Ua7CKvjwi9o9m1Ju388XsoHT2C+SoyH0B9NMWi7ouO7PMkjlS5dsYebZCKbYae07NoQAJ0LFNhmwQOAH+V5a37Pk0d6U/16VpI2qouvdbnqXvQR5N5C5eem5ejy6/F9fxaskHWZV1WkjckoAfqVfdYH/YHNWljOBTVopNd5YVBk6Yurf1qSACDaf9rh1COHNLt8G0P9xtFgVPAoEv4RK0QSPbXygLlRerIvDRz57+FFl95J8FrH7ZIQXwQbXs2pBmhTx0E15LEXMIU1Mf78ySad52C3SwUB2pHKSxq2JxkPM19rYybdmQ+OlRO0exBH/NCo6PiTWjv9nY9hGvRMTPuOsdrfQo1xC8mr11LOZ7rsi5/HMWL9u2O27XKREtlJabWk2ix0zQ6nwLaqAMXaEZArxVQ25ZGm7rosEc71DyORqpjKl3Mn4+gvq33oI4AwziwuJagVxr6q0rLQgv/3UKt2yeMFv7bQO3o/sHW930fTTCfMu9WW5YFDMLrF9Cceajn6Az1/YFre26+nDgRhl5Y8hIKNQsDr2vMuqzLtShvSEA/Nb2t1gBHLsC+yabWrD4YMhJS5AVrozki2PWhmI4PhWVyR9npcgq4J9zNDQZGGVD6RrbA5XpIV1OiBz/m1sWCdg6lor2PmobeIYDccHwdsBMF/rEgXhqhX+tCMm1JC+GloPUkGt2N1MMYoe/Qis6bZqQC1OGRKtk0ZzttybEaMo5uLyjQ3Zl8zib30KLt6x5FCwONc8xcS/UQUgdZOs4+Ot9uQI3t+NnG36zqmb5xZLXn+bpcG+JFDezYHeWi1/2Cv3Z6eI+TCP7a1GyP1oWJ7epSppYBXnxc5/lWLhEFvYaG7ESWs+/QcX4GrYMzSxPMR7p9NgbQm/D5yIQaBzTXEvRGZ3272O1BNJ0uOuM7hA42oSvBBMpS+8fhu34Kde63C92u5djSKH187TyhCHPy2RmaKWevxuGy1uu5iDDyWtl/QbRrwUUfOhOJdjAYernmbOl1WZc3JKCfmJrRFWrodFXat0kj8tYEflvMoQ+AfrhSpfvVe6C9NAGOE1HPbQkLG7rcagyT6OK6CRhZkEKX3wrsreoZv7yIyFgPfo6C3G+gvefblLw0uvs24CFWjtBfS0Zdu6Jx3D8B3Ih66mN0PgX1EcxD/cDGRhex4u84kPn0wUNXfUyptIvFxe00WhAvpU/Ggn8dYC8K+B+hdsykzo+i/UNrKOn1Tcd5Nry/BzVoXo0hsy6vTlZ7nq/L2osTYSBULUDnA5CfD0b4kmi23LUYTYtMrXGdTp6irnCfFsQzwNFndZ5v5LUXHlsNGZdKF9f3z9IshtcxSUE80xx3TDmwKKB3qPN3pbV4LaQB5BMdfwbVBzeTMC5MHaWPY7VoPZkd6BjHRedXO8szyjhGWgT0KeU+RuijLhzrcLqM31vr9TwX7TJQtVj0oT1tOI7ry/BaetjWZV14gwL6C2eeUyv76LyW5Zzq6CpbAXpq1AEwGBPrXWUr3QkUIpXXOypGKeBsr8M9llAwxdAzMLBA7huR+ap1yDWyEFXReepKrtGD/yk0cjtHTTPsmGaE3qK0+6/SLIjXbn12LUhsU9QAq9T58/fQnHYpqE+p9ul+J6o8xylcL/DRP/W9qzq+1MBKj2PLunQcMaUgvpa2r0uvU2xvdK04ZtrOijjOM+j92MQYQJ9u18g4/jjJas7zdVl7kQjmfbIFAL8k0A+G9yAY3dfK2hElBXypg/ckunYcoAn+LGqWfOef0Hk+wwoR+qjfrwERkYpx106l+xqqv99E7dSNefPRad9mpUVDdVPYn2c5SFzLsZctIJ/S7fehzvq0Jk5Mp2sTQ+dQfQnN1DW/Rvc21etpwACUWj9Ds63gZuqgzLi5eTlP4lqu56UIQ6nbBi5F52A89rq+xLWluMbWlnV5Y8sbEtADurIcHsG+zYkL2CSlxGOUHhgWNZdtjdykziuYd6LHMfrcX4BzvS63mVr5bQPmrUG8p10Qrzr7a2AdSvvOR8q9A0bA76B5ZQ0PPk1qXobSEw2ae5jmXceI/1q2e0klzZ+P5xjvR+w/vyx/ntqoG5dPuBU1bGA5iF7tYUcnQupQiBIp96kzwrQcM5dqX1dcS4YqrchQeP0sWidgMzXlHsaQetZlXdblNUkh2tIrGtUR3C8moD6+PgifvZZkJabWk2jKTtrpJO1sErfNXILWvCojeHmpus0k63jUz58Bvpdah0cwX+l409IV1P+PUfoLjE8zWwvzLDrrY8u6FNQfRB00bWd9w0EfFLpBI/QnGK/P10oHtoF5fO0CaoOk92hL+JsL7b/j2tHhl5LYbWkkMPC6pYA+ricjqVsLrsu6XCvyxgb0R+Zh73TTFRwlHm+0MHD138DyCnNXWWLRHy2IJ3ikysM76xybbEaPWjF0MDhrwPvGIlzlP60VdysRH1vVSbPvfAl8AfX83kuLbm/qKvfVHqXdfwWWV0mnbvey1rJS/vxZNDJzJ83I9UpF8VLlP4tGhtsKcy0KsLVBbno+7Qh9RSc1teF6D3otDtG8hynz4lqQcZEKQc99Fo0gpTn0bWPoGhnGuqzL61IkFFGNDuAI7JdQptY/Br4ajO1Ym8Vx7TBjUvDX7nTyFHVBvAZTyywHTcsi9HJtpdS1wXxc08+iqXRpdfs2mM9CMKWdZhZNss0s7/CyVo7seA5t1kWaP38rtc6L97XtrI/v7aIudutb3633eXVHmOqtttPoPDWAT5l30zTnZ5vVdq2KVF2k6nSRIZre8XXgf0bZJfH9OsXiWh7VuryR5A0J6HfsvQ+8hyND2LchKbudaE7QMGKvA8Nguo+rdL8K4kTIU6p9WFAEGOYFWzbViykGthg4mRnwrgkkAn3qWlh/0r7zqdL3wG8AH2R57nyMzEcwHyMYb0eNuWs5utsGqFH5Pw7sR/Mix+XPp978toGzDTWQGl5wqa/Dz/6Lj63CyFTayjsaI32UcbGDZkSiYiKEbQKlYH4t/F2Ddn8NGeXV2FrjPING6LdQR8/Sv3k9GDSvV1nNeb4uaytpWlV0COcou+fvoLnZPwV8Xer141rRAdCk2beZWk+g+fNVQTyaaUm/9m90nm/mtbcGu5riQm2cqnsNdRvaz6LO252ML4bXSxzW4xzZoOvseZYD+bVKOUhZdxF4p06aFNCn+n1cW74dqAM83sFxRWZXU1aaY6BOlRihj2MA1YEXWp9Ngw0vJ2u1nqfOmNQmfQT4+8DvA38T7ciT2nPXytqyLuvyhgT0Z08+DWf6+p8dG+pCeJlpFsUDmOhqhL69mq1iuK2IoCYBN16EYwKdYcGOXlB4xmDQfK0yqyP0hPx5Qf0Yev6rc+7jJM2vqwwz9PgZ4DDj29n0aEboI+B9E6oEX+LajO628+fTqMxj1PnzUdGntPt226L0eCt1UbxxefQ/8aPvW60hLosoxP+fCucccx8blHtT5xFG2v03GeOYob5uaynj6gTE7SzqYNlEs/PAOKNmXa6s/MSPvX+tT2FdVkniuh6d2nF9+GTrc79FM3p7rTx7ESz4lh7oo3ovAvos2YOume/9kfdXzKzUaXitpfW0i+Glzvq0GF4bzMcCcQAm2DJt2r3hZVrXXf3hLZMGkE9A3hH0+HpaQJ7xdXFAAf3pcJzO31SvrqZUz09rjuVh20IzBgY6Py+G43G68uVkrdbzdKxQn/unWp/7ba69Z25d1gXeoIDelUM4Ogjt6mztBm9w28ISNZ1E6GHVn2QvQumjASMB1Cvd/gkvzA5LOh2wmCqaO2XgQmZDGF+W+yKu/mlfUtL8urhF8P2baA/WaVq9aU0zUt+O7r4FrXYfveNphL5kbaMWqee3HZV5jDp/fhnlHjVsVsqj30bdwgeWR423bZ9ZhdGpjIskCArod7HceEkN1kg/fAsapVoiSZegrnSftq8TL7qt4n1Njap4HOU0dQ496BhgeWRirZ+9P44yt4rzfF3WTlJHcMp0ctRtPKN8gBYIuUYevHGtzRzqyN4etiqSa5oR+pltM8DLVLlfA9CXyjhnfayN8xjqiHg7STE8NCrfCw57mwRTKp3R0n2pIztdi9fKcdMubhjB/UG0/3wMPKStCKvuNTQj9TtQ9kFOPZ50fGtxb9MYUDyH8+G1NqA3qA68wPjo/OWc/1qt5+35FMd7f+tzH2D5M7cu63ItyBsS0ANwfCkUxKOlORPOF8BkV9vbjXtoV+FJdkRvd+hd66H0+tOPCEyXBbaXKSgyeuKbgH7Hglu+8FwLkYq0CF4aZbkIfJ6abt9BFX1aAbdqd2ZqYG+BdwBfolao7fSEtax2X+XzSx2hceh4j6E9Z8flz6fRmQb9MLy+jeWG3Suhtl1JaeeWp/nzO8JxfNQisO/QbF+3C9gNPEyT9la1rxNBcocMCm0lOShhWCIjh6xCs/qGwqd5vc+hxvhU+H+70j1cG8/euqzL61VS4JSu6x44Hj5zG/C/oKyn+Dfpc7rWUummxCkhaEG8W8NnDK086+T1GKG+mHznMlB/lcdwKWmnRKTF8H4HeA910b+qun3iqE+lrfPaEfqV1tdVdfKOqYkQt2eo6fbxnqZ6flykPjqmYm2cdlG81b63bZBLOI8LKHCP9ldql8ywckrItfIcjpOVghKz4f322iKt/bqsy1rLGxLQT2/eBUcXYP9EM0lrXGG8CatV7iFZ0VbvUU4LcETwKwIvIYyAblFiJ7OqkAzABgMuy6pzTZVebF93KREviPNI6XXvrlwk1IfCI1V+I3V+3f+JXvIFmq3qKi8+dU599HrH7S1oQbXT1AZEo9jeGq66aX5d6sl/HO1bvoVmpLrKnw+3NPXgp3n0MVKRevJTb/4Xv/ztVRkfrXNIz+U0ywviVVF6UzMwolHwAM32dfE+Fl5wgxI/KDUFph8A/VIZwH2B5FfXbVM5K2Q5/XAJNcZihGKe5ZGJtTa2/7jKF7/8yFqfwrqsgqRU7jQ6P0ALre0AvhNlPDXWxMuMDF5t8SLNKugJAIz951P2Uur8tAYef+jb1frSp/6ea8lh3wbzUf8uAl9E6faWRI8nYL5tjLaZafH9Wepe57B8fV3Ne52y7+JxPIeYPz+OfRdfa4/PovUFTjI+Or/qjvoExEN9bc9Ts9Haun2GOiVinA58OVmr9bwN5OO5x7n2PdRry7XiQFuXdUnlDQnos6ynqHHvZo3I22SDZpR+KlPQEKWF5a+mN9iHQngFUDpC2zqN1D/s4RYEcrCT3UC3r/POso7eWnEB0Ps29X75eUuIgDIsFTAtFbBYwKCAoUPcazcXPEk9AGpl+Cjwh+Gs/gFKvU6L4PViRD6JYFfvo6D4DpR2X1HuqesOrBXtvu3BT1vaRLp96sFv59pFSaM0bW/+BcZ7lucXl1gNWalXrdCscJ8ap5ZmhD6O+y1o8ZmfRYvRxDaNblhS5B4/dMqYGToF9vE495A7pLy6Ju04+mFU+DNhv4lmW6n0766BBhN/7GRhob/Wp7AuqyBp95K4pju0IN5OtEJ8mxlzLRndKdU+pWdH5+4dLC+elnY16S8uVVXu4RLdNK7+UMZKdNa3O9c44A+AG9G2fO32s1G/m7R2EStXuZ+lmUMPr5zWfaVEWJ4+4VAn70vUgL6qcE+t/9qO+ji+WBgPxjvqV1NWArnnaaa5pCbzFuoIPSy/Ry9nh63Veh6vcduWivp9gbWfb+uyLpeSNySgnz9/SK3vyawZmU+1Z1xdpyzkRf3HVSPOq/8kV0aLl9qIEf3pJwXeWjisQKeb1fX8wh3thvCuOL/slMetp+IlgKQQ+eyXNVhKXn+tUdCGMSO1AmwXNfpdmvl1mlJgmn1raRaOexsK6FNveRqhX+v8ulTxC+rESPvPL6tuH7RkW+nHrQdM0sonTBTS+77vHasyxlTZp/NL0EjDjuScU1BfFTZMQH2UPwD+NqE3feHxhcMVHlf45jwduXrLPYzKq0a/b6QUJJGLWBAvLqab0YhUvAYy5nhdrpx84PtXZ56vy9qJS5zbaXFYB3wZzcueoa5+nq6Ha5V73JZxus+jheJKlOWT6oE0lx7gwe99BwZd86HpvIDmuNdCSmmBeamL4f0O8H6SuiktMJ+N+b4Go6vFTJtnOUNhLQBvuzZOPH4BTS3YTeKkMc3xp/ow3XZQt65L9epa1Ahog9z42kXq/HloMii2UOfYk/z95c7PtVrPK1ZP63xjnaJUp4/br8u6rLW8IQE9AHu21NVWUlBfuRrDfsrCqFz+lMNVB/VVjrnoolh6XXBeCFHf6/NCa/pltgb04W+njEEMULrlHvxxiL7QCGcF4EcBNKX/j1HQ1xCpX6l9267W5z5EMGqMAteqnU0A9TFaH4G9BR5EQfIirWr3iYGx2lLlzLc8+ItoVeNG/jy14u8k39FW+KnyHNu6Lv72Ko13Jc82qDKMOfRt4yWC+TR94g9a3/0pL7jS4UvBF54ygvdhayu8bqVQt3K4srJStOIMdZ4d1EWrlj9368p/Xdbl1Ui6jqaRX4e2unyQ5e2yLkvvraKMi+Q+CvzL8P4/RJlpK+VZp3GG7VwirWeNhtnoOS91Kt2nUF23jTGdaxJn/TgZx0yLa210aKwlBXpc5xpB8+dvJ4nKUztn0s4u7Uh9G9CPo92veiFYmoECQQH7LM1UgXgHZ3j9MdTiNR03l86htXEW2+9dQ87CdVkXeIMCemMsZGVzNU21J8m+14HF1iObhiCvkqQRCVWSUrWr+5rXAh126MgmTABGiujjaW8y4DpU4DsqgirPLjl3cQHMR1CU+2WReY1+JqD+VSgVH9IFxinBi2iU5T3APwfeZGrl36aftyP08XO7gb00c7Cj8bdW1e4bBZCkHu8TKE00GjlVfp2pj6NEn1MaqY+yHVU4sDxaMRjlV3VsUaroQaL0PUo7nEcp9226fXzk0vQJC7Qb7b3PecQL3gmlE6TwyMjB0yfhV76t+wjkK+/N1bnHKzkuYg/6aHBv4dqjw/5xltEqzfN1WTtJc7JTh/Dj6Np/G00qNoz3wa+VSCxqS51nHQvFpfI7NCO5aWQ6H+WVft/Actr5Wo613Zo16t1HgX8bPvNP0OJ/aZu6eDxOLsVM69FiY6zBvY6pZu02hBHQH6AJ2lPqvW11r0kdNzGHvgLDKzjLV2t847bz1ClmqaPJ0iyKNw4gv9z5r8V63tbt7Q42N1JT7q9FZ+G6rAu8QQH9jr33waNL8OKZoD1jeDtcjjSXfrqryARpPuXS2l9hiQXjYru6IuIVD48LPIBgR54s61YV7k21aRTbWwOlf/kFNYKhCOhjFPTJE/BLD+s+dzVV4FU2BY/58ymoj+fzONqu7m8A9zG+fVsUSytCn4DEd1Dn0VcgWuriaqtJWWsbOSkj4TE05zMqwzR/vl0gKI69Xe04RitSyn2qQP/lv/7lqzm8SuLvpscR6EJdLK5d1TcdazR27gZ+NPzdPwHu9OCd4L0gTnBO8M+dho8dgycd/OJROHgqWFRhE21pd6WlouS1tki5J4wt5tA3Ff66N/9qyf/+rz6+1qewLldR/Apg0QNfQVOtMpZHBtvP31o+e8Ly4mkA72197gdIWtbRXDP/y7+r1/NIO4flQG+tUsvaLfkETZ1L5Xepi+FVnWtW+M5xzLRoBWxjTOu6uF+lGx3vYxWYSOyZZ9GWdVHXpdH5ON60OnzKuktz6MeNbTXncfsZinKeOkLf3mbCZyJFfRyL5FKyFuv5OBs5ZeBdTz2e9t+ty7pcK/KGBPSnjj6iB4+cYFmzV5I9wGQgP8eoX9ttepUe6ZgrGJVj6fX4WQGLcIMBWwpZp4M1dTE8wlC2A2WWIaU0PK1tUCEiSlGugHrYP3MSfuEoPO7g547o/52vEfKroDU3ItUJwD2FekHvpBWtpo7epmKNqXrYphF6i0b5v4r6YNIIfZp/uVrSVvipA+NR4F5adHuzPH8+yriquIbxlPsIHv+vf/mjV3uIwHLPdjw+jRonKSUvjdKn9Q/iI2iB7w3fe0AE8T5gdFHDXkAeOdE8gYdPJGCeq2L1NJ4haT5LEdDHO7aRdW/+aspP/fc/+vIfWpfXrTiWR+gjMI50+wgkYgGrlZ69tZIUyFfHKC0b4K3A/wt1ZqcAMK6PAB/9i7qet52G8fth9QFflJV0+9tan/tBmmC+y3JdF8VAowd9Wjhulrp131pR7mNgIo3OexT4HadV4b7lsIfxRfFilft51r4Xfarr2tf2InXqQ+qkh7rGw4Uxf3c5578W6/k4+0WAITBCI/TzyefXsrPCuqzLSvKGBPQiQf3dv7vWFMtAfTiYDP7UQRn/eBWi8y26vdfXvAjfFAW+FshG0NmQVWA2Pf2egdJaqrZ10R8RF6Loxk5Riv64Hj98snlS3zjeXOFfBTJOI9WpAnwcXTA30Kzwm/bibUs7Qh+B8C3hO/8RWiW9ER0P13S1ZKX8+QFaNKe6j8k+7T+fykrRiq0sj1REhTQx0VsV8FgZHMke6gr36fm3qfcpmI/XYQ4tKHRINDonIrgYqUdw9+1snsB9O+v5W1VGurLjbjvE2pS8tDXfDDXlvv3364r/ysvERG+tT2FdrqKkPefT6ukvoNGz+9F1Y0t4Pae1Fq4yEBon7YJ4EagdQte9n0b7W6dAPtKz43rZm+hVunCGS9cLWG1ZqXq/Q+/LdwP/DHgT9Zo/rvd8W9rMrvjaDLUjG9bGodGOzsfj51AH71aW2zOpg2Yca81QA+XTrAw0V0Pa9kQ6t86g96CdpRr/vx0F/el9qWsAXPp312I9T+2WdNzRQbgHbRUZ34fm2NZlXa4FeUMCegB+ZA8c2JG4RsNqm/bfMMn/B2UC5Fvo+ApLM3e+pheWHr4l6vW2QLYodHp1y7oYnQf14Oc2qyj3hPz5GGlsSLsmgKAgKZX7d72mCGg7fz6ln38bjUxU9DTTjFqPm6QZtUGQAuEnw+k/jhpJKaiP13G1IqRlAKSl8/jcIaXDF46nnGe7CDtZPs52/nyUthc/LYp3Jvlc6jleDeNGRPBxfEXYghPpNHVuOa3zjwA+VvtNe/Ma1DHzYqAaOKcUeo8e+xuShjnfuw1u2K7HLnkur7CWTUF8qvhheQufWBQvih/zeK3LuqzLy4uEVmjt/vOC0u3fiuZTW+q+2BcYHxlcSxkXnRfgeXStSwF8SrlfyZG7mWaEGlpRw9UsnPYyqWXvAP46wWFxGbo9ignMw2ieQf35WVZ2aKzWvR5X5FCAp4Gbw2cMTSAf9V18L82vT3X7LuAETSC92ikFqR1B8vuDcDzDcjM5jm2aZo2HtXY4vZykRf9S58lZ1Fm/ibpyfzqGdZ2+LteSvCEB/ebZ6+DWuTp/vqpyn6y2UK9S08CwoHps06f3KijOFIAWAqVXqvGnRbgYaMcG6OQlWaejFdGNgvq4wG4whlFmK+3WWEx9C9S3HRVQgyQD/NgeuDHEWn29hL0So+Hl8udjtfcU1K5EPwel3bcj9B3gM63PfTqcclS2q9XaRkRwzlMOSny/xA91b/olzw1K7huW2NJjROqxmuX581HG9eQ1KJBsK5qoeD/zmS9fVUUjuYNhie87/KBEBqV2hBgWmGHJaa9Oi3GReT02TTCfvHcD8IKgufPBMeIjqL8w0nHt7MBUIPhFMN/usXMFpa3soyF3gUu3rYt/G09vXa6sfOp3v7zWp7AuV0liVD7tVBLB4pdRsJgynDbSBHptauxaSAS8bVDv0WjuTdTreYOtZJpg9qHP6jxPWUBtQLFW+fMrpZY9TrM166Vq44yTNIKdbrPUem98FPjq3u0YoEhBfdwO0qTbtyn3saJ/vLcpsI9XYyfXRi/6cVHreN03hX2aDhhlGzWgb6REXMb5r8V63mYZxtlzFp1rG6lt14ZzYpXvx7qsy6XkDQnoncs1N75rEzBPgppa7sYNViu+Q6I5x4D7KyBjK8GL8KTAJ9D//yuBlwQyl5P1bJPGFUDSFFD0MvAr0PIu5WJMleHu3nIwf7nVTRK5VP78KZr080vlz6fSM80IvUV73abyfdSLdNoD/mqLLz1uUOJyh+QlfuiQUQm548Wh44GhozMs6Ywc1nktmENT4aeSGjNpHv0s2r845tul93d60/RVGauIKJgfOWTgkGGJGzpkUCIDfd2MShZGJTu8rEi3h4SSmESkLBrheClYhj5Q7sWLpp6cGiA7LOzYCGfy5jNZWT1XduRtZR+3c+H9rcm5x+jZSn+zjumvrGzatGGtT2FdrpKkLLVUb5xEW6E9QJOxtIUmoIe1d6bFJSk6lVPA+zy61rXBX5qKFdfP6Y3T1Tg30azov5Y5vSulli0CR3hlqWVtaUfn247s9tK/WmMX6gBFdGjE330WBfTRMdNOIYxiktpHbYfFHM1e9FVAgtUDkOn1TKP0F1C7o10bJ922MKYwLJd3f9ZiPW+PMZ7naXSuRefFpWrjrMu6rLW8IQH90vwJzY2fyOoofXSNR0kr3fe6MAzL6LhK91dQYiS7Ml5CVPILYdXoCQyM8FUPnfmSbMpWFG1jwxCMYSMw6lpwEOPxEpCee7lzl+QDF3IaPWHaoP5SXyNamVxKjyscrvDVeNL8+RtQEsTl5s9HSY2gqDzvAf4f4f3/AY38r3YOmjiPGzqKQnBDjxt6fF7iB45yWHJk6Lht5LAjRycv6YxKspEjE2ko/FRWUvyz4f1o3KTK6K0P3nt1Bph0QpCRw8d97pG8hKHDFJ753LFrVILIihV922A+7m9EKffiBV+B+WAYnyrwOzfBtkk43W+G4iow/8oYJC8nbeMmXuuzKIDvJmOLyn8Y9uMosety5eRd77hvrU9hXa6CRLp9I0KP6o6H0LV9M02QNMvaF0trS5pnXYF66mjuzSxPO6po2gmYve/t91YmSgRMsPaOi0u1Zt1FM5d8pdasK0nbGZyO/0I4XgauXt40ec2SAvnUiXEG1cW30GSepceppNHtdJzXQi/6Ntkt/uJ5ah0Xh9O2TbbQaitIHc1+uTNfi/W8Yli0HENn0bTBmNXfZt7Buk5fl2tH3pCAHlAwv6GjwD5qUKhp9qlMdWHgl0ezr4LmaBfPcWG1uEsEI9qPfkrgnRbsqCCbUIPGWNPwR0wbLYpXBAtiHHWqeiWutunYinDQpy6UF9+r3NErD16cV1ZDv8AvFZQDp/TzQYHPXQXsY7X3qMxeUY4d43PQ7kH70U+zPActLtpXS8QL5I6y0LxyV3pc7jRCn5ccHjm2jUp25w6bOzq5p5N7srwkCzT8lZT1uDz6DFWeZxkPHK/0WMV5bWEYWhzKUMfmY4R+6JHcIYXnYuHZ4YTMyTJmQUqGqcC8qce1zyuYPxkGofdNXVPu1CKyYwrmunC+Xz+HaWQ+DZlcAVmpF3AsDgS1cbMx7OdZvmSs0/PWZV0uTzwh5Yzl1e0foq4lk6YhbaYVuY37VQB5K0kE8j45FrQSugf2Mz46n9bpbUeqI6Bvr0mr7byI6QRtMB+d9Xck53+p1qwrSburS9y2UteOaY97NZz27RZ9Kd1+D1rgN2UlpAy8VMaBecO10YveQzO3PLx+nmbNmJTQ2na4jJuXq+WQuFxJO9i059BZdK6BOgsXWHfQv1FFQutkcVenLfKVkDckoM86k7ChC1OZAvpepuFt2tojLE9THQX0UdKI9ZUG9IyrFqsLzi7gXcBPAbcZsHlNuY+Red1rxNCRUeTJKYdFdNlpt92ogHoCgsyPki8Jr13CQpLSaxHBQQkjBXvl0CmwHTn8UHOtxQuPowC8nWM3Ln++/UBFIyEF9vHTe4Cj1ItzmkOfjOyKiohA7pGRxxWesvC4kcPlHvfCafzvHeTki6e4M/dQODq5I8tLbF5ic0+We+yghGGpwDmRtkEXXwMFlJH6nSqkM2cvXNHpGZ0V5L7apPD4wiMHTyGfegL/4ikoPfOFp1MKc85jSz+2mm8cSyMiRV3w8DoRXvKiON1pLr0TQU73KXdNwLYNcE5qIN92OF1Bo6HtvU8V/lzyuTi+DbQoh8npXZuq4PUrp89cWOtTeEOIiLKtJHf15q4sEyaVqgieNCP08yhYfBAaLUvh0tXfX86ZJr41vkLH91oljc6n7LTngeuodd24tZBkf+HshWoN3RxeWwr7tQIZVeCBJrgVtCDe5er2laRtjsX1dRadC0Oa6/FqjT/Wdkjvq6B0+wPJOafR+XEBipWYaztRujcs1zmr5ZxaCYxfpFUQb8w2Q7Mw7CsxmVd7PR93fatzodbv09TdayozOO7XlfofW5HSa32ofgGDQvejEhldGf1wJeUNCei37bwNM5FpHv1UVyP13US5tCvdT3a12Ne4e3clab2XqBb7jMCbBf6cgVtsUBCLkE1kWIwqO9NUCtKzlEmKsYL68P9G6sCYMYwC7N0MXBiOj4KOWcXEiV6rPERyh05zyQdKOXe5VnqX3HFuVHJS5GXz58V5ZKQF2BgU9ZZ7jJdmAaGw7UUjIOlCnXrSr4oUHkYlvlBA7wqPlB7/0mnMbx6m8/Ai7/jdI9x7+DS2cNjCYXLB5p5OrhR8O3QwcNBvLhhthZlS97aj0Yp0rAL8l499+oqNVUR0fLkPe43S+8Ijz56Cjx3GPDzE/Nph/OHTnC89M07oOsF6j/V1lD4F9O3IfCTKWC8c8HA4tK3zouknMiwph+B3boQtgQh3flij5leQEvJKpM30iMeRkpfeG9DHZsUcwmtLB7zu5ec/9um1PoU/9iJFWH/7yRaNnOGVN2xEhIJWhB599r6BRrVjl5DUWTjDpau/r/RbscAnS0VrjIWuw6/BYq/0uDRzoZ+jBn+wfB1sr/e//cufrnT7dNhfZDlQWk0W0Er580N0fK8lfx6a409tm0j5Ps/qj99HfUTt6I12xTM08+fb6YNtJ0abtRbHuAMFjyPq75bkt1YL0KdR+ridRx0q45wtaZAhTQlp679Lnf9qr+epk2RcekFkI2ymdqCl8201HWjrsnoiIoo7YnByqHY5QwdLMWC5PPi2lvKGBPSnjj4C6OJqMoPJLCazTe5QKpNWASSMAbMrP8oScoAvN4oR8+dTKpcA4uEphNtFamq6CHYE2VR3eeQ2/t9YCi/JghOy6YX6fNLTSl8bOf3CzZNwIRl7pTVXWJXLFPQp7d5VW4kfevxII7vPlMJNpb9k/rwUrjYc+6WC3bj1C8ygVGBMs83PXuAYCQgLp1tH6q+wAZpQ0SVE5ytg//RZpA+yAToLcMvXjmJKjVxnhSMb6tYZheh3yE9PF4xLFdDZTrPSfVT4f/6//7ErZ9wkID7dfOGRb59EDEgXtUCeOs9ZQQviVRZIkkefMCmMMcsophlgRLjeC0e9Rs5iP3p/qo+fsfiJDG8MzFk4M9ARt9sqXiG3eaTkpeka8bqeQRV+G9BvounNb2/rcuXkr//VH1vrU/hjLVLE9SgxbqKBM3RXxbBpRH6l2bIuVrePa0WWqO1ZapBLsl8p97hyVEZH6tAtH19klL0Kp0WVJkQT/Akaob8pGUd0blZOiqRtmwF+4i//WEMHbEFB0zjHxWqtMeOo5w5t3TaLOl3S9T09vhwZp/Oi02MG1XurkWqWSsWySEB93D/N8oJ46X1tSzUe0xzrbHj/FMttmNUA9KnOa+uu8zTTzFaK0LdZg5erA9diPR+XXhDZQBHQT7OCk/5lHBTr8jqVpFYUI9fUd8P0tVenG66GrFSD640paegzBfdTVj0yUVJQiy5+DWp4NBKcr9tpGRBroRecB2NkXCV4L8J5lPpziwUrQeEXnkyEbLJTKzxDo0K6MQbny+qc2gv0MpHkIC9hEtg2BRcSdsK4AnnxLS9QOj35mGM9crjnTlE+cQp/z07Km3boOVjDM6XnzaXBdGzVhq6RP18GQysFkfE3rYGuxXqwIspSsLZSmntRyn0cVtvLLZdpUFyOiBd9uIMjowLzZSgCuGkj3vRhAH4SJoYW88kXyN4+h929WWl5ornmdDx0rF7DbgSpgkx29f6GoRuplf9WtOJzHCfJGKMRezn0xhXHF50VkWof70XutJWc7+IpkBKkB3JgliUnbPNa98F4IUucUSnwhQTMS23MWifcIMLnghUTo/T+dImfm8YZo1Ny2zScLsZYPVI/e1dAUgWeNrg4i/bCbo9pxQi9gL/ErZCqD048d73pr+X+XUuybHzGYNqVotblmhFxvl7bRmEtjp5mg3aK6QZ9JoJMdlbUb69EnNS952N03qHdPL4G/BhNKnf8xc3Uzk1or4N63Jht0WhLnZWJzq7W4qjrJzqvaL5KGEMD1IfXnwP+NDWQWwn8WaN/0E612kTNRkgdF3HcywITV1gqRmFir0SH+eNodL4am6HBvHslM2Sl8W+mCRrhZeybKyQNIJ8cH0fn5w2Md9CMc2KkOrG9343m0d9AontIdNBVvL9tvZWaeucYE6EnROmldjblYeul3/Uy+m8tZCXHRZxbMYd+I8sj9JfjoFiX15/UNm+i+0pf3+jMNLFIx0N2ubyjqyfrgP5SEheeqQyKon499fK3nmRxAQznvmEIAJB5KC3SyxTYt4z08fnz8LTAHomFVgQrYIeFgvtOiNwGI6OxwPbAzfvqPGtMLjFWTyMqn+4LD1MGNvfg5JhK4gFkifdUufsitXb3euyfOUn5saP4DNzjh/F/GvzNO8BZnnbCR5yQeSHLTDPHzos+QEViUJaJsRUeqMwLkGFx2AmDQSO+e1BjZ4AqlFQROnPlFuCYNx+BrhSeMhbFKz1ucYh/5hz5O3ZwqN/n0Ztn+ODuGezj85hPHSa7bjP27TvINk5grYBLDMg4dwxgHXYiG2vcbAW+3bqFqZJ6TeNr5M23nCtOkBcv4J8f4r9/J+VDJylunYHds5z0wowTcJ5MLMZ5LFYdLzQBagPMG6XbZ164zsOCCAtemPXBGL7YD4Be/59tm4Jzg7HzE+Q1OzP0W5ZHR+J1PU+t8G1436DGdloR93KUvyqR4AhM8DyZRS7hCHw9iEh4nuMzHMdnQToZdCzmcsN217hE5yk0HayvSymkyRqKek1EH9Z0nQKwDpl47U6agloXpqD+YZSRdCOqJyoqM80IPSxfB9vPnoiuTxWbLDosyqAzrVGnajU2A8YjE8t190oSAXyc8lGnn0HBwY2Mr4aesg4a0WlTD2KWmtY8DpBcbRHG5897FNB/B7Wjos28u9zn4lLjj8y0eI9rFsbVBY2pnRbvqaB0+xvR+i9txmHqdEoljik66OMx1IXxYAztfhWWlTYbLc6pBWoGQdsJEbct4f2LaGS74Rxgdebn5Uqb2RHP8Sx1F42o06OTntb+WhrPulwBqQq3JHZv7uHgSXjkJDywC+7cTdUhrXBIx6y5jfb6tRBfg8xsv3n8G6mrkWQ/ZZVmMa6yR8K3UfBT1tS9SM/oJ/S9NBqQyLhqsZHW9bQIdwZNpQpSyPoldgI6mKrCvQmJTHGt7/RA8OOjhNUPJy+mkgt0M5jtwMVB/X6oOD4Soe+FBQeLHhYFhqWvW+IFUOoeOangK9OvcE+fxZfCRec564U7vSiAo+nFz7w0o8GR3vLEcfiFb+k+tEfLypCj7aWi421BgfxRagUSjapIfbwiEvLm43m6wlPmGp33pcf/zhHcDXO88MAu/s27b2Zh/xy2m5HdO0v2o7doxd9//wzZF05ghyU8fQJ+6WEdXxoxclovoGHchFPYiiqfeOmjUvrNX/vsa6KDLcubT7fSIws58uuH8N+7F7lnJ/LO6/AhnX1BhB1SR+htiNanxZ6iGIKhZ2I6iTquNogw5+GEi3n0gj+ziN/ZxZtg1Mz14MxSY37Wk/w1DD69Diw3mOP/T6GGZdug2cylqb/LfiN3dV5yzNWK60agAEvuXvtg1kAqp1eaMlPlKLuQh11oMc1XIb/8q5+9wmf86qQUYckLiwILHpYElryQ+6tXOO5qijhRxlVku5RhPXjqBHzsEXjyRM2gimvESNfq1zJeL9KI0Fe6EPgKyohpFJBLwO8W1JEWPz9W59U/pA6LCOKjnnnqpI7vqRNNoJ/7qj7M5Y4vBbnp8XOo03mS5aA3Rnehdnxa4Hf+62fr16l70adrSxzWasw2z/j8+QIF9HfRZFGkDvvLlUulms1widZ1r2Fcl5Jop7Wj8x4F9Lcl5zeuY0FbLjW+HbQo98n+1a2Uly/jrmf8/TPUfeihWQegGjswRavGwxjzeZys9no+7vqC2lTRcWHQCH100reftdff6r4uK0nl6K2o0kFHPH0SfuEoPFbCfzqi+qHwCUVp7WfBGzJCPxpcGP9GuxieCf+Z6NRcmyjjVqc2+Bm5+iZbo1yz+FkDktVRqVRBNPLnRXgC+AiJEQPa8myDqah5qS8i7rMO4BUESPin0aJjnFESke7IQ6ejhcfOltV7JTDwwshD6aVqq2cEJhx0nDAlQi8gy/LeXbinjuC9Rsb9ga14EZ52cJMTpr2QlZ6so9HbzEBHBJs+JNFT9kx4oAAePwL/rcHcuVvBotOq6qZbK8c9aB79bSSgnuai/VpEUu9d2IrCU5SewgvFH53GGeH5t27lXxnDYsfyhczy9tJwV1c0Kv/e/WR3bKHzu0fgCyfrLw/j467dVdTeeMFkZpny34Yq/nif4/huPHDda/OGx7z5lQD9rz6Hv2UzcvcsYg2yu4d8axGccDETtkcwL0Lmw3HHjK30a02SToJgPBgR9nrhuMBtIvjS4S94/NwGvDGUwMS2STjlgrcojDSC+SsUCqiuqTQVf4wErpRDH6sUp8ofs/yUJE/ytKIDJ6VzZaY6CTFgumtP7bpcqcD8sEzmThhfDE91bRhfiUy9csr2bQeuuyrnfrkiIgwFhqJ+0BIdjhFVsD2jwG0CeX1F7OMztdIa/MRR+HHg9l36/1YoVcaw0C5HIihMI/QOva5fBf42umakEfq4Js6E75hHr/klgV7KhIpjfPYU/GIyvp8I40u9Btbpvvfyz2E8/wh449rxAhrNTSPP7fadUeJnbgrzPL63hZULb75W/RZtg0vdv5Xy559Fwdx1vLb8+SgV4DU1pdtQO7IbYxd19F4twCu0WJSJGfg08CHq+Vg5nLh0Vf/q84ZGKt0O9Fo2wGYYX7TfrlYqVqrzoL6e0QyeYQzlnqYOnGV5x4m2Lhwnq72exwBP+xk644U9zmO8pkRuBZ7ODBLqbUny93B178e6rKK0Db6oJx4+0fzcN46rbnA+2OgekVen866UvCEj9IOls+PfSO9DCu6nOmpNkBjaLREvNX0vpYnHyHL8f+5qj04SkVrJ270IHBMFpdbXi302ErJOhyxQmG1YSdMhdCwaTQASkn1Sz09qLRiGV+1zrwbL1ik9scLhRCNOS0DfexZLWHSi0SivxwMvDASKWAzohm2Ut06oYbM/w+3ZhjjhRee5NUTVM5GmFx+wztfGVqTpfrP1QH39uIJEp2kIRjxZGIQB9lEXxote7ficvtZYp6ZWJGA3d7jCk5eekRfK589TPnuG8r37+ILNWOwoZbrfzfjCREanZzVS37FkezeT/dnba2s0yjeOJyccQC4JTQ+dD9vC2Po0leZtdx141d7jRt58CuTz4KT6wxPIsMB/337EWrwxyOwU0gHOLLLgYQuCcYIN4Nwm/ehTSQvjWaPsDBui+zcgHA0t6/zZPn4DyIYOpVFwK1un9EsWWoUbqwX5tSP61KBK/XhngQkUOKSGjEEj9Is0HyloKn8I60bZWjfaEfqU1VP6a7YH6ljxoi0wY+GxtOjYIHFkpDUaXqHcd8+Bq3Dily9Dgb6EiLyEtdDXzKXF8PpAVnCiXqtSUZqkfq6+1VqDv3WidkSN6YLxaqSUmmafRuifRl+7i2bENwUSE+H1y4oMumRccYzt8X3zxHJnZhjfyzFKvMgyyn38/7M0C+JFQBfpvalRGMd2+90HlkWoo1PxSkQMRaRimSyFebvohaEX3Jh523ZWpPnzd7XGljLwXqnRuRJonGF8i8L2Gnslpe3AiP8v0SKHsWtBhtb2yZwnyx3ZoEQCy0pck+HR7tITx7eTulMPLHcoX82VpP07cbsQ3t8Q9lXqX+s5hJepdH+J317t9TwdZxUDKBxLw5I9g5LOsMAMS2ZGJeWgJBsWmEI7X6T6/XW0sjekKt79etJNV1NSMJ8WTLpvZ/Nz9+5qObxXxoerJW9IQH9JGVfpfqqr+2igVG7LcNMJwCHNH09pGr/yiNL4YvStjFGqemFvFJaRJH/eww6EGaTy4mcCtu/Jup26srsxSXReTz7LaBjIWim8aeQQTl/3yWTMBSYzrR8AyIURQ7QdzcgJQw8DERadGrBLXsH80EM/gvoQ0fdmAve2HfhFgy+Vjvmsh9tcoNs7oeN8nT8f6OWNh8UJ3L2jea/u24VxCvxSEBiV4j7gCMs93NHweLULmEYdl4PdPAB6d3FA8bljFN+9h2LTJA9mFpdZBl2L7Vm+ayIj62XacnAio9PLsN0M3r+n+UP376rnkoDxXgsAhrkZH96NYX+O5Urz1QSpL5k3Xwo8dx6+chr5oZvxExnStUhm8MbCnq2Upxy5CLNeMCJ63l73JhTHa0saxbGiHnEjwn4PRwiU+3mHbN2IMxaxBmcNPjMaqjrTryd1CkCuwAKbRinSa3sGpdtDMyoDNeU+/Y6xBo3zLaAQQP2TSepF3nr/9QToK3QmdT5aHN8vfqseX9XU2V8zFWMvR4oQnR8IDKJjUxTMR3A/8Pr+SHRZfd1I+znystyo2bKx1nXteXwZoHf5T0rdpk7qlnWemm4fwXyM0LeBxHZW7kVf+a6js689xntb49u/teWo8A3n/KXmqrCcch8//SJwCzWIa4P6VFInaFo7ZTPjc3pfDaD1IvSFyjl/0cO81/8vhnk8StadmBZR2SvJOJ+gpttXaQQmWeNfYQSris7TXGNnqVPN9JwuHzS+WhmXQuHQ+9lFWYEWtUc6ucMOSrJhiYlda6KjNq8ds5WTPtmDAvozcWwst2Ou5lIyrvaxR2sWzKXn6wVTqEPW5A4TAjFxfqY2SdvpdC3IuA42UmgL4fmRY+fIYUYOOyyZ7Tv80GFGtV3UXldeLyIidX/1Yb1di73V10TSYFB8CK7bVr//J3fBDdub7K54vIbyhgT0vclNK7zTAvNRi/bCZRqsXOm+KhQUbqpzwuC50yz98jEWn/b0P3aU/NmT+CoqUGvBcfnzUWk8CdxBoGJJovyHjs50py4wE2l6plYMPQvWKR25qfS1YnhD67XnYeGhF8yl7Yby4ohcpDJKhx6WnIJ6jdjDwAkjEXInjLz2EXYIfrGPu34KtzlDjs6z6IVz3nNriNpmEgrjEeoDtGme8dq6hOL4I7urByqrcrUJFe9ryv2RZGjtHPpX/eiNaeHmcgXzeekpfucQ5W3bKW+YxVtD3rVMdCzv6mb8dC/jrg0ZnYmMbDKj27N0JjJs18LNc/CWMDd/bA/cOJdEkaRyXqQGbErPO0tT4R968dgrVjZV3vxoTFSq9DA/gl89BB/cg+yYxnct0jFIqDovuyfxJ+aZBiYlAvoQoScwKcb8bg3mhUy8znUv7DXCaR9ozKdy3PaNOj5jtLihMTC7AU7nTeBBPH7Fd3eZpPMlPpeg13su+Vw0OkEp92lFXGgaNJVU4Z5kvsdcrccd/NwRpTk3PvPyNzRG20bB0TbyoqyZVbQ8tKK9bxbDKwWeOVWP7z8d0boRVa0IUSfHK5DnXzz68h+6SlKE9XAkVLT7vui9XxQF8sPw/ki06vOVbpl5NWQZ4I3bDXOKpDYDb9sMX74Ip5ZqdkkC5mPO+SsxED16TatCeIk+fAhtV5dG59sResKpXYjjGLNVb7QZCF7ghmC07QFu7MBXTisAiyyTZN2XoUNG5YqMmQj24jIU/38RXTtuokm3TkF9dZqiTm8Kx5FnD2u70/B7mxhT0X/cWF9GvKgDfiA6ZxckOunVKRWdUwOBPPy2p3l/0joHjwF3U0eq47g6Y5wVIqIR68LpNoaB1O5BHy/PVl6myv9VkHZ6QQwOPAPcTg3ms7wkKxTk2pEC+7rFY9zr3LGJzdbuRb+EFvaNuqearrwG++UypD2P4nW9gM47vGCHGq3OhiV2UJCN1HnRGZaYwrFFpMmUGfN942Q11/Nl51V6fdZLz3Dk2DZ02KGC+ulc2y+bUEeDMrAteGXP21qLeGky5ZaCkyn2Vh8UyiR5HeipqyPthTRch8XAAp2zMLK1PRbZ2cF2Wcvr9oYE9Jtm9q38poa4l//fopM+3qv0plWrgQLnAUpVW3zyFPMZLHRhIYP5J06x5EXt8aqIgozNn48L9hMi3CFxkZdQMAw6Q0fW61Zp/pVRE87dYJjqGDpel85K2Vf72JN+zOQT1HCJubobp8gvluRo3nwewEEhwjc9/D+Bb0aw76UC/iMvOC+48+BnJ/D75/CHRrwocJ0XpkSNk44XrNc2fB0Bm4KXKs8RePwivG1OL8DUZDUYG/LLbTB+2jn0qTJ0rf+/Ukn7zafGXV5o3nz5xZMU1lK+c47Sgu9YPmUtH+ha/tue5faeJetldCcyer2M3kRGr7JMDbwlROn3bW1SQuMYGd/+bZblfV+/8oVvvKzyXCapYZ7S7COg/9Xn4fYtcN8cPjNIx+I7GjEXY5AdE3TOLLI1OJKsD158LxinIH0coE/rQ1Rt7gRmvTCNcFwEf24JmbNVQbwI6tkxDedGTa1a5dO/9gU2zpX2dhY1KtuAwqJGT/t+LNtEQHxzrjtZTvv9xvGm8vCXHlMpSpld8GqcLwjMi0bclkSjyqsiaVgyHePDx5ufS8f3KorLfO4Pv3HFTvmViBdpUMMLYISymL4O/C9hH52gcbsMf8zai6TzLbmH4jWX5MM3wPfcAO/YAR9/FpaKZmG5KoXEQ74y6G1L0dKDMUJ/GK34/Sbq6HzXkDDU6u+Yoa5+3rbLqrVwnLNCqFN3/vTd8NE71Fn4iecajtth4VksPEuFZyn35COH88tX2ai22qD+edQRuIkExNME9RB0TUi/MQPHV//g6xWIMiPHjJfLcxpexjUfSM0m6Yeo/IJXMN8X3SLodyE6r4+36vg4zpfC/bqJluMlOa5uQek1MthPtqVCAUVSWLHhwE6YCrMooI/XNTHDrhjgTddZCSkU7dRIQQH9Lah+y0YK5m3hyHKPDaCwKniapmAWPji7l9Put4TfPZWML3UsX81lxJPYisl2DtgWxmhGJTZXsMvIY4YlNtfXspFjrvBcCNevHZ2/1Lmv9npeXdPgOKPwmMKzmDt25A6TK8NiU1FS5g6JtlAE/2FevB6kLnSczMOhY2yP9VeZMvW6l3TxrGgbAvNDza+8Yw4eO7/crrkGaPdvSEB/9sST499INUe70v1GYFSwzHsDlXEgEiI0XlgAlu7ewZLV3OalDPp37Qr0NaFIIvvjlIRDDcPnRTggIXJJAPVA1s/JelkDzMf2cfGUe5ml6x15PM3wT3NRDedRTdzw4dxpNSfAbZ+iXChDxF2VeO6Fxz38QxH+APh7Ao9W2C+AeqC8OMQbcBsncDf08MfP8qzz3CAK8DqiEfnMK9U+C/TsKlIXj3MHTy/AXZth3xQcrVuVWR9z6DXSH5XiXjQiNk9T6XupFfErkXaLurj5AOZHz5yneOoc5fv2Uwaa/fPW8mIv47smLFnH0u1aOpMdsokOvZ6llxmyWKrZADM95e6dWKw1amJwppXu0+yQrSg9rzJqgB/+sx96RUyEKp+79C1AH7yPv38CigLevx8yg+9ajdDbCOhBNk1STmTccXpJz1dCKoTTaP1KgN6gERy9h8EwCuPfLcJJJ7AwwG+bwBuDt0YNZQNs78LppXiTmhH6l7MeLue6sDxKL9SU+zZbAjRKKOj8ay8V1f/bgDf+QJvWfN/OZc6dlSyIQqSKri1KTZuNVNpopOeroXRSUJiO8c7lqTPNayCvqE7AX/hvPnxFT/tyRWiyqpwoqH8Y+AfAHwB/C/gmdcQ5lzAnrvXoRwM9JPdwPtdB7tqo6Oy7durxrzw7vnjmK6h870TIpRWhD6fyFeABtNhau2p6Q23TzC1vAxJf/9gYZ4XA0UWNwHStFqH54RthmCOfOcrICYulZyH3LIwcFwvP0sgxP3QsjrR2SjrGMl466ui1oBXubwifMSzvVW4BKeoImgl1Jn7kw+/D5iUmd3RGJVtHJeeTiHl7rJczw7yI9gsPczcyTBZFo8NLogA/MkxGoil35chR9gtkWOJHJX7kwPkqOt9o29Yao4hoIdBh7HoRo9cu2etrcR1Io/NxnZ0Nr8W0g3HX4JVKxRgYOWRQaHeRkPvunTRstFS9HARlHBbadScrPaZQ2n2Wgqa0+GkAVrE7Tzq2NChxkuVzOE7ZqyUrXcuLXtgRgHxW+GpumqFDRh4zDNT73LEtd/RLX+u+5Lth5TVwNdfz9Hqm3S6k8CwUni2lgnsOnWbT7x3kukOnyONnAoDzwQF9ja/oKkVwoqX1vWLNnrQ1aahrI5fJlhMnyrDJw1a8jqn71YOW2JEACyVs6cCdM3BooOvWuODjGo77DQnoLylpMby4N0YL4w1akzvNsUAqMN8HhiL0929jcGOXJQuDt84w2L+VoQ+55hDo9ytXi31ahFlgp9Bo+WWAbKkkmzI1oLfagz099cnM0PWePvVpNhbV9koryZiGZZVqUM50KS4MQxEcjUo5D38YPx+o1Z/1apDlPkajBH9xhJvToml+bhoyS35ikdtEMOJDQTulWWdOK96bdu68CDx7QTX4zg2wfxMcXaoeuiqH3lGBRosaf1totq5Lvfev+LmLgDd64mJl+4OnyD/xKOVvHqL8/j2UmyYpM4PPLL/Vsbyza9nQtWRdS9bN6GaGblfBfM+Gns1xMxb2boAjw/Fgvqy9+VA/wNtYOYf+sv2sKZBPj589Bf/+EfjqafiTt8BEBgHM15R7lP5uDKfmZtl7IuTLS4jORzA/JpIFmjZiqGshWCHURBD2AMOLA7wFv2lSx2TAZwrqZdsEnMprMN8GI69hfU1z7NLnR9DrnQL6dNscPrcS5TB8+XjAuzuaqsCf2Kk053Y0cWxEsM7njvnb7QJtkQI+EH2Wr6qMA4Qi0JuoP/OjdepMtcVn/hqXdmQwgs/fbH3ut0ii89RR6GtaVgK8x5YU8HYsWAudDH7oBm1v9+nDuk9zzVOWzyXavUXad9opIBbE+zbwi8BuaoDYMbpp9fDxgL7xzCXrfpUK0p6bHjg+gl2b9UszC5Md+JEDDJ86x9IjZ5R5V2p0fpBrFG8pdyyNdD+MJkFYN9qgXtAI/S006240ovOlrw3rPICkoQJ5hg6b6zaTOyZGJYNXEQWtbjNUTpSYOjICvoEyTL6G/j8y7vLCMeoXuKHDjRxu4JChww8LGJUcHDnu9nX72GWt22KEMAW4EVBEOnp8LzDDIsBtt0ebQH3f51v3edk6e5nSbK8ZW2qWVe67G5SUhcMnjASPBmyOAreVnk7hyJzHll4Bb+7pDJ22uPr4I3Wrq4bDvMm8i+OEuhd9qstTO+bVSlUIzY9Pw6p+L72eIiwWnrkQwTZhfCakFJgAFG2p7YRncs9SEfLq29/FtQGAKzup9IhzSKm55UulJyuFGe/hpTN0/8sRJh9Z5Kd+5zDDw6d1/XBhHSlfHxH6Brt0lOzT5y6tmxRr31zqO70gIweDosm06ZfainbkXl9FfKEJ5tPJOl/C9ATMTMCODJ45X9srXq4J2v06oE8l5c1CM5mtmwD6dIKGm194FKyLerBHqCLsT2xgaX+XJdNjgPZvj17ukRfEe1wEydLMy3ocuF30nBrebqAzLLCTtjrvdv68MQY6lk6pbIGo6Zqe18r6WH4tcgc9iwDF1h7FYEghoWBRoBjtiIBNNH/9AZSGr4EaUcP1rMfNbMAZpWQX++fYf6zgegPWU+XP21LIvCeruJY+MSqBR8/DHTt0dPsm4chCNaa6z3moeJ/cxr0o7Z7kukZF9YoX4bQ7QTg//8xJ8o8dJX/Bq37ueAprKDPL4Y7l8W7G93UttmvJAr2+Z1BQbw2dCshT7/dvgiOLy4FpALvtfvQxWnE2GV/6p5URewlZ1nszGhsHT8HHjtV98RaWoGO1EF7XIh1bgXmxIAYO7+mx8+TFCswT5ocCela88BlodJ44TjUA94vAhQK2TOONxQd6vwM9ntuglvOgXH7N3GszHdpGYuofOIMyI6CZAmHCWLrUle7HGpsrAd7jC1pGeEcGvpMA/2RMYxBhmsc9lCQHVupIW9/XoL642jpnnLNCgKND2B+6E8xsao4rPb7GpSJMJMcerXSdyntJaPlSA6fVFPGiUZQVDPjGZy8FeI+OYM+WOg2tZ9XB9yMH4JkL8NDpmlFVReibKUrt35egE+O8TesNfAtlO4A6Sp6k1Q2F8Mx5qbYtIpesfr6MZh/nKcCRedgzVYfOO5ZydpLRR26k//kTDA5fZFh6+gHU9wvPIG65I88dpffLiqala/Hz1C3rUsp9ZiBLwXyMfoYIaDS4TahvsrnwdEt1MDTWFVZcYpdJpdKoWRHfBP4eyjD56fD/XKDIPcXQkQ89xchRDh0+1wi9FB4zcLw4Krk3RJ0bveeDDUMpza4WbWA/dC2wq4BwnNMUVnZkx6l7udJor5kWsEvy3svc44cOl/sGqH8O2Oo8c4WrgXwpGsUuPfbZU/BLx+AJBz9/tK6JEuadCUWA2zrEcOV70YtP2REF9ItlxdDi8xm/v5pXpWdQOLblHpuC+pGDZ09jP/k45rmTCvILx/bCk+cem4C61Om0GvKyax3gwzVJqfQXCs8W5+mIwB8dVbtlCnrzYJ+8UNmBUoo6Anxdp+palGXs0jRg8/RJ+OVHmoW7Kxt85a464vVZlmFJMXQMh46lQcnSoGQ4dJQDfW/cmr8aomybwLgpve4vZ+I1wHx97BdK3IwGlOT27dck7f4NCei37brj0h8YV+l+Q1cX90pjSrV3omB+FKjoOfrcDEQ4l4/4oxt2cO7sErkoyC18LFIFpRPFUdAwAjzwpMCdAdxUil9Cn/ZBgQ0V6E1CtY8xegPQyeg4NZKqRVla7evSeZc+dIWDCUNpDPnmHsV5T4kW+1MmvPC8wHcIvEeE67znm14XxyK5DuXiCD8zXUVVj+ztcO/hM1XBNOvqiHrHaVS26fUSVT7PL8FdW/Te7NmkSKlfECn3sWhgRfGmpqwdpR6/Qxci7wXvLv8hr9oSpo4GJxSPnCS3UHZ0fOVz53CZwXczPpVZvqNr2VJF5i1dU/em7nWsRucjmI/H+yYCoE8MzxQYxz+hVvzbSSr+evUy/5ef+w0do1yGsomTL928LM/nfuwkRDDfC4DeGnxGFaF/YfskGy8shZSJUOMgnvsloq+ZCFZ81eYuC5H6nYA9K7BtEx5RMG8D7d4afC/T3KbTSzVqTpH3awCHbSMqfWRO0YzQ0zqeZeU+0ZICiXi+FeAdwd6NcN0sHOonHqjkvvjmvI105ZivPRJN2emjUbZ/EvYFgdIc9lerQNuKVcQFjfLesBn29ODFhcRhkYzxFdyz/99/+o2rMoaXkzSClRrYU6gjEeB70GJZBfW1L4hA6uorfXGhkvGgaBrw+SUiJ+35mALeY/Owa6oOJXYU9LJlAj56o6blPHuuwWBqAPtAr07pmLk0wXw8zoHfaZ3a7xGq2xvooG3B7LDEDgs6w4JsWDA3LJkPua0wJjIYw/U+GVeMth0d6fgCoJeuZdi1jK7bTP6+veSfOcLw4qAC8IMQqR+NPPnIMxw6RiMFfOMo9wPgBHAzCdsu+EasU/DTYDcEUG+fOcmv/Mx/xjx7EnIFjqb0zJaaz18BptZYLzk3RKqWa2kwoX3NPwUUhaMsHEXuGZWecqg0ezfQyt8yLDmVO0a547aRozsqNW0qDUaU9XiWjTHt6rGshossY2Gka+zFZNqOW6cvS1Iq8hgnw2joGI7UYSO5w+caqRfgGS/cmWtU2ga6fRaOO6XHfOFY87e+eXwZG84W4/Po56gBfeqor8b4CtYQcR5GCfsgpjgslbouJMXQ0jnkBXAeWziWcs+WeM6lh9JhXjyD+fhheGSE+dhh5KVT2NKzsVSHlwkU9vb3rnTmr2U9F1H7s++1/WJfYOBXLgjrhQDMdUxS6PFi6TU6f2YRexHEAgMoN8P5WzYrkA9O0joq+6pP+xWNrxRtJRk7S438+LaSDYkO1TbD9JkQsHnSwy8dhYMnl+vilb678LjcMRg5FoeO+UHJ/NBV28LQMcw9Lj5Xqyh1/ZFCi9ktBQZB1H0rjElfb9orpReWDCwOChZnuixYw+LdM4yODPDXGO3+sgD9c889x0svvdR47Ytf/CIf+9jH+PznP49z1zyBsCELF46MfV0LyrXAfKTgT3W0tHsq4b6PwkM1EmowK8KzTvjazg383vUTfHVugoOlo/Sim2geq3awk4ZCjUr2ceBOFKjGdnVVhH7eKx2Q0K7OLD9lOhaLLmgRREQlIOOe0/h/EaVO9iy5hWJ2ghKDGzmNuns47+ExhB8X+CmBvyvwdS886QiMgwDoz/Zx2zIF0sbw6M5N9LyDM0uBXh0i9S4AuOgZTMHL0+eV5rktGJITGWwzdZQ+gHrrhYxmYbzd1JT7WPREhiWuX+D7Dlkq6yI8lwL2Xpa1JfROKO7bSW6Cfu5Acec2yo7lZGb5Ss/y3q6Fnvab7xkt5NQzMGE0TXMZmDcG9mxWNLbQqtweo1CtiAVopGLBS4jmaMGat77lPhiU+EFZKdQVJUbno+MiXv8755qfe2B3Beh9J9Dtrd5bHybi4ekJ3FQHTi4pldAnDIoI3sZIrBCsRfFq584OYM/5BRa3WTBodXsBicfGwPZJOJvX9ypO+Jij/iolGlKV/y68toQ+p9tJWTHNe7KBug9v/K5quxTgPboIezbCDVPwwvmmkyIFWcn9jDmwsThbIXWE86eBzwF/A/h6WGdiNO6qqdnqHFvnLQLHFtVpdeMMvDCeifJK8ui/590PXK1RXFIiUItzJO6PoXnEfxN4lLqwWyF1fnjMW75aUuUp91sGfLWFKtvjciQj4F1WtyEA3j2BXZGFRSzmm+/bDB/aC79yeHnl+2ELyI1KpPRqnEqzG0AE8zkhqpvIDxDAvPN0hiW2X2LyUiuJh0j2tqHSwFeKDErqiUnHeG6oH9o5TVSqrmspupbcGorbZ8nv2kn+e4d4eljwf448Tww8eeHIC0cRAF8+LCmHem1jdD7OlRfQYnjbSIqAEpyZI4dtO0AKj3nmJObnj/DOhT2Yjx3GvHQaU2pUd4vzLIQxxOl0uVFQT53WEIlxDmWUpPLdXnCFoyh8Nc6iilbrJiPPcyPPXSNPr3BkIc8/i+1oi1AYLgXxcR+7XsQI9tMnW8axX7F2zAw1My0+f9V9vvTwK5HSLz+vOGcHIfo4ClvuGeaOMnfKTHCerxWeM7nn+SIA+bBlpccuFdh20fZ7di5znhvnsd43wLwBdqG96Kt7Jk2ddNljzF29DlQF0FzNQhjV45W8zgv34UfNSB0Wg8KzLeaVO02PtF8+ok74TBl25omzUGr+eTfXvzFJPnbqdBonr3Y9d6LFYBedsFAK86UwX3jmS6mKO7aBr3ceX9RUex9aSp93njnn4Usn4e3X4X5oH2UHvnjvThZ2bUUkROe9D/njlxn9fQ3iRB0UsaXkYtgviB4P/ArpE07t3gaQjw6lb7YK1H7rRALkWRGcihN8cGgu5qFI6Miz1C/p90tNQSq01sig8PjRK29h+mpEJKQARL03ruBfdCqPs4crAy0UOBdhwcCSgfnRiPnZHvMWFmcmWLiux9KzFygbAcjIcFgbVkK7i0hDFhYW+Jt/82/y3HPPAfDmN7+Zf/pP/yn/4//4P/L1r3+9+tzdd9/NP/tn/4xut3t1z/YKST5cWPnNdjG8uLJOdtSDm65EISo2RNfGXOoc8kKEh4YFNw4LzmydwvqzPHa2z4Fdm+l46HqhcOo59F5wWZOi9ywh0iPRYxs8uD60ecuBqW7tfzA1sI+nTab+msWKSlUPs1IGCaWksR96XM+qIdrNcNNa4K6c7OIQvuSFez3s8NpDfpcIHxX4eYF/6KgAXNYf4Td21OA1hheMZbBrOxMvlti5kDPtQ9s6r5HchjIXlNpy+1wAvlZDvXu2wJER3KbnXPWh92C9x4rFGMNeFMzgpSryIaVHkOBk0PoDdAW8RXoZJhvj5woPaeqJK51ntHEDRQfyu3sUd+/E7ZvDdSy/07E80LPs6GohvK4xdIzSsHthj7XN3ksR2HetOjCOLGq+TrK4xjZwNgs+AFEDYJvzLAaDUILVum/nHDJyOGeDJzlDJjIdbyINun304EbAmGdqdd5qFczftquO0HctPrOIEcR6JDMUhWHBGNg1iz3qMfv0HCMbQyn3Hgn3J5Uqdx5q1kWY+7svLnJky1Y2o+3xfAZODB5DaaA7Nw1n8tqii2AZ/b3l0ODyRJItNUTOoLdsOp572IyheoZmgbjS+OT7qv+3AW9EG0eX4MHtWmxsHnXszE62IvThONMoeyF1dD5GgR3w8dZ4fht4UNAaBOEUOoYrL+OcFV7wSwV+ALJ7E1iD/doprHiMM8sj9CI0aVLj5aYb9r7sZ660xIrX7Si9oAb4fcA7gf+Atlt7F3WUPhddbgpgQuQV9+W+LEmiuxWNMj4PgUoeX5PJLiYtP55+Nt4HAc4M9LUdGyrAS2bVO0m4EHdv1xaSv/IsfM9OeOYMvGU33L4rXDjquVAKg65l2LEMMXXRNRTMPwZ8FvjzKE39B4EHvDDhPF3v6ITUIFNqLRbjhAzDDIZ+V6r2btLLtGgn0ZlGU7/EtJxjfdjV1TGFNbnoqA4sneBKT/nWrZxZGvDwI0cQ2+Pnb5zkz+2Y4y5U53fQ5y8TcE6QToazFh/WrefQCvCQUO29YPIyFFLzjfx5Co/5+nEMcN3kjGb9PXUGrp+DUthuhUFXr4FkSftQXh7sRap9xRRF14z94f23A0954aXc8ZbCUxSeTtiy3OFKjz90FvfcefztWzmyd44DAsYGFoWFbCRkkmFLXzsrUtBcevhqC/F+6zjcthMKnaemIxr97mYK5qWORM2yQkcDLu2sjNFi41nWgrZ2NJykfOQkgzftZnBgrnI45U5b85Yd4SGBw07oFp7/Nff8TyPP/SJ1pP7XXoBbN8GbNsLvHNf1/Lpt+huZqcZoO6E+TrcZod8JnA7nnDoNL/ce121oWw6LMuh60PMoPfSyEKQqtYNNr6NLcKmFfwkpJptjXrzzmMURHA1msgNvwd6yFUrPJI5JgYvWsCkzkIOEtSeOYZy8mvXcOc/ACUuFMHLqKIxxxiyDkbVMdi3SNWywWrNHvIJSiQyCEJ3HeXIvPPDoPBiDuXeL2mrvtFx/YYkjYc0Q56E0YW81YHSVpBQtdhvnYCjPDUBHNFA0Gf4/iVS2lUi4z4Usp9o7gWwC5Q0FuXfXcjA/zufrPEMnDEphWHhGuTr73Atn4OAZOrdtp7x5Bx6wmSGzhsncQawZdRVEYqpX+jxHmzZGW7Iwz0EN6IkxdmG4j7mXqkhoLkJZlviN+vnMGLq3zuEOXoR7t7PBt9ttB/2SXZ2xriSXjND/wi/8As8++2yI6Arf/OY3+Uf/6B/xta99rXpNRHjsscf49V//9dU656srJtmnhtakrfvQBxBcioL5YYjI5xWo1wi8WRhxYXqCkbWcnJniTfMuKNAazBdeKF0N5GPE5zHgrgrgKJjPJOxz7dPNVKdxqlXUNoB7rN5eX+rK1lYCvvFiazEaQtnLKAw4Yyg39yj7JQ6l93zZw7slpgDo9r0Is174pA8RqcJRDsHNTiEGFo3hpIHJ63rYI6exqFc6gvlOm+7tRGmihwZw10wwIAkl7DfAkUC284G6L2k+vX5sH3BU9EGXkUalfKH9RP1IIzkNj3VCRRURvARqfvRwhk1ccN48tUhx2xbc999Bcd12XGa4YC2/nxl+ILOYiYzMmioyH7du1NqxXZ1NgL0xsHdGc40rLa6/a0QdFiRpBcYL20eOicKxWITo1ygWK3LV8YqFqVL2QXr9PfDIeXjHTvihe+DAzsAPNUioci/W4C2I1XGcsyGCtqsLJ85Xhe2Mq3NcV1ISMW1CUyfqPf2cbgnHtmwAgxZYNArmnSFUuu/BqX49nsqq0+NX6z33Lnjuc6de7lKplmdQY6sdUUmXj40ooG88b+GUGiA+Bb4LhSKa3ZtU8ezqwAvzNdugDXqpo/Eplb4EnBcueKUlZyHK9f5wHhGIXjWfectZIV5TkpZOLLKwp8P8ZMb8vs0sYlg6M9ACmuMcFpeQKi/chSjJKnrEk6nVyJEGjdDvQZeqDwK/Qb2+p23u4j274ucWix9FYJiucSmduAiGXjtyEgzWZYD3eB92d2tHZHRCxih9L7z+7l3qsfyvJzXq+nNH4IkTtYNhpGvSINe8y+HQaU2ZoE9z1GH2MyiY/xDwd0R4S+mZzEsmipKJkWNi5LC5r6KLJkT+ZwtHd+QYhhZUkrZuFY2qNVguEm7QsaGyowCMwWeGIjPkXYvrZZQdi7OWL94wxR1HF/mOF8/xp750nMcOnaYcecqRx400b7jMtcWdDznhLkTQn6fVf17qnuW28DqeBvBysCgVYAIwt2zTwrHeM+2E+XAP0zzey4neFtRR+bh5tAjhPpTZ89cLz2/ljsXC4wpPGbai9LjnzsCvHCF7eInepw8zfOkUd5ShaF/hyXKNWGejUBE95s3HMcao8UoRbC9VTnNkJKTrrKEG9NBcXyvQm6wJIsqkXPJSdRvqD0uGIx2TpID+mVO4XzrG8CnH4ONHGD1/mlHhyIdOwUtoX/j/LRydwjNZ6P3+QqlF4awX7JdOky0M4UPXwS074L+7B3oo4zBd68L4bBkq3ptar+xA4VafFhNIaltxJREvIfdzTAXzWCsgqc1QPZtDh889PuY/Fw4T6PPdwrPJBzBfesynD2Hu24790X2Ymy2mAxRWHSVOo/mD0NfdFL5iQo4zOV+J6NrvkdzhYlR4qWQw1Pzt/sAxGJUMRiX9gWM4KhkM9HODuCaUHl8IrhQtileG7/Qee3aRm585hvnOndhMmYEc2MCeYxdhcdjQazjBe3/VcsVjsdvIZOqL1sKJHWsWfWg5KRF8Jn8cQW67c1Hp4eIInhjAu2Z1Xu41dYHa1N4Y0/rXlZ6RE4ZOdF94Bi+epviNwxQPDxj+18MMXzzFqNDnZBjWj2W65gpJlU4S5/kKUflGqs+4Kv5B1TmpUxa1NprQ70N/U5cBhoExDG/byPDYQNeQZC6sJe3+koD+K1/5CgCdTocDBw6QZVn12rZt2/jhH/5h5ubmEBE+//nPX/2zvUIyNb1t5TfbnK64n8o0HyOIF11ohxHYxc0pYH/YC37geOvpEW91MDvoMXO21GiaF2IhvMIJzqvCjzjHA0+Q0O2lVRRvUOqNmwi3z5r6tGOkHvWUCzB0vorGx4U0PrPLJAAfX0Ix2amiSuXWKdy8vv200/O6F6W4dw10RfP8/wzCQyIc9uAuDMg3gu9leOBZY9hpDL29mzFLBdn5gSo+p2Be29X5prJ78oKCmpmJYEQG+LR3AxzLidVGFehGWjdVHv1OoFN6zoaFzOe6ycjh+6UaXLFIT6HGhsu95ihJqBbuhKVSGDgJaRIanc/FUzx/mvKOLRQGSgPOWn7XGO7ODPszLXrXo47Kd42undYY9aIaWydSRmBvgT2TcDQ4LBLqeHRYVGx9wBaeqdIzM/JcGGnlWRk5nnrsWR3nKBR8SSuYppIW+1vmTOnD3TM1eyA4Hrw1SGbVk28DwLZwwRg2GwM7N2AuDDCFC8XwaofLinlZPsz35LOZCObMgOHGSQ7F38nQiJcFb40+M9u7cHaQGOgJILkc67Yl4pS65QclEnKvGGoLo2xYMD9y7AjKoCJXhL+N+02sXOXep8C1Okdpts0yBq6fhUNLzVBwpWjV2ZSCeWUICWXhODwsOT8ouHdQsndY8jPDkrtHTmmGXioj/kpLVVQtRmK9UgUXgcUTBQv7trBoDIsdy8KNG1g4NtQ2ny7mA9JwWCz7/nBvYmGnR772lM7VpLjT1Qb346LzEbSfQHPoM+B9wFMo46qgBvFpPv2VPNdlxY/SqsapYZ8adkmLoUZBvLGAd4v+kEkckN0A6ntZTb/f1opMfPN4w6EwCkB+kDtGo5J8UDDKHYXT9m//qxfuEeEHgZ4XJnPHhrxkInd0c89EqB5uQtE4qn7YjqncMVF4BbqRkRX1Wntc1bHA8Yu67obFtbQK6F1mcR2D6xjKjuXNhy4ytErFd2J42zPnKEungDd32tJt5HAjBUM+9Oym9LzgPLdEPeVFqeiFVtS28X7Fe+cE/uAk5pxgfmAnT245BR0wu2bAq5N01nmWnFK2Kesc5ThHVxIvzXa5KaD/JvAmwJaeBwrHXYXntyKQLzx56bXw3+8eRQz4SfDzcMuzF7jehf7rcctDLnm+3Jhm5OBjB2FuCn5kty6Y08D125cZxsaJOrJpOlC3QVUAMd7fdJ2NUkY6tigQmvcwP/LM556F3LEQos95odFo/41jDC0MujC0MPrWcfLCMyocRaDc/x9Dzw0jz4ZCn6GNpee9Tpkj2YsX6Dx0kuxP3gwTHWV9dCy8cxf80XF9xpJn0DgtDGzLJu1+czh+pb3oxUkN3ON6EGwdl2tEdfDMKQa/+m2GT5+kDE428hCpzkMQI9wvKT3zhWe6cPSCc8V+7RxGHObduzA3boM/dQ/2Q9dh/vAYZnEA3rM5/F38DhOi/Zeq6/PIowfHj8mrc10GQR8HWnUeirANRyV52A8HCur7g+AwHDpGISWm7Je4GOiI5+OUMeRLdRLf/eVTnLhtD2Z2GmMNNjOYDT1O7tvKrqeGVcE170SXy1LrS71snsurkEKaxW6rLjZhqzrX+Dr1LnYxGMs+CekS/NYhuHsLvGs/fHCfBhLSdbFhbzTvg9bS0q0IzvrhwfMsFnB4GyzlkD95lqIU8lLCsxMcOpfRCu9yi7hWqWURsI+S9TPavFV9jhNNhspYG0PHXPpQ48yHAuejkmEGSxt6LBkYWsNo0wT57h6j5+c1qFutV37NaPeXBPQnT57EGMM/+Af/gH/7b/8tf+/v/T1ElM7xd//u3+Wv/JW/wk//9E8DLMuxv5ZlYmrm0h9IbZEI7ict5EUFikdeW8+NRLTNrpeq6N0pgd/w8N05bNkyyZ/NoLcDRqfmcVI/BGWpueYRzKdK9THgHqGuhBui8x2BTr8IyRKmOr9xkUIDuA4sFW4sqNA8VWpwlWhFZyGfyBTMA+X0FOVigQe+LPAdItpDHgXzE2G/B/igCL/mhXKxpNg0jUOpgM9guM4aTMeS7dtC9sJIc6W90AnAfjnd/izcsb2OYMdBbg95nCe0EFpdYC9EPcL16oqwt/ScCmBVSs3n8blDnjmJ/6WHtZVMWATywrOUl5qH5TVf6WLuWXCeeSfMO2HBaTGS4uQS5SKU122mMAZnLIsGPpsZPpTpODvGVIXwuibkzjfmF1XUuwL2GNg3DceLJsiuIt1KYY/ReeuUPbDVqVEieYl//hQv/vbX8AdPwshVlLmqcqm0DPi2Z9ELPHFeKajRmRI3a/CdGsxL6AuPtZzGsMkYmOpiNnYwxxeravcR2K8I1nxIvYBQFC/M47Pgt27kCOr08ARWABqdd9Ygc9PqTi1cDZTDd9ZUlHE/qc41HxlHESyGHsR+pO2ZZFgiQ83VZei4OCzYNQr/HxM5MmjLxDblflmUsAHq0Rzl3VuoqojfMAXPXwSpAXIawS5906FYOqURMnR8euj4wYHj+4YlNw0cd4xCe6lhiQSmingd+xWVZFwi2tFjIKJ9rU8vMdg9zRJ6u5ZumKV/bIElYEGEBS8sen2+ylC0svHVzkOeGHT9kqefeknZNUsxX7zQHLkEyF3ydEWSaP/l5e7H2+WTY6FuBrETvX2bgO8Hfp16fY+59Gkru2XfH+ahxD7Yo8scT+qYi9S/CKCeOQm//G3NUa7WAqmMDwgDWRHwzsOeiXoNjmtyxyp1sWdrYP/AnuZ5TW3Q7wqgcBCiNvnIkYeodj50uEHJx4cFxbDkrw1LJoclk8OCybyklzt6hWMyd0yOHL3QMsuEgmS8dAbzuYNw+DTbSs9SKGJqglNJ4r1Ox5WuRydK2LMBUAZSAZQhj77sWsqOphi522Y5cKFk2+mSu46UzBwf4U4uUJQ1oC+Cjomb5OocPDMoOTAs6A7KJDKv599JI6hO4KGT8LVT8OMHMPfu4oXbpzC7JzDPzVdr6uZSGIY8XmK1bbk02Iu3OXaliqA+zudHgDd7oRPSAH608PxR4TlTeMrSK7vwiYs6VSbAj3RKTHYmmfCBOl6ElmalUvRtyjqI4P7jz+rJ/OjNcGAH/IW7tDjJ8UWdj4nhbZxoFDthpoGusefjM9Peqims3YeqFp4Ci7kPrQa1W8Fi2BZKz6IX+gPDwCpYyg2MXnKMjl4kd56ycHxi6FjMHf+wcPz93PG9hefvOc/dCL35IRO/cZje+/did0zXTq7MwJu2wzkHz1+oHfVOUwqME4wLDnDqx2w36iRMx5aC+7ZUa2SMVMbIe3juFnPHwvOnmf+Vo8w/5Vj45aMsPHuafuFDPQQXKuHXxeIoNCd6NgZcXrqAeeok5vuvx3QzTCzwe9Ms5uY5+OxRKIPDKRacy8P3BZr7SrDu6YOHxo9pVGpxs0EN5st+yXCkgD0fav2KUYjOP7Hk+D/6jseWSvKRdmUoh06PB65Bs5ciKZD8+EWN0N6zWcF8GJsxcPrmDew9dLz+bLQpg+54uTZvr1S8SOUETouHDoCvA/8ULXYbgXzUKQ7GA/ki3L+nzsPRPrx3r67j+zfBGdG50g40tAMwEmp/+QjqlQ340k0zPHZTh9NTlodv7vDczVspnEbmc6fA3gWQPTbXXxKHTbuI6zD0tw/XvXZY+GXzvLE9dULrczzu4OePqA5sBA5b5xLsswK0UxeB5LA4YrQRDhrDf3TCkx5yY8hv2U7xzEVGaKtyl2KYNah2f0lAH4vdPfjgg409wJ133gnAHXdoxfh+v8/rRS6ceW7lN6uofCvCMGXVaEQfmAFJ8R6vdEHtvy78vIO3GdhxUehM9LDAjdsm2bA4VENVNL+nDNF6Hx6IGOF5CVWyN0pS4d4YjdSLkI1K5fMmYkNOY5v6S2YYhehuatBExQDJQZzYudciQD2rBo2BctbiBkMuCDwjwoNWmQNd0XoAEyL00Ar832n0Ow+fhXLbdFUQ7zlruDULbILrpsleOIMVBfOZS+nYYb+YK8C5cyYB9HFvtX3dsQEIVbV8pWpLpRSNF/Y74bSLHtWwcD93GveLR/CPlfAfDsPTJ8id5gT1S2Fx5FX5l6ItikrRSL0TFpxnARgd7FPeOUPRyXAGXAaftZabMsPNHUMns/SgSbeP9yq5Pw0wH4+3hkjRicWGcW3CAhHb3FjvwYNxnm2FcL70yKEz2P96mPct3Iz84mHk2VMK6CPtKvc19cmHhadVHwAv6ky5O3GmxPPrWI2Oh1aEzpqKen/WGLZYZR/YnbOYI3lgTxAK+oXv9s2FNBaJy6QuimdCqomdX2JyR495YNEQWuQZzQO3gXa/oaPX68ygnsfRaRAN90Q0Jy1EbTwslMLiUHss+8Tb60Nqhh/52tAZOYYjz56BozMstYVk7tSplCwjm2hS7uPei+JzaUfcQauI756qE/L3b1bke2FUh4SD9S0+FuAMLBqvkXk3Kjk9KnlkVPL+Ycn+gePsoMSOyoq9EdMxXL/QsV1Jb3JEFMGLPyQwmbxndHFAf0eHvoG+gcG+HsPTS/S9p+80T3DBC4tO9NnzdYXiKuKQFnYaOj76nneNL4CzlFR0d9IC7krX1JSbuspzO9K/kqQ+mPT4GArm09ZqHwK+gLbXKmFZp4Fc6ih9o6/voKy3pVCpd1SueF7iRR1a6bMe98+cgo8fhyedGjixmnG66bc0QX26JpwsYc90HZ2HsDbYmnYft9t3wo/vhTsz5J1bcI8sUPzmiwyGBf3cMcw1YhajZnkoMva1YclX+o6/MyjZONI+65O5Z6Lw9AqNzE8OHRMhOm9DKoz9zPPYXzlCL9C/Dxw5zXwAtxIAoQ83zqfPXZyvp5YCh3sSgpMwz4wWPM0MRSej6Fhcx/L563bw5fftZ+utG/mjD+/jyQf24n//MOW3z1OWWg3e5bpuuKGHkYKZ48OS2WHJ7oGeezfUPDGlKCU9gl0n8OgZ+NwJ+DM3wtwGjLV8+N3vwtyzE/PoSUygPW/2gXLvY8Vt39DtKz3TTuqc+TSYcBQ4J8LdgTbfLT37veedhed3C49znuLsAuVXj+E+fCP5D+0jv38jX/2eXdxz/CJ8/QKZq9u3ZSNHNtIChQ1Q8YnnFXT+2AF1BnWs1im6fyt8/Wz9YAUwaF0EvE3n6Vbq7i6ywjaUul3nQFSnL40c/RCV7+eOQa7Ac8kLC0+coz8Pgx/aTf7mSfIf3cfog9cx+v0jlC9c4Iul8Gzp+cvesbFw3CWev4JwD8JE4eh98gUmbp+ld9e2unBkJzwzvQwe3AlfPFk738rIQJBqLqRpxrtoVrpPwXwbFEvp6+J3yTWXUNSvXzgW85Kl/3qUfgb9HixlsPjQUfqlpx+Ar+Qhcp20c1soPZudh8Uh5kvH4N17MFumFMx3bQ1837ldU+W+cZ4pUQYqgXZfA+iVi6R99E9976XHFACcj+k6g5J8WJIP1SmY546DA8d/PnESvnqY/3T8FE8uueBs88qgiU6FUpBIuXceOb8Ejx/j1x7cwXTHYjIdG5ky5pZ2bmLQ7cGh+SoAQHQCh9TMK1kcr5QapFesLq8M4L/vhT/0wt/ywjdpPscuOGGW0eyd6LX87SPw/r1ahyuzMN1Vg+XofMLKkmaUPopb7gD3Xni0N8HFHjy1fzNLHfjmZI/CqQO3CMGykZM6tSW9x15qvb1iF4boxC9CykhZp45EFko7jWRZh4kTy5mb6e0Kjt/IYBRB04z7jvneJP8fgT+yhv/dGJ4SyG/ZQH6iTzEsNfXA13NiLWj3lyyKt2nTJi5cuMBgMKDX6zE5OVm9NzWlEdKiKBr/f91LuxieCf+Z7MKSKsEhaqRGYzoWo3Ii/GqpQPf7DHRGA7rbN1Aaw96NEwy78MzZPvft3EQpCuxLryDde42KCxqdv5tWj9oAVDPA9r2eT5I438yhpwL32KyaVG1FH59bA41J7QpHabUgkCNE6KcsbmHEo16408AMWgCoG/Y2TnxUyfxJC4uDAYtzU2xCWDRw3MCN1mCtwe7bhP3dY2SLOdmWSbI2mPeidPs9Pdg80aB71/3aN2sBsbdQUbqtCMbF/ys43OOFUz5UJC0DTeqxkwEQAg78146T37aLfmYYWcPQOkaZpXQeWwqdSIcrtABT5j3m+TOU37OP0ig9c2gtn7WGP58ZrLWaS25qqn2XMQXITDKmFNg7C/um4OhAxxkWV23/FtgMGSFlQaNQO7wwcB555jwMQXrACPyjJ5GbdzSvb+mRjh2fO+9EC7Edy+EjM8ucKZIFur01SjfLLN44sIaLmeG6MszHvV3MN05hZE6dLCnzIoaEYk2SsMAagY6X5v08s0Dn9s3MGsNxDJsNSR69gnpvLOzswtkR7NtUL6Qp2grzPu11XfigYJyjU2rqx4QXpgqvRU7KoPSd11sQ7tdF47m+a0OKhw1zzWCyDGstWMMmlA4aRQTEJM9edNBU18OrA+t9GiVUYzCD3T2tBr91qr5HXiiD17uwQdGXIbe1FP5g5Hlb4dmBZ7PTsfa9YXPmkdLiuwbvPWVmEV9WxZmkY2pWEqaRdtQuYriiJA6KIrAICoH8wpChgdHWaZ718CXgu7Zv4EAG3XN9OnMbKbzQdcpe6nSFXika9DXQHTk6eSvaF38rztHCqwEd52sp0PG1Qyoq8jg/XFTqUq+B8RnsWi0i2V1eOMcnf5oa2cfQiFr8mi5aZOx+4NPAj5MAetHoXy7K3MmqiENZ5Ss7CcZOGI9GKgUTQRDJul9qDnbsEd0oDPTpVjXjb5zQQnXRaHO+NkRSIB+vzclFVUSzE/r3ac2PeG2DMSThhPxtOylvnNNIzgMjyt98Ef+LT1N+4HryXRs1atOxIUVEOA58zBj+kjHsDQH/CWvoIXQd9JxnqtDNhrZR5sg85g8Pw8lSa8BOgFyE+5++wLnrdui4vNW1XyzeEQB9a4zHBrB3sqoPUIQ13QOFMRRdQ+kyRh6+AvzfbtiBuW47txSef1sKB7Z16Hz+GOXhi7jv3UM51VNDNwuAxlmOesNtBrLM6KULhU1tKQp68xCRPngOfvMo/Nh12jkggqVCMLduxnztGBxfgL2bmfae3Fk11rtWAVNoJRr1ffupjRGoMizBUcd7lG7/5nCNs1Jzpn3h+aB4/jfnOVw4rv/8MfI37aG7Z7PWTtm3nc/nnk17N3Lgc0ewgyHZd+ys7JVMdM4SqOn8xkuwMICfuEPrAMUiVQ54YCv8+2fhvQVkvTqCHfelx0xY1YNoDn2BsoV7yXOoa3WdhlSga+DAi6Z2FPqsZEUo8lcI3dKTne/T+cPj5D+4H3fDDKO7d1V5wuWkxX3xCLIA/83dW9hWEtLpDL3SM+GFyT88wQYPU9+9hyztAmFNPd/eul0B/aGL2umj9JjSYAqjqXjWYbzVY5qt6yQdIzWgr4rfpSkbkS5feIa5p+88/fkho99+gWJnhpxy+gUGuscF//h5/F2zbCg1ei5eoGOQUECv7zxbSwe/fxxzy07MjbMK4AOgNzY4W0Sw792L+e3nuX2H5fnrZhTEW4MU1G1urUMy2yzI2Z6rTuoxpWu+0/Ssodd7ozWsQkqkCF89co4f+cZxpgrhzYcMjz4g3H3jHN4JrjRqA2amqlBP6fHOwxdOUB7Yw6HtG5mxCuRNJ9jSmWWjEx69YxvvevwCcuNMqN9imy3sYoHB1yAS1uVYm6vwIQhYqk74XYQJUTvLY/g9A2/vWHzH4CyUpTKYajAvta33uWOwcxLu3pqwXkPw4PAIbqHWC9VWFzKWUoM/PuimWBPhgXMlv793O1+8c443vXCRj37lDOUPTFMYQ7cMDtLCMJEZOgXVva9rvrQcD15qYBNTUuNxtFFWYiE4gcfOQLuh2f07m2A+7qsLr2PyBBURAf5IeHFugjIzdIB+Zvi8MxzYOEG2o0f+4gL29lk6TgOUE07XfGUALC8AfbXkkoB+z549XLhwgRdeeIH7778fgH/+z/954zNHjugV27btEnnprydJr3sK7qe6eB/AvMRq0nW7utILDzv4OsLfMUIXoXt2SG+/VgR2gJvdxOmLJW6HRp264UGND0cEw48Dd6FRTY3y6EIZc+lN30Gv0zhPtaFMNXEqX4RVJQ+1zVptMj4/pRyVmjtogmEjBrelB4Ochzx8qKPU9izQ7jvhHEtPVTRvP8LiuT5fuW6K9wLPY9htDBs6BusN2UQHu3MSe3CBzpsnFDyl0SAv8PgZjRCnRmO7X/sTp6qBxdZ1lprebUvPHic8Hnqi+xilm57GmwvV81zev5ORE4pSGFnPwBqGVmsbGKdUcFtK1WXAHltQX8m+TRXd/o8wbM0Md4Wcq64xjUJ4PaPVMRvTLVDWGznqlcNikzosWgtQlUfvfWh3o+e40QlnBeSWGeRbi0gRlP4dO3TRLEx9HQur+RuutYBGg/6x87B/EqZ7TWZENBY7tcHojIJqsYbTFu7IDIjB7N6IPXMMMyqxmdUaCT75He+1BG2cnCFKYdN7OSqxix62bWCvhePGcGvMm7fgMz0uDUxsD5Xu45ROF22v1PIYpRk60eJVpauoctZ5el5pU1J6phLPPS+eRZ49i9y+DfZvZ4RlWwDkmfdYF6IUmWCsxXQsmzNLPyie9LmrKF9Ck94cq4jPTTUdijfMwEuL8Oa5akwxOl84ZflEQO9D1Okrheevlw7rPJNHz/Knn77A2dtn2HTdHL7j8c7iuhbJtHp3p2O1AmwaeY1TNRxLXFmSZ3GsogrjEq+pRIUTHEJ5bkS5dYpnMfy/jWFo4NvO8vf3bWb2dEF3O3QCmM86QrcUisKTdTJ6IvQKR69QkNEtQs/uZ05qq5037aqLNpa+primx9GoTuYEQAO4xvF2bTWPxJplnS+iMe2lNrAFrXC/m2YKVIzS/yzwERTkp9XuS6MAPys8bqT00DzXqEYsphZ7vkeHHiKYkJtrjJ6IHZbY3Cu4KEX7fseITLuxy33LW2elFODq+YnX69gQ9k7hjabaeBMM8zi/OwYvWXX7vVXmjrNGjdAtE/gfO4D72lncr76E+8495HdvCXPYMrTCf/bw3dbw5gw6ZQDzYQ2NTrbK0TYoMJ89Bk9dxH73bsx3WuRXj2BGYLbAsVu2aCpJ8Lz4GFXyNVW2sa4e78PeTeqIsIbSGqW6Gs2jL8TgevBVYNoYrs8MWWnYhWGHeL6+bSPf+eGbKb98muITB+l+117M9TN48YgYpBCOethvjbb3spCF5ycrfeUs5tBF+MRh+KF9cONsVWzQWKMOw06GuX0H5ul5zJ7NbPZC33mMD4Z2J4ALjE7nMY9ndEbF6HwE9h54tPQ8EPrcd0pP13lcqS3Ivs978ofO4LdsoLh3C8YYfGbpG8MRD7tnNmA/eCP2Uy9hfmNA9sHrtMWut+GHHPz2YTgxD3/uDpjuqMOya+vncMe0Mu++fga+a3fQTbaOzmchfxtT5ZiD0u43Js9h9YxKkwlTlJo//mTueWjk+c6R44APTvvC0f3cEbIHdtK5YQYyQ24tuRFKcby0ezOf+u7r+AtfOEJn6MjeulW71mSWCS9MPH6OyUfPMvl/uZVuTD+JW3yGM6NMhAfn4Aun4PqZ6pmzLtHtzuu9Rhk/T8TnimT5CmuyFniTJFIZUxv0OA81gQbHFhh9+hCjA9vJ3zVHceIC8sxZslu20qMDnz6CPTui8x07qhx3J7ai3fe98PaHL4Ax2LdsVYp9jM73MnW2SEgH3DgFb9/DnQ8d4/mZSWR2EnEGXxrEel1DrCDWwVS2MuBpF3MbOSiFovQMRRj6UIgayL2nOL1EebLke751hBNbOhRdgxd45zNn8fu2VUC+2oM6670g374I3nPuvk1Ya5jsaKqEySwGjykMU8bwR9dt4l3fOgZnFmHHJg2OlBbpSGADvToQFxk20TYoXK3jKz0azCbjNM0VdEq93xqk65FCAb0DJLB/aiaIh8MXtdDxX7q1ZlaBrhN7p+GJcyC7m87O5LhKS4yMOR8whMDc6SW27Zhmlzcc37uJ6UdOUx68SHHbLEXp6QTW06jQqvem4xFH0wmVsgnig1xViTRNMJ8ZPa92TZjcw+8dg0fOwo/sh1EOv3ESPrILbphbbh+mbk8vSY0xqdYQLgg7swmMhyJE5R60RptV3Lqd7OBFBfSibOOOC1XvV7na/SUp9+9+97u59957OXSozmm5//77K3AP8IUvfAGoKfhrJSLCf/gP/4GPfOQjfOADH+Cv/bW/xgsvvDD2szv23nfpL2sXxQNkKmOUwTD3WiRB6uh84YWzHv6zwI8A2w10jKHXH9Kb6tAJTrDpLZvYcbbk8fBQFqLg13lwzivYRBfvu4jGYF3hXoEzmIGHjUmLQNOMzsc9gMm0nUb8bhL84EkkGLdeIC89xQY1Op2JlOYJ8DA9yLkVjZx2CO1pwnFXhA5GI9ECG/sjDm3q8SWUnnJTplE+a406Km6ZxR48TycAuAaonM81h/zO2eaDbJMB7t2sVccGpRq0PlC1wz4LSnKPE8461MsYvG/+gkdundTj79lKcd12pQY5T+l8KObh+Zb3/KtSeCwXhqFVR98L/ReG9G+ZI7dWHR+Z4VOZ4X2ZwQa6fRqVj4XxxkrKOmgA+kk4spDcML0+VTV/JxWVHS9sFWHgPeyapdgMP7/0daQDfteWOjc49SKXrShn6kx54jTcs7W5kIZNOhodrwyMEJEWYzhjLVtDwT8z0cFsy7BHFqsaBw0F4VrzL47L133o7ek+dmOG7Vj2GcNhQIwa3N6o0Voao5HvrZNwur/cA+v1Oet7Lc7WLzyDQRmq4HqWBo7+SHPxBqHn8GjoKEaBrv3CGfwvH8Z+q0/2ycNw6AyDomRLEXpfj9RwMqEwV5Y7sqFj66hkPuQmS7r5WmHUdDbRnLY9vSpKqC0agRsm4fn5+g+9UtmriIRXR1Tp1AHx+VK4yXmucx57+Ay9Tx/mO769wPWfPox/6XRIIdBcSRfSCqoctHjcT3oW98uQn55Q4kL/4jb9Oy2qFhW/D4wEfyzH7drClwQG1pAZw6KFb+zcSHG6z1AUnPS9tiDqe01x6TthqfQsltpfeNEJ/cIzOngS//NH+dkvPqT9q586Mb6ie3tL6fn9si4Yl16HtCp03qRRpi3r4j2Nx8fRCvdxPY5r9ptRRuPnoepLX1W7F8gLz2DktKdv7lkoNMd3cehYGjiWho6lkbamXCpC3u/IseBEexGPPAuF1vdYLPV6lfF5/vwJuG4KfjRwB75ztq5mnDrYyjCKMYDXnegz2L+ZBQvz1uhmtHPJArDQyVjsWuZ7ui30MhZ7GYsTGf1exqCbsdTJ6L99jv6f2M/g0WOMfv8o+fNnKD93kD944RQzhePDZUknd0zkTnPmc61mP5nr1i0dPHIa/sUTMJ9j/uKtmLfNaVGuH9yjhu979lLu3soFF2pVBAcIha/mYsNZIaIgc++E0u0N5CGVx2WG0ljKiYyyl/HpiYx3TmSYiUxBTC/jbRMZX8wypNuhfNcuynfsofydo/gvnca/cAb3mWeQl05zpnDcXJTVOmFH6pTKAj3dnFiEX3wRvn833BHo2gEYmq7l3/2XTypIuGsz5sV5WBox5fX5iNE3CQ7aCMiaT2dYaqnz5ivaPWrHPJk73lx4LWznfBVxyrzw4IsX2XnqPAcf3IG3Gg30XcuzHctsN2NDJ8NM9cg+dCNZx2A/cZDOxZEyakoHnzmmueM/fjts6qmjLQLfykkIvH0OvnGKtJVqZMZZF/LzqdmLW1BAH+2Z6rbGsQVV45zWOHi68PzTwvP5wvO/lQruc+8Zfv0cS90ug7dspW8Mw8wy6liKbsbJTsZ/tJb75zbSef9NdI6eZ+KzR5gsHBOlZ+LUEpOfPsrUh/YzsXlSx9ZNxhe36Fx8+xwcHsDRBWK9ABsdO4ENGNMGd6I59IwZnxfwEczH4r5JAbwygvlnzpP/+iHyt+5m9J07GGQZT+zdzr/7ntt5ct928n1byH/kJoqj5yh/9QWtGVO4UDBT7abNL11g70snMe/ZrY7EzGJ7FttNQH0AwGQGc/0M527YxXd84TjEgnNpznpKC0/kZ//Fx3SdVRTbBHq51kAaPnuK4ScfJ3/iJPlj58k/e5jiY09Sfv4wJy4MefHmOe46p3Uu7jlcsvXFAf7r5/DDAil0HviKdu/h7BLy8DH8d+xiIcuYzjRNwnYDoDc6pglrmO9mcOMu5MmlAP4kgHpfpVC8ktzpurBbUdHNpV+GmgChJscg6OpBSX9Ycmjo+MCgZGpQ8j8NHbfmWmvFD7Xujy80r3+ZQ+RTL8F37lS2Xyd59gywf1oZgrGmUmqrxZB1sFl8cAB7CVF68XDiIke3dvgzmWFDJ+Pg23bivnWMcmmk9UUC7T4v1EnY6MSSdFnwIe2jGJSUoa5KpZcHic4etv6+8Jqa+PNPwZHz8BdvhVu2wh079ELPbooXvL4/Faiv7kYgJCQ1VwA/LJic6rAZeIeoU/dECHrmN0yRn1yiGJWVTTZ0gbERr98qySUj9B/5yEf4yEc+cskveM973sNb3/pW9uzZc8nPXW35+Mc/zqc+9Sl+5md+hr179/JzP/dz/O2//bf5uZ/7uWXpAGdPPn2Jb0qAFfW+6FqGHcNwVJBPd+u8lqBL/x3CAyK81Sj47jlPbwG6WyYoQ2E0Nwc3PbbAf3TbuKdTt6yzPlDuRWnp88CtKFC2UudiWpQ9ytAp5T45v1i0I4wgZAoYbJaReU3D7ZHkz9fPZj2hRSPsReEopm1lcJZoNLQ/lfHg0gi7ZTKAeQVeHaAnSv1xEryI/Rzn4T2bJ/mXQN8aPmAMxoIt1UNnb5qm83tHyfoFZmOvGSF+/IIC2g3dZoQ4jtkamMxgBlWKt22to/Jeo/SxkvBOES54pSJ7L8ioRI728T9+M37TedzhPu5BZVn4UiitUBrP49bwj4EJJ3zZCT9cwHd4z4zzcPwM5t37seHafAVDJzO8tWPIrKVrTaMQ3rjofCXjwLwxsGeTFglaKnTxjYDeS1JoTtv+GSfMes+CFzi9iGzo8L6/+sPwuTPIw+eRt82pxzYzUIbo/Dgw77xGik975PbZUM0+RGMzi80M0rFKdw9OVG/AG13czmUw2zEYF0D9zlnM0SHmlsRpE38z7UcfXxOqNoZWwJ512O2atztnDF8IHiul+9f5+w7wc12yR/vLHCAFMCw9g07G0Hmtqh0q/RbOU4Ycxm7w1Fuvrd56TvCH55FPHMEAMgH0wX/7GPncDLOVd0ww3mqNgMxgM8EazyZvNZ2m11EaLNHD7fExTBaViweOD2DvFvWuWzVujTFkezdrsY6zQ41gRTDvAph3UvXJzp3w+dLzk/E5eOoMMg9sADsP5VNn8bu24n2odp9ZXKbRPdOxzfmYzs/0OD6LXT1/mejUtMlkXOJDZJTAjDk9j7x5Ow9azSkvjGFCDN/c1uGdj17giNvFjdbgA3PJOqHjoVMKvZBKENMKcif0HjvFhIWPbr5T+93+7jH4yW36rJSeqp94FqL0hmZ0Pj0mnHccW3ytcmb5ikaZ4NyxLet+gDpC3wmXqQQ+jBbH+16SfEgTIjG5Y1RoJWBXaLG4ovD4F0/jnzkLt2+HGzR1pRIxCA4yi80jMHTKKgkAYcPpPvabZ+G/OwDbpuDuPgyyJsWgeh7HXBfRehP9M0sM794S2pjq8x6vhRiLYPBZFkbuEHwNqOJ1ApwT/N7NuB++Ff/JZ3CPnePcFLznmUXcuz2dm7bRzUJk3mldlslDZ5l8+AQTe2bhsXlNq/nQPrhtFhtyXI2AObAdc/0FkIyNIpwJEXrvY1QJxEUDtHaEUjgtCLV7I2IMuTWhY4lRHWgNhTG82LM8ZuFvWbCFTi9v4D4DvwYcdHCb8bibZym3T8B/PYh5SD/Xe3aJrd/l2HPTVk05sxbjnOr1F8+S/dEReAF41054YIfOuYkQvZ7IMF74yAfeo/TfjROYG7dgHh+w+W0TVdeVjtNIuJRKA/bpc5tIFbSjttWdCM/mjq2FZ38Allmh1fe7zlOe79P52jGOfdc+fnOix03WYjOL71iesoYbDJhSx2pNh+wHrsf+/nGyn3sa+7Zt8IUz2gfqL90KWybqQoqxiGLhalrtLTPQPQxPnVOGXpiftvRgDdbqnI/9rLeg9SnifIzLkMQ5F+ad5Ap0vlh4OoVjstQWZf/SCT9+6AIPHDqF/eBN+EwZdrajhRAvGviXHt4shgfF0NnYY+IHbmTit1+i92vP0btrC5OfPMGGmyeYuHE2PPS2Hls3MBTSwrIbuvDANqXe/+imRoTeeI91Rhl4NmMHdbHNdFxCmNtp54phDYBd4Rk4x/Ch04y+dYbRD+xldP0MI6sFiv9ZxzKylq+Xhr/lHHfPTNH74VspPvkS5pefRj50EzIzpb81P+CBrx3jpQf3cmB6QvVc10I3qwC9MYLpJi1qRVh48wzTn74I3ziPvG2bAt+YtleoI95kTer9T/zY+8NE9ctYRFJ6Rs+dZvgrR8kt5E8eJ9+TUdy1l/LeGV7aOs3PieEvWbA3T3Lw6fPsu3mG/baD/+Z55OHjuDvmkDfN4qe6iNUIvfz+MeSOXTC3kXPGMh2i85GBgAimsGzIPIulgVsnkN88AaNtiO01csqrdqCXy7ovvAL5JJ3A+VAfByr9rkx34UulcJvAnzLwDYF9GUipbTZ9FlhRgYWQpRT2L5/S5+sdO5q1HQr09bmk0PS+TTVjKzpEAzCtaPYxSCSCnNUaJC/OTvNBC99tDL++azN/c892ym+cofiuvRqlL3R9HWUhSu+ldtQUvkqHcU5wL53FPn6C7K6d9G7YTo9gQ6f0+3j9nMCL5+ETh+C2LfD+/bq+2JCPOANcHMKODU1vGPU+Blhi8DP1aTAYcmFPjz0G/mwH3poZ/qMY7jSGbdM9im2TZC8tkN06G+wWoeM8E6tMu78koL8cueWWW67Eebxm+fVf/3U++tGPctNNNwHwkz/5k/zWb/0WX/jCF/j+7//+xmddOXxF3+2tYWQMww2GfFBWdPtchBL4VeCCh79hFIT3MPSWcnoOsomOUiyNIds2yfTCgCUvPOeFA9FwDSAYER7HcBuheFqMyktd4d4CDAvNK0/nR8SCRkFABPWmZ+l5dRLMQA0qqOd1WsEyB4329TLNrQu27QUMF6emuGPoyYi5cTreLloUz4u24nMI7vyQbKqLsYYRGu34TWO4G8O9mVIEs+ke2c4O2TMX4P65Jth78jQ8sHN5hFhogt59W+DIEG6lomojSknqGFUs25zQcXDWaz69P7KAn+simyfwb9mK/9enKU4v4XdOa36VNXjj+XxmyYBeoM981nu+XAr3Hp7ng50OD2/byH4DQyz/MTO8txNy5zu2KoQX29R1L/Usp3n0KbDvZUr3OLIAm3uVgV2PURcy41R5bhJtY8JLJbJ/ji0zW/BvMcinDuPv36ogsYrOJ8AlVZoe/OMXKW7dRDHZCTlZ+tksRFUz04pOBurlmczhjWHGKBi1Hsz+HuZLx7F+lxbKSUFD+D2x4ZvCe1V0HrDnljBbprHAbgsnrCEPBSJdmPdVpfvtU3CuCUxGKL1+6APNvtCCdnnhyXNHUQoHc8+XnefdXrjTCB2B3tF5ii+exBwdIrdtwB3sI3l4ME8KP/nZw2x80yzs2FTVarClCRQ9pd3PCEx4WMQxERwPiv8TylrUGiKUJ+YZfcceygAUsJB1DFkvo7d/ks4Li5i5DZQuodmHY+fUI/9QKcw64dawrmSdCZwZIoOwIDzfx3dO4m/bgMxtVEM3nJvJ/HLwnh6b5LhbO5gwBpmMtMlkLpGAKeeR8zmyfYrrwzx6mzG8y8Lc9mmMgT88vcQnd2zmbVZ4Sym8mMFnS+G7M8+bnFCGnN6y1JSl4u6d5I8dYdJuoO+hdx66P/so5oE5ePNWmJnUSWKMLp6GJmBt5CAJvHAaHjkJD+yG23YqOunE8WgutonpHulXUQOHk2jLuki3j/T6DHgP8B/RGin3k4D6PPbpdRS5zs2yFIqXTsOvHVHkdfAw5YeB6+cwog+g+DCETEIusFQ5z5SeTITuZ48y8eZtsH2DntQtm+APjsB79ywH8+lxuEbOC4PS0Z/3jHZPk4cimN7owycYZciEIJuEyK3BI8YltS6MdjsJQN9PdDm1fZKTnSGTaDG2Wz99jO6mU/QmodebpLelx+TSgKknBkx5MI+ehusy+Ct3aSswa0IxLqP55cbA3q2YwyO2XA/z0WnodK7Gwo+SjlFEq6pPApt6mndtDYXVcRUB4HvgM8bwtq5G76xVtoAz2pr0LRg+WxgOiNFI8OwG7L4J5PwImQTfh49++hh22ymY7GAnJrCbe5ilAdkji9jIVtpn68h8rwa9pvRs3zbDwtCpjr9tM/zhYTa8eRM2Myw5w2TM2wy1YqS7PEIvIlXOfBW5BqTwPF547i9qur3WjtFIWvm5w7hb93DL7s1gLF/OLO/qWqRredxa3kdw1jvI0FzwzvfsJptfxHzmTH0C84uwazoB8wH4ioQWPuHevGWXVvi/c1ut48J90xQ4r/WB0NZ158PXN5gzEoIRIhqxDPnk7yo8Xy40Z3pz6fnRxQH3fO0Yn3jbHk5OTvImY3mztRwzlt/PLE9mGmD5sNVUkJ6BCWOY/PCNTHzsCaY+eYIpDxNPjzCHzmhtinaRSBuer67UeQ4PzsG/fEoLMu6a1hz6zGhldauV76217LSGEdr2c1mdgCKpfZHQ0uXgKYaPnGC4CMPSkP/I9YzmNqqzKrN83lqWehmZ1UKzf2DgDtT53fuTN5J98RR84nnkzdvg4jycynn0hr1M79+iTpVOhukoG9F0tMaDRe0646w6I7xlqiN84l27+aufeR6xObK4iNy2DTmwU/VOZkLUyFfpd3PbZ0IaXItKXXgKLwy/fJSRhaKrweR89wTlPTOMjOHjAu+xhp0dg1w/x6N7tlOIZz+C7NmMO76AfOUM7t+cxN+3Db+3gzx0HO9AHrgJrGHBWmZjm8GOUUdDZqBjmCosIyuUWzbQ2bYReXoR7p3V562TRGVLh7hL1wcANKpfdX+ox6pds0Kh22ov5B4ecsKfNjB9TFPpztw2w8b926sUJ01n0DWrunbnBuo8+okbW2wRC87VdZv2h7pNezc1giy1TpfKIRrXUS/AqRK3a4bcGjYaw30dw+ec59G3zHLfJ5+lfGma4voZuqUW3M4zw4RRZz2FRu+HhWcYxu6+fAT50lllKT9xlO6b55m8awcbtm9QxyXU/HLn4cun4Q9PwPt2w5vmavZBsE/YNAXnQz+Z1AOfHoeHqtLtYWyCIP2cCxOG7UaR1e0Z3OcNn8DwF4whv3Ur9rl5sltnyUQj9BX1fhVp968Z0F8Lsri4yIkTJ6qK+wBZlnHgwAEOHjy4DNBfUky66Q1waPGiYpPVao1IFZ0/6OG3RPjHwCSiOVUIvfmc3mawgR7c8UK2cYIyg++62OeL2zdxM/qQdhxa5d4Lj2aBbh8BTTgVzZ8PVbSXStiZsA5SAJ9soKBwm9fUgMp2DX8mUBlioF76EihKcFlHK9yL4IzhEYHrNk4yuQAWQzfo3izsJ6Bqx+cF3EXBbZniIdHq5x2UXvtFA2/yIUJvDJ0bt5I9eQHuC/nBzsP5IZxycPvscrp9vEcRYOzZoO3VJKGhB0CYtkvb7T1nvbALkOcWkJu3q6G5eQJ33yz+G2dwH5jW8TrN8brNeT6PwXtho/f8D17YZyA/POTs/h0cMobfEMuFcI9/01ruz+BN1jR6zneNpmCsKJaa9tSO0u/eAkdGcDvVgqMAHoynYiIYJ8yIttzh8CnkHbu1Gvx1m5AtHfy3z8EDc6FIWAK6wqIsXiO8BZ7i4Bny79lHYTXlwofrn9l6LBWQiba/rSvc2ywU98Fg9mzCnjmK7RewKQGB1eb1AiTu0CqPXgRzepHs5k0YA1usYdLAUWO4KYBjB5XyclsmdEE7P0R2TjMSbX82lNBmMtC9RqV6gl3u+KOR5xecYPA87uD/fnqBA984R3loieLu7XQ/fCMy1UGOnaN45iyjA1s5vH0zxx9Z5MbfP4zZuRnu24rZOh0iwAKlguMeGdMCS5lhe+mRXqbe7CRKGK997jz9C5583zSFDbnJmcUa0Xl08yy9I4v03rqjalVXRedLT1Fo7v9nnOfDIljxdL1gj/cZfddOLlxY4pdvnOEvbOzhnxogv30It7GL3LEdd2ALcvgcfPsk3L8LbppL5mYC5OP/0wi2ocpzpWNqelkA8j5Y1nJqCZkCpnssGs0f/tMZTHpdrcpds/zZc46v7xS+4IVfKoXzXU/uLZ/xwv9ceu52Qs8pyOiWnnLrNEUPips65Pftord/lolDF5l86Cydf31aaeZv3a4Rv2dP6fju3al086GDU4twcgSnhnDwgkYQAZ46Cj9h4M5dIcE9GnQKIlIQL8n+ZPjzHXGJCperK6pop4APoFH6e9C5WxbaBmtY1H2+i0JZCMXTZ3Eezm2DreeBZ/7/3P13nGXHdd+LfldV7RM7zkz35IycM8AcRFFmkKlAkYqmTOVr2ZJF8Vp+1pV9pWs/i5ZNUYmWHymKIkVSEJhBAiAIgEhEDjNIAwwmx57pmc7dJ+xd9f5YtffZpwcgQRok7Vv8bPaZ7sbpXWdXrVq/tX7rt6aQdSt6tjvaiF0e7u0G3tj2XBjFj6wPdPdP0z22ROUdW3uO5fZh+MJhtbGrGmcG9OKzyzd2JwRaxxdojxha9YR2zoZB12gGRelLcZQYISRGy2Dit0Kc7wFgD7A7wPRZI/zYI8dIOoFuRbjzHRv4ybFBqjMtKnMZtckutR2nqflSbeAAUZlZCiq6CIj3SAqyuQJ3Hqfhx1gUIZcqzjtKFIKUviRIeaQNa5UFlIP5THqAPkMDg7cD/wZdu6ZiMVZwJiMV4dUi/DsjnMqE1SKkPmAvGCfbfQjfhjAMN7x+Pe9aOYCZbWMWPGYqxew4qbYun98TJ+D8tb3MbqkG27iAuCgMt3YAalXMgTkGt4wwl2ngWoVfhZBlKga4LEvviRl6enR0n3qkm/FM1/OWrooqmsjwsD4g9x4ncVWyy4fxVnirNfytNVwRadfPJYZ/YUQz9KlgxGO7kVkoy5oyPnECLlrXm1c1KgNmPdBEKnDZSrjjuAZbNgwiUbRTNUq0Tlmp0MIIvV70yy8PZF2Pj8wVup6xzFNLPVenntd5z5Y7j+G3rOXHN4+wwwjftJZPWsNiYugmhtQJ/zwGsisWqqlQTYUKQnXEUD+YUc/X6M4JuLg0v0rM0ney/gy9E03KXDqqmdN3bC38lzxLb73BZJ5BY0nQLP0IxTGppT9pVIsv0arDcydofeYISxaWDHR+fJ2CeSt0raHjLM85nVvbCE7gFQay4MnE0hVBXrsGH9rINyZUe9PCk9dmvMH0RPCK/ecMUrVxHwYkAfEGMhj0geODNfxZK0juOoH1EB5fJPw0+HPXFLbVdzK8hdTEnZBmSDf0uhfF7Hc7RAFzUbzfrkHnvJWkieULXmha4VUWrDVkBsYlcDQzBNGsb1g/hP8JBfbZLXvxj0RDbSFMTBM2jzFphGoEvJJn6dMAxlN3QtYVFr1Qu2CI8OBxwkXDkAkhjaC4zHbMNYJeYPR1Jcn1AeI5kIZeH3RlAWvC7OEAKzycffw0la8f5lWz4PfP4d8c8OtWqi8Uy4VSEapdr/dx4wG4fIUK3+W183nnhbLPuWkQDs3D1eMvwNbq+W3e58A+lvJOzNNeN6DtK0UQY3iDg1tDwkVXrSV98BjddQN0TYJLPZ2uBqlsFkg7nsVupmA+83TunyS975QmhZyyodIdc4QnFpBuoLEqwa4b0haq7Q7cclI/0H+2Vctwc/ZBIpqhBGWnTaelA6kEiHJfpm+KoUi++BAIrQ6n647xHIYIvCMRPpAKj3vhsk11ug8fxbVTrEmwXsF8kgVqcf2+ZMbG/8T4fwWgz1vmDQz093IbGBh4wXZ6zaE1L/5mJSCfI+M0bo605tR5RjP0O1P4QKIUys0EKiHWSgOVBU8lqWBEheUSK3S9IRsa4LLZlJtWBo75wPpMN6vSWGAX8KtEZzDkVHvRdnUh+tbtLtTtcvR+Zv08gBhMqszt6FvHdVzajHGkQe1r1gl0ay7WeapDc3+ACwcrmNmOAvmYpU9Qun2SBWr0ov7pVJtssM6rDTyI1ltWRHidEZzz2EwPEnf2IOaO49rCxjg9gZ+agS0NFY9ZJsjWR4sVYH0DvnYMvEcyzdxK6NHtrQ+k3rMmC5zygdDN8Efm8NeOERNdZNesIv3482SvbJGN1CLl2bAggfMNbMk8r88C2wV8llE9dJqBt25hU6Q33Wk1itu1cJu1XGt7Ynh5pv5bDREhiDkzeGHi/HZOAr2MmraBC0pxS/NWcJ6BABsn5/EhgzWD7Hx6F9decB7h6tX4Ww8TLo11mSWQkoFmfFOvWc/jC3Q7Qrp1SAM6MdorMQBjrcEFLSfoAzTWMGmFFZEmIpF2byoWGbeYA3PIhZUex7MAEnGhl6ID4pWyJJnHTnpkVV1r2ATWGeGAwFbRYEPIwXy8T8YMfnKJ9niDRa8ieN3CEQi0o9Bamgae6Xg+lXpWnZziyr2zGAKtwwtkm1bj37SerJZgY8Q7bB1XQZVMWwM+ecUIr7y4ieycRT63H7NtGNZVkCNTcP4YsnkVGMOIeJZSU4izFRS1EmjqhsDi8QUWBwydgUTpvnETW6OtszpbalQem6ASNAvS9kqzzZwKs3gfeDjWX17htV+zOzijh+LF49ScYbcX5iUw8soB/NUrCM/N4XccI/vqIXwnnjdPH4G3duC8cXVGy8Zl30l1WC9fA+ev6a3XrgenVMqewFqJmhcgTKaEVYMgwgxCQ8BZg7Ee5wU7Xic7NMcrLhjhWgn8eQg84rXjQZYFbkkD50SRQpupk5M8NU9y/igPbVjg6m1jdEMg3TpKtnmUxmyb5NHT8JVD0DrU22xPH0WJ8SjCHmsomGvSA/QAjx3TLH0e9IrMluBMUSGxPEt/BG0x1dedhNjhImhG/q3Rvh8DNngV+svSZWC+m5H5wKnMcHibo9byHB01zDWbLKUhpuZ13R8Pwo0VcKnnsa7n33Q8FwVP5j3pvcdIX7cGX3equA0qprqxDs/NqpNTzsqXHJvcaesCnYkO3dUDylILgV2ZcKeH64JwtigtvQzc8/WyM7F80QirJGNRhOdFGBThQhEuFaGxeZzPNoSth9ocWF/ll1etUCG8ZoUqUDsHamsE9+lS66Er1ui6jBkYk8RSl25QuzOubI+Rk/O0xochRMGqHOz6/mAaATi2AOsH8KK1851oHvVSG/8AqoFwSf5MjeCcJRPBkLFCVMH+ti68y4DLPNmWMdKfhM6z09yzfQTWrkAMyGBNzXsAs8ZgP3W4FzO7aq2C3FJ2nkQF8R7Y+TQXXHCeAigfkItXwlOnaG4ejr3ojWYKra7XkHmCtX0BuTLVPouAwXcz5lLPsa7noki3z89O98wU/rlpkp8/m9QautZwXmJY7QxfSgznJoahimWl8araHwO/xigAtpevhqeO9G7g6rW9rHw+v5w5ljOEcuG4vIXdukFyyr1xKipoMqPg1wkrUMp9H5gPynKSTOeX9xz3Xc/Bbsa2zPMLEkgenSLxkF41grPCNc5wVcXw585wX2JIK0q7v0eEqw1UUqFmPDVRUkfjktXUHz/cC8hcs7afap8zLcrMJae2BAO8Ygz++3Pw2iVkZV0z9KnBGC3bMjGwu9oIE8DZpTn62JnCl21UFujsPE7LQMtFMcCDU3TOW03H6lz+0RmyiuF3E8PHjKFhhG02I0uFTLz6P6knpC2NUdfAd2D7/hkGt48XfedNpQTmE0HExta0IN5CCk0fSG2gO7uo910FaQFPnSBsGyfEbG07D6RVhAfv38k1l16gvk0MLtmuCgC3js/RmbF0fmwNrUNTtC5ahd80xtNBuN8I/85pssjF+ubV1nNHNxCCgFWb5n3ArxskrErwJ7sEp8kR//w0YdtqTjjDBcuz2LFsy6SeijUs4BndOEy4/yjh0Cxhi7IKNLgiRdlXiK38cmZMbmKNUHQlWa4R0H3uBJ1nTtC9aJzuuhHSmSW6c12yJRg6nfKL84vI3mllDOaldHcfxl9n8eMNfC3RRAwQ9pxEvnZUN8i7z+oFk3J/ejmg31iDx3pC02cwKgM9qr0nMhI8fmKWmUtGaIi+l3WGy3zgNi88vnmYK3fPkD06TffaVSRZLBlEn2u761lMPZ2lLq2bD9FJ26RvW0e4/SiuBVKB7Mc3wPpR5NQS5ugSjcNLyC1HNNKaj267n/UD6GIEhhM4eqbAdKQoR3HwXrBX48AxQ596SOFgs8ZFCqpIjNAEftIKn0uFs5oVzGgde3AOc/ao6nd5pd3b1FD5PtHuzbf/lf/1R6PRADRTXx7z8/PFz8rDuTo/9wvv5Xd+53f4nd/5HW688Ub++IOfoN2O4RyBm+58kHsfe0r7bAtMzszy8T0PkrV1XT+fwV/cfjf22T3c6mFfBpNHjnPTV25VYD/dpTZU5fqbvs6xY8dxolnb/ek0D9/7EBcBd2caCbr+E59j6vQMp7znRAi4B3by2G33R9AcyNpdPvyJG8i6Xd1o7S43HXiae596pkDvp6Zn+fDHPpvfPiJw1133su/kMQa7Srk/fuw4X/nSLUDv0PvYZ77C3sPH8EGDWTv27OfGHQ+RNVyBvT722S8RZmdZOQRmdomnn36GBx54hCQoI8G3u/zJ31wPrQ5VtO7xgZ2P8vTpfVxohfcJvHJ2ltd96nNcVlFnKLHCTXd/k13TE8gosGeGvccm+OjNt8KuE3DxKBj46E1fZ+/xCTU+BnY8u4frb7s7ry2A8QYfnHqYyb0nCiD/6CNPcu+dDxVK6Vmry8nPfJbDnQ7h8BxhuMI3n32aR555Fu8M2Yo6J7c4Pv63X4hJY3X+Hr7lTi7a9TzvAc41gamjx7n9+puo1yvURhpUjVC7+VYqxyfoOCEYw6XP7uHOL9xWCOJVBP7sLz/DycnpYv3dc98ObvrafcW/2+0OH/iLv6ed5f3e4KaHHuXep3YpoD/aYfL0NB/8xy8WD874wFe/8g2e27UnshDgxLHjuBu/weIGPSgXWkt8/pavc6jRItQN4clT7Hh+H//w9bvpZiqmNJ8F/usnP8+BqRnmgYXnF/jmymlufWwHS1ZYFJjupvyPv7me092UBTEsBLjla/fxyP07i6zczOlp7v/YDQxHYSMR4Y477+W5fQcw60eRg4vsOzrBR2/8Wh+996Of/DJ79x4pQqM7du3hhtvuVmHDiUWkCtffcgvzs7OICOsEdu54iofvelAZFgZa3ZS/+vTnWExT0pVNlk6nfPmhR7l759O0Ms3SHzs5zd9/5HqlM2eBezqej91+D296YAc/8eBRzjs8y+D+I9zffZ7s2lWkjQpZYvj7r93G4cmThKohVCz7Dh7gsXvuY9AZpF5BrlnF9QPPMX3kGPLlY9jHWjz5t/fx0Fe/AalnJA1Mtdp89sOfottqa+Y6BG6/6yHueewpvA+0gaP7TvM/Zh6jJYYFEZYEvvL1u9mxex9LIiytGeDZzix/87mbaQWlQncDfOEfb+Lw/qP4zHNHGrh8916++Y17lL26cxpz9hq+8MWv0JqfZzCxHLeGp555lvt2PoG/aBT/M+fRWpvyJ6cfoB1iNu2rJ7npj77Mvf/+JvjQTvibp5j80H188MNfgqcz7WP+7ATX33InO57eUzBr9u45wkf//sZeFD/Ap278GgeOTRAmFwmrBtizdz/333Uvw9JbJ5/7/Jdp19vUjsxR9YFnn3ias+5/hEamn5VtdXjiI5/hMwttptJA23vuuf8RHnr4YRYvHGZ6aYnjc3N85As3spRYFiuGxZEan5G97PjRQe37BOztTvPRmZ0qQ//bF8JvXcJHVx1g74UW3rwegB3tE1w/twsuXl3QPD/4sc8yeWJKveMscO/9O7nt1vuKrHO73eFzf/5JDrc75Eoyj9x2H08+uLOoo184Nc1X/vtnGAdeAdwI3PP5r/Pck7tpp57FbmDvgaN86cu30PWBw0dnmZ5r85mFPdy1Au69cC1rDp5i5vFn2PGNuznR9RzteB7qZgz87Q3UJqfpZp67s8COJ57m7i/cSyCQXb6Klk/5wPWfp52mejicO8JN33yIe598ptiLk5PTfPAjN/Q5cP9w+908vnc/2YlF0tUDHDw2wce/8nX+ixFuNcLvG/ij67/K3xw6xl8DHwB+/6nd/NYXb+MngT8AHrGGhz7+WWoL8/x+1fLfqpZX7XqGxmOPcnXD8otrVxMuXcumO+/mLAfVqqVSc3zz0cd57NlnqZyzGn5+A5Nndfjg+mfhggh4a5brv3EPT+zdr/oxVjh6YoKvfu12ZM0qBg+qCvbNN97KsSPHCmbM0888z+dvvrOPcv/Bx+5gcrhDJtA1wgM7nuauex/WgKYRWu0OX/7zT/KGdkefJ/Dw7ffx5AM7cYnB1BxzC3MMfurz3FV1dCqONHHcds832Z0uwpvPYcfmcQZPTXLr127HVrQVoqlYrn/2cQ7+SB25yMEvbmSHXeL6b9zTA4RVwwc/+llOzc6xsLSEGOHxp57h/ocfQ7YMQafD5sOnue0fPken3VZA7z133v4AD3xzRyHmeHJymg/+xWdU6DbGUb/2hdvYveM5QtfzTNezfv9RHvjizarLcmAS++UnueGTN3L8igpJo0LiDIcOHODeO+/hxyuGGxPDHYlhxd/ewMzCnJY/JIadTz7DXQ89gqtazHlraP/cGj5gH6L9C2v1+SWGm+5/hHt3PKXA3QmTM7N88FNfKLWchOv9bnY8ulv7TmeBA4eO8ZnP3hwV7z2Sem77+y+THDhaZOj3PLWb275wW/TXA1kn42//xz9y+uSUakuknkcff4rxW+6CrzyJ2XEEXjvG5z77RUzwVBNDJTFse+ARzM6n6SaWTsVy7cIcX/j7z1GrWqoVS6Vmufnub7LbLGLfswEucez9p3U+umtnD8RXDB/9zFfZd+hYoeexY/derr/97qI+m9E6HzQ7mbxjvzLufOCRR5/k3jsfjF1sAulSi8E//yTH2p0ieHjvrffx6H07VK099UyenOKDn/o8aeZprV9By8CXpnbxROcE7QtX0XWGwydP8JGvfI07K4bfTCwXVyyv/dxN7J+YYCqxpInl2X0HuPnue0mrlnD+GFkVbjjwMDO1RR48Z5QBa3jqKfX/8kx916f8tz/9e7ppilQskhjuv+9hnnrqGUzFUrGGI2sdn516mNCJpJlzx/ji1+/m0V17WMgCC13PM88f4W8//mUmZ+aZTz3zacbHbriJZw4dY9YHZoHHbn2SL9cP0TlrFZ03nUO6aYzrb/gSH2nN8xM1x8qqZdfTz/DwA48gFcvGiuU54/nHT3+WFp6QGHzFcsejj3P/wLziuRROscjnDj0KzjCZGAaccM8td7J3975YRiccP3acW7/8NWpGaMUEzFfm93Dk3r0FENyxay/X33xnT4zOB/7rX3yag5PTzHmYDfD1+3byuZvvY6GV0k4DS4ttPvA319Ne6pDtnqDzmcN87f5dPPyx+0k//CTpVw9w+oHD3PC1m5lxjsZZQ9jXrOGuhV3sPXUCXwGG6xy981m+9IF/xH/yafyN+/Ff2s1H/vpm9k5E3/PYFDv27+f6O+/ta6f4wU9/gcmZGfU91w9y76nD3HT3g8VZ0G51+MBff4Z2q1MEem+/+yEefvwpTQpOLjDTXeTmb9xBLaelOeGbd93LBfsPcLsI2XVjHHr8Wb5ww1dUt6jr6bQyPvKFm9l16Bit43MsffY5nuic4KaVkyyet4pnfnwjX79ugL8YeZaJlVU6ztIaH+Aud5Ibx07CNoWv7ZDygdMP0N5xVM+GquWmBx/h3p1PFwnPyUqbDz51F0V5sQ/Rf3m+iJDt3XeUj376xh7dHvjyV2/l2L5DkMBxZ2jt3c8937hbg5VGuNgJlS98mc9Nz+HPGaWzf55Hn3qGb9z/MN1MqfezrQ7/+UOf4sYv3Vhgzp/7hfeegUtfjiF33HFH+Pa/9r/++Jmf+Rne+c538pM/+ZMAZFnGO9/5Tn7jN36jj3K/sLDA29/+dmZmZhgaGnrB9wpL3UJN0bczFpZSZrqepa8fZmFFg8UrVvA3Yriz6kjrllbF8tZ2ym+nGbW2p9rNaN5yiGbFkb5hLXMVyyKw1M1Y3DNF68kpJt6+hQ8ay+/VLCM1h69a7qpZPl1L+JARaj4w2OrS7GbU2xlDrYyBlipo8992wru2wuYh7eNatdBwzDthLioiL7YyFjsZrQdP8pxxTFwxwuuqlmrV0axbGg3LQGIZSD2NqCg518qY72QsPjDJUjtl8TVr6CaG/+6Fi9KMV0/MUrvnMPV3nk8jsdSrlsGaZaBqsVF1stvKmO9mLH7kKdpv3URn4xBZxRFqBlN1JM5o+6l2xsBSRqOdYW8/CjNt+LEtqlL+0efhfRcqtbKmzlsxz9T3q1N3PPzdLrhoJVw5xlLVMlezLNQsi9awsJTRaqc80MrY0fX88jePURmq07hslGbFUgdq3YyFEwssfm4/i//sbJbqFRYTy/uc5fcTw/puSq3rqace8+X9+HWD+CtXkiWWUDE8mVjuqDpeV7NcUXfUrNAw0BRlmX9Lun2+5jKvcyoreC6mSsn64yfgPdtUqKSua2WhZpkxwtJSqirtnYxOmjH/+ec4dc0atm4cpl5xNAI0uhkDT55i6O4j2F+5iHbF0qnq1TVCtpQ3zV2OAAEAAElEQVSStjPSNCP75DOkb9hAummY1BmyqmOXs9zasLy+6ri4akkksivQbM98gCXgL9sZa1pdfrqta7bRyWh0M5p7phj82iGav3KxOqrlZ1qz6tgsxXlH9fSlTsbcY5PM75th6Se2s2CFVsVyb+K4tWb5/ZqlmnqanYxm/HuDnQxz13GWFtq03rKZTmJ0rjVLq+pUH6KVccNSxq52xi9lGRtvfxaeanF6VGnN5tIBam88i6az1J1S71oiLDphMcBSN3B9x2Myz08FT80H6j7QvHUXlcfatBNoeZi9oknnh8/lz5zliprl1XXde4MEmp2MgU7GYCvDLqXMpp6Frx5kcaxJ6+qVtBPDM9Zxd2J4fTvlfK81rZUv7SfZPIS7dAVZxbJUsSxVLYuJZVc746OtjP+YpjS6ntr0IvV/2Ef6nnNYqFfoJIa/spaLgNfjqWWBeoBm5mnun2Twk4dp5CfBu9fCuhWw0FFneiGFOw4rrzUfF1n46cv6n2PNRoGfDJZSlloZc221B0v/8AwLr1pPa+MQd1vHYxXLb1aEalwn1SzDf/wZ0jdvpLt+iCyx7LKWO+qO6xJDrZ3y1aWMQ52M16QZbzgwTW3HJPYd27WtXWKp1FQvpO4DtSzQzDyNNGD2nIRPl7KEP7teywryrEROS941AXcd0VT7b1+onUSqpfVatVC3LFQsc0GY97r28/X/V+ie+FWgge7/gRh3nPeqb7GE1tD/h9Tzd62U4U6G62ZkbU/WSTnS9dzdSnnLV/bw3EXjfHb7CPNOGEwD79s1zapdE/CWrUizAs7yvDH818TS8YFGO+N3s4zzOynNv3+WxhvXM7BlhMGKghCyaDtPLcGHn4V/fSE0l9lYI4Xi/1IrYz7NmP+7p1n8oQ0sbhzmr8VyR82S1RyLNYuvO66sWIbRFmL5dQuwo7Rc3hAC70tVjMx2e+rpxvtCj6US9WdqIdAEGj6WmJXTWnlmKTqkGTDbzphbylhcSlnsZizumyJ9fJL/623b+d2KZWXF0qjHK0Cz4xleSnGtDOY68KGn4bcvZGEwYb5qWag5liqGhapjoeo45Ay/DvwNqjieP9u60VK2eQ+LIdBOPe/vZLwr1TrtWlAxq26A92XwL1GWV1N07zXQCoJBH6jm9LoyFb1i9JkAYSFloZ0x29J5LnQyFjue9iNTHFpc4uCr1vKaxFCrWJo1netA1THYdNSjmKMPgYUAsz6ux9Sz2FI17U+0M+otz7uylOqBSZo3HKLRgVqAyrs2sLhtFYsVSysxLCaWdsXyoYrh9qpjozX8GnBN6ml2Uwa8p9kNDKSeZlnBPDr6VOLcak6/pr6w+32dNroePvEsbBmG16yhXTHM1h3zVctSYpivWOZqCXca4Xrgz1DSTQM9d5uZvt9iS32ipU5Gu5Nx/d6T/OzXDmPmtVSw+hMbSLaNkSWWLBHSiqNbMexwlq/UHG8xwpUhUM88jVRV7RtpoBk1PQjEukjpf35V7YIAkV7dSs/sstHJVITso8/DvziPhdEas1XLQpzjQkXtzYdrDkT4tXz9pXreNboZQ+2MZktV0Be7nsWvHGCxs0RrWGhdMEZ7+zhta9hvLX9YMfwfFctlicFWLB0j/PtuxtXdjJ/oalvIRuappYFuJ2Px4AmWdk1x7JxR/nTjOP+panD5GqsamnXHkDM0DCx51a1YaHkWWimLbdUE+U9LKT/V9Zx7+CT1ew7TnIPGP7+YgcRiq5bFqqVTMXQqlm7F4gOYdobppEjba0eIboY5tQif2kf7F89iabBKy2nnib9MLK2a5V/HzHzNgLGGBYROlvHL3cAfZoGt3tP0nnoWaPpAIwu09p5g8ZmTLF40zuLmcbqJ4TcTw29XLNurjkbV0hDotlKWWtpS9L8sZry1m3FJmlFf6tD4+G4aP72NwdE6g1VHtXRetKt6RreQQmQadH6uk1LpeO3g0cpw7Yylzz7Bwq6UhQRaARYuqbL4Q+eQAn/lhUsNvMZAgpAdO83Sc1N8eNsIv7phBQMhUE89jRMLNI52GLjrKENtTSz1ndnV0nmWhTPX4988BdetgYtX6V5tuN7vA61WxlzEC0udjIUnpmidXuDBV6/nUWv41ejrZD7QaWX8SSfjhzPPFU9MU9t7itqPbaPh1PcWH2g/PUX77qO0r1lL59IROsawWwwfdIYla6iHwO+FwKVOz4ZaFhgIgeaeE7hPlM71X9oI563tBQULZfxUdag+uRfef4n+PPdZ6k7ZzvUEMk+6lDK3qHNbbGUstFOWDs3QfegEf/D27fybimWkZmnUHKk1tNops62MP2tn/NT8Emd/eS/Vd55LvZZQqylGatQdAzVLreEw0R7Mzs4yPDzMjTfeSLPZ5OUa/6/I0AO84x3v4Prrr2ffvn20220+9rGP4ZzjNa95zXfxbtHBM1ornMWa4aziCF3NGr0y/mYWIPGB14dYT472h6xNLlEdtLGmXin3DiFZUcXOLDEW4PwQ+EbM0uMDuzxcEkJfS5Y+lXsfQ0kd1BGT3n3mdy0iPeo9IGiP1FPkdMhQ1M774ntRDI9Ix+uqKJ4nMOVht1FDYoeq2NleG5skqLGwpahX4gONbkZj1lNfWachQt1AwxgaFmoGakZoGqFulZ7HuQOwa1Y/zKdm4ewBpYYWdPucjk7PCc9/BrBhqOjXnqujSwBJAzZolHs8BOa6GRyeImytKt3eaAu21BqysSZ+0wDZzjl8COxPtdZudab/vc0CttWlsW+exjlNGiI0nVBPDFclhvcncG1iaDit886vlwLm9eFJr5a+b45GaVBHlgrakyrIEqn29HpTTy5QSTOOrlFqc5CoJmuEcP4oWQaLu6dZ8JqZX/CBpa5nMQssBu1Tu5jA0vpBloCWGJ4Kwv9thVtFeL8VHhRhEQUnC6Gk6QacsMJKY4qMmTGqdG/WD2Kmg7YizDOAfQJcJUpXXEfWg5lsYVcN6n4wBiPCBgN7jda3qsgWhUhXR2B+TZWlmSXaIRTtJZcyaGeB+W7gL9LAgczz2wQ2E3DiqBgYnwIzDP6CFfiqJasasoolq1pCzeATS1bRAM7xqoIEKg6pWExikQvGVe8ilmnJ2aOID4xEFoQ+N1XRJ/Rq0LTkOZCemiNbo0GHZzLhTwRuN/BfRHg6UyC4uHWYxeNzLKE0/dR7upFae0sWeH3mqWax88ST87hzhpFaotvHCmPOcLBq8RWHr1moGnzN4c8ax/+zjYSLHPz8eu3n3kxUUX/zsApTvWV9/3q9eE2Zt9tPTY/Zz4Jy30nxM4EwrnXKCyKMxkI0E9eKE0N9zSD1Qx0aAeoBLjaB38BzkfdsDYHfQK+pEDj59AzPnr+KJ4PwN0F4Es2adKrqGLarllbN0a5Zwnmr4Rc2wMUO3rNBywWWB5USA2eNwS9cou3LHjrZm1vX99qCdaM2AD37mV/H0ZZ1eaFCkaygp6fhgPN94KxOxt2ptkzqdD0THc9nOp6PpoFX7phmYLDG1WcP839Y4VVi+E0rbLxgmNr4KLVbDlHpar/584PnfV0V9/oR79lC0K4WY0385mGtqbTxJnJq5XBVxTb3TNPXez6v+4zPLguBtJWSzUE23sQjvMqoXekaCEb4v4zwu8CvAD+NKvy/Jr4ujx8VoZlYGrWEZt3RqFnq0TFqVPXftfi9Zt1Rr1lMHsStu34HLH92NQu5XkcsexI0y8Rih3VzLea0EFIzSSn9lPsQ4OgcDENWs736+WhTuqICebcCVwEr4vNzUAQ082ebiGATy2tqjq9ULL7q9AytOU5UHafqlvU1i6lapOKwVX1tqhZbnlsEgjnglXj2SWKKOeIMEu0s5zVYd3iKMN8q9Dh6CtSxPVg8n/P6+TREzZ7YtiukgWe7nstiRtg8ewrXVc25xEPy1IQKvTpDkqjoq3GGyxNLZg37gX8LPOk0aG8Ti6saXK0EBspBsapVMJ9ECmpe01sur4tZeq4dg4cnINO2dRJLAgqhvK5nBcpAhJ4/432Abqb18zEzn7/e/Pw0LICpRpb/86eoOEMjMdQrlkair6+uWf7ACNcKNKxQi+yRRsVQrxiSHBjVl8/N9soJ8uPdlCjOpYAU1qid3daE+yeLHvQmLc83sDb1TJAzhXWfhlSFUHPafSv1tGZbtPbO0XnTZjpvOpfOplV0xDDnLB+sWt5StVxSsbiqxRnBAK9NLF+rOtLE0kkMaWLwFYGqga2r4UfOZWrLaqoVFUHsteKzsUd7tHmi/mdBVU8MwQl1Z5h2AhtWEt55MWGwQnhyWrVjov1rddUXWegGFmPbzcU0sJh6lry2m114corFS1bQGajqPnXC/SLsSoRfdLpfXN1RqSdI1WGqllBLWF1z7KlpZj6tOEI819OaJZy7hvCOi2H7OCExdJxhKjEM5xoB0WyKMwSne7HiDLPRloZaBc4eJuycUzcm9cV52M0CS2nuX2kQbd7DfNezmMbgS+qLNqSt1NPdvIJ2jHF1EkgvHMdbwx5rOeEsVyfqb7iKxWweI3nTOcxvHuOIsQRn8bUEv3EYf80Y/qc29LemvnLtshaKJbp9XsIqAuuHVWi6qKns99dCzNIT9BwMx+YJq5u0BAZj/TxWSJxgE8PrneE2EbKLhlSj6ZkZFfXtZrTuOkrrwaO037aB9mUrtCwkMXwmMSxUDL5mmK5bbqs5DfpULZ26o1V3tM5fi3/vRrg0gV/ZDBes69mZfF65bz1aV2pIN+uvm4+lA3roUegyhUCvdV3L0x2sUhVhIH5GgrJvK0YYNMLbrPC5ehU/1KB7aI5OCHRSLS1op9ruOk17tvh7Nb6rGvqpqSlmZ2fZvHnzy30/3/V497vfzeLiIu973/tYXFzk3HPP5Y//+I/PaFkHaD3utxolEOahaLkTqg7f7hKAcaN9168j8AbgQhPxWAT41bkWMqwK9xUjtGNw2g3VVOh0ZpFXrxjgIz7w5kyDALt84Md9wFh6CvexVt16Bfp044Kolx5djuvpK6nXaRhD4rOi1ESdz/72dWkuhhcXc+ozUlPFAw8GuAAYFLD1hMSDm2/jRhtKuc+92RyMBaicXIIskFQtbVHnCANijAY2vFCzGk3V9mwDGlo/MANPn4A3buh5w2UhGWPA+P6aHwNsqMEdk0pFDyVxPBtLaEJgLATWH53DN6qEwRreqGBQcKLt7ASyy1bgv34Qf9kwz1aE81IVIbIhKoY/N4cbT6gMVElj/bwGBdD6qkTrBmsCddF2dS91iJHYqqyUNcxfbxjqq//JAbyJoF68VwX5fSkT68ZYNAZE6GRdGtUKwRqth33FOlqPHKd13gidVOh0tL1J6gOZh3RvC79tTVSmNuwzwl9ZbTESnJBZww3A+fTqgx09J2rCCKNWF17ZyTYVi1mTwP5ZGK32g/ks6DNdBupNCNjjc8g1a3q2WYS1RugYVbvfInmwTZXalxC6Kyp0ZzI1qFmgY1XY65gP/HkG6zLPb4RAPaiwmjnWov36NUyemucfzhnl1zePk8ZMjU+EYA3BGn3WQbUVJqzn6kyiUylK/9wyhrwbuO8QYRrM2lHwnpoYZuN8Q9R/yAGFj/R730rxM5CtbpKJcLcRFmMwZMEJd3aFzQGyNY505zxd73GZajZkIXAoDezJPL8UdK26NCV57iT2LZv0nDa6d9Zb4daqVdVnb8iC1mBmTvDnryGcu7pXbpsfeLnROGccfjrAl45qWivvY14Gg3m2Kj/4QxSXOb5AGNWShSDCtGhQL9dzyLtyVNc2SZ49TXbtKrpo/XaCBi+6mQYwNofAxukF/NwCH9m4np0ipD7lPud4nzFcnBiM8z3hSCeYLFC9cC1cFPuwL99noJH8vDXka1bD9QdVhdom+r3YGcJbwXeFUFHl9qIMj14PeugFZIVeDb2TWD7b9fzT1PPp1HO4E+i2PYdSzxU+8L4TszT3TeDetg1rDBcklksSox0UUoFXjcGXF+COI/g3baCVCme5jOsyqHpPmFsiPHuC7O1bVF/CGXzuYPtoO0Vg+yrYPQcXLutHL1LQKjMfyI4v4FcKPrF4ga0ONkZQ/9MWLo6fXz7X/PV1wIeAm9B2fZfHeKx1grUWWzHYVNXK1Y6oBk0S1H7a5U5X/tzys6CiTptkoWjZWgQSnYM1Q1w80WZppK77LQ2ExBPoza8QxFs3FAXw9KzKLHSjKn8q8HXgN+kF1nMwn4j6BbnooQXeaA0fqwl7ssD2aJv3BBhBg5RA7A0QdCpBYliyNL+Y4RWrfoqIigx25lJt05cHLwyYZoXjG0ZZu6tFuKYGEdyF2Pe7qK+20qufB1V9T7Wm/HjXs9j1bM2UeWTHhoBFTKpzqly6hrRiSROtva7E3uwPun4/6mbg1U5bm9rMYzPfr81gSs8u6dWTilE7W7R3S32vNVWphZ1ctCoGsUOkoxtcljHqDdOm130ihBD7gocekI8A+HgW6CY1DPNay10Bc8EqbGKoVRRMpImC9Sy2GjX02s/WEkPdJVQ6UWzMm54BEAowm2fm+0YO5Lu+fy1naLvCv9uLmT2FecV65OzVqiFj9XxZ24Vb8+BO1msZFuIzbGWeFrC0Y5rOOUO0h+qxLt3QtcJfOmFDYvinVUviDNVoc7vAK4G/sIbna6oD0UmFihEQQ7CqOzEJNI0h5GDexZ7zsCyBFM+bio12M1BzCtKxETRdu5Zw6xGy84fomkTbdqaethEeF8/tnS4/7A3ndGOrwtRj5paQ/dOYH9sGaKBtyhg+5Qw/Zw2jVkgSoxocRltKS9B7WV+17PKG13Y9WZaRBcGnQVNbqaK4LIp8TkYm4GDVqW5QPqc82OQMFRtoGaPRIB/w5w3BjYfwr1hJEImBX0/bCi0rtLqBRRdoI6RBz8mk46l0A1lX12eWeXWLnl8k3VKhu8KQXjBGunkML8ItAa5BqDpwRnAWsmjLVnXhoA+cbUIhTupDwJ81RvrPoProcbhyDZxb6r6Ql3ykWW+vRT+dDXV44DiE9b2Ab76HszwZQRE05OQs4YoRptHuNcGgektOsBlclXluzww7CVz+ijVkX9xHd89h3LQnbTRov/MsOs1qIdr4j2I4VjFFcCkY4TofaOdYKCZrrA/Yi9ZRv2gdReedPDAYfO98FzSTCHC6BeuS/nOlJJDny35LBPhhAZZqNUbUGEefChInZF596EuN8JQRnto6wsWHFuhsH1FfzEe1+9TjUoPLPOJewDa8TOM7AvRPPPEEH/rQh9i3bx8At912G3/4h3/I9PQ0v/zLv8wFF1zwPbnJlzJEhPe+9728973fvjZhfP2l3+bNepeXkqJ3zeAXFdBPeFgT4JcEEkJUVVegZQnIqQCDVQy5QJrQjcJ4bqiOmeqydVSB5oMZXJ4FJkLgfN8DS7lTmPd6B5S2BQX9payAF/E7UApOVaA665mnl0mi9DoQxfBAe9ADKRlZDGg9ALxbdIM6EeyQwU53SEbqVIKKVhVhwMggkNNtqqscCXpwqMicOiDWKaCXcmQwM3DeCrjrmIbazxqhaOVWvpyoR5L/t7lzumFQ25W1MsSZIvghaQS7WaAR4NIjSyxuWUklF1MzCtB8osr22ZoBslVNeHaOfReM8ENGRedMpkDJPjuJO3clddH79zb2+3QWnBowZ6IoovCdC2AsD1jkxmhjFZ7qFyqRSEfNFe4leOTwCWauWq1sDCt89vov895ffCfBCyETupeM0n74OK2Ds7S3jNDJtF1iN/P4LMMfm6T1ho08HIRvAidEWG+FI07IjPY1fgT416i416tR+p+J++OYwHgB5DVbbSRm6TeNwIGFXjeDHLz7oOpFWaAM6k0ImONdzCrdQ0ZUMNZaYaMI+wQ2xcy8F6GLvk13tE7HQHexy7NNw53dwEYLn7XwSu95VwgkIQpY7p3F1xK6F4wxYldzyDn2G8P23LFzBp9oICMYo8G91HM8FUZTA5lHUkG6aDZly0rYMIL8/TNwbA5ZP8QK7zmZK9/6ANITlcmv7Pg8IYImBF4pcLvRteVSYYcV7vVw7YommYP01ALJ2GAh8PP1EHh1qjQ0EyDZM4cbdNg1TcSoQI04fZZ7neCNIY0iLd5r1DhnWpwB5MuIdfs4vGdQ6dqLXbCVHqhPfa9NTOhl532AcLxLWDOkMEaEUyKcHwN2YtGgiAhuQ53k6y2ybkbbCInXrhnazUrZDN0A3V1LZFvGGaw6ghXsDV9m8Rffze1WODvPXmYq7NUKag+MV72PonVMeX/lAQnr1Z5sGYYxB4+egutWR9E/E4XGtGZV10QPRHRRFep1eVARMBKwqE1IgorkV7JA1tV+3wtdz0NdDSz9svdc4TPMfcdwl68jGawXGdGkYorbDiHAWzYRbniO1kOnkWtWIWlgXYAjXrPz/txxwoqm6oMkmlkKxiAm9DKfZzfhUycV5MfgVB+gj+DPH++QrR0ik57y+4SFf2eETfFsywOXQj+wfyXw6hzIS+9cs0bZai4Bi8Whn1kVDWAXB1MWX4TSm1rNaopVoakeuI1Xji42DLB1/xwnzhmJ61Br6L3trU0CcHiecNYQXaMCeHr+9frQPxyBzxX0Apiake8B+jxQ41DhvDeI8GUn/KYDg+XZoM8n73Mscb4i2lrV5Ie3xPm5Xo/13tkgfPhvP8uvvPddPfZTXL+nzmpy9j2HCVcMaaA62hcF9p7QDWDi2R7AZ54szTSQnXr2dD3npAEXohjermnsJYNY38ZduJrknNVUo+J7lmimvpIY3i7CN0q3+A6iEKwRksTifM8elIPUZ8wNetnrPIP9Ii3scsVzDeRokG1F5sFY5lChupB5Fb/t+mKOWdcTfGByvs01R6bpvH41ldPzcP4K7LbVmMRQdZqh70b77+PzNfEZV9BgU8WIZuW96VHUvt38iIGLHNTnNidvY9dRRU6zOyD7DmN+QeCs1YjxGBHWinDaeqiYgnHg0xiQ9SocutRO6Tx5is6Pb1IhVSOkzvBZI5y0hv9gVdS2ItoyzIde941XA183wvaqo2s8aZZhrMd7g/dwClSgz4mC+Yrpb4+8/LKiASnnGXKGE4mHriGYQNg8RBidxN9/ivS1q0kzT2rg6bbwn0RIPn4DD/7MO/nFrrYrHfIBnl6ALaswgzUwwm4MHxJhbSJcYzUTXDU6r0R0nef+81nAHUaUeefj2ediC0sXeiKnRpi0loHEYMpgHjQr6wyh6xm0wpQVCDof1g0Qhg3smiZcvBLiM8k70KRkdAK0nOHxLPCNruetncDFMRjjYxAuOziDObZE95fPpduo0HVCllgOGuFpEX7B6DNQnT4p7ORaG3iWwBsCeE1v4H203+etIZy3pmD29DL0Jb86B/I5sN84CF8+0jv3lvlrhf8SApxcUPd/tMmiwEqb+/YqepskkHnD6zO41QcuybrQhrDHq2DjT4zSioyLtrN8xCiY/4OK4YQz/HliyKywKWjLPhOxljKX4/kan3neZlA3G8sYzAJjRkt71w30zph8bj5AiEGVmJn3+bcXU2arCavi2wiasEpEfanMaWeRH7XCx9fXuOj+g2Rhkc75q7BbxjCJiYr3nnZm+nKxL/d4yW+9d+9e3v/+99PtdvUgjR/W5s2b+cY3vsEdd9zxAwX038k4cWTHt/6F0mLIRK8g4BtCOJQRgGME1VoKPUem6J3d8lrLMKK94h0lyj3QHRsgOZHit8Ebgc97bW2w1sOo99hgopI8GAQX35eAOtL5/RXWRv9dGNg88g2QQDVk2p88Oua9wFQoerV2Qy96n7U9vgZ3ejhpe8EFK4Kr1UhmM23LFrPFRa+H/G9MdmFlszCoSe6N5vS63LEsU+vOG4DHTuvvHT6tCtMxItqXoc+VcEsHKHWnhZtH55CzR3tZevIMPZB5th+ZYt9FQwyJaEslI2QO8AraMh8Il4wSvnmYubMH2eYEE0TViBfa2GMd7NuGqYhQsVKiswoh0TZGtvT5f8fDLptX/pzXDWmgYyktDKwJFM6NCQE5tYB0UtJ1g0wbVc3/8Z/9MYLRQ8dboZNYOleuofPIKVqbhumkGbvFcF8auOTwLFuShD8ZHWCNwOud4bJEqDhhlzHc5AyvBzYDdwBfAP4a7fDwT9DsJCJMGMMWyXQtWoOI7gXZXIcvnYy1HtKfFcwDQiVQL5NL2o9+JCpCm54DsdkIe6zhtZnXZyDam75r9OqscBw8vcRf1qvMoBn6N/rAT/vYSsQHqsGT7DxB99JxpfNbw4VGeMgJW2xsVxSzUkEEH0tUulFYbsh5pBudcy+Fqq14g2wfR/YswrohaiEw5zWTEyL7oOiFHacejnTxa4e1REKE7YlQtXC+EX7MCAsCtyPcF4RfXjvC0GSKX6Wf3eks8KgE/kMI2MzjvCd58gTuwnGM6LxysLPWGRacMFFxrM8CaZYRguCjA+Aj+DqDktZVxxkr2tt9XQV2noZXnKkCn/83fS1tjs8Tto9omzUDC0ZoxNKgHJiIAVlRo+YCHJ6lsnWUTlAR2zRGurs+4Lopye6TdH90M68xwkMizL7rx8isMG5VMVkSi2Qeotp/KwTdxybOL7dH+ddW1suM5vN51Rr46mG4aiwyCTx0tYQls6KK2RXTa1kXNAq/Jo393+nRUJ1VpkE1Mve7mQJ51/XUMk/wnuezwHUPT+EqNZKzh6kYwSUR0CcGZ3TthxCg6mi9bSvm83sxKyycNcJYgIkjszAxjX/HObqWIoDInLKIJMvtiigt3QCHZmHrSM9hE806pV7plNnxefzZozpPAwdEaCCstwpQbAQHFSkdRXHu+Wsr/ZntHOA7cvOvDtILjeUUxbJtFZGoIu2L7LxYQVKBtXXWPnSUfd0sBoI1Q4+YQvSI4OHoItlrx7VzjdFnm0Zbklrha8Cb6N13Ij3KfYKelzm4t/HMfhvwfuAX0Rr5vSKFOnK+JiT6niKhDwC+2NkhRvjNX/8pOpm2BcWpGjqpJ1s9yFy1xsoDs4SzRtXhLgUN6WZ4B5kYsqBU+ywqvpN6nkk9F8e9Yh+b0XP7jVuwicVWLC4xVJxQiYA+SyzBCNcG+HOUhfEO4FpD0a41AW359RKHWCE4qwHtvgC+FC3s5Ng8smFQPy+rLeyMDzSi8viUEVZ6zY7S9UX2OksV8HrvWfXIJCfXj7Hx4jGsXatdWBKDdQabGBoVg69q+UVGD6tbdI3b8vPJF/Z3MqzpqYyXr53a9FJQ90ieOoHZMhYr8YRxEehmLBihlvq+0gqfejo+0Hlyms7qGp01A3REg/D3I9xpDf/WCo0c9KKBiS69NfsmVNTyvUaUWZkJVa+tbH2AE6IZeu8iUC/hwNznzFst91HvM0PNBeYyEwNaQgiG8OrVZNcfILtihHSwSgrcY3U9+3f/ODYL/GMauKUbWDXf5l/tmeDWN2+mEpSJ90VraDsNVDzrDJdaUwQXHb3gIcBW4P8Xn6WyKi0pRs+9LPTIgtZw3AjD+ZqkZ8skPjtxQtUKrURUOd+Ltoe8cDX+m4cIe4/BZWvIzl9LZnxkvKqdeDzA72eeatfzWOr5/bbn/NTrZ+w9/v6jJK9aS1pPlAGaqO2+MbFcY7RMNbLZtTUwAllgfaVXupvmNHjyeem/bTmDXTFQdXFypUx27nMOJRoZOzoL20bPYN3lDKcQIBxPCWuHwAgzoqLFErP91hlNhGWGqxO4PfNMPD/DJsBVQdqwdGCa9Kxx5ozhw07v7f9MDAOJYTwx/Eli+S1n+EyAnw2hx0wNvmAvOxGsFUwO6DtZ7wEWmU3p9aIvzQf6X+efl/eRyQyEVpvp9Y4VpeNTBIzVDl9ZV9m6Q0b44flFWIJTe5ZYue8Q9kfBbVtDx3lsZlQ/JukrhHhZx0u2uH/3d39Hp9NheHi47/uvetWrAHj88cdf1hv7Xo4QXsIHKvSiNBJbQCRCFgMaRwOsjQg5b5WmoB7MTEvjATHjZk2vjZkTcKsT3PFZDHARqsz+aQ8tH9gVM/19kSgNsAMBWl31EqCUnZdoYPXfPSMLOHB4loq5x6/Fv3XR5mUFGZC2U44ZBW2pwJ+JcABtVeZGa9ipbkEz7PFS6IH600swWuvfUGUQXkQFSzsk6/Y++88chf0n+3/Pmt6/lxsgEaWlH24VLd36wG4IcGSWVq3CxFBDmRcmp7gbraGPwNCvHWSpVud1++eoB61ncyFgdy1g1jdw9URbQBl1rJwzOCskiTIY/qfaUoi88BxrFkZRYY8YPJFY2y+Z0u1lbwfWr2TAGuZEHQ1brWjLtVj/1TVCeskI6XyL7vE5ns8CH8oC9wk8Md9hz8YxftMKv54YrnNCw2i92GUW/o0RrkJv4x3AXwB/hHb6+teoMwDwR1bYHes7jagjaowgG4ZgEZhq90Kf5brdEqULAjKxhFmdYK1SOCXSuDDCRgP7BDwSM4fQEmiFQAvojA3w7GJgQYKyZ7xGXV0WqHgVq6oenac6nWK3DeFE7/E8JzweSzEya+k6SxoZOvl1Gg0EjSQ2Mip62UFjY0/sc+qw7zSkGYNelU7zOZb7YBeZ8Yk5/KpGzBJAK87r1+I9XZkYfscKP2zgifEGB48usCPA82ngQ2lgSxZYFbyW+0zMY6dTknOGsCanIKsT5qwwZi37nSGrWrJaQlp1+GpCqFtCUVdeqn2N1ObC8RTg0lXw5In+Z+hLX3PaWgRNfnKRsMpFmyOcsrAy7ulc80P1FgxuyxD1vS2aXlseDfhAMwvUs0DDB+pPz1AbrFJf2eT8xPDb1vC6eoW3JsIXnOGYM7SdoVV1tKoJS1VHu+JoVQ2tqsHXEw0ANhMVwklsj35YzlicPQoNgZ2n+uaZZ1NC5vVCM4IT7YztrQzbzlTQqZViOynSyZCWJ1lS0aNKW0W1Xp8GmpFqOZAGfvj4LPVnT1B//Wrq1lBzhnqiVzMxDFYMg4m2CKskBjNSR354A3LvUczRWVZ6z2sem4RL1xEqylzwzmiJgNOykf76ZAPnDsPuxWj4e8E1ZVkG0uDJJpfIVrroJAq7BbZFm22sFJimJioAOGT0GjAqTDZktFxryMCQ6PcGDDSNUDVqM18MzKtJlL7rjJ9b6cvSk9udZoXFZpXBY3Nxz2mGvmCOgGp6pNBZO6DZTInnn1HbcsooI+mHoWjRWgbzeUvS4nX8nbOALWjgE2Bv/F4ODgr2nVCcGS82v/KoNWpF5lOcFK/rIjx5wQp46pRSYGM7sxCp96HryZYy0lhTnmetfartO/ennm3Bw9QC5smjuNeuwzqtlXeJtiYr15jXnKEZn+MrDfw/RvuY1wQa8Wvy3RyDiZRahUlvvcYWdvLwqejM5yr3alel49nQSpku9C7yDHYEpLHWnP0zDJ+aY/Gq0d76darM7xIF9CZS0utGClFLFUCUfjD/XQ7NlNp+6nNitB0jJUB/zhgS25BKpkJ1I13PZDeLwdNQZOo7WaCTeTpPT9C5cgUtEVIjHDTCJxLhl5xhnRMSa1QEsOyLouvxYhTDPUzcA1YD2lnNkdUcx2uOZtWqzaY/G18O3vV9zxqCsww6w+nog/hYwhbWDOLPHSZ9eFKnkwVemXlsNxCso5F53uc9fyiB39i1SGvDKIOjTU4Z4XZrSJ1mzFMrfL2Una9IL2AocW6bUI2oE9DzdSUy7yqWLLH4GKSaBFbRlyfrKyXw1lJ1SvcPVorAKU1PmIHwdEb45BH8sxMaTMrbJXY8d3QyXBqoZLoH70497SywlAVau2doEWhfOkpm9Pl1xXDSGL7pDG+sW6RmsVVHUk8wNYdUVVtkc9Wxv26Zq0ftjqrFVy2haknrDl/WsagYqGi5RJ+/2eePm9iPvt0PfkPPfuaB1nB0DtYqIFkQYTAy10zcu7nmhkuE1zvDLeeOIMOQdqDdhO4FK5i0hg8khmrF8q8Sy0DFklR0rrXE8rsi/IMRnrGGdhTkbFUc7WpCp5bQrjs6UXdEy5SkHx/kGGS0DjPdHviBUnYzMifjt3Jc5Akw22aqQgz0SBFksyIkxpA4TfBZI6zYM82TGx2nxhw7VzqOPjNFx3s6GbGePtDOlDH2vRgvGdDv3LkTEeEDH/hA3/c3bdoEwMmTJ1/eO/s+DR9U/Ccrf8BxARQ9riWu64ohpKkmoYN2PyrolWgm2BIwc11YZfreKxGo5Fn60QruVAsXAi4Ezg0w7VXs6d972BVCkb1wQaNQxVGy5NXZzi0NvR++wLcwBlwnYwEoRCxKGDygmfm+3oup56nIKEsQWsA9EcDbekIy0yIJWsPSR12Jf4OpRViVlKy79H9dHp22ogChPB6f6Heyc4dNXmCzCrCuCYfmFNwGFe1T8bgY0TvY4tTGVRyVvC5a68K9FaVh5q9FePSiUa56egKyUv38npPYC0ZVR8Qsu/dcXOR/duReXj6vcsBimVBJwUKIoEkOnkA2V2kKnI6BimA0o4hRNkFqhW7F0T1vDdnTM9ztIZNAI83YenKBw9srrDZaP1c1Qt2pWv9AYhmwQgOl2NfRw/8iFMy/qjQFb4RbLRGE50BXs6asq8D++Rwx9LK/ray/TssDx9vY8cG49iVGpfVQ3SrC7hiQCUBHVIG+LbpWD1Ub2NMpLmZE6yHwGh+oBU8NVW6u7ZgiOXcM66xGd61wYWI4aoUjVug6Kfo1F6wslHo4hO4FcTED7kRrtXNne2UTGazAwTkGQqAVAWGIjnYBeLOAxxNOLBHGnLJGRJgQqIswGCl2Vassl8uM8Mpxx4YTM3yp6/lvITARYL/37O9Gavqzs7hzVuGcLai5ed1tsMI6JxzIt6xRSp+vRkeg5qARgW7DqSOdU/XKgbjzR+Gkh4kFDVSUQX3JAfAB/Eyb0AZWNYr5zYgwYGPAsbSvRUA2NuHAFBZVqx/IVE16II0KxTuP07hYy15qRriwIvzzRHiXNVxrhf/HGhZQB65tlMbXrjoF+LWETlUdaImtiNSrza8SJdEaeOU6uO+ozjECBR8zmyGLglTdDGmnnGqnbGynSDvDtRTUSyuL/05J2hlJDui7nkuD5/dSzw+lnt/1GWfdfZj6VeuoD9ZpRPDUdArkByKobyaGaqKCZOIMZsMw5lXr4Kb9rPzskyRLLWa2a7YkD+ThIrBfbjMNcPYg7JnsMayUb6j18wGymQ6hA36sUQQ8d4lwnu0F6nKmpgOaEbwPioL3oQjqB78DAP8dD5EY682FOCmo96fXrWTkUCc6oj1mTJG5PrJANm7oxmBnZmJ2XoTUwm0iXIIq2y8Xwyto96XvOemB9R8FvgpMxWsr/UC+/PqlDpODQavBL3G6d+pGeGjjIHQ6hDyAEcFe6HpCOyNtZ2RLGVnMzufZ64OpZyDzrPMec9cE7vw1mPFBrFWA6+LekMRQrWiAacBorCsP2gwUQRrVjqkL390zNtLLXud7MWfwXbkCeWoGWexG3RgFuqbjkW7G2nbGYivFdDMF9FlPI8BnntDqEB45ypevXMO6qsNYBfI2ibW+TnA50CmW1ksLtHzHY5lfgxUVIv259chZcQ13TUxKqK6BpIHxzDOZz8f3etB3faCzd4ZO1dDeNEwq8ASGf2+ES63hMis4awvQW4vAN1/HuTbE64HbiSxN4nEcAeuMCCso+ZWlR1b+XhkAGyAkhkYinC7mrH4JAukrxkifm6Z7cg7vPYnXTkJvTD2/mwbOEah1UgaeP8bQBYO81sK7E+FfWAVRHWvInOEt1lAViqsM5g0aaNsA7IGiRKrQW1h2nQJWludTmhOAOGHAGhbyucT1GvaeUgZa/EW/41ghOum7GXQz3tz12NRDN2BTz+E0MJV5Ot2UpcePsnTdOpasoWvzcj/D15zh8sSwOrG4msPVoqBmomvVJJbBmqNRc+yuJaR1DcBkVRW+DVVlnNCM53k9KfQdvqU/vaEJB2f7AX1MSvgYAPbeE07MEcYUj8xFn6UIrBrB2TxYZrmmYji4eZydb91E66pBFn9iMwc3reaPE8s5VcdvVC3VmqVSddSqjqo1JMA24OeBD0LvbBfpu1oidHIIlxvV/OHlr0ecJhuhn1Hs9YUPMTMf4usI8Om0OVx3jBXJh16WvuKEiokMJiM8dPYIVgJJVxkE3zxrhCzrCRi3Y4Kn/b3B8y8d0Oc93rdu3dr3/U5He7cvLi6+jLf1vR1Do5toe1X5Xggw5+kthtII9MB8hhBqFt/R7P4JQiGAZAmIp1BYt9NdaNR6i8moirMTUcreaF3F5WaWMAE6XkGj8wrSvuZ72f6C1ZWDnSWvCvD5WOYRnGGELJiOx6PZVGKGEHJaSY/1HIIacnzGFivgtaawaoTX5efsiMXNLJL00VXiH89rHk9ksKJGESnL71OIh1kJIOQH95Vr+z/8a9ctO/TiUi1nCk3p9fo6HF4C77FpvzieZBly5DTpFsckUlCbM2ItvTWRaqn3dd/6Yay1mP0z+gymFjEnM9z2wcJx7C8HMC/LoS8Fl2fZHAXtR394tvjMizpCH5CTi8iCR9YNMWyEJWNoGeHh+x7WiHh06rvWkIqQXjKEPzFLdXKeJA2sPbXE9GCDy4br1KyhboWGU0DfdKrc34wOW1PihQL7Oip6lQ8v8GbR6KW1KnxoRLNmbB6Bx47C55+E3Se05WDeWqTr+0H9sTnseLUIIktUuTcCm4xhVoTTojX0LSAV4dkAf+Zh30q4anaR3xJ4tQ+8PwQuIVDNoJ4GavNt6s/OYi8ZUv/RaG1h1QrnJ8J9EQBlxGAXvSV+CmUp5Gs6xMxyQfnNwem5q5Dds9SAdinDW1SnRMAbTrfIUiGsaka9DuGYCGNRXFCM7r+GVUBUGWnirHD56QU9ULzSSR/wgaTVwT0zQ3LJkGYqrII/EwMW4gwbjHCQXqYi3/9ZnmkQSvWPpf1XBvVVB+cPwRMz+sGkZ4L6nPLLRIswXsFbPQXnjQYSRuNaFymJJ4rAlkE41oVOqgE1r9n5AR9oHphh4HRGY7tS0itOr8fvfwRnhPdYQ80If44e+h209U8rQBthKcBS6Lf1Ok/bn53Pv164Quf39OkC8GY+ZumVO0/oaOvMmbZnQ2yxJJ0U2h5pZZilDNPStkS1lgL6Wkez9JdK4NcNXHT/JPWkSv2CYRpGaDgF8QOJoeEMlYr2e6aq9GBTsZgkrrmaJ1mEZAJWzmfMHp/WgKUzRZYepwG9PnsqAtuGVXtkqtWfoc8idfPEEtm4I7NRP8LAHhHOievSihROc561rkXgXjES21u+zAB+2dB9F8Gt9JxJRFjaaFk9capXQ+97sQsChKNt0vUjCuZFhbYyo7YkE+FWgTdDX+38cjCfZ+nLqvcWrUmeBr4EjKOkujOy83wHDhhwy633FSBev+r5M2AM087C5rVw3xHC7bsJ+08SOh7fzggdT9bxpJ2e6nsWBeOe73rOCgGencX6DHPVKNYofTVXs89puqZqaRhVeh6MwZsB6TEvBkWB/nebyRaRM8Fu7i+MN2EY5G+fRvZNava66zHdDOlkjLa1RSZpL0MfcuG/AP6hSRZWr+DIxhGlLsfMvHGRbu8U3H8/hlhRZlBZcTwxcNY48lOXYN66AbntCNJJ9XyPwcTVXa8sBJ8LHqIZ+uDp7DhB59I1dCXWl0e/5m4r7E60XCIH8zUTO27k6xldh28EHkSr+/Lyy9xUTkFBRS98zNIFJUyYzzN+c9hZpl3OFJQiyJgN1UgvXU368GkyH7g/9bwuC1xw/0OcLZ5GCNR3zFJfMUB91SA1Y6hawwVV4d9awxud8CeJ4WorfYBeoK8hkqABtX30zvLy2Zd/rwzol88tn1cwKuh82uXJEi3J4/wxxYc5TjxrlTIoYheJ0PWc0824pOs5K/W8P/Vs956/SgOnH5sjXTlEZ+NQFDLU0p85a7g5Ed4e96GN+CF/XrmLCLBNhOdM/FwTS1rNQX1CVlcwL1UN8veN5f50AegbcEj96XIro3L9fDi5AAJhtAkCM1ZZnUWgPtEWh0lkv7iq5Y1Vx2e2rib7kfN4bvM4H6haXl21/EzFUKkaKlWrgUMXGRfo9eOo3/VRtFSkg7YMza9W/JqF0J+VL/vQIwnML/VoyvnDj6/1bAh9GfqQemgHDjeqrBBNLgmiwuUiJEaixqeQWOGS9av4wivXcvc5q/jsa9Zx2eZxKtb0EqCZCiGmP+gMfU61zwXx8nHzzTcDsGLFipfxtr63I8s62j/Ya0/WVgSyRb2eACL9dHuBrJZACnNeqb1rAEOvzVz+1cykSjmHHrI2kepkBWcMbkUFd6qDA14TAvWcFhwCb/fEGvqewj2gi28xU7poPkrWtIiOxv8z6N81qScJgbnS28TYU08Rk55R8z7DJoY1aPb1/cB5idZwmgGHm+z29wcuvCRgLlLnV9R695YbkXxjVZYdZFWrraTyFhS/uhnOW1OipJUMUe6MFqA3Xqub0SK3CjBvs5ihPzyLVBz10SYnYhjZx4ylt5qZyYweNkfFsGgEe8kqzI4TGO8xuxdx2waxFafK/DmYzw2gfcnb6NuPssNdnuO6hioyRwNbBCsCyL4lzNYRcIaG8oGYMkJtoBEzdZqdz2z8WnW0t63h4ufmeQ+BH3l+ilcnVS6yhobRNjN1JzStgvkBG+mHZVBv1JlrANcA/w2lpn5IhMtjBN2JqCJr/txtV3lvz2TwycPwzHHVBViKPVALapeHY21kvIYLFJk3I3lGSrNme6PzPSHCfwc+hnCtCK8esjTm5jnbwC8buNhCNQRq3uvXR6epb2hgR2qaiXJG1YSNcIUxCugltq8K9EXyT6IOer6eTRScK0SqclC/rYmcnGdwocVS3B8hjV99Tu8KZBMtwpqKloBET+SEiTWT8b2s0Wx0zYo6NWuGecVERjNV4NXMAq8lYJ+eJ1ldx43UcTbOqbh0L20SYT+9cyyfX14F0XfMlDNmZcBrgEtGYOdk78BfBupD/rlNtAnjg+r0GGFahKoBVzA4cpZf/AyHq4p+Ds31MTmsh/r9pxi4eBWNGHSqWKHqDMNDDZKo9/B7aJ/3L9IP6vODfyke/t3ygZpIf3a+oOAbeMVauO8Y5C3AYoasEBxra0DqZCtjXSvDdDQrb/ZMIDc+iX3uOGYxpbqUUmtnNNoZ9U5GM/U0skDj0AyNHZPUf2g9TWsYcEqtbyaGqtNyCSq26NltEoOJAN84g3n+lJZB1sAsgeyZUQFHG5lIsTuFL55dya5UnXYI2T1b+qyjmFKA7HiHbPWwBppEOCiqrrzeKEgvlgU9musPYuTBoDygZnJ7MxZr0ybndU2Wy14Af3SG7tq6tqeL+70rCu6fNIZ5Ea6lB+gdFKVzFaJDJ/3fz2n5VTQY8HlgBniKUgyaHqj/Tk6OwYFmFCbrUe4xhoF4hrVWpCSHu9jHFwn/cAieP0Foa3/ytJ2RdpT6mytrh8yzO/NcOruIefwo9hVrNHPt1H5bJ5ii7ja2KBMN1jSlV1IxEM+EqnkZgjcv1sJu/yQyAzIL5jOHkb0noaNgXjoZqzoZCx0NDCuQjwr3PuD3TxGOTfP4lSvYGD8/43p0e+MMtmpfVMzuezKWg/l4iRXkwlHMaA25/2RkImj7utVdz1Qaegr+mScLgc7hOTqtlM72ITIj3GCELNq0jhNus5aq1Xa6Oagva0HkoH49sB24C/qC2aCAfpR+oFvO0rP8Z7nLBww4w/FY9lNQ7q0hNUJ6+Qh+dp70yCy7ssArvGegWsN6qLRTmjuO07h0lIZA3RmaTpMNl1cM70+Eq50pOgqV55XvrZzdug0tfSn7uTlO9aWj4CQ9yn3Zr8/nh2iSYyEXRY3nht86Bj+9EX+hw49DePA0oZ2qOGNHRRqJrUbfnHrOw/MuAj+xsMTQnqPcc+mIZput0HHaSvlWK5xlDdsSQyJSiC3nR7Khd51Fj4GQl896Ueq+/1brermvGYOhrIn+9ORSKepfYjgF4FgXv3YQTNQwEhjK3wMN0CUR1LuKwVYs19YsJ6qO3646/mPN8e6q421VbaOYVB3VxGqLSOkFaPLW3/8a+AZwf1yb2pa4H9S3wrJFmL9GVNNsMnpyWQm75MGKEoM5d0VZ6oCBpapjOL6Xvq3iocQKVROFQq1wfsXwC2vGMVdt5FfWrebSpqVR1X70NSM0gWZQ1uj3Yrzk8+Tyyy8H4A/+4A+K773//e/nwx/+MCJS/Px/h7Ewe5w5D/MBFgMFtbbvIxaignYJ1Fe0dc9kN2NV6EXKjI+q6kF7QMtsCwZLlHP0F60VEnRjuvFBKsc6VIHzDfyfPvDmEPhjD1fiqaC0+yTQr7vS8kqJhX5LSg7mpe/PijHgM5poCXMpIFVQ7wsDkC/o1HMiMZwl8PMWznH6vkYEGalhOyi1rbCG+aYIcHpRHfIy4IVSODF+L7au6evdeuE6eM8VcMHaXh/X3NkunktuqaUXLMkz+OsqcGRB9QeyMt1+Cdk4xiojLBjDvI2CdkYPGAW76vTuNcImK5jNw5jgsftncM+fwJw3qAfF8kyX+w69sm83CqO6bI7jDf35iUUIygjRdnVenZtNDc1wWGEoZrDPv+pide5F59Y1auAzER48v8nZh09z6cl5Ltk3x/rtDaoSafZWaFg9PJvOMOCUSpVnZppGMzHlrP0rBP5vgesE6k6oiQKsqlGnFxE4Od0/17uPaF/QdqbdG9pxTc12wIMZb/TRenPKPdEwftQIf2GE/4/AIMK/tcKrLVRGGlTnoN5Oi/KAug/UMhVQaj4yQeXKFUo3jIDZOgXnl1mNdJ+m59SUAf1pehF8E5+XSE63l16mvl6BdcM09rcwPrAUN1woCf8RwE+0CKuHCtAURDhmYLXpgXkxCl4bomUP9VUNNh6a5l8aeJ0PvA/P+QQqzxwjuWxUA4fxPqwVFRSM62ozcJBlWQrieU2PiQAxY5ZrVxTZsrgmtwzrB7B3ugcGY/aIUo2YPz5LWFONdHuYE2Egrmn9vEzvc5P4N7eOwL6l3o2lAWbbsHcBe8UKzTJZVaWuWOHqay5Wep4RVgG/B/wt8AQxkk887DXYzmI8+Isyq3KArm9fC1y6UqO+u6fVPua1yZkndDy0FcDPdTLWphmSZsiBScw/HMI81sb8/WHMnhOYrqfRzmh2MgbaGQOpZ+D5kwx8aj/Nc+oMjdRp2hzIK9DQlhmlTF7FIDmoT7Q1lly4ClMHlsAPwb5zRwhOwbyPHQ28M4R8E5UDMwKcMwLPTRe2PHhftDH1J+bI1lYLQbzn0XIXMaiQZMzQ56D+5TSD38kw8QZyMaZ8XTWMsGf1SjiUFWedz9en92THOnTX1khB23fGAOHTIvyx0XatFZZl6KVHsyf+rFL6XjmDtjXeXxv4dyioz4F8/nl9J8yuV7/iErU1iSFXxxKnLChrhOzwrJqVCoiH8OREBBQK6H0nUu5jXfli5pnIAtvvO4nZvgazdqionbexfr4Q0XL9Tzf3B2y8Xi5aei5419eCygrsPA75ZwbIPYeRaBuk61nd8XRaXlkzaYAI6n07JXvgKOHqtRyoVViXs5ZiuZRxBhcFbb+XTJIXnOfyOvp4GWMwP7weeeI05thsUV6wrhs43fVFcCrE0pjuzik6564jtYbjYjgQ/aFO9Gve6hQg5VddlrFKSuvxh9A2jWXg2wWWWAbo5UzAC/3Z+fwaNkI3MczH8yMveVThN0d22TrSRyZZ5T0bg+eiC88nCQH7+DT10QrNtYM0jNBMDHWnrKVmIjSdpemEuqh2Q13OBPP5/W1HM/TQA/P5HPPvgQYuVpXmsnyOAjSc4WR8ViFeJIawfQzecRHhPRfjnSN8cR++mxVsEboZs13PmNd2fC4Ezt0xTbp9nJ2jA/wlhhOiTMqOM9zsDG9JLMaavuBLRXpAPg9YbEcDFvlcyud5mUR75kIs+dNlv9MaWF+Fw4v9JZI52wkIR2YJ6wYBmEMIxlCLNthEFq4FkorFVR2manm+ZjlZtxyvWRbrjpGawdYcSc2pZozprdNc5LCK2uE1wL9A9ZtO0TvblwP6DpQiSiVwNBKTrEtRNK9cIpiFAhMVLesI+PkOac0xEn0TYyKYj/6oM1LQ7SuRTXfhgOVfDTguG7TUq45azdCoWgZrloGqpeEE27drXr7xks/gn//5n6dSqTAxMVEY70cffZQQApVKhZ/5mZ/5ntzg92oseKXad+Na7XdmdWFnpey8hxhdhOlWihLEY3Y+KKgvImYzLa3XyC2apqAQKdFIVlWoHJ+jihqiS2zgtwxcJYFarKFPECoh9p/PEUWrq9ma8nooHUTldSyAOAHvqdMD9LnxKrJ09CJSPgRCCkecZb2AyRevia3DalazwlPtUnSA3uaY7Kr4RGHxpf+mDD0F1Jh1olYS4arHr9UozlVz/TSh3OCUjU/+/uuH4ciSlj+EPLKdYfZNIVsTKiIMinDCKL04M8S+wyqyEqxhhzGcbbVtib14Dfamg5hjKZZMqYhlYBMN38taY/diBtZEA3tkMadRaNBicgkzHZCNQ5GybxiwcMrmrfmU6ta1vSz9ghHuaFTpbBnDfO0ASSvFTc3jrGaCm1YYjGB+sCIK3oUeqJdeVibP2uc/axo0wupUSKhu42dmBa5YVlZxCPjrJ+COY3B0XsF9FuD4AqxSirjJQa30qPvPiLAXOCbCnQbehfBzThgRqIpQSyy1KtROLVEPgXqgR9t+eopGNZBsGu6VBTjBGqWmjySG7UZ4kH5An9uGSZZR8oxmUfM5SgS8RoBtTdzzJ0lCYCFmsos6XvRg9Mdn8WsrBeANkXEwXngTpSy9FeoiNNZWaRxd5OIQKdsCtQMzVFOobB6mKtHJtz1RPJPoZ5mXCR2nR7vPD/zcgesbZUBfXvvGwCVjsGO6FBEIxesC9E50YbxK3rLutMBongUQtG2d5IBewSKbm3BwilJTXXjkNGxpwHAN6zRDX7fxEDUq2lWNWYzzgV8D/hiYYBmoj4f/UmRmFR1biv7Ky4BEYlXN/97jsW4+z/4FddY6GWknY66bMea9inXde1g74Jn4CD99FP54J+ZPd1L/y50MfORJBv90B0P/cJShFIYenqd5YJJ6pCYW95ELGMXPh4qDqo1ZeoupGOy21WQ/sZn0yiEeeesmdm5eTUi0h7Z3KkrlczGq5Rl6EThnSLU52mnUeYAsC2Te4yfb+JUVPQdFeMZo5wUR6Y/zFObq+weIyqNMuzdxXhLt0VMbKnD4lArhRnaMD+BPLantH2uosCYa6HwG+AOjNvJh4Gl61PoymM9p5SJyBjjKM56PL7vPWyg54rIsUP9S5knP5pCzbuIZ1DCG0+eMEAZR3QMgHO8QTrc0K9/OyFpZkZ33qWdfFnjz3hlcq4NcMVLYQ+O0DZhNSmvw+5m9Lp+v+X68Ss8O8dFpPQ7mziNIuwvdjGaqQbVc3T7PXocHTuJXDcGWYfYZYaPWWBWZ+Zzx4n4QazeyD5cDe+MMZrSOXLUaueeoduzIPCu9Zzb12rEhinJ2Ty/QOblA96ImXRH+HuEN1vB7VnhjIvyJM1xle5T0HCzlwHB5qchrgP3o0dxFz4PpeLsj9AP18kXpdTk7D1qel1rDTKTa5yWAufhb2D5Mx3vecmAW4wPOe2w3xe2YwF0zTtNo3XrTKqhXjRGhUTUMRB+kIRHQ5+4TPWBv0Az9aZQtUwBdSgHt+P1p9HzP773wo6U3vwERFhPthBNKzzAkWvfuKwb/zq2qdXDrYcgyfCwFmet6hlOP+EDl6CyVQ1M0Lh3hV52wxgr/2RhuMMIfWkNIhEsTUwQUy8LahYtIL0M/AcxT0kAgxsP5VoCeF/A14wPcMASHF/pqE3J2Id4Tji3AuCOIMG+FhqU/qRHfLhFInMHVHDfXHe26o93Qr1+vJVSrlnrMyjek9yzLZRS54OjrgQtRUJ/ST70vSuxQ/aMzwFBi9E1OL6Pd03uZ+bz/fPza8rRqVVYV9l5dH5NT75NeYqFihaRmqVYUxNdrjnrd0qw7BhqWRiOh2nRI3X1HHUC+k/GS33XTpk184AMfYMOGDT3V2BDYsGED//k//+dCHO9/h2FdTUW0SmA+p9cCINGXlN7GyAXyQtWw0E4j3R5VUS9ex39Pd7X1A5zBR0qsUEOor6xSO9ai7r0qOCNaM0SgDjQk0EAz9EX2G7RtXa302EqWpjCwxZ+Mu997BgRm8qxgL0HYR7f3oGqwwHHnGIvvYyOYN0YjS3aV0X6OeWa+HOY83YGxRm/uZStfiuSrg2oUwNdtP6hvqHonVRdVK8vTjTtquSEywIYqHJ3RzLzXZ2EOzyFVQVZqnc8KqzXKIWboM6sq996oyMqzibA9GiVbzbCtmKH5xyMkByYVsPVdL/PGzD+r5QZWUAN7VAF93o5PnltAtgwizurHYmHQGk5ZYWZ2VttWWaFrYg29MdyDsMkIjVVCdcpTm4fkhsMkhyapWG2P0rSGeqK15bkwkBMVYBowUfzKlLL28WAdEBiIwjENq8CycMrOUeEfLrTw0+vgfRfB6zaogf3YHvirJ+D2o/DNw0qN2j9Z9K02eSbcCLdIb7kFhAORBVC1WsNbF6FRr1OfSqkBTa/CT80sUHvwOObKtVirNCkba8ytywGw4TrgAUp7IvT+3imWUfJE56d16qaguCOCbByCbpdzTs6zGLOfeS/zXDE9nEjx4zVCBBRB4IgR1ktJUNDo3qsZFSmsjdRUiP7YPM0QaARoPHKa2nnj1I3Wkef1rzYPNBijtc4otfIgZzo0npINzJdjvsb7stdG99vFw/DcnLIrigi+GgMfAv7EAiEBP1SLgkHCrOj6ydd4nzJ5fMZsHoSJyNjw6gjx6Am4ZlWR4nQ2BjicYWF2hqrVTE0ezX8LWgryH9Hs0vJofk697xPSeSEgYQWuWgUTXcLBGT3w8x7QHRU7Op0qhX5ooQW3HMJGlqJk8Ux46xj84nZ451Z42ybs69ZTqem9VokZ3Z0Tvb+Zi/RV+msexUoB6G1Ova9YzFmrkX9yLo2tazhatYSKOpaZ037aASIjqfQM89cjNVghsGcGQsAHr73KTy+RCfiRurZ3QrR+3lDQ2vMMWA7qf5CjB+QFifoTAyLsXjMIC21Y6MRWS7rqw0SLsK5SMLO8UZ2cO0QIRll5oCJhZaDuolNdHkWWXkrgH12D5fF2+rOhdtn7fLsxOTmt7oTRYGfI16nTvvBTm8bpvm0j6eUNwk+uJ2wbJ3x8N9lTp0h9IOtqhj4XVTs21+K6x4/Cdau1RV1uD5Oe6ruWu31vnM8XG0WNuZUe2D13DbxnA3KJQ969AfNr5yPTHeSLu2FijtHM004z6GSF+Gg4ME124DRcN85pMcxYw/qyqGQOno38QMpFisTGMkFO42KXmKtW6Bn/5AzGB4Yzz0yq4N5HPZbuk7N0tq8irSXchpA64R0Vw3lO+JdOBdXKYngKeqVPD6IM6geBa4Hb6J0J0ygoL2e8cz+zvDLkBa7890eMMJXYCOjzDL3uveNGuPnyMbbsOI5JM+amZ3FPzWKHHZVNgzQRhqwwGMuRhhLDcGIZdlIIMzZEz+IXAvMWJY2OoVn65SVm+XU6zmPFsntffg2iLe5mK66wtaFioWI1Y1+xhIqDH9tOmF/C3zMBmWc+iuKNxKiivX+C+sXrqFYTakZ4V9Xweid8PjE864QTiWWX0VbXZRZQr91nb34jaCBiz7L5lYH9i67B2K2nz+80wKYaHJ7pMQozHzvXxLNdIKxsEkQV7nPmHVaD9/nnl+uMVI3wNmtIE0s3saTO8DYTGRbSA/L566qcCeodmqV/Hg2Qvlg9fUeIbXLjxs6TCCsczKjuW1/bulDCQj4UvlFYgpmBGsNCj6Vs6GkJGm1jWDPa7rESQXy95mjULM2aY6DhaNQdSa1XtvS9Gt+Rpb744ov5+Mc/zic+8Qn+7M/+jE984hP83d/9HZdeeun36v6+J2Pl6nNZpCf8kTuyael3gkT/VKRPNAOXMNv2jIt+Q4ggPhBF8YJ6kMPVHrIugzPRSFRzVZ1mx9OYaqlDHjOJDUSddLTu94xH30qhbl4gPCrFy8IQCRoJSjVDn+YAPJ8LUdneUyg7hlTpKBPOsLa8v+MGNSLYRg2muqXIXehtjhOLsKLSd19n0F+KH4kqbkb1TRrxygU8XiwrkDukvZvTv7NhECa91rF6r3T7PfOYrdqTW4xhXFTFPFiloWZGyJwC+91GqFnDWqs0ZbtvKtLso6bBjuO9jKURzc6/zJ7AixpYQetdo4GV4DVwsfckcvZgSRDKMGyEaSPc8YVbi7ZVXavR8JYVvmENr7OCOTqrJR0JJBm4p0+qmFWeVTcvbHyMKJW+qKOUnpp13qaqWdH+2YWjkpdWnL8G3nUpnLtagzYXroSf3Aa/exG8aQPsO6npY4DPHMXtP1lksxILiQhvj/cUjALgNwk0LDSMUv3rQG1ljcZkm0GPtkDLApUjc8hECpes0ICN1bnm9ebWWYwRXgE8Bn02Ij8Pp+hR8ootGNeBybM/JgcWFjav5pIDHZby6Lb3PVrXiQV8BcJQFR837IwR2gbGYtZRVbzVwXNGGDDCAIaBtQM097e0tdvpRRoHFhm4aJim0bq1nG4vtsc+yO93ExRK9+VsRe4AnDFeqKbVGg3crXbw9FQvQx8jowHwEx3CeJ0QA3DBwIwRRnLadjzcyuUKGIHBinooB2f1PXed1rqJrcMUKolOs/I1K9z4ha9TLWWh8mj+r8fb/zBnHvydUlTf51n6cqasPN+Kg+vG8fecVIG1XJSqG/Bdz1QWuO7gNHx1D9KsIj93IeZdGzCXVjA/uwG5Yj2sG4TNQ9rX99wV8Ob1/Z/x1Wv7/35OtV9uH6zB1jQ7byoGE1sLSs2xom45XLN0Y6Yo7xee5edY2W4WgUKB7avg+TnwkGbgCWQTHbLxmmqLiHAo2pcNkvdC7rWs+0HWz0NvD5pYJiGi6z8xgq9YOqsH4ehSZMdE/3SihV87FNe+2hFv4NVGYvmLvvdbOBPML8+sG+nVt+Y00RpwFfBfUW2RPwOu+Tbv8+3GJ//h5n6bkygwDRUVk5pNLGweJ/zwubBtjPDatYQf3UB6+1Gymw+StdPYl13p2mc/OMnilnHM2iEFtVYzTkW7upy18oMYy2jo1CxcsBbzrkuRs8eQZgV+dDNywRrktkOsfnyabjeDNFKcOynh3iP4a9fhGxUOGmFtVNzuZeetinXBmX7W92mIFd3rJXV/STSwItZgXr0OefQozLVY5bXN5WKsZc6WOnT2nSa9eJADCLcb4ecSzRYm8WvVSV9mvhJ9KgtngPp8L/8QWquc+8NTqDmGM4F62QWFM7Pz+c8GgdNWYus6BfNZLAm6XwQ2DCPNOmbnHLfdegf28WO4q8dxon5ENdEEQdOKlgImJjICVXwz91PKmevcLuX3sBkFvLk/n7PT8n+fjveZl8wUc5X+uVTj1zln8InFF+tUCvq9Twyh7ghv20aYmMY/NM2U94xkHucD7JvBZBmVC4dVRNQZnDFMJuqLeqeJptugr11mVXoZ+nyu+X1tA3Yvnx+9LP2LjvxN+nxOgfVDSmlYSksZ+pi5PtqBtQOEiG6nUf8rF9Y1pudv5K0Sa6I28M+BfwL8JbFEU3rBpobRq7xmC1CPnu0jwG8B/wM4Qn+wvhugK/q9rIy/8jFc6kWf4xcoRIq9D0X+NAvAvGe2WmVUerlTQ0/TycTkSS0x1GqWSs3SqDmaDb0G6pZqYrX0+fswXtJf6XQ6vPGNb+SHfuiH2L9/P+vXr+eiiy5i/fr13/4//l9wnDiygyfoB/PlOnKEqILe2xhFIrrimE8DKwkYYs08SvE2gM1F4QYq+rW3CorXErP0gysdQ0eXGA6BoSwwBAyEwABQQ3oPpyw+1+lqRjt/73yUjE5eRw/qNJOqeNlUHpEMvUVbZrUGUBqpaDRtiH68bEQ047Si1t/PsagJDjC11GtZl4NR6Lc8y0ZZ6bpw7L/VKMJjy65moqHko3N6n6nHPDeDbK4WgHc8RoS9gcxGhzeC+h2JcG7MClhnMOetVPyQKaA3V63t1dZa6RVSvtzjxQzshkENl7cy8GBOLiInPbJ5sMiiY1SYZMIKb/+1d0dhFEPHaCuUbxhhlTNsdQZz7iimAq4ThZwuWa2KpDmg+Tbzy7P2VaNZ/QGjGfxKnu2sWGVh5BoJ5Sv/Xv47NQfnr4SV/W6ueXwiBhkMLkZDrwb+FBWd+hNjuNxpZr5mVCCnDjQHKwwcnVcBEg/GA4+cgstXqBhYdPidzSnzCnrzDPZa4FGWHYyoaE5OySs/IrE9pXtihgUBtlQ46+AE7UyzzUHVNyOo6OBXNwiiDJFg4ATCClHhuKKGPmoHGIGaCIPAwNomg/tPMxhg4NEphrYN0mxUSCJQy/eSjY6/Kd3zFnqAvgzmcxGkQhy0eAjywqDeCFw8BjtPlij3vnfon1yEdQP6nkaj9icMDMXXRZY+HoyFmJkIbB6F/bHFzCMn4co1GkQoBOt0flUr/NZv/nQ/RQ89+Oto7fJDwF8DHwAeQcF8Fz3801CiI+ZrvpwZzPfCtavIjizhj8+XWmJlhE7K8L0nef0jR+HqdZjXrEGqCbJtHHnHxdhzVyO1WD4U1YapObhgDfxiFAH9pY1w/tplVPsXj+Qbp4rjklPwa9pzeLTmWKxbjtYSslqCt6Zn143096IvvgLnNOHZGfCeNM/Qn1rCrx3W/94IexG2GQoBOiM9h/k7VWt/uUe+ZPJ1lO8XjGpOzG4cxB+c0+MqF8WbmCVbW9UuNhLL64wyEFYaw3YR/r/AJfTmmTvWL1RakCxzPutGWUvXCYW2SNlBTV7kfb7V+J3f1LJGA3FPWkKk+9arhtNVBfckuW6CELaPkr33XLLFFP+Pz5IdnSVknvm9M4zOLNC4fFTBvDMF88NFUE/yfabal0bORinOj3hJ1ap2RGIRZ5ELR5G3bKZx8BQ/+7WDpLNLGjR94DS+UcefNUwwwnPGsMEZDcInGvyRJOpAyA92/RY6BTFbr8Hh2Fpz3RBm+yq47wSVoFn6U7F0K9s5T3fzMK2hOp9BeLs1rHdaQlZxSgWuGulbd/kQkT42Sf7VAleiZ94OejT0FaXbLecYyi6eLLvKS2cFMCMKeH0E86kxdJ3wmDFc6wRz5UrcAwf5uYUtuG6K2zJMEgNNRbDDxXIj98L2UV4kS2/o1ZkvD2Tnp90kvQ42xRxe5N8jwBxo0LQSmQeJ2uE8Y++dITQqhB/ZAgePkzw1w6gP0M0wjxxFrllDYrUVZCMxNCqG1zkhzen8RngbvQx3WXQzt0nl+b2gMF4o6QC9mBBbHiQvJ8iMqH+2QuDQbIFwQ8xec2gWv36oyIIvGkPTSJFUyu2GIW5hUcDeFHilgf9o4BUmlmiWL1EGiYicCeilx2i7AvgR4PeBP0ETMJ0I6NPIdszKCzT/OlpTjaYc0KMfUqAfzOcYiXabU0MqhKy5tlzrJzJHAZxQqTlqDUe97mjWrHaHMsJ32/Hjux0vyY5VKhUGB1X8YN26dd/mt//3GH8I7KQvqdTn3OVieHlda565SgcSamlP6Trf5AJaRz/TUk/SyDJrZ/qy9IjgxgepH2nR9EoJGvCqWO0CSIh3Uub7gkrzF4A+fq9kOc+InDqteR8Jgege61uFHq2kTLunm5FVUAZCPg2i8A3q78pQAqeW9XP0Qamx88DKRimQIS+aof+uR/E50v8556D3cBubBcyhGaQOZnVUBzailHunRidYzV5lolnsR63h3KREx9u2Gvtzm3CX1zD/fBPmvLX9mYPvFRXxxQxs3WkT9KOz4APy7Bxm6wCSuNiWTLO6w0Y45bRtDSgLoZsYOka4KTG8IWYpki3jmJ/aiL2igXvPZpJzVlPpo1V/98+rqEuulTURXP/1QuB+WftCc806ksRQiwJ7Nact9F4h8IcCr4iZ+bqo+n3TiO6lUUvjxCJOlbC0VOXpWbhqZRHazqmlzqoT5GyPJnYtcB+lkhs0WA0v0NYmzzLnQNqgjqMRGBugW0moHp5TIO99cbD6iQXC+sFCpyOIMGGE8RjAKSj3JcArNpY+bG4ycKDNwGJK84FJKleMYgylYJOJCv76HmVAvwmK1nX51s3neIY4KPSEqpZnro3AhaPaZm6qpX1qs96B6CdmCaujPkD8nOZFGC4d+spuiECxCGABW5pw8LQyfo52VJzOSA9wx8skVqn3y6P6KKhfDfwUcBOadfpdNFCTl/sX/ZbzNZvYMwXyrEA9wV89hn9wMjKZPOH4LOHGvZhWm4f+yXbM5pGiPaCpROXsutbM9a3z/LpwLfz85SoGWrMFkM8VxV90b6GBWlN3SC0h1Bym7gh1x4pawsFKDBDRX05RCOO9UKDQgz8yp48wBPzEHNlqq7R7gaeNcL7kpVdGhSSl5Fh+nx2X5cOYXk15LrRIDDCeXlOFiTlCN+1pWEykZGsb2s3C9mj2mQgnDfwr4GIoRKdygPBiWXUjUjitueZI3gkkf112Wqvf5ceV2xwj6J6sOXzFUqtYpqqOUHVK963oevOJIR2s4H9sC9kl68huO0R29z7qNx/kqW0juIrFGrUTLiq/J04wy3qy/yCGJLb//MgBfdxHUlVgx4om5m1bODQ+hL1pH9y1H//wMfwFg3ijFO/DzrAxBszy/t3WSpGV/l7SYL/tPEV6ge0kZ170OjbIdSsx0/Owf4aVWWA2U52A7t5jZOcM8kU0iP+qJAa9Y01v4kyfTVy+R8uaEOWe9A54HUq7h17LusKVjV8LsBvft5wlZ9nvD6GBAW2jazXBkBgeFg08bDYG0+1QaUEyCW4akkNTJJGxoIFc6ZUnfIvxQmBX6G9dl597uY0MKKAfK71P2X1fPqcmCugBvFNQX4jjVUvU+8QQhuqEH9rEqmeO8vr7j8Lnn0IkIJuHtZTOCtVYi31pxfABZ3iDM/wpyvIpq70n0svM53PLbVQesKA0v5ckjJe/4Qv50+uH4VA7jwgo6M084dgiYa0WWgURTlsYjOeJiXSt/G0SelpLjZJNzLUPBqRHsy8DYCtClTNBfc7AuxplVdwJ/J9oACpnVGZEzJbPI3894nrYpaxwHwMVhY4YaHnWTJujVTRDn79d/j/TS+aYmqXqNKjRNJoQ/UHYlJdssV/1qlcB8MQTT3zPbub7PW6mB+Z96bWIqEMq+WYPxcZfEseKxV5WwgSQoGDeAjLT1X6HIv2nb7Fp8o0DrKnBsdkiGCB5AWu5uCcfeXRtCaWnvxCdJI+K5T8CjfIGaPjAAn1rWP9U+QoB3/F0jWMtMdpZ8vusUVBvRhOYb/XuKX/DqZb+e7CkH9BnJF6eBZ73+j6Tdg+sb8LBOX02z85htq0i7xNurDBmhaMiZDbS7YlRaCs8n1jOT/I2NgZXNdhz1mDfeQnuwrW9jEE5C/u9GDkweyEDu2FIDSxgnptEzhsuslMSqfojVpiK6yyg2cjUGu6IAPayika5k5ohOWsN7scvonLeGipVWxJC+p+v9SlAfa6TUC+BmTxjuRzgX1hqX/grm+H8NVQSpVbXc9pd7iwbaFrtfVq3yhBoCjRFqKxsIgtof/s8O7+hBqsaBTg1Vmnsie31ec339XVoT94y5f4UGqursiyQJxT183n7LGPyaK5wZOsYowcW+ilrIRBOzOHXJHjRQ9GLcCQC+mCMOg8mZkTz7GhuS0aqSru56RCMGQVlRvoy2NZFcCnS59xsBg7TL/iXM5WKwN7yUaKE9oH6RgLbmrBzOr6J1gf6TgaTAb+mUQjiYYXTRhiJ/61BP8CcXSJlG7llCE56uPs4XDSs66P8d/N5JhpszAV1qqISI2VQv2/ZVL5CiZ0QlpUZWInF0KYXvHMRIF+1Ev/8LOELT+Bv24O/9RBcMMZXXr+eSrOmwVNnsBWjYCNmzwuxz8ayQFb+/VIGsuju8a32FSX/y2hQIySW4AxrjXBE+sF84dwtD1IUnqGB84bwzy/oGsg82ckUP1bXtYnwvIGzo921tldPm4OBH+QoHK0Y/MqFFhEVQT05UCM0q3BkTvfeiQWCAz9a1c8m7j0Pkb0lbKDkMEs/qH+xkYj0On+Yns5IfjWjI1uT7x5ALg/YixFC1VGtOU7GDL1PDFTzWl5Llli8s2QXj5JdPUayc56qh1ftnECOT6nti+eeKwTxvv/O6AsNcTEoXNo3pmo14FCxmmVPLFQc9165gqnzVmJ3zOGAcOtR/PHTpGLY6wxbYmY+z37nwO87LX34XgyxphBXk7wsIJZOScUh16yDR46xqpMy5QNh3yxps84zqwd5RoSfcRqUqcSATCUxfa3qXkj0z4qcCeqhULu/F1ig17IOeoChnKXvmwf92fl8vY6ggD4AWRLp9tZwbyK8IpbLJLunSABr4708NdFrE5zbrKRfV+SFRh/YLb3eBhxF6dll5m3uC5+mXx+nmEtpbvkYjJ8N8b/3LtbRJ1EULzGxvEATRzLaZNcFq7j80UmS45BMZsiRaXAmJixUs6jhDFdVDH9ohFeIAuBc8b0QNHyR+X23wni5mHJfoD73MzY24PB0MdHgtVQwAKxqqi6LEZZERfHy/37559cUBe7DJXuYl2o2paeBsHwkpXkvB/R3Lfvd/FzPAmSGIqjdtyBHEpht9YBQrtwfX4aYpS+gWLvFdM0yGs8T9ety+CF9a8JFP+T7nZUvj5cM6F/5ylcyODjIH/3RH/HpT3+aBx98kB07dvRd/7uMkVXbAXgT9NHqs5JzlyF9QD6vqZutJIxFJSXdSEHBeIj/nk5hqNb7Y+WHm4P53CCtrWv2Ke/lDMUC6xPCy61OGrdko9SHftnfyddtETWNmZ6BzLNQChCU29bldBOP/o0la1mbG+zcYOQ2FVF9gMnoKuZiWAQ41YLxGC+0xY30o5+Xa7xQBluAdXU4sohkAbNrGtlej1kl3ZBjVoVjTka6fe707hRhPDGMJNEZrzhsdMhtzWLz7Fo1Zg2+h7WFuTP6ggGLdU04PAunl5CTGbJtqFSyoE7tsBWOOcM3v3Q7HjXmXSPcULG8LVEw72ra99PFHqCVeOWZ8pdLCElESk5Z0i+CWAb3ObipO7goti+MQRRJtEZpoGIYtCqEk9fqFy31ItCvm6gw34ydICYXdX89PAHXjvVOwbh+XAS+zpq+OsJzUPCel+bkEfyVcV4FmKfnWIszRWu9PEMoIpzcWmPVkRl8qxvr6AOhk+GnAmG8WYB5rHBMYsu6nC0gUXValH7fWxNG0x7PzcH6up4yeRYjzk91Akxv/8Z7XR3ncJR+yn0ozfWMUc6Ol0G9AS4bhSdOFHYshKDU9EEh1BIwUoCmU0ZUYCYPPkbqZNE/PL/qTm9497zW6eeTKAUs8vKX6z93G0k8TMvU+7y9z5uXTeWf0MvM545Peb32d7HQKzjBT82p5t8ej+yYJ1w9BueOcMIaxnJHvKZAw1aUFm+WZ+XrVoF9Du6LwFb8efLtA2l5SVUOMPN1aNBykWP0Z56KQE0MFPVl6PNneNYg2b5TZASyE4v4BmTNCgE4HO3RxhikKnrQ08uG/SBH0ao1t4N5SzerrJ4OAutWEg62NZB2sktY28CLCoZqFxsF8vsNbJBe5vaFHOdvNZyoHVquK5KLh9bNd98e7frP3XYGWALdS82KZbLq8Ikli0CeiiHULL5mSaux88HxWT2u62BmQZ6fVkFQV6Lbv4z2/+UYhYBuPAtMDDibRL+fZ3CrVkinFGyEKtAB//wMh+K8Vueic4kt6LLfLkjzfR0xmC4lUC+5QN7mYRgb5hWPTXHaB8KTJ2ldPMrng/AOaxgtqPYSa+fNC1Ltl48X69CwFdgIfJP+DP3ya/kqOSPgFL+fZ+hBS3g61nLMCk9Zw5WVqFl0/gpE4NbJXSQeKpes0fK/spbCSyhzfMFAHJp9r6HlZn0tW+md7yvoP9fLgYvyth0AZum55kEktrDTwKq+FqSijIRgDY3JefWx6yBtkOdPaZmLi5T7xNCoWAYSU2S0c7Cb15lb6a3b5Vn6Eb47YbziQyv71DbOekNTGXipCk0C+KNtwrpmnzbOlBGG86C89MqFe+6rsqWaovZwyPQ6JVW+RTY77wyWr+O89MCglPvy+BFKZ52IYpvlCbGRWnxwoe8D8bEUy0OfpphpeUKzUrDQ8pZ1NiY7l9/1D5LpA99BcP0P/uAPipv9yEc+8oK/c9ttt73g9/9XG+2laS5E+8yWFe5TyR29oPQ78s0uxaafS4TBxa5u+NDb9Dag2fq5rgL6sjUoW4US5b5Qg59u6+u8DrXsjZWBfTu6ntWcci9nWM/cuSn+ZNxZ9SxjMc4/lL7mvUz1TwZIAwvWMl4yHAJ9/cAZjbIgSxkM2l5UYLILo42e5StvpBda/f8zoxxJtKW/s3YAMpDHJzEOzNqBHmU5KpmvNIbDVlhNz/A9BlxmBF91iPEYn2GCwRJIRNs0aTj7pTndL8v8yjSo/PX6Onz9GDw9i2xpYCqu1MdbQ4cjVlvxDZ+1qZjfN4G2NVxXSzAmw3rBhkBCpHO5mJVxRqmOL/PQnuaAtYRgetncLAaz8itHlqDzjVlYqTqqzuBCoAoFncp4VMxJeiCxALyrEzjVVlVTC5w1QlHOYEW1EhJDkovi+YhZg/76NcD9aL2W4cUpecV+czmF3OvzyNfnQI0TqwZYc2CBcJ6CJI4vEEYFX3Ox/zwgwjEjvDqCVwO9ln1OMFlpPeyf7IkHPr4AF06q4GApg20SFfkzuW2iB8Jy2v1WShl6YtwwaGR8+fML1oD1JVDv9fPcPgpLh1XEbtuImoNjHcKagRisAKywIAoqR///7L15nJxFnfj/rnr6mjt3JiGQCwggMSg3qCAo6BpAxQtRwWt3Qf2K7H5B8VhQWRUvvPghgoKLishyo4QbFg3o19VwKRJICEnIQa7JJDPT0/3U74+qep56nu7JOT3dk67369XT1zNPV3XXU1Wf29Xgm/dkieQ4X/pKLGnfvw6mFOCgKSmXe30dztlvH0Av9GV0HF1R6D5LtOv0W9FZcb+CLnujE546GzulYkEr0BvraExmTGb7p9foOTOjvzC1qofSQZNZg2S82YhLUyfePs4UAt2vaNJ1lLR2jJtxsjNzit3I2d/Ufp9TgQdJuZU6/VQmRjehsBACZo+h9NuVlHoGCNcWKU9sI0QnxHsBmCljpUtgBV5R//h5i12jdEWGcuTF1SkEa4VA7ROgHlqHUpNQr2wlnKxDCEMzPkNzzS0RgtkytrykrX078gtJoUvZ5SAuizgMzNlvnyEFqg5gXUaXAmMwpFwu6/wwoWJQxPuX8KBxDC7dwqZBGNMFuVeN0xb5jPFSygZkapUbZjewbuk69Kgcba6lCMHc8ipk9ZyxTHuhF7UJVCuoV41jaSCZlk3OiVaQt9bORkBIoXMilLSRSJYUIlS6PG2oEIeNZ8qdz1Ma6IU1fdwjyuwbCA7J6PUrbyq35DJBwjq/rfEX4Aj1Kl7/JHACusqDIhlmlhZ2E30wr6OSwv14dP4SqzQuZyX3lyVzs4oOpQiUIjN9EsEZMPvhDWRfvzfZ/SY74Y1Ce0DtgKJJYEJDVVIpJ4jd0g807Qic6Xg9On+A7ZN07tPXXdpCHwn1OQky9sTTVl89D/y//cay39Je5CYgD/JVE/TaFwhajFdFNi91Xg/iOcda57PWSGdet+tbYPoKcWK81+CElGGs9CJO6FdBWpi3it5xBT3Jv7wZNb1Lr+3LemDGGL2EaWsZm6UW2JWUiYR49mbZFWWmFLp8tx2bds2bC3wSXcLuy2h5zlXSlM02U0YbDaDTfAO9gzA2iPabkR1VEZWso38QBbS2aAOqFdsie5sUDTN3WHaqPW65uvRtNNG3ZR3rSW56qibIM+/bC0wBr7RCR6gT30UbZQUBOikeG/qhy9GTREK3s3lyL5rJGVi5hTitIvEsAPEGEHQcMCQlCfczqHwZBDKAtlJIrz5hbJlXyjxX0d55axmKhUycI8AIsxJrncHEmaIT4Lk+/Bv6YVxLdWUGwx1TIpzZTCQEGbqzyAdfRs4Zr8t1BXF9YiUFkwJYbtxx7G/9BHCI7WM+QBayyEJAppAh0xog2rLQktVufiOhhUv3y84ik9v0+4+tRhw4xnG3tzH0emINBLS+ar+ojzcCp6G1oTIfkGnJkilkyLZkyLZmyLdqz4NaCPNpIkuaW+GgxbVYOpbMlgwUslE8ZyB00r0Wc8sFJpu7FeZdc+HENnilCH9cA4dOdqzYsZVXBoIgJ5MlYSDhdm/ngvVUxs+7m2rrbi8CGSU3QgraBSye3QnPro/rm64aRE3qiATeUApKQrv87uVof6XAuPITW7ADAU+sIsETqyss2DJTKZBg2jydOI4+MdepbcTapWvS21tGwqvHwVObtKCrQL3ci5rcHm10EIINCDLSxJdJxwPBLfcX9W918rMXrY7nTGudN2Ni3tz9onFlBU37u9jf5g3oCIVXOf0dKm9AlDMgiD9LZSTl13Tr76sE5Tyog8axJhMQ5gM6bIyvKV8kCxlkQdeb1TXSzS1rEnrlnOReu1DKxsifCaEetIV+hXmc/m1DRfz9uRb6QCuWytMKlJds0TXaJ3To+HkpeEYI9pdxHocgaKz4eXCuR2uhN/1qDwQDApjUbhJRboHVmwmn2VAXLdSXpfYgeUFKZpJUlNi+2vG6U+0axu9m3tz9Kq3z5r4LE9MrBWHOJOXKaSthKatzqAxmJYv3nsx/vH0f7jiqm0vePp0X9tEl66zbfcYkimtUtLeX8XyxoWHGst2Rl7w0fTKDp01n8LAOiu+ZgZoxmb9nJfsYwVCHICV/04bqbyD0/BE4Fnp7a8vTM7WLOU9tJlOEUx9awalr1mvLfCBj63w2tmpWc7V3kUIMWZP+OOBvaAF4jDl+qLWPId63n96BY6FHewzek5W8wSg/g6wOcczs383cj51E9oBuAptXxLXQ7wDWFTr+feN5cpbpjxtaZuf+dcTJ/yKlhe2Xs3ZC0kLvnkMJESXFU9bt3iSYfHb6JJa+ZW9Kr+0gfPc+iJmTtIeaSULZlgvoCIT2PpSxd0+biIV5279qVnrJMCXGS2w+JOzdBi/1QwhhGMLyrYRTs1HeH6SuXtMldSUV21LXSr+7SJGcj21/32jeH0+sLLLVycoCXdkF4v4EwmQId2QXm+HefD9lc696BxgomGR/woYfG0WitGJdA80d7ISF/qyzzqplO0acl9EXZJaUMC+MBlEaNzwRC34AKzNwxNaSWdzNAAtVdM/WfugaX6nCtFYaOyIxJ+jugFVFONgc57rcQ9Ky0zeos3HY/7WkHroTqQDIQGs5jDI7Z4w7CcpxtzWvbSqDyAfGm1VE/ZRmsxzFr4/PwMai9suKZsQtMKvdme1F8kIaTqyE4moV7XeSDxElkO1hZLkVxrVaBIJJUrLCEehXoq2vB+O4kQaCQASRfDTiF66ZKCv6GEi9mvSCyIVRorSohnegE/xNEIJ1aAvsn9GL1Ummb1lh6tBmAozXovn6Rn5yci33oDXb0Xjage9dCKFLp1COx5j9vsYV4MnVsF7Be8bHgqAV1KSATKAz6SpjmRfaUhGgM1z3oGue7ofOcL8XSSuF/ZkkdpxJkKFOzJUJEYOCViF4bK8OXvenlbBhC4xtgzW9UUK80Ai8a9C5HcabBSTyjjEZ+IXxKqCs4LAp8PTy+Is4bErskhj1U8ZWChFbLARaoP8HSeE2VI7ysoplUQQ2U3rKSi+BuWPg5y/AydMIMwK1agvhEROiuSAUcck6u+hHt8Ak3XSVcodOgWec/h0+JX4vI7W1pspOIXD6KYVWuAamv71opYzrmWP7HBILxUAcP2+8RsKyQu03mfBDgvLfXqH8qomofSawWkq6rLBg7/MBIiejnCO1wPbTbljt46mYSkNoC3Eihl4QJ8Zzb1IrlUr7jyV8fiPlwQHCo9sJUSgheF4K3iKscjeuP29DVBqBaD02u3frIdMqdHZtpEBNG4davBW1PkRNNqEu0tzMMYsDwduJr/G0UF9v3OvGtYR2EQsYoRCEGZ1le7BYpkjIACGDMuQeGbJiWjdrpsFARvBwoGuVB3lJNhcYb6fG2qSmkcIk7RMCRDmqmJFFsCFQqFmTUbO7CSWoQPJsVnKmyUZuvUvs+G00C5sQWnkoswIRSl2px3hnybIgH/ZTBNaPhXEboOW5TWT269bCvImhLxh3+9wO/oxZs+ZFNemVFgzGobd3L6HXPlHtlvoMdy5yjxuDdt0Hvef6EyAzkoNDM0dLyJS1B55N/iZcd/vc9mPnXaKQGRFbdSVaoL8Tx5hHPEeuQcfQR8K8GKLPaAXFi+azrGLAekNpoT4gDHUUmgr1MauBlpmTkbMmayOTSZ4qsrpEpMzqqgQ73D/hWOlNu2ajvSogOe/btS4cYh4TMll5JiHY790OL23W3k22/vzENhC2xKdOitcemLC51Hc3HLhGCbfPAXqMLkF7HSa8DYWgBGQTP6SAMTnYaIyjUWZ746msiBLkqb4yW/IFJgkR/Wuk96DxrPPQpAJ9rtDBZLT28Ric+HkRe/3qjbZdIAEEGxGUM4Jc/yCYMnWRhSQ0Fvp1oa6jjDOI3AHlWl4l0N0CT60DpiZd7iOTCrGA01+GNutub16LVPYCQuUa67ElPJCSfEnH+feiY4PtabVWKp6U+gcg0JHySe2mIC7TAMl6jtajYHUJxuUr2zWcV7bTNx3DU04KvUtfgRe1+kU+uB65dyty/24nPlcyOSN5jPhr/gvaclfAEeiJNdZ1uXDtWHEtz1LoOu295pBbViE6s4g5k/Umx5bUk4IJwLIXV3LY9KncjLbOtxDHyLmlULbnljeS7FKiQTtQIbkQDfZpYX4K2gvAtfBa4TirrY1ZldzMBGiB6HDgcbRAvx4t5AvnY+3lHTUhEwumOpY3pCCFrhE9bQLquQHUEa2Er2xBvXaccbXXLr+rpWAycVb66BoMTFk9qeJ2HzgFPizgf1fpkm4HTElaMrJ6w5tRKiHY2vNOJ85inBD4MHPgEAs/WWn82UUsYA+GOrfDOAF/34Ca0YHqJxaazHy3MYCx5vdJTItSIHICoWQ8Bx7YHffvMKd/VTIdv7B0BbNm6BKqAnPNpvrcig6XeNHcp4X50CpbDdr9NRboy6EiDARq/27U7MkoCUpIXg503g1lbuSkyQuQ1OcON4KkosauRV3ocbsCvemMPBBsP9F5FZBhfK0EpszP7HbKj60hzEDZ/HbLgZIU7G28YBLZ7dmhkNYRIdqvWaVaoPvXlZH0lPSOWu1dgPtXEnYCrdlIkLdjdL2AjVIwg6R1zxXq68kLS1ewz/SpCeu8vXWZ13rRbrUhgBQM5AIGhGBQQEkI1kjJQFYxgF7Pjw8EmbwgcGqyNzpRvzNmNhMhSpTpCARPl1S0dytLwUYpWJ6RzM4HibBBV6hvNKz3WjCoEBmBDKVOmFxWrNlvLBv6BunoLbFkvyxTDhzLAVKSy0pygSSfkzvkau+ilfzx2mddm/+GFuYBrkCvGUdCRaRnou3uzcxNdnz2oy3FGeAe4E1C6Gog6Ms1KIdkgJXLXuZVM6bGiulcsN3M9tX65Arz9hqehbZgl50baGUYVPfAE4JIcWb72I52uU/b3aJIWSkIc0EkT2wQgn4p6TResTIQCJN8NbBVJXZi75N2ubeP3cR4rrHSutxXKK4rTiqcTY15vE8LLFytc4q91I+a2gZSmoR4MCD1+tFhBAV3XEgqx8iuEG2HnT5jftuZJMvwamHeeCXYa8D9bse2wMZS9KPZGvSRKGPOxQD0dOUZbwaBFDpHgA49q/96UI1GVDLUnI4x09gfPWG5Gp2ohB0kLPPaLU9fKEFeQrmkhWWr+QuVfjyo64MzJu9K1fEHp13uQWe6XzmgBWLX5d4+ts8B+kLIDZHh3rmKZOqiQgaIUFnDbiI03y1ZFQL9fZDNBwlBxdYbjywgglQ9R6Xj6RUwoSVun+uJMBx+N2kijYPznTquyFJB8PSaKMZcWzlhihS8bI4Jgb8C8+zpILFhte49I42uKS+Tgr0U2uJsjwHEk6t0OEGAoygSjAGWPvpn/gb8HfgnksJ8VuiNf040huVpt6i2CC19Bf6wSb//MvDiKyRc0m0COamtw1FCPJH8/Y9Cl6+D6i55FTdps9yLSKhvDQSbBTCrgFq6GnoGUH0QTm6LksUpIXjZjE1X4I0Uhta11GZCLwQ6eeAHXqPvozrGWpi3116kbHC/JvTm7GWgiLMIErvcO7NP5XdtvQBcoV5KeNUk+Os61MothJOCKDs8gdaWrxMmE66ZH+x3JqVJnGgtMjaB3EFT4IOv0WXd8tqVvZq15oGH/xw3z+lzJPCa9/YBlpJc+CPBvlpfMzL6zNCUBwtzEtUSEOYyhPmAFQXJhLwuVSTy2n3eFQJrpSizv6O7WbXPp6K9jiKFLckkUNUs9KWMoDS2QJgtUe4rEb7SgxKCFxHMksbdPtDjO7pOaJwNRELICOISki3CWOiFQO3VgeovobaUUC+td1zudWjBEimYhFb+ROMHM+SpnXJmR3ng4T8nrfPE37/JxpNI1FUGikIwkA0YKGR5spDh6YLk3NaAY1sDLikEzGvNkClkyeaCKOyo0Ym8MbDKQIlqydCWz7CyJdDXZyEgzAX8vZChq5ChPZDJRIcNNn7TyIyI83EY9/sgJ3l074n86sgp/GnORH5x7BQe2GeSFuaNhb4Q7Hymbbcmva1HnwHuSx13L5VK7PSnVF0TiV32N6Et4X9BZ9IPhCDIBwT5DEEhS7aQ4Q9/XkQQVb7J6rCknZxH04o4uwZOM++/THLfuw69N2ohOZem+2nvO4iVABB7b4NjjzOW+lI+w5q8Tq6cMcl/VT6AXAZpwrN2xvsA4vnJ7VvAbibGi2LVnH2UENDdrkslbRggXNaD2qcjDqWTkk3okKU2E+pkr6nhtOVZ46S7ptvfdybJMAr9m4ooP4pKGxe78rBpIJLgFZikeOiSdcqEJmyENfk8Y51/jfZ9IvZGaCR2WCF7/vnnb/eY73znO7vVmJFi3aq/cQC67EG0uTNWqTJxPfqQOAMuaLej1lwAxbL5YVUi2ZTcqMuJUTAikitoBEKf1M4woC+WSW26ERsHdEktK8wPhrH7PaahfaGe5NKI+Hz2GkzcSwklRSuKrSoOy48dAVRkoS8S0mIs9PoiMi5q0onHEuh6jk9vjtuwdos2cWeDeEKw34G0/zTMWDWZFSqyKuGKLAExb0rk3oTUAtZUKViDFmYCtED/XuLfMUOsHA6o3aZ8u1gXe+viHAjtiuy4WovXTNEJuDK6dq3NGj4B6D3zFG4C3obOMpsQ6Imt9I1ind9l7DXm7nYXpWKwn1gNB1dPqgZEdXhdC71E14G9HL0BWE3SJS+98INWppHRifGsf1a7lAzKkGJ3BxkpCBdthIkZXdJGCpQReFcLweQgXryiqQN0nHWLAFHSH5QRSaWftdyb7NZuTeCEJ5G5n2ger0B7H7iW3Kg2e5VhIaRAZQKi5Hh2bpMCXj0W/mc14dgewu4uo6jQfVNSC1ZjzaRUseibcRt1OiOTuw/H9TIdS/mxs06N2ycE0npPCRLW6xnEAn2cDC+20qfDDITQSY5CkUENlHVfMoJyCCW0q/ayQHBMLtBjyfl+7WfWimjfZdcfQWSxmEYy033a7T4dLxkGOt6wvGw9Ya9uuPjtcsLTBM/sPZk5ApNITCQVXoKGcc8W7i2QUWhYV0YyEIQUlSCzdhMMghyA8NfLCT8gCPfrjixNS6RgurmQ3WvPVRLVk4+ddSqhUhXCkr22x6AFJtcFuKj0XrwoBVfkA04NJUei46NbgWxGJKpC1LPk0o6S7rcwYTwdUrBaBXoPh7ZIPiME+7r/4/ym9VLW7whS6NwumbIkE5owMAWvV5I/TZnIA3vpePk3ZY11Pisp5AMKUiTirXeUjIi91Oz+4G0q9uICYxQQsdfiUCELkcJFxd97Fu05sgnt8fYa9BqUtbeMrjKTlfCxj56m96y7gWucSbtoT0cLgNOJ98BuwtshlfXES2I7JJJMp2+upV7lA1ZnBDkTuqU/xFQlyplwup3sn53zhzUxHs7eyPHesnmp1Eu9qOVb4dhJKD29EkrYIvW1Z4X5at/XcJAOo7OfNRP4rTkmsaZLEXlYB3aDJtCyy9KN0XlV6MTNQ1SHvjTQz+YxBWOhN3sLYevP1y6cbnfYYYH+r3/965Ab/+HM5DpSHABcjRbqciTj6K1gb1239MUpWKlgaiGj47ONVV4qpd16QoXYPGAKdop4h++aDqIrz7lYAqFLvb28Fca3xAJ9yXFnt/SV45J1FX5PwrQyKcwjjAtwqGgl8tZ28kHENRiLQDhQpm2MjBdMEW9mpF0RIVnPEQHrBmF8PtVfkbwfZkRghAsZ6pUgVNqqZ1x15WHdyAMm6xglU5qHrGSC+f9VaLepLDr2yLXK28d1LccbmNW1JGPljtM/Dp+CnNOtk4oZhQUmC+w4tGV5FXAOpi/EbvZWmB8NLpbbxVqNbUx3ILQb+lNVYrCjRUok3Pisu32kHzKCfTs6m+oDGAcUqgxvkpeizOjaszIjYFBbTUIh2SIUrdO7UX9ahmoBtXw94cyJxiUdXpaCw60nDJXCochoSxRBqEtY2rlBiChm3hXmwVE2ikr3w+loV7V9cSz0OILfUKS/a7v4d+ZRXaCe3oQ6shOEEeaFTka5NoCZ0pSpS31vUphBKcz5S44y091Y7ECFCbvZFKmFfwY6dtPOqHaut/O+qjJNCSEgq7O9h5lQJ8Szc2eg48vf6ShPot9L1FigFwKhVIXbvUAL9MtJbizdkAo9CGT0vYZSV8UI/7FWKy1yoLYC/9jE89O7eZM0m5hAkDGbtkaoP+/iXpMIorCXFgGhlPTKkNbnNupVMosuafb3dYQHdFMWghDBC1Iwi6QSzBUAG2WPI/VSn3ABBm013GQeK0y1B7RAfw+6/vZp0iRBI14LbNjVtsqbNRJ2vEe/t/kuxpiwCdfy+g+0l1U0D5r/sUJpo/ymaYQQZANJNp8hUCVyClQAc7OK/1uChwScmBG8JmeE+VxAISN3+Te013TOCH0l4HClldl3oY0Ch+LsH6hu7BBD3EBvjdejLf8fI95j2bnEnnt7ifx2BEGlwGsVnvuiBfrjiJVf66isYLMtwd610KeF+UTUrLlfHUidVD2rnxunocR2eWeQRnGdjqWXbCMxnr02hpLXIg2IiL9A28hpXYR/XQtoz0K7piN1/HzBbJyEcyr7PQ7XFZYQ5p0+z0AbW7eQlOVCdJ9V2qN5TFbn/zJCkK0/HwoR1aFXQGnLAFv2KpC1Y8Hu94SInBkajZ1ak0dbNvtt0Y3OL7cYvWF3k+LZRFVRwjj0Zm+VgLm5jF5MiiVkVluyg1BfWGwqQ3vB/eXjX12kRoVrpe/uhJcHTB09pcvTpevRK2D5K/CKgoNa4IDu+P8tIr6LavMCIhNAqCehPuNaYn/JyIKjYJWCNkrk8tm4+cIk6LIuJsJ8ZqKeo4D1gzqreNRX5yKyG6xaYLO6WaSAuVPh4Km6GaakizSJtKSpyz0NbZ1cQuxu78bPB86iXy9sghyyzg+WUdrF+uCpWm9kM+EGOoO2LRnSgxbm56KFUKsJTyyeNO6GZmdIlFSz35er+Di0G+Z0V8aYO2MyElJU7KFhF4wjgV+bY9qIhTaIL/HoMjcv6kzbIcII9S1S0KsEE8aUkEUQ/aB+sxz1AYGa1Y2SghUSTpUShEgK88LZvAcSVRAQBoAZF+aarHaN2eu4miV3BnHsmRXmI6F+W194NQVKIOC5tbpclAT15x7UnPUwa6JOxCYFG4VgjKzcHEWbJyHA1PGtKF8od7xKxlAli2agM/tHYVUklbgh1a93hY7HDTMBYWAqLaITz21Ep2hwBcDIG6LGl1a1GHqBdrl/nKTiIoqht4oLJ/9BOdC5YcoHT6L01EuEgxB2weoDx9CXEeyTNVl+gzh+3l4vjYK9VqK1z3jJiKykdVDRE0omHDiW8JleVJ/ZbM+bSChNLfpA8EIgeB0p4Y9YwdsIVLt27A89hljICNHCfMm89l/Ap9BOdDkc5a5z3yjeFjuCq8ywt7Hmtc3o/oXocLOziH9T1zrfSAqpamQF5LOSchjo+b0kyWRCXosWrjPSuNnnAgpZHTu/q7+hEII8ipLQCqACICQcrfT6Z693G59vPToqzgMV1nl7WBfwMPr8hxN7Q1rvOOsZMBx7EuupZfdybkLYmcSKXStw23C6dJsTQr2zdnagLfRueJq7p3bPbc9v4/MTiuzo3Dvf57Qwb/s3m11MjCeq5KWyk+DeBdSfX0FlQS3fALMn6lKfQrBVCLpkLDi7eyL3u9xdbB9dYV6i571O9F6mEyfMQAoU2vss48ouY1v0j2fz41gFvXW7NzXpZd8AMq9/Ie1ir+UYAVE0bKOxw/LKAw88kLjde++9/PznP+e4446jUChw1VVX1bKdw8r47gMR6FqUzxBvYu0mb1DFA18JQRmBUjr2Z3wgEBmQA6WEtStQwKaSFnQhFtzBEexFcqdnX59cgJXGfb0U6uR3xRAGyzrW4x/r4eZnYYXSavZfrYQX1pjPIXHvCvL2ZZGTUNYTZqxVVNHFbrPcr1DQWixDEJ8ncJosolmNZD1HpbTL/bhc8gqO+lk7sVgEUochmBI2FOIYY9GSIcjbElEZHYNssOWd/oJ2TYoEehEv9o3gUiqypj85GcdO21tLRpfYy+nM2mS0Z8VTwG+Arl/cwZPoXBF20XQtMo20Id9tAkdYt3HmNsbcxmDnbQy2rEiyY+MIM87vb13vj0RvEkP0d5tejKtp8rWwq13qMbGN/VKgVm7S72f1JiP82wZCAf1CsF4IuqVzXlFdOIzK/gWOMmcIhZkbexZdy+ac+6AF3LRbdqzkq67A1ZUJZBS2EFnQTam5UJpz/WNtZKEHnXBsrOPSPNSir/vnlGvaTlm3q6+7Pdk+p4/unmSqeT/hjq6SyoxquJuzaPE35wnQgkRiPIj482tJNDZSnz8VPbcl2p16Hnn/ZCUlcwvndFP+4HQGDmun+I7p/GP6ZGZkpFaCZgRSyoZRdlYj0iGD3pgGWtHXkhVsykqYMYnye6ZTPqyN8CMzULMnExpvmr5AsNyx0NtrzhXq683V192eCKWB5DrfibbQRxYmtPD0K/Qm/yjisKu0ZX5HM6I3AtH8K5LjvgV9LWzA2D/Q/Z9BUpB3HzcyUmgPk0IuoKWQobUloNCSpa2QoaUlS2tbVt/nAlqk2G3Ldkbo+PtWc2sT0CahXer7NoFuj7kNFZ6RmNedQ7qA/0HXt7cW/ihuX8QGh/R8vquk1zw7TmajLdhpgd71vkuvv+l+tZvXrNu9G+ai3HvzunXpr3b+XZ1H0/OTa6G3ifEqrPROm4Y+qXAuLrPxDweN0AvcuJxw+SsgdI6cDVJX8hHO2s5u9Gso7Jxsr3n3u5tBZX4cJbQwH7pfOEC78XLu0SHSoVKJ38vOn5m+Ei1t2YRlXphxb+WjRmOXv/MgCJg2bRqf//znUUrxk5/8ZDjbVVM2b1yORLvdJxLjqTgpVPSa+dXWAWV0bLLISmRfCWni2QKlM8izeQA6U0Jt5HpvN8DmArGbYAFMKcDyfvjFIrjnBbhvJVz/LHz7SfjB3+Del+DZ/mQn/ro6aQV3NvTuIidMe0UZJqh0UjyjkTLC/ctAe78W6N0JUMfwmmQX0Y5VxPUcATZuhQlZZ6Zy2lbjka+F+qwORygEUf1yUQiQBUlQCBB5GdW+lmiB/nl0rNEhpKzzNJZLqcgFTk32wLkPdB+N0sJWIbDJbLa+7lBAa2vd2HnrMldvZcVwIgJhhHZHsWPHgn1sFSJDZJS1gordYNix4EbjfwEt1Cdc8kRyAyPAlM+yZewELYGkRwqYM44wD2oQSgGoueMJpWSVEOSkoNMZo9Glxu5dQpEll+R1PZ04i3GkycfR5G/zpM58ljWPD52i55XQzC8HTkQZl24lJaskjBXJ/ADVNn47ywnHHZp4Xm2TY3/LfdBeOYk53vS/NIREX04t9vZ+BXEZwyB1724Ea0Va4WM/dyraOttDpbLG9tV6Q4QZSTkXUMoFhFlJuO9kwvkHoWZ285dcwKx8oNe7rClpRnKj3CiI1E0GAjJaydmWC9iUCyCXQc2eDKe9inD/bsJMQDkrKWclS3IBbUIwnqS1yx1D9caO8/T+1Lati1igtxb6F9HxpR+DhKu9FeJzQgtno8lTq2J/QzwWJ6AFeutuvz/JnChpob7RyQhBu4T2jKAtF9DZEtDemqGjJaA9K2nPCFol5IbJAzIvzeeZW4eAdmHupa6N3i4ZsrxawjM0dTMZppiB/u6zxFn1Y2W6qJjPd5WEMC/i63oGcQlT14LuWujd8QWV15pNQpnYT5vX4v11/HwtqXA94mt4V385dy5217kxpi82m//2EuNpgVbf3MTKids/1moDpzHtq7+v14+lYLMUdJhQT/v9JNf24RmbNm7dDZ2x3+MM9LqeVr6H0lrq3YYJPVlu7I9koHKotLu9zXhfLCMVFNpyUR9c0cZ6Lzcauy2zrF+/nlKpxBNPPDEc7RkRiv2bEehSZf9N0s3UZru3bvcKogz3E4V29RCZLLKoU+W5rh9s7IfpbclZIBoFODEpJF3utxqheBmwbDPs1QsHdcNxeZjcphPNLX0FblgZd+Kw7qQ2LRC68fZCci8oGcCgnjD7nEnG1SQqYE2oKJTLUZKOQIhIoAjc/tgPsPUcpyntezquFUedlex/jRGBgMC46zq2NglIJbTLlYqbvxdwM7om9WSSrvbu40ZBKy0kquwuHYJAKDJKaFdxpYXRU5ROZjM4Xdsk56M3cG4ivLrmBqgR2h09Cxnj3VKRNE5b6IeyZltFTqCSj9PZfhegy12CK9QLHZtmn0uTub0UojKSTEbRF0rYZwLld0H5mXWIgyeipk9CZQQrMoKJ5noeyvK6qwwVezYd7XVka5anE8UNZbGOOm7DHOx3e0A36mwIn1qDmjcZZk9GGdf8zYGgFASMlZUbvt3tny1ZZ7HT61AlbpYSL/yuMB8O0QhXweFq8FcSC/SQtBiOgB4zsVl13e5b0dbaFeiNXeR5IeLHCBAZqbOBowiRhIEgLCvKoV77ns4ITgwkKhcgMzKRLDRDY21ohBDYUrKgvxuVlYTo9q4NRORKaUNAylLnDijnMrwQSGaRtP7Y6y8zAr/ljmDHeTVhVqD3qFZBVzK3q4G3oq/1HCRi5/NCC/PDEbM8kkT7G5XsP2hvmY3m8bPAHOLf1Ao+jaiQ2haBELSiyItYuWjnuIDhvw6zQhCgKAg9L0afhy0Ms+3Pi+Z05zd6Blhk3r8cHfJ4BPFckhGxl0h6Pt9VBFQtYdqCDrl9AZhkjn0FotxK7vWVCHdLvW9zUkWCvNLhTJBcJ0ArD6qd335Xu9q/oRLjzWbbifGySlFS2oPFydOHRJGVuupPIs/Xa6agnl2BCk2038ETtOedgHWB0J7LVJ+XhpMobEbE+3mJXtfvwgkfNL9FGaFlHCniCl1CQGcBNg4aA4SKQtFsQjx6++nPwxirqBBE4cc6mX9jzh67leW+WCzywgsvUC6XGTt27LA2rNYEaNeUPrRr1kyS9eijZElooX4VOlYSIXTs/KCOzxGhSYqnlHbh6DJfaWSZd1cO4awszsXy9Npk47okHD4pHnxSwJzJ8CGps3e7dZltbWYRXz6x3G3dQiSiqBd849hvSjPEgx+lJ7VMuaQtMuaUAegMx+6u1TLW1KLfYLwHunLxMe6MOIJjX5f/iD8wCE3GaxUvShC73w6gF5tDiS20dtPaiBr8dP8EgkyoyCq9IJbQ8WnfU9oyMx84TMQWmbwYffGSO0OFYidUkVZ2e3kcbN12a6G38fT/BDzkHDefSuWP/X/hCPUYd3EyivYcrBMCFYaomZNhVjcqY6zXGcmKjGRSJnYtT7iW7eYlFLmniaTgNxa9uVmOdiGMtNp27lNDh2XYDPCUZazyl6AOnKJvwmS4z0jCjGRDVhBmBK0kNzHuVDFcuPGTts9WOJuB9rCoCDMQcZiBu0FWNmkole75L6Pnkeh3Imk1qLXAG02vzm9qP3EvtMJhrtPeyFLjNCvMSMqFDGWpKMkyJaVzBCyTsFZKZmZllHek0d2V3SUHpec4lZW0ClibkYRhGCs2JIRSMpgJCKXgBfQewL3mXKG+kebLRB+d1zrR67sdo4+hcwRdQGwNtfHybtnS0UhCaDDfhUBbJ9eZY/4OvIf4ukjP2Y2kkNoeQohI8B0JpPGk2hXFv6s4tt/1valjFgDHiGQoYJA+0W4SXceOMtsKvDPRAv0R5ti0Bd3OA6LKzeJeb+7Ndd+2wvQGtMu9u+65Vvpd6p/Y9cR4WxUMKCKhHvR3k0WQFzohYyGrEKVQJ4WdMxk+IAmfXYN6dTfMnERo1vZNgWCm44KeXtuHk7Qw767rS5z+KjDJTk3+G/N/kSvgOF2LXimiDPchwshFIWwpszFXoEsQx8+7v9kw92u42O0s9zbO8o1vfOPwtarGtLSNjzYm1u1+BnEcfWKTJ7TmZhWCaULXnpdtWWSf3SgqneFeKX11dw6RFC/aIUiiMmQ2gdehU+BvTkbuQ6do9+CEhV/Aq6bohG/WzdW5CcetJHJ7spvlrDRl63QmSJRKTD5WmC8BmXIZkdXl6hJuuu7MY9+w9RzX98MEESsfIH7sXkR1ILHhdR73mPc3AhehtcZH4wj1NNYmblvkhZPBFN32YwVMePI55szdL3Kzt7Fvo3UTtzNEio+d3CXY0nV2kzEIHKrgW+hNyNuA19rjiJU/LpF1QprrFEUO6AlAhUJff1JniS0HkjCQLMsGTMnIxEbCdbffnc2nYOhEcdPRbrkHUCn4DWWxjs5rrLcoojkqzEqUEfAVQi/6gWRtNmC80XYPtWHaVRY9+Rzz5u6XeC29qXRd86qWuHH67A6ZSOPvHG9ftwJzuj/WElhr7OfGQieRRcyNo0+0n2QoRQkoSUmYh1IgGQwVJeAvQrCf0NbbRDiSaMz4eRhiAy4E7dmAxRlFWQWUlKIsoCQFJTPqFHrze6pzjmjjyPALGruKHefpPtrfohMtOAD0Az8DPkRcsrSadX40lKlL4ypO3TUdYgt9P9pbYQ6xYia63/llwbMTBGYNtfNFVmkl+APOMaeSrLKgLel6LFabz3eFtGLXFXhnoZVdCm3UG0R7M8XK2JRNqoo3SKJq1DZu680x46Bi3dvdeTQtzNu1YDZDJ8YbUKYChjLzv1FASPQ+oZiRtJbKiEBQyAcgdNJQdcBk1EHdep3P6NcIJGszUpetS/XNPh9OEsK80+9p6DVuDbA3cbWeUErKItRtxWlcZw5Wb03UnrcVvxRQKio2d+TZGxGtI1qo18nBa5gWbLfYqWbpeIP4ZuPozzrrLD72sY/Vqo3DTr5lTDTwDgSeJqnJ0lYqXcrGXpTLhXa5BxBBgNwa6gtI6RtbTX3oDmOlrpIUz5ZASsSe5gPtXv+RvWFeFj66t66X7SQ+q3icd265IE7wZSbE9MQjpEQQ0oJTO9MYL21CiNVKafejQYXMZWKLkxRGFyGS6kSBrue4oQ9eKcKYtuqKjDr7trmbM9eVcmHquLtxtPeiceLnd4RACFqkTljTKuIENqtfWFaR2Ga0xUuONAGxFSsv4u/0SOBLwBECWmUymZS7OUy755ENCPMZsrmAtfkMKh9QLmRQhYByPiDM6Rjm53OSqTZOy70Nw+azquBHUqB3k6e58XbbPXcuiJM2FgJUPkAVMoSFQPcxGxDmA9ZlgygLdYVAsptTxLPPLat4zbWwutf+DLQ1xmYoTicMUqnzVLO42GNexnhtURkeMRICg014GLlbOp8/BS3QDxVDr2zcJLrfOt7QuKAHkiel4ODU+e33OVIKi53FXZ7cjeU4YJMwZZYCiZI6mVMUYgcJC72bD6GRhD87ztObZfu8i1jAuBVdb/okTN4UKuPmR3PYlauUdG9j0UqNxWhFhrWKRr+lcAwUnppgBUNXcXQE8H3gLcCPgCOd9TPtKVJtPt9VqsWYC+LQK4g9Ojqd9tu5xPV60oJdfO4uHI9X59715grRxrJOTN4i5/widf5d6p/bN+fxUInxygq2hLBFmZt53BtCr3neLwR92YB+kyzV5h4KTT4ilZO6Go3Ju7IxkHQ535H7HQ73ZWbXuHRyvCzaK81a6aObaUAZkhufcVnY1BfH3NvqX0bg698EWwp5vV+Wzr5MWoNNY04gOyy3PPDAA9s/aJSw8ZXnowF3EDrOLLJkqDh+NB4YgpeJFweZzyIGSvHmTSkdP59FC9dpy7yA6IVAaCEcYstWIJxSZCJWP9n/T1vqrVnQZPaOBpe9E6mFTgpEX4l2EW9kMUoZu2lfrWCC8T8R2SCabKJJUIh4NrOr4ZgsbCjC+gEY35Lcndu2suPlpmqBXVzcuOiM0nGFDznHnUoyQUsjupRui6wQtEtFxmheQwHvfueJ2jpLvLiOFq+DeuGW7wGi78+6ZFsXQSvst6S+00iocKxGBJK2gmBtqCiVFVmldLyyMNZRKViB1jK7Qplr8d3dPgUmvtjVagt0krg/kkwmk1gQldp+zGQu0GUDwxCKoQnlEXoTYfq3jjgbPCTX1t0dke9554kVr7mb+HSYQTtaidFBvPmy8eXpMANXyeF+N1vRXj5Tqb4BHCmBoVofBXosPeQcl+6jLWNXUmbNI84do9BhCfOJBdtI0Ska111ZVLmB3kxvNI/tOu/mRLCZaaaR3BzbvjeK8GfHuY1NhuRc04W2Bq4FbgC+TKpEnYiF+dG+FlSbZwVaebMI7W6/P/E86oaLNGo43Z6CFIICKrIIC6mt9Megb5JkhYW8SHqKVJvPdxW73qUt2bPQAu9WtMA9iUrruTuHpJVnAm2hty73ECvAoznGPH8FEspsez53u7yrJJSsjpV+DHFivC7idW5QGDd7s08cRN8Ueo+cNx2RgSSbg0EpyGQUqiQiYdeGK4VSGyPWScEY5ztKrO3DPMVEc7NKrn0CraR5ETgWEgJ9Ge12HzUOoCsL60qUlUmEByjix6W+IgNtubg/Jn5eCJBS1tNGuU12WKBfsGABQghOOumkivdWr9Z5oCdPnjx8LasxVut+APrCXo9OjmY3NkCUFG81gBBMkPoAmQ2QW/sT2nw2D8I483Wmd63OVSuEQOUdnX9Z6ThU5azQaaHextwLEVv35RCCskjc6YsqJ6Av1PGrSmvtxoIOMUZf6C8Ds8om0V9GVriPRiH6rhv92Bbtr7SmFw6dVL3fdd4NWWHGulBba9RhwHfQlvnT0HHmNgu8zbY62rDJcwoi/l2jjeko7E+9yAhBm1SR903OCDygv0ubh6BaQqn0ZsAucm1SsF4KVCYWEq21dIN5bOuZ2+vO3WDsLu5C6Ap+04GbzDFW2Aud8RMl+THzk7L9Svfb5C4IA0kYGg+gMM7TsQG9wbBtgaQAPNwCYvQdqngjbz93Jto6czBJ5YXtu4ur6HCz3a9Ej4FOkt+nGyYxElQT5iXaWrGcZExhNeWFa7mxY3I5eo3YH8dVOSUQNSLud+Feg2OIXdGVc7Pfywvo6yBKuESlxauRSM8x9mYtjFehPYoOJrbOp+PmR5MHWjWGmmfHoPdy/yB2t6/2e45mZcZoICsELUJFCvGicFKtmPE3EiGACS8tZ54ch75elhDXiIfkeEpsd6lUIHVQmeXeFe7t87XEyfdwzjkcVuxoj65IrPGglRbpxHh9YVKQH0QrwO4FTkbvizNACcFgVlcBCUsKFYZQtuXdBGWpk6j2m+uok+T1CLvft6r9NeE26WSHAu199w/SFnoRxdIrY2mPZJcShKWyru4SmjBI+wv2D6Cm5GKnYxnvexq1Bj3sxLz+jW98Y0iB/owzzkAIwf333z+sjasl9mLqQG9+/o62wLuuplaLvwKYbORpKQSyAHKFttBLpW9sKkFbngortmsuNwgpUIVAX33lMN4pgrMTlfEVil6JdnTTazfI0QWWBcolMmgNXG+oFz7XfXSFgteXynpDZJIgSSkSTUjObMT1HFeXYJypSx+k+t0Au6Gc0EKZjTNH6udHoTXG1uLqJo4brQgn5rVhZ51RQMYoR7JorXZZxQuxdcuvpiSpZjUCrSXfYh6nreAr0RuMAvEGZLiFw7RW224A9kYLO73ozX5smdfXS1HFsWV2QyaAjFBaMEglkHMtoK6VYh2wH9UFkVpMEdIs/JGAZvos0MLbUqgqzNsEOXauHapknXW3dzdmabf7kSDxuU4fu837r6DXt8jVnrjPVrlpBXm79j2FrgCTw7HOE4ciNcCUXpXEuBKx5aYLHVNdQvcp/XsuQbuo2t8s7cbaaNNoeuPsChgAfwL+DeORRnXrfCN6WOwMQylvxqEF+n4qPUwib736NLnpyEttTMko4wkk9DVnc8/khRb8a0k1gVc6Au8LaCv9OKrYo5zXqt13ooV1cFzujcbbFfBtBn33nEkr9q5/B9tKjLcfycR4NgHeIHEVjN8Dl5lzPQR8EzhSxfH2ZaF/KKEEoVlEQoRW1hN7PrXb9kTtqo1AD9UrF1iB3iZftHuQshCE0oRQCwis7NIS6GM2DhAWsrHXltLrf6Z3gJZcJwKT2d7Kfpi1pUHnz91em8vl8vYPajAm7TUvWqgFOo7+GZzNnX0sAQQvCxFlMxaAKIDsH9SThTIasZ5BGFvQH1Bhma+0pgshdPxpIWNqqGd0HfXWLBR0DXWRCxCBRAQ76LZudjLRhsbeByCKemvdjtKl61Q86PuVYj0wqVRCZszAdTY10o2Nt1iPgS7zfGJrUplhP7wB/BUDoWu1tgrtIm3jym1N1VaRvI22Mj5D8d0f3lDvJoxqpBDkpaBN6LHSZsZOixTb9HiIBFV7OaA32zY5jqvFB20R3Sv9v/Y2TAKF3dgmrmv05duJrpiZrkFfRsfVbQ6hJ4TNCnqUvu8NdbzdgCkFZklYK1T82ga0FcTtX2KK3A2GGufRRl4khe0ZaNe8yFKrKl3rLVFyHZJWl3qXrLPYz6wWUzjJtLNaDH1JJYV6d917Ai3Qu0KtK9SPCoHeuY0x72+k0uVeoQX6mSSVI65HQqNs3txxHm0siX/3Z5xjv40u25YnKcynlXCjlcRvLJK/9QB6vtkPEgo919vEMzJkhKBV6H1Wp9QFnNrNWjqUMD+c+xYrhFWbI61Av46kwK3/r3Ktcm8AbWw/y70i9gBIn2O4vH+GyhMw2/QP046taIfaftOmnxEL85YFJNeLaM0zOUiUEJFiPwQ2ofc2roeY279akJRN4s+aifam7qPSM60sdB+iEyBQEwWqp0iIiZ8P46R4hf4i+TZt7476JK1s1LgTyDYt9M8//zyLFy9OvLZgwYLE8yVLlgCQzWaHuWm1Y93qZ+MLF715uZ3kBk+KOAZjuYDZEgRmcshIRKlERqko2yob+2GfjuROzt3tDYEQoibmVKOL0GfNgBjQ4kMr0GPdZ4317WW0C36hpBCBiIR4110p0RdXYLe8vAH2m5RUZthGNADWBSwQcbkOo0yN4uathX5P4QPve0u9m7BHYL1dduhYKqcAQWw9GyC2EtrFZgUkFIbugqWf7/6gtEKK655t58DpaAF3LkmrdV+YShRqjre5KAaJX8uL6psZKxxvJHa5r7ax2R2GGudpy7y1zM1Ab3TcdpZT9xB7HLiCvn3fFejdzUW0qRmhRT/a1KjkY4gz3b+WpELCxtAPFT//NDrHiP3ORkP8vCUSdFU8vrJowXYj2nPB9VIAPRbei6McISnUNwp2nEdzROo3vy91/L3A60VlvPKeQHoOsTdrX5iGLskZ7WEgcvVuVIXUnor1GtxRhnvfYj0z3PArgRYA/x/aM3eebavzvrtOpucUgVaE9zqfk6hD72iF16DjutMKgmiLvJtU80CQJBPjBej5bgtwG/DfaEPmx4GfOOd6E5V5Vuy6Dsk8AaAFehvqE4kIzvNaTDcJBY3zm45DyzfL0LnRovXauNyXBWQc2UW1txBuHNSKi1BppYUCSiGZMrS1FyKv7NhK3xA2yiHZpkD/6KOP8vOf/zx6rpTissvSOh19wU6dOrXi9UalXOpPXLQHAt9Da65ymHhZFWt0lqMvSOwPmpPILXGWe5SC3gHoGlvFPCdqM6qHQjiTjmm/kCCMJ0U7seuvvVhXhKYu+2CIMPHz8UXjCDPpbBdL1uorGuCGlfABCa/qTgr1DTT4c1LXGc8RuxRZgd4tm7KnMHHCmHo3oemotsmEWKDvIa75bq8/t/xZerEfLoFiWy7oe6MXQVeYLyqtfEjHWYNeSHNKJ8fBnC/jxNgnrBXmfg1aaVjN2rG7l91Q47xabGFg+ltEu0u67uhu/oCgSh9s/+1vdojTB9uvkbZg29JMCQWQubeZ7t1+2Bj6MsY6T9Lt/iH0GC0zuuLnYWghD/RmbyPJ+PkQ7TWzGb25T1tz7e/ZKNhxLk1eGJvENaP0vuVtJBMhnkacF8ZmE9+T1rgKZRbxfLkJ7bFwKMnx28geJh7NcO9bqpVstRZ665l2Asm5065LrnAKyTmlnTjLPVR63tnnG9AeAFA5Rw/H1WjHfbXEeBL4BvAOtCfSTWhl13+g9xwBWqH/BeBdaONmOrzMKrPT6zrotWKM25aUiFCL2cbu2auV4Z2FDqc7CDPHCxG524cp2UyNayHsKTl90t6GpS39hAGMzZoywpI4MZ5s7HxU253bbIk6m+UvXbrOlq/70Ic+NBLtHTbcSX4yWsv0HM7mFT0ASkLwsoApNn4CgWjJILcqJIrAXrYbStBhvBTSwvxIqXTMx1hBPpo0pECEIUIp2tCuN9EFq2ClgqkoxGBIIDJJK6Gd1GzhxSg3APDE6uTnL1pV2fcGG/tSCHJS0CIFbVLQKgW5Bnej8YwuIo0+8S1AWwl7SC6MQEWG+0RM9DC2KyHMO583Hb2xcT2UtoTa1b5XmbI2Ss8bW4CtCvrNbVCZmDxn0U9r860CcZzzfVSLUxxu7PeeyFiO/h2mkCrXp5L5A3BeT2xuzLnrXbLOpaqHAFpJ+zKVHhN2fRs0v5+Np3wSrdgGuAQtEI2W+HlIbiLTAn0X+tqD5PfwAtpqP5Q1t1FXBbciiy0Ndjj693sLcAVwpIwTj+1p3mfutsoVup4yjzcDFwF/Ixbk7e/ZyB4mnuHHnftdZZ1NQruCWOBOK2hdi2xauG8nWYcekuuEnWc3mvPb/69ItDcc/RPxOmDXO1uO+0l0xYs7gPPRbvaHYMJx0Mkzj0Tn8Ekrsd0wrWpW+o3ECfFw7mu5rktjZKy2n5mOntMT+XHQAn1ZijicToDqylLe1G/6pqIQwS29JXoKOZ0XQIgoZj76nAaePrZpoT/22GOjzPWXXXYZQgguuOCC6H0hBJ2dney3335MmDBhqNM0HG2d3cZ1MLZS2Tj6eegBLNCD4WVzQU+QAEJfOIWM1gqXlE44Vwq1yWdMIf613St1pAaA/Ww7YVgNWaAFetAuKRtxBAoFK1AcBIgyiCCIrPIJbXb0giDKtP+abnhmRfz5h02J3zeqLb941o9HFy7idUfP2/6BnmEjLUy4QsUY4pg7d8FfhbYUp63zdrEaLtIueVbw3Act3GLas9V57MahPYV26z0ZLTxklE6cN6h04kBJUnC0tw3mfG1OO2D4dH5DjfMKtzzz2PZ5CXoj4y7+Nhlg3ul3OoZ+C3ojV61k3XD/ZjuC20/XWrEXcKc5JtqciTiGPhLmzaZtQeq8C4BjxOiIn7ckrjsBmPW9C22NT29YX0CHYNj/dWOth1uhtru44zwr9AY8lKBC3fasgKMVHCvi8poF57YnrcX2N3Y9KaSqDDu4G5341lVKeRqb4d63RIo6YXJeEV/js9GGvPEk5/L02p0QwM0820HsoFpt3VPENe6tMttVuA7X3DJUYrx7U8cdgl7vMmhFYBatjJdo5cYqKj3SrMeaGKJ/PcRhLu66ju1njeYcNz+OleEk2tPqPqd9ZaXnyESme/MDh2MzqMX9WpjHrvOKLQOKsklwHjjCvEDnTmrkaXSb89u+++7LvvvuC8Ddd9+NEIK3vGX0x+UGQS6Rsdq63f+VVGI8IXgJs3ETEEgzcLKBvmj6SshsAJuL+sSt5uusUMGN/AiIJw6BCCSUywhMCR8z2m0d+lXAJAGiBLIg4+/FjX2yq2YgICN1YdEDu+GDAv6ySgvz+09OHtPI/plNwObNW7d/kGfYqRZvB3ESHYgXHOvjkq6D6wpmw0VC6HME3X3QAupG9MbD1qUtorPk/g14lDjBzkPAt4CjlHHXFklrtl0c7eZgfZX+VVN47CpDjXNb4qZa2aJZxInx3GSAJdMXpVQiKZAbQ78SLUx14gjx9jOGoT87S7UYeokW6FejhfZ0DH2U6dgI9YPoDd9DznnnE2ekHg3x8/b3jjblKt5kjkFvvl2BPkQrdWZR+Ts2WkI8SI5zIXStbwUISZRJ3MbwWut9QUCr3DMS4bnYcrQZEYcdZNFj9iHnuFOxiQDjkrSexma49y2Rok7F21i7Plsl80qSeWzctUqRnNPt+zazu5sXB5Jr3ytogdd6N0Xr3zCvFa4wb6tbvJXktfBPaE8kG4Ij0HOGQHsp/Z6hQ+YgXgchttJvJM4lU+27qxXRepsyTsygSn4cIeL7aMMhCLvyhOvKKJSJodf/UOqFckFX7RKIKP+3kOiSdQ08l+6wwvLyyy+vYTNGlp4NyxILuEDHjvyCWJi3F/JLEvaKRGPi0nVSEWwtIdrz0NOv1XXprO51dDt3439kViAG9eM8KuF6uMo0byIgBrX3QeQ6as9h+xRICELISu2rLwW8aoq+CfTr+SAW5ht44DcDbz3p6Ho3oelwL3c7X9gVsYtYow96rlmO3kik4/tci+9wtq1ayZc28/lfQQt1fegyni+gPXoONK+53A0cQTJreiAqNwSgBXqrxU8v+MNhzd7WOK8WWyjQSoxHnHa61mvXMmGFeLtBAL35s+72rgIm2izufpd2ivRaZvs40by/Gr3RsUoLJeIyRlaYD4GX0C6LM9GC0WuJ84tYi2+jM5TSaCzatRaSm9QlxPGz7jXYaAnxoHKcB0KX1gzQm3SrjLLfgU2Gt6cJ85asEeRzIu77EUqHHfwOLcwfKeM8AhkxvPOppzYM977FKn/SHmrPoI14AF9CK6mPJF6XXBf7agpomxdnM3FeHFcQBi3Qj3POA5WeAMNBpNQS+pYDDlW6TwvQwv1r0deKFegHHIVnN7FxIbJWi/hxICpzA1gL/YGpvjHMfavGUPlx9qFKfhxhLPQCQimiHOTlcQXdz2KICoL49+sroVpy+reWVqiPrfR7hEAPsGzZMu644w5eeuklisVixfvf+c53hq1htcZ1wQnQWvoSOpZ0NnFWyJeAA8zg1MkRjDt6q0AMlPSg3VSCTlODPtqxmh99pGsY2YdO+TqyAaKkX+/EutQqlBKsCGGKdVnpBykCs6kRkWARnTwXaEHeXtEZFWeKsq72WQk5CblAu7Z4PE2EEALM5gGSwr2NuXO1xzbDvT3GtfIOt3AYnT9lzX0avfA9b27zgFOAOcS11p9Bx6Ra3kxlMrm0Zd4ukOtI1vkdKs65FqRr81phZyb6ux9Eb37SboaR5d7pjz3mZZIl69xySLXuTzXsZ6fdD62Vfjl6o+NuNiNhXsUJ8u4HzkG7KLdgrJrOrdEE3GpES6+zWRVohdLfSMa69qEV2tZCb685V6hvdKQQtAjIG287W6EnGu8NvPncXTJCUBAqqkYk0OP0GAWvM+M1K3SpWptHYE/+PjxDkxbmAypd0hcAR1EpcCv7miDheWct4XZN155dybVvDdo7LWpHjdaKAJP40lFMS3RN+SOJw01sCUuBXvusF9MU09bIW42kYC+dPrkZ/DcQZ7lP96mWyjP7/acz3efQ+6mlpk96HdeW+VAIykBW6ucqGxDmBGpjH6qQidZ92T8Ae2WifYq10AeAbHCZZocF+meffZbPfOYzDAwMVLxnk+aNFoSQFXUbA7SV/mn0Am+1UcsRWoNvj7f3hYBMX0lfwZtK0JWPP6BeGe4hsopHmjJAZCTC7L4LIpnIY0Wook27KIXIQCbcDt3fVQQClQ/inU9ZxVe3FehzUisQAq8LrzcDA0Xy+Vy9m9F0JHR6jmDRRWVSvHT5s7RQP5zzqo21czc3AZVxp+PQ5Wtcy+9rgK+is+G+F51F1goQ1po9VBzhRmIrRXqzNBx93NY4d4Vb1+1yErrvy9H1qm1frPW6Wm16VwlT7TezlvGRXgsj5U9KUQNx6Trb/sijgjiGvgz8r3n/MOKNalbE91lGhzCUts67LvfrnePK6E1fO3psut4b7t6gkdjWOLdlZpvNpTxv5h6kjgIsWhcFjH0BvedpEXuup8KeRi32LYGZ+90QjbcBDzjHvA0z5wnHRV4IQpMtzY4eV2gdSyzQQ+Xat564Bn0t1j6LEII8KhLmQc9nZRE/zojYQj+gkm2yGdDWoJW/6eR+Q5Wt20Kc5d4V5IdTWVGNtGXeXfOmoz2vjsJRUEhBiKJsM9xLE1M/LkO4pRQpY1CKfM8ApVlt5rcSsZVeiig3eKOyw837xS9+QX9/f9Us96ONSXvNqyhjIokT49mBPChghYC9Imu3U6M9CJB9Znj3FI2FnqQwDzDSLhrmo9ySESKjbSsyVHSgM1bbwbsCmGqODQZKiEwQbW4kzkVpS+AFEgoZaDG3VnOzz/MZRKbBR32TcPkVv653E5qSai6/gupJdFaiM9yn3aXt9TfcpAW1HNq92mU+2kLbinbHbzVtmQu8jqSl1y6YJTX04r8OvfFJfx/DJTRta5xHc5mo/G5noIU6K7i7ArzrZm8t9xAL9FYJmrD8i/pYsa03VrSxcdq1F3qMpfsyqOJkeGW0tepETMw88RgZbbHHQ2WkHkOc5d5NiDeL5Pdlx0imDrr47eHn80qkELQKaBfQLqFT6vsOCR1C37dJXbLWMzqoxTh35zQbinIEcDlwEjpM4wgj8LrznmWoeaVAMi9OmLpfixaWa7X2uWSEoFWirwfnOrCP2811khOV60SArva1yu2DquyPSj1fhzZUpF3ttbw0zB10SK95rvFhJnpdj/YjRulnY+mtMB8KQdhZQG0KdV+Nl1NHsZ/O1oxxrycqVydofAv9Do+pp59+GiEE5513HqA7ec0113DMMccwbdo0fvzjH9eqjcPOmhWLdJIfEVvnBVqgf5Z4wK5Ef0GTRGyhjy7IQhbRb7asG/uhK+OoqJxRPaIDQCTubHiACEwt+XJIK7p/fegHNsO2bm6JIOO4szjncnc3QghELkC0xIK8aMno1xp8wDcT55373no3oSlJ6PWc1zpJavMh6XLvuoTXKsO23ahkRVzu6kjg++hyVz8CjjYLf5vQm+EoIRpaAHqeyiRrFQu+IwBvJLZS2P7B8DkwbWucu4K2IHajFiQX/mrC/LZK1u1l+0A8X7p9G2lcxULkKYBupy1d527SrMt9Cf37/BEdRiExAjxJYb6Ra++6JDbNzjXYRZwUz/6eS9BjIH3NxWUjG6vPfj6vjhCCvBS0CS3Q21u79Jb50UgtxrkQghxxxYcWqZNFHi3gEqHvW0WyzKNVYlYI485w6iL2eLXrg+uSvgaTn4p4nrHnqM36LrQgb68FYW4yVm5ZZWXkzWX+1wr0ti/phLBpRX2/ue8k+f2Qelwr3Mor7rw9A72ug53vhXa7l7p0XSiMUC9AdbSiNg9GfdpUDmkZgLZ2baB1Q49lg2e4h50YUz09Wr/95je/OXpt5syZ/Nu//RvLly/npptuGv7W1QilwtjV3lnED0AnsViLHrQvCsE08yPGGi39AwctGeTWsj7hlgEt0EPyaq+Lyz3gxM8LgEAgFVAKKRhXm95QT0Q9yrE29ZcReRnXba7wNqjycaKxk0Q0M97dvj6kFzU7yXaghSeIY3g3Epc/c4UKV/gcTgIhdOZroTe7rWbje6yESyUcLbUgb7X7eZH01plNcrFM129PuxyCjrMbax6nNzbD0cVtjfPIq4o41t0u/NOJLfQVLobEAr67ufkj8e8WC37JDVI9SI8dO+asyz0kvSqsMF9Gu50eaI51hXl7P9rql7tKNHuz48+WjVTAYrRA7ypCrPKnEfMF+Pl820ihy0plhSAjbImpUTZ4PTUb5zmp803Ym1VYW0G3VcZrYkFUKvTSI0mgPdh6SLrcu/cbiN3Z3bm5lgKvdBRc1jrfJqBF6msjWqtIzpFWoE9b4dOZ7u1tk3nNJgesZqWvJel8J7ZfM9BK7CJOmJmJny8L/ThEh9eFYzKEG/sjl/uerUXKAkQ+E1vmzViQRsBvZHZYoM/ndYx4LpeLHi9btoxSSWdb+8Mf/lCD5tUO11XDblhbgb2Jk+csQ2/6rNtFEP2oIHMZRL+x5axX0JEHnJG8A8JwLUlqFXWjRbkMAjqVYguwsqzjBwsoBAK5tYTMDuFy2Njj2ONpGNLaakuckDJ2t8+h3YGruW7X6pLLCSKhvt1satpE7LZq3fNapZMVn9idbR16E+Mm0Knmpm43AWuJk+KlbyMxPUbJc0gqJ2aiS9dBpXJiUOl43EHn9UXAf5rjL0XnW6mmiKkH7obG/b2mopUPfSSVFdZCX0bnUDiJeC20wnzWCPONKNwORcXya14vmPtNxN4YS9EKKlfJ4wr1Ho9nzyJvBPkoNEPEoRl2/WsVSa+OKME0lWt7BzqOHJIJN0P02tGDFujdtX2k1j5dP71SseWuWa6CwXW5d63zdl1PW+k3oftfTTkwEp5q1RT1Eu0RkUfLb5G3nSPIl4WNqQfVFaD6+nT4ONDXO0hfSyY6vzYIGNd7uQdZ6MeMGQNoS/3kyZMBOP/88/nkJz8JMKo0oZ1j90m421tNj0Ane3rGHPcicfx84FyIASDzEtE/CNbtvisfX+X1TIrnIMG4jYDIgiiFoHQioB6lWA5MMdOQQCHLZWTWXuwibvro+Wk9Dr+7Z2G9m9CUVMviLtAC/QZzjI3FtrVvq7lu1+qyE0LQIrVrXpvjntchk+55WZLCYWD6MAHtrpwW5tPx8za0p4y2kEaLfur72V22N84TC76jxJ2OFnaHUk4MqqRgvyB13ntIubrXcbp3+xcJ9mhlURatPHJDJIpogf7vaLfQo4mT4UWJ8IRV6IyeBaCq0sjcT0T/3iGx14LrHZMeJ42Gn889zUAtx7kbnmHXvXaz7nUYYb5aeFE0j6TWrg6SXj+uQtsm4aymzK6r8pfKdUKgPXVXOselPe7SCfE2Eme4j0Qf53mt+5dWxLrf6yz0HgVMnhghtOu9LV8nTEx9Z5awJ4zywQ32hxQLeaMMIa4/j9Aekw2+Fu6wQD9r1iwAXnjhBY4++miUUmzYsIFXXnkFIQSHHXZYzRo53JTLxYQw79afPQhteQFdsm6aADBumzLWbAUtAraUdPy8QJd0c9VukTA/ggNAxPfR5BElswMG9SXZgna3X06ckCsARFhCZmQiwUQ0gBt7HHuq0NHRWu8mNCWJxdu5FjuIXZ2thX4a8aWVtrLW+pLLCpFwr7ebmzahLfi2brMr7IB2aVtMZWI8N27e3uymJl3aZjgt2tsb52lh3t460JutF6kU5ktGiB809yV0OTeXt2HWDyv4Uj/hd1tKoakkE+Olk+G9EW3BdoV510o/2nCt8+7Gsg29CVXohHgziZX67jiP1r4Gw8/nnmZgJMa5FIKcFBSkoFVqIT+zjRANMcR9G5VJ8TD3r6AV2e784q599aJa6Twr0Nt8K25embTXne1jD3GGe/e87r6nltjv0s2PYz9/OrHRQeFU4hE6jt5a68POgi412K8z3YdbIWzPm/MYoV4az+yR0FLsJjs8rj70oQ/x+c9/nu7ubj74wQ9y2GGHRRnuX/va1/KpT32qZo0cbrb0rKoQ5u39QWhBfhPa/WS63Xiai11KI9znAygOwuYiTDBfo91JDLcJameIZhz9ILpoMwJRVghgjNKuvy+RrIEdFENERkZuttXO5xk9vO7oefVuQlOS1sbbmxVqe9CLjFWouYvrSJc/s6FENubUuufZMliuMG+fW+23XfCtIFwty72NIay2gRiu6XF749wu9tWUE3bhd5UTCkeYdwT6JUA3cDzwLeC1JLPB73AN2BqQVpJESxF6jCUEenPrAx5Cu9tb63xOxNUPRpu7PVQZX84AG0+cw2IJsbs9DD0+Ggk/n3uagUYc5+6c6lqhO9Eu926MuRV4baiZPVY4/1tP592E8tdZ27vR60IPlW731crWbSJOiIdzP1LeB0KIqtXKJHE4XZwXRxBKR1EhdGI8JQWqHcKeflAKuTVE5nWAlpDxHkg/bvycHDu8B9l3333Zd999o+eXXXYZvb29BEFAS0tLTRoHsHjxYn7yk5/w3HPPsWHDBr71rW9x6KGHJo7ZvHkz3/ve93jssccAOOqoozjvvPNob28f8rz2ggqM5iVQevMyEb3w349+PgEgEurN4FcgCxL6S7oGfUsh3jm4V2od69BHGjJ7H0hkSV+VGfRGewXGQm9qU4utEOQkAqEHRmOPXY+nYYnmCxUv5ln0nLIZvdC/hM4w7wrLrlBfbyTGSq+SseezgEdJxtWVRXUt/jqSbnnpTc1IIIWI5rhEvXa0QG8Xfje7vSApzPcDtwOfQf9mLSQrBuSob2k3IQRCqdgTQcW/1zS08sgV6MvA79FWmX0x1niSyfBGS+15F/s9VFMedRIL9C+gwwwESQtPNM5HWb89Hk/tSM8ldg1rJ04OBzqxml0DXyHOcA+O/OCcpx7YOU86a6EgLlO7Gr0/sWu7EpXJbl2BHirX9JEySETCvIoNs6C9CK/FFeiNi72AkpHLtOu9QLW2oEyC8+zAALnJLfH+zU2KHjSi31aSnW7h+vXrefDBB7nttttob2+vqTAPkM1mef3rX8/Xvva1IY+59NJL2bBhA7/4xS/4xS9+wYYNG7Z5fJApxJtVTO1dR/Y+AB0fOR0iq7x7EQRCIPIZrZrbVIJxJuWOa5k3/hn1qEEfPRXx5kSIAEKFQDFewBIFWaUYb44NUMhBELkg/i4id/sGNVl4tsnaVzbWuwlNSVpj7S7e44hj7lYydAx9LTLc7yxpl3vXQr8SGCBp1a6W5X49RHMM1GZTsyPjPAorcu4FeuF/gdjCYkvVWWF+kNg1fRxwKElrtr1lRf1Luw0VG2kz3Ud9RP9u96BL1UWx8ylhfrTUnk8TjS9nORZo99dNJF3u7bFpob4R8fO5pxloxHFebU0HHbbVZx67Vnor0FdkuBfO2lfP8KzUOmwFwUkkS9cl3O5TVvqNaJf7asqOkepZNc+qANgH/busxwrzWjFRtq72UsTGh3EF6NH7srZNA7SY/ObWMi/QngCi8eX5nRPob7zxRs444wy++tWv8v3vfx+Aj370o5x44ok8/PDDNWng9OnTmT9/PnPmzKn6/qpVq3j88cc555xz6Orqoquri3POOYc//OEPrF69uur/jJ88J3IpdbM4W+38gRh3e+JNQSCdjZIA0ZLVpo5N/dCRTe5OXdf7kcb5SJudE0BKiTBXYl4pXlI6o78tySBKikCBzAXR91Axe3lGFdffcHe9m9C0VHPPA23Z3YReDAeJk3JZYWKkF8RtUW2hlGirQwGdJdy1aqfj7UB7Ao2jctGPbsMwR+7IOHezl7tC/QziWvRRXzCJ8JSe4geB24B3mf/LYoR4TFk3GqO0W7UYetC16G2yozK6P8uBf6Dj591keLZMXdasC6ORauMM4qSU69C6+Bk48a2isZRp1fDzuacZaMRxXi2KVpAsRZtOivcKWpmdFnTdubkepNvjWtWnEsfRp2PnSd1vBrpwxJ7U+UeCaF+S2qO0oEMIojh6kxRPSUeYF/o+bCkQ9hZZD4wd6CdoCYji5wWIQNQ7v/kOs8Pj6tFHH+XKK69kcHAwip0HePvb345Sit///vc1aeD2WLx4MdlsNhEOsO+++5LNZlm8eHHV/1mzYhEQW+ajBHnoH+1V5rjn0BnvA/PDSmliNhQIU9qA9VtgTCZlmSfWEtSRhBUsEyC0VwldponTlHG5USBLZYSCIBMkXQ6jUTwahrPH5TOffF+9m9CUVGisnUtnLHohXGEet1Dd3b4RrjZBXL4yndhnX7SVE2KLb1qLby30VqCvZqUYDnZknKcFNtuXaaadtv5uGa2csIJ8Cfgfc47X4bimo7+bvBGA622dh+T36iphpqJDBjYRux/eCxyF3pC5wrzNCTAak+FZqlnnBfp620icC8Fee65Qn6Exrr1q+Pnc0ww04jhPKqHjx23EXlyu4Au6eoh1uU8I83UWDayhz8557rreTXItjGLoSa7voNf2dLJb+/2MVP/cPriCPWiD7FKc/DhGqLcWeluLXo0V0NvP+rKirT+E9rz5jpwYeiGQo8BCv8Mx9DfddBNCCObOncsTTzwRvX744YcD8Oyzz+7UB3/9619nwYJ0IaCYefPmcfnll2/3PFu3bq0aK9/e3s7WrVur/EdMIHTsvBuHYWNcQVsxLhKCHyo4wl4ERqgnZ37dV0LoMF9jtaR49cBsLhXORZaViJIW4NtM83RCLhNvWCxrwT4Q0YYoOlej7nA8ngZECKETrNjnzn07OumMdbe3r7sJXRpFGyzduGzi2GyBdld+gWRtc+uu7mrxNwDzqNTij/SmJuFt4MTQZ9Dz4FK0x5LtS1SDHrgJOI1YkLf12a2VvlGE34S1wuljK3rjtRKtXBkEHgDOI1Zkp4X5RnU73xHSgrz9ecag13brbm+Ptcoed3Po8Xg8Lu46bm9WoO1FKwjT3mkTUv+TtorXi/RaaNs3BfgbcR/cGPp02botxFnu3fV9JEUfYfLjpHPHSPQcvwQnea8wOWRMMj0lhVZatAaoLf1s6RvUJy1ko+z2Ufy8FIhR4HO/wy201u4vfOELidcnTpwIwLp163bqgz/96U9z6623Dnn76le/ukPnaW1tpbe3t+L13t5eWlurl7/It47lzA9+hP97/vl88d/O58Hf3sXPv3895QFdzu4BoO3+hbQ8rhUX90jYtGETP//FLdGijxDc2Pt3Fg2sgTE6Kd4LK1dxzW0LnNEtuPq623lh6Yrosxc9+Rw33nx/oj3f/eENibihRxcuStTiHBgo8o3v/hcDA8Xotd/ds5BHFy6Knq99ZSOX/+jX+on5/Fvu/x+eeX6JfpqTrFyzlnvuvo+1ZehXUEZxz133surl1QTFMiILf39hKbc8nPS2+O5PfsMr63a/fd/94Q2J89548/0sevK56PkLS1dw9XW3J44Zye/Pt8+3b7jad9+9C6OFuzhQ5KYfXM/gQDGqW/v0/QsZ8/gT0eLXs34j1/9/NzgLvmiI788KfJvWb+TGK2+INiWzgcW33c+Sp5+LXO6XvbiSm6+/I4qlB+j5xR3IF7XDtwQWP/Ucd996f2LRH4nfVwAvvbiSG//rjoQm/4Ff3MFeL66MEuMtfvo57rn1/kiY/zMweOUNHLVuY+Ru/8zjT/DY/QsjYb5cHGyI8WfH258fe4I/3LcwGkuDA0Um/eB6XhooUgb+hF7fWh9/InK332LGX1bEyfAaYfztyvfn6tNvv/4OVr24EokR6J9+jqdvu5+ZxBu/G6+8gU3rN0ZC/e8fe6Lh5xffPt8+376Ra58Ali1dyU3X3xE9B3j0F3eQfXElvcTrxyO33U8Rvc5PAO688gZ61m2M1pw/PfYEC+6t7/fnxs7fcOUNbDb7+25g3eNP8Jf7F0bK+f6BIld973oGBoqRYP+X+xey9fEn6DTn2LRuIzdceUP03Qgxcr9vaaDIld+7ntJAMZrT/3L/QvKPPxFZ6Deu28ivfnKjToIndOm6ux/8H/7xwlLCzjyqr8SmJcu5++VFsaebgFtuXcCKl16OFDC7M/7uvPNOzj//fM4//3zO/OBHqAXiwQcfVNs/DE4++WRKpRJ33303J598MkII7r//ftauXct73/tecrkcd99d29iXN77xjRVZ7letWsUZZ5zB1VdfzezZswF4/vnn+djHPsYNN9zA5MmTE+fYsmULHzj707z4/P/S2dnJllDRG0Kvgi0hbFV6E/fv5ngRKq7sH+TowTKFYkhnX4n2/jKyWIYrntDmtgvm6jr0LRloCaBgHrdmESMckKf6SmBupf4yPX1legfLbHlkJVsLBZ4+bCyXBwGb8xmyAXy2v8yrwjKty3toW/ASbR8+iK5MQKZg+tGaMfdZRL3Vip6d4sab7+c97zyx3s1oSraGis1mXtkcwhalS0X+Au3S1gscDJyOyS4rdC34dqHrwbc0yLVWDBU9CnrDuB9bgOeBTwP/jbZMtKFr2Av0sVvQSfPeA3wd2N8eI5J177PD4Kq+o+PczvWbTX/sb3IjOp78ItOXPDqhzoB5bR7wPnTegDagTepbu/nNMg3gbg+glGKLGW/2t+pVui/fQwu0HwK+glbInInuU7vQ469NQof5fRohhGBXKSlFj/kOes1vvRXtAns2+nv4JLpagR2TbXZMCsg3yLWXxs/nnmagEcd5qPR6vtmu52aN60fPqRehQ3Vb0OvGS8C/Eq+P7STXjM46z7ElpdgUEsk+ds1eCXwcvSa2E6/rLQL6TN+3osO3zgCuQ4cVtKL71eb0b6TWxUF3vjf9sWW5/xX4jelHa6jo7B+ktVgiHAjp7y/T319ia6lM8Vd/4/evnsqhSzfS+rbptGQDWgsZWlsytBcCOlsC8sMoA/X09NDV1cWdd95JW1vbsJwTdsJCbwXjxx9/PHqtXC5z9dVXA9Dd3T1sjXJRSlEsFikWtfaqVCpRLBYpl8vR5x555JFceeWVbNq0iU2bNnHllVdyzDHHVAjzloG+jdFjN1NxXkCrgCPQG6C3AD8CDg+EToSEtl5YC70W4M0L9S5Xl8aECNh40QBJoEL+qKDfuFYOAI+aMIOgFCLzkFGOu72bD8Az6piz3z71bkLT4lqg3aunHa25X0myBn2UyKzBXH63FXsOOhdA2uXeuh0OAEV07HLkpuhYT4drVtnRce4mQHXjBmcAy8wxirhO+9/N7Z/M/+bQFvlGrdMuRBzzl06waDPdr0MrrE8kTvDnZrZvhGz9u4tI3ez1ZN1jN6IrNaRzOkTedw2Kn889zUCjjvNoW5x6btd0S0icEM8t9+rONfWeZty1wX1sK9KsxSn55sTQ21uPOa7D3LvfyXCu7TuCbb+dv+1+ZTL68Usk688PCkG/0vuTQfPelpYs5c1b6enK61BDG2ItbPx8A8h0O8AO7x2POeYYlFJccskl0Wunnnoq9913H0IIjj322Jo0cPXq1Zx88smcfPLJAHz2s5/l5JNP5r/+67+iYy666CI6Ozs588wzOfPMM+nq6uJzn/vckOfs2xKHB9jyQwXn1ibhGAGXSjgm0NqpghAUBOTcFT+Xga5scpfqCsH1GADOZswKCgEQCEl2oMzrBbQqraFrCeEEs5HLlBRZEZAxm8KKto+CwexJMm/ufvVuQtNiXbbSwkUnOpnMy+js4+lFtdGECldAjB6b20zikm9uUiB7W2/OYTPhugLUcC76OzrOXcHNFXhnoL0m+knWaf9vtDDfSZw4zrqkWyVwo9UrH6p03V5ogf4BYC56s+Mmw4v61ljd2WXS15/9LjrQv+c4nERKJGvQNyp+Pvc0A404zl1ltH1u6UB73EEcarYWPcdE/0syf0y9ieZER8Fg58gpaINDWoh3E95uRCsy3DXGfkcjPYdG87hrfDD3syAKp9Ol6wQDCPrRAv0AsFgJ7pndhSwVuXtSniUqFuLj/coIlyDfRXY4Kd4HPvAB/ud//oeXX3456lhfn67AOGXKFM4444yaNLC7u5sHH3xwm8d0dnbyxS9+cZfOL4SgxVyGQkLWlCtS5uINpNCbt0DQQqqkTX+/vnKXrIU5k2Nhut5J8QwCIs+CwQDCYpmDpeACAfcDJyg4OIB8CJk+RUYGZE3Sq0TJvcYfxx5PQ5EW5O0l1IlOwAZaqEovrI2gvXcRxAlDreCDmSP2Rbvev5FYqBfOor8BbZ2vWPSpTz8TwryKBbjxaNfzl4AD0P1Yjo41/wnJUnW2pJtNINdopBPi2e97L3Sf7kO72ttNUFqYbySPg10l2oSpSmuaQLuWPg0cRtJbwyp5PB6PJ01iPTfrIMQWetc7zdagj+YdkVz36j3PpOdI+xiSme7dpLcQKyw2EXs82b6k1/iRwvYlUPF+RVRJ3quEoCSM96AwVWyE4EYF00SOMYNbKLbkeFxppbcEnQRdMGrCjXdYmdLe3s6PfvQj5s+fz7hx45BSMn78eObPn88Pf/jDqpnmG5VcoSPxXApBi9Dxgx0ydRPQIQXtrvVCCi3ErzXPb1ipn7vmp3ppdFIqxBx6s9oSQL6/RAE4JIDP5ASvzer3cgpa+8u0BJJsxflGx0D2VOImG/GMLNWs84LYRW0KlaXgXKG+UbBu3NrLJxkeMItkWRjXNQ+0e3e1RR+G10qxo+NcMHQZPtsXiK3zx6PjA7PENeetR1eOxrPOQ9I64Y4nGxC3Gj0Gbfk9V1GRg1Fbe94lfc3ZsfY02lW0DHzePE+HYDRy//187mkGGnGc27ne3V7bWzuxhR6SAj1Uru+C+q8dbnhWWsk+Gb1ORJZ5QDnhdKDn0bHO+dxa9iNdGEuYrPVpT0KB9r57kbjtRSHZCvQj6EVwdagF+/4uGFCKwUKJ11nltqlolhGiIbwqdoSdMjKMGTOG888/v1ZtGTE6xkyreE0KQV5AVilCkSr5FkiEDIli5aWAJ1cnT7BoNcyd6ly5dRwBjlpQAAXTGbm1RJHYPVaIODY03x9SyMj4QkwpBuo9AXl2ngce/jOzZuxV72Y0JYmF39EYWwE3UbJOJIWwRrvSImHeWumJheCfk9Tku1aK9cSbGki62g+nFn9Hx7n9zMR3bX6XfdAlbspoPe2DwPeJwwvcUnV5oYX7RsRuzNLl+f7hHHMJ8G10UrisiOPnG7VPO4tbNtLdrN6bOu5u4Fji66+RFGnV8PO5pxlo1HGeUBCqeP2ylWvSFvpXk5x/3MeNgBviZ9dBgVb+PkmyP+mydRvR/a6m4KjHMlJtzbMCva0NUEYniA0RrFBwjYIpAv4tgJ4yiDX9zB6UzA4EOSn0mi+FNgI0yo+2HbbZzG984xtcdtllidd+//vf84c//KGmjao161b9bcj3pBBkhCBr7gMhENasI4UJthNw6JTkPx7WHb8n67jjsxKEfYxuUquE9q1lOpS+EO2tHWg3FnqZM/qdimR4e8hOr8n42Fmn1rsJTU01d18r0O9FcqFPuNw3mPIsET8vYqF4BnqBXItJikeyDv0GdBxherEfbivFjo7zoTT5Eu2a96I57nbgULSQHyVDFXHSOJ0YtbF+I0u0QSMZT39f6rgFVArzo2TPskPY3ACBiHMFvC11zKnEXhdBAytpLH4+9zQDjTrO0y7l9jZUDP1EqgjzDTTPVqwVxAL9KnOMjZ13Y+lBu9x3OefBOddwru07SpBa86zhYQbam2ADen9SFPC4gEulYK6EjweCNiHYZ2uRfVeV2K93gIIx7rZIkzfNlakanG2OrQULFrBgwYLEa1/84hd3OV591CIFZGV8ywdw0BT4yN4wLwsfnw4HTdXvZaTeKTXKALCyfUaSHyzRpkgI9W1ol3tRLEM2qC67N0pfPJ5RQkKbTzzRFsz9E8AzJBf8RrUS2rYFqcU/j/Y0sDFq7s1a6K1AHwvx9Ymft6SFeRszPgNtod8M/BZ4l3nPxpfb+7xo7MRxVmkRCalogf2fUsedRizMZkRjJvjbHdzcADmhE9seDlwOnAT8ADjcUdI0WsUCj8fTeNgZ0lXWW5d7t/73OmLvtLQiu1Hct9N5e+zNJsVzLfTWOm+fb0KX/3T/D+q3tguSVWzsHqUVmIQOpysBN0rBD4XgQxLeGWjDbW7leloeWEWLgvxdL1N4aR0t6DWjBXT8fIP8ZtujEfP6NBxCClQu0HWZbKrHQMDBU/XNWu5z0tyC+iZRcD/abtKyAsphfPEpU5/OzkLFsq45X+08o2QwezyNQjVNvgSeMu8vBT6HLo95NLG2vBEF+opEcoJE0pklwDEk4+cVWit+EJWLfT3XRzd0QDp92gddu/YXwH7AgSRL1Y2mOHNrec8o3eYycLiC7wK/A05BC7N5p197mjAboCvWlIHQUUQdhb7eAtP/gv0eaPzf1ePx1A/tPUeUPM7OFh3EZdwUulTrFrRAn17zXOG33qSVDNZdvZt4/Z5M0u0e4rJ1c6hc2+vVv2j/lNqjgBbKf4wW7nuF4JIAZhkP7HwGcv9YR2FQi27ZErQ8tZrCnMm0SIG0VoxRsjY04v6x5ozvPnCn/0dkjGW+EEAho+9bzL19nA+0MB/U8WuNhPDUAMwIKJe1IA+OD4153l/SI5rU/4+OceypwtXX3V7vJjQtgqRF25bFSrs+302lS3ujYWuypjXgAh1H/zyOZd4xU1gLPVQu+MM5Q+7MOI88DFKa/Ba098TdwGuIrfNuffbREmceEAurLQJaBbQJOErAVwQcLaFFOgIte54wK4zbZEHocLNWqcvRttt7893Y7yc3Crrv53NPM9Co47yakh60hX6LeWzj5yG2YFdLPNcI2Paky5zm0e70q3As9I4tE/Ta7rrcR99JnYwSbpI/tz9/Q4fSrUJ7En5EwEwhyGUELVlBS0ZSeNVE8goKg9BWhrZXT6Y1I3XteSkgkKMmy31TWug3b1y+S/8ncgEqkBCUQUltsbfqLand8UWj7chtc7ICio4wn6ZY1gJ92io/0ikrPcPGCccdWu8mNC1CCAKlYtdnpa2ApwAPOcediiM4NqiFHhxh3in3JtCl635njrGl66x7nuty72ryYXjdDndmnA+lyX8aXYce4Fdoof4IUlngBQSjQPCVphSrkoDJ5ZpV8bRvk/y1GIG3kUMIdgcpBK2oqOygLVmklL4ms8ReCqMh3MDP555moFHHuS1VlxbqbVI8iAX6iVS6s7tZ7huBtGXebZvNdD+XODcOzv1WYoHeFRnq6YEgMVVsnD3KPalj/igEJ2QkLaEiH4bkkOT2nUzhLCj87yoKh0wiP2dKHF5t86KNEnZIoL/uuut26LWzzjpr91s0AhT7N2//oCEQgYCWDCp0dkiCxtHgDGVZDwLtC+TimtMGy7GZokG64tk9GjFTbDNhXbXzQNlcU0coHb9rXZ+PlrFQoYXmxrz40kKwdVufid7AbEYLSFajX0QnzBtLckNTCyvFzoxzIQRSqYp+pDOg3wtR+ZqM0MqY0WDFtQRGmJVS63FLIraw2Phym/BnNAizu4otSZtTirLSm1NrRQpGiYLG4udzTzPQqOM8Icg7wr210Fun13XEnmlpy3yjiAkQt82t+mL7NBl4mWQyPDeW/hW0QF89Id5I9SBJxqznkYFE6USoDzrHzAdaMpK8UuQJtBdXAIUDu2k5oFt74GWMIJ+V2hs726hmlkp2SKD/+c9/Hj22i7/7mmW0CPTDQcMI8NtCOA+yMhboXbd7+7xUhrwZuO4VOQq66fE0IhkhKAilNdwSAqUXmWPQ5bJsTXPrGp1v4Gstck93hOAAnbV/PNqdbQzxwr/B/N8Yqrsq1rOrdsHPqDhp3Nuo7jmRdYT50ST8QSzU54VJ/2KabzPaj7b+7A6BEKPJ0OLxeBoQNxmea6EHrcBuRWe4H4/jlSYaZ+1zEUIgTHlP11Iv0Mluh0qM12fuu0j2p979CzCGEbO254XOHfMdtAFlPrp6TSEQFGRAXupM9vlQUQilziNjNRuZOAn6aFJ4b1f1oJTaodtooqVtfL2bUDvcseda67MyWUiS1OP+MNZEuTORe+8ZVSx68rl6N6HpyQsdv9xu7yV0OLG89lYQjWudhzgngBvrb1s7Ax1Hbxf9EO1u30ns+pbOcj+c7Ow4d0u12QzoRxBnQP8+cIRIJo0brW7pwib/kYIWc8uacqye0YWfzz3NQKOO84ptsXneau6t3691uRckLdjxGtg4c69b2tRdp7vRLvdWPCg7petsAkCryEjnx6lX76QQZDEGEhkbSo4WcIm5b5Umb0ogaCsEtLYGtLYEBC2Bkw/N3Ap1Tm6+C2zTQr+nWtzzLWPq3YTaUm3CyJo8xkMpX/qBnHW+oXHUiJ5d5tnnljFv7n71bkZTI4WgYON4raWUOJbbZlFvZGEedPuk0ebbjPd2AzAbbaF3M+GuR1vnIRk/bxXgw9nbnR3ngRDkhKJAHAoh0RnQjyIW+N0s6JkG/308ez5+Pvc0A408zl0Lvb23SVU3o13VX0HnYHHfdwXmRsJtm6uASNeid2PoN6HDDNI5AuqVEM8lL2KPAiG1R2TZvCdIrusFIcgFVi6y/6RvjaR02RmaUqDf+Mrz9W5CbRGpe9AuJKAliizx4LWBlSV0lv7of51/Hp1ju+l5zztPrHcTPOjFIScgqxTKLDjRIjqKFo5qSWcEOo7+9yTd8taj3Q6j/62h2+GujHO78GNCIXLOwm+VL3nR+KEQnubBz+eeZqBRx3l6/XLXsU50LXrQLvcTqLR6N4LAmyaRFM95PBltie9HGx3c0nUb0f2F6u729VwuhTGgWOG9KGLvgoDYK6+QVtLvIWt8U2a537NJWdjtoLUCfclsuZWKD7JCfb7KcBhFAofH08jY8m+NtqjvKDbpjOtGby30K4ABYl3hRpIZ7u0tsnDUeV6xmeAlus2DwkyDZtNls9vnR4H3hMfj8Xhqj61DnxZerYUetIV+Qur9RkyKB47SwRHmBXEy29Voa7yrrO8h9r4DKhLi1buLNhFqVikKJiEsxAaJDPXff9QKL9A3C7aA8mAYv2bd74vmtUQd+tS9x+Npatz4eSm0ZVui4wUL6HqvB6IX//UkNzWuhaJRFBpuBvSSkzQuYPRlQPd4PB5P7XAFdLueWV/0LrSFvh+dNM5d+2pV3WU4EDhZ7lPPp6Iz3c8i6XK/ER0/L1Lnqbd1Pk1GCDJCVxlqFhplbzWiTNprXr2bUFui2YZKS30prDx+0DibWiu+TP1vQ12mnh3luz+8od5N8OxBCIzLPZXJ7mwcPcQCvdXyu5uFWiz6uzvOg1TSuJz0SeM8jYefzz3NQKOOc2vVrRZH34620K8zr9kM8Om8MY22qqQVDq4HwRTi0nXW5R6SFvpqCfH2VOv3aKApBfp1q5+tdxNGFvf6KpaTWe4B+kvmuJS/TCP4z3h2mQ+87y31boJnD0KakIFImBfxgj4LLdBbdaFbi9dd9O3/DCd+nHuaAT/OPc1AI4/zyIXeceMGLdD3ot3tJ1ElYRwNaqF3wgDTngRupnv3tpFkyTrX+67R+tdsNKVAXy7117sJtaOaq7zVmOUwLveORK/QQn4udexQ5/KMGiZOGFPvJnj2MALiUjeuq94sYDHxzLKRWKB34whh+OMI/Tj3NAN+nHuagUYe53a9s4/tfSexhX6883o1K32jIal0u08L9G5SvM3o/ibCD5ybp340pUC/x5N2s7fkgHI5fq7Mn8GyDoJNnCPtdu/xeJqdtDBv762FvowumNGLdrmv5nLopxSPx+PxjDYq3MvN623oNW8tcTJYaOz4eUvaOu9a6N3SdRa3JG2jla1rdpry+2/r7K53E2pLRfy8uc8JKJlL071CiyEUgur/4+NhRi2PLlxU7yZ49jASwryINwDTzPsrgQ3msRtDX0u3Qz/OPc2AH+eeZqCRx7kVXNPrmi1btxadJHao+PlGjC9PKx3sYxtDH5KMod+CdrmHyu+h8XrXXDSlQB8Eue0ftKchBGQDGHTd7W2WewWZYGirvL9KRyWbN2+tdxM8exiJTPfE7noBMAN4Hi3Qt6NLqIyEBt+Pc08z4Me5pxlo5HHuCq1pC30P2uV+Qup91/LdiKSVD/bxJPP+OmJ3e9B5AjpJhh64a7ynfjTqGKspPRuW1bsJtWNbwnggHQu9iq/QgVAL9NH/VImj94w63nrS0fVugmcPI22ZDxwd4L5ot/t1xC55act8LbT4fpx7mgE/zj3NQCOP83QyPLuWdQBb0RZ6W7LOdV+vRTLY4cK2NUi53WfR+QBWE1vobfaxRFI8H07XMDTqGPPsDu5V5QrngYwt9G5hyWIIhUzl/5vZqxHdhDwez8gjhIit8iKZUGcWsARtoZ/g/I/rctioiYE8Ho/H49kWCau7I9x3oNc9V6CPttH2vkEXPndddhXvoOPoXzaPQ2CTedzh/K93uW8cmlKgF6IJul1NCM8EOst9umxdUUHextCn3e79JTpaGRgo1rsJnj0QV5h3rRCziF3u0/Hz4Fg1hllB6Me5pxnw49zTDDT6OBdVHreb+wHiGPpqgnIjIp3SdemY/0noxHjW5X4TOrwggBEJp/PsHE35G0zaa169m1AzxFAJ8QByMhlDD7GFPpdOiteo049nR7n8il/XuwmePZC0y7210s9Aux0+R5zp193Y1GpT48e5pxnw49zTDDTyOK9mkRbEFmuIS7pVi0tvVCLlfEoBYRPjWalhE9tOiNfIfWwGmlKgX7NiUb2bUGPSQr15kHVi6CG+SgfLOmFetavRC/ajlvPOfW+9m+DZAxHEVnr7WKIrX04F/oqOoa+22NdiwfHj3NMM+HHuaQYafZxLKuPGbQLYyVTPGdPowq4V5l2PO0Hscm9FhR7i/DiQ6p8Pp6s7TSnQKxXWuwkjQ9panwlSAr15PFCCbOpSrGbh94wq8vkmrObgqTluAh1bl94u6jPNMeOdY6MNQo3c8vw49zQDfpx7moFGHufpbbErqI+lMsN92o29UYna6dyDttCvNo8VOpyug6StcDQoLJqFphTomxIBZCSUqsTQ95chLyuS4TVsFg+Px1M3hIm5yxBr9W1ivKw5Zp091ty7GxuPx+PxeEYjQ2W6LwFLgWec4xo9ft7ihgXYdgdoj4Ot6NrzIUkLfVUvBO/RW1eaUqDvHLtPvZtQW4a6qDISSmX9OHSk+sES5FLW/Ohcw946zwjxu3sW1rsJnj2UtDAvgaeBh8z716A3Nu4GoVZafD/OPc2AH+eeZqCRx3lFCJlZ0J5Gx5dvAS4yzyvWvgYWdq3iIa2E6ARyxFZ6G0Of8FAYBTkCmoWmFOjL5cbOornbDOUunxHaQu+ilBby82Yo+Br0ewwdHa31boJnDyUhzJvH96aOuZfax8+DH+ee5sCPc08zMBrGedo6n1777ibpvt7ogpYrxAck12u3dF0PcdK/0ZQjoFlo9HFWE7b0rKp3E2qPG+RiyQooluPn1khfLOsM+In/H8Ji7xk1vO7oPbeag6e+SLSVPhAmQR7wttQxb0XrEK3Qby35w40f555mwI9zTzPQyONcCBGtd3bty6LXOpf5zvtS6HWwkbHeBNVC42yme4D1xFnufdm6xiNT7wZ4aoC9wuxje58Rug59mn50lvv08YDPcu/xeNJI9HSSVVpPmBNwqIJvo60TbwEOR292MkLfB0LXvPV4PB6PZzSSEXoty5i1L49e+74FLEAL84cLLVzZta/RhV0hBEKp2O1exZ4FbmK8rcQCPXgLfaPRlAJ9kCnUuwkji73SsgLKjkBvs9z3A/kgPtBfmXsEa1/ZyMQJY+rdDM8eiBCCrFJkhI6xK5vYu6OAI5TeFGSBvNC3nIgT5g03fpx7mgE/zj3NQKOP8wC9ppWEThSnzGtHm1vGvF9w1r5gFCiy3Yo0rvV9MmCzGryCFuirJ8Qb4QZ7Kmh0xVFNGD95Tr2bUHvci8utQ19Ou9wboT4fVFrlfWHJUc31N9xd7yZ49mCyAlrNrUVCq4R2Ae3mvs281mI2N+nKmMOFH+eeZsCPc08z0OjjXApBwaxpBQFtZq1rF/G6Z9e8FiPUjwbSSfHc0nWr0HY/RZwUzwrx3kLfODSlhX7NikX1bkJ9yBgLvXIz3JvHuSB+baikep5RxWc++b56N8GzByOEIG8UghIooq0WCqKydjnHUlGrLL9+nHuaAT/OPc3AaBjnGSFolYpAQb+Ckoq91AKMK75Z+0ZLmJl1tQ9Iut13A2vQNehB16EHnxSvEWlKgX6PZ6j496yAAeNyb2X6QWOxj2Lo0273/jL1eDzVkUJQQOmpRcUuiO7GJjtKNjQej8fj8ewIWSEIUGSJ3e+tdTuDXvsauVRdmrSrvX080by/GGglTm7rE+I1Hl6g3xOplhAPdB36dMW+ASPQB+n/8e72Ho9n+wghogRASqlIoB9NmxmPx+PxeHYGKYTOE4Ne+2D0rnvWzT6dFC8AJgHPAmPMsdWs86Oz13sWTalYGTNhdr2bMHK4lvbAEeiV0qa0gXJlUU3PHsGNN99f7yZ4mgwhBFKIEd3U+HHuaQb8OPc0A6N1nIsRXveGG0Eqht6x6XWjBfohM9x7+19D0JQC/UDfxno3obZUS4gn0HHyiap1CoolKKSOdc/hr9JRy5z99ql3EzyemuPHuacZ8OPc0wz4cV4fhBCJhHiuwD4ZeA7opNKJ11vnG4emFOj7tqyrdxNqTzVNYdb+3MqJoQ91Kk6Ir0opkveeUcm8ufvVuwkeT83x49zTDPhx7mkG/DivHwm3e2LBfrJ531roq7rcj2LvhD2FphTom4JqFnab+K7kZLkvKv16RTK8Kv/v8Xg8Ho/H4/F49iiiDPckLfVTzPtjqHS1t8d46k9TCvS5Qsf2D9oTyZjLzhXoB0LIOLkRq7nde0YlLyxdUe8meDw1x49zTzPgx7mnGfDjvH6kLfP21m3e72AI6/zIN9VThaYU6DvGTKt3E2pMlYz1oLPcA5TCOCleMUzWoCf1P55RywMP/7neTfB4ao4f555mwI9zTzPgx3n9cIX5wBHurUD/CPAU1a30nvrTlL/DulV/q3cTao+90uxjnOe29jxol/tCkPw/597HxYxePnbWqfVugsdTc/w49zQDfpx7mgE/zutHOsO9Fe6XmPefAz5HFaF+5JvqqUJTCvRNiXvFlZxU94Mh5IzLfUUyPH+Zejwej8fj8Xg8ezLWMh/VoDeP70sd97vUcT5/dmPgBfo9kWryuLW0Z4kt9Aoolk1SvGrn8Vepx+PxeDwej8ezJyOFIAAy6JRbGSAHzE8ddyo6gV5gjvGCZGPQlL/D+O4D692E2pN2s7fkSVroi2XIpY7xBvo9gquvu73eTfB4ao4f555mwI9zTzPgx3l9yQotzGeBvIBWAUcA3wPeAlwBHCX1ezmMpd4b/xqCzPYP2fPYvHF5vZsw8tjrLSeSWe77S5BrcY4bonydZ9RxwnGH1rsJHk/N8ePc0wz4ce5pBvw4ry8ZoEVAKEGFWhTICDhGweuEtsznBRScm6cxaHiBfsGCBdxxxx0sW7YMIQQzZ87kox/9KHPnzo2OKRaLXHHFFTz44IMMDg4yb948PvOZzzBp0qSq5yz2bx6p5tePoQTzjNRx85ZiGXKy0iovhBfqRzmzZuxV7yZ4PDXHj3NPM+DHuacZ8OO8vgghKKAIASEho4wN0MgDgYit8y0SAm+dbxgaXqDfunUrH/rQhzj44IPJ5XLceuutXHjhhVx33XVMnDgRgCuuuIInn3ySH//4x3R0dPC9732Pz3/+8/z4xz9GyiaMKkhfX66QHsikhX7Qcbn316XH4/F4PB6PZwfp7++nWCzWuxmeYSRUSle3NuJCiBYRFFAWEAroE4K+OraxkcnlchQKhRH9zIYX6N/xjncknr/rXe/i2muv5e9//zsTJ06kWCxy991384UvfIHubl0t8ROf+ASnn346Tz31FK9+9asrztnSNn5E2l5XqiXEAwgCGDRXqFJQKkNeVh7nhftRz6Inn2Pe3P3q3QyPp6b4ce5pBvw49zQi/f39zJw5k1WrVtW7KR5Pw9Dd3c2SJUtGVKhveIE+zTPPPENfXx+zZ88GYNmyZQwMDHDggXGiu66uLqZMmcJzzz1XVaDPt4wZqebWl2quMBljobdG+v4QslagN69VlK/zjEaefW6Z3wB69nj8OPc0A36cexqRYrHIqlWreOmll+js7Kx3czyeutPT08Pee+9NsVhsDoH+61//OgsWLBjy/Xnz5nH55ZcnXluzZg1f/vKXef/738/UqVMB7ZIP0N7enji2vb09ei/Nxlee342WNz5CCC2vV8tWnwuSMfT95jW82/2exnveeWK9m+Dx1Bw/zj3NgB/nnkams7PTC/QeTx2pW4D5pz/9aW699dYhb1/96lcTx69YsYJPf/rTHH/88Xz0ox+NXm9tbQWgt7c3cXxvb2/0Xpp861jO/OBHOP/88zn//PO58847+cZ3/4uBgTgG6Hf3LOTRhYui52tf2ch3f3hD4jw33nw/i558Lnr+wtIVFSU3rr7udl5YuiJ6vujJ57jx5vsTx3z3hzew9pWN0fNHFy7id/csjJ4PDBR3oX2CG+96iEX/eME8FbywajXXLPtzwkJ/zboneKFnXSTIL3puCTf+7mF7ihq2r9G/P98+3z7fPt8+3z7fPt8+3z7fvm21z+PxVMdev3feeWckc575wY/U5LPEgw8+qLZ/WH15/vnnueCCCzjttNP40Ic+lHivWCxy6qmn8sUvfpFjjz0WgE2bNvGud72Lb3/72xUu91u2bGH+/Pls2rRpj9Ymqr4S2Ft/Ob79dhkUMnDCVCiHcNmT8KkDoSsPhQBaMvF9WwYRNGFSQY/H4/F4PB7PNunp6aGrq2uP31N7PDvK9q4J+/6dd95JW1vbsH1uw0trTz31FJ/5zGc444wzKoR50JkE3/KWt/Czn/2M1atXs3XrVq644gqmT5/OwQcfXPWck/aaV+tmNw7pOPpMACXjcl809zlnGFRz0/eMStIae49nT8SPc08z4Me5x+PxeIai4ZPiXXPNNfT29nLNNddwzTXXRK+feeaZfOADHwDg3HPP5YorruCf//mfKRaLzJs3j//8z/8csmTdutXPjkjb60q1hHgCyAhtqVdKl6wDnSgP4iR4wv0Hz2jlA+97S72b4PHUHD/OPc2AH+cej8fjGYqGt9B/97vf5YEHHuB3v/td4maFedBW+vPOO4/bbruN3/3ud3z9619n0qRJQ56zXOofiabXl6Es7RkRC/L9JXOMqCxz52X5Uc/ECWPq3QSPp+b4ce5pBvw493hGhmuvvRYhRHTr6Ohg3rx5/PCHP6RUKtX0s5cuXYoQgmuvvTZ67eyzz2bGjBk7dZ6HHnqIiy++mDAMt3/wTnDxxRcjqhkMd4Dly5fzqU99iqOPPprW1laEECxdunRY29fMNLxA79kNIqHeufiyMna1L5YhV+UY73bv8Xg8Ho/H42lSfvOb37Bw4UL++7//myOOOIJPfepTfPnLXx7xdnzxi1/klltu2an/eeihh7jkkkuGXaDfHRYvXsyNN97I2LFjef3rX1/v5uxxNKVA39bZXe8m1B5BLKS7AnpWxAL9YBnSJRLT/+MZtbhZcD2ePRU/zj3NgB/nHs/Icsghh3DUUUdx0kkn8ZOf/ITjjz+e733ve0MePzg4iFLDn2d89uzZvOY1rxn28440b3jDG1i9ejW//e1vefe7313v5uxxNKVAHwS57R+0p2EF9KyAsnG5L4Y6o737fjWrvmdUsnnz1no3weOpOX6ce5oBP849nvpy+OGH09PTw5o1ayLX+CuuuIILLriAqVOnks/n2bhxIwA333wzRx11FK2trYwZM4Z3v/vdLFu2LHG+rVu3cu655zJ+/Hja29s59dRTWb58ecXnVnO537JlC5/97GeZPXs2+Xye7u5uTj/9dFavXs3FF1/MJZdcAkA2m41CB9zPvfDCC5k5cya5XI6ZM2dy6aWXVljz//KXv/D617+eQqHAXnvtxVe+8pXdUlgMldfMMzw0fFK8WtCzYdn2D9pTyQhdrg6gqHTW+6Gs8l6mH9W89aSj690Ej6fm+HHuaQb8OPeMdhaVFXeGMF/CvGD4Npi1Om+aJUuWEAQB7e3tbN2qFWyXXnophx9+OFdddRXlcplCocCVV17JOeecw4c//GG+9KUvsXnzZi6++GKOO+44nnjiCTo6OgD4l3/5F37961/zH//xHxx++OHce++9vP/9799uO4rFIm9+85tZtGgRn/3sZznqqKPYtGkTCxYsYMOGDXzsYx9j+fLlXHPNNTz66KMEQRD9b6lU4uSTT+aZZ57hi1/8InPnzuWxxx7jK1/5CuvXr+fb3/42AK+88gonnHAC3d3dXHfddeTzeb75zW9WKCVAKxyuu+66mngneHacphTom4Z0ojvQMfTWQj8QaoE+fUz6fz0ej8fj8Xg8nl1gUVnxjkF4Gbi6DNcrxdxgu/+2XZ4swwdKsAq4pgy3oIZNqC+Xy5RKJTZv3syNN97IzTffzCmnnEJra2t0zOTJk7nlllsiC3hvby8XXnghH/7wh/npT38aHXfEEUcwZ84crrnmGs477zyeffZZfvnLX3LppZfy2c9+FoCTTjqJ3t5errzyym226/rrr2fhwoXcdtttnHrqqdHr73rXu6LH06ZNA+DII48kk4lFvV/96lc8+uijPPzww7zhDW8A4MQTTwTgkksu4cILL2TSpEl897vfZcuWLdxzzz3svffeALz5zW9m+vTpFe0JgiChNPDUh6b0fxCiCbo9lOt8RsCgU4e+kKn8H1O+blczWXoag4GBYr2b4PHUHD/OPc2AH+ee0cydoRbmQQvfbyrB5IHdv73JCPOgz3/XMOaAO+CAA8hms4wbN45zzz2XM888MyGkA7z97W9P7JUXLlxIT08PZ555JqVSKbrtvffeHHDAATzyyCMAPP7444RhyHve857E+d73vvdtt1333HMP3d3dCWF+R7n77ruZPn06xxxzTKJ9J510EoODgzz22GNRP4466qhImAdoa2vjlFNOqTjnNddcU/Ps/57t05QW+kl7zat3E2pPtYR4oGvO231BUUE+qH68N9GPei6/4tdc+JkP1rsZHk9N8ePc0wz4ce4ZzcyX2oL+MtANXJ9h2C30U4C3DaO97pZbbmHatGl0dHQwffp0CoV0FmmYMmVK4vmaNWsAeNOb3lT1nGPHjgXg5Ze1emPy5MmJ99PPq7Fu3Tr22muv7XegCmvWrOHFF18km80OeW7bvoMPPrji/R1pn6c+NKVAv2ZFk2WLdYX0hEAfQi6dFM8L8nsK55373no3weOpOX6ce5oBP849o5l5geAWFHeFWugeLrf4YzNwqxj+8wIcfPDB7Lvvvts8Ju3JOn78eEDXsn/Vq15VcbyNn7eKgNWrVzNr1qzo/dWrV2+3XRMmTOCpp57a7nHVGD9+PDNnzuTGG2+s+r5NvjdlypSqbdmR9nnqQ1MK9Eo1Tl3GmlEtfl6gBXrrGTNYhtZsdWO8F+xHPfl8E1Zz8DQdfpx7mgE/zj2jnXmBYF4NQq1rdd5d4ZhjjqGjo4PFixdz1llnDXnckUceiZSSG2+8MYqhB7jhhhu2+xknnXQSN9xwA3fccUdVF3iAfD4PQF9fX6REAHjLW97Cf//3f9Pe3s4BBxww5GccffTRfPOb3+Sll16K3O63bNnCHXfcsd32eepDUwr0TU3WznoKBkrQldokpF30PR6Px+PxeDwezzbp7Ozkm9/8Jp/4xCdYu3Ytb33rW+nq6mLFihU8/PDDHH/88bz//e9nzpw5vP/97+dLX/oSYRhy+OGHc8899/Db3/52u5/xgQ98gJ/85CecccYZfO5zn+PII49k8+bNLFiwgPPOO48DDjiAgw46CIBvf/vbvPWtbyUIAg477DDOPPNMfvazn3HiiSfyb//2b8ybN49iscjzzz/P7bffzq233kprayuf+cxnuOKKKzjppJO4+OKLoyz3LS0tFe356Ec/ynXXXbdDcfQ33XQTAH/+858B+N3vfsfEiROZOHEixx133M581Z4UTSnQd47dp95NGBmqWdmzJsCoDPSXIS8rkuEhhRfo9wB+d89CX+rIs8fjx7mnGfDj3OMZHfzLv/wLe++9N9/85jf55S9/SalUYq+99uL1r389hxxySHTcj3/8Y9rb2/nWt75FsVjkhBNO4Je//CWve93rtnn+bDbLPffcwyWXXMJVV13FJZdcwvjx4zn22GMZN24cAPPnz+fcc8/liiuu4Mtf/jJKKZRSZLNZFixYwNe//nWuuuoqlixZQltbG7Nnz+Ztb3sbuZw28k2YMIH777+fT3/605x11lmMHz+ef/3Xf6VUKvHlL3850Z5yuUzZVs/aDu9+97sTz88991wAjjvuOB566KEdOoenOuLBBx9sqsKBW7Zs4b3v/xgrX3qWzs7OejenZqhyCFtL+jZQ1vf9ZdgyCN99Gj7zKvj1c3DIBHjNRJ0cryUDBXPfmkHkGsSHybNLPLpwEa87ugkSQHqaGj/OPc2AH+eeRqSnp4euri42bdq0R++pPZ4dZXvXhH3/zjvvpK2tbdg+twnqt1WypWfV9g8a9aSz3JsHGfOTl0IoGQu9+777P55Rjd/8eZoBP849zYAf5x6Px+MZiqYU6JsGQWU5Omt0HwyhWIZcaghUlK/zeDwej8fj8Xg8Hk8j0pQCfZCprCXZFIjoj85w30+cJC+dDM9nuR/1rH1lY72b4PHUHD/OPc2AH+cej8fjGYqmFOjHT55T7ybUnmrZ6iO3e7SFvh8dO592z/fsEVx/w931boLHU3P8OPc0A36cezwej2comlKgX7NiUb2bUF9y6Ph50AJ92iovfJb7PYHPfPJ99W6Cx1Nz/Dj3NAN+nHs8Ho9nKJpSoG8ahnKfz6Ez3gO4mex9DXqPx+PxeDwej8fjGTV4gX5PJp3gzt5nJWwxAn0UQ592u/dSvcfj8Xg8Ho/H4/E0Mk0p0I+ZMLveTag9aXnctdYHAWwJ9fOgSnk7L8vvEdx48/31boLHU3P8OPc0A36cezwej2comlKgH+jbWO8mjAzVEuIBBBK2luJf3wvweyRz9tun3k3weGqOH+eeZsCPc4/H4/EMRVMK9H1b1tW7CSNHtfJzQQBbi1CocoyPo99jmDd3v3o3weOpOX6ce5oBP849Ho/HMxRNKdA3A2Ko+HmAnITeQSikjpEiee/xeDwej8fj8TQZCxcu5D3veQ9Tp04ll8sxfvx43vzmN3PddddRLpfr2ralS5dy8cUX88ILL9Tk/AsXLuTII4+kra0NIQR//etfh+3cGzdu5OKLL+Z///d/h+2cQ3H22WczY8aMXf7/p59+mpNOOon29nbGjx/Phz/8YdavXz98DRxGmlKgzxU66t2E+pKTMFDUGe4rkuFR/bln1PHC0hX1boLHU3P8OPc0A36cezwjx+WXX86xxx7L+vXr+cY3vsF9993HT3/6U/bff3/OOecc7rzzzrq2b+nSpVxyySU1E+g/+tGPUiqVuOOOO1i4cCH777//sJ1748aNXHLJJSMi0O8OK1eu5Pjjj6evr4+bbrqJH/3oR9x3333Mnz+fMAzr3bwKMvVuQD3oGDOt3k0YIaokvAOd2X5TCJNyzqFV3O49o5oHHv4zs2bsVe9meDw1xY9zTzPgx7nHMzI88sgjnH/++Xzyk5/k+9//fuK90047jfPPP58tW7bUqXW1o1wuo5RCSsmzzz7L5z//eU444YR6N6tufPOb32RwcJA77riDMWPGADB16lSOO+44br31Vt75znfWt4EpmtJCv27V3+rdhJElbYXPSCiSrEGfPtYz6vnYWafWuwkeT83x49zTDPhx7vGMDN/4xjcYN24cl112WdX3Z8+ezatf/ero+R//+Efe9KY30d7eTltbGyeeeCJ//OMfE/9z/PHHc/zxx1eca8aMGZx99tnR82uvvRYhBI899hhnnnkmnZ2dTJ06lf/zf/4P/f39ADz00EO88Y1vBODNb34zQgiEEDz00EPRea666irmzZtHoVBgwoQJfPSjH61wFRdC8PnPf56vf/3rzJw5k1wuxw9+8AOCICAMQ77yla8ghIhc1v/0pz/xrne9i2nTptHS0sKcOXO46KKL6Ovrq+jXLbfcwrHHHkt7ezudnZ0cccQR3H777SxdupSZM2cC8PGPfzxq+7XXXlv1+3DbevHFF0fPFy9ezAc/+EFmzpxJS0sLs2bN4pxzzmHDhg0V/7ur3H777bztbW+LhHmAN7zhDeyzzz7cdtttw/Y5w0VTCvRNQzXhXKAFeoBCkHzduRdesPd4PB6Px+PxDANqSQ/qxudRS3oa9rzlcpkHH3yQk046iUKhsN3jn3jiCY477jg2bNjAtddey89//nN6eno47rjjWLRo0S6344Mf/CCzZ8/m5ptv5pxzzuFHP/oRX/va1wB47Wtfy49+9CMAvv/977Nw4UIWLlzIa1/7WgA++9nP8olPfII3velN3H777Xzzm9/k7rvv5q1vfWtF7P+1117LXXfdxbe+9S3uuusu3v/+9/Poo48C2u1+4cKF3HLLLQAsW7aMQw45hCuvvJK7776bT3/60/z0pz/lwx/+cOKcP/jBD3jnO9/JpEmTuO666/jNb37DO97xDpYuXcqUKVO4+eabAfjc5z4Xtf1tb3vbTn0/K1euZO+99+byyy9nwYIFfOlLX+L+++/nn/7pn7b7v8cff/x24+r7+vpYsmQJBx98cMV7r3rVq3jmmWd2qr0jQVO63DcNQ2Wsz5gXcubnr0iG54V5j8fj8Xg8Hs/uo5b0wH/+FTYU4d4VqM/MhRnDkM9q6Wb4zpOw0Zz3okMQMzt3+XSvvPIKfX19TJ8+fYeO//KXv0w+n+f++++PLLlvfvObmTFjBpdcckkkvO4s73//+7nkkksAeNOb3sTjjz/Or371Ky655BI6Ozs56KCDADjwwAM56qijov9bunQp3/zmN/mP//gPvvSlL0Wv77///rzuda/jjjvu4O1vf3v0ulKKe+65h5aWlui18ePHAzBt2rTEuU8//fTE/x177LF0dnbyoQ99iB/96EeMHz+enp4eLrroIt7xjnck+n7yySdHj1/zmtcAMGvWrMT5d4Y3vOENvOENb4ieH3PMMey77768/vWv5y9/+Uv0GdUIgoBMZtvi74YNG1BKMXbs2Ir3xo0bx7PPPrtL7a4lTSnQj+8+sN5NGDnS8fMQW+izQXXZ3Vvn9wiuvu5276bp2ePx49zTDPhx7hnV/GmtFuZB33/pz8P/GRuK8P/Wwm4I9DvLI488wvz58xNu2Z2dnZx66qnccccdu3zetMV67ty53Hfffdv9v3vvvZcwDDnzzDMplUrR60ceeSQdHR088sgjCYH+LW95S0KY3xY9PT1ceuml3HTTTbz00ksMDg5G7z333HOMHz+eP/zhD/T29vLP//zPO3TOXaVYLPKtb32Ln//857z44otROALAs88+u02B/v77769p2+pFUwr0mzcur3cTRgZBZfy8ALLWQi8qj3fvPaOaE447tN5N8Hhqjh/nnmbAj3PPqObwiXDvCi10j83BcFrov/tkfN7DJu7W6caPH09LSwsvvvjiDh2/fv16pkyZUvF6d3f3bsVzjxs3LvE8n88zMDCw3f9bs2YNAPvuu2/V99etW5d4Xq3tQ/HhD3+Y++67jy9/+csccsghtLW18cc//pFPfOITkUBtzz9tWm2Tj3/uc5/jBz/4AV/60pc45phj6OjoYPny5bzzne9MCPe7ypgxYxBCVP0N169fX/H7NAJNKdAX+zfXuwn1JXK5d1IoDFW+zjNq8RmRPc2AH+eeZsCPc89oRszsRF10iLagHzZxt9ziExw0dljPm8lkOP7447n33nsZGBggn89v8/hx48axatWqitdXrVqVcNcuFAr09FTG+A93TXPrLn/PPfdUdRe371t2NF9Wf38/t912GxdffDGf/vSno9effPLJxHETJkwAYMWKFVXjz7dHoVCgWCwmXksrIQBuuOEGPvShD/GFL3wheq23t3enP28oWltbmTFjBk8//XTFe8888wzHHXfcsH3WcOGT4jUT9rrNOgJ92iovhBfqPR6Px+PxeDzDhpjZiXj37OET5mt03s9+9rOsW7eOCy64oOr7S5Ys4YknngDguOOO47e//S2bN8eGws2bN3PHHXckstpPnz6df/zjHwlh9ZFHHkn8385gFQ3pDPNvfvObkVKybNkyDjvssIqbzTC/swwMDFAul8lms4nXbXZ6yzHHHEN7eztXXXXVTrcd9Pf01FNPJV676667Ko7bunVrRVt+9rOfbbMPO8upp57KXXfdxaZNm6LXHn30UV588UVOPbXxwp+a0kLf0jZ++wftKbjCeVSHPuVy7wX4PZJFTz7HvLn71bsZHk9N8ePc0wz4ce7xjAxveMMb+M53vsP555/PM888w9lnn80+++zDhg0buP/++7n66qv55S9/yatf/Wq++MUvcuedd3LiiSdy4YUXIoTgG9/4Blu3bk0kpXvf+97HVVddxUc+8hHOPvtslixZwne+8x26urp2qY37778/mUyGn/70p4wbN458Ps+cOXOYPXs2F154IZ/85Cd59tlnOe644ygUCrz00kvce++9fOxjH4tK3u0MXV1dHHXUUXz7299mypQpTJgwgZ/+9KesWLEicVxHRwdf+9rX+NSnPsXpp5/OmWeeSUdHB3/9618pFAp86lOfYvLkyYwfP54bbriBV7/61bS1tTFz5kzGjx/P+973Pj7ykY/wmc98hvnz57No0aIKpQHo2P/rrruOuXPnsu+++3LzzTfzhz/8YYf6cuKJJ/Liiy+yePHibR73f//v/+X666/n1FNP5XOf+xybNm3iggsu4Mgjj+Qd73jHDn93I0VTWujzLWPq3YSRoVpCPIiT4uVl5fteuN9jePa5ZfVugsdTc/w49zQDfpx7PCPHeeedx6OPPsqYMWP493//d0444QTOPvts/va3v/HjH/+YU045BYBXv/rVPPTQQ3R2dnLWWWfxwQ9+kPb2dh5++GHmzZsXne+Nb3wjV155JY8//jinnHIKP/vZz7j++usTyfR2hvHjx/PDH/6QRYsWcdxxx3H44Yfz5z/rRIP/+Z//yVVXXcUjjzzCe97zHk477TS+8Y1vMHbsWPbbb9eVgr/61a849NBD+cQnPsHZZ59Nd3c33/ve9yqO++QnP8lvfvMbli9fzplnnsnpp5/OTTfdFHkHSCm5+uqr2bBhA29605s4/PDDowSCZ511VlQd4JRTTmHBggVR2TyXH/zgB5x66ql8/vOf573vfS+bN2/mV7/61Q71o1wuJxIGDsVee+3Fgw8+SC6X4/TTT+df//VfeeMb38hdd92FlI0nPosHH3xQ1bsRI8mWLVuYP38+mzZtorNz5DJh1gNVCmHLIPSXYWsJBsrQV4IlG+GXL8IZ02HWGGjJQD6A1oyuTd+WRWQab7B6PB6Px+PxeBqDnp4eurq6mmJP7fHsCNu7Juz7d955J21tbcP2uV5qaxaE88AK67kgfsNb5j0ej8fj8Xg8Ho9nVOEF+mZDoOvPg7bKV3PL98K9x+PxeDwej8fj8TQ8TSnQT9pr3vYP2hOolhAP4GWTsXF1ZQmNinh7z6jluz+8od5N8Hhqjh/nnmbAj3OPx+PxDEVTCvTrVj9b7yaMHGkBfcla+O1acIgp2QABAABJREFU/fi21fo5VJav84x6PvC+t9S7CR5PzfHj3NMM+HHu8Xg8nqFoSoG+XOqvdxNGCKF/YWlqy0sBi1YnD1m0Wr+Oc5yX6vcIJk4YU+8meDw1x49zTzPgx7nH4/F4hqIpBfqmIS3MBwIO7U4ec2i3fl2K+Bg/Kjwej8fj8Xg8Ho+n4WlK0a2ts3v7B+0BCCEgkDqrfdbcDpwCH94b5mX1/UFT4vcyAqTU/+cZ9Ty6cFG9m+Dx1Bw/zj3NgB/nHo/H4xmKTL0bUA+CIFfvJowcGQk5CaEChbbCHzRF3yAW5t2bZ49g8+at9W6Cx1Nz/Dj3NAN+nHsamZ6eKkmWPZ4mpF7XQlMK9D0bltW7CSOGCAQqF2iBHrRLfUaCUjphXiC0ZT4rIRcgpLfO7ym89aSj690Ej6fm+HHuaQb8OPc0Irlcju7ubvbee+96N8XjaRi6u7vJ5UbWeNyUAn2zITIS1ZKBIIRSGFvrbWx9xgjzgRfmPR6Px+PxeDzbp1AosGTJEorFYr2b4vE0DLlcjkKhMKKf2ZQCvRDN51YuAokqCAglhMQWeqmT4Pm4+T2PgYEi+XwThZd4mhI/zj3NgB/nnkalUCgMm/Dix7nHs2s0vGT76KOP8tGPfpRTTjmF+fPn88///M88/PDDiWM2b97MV7/6VebPn8/8+fP56le/Sm9v75DnnLTXvFo3uyERQiACichKRC7Q94HwwvweyuVX/LreTfB4ao4f555mwI9zTzPgx7nHs2s0vIV+zpw5fP3rX2fChAkAPPHEE1xwwQXstdde7LvvvgBceumlDA4O8otf/AKAL3/5y3zta1/j0ksvrXrO1cv/OiJt93jqyav2G1vvJng8NcePc08z4Me5pxnw49zj2TUa3kI/ceJEJk6ciBACpRRSSpRSrFixAoBVq1bx+OOPc84559DV1UVXVxfnnHMOf/jDH1i9evUQZ1Uj1wGPp0488MAD9W6Cx1Nz/Dj3NAN+nHuaAT/OPZ5do+Et9AC9vb28733vo7+/n3K5zNy5cznqqKMAWLx4MdlsNrLWA+y7775ks1kWL17M5MmT69Vsj8fj8Xg8Ho/H4/F4akbdBPqvf/3rLFiwYMj3582bx+WXXw5Ae3s7d955J8VikYULF7J8+XIyGd30rVu30t7eXvH/7e3tbN1aWbdVKUUu3+FrZnr2eJ57fpkf5549Hj/OPc2AH+eeZsCPc8+ejh3fSg2vt3jdBPpPf/rTnHPOOUO+HwRBxWu5XI7jjjuOz372s7S0tPDOd76T1tbWqgnwent7aW1trXi9r6+P4sBmXzPT0xR0df13vZvg8dQcP849zYAf555mwI9zTzPQ19dX1SC9q9RNoG9paaGlpWWX/rdUKvHSSy8B2r1+cHCQ559/ntmzZwPw/PPPMzg4mHDDt4wfP54bb7yRlpYWn93d4/F4PB6Px+PxeDw1RylFX18f48ePH9bzNnwM/YIFCzjooIOYOnUqpVKJBQsW8Je//IXTTz8dgO7ubo488kiuvPJKvvCFLwBw5ZVXcswxx1SNn5dSMnHixBHtg8fj8Xg8Ho/H4/F4mpvhtMxbxIMPPtjQKd9/9rOfcc8997Bx40ZyuRzTpk3j9NNP54QTToiO6enp4Xvf+x6PP/44AEcddRTnnXdeTb4wj8fj8Xg8Ho/H4/F4GoGGF+g9Ho/H4/F4PB6Px+PxVNLwdeg9Ho/H4/F4PB6Px+PxVNLwMfTDiVKKa6+9lrvuuostW7aw//77c9555zFz5sx6N83j2SWuuuoqHnvsMVavXk2hUOCQQw7hX/7lX5g0aVJ0zOrVq7n88stZtGgR2WyWE044gXPPPZdsNlvHlns8u84Xv/hFHn30Ub71rW9x6KGHAvDXv/6VK664gmXLljF27Fje9773cdppp9W5pR7PzvP0009zzTXX8Pe//x0pJTNmzOD73/8+Ukqef/55vv/97/OPf/yDtrY25s+fz1lnneWT/HpGFevXr+dHP/oRf/nLXygWi0yfPp2Pf/zjHHLIIYCfzz2jjwceeIBbb72V559/nq1bt3LfffclKrZtb+7eXRm1qSz0v/71r/nd737HZZddxq233srBBx/MBRdcQF9fX72b5vHsEkIILrzwQm699Vauu+46AC666KLo/TAMueiii+jo6OA3v/kNP/7xj3niiSe48sor69Vkj2e3WLBgAf39/YnXVq1axec+9zne+ta3cscdd3DhhRfyk5/8hP/5n/+pUys9nl3j6aef5sILL+Tkk0/m5ptv5rbbbuPcc89FCMHWrVu54IILOPjgg7n11lu57LLLuOuuu7jpppvq3WyPZ6e4/PLLWbt2LT/96U+57bbbOO6447jooovo6enx87lnVNLe3s5pp53GJz7xiYr3dmTu3l0ZtakE+ttuu433vOc9zJo1i3w+z0c+8hEGBwf9JOEZtXz84x9nzpw5ZLNZ2tvbOeOMM3j++efZvHkzAE888QQvvvgin/jEJ2hra6O7u5sPf/jD/Pa3v6VYLNa59R7PzmE3gP/+7/+eeH3BggVMmzaNd7zjHWSzWQ455BDe+ta3csstt9SppR7PrvHjH/+Yf/qnf+Lkk0+mUCgQBAEHHXQQQggeeeQRwjDkIx/5CPl8nlmzZvHe976XW2+9td7N9nh2ihUrVvCGN7yBMWPGEAQBp5xyCn19fSxfvtzP555RyRFHHMGJJ57I1KlTK97bkbl7d2XUphHoe3t7WbVqFQceeGD0WhAE7Lfffjz33HN1bJnHM3z86U9/YvLkyXR0dACwePFipk6dSldXV3TMAQccQH9/Py+99FK9munx7DRKKS677DI+8IEPVJQkXbx4MQcccEDitTlz5rB48eKRbKLHs1v09/fz9NNP8/+z997xkxR1/v+zumfmkzcndpccJZ+KGImCcBJUDCgq6HlnPhVPMdwh6BfPcJ6K4ZRDCSYOODKSBfmhi3oouwi6Epawu2wOnzihu+v3R3V1V/fMZxOfz2dm9vN+Ph7zmdTTn6rpmqp61TuU53l88IMf5PTTT+ef/umf+PWvfw0Yl8199tkn48Z5wAEHsHLlSoaGhppVbEHYbt7+9rfzm9/8hvXr1xMEATfccAPz589n7733lv5c2OnYWt89Fhp10sTQDw8PA/V7//X29ibvCUI789BDD3HllVdy4YUXJq8NDw/T09OTOc6KfWn3Qjtx4403orXm1FNPrXtvaGiIhQsXZl7r6+sTkSO0FQMDA0RRxJ133smXv/xl9t13X37zm9/wpS99iVmzZjE0NFQ3h3H783xfLwitysEHH8xdd93Fm9/8ZjzPY8qUKXzxi1+ko6ND+nNhp2NrfbfWZsO5F6JRJ42Fvru7GzCWepfBwcHkPUFoVxYtWsQXvvAFPve5z/Gyl70seb27u7tuELTu+NLuhXZhxYoV/OQnP6lztbf09PTU9e0DAwMicIS2oqurC4DXve51HHDAAfi+z1FHHcXhhx/OAw88MGo7B+nPhfYhiiI++clPMmPGDG688UbuvPNOPvnJT/LZz36WJ554QvpzYadja333WGjUSSPoe3t7mTdvHn/961+T18Iw5IknnmDfffdtYskE4YVx1113cdFFF3H++efzmte8JvPePvvsw/PPP8/mzZuT15YuXUpnZye77rrrRBdVEHaIRx55hP7+ft7//vdz+umnJ9mOv/CFL/Af//Ef7LPPPixdujTzmaVLl7LPPvs0o7iCsEP09vYyf/78UTPWW3fkMAyT15YuXcr8+fNF7Ahtw8DAACtXruRNb3oTU6ZMwfd9Xv3qVzN//nz+8Ic/SH8u7HRsre8eC406aQQ9wOmnn87VV1/NsmXLqFQqXHbZZRQKhToRJAjtwvXXX8/FF1/Ml7/85Yxl3nLooYey22678V//9V8MDw+zevVqLrvsMk4++WRKpVITSiwI288xxxzDz3/+cy699NLkBnDuuefyT//0T7zuda/j2Wef5cYbb6RWq7FkyRJuu+023vCGNzS34IKwnbzxjW/k9ttv54knniCKIn7zm9+wePFiXvOa13DUUUfheR6XXXYZlUqFZcuWcfXVV8t2XkJbMXXqVHbffXduuOEGhoaGiKKIRYsW8fTTT7PffvtJfy60JWEYUq1WqdVqAFSrVarVKlEUbVPf/UI1qrr33nv1uNSsBdFac9lll3HLLbcwPDzM/vvvz8c+9jH22muvZhdNEHaIY489Ft/36/aU/+pXv8qhhx4KmC297D70pVKJ4447jg9+8IMi6IW25thjj63bh/573/teZt9imQAK7cjPfvYzbrzxRgYHB1m4cCHvfve7efWrXw2Y5Erf/va3+dvf/kZ3dzennXaa7EMvtB3Lly/nBz/4AY8++ijVapXZs2dzxhlnJDlSpD8X2o3bb7+dr371q3Wvf/Ob3+Twww/fat/9QjXqpBL0giAIgiAIgiAIgrCzMKlc7gVBEARBEARBEARhZ0EEvSAIgiAIgiAIgiC0ISLoBUEQBEEQBEEQBKENEUEvCIIgCIIgCIIgCG2ICHpBEARBEARBEARBaENE0AuCIAiCIAiCIAhCGyKCXhAEQRAEQRAEQRDaEBH0giAIgiAIgiAIgtCGiKAXBEEQBEEQBEEQhDZEBL0gCIIgCIIgCIIgtCEi6AVBEARBEARBEAShDRFBLwiCIAiCIAiCIAhtiAh6QRAEQRAEQRAEQWhDRNALgiAIgiAIgiAIQhsigl4QBEEQBEEQBEEQ2hAR9IIgCIIgCIIgCILQhoigFwRBEARBEARBEIQ2RAS9IAiCIAiCIAiCILQhIugFQRAEQRAEQRAEoQ0RQS8IgiAIgiAIgiAIbYgIekEQBEEQBEEQBEFoQ0TQC4IgCIIgCIIgCEIbIoJeEARBEARBEARBENoQEfSCIAiCIAiCIAiC0IaIoBcEQRAEQRAEQRCENkQEvSAIgiAIgiAIgiC0ISLoBUEQBEEQBEEQBKENEUEvCIIgCIIgCIIgCG2ICHpBEARBEARBEARBaENE0AuCIAiCIAiCIAhCGyKCXhAEQRAEQRAEQRDaEBH0giAIgiAIgiAIgtCGiKAXBEEQBEEQBEEQhDZEBL0gCIIgCIIgCIIgtCEi6AVBEARBEARBEAShDRFBLwiCIAiCIAiCIAhtSKHZBdgWrrjiCu688042b96M7/vst99+vP/972efffZJjnnyySe5+OKL+dvf/kZPTw+nnHIKZ599NkqpJpZcEARBEARBEARBEMYHde+99+pmF2JrPPvss0yfPp2+vj5qtRrXX389V111Fddccw2+7zM8PMy73vUuTjrpJN797nezYsUKzjvvPN761rfylre8pdnFFwRBEARBEARBEIQxpy1c7nfbbTf6+voA0FrjeR4bN25kYGAAgPvvv58oinjve99LR0cHe+21F29729u44YYbmlhqQRAEQRAEQRAEQRg/2sLlHmDRokVcdNFFDA0NoZTizW9+M9OmTQOMu/0+++yD7/vJ8QcccAArV65kaGiInp6eJpVaEARBEARBEARBEMaHthH0r3jFK7jlllvo7+/njjvuYPbs2cl7Q0ND9Pb2Zo63Fv3h4eGMoI+iiPXr19PV1SXx9YIgCIIgCIIgCMK4o7VmZGSEmTNn4nlj5yjfNoLeMmXKFM444wxOO+00Fi5cyD777ENPTw9r167NHGfd8bu7uzOvr1+/nned8350GFCtDMSvKuYuPJw1KxajdWT+z/TdCMMqQ/2rAPALncycuz9rVixOzjVt1t5URjYxMrQegFJnH33TFrJ+1V+SY2bOexEDm5ZTLZv/1dUzk46uaWxa92RyzJwFh7F+9VLCoAxAz5R5+H6J/o3PmtIpjzkLDpPySfmkfFI+KZ+UT8on5ZPySfmkfFI+KV+blG/18ocBk7Ku1NFHtTLA1VdfnTFOv1DaTtCDWd0IgoAVK1awzz77sPfee3P33XcThmHidr906VLmz59f527f1dWFDgOefOIxpkyZ0oziC8KEcNa73svPfvLjZhdDEMaVZrVzrTWUQxgJoBLf1yKoRvD0OnhkNfzdPNh/LnT40OlDVwE6CyhPvMOE7UP6c2EyIO1c2Nnp7+9n1113paura0zP2xaC/tprr+W4445jxowZbNq0iUsvvZRCocDBBx8MwFFHHcV///d/c9lll/Gud72LlStXcvXVV3PGGWfUnUspRaRDpkyZIoJe2Knp7uqSNi7s9DSrnetIQ6EGfgiFEFQs7J9ZDddvBjrhiU3w3j44eH4s5n3oLqJ8EfTC9iH9uTAZkHYuTBbGOuy7LQT9Qw89xM9//nNGRkbo7u7mgAMO4Bvf+AYzZ84EjFv91772Nb797W9z+umn093dzWmnnTbqlnVBdXgiiy8ITWHB/LFz5RGEVqVp7Vw7tyje/TXU8PCq7HEPrYKD5ptjIvsBEfTC9iH9uTAZkHYuCDtGWwj6f//3f9/qMXvvvTcXX3zxBJRGENqD173udc0ugiCMO81r5zoW9Dp5CsBBc+Cvjqh/8bz0GPc4QdgOpD8XJgPSzgVhx2gLQT/W+IXOZhdBEMadF7/kyGYXQRDGnaa2c9dKb0X7gunAKlgIHL0A9p7TtOIJOw/SnwuTAWnngrBjjF2+/DZi5tz9m10EQRh3fnrV7c0ugiCMO01t57qBub0Smvujdoc9ZsXHTVyRhJ0T6c+FyYC0c0HYMSalhd7dukAQdlY+8ZEzm10EQRh3mtbOXZHuut1XY0Ef5lzxde5YQdgOpD8XWpVyuUy1Wh2Tc/3Du/+e/v7+MTmXIDSLUqlEZ+fEeoNPSkEvCIIgCGOGdh7UYkEf5IR7PtZeEAShzSmXy+y5556sWrVq6wcLwiRh3rx5LFu2bEJFvQh6QRAEQdhe8gLd3lcjc1+Lsse5xwiCIOwEVKtVVq1axXPPPSfbzQkC6T7z1WpVBP14M23W3s0ugiCMO1dfdw9vfdPxzS6GIIwrTWvno7nQW0Gft9ALwgtA+nOhlZkyZYoIekFoIpMyKV5lZFOziyAI487+++7W7CIIwrjT1HbeKI4+sdCLi70wdkh/LgiCIIzGpBT0I0Prm10EQRh3Djtk32YXQRDGnZZp54nLffwg0I0T4onAF3aAlmnngiAIQssxKV3uBUEQBOEFoYEoVueRm+W+gcv9TpQQT9u6KlBKNbcwgiAIgiBMTgt9qbOv2UUQhHHnqadXNLsIgjDuNK2d563vlppjod+W49sArTU6iNDlECoBjNSgHKArITqMml28SYH054IgCMJoTEpB3zdtYbOLIAjjzq9+/VCziyAI407T2nmj/eQ1aXb7nSQpno608ToYCWC4BkMBjIQwHJrnIwG6GqIbfR/CmCH9uSBMDJdffjlKqeTW19fHYYcdxne/+12CIBjX//3000+jlOLyyy9PXjvnnHPYY489tus89913HxdccAFRNLYLrhdccMEOe2YtX76cj370o7ziFa+gu7sbpRRPP/30mJZvMjMpBf36VX9pdhEEYdx539mnNbsIgjDuNL2d593pk33ow8bW+DYSvlprqIRQDqAcxo/j20iQfVwTS/140vR2LgiTjGuuuYZFixbxv//7v7zsZS/jox/9KF/84hcnvBz/9m//xvXXX79dn7nvvvu48MILx1zQvxCeeOIJrr76aqZPn85rXvOaZhdnp0Ni6AVBEARhu8nvQx8/qFhBHzV+v52oRVANjYW+EprnoTY5A3wFnkrr54doX6H8SWknEARhJ+Pwww9nn332AeDEE0/kiSee4Nvf/vaoor5Wq1EoFMY8t8jee+8cW20fddRRrF69GoBLL72UO++8s8kl2rmQkVcQBEEQtgOdt8q7Wr0cQCeOoM8nxGsPYa+1hjAW8NVYzFdia7y11NccoV+LdpowA0EQxp7FoeaimmZxOLb9xHidN88RRxxBf38/a9asSVzjv//97/PpT3+a+fPn09HRwaZNmwC47rrrePnLX053dzfTpk3jLW95C88++2zmfMPDw3zoQx9i5syZ9Pb2ctppp7F8+fK6/9vI5X5oaIjPfOYz7L333nR0dDBv3jzOOOMMVq9ezQUXXMCFF14IQLFYTEIH3P973nnnseeee1Iqldhzzz256KKL6qz5f/rTn3jNa15DZ2cnCxYs4Etf+tILCq3yPJGc48mktNDPnPeiZhdBEMadS6+4Sdw0hZ2eprbzRpObWgh9XtYFPSf8tdatnyE+woh5e7OifelqWLwKDt8FDphrLPWhNsdHEVp7rV+3NkT6c6GdWRxq3liD54FLQ/ip1hziv/DzPhLCOwNYBfwohOvRHOaPT/+zbNkyfN+nt7eX4eFhAC666CKOOOIILrnkEsIwpLOzkx/84Ad88IMf5D3veQ/nn38+AwMDXHDBBRx99NEsWbKEvj6TmPv9738///M//8MXvvAFjjjiCO666y7e8Y53bLUc1WqVE044gcWLF/OZz3yGl7/85WzevJk77riDjRs38r73vY/ly5fzox/9iAceeADfT7/oIAh43etex2OPPca//du/ccghh/Dggw/ypS99iQ0bNvCNb3wDgHXr1nHccccxb948rrjiCjo6Ovj6179etygBZsHhiiuukDwqTWZSCvqBTfUrYIKws3Hc0S9pdhEEYdxpWjt35y7uRCYIoaNkrNptjU7d6+0WfU+sgatWmrf/sgLeCRy4S3yMToX9GEzUhSzSnwvtzC2REfNgxPdrA2CM88s9D9wawWFj1P+EYUgQBAwMDHD11Vdz3XXXceqpp9Ld3Z0cM3fuXK6//vpkEXNwcJDzzjuP97znPfz4xz9OjnvZy17G/vvvz49+9CM+/vGPs3TpUn7+859z0UUX8ZnPfAYwbv2Dg4P84Ac/2GK5fvrTn7Jo0SJuvPFGTjstXeR785vfnDxeuNAk/z7yyCMpFFKp94tf/IIHHniAX//61xx11FEAHH/88QBceOGFnHfeecyZM4dvfvObDA0Nceedd7LrrrsCcMIJJ7D77rvXlcf3/cyigdAcJqX/Q7U80OwiCMK4s9ceC5pdBEEYd5rSzvOGCDdOvhZCd9G4q9d9ro0sGG5R7d7zf1qVPeZh53kbVa0dkf5caGdO8WCX+PE84O4CrO544be7C+Z8YM7/+jFUNQcccADFYpEZM2bwoQ99iLPOOisj0gHe8IY3ZDySFi1aRH9/P2eddRZBECS3XXfdlQMOOID7778fgN/97ndEUcRb3/rWzPnOPPPMrZbrzjvvZN68eRkxv63cfvvt7L777rzyla/MlO/EE0+kVqvx4IMPJvV4+ctfnoh5gJ6eHk499dS6c/7oRz8a9+z/wtaZlBZ6QRAEQXhBWJFr762gLWvoKUJ/OT3WFfLtInwb5Qk4fB485uyHfti87GJGu9RNEIQJ5TBfcT2aWyMjusfKLf5VBbhBjf15Aa6//noWLlxIX18fu+++O52dnXXH7LLLLpnna9asAeC1r31tw3NOnz4dgOefN/4Kc+fOzbyff96I9evXs2DBji3wrVmzhmeeeYZisTjquW35Dj744Lr3t6V8QnOYlIK+q2dms4sgCOPO4kce57BD9m12MQRhXGlKO2+UDC/Jcg90FSAMGyTEcz7X6mHmjbLz7zkLXjEIizbDG+bCnrNHSfrX6pVrP6Q/F9qdw3w1Zu7wE3Hegw8+OMlyPxr5fCEzZxp9cfnll3PQQQfVHW/j5+1CwOrVq9lrr72S920W+C0xa9Ys/vznP2/1uEbMnDmTPffck6uvvrrh+zb53i677NKwLNtSPqE5TEqX+46uac0ugiCMO0sfr09eIgg7Gy3Tzq2gDYFuv8G2dfa+jczYjYo6x0xImTet/riojerWZrRMOxcEYVRe+cpX0tfXxxNPPMFLX/rSutv+++8PmNh2z/PqhPVVV1211f9x4oknsmrVKm6++eZRj+no6ABgZGQk8/pJJ53Ec889R29vb8PyzZo1C4BXvOIVPPjggzz33HPJZ4eGhrb4P4XmMikt9JvWPdnsIgjCuPPWNx3f7CIIwrjTtHauqbdOW0Hb40O1GYUaR2xdbfb+StB4kUI0/bgg/bkgtD5Tpkzh61//Oh/+8IdZu3YtJ598MlOnTmXFihX8+te/5phjjuEd73gH+++/P+94xzs4//zziaKII444gjvvvJNf/vKXW/0f73znO/nv//5v3v72t/PZz36WI488koGBAe644w4+/vGPc8ABB3DggQcC8I1vfIOTTz4Z3/d56UtfyllnncVll13G8ccfzyc/+UkOO+wwqtUqTz75JDfddBM33HAD3d3dfOITn+D73/8+J554IhdccEGS5b6rq6uuPP/wD//AFVdcsU1x9Ndeey0ADz30EAC33XYbs2fPZvbs2Rx99NHb81ULOSaloBcEQRCEHScfX54Tu90e1PIfGcX9vl2w5a7GD6ohdd+DIAjCJOf9738/u+66K1//+tf5+c9/ThAELFiwgNe85jUcfvjhyXE//OEP6e3t5T/+4z+oVqscd9xx/PznP+fVr371Fs9fLBa58847ufDCC7nkkku48MILmTlzJq961auYMWMGAKeccgof+tCH+P73v88Xv/hFtNZorSkWi9xxxx185Stf4ZJLLmHZsmX09PSw99578/rXv55SqQQYt/577rmHj33sY5x99tnMnDmTD3zgAwRBwBe/+MVMecIwJAy3bVeXt7zlLZnnH/rQhwA4+uijue+++7bpHEJj1L333juphuKhoSFOOeUUNm/ezJQpU5pdHEEQBKHN0GEEQwGMBFAO0/uNZfjeX+E9e8NlT8JnDoWiZ2LqO31z3+VDVxE1TnsljxW6EsJwLa5fXMdKCL9ZDb9eBW/ZFfabAZ25unUXUEXZwkgQJgP9/f1MnTpV5tSCELO134R9/5ZbbqGnp2fM/u+kjKGfs+CwZhdBEMadb35367FYgtDuNK2dN4qFt3vPlxxB285L5o1c6m1uAGup1869pr3r28JIfy4IgiCMxqQU9OtXL212EQRh3HnnmSc1uwiCMO40pZ03ym6vMRbsIlDw6t+zz9tF8DbK5A9Qi18oR43fF8YF6c8FQRCE0ZiUgj4Myls/SBDanNmzpjW7CIIw7jS9nbvbtdUC6MS42QMEbax2G3kgaNI8AdWocQb/Nq5yK9P0di4IgiC0LJNS0AuCIAjCDmOz2Uc5C3xNQ6eXWuhDa8VutFd7m5AvexCHFVSj0Y8RBEEQBGHCmJSCvmfKvGYXQRDGnQcWLW52EQRh3GlaO2/kdl+NwPfBJryrRfXHt43oHS2TfyzoK1HDw2Uv+vFB+nNBEARhNCaloPf9UrOLIAjjzsDAcLOLIAjjTku0c3dLt4IPKhb0QdTg2NYXvLou9t950wr5WphNgtcG9WpnWqKdC4IgCC3JpBT0/RufbXYRBGHcOfnEVzS7CIIw7jSlnWsaJLzDWOjdDPe1qLHgbRft20ik10KYClSC7DHtGE7QRkh/LgiCIIzGpBT0giAIgvCCaCTUq9rsyQ5QIo03b0cahRQAhCF0l8ze9Pljkx3sRNQLgiAIwkQxKQW9UpOy2sIko1KpNrsIgjDuNKWdj7qlWwSlgnlcIna5b8OEcfmyuosXQQg9JZPRv+5zkuV+vJD+XBAEQRiNSals5yw4rNlFEIRx51vf/59mF0EQxp2mtPPRtnSrhlCMLfRF0m3rGm3v1uqMFkdfi6CvZIS9PSafCK8NqtduSH8uCIIgjMakFPRrVki2WGHn5+MfeluziyAI405T23le9NZCKMUJ8Yp+fVK8dtrebbTFhwrQXYBymDtulOOFMUH6c0GYWBYtWsRb3/pW5s+fT6lUYubMmZxwwglcccUVhGFzw6mefvppLrjgAp566qlxOf+iRYs48sgj6enpQSnFww8/PGbn3rRpExdccAF//OMfx+yco3HOOeewxx577PDnH330UU488UR6e3uZOXMm73nPe9iwYcPYFXAMmZSCXusGmYcFYSejo0N2cxB2fia6nZv48FG2dKuEUIqHVd8z+9K777ufaWUahRQkdQR6C1DOf6aNFivaEOnPBWHi+Na3vsWrXvUqNmzYwFe/+lXuvvtufvzjH7PffvvxwQ9+kFtuuaWp5Xv66ae58MILx03Q/8M//ANBEHDzzTezaNEi9ttvvzE796ZNm7jwwgsnRNC/EFauXMkxxxzDyMgI1157Ld/73ve4++67OeWUU4ii1tORhWYXQBAEQRDajqiBgK2EUIwt9J4H4U6kbpN95oFeH2xId6PFip2o2oIgTC7uv/9+zj33XD7ykY9w8cUXZ947/fTTOffccxkaGmpS6caPMAzRWuN5HkuXLuXzn/88xx13XLOL1TS+/vWvU6vVuPnmm5k2bRoA8+fP5+ijj+aGG27gTW96U3MLmGNSWuinTN+t2UUQhHHntjsXNbsIgjDuNKWdj5YBPnAt9L5joZ+wko0dDbfmix90F9Ln+b3o27GubYD050K7o5f1o69+Er2sv6XP+9WvfpUZM2bwta99reH7e++9N4ceemjy/Pe//z2vfe1r6e3tpaenh+OPP57f//73mc8cc8wxHHPMMXXn2mOPPTjnnHOS55dffjlKKR588EHOOusspkyZwvz58/nnf/5nymXjFnXfffdx7LHHAnDCCSeglEIpxX333Zec55JLLuGwww6js7OTWbNm8Q//8A91ruJKKT7/+c/zla98hT333JNSqcR3vvMdfN8niiK+9KUvoZRKXNb/8Ic/8OY3v5mFCxfS1dXF/vvvz+c+9zlGRkbq6nX99dfzqle9it7eXqZMmcLLXvYybrrpJp5++mn23HNPAP7xH/8xKfvll1/e8Ptwy3rBBRckz5944gne9a53seeee9LV1cVee+3FBz/4QTZu3Fj32R3lpptu4vWvf30i5gGOOuoodtttN2688cYx+z9jxaQU9GEo2WKFnZ++vu5mF0EQxp0Jb+dbywBvY+hLnkmK1yjGvOVF7ygLETbJX1/s/l2N3Q5lL/pxR/pzoZ3Ry/rhyw/D1cvgyw+jH9uIHg5e+O2xjXCRc94XKOrDMOTee+/lxBNPpLOzc6vHL1myhKOPPpqNGzdy+eWXc+WVV9Lf38/RRx/N4sU7nq/rXe96F3vvvTfXXXcdH/zgB/ne977Hv//7vwPw4he/mO9973sAXHzxxSxatIhFixbx4he/GIDPfOYzfPjDH+a1r30tN910E1//+te5/fbbOfnkk+ti/y+//HJuvfVW/uM//oNbb72Vd7zjHTzwwAOAcbtftGgR119/PQDPPvsshx9+OD/4wQ+4/fbb+djHPsaPf/xj3vOe92TO+Z3vfIc3velNzJkzhyuuuIJrrrmGN77xjTz99NPssssuXHfddQB89rOfTcr++te/fru+n5UrV7LrrrvyrW99izvuuIPzzz+fe+65h7//+7/f6mePOeaYrcbVj4yMsGzZMg4++OC69w466CAee+yx7SrvRDApXe6H+lc1uwiCMO68+hWym4Ow89OUdj5aBng3hr7kxNA3+kw7Yctuk/x1F819JYSe+LG4248r0p8Lbc0f1sLG2Ji2sQrnPzT2/2NjFf5vLew5ZYdPsW7dOkZGRth999236fgvfvGLdHR0cM899ySW3BNOOIE99tiDCy+8MBGv28s73vEOLrzwQgBe+9rX8rvf/Y5f/OIXXHjhhUyZMoUDDzwQgBe96EW8/OUvTz739NNP8/Wvf50vfOELnH/++cnr++23H69+9au5+eabecMb3pC8rrXmzjvvpKurK3lt5syZACxcuDBz7jPOOCPzuVe96lVMmTKFd7/73Xzve99j5syZ9Pf387nPfY43vvGNmbq/7nWvSx7/3d/9HQB77bVX5vzbw1FHHcVRRx2VPH/lK1/JPvvsw2te8xr+9Kc/Jf+jEb7vUyhsWf5u3LgRrTXTp0+ve2/GjBksXbp0h8o9nkxKQS8IgiAIO8xoGd3LQCHets73Uot23efGsWxjRaOy1mLrTiH2Qqg4e9EnCxbt4IEgCMKEcsRsuGuFEd3TS/CJQ2CPvhd+3qcH4JuPpOd96ewXfs7t4P777+eUU07JuGVPmTKF0047jZtvvnmHz5u3WB9yyCHcfffdW/3cXXfdRRRFnHXWWQRB2j8feeSR9PX1cf/992cE/UknnZQR81uiv7+fiy66iGuvvZbnnnuOWq2WvPf4448zc+ZMfvvb3zI4OMg//dM/bdM5d5Rqtcp//Md/cOWVV/LMM88k4QgAS5cu3aKgv+eee8a1bM1iUgp6v7B1NxpBaHfWrtvE7FnTml0MQRhXJrydby0DfEcs6Av+6Enx2mFrt0ZltC72KOjAWOjb2fOgjZD+XGhn1J5T0J873FjQXzob9QKs6BkOnD6m5505cyZdXV0888wz23T8hg0b2GWXXepenzdv3guK554xY0bmeUdHB5VKZaufW7NmDQD77LNPw/fXr1+fed6o7KPxnve8h7vvvpsvfvGLHH744fT09PD73/+eD3/4w4mgtudfuHDhNp93R/jsZz/Ld77zHc4//3xe+cpX0tfXx/Lly3nTm96UEfc7yrRp01BKNbyGGzZsqLs+rcCkFPQz5+7f7CIIwrjz06tu5xMfObPZxRCEcaUl2rlO/jiC3jMx9e0odBstVmigGkLsYU8XqcVe9qIfd1qinQvCC0DtOeUFucNPxHkLhQLHHHMMd911F5VKhY6Oji0eP2PGDFatqg/jXbVqVcZdu7Ozk/7++vj+sd7T3LrL33nnnQ3dxe37FqXUNp23XC5z4403csEFF/Cxj30sef2RRx7JHDdr1iwAVqxY0TD+fGt0dnZSrWbznOUXIQCuuuoq3v3ud/Ov//qvyWuDg4Pb/f9Go7u7mz322INHH3207r3HHnuMo48+esz+11gxKZPirVmx44kqBKFdkMmfMBloSjtvlAHeuteXfFDKuKXbmPN2FrpuorsgNJZ5gI4CVHJ78Yq1ftyQ/lwQJobPfOYzrF+/nk9/+tMN31+2bBlLliwB4Oijj+aXv/wlAwMDyfsDAwPcfPPNmaz2u+++O3/7298yYvX+++/PfG57sAsN+QzzJ5xwAp7n8eyzz/LSl7607mYzzG8vlUqFMAwpFouZ1212essrX/lKent7ueSSS7a77GC+pz//+c+Z12699da644aHh+vKctlll22xDtvLaaedxq233srmzZuT1x544AGeeeYZTjvttDH9X2PBpLTQC4IgCMKOMcpWbrVY3BbidfKCSl9rtyzwoyX9C6I0i3/Br89y7x4rCILQhhx11FH853/+J+eeey6PPfYY55xzDrvtthsbN27knnvu4dJLL+XnP/85hx56KP/2b//GLbfcwvHHH895552HUoqvfvWrDA8PZ5LSnXnmmVxyySW8973v5ZxzzmHZsmX853/+J1OnTt2hMu63334UCgV+/OMfM2PGDDo6Oth///3Ze++9Oe+88/jIRz7C0qVLOfroo+ns7OS5557jrrvu4n3ve1+y5d32MHXqVF7+8pfzjW98g1122YVZs2bx4x//mBUrVmSO6+vr49///d/56Ec/yhlnnMFZZ51FX18fDz/8MJ2dnXz0ox9l7ty5zJw5k6uuuopDDz2Unp4e9txzT2bOnMmZZ57Je9/7Xj7xiU9wyimnsHjx4rpFAzCx/1dccQWHHHII++yzD9dddx2//e1vt6kuxx9/PM888wxPPPHEFo/71Kc+xU9/+lNOO+00PvvZz7J582Y+/elPc+SRR/LGN75xm7+7iWJSWugFQRAEYYeJGliiK7mEcQWVuqS7xya541pY+Y7mUVDVUIxDCoq+sdDbfejbals+QRCE0fn4xz/OAw88wLRp0/iXf/kXjjvuOM455xz+8pe/8MMf/pBTTz0VgEMPPZT77ruPKVOmcPbZZ/Oud72L3t5efv3rX3PYYenOFMceeyw/+MEP+N3vfsepp57KZZddxk9/+tNMMr3tYebMmXz3u99l8eLFHH300RxxxBE89JDZOeDLX/4yl1xyCffffz9vfetbOf300/nqV7/K9OnT2XfffXf4O/nFL37BS17yEj784Q9zzjnnMG/ePL797W/XHfeRj3yEa665huXLl3PWWWdxxhlncO211ybeAZ7ncemll7Jx40Ze+9rXcsQRRyQJBM8+++xkd4BTTz2VO+64I9k2z+U73/kOp512Gp///Od529vexsDAAL/4xS+2qR5hGGYSBo7GggULuPfeeymVSpxxxhl84AMf4Nhjj+XWW2/F81pPPqt77713Ug29Q0NDvPOcj/HMk39kypSxj+URhFbh6uvu4a1vOr7ZxRCEcWWi27kOIhiqQTmEkSC+D+H5QfjxE/CZQ8FT8H9r4K+b4Kz9zBZ2XQXo9M19tw+dhW2OX5xodDWE4cCpX2AWLBavgz+uhXcfADc9DTO64Kh5Jm9Apw/dBfO4p4iyuQSEMUH6c6EV6e/vZ+rUqWzevFnm1ILA1n8T9v1bbrmFnp6eMfu/beFyf8kll/Dggw+yevVqOjs7Ofzww3n/+9/PnDlzkmNWr17Nt771LRYvXkyxWOS4447jQx/6UF2MBUBlZNMEll4QmsP+++7W7CIIwrjT1HbuutBXA7AbqCiMhT6MGnymDdfQbZFrUbotX6ngZL3PHdeGVWx1pD8XBEEQRqP1fAYaoJTivPPO44YbbuCKK64A4HOf+1zyfhRFfO5zn6Ovr49rrrmGH/7whyxZsoQf/OAHDc83MlSfMVEQdjYOO2THXasEoV2Y8HY+Wnx5LUoFPUDRywr6doozb5T0T2Nc7kuOy311lCz+7bho0eJIfy4IgiCMRlsI+n/8x39k//33p1gs0tvby9vf/naefPLJJDvkkiVLeOaZZ/jwhz9MT08P8+bN4z3veQ+//OUv67Y/EARBEIQdZtT48igVuxBb6LewT3ura95G9axpEz4AJjleNY5DtDkFIjHRC4IgCMJE0xaCPs8f/vAH5s6dS19fHwBPPPEE8+fPz2SLPOCAAyiXyzz33HN1ny919k1YWQWhWTz19IqtHyQIbU5T2nmjfdpr2rijKzcpXn7butxnWpXRdHkQpUnxOjyTO2CUz7R00r82RPpzQRAEYTTaTtA/9NBDXHnllZx77rnJa8PDw3WJBazYHx4erjtH37SF41tIQWgBfvXrh5pdBEEYd5rezq1urURQcNLSFDzIO4i1yz7tjcS4Jl20ACPoqw0yBYuQHxea3s4FQRCElqWtBP2iRYv4whe+wOc+9zle9rKXJa93d3czNDSUOda643d3d9edZ7B/FWe9672ce+65nHvuudxyyy189Zs/oVJJZ1+33bmIBxYtTp6vXbeJb373qsx5rr7uHhY/8njy/KmnV3DpFTdljrn0ipsyK+uLH3mcq6+7J3PMN797FWvXbUqeP7BoMbfduSh5XqlUpXxSvu0u3/vOPq2lywet/f1J+dqjfO87+7QJLd9vHlzCbff+zjzRUKnW+Nr/XE9lpGYyvQO3/eGP/ObpJ6FmDlu3uZ9vXnXDhJRvzK7vrfex+K9PJvV8atVqfvSXRVCMPRA6PH707EM8tWp1fIxm8dKnuPqX92W2sdvZ299Ele99Z5/W0uWzSPkmX/kEQWiM/f3ecsstieY8613vHZf/1Tbb1t111118+9vf5vzzz8+IeYCHH36YT33qU1x77bWJ2/1vfvMb/t//+3/ceOONlEql5NihoSFOOeUU2WJDEARB2G50JTTb1lXird3KoXl87/MwWIVTdjdL5auG4EfxNnbF3LZ1XT50FVF+i25bN1Iz7vTDQVrPagQ3LjNb1b16Ljy1Ce56Ft5/qMkdkKlbXD+vNesnCMLYYLfgeu6552ROLQiY38Suu+4q29Y14vrrr+fHP/4xX/7ylzn00EPr3j/00EPZbbfd+K//+i/++Z//mYGBAS677DJOPvnkjJgXBEEQhBdE1MBtXmPi5YtuUjwv+36boEfL4g9G3FsLfcmDkboP139GEISdllKpxLx589h1112bXRRBaBnmzZs34fqzLQT9xRdfjO/7nHfeeZnXv/rVr3LooYfieR4XXXQR3/rWtzjjjDMolUocd9xxfOADH2h4vpnzXjQRxRaEpnLpFTclbpqCsLPStHaeF6+1EDoLZg96SMV9nUDW7SF4G8XCVyOT3V4p6ChAucGxkuh+XJD+XGhFOjs7WbZs2ZjtKHXFz3/J2e/4+zE5lyA0i1KpRGdn59YPHEPaQtDfe++9Wz1m3rx5fOUrX9mm8w1sWv5CiyQILc9xR7+k2UUQhHFn4tt5A4EOZk/2Kc6KvLXQBznLvXYftKhLeqMs/mC24SvG9epwFixEvI870p8LrUpnZ+eYiZfXn/Qacd0XhB2grZLijRXV8kCziyAI485eeyxodhEEYdyZyHa+RXf0cmis12As2IX4cZDs4zYRRRxfwsi43CugFNsDgnhrPncveg2i8scW6c+FyYC0c0HYMSaloBcEQRCEHaaROK+FJq7cGt0TQR85n8vdtyL5srmeCDXXQh/fV9qsfoIgCIKwkzEpBX1Xz8xmF0EQxh13yxpB2FmZ8HY+mjt6EAv6hAaCvtHnWpHRPBGq2ixUKIwXAkBF9qKfCKQ/FyYD0s4FYceYlIK+o2tas4sgCOPO0sefbXYRBGHcmdB2viXrdRA4Lvek99WwPt6+0blaiUblBaiQzQdQxGS+b7f6tSHSnwuTAWnngrBjTEpBv2ndk80ugiCMO2990/HNLoIgjDsT3s5Hs16XdeqObq3XRcx2dvlEeq1MI7d5W+caWUHfBdQCc7AmvbmfEcYE6c+FyYC0c0HYMSaloBcEQRCE7WZLgrVMLHadzPUlTCK5dsdNcueGFXR42Rh6kL3oBUEQBGGCEUEvCIIgCNuDK1ZtdvcAs5WbItX0JZUK+rzlu5Ut2Jp6YR7G99ZCrxQUCyauHsTdXhAEQRCaxKQU9HMWHNbsIgjCuPPN717V7CIIwrgz4e28kdi1z+1WbpaCl25bR+7YlhW9o9StFi9MFNxM/oXUQt+y9dk5kP5cmAxIOxeEHaOw9UN2PtavXtrsIgjCuPPOM09qdhEEYdyZ2HY+ititxqLWdUdXCnwPam1owW4UR1+LTfQFJ6Sgy4dylB5Xtxd9+6BDbbwpNKb8vgJPga9QSm318+ON9OfCZEDauSDsGJNS0IdBudlFEIRxZ/asac0ugiCMOxPezhuK3VjQF3NOb76fWujbSeA2Cgewgt4Vtx2FtO7JZ3P3LY6OtNlasBpCqM0NjBdCwYOChy75KL+5ol76c2EyIO1cEHaMSSnoBUEQBGGHaCR2q/Fe7HlLrmuhbxcaZbfXGC+EZL1CmRdLvnm9URVbOUdAjNbalL8SmIWJOkGvwY8gitCdxaaLekEQBEFoxKSMoe+ZMq/ZRRCEceeBRYubXQRBGHcmtJ2PJnYrYbo87jmirxjH0DdKiNf6etcpo4YghM74qVJG8Ja8dDGjHZL95anFYr4aQTmEkSC9lUNzXWuRyRNQDc0CQJOQ/lyYDEg7F4QdY1Ja6H2/1OwitDRa68zuTB60RAyhsH0MDAw3uwiC0BCt9Zj1KU1r567YrTli16WUS4rX8gnxaJDwL74PIrMNn0uHZ4Sv/VxmL3o9ptd5rNFRfN1qsbt9LUpvYGLoI+dC+aFZoCk0pz7SnwuTAWnngrBjTEpB37/x2WYXoWUJtKYSex1GGCOMr8DXmg4FXotOzoR6Tj7xFc0ugiAkJLHKoVF8GsCLBZK344nHJrSdjyZ2axF0xuV3q1H0TZ0z58jdtxqjWdprsYs9pFvzlTxj4a47R6tWzkFrsxWfdbOvRcYi/7c1sHgV/N08OGBekhiPKD6uSbMm6c+FyYC0c0HYMSaloBfq0VpT1lDWZlvhGo6FXkOHMnOfTjQFEfWCIGwHuhbGicdiQZ90LqFJPFby0UUP5bV435JYoHOCtarNFm4qJ+r9nMt95lwtLHobhRZUI1Mf624PZmCwyfLcY/PnaEVCbUS6FeqhhsfXwC9WmPcfWwHvVnDQLukKdxShtdeyXgeCIAjC5GRSxtArNSmrvUWqsZgf1jCoYSiCgQgGI/N4ML6NaAhbeSIqJFQq1WYXQRDQQWz5HAnTuOSRAMpxnHI5NI8robHibydNbee2vJUICn76uhW9Ba/eQt9uJF4I2mTtd+nwoBaMHkrQykOFuzBjt6p7eFX2mD+uSq9xk/MeSH8uTAaknQvCjjEple2cBYc1uwgtRRhb54e1EezDgWYoiBiuhgxVQ4ZDzUhkjhmJoKJpanIgYdv41vf/p9lFECY5OtImPrkai3pX2JcdgV8OzXE7IH4ntJ3nRaC9r0apO7qLr8ze5pnjW7zvHK2OgTYhBC5Fzwwa7rHuXvStjBvvb+t72NzsMYfPa5lFCunPhcmAtHNB2DEmpcv9mhWSRdMliF3sa6GmEkRUKyGVCP4cae4FTvAULy4qvJJPoehRi13wG0xfhRbi4x96W7OLIEx2giibbKwcJx+LdBqbDMaaXVNQCNG+t13bg014O28kzGsaOhv0iAXHJb3Oit3CgrdRHauRscgnKCgVoNzg2FbPEwDO9XAKucdsWLAKVkRw5nzYa7Z5vQUWKaQ/FyYD0s4FYceYlIJe6zZ3gRxDtNaJmA8qAUEtolbTPBpE/HsEVeABD/5f4HFEpAm1T9DhEyGCvtXp6JDdHIQmY2OTIx2vHMbC/ok1sGQ1vHgeHLiLEfeF+Jgwqnft3gIT2s5HE6rVKLVeu/HVRWXeG+XzLZkFfrQ61nIWeoVZxIjig1tZvOcwHmajeBb09AADsMesllqkkP5cmAxIOxeEHWNSutwLKRqIIk1Yi4hqEVElJKwELBoJUeWAnnKAX474dTlEVyOiakgURi3vTSkIQnPRkTaCKEk6Flvmn1gDV62Ex0L46QpYuioV/vGtZUN6GpVLYxYpik4GeHtfVOk2aFs7T6sT6DRPQJIUr5C+B1nLfjtUMcqVG2C4Fr+mnS34aJ86CYIgCJOOSSnop0zfrdlFaBlCIIy0Eeq1yIj2SsQrKiGlkRBVCemrBBxbjdC1yCS4qoaSGK8NuO3ORc0ugjDZcV2VrThanEs89tCqdDu7yAr/bf8XTWnneff5WrxHuSvmwSTFC0PailEXLXJ1BPMc0kWLBnvRtySuUIds4jublKvi1An3+ObUSfpzYTIg7VwQdoxJKejDULJouoSBJooiovieWsi0IGDvZ9bwtvsf51PPrmE/HRoxH2qiUCwV7UBfX3eziyBMZjLCLibScGgu8dhhc1Mhn1jpt13RT2w7b2CJBpPYr+QMp9aNvqAgcl3uG7hwtyp5IRuExuPApRA/L7fhXvT5uHhb3KH4epVr6bF5t/wmIP25MBmQdi4IO8akjKEf6l+19YMmCWGk0VGEDiHSVtRrBp5bz7/csZzCMHhLB9CneOh95qAjDx1qdBgZ65PQsrz6FYc1uwjCpEan+3xrUjE0dxrwvHl8RJ+JVbZCPogg9CDc9v2+J6qd60aZ3y3lAEoqa70GI3jDaMvburVYCP2oixbVKLXIq/iGMmaBctA4kV6ravpG19C2z+H4+Uhr1Un6c2EyIO1cEHYMUWSTHGMM00RaoyOI4pjXwhObKAwDXaD7Qf9lvcl7FNUb3QRBEOpo6NIMbK6YpeRXz4XVoXGvT+LsrbDXrbntmaax5TkI0wzwGZd0J4Y+LyJb0IK9xUWLSmyht0LeLrZ0EWfyH2XRoiXR2WuZeCE43hTVwDmOlr5ugiAIwuRmUgp6v9DZ7CK0BFqb5FNhLOSjKBX1S/ecZhrHCKipoF80PZ7/aDOvaeXEVQIAa9dtanYRhMlM3jJvY6oHqjDdg0OmwbPDJglZEj+v03j6YNv6lwlr5/niuHHXQWgs9GCErhtDn4/wGs1a30qMtmjhutzbh11OJv+8a3orLspYXKFu6zsShw7M9qCcC/to8nWT/lyYDEg7F4QdY1IK+plz9292EVqCiNQb1HrGRvEE7NlpPVS74Nm5UD1xIcyflVrnragXWpqfXnV7s4sgTGbyFlAr8PtD6OmEqR0wvwSPbkzFfEbURyZT/laY0HY+mgW7mouhB0CB30DQtzruV+4K+9B1uXcWL4qF+gRy+fO0Gpm26VzT4ZpZqCgVU0EftUadpD8XJgPSzgVhx5iUgn7NisXNLkJLYObYmtC626OT7aK9zRXoKrByj91glxnJ8fZedvBpfT7xkTObXQRhMuNmtneF3uYApsVeUofMhD+vzbrcJ6J+29zuJ7Sdj+Z2XaZ+SzeFsdAHDT7TyKW9FciXx61v6Fjo3bCCQqHeQt/quCI+cafXMFKDPqCzYAR9ozCJJtVR+nNhMiDtXBB2jEkp6AWDTSytHVEPmjVaMyu2ThQjs+WSjiflOp7QtMu8TRCEiceE4+Rc7q3AH6hAX9FYd180A1YFsLGczXIfOa73rUIjEW6FYRko+dRluCs6Q2wLVWWLjOaFUInqs9wDdPhQ0S0lfrdKfqEpcbmPoLsA3cWsy33ddnyCIAiC0DqIoJ/EhBgX+yh2uzfJ8WC9ht03mmMKNbN1T5Sbz4jbvSAIo5IXTK6lvb8MUwpm9OkqwF49sGRTHAOUs9QH4Ta53TcNnfwxgj6vd4ux1b5OJLe42IV6L4Qq4DteCNbtvtNPXe7t51pd/Oa9RuzDodC425cKJoyiUfkld4wgCILQYkxKQT9t1t7NLkJLkLjba/PYGtXWaJhZGSbq7aBUC6lZ67z9nBNLL7QuV193T7OLMOYEWlOONEPxbSTSVCNJ0NiS5C3zVkT1V2FKLAw94NDp8Oga0JGxytuEHtbtfit70k9oO89YdePXbPK+Dr/+eLu1Z5CLMU+aa4u12y15IVTIeiHYxYuOgsnk327iNxnQnGsyEkJfCTo9qATZ43SjL2fi2Bn7c0HII+1cEHaMSSnoKyObml2EpqO1jufNjqjHbF+3WmumbxjBm9VH50gt2ZYXK/pp7eTFgmH/fXdrdhHGjEgb8T4YwYCGgQj6I3M/oGFIG7EvtAiNLLSRNqJoEJjSGWeDV7DPNOgHlg+a962rvSvqt8DEtfMGVnZIt6VzE8ZZ67Uf329jxv6WxNWxRS/rhaAwXgijit8WJcpdS/u4HEJn0WxBOGzrVO9x0IwFxJ2pPxeE0ZB2Lgg7xqQU9CND65tdhKZjt36O4hh6u2UdWrMqgo7hCswt0VULGIpnMdY4ZeLodcvP2SY7hx2yb7OLMCZorRmJRfughsEovR/QMBSlt1AaZYug0/h5ew/ptmB9JXPvKyMID5kGj25O3e4zoj5CbyGWfkLbeSMjbdXkGaHgWK6TbeviBzXXJb3BOVqJRl4I9nmpgRdCSZk96t3jWtUDISG3Mm3vh2vQ5Wct9JmPNa8+O0t/LghbQtq5IOwYk1LQC2Y6E8Tx8+6WdRUN0UgVLwL6fDrDIMl3lJ/ntbN20pFObkJrU9FQ1jCiYTiKBX0s6ociGI7fs8dE7dwwdxbcDsK1hm6uQAHjiq4AT5lR6OCp8MiGbGK8zG3LbvcTQqYDdNqYFfSo+hh6+0IQ5t9o0Q50K14IhdyUQWGs2WVH/OZc2VstHEY3apeWwRp0e0bQ14LGOSDynidCy2A9DkMtYViCIEwuJqWgL3X2NbsITSfUNrGdJgpBYyzuqzXs2l8xWX67CnTWIkawVvk0GV47zmm01ugwQo8EZnui4RqUA/RIgK6FO90E4KmnVzS7CC+YSGuqVqxH5n44ttQP6VTMW0Ff0SbZY7sTad3eCxN5y7yO/wxU0dM9IkB7yljolYLdpkAJeGqTEVGulT4W9KP9PpvSzl3BWwkh3oUvcbWHVNx7ZGPMW32v9kYeBPmwAnBi6D2oOb+6dqifWy5XrFdr0O2bfAjDYXp85r45ldoZ+vPxQGtNoE1OlcE4DMsu+JajNu9HJyHSzgVhx5iUgr5v2sJmF6HpRJhthaNY1IexqH9eaxaUI5jWBaUChRCG4wlPMjdvw63rtNZmr+ThwLj9joQmXtI+L4dQiXYqi/2vfv1Qs4vwgomAGiYEOcAI9grwf8BFwB8wQr4Wvx/o9g1XjrSmEmkGI81QvGAxFJnX2m5SmnfniTShhpHBiKHpXQx6ikEFQ56i6iu058Ehs+GRTWk8kCvqt7An/YS189G2cwscQe9ixX2RWBA3sAi3Io3amhXsnhtWED/u8CAI6r+f5HzjUcgXSN46b9vrUABdnkn0Z5PHuF4ZTVzN3hn687FGa+NVaEV8vzZhWP32NS35VdoNaeeCsGMUml2AZrB+1V+aXYSmExJbAUObqyq10B+yAejpSrZcqtRCEzvpiHj7mXYgEfPlwEysa058rrUSWuGgfXSnj1J1vrNtx/vOPq3ZRXjBhDpefCIV9X8EPhu/fx/wDeDl8bGBMsdqrdvqGta0TjwMarGXgcKsuBaV0YudaArtUqdcZvsKUFFQGQmpzewmUqBQFJSiUPDoDCI6D56K/6O1JnbZL6ai3k2Q1yCEe8La+WgW2mqUxpY3ujwlzOppw3O2WB/qFscV6G4OAJW7L6l0z/YWsWZvkbyIx7kfBLpKxkIfxQe1SBV2hv58rKk4Xlq277QttQDUFIRxR9qNxm+X/nMSI+1cEHaMSSnoJztRHF8W2kz38f7zWsM6DdMrI3hzu9CeIvBAVwLoKWXd7Z2Bs+WJtIlzrUXGEu8KeoWJC00yVGMEfqPkT8KEY4212j4G7sgdczvwMg2RcvKwNQpnblECrRmO0rCBANM8Ic4ZZxcqFPR6rT8p1Xb/y/hiVIFhrRkBaiM1atO7jEZS4HtQ8BVBwUPP6aZ7jof3141w+OxMUjxCL3a795q7UNNI8FY1FPzUYq3i41zBa91G8oK3ldHOg2oIHfFTm8Vfx5UsFWAk/9nmWrO3St6DxHYcYMLN7HhQi8y1zW/BmLnAQjMIY+u8za1S1sabK7TDul3cBVQEngc9csnaGncOCmbBu50W7gVhPJmULveTHY2ZI2ut463q4kRiWrNWa3o3DEOnQgFhyYNq6GzBa7LhW4t+W1CNUst8LTIxr2XnVolFfqC3Gq8rTCxWxLsG3xNzx5xIKvjd+3ZAx5Z5exvWTtK/+DbsvF9uF8+YWDCFmDjWMlAGhoeqDM/wGVLGo3lEQ8VTVDxF2VNUDp4LSzbEnZRjoQ+iLbrdNwVblGos+iwqt5rke/VxIKO5p7cqgSPoXRTGmm1z4rXS9RmV3GKDvRZ2B4auApTiqVE5zHwscy80laqGKsYqXyXtPx8ELgR+51juq9iuRC5eO6K1pqZNKNpgvGXtYGTCKdoyJE0QxoFJKehnzntRs4vQVKwLcxRaYW5E+qDWDGooDFdQ08y2UpFfgGqUnf9gjRStn0lW2wzZbkxuEFuc/rYarl4Cf10dC3onCVfbuB+MzqVX3NTsIrwg7Gq8Fej28YGA3an2s8BBzjGRbi9BH2ImptbSVNZx7DzxTafJ/iraHNvySf8ca2cQmaSG5qap1KqMdHnGTRYoe1DxoOobUV87aBrR8jIMVNPtNzLCvv7KTlg7z1t17X1VG1FryezTrsD3HQu9U/5WbKSj5gnQqcjNG8Q6Yke/urh03aJ1pN7VXmOSpEKaqBFMmJZbH3vfhHq1e38+luh4sTDtW9LcKp8G7gY+DvyfTnOr1NgphvWdnnw7t4vedoG7X5vcCP3aCPuBeCFHFmuEyc4OC/onnniC4447juOPP34syzMhDGxa3uwiNBXXzd5uW6e1ZnUEu45UQYPqNVmeomKBKE7oZOdBrjdly2MzZuetfY+vgatWwl9C+OlyeHx1KkTCtqndFjnu6Jc0uwgviPwCUiPj3wxSt0rXNb9drl4QC3Q76XST/v07Jl+AK+RDUnf8lsW5aAHxLTIWlupwRKWvxFINl4bwSKCoKY/AU4SeIugrEe3WCX/emP4WMwny6hNXTmg7z4s7MBZ6K+gTt3tH9fqeMSO6n29VGtUPTPkLXjaswGLDk6o2jj5f1xardMNFFW0EfY9zXDfxdnytce3avT8fS0LSeHnbJ4bUh2PdQro+H9EGfadQ186t50WaKDZNgjjk3GTLWmGys8UY+htuuGHU99atW1d33Bve8IaxKNO4Uy0PNLsITSXECHqN3YfeuM8/r2H/gQp0FfE8ZeYvXQWUNQlaN3sbxxS1QSRhEDmmW7sSoeGB57PH/XEVHLhL+nwnGBf22mNBs4vwgmgk0u1lsb3PKuAA533XUt/aDdNgk/1FxLHzwBLg8/H79wHfJE76Rzxxbfl6mYtmFw3DSJvJdCUgAJZ1FfkmUPUUv1XGy+IlCkJPESkID51B4Xer4OVz6pPi1SIo6TTbOhPYzhvtWw5GWRTjobTRtSk0cLm3tGI/45YpyRMQGU8Di1KpOaAYV7oaYFL6O+doRRf8fNns85EQepw6dnsmHKvRZ5pQr3bvz8cSK+Ct047tO1+G6TMtJ5Pz3mr5vlNw27lNFmvzJNjF7Yg0T4L1uvC1yZnaJddYmKRsUdBffPHFW0w4Yd/7zne+A7SPoJ/MmLj5OM+UI+o1mpVoDhmJUFM68VCEaFSxgKqShB2C627ftGpsE9q6E7iWPqsQe0qYyLqYF88z902csAlZrEB34+cjjAV7GCPkV5N9z07cWl/0piEF+YWLvJXpl8CRxE1ZtaYGzGAXzQAdpZ49DFTQXbAIj0iZwWdIKe7zPF7sR2hfoT2F3n863LIS1g7DvJ44IZ5rqdfNTeeat/DWQmOhz7jaO4+LsYU+04HmztOq2CLWdFbQW1Tyx8SbN6pbK1bTLZPt60ci6CimXgilgpO9v8XrM8mwiUOtkA9JxwaAqcB5mHAsV8yLy337YLcktCFpFW2s9SOYRe87gVO0WcRRQEFDhzIGKk8S5QmTkG1yuU/irBvc7PvtRFfPzGYXoWmkxmoTNx9qe31hfQQzN4Dq6zbbDAOqVDDBvFjX/HpX6JbF+ti5sbhWOcV1Yhrw9gWwx+z0cy1fsW1j8SOPN7sILwgrcN3HmtQ6vy+poM/H0LfLxC3zW4rb3Am5Y05yjnXvW5b4N+aKeY1GDwfojg5e7oFGUVMmAfzRHmYfek8R+QrdUYD9++DPm2PXhShrqQ9CkxsjZuLaec6ia4VgNUizorskwtA3dUhOkztPK+E2RLfBBdrsN29Jtq6LH3QSW+hbuG4W21Hg3GtgOIwXemOKhfrt+CAdBCeYdu/Px4pIa+OsQ3Zb0xATqjQF2B2Ta8Vd7E28vNpsvjrZsO285oj5JM8MJgztU8BdwMfI5UnQ7TP2C8JYs012jq6uLk499VS6urqS1zZs2MDNN98MwNlnnz0+pRsnOrqmNbsITcNoXJ1uVReZwZHICKUplRHU7C4zT9NQUAU8HVHDNBY7GCZ71zetJtuAGz+fmG61mXg+X4X5JdhzGuw5yxwfOce1dMW2jaWPP8thh+ybPM9sO0haTYXxYPZprS1gMtvVOY/XAXOAecDvqV9gcidurVSfPO41cG8HEesj4EvAwTga0n62lesWi8KkfpFZMNQjwNROFipFEcUuKN6uYD/fLB/qOBmZVsAh0+CXz8Ex84y7RT4PRpS6gOfb+bhUabRkcWAs06UtXItGLvetvDqTlM0pXDVKY+Ubtbtu5cTQb+E8rUCj0AmNcbnvKqav9cSCPr+A06TqjEU7d8fsdrViJuFJOhs/HwEPY9zs/7/42GSRt023NJ2MLH38WQ49eB+qGBFfwwj1Gua635I7/lbgSJ16YLRLuJ0gjDVbtNBfeOGFzJgxg5GREe677z72228/zj77bM4++2xOPfXU5Dj7Wruwad2TzS5C00gGOK3jG6A1G7Qm0JrODcOobpXM2fwe6KkEDNsPE09udRskIHGt84m7vYbn+qEXWDAVhoKsRT6f/bgNieJr+cY3Hkcl0oxEmsHI7GAwEG/5sjnOFjug4/t4C5igheqdF+hWzK4DZgJzMRZ6e2yk6xPktTINFyHi96rAQoy4h8bCv2VxChu5i0j9EXR3MqhM2PW+Cvb2MG72nkot9J6CvaaZuIorH4En1xoLd+a3nP67t75pAhOzNvp9VEOTAd5OIm18v31e8NJFxW05XzMZbaEh0FC0gp70XmEEftGHSs421rKeCHGB8lb6cg26nNCJjkKDOpH9zATyQtp5pDWVSDMUaYZCcxuMdFtu+VXTZBKEWrf7pzBbYx6FGRcyVnnSbqO9ajv5eOubjs9Y5u3NCvq8Vj+J+rFUECYjWxT0r3nNa7jiiis49dRTWbt2Lf/6r//Kl770JTZv3jxR5RPGGOuippNkeCaGfo3WzAYYMVvWecTbKXdAdxQw5MzNsvq3NYdHrWMrXsbtHnNbVjaW+V4fBir2A7nKtf6WfHkibcT7UCzQrWjvj1IhP6DTDLH2tcHIbANjs8VWWiR/QN4yDyQu9zMxFvpVtO/EzS0vpGUeiR+XneMy9y1cMfObMQW0LvdJEs1KBd3tMxhf02FlRLxWgB9b6ON7/ex6c8LngV+sgCfXZHNgRE2Ytrnfu3sRAsdCn59tKmIL/Shit9VoVC6NSUZYzMXQuxbeoiN+3f6jxaq5RU+LgRp0O4sWHT5URlnwbSNq2gj4gXLIwHDA5uEa/cM1BoZqDJZDhkPdUgu5W8JuVxforJjXwEPAizHjAsD6+HX7vrtwKrQukdbUSEW8a53fDDyI8RZdgNkJ5mCyIXdyfYXJylZd7ru7u/nEJz7BCSecwDe+8Q3uvfdeHnroIU466aStfVRoQcz+8zoxVpsd2jTrNCwcqUIIXm+ncefVgA+dwwEVyOxZT/z5lp0HjBo/r+GZDXBkPOwPO4nxmrzP8Ash0JoRZ1XbZk7PD3SZyY1Tx6KCWiZjrKbQZJfMpPw6OxlbC8zGuN0DbAB2ISfqaY9L6C5U2NvG+LX+Bu/lF9RakrhxRaT3GtCbKuiFXYwAKBiwbrBKEXnEFnoPVARLVmfP+ad4Fwqn8hMadpD/wl2BF4TOHu0NyuMrc0yj87QqeeHbKPGfS8k3LveNVp9arc7xmGceO4Wr1KAr9rTQmPpuKGeP0+5JWp9Aa4YrIeVqxEgQEQSpRd73FFU/ohZ4RJ0+PUUPv8Xd8O2wbrfDdLek+xNwNFACpmOs9PNwFnkdt3txyW5darqxdb4GXAe8CJMjISSXJ0EjiQ+FSc0270N/8MEHc+mll3LOOecwMjLCNddcM57lyvCrX/2Kf/7nf+b1r389xx57LGEYZt5/8skn+djHPsbJJ5/Mm9/8Zi6//PItWlfnLDhsvIvcktj4ucC620dWpMNKDXsPVFBdBTxPoZQyY15R0VULGMnFyyfx2K06r4mihi73uhwSrA2p7jGFSq9PpVwjSLbjI+tS2ap1yxHGYn44trBbi/sl378qscQP6qwV3r42oI2r/bA2W8OMaJNJtqKb632R5GqgXsiuA2ZhJm5TgTVkFy7cx61MJnt/XNYI2BS/Xya7MGF/by09YXEqk8TOxwXXlQp0egyg0ChGYhGPggiFjuPntQJ92LzseQ+bN+qC2ze/e9VE1Kxe1Nn7cpQmxcsniwOzt1Itly29ZYVhvo7xg1pk6uHiPu3Kuae3qrt9Rsy7Nw0jOQt9p2decz8Lafue4P5xe9u51ppyEFGuhoxUQirlkJFKwPBIyNBIyHA5oFwOKVdCRsoB5bD1vdIaJcMLMDlu/4qx0INZ7F0TP3ZDtnT8GaE1ibTmW9+7KmOdr2IebwBuAN6F8dBbR/a6Zn/Ord2OBWE82K7Nf3zf593vfjfHHnssP/nJTxgZGRmvcmXo7e3l9NNPp1Kp8PWvfz3z3vDwMJ/+9Kc56aST+NrXvsaKFSs477zz6Onp4S1veUvD861fvXQiit1yaOJQzsiJoY9Ao1mlNa8eiVBTuvCUQnmYka/o0RkEDMbncDPdo1s4KZ4NsEtM08atsPJsP9X5BcK+IrpSQpU9fAVFNEWgqDVefsLe4iQZYGMxXtZmIDz6zScx5FgwEvHo3P8Zky32FG22RitgLPVBvNrdYKOqCcHqQltOV5yvxQh6MBO31cAh1E/cWlr4Un89bBU3kIYTDGMS5LmWfPe+5XBmVck1iON09WCI7i0xrKBPwZBVhDYDpz2FUrDXLHjlIPx2M5w5H/ae3dhKruCdZ06Qt1he5FrKxAnjHLd795CCkzAucx57utZIcLhFd/TqKIn/bL6Akm86oswJG5yn2eRFPM79ANDpTIk6PagFzmedijShTtvbzsNIU6uEVGoRlVpkRH0tIozrUVAeUVGbpKgelMoBHd2FpntmbYl8MrwA08cswfSZc+Pj5mL6z7oxLx7XdlZCrRMvBjfZbbskQKxpeMPbTkot8zr1xvgf4AhgP8xizRrnczbZoTuWtkeNBWHs2KHdfHfddVc+97nPjXVZRuVlL3sZAA8//HDde/fffz9RFPHe974X3/fZa6+9eNvb3sb1118/qqAPg3LD13d2rLALI+M2r4Eo0oQRrNMwYz147pZ1SkGHT0cQmB3bYyWvnfO10lzNksbP6yQrdhBpY4V+vkx1zxkm9KCvhCp6+GFEseBRijQloBRpihF4bTAsRFoTkLqolbWxtv8JuHXmNE4k3YvXvW7rgd8Cl8Wv/Qq4WMMr44TiQTw4NlXQk51/W0m0BuNyD2livET40z4TNzecwK3vRkwIwSqMxphO/fVrXXRyAZIM94Cumj3KdVeJTcAspXhKJZ8wN5W9Z6/p8KfNsMesOuuou8Ize9a0CalW5h5SgRdgBK1rnVfxewpjvc/H0LufbzUalasWmnq4if8ip44lH8ptkmA0I+ad5xFm2zqlzPNOL66T8yN16zbBw8P2tvNapKkFmqAWUatGBNWQai3i8Zrmt8BrvIiD8CkoRcmDsOARhprCNvttTiyRjZ8nGz9v3e0PJ83TaBdEG4l5c7lbYxFtrAi0TrZ5s4scCtMNlRSUtKakWmsXmzyRNvvO982YxlAUGyowFvrVwB3AtzH1mkkampafj1px32pE8WILxIsttPb1ENqPHRL0rcSTTz7JPvvsg++n0uOAAw5g5cqVDA0N0dPT08TStRZG3xq3OmO8Nl3hGg1FoLMyArO7sLYmD6BUoFiDEesxCplY+pYUF1bIx717GGlGgBE05ec3Un3lfGpKoUs+qgD+SJVaRyFJxGJFfUekKXq6pVe3I9KY+QCzov1HzD6tAPcCxwAdmAnO6vi+EbcCL9dmlzA7MDZrPSMRuTo7KRvCuN9ZQb+liVtLtk0H3eAGxuV+OtADDJLTEI4IbkkcseTuQ09/magLlK8YBuYoeFQZ13vtgdbW3V6Z66YUdBZNhkDScyb/w72fKEYTgpBu6eZifztFBeEojr6tdiEbLViAWZAojpL4D0wOgX6bJ8D5jupO2mx09sdmy1qOy95tp0RmMdts7+J+PF+31kRrTRiYhewwhCgy8fNPVCN+sm49ez1b4ae7dXD2vDkcVlCEkRHzYQvHKUXkkuHpbPz8P5LGkM7DWO3ddcCd0YIbap1YsyvaiF/7/SjMgnxJmVs30EnrLmRU4/K77vZ20ebnwKsxsfM+xkOvH3NcCee6Oos2rUIYL1TUdFpOH5NapQNNARH2wtjQomux287Q0BC9vb2Z1/r6+gDjjt+IninzGr6+sxMSd3g2u31oHq/Rmtlaw8YRvHjLOtvBqHiiOhKEsZu9OVcyJ2o16wtkYud1aLbmKUea8nCN8mYYWdDHsIIhpRieDiNDNcpaMwwM2619Ip1s5dbKW/vY5HeuC+Iv4/e6frcEgEUYt+0jMZOe7wPXAP8vd66TaWwRbwZ5gW6fr8NMVHoxnddcjMU+M3HLfLY1rxs4HgU5A+AGjKDvIxX0dbdWrVZ8AXQsDMxTjR4O0J0lNLBZKXZRZuI1bBcorGktRoOJy4Z0cS6zspEe+8CixeNaJadE9ULQWt5dQZ+Poy8oCBvEl7ca+WK5dQ1DR9Dn7gE6PBgJGnzWnqKF6txIlA/HsfIFJxdCZ8EoDMjG/DRpQWl72nmEsdBHkSaKIsI4Gd6jK9bz1gee59VPrecNv3meR5avRYfm9xppjW7hAPN8Mjy7dd1KTBjWIaQeZTYUC7LjmQ3faqHWuEOE2m5Hm82FMxRlc+UMxa/bcLx8VEyrYEVvRcPvHlySiPsa8Bzwa+AdxOEDwIz4cxvIjvfNnrfkqdprFF+XZMchTfL6iG7teYrQPrS9oO/p6WFwcDDz2sDAAGAy9DeiUOjirHe9l3PPPZdzzz2XW265ha9+8ydUKmnG89vuXJQZQNeu21SXlObq6+5h8SOPJ8+fenoFl15xU+aYS6+4iaeeXpE8X/zI41x93T2ZY7753atYu25T8vyBRYu57c5FyfNKpTpG5VvJT39ycyaG/s6b7+SplauYoYChMk9tWsW99/8WiPei9z1uXPZ7BtZtTDrMhx9+lP/v/j8k8+pyudJS399vFi3mtnt+B5GmFmn6R6pcfNV1DD67icrcEuWizwN/+CO3/fkvPDytk6fKISs39XPFVTdQ1pqRyBhmrrn+Hn6/5PFksPzrUyu49PLWur4PP/J4Iuqfe2Ylt/7sZk6M3/cGh5j6s5v552dW8l7gVGDOo4/z3I330IOZAL0I2PUHV/Fv6zdxEOY8Dz24hHvuWpRMesau/W379XWF+c9/cBWb1m9CYyZu83+3hIfvWYQiFvSVKjd+56dUK9XkM/fevYjfLlqS1KHVfr+/vPO3PPjgktTNfv0mrv/BVWhSC333jffw7KOmfBpY/sxKrvnJzRlt2+z2l//+fvSTW0i2qdPwPzffyfKVq9HDwJROli17hpW//g1TlUmG168UN/z4WjZt2Jy42z/4yF+44w9/TOKZK4MjfO1/rjPliyt/269+x28eNOUbGBge9+u7bv2m5Ev/zZ8e5bYHHzJPqhEVHfC1m26iUqslIve23/4fv1nymDmmoFhXHuSb18f/Oz7P1b+8j8WPPpE8b/r48b2rMmL36nv+PxY/scw8r4U81b+eH91+d/qPFfzol3fx1KrVxgRYC1n81NNcfd8D6TFa880fXs26CWp/W//+nuDqW+41T2KR/s3/vYl1azeYVU/gN4/9ldv+8EfoKpryjVTi9ldL6mTa35JxKN/o13dgwBgotvX7e/B3SxIr9oZNm7n2mps44olN1JSiVvR45Nm/sOtvHzMLblrzzLPPc/nPbsksvrRK/6K15vGnV/LTK2/OJMO782c38/89s5KDgS7gmUcf57c33sNcjEt2Fbj+B1exMR4/Ig2LHlzCbXc1q/29sO/PCvkb7ljErxYtMXOTCFas3cR/f/8qhmOhOKTh1htM+UYiI+b/tmwll155c0Y8tsr1rWp44umV/PzKm+kfGEqs83f+7GYuf2YlJwDzgeWPPs5vbrwHHzNGrgNu/MFVbF6/KUmI+7sHlzSxf0m/P7vz0MXfu4rn1m1KrssDDy7hjjsXMaSNyN9YrvLlb/6U4XJlQstnmcj5wWQu3y233JJozrPe9V7GA3Xvvfe2zdLQww8/zCc+8QnuvvvuxMX+9ttv54c//CHXXntt8tr//u//ct111/Gzn/2s7hxDQ0OccsopbN68mSlTpkxo+ZuJ1tqsENYihocChssBQ+WQykjIz8oB+w2Xedn1T9L59gPoLhXwij5DtZByEFL9379w3VG78da5fXSUfLq7fLo7C/R0FZjSU6C36LWMy5COtIl7HA6IyiFD5ZDBcsBILWLk/pWMdHRQftkMHsfj+2HEq5dsZNVcxcm7TGPfDp9CR4Fip0+h06fQWaTQ4VNSxjjVEd+6FC2xvU+kzepvv06z2w9hvJT/GTO4fRiT+dfDidvCDJYjwJWYePqPYyZEvQp6FPR55tbrNaeeI5FOVrSHImOBGMGEBfwG+BImXmgF8H7gWoxLYQ/Q65l62Dq0YpKnSGuGNGyO0l0Hhkmv3dswyQqPBE7BXJs+BT0eTPHM484mXZstoUcCGDG/vYGRgIFyyFA1ZPh36xiONLWXz+LLns/bO32+0+Hz4c4Ce3cV6Ikieqsh3ZWQnkrI1JGAYi2CryyBf9wX5vZAp2+s9p2+ufUWUf7ErEnrMILBmnHNLofGGl0OYe0w/PBv8JlDjXW3Oy5fqONjA3hyI9z2LHzwUGPJt/Xo8uNbEdUC11JH2liqyyEMB2ldqyFcvATetAfsPtWUvSO2hdo6Proefvs8vPcg816Hn34X3QXoLLRGHavxtXPrVw7grxvg/hXwDwebsocaKiF8/RH45xfBlI5s++sqQE9hwtrf9lIJIvpHAgaHA4bLJqP9SDnkuWfXscv1y9nYCdOL0HHyrvTsNZfuLp+ezgJTun16uwoor7XqFcZjnRWwbn/5Rcz2ZW/FrMkEmDyVbwK+B+yBGRv6vHRsm+JBsQXHhdGIYtf6ijZWa+vC7W7r5m7vthi4EzN2HIEZN9y6t9KYaK9t4lmg4113gKXAvwD/jQmj6MIs5owAnwROA47DXN9eZcb+Pg+mKOhoYn+j4/Hd1sfuHFSLDRUFzJyyM55Tdsbzyq42a5fCjtHf38/UqVO55ZZbxjQsvLV67VEIw5BqtUqtZlbIq9Uq1WqVKIo46qij8DyPyy67jEqlwrJly7j66qs5/fTTm1zq1sK6mkVRdss6tOZ5DfP7K6huH8/34m3rSLau034hk9Qp9cTUSZxsy6B14nJfiW/VSFPVEbUVm6gtKBAquFkpyh5oX1EKfH4dmQ7XJpUbdtzVEle2WHwNa5JMwc3EdbUPnecRxt3wo8DBmPwIPSoe8OLBw3o4zyLd/sW1/KYxac2pp+sa6brT2S3r3PKDsdw3cr1r/lUaHXerOkjL2k8aQz9A9prYz7VivUxbMSVL4+fj/qFSRcfxyZuAXqXoVIp+rz6cADCZ7sHM0EdqqeW4kevzROD+L9dluxykfr75eZh9XvBS1+1G52gVdO7epQL4djmQ+rp2ekb4NzpPC/SVGdzi2PY0HEKpmA0j8OPHZSeUIDlHi9Uph3FL10k/aqNWntplOkPTfQolUCcshPkzs5EsUWs1SUtEfTK8ECNe/wS8hDRm3CMNx1pFLreK87hdqMXi0G49a+chdm4ybO8xQvePwGcx+XM+ifl+3BCFoMXqnrjXxwsSQXwfAj/FeBbOJs5tFH/Gjv123HfHe3udm4nN92AXWkbieePvMAtQv8O42g/Hc84Rew0jE+LZUiFKQtuwQ4J+48aNPPPMM2NdllG56667eN3rXsenP/1pAP7+7/+e173udSxZsoTu7m6+9rWvsWTJEk4//XQ++clPcvLJJ4+a4R5AqbZYxxhTNLHYC1N3+yiEKpoNaGYOR3i93XhKmZ2IvHRuowvFeNslncTRt+J8FEjEfC2Ccmhi52sR1AYqVMua2txehpRiOdARweYehT9S5RHg6hDWarMIMKKNldiKebtHe6vs026rmgh55/FzmPn3bpWqSb6CWQXu9cwKsJ30QCrooX7SkwtVnlDsAJ0X9Wsxg7sV9D5pvKQ7oIe09sQtv/iQ1JfU5b4Xku0i86K32ROWUYm/dA2Zxb5oYxn6jOUsUsbDoI9067oIZT7jqcT1HjArUOWcUMxlundd7SYE7TyohYmrdkYMKueB7wj6Vkjutz3Y8obUZ/IHZ9GiTRLIuZ1C5JRvOILuYnpcsh0fxqLf7AUltr2d22zaYRSLeq3jlDKaFRF0K8XwtF7YZToQL7ppM7rbfr/VaJQMLwQew/Qje0Ay1tkmafOrgJOvhNYQfNtKxY3Bzgv5WCQOY/rVCkYo/mvuHLeSzg1are6B43lgvQ2GKlUC4FHgEeDNGKNEEfOztHOX2Rjvwsy4qNNr3UxskuJApwsVfwQ+jdlR6JPAH0hF/XA8txx0RH6z55dC+7FdWe4feeQRvv3tb7Ns2TIA7rnnHr74xS+yadMm3ve+93HggQeOSyFPOukkTjpp9D1Y9957by6++OJtPt+cBYeNRbHaCjsIamudjx8/H0Kfhs4NQF9n7JKtkgmbUgrVWUgUUpQM/s0XfQ0JNVHoWOdDTVVrqqvKVOf0EBU8btGKFyk4RsHKmubgtVVetx/cq+FLAby4BMdrmBt7MIRKJXHqCihoM8/rUM3b1g3qkwPZQftRzFZ1d15yNWd+9J14pKI+0KkYVphB0d2vN7PSTXOurbXquoKX+H49pm42fACyCZAyFnpNy25d55bRFegD8f00YApZ7wkgk+m+5XDEkrbb1sUTE12tQKfHIAoPZdwMPcWQikV8pEEZMY8izXRfKkI5/nYaiWHgW9//H877xLvGuW45cWrva5FxeQFH7JIVvEXf/DjbEVfh5TP5W9Ebb2/aFosWUe46WkZCs2Vdnm6M6737GffHOIFsazuPwGS3j9LF3ijuGNeO1PA0dAXG2zH5OiKShLmtho63q6uRjnd2a7Y/Ybars2Ocr8xWbYp0XGg0rjVb8G0LgdaUdeo1aEVvTZufWkBqyV4M/ASTIPA4jGi0vI7seNhKda/p+vCBay+5mlM++k6uBM7AjIUFjKC3CzYKs3XdYzReHLfz22aFguaNLCFwW+6YWzFzmcSDxkvrYT/XiW6J8E6hPdhmQf/UU0/xqU99ilqtlvmh7L777tx3333ce++94ybox5o1KxZv/aCdjIjU3V7reC96YJU2K9mUR/BmdRmhpFLxCqA6C3QFZgApEM9ntM6I+1ZAm5gCqnFWezP4aePOtWqEcOFUntSwxFP8SwFmanhRB4SbKkQKzvQ0xyjNbRF8RsNLNLxIw8MK/h54mTZxT4GGmjKdsN+kvtZaYfIWC1fQn/JPbzUTHZW6Idrrq7R5Pgtz/QYxW9u5bt3N2v7FFbruYzACd2b82F2UaLeJW3bikZZ3I2bS0oXREqNmuae5E5aGOIVLFiGs++BARNRbYkCZ+EblKboxSfG0pxwRD5Fbp1LBiC234pBZSfz4h942MXWz/9elpo1gz1usXYp26amFOsvRcAW8LWsYPyjmMvm7dYkTGGZWe93nrYZbR40J6+gppR1kvMBEZwEqUf1n3TpOENvazq1AiIh3solt75uAwrBZdemqhpSB3ngMx1rnaT0LfUi65ZcNMbN9/EMY0WcFvV3oVZh5zZM0sM6rFu0/HSJHzFuvwJHIWOFdIf8X4GeYWPM3Y9zTuzFj+R2YXDMHkzZVN5Su2XUP4sz2ma3qgL//p7fyEPAMcD6pmC85Xawd99c452ulrQltm3M9Hk/AhEFYPMz1TH53UbzgouKtg+NwtE50S+U8EFqXbfY9v/LKK6lWq0ydOjXz+qte9SrAJKxrF7Ru1Wn++JEMhFbUxzH0z2vNbLTZsq7HuNt7nukybYdf8AtMGzYJ14DMvLSlxn6tCUKohI51PtRUo4hg1UZqc32u14qTPMV0FD6Kjg6P7nKZDozVfYEH71HwFa1Zj+bbwH0YV6mHiV3/SN26m4WN0cpPcgD+isleX+ooJW6IvoqFfTwu2ElPD2bAXEd20pPXTxOJ+7/z3gKrMAO5Lb/CJMtZnT9eZycvrUZ+qzp720iaF2AK9V7M0LzrsnV08uWbeFyz6KSroREJXSWGMS6/KJOoaViZSVjme1COZ0WvY6GHeiEGdHQ0sKyOB+6XbstRjcB3hW6DiZfdCi2fLKHlxG5OyNs61uKCFxyLPGRny9Z6b4+tc7dvfkWTHA/ZVTHz5lDNxCPlKTrtr8nxO9vazkPMgn0SPx+Z++cize4jAXT5lEIYjLdSTJphiy3QWxIvNJ26MoeYLcueA/4Ox0JPdlx43jlPo5wsrYrN52PD+yrauNWXMYsY52Ny5Hwe2B/4MXAmMBXzHbwE46FwEPXjYavkYLEWefdWA7yOEldiFih6SQV9UWU982ZixkuoX7BoZh21zV1Bdh5zILAQ2BX4J+D/gG9h5tVlTP6DEee6D9sQi8hsfycIW2ObBf2SJUtQSvG1r30t8/puu+0GwNq1a8e2ZMKYEcUuzCHG9c7G0+nIxIzPBbyhMt6UIh5G1CsvHRgpFCjUTDw5mjTmzj5uYt1cdKhN3Hwi5DWB1tQ2jRBEcO/MHro9eLWv8BWUlKLUVaBrY0QXxiraoaEDzQJgjs7OWW8l20E3c1nILijEKQMS6/wajFv6AaSx8r7KTnZcMQxm4HeTy+SF8USTfL/OBAxMsjjIxtBbS4wNG4A0AVQrT9zyCxW2jJswLoZgFls2u5/R2WNbrl6OQIoiJx63v4zuBHzFZqBbASg6UAx4oJUySfBUeppENHYUTQy9zv0f0v81Ibjiz/2hVHXWcg2m7G7HYQV90LpiN6FR46oT9M579jqV4jpWnGXOVmyomevoFKxcgx4/2zGCyWbvtr9EObSIKsph3dPDyIr6ND5+GbBbDZhusiqPVMNYyDt9i32hhWiUDC/CLLDvTipiC6SeaGAEvZ2V5vvbFr18QGq5tmI+iTHHiPnPY0INngM+Bbwbsy97J8Yy72HGdDsm1tWd5tc91DoJHbAx5jY7/2eAZzEZ+gvEyfCU6X48R9TPwswJamS9MLRubh3duUtItq3VgPdgPD7/E3gak8BwLcZaP0IaT+/eD2vjbSoIW2KbBb3d633PPffMvF6tGheu4eFGtqTWZMr03ZpdhAlFE4scG5scx7eiYa2G+ZUaBKD6OpMOM5nXKAUdiim1IOseFFs63PlRs6nVoiR2vhaaW1VDuLZKee5UFimPN3sKzzdbg5QUlHpKdFahKwgTUd+pjKg/ToNyKncS9avdzbL+jhY//xiwG6Yef7xnUZ2ot4Oh52iO2aSJ8ercEyeoPi4ZoeuI87WYCUsX2ZX6uaQTt0YLEi3SPDO4iyWuqF+PSYgHJtnTiHO8PRbnsy1FsgKjnWuniYYDdJexLlaVYmrcufSpNIu/EfU546nCZE+3Wcbzyczib8Xd83VcabSQUIlSd3NoLHatoA+dz7Wi2IXGnXnNivTcQkX8UiZnQKWB31KrDBCjLcpobQS9tdCbLV7M466cy71rwp7gam1LO09i5m1iPCvWNSyPYGY/0N1JtQhBuZb8Rq11Hm0W/VuFSGtCncbPJx5pGHH7UtLkqNYDzY4NczAeTsPUjwk2aWqrYV3tM0LeCl/gv3LH/wEj5G2IVoHUHR3MAnGj8bDZdXfDBQOMqP8TRtwuv8e086fIutsXyc5NZ8Tn2kD94ngzm7D9/65hIcJcv9XAAky95gJfwyw8fRL4G6OL+hFtLPatsLuS0Lpss6C3rvY2IZ7l9ttvB2DGjBl1n2lVwnCCsyI3mSS+Okwz3pp96c1e33P7y3jxlnXKU2bbOkjnb13QHQWMkJ2bWUHbCi7NYRhRDiMqYUQt0tQikwyvpjXh6mH+b04Px3kwx1cUPUXJiweKok9nENE9WDOCXpkVYU/DgdrscwpwESYWLe+O3oyaW5euRvHzjwGHELvT9/YkQt7DzFFd67y9Ndq6zh2IJppGQlfHZbQTFc+5zcWs1FdovCDR/NZZT75u9raJVND3knUpzOuIlquXI5i0jq30GvQw6KmdaKVYE1vmwWxdN5SzZifi3r7Q5Rt3aPcA515rTV9f9zhWqvH/TahF6Z7seXd7+9Qa8GsNxG4r4dbNFb7VMM220yikILHSA5Uga8VudO5mkRfxLgPaiHc76NlbqWAWKRqVf4LHvW1p55p4XIh07I2nCbUmiIzFdnqlBp0FqsUCtXjxxbXOa1pjPLdYIZQkw9PpWPcn4MVk3e3dcWFK/Fp+BxRX/LUaeVf7qjbjWhV4HHMNXU7HCPkeZdY+7fhuBf5aWrPujXYtsEnjol7jQXIPqXW+mFussdd8Omm4INSHFjSD/AKKfWwT99qQwQ7MGP8vwOsx3ha/xlzrMqmIT9oCpj0Iwmhss6D/u7/7OwDOP//85LVPfepT/Nd//RdKqeT9dmCoP98t7twk7j+RnWSbwX51pJmBpjgcoXo60y3r4lsydStARzlgIB710+zV5u1m9zFamyR4lZBUzIfmPog04fObWDmrwCs8RUHFgj6+LyhFV1HTN1ijW2uzwq21qbvWvESbDtjGouU762bQKH7elu1RTKyWBxxy5KFp/DxZYe+63s+mfh/3zMLFBE/w8u72tkx2yzqLbapWAGcS47XQ5KURbjkhnZBsJCvo7cJNXou0kBEtJf7S86E4eiBEd3eiMZPzmXHcfIcySfHsSlMU766h4wubWOgrzj7grrt0/PDVrzhs/OvW6DegMYLeutzbDtNT6THKeaPW4Kq1kHjKoJ0HQWRmn3ny4r6LeNEivTYNvRpaCeuqVsNsW5dfr+hw2t8oHiITxba0c9c6b0LrTClXaE0P0FGuQC9UC0XCato76vhPq3k05ZPhWev8kxiBsz/puFZw1mLs2LYLW9jFpZUqinGpzsfNWzE/gnHRfjvGuHAC8B3g5crkIun2Ugu2uyWtu21fq9Q9CQshe01PiN8fOfJQwLill1R6cxP72p/pDLLehTp3awbu1nlum1uOsc7benQ4tzdjvBMuBr4KfB3jfVEhu6VfAC25E4XQGmyzoH/nO99JqVRi9erVSbK0P/7xj2itKZVKvP3tbx+3QgovDNtxEruvRfHj57UZ8NgIakp33NEolGcS4ikVW+oL0FkOqDmzNG3FfdT8uVpVQ6WmqWhN1RH1QaTZvG6QQMErZvVQVFD0FSVfUYwHiU6gs9unc6BmBgsNCmW+Cw2ztU5WuTMdtG6eWHQnOK4L4gCwglTQ+859YqlX2UHfWujtfq7QfDGcsbI7ZViPKas7aXMnbq4lplUmL43Y0rZ8mzCCXmFc7mH0vehbqVpJwjFwXO7j+0oF3W1MvJuADs+YW/o8GI7HEg1GxMfnSzLdd3lQrTVePWxGBq98OaqhyWLfwHCdwcMI+kYCt1UuZL5u9r4WmdUXyC5a2Mf2vsNvnBHePVdT0dkOwd7bMncVs4fbBaUhd0Epe99K1myw1vlY1GuzdZ3WmueA3dAwUIEORdBTJArSBdvEOk/r9JdW+AU6mwxPY/b0/juM44jv3NsxzuLmV4mcz7fafuxRIzGv09jyn2DmKm/GbNP3WeBlyoQHdsf3ivq6N9z9pcl1t+7orqiPMPOWWcBewL8Dh5GGC5ZwxLzTFc0im/+nFeroxs1bbxKNmZvNj49RmAWo7ngOWgKOBD4ALMIkYv4sxgslafs6NeQIQiO2WdDvtttufO1rX2PhwoWJm7XWmoULF/KVr3wlSY7XDviFzmYXYcJIMm7GrndoE4ejgZXaxO+o4RH8qcVkQLBWXIgbSNGjMwgYceZm6U03tYMJdbznfBglGe2rgUmIF2nN0lUhG+ZNZ1dPUYhd7QtA0VPx6qiiVCyihkI8DSrSZku3WKDMjCu3keyA0UzBa93V3BVu624/DyMIfWBg/aYku72b/dejfiXfrnI3Ghgnso6u2M273q8lFfSupwGYersTt1YY2EcjXgur8yYA6A8jZtRC/EpIRyWkWAsZCqM6Ad8ic+4scWU0oO09wIYKuhdQMKRganzdulGsjy9g4mYfi3obT09HAZONk7TSUfb52nWbxrtm6T/LC/JKmO6nZHGfuu7ogRO524oXsNFiAxgLfWGUqYK7F33BEfStuGABdW0HgOE4pKPDxtCTXsMuD6pb9hCZKLbWzpO4eUj2oI+AKIJnIs2uClSlguouEBWLxq/XViMiCcVrlTUKK/ySZHg6rdOfyLnbq/oYeoURtWvIzllcC2oroJ0keDZuPnGxBh7BJOT9JLELOmZ9rRR7OfV49Yv1ilGS3bZA3a3XWcbLEJPrYB3w4fWbOJR0gaaAs/Wuqp+7WGNEq9TR/u98ct7nyVroFWYhpkvFuZuAP+fOdTvpAoG7ICUIjdhmQQ9wyCGHcMUVV/CTn/yEiy++mJ/85CdceeWVHHbYYeNVvnFh5tz9m12ECcN2cKE2k+xQp1vWrdGaOWjUxmFUr+k0bQw9xHNRpVAlj2IYGFHrpBBthoEsTzIAxlb5WghVrQkjze8jmLt6gDm7dCUivuh5lHwVW+cVnRrUlBJqMExXgOMZjYdxY+ujcSxaXmRNBI3c1ewA8hfMdnV2Pnr3tbdn3BF91yXRGRjtfq75BYtmLFpo6gdn+/o6zCTFNQza2xyyEzdbbvv9tBL5OloBrCoh5XLAnJEAv1zDL9dYMBwwUgnQlRDiZJbNantbxLlY2sbOW4FQraA7za9rAEVP3AB7lNlvt0Ys4G1ivETcqzjLePw/GsVka/jpVbePb9VGs1xDLOgdC70rcF1KGJXV6DytoqAgt2oUP6lqI9YbbVfnUiqkQZ5uA22FgQKyZUg6Fm0EfQlA1V+/Dg9qAaN6GkxgvbbWzm0oVhgZT7wwXtRGmz29d40iVAVUT4fZPWKovilGYBblWqBNNkqGF2C2+forRtD75MLJnPu8oG+0GN8K9azprGXexs3XMN5ZF2Myo+9KLOZJBX2n446er3ujULpWqHsjg0SICRecDfzlmtsz2+3mXe3dm5v/p5HL/YSHC+a879zxeiVG0Nuy+5jcAN2Opf6U3Plei7NAEJ8naH6TFVqUbRL01WqV4447juOPP56nn36aBQsWcPDBB7NgwYLxLt+4sGbF4mYXYcJIRI0mdr+LY3BCs2XdTEANVfCmllCY7dxMWKtKDRUdBfxqTkxoN5N1cwaHSGsCMPHyodmrsxppggA2a829tZBd1w1QnNNBwfOMoC8oSrF13m6FQk8JNVQzFnodDx5xHL3SumGcVrPcuV13NfvYluXPmFh/a7V4+wfOxFepO+JoA+PM+NybqK9bM4Rj3uXf/v8NpGV1kx9ZQV+3TY9u/uSlEUkZ7fcbaVQlIKoEUA6ZXglR5RBVCZlWCSmPhPjlwMTyBlEmAVDLkFtliLDCXqP7I+grERFb6D0T0tITx8+nme7NzT0d3bEbdJAXw6lI/MRHzhznyjn/M08QmlkZ5CzzufuSar+ZmC1uTYPvbM3nLla4de6MM8LnFypapdp5V3tbrnIAvc41dF1/On2Tmco9vi6WfmLYWju32dttjpswvt8QJ79dMFw16xUlH6/o4QfG8yBZeEtc71vjkmV2ctFx/DCwBOORNRcyws9meHfHBetyD/VjQivkCwi1pkK9q73Nan8pZmw7hTiJL7GYj+87lXk9nzDO1n2187/c8bxZdU/CKMiK+QjjiXAwcOoHzjSCV6XW+fyWda6gX+Ocf7S5w0ThtjHXUxCMy71VTNZj0sc4AXXGdTwE+DImf84rMfO5vJhvNQOF0Dpsk6AvlUr09ZmIzvnz52/laKGVSDqWeHIVxj3eRsw8bU6lhqqS2bLO81RmTqNKRTwN1djClA76OpkMNIOQOFFIoAmjiCDQ1ALNE4HmmwG8aO0QXoeP39dpYuZ9L0mI16lUmuepx0f1V+PBIna5t9ZsrZkTx9HnV7ib4c5t3dXyW9ZVgCfIxs+7k51GW9Ylbl8Yly83032z4ujt/8xMPuKbdbl3rRH2sXW5t7TC5GVLZCYcQQTViP5qSGclZGo5wItF/axyQKUcQi1EVUNUJYBKiG4pNQ+gky9ba5LyabvXdVeJoVgs9cQdSzEW8EOQyWyfsdLbDPJ2OzRXcWiYkCubnxm6/V0Qpnuwj5blXikjiGu5sraa4DUrX+lje1+LTJ6APG79wFyraj6GPnffbBpdx+EIOov11w9lQj6Gc8e752mVeuFYPLXZf94kxdM8o2G+hsJwDdXlGyHRA4XQhBpkHCjizzTbayTKCT/rdh+Rxs8nlk6Vdct2F6vnYSyjmXE7d98sXFd7V8xXMPX9PfD/AR8jK+btrVOlQtCOh5C10I+aFI/m1D3xIiEbRqGBh3Hi5sku1LjzF7eus8juBGP/R7PGfU02ht7OXUaAzZhcP0kd4vZacB77mEWNN2Mc09xFATfkRBLjCY3YZpf7V73qVQA88sgj41YYYexJVgutu308YK+ONHM0FPorqB4P39myLhkYlBH2Nn4ycGIJ3Xlfszwqk4y+UUQQmonM3wLNt7VmndJsqEX0z55GScVu9l5snffMgJhk9O/1USNVZyKgURGJxX6Oro9FczvrCa8z9XFVj2O26bEDhuuuZh+7E53R4uhd7dIMLwR3suE+toN2JobeubnWiFaZvIxGpg0FEQQhOowYrEXMrET41cjE7VYDplYiwkpokq8ltwBdDohaSdQ7YjCJn9egN5fRXYBvLPFmAhq7AXkwVSkGSX9HUawSddJQY5Fl45wz/3MCO55Mh0da32qQCvot4Xuphb5V48uh3roOZiGi07XQ23vXqk3sct8aW7w1JL9gYW/DoRH0Fs+pV2e8X1/edN0qYQQxmVCsKN1/PorgiUizQGkoR3ilEgooFqE4VEs+m1jn4zo2u2qJ8NNktjaLMMLPxs8XqBfz7oL1XExdNlO/GN/seOSqZtSs9hsxWew/gKmDjZ23cfNW0Jdyi/Nu3efE5xqisSGiWXO2/Ha7NqHvsxgLdSODhDveu3WchdmytkZW/Oom1dH9bt0Y+hWYRZlpZA0RnsrO0+zrewPL4nPmxXzYAr9PoTXZZkH/yle+kr6+Pr70pS/xi1/8gt///vcsXrw4c2sXps3au9lFmDDMNhdmYLdb1ukI1kaaXdAwFOL1dKHiLeuUiuPoAawIVBAVIKpaFz0z6msnlv6FoLVGhxodRuZ+G4VKiDFuRvGEJAzhAa2poSmhmbe+xiO7dJg955Wi6EGHr+jEdK7JhLTHh8EantaJiDc3jUI3jNNq1rZugdYEoSYKI4IwigVhxF9rIYdWQ7yKSahWqAbcc81d+NWQQhjhxSEEiecB2Yy4bgKdRgPjRJERu86AuA6TyyCf7dYO7PMwk5fBXB2aOXkZDTfZnwpN2yfUDNQiZgSRidl9Zi3c/Th7PrOaamydpxqia/F9NSQaCYwFvBXEUnKx3FAcDSMBuqtkdJONn1eg4pGnGzOZg+xCEuBkuife39x+cdn6Xn3dPeNTJ5dGQheMGSWx0JO7d35gnpda6FvgcjVE5+4tNe1szZcT8S4lZQS9e44mbfHWkPxijGUkhN6Seey6pkG6kJFP9pd8fOLqtaV27oZfmfA6Y6UHk/x2b8ArgzfN+KWViopiJSDQOnPZbRLdZl8uK/zy3mgrMePUwdR7oOXdsj1M19FD473o7eNmEGpdb5nXZgwLgO8D+wHHsWXrvA2NbOR51xc/bpX8P5CLm9dpGMWfMcaImcBvb7wnk+jQJvxrFC44Iz7vBhobAyaaRMznyrMSk+HevT6u271bRx/YE7Oos5lsnqQkrGbiqiS0EYVtPfD8889Ptqu79NJLGx5zzz0TMLEaAyojm5pdhAzaXe2386U6978dO68m3sc6Tqhlt69boWGhArUBvL50yzrfU9n5aDxg6GLsTqmznWYSS7+D5aMWpSYFexJfoX0PCh7Kb/w9JHvtRkbIR6FJAPSqCP4QasIwoqdcYd+5ffhKme3qPEWnH7vaJ8pWQU8HDJrM9l6Uxs5bYT8b+HXmfxsLovs9vPCrtWV0qIlqEVEtNC6VdmvkCFSkeQY4TEMRTREzEO6123z8cg1V81AdHhT9ZLEmPzDmLfSudXsiB4+8q7/932tJ92dv5GnQi5n0rMKsgieTF+c6tQpuXL8OI7OAFUb0B5opYQQr1lO8cTmqCq9dNsj9J4DefXZiFIxQRDj7S2jQReNh0zQckWRd7rUGPQS6rwOt4oR4aQcHStGrjAUJTL00gJdmvAeg1zOiy/4fcFZFNPvvu9v41829h1TYlYnFriN0G1Hwsn2cu0DQKo2z0cKQJpvlvs4671S45MFIkJ4rV1et9ZiMaztMIsYdUa4xZe4qZBcp7G/JhhqUA+gtpp+DCVeDW2rndpxPvNa0GRsCrVkBLAS8/gjVEQv6kkdfUKOMCbnSYJLlko7pzUJrTY1sFnQr/P6IEfNdZK24BVXvlm0v5RyMoD+Qxt5bzaAai3d3j3EbN/9rjMD9LmaCnhfzVtD78W8pY6GnPuRgNWZBp25sn4iJi4OOcx41ip9fAhwaF2fhPrulQp702iaLFjpdsPEx84L1pFvCRRoi1Zw6NnK3t4J+oVMU6zGZ5AJSxiPU1rMXM+98CrNokYh5lT6eyHoJ7cE2C3rYsiWyqQP1djIytL7ZRQBAh1E8aiUjaWIh0PbX6u7364pQtfXvXGMT45jVeh1bs58I4Pca5kagRkZQ07uSTsUH8FW8H7szb/MLdFUjAqBg52pW3O/ABEBH2sTFVkMb+JdOkHxlJpAFhS75UPTq6mrmmdoI+SgyFolAs5eKmKo1L1k5yBFrhpnZ12nCCDxFIc5u7+U7w9g6o2oRqugnot6LfQ9nac0G6wocfySz4j3OTV8HEVQCopqmFkSE8eJFFI8YWsPyCN6hNZ6XrmofuOce+NWIghd/t6HGK/l4npcZGBVmZXxZg7rZgXGiJuN2sEoWjOLbWozrocVdsbduRtbtfn+aP3nZEkm7iWJvFONmwkikmRZp+NtGVAXoBq8fFi7dAPNn1GePt08iDZGHLvkof7s2Lhk7nItmM/1qQA+G0GVExJAyucesO71Wih6l6Id0m7o4dt4uxKAUFAtQzllIIfkxHnbIvhNSxQy2A9SY2PG80IVseyv5ZvGyHchboWuhcT1v9PtRzn2Hl1roG52viVivsoZW+uEaTOuo/5CK/3gYQe8uwiQnHr8y59lSO09cmLVOF7u15rkIenVsyayU8aZ3G2+8riJd1ZC1wDSd5sLJfzXNwHobJFbcuG6PAFcCr8IRdCpn4dSO95lORa1NmOoKLTu+TTSh1qmI16mr/R+BG4DfAZ/GXDM3q70V8jbDvcXWNxG68WOoz/KfH9snEhtGkbjaOz/HJcDbMeXf96B902R4ZMU8zpzFFn86Zn5g/0d+7jBR2N9PXtRrYDmpoM+422OGjETMO9duD+BJ4CWk35ltt4GCBj2WMMnZZkF/9tlnj2c5JhVaa2PtroVmkmdUcXpA3u3Pyz33FfgeuuRtcQKfxNzE7vYRmr8F8G00odLcoTWvWD9M925dplPxVOpub4sSl8crFSiGmmGt6YyVvDun3e761yIz+auEppcPnMmup6BoRIoZ2f1YrKRfQhRqwkpIWAmJAp243ffHAvfUVZqOXabjxaEEfizqfU+lBbZWmE5TY2+whoqzaptM96ajnU0ap1Ui546uxnfQ0EFkJpPViLAWEdWMoA9jcRdFmhURdGjYVaWTHM/ePIXvq3SxRIPXaYZDd2CcDfyBnOFQTawXAtS7zNnH66iPn3cHeUitEa0wedkSSd1qOhb1RtxvjDRT0aiFU1EPD6FGQPswa1UFvX4QPbMPTQg6XgiI3fWVXRALtfmdlPytFWFs62PFEkCkM4t8ulxBT+0GjPvgFGX6GNuv9JFa6LHtLRb7ye+qs2gs9PlZ2oTG0FMvdK127cgNo+5s0wr8ohNDT4NztQS5MtkyBlF9Urz8+ARG0AcN9mx3z9lMRlOqwzWzmbe7OAHptesBKjUy308jcd9EUut8uj6utdl/fo9Y2XqbKngLuwEFHQUKEVSCCO17iXUeR9w3CyuKXCvuYuDz8fv3Aa8DjiSbBb2RFdcKendccMeEZrll233Ya5iIlj8Cn3WOmYpxtXfFfEcs4qyrvUUphdK6oefdbNIdejL1Z+LrntmqTqeJDjdgYszd+Hk394/dvcAd+5WzYONuz9foGk8Uyf+MH4dOd7EcOMKpQ17UuwtS9n0bR58sEpCKedOVNdnjSWg5JqWgL3X2NbcAtVik1aLY5dyZmLqTikbCHmLFFkHobXECn9mn3BgBeSAymVW7tGbYh/VhhblTSniYBHhWDNZtXddTZEpgYpRnkHYoGtLJwLYSaiPma1G8sBHfIp1mCbG9ftHD7rlnrfWEmqAcEFUjomoYu6JHRKFmRaQ5dMUG/EeXow6aHdfHiIiCb+4zrpI2M143qMEq3qyu9BLEE8DpkVk+XY+J+Z2oOC1tv6dqBJWQoBYRxPUMI7tjgebZCPaLwPN17HZoth9csXIVBy2Yh2fdZeNFDVWL8Ip+RnfMxgysNKjbRFm3bXtyrfT2u14H7EvO3T43cbMWelf3NXPi1oh0u0cN2uaMMH1AOdLM1xrCAuF8n2BuJ0v3ms7G9R4vu+tZ9OHz0ftPTZNYRfEM3t6cCcREi/rUDcIsTiS/kY1l9MLuJJt9T/LjMn1bL3HeA2uZt6eLRT0A3QUYca6gm6BMw1NPr2CvPcZzC9VRhK61uFuxm/TXziqTpZAT9JnzjWlhdwidX2Bwy1RxtuaDrBeCS4eKk+KNInwnqB9pSP47ThY4NVRr0BX/XtywFfuwy3di6Ek/1+i848ho7dxa5JOs4TpNgPuUNrHYntb4lQqqw48T3fpooFIN0B2FOseFZjbJRgnAbssdcw/GUu9a6N2kYtb93o4LT5AdF9yxZaKFkbVSu67njep3JGkSPLvnfIdKXe1d3AVud0y0btuNhO5E173R7jwRJrxgIWYRwwfWPLOSqXvOz+xe4C5auHUEs9C/nuaP++533CiG3u5B3zCG3hHz9vU9MeEXbp1ClS4WRHHbFwRLk/wzm0vftIVN+986NOKMWnxfjq3UI0F6K8evjwQw7DwfDrKfKccJsoLG3VZ2gIcw1LxSG+N3AMwcqbFgANSUzjTTppeK+HQ9QYEq0Fs27mHZQT9NgrXNhNpYfayQr8T1+csq+Nmf4LHn09cqsaCtRun3UA4IKhFBNYpFvbkRRGx4bh1n3rOc4gCU/rQWtWIDvq+MK7qn8KyV381kDNBXQA0FZsDQ1MVp2RjzzKDoPB5rdKRTDwa7YFEJCcshUSUkqgSE1ZCoGrKiGnJwEODVQrxahFcLUU+u4cGf3YX3+Bq8Wvpde0GECiO8SNdli11PNgFLvp7jTX6i5X6vazCxkO5KPWTd7/LuhY0mbs0mmXREGh1o5wvW9EeaaVqjntiMOmwB6qi9YeFMHjx4Ghy3Kzy6Cm57Dj1cRdcikxAv8xtJ73U4gXXNiXns+oLW6EoV3emhUWxGMdXDWOjjRcM+0qR4URJuFN/sb7OzaOrYqEpa86tfPzTeNWwsdK17eSHXl9jKua9ZQT9KHVqaaizo3cVmqO9DSz6MjLL40QpVdPIuAGmZBqJU0NuBL6mb2mrIx0QxWjvPuzKbcB7z+3saTIZ7wBuMUL3FZM2pVoJauQbaLjCmIT3N3EDDCvlE1AMn5o45iawYSvagV/VjhLsDSqOxe6KrGpJ2BVbY5uv3elLrvBXzNqt9IxolxVOk+QNsHfML5RNV9/w2hPn4+cNIy/7wAw9l4ucbjfXurVHS4uwC1cTU0l7PfAx9PyY/wnynDpkYepUNIbGv7wU8T7p9nV0ksN9fK3SpQmuxzRb6c889d6vH/Od//ucLKsxEsX7VX5r3zx1xlbFOhzprvdiS233BSzMrewq8EB27y1tsttoAI+QjzPO9Pc3+kWYkhLM2l+nqVXjxlnV+7G6vPQ9UlLjFKoAOI+hHcOY0Ou0wt7VzsQnAEgu8DZL722r4xUpz0KPL4Z3AAXOzPoRFsxAQRSZBXFiLslb6MGLe3zbgDQJd4A+B97f1ePvOpWCt0/nv1H7XHSUYDE2HG9ls93Z2Y7wSbJxWnfDcWp0zMyRzHbeUwCwTkhC3kahmFjDCICJ8Zh3R39YR7j4DZnShR0L2CSIIwCuDv3ID/uJB3hkeROEny+GdGg7cJfkuvUibpH8qdbufGf/vDZiBxx0QJ1LQu4Ohfc2WaxbmAD+M4oUWjY9KQkXmKlU/cVPOeXM/qWYRaYxlXuuMhX5Ea6aUa7BhCHabD56i5PsMEsGcPvRp+6J/sxr9P4/DsQvRu00lzb8RnzzxcInM3ucTgdNY3AUL0Oj+CN1XAmVi6K3/i9kSU9FDuq0SSiUiPuliFCah48ayeSEvytC87+zTxruGjUV3xbqXb6VhKUyfXbYJ47ZwzmbTqEyh43Kfr6dyHpQKZoDIn6fRYshE06gMcRulDHQ7+9Bbf15LRyzo3U4RmGhT9mjt3Ga+DrUJwQoxY8hGDYMaFmrwqiFeCF5PKZlaVAtFwtjzIBU/pPk5moDdfi8v6g/EbFW3DPgUJoGaFT/WXbngWG5dK65d6G24WK0mtlna/CKpscWU50UYC64HfAgjcAsqtdAnW9SNYk3PJ8WzIngOWZd7yC1mTNCA6C46WVFv29wjwHtJjSdveOep2f3n4zo38kCwgn6N+7/iernifiKq6W5T585jVmC2FO4mFe528cknJ+Z1+tqs+DNPAweRinnreRDqdC25lZBQgOaxzYL+4YcfHvUiyQXcNjIusrY3t8LtybWweBUcNg/2nG0+kLeILFtnjnnJLnDAPPOancAXImMhickMiBFJFngiKKM5XWl2HYlQXd34cZx5QZmY6yhvjIknpD21MNkP3AxM8dZ1bMegmFFtzvfx8KrscX98HvaYlQp5e1xBEUXE1ulY1AcRYRjB+kHmPl9BeeCNAB3gHzAT5ZvFCt/2ou4yvm23U0uooTB92bp3kbqu5eO0IJ0UNKyqTXgWRGlAFZhkfzaLfyNhb9uEs/gT1oyY10+vI7pmOcqD4iMrqU1VnDSlg6nFAl6xgNfp4z07iK8xXgkAf1pl2kuozWJFHHetvHQwKWIGnXWYmEN3wLePx3tUTBYP3IERMwHojzRzahHFMESFGl/pZGD3fQ9fKeZ1FFgZZ0h3F1vsBKoV5JOZNLtbNEZE8YbLQ5Fmxsphk7iqs4hSim5PsaHkg1bGBf2YXdBLu9E3PYeetxLtBfDiXWD/uaYfCBSEnglR0fXJJMetVs7vOorFdlQJzbXsNkknB5Vimuf87JRxue93z2QnesrJdN/lw/Ig8+/c+3Eff+pEYPxaNTRJNSDrhm47EZeCyuYJaUXcerqCLnBc7vPfs+uJ0GHHn4kVutuG00Zx7u1Wgt3OPvT5saG7kLrcQ/rdtEgd3XjzSNsFfLP//EJtdj1RQxX8IuB7cdUUYbFIrWr2y4C4WnriFnAbYS9RSKZLQWPWit5BGmud5Ishm+E+L27nxOdejxHNjby3JopE2Or6BYYNwBcw4s2NJS8q0800crW3WKGryIpem/+nSjb/z0QvZuTj562Ffi3Gg+BgsnHzdueCQoNuNb9oMQuSeWmzFy0yMfTx69bdHrJt1LXO28UoV+Ar0jj6A8l6NYTauN+3AsnuBTqts6+1uX6MvggljD1jluVe2AbyYta6nj+xBv7neXPMX1bCzJUwfxp0FaHLMxPazUOwaLM55tHlcDbG6moFvR+i/XSbNyuEjA7W8eo9jGjNag0LFHjrwZvSFXekxtJZBCqu5rXivhs619ao2nrgdJ7R9mS5z02s7OOD58Jfnk8PK3WaiaS1bicLIZ6xQtQitBXzkYYnN6H/sJKHDl7Aq2dEdDy5EX3gDLw95hrPg4KHX/DMdwXZiagCuouooVqSCM+8HYt6rZPkMhmxuIVB0cS/m2R2pqeL0qXigge+sXrpYizs4/LoIEpd7a0HRyUkrJp6hvctRwFRB4Q1WLVnDze9ak/e74OnPNMU9unCu2o5hSAe9A6dmywgqTDeji+K8LQZNmx3O4N0NT8viCfql99osrUhiOiqhsypmXABP9Io0gUXz4vwfY9dtMbvKLDR95hL8yYvW0JjFnqieFanjTmNSjwodj8zCHtPS9x+uwqKslLUQjPo61DBAdPRtSr61lXm839dAe9UcOA8Z1ahJ840YVYpzMPI2Yd+cxm6QceLVpsUdMXu6EoZ0d5LmhRPe+Y1a6m3i0mqyzNxzsn/0+n9RFzUhvHl2vRPnbljM8LeeVxQacx9nSAcvRJ2zB33SVG+CElddVbQW/IhBZAK+po2M4tkgNDpd5ZrkJHWicAcd/Ku9gAjcbuyZXc94ey9a6G3uHVrItai7YbX2UXRp7Wxzis0/mCA15PNmxL2FJPtT207i+zvWDfHUGOFUCPB+yTGkgv1lk2PeBE+IvZAU+axpyhgPNBWY/Y6z48JE2npzNTLebwKs2Cxl1M3d+u2UXbvTXCFrvt4Rvz+Okxux2YtZmwpfn6PuGxuHgRroXdjgkdbtJiFWbSwWxumIXYTO+67/9suSGmMhd7uQZ+Uncax9InIj+u5J6bdu+e0Yt78zptrTA21pqzTHRvssqeH8SgpKehEb3ExShg7tjmG/le/+lXmdtddd3HllVdy9NFH09nZySWXXDKe5RxTZs57UZP+c07M2onOH3PW6RpmK7VqCM8Pw583pGLe8tCqrNt6bMm1A7O7jY1NkKO1ZnkIs7WxjKnyMP60UjaOx0/d0q312AMoQikIGY57Sruan1hTt3WxJy/m7edmxIkKD/DglVPhr0Pws8dhUyUbP28z21dDwlqIrgZE968m+tNKlh21kEcPmoa/20z8E/bD32MOXsnDK/n4vjKLHXaFwrXAAPT60F+JJwk649aF1szUOmOhzw+K7mKXiX/P5UJI4v/DbF6E+KbjjOWum31yTWvGAyFY0U+0AWo+RFVgCizdbzoLiz6q4OMXFF7Rw9trNv7bFvKz2hK8bmD3WUk7UZFjpY/j6C1zSGPQ6xYutu3qviAysWe2nVVDNlUC5ldD/FpoXEftdxsvenjVCK8W0VWLmFmLWK11doWebLNrJpp4ASxOaqe18d7ojzRTywHe6n7YtcsM0p6iy1PUij6DJd/sd24XgZ7fmJ2oPBwvhrnuDRM2k0n7tUTMo2E4IOoyls+qUgQKE0PvTLL6MEnxElRqUUmS4nV5xr19lGRrP7ri5nGsXPZ/Zahqk9kdsiKw0dyl6GW3dNPZ+0z/oTU1bTw2hrRxmx6MNJXI9OXjxmiJ8Sq6wT707uP4QTEWxbae7oKLU+xIm7oMRprhuH5Dcf22eRzZXjJi3KnnUC3dO6rRdVMYsV+pZc/TBOPGpVfcVPda3jXd7mijteZZDXureAvWisbr6MBz8zsUingj6WWy3nZRE7PiRdQLowhjya0Cu+MIIDtn0SYMi3KEKgeokQB/pIZXCfAqIUQ6iSXHObd7P1HkFyvs/ePAbsSW+Fwd7eMtkVh+nemNXfCw43qzxkS7yJTsxEBa74eBw0kFra/gxp/enCaKc86TX7SwN7toYRPj5RctJoLRtqyzLve75MqftF3MYqab6d71NtmLVNBD44SRzSLUcf8dmTQkg9rc28eD8XvDejv0gfCC2GZBn8f3fRYuXMjnP/95tNb893//91iWa1wZ2LS8ef+8kZVgn1nZY14/H47dBU7eFc7YC961P5w5P3vMIXON4LPJ5QJttsGLXbtt4hUTsp6K+me0ZvdYiXvrh/GmkGxvVrAJ8VS6dV0yZ/Oha7jGpqTo7p7YO1B/14qoNWwuG5/vNxwMx+wBHzwIpnbA9/4Kf1prrERxErCwGhpX+01lwhufJNowSPT3+/CXeVOYXfBQBR+v6OOXfLyih1/08Dt8vA6fJIW/rZy99RagXE1WRpXWqMhMFjxtFkHW5qqRHyATgihN5GdzJbjC3k34Fyf5Y6RmFgFswkSbLDD2QggGqkS3Pkt43K6Eb15I5e96qZ6yO7/dfQ57lHxUh4/XUTB1Lnj4e8zi2LOORQ1jJq3x962su32k8WLrmB1kGmWLdQem8cYdiHWk0ZUQrxKyqRKxSyVCxeJdlSO8Sogqm/dV1SQDVLWI+bWItbFrc361vBUcnk0yPCPio9BY6HUs3g5bNQhTulE9HXHiuHjLwaJisGi2btQl32wzddCcdO92MKE6+VCWiRru7W84fmwEBegh0H2doBSDKDSKbjAWes+E+dikeBqInEz3GtL6lQpmdmD/F9n/d+xRL5mYOiaP4yfVCAqFxtZq97mdwYUNWmCu8wy1EfEDkZkMbY5vAxEMaBiKoDbeordu4YJYrOfqma+3NSNuYS/6QKeLFANx3fqd+g1rc8yYk18M0vGTcmAaoVuf/OMOz/Td9jy5c0yU5+JxR9e3c0299VNjho9nNeyhjbXP26zxppqdq61FT3UUKIyk57Lx3Un/O77VaUgjwRJhMrXPxwhe18XeR+NXIxgJjZivhMmtUA1RlYBCucYuQZTZAWWiF6uBOm8Kd1x6HNif7E/JtVZvbaKet/y6jiY2XBCas5gRETsp6qyotxb6Q0nFrQ+84jUvqYuft7h1cz8zHTN3sfXJz8/GG03jGHowgt7dgz4fQw/1Yt7e74VxuXe9GvKLeM1Ax5b5kQhzH49NQzq+RTAcv2dv4uE9/myXy30jNmzYQBAELFmyZCzKMyFUywNbP2g8cNtzIuw1zOwB1sKBnomH3Xdu/XH7zoUzgRtWmh5htxlm1Lb7zPkKagoKoUmaoVQycGht7zVPajiIWMgNVvHiLesKKhX2VtS7W9dR9CjWguygj7HEaVIPgK26/+R1hq3f5gD6OsxEyvdMTOOpe8CLNsDNz8GjG+G03dFTOggVhM9sIrp7BdH+s4heORt8xdP4vLTooUoequjhlTz8khH0hfg1gihrnbcm6m4fBgIjcuNJkHXvUuiGg2J+cmAup84m/Yu3nGPpKhPL/nfzzLV0E/1FXuz359VZ54kT/4U3PUW01zSiQ6YR+j56zzkMlnye8zx29+Im4JnYJb8a4XuKffZYALv0w183wRFzErd7L4zwImUy3nseKna7nwX8hfoJjxVW4+3epYnFYC1CV0JU/F0M1CLjbh9FqFgMq2fWoR5bizpkDt6ec1AqQnmKeUHE+kChCx5aqTq3+2ajdTxZjtKEeDrUDAH7PzcEe08zC2qeQsU/ym7PY6AI2nqdhxp2n4V+m4afLYejppt8E8kFc46biLx4jsnHTZCpBwPo6kBjRHtfvHimPNu/mKR4ABVM4qck070V90qZGOaq878s8cO9ds8tdo43tgjVCArOF9zot2FfKuYEva6vR6Q1I9pMhEZ0NnmUjaXtUMaS2qU0pS0k1txudO7eLWMV42GQF/IutiwFjEhusDgQRpphFMPaGP1rkOSC9ZTpCkNlfqfdnqYwln1N0mE74y7AcGhC2zKeW2QXY7q8NKFh5pwTO0FttGVdxuKpIYoiIg3PaU2v1syMq+WPVPE6ikSkVfU7PAoDplNJvxbT4JplUUtCB0jrpTGJwfYk67bsg1nkrYVmLKtFeIFOxnDlQUF51LTHQgKe8YpoLzsm2G3AJsJ12Yo+13XaluVvwGvJxs67on5rZWu0Fz3x/Wy24Hk3AWNixtXeefw8RoQfiLP1oII99oi3rMuVzV53NHX1nM7o87OJaMmukHcXS6yF3iY8dEW9XZwgvve1Y72P62h/8Ssw4j5Z6FLpb35CwupyhBgHtQpGrLt9OpicTHa087R53qEmZjoymXlBWe6r1SpPPfUUYRgyffr0MS3YTkk+IY/taYYCmOPDaQcZ976iE+ttj6tFsM8c+PAM+P6fjRv+YbPM61bQx/eh7xH4Kg7T12a+HZkEdst1vOVLJcCrgj+lM03MkbjYq3R+Y40wJY9iGKSGMk2y//x2dZqu6HC/h00BTI8DUk1hTN32nQEfmAJ3LYfv/ZXoxb1EywaJyhCdthvRPtPNAobnsczzeGPJg5IR84mo7/DxSj5KqdSNNxkd4kr2lmDIiHcv0omQV7Gwn4XpvEaoTy6TsZRmlqNjD4qlq+GnK8z7j64wmX32nZNaUm0QnxM64e5+ENyzwuRBOGYXIt8n8hVR0WOp7zG1w6M7XrL2FGZyEycB9DwF+8+Ev26El85J/pdxtwcV6iRfgB34f51rrhOZLTaKNFHViHkbakAtYqASMSOIQEfGu+D/Z+/Pw+04rvNu9FfVvYczYTgADg4AggRAcCYlDqIGS7Ima7AlR5Ily5YsyWO+eIg/D7nXSRzHNzdfvi+2bmLJTmLJthTbGimKokRSFGdREud5BAkQIOZ5xpn20F217h+rqrv3PgcgSAFQ/DwpPs3eOGefvbu6qqvWu9a73rX9IObrO/Xan92B+RiYc8cw3jLuhAOBjVJVuP9fpRa9dx7JYw15fY0IE13HhXuOwVWLSmdaouKJtcRwrGZV0D73OiYGWLUIf/ZBGBwIH155OGfRRk5Pk5h7E77fh+/3gLS6yIJBBJgBRkIaQXQYgqb+gAL+edBLuY9fEmj75F7XhSpYlPjO0zgze4Bg5WddqQjBHacV9OY+QD9H64gC+ZaokdQJoF5El/e47oA+66mIUqhPVyvuLT2Cq0WrbhCxNVGmEb33S4C2F1qmjOh0ovEb+tesrKOJaPT1lIGs/jGMR8tDoyqIZ8qpFPeHpoWskvLR71T6MRnV0EdjFikc+JsFzgl9NhjMVBs7Ol+frdDFdBBqE1kA8L0+jwhy53TenKYWK/MUzgnKYzNwPmX0MlLtU+cwuce0dc+wmZZkjaUxbap/swJ40jqkqSbvmd7bqPSlEDCkBLcbgN/q7x8lqD+ZVgWJ1ZTBMTRHfy4wH8f5dDozjpc//wzKSmhSAfTMnT8PvakExdITHsW5RIur/TzdLY5t/P7otImaROOVa+/PoYfe8a7Wo09QR9bmcHaVz48OqR9Hy8PelEkA9qK28ZPA7cDPAK8VHUcnqtWby0trQfzv9qO1k6bcP/nkkzz11FM9x/PPP0+7reWE3va2t522izzVbWBo0Uu/6XS0Koil8nraQbPeGzVuJNBM9FwPAD+1+u93roA7dmleaU/5Nw+5aL3yYFx7F+j2wAEvtLyot/BoGzsINrEF+Evid4c813g9xuj12MxrVaKw4wvhLKUR8NL3wPf2PVoSk50QoQ/XUA/9r1kYqsE/WwVvmI97fAo3Cd6Bb3i81Wjs7tSS1xOW1hNMLcHUlWJvGilJLSkXkh4gX7muYZWrNl1flK4zqNGAwPxgzPVsGtK7eRDvTTWdwAs8URH7A3ho9yxdgCKSH6n2XQXz8vgB3Poj5P9sDb6W4BLNofY1yws1y9qahab206YWa62mTySGZ7ZshQvnwY62RpiiMF48JETrw2W9pFrsyYzvK2ySO6ST4zs5kjlNH+nqMdl1LMkdJneYLMfetTOI4YXNb/1BTC4Y5xn3wtEgQli124vN9sdI+xIRfCi7KBW6PSKM7J5kZrCJGW7o9ExtAS6GEsN0sGZ8OKssIMiiQTicVQZMeifoGelY+V2FKB7A0TYyT6/3KDAYgXqoqhGN1xoqjFdQ7oOxXSjdN4NJ2+7LzQ7HU89uOjN9jN8dW9eXgL4KBOcCujUDzs12DITmvZAFwygC+yK/HKUxRgpjFCDKTvXw9oNeoJAtngvQQ2+fQaPZ3b7P8Eo1zkSD/a05+jcjJcjvoh8xB3H/lbfqYlAdwxkHwwHQHy+PvmErc4++85lbT556ZmPPv30FABcl0ER1CDYKnIeU5T1nOtghU0Y1DdRSaE5GoVupROdfxn5+Cls1wlnNRYbeCH0RxQ4R+TTaPllIxXphH/bGZzEv7sNmDpN5lubCIe+hsj6dqb0tth4gLyUI3BH6tZI+YEcJcE+mRdOmB/RSlq7r3yJ67JbT1OIcjWycYmyBp9DyfP193vDsxjnTDCJbdC5QPFe6YNUpdLpbvKf9OfS70Ptfo+ynoSLkGPtW+Vm8F/Hn56KAPo5XVYfhlK6RL6PFlN6YRpGj4/nHwPeBP0LBffxdnPv/u53e9rJy6GN90njEPPpf/uVf5jd+4zdO1zWe8tYYWPDj+eL+1Sb+bNrBSL18X3zKGxVQW7MUvPiLR2FxHX64vwTyMY8+97hcVBUd3ZidE7wXtgichZAi2GlHMjCIrZSsM5VIL/TRmuop1kEWDfeiSxLA/Ul0P1oJfUwFAdzRNvnClDx4zUmDU6Pq0Dg2pXT7JHjXXzyMTy1SS9haT1nR0Fxy00ww9RRbT0lSW3i8i5tbBfXxHMStzFS39ARLxdMt6mU9QK8ndlaeVn8eswCvGu+9ES9Kjy5AkUtfzZ/PPew4hr9tN+6DZ+PnNXCpxaem6POzNcu5NQuNFFtP1CmTQJqog+aFXbthQROWWNh4lJh7EQXxjBOs9wVVL6rFZvR5nOX0bv7SdfiWw3U8PvP6764rgP107ljkPByextzwoqZOACbs1Oa8RUG5H5Y4zyEn2FwFIk+odXCmm0ej7F6KMpIS8s0X7Gxx8JxRdZ4lBhN2dUksTWs4Zqrz1gRQD7KwAYdm+jxMYe5xBvJ7+55nKb5a8J0O0tRVpGOMCuLZmMpTLnMLKPPogQrdnhBRDO9sVRwXFer0hhe2nf4+Vs+xdaUEukWo5TjWd2pmA91KX1wAsrno89cVLY/+GPCfgUfR32eV32ecSgdV/7WFF7HUXn/9qGorrFKjmgJd3/sZhGVN9Mil7N+jaP8eI4D5+B5OscNirvskaG78QL2vH7ay8RnVcChKMZTzrmc/PwNtw8btPf+OZLAqqJfwi22iAnJF+dWpHDugmblh9aRWMzSznBnKfVjis/tjQPRCpTIPJfCbQSnjq6nSlYXEK2PLBiYbmcdu3I/56k7M423MV3fAtgNY51nkhalcyJzv2duq+8PpbsdLJ4j58z0q7/QCvJNpVUp3PENvDv1cdsvp7HuVsFjtv6AR+ldROnZjqbqtm7bPmT8PvTZp9VjM7CpEPcdp3gcLKjy9tlNUuIdy+04qrwutqqBbFcc93pMI6LdU+lZ9PnQMz+yDGpk0Pc8RcFvf+27mzNiP/7uV7aQp99/73vdO53Wc0Xb04IvH/V3MAfVUFsdTRvuT3jPoLJ/JYbA+G2hGpA2lCz5y6t69Ev7+RbhiASwZLOj2khlcYnAZOGNw3hcP1TYnWsZGwB4S7GgzbBiBoh2+tzC2qyC/lugD3HXQTBSYSO+CKS9FWpvD+FfDVMiyDFlYUypgKDVTD+r0hEOuWoZfv1NT1BPwly3B1xN8atmcWJZHun1NxfAi66AqEDMrohTvNQYGFdDbJYM9VKhIQViCeoFh9qZReIHjOFWB1erFcNEheL6t4oZZArfsgKcPws+co+PnBHxY3nMPk134xlb8O8bJVy0IYF4j8y5NaCeWjXXLb9VTTGILmqG1lsQKaWL4yDverI6CtYth/TG4bDFRGM86wSQxUq+2+GjowiFgsK+Pp8vLLcGhIV0F8hI0A6SrYoA4Tyv3LN98DB7djTl/GeaqBdidRzC37cQ2DeasRUHE0LPIWw47j3OW1As+MeVQmB/vpiJBW8EFUC9OChr9+K4jbHjXPAi55cbGAwYSy6QFNAkESUBsKO22qAZPV6Sq+3PohdPLJe0DNZ7QNwSZEBipI0YNyma4EBuK0BdBXUql+1lYt6gFTigx1gc8gY988B2nuFN97XhgMHMK6OcCuP3rTGJLHYD+z5W+qEsA60+iEQ/QqMd/AV4XjWMTlgxzCvMS+28+lKX2CpX7Sugotur+WEu0xFvf5xT5s9Ib0fl34fffB/4CeD3BqRH6eOrowOW+03NuZbCkNscYVvo5UAvhpTMPcqvtIz/XO8+r8yWm14mHgwiTIqwkmBResC1I5jVKXRxjoJkwnGccRsu6xc8s9/Qz2btyuapS7h0anZ+H7k8FoBftVxLORRWXJ/eoIz7RyrB23UE4Z4yFXnPrD/hyb+un3Z/OVk0n6I9UvwCcR4V9UAF08fXJtCrVvvp6DF1/q6JqZ2pPPF7+/HbUiXs+szUDPvDBdxy3jOBcKQUR0PeLFp/RdEHoAdvxO3dTlqyrXm8Rra+sbYUTRyraCagj60v0OgsimM9DP89kq/azeI5QDYjvV973HmY7kE52Pa86KdSnf4Y7+U+0nXSE/rbbbuP222+f83f79u1j3759c/7un0orSgVJpfSCV0rgqSinU+Sa9qDA8JlTXRjqE1eK8ze1etQq58TC+DBcMQq37tTczCiglnlVgHdeKcxdjw9OgB0CawkLSqdNMtLoWUhNhdsV6U2FbRrciUmWkwtUDWvvTzJQUem3R3NupkSYRJiaNkwtaDBpDRMGpqxhJjXkMUrfSPAXj+N+9Wz8a5q4X1uFXzOGqyvIfbaRcHY90ZrBtYQkMA+KEjDVBaE/Oh+jgCMpZtr1ROeLg3LT6F+kCiMojnE/5V4AU4c3jsHqJXDBqKr4L58Hn98I39+jlPhOpJl7uG4TnDuP/LVL8Faj8j6JgN7yQt0yVE8YS62OoTUkiSVJIAkR+sIFfOEIbJoqqyD4oBMgYJ1GOqJ3eBHq6Z4rgnGqGdwRzCugd0X+vHQdPnNI7shbXT54725Gnt2HfftKzNWjmDTBnLMY+wsXYg5bTKuLDQbdqPekDg6HXPW52BQ/jiYimjsfyxO6kEcvArsmmGrWSRcMqvMsUTAflQ4HE8OUMRW6vZ69MciCBhwM3rW5cuhPe4fLea66GoHS2nb6KAxq9LNrDAvi41YNH6HGegT0LqYS2DJKD8CQhU4fUOwHZ6etHQcMZm6O+uxzvTYqnhcBfb9Dl0puqZTGWn/E49bwnkhhjHWXT1mba4/LAlGyH8j3pxjE1gwR+opzwKPzv4hOhnO/NXELvUZ/jD7/qK2IzlVZcbFNZSqIWnhwTa9DJvYJSspAf7rYj2lVqYKkKk19k8BKgTqaP5/MaPUWmmlv9ZpGSrPjaevmVUTni8frx9QfoeyTUOYPQwXQO4/xQiLqlI57rjlviYJ9hwYkLhzFomB+3MN+76kK+56uva2/xQhuFdQTvnsDCugLOjalTXa8SPVcbS7QGO0WgMP0mp9nYk+MTJui3+E7nwYuo7dM34ny52Pr71s1XfBweF2dv1UT7HS140WshV5AXwB5Mzfzop9yH22yVShLJdpl/aKKZ/o5LZ7Pvmf13Mp7/hNwaeU91eO4nyu95VojBpsR6PozV03kn3I76Qj9n//5n2OM4V3vetes3330ox/FGMNdd911Si/uTLVYgiEecYJGYNcwKtzR5EdU3g0bZvjS8ufTAdD3IGh6o/S5KSLVKrBk4C3L4K/WKZ36glEFCbknzy3OBPGsIC6W556dIqwMm5s9OI1ZOVB8ZFIBuVGUC/Raig2lbml2HDPo/Yjq9hTnk7gBwfBvC8x4oQV0WjmuZvAjDY3QG6NGK0AtYTDR8l3iLPkly/AXL1NAYy3eGrq1hE01y+p6golReXpLgRSt31irUmQH6jDtdFH1pTCeFRWRq6rF9nu5fRzf6k5dBVgHpuD8eRSCf7amWgiXzINbt8O6/fAzZwM5fGM3JCC/dAEuTchTiwt583kA9c/WEs4NUbNiA0g0Qp9awcaBtQaWDqr62JZjcOFoEaEn5NEbJ5iwEoxyAnreyQzxSTbJvTovgiNKOgHQZ16F37wCXfvgbtzYAuz7ztW0j8RiUotxHjuvgV3RxKyfwlxRV5EkLyz2niPOMu484i0+gOE4PMfz/p/W5kFcyJ/3UpxFgO0d1i1fzNnGYBKrkflUX6vKvWG/CFijIjgVcUeJQpJTGSxMenfQ6DA4nbGJ6poWwLwXkIk2MoiW2AOOGFhV5dpHfQ5gCE31KMB77FsA9RgD9Rq0Kjn01e8/ja0wIioAtWjtHOoD5b/794YqCK7Z4z5A/YZRBLzvpDfi8Q5KMBBFhnKZ7VN4Ra3ar2qfu45eFNjX+saMRlKmFoTPkuB86OkjsyM6P0Ul37LSxx9ZSKnfkqyuy90MBkMH+7VVij6F37dzGEjLz6yez3CbswRaCDxsFVhDqQFjJ7skQ2EfD/s7AM0aiUA791oVJDrmpaxacyb7UwW7ca4IGqFfRR8g8hRg3hZ8Z8FQw8aMiZ8/C3PWYkxgLy3zwsGoE2Bm7+Evt7lwzfE2FXnRc9iIsT/VvjnUx7cdjVQXNgvHsV1eohVA11Qi9Wj+9gJ0Xx+nt8+FmXIatggfnHhVdk4/oK8C2CqoPx6gj9F5U3ldTReMTs4yInz6WQjVKHX1NSigX0FfVJ65+1h15hgp50ITrWO/mXL8XGUOu1O1B5xkq0bnq/M5FgNfgIL5eA985e+ON8+8CB0pNWIiF8+gAqkNAw1ggNMsBPtPvL2sHPq5mnP/9KQOxla8uuffbaGojTsjITIfvUM+1Ff0+r5XHKnvAfPVQ6BVidAXRqApV616JY8+RupTo8bFO5bBHTsKYORcEN7KBdfVaKd0HTs7noWZZ5EI7D5CsnUGO5OpBz/UhK5y0y0osKCCgZOUhV2nSvdSXn5hBLzUPQiGlENZDy2gLUJnokNrPsxYQ8sYZgjiUEAngW5dI/SumSCNBN+wuHpCXtfzpiCAt8Sans2w+jo2E+i+PZGYeM9H6jDlyo1RpIfaVRVeqQ5j4eWOVIWYFlF9fcArsDZGx68exvKsEfiVi+DqcbhmO1yzu9jpZdcRXADzkmr1Ahdo90/XLJdU8q4sGplPExOAveHTX78h9NPChYthwwR4ClE862JNeq/gnrlZCHHo5sIj4kTnWDscHYe4AMiP0yT3ahxHIcCuL8F85pDNB5F/fAp/61YOXj7OLW9YCo0aNk0UzNcU9FrAXDSqeZMihdVQCCCFKHh1jM60N7toTu+xd7FcXSxd52HPIZ46J2XEVuj2sXxbYhmyhmljEBtArlG6vY9pNsPA4ZlyzhU59JyB0FP5neV6IDCTI4Ol2NiUgeEKno/PFGgZ8JnwuqBJmj4c1khVkby6dqJf+OnPfv309jF8z6zWdfocV5yffS/KVotbbcXaK38yKzLpgUsq77kaLe9UBXGRun7KgZdUXmRew2jQ67CI62Z/5L6e6n2pXFI0cl2YI7GPleKs/Bxl/6IzN/bxlLT+5yFe37SDgT4dhNj694fjla47Q7j30//9muJ1NeJbNayRUuHeiOje0HLYwZQkOurjsKXqbGt3Yum6siNxKztTrQAplf7En79ImT9vgMQLiXgSB0mpBqh729ZpzOohbGoxyxcGnRhAhDGRQGaavSe8nH3Bi4oLT3mY8DAhekx6tSPzOZ7H/uh8fP0imnK0FF7SdnmpVjXhqpF60H19f7z+Sr9P557oObHC/asoQWxKGav67P+45rishP6+xaOaLljt25nY8+N39OfQZ+g97ylZZ3pz6KutP92iaqKuQR1b/XvEj0NsrpoSE68H1DE1HxXA7XGq9L2/v0kA8xGDTYniramAu2bC76Jw6v+O1B+/nTBC/+KLL7JpU6+C8G239RIBt2zZAkCtVuOfSju0b0PxOqtE51u+9BB5QjDVlBM25rYMvBIHUT+Ip3I+RvD8m95VCsoofd1Wk+XK85WL4cl98OB+eNM4ea7K784YvAtAyXl2Zp5zncCOQ9Rv2KUL6G17sPNT0vPGlKINEAEFffaMsVBLGXBCRyrGe+hT0a0T3Zvw3o4XFYDyQga0WzmdkQE2ebjPCT+ZC69qUkTr642EemrJnQ9iYmGjMAp21ye2KGlTeHwpyQ2zvFZVpwmVjg7VYLqL9fTUoI/gfhG90euYp1W8FgXLUPmBAIe0EgQLGuWYphZSgSxYV69dCpv3qvpJaG7dfvLLluFrFl9TrQBXs3QaKc9aw69T8eoSaPepJc09JIZPvO/tpSv4gmG4Ziu812OcweRedQZEDZ4k5OBHnYCeDV9me7lFgrHfLWn8SOhb2JklUeeTqexc4rxWZ+h6PYKqfwTzfvNBuH4XiYV0BI40PUMh1cSEwxqjfbAGe948zA/2YA9NYxYPY7yw1An7c4GaRvt9zf5IkZhT0iKQD3T44vWuCXwtZc+iIYbDLm+ScKQWEsMIGuGOlrhAgYzFGGS0iTmUhUK1FYBxurmG0LOeFZR7AT8FMtTUOKExTGKYF8JHhTCe9ohhgiheYB5I+DAf+gfos9mumGYVAY9PfPjdp7+P1e+NLXdQ7wO0MDtSD2UOukN33fgxIgXNvj9SHymkvwN8m/KZzEUJWtXXJ021O147HhMhdxoaqbbjRUgMuk9NdXs+o4hk0mv0bkUjT6+jl04a+5WZuLT8iFGZ/j5B2d9pyjr0sQ9zjeUAum710/fPYPv4L76neC3MAZa86tFsE2GNqdDTp4Sk2eghHkSA0W0YsnYO8yqO+R9DFyMA6In+hWMLpcJ9AqE6i7LLkmp6mwhsOULy7rOxe3ZiD0xjlo0UDuxFHp6PDKlk9t52Mvm9XqSnIkO8/xGM1cPz2DRCo7Lv9ZQXpNxboyDeSdsuJ2hx6lbBI8GOGWN2LXo4vXvi8fLnt6Bg9zx6o/IxMPGJyjyfq0WWRpWFkKC16A9RitCdCRYCzGErhdd7w+8XU5m79I51tRljMCKacmBKvGHQ+b+BynMSvivuA6e79GC1xTkslbNHAf2rgHtQtkSDXlAfj/6WQw8Gi+KonrClGGVreQPW6l7X+HHZcSdoEmzoH2c7oR1w77338sUvfrH4t4jwqU99atb7jDEsX7581s//V20uV4AVPUOxjmJRMggV7Lkd+FmB11JSP1KgJq+Qel8xfme5rmLJNpgVpTfWILWklAutVc4i8M6V8NVt+FctxC9okBujD10u+NzhnWd3Jly58xjmll0qFlODpAPJuv3YC5YqoK/U0ig9+XotBmAwZZHT+xPV7cOruQJPc/bf+1DCyEshftSdhgMLmvy1wKQ1PIDhjzxchVLvs8SQpwYRSx5ExVz4nTeGjZQ5aHGxr24Qs4zBWd6K0IZT2DsdbkGo0U7YOIKHf28AHP1ebgG80znSkz+PwIEWjCX6XdEFW7P65nixmYc3rIAtu4rp0XnNMvKagvg8teQ1S15PuT1QkSeZTVNLQnoC1rB40QKlKRuvTAALbD8GaxaqUJIPAnmJqgWT6ubzFLMX4ZLCFka5WmYv92WfoyVRs6pKVLdI1IHwhJx5XzoDAqj3mYrgyU27FKg2QKZhcPME888ZK8F83eo1B+Br6ynmgnmYjS3sIgX0i5ywu4iEK1ugSrs/k5sfEHLmfSGEJ86XtNbtHVorxhgwhtRa1bEwunOJAbGGYaBVAHg0Um8glq4jlq6LVloF7J4KqzwXfVYLxyY652qGijGt31vMk+kcBhtIWB8mjQL3qiiXCZc2DEQFFoHCUQGUNPxmTQUe5+jO4tH5r7hvIqKRbilvnw19S4oLqv5B8YcB0AezbK75VP1RBPS5V1p6ZR9Q40zUCRuXDtTwHUOF4v4H6kxcDkV+eQTzpySNpNqvasuk0sc5+tW/htZtGckOnxVBebXMmoT+nQNcCfz/6DP+TUm7j871H7l//XtvDAMPzVGHvp9+P2R07Yp/D2eOBRPaksULitc94LAyh7YIDAmMBXZZAtjJHDOvHobK9Pgu8rSG7/gen4eE8TqTqniFU6vSHwFiwdezqIA3CWBeKFLH8AITXZgAe84IdnwAsz/DjhMEU2FxpNz78jsjIyi+PtFjJCJabtGXgD4Lf2vQNaOo0gOkIiTGFOkE/Qr+Ai/fdjlBi4Awfg5SgvsqoO931J+uCHZGXxWG8L1PocAv6T+M2tcLK/O8v1UdFf0shIWUAZeTAZKnqlWdUFW7cBdldL6IylMyMOYa2X4wH9+3hlJzJI6dq8zdUyqOeoJW1QuoOmcFLb94OfAAWv54MeV6MotxV2mxDGu1ZGubct3Pwx8lJrzXKAb7X4l6L06gm88ZxDqT7SX3yViiLhph/aXrYvm6T37yk2fiek9pyyknUjy3gMfROop3Ar8HPCLlpIvve/m0D+lbYcLft4LxE3PzqqErA8VjH+vQV/PoU6sCeecsgAtHkLt36wLqBR9Kf7lcYKLN1T/czXmP7sFcsQQaYLshAn75OEnNlvnWiSk3/vD1xXOT1qh3FUhC1ZaXk2Me+rCxhXPhtZ3O2TB/gGmri1LLwN0YMgMZhi6GzBgFZYnFJZoXHaN5m6iI/VEunsf1cFeN0Oq9Hkqg1S293D6CejWOFocOTsTu0OeVrUYLqkBnfxfGhsvvjPc6liWMwn8XLIVPnAWXpeS/tpLsonE6NUuWWrKapVtLeDq1/G34/n8PPFfpc9RCKJ0zppwv1sJFC2H9NHgKuj0erAfrHMZLoRNQGbIebCigoCTUiKedK9BqOZ3Lsfxe25U/n8kDxT78PkTlq04Bnzv8HTuRAXAJ0AEzHzZctICBegL1BFNPMLVEReMSU5RcNGvnYTftx4gH7xkV4XAw9AoATWlQnDkzNd5ED66k2/soiuc8svsgh89OGAxhMxMcFVhU/C8A+knAW53N/WXdZLQOB2d6B6yYi69cTCZSSyc9TIpSSifCMSkw7aWklxaUe/23tDr4YeVqT4fnbV6MzMe1hTJCP0ME86YA8YV/whBqgWdlH6vnVziiLkTbpnxv36ZCX1v9wKb/6zq+jNDHNpd4HOg6DWUZuMrn5EKPoR/XlS0o4B1B17cn6KWuOsoSb6ekVW9j7HPmIUlm9wtmg14DNE1Zs53St+R8CTqjQbgFjTxdhAbKt1Ch3EtvH3/kjp1o72327b2xVcewllbU+ysXdMYXE72HscRhCer1Od8omj8PFA7ppNXBNmu9VOXwP1+rqYYJ0Z7r9QeeKXprNeJXBUdbgLMpQZ9FafaJSOGULtLatk7AeEjNWjaMPTDT45AfF+GoA1sRxut3zJ+o5VDk+bYlUIF9SROOAl4RmLSlAoB6xqq8vxspbZdCBI+XH52PLToGDL2ANyrdS98xy1F/ilp//nycqx6l28/KnzeVwMQJgFrsT9G3yltjeb7+vh0vXfBUteqYVkH9ThTQx1YF8serXtCfbhHv0RrULpuid5+IbNUztQz1s2iqJMAd6LNaTU2dayx6Pi/Mk+j8yVAw36Es2foYJUaLx0ulGYiobaKpMXrMeDl94nq5V3u2pbaudN0J005PVzthhP6Nb3wjS5dqptunPvUpjDH80R/9UfF7Ywzz5s3jvPPOY/Hixcf7mP/l2tC88Z7ofEZpGOXAd/refxNwVXhPN3iJ6kbFRk66VQ2JqoE42e1NnqkaEZUn3hiD1C04S0G3jyEMB7xjBf6z6/E7J/Ar5+lD7zzyzDF4fjf7Vi1l2RuX0myksKoJ6w9iLx3Dnre0BPSKCBXoUd0QggFeTxiZCaXbwpNapeedaPpGBfjcS3HpHo3W+3aHJaMpxmt3GtbwZhPGwxi975XvqS5oU6gXv+rlrnq454xc9Vg1lIbpUAKTeZE7b9DgdozYD6A0ogOoGnxcoMSUBlUJpCo3Zd80nD3SG/mJaRSeEnjXLFyyDLl0GR1r6NQsLjUK5tOELLXc3NeV24E3VjfExGBTC5nnvqfW8caLLip3hguG4eYd8O7lWGeCoJCA91jR0neLreFg+Oy5WAjiBRP0GjTKXnlNtS+iZ1c5G1O+N0bogwged+/B751Efuki/OEpOpuP0L10Ec+tHOPymkXCQWowXvtoE4/JDXbliN7anROYs+ezWFQUL6YClLR7U4zXGW2BWVPmzQfjee8kJIZDS4ZVlytE6G1FEM9Q5piLBR9p9yEVRwBGa/D4CXLohROHnuZoMRrVEmg7Icu9ltuTQHtLDLk1eCcMeKUJFgr3gBzpIGcPgdFnNDUR+5YRwmiwDqN5d8V3M1vp3gxYmM6qbyr6d9/Dz/DGn7ziZbEufCXa1iFQ/MJnJiZE2/TjGQhrwKyIZRst00Zl7e5fW+IlxfBJFdBTGtNzRe+2oIYcwGtQw+ZdVKLYolEadQic4ohF7GomqtAf24no9qBrWl66GLxIrypz5fnbCrwN3UevQPt3Hr2gPrIQfiRWzfH23umQGjBL2d7oG6rfV6ukfPRvdGfIbrv3gad40xteXQDGaNxG9owIPCq6Z23JhYsJOfRHOyQrhrWbhUNN+yYjaeERirepCNacThTU1zyhBBe9Tq3NqHp28RhJEPV1IU2siti2TsGqBboXLGtgHj5c7OWIsFig7YVpEeYJPXTskxFO64o+DhkVYI+Wl7wD+Fm0rGTMB6+JUoOF2dH5aLvspU/h/qVsl5doc9HRgR5HfX+fYwT1VG6LkZHQnz/vUEG8j9PrxIj9rVHO87laPwuhX+PoMHM7LU7XVD5RxHoPZYS+mgZRUO/nWM96wLyU/14Qjq1onnoE086Ua+uZEPstns++Z7WF2sVno0yJY+H9L8WUqH5eNTXjKTRgBSqc+pfA66UUSu3K8YUAqwJ7mZT7aYLeowanQOC82gfntRpM5suNuY+deqYYoScE9GvXrmXt2rUA3HrrrRhjeM97Tpzf8k+hJUm9WGyqXp8uugj1e0bfSZhAaNpzF13QU16GkRGtxZ6ZLTCTad0mqBiBfQZi/HVilXpfIOLKeV6D/E3juBu24M6r4xcvxG85hq8lbHv7Sh5eNMLrU4NNLMmqJdjzx7E1S5oabBTdi2fnCg9+D+Y1KQPeM1N0RV9EI+CEi6aAuAq91UcjVpCjHdqrh1hpYLMYPm5gTQAMeQT2otdQpRhGUZnRcPR48U3vhtbTqsZ2RTuA4TrMKHivqtxHcA+6MR6kd3Hy4R74WdHR8IuD0/CaReX3RQMyseXuXyaMkhlDx0JmDVlq6aQJndSSGzPrgX0f+hEpusCloKtWYpiYaZWOGmNg1QKY2QG7pzErR4oovZ6Vdr841cW5jWphzaLnOcFWQXmMtr+wH57aC1eMw9qxEshHYO/DAFaj811dAOXeffjnDiGfPA8ZrCPzFutn1Cz70oShMC9N3WK819z54Lgwucd4izl3DLN1BrNyPou8MOU9ubOkuSC1kDdpzRmvRS9eiIJ4RXReNG9atrSRlWNMWcM8U9LtVRiPAtAPhc+aMYam1XSakn5vkNEB5bhJZd5B7xx8meZaOxi/Mx1PJ3N0nTrjABJjSK1RB4voczLoK9E9Eeh0kKY6UaYxDMf+2NmB0BF0voE6LQSKZ7Sk3FtleBQ3thzFickZXk6rOitaUuqmxE9PRZ0P1dzSwcoaUHx3FxWBi784IdgNv8t6V8lqlKM/ercVeFN435XANymN4h7hOFPm8b7idryHIpMyXaDaZkWzwz/qVo2byNQoDDUpQb1RJ8oeynJkV6G5lx+hNI7j2h//5hVTSvup9nHvbWc6+arXb8zcbIShEKGvPlvV8xlok5Mz5CI99NRot2QCjyK8IEJT4NPAv/XwKhFsu0M6ZGcz7wBja0qPqC4VVIAepxbozdX8cUCRR5+BKyjBX8ybtyFCX5SsEw+bJ+CDZ2OMwS4bwhz0mNxpZRSna1QT4ZCDES+INfp95qUj9F6kiCAWqYIoa+aPw3u+B/ylwBvQXPrc6PsMpb1StV02oYGBuWyX+Prltn6QG48x9HmL93au86lsPaXqKq83onb0ambnz8fXky+xnvf3LR6LgOf7+xbGV+fzqU+1i8tJkUteWb93o+yjeH09tPvjfF506hRgPownqHN3E5quUHUMRcfumWjVdJiqkOtOFCgvRB0PMUIPpTNlrmCK9B3xs7/b973fQZ3aUVtFYySa0tLzedFRX1kf43UmppStcgaG7CkC9TH/LZdSU6oIZgVgX0uU/Xyagf1Jrxmf+cxn+PSnP306r+WMtYkj2+k46YnOZ6jxMAU8AnwsvPe9wIXo4h09tB15hVTHnh0znGccDNbnBvH9RhPMVrsPryUxuGUGNwPyTBf/g33I2CD+fWvYtGSE8aAObhsW20xI6hbbSEgaCbZuC9p3UdqGXqwLYAah3sk5Wu0G6sl/SRpLMPad1wfRi4JDB0inzYbBlDdYwxsNbA/GtG6apmcjLTaJcDtfQClrUFkMKT2+cz4+PZ2r/HxIKcKm4wvKvS7AAdSL9FDXqvQqLUVGr6HnRQ34CWBsqBzPKqhvJj2HDKZ0mwlZIyGvJ3TrKd16Qm4Nk8CDwC8Bbwf+AniNUfARvdupQUOoieGn3/a6CvPC6Hy5YAQ2TGI8qnAf8xE9WOdZEK6/nzKlm5VGu3ucSU5g43742i54zsFXdsGGfUV9+YJ6H6n4Me++Exa+R/cj9+/Df2QNsmCgiMTrkbC/nrCwbpFGoN0nFhMcFiZRB5UxYC4YxG46ApljnhdqTjiUa0jZh1Df6TJeTtgq96lQuA+5/ew6iKyscQR9jMVodF4Sg7G2EKqMgH4qrA0SLBoJWhmF2OKxKEYm1UF72R3ORalp7Y6n03F0Op5Wy9FqO2baeu52HZ1OTjtX5nmRzuA1a14mBBmpIwYmDMyLD1oQ56gudUOUHn2BMpUASpG8gQQ6WW/fQr9++m2vfVl9jNTZKILaElXRrR4R6HeC4dADw6vreGMOmHm8PTshgN34OaXqu/MVUI/uN7tQIy5B17gaKowU35NLbyT7R25zpRZkvrePpu/cv442bE8kuyea48v+bkfLMS0O/bsSNcanKZ0V0VjNwvmV94veMYut5WEwnb33Vvfg2L9GqhO9/3Or59Pc3vPO1xeRp4JdWLFdPi9q/NdChOp+LyQIyWHBDtWK/Plq2oup10gD/a2IzlMCoDPRtQgO+kE9lCyVCIRSX+bPlwr3wOG2egVXzMNYsIM1zJAh2TsdIrr6d0sd7A20234QcSLfTBWcVqPNt/W97zuUtdejjdgPak/GdjkeJfulWrxP0cyI/x4Lv5+Yo8/H2xN9oC3H42QrPMWSilHyKd4Dobdc3Vz58xb46Xe94YSfX0Tn6QX3kXJfXn9vX0/HXK5usVV7EHT9jspi/Tn0x3NOWmNmzYH479Xo81DdJyLlXoNKp/9prUbT43WAAvpz0OsdJcQX+o65mBL9czG+91V973snFRa1lHigv8X9vFqdbCru616BfrVE+SuuWhavP0bnc69HtG2Pk3YquT+t4/SyxHG3b9/OTTfdxI4dO+h2u7N+/xd/8Ren7MJOd+u2cmzD0U2s5mhT0u1XAj+PKvB+HvgkwRajpHq0RYOPJx2lr+4Y1Vk+HQB9bP1ResoFUuKvI904NUrBzz1Ss/j1B5WCkwIenO9AatmI5bJUI5w2Ndi6JalZaiE6bxohAlrpR2HXmNL4pgFN8p7AX89DG3Lw5r4fEgzPoOoc+uQzBxm8MDTAaw2MW8PnjOED6OKWm5DiINr36sbvmUNUhpMRlakAayrnUG/YTHUxwyHnUFDwG4ylxVBQ0nsWIx82vGidEG7QgRm9kOG0b5cNoD5N1FKveciFzPsQdbF0EkMH1Q/IgRvRRf3DOhQMEv7UKLWvbjR6SoKKc1hffk+k3V84H+7ZhXnbMqyEsnVOMEmg3YswhinoU8VCa4LTotilpRTEeyLquYb2rd3wmwtgsNbnrTT6YRHMP3cI7tiDfHwVfumwgvg0gPnEMpNajtUtC+uJiuIZdUqY3GKtaJQ+gvrRQcz8OmbHJKxZwGIvHHPC8txDzWrFBylp96c97BRbH93eB0E89kypA2jpCNPGsDypROiDQwbK53AAmDBauk6p9uU8EmOUh3e4BYuaFUstzMOXGUXsCnQ6nqzjyLqObubpdh3PZ3CfwJsSuKxusamlVpPCgDWRct92ip3CujaNoVld1mKUXrQLMULvoRTDC9eiUXKjDq/pvgvtj7yeRIt0vChoFQFSFEK9DXXiXi26OeYiakh4pS8X9zJS52tzgN1Zr8M/6ihyp7xuXcfK6HU0knag3z9Gua5dgdLSL6ECKqSM0P/IEah4D6sGRybK3Kr2o/8rTOVFLdGbGT5HAVolAht+tYWSSp2g9ZXHUYP/TZSGWxTHy0xZPe8V9yu2OIbTDhp9gnixP9X7aFCnRjvvnWv9zvnT3LpSgvkYIe6g83i9CEcFGmgkeb7AWw2kHU8iUBupkxHJIqWGRTJoGDjS7Ys1qJP+RzV2T7b1R6/jv4+hqTirqOznvozMJ9FZKgJbpmBFA2qJOkPFY5YMYvZnmJUUtegXeeGQ6N/52mwGWrVVc2B1DptZ4Pwi4AeVv3k3wdFmSlBfM72gvmq7XMDLtV1O3OJ+0R+pHwjHfuZIF6T3EYlrZKQre8oASSpCw5z42oqoMbP7/QwqMl0AelOC+QhgxevGcKLSdT2Oi/DzSLmn0p/+SP2pbnG97gf1M6jzpL9kXfX1nJ8XmCdpsDsTTI8w3sP0+uqrlPsqi0nTPykf6vClP2qEOM57qZwF2Ibai6BR+k2V9/fYkPTuU4WJEq87HAtRR/80Gly9iNJRVjxbBuqVz3KBvRTXyCiwl4XPr6E4Aqu3IxW1m18ps00rPUkvWzULnvl+dmruIbe6OKRWA2OnoZ00oN+wYQN/8Ad/QKfTmfW7M60a/aM2YyxZx5F0cnJjyK0KrU0mhuuN4d+iD8YbgW+gOfQ/j26gqUQgrxOmxkmWUOgB85Xlc8op1Rt6c/kMiJjCAx8XVwNYa6inhrqzpE4niHeCu3wp/vmdeAeuCf7CUSRN2GQs760ZqKtKuE30nNQtaUNre/feIF2wq4ELAJNCfTpnCkJ0SRAXPfsvYVMHo1gZyFIEef1UG18DqVmWhy8bBB7F8AZDAWYz0dvT78F/ETXAo2HYT1ubs5m+c7z3GF1FproYP9jj/bUhkr2Ysh5olUrkPaFkl0b1C1B/oA3jdUUxVTBvKHYwYw3YBJ8KmSSalh7XCdGF7ChwPfAf0LlXRwF83ajBEP9dtMTQcTmNxPbS7tfOhxt2Yg61sGODWtc9bB4RqC9OmDuPPtfocuGNjAbVxUvg+QqoHwT+8jl43RJ4w5gKPkZAL+iitvkI3LATfn4lsnJ+L5ivWXyScLCekNcSBgOYt+i9sqnBOhX/s0koX2cM5vzFmA3HYM0CFnnhgBMu8qLq+TXbQ7s/3U0iOyN3xX0q6s8L+K1t5KzFYA1HjGV1mAcmCXT7xPY8e/NQcTnNL6/WpA8geP6AKt0Xu2f4Q/dSD2Zvy0XoZJ5u5uhmjjxzdNue9R3PXzlPF3jcGP4wE1494HFiyROL85rXKAJyrI0MBKcSatiMhtDg8UTxQI2gAQM+LDw9SvcDNV2AkV4HhUCn26UxcHKKJpFh1ZNqJcJTAn8S1uUfGsN/NfD6sPbEKFOjeh+7EdCHtXMusNu/J9YIgJ5iTEqySxm9Bl1jYmQyQZ+/1wDfAj5BJVoYwELWZ9C97CZ959iqlPti0Pr6Ve17My06Een2cWmpArbNlBGduM5eiTosfgJmOSw0GvUj6AT0O7cEjdAPVwE9c78GTfk40qveX96rl/GAvcLmRJhod8nr9SLlL9LtO8BnBT4icLmHBxHehXCxMdQmOtQR0lqitFwbRW+1j7UmNH1OK9gy0aAunPXqoT+tfevJLa/MkS1o1HWYsKd7wXqvgKeHbg9smYTVC8J+qvuZHR/G7J/GsDg45YVxLxwKoU3xgiSmTCeL/Y25sD4Y59aQi+CsivE60bLAgq4LC9D9+fdRgB6dURF4wNzsg01o3v1ctstchrl46bUdjZmlpt0PdPsB736UcRrHuYedYHSe9bKTQiApXFcjrDfHy0H2IsXfRm2HeHRRQP/PYz8D08J6IUVIvQdj6HS6NJp1xNqgDtgLRKOzwlRe29C/CcqIdRGZD+N7Op7S41HQd6NBl3kcP4ce+oB3mHOJCw4rgcRYFTpOLGuMYQeKB+pUgLWUwB5QsJi5kkEZb1pqfqSc7qpeQL8DYwfKvAB1GD1Cr9/zeCr3c30WqGNmLboHvkg5h2K6Sy5C5oTcRFaqCQr4peZW1Lh4AnXU/zRwNYrfilx8r/o/RbpiEBoxyUncHy+99zkemZ+tHxUBvhM9Z+6lP/8VtJN2TnzlK1+h3W73qNvH459aG1vxajodR9Z25B2Ha+f4ds4d7Zy1mePVYZBrwK8A11IuFFWKftxQT86TPYdBIUCrG2h/lbeGzaKDUkQmvR5T8cAwlSZMJSqcRs3iGgnuvKX4j68kv2qQ/CNnw+oxdtUT2s2EZc0U00gx9QTbTDDNlKSRaImzuZqJ3nwKQ5zUUOvmtCr9lfB/Cf843p2QAOJ7RPFEkMmcmWaT1eF7bAJvtoYfGF2E40PcX8fVobSeQ2ikp/Rq926Mx23V6HzhRDEwksKMK6IBSBmdN/Tm0MfhFNDyaEKpdA96sfu7sHS4GNc5vze0ucBGZI58C7gYuBSKuRkBfU90PrbE8pf/85u9EfrEaM7v2YOwfkI3GB/y6MWHvETPIpHZarG+LIE4S79hyugFXWThoyvgN18NH18FuybhM+vg+3tU0CwK6O2YgK9vh/etgLWj+FTzsX09QeoWX0vwNcveQLevskS0XJ1V8b8I5sPZrB3C7p+G6Q4LUKV7CZPGO4/k0rNpnMomgZLonMcV6v9B1T+viOE5QcTD9gPIOVqqcsLCwkoFC5No2ZPq9BgAJk0Qwwu/iGBeAJYMwuFu7y76MiP0IqKpSJ2cLPM9x32ZY97eQ7z50Z0M7j3IvZnDtz2uo+UGPSjWRpCWQ4ZSnT/GMGVU/Lyf2Rw3n8FwniLMOVMexVjFKiBZX5+88Jd/901OxlyL6uBFqpUX8tzjO467ZjIarZyBmZxGO+OujtN++VKsq+cbumFDjotMFexWvRXVc93OkmyPa1mVxhgB7+q+e/VqlKp+JPxNITol5Tr5ittce5igDqk0mQ1wj9ciPd9JGUVCd4jCwEYdFqvpjU5eiQqMVcFPAY7kR3huq3tutW+tXB1FMHtdrv7MoIA+quJXPyt89um0gyREnv7HZ6/tqcgTNX++rW/in4lwoYHfSuHSxFBHqE1n1EeMRvz68+eBJIXBqax00gckL5yEk/4krz2ujcdrcwnGCfoMxKifPgOCDWw567UCTQG8t0zBqsHiYbGAHa9j9k8VznjjhHGBA8HxXp2PcY+TWK2llStVtu3wMzmu7clbOTKTIx21F8kcLzjPO0W4CgVxnlJcOVKDC4cW5fN+CH2O1zK37VLF6eIFiXvKTA5TGUwHCm+nV027ALmV17Etpbd0XQ87AV0fW1JSlXsU/Pt+3hLKCieVsY5R0VjWL2qTOOCWEH2eyj1px5F2ctJORtLKSVo5tuNhJucvP3ut9q8V+tvxSm3umQu9e4lBqd5Qpgv2j+/paAWY7/ueSLevXmvUgLDB2S/tMKatTO2jmQxmHKbtsG2PbWvQMe06bNczHnDJ9sr3zUpV6bhy7rYqtO+ZvEL9dmoXvYK+9jvf4qfsQB20UDq4oOIgpJxr1W/2c7xH0DEcBX4KeIgSf+VecF1H3srIZ3KyaZ0jbiqj287pdB2ZF8VnKJj/t6iw3r8O/y72FOfxbYefCfe/lYdzpizDE9wjEekVhI5s1czDpv1w7dOwfm9vmmlkEyWml9l3CttJR+jXrVuHMYbf+73f4zOf+QzGGD7/+c/zhS98ge3bt/Onf/qnp+UCT0fbv+sp8o4+TLm1OGtoWc+dieV3E08jNdSSBJMarrCG84zheuCX0RvWlRCpRxetOieO0heb/VxR+okuLBvsNSKMTsYZFNDHDTz+eWogs5Y8TTTPu2ZLw/CCcfzapaHEm2GrsZxVs9iaUdpyqjnzSWoKCtCsZk0IWIeoaLRx6pYkz0sBq/D0BZPmxDlovkKzF908HCAd4cj8JmebWIbM8AYLXzKGncZwlun1eFcXsI0oTbPw4FNuhjEfa85WBfBUzgDNOkzlWvJH4mIcdLe9AvrDsf/h8DHqWrgaK4O1bwouXljZgUwJAmzpKe0HG9EYyNDF7Qbgz0IfI80+nmdF59HO/96/+LB6RVKr4hxxp794AeaJ/Zg3LdX54wXjwOYem1iWeuFAYnoX4tzj87Lkmg6I14F9fB+8fTlctSQkgwPnzIePz9O69z/YCw/uh58Yg1oO3z8Mlw7CZYshMfi6AniN0htcqvnz++qWJeH+ROPEQpFqYpxgE19G6gfqmOUjmC0txi9psE0Czd178BbJHd5bjWyfIlZRVCjvesEFxX6T6abdyD1JpmKDkvswTwTZO41kIMvngTEctZaB4HQx0fkSpkrc/eYTAG/ImxdjeiPYC+vwwlHCZOrbQeWk+pt7odtRin2WefJw9s6zaudBLnl6H8PTjgv2pSy7zOPOXhzouYKzhiQ8B0x6ZKipT40xHMVwXpz7FeZPHFeDgvopQnSeCr6MDosIFNt5Ce7De37v1z90UmPV4zDzos6KrsOFMWuEL21Yw3tSnTNaHaF0QCbxe7uuXGD6b6uZ47UxKoJZQd0xIljNh4wGzjaUeh7XNUENnLNR0PtTlKC+YBEYjQr9SK0/+pz78n7P6hOz19JIz+86pJGUeinE6SgIhheB3wgfE/t4Geos3YmC/SoLIe4Br0zJuW//jedWBgubs8drrvFrJpDNLcp4ugP0ORpt+uRvfqQUw0OPvcBXgP9HlEFSR6iL5tHXgMYxR7NeI43Pna0+fwbqlqEsYzI65Qm3JwZsPK+Ik+pDqkpGeXusKCCpG4q1KOayH6/Kw7lUnD4+lKtzUpZdFYH9M/pHK0JpWGOxRkiWDmEmwLQzzGADRFjohUNe69JTYWyJCK6TI7lguo6ylqSK5+VW6fbeggTOrjWGXdbwDms4L7H8fWL4xfDeaK8UdguzbZdl6Lp3PNtFREqQkPlyz40t6uI41ZgxiT2hCvyJStd5dH2MucUxSh/F7Sxl6oBA8cOBSqS+W/n7OE87Xsi88GwufNV7GiL83w7+3AtXoRoPBfsi7Fe/9wsfUBCaeLUnAl1Zaon21zKrf/EeLkTtpZi7HtkXcSs8acfkSba56PYiwh7RtdqK2ldpeK1Jfwrsy7IfFHMNp/chCfu1kjeFJBUsKWvrls3GcD6l86twGOWurxSwlI4QazS1MjWB2eKRUAb4ZFpMGSwv2RTf30YdRSvRcRilt6JCvDcSPyfsAcpCBo+ZpXdwEJ2vK9CU2h8A7w9g3jlHngsdhEaYn11DEI4W8lTI0oTMmlkaF7cCVweb0DtHFoIts6goiQefFM/VrObDs9gfnX9xP1yzW9/z/C4VvLpovAyopYF1cppooie9VE9MTADwzne+s/jZ6tWr+Vf/6l+xc+dOrrvuulN/daepiXjyjiNr+xChd9zd9pzfzrm040jbjkYno9HOqbdzfjVzfEuEg5QbaaR1nFSUPs7q2ApgLyr0NBQeqmDI52h0vm1UX2jaq8hDFHeYCv9up5ZWLaFTT/CNhLyR4OsWP5Dgmgm+nvBcM+GsZoI0NEJvGwnWmiJ/6XjTqmrXmODWt40Em+eaIilSMNIKel5fN6vNeynU7Z1IYSD7I7BroMlaU875IQNXG7jNaO35IuVAej34myhruEbAV90Yjze5TeQbzmWQzmvAlCvxd9gco6c1Ruiri6mE/nkh0OIogBT72zDWKMc33tS+m3+i6Px1aPTqAkJknjI6H49+tU9jDI3BJkU9+nhzrYELFsC+HDvZLfIRjfca/XDCmJNeUTxRFXwfFj6pUu63T8BBD5eN6mfXrBq/sWLC6gXwiQvgF8+GJ/crmAd4dga2H4QwZ6WeQM2E6HyCqyccNIZF9A4TEAA8QRQvgPmw+ZnzRjCbDrBQhEO+XHC985oXGmrSn6wNLhLqxedea4t2nUZFOg7XcszM5EzM5EzO5Ey0HZNtx7GuY6rtmOw42uG90g5/KyBP7MFLDvuOkBvDjIUFkVpoDSa1xZwjnIfQWvQF1T7MXx9o9yyqwdFW+TD2MEXkJUMUIkKn6+l23KzofJ57hl84zBWbMha1PVdu7LLi6d3qLMkcvuvwmS837SmHDDX0HhtNFWjGR86U9MnqmI7E/sXDlCXrpPp8tvJy8CIAr9VeckCdSM/zlQVdANf1HG07Xmw7frHlaLQcf9J2nN9x+K5HMl/kgJdLvChlrhkHqPLszQL3lR9UAX0FyAiz15MYoYeSjmsoy9e5yt9UheNeed6zxMvSV/Fzuq63PtCJ6PZQIu6Oqxi40aGrn70fvd6zK31LUGfEq4FH6Y10Fv5DKs7xk+1VnzO9J+o8lcFghX1g5+hnPDfscUUZT0ko+zitqvkg9fqsijyfA94GXCyq51MHUh9SAQUaxzLqIaXPQgFE47NIwzKYZ8zEboV+FV17BdeciTDlYVKUWXjMw0Q4og3jwrgUkUV6wZGggH4VYe8VIXG+BEdVuv3WaWWdRe2RJDC5Ggl21GD2zWBQZfxFCEfC3/rIIgF1uGaiEc4IikI008/kuFaO7ziN6LVzpO041tH1/qK247XtDNPK2dDO8ZkrnPJFVZ8+2yVq/8xluyQGrJNeQdl2iLxGsa3+cysv8nKrFO/qEUvXSeU6qs62ql3bEQ0mPQT8RzR3OwqKxQj8TCVSnweqfQHmnWh1lLbeu2vaOY22Y6DlqLdz7ms70q5G5Wsdh207bGBGNJzpFRXr+PA618oUmbIJ6esnKKDvTxd8Kdv0lbbIPnFe8JlHMt3rTTtnfztndSuwD9o5tpNjuzlJ22E6GoWvjl1VONi0co3Ot3NM15PkjiTzJJnjvNyzmXKvKMB8DChkHpd5Wm3HdCtnsu2YaKs9Mt1xTHc9011Pq+1ptxzdVk7m/Jyih+JF+xRqq7tWjm9lSDvHhzrrDnXA1lGqvQ1jIKiUSpxrOI9v5Ugrw4eoukwHtkuoilJdcw6HzwMVxLtDBMk8PnO4jsN1c1w7XH8r10BEWzV/sq4jb+f43BcMn9jeGcaKjsO1ffFMl6ycMBZdX4xHf6S+Jzqf950f79OTenpfKV5eiJgnpy1F/aQj9I1Gg1arRb1ep9Fo0O122b59OwMDAwDcf//9p+UCT1fLtx7CXzhMnhva1nCP8fzzxJJ6oW4NDW9JEiG3hguc8GYnXFtP+G2reZVRHC8ufjUohJ/mbP3RgThHJnMtiQPFqpRZox4nTCnugEZmbkNLlV0tumkltYTUGg2MWvDOlpuHtTybGH4+TCZrTFHjsjAS55pYwYCu5rsagHqKzcqNKi06Inh3/EVTRHDiy1J1XhcPD8x02uQLmyw2IYiF5ka/w8J/NIaPhu8pVO6lXMheoLekTb+H+4QPTb/BFjs5VIMppS5bKUG95np5FoUs1cOoF1iI3ssQfYq7pKCLQxdYMofCPRSR+hidr+olRMfRfrSEx1+EPsbydCeMzscWAXzMoY+vB2uwvI594Rj26kYhjGdTD2JZ7DwHxBbRUZ9LEZ33uUdczF8EHj0MVy1WClH8nvg6j951D2sWwsqdsL6CLJ/ZB69ajoQIvU8NvmZxtQSxKsy3lF6jxAaD1KYKjpLUqqBfYkJN+nnw4G6WHJpmatEIeI/PbaEsL+H5eCmBnCI6kvty4hEHXJ03LdTIaYV57QKt3+aqEp/lXjcPJ6TO48Uj9+9Cnm+RWKjdupPD7zPIOeMMhbytSLePLTqlRgiacDEybyjO3hoYHVBeWtXQhUrSpnCi8ETWDcr1AcTHKL3LPQ/nnmWTjrqFsSNAA/w+wd+1E3/1Yvy8pmp42ADC2x2YPxiAuKYKLKxGCPvGFMoIfXH/q0d8RodRg47KWJxkiyCoK6gB03Xkmcd3Hbd2HK/LPD8rwn1iGExARKNw3oDUymhE8Z1dP3vBf6lNOklKyr30GmRSMfgPoeyscyiBfFzfrgT+c/w7ZgvHvZKAqvOePDpcw7XFiFe94zA12+tdgl7nJNXfhZ938jIiGZ6XuDRuQdfOOn3RSeBydJ/7YOXeRJ2AfuGnk2pecL50DmhOePA9ZjnpYKKX3ZOLbChqRcUf1xMdlGrrZzOchtavat8RdfbnwH3oHvhZyoh8DVFdFYGmQHOyixlplM404vYeOtasUe8IU5V1rVCAl5fftUyEGV+WjYoOmbh2d0Uj1mJhiEqVB+l1bGWUTA2L7sVVQby0Gt18cQLOnVd+SVhrLAYzNg+7L8esAgQWB+By1AuLvMeTBMekx0VndVSqztRpnVuDtwaXaO68R9ekbcAqaxlO9XvfZj0PJJZLg3M/q2mpWWd6GTgeDUa8ht5nOzFBxd/NEZWP/479jnt5Dy0yR5qpOrxNb/TaoBHP71XeHffB+Fw6ykBCV5Se/P8O7/0e8Cngqv4J4fUzrAnz1AXHcO7pOMHlnq25sMcJTe+L8oHv9EKSQs2rHkIaLyKOaVLpX+4DE0GCKK5Gmm2SlA7icF1Vp0UEk8VHnwIMVc15V7vIaaAjp7CLjMCEE1aKpono+JaBoST2M3o7C4ER/ZmJTJTEYFPBYklE7eLzEsN3k8AyJDw3Rm0Pn3naYe+OQray+SB+/X7MJWNa2jc8Q9bFs8c4i60n2MSS4qmLkORgnCtEffGVIJwxYD3eaOWsHanl7MraMhLu1WFgXhHJduC9VnOJzlXApxaxgiSCT9XuA90Do4PgTcDfOmFH5jg3MAfz3JM7IXdC1yhmylMhTw0uF1yqzpanfcKbapZ7jeFjuefSrkNyj/MhVdAJeeap5b40kWoVe88aMA5pVkB41JEq2KoVG3FggB713tcsK+dyjNCfTH7+K2wnDegXLFhAq9ViYmKCpUuXsmPHDv7wD/+QJNHt9Z+SKN68hWeTf2sn9mNDuLNGeRjDamNYW/MkzlKrGRIEkxvq1uCs5+O1hN8X4f2NlLNDhLtfHK8ms+siAnO7u31YcmZQEBmp19aE/A9T5Ox3gMfRXBDQxfUzwGsFUmNIazpJfCY473UfwjCRGF5MLGttWQqjMKDMiemLhbFdxb2BTtnMHNMNS1P6AxXHAQ2+onDvI+0+eMcn2iRnNQOYj/PdcCGGhQbuB95BaZBVo1gvAL9AGT1/KVGZOTtooAfUDyWwqxs+s6xBH8F9KsI8YziI0v0FylJdXkravQjsn0IGUX2DCORNiDBboxSzQE3sj87HvLNr0bq2ayij8zVzgtz5Srvlrgf56Tdf3QvmoyF+wSh2/VHM1WPq7RaUdh8i9AfCUAqA8wEMl6XXcKKOjxcm4V8s0xsfBFeoW90902C9RWD/mmWwfld5ga9boTT7ulLtpZbga2nhSDiEagYUYD6eDUqDSrxG6QOoN4nRlJKVSxjd0mVmVOg6SAOQlxCpd4FGebxWCCNVc58qEW9Bn8mWKJjvBIdM7sDnKtpUy7x6vHNlPgzsmEDu3Q27Oip6Vwc/BW7jBINrlikVzgZQH/tYwRTDaF5ajMiL1SvxsR/zgrDm0baWSJTKplQF+HM0n3s6XU8nbJQxKp/nno4Xpl88xooMuu9dwdZtx9h57gLetGQe8vBh/LUv4i8bw105Sq2W6NQ/0kbOHiJ+6TGjDANDH93eFG9hHiWgd+EdcYwK58tgol5zyr/DC7fc/RA//TNvPG7/ovptRypU+xDJ2N1xPN71/BvnYddBPrrhKDMXLkBWj6mDIjV4SYp1q2hdr46rfmGA2LG5nsk0PAcSryuuZRXAiwLecZQAENc1wvki1DHxIipuVaWle4KG3UlsxTHlqRvxgoBzUjAG0mB7NBCadTP3elodzPhvUMGHrsMhPVHJWLZuG2XkNc71NICP1wD/iD5fUfgpOi6iON7JAHonUggoOeeLesS56HOVINS9oz6c0Kx+ZnXsihx6o2kHUQ+4CqLm2ttPUeuvOf/9Ox/g1W9/Aznqu/tbNG1hvoiqj0c7BBUtqwPp0Q6sbVb8MKbwuRiARooFOrkr0qUEesD9ybYoiDYjJWU73ncIjuh4a6UMKvQ4tqAoa5hSOnRTH5zqour2JtJknYftM/COZZVQdxRKBbNkALNtAstirAh1EeZ5OOSF0ZAupOVYlYnlo6hV18ML+5Cn9uKuXIZbtVg1fazBo6Kk273hYusxNQWVb7KGP0t1zGqAs5DZhLpU2DRoHzegbNyq7WJyT+IcSQTx8VqqR6T1PrUPrhqHi5b1zxpsIyj907s0Rco9VIBuOEd7o1hPgJv7Pvm76H48a66Lsh/aXaGdO7q5kOUK5qdy4fO58HHvWZ0LD4jwDoHLLNQ6Qk2EuhNqcQHcfIBbbr2Pn/7pN8K5YwWIL/bg3KuIc2qVip5YTGKxVkVko9K99B1xjr1UK+Z7z3Md939KqpELFHSHzpvgERGvwZFjXp2WFiExpR1ppALo+yn30Vmw5QD2mX0kVyzDrl2CsYbEeGxuODexbEk93iZlHn1wSGUO8rwE9dmWg7hv7MAIyDM7sL8IZtUSpfUH0Jo4UzxLSZpQc566FxpeaIa+xGv1XsiN2h8+MRirv9+XelbHksJhri0S4VjuMZnTlEPng36QFBFvMWp7+NTqBoBqKWE0mBPZmYNeeGvmuDf3rMl13867CsqzFw+SPbOXzuXjZGvHyJ0hS5Q1sdnDDg9/6YWmNZhYXi6kETqnGjou02edJ/bCFeNw/lId+2izR9u5ngTb0PVG5SOozzy8MA1Xj8DMDFy1DC4Y743O11+ZIOHJtpMG9GvWrGHPnj1s3ryZN7zhDWzfvp0jR44ACuZf85rXnLaLPNXNua4uZDfsJHuz5fHVg3xguI7NILVCIpaa14hTzRryxHIW8C7gG9bz+3X1vMbSCZloDkdXVKV5dqs8tFTOUSl5qCzIk5uSal3kjjN3vdPLJZb7UNqxs5A7i0OdAi+g+SyLqFAbo7OIE0VyAvDsi9KTaKRmpJszLTUWIUEIrvTmz7X9e6FUtveU9HQR0nabxYMJhpBDb3XTzwz8lNFN5W1UolHomrcf9YVUBfFivwwn4QTrB/LReBtOoNMtNtrocSWAewRGTR+tSypRjYqXOT/Qpb18kMzq2EhYHOIGrgaKrgc9qtvosQe4E/hvvILoPDBvZEhpiNb3gnpj4ML5mO/vxbRyjK1p5EO0dN1iHTCmbELdhzysAOR9jGI4gccPwcoBjQ5X1fQTo6A+hg0jsL94GfyqVVrSa5fDReNII+TPpxZfT9VYCtcfF3VglnFiDZBYjPWFUJ4xXn9+bpP03p0MXb6AQ2IYdLYouRdBvaQngAXVWqLRkKqAYs01FNrEqFmkc+t3pC46doTkaIvsB/uobZhAfmIp/vUJ/sZdSBdkARy8aAEjSRC7SwwyhyEGCoh3EiPWFDn0AkHt3mBGjdZjXjJYsWT61p6+Jl7IOi4o2/dS7Z3zPH1wirc8vpv0rWdhx+exZ80Y6wTehMe9eSn+/EHknj245/bj37QcWTsf6XSQAc0WzDF0LIzEig7h6E8pGCZQ7kOnY1Teh0gExkAtVWVyevszb2iQE7X4TGUCWR60AXJNo7g5E16bexbvOkj91h1cNQV+6yT+vQZZvVRZKU4qEfrK2l2dQ7Oo6H1nmCWKV80vrxr7WygFhqrOnbiGX4E6eC+gkkcvZbT+eHoJkRUVy2kVWh3BHvEE0O2lWG9yI7iGZZg51tRZwDf8fMAgXdcjBlYcImymTJWqgroEOAs1yp8BXkdfHr2UZcDmaj1OConCh+EeeSH3gUEV0qg6HcPAQIoYw2BYHo9LYok6Ai5suoXBL7M2vaiLEPsO1b335Iy5KDBWjc43hoYKXZUvoTmrb0UDC3U0f76GUYMcaHiBmY7uaYYyf96EfSisod6gAmsDtXIfo8QXx7u+krKiD3Re2cPaopTsDhSOsJqorydG3FPUKV0EKyvv3Yo6sQuw6yXkI0MS8owRgd2T+oaxQQp9Gqt9tYBZWsc+OoMRD5KAh6Ve2C/CeV7nDF6UPeUrGjGbNBdWALdhF+6qCfxVS/GjAzgsYoTd3nClNRhR2+WcxHCWFx4XeKMpmSV5PSki4ILu620q5fi8MriS3CkbMIKF/uh87uHFA2WO7rM7VdgpgvpiToKto6A+rB0R0LeBlqjOgnhRVmdgd+YYZbMEm/NdxnB3ZcyT4GAqxl+iTeRJvNDNPVkudHN9nTvhHzJhtfP8VHA6vQpoeqGRqwOqKVDPPXb3JDy6F9a3mdeqwdd2wy8IrB2bFaEnRJc1Pc2TGItNtbTtImN4ntnR+f6SaUXFgOhFivOpyv7yfa/7ALgCej2i6C0epkQXoGVEM1OKgFCcwz0AXkTTCbZPwGN7YJvTebF+J/bjBrt2TMv0WmFFrsB+b2o5xyhzTIK+kXOergvCtl7ovhCs1AbQBb/hIGbFqApEeg3emJoNqZZgc2VLdL0CYpzQDOxNcb7UuLBGq0MkgljPPm+5wAm2FsoLi7C065jK1Y7U2uu+sL8kUNLEKoAPU0ndvwZatYSMMkJvnOedufA3uedjuYTovCfbcoD613fq/vXcDvJfgmzVEvJUx+NmJ7zPWxZ4yyXW8mSm4oo+U8Fb8ep08hsP4L+yS/HQc31579Fm7qJVe8LYzqLaO4HHDsCghbevUmd/M2FWdP4EgaRT0U4a0H/yk5/krW99K+Pj43ziE5/gxRdf5NFHH8UYw5VXXsnv/u7vns7rPKVtemIv+SCYNy3l6OFpfvfZ3SQrF2LPHaK2bISaF2pOo2VpYrVEOPAhDL9rHZsNnFdPyjJ24VxH6yLOuWlXF4fiQjI9h/rnYo0ankRgbwpwfz6q1BjbO9DNMhH97lB6PpRVKb3Aa8P7I8iNUfrUHN92ie+fdRgDdcNoN9ecPjS6VDg1w4PZ/8EeCcwdwVPWoe94YbDtWTrSCM+NoWa09nxiDG+zhi+gm/u5lAI7HnVWrKSXthn7mM6+hON3sN8YHUphMtdFTyKojwBEO1pVixVRgQ3Nz1aDGa9R95mjGe1l8+gaCs9mdBQkgSqWeP1Zobwtpbf8a8BPhn72586/VHQe4E1veLWC8eqiEheo+Q3MWILdeBTz6sXgVBgPJww7oZF5DiWWhVmIzOcK5CVQ7nEeHt0P71tZ8aaEz0+tzulciGU7JDMqCnfJMsxlyxWEByE8UqPA3hi9j+He7kMpdFWAW0TpA8XEJCYA+hCpzz126TAkCZftmWDi7AX4NETow6YrucfX5qY+Se41b7iaS1kB9DEXu01J4e4AbS9sdMJ9XngzwgXdHPvoEWpPH6B7wQLqv30hMlxHrMH/oiV74Qj5ZYvZt3KMgZoNDpFEUwcqUzSeS8p9ALsBFZeq9wbmD8KhSum6k4jQ+xCZ72ZqjGXh7HLPTNdx7j17mLx0OYvG52ESy7LEcrPRARInyLIR3IeGkHVH8bfuRBbsQPYLMt0FE/PijdLwjNEoPWV0PjoVhymJaoV9FYywgio5UFNRkYrhCvDG11x63P5Vo5xdJ5pjl3tcLmzJPJud50/w2A2HkUlgEOwE+PVH8KvGgkJ3FZCGa+7K3Eq1c+XTx5/VbBGujH2sioHFeb+FEszEAxMcgMBVwF0oOymC5qpwXH89Yke5rmRSgt0ix9eVeZjxWlKUjSTGQ8OSgKaF9Pdtrr7WUnxXeuj20X4FXc/fSe/znJhAq0Zp94+jJYb6Rf8iuyuWr6v2r8dJEfsn4PLgUA5OZUT7Vsdo+lG4XwP96VfFRKVH7I9G0uvBljiiBhei1F0pnRHxEW2g9kFVFO54ba6a8+e/7lW00b3vNuB/UJYwbSAFS7AJNMOexVFXlOYrlgp619NuwyqgiMuEBH0cKff22Mqybr6SzgOkhgwNfuTGFGPQQVMo7gB+Bk0VjOzGbhj3mDsfAa+nr8qDCImouKiWrgsRegG2tmD1MEX+vAGMOneNNdglQ5g22IkOZsEgRoRFoqXrohiWd04roETR19xrtC5cizPgn5nEb27h5oNfsQh/VoOZxYOsHq5hth0h3XgEd/EoP3nWGI8AP5FohN4ZlLKf2MIp+AKqH1EXIc09ae5JvCdxoWRZBAj9kfmpbgnmY3t0D6wZqw5QARxtPS0j9SLM9xoJP5x7FhQOUVGh1aR8zryopXMpsMoYEmN4jwhf9cJNCB8IoL+N6JzyShHvZr4A884Jd2bCpPP8Bvr7+s5D1DccorlmlHpSo7m1TXPrUerb28F7qFf0xoGz9MXX98DH6nDOAvCuBNW5KcCoyQ020eoHVmBJ3fLDyrMVwXxcWwUCCHOVHM6+/bGfgROf9T5QH52fMdARRW8POnUa1Y2E/S4K4UGy9SDmiT1w3hKgpuySHUdVh2jUwDH9bktY79ftw65erFWPE0vNeVY5y1YnrEzVpvJOI86d4ExpZ56u83TPWkj36RaHUliUgz3iMJ0cI2kQlbRBEFkj9tYYaqJjhyjgrzmdozFNVqzqWvlUF2ybWg45OCfVQEbiDNbDuPNMx3nrdL2IYN5v3A+P70GuWoa/YGnpEw0BxMOJAt95hLmVOS7OPcOZ8EzmuSoPjpT1B8gNdJMwpBsOkq1YRO4NOyxsTeBXw728AM/NQbTYBSaOC/1yD+/uTVV7Yq86kqqAHiAJK1TRr8rRdXDvXnjfWWrL9eTMn5noPLwMQL927VrWrl1b/PtTn/oUU1NTJElS5NH/OJuI8A//8A/cfPPNTE9Pc/755/P7v//7rF69es73d3/mLGTNUv7GwSdnFnHO+ja1H+5UAH/eGLVhwW4+SH7ZGG71GLmBRQZ+1hquM/CvDWS1pNhsa3KCKP1ci4UITHfVZa3hcDVMCCxlgvEVNrzNqArwNGU5lxwKp0JUQq5GRF4ALmE2Hb3MNz/O5Aq7vbEUDxlFlD6lkftC8KLsolpsc9nV/WXLnVdjb/d0h5UW5g3UVNTMlqkA1sKwMbwFuAX47dBfG/q2EY1QRcOk2q/ouDhhq3rKqtTK4TrMKHg3Xgqbrmp8LqYsjaIMhUjdo4jmzRiYOTxN58oxBfSV+5UYQHThi9deROnRObAD+CGaH9kfna+bl47OF62IWlQWp/Bvs3YR9tFdmN0HsK9ailk7hnUG4wxnZXDY6Cak9LKg0h6jzxuO6MWsXVB+RyH+YYIoHkg3UPASo4twMHCTxFBPLKauSuLe2NJhjVJKCfe6MD77xgFri7r0JqtQ1p2FVWO8anuLHSsXBLpYCeoLw60Pj4nzathGwZMI5rseNu5DnthL+4pltFcv6mFSdAVe9MJXDh9m1ZY2328mLH/2ELVFI7hfWIVfNKSR09QiiUXOXYqcP45Yy77EMlQPtJSa7QHxsa+ggPdYHE9TVbqniNSbxYNwpFuxXKiA+hgDrfQ3UwGZWdH53JN7z5GHDiDzB1hxyXwSa5DEMl6zHLaGCW8ZtWFOGIO/bBTf8HDDLq0DfeduZCRh8uyxIvppw8BVAUXs6zBaxqnKPEAk0O3DOwcqEfrw+15Q1TeeUgqKdb30OC187rmp63mn84yIkCYNDNO4FuTzgPMWKFjMQWpSRq8J39Xx6oGPrWfgKutJ9XdpQhTFKyLycb2udGUbGnk1lGtafB0j9J9FUxRqlIZ4AXolrilSKFUX5ValApApQW/uwvrlA4DyusaAYOo20LiDwdDfr+rPQj+l4zVXuuhf0J0QddStrvQrNdrx2NerUNp9vB/VfkWHhYVCiKsfzFeZbbmrRMuFoiJJrevwKZiBlAStX1yPtlvPGMY+hSexncNIyajTW6RjGmt4x8h0VZNAv0MdsUMoAD+ecdcj4EgZoY+lmP4b6sxZQYzMQ100Qt9ExfDSCFS6wPxG0R8b9rrq9ufTFNdxsx6lyEjpiWp2nBqvccJ5XdC9AZda8sST11JlMKJg/t+Fz/s+8F+B10PBbqxJybqrRuq3os7sGM0vFO6Fok63er+OwsWj5QZhTRGhj6KpZqyGOdjGzh/AiLDYo8J4EvYyH+dnJUL/qjF4fo9emwH382fhVyzE753E7/Lk647w+8d2Y2tCfZ+j5sC8OM1V74NvrhzjsDEsCRFUZ3JcPcUntrBdLvFC0nVYp4DeBMG/JPPYanQ+Hk8ehNv3qIc78uYBLh3TPaoyDxU8JhhybJrqvcvUWbDGaznXNV7ABIZlogEHVxkDL4YZ4JiF/wIsFbjYw5+L0uR/FkL1Bf3O1Akd7+lkQp4LG3PPPU74LYRBhNrWQzS+tYsBgQ/aEi0AAQAASURBVPpju2gYaJ43n8aFCzHvGobFTdh6qNdhcUETvroN1hyEd65QJmBY3CIQ1TQ7U7AdlwKH60rbrs5jITgsnd73HuYdceJLv1FbsJrES1kuMcx779Xx5SXYfzsOIZuO0F6zgPFlo2AFk3vM4RZ2MseuP4B9tqUR+uf26eJ92SJ403I4Z57ub1sPwjW7y7V/9WLNd7dgc00rPC/37MwckhiNOId0kU4eDi90Pew9KNz55lFaJmHnsjq/tb7N/JtehDcuwy4dUedPuI84UfJDAPOJlxDt96ReNaLc9kP4DQeQS8Y0BcWqTtBUYlnprTqRxGK9MJ4Fyr3zRUqC5B6/9SD+qzvBgzy3E/llg1ywNFQi0DE7ah1jDc1Z1+dBnRZvyj2PZJ4rnGq+OJ+Smw6p17Ukn/BkWY4Xyz0IP5EI840yQ84yBjqeg86z3KvTwosgm47gtvleJtKaRfrMRXs5C0ZLLFU7VxrMwwdgYQrnL+y1syu6UnOq5Z/idtKAPrbDhw/z1FNPMTExwfvf//7TcU2vqH3961/nlltu4VOf+hQrVqzgi1/8In/0R3/EF7/4xVkOhyRt4lYu5t4kYTHCynkDJFc3qV01n9qWY9Tu3U59nxoRtWd34D4G+ZoxnIF/Zhy/b2CdhVdZQzdRY6cqjleTspQH0Bspg3LRmM5hJBiFJhgkNnq3TRGdaKF583+ORtz/BPgi8FvoQx+dCtb0Rno2AB+iEhWOZ/PSA98jhkcA9wBpynjmmQyLn3ryj29XqyCeqqC66gIpsHcyY6xZoxavzRpSVIAmDQD9PcC/B36FEDUK37EJeMsc/SoM4JPxhPVH56GIZtD22DTRaACUEXsRFmN4jjKaUCz8waHR8UIXT/dwRnu0RgdTOGbiXbVG/7gamapG57+ClqZaRsVoM70R+uM6ZEI7cPAoSxYvUKpQNYIekLEZ8ph9YA51Met2YD4BZvVSjDEsAyaCoynWcI9g3ovAI/vhqqWK0mLufM8iZvEW2omh3fV0c0MeNkBrwCbQSBOadVtE5qvz6AAa0RqgLzJfBYRxocyCKF5iAs3Qw7kNVty8m03dJUha0whMTQXyfKpiaBJE6CBEa7pudm3RzMOGffC1XWpcb9hJ++oJuvPn0Q3Utsx5JmYO85GpnJqDLIEHLl7Cey4fV2MwsfjEqABMoF1JYvDWcjg1DNcSLSFjTU8fq1NzBMpykRHIQwHutV5MCusmgUA/jgDIi9JUc0+SmIJ14gLVvlMB891AtW9tOsbI/mPMvHcN1lpqqSWvWZp1y7C17PKeBSFn0LswRzYf0OuqgemAbDzK9DljDFhTMAl6hLkq/RtGnVjFOlJxVESle9OsQUcjiUVuNXDw0DHGGqNYb0sWUjBQCydZLuSZCuG5zPN813PIed6EkEx3SLdN0H39EvKHDvC3P7mCT46PkkYw76SIBBfrWyZQj2Kmc6wjc7XEFjn0QhltVuanrotdtJ51FfDGwGMSgOEYmp/5JLoGuuoRgJIN4DLStiMNPYLdmMIUQbCg29MmBw9k8BYnXIQa6i6xyhiL+8Zczotqa6aquBwBmo81v4XtooB2lF5mVWrKPPpXoeXY9qLspCrtvgTnZf86lMyDKpjPpAgOFevLi7nwgBPeNtPl/DrqwA99c1QYT9VuxX2ijpa6i5OgGr72QsuYokZ3BOG+0r+oARPH9XilbiPrp0dXBTh06Ch3LlpAhu7rMV++gVLsaxjqAo0QpS0YgEWEvkK5R0EvxuAbteBoiiB3LgKClIyljitzvEU7460hrwkuNZpmnCb4xHJHX99uAa4s7KRyPy9Affj3iyibHEL+vKfIn7cxMpA52NWB9w73Oa6BxGBRKrwZH8HuzjBr9MMXeWGjSOGMj/ubD9RiEcHUtDJNfklC/ppl+NVLFASsmA/LhUf8fHa1HR+5az3WQ1oHNwmD64/w6vHFPAa8Kwnz1YBIjjRSxBq25J73ZI4kU+X+xHusE5JKmdMCKOyfhu9ug4kMPrwS1o7ClgPwwG71/G3swuoedY9ybRUtM5yICrWaXFjphCnnNa86/Oet7tWF00t0vX1eYDWG8UTF61YL/FuBv3JK2X+PlSInoy4anc+8cMR5vpELP29g+bEZ0uemaTy0RzUeLNQdNC9Mab53VVEeGQNcsBQ+aTn4wGYWv3Y1nL1Yg14/2At/8wJctQjePA4DIcJc0w80YrHisKIBgLaBvKZ2RRGZ90HQNzLwqmAsgvnKY+28lKmvYb2xTtM+6h7qXiq2rOC2HCL57i4SB5c9O8WyJXvAJNhJj62Badax+1o9TnrOs/Dus6LBqnP3gqXwcYN5fA92vyfZ57HnV6oQ5ZY11vNoGjSBQp9cruC6k6kYYbfV5dieAzzx7nOYHh4mB/58kedDLx7j1XfvYOcly5m8eD7DHo7m8GwivBm4yCrboeaFTITce/yOSfz3t+P3ek3ReG4H8vMCKxexz1hGLIwG54B1ep2jmedopguJeB/K1YHcs7PX0fLsPvyaJYXjXoxhIvEsCToYxjnqXsV5f8J5/rPzTHlhwWSLfHcH9+5xunuPkp0zSvbcFO6mzRx+yzJemDfEHxghybRUYIphbdezy3vGJQji3X8A9/wh3AfOxiUOntoLhx08OQGXLtVNoWoz22C8FpHJcLRzuG8f/PzZZXR+1nESeOQUtJcF6K+99lq+8IUvkOfKjXn/+9/Pr//6r7N161b+9E//lLe85S2n5SJPpt1www185CMfYc2aNQD82q/9GjfffDP33HMP73rXu3reu2jpBczUE26vp/yO1xIYNa+enNrahaSb9lDfk2HTkCbx/AHSs5eQGs+wNbw/M1xr4VLjyBqGrlXRoFrYiGuCiupF4yBaS7HF19NO656HhScPlPs8AMAIAu9FDbi16ID9DhqxfitKi+pQ0tjixrgPjeBUc8yt6QW/x22mBPC2xwg30ExJcjUEo2UqVMB930d5lNLpUWChTD3dSPK2R0aaRcmxBAVpkXqfGhV+Gg/34N16aTjUWRHrGFdVkiOof+lmSoRI5VwLHZ/qYodrga6mAMiIHkvC/QWlBHkpDUbxoS75ZJdMDN3RQToGnneGH3rDG4Dzw8IVPzteu0fv62bgQeDvKKPz/WD+ZNaHL19zK3/wL39RrcnEUuTSxwj99sNlYEPAPHcQe9YSDIZlXiOmJJYoAKN0e48/MAO7u/CRRcE7ZHodBmmCt0EcCaM5UYkl8yWDIzWGPFHQFfteNSAPovcZSgM4HkWEXj+oqENflLCzBjvSZCYVLrz5eeQnViDnLFGnhPW4xJAZT24caTPcgI7TqGuMzEdg3/Xw2G6NRqRqLHSfm6B7aY1uUqPbSPGDKfN2dTnWSMEq8L746LQqI6fKQMgTVfCvgnmfWPanlovqqu7aD3SruClGsIGidB0B2BPzzEdrcKRNJiG/35e5cHgVlUq8et+TrkO6CuBjvfk882RecAenqD22m8fespI3NWsKemoWF1IkxlLLFm+5yKuyrqQeyQ1y+Th+3XbIwA8BF49yJLHMix5ra186pQBKA68yHwBoWuRAJ0QtVYjQeeFL376Df/6bH9H+SWD4BOdaVypU+yD253LPd3Phnd7T8J7kwQMk5yzCvHYp7JpiQZKyT4QhKR1YcX46gn5P5kvKvalc9/FaRHVB1K/KpHK+/OxtqCMrppoUgJfYL/33VSgt/c1UnBtCIRw37csSU9HZ3BO5jn9D+ezd5uF6FLc+LcLve+EyB65mcOizOstp0TNhwy+bCb5bEcST8ju2oekE8TmOffSUa90QKv73OLrvVR0WMbKbS6/wWrfSv2iIF7oHXlOgbnHCregSv9Xk/NshSwNwMZJa7c9c4zlIiNL0o116yn1V73sePq4mCuywZb9TmZ2el1dZJVI6LB4HvvyNW1n3m7/If0TZEvXKkQZQ3/Sqf4AIHOvoLwNYqBJHetaYoRo2L7ulfx7AfcSKuVdnWhUMxQinVWel84L3NujkgG8YrrBmVqpgnH8FA1F6Qf1BdA09hzJ/PlLubVjHEIFdE3ojRpsVA0fXGYyUvuslTcxzhzBGVb6XWuFwQQnQo6BOh2ikeW4Sf9kC/M+eg6tbfD1RwB8iszsy4axBi3nNCuyeHZjpsI+uWcDrvOeGDN6VaFDGmThVHGINuzLP+bkvo/Pek+SV6Hyk8N6zDx46AFcvgZ9cqqkeEfStWaJ6KV/aoH1494riHlcF2IxVIKoOXWFZ7jnsAKNpgs6AGB8cDyasB1on/EUHlxstEZui932VCL/v4G+8MkLeboINKArmu164JhfevusYr9o4Sbp3kvo5i6i/a5z0tr3Uck0HGXj1UtK6rYxZmJSXLONLTz3IH1z0Bp1ftg4/cza8ZhHcsQv+ah28ZRyz2GA3HsRcMY5Zu1R1DDwsFrWRjhoYqCUF4I4lz3C+N5UuejHCo5x7VU0vNFeCY1y2H8I8tx97wRKaZ4+StxzsmsTt6eD3HUN2tFWodlAnb14XzE+cpayQeqL6UNsOYb+ys3wYrlymY2qo3AMD5y2FcxaTbDlCcsNOzOsWkdga1grGeFZbww3OYzNXaALFVIeO83S9p/vMNNNLFjLVHCLHkBrDT9Wgff4CHlqU8ur79lDbM8nXXz/G1qEGHsMzHn4X4RJrcFMd/Lpj5M8ewB3KcWmAManawv7enfgPL+CIFc4yHoxVZ5vTHPoFmbAj9wheccF0G/n+Pnyo6iao08hfuARyH7RyFDAfsYalFqy12MyT5qoxMeqEtc7zpBfe/ORh3Nol5JeOYV69jNx78nMX4Z88xrzbtvHB1yxn/rnzC+aGMbAy9+zwwhUTM/i7d+Gx+I+dixtpqi7AmiWYVgafWwePHoSrA/ulAPRGH6qqpoUTePAAjNdh9fzSsRgZq6k9Y9F5eBmA/t577+Vzn/tc8e8IVj/wgQ/w6U9/mvvuu+/HBuinpqbYu3cvF110UfGzJEk477zz2Lhx4yxAv3/XU9xWT1jetKwWQ5ILNfHUBGpOqF+6lPrjO0nykJ+xahF57shNQorn3cZwZwaPYHit9WR1S2ZMj7HRU16nuvlXo/TTrqDvOZSSFz26KnCkQP9WFMxGg2cF8DHgvwN/CUW+DabcFDegtPwGJVWzGp0/GX9R4cmPmBegmTLPwa5KN/Qsc4roRGpnrD0f188ZAXMUmoPNIqIWsSHxWTBaTeCnURHAd4b7tDOc44ZfpdlH8aGX7lzfGShUkYaB6Q5WBouovNpiauQsoQKuojEQwLwXNcrcoRb5EktuDRs8/NdUy3d91xh+x8LVlUhlfNQtZXT+Z1CjPhps/WJ4LxWdBxTMgw5gBN22sthcsQy7YRfW6Y0z5yrVyAALPRwIF1aI4UXnxROH4dL5mtNc/czEQM3i0rJObVGbFkM3zGeDbrrRkKtTsh2i4X8AjURWh6Y/Sh9/kaQGm8V8enTx3HmQ5hFH04LcvhP/boM/Z4kyYDpqMBpgUIQ0tSE632esZh6cQ44InQDUMwPdD5xFd+WikCcrPC3w8Kjn1+7aydFMi1Y0fmIhvpZoxCqAYWoWMUYj9tbgawk7E8Mbwlzod1wYUxpnQ5QgpaClW33t45tHB+m2YMZ7Wl4dKHkwfqM+QoLS2JKO1rbtFcLT+q75Pbu57+LlvHp8hCSxpKnF1vQwqWVZ3fIiIJk6IcUbvBXc+Uvhlw35uoPkly1GVo4xkVrqhUbAbKdFNaUgpllgKMQRq0r3ZsDSaee0jLKWIl38o7/8IaYFjaDEdSTMky6Qd1VEJ88UzD/S1fPrRUi3HaO2f4LkQxfonFo8n4sOCLtWwuoqoI+gLy54mSvyr2e1udYWCGFaXSE9vVFJF/aFrfQCXkO5psUIvUXL1/1V9e+l3De6EoUbe0FvRgni43dvAn4APC4qMtoQzcVuGXhQ4NIMLSsZQUk1jz6+6otqS00j9L64vlLFf4cI51T6F5/rYg0XfX0F8Bi6DkZnRexjBLuxHnZnjv75cH5ahIeB5yL2JADptmXbcI1F6F7toSi7aKrjV30YG6lqOFRbiOxlIgXtPwLxFvAUcDuVUrNSpk91RdXo4z4rc4D5rlQq3PymrucJZXRe068i1V6V7YtNeSqDBaXTyUBZNjL8zwA2qWFCiYmIlYvX4TDFAEhvOtImVVzPr16Gu3Ach0FEwSKANFJGrWpoHELT5OI9qqHzVCj3Ao86tJehtotG5b3q2Ailwr0HtrRgzTyNPlSN7vDg2ERTsezSBuaHHaW1G8soSrkvUshibm8oY+W9x647hHzgbHWQxTU71ZQ6vLDeCleLYM9ejP9ZMOv2w/4cu6XL+cs9TmBLBucapbPbcF/3AMNZEDfzCuCtV2p2sukAyeN7YHQEnjqqej6/ei6MD1cAgimDD6NN+OUL4Isb9MPfc1YxLS1gG2HMncfmYL1neSbsdoIYwe86hKw/iJy/GL9yUQnqRY3JjQKfMMqmS9D7jxfOFuF3BP7eQc0IbzYguw/jXjjMdtvklw7NaBrTBUupv3kZ9WZN5+lojYFn9tF81VLqa5eWG3kV1FvDH/zKh3spz7nA+BB87DzYfBS+uR2c+m3sczswHwezZqzQJho3hiNoIIjUIpnWiPehtFsxdzsONu7HP7mX7PKlZKuWKJA3KnBbOD23HcZfv1MZRE/vxM3bSTZtaSywyDkLkMvHkCty3Pd2I21N2Zp6zXLGxkbKagvWYNcuIfkk8OQ+uHJcgXvVmWFNiRFyT3L2fMySfSRPHsG8dok6tKznLLFMZ8JRKywJ1Ye6uacdGBITnZz6lt1sf+tK/qWFh6zhJ9KEc8WoQ2PJMP59axh+6DA/d/dmbr18nAWH2mxe1mRLy3Dh+mO4ndO4pYP4Ny0nXz0Pv+sI+Td2IQ7yBEQS5IZNmCvHWLJyPiYLKRCp2siLMs3pBw/PTCCP70bWLkR++2J1gDy8G79Z8JM2PIdegxPOMJ0Zxq1RwWOnZRyTXLDe8wYR1u+eQPYcJXv/+dSN2n25VY2KI5cv4DuLLb/08G7snjbp65cAKQZY6z3HNh+Dx3bjz12Gv2qBpsGkFhfmiWmm8P6z4Wvb4dwRWDxQritxrKrR+ZkMHtgPv7SqNzofn9VYLuYMtZMG9Ndddx3GGC677DKefvrp4udXX301ABs2bDj1V3eSbWZGC8QODw/3/Hx4eLj4XX+7pZnw75spxnlqNSH1qmyfOqG+Zoz6xwT/xF66Bx3Zuilqq0fJchOUWQ0fFvgyhset420GrqonSn+rgPoCWBY7pJQXIMBMDoN1xEDXmp6oSRTE24bSz/4D5UbugZ9DDbHr0Xy6DDX4ohG1AY1yRHvk5eSYm5iTG96vxoB2xtiEwRktoSWhH9EIkDk+KwcVofBq2EVl560Ci1sZ6YjmzyfGBGNcLzQ1eq8TlInwedT4XBvO59HrqKj266Qfn2p0vmq4Dddg2gUvd0UcL5wXo2JfXTQiIiHPUHwpvOQOOtziEZwx/BBDGxNyiA3/NYRIVqNOiVWV43uoIftHBMOPVxadrzYT8p/VWxgWoprA+WOYj4J9aDdmj2B9onQ/PKNi2BiuN5asEyf4To48cwT5xdXK4rCm9ESmliwxtDC0fQkmCqObioErKnoVjbjqGdT4q+bPVwGgDpMp+mbSBJt4pVcGUH/whaPsWprSBHYBZ204worli3oCcITXA05IYzQ+AvlOyBO9Zx+dLrQ/uIzOjsN0Lxmje85iddAaOCJwrYdfWrUE+15DbcMEnz1/Pv9y1RhpYvB13TB8aklSFUeSRKPzYgyTwMLKtVRBbrXfI+FnU6AU9jhXDWVN2pEardTQOtqmPTasCtPO450Fr6A+QUi7WhrJhL5moURd13v8g/vZu2CI6YvnsyAxpKmlVrekAcyTWpbXEu63Ws7TO4/LDZLq98j547BWi01Jot72kbrF1xL9e3odMvE8jAIgoChTVyjdh39ngwktyZkxwbkSnjcfJo/xuqemEvZfQaMXmSu0AbJMuCv3/Ix4al1H+tBuaq9fjmloLjXL6izbOslGWRAcdRqx81YKcCqA6eYwvy+Xuh8IQm+UN7WQ+RCNrIjGUa7bm+kt6Rbp9gX7KID6S1Cn4nbUAVDk0ZuyzFn1+YvP3m0iXG4M+4C7UcfZm4HfEaVu/wW6l8wXzXX2HnwoRxifT9Pfr757IHWLz12hERAp8iIq+Pc2ep0VcT5ELRiDMhCuCdcSy9fFPrYpHYUtH+jplGvL+ajT9140t/ydAv8mAO6/Cob6fHLGbU3TfSCUIwv9q/at+rpWAfQVxp2TIMoUJBJiCtyTwB+H99xNWWo2iuhG1kVI8irKl0YhvKho/92+W3wXWgGgEfYDzZ/XYLWJgECAiRwGy/z5AsyHfsWeJWkNk3vycF1RC0eD9BLE43xJNY3Kzhv2FUrw/rkd5L9m8GuX4sUGx5dhEzlvbKR8whp+A3gIeCNl37LwrEYHl6BOrVXhOqNDPQrhJSFKjwhsPQpXLik9QxEUhShZAaYWNBXzH5mBxcMsEKVOH/YwLhVHdcyr3XEMHLhV83VeJOo89bUE5zUHfV8CZ4nmCNtzlmBXjJK0MpKbN5M+WuNVV43ySAarTWBmhLbdw4WZL6j2JlDt7ZaDJF/difUAR+FVQ/DTa0IqWwAJwWHe0xY04ZcvhC+th+8K/MxKoNcOMgEU4YQFTnjeCbLvMMl3dmKnQR7fgfugx60eVYcMsEMg9XDOvsOYjUewaxfSOGsRUVNheSvjtyba3DPt2bFrgnOfOYrxcL6ZYfInxrCXL6VmLXVraKSGujEMnLeU5oXjNPsAfDF28We5LwMEsUpOZnTOrV0Ia3diNni1pwD73AFYubiYL+OiEXprKQR8Jdf641LRx3Ev7Kd7zS4F8C/sJlt9gGx4mLyd4VxOljnyjuCO5BgDWQPSDuTzwX/iAqSp60fM/86GE7KNx/irtfP52MrFyhyMNolRB5O9eBlcunxuZ4YxGlQIINB4IX39Uswdu7BXjmqU3woDzjNuDDtSw2Kntdid82ROOOSEdc9Ncd7oCO8cG6aWWi6rW9KGVcd7ZhCnDEF54xgLHsz5yaf3UOt4LtttWT0t+EtX4N6+HDdQ11QkY5Dzx/CfsLjnD+DPX4JfvgDZcoy1j+3l7PUTcPUoZtEIJqQ+DHnP+M4JeGI/3iTIe89Gxkc0fW7tGP6cxcjmI/jv7oLVQ8hIo0ghPCKGc61qI1nnSZ0P/fNcLJ6ljx3g2KuXM9pIya2B1JCj1b3u8I7GinnY9w6Q/nAPtW9vxF0yit03wYXTjk5H8D95Fn7ZPJwN+k01i0t0/bdeYNVCuGIabtwCn7yQIh2imJOV6Pz9B7TS09nze23hQhQv0dTQM9ROGvts2rQJgD/5kz/p+fmSJUqMPXTo0Cm8rJfXBge1bNHU1FTPz6emporfVVtjcCEz/+dvcef/9W/46//0x9z/g9v5ypeuQ4ynXrfUGwm3H9nJQ+cn1D92MY29U0x+fzvXXXejKpJmnqVdT/u7d/Pgsxv5067j6cyxY9tuvv6lm9SwCt/1+X+4kc3bdhWu7qde2My137snXGAXBhM+/a2b2Hd0oqAKPvbYszz4/YfwqJrtmzpdvvffvox0ukXEdt1dD/D+h57mq6jxcvDQUb7+uWsKj/rzQPOGu9i+bmOxuO/Ztptrv3STGk1hk//8P97I5q1lbfCnntnItdffBZT5dl/82rc5dmxCDYBays7NG9n36OMBxAudTsYX/uYaOp1OMASEW25/gHvuf4pYD/jgoWN85UvfCoad8ILA1mcfYsvEjiICtWfPPr5x/S0K5gOgv+srNzG1bTdvQ5kKW9dt5JEb7uI8SqP3ur+5hmOHjhafc/8DT3PL7Q8Ufep0uvz5p79Ep9MtfnbLnQ9w3yPPFMbOwWMTfPq6G/WXA3WYclz3g/t4fuMWQIH93u27ueOr3ykA2EERbrvmO+zatqdQBH5202a+/YP7cEfbuHkDaqh860ZkYoLMGLDwK48+y69870F+CjXq7ut0+cv/9mU+1unyd+Gz/8ddD3D7Q0+r8Wdg8tBR/v6z1/RE56+9/i6eemZj0afNW3fx+X+8sWeuF+MbvIVPvbCZa+/6YeFJtGvH+Lv6No6+dSHm9l2YQ1M8//Q6Dj/wCNNdD7mj2+rypS9fR6fTRZ47ih+vccvuF7jvufWFCN7BiQn+699fR8sqoG8J3PCtu3jmmY1qeAN3btvN//2Vm7gT+H3gEYFvfOkmNm3dXUQ+N63byH033MUBSkD/7c/p+Mbgy4MP9o5v5rr89d9eQ+ZzrUebGK7PdrHz4HZqmafpPM9Ixte/eQOdzNPuONqZ51s33c2jT2+kFfKqN2/dzReuv7Wk4q0/xN/dcicvvGUe7QvH6P7MxTzLDHfccz/dRoKrJ3wxTRi64TusaE+Trhpn6N3ns23yELc/8ji+meLqCTN4/uZ/fp2O9fhGik8THvnegzz/0NMcRgH91KGjfPNz1/Ts83d8+y5eXKfj2wBq23bzva/cVIIrA9d++za27t4LiTIgnhw8xA0/vJ8OQtsJMw6+9MXr2X3gGDMizOSeBx56hjvvfohWpjVrp2c6fOnvvkLnmifItx/m2teOseDJJ9nw/AZqNY2wH5uc5LovX4/UElamli2J5Ye3fp9NL24lbyT4WsL2ffv45k23w0CKa6ouwIYbb0P27tNcR2PY9OxGbvv2XfpMhfG76XPXYA4dLVgv6x55mgd++LCCQ6CT5Xzq2m8xUXcq+iPC3Q89xsNPrWPaw7QXdh08yhc/93WmPUwJTHn49jfv5JknN2g5pUzYtW03f//tWxl0wqtFSB45xG37nmP/QJskgJ1t03t57qmHOBhyab2Hr375eg4fOVbQ5O9d9zy3bF+vlRwMdLoZn/rSdXS6WdGpW77/MPc9/mzx74MTE3z6ye9D1xXjd+Md97B+w+YCSO7duosXv3JTj8L9d758E3u27S40Rbas28j9N9xFHY1iPwrc+LlrOHzoaAF473/gae684wF97pwwM93ibz7zRf7DsWkeaOf8dcfx4B33846HnuIrwB+IcO7hY2z60vX8BmoU/yaw7Yf3sXF6n5aUBLbs3ssXvn0rxeAZ+MLXv8vmXXuKZ/GpzVu5dttTuFi2DuGaa77NkcPHFIOJYB56mifueqAA767T5Qt/+WVct1s4cY/d9QALH3qa59G99Miho3z5s9eopowo++e737qL59ZtpI06Qf8/23bzxFdu4m9Rx8EfAB/92nf4qR27WW3hAgvv3LQFvn8fP3cIhgfrCPDFb9zIwWPHlLVgDfc9/Ay3/PCRok+dLONT3/gWnTpFlYVbHnqM+55YB6izYt/Bo3z+r6/pSWe47oa7aKwr1+frt+3m21++qScK/3f/eBMvbtmFF6EDPPHMRm769l09onjzPncNyaGjxedc9tDTPHnXA4WD13Q6/PXfXIPrZEXQ4JZHHue+TRsV8AEHJyb5q2u+XZSNNMDdd9/L5s1bSYdhXidn69593HbzHcUeLgJf/up32LJlVxE5fGr9i1x7xz060YIS/KePPMr+fAb/zD5c5nnikWd5+PsPQeZ4seu5eKrFLX/1JX620+Xr4d48eNcDPP7g04WGw+FDR7n+c9f0KNzff8NdbHt2Y5E/v3vnXr50420hx9zB3owvbH2MzXv3F6DoqY2bufa2H4CN7APDP3z7Zo4OO8yhDAOsf+Y5Ru57lMMhQt9pdfmHf7iWTrerLMPnp7hl4X7uXb8Bn2ja1OFjE3z9y9fjGgkbmimjzYSHf3AvW7duJUkNSWrZf+Qwt6VbsDsO8LZ1x3jBCbfedDu7tu3W1KSuZ/0zG6nd+n1M5rBdh80cX77uBo7d/kLh5LqvtZNbdqzTlJ56Qsd6PvX16+lYr0KcNavju2GD7r/zGxz8wAo+/fCd8J3tkDls5rnp9h/ywvObMF2HyT37du3hhZtv4+ytR+HOndCCG44+zc7OUfz1u3BfeJ6Nn/8BP/jvN9K8ZzefuHMTzRt3cuNtP2Dqqy9Q++qzNL+xnhc+cztP/vVtjN63h5/eNIHdepCv7XqIXfNzcoGBqRmeeOIp1m/YQL2RUK8nTHem+Z/X3UizkWAGUmgmXPu9e3hqy1YYSGAwZfP+fbr/NhLtZyPhC9+9g80HD+i/mwlP7djOtVZF4yJr48vbnuTY4aOYICBYf/QZ1t/9UHDQOzrTbf7ub66hPdXBZx7XcdzwwKPcdccjTCUwWYcdfobPPfcArfEhWpeMMn31GDcP7eHZKyzT71/OsXnwSHaUayaepv3GlXSGGnRqCdfefhc7DxzA1y2cM8bTq2ts2vICo40UGgm2mfC1627kSHsaG/p+33PPc8vDj6kI3kBKx3g+9ffX0sEVjptbHnmcB9atx66ej52XcOzhnVz7zRsL/YiznXD/zd9n8/ObyALl/umde/j0zXfw2hf3sPSS+dSt4c5b7+TQvn0M1AwDDcuubVu5/577GapZBhPD8vY0mx58kPrEFJdsyRlcNsBTZi/3r1uHq1lcLWHaeD5z7bforF6Ef9+l+NVLeOjxp3iutYcvvPc88iXzmLhpPd/8q69hNh2EOzcw/u31LL7+Dl4cbcPPrkaWjbDzwH6uvf17WqbYGmTNQr7Oenbc8KyKLjthy/oX2X/bDxjNvAoK5sLXvvwtJg8fU62KzRPs2r+Vrx99UVMaE0PLOb72tW9yQDyP1FJ+spbwxLPPsn75NOlYk9pte5l5/CC3PXgfN16+hN3j8xBruPve+1m/dRuunuAbCZv27+cLt9+la8k7lsFMxhc+fwObd+0tnJhPPbeJa+/4of57qguPHODT8gwHJyeKqPx9Tz/HLfc+UjhmIv74zne+wx/+4R/yh3/4h/zSJ36N09HM3XffLS/9Nnj3u99NnufceuutvPvd78YYw1133cWBAwf4hV/4Ber1OrfeeutpuciTaR/96Ef58Ic/zIc+9CEAnHN8+MMf5rd+67d6KPfT09N8/Fd+j9a6x/iz4RFe64VB7xlyXs9dz3BXKal0NLIztXeKqeu20v7Zs5hZtYB2Yvhbm/D9kFvVaiS8tWH5N82UodQybGGehaFosbZyjca3nb5uhxzdf3werlhC6/LFTDUSppspM/WEmUbCdCNlsp7wSVQE79WoQNiQUa/2DBqp+CwK6P8TavSDRvE+gpa1WYWm9QwZGLHotRmox+j0cZq0HZ2ZjIm2Y6qVM9N2THcd7SeOcKCV8a3XLuE3mgmNRsJgM2GwmTI0mDJvMGU4OAJyESZzYaqVMdNyTM84Wt2cbtvxmY7jt2/aRPN1S2mumM9QI2VgIGGomSINy3QzZTpJmApgcD3wr4Evo1GPD6D5eAPAiIEhC8NG7/vAS/St6GMr1/GIY9IKgj/f3Q7NFP+O5Uw2EiabYUzqCVP1lFYz5Z8Dv+uF17QzhrqOoY5jMBydzDFz3QZaVy9letVCsprl36UpQwMpP9dMuGggJQ9lkKpR6T9Dc+djezfwH42Wtozjp4rhJ9e/a6+/i4/83DvK/nbD/KvkkGUdx0THMeWF6UcPMbNpL+2fXcvuwTp/YRP+rGFJPQzljgHnGPry84xcPs7IpYtIKhtvp5nQqVtmmjXaxsyKDnaBf4WyTWJ7B/Bv0MhSw6gBO42O979GBRF/Cp2/w2GM51kd72ZljL33TM7kTLYdM23HTNfxzLTn7/ftZ/W2NnsWp/yLhw4w75LlpBctoG4tzZql0Uho1vT1YOYZ7Dh97jMPe6fx/3MTMx9ayfSFo8zULK1aQqdmaFlLF7hd4G4MfxrmXmI0teC/A8ut4UOpoVGzDNYShmqWWmKYEZj0+vweBD6JliecH/o5EsY6Mfq+aa/3pB3e+++Ai0UY6eQMdxxDmWOo7ZjXyulmnonvbGVmxTAzVy6mXbN06ynr6wl3DiS8uZFymWj+fNrOSToO2/X4rQdwN+4gy8APwv3vOYs3nLOEesMyUE8YbCRI3TKZhvlvDR+isr54YcR7hrzm4E95XYM6xvAfUsvVqeW9xvQ8qykl8J5Gqai/AVwHDOWe4XbGcNcx0HGMdBxDLUdr9wSTN2yj9ZuXMF1L6NQsz6Yp3/jBvfyzD76di5o1jYoQ0pNyR9pxuE5Op+2Z6uT8WcfzS85x/r5JmnfuoPnBcxkYaZKnlhkntDJHdt3zfP4tZ/N/jI+Q1hKGBhMGE8tA5hlp58zreJIvrodXL4IrlqgBGoxUBtSQo1NZ62dC7vFjB+DZw7hPXMBEwzLVTJlpWGZqKZONhFYz5ReN4T+h2iHD6FwYtvp8zIT7FdfEG4CHgf8LXQcH0Xvr0ch1N/eqHeCE/5f37PHqJMgtvDm1/E6o3ZyKUGvn5K2cdtvxRy3Hn+Y5i9sZzS+/wNCvXsRgLWG4mTJ/ICGN/azZ3j0t9DN7eD/Htk8y/eFzma5ZWvWEmXrCjkbK7zYTvthMGTKGIbRvcb5Pe5gW7V8bVUQfRUsPDYQ1YMCUkex2eC5awCfQKH1sbw3rTa2dk3Zyal1HZyan03H8fzuOP37sKMM4mq9brM/nQMLQQMr8ZkKtf/zivnDzdk2zePuyEnQMpLSaCZONlKl6UvRhGvgm8A+Va/rPKPNgEF3TB8PYDgfH1ZSU92DGl3v8dcC3gfNvuItfeP87uBr926H4GZ2MwY7HzuR6nTNhjb9hCyxswlv0el0zYWogZQJ0nWzlzHRzsk1HeXH7NANvXcHZqWVgIC329JHBhHn1hDTei+p4P7ELbj5ABkykMPXRs5hZtZhWzTKTJkzULL9Ts/yXesJoPWGinvAr1vDHaMrIgFcF9IYIrbDWtS38ZmL5dQOvM4bhrmO4E/bYrmekldPsONhwGG7fAb/9Kq2o0qwciYG2Q9qOqbZjouuYuf8A03nOzJuX0U0t/0+SwGDCR6zlVU7374GuYyRzDH/mGZo/dw7TqxcwGeyyVt0yVdN5/Pco9f6fZ55m5hjOHc1McJmjlXmmj0yT37GVey9fzry1C7g8MSS1hCy1/JdMeJfzXC6epoeh6Q4Dd+xi+MVJRrowEI2Bj58FFy4to30xOl9TthXtSnpYFCmc6MJX1sPYCPmrhzj2wkGmLl3KzLL5zOyYpLV9mnz3MXYND7BsQY2h5w8zMK3MP/P+FcyMDjLTysk6jns7cPmT2xndC80aNNvQWATy1nPozK/THm7QSSw5sG7nYVrP7mdkKmdyuMb4FWNceM4YjdTQTC3N1DCcKoCsxdSBGO2s5hwHT9O1193JR9771l7huurrjoMX9jH91F4mJzzTzQGmP7iGVprQTi1ftxbqCR8ZSGha8/9n78/jLDmu+070eyIy71J79VK9oFegu4HGvpMACIo7RXGTF5GSRZom5Rl7PPOen23Jy/NYsrzMs+RFsseyZI2sZ0mWLVEaSZRoLiLNnYTEHQRA7Evvjd6ququ7qu69mRHzx4nIjLxVDXQ3gO6GiPh8svPW7XvzZmRGRpzfOb/zO4yWJSOFZ2TgGO+XlANHf75P79ceplhUBsXAwuCHNlFuWl0xbGNa0pMefuP4cbYf6PPMpjYfWruG63KhbXVN7wMLBhYQHkD4TRH+uVUbe9TASNiPWcO4oJUmhER3SB3D9Mv6Gevp/ky/ZP6xWc585SAL79/NQqbr3sdyyzPtjL/uHNIv2bNU8l/6JT/0xBw7H58le/s2Wpk6UzodS7ujoruxZr0P6XYLzxyh/O/7GJyB/gT037qZsc1r6FqhmxlGrTBqtSTwaWBh4KptqfD8o8Lx9/GsXujR+fhT2P0DTR3O4RffegV/8arVrDZCN7OM5IaRTBgDxpY0qHJqccDCbz/Kwj0bWbhqmoEVftJa/krHsiMTRgtHt6/6BwtLA5Y+8iiH79zIL18xxd9vWzpti2lZepnhtwsV4vvrpaNVOrqlp/2pRynvX2SpC/0+PHjTGMdev5N7o93XMpVzY7xfMhKfq14Je0/Bf3kafmyHpny0rIL0fmBzfmIfnOrBe3bocxls4XouypD2yopep06dYnJyko9+9KOMjo6u+JkLaedMuV+3bh0HDhzgT//0T6v3yrLkV37lVwBYv379i3ZSF9Le/e538+EPf5hbb72VjRs38hu/8RtkWca999677LO9xTkA/ocR7jEqwJY7Q2tQ0ELztiOlLgNa68dovWkjg48fIPtLLWRyhHud4z6BRRG6RniLAWdU9MQFCqwnUOBWSkrzHhb7uFGrFHsJSuhCVbruK8AUSq+s8uYCjokCeH8ZFcn7H2iOuUE93B1UUEioczCjoXtOeDd8JubaVW91oT1fKD029CWuQVFIJ+ZZRqZCWarYiENFdk56zwkPraUBZryldHuj+U82ANa+iOaLe70eO4FNwKdRSt5O6v6kfTw3QbzYRxnah20kh/leoPtF6p8Ponja29XAbBANSPPLXcjNK4+VFKs6eIHTCHMGftxo6cN2uAGRYhjptn+OJqB/N81SdTnnDuYBrt65pflGbsCHgq9hfIvTUkDSLzG3TSMLA/jUPqZ/YBvGCgtWHUDOe/z+efwZj7tmSnObQ1SklxkWjbBkLYsiNR3WBwVqFHw8OXR+ryVRbk8eEYATaIQ+vS0m2afNGKWE54Uny7WsznVd+CvrZvjC6pI3lo7ffW2Xv/yFvfqF3VNR1VHHtAcGJTJwdAoHZwb4332C4t51LF2zip4R+iGdoG8N/cyyxwi/CfyDADJsuDfi4WojfNHCu6zFZlqbuQwgNrJhPUqZFppK/lA/n/FOx/0YmupByKFPP1CaMH9MdilPD6q840cLzz/NPT2ndOufdp7rC09RKr1MSoc8fkI9LiNgFuD2p09hr1xHnptqG2QGyS3W6Py4GY2CboHgKbeUooJYlcibwBERJmO/knuZ3lehmVIwKlEnIPQVcAaKTkbZhwKl2j9SwL+yntPbNvE1r1U/XhuP6Tx5v8T2HRLE8D7f92woHTvLEnvfYbJbNpKPdciCcKF4rV0tayfYOFcwN+NZE+YsZ3R+i8+qLUpohTvWoGgnHUzfA32YyyS3PERByzAGj6LPy1aSeS3O2xJyiAn6ACg4/E8ooI209EqcrXAU/YJB3/FbhWOh8Ix4FarrGsM7Ms9Iy2OxGKvlEgtRe2W198wCq4pSKZKmFjEq0XSo5+pn2TH4QVnPb6Gfez1s8mEeS8ZD1DzIkj7G/v0OWuHEhfEcy7gthWt1GgXKIzQB/TvQ5ypH88q995Vo8QywVAwYGckbYoceja5XKU3D60I7U0MvCYE4ohifr9a7mMN/Ak17W0JTI7ZDVXoud54Bnl6hgrxepBLA64uo5ogRjqMOv38ETO/Ywm7q1KuWaA5+2weqaBhHVTvZg61j9VpupKHLUa3qGXTPDKpStFX9eV9rw2hnfTKBeRjX6kHFJnBHoSw0H7YYOJyHp73mwk+Hezwqwp/LhN93nltixRR8xYTBeQYizBthRwDB4hzWUZUMs/HheWYRtk/XdINGDr1usb9GQNZnmG+eQFjPM6Vnj/X0S/gZPD/Z99wUtDKKfacoW0K5eYLSaO68lyCcGPJtv50ZfjBozRg8RjxWfGWH5FOjlK/dzKs/t48/ycBtn8IMSgoPRweOLV6FmM3jJ5EvHMReOYn5X6/DHp6F7zwLt22Aq9cvz8eNfw9c43mr2kQL3ncN/MLDyCOnMBbkof1Iaz9mUweumsHfsopfHunwN63Q2jmKffQ4+a7VuE2rVcdgynPaez5Rwu1jDvuJ/ZhTYZi8YRNmy1TDbhI839y8lm+PWm7Zv8TXt3a5bWYNN3aEdmZoZYauVWCfVznFARiJ3qPhds0126CTKefflnX+aqQ7ew+71mG2rUEGJfKRp5BP7UfeuhkpYaODR9DPe4tS7QuvZVoHjqX5Hv0/eIL+9WsYbOtQPH2ccvcaBpvXJAKcmvL6VQ+/hdDbsI5nN2hq7GeMsCMHjEGyoGOD1mc/IMKUIcybIe3DoGLPFqQSJJBA5a7Zst4T+uoqircVwe6YxHztIOaJk5irp8F5thaerxh9GB4fOP5L4XiLd+x86Fmy29bRMoa2NbRz3bpWyHKLt0JhPQMjlEaw22fovUsoHpnjv+6cZPeWGe7IhDLTNM0yU4YKVstWukq/RzgsDkGYxMFYB7smx+4bIF1wfbh+/ylO7ZphVRi7PpQzrgQovcd3Mvz3XYH/4gH8xlHcSIsFHFOlYMSoppPT0nn5N+boT4wzs3mSjgj3G8PtVgU553LDHxvhp0QwpZAVQmY8+e41lA/twyyBTMLRa6bZlxtcW3WNXEv3pYDzWjkglmpm8wS8ai380dPwgWsjGFLn2dwSfOuEgv0qH25ou4i587GdM6C/++67+fCHP8xP//RPV++9613vYmlpCRHhnnvueUlO8Fzbe9/7XhYWFvg7f+fvsLCwwNVXX83P/MzPLCtZB7B45jhtdNHPBAX0udASSwtXJ/4RDMPSY3evwh4tkE/uxfzgDq5qZfxoAb+G8BMi7Ap5XN6UeGspvRqkMgziSfYnoRzJ6AcwX5UUEp0cPoVGKFMwH8WeolrxOEqP/HnUAJpG8+evoQa6KZDP5BzzLIS6Zm04loieSNYrFIj5ui6zT9b82AqoclwdtSDeUw6uXhpo3utouwLxxmgfq0po1OWMBsDbUUYCKBjazgU6K5I+1ltivI1aONAPf/oK1EdngXjPahGOBkE88dEICqXCZhcpc3BjbRzwsAibRJgUpQBagY7UhmS8Pq9CRQ4/DrwLuDNE5jqJAXc+7aYbdja7K4LPDThbGX4Szl9cEP67ZwY+1SP/k2eZePUGZguYMKKG3UMn8dfNaE6t1Rzpfm5YsBIAvSzLa+2jBukfogyEMrx+BI1gxTN01PoQJVSU+wrEy9A4HGqt3NAqQ151GJfXAzv6MBjAhrVj/OfXbuGvJKBeingNQALFa1A6/Eeewm2egNfMsGSEfiuo9GeGnjUstSz/OhPeKMIOCFUZqErJXS3CvzN6TXJqhe4IHqITZ45a+C8OwxT0DmOmURTAgObsxXJuUTjOAX51jnt0rqoq8RXjNbc8OKf+aem5p/TcVDh2FJ5NziPbpuA7ZzgBTExAds0UWUvF8PLcYDNDkVtMpshO0Mj83qQvmgIgOBPPT9s86pSMfYQ65TUeC2p20Zl4jULn4zX1gO/m6iwtHM5avhiAnVx9JeLh33rPryHs9p5b+yXXDxwbC61j+0Df8YfO8aPeYx6cJ8eQXztJblQnYGCMGuUiyJoxrj6yxLO7YJULQN6n85gnHySAPrZhYD/8vhUoy6YYnte0JYcCoI0SRC9pgvpYsjPNo98Yxs8DwF3ofNv3sOQ8g35B0XP8et/x1MDxz5zj9MDzZYHXZ47rMGTGa6qBCdcx3LRJ4LiHqwYlvqVjLYriOYbaCv0s24bSlQ0HiAf2R0E8T52WGA6RhX5Fyr0BbgZ+DmWybECfoSg210efn3+MOq9/AdWb+QzwTjQdIcdXwc0lCc5Zr9esXw7wo3nlePIiFRBf5kmLrW3gTHAbhIXOBeHJ0vm6xFXo79dR8dq7UbbA76BMgsypiFVelPS9r5yaA7xWE5BQilKE3w5G601GaO/eUYnhRXHUFokR52kC7jM9GA//m+TPi0hD6Z6WYWww4ETMnU+3mEOfLuzx9WyB39ShfP8uiqfncJ84SPkOg988icfxjBOu9zG1VMAXvHMg/LHzPO09Ox0MnNPzD8KyhxBmjLAmF2yptbEl5NCbNH9+zwm4e2M9mZwlL7vKY54ZQY4XmMLxFauO15bTShmfLx03BO2bwROn6V+3lsyGyiRWab2l1bmtZw1PibAjUypMnbKvpeAy57EZ2HXjLNxzBXd+6QCn28L4xkkODEqmC8/UmUX40hHs6QXMWzYhWyc1qLFzHVy7oQnk4wBuadRZxUWjG2mFNt6CbSBPJmvmdgvv3FVVKxrxwqwV1m5dC1fOqFCriw4WeKCEGevpbF1L8U6h/d3j2GtWY7asVWZc9XwIBs9rS+FPNs7wmSugZYU3ZkKrbWhZoZsbupmhFcXBMrMiiE9bZbe0rGr/FEqdbxh3PpFOeNd2zEeehC8dgdfMMCVhnRwApWhptyCI159bov+HT7K4bRX916xjYC3FzrWUuaEQTS06CXzOw5cEJoB7ED4jsCCCsypo3MtCKVYjiFUHgBPhGSNMG31tDPgwJo0BY8E8l9p5dHjkphJds7nqPZhbN2K+eQjZOYkp4QpjOFI6frbwHCo8fwXPTXtPkYmhtWWSdtAuaFuhYw0jmaHVUk/DYOCZj5hTINu+jmLbOjoOHrHCbbk6r8qMsNd8dufB953OT0bYj2GVceBE9SCuWY1/cAFZAjMNT1w9xVimlXF8y9SgPgL6sPfbpvB7F+CrRzj92o1kHiYHeq+lDIKRswvYh54l//PbKI3wKmP4ihFuCyWB/3tu2JHBZivYQpkgWekxO9dhfhjKh09QXLuGqU1r+XQ4nzKIFZcto2V+HbhcS2PiAhPmtevhqePwpWfhdRvC/If+vXsCZkZZuVTdxc2dr4bQuX7wfe97H1/84hc5dOhQ5VFaXFQZow0bNvAjP/IjL80ZnmMTET70oQ/xoQ996Jw+/89Q2lcqNtbKjYqy+WQBiwtJ4ZDXrEH+8AzyxUPI66/gduD3CmFjJjCgAjluIJRtWzvLG2CeeuF10B9rVWC+ROmQBXBQ4CHgx6mjMlEd11OXeylR8aIbUeG4n0AB/dXUUZBKz6H6+9wGWhUEFKpJ2FjIlgoWQ39i9CWq3EdxvCj2VASA5Vz4LJ7HPVy50IOOITNadiyenzWCNULLCD1q8SBLHbEFTUP4V6HvEcjH/p1zGwbyccEYs7DU16g8EewK4rV0i3iYETgeLLfqGjivYldzfdx0u3LMPAbsMrVIT2aEdrgnzlOpLDvgLq8GYC66dZJNzvG+PWeXjeBbNp54DSLDa/Ee84Yr4GPP8PZvzXL6jlUaRTndxz8zj/vRGRD12haZYckKi8HQiWJ4S4RIGlp67yvAz6AgsIWO1VMowP97qFEeS9R56goCq+NtoQkGV7oKuTF0WuB88txRA8uNwPevHeNXX7uFD6WR+ni8QmulLn3xMBiHf/sWnLW4zNC3GqHvBWD733JDv235CyKVs60lQeAJVdedAr6LCv+V1IJlPjmnWaii1yuB+Gp4hi9MkAB6o0C+qtVuAuiayvBnFtUQR9gexqt3agz/mNdF9OESPl16OqXnTmdxt01wvNvmqa0dPrB+LddnQitE57OWZZCbKnoqaBT5UepxW4PTGvh5FHRN0mQfDPc1/t8E6gAowzivgo4xSt82uu+V+FbOPcBnfK1XEtVdHi4c9xWO3xp41vYd63uOJwuH9Y7PnTnDqx88yPj3byG3GkGymdavl0DXZ43hisdP8k2/jt3OUZYGn9d9LAWloFQRes6yHxqpIUJf4itHnk+u255wXavrIk1QbyUIx0VwSq0G/yr0Oiw5T7+n6Re/OHCc6pf83aJkqnRscigwLIWsVIMnKx0DJ7WIlvfMhHHmC4dvJc4ahgBvbEk/432qVO6TMbEX2EIdyYxrU2QcNPoYxs12VFxuXehfnFeOAj+JPmt/D43G344KrnXCmh7XzRK0hDAe8Z6NAswP8JuXs6ScCM5LjR3S9aFjlM6edDYyYUoU1JeoY+BZ4CDqlLBomdmfAN7kPFt6hQo0lo6s9BWzoO81Qt1HldH3iPBV4/hZI4rnpDbSW7mhY4R2dIo1bIywnyNU0akfOjFSRei1lJ1Ax9IpBlplwqsIJOmznCL8lAkwN8Ct6mj0+qpp3JvBfXo/5Q8Ift04exzcLGD6Chw8MO08b3daQnAnahuUgQWD19SbHdYgTjDWYa2pBPGysGexgKMOtk1ENN00dBJQb8Oaa0Zb2BEwR8/wmvUTfLX0zHtP28FrnDqC89JRPH6SwbuDun2IYsZ9aQxPGE0V2SCCtEx4Rn2t64ZWUTDe0N00yZfu9Lz6SwfwN/TIjpzm3dKCg6cwV84gb9mEzTOMFTKrVUSWAYMI6lumKn3ljQkjO3qkhx7IO69AnjygdcsNmFs3qnCs0YE8inDECDtbgU0q9RrlnOf+ItiPRsGevXKdRoqD3SJxcnL6+iYDf7/QyPUbLdyaG6Xb50LXGjotFVS9EPtFrIDVAELDiRHGcCVY/PbtmD96Ar7ZZvLWKRZKBwMF3b7UuuN+dpHe7z3F0s419O5dS89YHhHh82K4y1hsZviUwNeA60T4kMDVYSjdCnwC4TEj/JGF7QHUeiPkmUZ4SyM8I8KdphacNEJgnz5/sEmswWdWHTZhMjQ2lOXdNYl88yD2mZPI9imODRwO4SmvKcOTzpN9+yjtm9bSNoZ2Zuhkuu9m6ljJO2E1kYIctbWNEUymWOQ6D/8xE37EGAoLRa5gvsj0/jnnKcRRGoe3wl7jmBkIeEEKg7lqHf6HhcEjs/SvXcXsFTPMZoJvBxX5XKP+vigV5Ac9AD8o8a9ai/vDxxk8M8r0liktgVeEPHrnyb7wLNmuNdhVo1gj3JQZfiszHM2UifAHmeUnTRizovITeeGwpcXs2IC9cj1GYLM17LWGM7lhIjcULauAvnCUmZbdtNGBqbQ8eMd2+P8/CTtH4YoJOL4AD8zBX9vVXLji/HORle3Tds6AfmxsjF/4hV/gV3/1V7nvvvuYm5tjamqKu+66iw9+8IPLFOYv59bqjHMztcJsRWs2wRKIEcywgEk0ZL3HvG0z5g8eR+4/SfvmKVaXJccGmhuK1UXAW/C5wYlg05UxXXQXCzUGRvLgSJSKMumAT4nwKjTiHsF8Fo0fUaOyiugD/zNKOf06qgL/BuoFJhpP5xydh8poq2vQh7dygxkUlZhNOoDckIdfIxcJoCnV47/Xe+5dLDHtNoJU63EWKPe5kcp5kUsN6r84dIqfBO6WZnT+fCjpDQWypM+MZXBKYYIaggngDQbpGuDBEJV3ATBFh0Z5vKBcOxqAhvCQCD9mNFpgo/NCIrU4MSq9/h1PqUUN5rMLWAyfeuYAV267Ytn7YgOoj4A+RumhZpS8cRM7P/EUz04Z2DmJf+g0fvs4fryDy7SGfC9E5vtiWDCGHlLltfZQ1shjKJjfiEZhW9TL8k+ipbf+HvBTKH3boBG5cepIZQpwzgboATpWNIdpheZRmvhbVwL1wQvlHpzFPz2L/6Gr8C2LD8bUIDf0w/6BluF3W5Z/K1LVgo6VBxxUZbduAL6DsmYi6yBkaFTPx3FqhXugETVbCSOOkESwTRiJJgHzIpSrOvgzqAFjNG99vfdchef7POwq9de9qNr6QYFnjvV5Yv0q7t8+wVJm+ZIRbsmE3BjyzJC1DAbRKD91hP5TybWNjimoo7ixrvwUy/s13DdIUgrCMSPdHtFjlyIKMJcG+PEOVxrPHXge2XuIv75zM7u9gqo7Bw4flPv3lY7/u3AY72h5z+2PnuHBa9fx+rXj5FZTNUwmCIKRUClh7RjdpZLjp/v4qU5Ve1qJW2GOWwLJbX32Kw3K4Q5mgu/7mq1EunmeRgGsMOSMDa9jhD4CXoMamr9KzfYZDByLA8e/DzmnP+4cY6UjLzydfcdoPXac9jVraO1cR56pk7IsvTKRwm+vETjiwRceZ201Xktq54oa9UbfTW6uQ7Rmd99XgD4CwgPA9yX9a4B6qZkHkYVgUIfYN1CmWp/g7EbnjqtRcc2o8B61OLqB2ZQ5BVtnvG9Q/K/Ak/UH0DI1mJcA5vF1BYl47+L96xjo16DCe69rd4hspnT7r6KpcmOobbETeKvz/Eav4P/bLykGCuht6bDBRBgQKuSgjrrfQXi3wMZMyI1w4sBhVm3foBogztFqW6yVJtCOHpR+cHONt+shGqP0w/NMOyfvo7R3ksh8APc+nuDwb5xcwq8dqcCv2zmtUa7P7KN8yxaOTI2xIwIaq3Ojc563lZ5/XMBBPJu9ZxB/CzjohM3WIWV8NhUsW6fROuM97DkFa4zqOKQR+TRSHxYMa4TMhCo6q8fIjpfs2Ah/E8//6eBWPNvFUThPse8k5QQMNowqJTnT6J+zCuZdZvguNfvRiCC5wUiGkQKDOgay3JJ5TcOY3j7FNw6c4d5PH2ZrGE/l69djr1urYM1q9ZNYFrQB5Fs1oE/BsIhoxJMMrUc61K5ZB+8DefAI5pb1WtLNSJU+OYlwJFOqsgtR5NJphLLv4f4c3ubVILDiA0YJUU/UPovPcCZKTb+9q5FrI6KSBpml09L8+fOyyVjZbpHM4OPaHsahCfYLeGSkhXz/NswnnmbtBCxcOYUrSqWIO48/sYD7vacZXLOW/j1r6Acw/68yw3zL8scB2L3ZwE8hbJQ6+JUbuBbYKTAnwj8xhp8y8A+sYUzU0RbnyANoWWmgMedE2+V5Wy4wMFU1Iik9WREqPNy0EfnmEWTbJPc5h/GGVukYeM/evSe5rihob59UR58VOlboZMJIJuRJLfSsq/OG7evzoc8VXBkcPc9Y2GYt/UxoBXZKVs3t+iyUpmSPMVxjHZTqfDPO43esw1ypJQnHRTicGxVVDdFwTUeubWZXhme/ncMdG5j86kHWrx2BrI2gSv9m7ynMgQXsWzcpRrDCRG7YmQtftIZBLlyZG64JQbPMlGSlkAdnoC1cqEUvjBvVBHgiN9yYW33GRfTc0OoceZpaVHotG/madfDRZ+BD18HnD8ON07CqWzvcLoPoPJwHoAeYmprib//tv/1SnctFa+NTmyovfpqPZmMuS8vWUfoAdhT0eEw7Q964GfnEHqDHD548w+LV07BtRss3WS3f5EpPaYV8Jc+5B+b7FDkMMqnz5hHN3TFKHfzfqAF5JgnAFeqofgD0a1HxoH8W+uioJ5Q0Op+d6zhLgLz+DYJA22BKNWoW8HRChsJwDnSVP+8j7V4X7GMOTnmYWQIz2a3p8kaqhUNBvc5pudTRz7cBn0tO8R0kRq6cZ/48aedIQL3AaEtRaaT6sTyauMZ7jsaHPqQVRIppObtIuXkcD+wT1UfYGiMFxqiRgfatLfW8ESO4UDtwLhTMA3zm899YEdBD8Aa3M8QXtVZAdF45h4y1+fq9m3j1Z/fhTy/h7zuCu3cGHwzffgDzPRGWjLAkyqhYQsWcfhaNUv0L1PnRpja4B6GTBvjbwK+j0aufRBfOY6xcyi0ujGe7GiJCxwLtZpQ+bduAN68d4z+9dgs/9oV9+uY1k8iheYqvHoS3bcaNdUKZv1CyKDP0M8PJ3PBzLcsHjbCVAObDPg/9SunCf4Dm/1bRD2n69uaowW46xqo+CxW1ENTJMR+/LzWI99GgFvCdDJeDP7UIq8c46T3Xes/7UYppTk0fL71js/esfvoYn9+1mYEROgivM1plIs+gZQOLJtJLw/lsC/d3iTp/2w9tJ8N5x6Sns0XpYxujdgJUx4nR+RghHgW/VFasGAfs+tq3uWbHJtrheXWlAnrnHLtKx3tKxy8Vnq3PnsGWBRtuWk0eIivtTA0OU/oqGiJW6E106R5fxE+29Xq52ilTouDHtuzK0fizPa/W4oohIO9qB8gzNB2x6fzdoNsnoP5G6mjwpkHJ/KDk5waOqYHjfy0d3YGjVXjae4/R/vB+2h5a39hH9/1C65r19FwTzAsaGX/Mo6wVa6qKCnGvgH6oj3HtFChaFr9IXZbPwaL3HPew1Z/dWRHXtgjsBWUgfITgrAjX6CfRFIP/mfr566BAPjpAR0Tx0FL8rTjHARsEymJAr2XI0r4F5oQfHpixr20Dg6Ja7Fxc41DafeECUxN1Qtwa7x9Kxf7LvYK/2y/55sBxx8AxGDhs4bDheP3QRyfCNz3Mi/CuTMhLoW2E+7/yDXZvfButzJN7o+XuWqYJtGM7FSq6dMJTF9c3I0pbT8F9S83AxUGpQNEPMW1SG6ZMfmNuiXLXhDrbMtGxffU0rgA+u4/1r9/KzOoRKEIecallgaec5+7C8yUH7xFHgcCB4/jHZ+GqKa7cvBbjPeIdxmlk2rpIhQWeWYCt0zTKScVJJQs3L4B7IyGlEshWj5IdPUPmp7lK4EPe8zteQUXpPcXeBYqrZihF6fZlmFOdUQ2U0kiVzlg9m0YwLYMVLVvcDyw+jdLD1ZR8o+zpM94FFkGOn8ZkG7BWgXw2DOZzEwS4zFmBQQ3qh/9D77FcuwG5dgPGKgvDiDp0MIaOwBFjFMhnId0zjN/vhvPenDBpquCjVYBnwzNh8fQRBmEdwmhEuR0AZfcCbZez2S2S2zAWw99+aN2cHIHXbaHz2b3cmMGp7VOqgXLiDP6P9jC4fob+q1bTN5ZBJnxeLPMtg29ZBi3DnW3D+6xV+1PinCRkRq+PF2Fc4KdE+OeoOPNPEzQi0Of3KBq8SO0Vm7x+3maEWN60itCHOaB/zQT5tw+S7TvFvZsn+dbAsYRjvPTc++1jdK7dQMcaWlaj8yMh3SHLTKPWsRHNp7fGKBAvw7UU2GGEPzXCFqMBxsgELiSmDQouU5D/ROH4voFAIYhTDRrCsRQqGE5Ex1GumwecM1WZSJ/7qiQyW6eY27vEG751HF6zXjGHc8hXDmJetQ7bybWiRHDCvzo3/GImzOWW95rAlrTBvi4duVP9BckEo8YE3ggbM8PDueF6a+p0SCOUudXpLTAHKsPcebhnBh4/Dr/6oIqjvGMmWZwDBSN1xl2i9pyA/md+5mcQEf7u3/271Xtf/vKXERHuvvvul/zkXqp2/PDDjMpQdD61x6yoNzAskIKCnerBXDOG7FxF6wvPcqOAe+Y0/u2C374uGJpagsFBk6JWTUYevzBgMG2DV16qiHspagzkqEEQaYP1BKPnWuXcSx2l35z08f9AKemvIomCcP4R+rgQVDZOO4O+p4vSMldpbyryQexilU8YclMiqH/c63naUw7TbocFI4D5sACLaN3SWK83FzXcbvPap0+i+fS3kTg5OP/67FUHk/4CWoceoFdich0HBioKvvGedQjH0YfduxjR0AheefI07oZJvAhPoPoK1ujCGrUBopHeDXZINCqr0wrbC6HZ/9UPvOs5/18yXczEUdX3Nd4jpdVJeWach69axW1fOqJj/8tH8BvalFfN0AsicT0rLAVRvD5Kpf9nqGH6/0MBawu1ZaIWQCYoXS+cxwdQ0P8PUWB/FKXYVtdiCAA+1xUREdoWXPDmp8A+vr4SeMPaMX7ltZv5q1/YB0dnWfr2PHL7avz68Yon5wIFzmeWBzPDP29ljFjDOwhzBnUt6JgWEgHK9agewunw2bhwQH2fZ9FnIe1X6skf7vM4cDjtSwWy6lraHsFP5bhTA/xqdTqtDrQA4z2d4JhUejCUR07TdvCBsTG+7OE1VripLbRChL4VPIBWqJhKBk2H6KA06t3Ua19sDnVYDKdNpPcvAop4Y1KHhYuxFwl/h71vZwrW4zX08PYffFt17bqhXraLhrrz7Mbz488cw3/qIN07ZtjeysiDQnGeCUUmdT6miTm3k4wddRTbdQ6KDkkF4SGK21rBhbgM6CYvcoMfRMdA7ZDwIU3lWTRCH69VxSQOr3PfFI6z6HN1PfBN5+kMSv7VwLFl4PgbhaNdqNpvy3van9tPx+va0S1h5JuHkKvX00fHhRAMdQ+rBE6iRo03WUW3r4Hv8A2sWxnuUWmkcnB64KCHCTzTKaCnNnht0q8U1O8Kx30sfP6nUH2RH6F2qLWpwXw3bCPhGIPq93w19jqA63kOtDO2iY61eoxJPQ8Prw0dq1Ls4TqVaES2iPN+6P8SmibwY+GrufNIr2Cq73jfwPF7PcdNhcMWJaZwZHuPwaPHGVyzhsGmVaGChvBuI4w4CTpiwl/4gbeQ9Ryt0tN2Gjmtzq3hTfNwuqc5LBHchrHZmEsjNTjkhy8tDWA0r6Ll0VEf09alYct4ODGgmGorK8Eapc4PHFw7xcEz8Jc/vw/eug0z1kEGwSFVKjB/k/P8Owdz4ln19HHanzhI5uA9T53m2JvBbF6N8QYpQh4xej+19uEJeOPmoUEk1byden6NUXZDLpBvyBl88VksV2CCo9M4eKz07C4c5dNzFG/fqiXPrano9oWgTJUA6N8dn8+wGSNkbUuGJ/NenW0+2CR4BrumKPecxp4CJsDsnq4i8iY3mJaC+gaYD0D8uVoD1MePGgmepcBKMQmYF702q6zhAaNirVkmFCL0vY7j+7znatTRqI+3x+DJwnU0mUZBu2E+6ocxX4YAULRr0gDZ+bbntFvy0N8wFKuAi1OtGJkZh3uu4Ae/dIBTZ3q4QyfgqQH+tiso7lhDX4RBJhS5ZbMxDNqWIjcM2oa3tjI6mQn3rWlb9j11qgrqVPxZ4B+gVUZWo+kiUK95ES/E9e9cbO/qnhZGF9TckxeOzApZZsmu20D768fYvWWCv+Ud9znPWw6eYu3pPu3dE1Xu/IgVFcKLgDPxJlRBPiPYlq1EJwV1EH8N+As0U8yibR/1X/oi7MstG606H7xzWG8oIqsH/f3HQmpmbmrNnwjsfenwpcFnDl8KOOGR21Zzx8eegD1dZNsU8shJcB578ypyo6LEmTWYzDBiDadyQ2EN/yWc+6tQHYc8s7QwlEXtsBAAo8G1R5IUsqqf1uBzZeOZCOjzZAK8eRo+eVQv4kePwFQLrl1fU+zDtX4+jYiXsj0noP/kJz+5DND/o3/0j6qSdS/nNmLUeT0cnY9NrAmRep0sTBkmSKc0GLNwWqnDXTCnoHhkFr9tRo2YMqFmholgOEpfLJb0R/Ja3d6rqI4T4TMIb5DlYD6mCLRIIvRS5/F9ZqiPnwTukia18Xx8R3FBqSh6AtLKwcNY6eh5U4P48EKF4US9er4WKIsU02cc7BaQpUXsutHEYJVqTSYswG1qz6APn3uV14c2k1owLkZIzztCjzRdp9HaycOR5vvIWKteMMK9NB7W4CkcLHlPy3t8qRSisihxJz3lqi5O4AERbhWlu2UBLETGRDY07s7//F94k5bVfKXSByV/ryw+7xl1HruwEIAUsAj+kWP4q9fTN6rC3BNhwRi+iYrdPYzmAf8kGnGNkfkI5rtGAZIYgtdUL/nbUefQz6LU8hZ1Dnq6KOo4fO4J04jQDZF6aIJ6tGvsAoq1Y/zedWt4z6cPcWQEph8/jlzZZX7LDLO5YTYzzFrDt3LD59padugkmjt+BzWYj3mFKRBZi+b3PgC8hppNE8/FoxHsG0lsser86+ki7WkUxQvOZhXlCRF6b6QC9271CH5ej3HEazRdgrPGeE87XIPSg9vbo7ximhsyww25IWsptbIV2A5tq87GFMzH+7AdzfveTb3Qm+R6z4ZzTvthhvaS7EcJEfpww32M+oa+ORFcluP7RBciRz3MhKiSlJpn20JpfIVXYF/uO87Vf3hQz/uLR2htbNO6aoZObmjlSqU1ZamRQFFLtj1j2PadWY74aba4Wonbg+aHC01RPBnaV+8noDAzSkmW2pCIgnj7vI771dRR3Wggx79jhD46BGN6xxrv+Y1+yR8NHPcOHB8oHe3SkZeOtvO0Ds/TPq4VQ0YK6Dro3LCO0idzWpwKPazGcxI16n1eU+4rYL9Sf8O+REXxPFAWDm81qnbQa0oNqAPBIA3HRVzrKhYC9bYZVXkvUMbLD6LrYBsF7zEq3022thGcCykU1H0TDwwcBtjfztlKei/q9XTZfUXUmb0Q/ox0e2qDMOrg3I8K721CI/N5v8AGYa97B46v9R2fHZS8xZWY/ccpfnc/4sA/vI/i+0v+ZNtqphDusGjtZTG0nJAXjpYJ6uFQRaHj+QB1AOFUAWOtZPGmWu6iwZneurJlcb2iWs8rhXvv8V6aLADnoXC4PrVWDGiaofe4QvjyLZPc60tG/3gv9uZV2GdOkO9cTbFpmuLkEquO9fjgwR6do3O4Az09/RHI5mH1l/fDuycwnTywgrxS5p2H+b56CrdMUEXo4xZz2WKnwvtR+NiuGyWbU1Ff221hgbud4+vOc/WBUxTjGeXqEQqjKWU+0u2D8NYR1GG9k6ZNFUF93snIXbDVHJUQ6eZtM/yLtwg795zk9qum2LFtLSY3Gmlsae62yY2uV/n5AYIKAMZ7PHCVYEHFqDLo02YEZwwTmbBPQn55NYalShX5YLx8sX8mrG0hMBFbFGiMzs76sp/7+Z9vq4R9vY4LE4G9D7a5F9g0ybe2LnDvZ58NnwO3XiiMMgsHuWU+M/xhbnljbjjTNryplXFLAPMtqdNbW1LPSU1vpoL5n0dL7/5TAkuK5vydjpFzvioxSh9y6bPM0C49Renx103ANw6R7Z/nhs2T3GAg+8ZxWlfP0MqslpuzWnLOpvoLQykbufcN53BaOeVXaVZOqTZfs3YOhs+vNQJti3FG1+TAWvWB3n4oGS8xpdSHCLYvDL7wkGk+vXdwsJPz1O0buPZrh5B+gXziIObu1SE1RVMAB5kC+i/kITc//MangNeIjsn4zNOyyi50VGNlF/DfwzlV2CSsyUUA9VVkPorjOQ97TzTv0wPPwk0bm7T7Sxidh/Ok3P9ZarG273B0vtHCxEGge0VgZ0qP2bUKeWQBvwjFBLBzSr3ZkYKe5F02Pdu6DRYdg7F2LYYXgP1x4Fuik2p80FIwH2naMd8+zaV/B/DZ5PRjJDF+N+P5wVDd9HO1cz8YAcFDuqpfsNjOIuGAZFctEjEyX3pfUVmewHO3eGR2CbNtrPIURsq8BANEROjgtZxEci1ixM7yIojGrWSEx2OMAwv9atGojUL11o15jbwcdzDulaPgvIdjixSj4NoZi8BTAu+3usjFBTGe++Xy8JncIC5E6pxHcl0EJxx8YccUNz9zGj8HrgXuhhlKG8C80VJ13zTCP0iO97dQMD+c11rpAdCM2MaJ9m7gQ2gprjMope3nCSwTOXcvNzRBfTou4+tFFIi2j8zzwJaMDpr/duiJU3x023qs1Tql4y3Dw6GGcGyfQUF6TNdph2cwgq7U2/2d0K9K2TwxCE5QK8Avi2Anx4nbODUlXfPLo9e7pt87wHdH8HMqtTXnYR2+UoqWIlTtiGD3qaO4OzdUecM2CDR1ckPHGjpWWPBN2mA8ry1o6bpo58TIZtyfRAFqfU+a/TGiX4xXNubQx/uUUryrbSzD9fSPk+Eza0XvrkHHUtRecEBZespHjiAOyMAWkD18hM416+kGQF8YqcC8YgQDMyOsnz/IwwPHJmtU/yPMu25QqjBeHBPDkVwRhiPXAORW6ck0K3946rJmlRFIfc2j9kntBKwp9w8BX+k78n5JPwD6duFoheh8u1/Q/tRe2vdsZOTQHN2HF2i/dyOyfa3+VnRUBuAEGtjNgIUSWh3TALzLIvRJ/6OWg8uMjsd+SdlWJfn9XnNLUyO34bgIfYuif9GIfhjVhIltJ7W6ewTzcT8S9rEsqAQQqI4PqaNmvQGlgX3WNNgfqjBPVZpJ4r2Mfe2GGdvX92+4ZJ1DdWxuDdfW9gqy0iFFiRuo0vZ7ypJfLkpu95413zqoa2MHygHwsYPctuEIt6+ZxEyNkq8SWutGyY+eIv/uUdrXrKW9c0ap2GlkGppswPkSJmLtiPoeVc9feBgjeHRZhu/XHLGoe+DDH54hO2Z2CSdQjGQ6jiXknIePPFXCXbevQo4dI/vIAQW439pP1tlPNppRbBhj9cwEH96+gb/oBrQ+cwDmwXVBJMP8zmOYbWswN01iJjrVs80z87A+U/AbgXycTGzy3CU0/JhHn7cs/SnInj1Dti2n9KrB8XMeir2L2G0zDMSQG6XcK3PBUIjS76Ozuk2TjVWlxBgh62ZBGC84roGBF57Yvo4ntq/jM0b4CWu4pWUwudKHs7YCe4mBhPNsEoCLpom5kMcTxr2gZ2n0zosR1qJsoCo6GbYD4f2bSGxPqde1/Cy//1IC+JVadGKI15TBKJoouQ1BAs/a/iIOkC7IGSifOM7gqhn6Qdj2VzLDxpbh/S1DHiLzI1JH5atKElLPWVUQIjwmBrV1/iOqA7QRTRd8CBXojHNctW6eT//yOkpvMk9n4Cit4FsZcsNaij89its0gRyaxx5cJP+BrbSNihB2M6WkV3TwFRxEcQ1ZqXLKWuBBVHB6WNA3zv970fW/mlONpquVwYHi0VSEU+H34prhtIOaV58ZfBby6EuPt55ZI/S2TCL3Hyb72EEyD3zpOHZTF9m5jn6mDo48E96UGT6W2GXvoomRWqLnbuO9CK93oMGG42jQJXXKOhMcZBHEp6D+tvXw8IH6It6+Plms5JJH5+H8ArZ/Ztrq9bsZFRWyU7XxlW+CTpRKgTItFTowgTotm1bj7lpHvwu/9PpNsGG1RqM9uADuygDsgZqmRgDjC47BRCsI6dQlc74A3CzC2kA5j4A8FYkTkQocxcHbEY0a/jzwFlRs7M4wqPNkO58m4bdSO1VDkdDuF+FhDfnx0ZGRGDoVqPfqxT3ooOe9ejEXepixTMW2JDolk8UZzb8aMep8ifvRsI/biOh7F5pnviw6H/s4msPpsgLxuqfO23IaGZwLnsUqnf5UgZsYxQW6/QaBaRPKlohUlUniIvlStl/5tT88p8+JUXEfyXWck6uq6URueHDrDL23baZ/6xjuvVvxV85QVHR7Qz8TPjl0vC9Qg/mO6L3riooAjoQtpcZ2RanDbZbXqv8Ey6OV59oU1AsjbctI29JuWa3L2jZ02oYsszx49TRGPPnAIeI5unuaf92x/Ju24Z/nhr+XG/5ObhoA7Z00wXxFuY979DxvRKN1EYymHm7QRWWaBMSzcuQ6vk5F44AqbzFG6D2B0rZG8CcX6XuYx7M2OKUqx5TzdEvP2MkeY4dKRq8YZ0SUpjdqhTErjBqhkxt1RFEbrhFsGhSA7qXuU3wGoGYgTCR9SPsoK2yRck8AVBAihKIUPg/4dgu3oIJ+J0pY5eFzv/+JJo3bw4iHUecZA0a3rqHrYKQPoyWMXreO0Uzr85ow1kNZZIxV5Wrp5vS6GQtHzlSRymrh76vYUl0GJN4sad64dI9GMEsjuMI3rpf3nj0+MCliH2Qo0iNSsZDi3JEBnysc2aCkPXBkA8efDCKY97Sdo/PpA3RGOozcupqRbdO017aQ7VpTQlztBKnmuHC+qzwsluCyOkJfla6TpHNp/8JnShF8Bq5fhO969gNbHNU4jEZW7I+INIRf4/ufotk+i84rcd5I9yOmBvPxhAzBke19JWwriwNcy3LMU2lQlME5pg6XFZwWoJR7gL6mfGiJzBoUxcou3wDucJ6sV5AP9P7kfb0v2aBkS1Fyi/N8d+8c7ohj0IaiD34SPveuK/jGvZvpXDGKnV+i9dXD5L/8XfLf2s/vffZrtH9zP9njz4Y8u7BFXnx6I04PYLyjfydr3LJStOHa+26OGYS7Fdl28XA+lK6LAwEPJ3uUa0xVwqoSFcwNR4xhLjNcYQ1mxKoDNw+aOBsM+ft3Y9+ylbGbp7BXTPL5LWvov20zT900zufetgn5oWuRt23BFAPMrz+J+fge7KHTyFNH4WMH9GZLYkinEfpqEkhsCSPK4kPI1k5gDxeBFu+Z8p7rBiVm/yzllRpgKUxdOrA0mk7gAqC/NrluqTZRzLvOjdLvbWawbRUU/VLH0u9aXNdysmP5fMcgbYNpW2w7w7QzTe17gU2sIB2rjqdujhnJMJ0MaVskM2q7UlcLOkEyd6PR+ZvQtThlyMSA0MXS+ToXu0UkVBmomA4GaRm1YzLDwZ1TuAmUVTgC5fVrGeQK5j+fGR5tGz7UMphWploqYR0fCXbKmIFxoxhhLJlnOhKCE9TpPn8dDQ58F023+YcoqB+Ozp9XwKkShtJ9lhtGrWHMCKM3rmJ0/yKjB+cZu+8YozeuYaydMWrU3jEJwBwWVIzNkBye5qNzM/BNEoclVA7MCOj3UVdkIf2+1MefRm2c9HvVWmLUaeGDho2zGt2etYZxY2DC6hyVq7NBvnuELOhNtHJlKd2SG/6NCG+miXdaEsp5hr6la6lBmXAbgceTc0sdsoVRzNfQtGhbLSn5wc1wUw4/thmu3ZikyVz66DxcPkHCi9rm5/ZjRMU7vPfP+dnoLZN+iZUgMGLU48+Vk5jvHufQhmnm8KxxgX7kI8jzONSQSL3nhYdBr0851a0emALBIXzewHuDEZ1OpnGgxhtmRehInaOI0YF/l1fBIEMCOqjL+Jxzkwjgw+IvCbjPLesHjmLIhiBEnmIKQFq6zgNPec1ftoXD9MCOd6roU2ZCyaghIzkXrXWaUwt0VMx4dBG9YA9xbdGEv5PjjLQU0AcQr5vmk4kD4xzrHJwMXowqh/7YgHJmDA88jLAz9EejBLqvJtMLO+tzbm/4vtvO6XMCaugFMUgJyHNKoIdwavs6Vm9fpzVEc0ORCb3M0LOWvjVVlDm2d7CySFVXas9p9HTHK27Qa/xOmsKH7yTSpy7MCRIj9b6hfl+vOjdvneE/d4Rt+3s8taXDB65YRzdRK/XtjNuM8G9Q58I7gFdJnUIQ9wVUytxx4bgBpaadQDUBivDLPrxeoKkAn/qUPMvB/TLROBPpzyEybwU3AD+a4ZcWOYZnxHtGXRi/zmld1xCh7z4+D2tbFO2sqpdrjebdZVYqVdwKzPsmS2Ir8F/C67gwGupF+yTLFe7TPqZ9S/tXLfxh4olA0QG+lWnZGzSatNp7brjjJj1mTBnxyp5p+6Dd0W5rKa7rLNlN68mumlEdhwACbBgnCuYDTVuEM2snaR91+E1R1FMUOw1KXDf0N50znmds+kyBTxnmw1j3GdQx8ppARReWA954H9LKH7n3vLNf8qcDhwwcYwPHGwpHG82xbn9njs7+U3Tfdw1dMbTHMhVLC4CtEntFqaqRfQGaR7/UB7ANbZR4nxtN6jFQAaFR8H2nrCUPB/Aa0fG1Fk3aR6gj9FmYIwrgHb6ZSvZOmlH5KjpvAsUybU5ppTWYD8bdkoM850g8Z6j0AUpiegcV+K2s1Ji/2ysYjOZ19MrXOjZ7gFnnublXYPuOrCxV+G7gyArdnPO8Y/8c5r6D7HvDFrbkDnlijj27pvnM+lX8uIBd58l3ChnryT/xCPmDfV4/ukXL1H3rMOxcF/LuBIxNblC4gSd7sHU8edCk8r+kLLh4+0w3Jx/oMSrjO6xrUc+iOr4HZgeU491QmjXee3UAPV7CRq/BYnPNanhwAdvT+SO78wqy3GoFRzHcI8IveeF122b4xOYZri1V0cCuGUdeP465dTX2G7OY//yksmwAnhrAM8dg97ohIF+Dl+jsjBNOZkSDG2u6ZHvnyVijrEvnuefgPEdGO8xMdEJ5OgXyJqvp9rqea25xyqCJoF5fC7l4Febq5lgpyIzh3szxKaeVXzDwOqupTbZlFaRcoPlytiaiJ6XPd722SjjvFupojVo18bn+OhqVrfrX6NvFi/6ds91iBNO2IR1SUwUlrHVsneH33yq8+4k5zDWrMNvWMsgs+zLDr7YNfys3TLZVS6VN7ZjviAaIIiCs5nfnG+tYmjIIamOn7RNoCU3hwq6d4g6rNNwiUO+Do73VzihvWIP78NOwBNk1I1iRIH5naup3Lmc1mIwI1vuzVk75NZqBiMiUjdselLoe5/Fqbff1NZoOvzVP0C0hmUKEoH6PRuhzdRoeyzyjgLlmDf6RfUqlFJCbNtAJ+fhafUidVK9G8U5Mj0htshzoS9OBHM9vJwro7yZ1yIZ5XNBrWCbzKuFCXbtBt1QErxXO5xJH5+EcAf2v/dqvndN7H/jAB174GV2E1l+q41zn5DULi58RNB9JNCdaRtvg4YrFPsfzDqtjhD5GbL0uiimY996r6MrpAcUVYyFHXA2776JiYrfRpNunNKD0fFvSNKQj6CV+PwzsGA09b0q6WU47NAA2I+u7ULe2dtpHI6BSuHdRDE+ZCo86FVyR00vYFpjchhwtqfLQAqpvnEbMr4/RuviJF1qXXQJtuTlTh2OOt2ChrIFIcPxEYC8eVjvPMYcC+mikn1igvGYSDzwi8Jes0twsYI2pqGvnl/5wYe1sCvfDLS70xorqB5T6rqYGCMe9Z1oCYMxj/XlDLzccRxevH0LpZu9A6WZdU4+7SnVa6kjcCL5BYYvX+U6v3taPoRSqO009OV+YTkIN6mnbKtU03usbxPBjm9fz2c3wY5mwO1Ec9m2rKsHoonEPNfUwBRMRYFWO8bCATKL5vw+gNLaSkDaCeq6hGaGvxppekjpiGoD0OJo+CpGOLkoPNjRz6Ke7+EXPqYFjdR5BuUdKwQbjx3jIH5nFXDWlxohozqhUnaitkJhGUEWOQ/+2ojn90WExTL2foxY1G+6jDC3+whADQWQZkPSE/Ox5VfCe9fq7G65Y38jtj9HmVpx3T/RgXQvevlsX38r60L31arybvo6VSgR0fZuJvaeBKU2hEnXQusJRdqWO4obzbXSUdK8vXKhX7ApXRYHTGvQ/Gj6+Uv4l6Lm1vA8RCI8blNxelvzMwPH5geNNA8d1eFoDR/vwPO3PHmDkz22h2801rWyyHTwmvmmg+nofjf8xoOiBb8fSbjIE6GWor3U+rgctUzTQTx5DwfmGeMnxVWWxaGhBDYhaXg2xNppu8++8zgdvR6Mw0WhL2T9nY2jVJWfD7wIUnqybkYlw2MOW6IQIfYzGa/NA4R8DPpacJYjhuTpQ/jXnuadX0O6r6J0dOExIgSgHpaag7T1J+ysHefKujfzBpin+Zi5k22b4bRFe72EST4ZehxzIb1hH+zv72GmnNJf3hnVUSsxlMDigGaU/04OJ6eYDpoOoej6ikx7AtHLGT2uEccxXZELC8tZUuvfg5wrKNd1K90eZGeCs8HjLcoVXcGW3rEH+IvDwMbJr1uCvnGEQ5swBwjYRZhA+a4RnrOeNpVSOOeM9MtXFvqGLPXYMHk/698BhuG59DdojsI8tzmPhGRcTGI/r2uRfP8zAq4iXAa7Yd4YvbVvFSYTdRqoc+kxquv0itQBo6rRNQT3UtlrLCkUnoyg8N5aef1I6/hh4mwg35ypGl1mpGJgvRaumOV/PjfGn1gBHwusCnRYeAv5foV/R9oxLwbDt+VK2c7VbQG1G08mCw5oEYAtPbFsHV63DG2GQGZYyw79tGd6UW65vW7IhMB/nla4sZ+22jVRz5rLm4QdYORAR0wsv6B5H2kdhSMvYtQoP66TW8/iDZ1XI+dr1NWMlUsCf456tVDnFoMzCw6jDfBM17T5l4O0D3ky9TsXnQZJ9ZHrMoql3cQqJzlOHBkvLgVLwF0vPUu41QLRlDf7PAw8fQ66bwexaR5YFBkKulSUyU8/TMYAZ14V2mNtM4rSIdougdsmfkDgpfM3Oig4HiUEgCQeIi3V8kCqNAnUuXA7tnAD9r//6r1ev4wBJ34vt5QLoz78FMB+MewX2ukjQybhqvseR8Q47fYzQK82wLH1jjcX5kPvuGQwKilGpFEKdwGdFuJcQySWJxggrTvwxzzwO5r6vB7igN7eKiJ7vZJzYp1WEPrwjrYyJ0rOPoG/vkoeVhMISaapewf2THt6CR+YLTKelk52JVMtYJ7X+7WWnlND/X7Q2HJ2Pvz+Sw3xPwVS6IFaAXhWbT3kqyn3pPcX8GdzEKg4iLIiwLUblrTI70kXycmmNhd8GBC0l3gjt0vOs81xpgmBUZuhZQy+3lEb4JZSm96OoV3uE5sKYilSlzYooqKf2dmu5H/Wa3k3tzIpOqQvSSUh+r2uBjtXojZTqXMg9tzjPzYAYg7HoRN3OEGsqz3rEf5EWHM+pHd+PCyP14iEofe1+4HXoYmHRZ2QOFYHLWA50Y5Q7vT9QC8z1w7X2CZulFOrSdS2LbwuLc4vMrB0PEVit51xpgPQLZO8ivG0zkb4qDeO4NgZiv1MwH6lra1EwupZ6YYQ6Qr9quH/JtSR5DxREnk46nYrixSiqHxHc0QIHzHrPhoD4Kyp3TC9IT+REAatH6gs6lGZjMoPplwrmM8EOdJyNrcoY/eYplpyK7XkbAE7hKDsmsCOGblJjHpHG/1UOmKDS78JdPup17t5MbXAMs4dji2KhZeGgcJjScQeO2wLkzgtH3i9of3wv3dtnGNk8SZ4ZvTHjIY50egDTlirP1qfMCX0mZ0Qp5Z4sidgS8sv1tQz1twj3SCn3Ga50ODwHPWyK4ybpV9rH2NpSC6FKuB53C7za1860aLiNmKBmf7Y5watzpwJfPsxxPaDTCrnEokarpAwEiT7N5evDCLheQeF9nVYW5n7n4cFewRv6DjMolW5fhFrz/ZJW6Sn3zFF89gDl6zZy5ZYpchE+Zy0j1jKbG14jyp7JvTIwcqB11QztH/a0v7xfRStWTWgoKYuAnuaD5z2cLGA8q8d52McpowLy4VJlJsM6x0Jw5sToPC6M0yqnTH/HzS1SXjlRR7dQ6r23wgMi/CggJVqmdcc6zK716pQPwLqo9oY3Af9StF74mQDoq6orRrTC0J0b4fEkf/WWDTVor8B7Mg7i3xHciNoY+doR7AJk832yyQ62X1AcOIncspqvIlwtWpJrIAaM0u1LIzyBOmjXxrFEfejUKZUF5mQBlEYgF2wGt3vD7YF5mYLHF6IG/3ytmm+p513Cc7sOBfRxzH8L2IDmFFcpL9IE9pdjU/tBkJYNgQF1yq0S4VAIAJVGGFjDbwYA9kMBzKdValIn4dnuRzs4w9Ic+niN7/Twc8DHUTB/p9S2Qs6FBSJEFOhiXTLYRA/62LHmh79zGG5MBNpaBuxzg0wr6idIwW6G2hnXoLT7DST6P2EboIr+W2iOreF1HvR5iakd6VY5/0XwLYtzcKzUwFhbQJxgrpyBHeuRTFNCs5YlaxmtKJFJxQSOa2SLOkof57fUHqvSu1BA/2sk0XlqMB8dupkJ1c6MQKYl8Kpmwn1o2YrJeDm05wX0z0dJj+1iee9ejNYdXX1+XxA0f54QwSHYwAiMd5lZcuwJ4Lai2gdRvKqUU1gIBx4GAmWvoOzYyiiYR8Xw/qnU0fZ0QhhWRK9OTUQjmN7TkdqJFBeZC84tj/2ObITYb4CRjG5R/5ZuQXfaJQ9HFaHXHEpDyJ9f8tjxdpWfG0XxgKa1fzFaOgPFVVmAMQsHNBJYCeOlwN5pDv03nK8iGL5X4JbAT4/wFLBTVIxHwr3LjFSL5MWYAu5/4HFuumHn835ueCI2VicylxvGCs+hkDpRitDLtO78QIQvouIpv4COt3RCTUH9MJiPzYjQDQ4pS6hpLrVtmkbDOy90LJOCeoO1YDPRdJCwQIsBsZo7FZ130SBKF64IKtpSO8pS+loE9tHb/X+R0NfC/gTLBfFSA2GlbTx8fh5ddD0kufNS/e0Q/EiXwZmCmbWBjuhC5LoMka9nTiFTwHQnCQVL03BIzq8B5oWKmr0FrQ1+G808Oahz6FmhL/G4JH+ngD4ycYaV7n0L/OIAUIP0Ojx7HnuKa2/aFWpXBxAXwYcH5hZh7UjzGa+edYMxOjZSMC9GaE+Pam3h2TOMrhmvK3YMwFtLGdgmy+arlYaphDnRKGU/np5DI38bqcX8UlBvhw5nROgWJb5wSOmwhccVKiokhcO4ks4f76fdatF99dq6bFGgbdJC6dhTCu4rsVdqMA/qiCldCe2sIUxY5UOmDtjQnFEtGA+UmcUX+v5B59nia4dofDYiqE/7p7opemEM6sAofYiYUDv4okPtOcFQnLODo6d6luc9tDNmRCNNt1I/mxHMu3jY4X3XUPSdljLzutZHQ3C+dDwzcNwyKMlCjXlTOOxAwbx/Zo7y4wcovn8j5dZpnIF3Z5Z/YS2LLcM7W6ZOp0CrNeQltChpXbWWBwbz3EQB3zgOb9io9zTS7ok3KCxGS6gDJ16fMN6j7ZL4AtV2G4epo4OKwEG8z+Ha+wTM4z3u9BLFqtWhTnsQE0Q4ibA/F65CAb3N1UGh65868PWUhT6CoGk+i6LOxp8tDP+0cNycOR2b3mAHDrlmPbxf4FuH4Zb1sHs9Vamo4IBsLqpSD7DQf2uDoNZaS//IItl4m2zvaYrxLjeMt/moCLMirBGhMOrcLhK6/TXU83SaP5+QmYBQGhL9z+ikjhogMVCTOoRfqiYiIU1weaR+BqXcx+f66yizLvav0rKQ5f17qdu52i1Q90usQTpCdNSPlZ7DTh0rGPiqNXw8M/zLlqVlVFMhRnJTMH9WgezQ8qH5KRyeDE1XeDU1/TumHF5QQC22LIDzyMaJZdRuHRJou2NDnRRv9Xl4Pgp4HMeRUZim1d2CAvq3kaTQottBdJyspXa6rmSvgDIQ58LrdA2BBNRbQ5mrY3sk9rnURB9rUP2HTDUSTCdjJFfMM/D1PF3ZXjSxaNqnyDS0qF5NH3VMbCNhIUgN7BF1FtG2QZnf13NgCHxcbrj3OQH9n9WIe7s7dV6fF6NRCSN1pD7mOsp4l1Un4P7tkclYA7zoOI/RDIcq4g7wlKehGM2qnL0/9ApqT4qwRZoCQTGn8LmaEakMoBejSQAI1QOaGgAmo92D0/X6HvZq8Ea9niJELZyHJwvPznAdzJzHdNphQZSQqwSVEuvFfEhSI5/k9ZjVJFKfVDeAKh8Tr/W955Icend8gXJCc3weQLjB6HXMpKlwf7Hy0R59fO+5Afpk4Y/324So7YTVSa+qPxq2OeCXgL+GGv9VTWhp5jKdy7jtoLmusVpIIfVCEaPhLxTMx2ZFhRZty2oJlBDRiqrWYmQZgCe+pjZuhoFEtZb6Jqi/HgWekb4WPfVz6HWrr0PTr+Q9y2jp0RGUgt4K1EsAvQHDMjlCdlKjShHY1FRWME+chh1rqKJYKW11KNoVqWvDhqFBF8M9NJ0VEdDPsjyHPl3sq+sbjjdOrYrrYv+kPp4DLY1VlOA9J4A1Anv27Oe6m3ZWz6lAEqH3MLsIV082L3Dch2fUWHW2SWTThP8/unqCwYkCvzpoZIDWks8zzbXTC1TfSKn+aSJVUdBTtpRyH8G8954DPigG+/q0hiP1sXnnsQPHSMjHbg0cReEU4DtP9p0TtJ44SftDuzExWpOFmyMC0xnMD8IFrec0CeuZQQ2gSWBu4GCintfjPYn7tG9pBMcBfiSjLHXuP4Rqp+AV3FX0dxfuUwBN8V7kIowaredd+BqvRmdHnGOed50IIN76RPwPMP0Bpttio2i9eC9S54KH+xT7ayCZBARaOcWSC0aur1nvHh4cOLb3HWsGDjNwmCLkz5ee7OlZ/B/sp3znJvLt0wqCM0NhFMwP2oYP54YbjeEW8Rqdd572wNEuhZYRHj1wgJtefS18eC/cu66mgRa+njQAzgRPylirPu/k4YvgwiQRe3IY7Q9YpL7fxLkk2DVxzICnOFHixvOG5oATeFRgVa7iXVJKVSfcClirwo59ieKwQobhE1boCdjCU2Ylny6EW71BvNaQtlZU1+W6DQrk4zzVqN0+RC+uLPhkXgNaCPm6CbKDfexVkD98ksHOaSZE2GWE+0T4ASMMjAqCujC2HwWuS8bgMKhPAVtkn8WIZ1uaOCB1fL/UCvGNtYx6SlqLijfGcf4N4CeS/g1H6C+mkv252i3Q7JcYUbX/zDBVeBa856j3GGP4OSv8mBU2ijRslRTMp5Hd52pxfqpZYWq7xHUqddqMyAtz2oiIVi+wTo2MqLi+ez18QODbz6ra+jUbms/DOVDARUIevdT6JXHduRX4HRJxa2oAvhdlk6XO54ZtENZ0Qdf/4ywH8410OlFl+WOoAKEvHXiDQY0gk4HkoQpEKOsYcdHztWo8C40ofY6uSY+ha2+VAketGdC4VjZMnhdCtbiI7XsS0M8dG9bSPocmBiOlLi4kXu7xjMkTSxwJozOCegXysX6xTu4+eAzdwGlFim6LAs/jTvi0aN7gTwr8c1HhrUg5Pm9BuxethQW/ArwhKtPO6C6oXgXpOg+1GrT3mi8IPOE8H/VKmzSA7S1hxzvNRXE4cnax2rKIXXh/NINTWpE4VQevaMteFXLnHIDe5/Kkw60eZwlhj8B7A0iwRiodgJW0EF6q9p4//8Zz/mxc+CuPN7qtQcVD4mQcJ/f/iOYTvpYQsWY5fe2cjG6CEQ9k+EpJO56T8OJfKyNCVxINioBOIpiKr6vtHH4/eunT2q4WjdTsRMvXbaReFOeowS7JPl2G0/+Lr6fQfEcHVGrwhsrwjKrdTLXozvUZgQpAiUfp9s5hHpuFd29JLFOpo11muXc/OjPSCKuggP5rDIFu1BBYQoFhfR2bfUn7KWiEHlQ8qh37Fo8tGuVybQOFRhJ7eNZ62Pqm1zaiTzbmOsZJ6WgBUwHcDNHtoxfehuhh5dswOs8vrR6jdbiH36nzt/fg+g7XslVfq/48xzipnp+2BDE8Xxk0e4GtEXxSP4dVOkZ63IGDgYqsdQcK6H3Y5PAZzEcPYH54i2qAREBvhMqUGu8oHTv8eOqoTA3+1cApSopMzyOWRfS+FmKNTl8kGmYJqO9k+CU91iGvZR4rIoj32KUCg8dEsYgw/nym1TYyEWwyH8TrPAyeznq9fVyQa6PbBDaQGfRhbYuNwMfCoeJ5R8NO0weW/45rZxQDp9EhH9WR9X5+y3luLhyUGp23hcM+cwzz5f3ke8C+cxPFjmlaRihzS5YZvmIVzJe5od+yfDy33ImC+bwoaXnolB7JPO953WugKFWt9METcOva2puQDrRTvTpklT5wEpzl4pO3wqscuosDTgTgXgcmfMXir2pMLzkt8TfdqSNaYSw8aoRdmcHlonl2IRfeBIxhraEtwgDVrsgQvh/4H6gGlTjDG0pNU8icIXcOExwDjRzWhiiVXWY3iAjeGJQmIBWwzwy0Ztrk3z1BtjiNPXSG7I0bKIxwVyb8Wia8JYB5G+j2Ho3Q/8VkDKagfiUjOjqqI8OkkHp+Uq2yi2PnrOSEFTRC/2z4zBPoXH0tK4B5ufjpgedjt8AwmFQdGLEqxHYY+C00LfD1nN1W6cj5OS2y4LSJDo8y3GeomYXD9O8LblGgLU1itwLXb9RtmXPr3AXacqGRKhhfX4U6PR5Br13lqEVZTduop5Vl6WG+tmOmUce+H9pcsgeda59tWzqZ6HoW0iVEQgA1VjA4z2tZLS2+fl6jfXs16qh7A4ltG8B8ic59l1sE/vna96TK/QU1Uxt5MVIvAmYUOk8vMud9yKOLJdwU0DqXeLkJ28JAc3tyzcP8crQxUWP8UyLcQ5JDz8X1kFYtRP313BLbwFharlTVVlDT1NfU5cLXUfpHCs+/DKD3T/C82sG1xxewV3SrNJRs2Mi+mC39vTQSM9bSVc772uglAbse1oT7faZU4OKP9XFjozwNrBFhlahnrwHqabCZL5u2Ei1PUE/+l8NnohDUfahH/z8Q6GXUUbOY39rm/I0WCdfnYrV4P16MMVfh4mRxjBHBm9BI4JupF7IT1IJ41TOW2N/DC2M8xRGGaruaUI8eX9UB93iKcRjbs6C/EQWmXIjGPnsGuwRsnqwjWGmEfgULrooYJ+csqDDeXpZ78U+G7zUAfbKxwt8R0M+j5YI8IRJcOSvAd3JcH457mAzjLQI1ibTqAFTxwFKpJ7WqWwPu9Dk3sXKJwRqHMQZjXJ1qNCNMP30S72dqo6bvKbtZAmyHblKjk/qimvtbgit9Ii6n9Z9fE+8Ty0F9bN57BUkD1wD2PPYsfO0gPOHh1TOwfbpp5Dlf93myA6cGlWEYr1f6zIv3dIBWv2TB6vOshljthKgj9PrCSwDBMWJrMvySZwkd6xuTucUWDuOd5ljHyG90JrUUSMZySy9oPghI1ELFMBFA5geYXEX6ThO0HpIofRp1ruaHcB/L0Yyi55s5l2Ftf6SEdyT533bPMcxv7ycvNQWTjqdthLJlKXOtw/x9meGjAcwP2hnvNKI2ufe0cXSckBXhmYz38rb18I3DcPPqQLk3iiCioXG6D9Nh5lhhbdXuxFS68HbL0h0Mag0LqiFSidrGN93sImUGZW6ryLwL0eyHBV4nWh7PGBumFY0CWqtK8wOnEc2202Pf7uFfo+KqbzfCLcZic4N1jswJLYemF6SOi5hK0rLLo/OxRWs+9t0qDyVf1yX/VI/80XkGazrYkRYmROgxhm8ZuMOqMF6kGC+gIGel6PzZ1vO0FOOwCvrFauk6ks63MyjY9Sjd/jbq3PmGIB5NJ/Pl1p5rrTTA/45e+1+laasMg/kLYQDaIadNKfXaeLYU2QtpIppnTohYKzPHNGkfKZg/D4G2GIiItkvUAjKo/s+30Go9aR79HjRI0bAHZPkYE5SFGMOnFdXeBwexb4L7Y8C0NXhrkLAuiFWHu5gLc4xEFkJqn0Xnwy7gj6idDJFy72imeb2c2uX8rF5erYre1FFrzaHPyBYXyYDjUUTGx0VQvfceIEbnvac8M8BNaM6ZE2EDgGhuGaJqvtEzGj19l6RJw5ap7eFRyHsaJYtpJfVDof0ceH39Oa+CT7lXqvZXnccu9jAjmS4egYbeQDMXuw1H5wFGQ0RvKdSir1Shawp+CxjzntkY1Zg9jVujquZXhgsX0/uyEKG/2Plo59ripU/peVCLmoBO6nPAL6JU+zWwIn2tLS9e6sfLpUXwUVHvqRe7m9AxkS5es9Q59Ol1b2DB+H/JtZygFretPNxCyKUP3iaEU2MZaxcXGAvONnEEZgmYxxeQHWM6MIeFpYbFpUJbiQZugKhHHI3DuJ1Ex0U+1C9JvjvEBK4Myqp0ndT7yqPfzsDDycKxKvyYQK3c7etnFe/hxGLgvdr6YqYWSLja1oo6aoMBYUX/HpkZY2SxgMV+VW6udB7XsurFX8YsGposw86LYi+fmxrQe+g5dU5spRnlSEF91SpLgxpJPv4s/OYBeCygyi1Wb1BVR1ea5zKRwVwInTvfuF6qE+Jj5hOdvuOUaUZTYi6wrzwCeuxSaoV4D7jc4nA869VxNYoe1zowgxLpOY3SL5XqdFkooBde90pFfS+kBTAfu22TcWIGAyTTVKgZhP2xb5I4XiQI4w2tDUU3pyxcULivxfCeLPU6bg/OJOs89tGjSmM1SmdtP3CYdsvSahlabUunY7i5bfjZluVN7Yx/b4RXmTCHWqGVWVopcybub1gNxxzsPaXjoHBJ4ifKLOsuz58HVGCK5iNuRKBj6QwKeuG6+XDTPQrmHfH4HneqT7FWHVqlkSpKPwCeEM01b0axpUo3y0Rqp2/YjwrcJfCPBV4toUKKFVotS6ubkXUtjOYwkuk2qnXWGcnODuahvl7xdZhwstVdcuexXztEtmuVUv+t5tjfZeHz1lBaVbv3aBTvKnSts41+1Syay7U11nSp/55Bx/k8qvZ9J83ofFzDXkxg+lK0ZXZLONWHqO2WHup0PhvV/oXY1zGlsm2EESN0jb5+sa+ZWIF2Bt1M17JO2LpZ/bqjzq3zaSYyR6nX9TgObqdm30XmEmiEfgv1dW9E52naMqupI/TQxArD2/HweaDSsRGpUyAvtFVjmtoJEQH9U+i8lQYk0pr0L7d2OWKLl7zNXHHT+X9JdJBFOmY0SM1EF/qwflByIoLbGKmPtldUhvUhitErKTt5NcgLgWsF3gj8C4SbE4PukgLAMEOqAaBPqwiQgy0KCjSPEKieSu9VHblwnsLDveHNATDiPXfhMafBTqgoXlS6r9rFptxHr8VwJCPWHD7dT6LyNTCSkDu/ysN8uN/l6SWYzHka4QYrldiWqtxf/Hy0n/v3v3XOn10WHUbH3RoUnMVcql9BjZvXU9PXYmS+LfWC+XKjKr0YLT6rVZkU9Dm+Go2q76VeJGY5uwJ8gw0z1EbR+1EthEYqmr3SXtXAPj7RpdMHBiUGVYo2YdzaZ04gOybqVbgRoTchX6zZ4qKagvm48G9Gxbddcl5z1HVoh/soyfsMvTeFGpkuodvHfjrAZwYvcHJpoAwY4Pf+6+9XTrZIt5cIbuZ6sCajYiJAE9THt8IzKqLGmKi6Dmsyw+HxDmeOLAIhnWhQ4k1WefMbTWT5jQuAx4tQGlMBJI9G/8bDtUopsSa5znXzibcY3X/rcPO3HjrSpF9a07zwkxmcXqrBrmtqZ1SVRLynU5ScMdUvVw6WlF0Q+1rRFAn7lsH3CvaDViJA50/rPdIvMb0Su1QiiwUsFgrkl0roOwX0vRI/KIev7vm1GMByQzn0SwWmo7H/TaIMCS8xylaXsBv+dS9QtC2DQdlIP3Le823ghpCKFeub221rdD4ownp+x0a6LUO3bem0DJ3cMNK23NnN+CeZcLepq3l0BLq5YDOjkejM8HMf/kjtrLl9LXz1OJVnKNLjPDBfwFQnXPTlE3u0Y9KqMdLOyQZwwleumiplMIL6+DCWcwVuYqS6VrFs3VNGGBdhQwoMhl5DUzB1xOg2Kpo/Oxped0Xzj7tGMLnVElLdDDq6SUfVpZ9znYnew6EovTWGbMyTz5bYbklmVLDWWOEea/imEQ4bLVnn0HLC11JfxuE+Xc5GdAW6pH4thGo0aA7xXjRnOp3TY7rnpaDwno/dEsfwcB8/NfS5z8CKJepeSOWci93EiD4HI3lwcAWn1liuz0RuL6gvKRsjdVjdhI6NOWqAW6Br1haawZ/0dbqeT1KX6F0JxKekm2OovTl8THmBz1jqIE+BfRSifYZk7fJNYP9ya5fzXPSStePPPnoB3wpq5UaCbRgi9bmFtnDl/JLWJCeh3aPe+4quEnLK3SK4Tqui9j2NcLvAXzXC9YltvWIO5UVuDQM82qoZZAsqvLMA6tH3tTEX6fbOwRoPLQ+vcZ7/Ddi12NeoRTcjhypvtTY4LnJfG6gi/BH3E8CZvkblPbVoFYT66Z5p5znuwZ/p4xwcnuhyWmB7oB1ao2MlM3LR89He98Pff86fHZ6M4+voMT2OemvvA/4GZ6evteXy9ui/lK1BX6PeWiht7TvUnuqTPDfgPds2RjNCH8G87tWwRoRnM8NSW+DkUk1Fdx5ZGGAOD5CdU1T0vRj9i9sKLTVkU2+8oPl0e0kYA6F/k2frnzSdRvEzoJoDlegf+uEYbI3UXt+Gfq9gIyB43vK219c5ojHiHC2GEwVMJSXrYv9SoAOICWkxRsG8CRH6TITj66foHfF1dME7XFsqUNfowPA+/FaVn21NTC3G4zng1CESKaPRqBaCZkF6E1IDI1pCN62n0W5Z3wT0wwyC8Rxmy+p4ApUmSBTGi/Nc25WcsDGlI9xfGQL01JHtCPA8UHbA4zjglW5f9asokYHH9J2WCnz4MPy3b8MjhzUqH6Pz4bUvnz9O4r2q/PvS6T7NNU3mbFX095gzYLoZRhTQ7wn9i8A0XbNjygfh/hUdi1sqQr5lXcXmW8CNTktCWu+xeIzNyNuQXW8x77sCdq4jyw3d3DCSG0bblpFOxpgVxk0NZsdEwWwewXygdr3/nW/Uvw1w2yp44rTmyxfxhEO/z/TVyB9evPVFPfQDmBFBnQSA75fV86ZAnopuH2UJyvkBxXS34fhwIjwisEvqqFo1D0ozMBE1TMaM9nVMqPo/LuE6BKCfUqHTqN05tWhTJGAeI/D0UVonlDWY/f4Bsv3HyayQWcO0FW60wh9n9Vh+BHXKNhyZyRx/OQPCdC1P96BR+o+j4mBTJHR7ad67i93Ox26BpgM9Bk1+YOgz72BlVfuXo60iVpDMIG2LhLJp55ozv1Ibfk4jsF+Frk3fps4xj7r6M1BHuxO7YHitX4VWU4AExIe/0wAAKKOiitCH/TDz4kJaxRaSBNiH416NOrUidhkG9i+39j0J6Mti6fy/JOFBCpNApN0bQDpd1p8pOEjwaAeDTfVqgtJ7oNx7D+XpEj/eDrRF4YDAFqkNXZssiJdU5CA8lZXzInr0MwNFwYj3nEkD9F4j8wMPA+8pvOfLHq7F834DVwlkp/rYiaBwa1RxFGiGiC92H1N0kqKO0RzOlMHIjXm6VOWxcDDu4Yz3+Nkl/HibJ0S4CiGzCdUwgIWLnY+2ds3UeX1+2MsdJ74pNG/qF4D/CZ3MV6KvxUj992prGLE0AXAE9HExO0odlR1eBBvDcWhojqMR7ASvgElyzA0hH01YHB2B00UYt6oFYZ+cR9bnSDdLovLSiNCv1OKzny7gcVHcysoR+snG95t9TPuULtaTKOWe9HjRaRGAF3nOyZ5Th4iHqalJPU54Ng3U4GZuSUvzpT9UReZrcBBFsCQ44DQHWE/w1FpD68gcxLl8UOJapjIAhun1w81DVdvW2Qxf1n07AFyR5P4PX9sGmyeNzMcDb18DrwpX+oc3wlUz+jrm0Mf+xvOc6ijHMOYk+5UdeQJkpeOMNQndvjbIokAeEpgHJGBfwLeAXsExDxvCaBVHBeTtoMQ8dkTTBR4q4df316A+bv0I6lcOlXjn8f0SlgpYHKi6++JA/+6XNZsBBfMWVH3eg+nkAKwXYV+4PF4SMC+J8Rn+vxQou4ZyqWxQNE94OOw8N0UBOILg294+9upVZG+/Xu9LeMZaVhhrW8Y6GeNWmAjAdkIU5I4aLfUpEu5heD7XrJ4KE4zRMb19FL5+vKbdxzbX0xr0lVUs9fgP46sqQxuHhhGcBZa0AoKvRPHi2q7/OKA8sUQ5mTXy573AYwJXR9uF5nxohsayTUD9hFFAP2n073FRx0b+AsGWiIAxTWBvBL7zbOWQzj3YR46SGaPOdyu8zgqfNFqC8QywnxXSCMIhL7Zg3Pm25LYvm2tnUC2cV7GyoyIPry92O1+7pRLwo2YK3o7qMrwZ+LfAHbIczL/Q8fVnpcV7Pcw6EVRb4RvUdkuk2zfWKOp1K84p8f3p8F3ltzXz6NP1pI8+a6togvhhm+FCWtQ8S9PYol22iyagj5H5Irw+17Ltl0v7ngT0F9TCqKoE8UJOmCDIZIfpM3DS1faWC3S10lMrv4fN9wrKdgsPnBI10DdLnaMfB59waTykVUspeSRGeVsBfYdKN46Yb1ei+fNFcGp82Xnu8WAIdboXHVmrU+XS2RUN7YvcGpZNcgIjLThdqtEbN+pa1wY1Vk964KTHrxrjUYQdJuTjmtpxUaVCXoLunUtr3Aaak6gF/g+Upvdmzk61fznR116KloogpRQ2Qelr96PPR1zcpmkaWunitRLQB43Qz4fXEWxE2qs30bgW5oBicgQzF47nwv7JU5htq5pR+YoS9NwDNKMJOOM5bkMj9NU5oRH6qRX6sFKf0hZF/3RKic9kHS313kOWMxg4pvB1ZMDTYCJU7cSilmpbCdwk1q1G/4IzNaTLSIjSy5ouI6cWQ+67x/VKfKsub1YJxA3T7ZO0gSpC3za4QRPQbwYkzCtpJGGZMV0hK+qFxgOjXdg2AtvX1n2szoHmwz0SXMTz/XAcX4viBUdlfIazEKFP+xAdLGkQvKFuH5xLCg5LjgHr0fnSFg7pq5CfGTjsV5I6ygDfONQA8tXrflmLssVLUTroBbr+YqnbUni9EN6PIRafGHOLhbKtcqPztyjVs4c0WAb6OnGcGWEADDqG0pUV1d55z3cdXO09o4DFk0UhvkMnsetHtILUUJTYWkM3MwpgA6hVMC9NgS4jSfpE+swCr1oNXz8Kg7LWVvAeFnowYc86FkRoOtjCOu9aVq97ZWzXkfmqwoP3lAtLuKmsmWKB8IgI10T8TBPUrxSYiCUKu0YYFQXxo0ZzkF+0tLToAEmv3e0bECAvFdDnN6wjy/SeGCPcnBlyEb6KGvtrwrZSjvnlup7HllLSh9eWOFdPhL8rur3UYP7lsJ5baOgydMNYerXAT4f9iNRAPn7ulaYt6v/EPPrI1DBoKsa3qcHuPtSBny6naXQ+DQiBji1YWek+XVOi3kFqEw2P1xfS4rhOgb2g4n6xilNcUlNg/3LLo7/c56OXpI1OrH/+Dw01ndgUmEWauBDo4iMdJk8XOig9gWpfR+orJdwI7PsD3IjBoQbdelFlW13vm9H5SzrvhB834UmV8Ka0LQwcHWCxotvr8j9wdb71Q3h6XtUyjQ9e1BMl+VRbAaGnWa5OLv4CEu9rcxYJ5zDeVkAf3o6R+VjPG+8Z9xqhYbZHMd1mj4fdQkWzN8nri1WuLrYv3Xf/OX92ePKMp/ldlG4Pmjv1CMup9nF7OdLXXuxW1amnGe3YgS4YT1EvXlHVvaaiDhle0vx/oabcV0BDqUIK5hUWgoFjHuxEDqeXwth1SFFinj6N2TnaBLUVSHjunNR08U4X7m1oCaRF6gV6jhUA/VD/VtrGCRF6oUolqPJ0Q3/LkQzKSM/zPPDt76qjDQXzprIYPJzow6rAAxqm2w+tftaoMJYJ0VEbPr96tMVC28Kx00Hl3lG2axG44UW/uoZhV5X2Asq2wRe6FuDhgE9q+kptWEfDo9EaikIJwJ0vV86ZTgdRvIEiOohOLVXh13jNqnsTVYELz5HA2ND7KnXkOuyRsL6F1AgXjCCfGYqyAO9Zq7cJMygxhUMKhz00j3lmqH/XzwQQ36Tdx7+V/ebxvbIG8jH3Pubhp/n4vTpKbwgO2YUB0gGL3uMJgREJwnhSp6TXoF6q/pfh/rnBoKLbO9TgvT6sCyaI49nSkR1cIt/YxRCfr3D9E8+uilLVIozDTYxUtPsv3//dKp8eEdg2qaUeHjrRYCNwwoca9LJ8HISSlBKPLYkfKsv1WjMcna/z6EvvKec8biKvUhS8qB3TE2F7AAfD89/zBSZEzoNKfz7NSkgGN1W9enavhw9uJrs5J//gFuzOddhMyHKDDcD+zajq/qNoFA9qf0yqb/RyWPGG52xB1/Vvhf//j2hZvsoZTQ2ALkU7H7sFdOx0JIgpioL30cB6GQ2vU82GbrDJXml1awQhEhtmN7oeP43OBXuoBfHSiHcMXDSWnrBfhdo8aXQ+zrOE94+jYL46JvW09WKA1GG7LP7GTtSujaWAq8BrEqV/ObXvSUBvbev5P7RSM9HYI6Ghg5mG7vwC80DPad35Bpgn0NEJHu3TffwIILDXw1apFzRjmtH5S32DKmpe9TfQyqCASe+rElouGJkxt9A7x2cc3IUnx2vePJAv9rDdltYdH87vvFTL43B0PnZ4NIOFfmX0VmfpQ8TTe6bwnPYeZk9zaEJLBK+2NZC3Viq6/cVmW8zPLzz/h0IbFpeJE94fD33uM9TR+VQE73uZap82w8p59Ba4EY3Sz6JgNF30VtpYYT9OXRIOdI4phTqHHp1vZgU642BmF6rIqzlwGhkBMzNy9gj98/RtGfAMfemg3vuIN09SR36eq2/D+DMyEKroLwHYU5dM6+cZG5f0NwVYPLNQp8OACuJFGvISy0vWxRMYSsyzpgbzxmi+rjGGdSLsmZnEHXOhHGmBz2pHQwWtG4er5xKNYgbAmxvKgX7jeDAaNkg9FoZBfWxVXXVILKGAuOZ7y3OmI3hM+xwv+ERLa9GHY6TjMI2GSAlLmQ2aBlKxESq2AXq8RqRWwmnlAkXJmvDz1nlk4DCFw+w7hfmvT2Net17TBHaEX9xTqOe775rU+zS3vldoJD4C9l4C6heKJsBfLCq1fPGQeY/0SmzX1P4co3n0kXZfMQ1EVOMmXDcnUIhQtgzFoM63LEp41MNNXsedDcJ/9tkzmna1uqO3oUptSV6fawsR5lOLi1SJrrkBY+D29fD1w2h9XF9XB5hoDy3aVA9b41mMLDwRFdkq4rDSsRVTCKOwb3FmoKkHEx29BiI4Izxp4GqpAeGwU/NS2TEiUoP53ASF8Ayu34h9/63kuzeQty1Zy5JlhqxlsUZ4IzpXf5HldHsjdQTz5QAMGwQRVl7XP0WyZknNLrsU7XzslthiCkfUX4i6DGPJ6xGjYP+VwMPyltotqTheDtwCfDN8bh+RUZY4imhOaWkAAtQOmA2vo8M/3YMC+qnke9X8THPJfiH9i+trNTehtssq4AmaYP7lKox3qfHiJWmnZvc+/4dWahId7AHUm1CnfcRi5xcZ856j0bPtA7ANeZdlEqV3g4KyZXAIexC2BCsqXe8vB0E8CII5Eu3DAO5znepb/ZIitTOhKudz0sM3PbzGa2S7Ko1xfJF83NYLxlkosBe1xd+P+/jeqIVTSk2tab1gihJCHeUpPAvOw+kez0x2uDI6fCqWn4L6S1Gt4G1vueu8Pr/MQ8/K4jLDkfnvdap92lRIrUnNjIvJjWj5ulkUmEOCv6rv1++vBIJHGRLFg0oBvgwHOk4ouTauiuY20LnlmTOYq1ZhNFG8GaHPEgB4libUUalhT/qVqPc+thPUC3TDaSHN71WYI+zHCKJ4IpXSPb4G8x5YaOeMLdTHvuuu26vIclS5xwOzQSsl0syXzTXN/hpT584bGyKmRp10B2c6DI5rdr93JS6TRt7dWfPoRXNxvUQQnOGCyv0hr0q7jVxEmmOm0WIInGQPGm2fsMsdFemcms6tUx0F9OEQsZxhSlyIVQLyzHAiXnsZyn0cmvdrUB/qJpcla0TvC4VTJsCeOcz/vQf7xo3IXetgxwy850b4qzvhT47Cg8dqUD9Eu18WlU9Bfa+Ehw/Db34LHjpU/99SCYWvyhraRY/YvE6dQ+/BHpFQRrYZqYn9GaDVaMpOhuvFcnWeJ4Fx79nkPdaB9WE73MNuGCHH1F6a6pnjeZ+1xhCyArnlbW94Ve2Ai/tYwm7fvJ7w6ZBK0U0o9+n6FjYZAvcApp0z3lOmTRxuMXfeE/p8skcxpiDemcjYEB5B2GFoCOKloP6SWjG5VSAft66tynzl3awG9C1LZg05Wq51C8o8iLZYCuovub7RebQGSAt22DuGPvMO6vW/KmF2idb087VbYstEUzfGRQF8msoybjRa/wqYX7nFMV05dKQe67egLKQCfR5iDn26ZqVbakaDguZqDWHIWR+2qHAfW2Mt4oXPH9F2GQ5KgLInh4XxIpgv0SDtovOcCduC8/QCW+lya9+TgP6Cm5Uqci4p7X6iDYsla5znuK9zzXwQkami8yGC7ZcKXFcv/QHRWs6GYFAOUe4veVsBrBlrwMCGQRGiN3HBDyVxPXwez27v1WAVrcNrvSc70yMbz1QMr0Iv8uI8tRfahn87nteYhaVeRW81ziOFh57DLDlwjgkP1zx5HH+iYO/JBXaH66WCeEOT42W+mFT5U1LnpN0B/BtqcZk7pQby8TOvLJLNFg2jaABGg/AmNOpzhFrNFZbZ2itGruM2Tq0CXzUJIMpoDvMsooJxEyPIAGSpwHiHeWoWc+UIkrrUqwj98yvlxnOoBdvq97ZQC+OBUtimhr43vK2UUhAp9zH66wP4iXRvgNNimfBRrJLgsEgqUXj0CLNLsDbxlpJc2DQUnfx+pNwbUbV7G2hYs9MZ9shJ9eAXDp+ZSjytJDnWCs9CA/DmphLaud/Dce950kVDw69ocBC60xDDqzavIG4icVqk/UzfizdsvA3zg+oYAkkt+lD2r1RBmNHMMMdyMB/ZIB5fq8NTG0U+zygG6rR4pgRbeuTJWcxHD2B/YBPmpjUBqIbI6doReM9m+KMDsP+ULiSVOF7ZzK2PWz9579Fna4G939gPjzybAH8NO1vAnikwnazWvxFhk4FnJDJB6nT0mE4RS/IVQNnNFNg7XfPu9yp4aUJk3hB+58Bp8ivGqnS15nYBqtSZ1HT7zNTPb8vCbWvgq8d0LJxaCrk80rSqk4lFWEHpngDoz8DpcJN9jNB78KXaMsWpAjfZrlJgIoPhMYFd1MKZqWjc5ZCLLS2rjr1Ytzvss46l3THkHYttW9W7QSnoMezzy+HvYcbBJdU3Oo9mqPPic3TtvgP4eeAtwL+jXtdb8vIWtxURWkZrwo8KjBlh1KhWw6Ueg5dzE9GU0IY4HlR59A+h6zvAOhKnvix30A9vq1ihdJ1vLmPHWc5abBLLXti9q3AVTYe5oc6jd8kWwfySh3kP8063U2E/7+G0g0XnLyvhvO9JQC9yod2WqsxLjFgbAekq3XH7mSXmwmitc+h9VVFGy8V6yh7QbXEKmBdhU4j0h7X+8hDEg8ogrHJfhcoQkZYh65eVgBXeUzqtQe+853MO7vWqS62RiyAWdMLTmmgFQ5kmn+ZSReiHo1jxNEZyfYKhpvMOSqRXwqBECofZc4wf+ewhcg9/6bP7uerQCb2HJtSfN5pakF+CrvV6/fP6vKWpAhvz0aK4zF3SrJMcle1fac02HBGJi+NW1Nb+Ks8t/tKoD02NEYU6gp3S1rwIhdQ59EcF1oRcXTMiyIkl5MQictJjN0/o4thQtpdz4ldG8ZzhKLKhWbouetwnaTIP6v7R6F+6H2N5SkEDvwKnR2CkP6gA/aA/qM5NnKr5a4S+gInnoNsPjV1BI/OxdJ2VWCYL8lUjUII7uYgvUIZVoJu7leat8JuVgRD23ghl6XjKw5dRQ+dn8DwWQb3U83/DiPHJPhoQLlyRUyhIH/YCkbxOB9FEVrMXEl0Q45OPB9X0CWuqtKoKyEuSKw+U+ArcRbr23szwta0TPI3jl0rHs4/OYv/HQeQdm7C7prFG6ohpbhRxXLUKXr8efvtpONmrQX2k4Kf0+hTYLxXw+web1/8TB1QQsV9W37cOzILDjuZ6r8O6u5lQi1ik0gIoRSrqZUGg2wNlbtWJMyjxHp7wcJ1XQG+cJ3Me6x3ZvnnMFZ0moI+vL2RhN0KvLJqU+1jC7vbV8PhpFTqcL7U0YToWhta3aMPE8SWE8WEtk66sRDurcrQJQ6Y8OcCt6iSRLGEWOGKEXVI/53EOjGDycmhiTQDzuabTjeXISE7eychbVgFvOO9PD333U9Tz+KVOIzjfZkSrCXVF88w7ovTzuwT+iTRF42I63aUMJp2v3XK29gqAP7+WCuKlrzeiIP6j6FwZn4Nos6R57hVOoN6mqSP0aVQ+/g0K6NfQ/F51/Bepf8P6ALEPu1DKPdQOXYdWA61AvFdH5+kEzM97WPAK+i8XUP9ymZNe1DZzxU0X9kUBMQpqG6XrRJCRNuvnBzzrakGZVPyhAvb9Qg2fdh4E8VSnhbhIiFwegnixxYdTpGkrZhmT/TKo+NeRGQc87D2nPNyJ0g8zH6KWiwUt58nG2zrwhqNIl6rD6e+mEa6xFvRQo9d5TOGRfokZlEjpkD1z8MkDSAl0IT8F2RNzFZC3UtefvxQP2s//h98+r8+LSAPQj5g6H21M6trAUVimK68smiu11BOc7gWN5j3KCoB+hTGSRq7jFoX0YuHNFNR7o+WjDqJaWSKCGRlBzpTIU4uYLSNIbjUy2gDzop7Ec+2bNME8qLPimaFzmxo69/j94UU7/f8xEsqvkIji1bTv2TaMDYpwPM9v//ZHqsoTFmprYbYPq0IN+hXo9sNjN6rax2dXTK12v84Yjqweh2N9ygJ8K6sMkrit5KlwUovrlIDLLa4suc/px3O0ZM/nIER4qVKumi1dTKij9UsxZzrRhUkdkyu9nszgTC2KJ87XDstwj0xRIhnMCBz0yRijKRpXIInie32fPm8N3f6AsbJk58HT9O4/iLxjM3brJGIF27G68LVChL5ldWC9ai1cPQW/83gdhR+OzvcTkL/nJPzKg8vXjj7wHx6FX/gO/Pe98MAxzMIAe+AY8uQxzL7j1Rq0QYSBqLBjtY6FvkTV+0JCxF6EsgW+V3AEmPOea4wyHLLgFLHzfewi5OvH6jExDOrPs4kI//Y//W6Tch8V3Kc7WuXg68dhvoDxTvrFep88bCaMCZNQ7xlTR9ki9ZpOvPdBBLA83aec6Og4CNfjMYQNBkYjMy2OIalB/eXSRETLD1sTtlqwNtLN2wLvGvreOwhAN3wmi9fuZdIimy7mmcf1fCxsXVOv95c6he587ZZX2ovTovMtFceLU8bNwOc5u8J9mi4c15D43WlUJDf1SStzuf47jdCn338xYUHlbBx6vQN1OBynptyXwJkA3M+E7bSrQf1pBwtOAf2Ch/7lgecvD1b3xW5HDtx/YV8UwEo9IBLavUx3mF4KOfQktPtScD6pQX+mj+8CRhWOt4QDR5G9y0kQLyKNCDjiBoJklk7hmQ9Ppffq0XIePuXhtd7TAjI8GZ7ce7K5JfLck6fGDSSvL+ECORydBxWaAlgqFQgNSqWmnlxE7juCnDgN162hfPwY9hS4SZDdqzTKZ02I9hkF+Be9Q/D/+RvvPe/vWBFG8Bijk9SA2ki3aAQjGgcvJ4PmYjZ1ynmtcSyokY8+zzcD96FR+ltR6uNKwHZ4H8fPaNjPU5eEiUC+DAc4JsKNRpASZKKLmS0xe2cxu6briGFKtz+PycYKFfgzSd+2osyBE6gPDFZW8a/6GY4z3PcxqCLCSALqwx7goIU7FwaVo/FH3vPuSuPCpBHs4wtw7XTiGUlO4CygSjFSDeZNAPZXCDw1Pc7GQ0tKP8/t8vJmw4eUWik9GjFlC8BzncCXnD5fbeAN1NH5Fem8ab9SS+hkcJ/kttmvOMeWvnnhERVMOxG8HjGdCCq6vfEgfQX0Y1LnF9bOoya9Xh0u0mAibBLhjPG8+fOPI3mX1uu3YGbGkcyQ5QaJAmWxlhDUTorv3wy/+Sh85Bn489vrc/fUOV29Aj5zCL51Al63Xh0Be0/Adw7Djetg21roF7D3FDy9CPcdwvzhAb2nGZjf2Y95n2C3r8ca2CzwlAgbqZ0VUcG9INDtRQLtXnC9gsccXGmhhceGsWe9xx5cJJ/JsEGdvrr+8Zm7wHnzb/6N94I3dW5bPF4JvHoN/O5euG4axlv1GGhYxTXDsBbDS4ZtDt2lAUfDWIuBiFgy0AHl7CJu61g15h3wlMBupLIVhtXtL7kd8zzNitAST4c6veIO4P/08N+Bt6OU9JZQ0ZJfbsw0EaETUnpyoB/vn68BXC6XRwrdhdgtr7QX3oyIMmlJ0mShyqP/JPAkWiHhDpYzyoad9fG5n6au7APBJy213x0U8Mc0xGGb4MWaPwxJ6d2kb6MoC+FxYIZQWtg12QTpa4MyWRxU1bsGArn3l9wm/p4E9N675//QCk1CLqc1Ce2eSLvvMjXnNVfEqSqs5tBLEMhDaxgvlpTtDAfsRWlqFQOWenKNxuolbw1bUM9HBOhmtMsYjVM3fuk9p1Eq6c9FA8fVE0M+X5BPZjXdHlYwOi5FS84hPacsTCXzfWQk17JfXz2GfOcYcv1qzOs2Iu2MP9jaYWHfKW7YMcVNW2e0/E1Ut89V4f5S3Mt2+8KqOURQ3xJ10pTUE+vLqT7tpWxVZN4nxi0K3kAF5P4BqktwF/XwS5nvFX0trHrxHrSpafdVxFQMnhJvhGMiVZ6bTLeQJ2aRw33sW8d1wVkWoX/ucnVpE1ZeFEfQxXAPqj4/mZzv8AJdzSfxdQBrQrMsX5ylfQBWzkMf4XRuyAZFpd7fbuchf15pzxX4PbkE08Ep9zx0+9gUzBuMcSFaryBoncAXZoR7/vSEnktm6jJ64RzrHtUdUyXwRAE+A+ccIqqdstnDvcCNJkYMPBmy/PSGle1j+PR0H1bF30z21YVO5rR4XpNhFPYcZJa0rJt+LWiFiGU1MBfmx5SREMedJP1zIpUDJj80y2seOM1sB9YUp5ncNYXNDTYz2LbFxNz53IA4KuVYwr37oR3wn74LX3wWvm+DRuTjjz41q1H3iRb8tV1axcAKXLMOrl1f57fZHHatCjUjNyK/8x3s02HYOzAPn0CuWo+IsBXhaQP3kIjhoWtaX2pRPAeUWcb+vuPjHm701OwQr8DeHlzEbpgI0e/keUsX+gtonW4b3y/DomrCwhqoHtsmYULg/ln4vvXN8Z2O+zgkJHk2I7jPhJGlgiKJpcVhpukHHndmQDlm65J+Bh4zwhuEKl0w2jEVrfVlsFa0JTptauf13aJzcwQCbdEodltenoZzZOBl3tPxtfZHZXdeJvfpQu2WV9oLbxXdPjp6ou0e/v8Qtd3yapqg3oR1fJhZuJrlOfSO5npyNHwujczX89OL07eKSeDr841BhZhHfzc6DwyGzjWe+4No+s3bgTu9Xp8c6HmdFy618/LlOC9d2maCgEww9Krgx6Shc2SBJaY57ZVuGmlrLiz4JeD7DtduA8JBgddXWLKm8V82gnihxVrxjUBPK2dkoPkjUNNUvoJnh/NsxgfjNOTieMhOFuSj3drWSOntqZV/sVsDaQwZxwAffwK2TWIeOYlMtpE/twWzYRwR4WmET22doX/ler6YCz+RG27OLTY3mFxVcy+XHMLzaalIyivt/FuWgvnw2qBqsWn7OLXRCE3cdTYQPEld2i2a3s5oPqtDc+hXWUEcyDiYw4uYtRYZb+mzvFKE/hzbcGQ+LopQ5yJvoGYPSPK9tH/pe2n/ovr/AtARVbqv6L+iuflly2DKQYgmhxzwIEYmlYfDa6h/ulvPLxXdfuhEkiZQC+NVkXqhY4Tja8eQfrjWJgA+iXtZNmfHCHaqmO4suIHnGQ9X4/mLmRoCqQjRipgvvdlQA/xTJYy0m32MXZNwo4Ydle1w9JM91QmBRBQv3IvCY4xhStQYS1MLqkscziuW5IsigR6YfnKODFjnodMD88QJzM51FZhvROhjf6rB7GE0h/fugP/0BKxtwbWrNVf+0wfggTl48wa4dU0tEhdzyq3UzoE4DkKqgrz6CsxTB7AlSAZywxp9HgQ2WeHrRuo+ivbLIfRQBv8AdSjN5Tm/3/KcMp778NxZwI0mRuk92YE58lvXqfhkvCeV0v25O89WbFFpNW65qft623r41CF48DBstLB73fJ7H14LVPoQEdTRNnQGA04mPrFqcx5XesrTHjfVDtcGlhCeEdgRnF+p8/IcpTkui2ZE6OIRo89A7mtxxJg6kMufjVQzG9I6X2mvtOFmRcd+lqzxFi3fmLaPo+A3pdyn63gKlqdQoduYelZN8+H1yfB3SrlP7YYXa6iKiM7PNIG9oEGI30eZCNeHzy+ijoYjYf8dlF0J8FmCU8PX4qmFv/T28qV2KFySNjG95cK/LLoQqueZWu2+K5gTi0x5z9GkXJ0LgjLRtiiXgIkWJ4FTCFcYqezMy0oQj7ho1ZR7qr/A2IzWQiihFYxN5+B/oMqpxkPmlG4fvXytk32y8RAdOgsd8JK0Zgfr7Zlj+t4h4L6TmO1j2B/ZhWwcx2QGkxu+mBuWWhbXsZzqZHyunWFaFptbspa5ZPnzAB//4/ue/0OvtJekDeejZWH/1qHPvZ2mIn76BKRDMt13aCrdqxdZn6PjKNicDt8wEy2kXyDzPcyeE5o/P0wDPo+c3liWajhfzqDCeHvQBXo6vRZDi31jwY54I/wdMt6VgZB0PDorZj2MtjPo18e570++XoPRSEc/GYj/Mbd8mG5/li5XgN6Ged6oQB4irGkZFsY7+BZ4pAbzYWsi7qYYXlSBdxYoSvZ7uEqoxOji/T9rVDMuInEf3ztVwFS7/lx6YRsXPA6m8MYq0fr1gV2V5tALYEoHxjKJGizR6IqshBi5KI1UtcidFUoxlFb47I4pmACzCHTAXL8W21JHp20ZFSdrW2hnIZfeNmuF5wZmRuEvbIaP7Id/fz/83EMw14O/cQ3cPqNpBi1bi+uFUmTV625QNY9lynavx35wM/bWNvKBrdjtM+pcyAxbjfBkuEYama/vWQEMRCi8gvqnV+WYMiNDqctfBkypThE7KMmeLbCbxqm88ymofwGLwcf/+L6qhN3ylBmBiTAujgP/7QA8fbS+5+lDxwrReRGkk5ENCs4AURAPfCWK50719D6P5FUKzF6vZR1nAsiNTr5KOO4ysGPOtWUijIimmUyYuvTZmITSZ6Jg/lLTav+st1fslkvXUnZNTC3JWV6++F3h/6NdU/kuWb7OR1tgltovnYrdHkdZh52hY6RR+herRUejUK+1D6HpBA7434EPAD8Stv838CsokH9w6FgfJaz9vmayXmpxvMspEHzRWlm+ABXNSLdPgLggyFQLFnusBZ71nqsq2r3m0EOwxU47XLvFQYIgnlDlzhsCTZtLF6w+W1uWc5dZWoXT/MIQmdjj4ZiHu4KRmhGjlCGf/sQSZvtEM4KUGtmXsqVGbzyX+59tfMT2FrGZVdpoZsiM8H0In88NC5nB5cIbckOWW2zbVCVwLpUBMD4+8vwfeqW9JM2IkHlNW+iLer3bwO3Av0IXkHeguZlxkUmdP8OLYqSzgUboz4TPpfm+zghHDKyWJLp8ahEpwMyB+W/7MR8QuHZDEuU7/4hhdFZIjNKHc9wGfI06Qp/g8ep7EMBqEIBj6HOG2mHhCTR1qaHyLJC1c3AghUMyy1i3q06FIO6G96riPgVJblS8Mc1nfbhvIhjxGOrSdapvIsyIcGLEM3KwwB04gd+2tplvjTQOG/OvIz1ZFfHBDxzPel/V87UR2FMbGctaTBNL8+c9SrkfazfnUJNc0fQip30f7cCcCgsSRfGEumydA7EWI6J1hL1GUDzSEL/zQGlFgb0VXGbYX1oOb52h+AGBR2dpX7cas30d0jIK6tumAuJiBO9tbeWlqQWlh1xdJcyHftw9BdPtOiofI/O5qSPW0IzQJ6/t7g3I7g2qa2IFyRTQb84NJ4xwEjVgK00AgT6eAs/AK+18dZlhBwWFh46D1zuvhq33ZIdOk42AGctrRkhju3BEX83nVQk7r9sg5NM/fLT5hW8ehhs21vc8of9EdiEkRng7IyugcL5peIfARHGqRzldCwV6A4+JsD1Q71MwEOeIl1vEyIjQFe2vqy9XeHwuN6vsz2Z7xW65dE1EaEW7JUScOyi9/OfRyPy7gDukLoOogQuhDGtYTBOM63mG5qnPobaBH9qiwj2s7BB4UQG9JMyD8Hq4osUG4K8Ca2naMQ8B/zD53FupHb8R2Ht5cc/3fNv3JKA/c+rwhX85gHmBBu3ejLahgK1LfWazTkK399XCWAK+N8BPtHnWw6ZqYRXE6EMhXGZCMmY4Qh8GbEewJweAqjxmwJfw3OuhG0C8De9naLQ+n1+CyVXLo2RyaZ8CEcEbA1I2ox63roeHD1SfM7duIG9b8sxQWKHMhBut4SfF8Inc8JbMcHPLkGdGhZvl0ornvOaumy7dj7/S9P573RdhHGTAq7zmn0URonbYcmqj8blAbxSOiyDXowAEA0dEWB1c20ZAnjqB9SiVFJBo5KfU+/NsKZiPi7agwnh7gd3UNehTqn26OK+0aMf/m0ABvQuR4KrmuaiC/7rcKD7pFZhOzq03XlvXoI9R7BODumRdnG9Woh+v0IzUJScjmBcDWw+dYMtTZ7B9MB/bj3un4Hesq0qcNRZziYt9VIGPEXqhcI4uGiSP1y8tpzPs26y8/o1C8OG9uR6s757dSer8ULQ+fHC6o9H9cBgJgj5VpL4ACZPXJHDECzuo6egN6r01FJnBFR7XgqcdrLMC29djr1yPyaSKzGe5wYSofFWLPTdNBkLa1weaTlUeOqIOqTQHP4L6TELJGEIh4QTQh+OLU8plVZ0mM4i1jGaGNWjKyCqio0yqfMqBV8ecA+baGXcdhokr4DUZXJtBXqgIZmt/j9aGoFWRjru4sL+A9aCaz00A9NbVJew8cOsG+O7++gt3bqyf8UwSJ1azDj0h1Y+WmoODXqEsB6+sOwLAL+dL/EhXnR2iY/troiX9HkW4WeqxHKN2L1cQHOtWv9IufnvFbrm0LRMNPhRCJQKXoamBd6PPd1q6uD2EDVKbID790yhwj8tXVRkGFcyLgB6akfnnWarPu8W+xJTIXODtXpnFsX0AuGaFvtwI/C/ALwI/DVxLzcIrfU29v5TzxvckoH9hTUdYVC43EowDa5CuZe18j/tHO0pT8x7vRBdFtFZv2e/jR9vsAa4KR0xLPlT0lctpIYwPWAruOyAnC7qo8d3y8CfAj0OVg5aHfJXceXLAHikDBXbI6Iz7S9mGKYy5gV3r4H0C3z4Mt2/A7FpHKzd0ckMZchmtFW61hlsyg8kMLaPCM20UyL1ccghfaS9+syJ0RJ97jC4gRfDoCnUJpK5RKmd76BGQs+zHqCP0cXH0AqUxHLKOtVagNBjrkd1r4Fv7MGV45F41ZORfwHMnNFODImX8ivD/D6NCbysB9nSxE9EODPevQx2QhYDtArg/AewUkBbI0gAzoZocxnlMGr2eG8DqkfqHGvPNc6f3WMBkIYIrgg1R+iuePInpgR8Bfwb8oycod62vy5uZOuqJBEV0EgaFB58ZSleyJXwuZWIb/MpRzQh2l732sNjTuvLxYPH3KxBv9CyGPbLjubIYwvEM6gwxqGPEDEDaFgFWidYar8QJk9MoCE6L3FKUOtYfRNhcGhCvxpkNgD4PgnjtJitERPAto/kIw8D+jo3w0L76WtyxUenzw5H5lLZPuOiVGq2rAL5QR2i0hJnRvHQRtgJPoXmUFatCYIAwQJ1KD3mYw/JqSm610LZCC63i0gJae06R7ZhcvrbFcfcirHMigs8NFKYpJnjtevigaGT+VRvhmvWJtoBp/HYE8lVELexdDm5pAONtdSR5X2slzJUM1nSD0KPwaAnPtKAn8A8Fflak0gO53HSAXmmvtFfaubWoJ+ENSCD/tH0tjmypKx11pBZTrKY8X7+O8/gqamG8VIslRuhXsdyx32D0vYh9y0MFolxUrf6OwD74GJpacGNyHhHMx7S6NwH/F8o4qErc+VoYtvRcUs2s78k512ad5//Q2VoYqcqeS9TuRZDRDqsWHUe8DlXngoBSFaX3uNMF5Bppep2N3w+CeOYyFJKR+oGKi74AkgMLBR2g5z3fKD0bnUbpVBUz0BBdiFwslfqgTnWaRifJQS9lM8EojFGd+N516+H6mqKc54ZuZnBWyDKhby2tTMOhkWYY671eavGco8fmWLtm6pL9/itNFz6PDu9IY4t/R6Gltqxc+7daUJJFUlDhuBihrwKaojnM+63hpswh3ujnr1qHeb/BfOdZ7E3raiM/N5DbCwIYhiSq7OvIskWF8fZS16CPn4chUs7Qli7+U9QaAVFoLTpFZhEVdc8ypOcQPCdnTzKxfpWWrIvP7rEFuHJiyEKQ5v5s/ROwoUa1zQQZKL25e80U/afnaZ0CJqC8bk0Ncg34RPDMByBUAfqweSvgHJsjiPc0xIdWjGr6dEui9QAnXCivOeS0qPqZROgTyjWTGTy9VP+G85pGFu9Jz2OMAvp1wP7w1VqdWBpif6UxWr3FOB6xjnu05lklKmhyIWup7shKc6KI4NtWj546LHavhw8B3zisEedd65qReSsK5FtW88tjs6GjGXhvKoBvvMe6kFKBIEg1hq9EAb1P7lss3amCePBxBz88CvZEgUXUae2FvPS0Skd77wL2tesTb5fUr1+gME46n0tm8C1bpxXE49+wsWbgVJoEpnZ0hMsS13LiPrADfZ4hfU1zqIzuMJYHC0uUa8eqZ/IjoqKVEsb+J4DXSFPc8ZX2Sjvf9ordculbrHRkjYL5/6e9Nw+XrKjzvD8R55zc7lYrtbApUOxSpbi0a4u9IDbK4Pja0iq+2q0O6vNooyMDM3Y/bWu30swLOg0jozaizYi4FYKyCbQKgk0rFFDIUmxFVVFF7Xe/uZ33j4g4J07eLKrqVubNzLq/z/OcyryZJ7PiZEZGxDd+W8Vbx2is9yHZJHAv5lU4j4YYeu/YhnFvb1wPuHVGq3FrLlfJRGl4bQyvadIGdw0T9XSOPhkTT38s2Tw5tdh4NeTpHHPSq2jhkuNm/mL7bbvFj3O/V4DuLzF/l4k3jOtZD8m63eGiWma0EDCKqXnrr7W6KSFeBjV9t0wFCqaqFOOYcYx1/k1gs0jaRHh2oRrFEO6yi8d8s3rJ9j/pIEorm2RJZ5MsFcNMsiWVD8jnAwbyAQPFkP5CwGCoTPIcbRLn9KnuSJ7zr9fe3NH/XzC/l4JW9Os02dKgvXWPlRRNa/82E79gEsc5wes0Xoyx/m6INAsiY6nUBePmrI5dgv7zlegTl6UJxyJrmZzJNeFblbM68SX2nCF767ve+dfgxpFmk38faQw9qGQMrcSwU8FCFDqM0JU6CvjJrf+GskIt+UBGJmBBlLWQwj758CnMuO5EvUuAGbx0Cd8+4wg2vmKIqbOOhKMOoR5p4lATB4q693HGuFKldsJ3ls5QQa3OYWDaTPo5uoog04mzlnl3ndW6+Q/8TVJfpWU6UMNmxlAIw2X87ESuHQrQlRiXAHVAmSy/yVyGlxTPu8ZaoNmWD3i2GPKSYgiFCJUPUcUQnQ9N1Y8X2UxR2opzJ0DdOHzycvjAK+CkZWnSu5w2hx2f1YtMmsYSb93ro8C0I9RJclt3zS8Fns5cp7HOlzGeCHfVzbh+WAHCciVNGhVDLo7Jb50wIf9L++znrzxRf+CCftp4HmmTVLAQms+kGGaTA7ojN33jLvG2awypCyMK5TpV2y9cuEcM1IYnqc1TXl4I88Iaplzh2zH910+UJQj7i6xbuoNAKUpa0efWLMrMBYParFlyerqnW6MYdmOrs9D7Rgh3fwdZC33jmqHVhDZPRskefQr6NMkavl9nk2HmVHaD4QSMF+I0MW/vu5xpnWBOWuhf2Lhmxq9VShErjaKWxtK7eKvBiLzNrrwjhiVxbBZyMabsSxxTn6qxJR+yWJmdIq2VnfO7NCFew8TvdvfJaahW6FPw+xiej+GVyluYWjGfi43rvR4uwyKdvCfgmfvpiotWoSYuhKBtLH1NZ6311hVf5QJygSnrVsArb4MzlHTBxQB//Yn3dLoJgiVUilCZBbLL3r63DZ9k3yvOarMhjMt9Yp13h1I8nQtYEsfWnV2j6nWrZ40LOaG12DVaNPcDpVQqRhWZ8i9HYkrczPPaC1krPQ3PNd4OYDcslHXzRtlatYocJuSAYoS2me4/9K53pNlwrWWY7bGJE5/mbt/QiCa437GKNLqqUZHxkEApqkct5YGjlrA0NEng4khTjzS1MKDmfZ5pubo4ExYxGmgKNVjuLXg0cer10KxBvpj31wojNrlrIUg/XP86Mzux3uNKwWDB7pqkFvFEzAOqWkNHQbIY24Z5nS92nSXbifo68JhSLAkUfYG34aPNsS8iTwWauBCBrqahT86l3F2DcyOfYR9uTOjojpcCGzDW+BzWjTKGKopdwM3AeRp0ANFYxVioMCFl+Rjyz42hDyuYi22W3f4A54XG8VxpRZzX5r1dY10QpwJCs3k3zQtHZfd7nHUepdB9EbpqukaBGOqKuB5TjWOq4xUqfaHJI4Bio4aPK3hAwR8rM/+7RFmR6vyGttCbyLqluwj3w4PW3xT2l/XzgeeY7mgGZm5Z6L3en67btSmYs/llAmW8sFyeG/CmSUjK0bnNdgWchMlw729q15QNQTNDZsc2M+ekoD9gNGmWe9/tfhDUcxMsALbHMYc4V/u6rUFfrRPX4flCZBd0Kl3w4G3od/TippMsuJOOrlCFAKo1isADccyrgCLWIu+Vq3Mu9+yuQqmQtRQlq/19HzDajQo1sVIQ1qFWTxfQStlMGukCyS1+e7HOvNAZkmoR+3Juw+HGhT7SMmKQjUWra8XCfEgcmP7rXO8DbQSqq9s9UzHvCMmKeTcRu5/L85iJL6Mjyf7ME/FoBZZ7Pkn6lyTFM8cOjHUeBTofoMbjpG56EGMS4gGMmmSdzLOhVW6Ahn0aa5INi8Bs3rm2ESjqQcwNwEs1nBxpaqGiHgbUIm3CHmxyOT9UwOzkm02J57VmRT39f3xBuUfB6+cG8L0QhifNh+Vfn/tg/Q/bd6Fw4++ALec3XoUh47qtg9TbTNXqqDAygl7BsFJU7MLGJStMcs7hCXrgOO+/d55nbpNkX+Y2FSjifGiSvtXqqaAH05Fz2mw0z1AwKvzwBtt3MKEFIWbhuQJzXVVlFmvXAytRHKlMGEauUiGMTW6YfByTiyHcMAaHD2aFfOP9FqOUglyQhhU4x1jFXsNp3NrF3/Miilg+CWOxSVTlstzXqjWqU1AbKlBTcD+KY1G8RsMbAkVRq8QyH6nO12MWBGH2aTafK8ym8HbvPD8pnhP0zdY67UytldMmZCqv0gz17hq0MiPpSJ1photjMTl+ngeOwNvUVp2Po+827dgb2EkwcBZ6d9sfwsQES4h5IY6N2309tm4YUJusEGt4Jgw41L6H6TyKQJudMPOD6KLZ0C4CzU26MNQ5Uwu6EptyFMsxlia3yAkhuR84Qb/AW2D7Kz46WIO+CSpQqFxgXBltLWNVDFEzjDkWhJmg9nDbD7joZ7dLXAc2YybGnDb9V+VN39Ule9iQkQMV85B1QXMa+RHgGvv8pZgyLxld+SLX55/XR5oUL8lwj/F6WuSGoChCleupVTnGK1k3YeIS/Bhm12jl/897JilrE5nPURVCHskH3FYI2FIMuagQ8lCkqUYhlXxA1QpeE6odpwlzyCYA2uLKltWcVd4X9XvIrN1o1nC3IzUjzKeNp94tKvu4ux9qY0rdNZm8n4pJNkhUvYa2q5JB+11vw+tvcdZC4a7xcUyGYOdt4IT8/iZ7VdofgyNzlCIzDs+g1KJP0jblhbnZx4/CuN2DscxXY3iyDvcDZwR2wzoKCKeqxkIfmxjTfD1GbRiGwwueeck/DqzNeyMJK7BhIi82T5lNRZX53Zm2KchH5MbN+GK87s0XXRueopaDai4gBn4N/IEyrzNV9FRGzHdVHiBBEGYF1XC4+Ww+3pzuHROY3CQL8azzKn1tu1fbSikiGxZZtEdem8cCrGVepfHzAcZ7awVmfZN4qZGK+Wqb2/xizElBP2/R0Xs/6cWw1gEn5t1CRQ8WYTLm0GqdLXG6u206b0x9vAKFgI3AYSpNiOdb57tyIvTWhMnCOxdQAR6umvTZP4zhqVqa2d3Fzkd1k1mY3ZMwGDW3HHWpSFZKJUcvct2Pbt/7SULX0iwiRWFc0nfZv52oArNjvNQ7z1Xf0LYCQyuEvMOJImd1DZlez/U2vInQ2wBwNOpMdzuIF1Jgrd0oxWalkmR7WgeoqSoK+Nkdd6Ul68CUrJufny50/du94Lc3CI2l/uZCyFQpYqoQMFUMubEQUckF1FDJhO5EfS1Ok+74ov4Jm7dA101ZT20t+k5QNm2b73LvJ2bZXYUBLwVPY/x8s2v3/4/5AYxUkv/DlKyzGw3lGipnxz4F81W27FAi5r3bGmZTx1no/UR/M53bUqHamgzxkPUcUKTGc4Vxu38K62qJKcn2rwr+BMV8ZcKpokJANEpqna/FhOMV41Zy6IC3IvU2lFrw22vleK6Us86nHkNKAZFmqFZlHD8/R0xtpEJ1MKIOPINiRMHLQ5V8r76Yj+gyo4TQU8i6pXfxY+eT5T2phd43QMQYrzuYnnMnozU6hD9v+R5mCuN9+Ah7jqOP/ZiCWW7znGNqYtcBvoNK3O4DZRfOClQuQOdg8cgEu+xEWI+Nlb4GMFmjGuUYg9RCr0hi6Fs077cY88tSbuPC3QaaF3JQjauEwCQxv4pd3Xnjbp+z5eoAGJ6AeWFzS1LXXfPBwXErjuh0E4QDIGtBS+/3YXa1fctvjKmcsQym67jk79YKet/FNqfgzIZz3m6fcxbaUGXboBoOP6Rg2Hsf53a/RcFC9zmUFLpSQQErjlieLVm3swILivY/UdPGmn0Rhm6TInQblErxVltvvRoF1ALNH2sj5KuY2LmyndBdWS8/ttwJ3o0uXKdWTzcMrCtfsKc1gC/m/Q9ltAqD+cy1+V4Iyu80yYV5or+/YDYF7IaBshmKFaAm6qgwfelCzOLL5TPw6++6+8+QVjpIrk1lN3+6AeVtoGSSO2Is9M9gN2IU/ErBsII/0Zis9kAuHxJVzPyWj42o57kR4z6SD7JCPnG3P/CLb+l4rrxxxYl7gBKUqhWG7aAS2xxA1dGY6jxTg/7fUbzCfhaBVoRambQGVsxLCJpwIMi6pbfx07a4Y759zM3rTtj7Ge4bY+9nw0L/Yrh5ws1dfs6VEzGC3q293Aa+i7mv7+E9282cFPQTY9v3ftKLYXuci6E3cfB2p7tQYOFYlZ3WPB+TutzXKzA5kOMQpWwMqt0IQCVlobt1LnQuk84FJVKKZTWYX6lSBUoxvAVjdQoxifAijAsncQw7qsZCD9PFfLdedI+z8mUrOt0E4QBRTW4H7P3GWvTOQu9Phs0s4y1pl7Lixi7i88q44F4OnIG5fY0y5fjyygj7xoQtza4Ne30T7tqUcbsHM/kvsdpIFUCPGAv9yUe/1Fyfs17vnIR5+ezY4tSk2rdPwt+dD+3YvAr4R+BozALlBGyctRPysbmfCHmVxs67DZfAKidVqyVu3wpnzZ6u6OPYKSs807g9b/ckDHiq209e5DYOnCt1o8gEk2NguJokPsgspKo1VJT2o8XAZvs9uFr0kG5UxJj4+ROTa8kK+cQDoUtoFPPOe+Ao4EnsfgnwXeD/IU28HykIo8CUqZuqkavH6DqwYQoOnZd+B40l61pw8a0cz5X2rPP+NJyDwkTFuI3GceJhWB2tUu8rUQYeAF5r9y1CBZET9dhNu5a1UpiLyLqld0nmELfEt38X7f2dpIYIMJvE8xtf671Hp6VBqDyXe28eOwHYgml/ph59nN7vBDL2zgTb2wIXW+5i6JVCzy8yNAE77eLOJV2OgXgcdgcRh9hdcRtal877eg8xlJ3EWw+6uJJIKfLA/EBz3kid0+pwAbAqNAv8EFOLMXKLzye3GpPi8ERqqfCtZF3qci8InaTZ5AimsgKYmDR/3tiEyWXhJkV/YmxHKE9kBXtJm9uigtdq+II2tyVtxHzRHrmGn/meQgr68UIKlHN/VmxXsMCOtSoCVamgYxPSo/348l3jsDBq8gHuu9pwGxYuHtgdpwB/i1mYvMD02Dl3uCQ5xpptksg9G8MRCghBV+uJkPcTx03T9ImQb2KlH5uCwXD6h9i4Emp0tXf3ByOzKZC8b5zUZNf1Kipwb6tYpMz1umtyVglnnY+BRzEJg5pZ57thceaTEfPepsoRmPjxrcD3leIQBa/BzXu29nKgyNdi8hMmjp44hud2waHF1Nc0yXCrQLU3fn6muBw+vuu9ChTFySo7bEJf3Hc8Nkltnubh2HjJHK4U2iXCswYKZ6HvxmsVBKH9ZAQ52WlpMdNr0fsJ8SBr4+uGUaQxtNCtAwaAQ2nidk8q6jtB1+nH2SBXGNj7SS+Cs3ooRZLt3mUsJl8gP1ylCLxgTfMuviKerLMrn+MwlU6mmi5OiOewQj6vzE5bzi5silpzbLXOfwnglEiRR5GLoVC3cYX1GJ7eCt9/3rzPT7aYv/1fre6Wn+7Bx1PPbOx0E4QDRDUcbpLsJ40z9y3AyxvO9UV9q9FKJWLd1W/t12n91j57W7TCf081axVZcd+PKR3mhCIYgaWU281XBJFGlY3L/XObNhtPICd2t9ZgKEeyEwnTrdP7QKOF3oQTmRj/k4B7bBt9EV+N08fqnst9XcHGWHGkMhvAQdV3uU/L1k2jMX7ePRbHNoY+TK/Pv85G8d7s+aEQRibT86zrv45jVLWeep0B8xTs8N4zyW7vOQ88Tho/7wt5F7bQTXObE/C+mNeYjejlmO92NfAB24VyShEqRaQVORS5MKYwaTxEqNZhcwUO70+FvPvMW1i2pqXjuc4aIxLnjoImV61Qwcv9E8dUh6eIC4r/iOE1SqG02dgPtVu/2M387vmKhR5F1i29S+Nc7k9F88nm/vEFPaTDpNt3N+/V2QHFhRb6wt5d08mkgr5RzNfoTBz9nBT0A/MOO/A30Sqdu7WyCxbQCxWMTLIA2OnVoI+JYarMzj4TY5gkxHOb+fY9ug7vF2lEvKIE9ClFiYCSTShdimOKCvo0FGsx+WrdLHR+tzn7fmu22PdVzRefQsu44xe/7XQThAPA/2k0/kQGsKXdwNaFNpPIEqa7rAVNXt8qtFJGuCsY0DBgbwftbb+Ckh3rmtF4fU7Qgy2TrhR1pXgBO/HbjQGVD9Dj5lrv/t2DNsM9MFkztwuL6Zsm7vZqvz4IZ5V1Qt636v4BcC/eZO5b6D3Ltdu5BxObvQxQWqOrMYFNQBfGe/Gg8EW9ux/HxpQ8mN+711Nm89S7HYhgZ9XP3JpkudfVOipQiaf+ImwtetKydbF3jbsxVRaOo7mrfbcJvUbLvD8V9QFXYTZtjsIWBFCphT4PFPIQTFZteQmbIW9+Pivk/fstoKXjubte93vC/KEKIWG5ZmPoY7txE1ObmGJ4IGS9UqzS9rt1G11aJZ55UnteOFBk3dLb+ELedw6bz/TEqqYU7XSDhbvfaZyh1p//fbf7h8lWe/E99joRR98Nn9mss33z7w/8TayQT7LUu53uoobhcRYRszMJfzTua9WJMpsKsMyf6zFW+hbO++3BTvoFoD82R1+gGRirJn/3x9BXh1KljnYBJSctzr7PqUu9lbG38BFazl994B2dboJwALzYbneJNIbexc8Pksaq+aK+3clllDKlXvoUDGor5K2FPq/3XCVims60j7uQgjFsDD2wVcOixAEcVCFCTYGKY84940/SknXbx83smwumi1jt/td9v64kMZ4v7DGC/veYjRRfyDsLve+OXseER+zAJEPVygh6DYmLe+g286ft6sdZM7h7ftRmp+/LucZO/0AdzYS+UjCUN6FQrqC8e3kMajI2JdDs57VYme/DZT9P8sLY+49jNpOGaJ7dvtsWGk7EGhGaLtQeAZ6w5zwMPEYaeuFixI2FPkBN1q27/QQc3gfKxs/5R4sS4kHrx3M/w735G8hH6BqU63Y5GkN1qka9Bg/2FThRQb9SNhmezfqv0+SYgnCgyLqld0mqfzF9Xp+PS6ya9bxbRBNPRNU9c0az0nUas+G7HjMn+nN9PU6z3c823fKZ9R6eq5rWXgm6oTxqvMryOGaTS4oXQz2OqU2UiSLjuqeVQmtr3e9iXevXnseuTfJK0RfDYKQZGK8xEBsxMRDHFOK6KR/lFolj2m5naXjvobBiiTF5hG6bvzvjCwWhG1Derf8zGcRYsB1bMNZfd26jqJ+NX5iy41qobH6RvfyuGydxf4d+AGuhx4j6F8DkHsF6HOQDc76rRR/b6XNXGRZFqQcQZN3t9/OD8F3tk4z3mHjAlwD30VCHFk/UoxLRu75uEvoVAKU0up662YeQzdLv4/+dWOlj2D1lzMV+8jXwvBAyUq0hONE+12+TlI5M2fcnzXQ/BSqnM0mN8sBWlSb58+PnH8fEz/sLssZM8t1Go5jXwK3e87GCf7PzXaQhp03umDwQhCFM2j733Kh1tyfb16z7XavK7bUWlf15OHEfGV+R+qSpphzHMbWRSSgo7tWaU5N9CpsILzDhglJ7XhAEyFrZ/WM+JoYe0mltF1mXe9Xw+m7AzWVuqvXXAIswuWOala6rzr7HfVfOs72BXTAmYtwmtFOlHApYPD7FNusZ6RIk6EqFxcUg6bRuEaHsjnf3fhmeVcf+qYEoCsmP1yjExnqhIV3RVupQr8N9m+FPlsHZL4Njl5hUwe5Ds4JeEITpOEHsfiG+uO8jTYrn4ueXeec0utt3y+TYiGq4dfRjQwqUIlbwPMpk8LebijrUxro9WbGVNOyxwytZB9Pd7ffzg0jc7lUaT+/G7ddjYq2dsK3Gpg591XusbgXwE8Bh2E0PbQS9nwl+j6Ogs87XGwT/aAXmWQnV+KU3blz4KhvvvlKmI+2eSiz/ynoMqCroSKcLLK1YqIxbvfOa8MvyPUq2/ryz0LjqKN24aet7XbiEbo2lF8/AudsbS30eyMVAIYQpu7WxfgwOLzYIeVrqbt8OnLu9uw+myfUcMFVJvAvro1UmC0XqwAptDBEur0RgxbwkwxMEAZp73SmMcN+FV+qNVND78fON01Wn8ePonbXetfF4jKeeH35W9zz1ZjuOfk6qqYVLTzjwN7HfqEscFEDigk8pYuFwmV2eG2U9hmgqpr8UJdZ8I+RdfeYunhB9K33yGMatdcq6frprdbHzcQzP7oYddXjZwnRx424DBVGA6uIFT6/zjat/0ukmCAdI4+TmBux+PAs2WUEfeK9JLPVdOLYosjrb19t9pCEFKGOhX+QycSuFQqHyEExU+fZNt6UfxK4pGCo0fGhO4O7da2BaG5XKiHrncq+A1wG/w7jcZbLbN8TQA6xHcYTbZNEaXXWu9mnt9yZV67Ju9kn8PKbcXGkP8fPNNi6aJcVTCgZzMFK1728y7+u6qRygwiAj+hYq2Ko8l3tSy8TvMYsb1/9863xjucJuwX2vkTIJ3fIKXg18BTgd+F9K8apAmbKLmOfz2I33orXQ75wyX/zS/rQz+6K+hfNbS8dzt36x329G3IcRhak6k2AiPiZg61CBVdp43oRKEQbWSq/S34YgtAJZt/Q2yZrFuwWYR9ZCv8PeX9Bwvv+absCFVTd6dCmM230mMZ4/98fNp/S2tnWW/7+uYGTXhgN/Eztxa6yo1+mkqAeLzJuMGYtjxp1lxQrfhYUos9h2c37QhQvuBH+B6LezoGHCLQbj1GzjevWvt8GrFhs3viSLjvaOLr7mg4C3/OGpnW6CcIBkfnrere9yHwMbSQW9mxCdlbSbB3n/mvyhZQDjgeAmxy0KFmpM/WzstZVATdU4beXL0hfumEhL1sF0F+gZkCldZwVqhClbsxz4rdfORNiTxtPVMLF2R7p2R4qgYhcG8V5clZvFzwOM1EwdecjuitiqIZmNC1/Au8/EMVSAXdXk/1CAqtTRcZxY6O1eCEswGyuuOW4R85y95pfSPHa+W/dslVLkMBUYXPnFkobXKvi8gtdpEyKR0yYZbAEvTjwfwlTNuNsvjdIQMj92Pmi2szJzWj2eJ6Xq/G6hFCqKGKzUGY1NhZ7qSI1n8wVW2UszXirKJgu0me67ef0i9BSybultMnvG3rEAEzMPqaDvJ/Xu9aepduf92V/2FEd/IrCWdM5vLGM723H03bzWA2DdunVccMEFvPOd7+S0007jt7+dngFzZGSEL3zhC5x55pmceeaZfOELX2B0dLTJuxnKkyMH3C5lfT9dDLzphNbtfqBAuMMsurdai83oRJnJCJZplay7AhdLr7o8/syf9f1faFGDjbUDzK+0Woda3Sysnx2HVy2yqwBPxDth3y0+NQcpR73k0E43QThAmk2MYJLiOQs9GFdoF0PfGIvWrYP83kIKXFK8bShiZVy+wbMqhiF6MuaoZUts7b4Ytpdhno0Nb3S3n+EHocla6J37nQJeC/ya7ETu72nWFWyw5y511xtpdMXUfA8woh5IN0WTP730QX7puhgT994fZTuFn/DOw5VZbeq1MJiHkXImU5Gu1k1ivMDG0NtTF2EWZC6MwMXPP4axzmcs83RvQjyfnDalF0v26FemUku/to8FipJWRvSTbm6Q1zBVhY0TcPg8kliQNpWsgxaP58rbB1KedR4F/RHza2myp7HRCVgAhyRpb5Q3jZsM94LQKmTd0ttk1ive1DsfM2dMYOaN7bgytE2s+qq7BH3jBrW7fzhmXlhHNo7evz+bdPNcC0AURbzxjW/kH//xH/d4zhe/+EV27tzJNddcwzXXXMPOnTtf9PyW4cS5J9IVoAZDmJpgIbDV7nJvn6gxkcslpV1cCKPrHF2/we23zzU2r6FSTS1H9Xq6kv33bXDCIAzkUhHvu9xHkgxPEPaGL6j8Y4jUQj+CqWC2jKy7vZsgu3nfLJnInc60jzsLPcDzyohJN3Ymr4lC9IStBR7bvB1lYGEpa3ZsFLz7ibbZ7iPS8drFhr8W+Hdssni8nXqlEpe79WDc7d2mbxgQVOI0fn5PCfHcY4116AGGJ2EwmH5te3LJaJYUD2AwhJ2T2VPLtSRMw+9LC1FsVmmz3KLlUVJ3ez8Jnl+3t5vJK1ORwVVnGLRHv7YCH7OBlinJVtAwXoWNu+CwfNYlJhH13TvHJZtptt/43YMgojQBE84rZPcESwoKjXW5187dXpELutwYIQjCrOLP6W5OAGPgBON2X8cIer8GVjPLfrfQbJPaz3a/loY4emzVmw60s6s58sgjOfPMMznuuOOaPr9582Z+85vfcN555zE0NMTQ0BDnnXcev/71r9myZUvT1xT7FjZ9fL9RJOXqAut2rxXokoIdEwwRsyMGiBmdiqkVcjYTtCfqsQnxuqn3NuLa1rg4KWhT9xm83hwbN/z7d8CrF2UXOaHGpgvuXj/Mg4g1Dz2x95OErkd5t+5+iVTwbrZ/9+OJeLJhPd2Kf03+rctyjzI16JfYE13yeg2oUoieqPPQk88Y4eGEadFKjGnJyWb+SWRK16k0lv5ojJVhDamgr7g4OmXqta/DuKMnmd+VQtXqaVJU/z+KG+43WuadyBotGzHurtN+Vnu8RH/XxF9tDYUwnibFIwZdqaN142aS4hDM5opzt3fNeYy0/nyy0FGpxb5bRa1DKUVOK0rKll1U5hjS0Bcqii5hrb/SLAQwOgHbYjh8IO2Y7rNtQ0K8Vo/niobY+WSjPmTeBIzGsDmGvokKRwzmUnd7K+pzKq3YIwitQtYtvY1bg/jDpft7AWkc/XbS+Plm53bTvKGVSl3uVbpprTH16Bvj6JOa9LGpcDZr7Zy1/6lNrFu3jiiKOOaYY5LHjjnmGKIoYt26dU1fky/Oa81/buPmtRPyVqCrwQg1MckyYLt1oxydAt1n4+dJY+9dQryuNtE3c7dHQS5MM1fFsXG1r8Vw/zZYnoNl/SaLfaQbstt3r+XiYOKxJ9Z3ugnCAdIsWywYwTtu728ClpKe50+K3W4hbZzMXVv7SD0QNinFEnvfXJe1HOcj1GSdxzdsNE/unITF9sqbZbc/gA8iIK1D3rhT/2qy2e5d7HyMCRl4AsVR3hAaoNHlOJNgb4/W+cbn6lZGDwMD+ebX12x3uFlSPJRJiretnnlvVa6hc7HVpip1ubdifhepqB/D5G84Fk/Qq1TU91KaFFdyMa/NEdmEiE290woattaN2akUpSLeP1o8x7V8PPdCXpIupICcplStMEHMurEyQQz5voJd1Fp3e62S/XlBaCWybul9Xmzd4pLhbcNY6LMivnuNEH64XbJZTZoYz/daS8LvmN04+o4loP3Sl77ELbfcssfnV65cyWWXXbbX9xkfH6e/v3/a4/39/YyPjzd5Beza9uQ+t/NFsbvxAVm3ez1QQFVg2VSF3xWMO151BHJ5U9LOWfKVfV3A/mdfnlWaLWgUJtNvDWx9G7sdVYf7tsCfHpZaKXxX+1AZS73Qdt79zj/qdBOEFpDRabGZUPpJd7pd/Lw7L/H4pftc1xpJrMAxGV3qJ/3brBQr7YmJmAfjuj4yxbvPeL3NslOFoRdxtz+AD8KIvZgwtkNYnLrdvw74R1J3+4ozqgMjsVm4HGGtvIECHWiCai3JnJshs5sfZ3cHnLXe1T8fzPkNfPHr9DeN/TF8yCbWK9eScVlVa+hQZb4PpYxrej+wBRMCAab+/CJM6aHG7PbdHj+/TzQmEnSfbd5e2WGD6aZKY3b7Fv/wWj2euwSTztMQu1ilBPmRKsMx7B6ZolYMyGnrlWIT4EWY+Pmgq0cXoReRdUtv07hB79YtYOYKt27ZCazEm6K987tx3ggUad4b7/4xmLwAzwFH4VnmVXp/tja2O/a5ffKTn2T16tV7PL7whS/s0/uUSqWmCfBGR0cplUpNX5Mvzee97/8Q559/Pueffz433ngjX770O0xNlZNzbrr1Hu66Z03y99Ztu7j0n6/NvM91P76DNb9fl4j5jZu3cP3NPzfJhIqKhSNTbLjl5zz+/Bb6piqUCgFPP/UMv7jzLrPbjem8//z177N1267kfe+6Zw033XpP8vfUVHlm7fvR7Rn3paee2TitJMg3rv4JTz2zMfl7zUNPcN2Pbs+cc+kV32Pbrt3mDwV3P/gIN933OyiY5FNT42Uu/t6PTPse3Qkabhp5hrsfeTQR9NtGRrj06h9CGJjFQyvb98/XdvfnJ+2T9s2wfQ899EQyMW58dhM3XXMDYIRVDNx2zQ088+wmDrXnPLP2Ce5YfXvi8qyAyy7/Xld/fl+/4lp2bt+VXOfvf/Mg226/Jwkp2FQu8+zXr6VaqRhXcAV33fc7/mPb0+hxE6W2bdcwl/7656YGvV0VXHf7r1jzxFPOBYqnn910QN+vS4y35t4H+c3t9yQC9pipMv3/6195aKqcxNDde/s9PPwfD7FOmUVMffduVv/gJ3YjQqFrNW74xd08vO5p85/EMU+tf55vXnNj+h/H8M3v3shTzz2fCP01Tz7Ndbf/0jwfmRj6S6+7nm07dydi8u57H5r2/V582TVMVcvJOTf95rfc/fDvjaUZ2LZhG5f+yHw2qhKjc5qf/fJunnjq6eR72bLheYa+9zNeSJvHv11zAy99dpN5HfD02if4+erbk9q9ioPg91uucPHXv8dUxZZoRXHTvf/B3RMbIKyBgm3DI1x67eqMdf77q+/o7vHl+jt46NGnkkXgpk2b+dnNP0dFUBqr8HAM2//tl2yrT5j1ilY8te5pbrvtl2kyPK16//uV9kn7pH0ta5/LvfKzH9/O4w+n65cXnt2EuuaGjMv989fcwJZnNyVi/rGHn+CGH9+e2Sbsls9PAY8+/AQ32/nNzf+3fO1aTti+K3G7f/A3D3LX7fckYn7Mtu/GG29MNOd73/8h2oG68847ZzkP38w57bTTuOSSSzj11LSsxebNmznnnHP4xje+wdFHHw3Ak08+yV/91V9x7bXXsmTJksx7jI2NceaZZ7J7924GBwc5EOJ6DJNVquNVRiZrjExUGZ+qMV6pM37DM5RPGuJzR87jDODwX27kyMP6iFbMpy8XUCyE9BUDBgoB/aWIsNC9qWXiWgzjFRMbP1mDiZq5X6nBlx+Cjx8P8/Km937r93DCQnjtElOnvtBwFCOpPS8I+0gtjhmuw0jdxLSO1o2b8yjwbuBfMNbhtwF/DBQx8b99LrGXMiW3upVKHLO7bq5rpA5jsbm2h4CLgauAd5dr/K+JKi+ZqtJXrlGcqtFXqdG/ZjuDD2wjep/Nr/Kdx+CkBfDKxWbsKYXpuFOKUPkDG2NrcWzaGcOYa2tsEhJehvnsP4rJequByakaP5ysMDxR48PlGvlylWKlTunft1HaOc7gnx5Bf6RRpRDytr3FAFU0G6Vx2Y6z43bcnayZqiKP74DbN8BHXpaOsUXzWnNEyaapI67HMFGxY3ctHcvLNbjyQfiTw2HFAnPuw9sZu/8Fht9/AuORZiwXMB4FTBZC/mc+YEkx5Byb6f7vMFaWd2LyOPQpk0xuwN72dXHf2xfiWh1GK+nnP1GF32+Ga9JFMn9xKJy41HyH7nsoBKh8xxwg94m4XGNivMrIeJXRqRrjEzXGp6pMPreLF367jb//s6P40IO7WTlRJv/6JZRymlIhpFgIGCiG9BcDgmLY3d6FgiDMOuP1mBE7V47atcsE8K8YD69PYeaMyzB5aPowa5V+bZKTDmpTErObiOOYsdiuxew1jdnr+jbmuj6Dmf/7VVoxZVCbedHPNTI8PMzQ0BA33ngjfX19LWtjN3o2ZIjjmHK5TLlsdl+q1SrlcplazSRjW7p0Ka95zWv42te+xu7du9m9ezdf+9rXeN3rXjdNzDsOOXRlaxpnt56U9urRu4eHCuhhWBjDgzEMjZYhcsmqVJoJWCl0138LNLhsNvw9WTVbUxtGYHMFXr4wDaD0Xe7DQMT8LNK4Iyn0Js1+es7ZegwzkbgY+iTLPS5eu/vJuOaRhhTswuzio0xSPJdINAlvKmpUpcKlP/6JsWDvmoQFDYni3P0WDDsufjgTS0/qdv/vpIlx3LEO45LnrksDOlKEk/U9JsSL/az30+LngeEalLz4ef/69pQYr7ETJbH0CvoKsLuWnlqpo5TO5GNwpy9Rpr+5pHjTMtx753e3nN0P/LwDWsEDm7PPP7g5DSlz57QhrKzl47ldt7jEvq57PJfTPLC0SBzAI4UyO4s5mwjSrFsiF0evujxUUOhJZN3S+yjv8EP/5mPm9THM/LHQe74xy323oaxXtct75sfRn4CZC92U7dehr8bNU+S0g66Xklu2bOH000/n9NNPB+C//bf/xumnn853vvOd5JyLLrqIwcFB3vve9/Le976XoaEhLrzwwj2+5/Ytj7WkbaYWvc6Iea1cLfo8DJdNZuA4pliuoPJBUqJOK5Ls9l0/J6qGW0gbXcTU441jU6ru1IWQDxvi5l1ivG6/0IOL973nrZ1ugnCAqD0cYCbHrZj8aMuZHoPmi+RupXHydvddVpT1mEy4ESSlvhMdm9OosRrvP+0PzQw6CswvTY9phpZ9EJnSdSrNdr8SExP4JGksfV3B4yheCsncYGLoFUGlRtgs6Z2Pi5v34+djYLhqPKIc7tLsiqiZyFL+Z+Je486bX4Dd1bQd5RgdBtkEi/aLOgQSl/tNGOvE0UyPnXdxhj2Pqy3rJ7s7dVn2nFcsy853yQfWWlo+nnt7Oq4cpFaKB3IhAxNTRMDQhGbtkFflQSlbqEYdJF+w0G3IuqX38TeB3RwCZs2y3R4KY5n3n+/2yjwuKV5ItjzrCZi12Fa80nUN2e5npX2z89/MnKVLl3LnnXe+6DmDg4N87nOf2+f3rFUn937SvqJJy9VplSw4gyFg4wQqjhkG6lNVVClMdnmUVwah+xU90xfGrsl9CqZqMFyGx0fgvxxre7zOZrdP0vkLs8XiRfM63QShBfjJ8CD96ZWAJzAic5DUAux0W0D3ToyOPW1YDNjnnwCW2EHVXxxoFDofoEZh0dBgWrJuwLirT7OqtmiMDRREXmI8J15zpNnuV9hzNwAV4FDnwWWPIABdrk33nmgsbxP72edJt/9Hy9Cfb3BraLbr2oDSQK1B1AMDOdg9lQr6SoyOUkHvV2RbDLxgP8vHMWI+onlCvG7ve/uC0oo42YFXZj47fil8APjdZiPuj12SblyHOpMnppW0YzzXSVLf1JluVTHimSCiVq9TqJY5sZQ3GZ5tVZ7Irl0Oii9Y6Dpk3dL77GnNsgBjod8GLGHPlvxuHVqcmNcqTYqnMWuxI4DfY7wlp2W7n6UL6noLfddje5/23O41oEohkxMT3A+ouM5/HD7Ic/koU6JWY6z0Xdt7HY3tS9aOCqLIZF2+bzsc1Qfzi6ZU3bTs9lKqThD2l0aZ5v+CBjCC12W4993s/b+7Hd9Y7CZzK8utoMdann1LIqhihI6xNegnzPa/E19491u4QnDJ3pwF2ne9fx1G0Dvd/bgy5dz8urUBJileUK+nk68v5Bvd7jNi3t7fNQUDQXYc9jcv9kTywZEV9UOhCVdwVOvonKsmoJIkRwo4RClewCxUfHd7RfYa3f2Dgpy2R2BuCwGcvBze93I4aZn5O2+fC1UP1eoza5VIOYuTIgeckAt4/bph3jpS5o/X7uKooTyRUkTKWOZz7ruVDXpBEJqQEeoqXY/MxzjSbcW429Nwjn+/G2nmhebWWScDa/GEPKnrfQ1vTm9z++YcfYNL937SvmInNSfOTYdUqHkFdtTrVFWdeZUy+UqFe4Mgsc4bnavsQrZbu69HZtXttTcKjQvof2yFP1jk9XjPohFpI/KFWcXP8in0Lv7k6P/0+jGCdznTvK4zLm/djNrDAWbyb7ZhkVi7C8bB7O41j5iSdQMN7vaNH0or2qsUIakIci73GjgV44a+ETOpPwYc4zXHbUYEIQS1GsqPlfdxOwK+mE/uxzAxBYNeroB9vc7GTuQE2VAII1PmvWOgEqPCAB37H6eZq1y5um2Y2rvH43kekF3sHCwbuCrwxHzeineXiNCJeSfoc4E5vw20YzzXNvlUHlOWMK+goBQLQviLnVMsqEKxGJHHiPmCspFzuoW7ZILgIeuW3sefr/1jnn3+Sez+u3d+5jVdOnc4D2t/rnPz34kYQe/H0SeW+nh26tHPSZUVBLm9n7TPGOHq4uHdbZgPWFKFQ8YmyE3VGCnleZ12dVxth9D2C+jOvpugfPOZfwvQF8Jvt8DiAI4YJEkI5A5nnZfd/FlnZGS8000QDhD322smevuB3aSCvlkMfbdOjD5+MjxIh5cS5vqWKhfKZC3F1gsqsJbQ4d2jsLMMi4rpG2a2+1ubvMslxnN7lk7Yl4CXA7+25z2GqUubeGzjXO4VQbmeHfaTePoG93rfMu9E/Y469EfmAv3rxLtthm+V95PiDeZNIgbXiErdCHo1fVEWYkT9ekzd3eNIxXxyq3ojGeN+EelstZZ8w629r3Ltu/KWj+f2S81ZEV/E3JaAUqAobaxQ6oeiUpS0eTyP8ULsar9YoaeRdcvBgUsl4s8fEWaefAwzjzSuW3phWGkU8+72REyY3SheHD3ZBHntZk4K+uGd61v3ZrYHamVjy7CxZiiGihH/ZUeVN+yu8uZNE5yg0yzJkVYm0VPPJJZpWDC625FR04MPL5nt/lBns9sHSqzzHeKMP31tp5sgtIBGw6obMVyc+TLvHN/dvhd+dY17hP5o6IqKLseKYk2adFQrNGYwPWPFibBtAuZHWTf0FifEczgnpMRS703ur8MI+jFgo1KsIPWW0NqepzXhpJ3e9+iF15AMzyXHq9bNymBeIXut7vbFLtUX/pkP2ibYm6iZzYNqDRWobFI8e8RKcQhwFzCEianPCHmVLngOJpRSqCiAQgh9kTmK9n4phEJonm8jbRnP7SZZUZl0OAMK+pSiXwf0bdpNX65ASSn6lClBGPm/qYPsOxa6A1m39D6+iPfnETCW+fVkXe79c7t93eLPcb5H2gJMXoDf0xA/b2+rs5AYr9s/u+7HLpJcbGVemzi0glIU+wscPQLvmILFuZC8dW1zYj50r++FibGZheuZrbDBLkx/OwLPbmuS3V5K1QnCgaD2cLhM8C7ndsYlXfXO4J65Lm+ocNVZ/eQ5fkiBcidN1mBkAhZE093tA9Xy8VUpM35H3mTujlcBTwP3YiwQC1Q2IZ5GEQQKPdXwpo3u940u944RU76VohWPfky8gr0qel/Uu9eEdqfBJRas1NCRyi7GPOvJIcDdmPwA7hzfYhEexFpPaYUKNSofoIqhuY3akwSv7XhrDyPqFX0xDNRhQGkGnptgoD/HUB1KGGOE3xl6wftHEITZp3HO8IfHhd6tL+Ld/N/t6xY3x/lhZu46T8CEormytRlRT/vj6Lv9s2sLSrXuspWr56MVea0oKjMx5oFisUBp1xR9u2uUShEloIDZDS9gE+LRIxNjZhvN9uA1W7LnPLileXZ7oSNMTZU73QShRbhfke+WvsPe340nGFVWhHU7fsK1xsM5Xj6pjBA2CdpIKokppaAQMTUyBTtiU36tWYK4NnwQmdJ1KnW7n4eZ1L9Ltv68H2sXhhrlfppNEuJl3Oz90nVxDMOTdidHZa/L/+D2ROMYjne7MEg3C6bqkNPpQktnv6OlGBdC526fxNB7ol73wpzWY7R6PE/WHZ7XRohZm/TlQ/qnYkr9EZHf1ZJz5+TSUZgFZN3S+7ixpTGMTmE8uyBroXfn9sK6RdlN+sbSdRo4CSPoY7Kx8zVmJ45+To7Khxy6srVvaAWuVmkM2gDQN6ApvTBKaaJMKQzpw7izlTCWfEOX915HYy3eQMErGpILvnJZNrt9qLv/13kQc9kV3+t0E4QW4Hau/RHjYeAW+/c/YZKxNMbQ9xLuGt39tZiJEeB/AI+4jQqVTqgKIBfylTtuMycOFewbKKZZoVtMgJcdnHRi18AfYJLGPadMaTcncJOd/VCb7Pzw4jXoM8Le3o7UTJm5mWxcNK6W/GoApbypRQ9QqUGYehak/43ZUHH58G0U/7SSdV1fC7dHac943tB33G3R1plwYSyN/azXBhihZ5B1y8FBo/3PzSVOyC8gu2bZlz3pbqFRzLtQxxMx+QHKeJnumb04+jk5LL+wcU1r39Cb7AIFJa3oA/qHAga3TzC4c4rBnH0Mk1gm3Zbqhe5LahZzRy6w9XgPg1NC+ODh5u9IZ6z0PeF9cJDyqY/9eaebILQAN1n4x60N59xGdtJ0k0wv0Cwbbub6lOLnpBrWd3GjL+KTC19hXO/dRqIbchJ3+9aPQS7bbaOFPsDECIJJkPM/lJngfUt2GNppd5qbfdzc5T6x0GNE90Deb0h6u5fVkO9NNk2kzS+YaiUAtRpEKtlAMd+PSfa6VsFq+35XYeIFnWeIL+qF1tOW8bwxMYe7X7Cjx5BNINy4QdYr6xah55B1y8FB44awGzFG7e3zTJ/3Ne2YrVtPY+k6d3+5ff6LwBqs631Dtvt2MicFfRy3eJ8ks3NtrBg5pegbLNK/rU7frgn68iaLbNC4090LvRdMHHwuMELd3RYCOHEZvPfl5jYfpO72uUBWdh0mn29lNQehUzSKpRD4s4Zz3kZ2YumhoSXjru1E8dsazjlD2eog1tIdWFd9CiH5zdUXd7dv0yyXKV3nffa/azjvFw3PB07Q73F2j7Ni3nuY0WqaxK5J/PxeN1CbWfMVMBDBsA3sr6Uu92mJVfOSOxre7jam981e6Xe9RlvGc3+l7Yv74TFzf3gsfdz36JAvWWgTsm45OGiW5X4t8HP7/N9gvPB60bMw8bZTZDz0nFfhGuBC4AFSy3zVWunb3S7hQPEXVYp0AhzKmac2VVD9dsdbNSykeonQCvW8Tuvwluzhl/PJGyu9WOcF4cBxbl3OEhwpU/P8EuBPgP8P87dL1OYqafTK78/PGhspUwv7FaTXdxmwUiuTloNURBtLYmhmy4W2ZF0Td/t2fQ7uO4ns5523t42bEX+Euz5Tw167qh/VBnf6jBu+Z5X3rfW7J2EgzIowd39frKbNNpQVphb9sHWmL6cW+ojUAh+p6dd2JqbsWaSyCxuhR/DXK64vPLUNHrKCfvUWk/zW3zzS7mRBEITmNFrdNWYD2OeWxnN6ZK8wCaEj63rfeH03YS30zkofQ72NifHm5Nw7OP+I1r6hUtmFUtIzVVp7qTiDusFdhtLK1t1tFPCBEfV5K/LzoWS27wJuuvWeTjdBaAFaqUTo5pVJqllSJlb7b4A/sI8VtRFXOXorF2VA2u68goIyJbReg7m+VysoERvhqBU56+4OQEFz09hTxjXYtzYm40/7PgilTEWTSKWitqjg1cBXgNOV4jLg1NCUNM0BUQzafTmVWvpmmYR4ZOPnfSv92BQMhtP9GPd1JdS46ezmn6EIdlXM/Skg1InVPYe5vjzwSq3MtQFfxXw3ObuR4b7DXtlI6jXaMp436w9rNmfPecAmv200twlCG5B1y8GBv1HvjBGNnoV/RmqECOmthKrNkuKd3nDOnzI923074+jnZP6aWq3FWTQbBXpi+VAmUdPwJPTnpru2udf2EEor4pyNk6/V08WnW/3pfXD7FGaFgYFSp5sgtIi8spOC/WmFyhh43U8v9MR+QRlrcK+glKJATFWZ61GYSd55pCusoFSuiogdbhVQ1AzqXFqyrnEsbvPGYqRMVvCaSr+LCHgt8DplHJpyNWXErhW8yfhfbTK1N4p4v3RdHNsYejttN7O0743GTWfXnqGCyXZXj62gN5kbCkBVQU0pYivoXqfM9WmVeiYUbP/rpY2kXqMt43mS6JY0ruIVS+GRjek5py71sj6qfd88EoQZIOuWgwONFeuxmfuqCl4VG4+7n2K8u16lvOSydj7pFQIFQezF0cfwcuBijKX+DGAVZuquxWaN4IR9u5iTgn5sePPeT9oPlFLEboHUuOO9sATPTUIpcic3LDx7b2ZUym299UrarbnJG17b4moOQsfQSlEkRmkzQZbjVNw7wess3LneG1IIlKJPxwSxub6Kd30aK4yrxkps3O3tkzvHeH3xMBidAJfwDbKbqm1E282IWIOqpxstddvuMLCilzRvX0K1nk2Ih3e/sQ59PTaPTwKDhekW9sb7e0Q1n6f67fw0WjaNzwdgh/minbMCZa6nptONl9D2u6J2Gy092Pl6hLaM5y7ZrRPqoTbJbd+v4P7NRswft9Q8HtpStIGE0wntQ9YtBwdKKXJxTMEK2ViDjuG1sfG+c5ViCt7RSxvCfh36IDZ/5zHX9jrscEoaZw82230br3FOCvq2oDVQy1pAFFCeMH8/tx1WHNI89lEQBGEvBEpRIibEWk2t7nOubbkes8w3Etrri4CKSvWsViaRXK5SR/vj69Pb4J7d5u+fb4clBThhaaqaZ+mzcO3WGvKxabsjAKJATd+IiMi63DfiZ7Z3Yn/UusT372lzeB/JWOdJw8NKwE4bRx+m0Xg57OaENp4GNS9QL3G17/G+N1dRWhEHNpGt7xJz0rL0txRqyNlzrKAXBEHYGzmtqNXjdIObrCEishvCTtD30oawIivmXViaH2qQEf2YqdZkvm+PmX5OCvogLLT+Tf1FktvtfnobPGIF/bWb4H3KZIOXWDRhFti6bReLF83rdDOEFqKUMrH0pJOC4uCJW9Z7uL6mlmgb67utNs6ioARrthgh4s7R7J/QPQACpehTUIvjVBfZNL8ZIe/IYV3uGxLiQdZan1jpY9g9ZdW1Z2V3761gnyaTxnnKt9QPRbDDbhpEQeY1ziUy1l54gVuwHCR9r9tp23ie01D33C4ClfULdULeVq+R/DhCO5F1y8FFQaWhaGWV7lU7y7XLDRT22DyilCKIY0Lr5FRqIuBDRSZ5nntsvE1tmpNbrQuXHNf6N81kgbX3H2xw7V+zxSui3LAoE4QW86/X3tzpJghtRCuFVgdvzorM9fmuwW6cfbkR798ZtsViXrF0+jmzPMMFSpHT5giV8g3dWXJ4We6Zftvocg/GQj/PVUuxj00rXbcXfAEP2Y2GgQJst/llIp19XrkpS5PTirxWREqJmJ9F2jWeK6UgF6YJb/NBmvS26P2dD1A5CbMT2ousWw4ulDLzRZ+GQQUD2hzufqkHxbzDCfa8gn4Fgw3XNmAf69cm0W/RzpvtWrPNSQv9CxvXtP5N3YLTHaGGVy6DtRvSc165LE3UFCjQEosmtI+//sR7Ot0EQWgNSbF6O7ZGMRy/BM6Fv/5dmMb6+ud0Q6yvXxLMvw319Ow4fvk6/74zaQxXoZRvHj+/j95eSiliV23F3wwAkxhviy1X5nTbNC8AoVO0czxXgSIuBDYJhLZ5HGK7KWbL0IplXpgFZN1ycBIo1e4ctbOOc7XPNVjiO5Wtf04K+nagAhuLpuvGulGPjXv9hxT81iaXOWGZeS6JRTvIercgCEIbUMqOr2FsxLyzXrtYX5fQy8X6hqrzGXYa/3tfHAcBVGyW+0xCPPtPY/w8wEgN5hXS93Ai3iZX3efNi2ZJ8RQwGMBjzhlQBPxcQyllQi0iiF1iRnXwhPMIgiC0Eo1NBkt3xP+LoG8luQDqXikireDk5XDS8jQ2zQn6XCCCXhAEYV+JdCpy3XiaBKxbAR8o4yKcC1DdkLzLH+L9CT/Qqct9I+5hv3RdDIxOwcJi1hrvl57bnzb5Qt4J/KEQhklrBzUrrypT1pxAiUeGIAjCi6JcjpwuoQtWPLPPvEVHt+V9VaAgHxorUU4ncWfT4tFyAURd4A4qHNRc96PbO90EQWgZxoKo0zjfvBlTr7vjV1AMMrG+SQx4N9BsnA+0qc0H2YR47u/GOvQAuyeNFb1RzO9vroBGV3tl/xnImb/ze2i/TFcdRcZzYS4g/VwQZkY3bS7MGlMTu9r23irUxMUIoropS+QWZy52PtQi5oVZ4bgVR3S6CYLQUpQ2Fvg4Kfhe57gTXmIEfS/F+kbWQj8tIV6cenk1lq4bLcOgnbJ9y/z+Xq5/vi/qnTt/bg9x/zJndRQZz4W5gPRzQZgZc1LQT4xtb+v7q8DESMaRSy5DsvBSs1RGSRBWvmxFp5sgCG1BBRoCiGPNylce35UbpCYBHc3d1XNB1uU+kxCPrNW+bh8YBgbyzcue7te8soekeEWbCS8KxCrfhch4LswFpJ8LwsyYk4J+tlB6H1MPC4IgCPtNNwr5LI3WbnsnbBJD71vrnXXeudxPWqv9YC49v7Ge/P40KUmM570HCuZhwgGSc9X01wqCIAiC0FV0UaDh7JErDHS6CYLQdp56ZmOnmyAIbacn+nmjxbuZoG/Et9rvnjT3oyBrVU/EfAuS4ikF/QUI91BrfC/NFdpLT/RzQThApJ8LwsyYk4J+YN5hnW6CILSdO37x2043QRDaTlf382YeBAojmqu1PYtkP34eGz+/oCGjfTPX+31qkm+Vb3htdRLWT8DTW/d+HcKs0tX9XBBahPRzQZgZc1LQb9/8+043QRDazl994B2dboIgtJ2e7OehgqqrQ28f8y3yDudyP1yDkhc/77vZzyQxnpv5fUv/M1ths3382k3w1NZs/L/uhRCHg5ee7OeCsJ9IPxeEmTEnBb0gCIIgtJ091W/PCPoGId8YPx8Dw1WY59WT85PhqRkI7UBnk+JpBQ9uyZ6zZnNanQVMFQFBEARBELoOmaEFQRAEoV00K/sWKijX0r8by9f5Yj7GuNz356fHz2f+g/0gUNOPU5dlz3nlslTsB/tZ614QBEEQhFljTk7RC5ee0OkmCELb+cbVP+l0EwSh7XR1P29MQOduQwWVevPXZMS8vb9rCgaC6W72vsDfr3Yp04ZQQ6QhH8AJS+GDh8PKCP7ycDhhmXku0lbQz8nlQtfQ1f1cEFqE9HNBmBlzsmzdyK4NnW6CILSdt/zhqZ1ugiC0nZ7q5057RwpqTQS9736fCPsYJqZg0E7Xfvz8/pasc83QijgKoBan/2eg4OTl5tBW8EfaiP5cgApm8B8JLaOn+rkgzBDp54IwM+akoC9PjnS6CYLQdo56yaGdboIgtJ2e7Odhg6CPvUx4vmXeifoddeiPMAHz7MH1fv9QoSbO2RJ1Spn/qxan7xlYQZ8LzK3QUXqynwvCfiL9XBBmxpwU9IIgCIIwK/h627nfRxpqtRfPbO+S41XrUAfmFabH488kw73fnFxAHCgI6maDwXkGuLj6KECFIuYFQRAEoZuZkzN1sW9hp5sgCG1nzUNPdLoJgtB2urqfN0uIB0YsTytb5z3v3x8pm9uitab72emV/5/MsImBhkIAxQhKofEEKEZQCEXMdxFd3c8FoUVIPxeEmTEnZ+t8cV6nmyAIbeexJ9Z3ugmC0Ha6up83S4gHNsv9Hl7jrOTO9X54Evrti333euUdB9xMhQoUKtD2UFJzvsvo6n4uCC1C+rkgzIw5Keh3bXuy000QhLbz7nf+UaebIAhtp2f6ufLuhHq6oI/jbPy8ux2pwUCueWb7GcbPC71Hz/RzQTgApJ8LwsyYk4JeEARBEDpGFEDF3m9MiAeehR7YXYXBfHpOY/y8aHpBEARBmNOIoBcEQRCEdtAsIZ7CWOgdfrw8pEnx3HOjVRiwgr5J/Ly4xguCIAjC3GZOCvpDDl3Z6SYIQtu59J+v7XQTBKHtdH0/bya4naBvzHIf11PLvBP2w5MwEGYT7Pl16IU5Qdf3c0FoAdLPBWFmzElBv33LY51ugiC0nfe9562dboIgtJ2u7+eNCfHAuNwDVBvN8xbfSj86BYPh9CR4Wom7/Ryi6/u5ILQA6eeCMDPmpKCvVSc73QRBaDuLF83rdBMEoe10dz9vzHJv74T2tuZK13kCvu5Z7ePYxNAPhOYxPxmexM/PKbq7nwtCa5B+LggzY04KekEQBEHoGIFV4pV6+phztXf367ER9JPAYCHdDPDd7MXlXhAEQRDmPHNS0PcNLu10EwSh7dx1z5pON0EQ2k7X93NFk3r09k61nj23TrZ03ahNhd8fpa9rLF0nzAm6vp8LQguQfi4IM2NOCvogyHW6CYLQdkZGxjvdBEFoOz3Xz30dXqlnS9XY+e3XAAAQaElEQVSVa+axOkbUr33BPLd+ezZmPkmMJ6J+rtBz/VwQZoD0c0GYGXNS0A/vXN/pJghC2znjT1/b6SYIQtvp6n7eLCGes87ngEotfbweQ7kOUzUj7J/cCv+2wzx37SZ4aqu5P610nTAX6Op+LggtQvq5IMyMOSnoBUEQBGFWaHSzd+SwSfFiY6Uv12HSivlyDX6yKXv+ms1ZN3tJiicIgiAIAnNU0Cs1Jy9bmGNMTZU73QRBaDs9289zKi1bV7OW+UodnhuBq9bCVMP5r1xmkukFylrnNapZjXvhoKRn+7kg7AfSzwVhZnS9sr3lllv4xCc+wTve8Q7OOussPvWpT/HQQw9lzimXy1x22WWcddZZvO1tb+PCCy/khRde2ON7HnLoynY3WxA6zmVXfK/TTRCEttP1/XxaQjx7G+o0KV65DpNVuG0jfPspOHYRnP8yOOdQODmE//dwOH6peY22oj6Y7QsROknX93NBaAHSzwVhZnS9oB8fH+fcc8/l2muv5Yc//CFveMMbuOCCC9i6dWtyzhVXXMFDDz3ElVdeyfe//30GBgb47//9v1Ov15u+55YND8xS6wWhc5y0Yn6nmyAIbaer+3mjAd13vw80VGKoxfDUTrjyYdiwG/7yGHjTMsgHcPwS+ItVcMJSiDTkdHobdv30LbSQru7ngtAipJ8Lwszo+hXB2Wefzatf/WpKpRJhGPKud70LrTWPPvooYKzzN998Mx/84AdZunQpfX19fPzjH+fpp5/m4Ycf3sO7xnt4XBAOHu64445ON0EQ2k7X9/NmCfHAlKT7t41w9YNw7Xp4zTL4wPGwtM8I9nxgjqjxvoZcIO72c4yu7+eC0AKknwvCzOh6Qd/II488wsTEBEcffTQA69evZ2pqihNOOCE5Z2hoiGXLlvHEE090qpmCIAiCYGgU309vhRHM8TzwZ4fAqw6BKICcFe8F79YdxQAKISroualbEARBEIQ2EXbqP/7Sl77ELbfcssfnV65cyWWXXZZ57IUXXuDzn/88f/EXf8Hy5csB45IP0N/fnzm3v78/ec4njmNy+QGGh4cP8AoEobt54sn10s+Fg55u7+fxRAUmaiZGfrJmkt/d91S2ZN1j6+H4QYgUxNocdQU1bY5YQxxArFEVsczPRbq9nwtCK5B+LhzsuP4dx631Fu+YoP/kJz/Jeeedt8fngyCb8Wfjxo185jOf4c1vfjN/+Zd/mTxeKpUAGB0dJZ/PJ4+Pjo4mz/lMTExQnhrh8MMPP9BLEISuZ2joh51ugiC0nZ7v5z8BvtzpRgjdTs/3c0HYB6SfC3OBiYmJacboA6Fjgr5YLFIsFvfp3CeffJLPfvaznHXWWZx77rmZ54444gjy+TyPPvoor3/96wHYvXs3mzdvZsWKFdPea+HChVx33XUUi0WJQRQEQRAEQRAEQRDaThzHTExMsHDhwpa+b8cE/b7y8MMPc9FFF3Huuefyrne9a9rzuVyOt771rVx11VUcc8wxDAwMcMUVV3DkkUdy8sknTztfa83ixYtno+mCIAiCIAiCIAiCAEwPE28F6s477+zqlO9//dd/zZo1azLu9ADvfe97ed/73geYTPdXXHEFd955J+VymZUrV3L++edzyCGHdKLJgiAIgiAIgiAIgtB2ul7QC4IgCIIgCIIgCIIwHal9IwiCIAiCIAiCIAg9SNfH0LeSOI751re+xU9/+lPGxsY49thj+dSnPsVLX/rSTjdNEGbE//k//4d7772XLVu2UCgUWLVqFR/96Ecz4SZbtmzhsssuY82aNURRxFve8hY+9rGPEUVRB1suCDPnc5/7HHfddReXXHIJp556KgAPPPAAV1xxBevXr2f+/Pm85z3v4ayzzupwSwVh/1m7di3f/OY3efTRR9Fa85KXvISvfvWraK158skn+epXv8rjjz9OX18fZ555Jh/4wAckya/QU+zYsYPLL7+c+++/n3K5zJFHHsmHP/xhVq1aBch4LvQed9xxB6tXr+bJJ59kfHycn//855mKbXsbuw9Uo84pC/33vvc9brrpJi6++GJWr17NySefzGc/+1kmJiY63TRBmBFKKS644AJWr17N1VdfDcBFF12UPF+v17nooosYGBjg+9//PldeeSUPPvggX/va1zrVZEE4IG655RYmJyczj23evJkLL7yQM844gxtuuIELLriAr3/96/zqV7/qUCsFYWasXbuWCy64gNNPP50f/ehHXH/99XzsYx9DKcX4+Dif/exnOfnkk1m9ejUXX3wxP/3pT/nBD37Q6WYLwn5x2WWXsXXrVv7lX/6F66+/nj/8wz/koosuYnh4WMZzoSfp7+/nrLPO4uMf//i05/Zl7D5QjTqnBP3111/Pu9/9bo466ijy+Twf+tCHqFQqMkgIPcuHP/xhjjvuOKIoor+/n3POOYcnn3ySkZERAB588EGeffZZPv7xj9PX18fSpUv54Ac/yM9+9jPK5XKHWy8I+4dbAH7mM5/JPH7LLbdw2GGHcfbZZxNFEatWreKMM87gxz/+cYdaKggz48orr+Rtb3sbp59+OoVCgSAIOPHEE1FK8ctf/pJ6vc6HPvQh8vk8Rx11FH/+53/O6tWrO91sQdgvNm7cyJve9CbmzZtHEAS8/e1vZ2Jigg0bNsh4LvQkr371q/mjP/ojli9fPu25fRm7D1SjzhlBPzo6yubNmznhhBOSx4IgYMWKFTzxxBMdbJkgtI777ruPJUuWMDAwAMC6detYvnw5Q0NDyTnHH388k5OTPPfcc51qpiDsN3Ecc/HFF/O+972PJUuWZJ5bt24dxx9/fOax4447jnXr1s1mEwXhgJicnGTt2rVorTnvvPM466yz+MhHPsIvfvELwLhsHnPMMRk3zuOPP55NmzYxNjbWqWYLwn5zzjnncPfdd7N9+3aq1SqrV69m+fLlHH300TKeCwcdexu7W6FR50wM/fj4ODC99l9/f3/ynCD0Mr/97W/59re/zd/93d8lj42Pj9PX15c5z4l96fdCL3H99dcTxzFvf/vbpz03NjbGYYcdlnlsYGBARI7QU4yMjFCv17n11lv5h3/4B1asWMHdd9/N3//937No0SLGxsamrWH88bxxrBeEbuXkk0/mtttu413vehdaawYHB/n85z9PPp+X8Vw46Njb2B3HpuDcgWjUOWOhL5VKgLHU+4yOjibPCUKvcs899/C3f/u3XHTRRbz61a9OHi+VStMmQeeOL/1e6BU2btzId77znWmu9o6+vr5pY/vIyIgIHKGnKBaLAJx++ukcf/zxBEHAm970JlatWsVdd921x34OMp4LvUO9XufTn/40CxYs4Prrr+fWW2/l05/+NBdeeCHr1q2T8Vw46Njb2N0KjTpnBH1/fz9Lly7l0UcfTR6r1WqsW7eOFStWdLBlgnBg3HbbbXzxi1/kb/7mb3jjG9+Yee6YY47h+eefZ/fu3cljjz32GIVCgcMPP3y2myoIM+Khhx5ieHiYj370o5x11llJtuO//du/5ZJLLuGYY47hsccey7zmscce45hjjulEcwVhRvT397N8+fI9Zqx37si1Wi157LHHHmP58uUidoSeYWRkhE2bNvHOd76TwcFBgiDgDW94A8uXL+e+++6T8Vw46Njb2N0KjTpnBD3AWWedxXXXXcfTTz/N1NQUV111FWEYThNBgtAr/PjHP+arX/0q//AP/5CxzDtOOeUUjjjiCP73//7fjI+Ps2XLFq666irOOOMMcrlcB1osCPvPm9/8Zv7v//2/fOMb30gOgPPPP5+PfOQjnH766axfv57rr7+eSqXCgw8+yE033cR/+k//qbMNF4T95Oyzz+bmm29m3bp11Ot17r77btasWcMb3/hG3vSmN6G15qqrrmJqaoqnn36a6667Tsp5CT3F0NAQRx55JKtXr2ZsbIx6vc4999zDM888w7HHHivjudCT1Go1yuUylUoFgHK5TLlcpl6v79PYfaAaVd15551xW66sC4njmKuuuoobb7yR8fFxjjvuOD75yU9y1FFHdbppgjAjTjvtNIIgmFZT/stf/jKnnHIKYEp6uTr0uVyOt7zlLZx33nki6IWe5rTTTptWh/7yyy/P1C2WBaDQi1xzzTVcf/31jI6Octhhh3Huuefyhje8ATDJlb7yla/w+OOPUyqVeMc73iF16IWeY8OGDXzta19j7dq1lMtlFi9ezH/+z/85yZEi47nQa9x88818+ctfnvb4pZdeyqpVq/Y6dh+oRp1Tgl4QBEEQBEEQBEEQDhbmlMu9IAiCIAiCIAiCIBwsiKAXBEEQBEEQBEEQhB5EBL0gCIIgCIIgCIIg9CAi6AVBEARBEARBEAShBxFBLwiCIAiCIAiCIAg9iAh6QRAEQRAEQRAEQehBRNALgiAIgiAIgiAIQg8igl4QBEEQBEEQBEEQepCw0w0QBEEQBKH1vOc972HLli17PW/JkiWsWrWKW265BYDvfve7LF26tN3NEwRBEAShBYiFXhAEQRAEQRAEQRB6EHXnnXfGnW6EIAiCIAjt5bTTTkvu33nnnR1siSAIgiAIrUJc7gVBEARhjvOlL31pmsv95s2bOeeccwBYuXIlZ599Nt/85jfZsmULxx9/PJ/+9Kfp6+vjK1/5Cvfddx9DQ0OcccYZvP/970fr1AHw2Wef5ZprruH+++9n165d9Pf3c8opp3Duuedy9NFHd+R6BUEQBOFgQQS9IAiCIAgvylNPPcXnP/956vU6AA8++CAXXnghuVyOZ555BoDJyUm+9a1vsXjxYt72trcB8NBDD/Ff/+t/ZWpqKnmvXbt28ctf/pJ7772Xf/qnf+KUU06Z9esRBEEQhIMFiaEXBEEQBOFFGRkZ4ROf+AQ33HADJ510EgCbNm1idHSUq6++miuuuAKlFAB33HFH8rpLLrmEqakplixZwpVXXsmtt97K17/+debNm0e5XOYrX/lKR65HEARBEA4WxEIvCIIgCMKLsnjxYs4++2wAXvayl7F27VoAzjjjDI444ggAFixYwPbt23nhhRcA2LBhA+vXrwdgy5YtfPSjH532vk899RQ7duxgwYIFs3EZgiAIgnDQIRZ6QRAEQRBelCVLliT38/l808fD0NgIyuUyADt37tyn9969e3crmigIgiAIcxKx0AuCIAiC8KIEQbBfjwPMnz8/uX/qqadyySWXTDsnjuPEVV8QBEEQhP1HLPSCIAiCILScww47jMMPPxyA3/3ud/zgBz9gdHSUcrnMunXruPrqq/n85z/f4VYKgiAIQm8jFnpBEARBENrC+eefzwUXXEC5XObyyy/n8ssvzzy/cuXKDrVMEARBEA4ORNALgiAIgtAWVq1axZVXXsl3v/td7r//fnbu3EmpVGLRokWsXLmSt7zlLZ1uoiAIgiD0NOrOO++MO90IQRAEQRAEQRAEQRD2D4mhFwRBEARBEARBEIQeRAS9IAiCIAiCIAiCIPQgIugFQRAEQRAEQRAEoQcRQS8IgiAIgiAIgiAIPYgIekEQBEEQBEEQBEHoQUTQC4IgCIIgCIIgCEIPIoJeEARBEARBEARBEHoQEfSCIAiCIAiCIAiC0IOIoBcEQRAEQRAEQRCEHuT/BypjF0Psgz2lAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/QAAAP8CAYAAADodvUPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOydeYAeRZ3+P9XvO+9cmSOZBMJ9HyKXB3KooNwogooiK7risb9dUVdlFa9dF3RxRXRREUQWERA1ohwSkMsYZNEICEK4zxAgIXcmc75Hd9fvj6rqru633zmSmfedYeoJTfe8b7/dVV3VVfV8T7F48WKJg4ODg4ODg4ODg4ODg4PDtILX6AI4ODg4ODg4ODg4ODg4ODiMH47QOzg4ODg4ODg4ODg4ODhMQzhC7+Dg4ODg4ODg4ODg4OAwDeEIvYODg4ODg4ODg4ODg4PDNIQj9A4ODg4ODg4ODg4ODg4O0xCO0Ds4ODg4ODg4ODg4ODg4TEM4Qu/g4ODg4ODg4ODg4ODgMA3hCL2Dg4ODg4ODg4ODg4ODwzREvtEFGAsuu+wy/vrXv7J69WpaWlo48MAD+ed//me22mqr6JzVq1fz/e9/n4cffpimpiaOPPJIzjzzTJqamhpYcgcHBwcHBwcHBwcHBweHycG00NALIfjSl77EjTfeyFVXXQXAV7/61ej7MAz56le/SkdHB7/5zW/4yU9+wtKlS7n00ksbVWQHBwcHBwcHBwcHBwcHh0nFtCD0//RP/8Ree+1FU1MTs2bN4h/+4R947rnn6O/vB2Dp0qUsX76cT33qU7S3tzN//nw++tGP8vvf/55yudzg0js4ODg4ODg4ODg4ODg4TDymBaFP4/7772frrbemo6MDgGeffZZtt92Wrq6u6Jy9996bYrHISy+91KhiOjg4ODg4ODg4ODg4ODhMGqaFD72NBx54gKuvvppzzz03+mxoaIj29vbEeYbsDw0NJT4Pw5D169fT2tqKEGLyC+zg4ODg4ODg4ODg4OAwoyGlZHh4mJ6eHjxv4vTq04rQL1myhPPOO4+vfvWrvOlNb4o+b2trY3BwMHGuMcdva2tLfL5+/Xo+fMY/IwOfcqlffyrYevsDWbPiYaQMAeicvSNBUGawbxUAuXwLPVvvxZoVD0fX6p67G6XhXoYH1wNQaOmgo3t71q96IjqnZ/5r6O99mXJR3au1vYfm1m561z0XnbPVdgewfvVTBH4RgPbO+eRyBfo2vqhKJzy22u4AVz5XPlc+Vz5XPlc+Vz5XPlc+Vz5XPlc+V75pUr7VLz8ESHWv5g7KpX6uvfZa5s2bx0Rh2hD6O++8kx/84Ad8/etfT5B5gN13351XXnmFTZs2RWb3Tz31FC0tLeywww6Jc1tbW5GBz3PPPk5nZ2fdyu/gUG+c/uGP8YufXzGu38hAQsmHUgCBBD+EUA1CeALyHuQEtOSgkEfknJWLQ2OxOf3cwWG6wfVzh5kA188dXu3o6+tjhx12oLW1dUKvOy0I/Q033MAVV1zBt771Lfbff/+q7/fff3923HFHfvzjH/Ov//qv9Pf387Of/YwTTjiBQqGQOFcIQSgDOjs7HaF3eFWjrbV1XH1cSgmlEIQPIoBKCCJF6Js8tTXnoDWPaM5NUukdHMaG8fZzB4fpCNfPHWYCXD93mCmYaLfvaUHof/jDH5LL5fjSl76U+Pz8889n//33x/M8zjvvPL7//e9zyimnUCgUOPLII/mXf/mXzOv55aHMzx0cXk3YbttxmvKEEiqayFdCpaWvhEpTD0ozH1rH5QCZF4jctIyt6fAqwbj7uYPDNITr5w4zAa6fOzhsHqYFoV+8ePGo58yfP59vf/vbdSiNg8P0wHHHHTe+HwRSEfZAxqS+GMCza2DpanjdfHjN/FhTb851SnqHBmLc/dzBYRrC9XOHmQDXzx0cNg8zUrWWy7c0uggODpOO17/h4PH9IJAxqTdk/bk1sGAlPB7AL1bAM6uT38vJKbuDw1gx7n7u4DAN4fq5w0yA6+cODpuHGUnoe7beq9FFcHCYdFyz4LZx/kKz89DaP7Q6ecqDqxKnRuc6ODQI4+/nDg7TD66fO8wEuH7u4LB5EIsXL55RK/LBwUFOPPFENm3a5AJvODhoSCmh6MNQAMO+MrUf9uGp1UpDb/CP28Nrt1FR7lvzKjBe67Tw3HFwcHBwcHCYYBSLRcrlcqOL4eAwZVAoFGhpybYG7+vro6uri5tvvpn29vYJu6dbiTs4OChIQGr5ntnvMg/aV8IgcNq26m9zbvLAwcHBwcHBYQahWCyyyy67sGrVqkYXxcFhymD+/PksW7asJqmfDDhC7+DgkCLz9iahWcDc1moyH3F/OeHpNxwcHBwcHBymNsrlMqtWreKll15yVq8ODsR55svlsiP0k43uubs1uggODpOOa69fxKnvPWrsP4iIekrrPiChNcg432nnHRqPcfdzB4dpCNfPHaYyOjs7HaF3cGggZmRQvNJwb6OL4OAw6dhrjx3HfnJK6w7ogHcSyoBvEXqbyEuc1b1DQzGufu7gME3h+rmDg4ODQy3MSEI/PLi+0UVwcJh0HLDfHuM4W6egsyPcA1TMPqg2yQenpXdoOMbXzx0cpidcP3dwcHBwqIUZSegdHBwykKWlL/p6L1PnyOpzHRwcHBwcHBwcHBzqihlJ6AstHY0ugoPDpOP5F1aM/eSsCPcSGKqo4yLJ78z39t7BoQEYVz93cJimcP3cwcHBwaEWZiSh7+jevtFFcHCYdPzxTw+M/eSsCPdIKGpCHxJ/7+AwhTCufu7gME3h+rmDQ31w5ZVXIoSIto6ODg444AB+9KMf4fv+pN77hRdeQAjBlVdeGX12xhlnsPPOO4/rOnfddRfnnHMOYRiOfvI4cM4552x2VqOXX36Zz3zmMxx66KG0tbUhhOCFF16Y0PLNZMxIQr9+1RONLoKDw6TjEx85aewn1/KJL4Zgsm4EGWb3juA7NBjj6ucODtMUrp87ONQXv/nNb1iyZAnXXXcdb3rTm/jMZz7DN77xjbqX4z/+4z+44YYbxvWbu+66i3PPPXfCCf2W4Nlnn+Xaa69l9uzZvPWtb210cV51mJFp6xwcHDJQFeEeGA6huwlWVaASQnMuw39eAi4PvYODg4ODg8OrAwceeCC77747AMceeyzPPvssP/jBD2qS+kqlQj6f32wNdi3stturI9X24YcfzurVqwG4/PLLueOOOxpcolcXZqSG3sHBIYWsCPcSGA6go1n9XQmS59t7BwcHBwcHB4dXKQ466CD6+vpYs2ZNZBp/ySWXcPbZZ7PtttvS3NxMb28vANdffz2HHHIIbW1tdHd38/73v58XX3wxcb2hoSHOPPNMenp6mDVrFieddBIvv/xy1X2zTO4HBwf58pe/zG677UZzczPz58/nlFNOYfXq1Zxzzjmce+65ADQ1NUWuA/Z9v/SlL7HLLrtQKBTYZZddOO+886q0+X//+99561vfSktLC9tttx3f/OY3kVuQ2cjzHOWcTMzIp9sz/zWNLoKDw6Tj8qtuGvvJtQh6MYS2JnVcCqiCS1vn0GCMq587OExTuH7uMN3xcCA5ryJ5OJjYdcNkXTeNZcuWkcvlmDVrVvTZeeedx9NPP81ll13GDTfcQEtLC5deeimnnHIK++yzD7/97W/5yU9+wqOPPsoRRxxBf39/9Nt//ud/5vLLL+ess87i+uuvZ6+99uKDH/zgqOUol8scc8wxXHTRRZxxxhncfPPN/OhHP2LOnDls3LiRT3ziE3z84x8H4J577mHJkiUsWbIEAN/3Oe6447j88sv57Gc/y6233sonPvEJvvnNb/LFL34xuse6des48sgjWbduHVdddRUXX3wxt912G1dccUVVec4444wJt0pwGD9mpMl9f2+1BMzB4dWGI494w9hPzopwL1Fp61ry0ASUg2xfe8fpHRqIcfVzB4dpCtfPHaYzHg4k76nAK8DlAVwjJfvltvy6jwTwIR9WAT8N4AYkB+QmhlwGQYDv+/T393Pttddy/fXX8653vYu2trbonK233pobbrghIrQDAwN86Utf4qMf/WiC/L7pTW9ir7324qc//Smf+9zneOqpp/jlL3/Jeeedx5e//GVAmfUPDAxw6aWXjliua665hiVLlvC73/2Ok06KY2u8733vi463314F/z744IPJ52Oq96tf/Yp77rmHP/3pTxx++OEAHHXUUQCce+65fOlLX2KrrbbiwgsvZHBwkDvuuIMddtgBgGOOOYaddtqpqjy5XI5cbgIa02GLMCM19OVi/+gnOThMc+y683ZjOk+ZUEkruj0xYR+qQGtOBcar+PEJjsQ7TBGMtZ87OExnuH7uMJ1xc6jIPCjyfbQPW5e2fDtak3lQ179lAmPA7b333jQ1NTFnzhzOPPNMTj/99CoN9bvf/e6EdnrJkiX09fVx+umn4/t+tO2www7svffe3H333QDce++9hGHIqaeemrjeaaedNmq57rjjDubPn58g82PFbbfdxk477cRhhx2WKN+xxx5LpVLhr3/9a1SPQw45JCLzAO3t7bzrXe+quuZPf/rTSY/+7zA6ZqSG3sHBIQNVwe6AYR9aPGj2oJz6Pu1z7+Dg4ODg4OCQwome0qC/AswHrskz4Rr6bYB3TqCa8oYbbmD77beno6ODnXbaiZaWlqpzttlmm8Tfa9asAeDoo4/OvObs2bMBeOUVJd7YeuutE9+n/87C+vXr2W67zRPwrVmzhuXLl9PU1FTz2qZ8++67b9X3YymfQ2MwIwl9a3tPo4vg4DDpePiRZzhgvz1GP9HWzIMVFE9CuQJtHuRzUA7jz+3fOjg0EGPu5w4O0xiunztMZxyQE9yA5JZQke6JMot/cx5uFBN/XYB99903inJfC2nf8Z4exS+uvPJKXvva11ad39HRAcSCgNWrV7PrrrtG35so8CNh7ty5PProo6Oel4Wenh522WUXrr322szvTfC9bbbZJrMsYymfQ2MwI03um1u7G10EB4dJx1PPvDj6SQZhSvtu9kOBSlWXz0HFmds7TD2Mq587OExTuH7uMN1xQE7w1SYxoaR7Mq+7OTjssMPo6Ojg2Wef5Y1vfGPVttdeewHKt93zvCpivWDBglHvceyxx7Jq1SoWLlxY85zmZpWdaHh4OPH58ccfz0svvcSsWbMyyzd37lwADj30UP7617/y0ksvRb8dHBwc8Z4OjcWM1ND3rnuu0UVwcJh0nPreo8Z2ok3i08HxBoDWJihoDX2a8EvpCL5DQzHmfu7gMI3h+rmDw9RHZ2cnF1xwAZ/61KdYu3YtJ5xwAl1dXaxYsYI//elPvO1tb+ODH/xgFNH+61//OmEYctBBB3HHHXfw+9//ftR7fOhDH+J///d/+Yd/+Ae+8pWvcPDBB9Pf38/tt9/O5z73Ofbee2/22WcfAL73ve9xwgknkMvleOMb38jpp5/Oz372M4466ij+7d/+jQMOOIByucxzzz3HTTfdxI033khbWxuf//znueSSSzj22GM555xzaG5u5oILLqC1tbWqPB//+Me56qqrxuRH/9vf/haABx54AIBbb72VefPmMW/ePI444ojxPGqHFGYkoXdwcEghQeZTf7fmoSUX+9BDtr+9g4ODg4ODg8MMxj//8z+zww47cMEFF/DLX/4S3/fZbrvteOtb38qBBx4YnfeTn/yEWbNm8d3vfpdyucyRRx7JL3/5S97ylreMeP2mpibuuOMOzj33XC677DLOPfdcenp6ePOb38ycOXMAOPHEEznzzDO55JJL+MY3voGUEiklTU1N3H777Xz729/msssuY9myZbS3t7Pbbrvxzne+k0KhACiz/kWLFvHZz36Wj3zkI/T09PAv//Iv+L7PN77xjUR5giAgCDLSGmfg/e9/f+LvM888E4AjjjiCu+66a0zXcMiGWLx48Yxakg8ODnLiiSeyadMmOjs7G10cB4eGQwYhDPoqAF4pgCEfigEMlOH7j8MX9oU7V6j0dUdtq0zwW3Ix0W9rQrS4lCUODg4ODg4zCX19fXR1dbk1tYODxmjvhPn+5ptvpr29fcLuOyN96Lfa7oBGF8HBYdJx4Y9G98WKUCvCPUBeQCGfzEOf9VsHhwZgXP3cwWGawvVzBwcHB4damJGEfv3qpxpdBAeHSceHTjt+bCfWinA/WIFmAAFNAipB8nxH5B2mAMbczx0cpjFcP3dwcHBwqIVp4UP/xz/+kRtvvJHnnnuOoaEh/vCHP5DLxSa+b3/72ykUCnheLJ+4+OKLE6kgbAR+cdLL7ODQaMyb2z22E2tFuC/70K6jxhY8ZY4PGdp8R+wdGocx93MHh2kM188dHBwcHGphWhD6WbNmcfLJJ1Mqlbjgggsyz/nWt77FG97whjqXzMHhVYKsCPfDITQ3qeMmERN6cz5EwgApZVU+VgcHBwcHBwcHBweHycW0MLl/05vexFFHHcW22247Iddr75w/IddxcJjKuGfJw2M7MTPCPZrQa5lfswe+Tehl8vcODg3CmPu5g8M0huvnDg4ODg61MC009GPBeeedRxAEbL311px00kmceOKJNc/N5Qp1LJnDTIaUUmmxQ52vXQCeBx6TrtHu7x8a+8lZfvHDAbRrDX1BKEJfK12dqZuDQ50xrn7u4DBN4fq5g4ODg0MtvCoI/Xe/+1323XdfPM/jgQceiMj9ySefnHl+38YX61xCh5kIGYRQDsEPU4ReQN5DFnKI3OSx4BOOPXRsJ6Z96M1xMYAWQ+g9FeXePs8Fx3OYAhhzP3dwmMZw/dzBwcHBoRamhcn9aHjDG95Ac3MzTU1NHHLIIZxyyinceeedNc9vbpvN6R/+GGeddRZnnXUWN998M+df+HNKpXJ0zq13LEmYuK1d11uVNuba6xfx8CPPRH8//8IKLr/qpsQ5l191E8+/sCL6++FHnuHa6xclzrnwRwtYu643+vueJQ9z6x1Lor9LpbIr3zQrn/RDlfZt2OfCH1/LupUb9N8Bf/7Lw9x6619guIL0w8Y/v5/8mnUbNkXE/s9LH+fWvz0IRR9aPEqVCt9ZfDulIT8u35K/8ecHH1V/SFi3fma1ryufK58rnyufK58rnytfGQcHh2yY9/fmm2+OOOfpH/7YpNxLLF68eNqo1x566CE+//nPV0W5T+Oqq67ivvvu4+KLL676bnBwkHe96yR6ezfS2dk5mcV1mKGQgYSSrzTc5RAqWktv0OTFW0sOWvIIb+I19aVSmebmkd1LpJSKuA8FSuBQ1PtyCL96BnbvgoO2gtWDcMWz8OX9Vblb86rsrXlozUFr06RaGzg41MJY+rmDw3SH6+cOUxF9fX10dXWxadMmt6Z2cGD0d8J8f/PNN9Pe3j5h950WGvogCCiXy1QqFQDK5TLlcpkwDHn66ad56qmnqFQqBEHA/fffz3XXXceRRx5Z83pbbXdAvYruMBPhhzGRLwcqOnxJE+VSoEhzKVDfm20S8P1Lfj22E7Mi3AOUKtCqh4hCLj552ogAHWYCxtzPHRymMVw/d3BwcHCohWlB6O+8806OO+44zj77bADe8Y53cNxxx7F06VLWrVvHt771LU466SROPvlkLr30Uj7xiU9wyimn1LzemhUuWqzD5EBKCYHWyBuyXgrgiVWw4GG1t8l8ICEM1e8mGJ878wNjKDDZEe6ltjJo9ZTff7Mm9H46Z70j+A6NxZj6uYPDNIfr5w4O9cWSJUs49dRT2XbbbSkUCvT09HDMMcdw1VVXEQTB6BeYRLzwwgucc845PP/885Ny/SVLlnDwwQfT3t6OEIKHHnpowq7d29vLOeecw4MPPjhh16yFM844g5133nmzf//YY49x7LHHMmvWLHp6evjoRz/Khg0bJq6AE4hpERTv+OOP5/jjj6/5/WGHHTau60k5ORpRBwdCqUm6jI+fWQ2/0H5qj6+ADwH7bBN/H0gIgdpeJJuFMZtn1gpuNyBV2jqBMrMHJYRoISPavQtz79AYODNkh5kA188dHOqH73//+5x11lkceeSRnH/++ey0005s3LiRO+64g09+8pN0d3fXDLxdD7zwwguce+65vOUtb2HXXXed8Ot//OMfp7W1lYULF9LW1saee+45Ydfu7e3l3HPPZfvtt+f1r3/9hF13orFy5Ure9ra3sffee/Pb3/6W3t5evvjFL3LiiSdyzz334HlTSyc+LQi9g8O0QUgc0V7q47+vSp7z0CrYe74+32i4G0SI0xHrQQfHk1AG2nSU+7wuWzkY+bcODg4ODg4ODtMUd999N2eddRaf/vSn+eEPf5j47uSTT+ass85icHCwQaWbPARBgJQSz/N46qmn+NrXvjai+/KrHRdccAGVSoWFCxfS3d0NwLbbbssRRxzBjTfeyHvf+97GFjCFqSVeqBM6Z+/Y6CI4vFoRausPQ+YlcMD85Dnmb5sQT4LRiB2JtjZkXFasvTGtbzUyvwxCH13Cmd07NA5j6+cODtMbrp87ONQH559/PnPmzOE73/lO5ve77bYb+++/f/T3fffdx9FHH82sWbNob2/nqKOO4r777kv85m1vextve9vbqq618847c8YZZ0R/X3nllQgh+Otf/8rpp59OZ2cn2267Lf/6r/9KsVgE4K677uLtb387AMcccwxCCIQQ3HXXXdF1LrvsMg444ABaWlqYO3cuH//4x6tMxYUQfO1rX+Pb3/42u+yyC4VCgYsuuohcLkcYhnzzm99ECBGZrN9///28733vY/vtt6e1tZW99tqLr371qwwPD1fV64YbbuDNb34zs2bNorOzkze96U3cdNNNvPDCC+yyyy4A/NM//VNU9iuvvDLzedhlPeecc6K/n332WT784Q+zyy670Nrayq677sonP/lJNm7cWPXbzcVNN93EO9/5zojMAxx++OHsuOOO/O53v5uw+0wUZiShDwKXZsNhkmD7oKP3u8yFN3Sov4+bB7vMS/1mcthwR0fb2E7M0rQP6xR1zbnYcKAZ5f8vU+TfwaGBGHM/d3CYxnD93GG6Qy7rQ177HHJZ35S9bhAELF68mGOPPZaWlpZRz1+6dClHHHEEGzdu5Morr+Tqq6+mr6+PI444gocf3vx4XR/+8IfZbbfduP766/nkJz/JxRdfzH//938D8PrXvz7K4vXDH/6QJUuWsGTJksh8/ctf/jKf+tSnOProo7npppu44IILuO222zjhhBOqfP+vvPJKbrnlFr773e9yyy238MEPfpB77rkHUGb3S5Ys4YYbbgDgxRdf5MADD+TSSy/ltttu47Of/SxXXHEFH/3oRxPXvOiii3jve9/LVlttxVVXXcVvfvMb3vOe9/DCCy+wzTbbcP311wPwla98JSr7O9/5znE9n5UrV7LDDjvw/e9/n9tvv52vf/3rLFq0iHe84x2j/vZtb3vbqH71w8PDLFu2jH333bfqu9e+9rU8/vjj4ypvPTAjTe4H+1aNfpKDw+bA1szbpvetbUA/zJuVTYgnwdr+LYeOIZtDVoR7CQxVVJmEVbAWwA/icxJ7R+4dGoMx9XMHh2kO188dpjPksj741kOwsQx3rkB+fj/YuWPLL/xCP/zPI9Crr/vVAxG7bH76vHXr1jE8PMxOO+00pvO/8Y1v0NzczKJFiyJN7jHHHMPOO+/MueeeG5HX8eKDH/wg5557LgBHH3009957L7/61a8499xz6ezsZJ999gHgNa95DYccckj0uxdeeIELLriA//zP/+TrX/969Pmee+7JW97yFhYuXMi73/3u6HMpJXfccQetra3RZz09PQBsv/32iWvbwcallLz5zW+ms7OTf/zHf+Tiiy+mp6eHvr4+vvrVr/Ke97wnUffjjjsuOn7d614HwK677pq4/nhw+OGHc/jhh0d/H3bYYey+++689a1v5e9//3t0jyzkcjny+ZHp78aNG5FSMnv27Krv5syZw1NPPbVZ5Z5MzEhC7+AwecggxxLo11YhlSlGiNPlNH8UfYjSYwr1WcFT6fhq/d7BwcHBwcHBIY371yoyD2r/9Qcm/h4by/C3tbAFhH68uPvuuznxxBMTZtmdnZ2cdNJJLFy4cLOvm9ZY77fffvzhD38Y9Xd33nknYRhy+umn4/t+9PnBBx9MR0cHd999d4LQH3/88QkyPxL6+vo477zz+O1vf8tLL70UpRIHeOaZZ+jp6eEvf/kLAwMD/L//9//GdM3NRblc5rvf/S5XX301y5cvj9wRAJ566qkRCf2iRYsmtWyNwowk9Ln86GY0Dg7jhbQ172nT+w16sCnVjxCvXdfLvLndI5+UFiiYv4sBtFlh94WAfB7KGfnqHZl3aCDG1M8dHKY5XD93mNY4aB7cuUKR7tkFmEgN/YWPxNd947zRfzMCenp6aG1tZfny5WM6f8OGDWyzzTZVn8+fP3+L/LnnzJmT+Lu5uZlSqTTq79asWQPA7rvvnvn9+vXrE39nlb0WPvrRj/KHP/yBb3zjGxx44IG0t7dz33338alPfSoi1Ob622+//Zivuzn4yle+wkUXXcTXv/51DjvsMDo6Onj55Zd573vfmyD3m4vu7m6EEJltuGHDhqr2mQqYkYS+Z+u9Gl0Eh1cj7OByCZN7CYMpQh9OPiG+ZsFtfP7Tp41+YlWEe2A4hEKTIvJCa+jzOZW2Lv0bB4cGYsz93MFhGsP1c4fpDLFLJ/KrByoN+hvnbZFZfAL7zJ7Q6+bzed72trdx5513UiqVaG5uHvH8OXPmsGpVtRvvqlWrEubaLS0t9PVV+/hPdE5zYy5/xx13ZJqLm+8NhBibv2exWOR3v/sd55xzDp/97Gejzx955JHEeXPnzgVgxYoVmf7no6GlpYVyORnnLC2EAFiwYAH/+I//yL//+79Hnw0MDIz7frXQ1tbGzjvvzGOPPVb13eOPP84RRxwxYfeaKMzIoHhrVmx+oAoHh5qQVGvmpf5gg4QuFKHPMrefBII8ZjJvCyHMfjiMU9YZNOeUhr5O5XdwGAscyXGYCXD93GG6Q+zSiXj/bhNH5ifpul/+8pdZv349Z599dub3y5YtY+nSpQAcccQR/P73v6e/vz/6vr+/n4ULFyai2u+00048/fTTCbJ69913J343HhhBQzrC/DHHHIPnebz44ou88Y1vrNpMhPnxolQqEQQBTU3JdaGJTm9w2GGHMWvWLC677LJxlx3Uc3r00UcTn91yyy1V5w0NDVWV5Wc/+9mIdRgvTjrpJG655RY2bdoUfXbPPfewfPlyTjrppAm910RgRmroHRwmBzLOQw+xht5o5Xvakyb3U8H/3Cbnthl9MYhT1kVR7nNJH/qpUH4HBwcHBwcHhwnC4Ycfzv/8z/9w1lln8fjjj3PGGWew4447snHjRhYtWsTll1/OL3/5S/bff3/+4z/+g5tvvpmjjjqKL33pSwghOP/88xkaGkoEpTvttNO47LLL+NjHPsYZZ5zBsmXL+J//+R+6uro2q4x77rkn+XyeK664gjlz5tDc3Mxee+3Fbrvtxpe+9CU+/elP89RTT3HEEUfQ0tLCSy+9xJ133sknPvGJKOXdeNDV1cUhhxzC9773PbbZZhvmzp3LFVdcwYoVKxLndXR08N///d985jOf4ZRTTuH000+no6ODhx56iJaWFj7zmc+w9dZb09PTw4IFC9h///1pb29nl112oaenh9NOO42PfexjfP7zn+fEE0/k4YcfrhIagPL9v+qqq9hvv/3Yfffduf766/nLX/4yprocddRRLF++nGeffXbE8774xS9yzTXXcNJJJ/GVr3yFTZs2cfbZZ3PwwQfznve8Z8zPrl6YkRp6B4dJgU2Kba13rza372qOfdDt39jn1xtZEe4lKiheS15HutfnFnK1y+9IvYODg4ODg8OrAJ/73Oe455576O7u5gtf+AJHHnkkZ5xxBk888QQ/+clPeNe73gXA/vvvz1133UVnZycf+chH+PCHP8ysWbP405/+xAEHxJkp3v72t3PppZdy77338q53vYuf/exnXHPNNYlgeuNBT08PP/rRj3j44Yc54ogjOOigg3jgARVo8Fvf+haXXXYZd999N6eeeionn3wy559/PrNnz2aPPfbY7Gfyq1/9ije84Q186lOf4owzzmD+/Pn84Ac/qDrv05/+NL/5zW94+eWXOf300znllFP47W9/G1kHeJ7H5ZdfzsaNGzn66KM56KCDogCCH/nIR6LsAO9617u4/fbbo7R5Ni666CJOOukkvva1r/GBD3yA/v5+fvWrX42pHkEQJAIG1sJ2223H4sWLKRQKnHLKKfzLv/wLb3/727nlllvwvKlHn8XixYtn1FJ8cHCQD53xWZY/9yCdnfWLhOnw6ocsByp/+5CvNNzFQBHjJzfAn16G3eaqv9+xo9J2t+agJac04a15ROvEGsxce/0iTn3vUbXLK3U0+yFd7lKgyl4O4brnYZt2ePPW0OQp3/k/rIRyACfsoMptyq73E11+B4exYLR+7uDwaoDr5w5TEX19fXR1dbFp0ya3pnZwYPR3wnx/8803097ennGFzcPUEzHUAaXh3kYXweHViKygeACbfGhrUWnfiloqWGWuPvFytb322HFsJ2aZzg9VoNWLtfMATSJOuxemLBGcit6hQRhzP3eYUgilJJASX0rCRqXtnEZw/dzBwcHBoRZmpEpteLA6YqKDwxYjK12dBPp9mN0CLZ7ShBukzO2llGOOODoWHLDfKKZVidzzWMIICWVN6MEyubcEElBlbj/R5XdwGAtG7ecOUwq+lJQk+DrkCEAOyAlJs4C8G0My4fq5g4ODg0MtzEhC7+Aw0ZAmmr2tmTcEf1MJ5rVCsxdruNWPrOM6FtZGVoR7UGb4LToPvfGjL3jK5D4Np11zcHAYA0qhZFhCSUIFCKQaWjwBBQm+gBYhafYcqXdwmAz4UhJICFDTvRKmKTLgBPIODtMXM9LkvtDS0egiOLzakNbM20HuNhWhK68Ive/Xjg4/wbz4+RdWjHxCVoR7sx9ABcWzbe4LAvwpJpBwmPEYtZ87TAmUQsmQhCEJgxIGQ7Uf0McD+vNhCRUnJKyC6+cOW4JQSoZDyWAIfRL6Q7X16f2QVGTfwcFhemJGEvqO7u0bXQSHVyPSmnlDlDeVoTOvNNzD2sg0K5f7BOOPf3pg9JPS7gH2321Nms9rUl/wFKGvk0DCwWEsGFM/d2goQikpA0VN2Ic1eR8IY2I/LOPvixLnV5+C6+cOmwspJUX9zvVrAVq/Fqb1W+/iUAiBe+8cHKYlZqTJ/fpVTzS6CA6vAkgpVdp5UCQ+BC+USkpmTO+lhCGgq0UFmhuKfhzvIyI9seX7xEdOGq0GiV1UppLWwkd56A2hF1Cqn0DCwWEsGL2fOzQavlQZL8va3H44hCLwd+B24J0SDpLgecoE2JcQihmqcagB188dNhdlS5A2HKq/fWKT+7KAVj3NexLacfFwHBymG2YkoXdw2FL4WuLta180QokIJHmpfEELUiq99kBF/aCjEJH+yNd+KiDtQw9x4L68PaELyOfUKtxGLW29g4ODg0YFNVb6el8G/gZ8RX+/CPgBcKiEQKjzKjI1BDk4OIwboQ5CWTSCNH1cQU3beaCZOFROXkKzgKZGFtrBwWHccITewWGcML6gZb0wDSTgS4SUNEkohJJWoFVKxKYitKCiPrXo182X6s2ztduNIMT2Pe0I90MVKAAIVe4oKF5OVdicl76OI/UODg4phNqSyUeNlb4+vj113s3AQSiZZ6A19A4ODlsG8+4ZgVpJKrn8g6h38B3AG6XS1DcJ/Y5KdTwe9PX1TWzBHRymKRr1LsxIQt8z/zWNLoLDNEVFyth0TSotUgDIUEm2K4FUpmyh0tC3bKogurWsu6CjxpcDRe6rzO0lycTvW4bLr7ppZDPNWhHuSz7M0uWwi9Osh4tGCSAcHDIwaj93aChC4hR1htRL4GjgLuu84835EqQw4Tyc6a+B6+cOmwMT0T4gFqg9SGwdcxfwPeBQ873Qa5oxvnuFQoH58+ezww47TEr5HRymI+bPn0+hUKjrPWckoe/vfbnRRXCYhpDadM0EbSpKKIbKdE2EkA8kzVIi9Yo1B+T6fAqdLcoPXfP5yEc9efEJL++RR7xh9JMSQfH0fjhU5F2kSL0RSPhS2eOZIpsggBMskHBwGAvG1M8dGoZQxmQitMjFVtY55wH7EpP5ECczTGO69XMTYwZUW3qA9yoSzpj6mX6aY2qmfQuJZfAm5k/aOuY24ODUuzfW2bylpYVly5ZRLpdHP3kMWLZ8JbvstO2EXMvBoVEoFAq0tLTU9Z4zktCXi/2NLoLDNESA0sgbszUT2OlBYHEoOTGAA0Nleu+hvssP++S6WyIuTx4o+tnB5CZ4BbvrztuNfEKCzFv3Hw6hOcODrkmHqKoEKmCeral3q2+HBmHUfu7QUBitfKQlRJGGx/X3WwOvJWmsJInJ/dSjSI3BdOnnUiortbKMLTPA5DuXtAjITUHiO1ZIKalY7nZ2/ZqEpFlMLcGFIfH2u3UcSeuY44gJP2jjvXFUoaWlZcLIywH7dU7IdRwcZhpmJKF3cNgcmEWpL2N/tAeBL0mlmb9Pwn/5cKAET0pyQLGvTH6HWbQIEBJoBco6vmzC3J7GRIpP31sCwwG0W4TeTOx1tjBwcHCY3pBSqjGTJKkPgUeB16Ei3RsyYe/todFhekBKSVkSxZipoNpdoMKxNKPmzlYhKXhTh/SOFSb9m6mfjyK/ns7I0Izq3y1I8lOE1CcEZKj3ax/gNcATwH/pv9MCNffuOThML8zIrDCt7T2NLkICoZQEepOOGE1ZhMSB6kPUxH0riqh7uv3+T0JZ51wuS0mpVKQ4u4mKmdtbvDj1m8EkRYp/+JFnRj4hK8K9RPkRmAB+nm12r9Vl5aAuFgYODmPBqP3coWGw/eeN2b0hC48Bh+vzBq3zIR5n3ZASYzr085Imu0NS5TgfDHWOc3Mcqu+GpcoUM50gdfycQV0/k7s92ofxfliqdV2jYdaTtuuD2Tfr49303n73Gknop0M/d3CYipiRhL65tbvRRVCS7FAyGEr69URgJodS6Ij9VIRtumb2xxIrsIVUaZfKgQqOVwHK/ZLirDwlIBACmvJq1QOTToafeubFUc7QNw1T+2IFWnJJkzujbWhBmdync9g7ODQIo/dzh0Yh0srLpIZ+A/AK8EbUMLMea2zNMF5ymPr93ASMNYR9yF7XhDHRL1rbdFrnpHO5D+t6mfWbqbepW2kKVC2tcQ+tMq3X+16q37eUyqGumOr93MFhqmJGEvredc817N7K/0oyKKFfS3b7JfTpv/tDJc0ekhBMo8nu1Q4pZRxUxjJdey2wh5RsHUIeSa+UBNocr+wHlAMod7dQFFAWIJvysYY+3bwT3NynvveoEeuTuKd978EKtObivxOR7oFyqvxZ2noHhzphpH7u0FhEZJ5YS2/857cHOlA+9OtIEQ+qCchMx1Tu54E2RTebyXc+DNwLnAvcZ31eJs4QMx1ghBUmEK4xux8C7kPV716LyMfm+I3vwJG8Xv9tSmQSa/WSrZ1vVMmncj93cJjKmBY+9H/84x+58cYbee655xgaGuIPf/gDuVxMOJ577jl++MMf8vTTT9Pe3s6JJ57IRz7ykSkXcTTQ/mVFPeAXZZwfNEDxpiahvgu1qKWN6Z22J9BEWKL96JhaAWPGiloLTYnisR+U4IVwrZTsIyUekvJgGa8AuZYcOaFetnx7E02lMBkh3t7XE6bwkCTjJR9avTj/vDG1B52Lvj4uAw4ODtMXI/nPP4IShgL0oDT2UO0/74aUqQ/jVz4cKjIbbcDfiNOjLQJ+gLJi8yUEOud5foovB2xhRbp+DwBf1ectAi6ScJiI4+yEorFaM3vNYq9hQmATak3Sa50Lmx8Yz8HBobGYFhr6WbNmcfLJJ/OpT32q6ruhoSHOPvts9t13X2688Ua+853vcMstt/Db3/62ASXNRiglpVAq8zMZ+5QNyaTf1WCozNSKMt6Xp+mKJpCSIV3nTSH0adO0/hAGQ2WlMBWk12OFIfFmQjSfAayXkrlScgiwE3BToBYq5YEKle4cFQRl4VEUUGzLEVYR4tS+HkiQebsMEkoVRehBmdpH6esE5HNKtQI4/3kHB4daGM1/fj99XjeK0NuEwoy3jTT9dRgbSkYrnyK7JeDm1Lm3EBPK6dC+MmV5YOpaQlkZXJ86/xbiyPcBjbcwiUh8Sktv8jztiiL25rs08XdwcJg+mBaE/k1vehNHHXUU225bnZvy7rvvJgxDPvaxj9Hc3Myuu+7KBz7wAW688caa19tquwMmsbQxjJ/8kNTm9TJJ3Ie0z/wgMIAy3xqyTLZMlNjp5GcGKtiNCRoTuRUYUq//7tN1Hw4l/jQIBhhJtmVSyl1G1W2OBA/Jh4BHkTwVSoJiSHlWK2UhVJA8oNTSRMkPswnwBD+DC3+0YOQTbBJv/z0goaCNd9IS+ny+2uTewaGBGLWfOzQENpGPjlGmvi+jImsDzEX58ya0idIFxUtjKvZzY4qeIPNSzXU+ypXCxvFUa4qnMowlZRaZHwbS4dtOYGpZmCQIuiVQ69Xfb40i9Fna+UaVfSr2cweH6YBpQehHwnPPPcfuu++eMMHfe++9WblyJYODg5m/Wb/6qUkvV4LUWhp4EyHV+F8NE+cy/2+UCZfxvzLm+FN90rMR6AnetjoYkLFlQvS3JvUD5vlIFQxwqsYNSJuumeN1qAj3PUhyUmmbTgRuDKHSB/6sViWY8ZRwptiSoxgEVCDD3H5i6/6h044fuULpW4a6dmVU2rpIM2+d06JN7tO/lw1cATjMaIzYzx0aBl+mguIR+89vA8xBLUDmEBP6tIZQkXs3sMDU6+e1TNHLqLnuDmAlyhKjA/gWsC/V5HKqIu03n67f5ai+uy2wI2r99lqsPjwF1m5SZr9XvcA81HplI7XfvUZgqvVzB4fpgmnhQz8SBgcHmTVrVuKzjo4OQJnjt7e3V/0m8IuTVh6Th9VMdCp9Wax1r5jPUIR9CLgI+LP+/V0oP7M3oya9QKjBNVd9qykJU3eTvqak6xyiFm95AXkZ70tCxQ3IS7VvkpAXkmbBlMnjCskFiK2lXwtsLaVKXYdEaNP7pwWsGKywU2cTFU32c4DX4pEvBTQJ/XeKGEs5cTET5s3tHuFbGVfGuj++Pmi1hgZBTO6bc0k/kPSKwcGhzhi5nzs0AiP5zz+GIj4mREcPahw1CCVIkRxWps5MMHaEOn6MqeeWjutTqZ+P5DdfBpYBPwb+E2WNkSeZ6xws17UJnPMmCqMJK+4G/gT8EFiAsjJJkHmmxpRYqzwbUUKWLuBZ/VlCO2/evwa0zVTq5w4O0wnTXkPf3t7OwMBA4rP+fuUh1NbWlvmb5rbZnP7hj3HWWWdx1llncfPNN3P+hT+nVCpH59x6xxLuWfJw9Pfadb1VpkDXXr8okTPzuWUruPSqhQmN9DVXL+TpZSuVib2Exx57hj/8bhEl1ITwKeDxSxeQW98bXec39y7lnj8siaSkxWJ5Qsr3/AsruPyqmxLnXH7VTTz/woro74cfeYZrr1+UOOfCHy1g7bq4fPcseZhb71gS/V0qqfINFUuR8OKPdy7h/r8uZUiqKLf/ub6XH166IKGpv+mGRTy09JkoXd8Tz6/k8qsXRib6w6Hkf6+cuPJtyfMLgRdeWMlvfr4w4V+25JqbmLN8JUgQIbz07DL+8qd7OEkAQ0VWt8N1Nyxk/aY+ygIqLR5LVi/j9397kJIpX7nCd37yq/q3r57dL7zmBtZt1M9v2OfPwy9z6yNL1d9CqPItuI5SpQJNOaiE3Hr/g/z5kcej667bsIkLL/31xJZPox7t68rnyufKN3HlC4mJ/NU/XsD6db3RfLb03qXMXrQkWnx0lcpULrqGSqkcEY7/+4OaP4zwdDo9P1+qdLQ/v24Rf136TGSB9uTzK/jfKxtfPoMteX623/xPL1nA6nW9kd/83+9dygWLlvB+4ECgo1Rmo25fUITRtK8hmVOpfaWULLxjCXcvWRoR+lXrellw6QLKKAHFD4GTfreI4ceeoRul8V61fCW3/WJhQjt/5dULG96+Rub+8vKV3KrLtxFlXbDhFwvpXb4yeu+eefQZbrtxUYL8T8X+Z8OVz5VvOpTv5ptvjjjn6R/+GJMBsXjx4kYLEceMhx56iM9//vOJKPe33XYbP/nJT/jtb38bfXbddddx/fXX84tf/KLqGoODg3zgg59g5UtP0dnZOaHlK4cqHd2gZaZlNPRGsusDzwP/C6wAPgJsBfyHdZ3vA4cKaPeg04MOAS3e1JJgZ6EUyshHflDv7wPOts75FsoErwmloc6bzWjq9XGzgBYBbQJaxZZrN7YUQ6FUQf10vQakcpf4RSjZVKzwmWJAaymguexTLAaU/YDh3z3LTW/Ymnfv2EVbk0ehEtK6bCOt96+h5f170l7IMauQo6ktr0zZ2/LQkkdMUFvfs+Rh3nLoAZnfST9U6emKAQz7eh/AKwNwxbPw5f2hyVOa+pxQ35cCWLQSij68Y0elrW/NqbK35qE1j2id9kY/DtMMI/Vzh8agIqVyqbJcrIZQxOeDwGXAdvrcFcD/A64DWoF2YJYHswR06DkwN8U0uFkwWusoBo75HDWvNQkooOa2wmbMaVOln1ekjOb4KIivng9LwPdQhPEbqHl+KfA/wBVAC6p92z3Vth26jadS5ptSKKOgxUYRM6StDwaBfwMOAD6B0ohdh3Ij+Rqq/84SetN9t72B65dBHZg4vW65AhW36RB9fAlx28zydNl1HerdNlOlnzs4TBb6+vro6uri5ptvzrQi31xMCw19EASUy2UqlQoA5XKZcrlMGIYcfvjheJ7Hz372M0qlEsuWLePaa6/l5JNPrnm9XK4w4WWUUlImNtEaDpX02kx0RZSf4CXAWcCeKJO0o1EEdw+UX+F/o/zMbPOnRvthjQVSSioo83rf2t+aOu9C4AXU8xhGBwIkFgAMWAEDTbCdqRDp347MazT0ElgDbBWCkCCkxENEwoqW4QrMauJm80yAcpNHWfvQGxPF2IV+Yiva3z9U+8usCPdIGK6A8WDJmsgLHpSD6mskDxwc6oYR+7lDQ2D859Mm94+jfHe3Qo2RAqUphDjSvb1Np8B4xt3MZLEZ1JZmA9ZmBP5DUmnyx4Op0M9HM0W/E3gYRXoLqAXmbOK2TUdST0w/UwBj8ZvPoxQxTaj+O5s4yBxMLS8088zT+eV7UeXuRglfILtdGlH+qdDPHRymI6aFOu3OO+/k/PPPj/5+xzveAcCFF17IgQceyHe+8x1+8IMfcPLJJ9PW1sZJJ53E+9///prX69v44oSXMSAmscbsfBgV7O42oBllYr8PcDFKO2GIX1l/PqT3ibQ9ovGTwlhg178i9YIOJbBYbJ3XCXwGld7taOBwlB9Xztp8PfmIEHKe1mg00M9Oal9Iu13Qx+ul5PUoMi+AXKj2Qckn9OGYjgIXAq+Tgt0Av9mjHMiorkWgSUqazQUnECcce+gIlYoql/y7FECbjtggkpO6AEST1tZXXcdcbur5Qzq8ujFiP3eoO4z/fDoYnvGf34fYr9xDLUI6UALv+VhxSsTUIEVjgW98ys0WKgIYSFXPvNbOm2C3FQm+gBYhaRJj04I2up+P5DdfQlkeGr/5uaj6Bqj5HZR2u5lsX+2pgPH4zbeg1m8lFCnu09eoIsS6jo2YEU0wyShWgbVtAnZHtc0wqp3S5Q4bNI03up87OExXTAtCf/zxx3P88bUjX+6222788Ic/rGOJqhHKeAHja2L7d+Ar1jkfBE5FEbkCakIwqc/mosh/LQ3FVCdKaTJvFi476u/fCJwCvAZl6vV/wB+BnwIHAUcCbSjyfyJwsFSLICMoCEXjAgNGC0ySGgaAdRLmahLvIfGAnJQE/SWCAszJeRwrBJeH8JoQ3p732MPXrgWhtmoACnrhV9fVjX0vI6UYCqHQRCgEJSDwBIHudjkBuZYczX5QbdrjIlE7ODhAwn/eHJtx81HgWBSRz6HOAaUtXK+PpXWdSIA6dac+pJSRT7mt2S2i5kA1J+h5UahAt76I58hmoAU5pYLAZmGkfPMDwPkQ+c2b9U2AMuMGRSJnkx0Yr9EYLd/8y6hgxV9ECZ0KxBYm3cTp+Wqt3xqBqrJYBVmPKne3/rsXJaSoEkjUp6gODg4TgGlB6CcaQky8p4EZuI2kMwRuT53zCmoiMFteqElDoMwQa0X6NcdTdboPpcwk8wFwD0ob/++ohYuHmujficrZuhJF7L9LvLi7CzV5Hir1wrDBkf5NeyYi3ettrZTMldrkPlRt1ASEgz5BoUCISmuzXsBfPXi+kOfrEgqhJMjFlgyhVJHwJxKlUpnm5hruJfYMb2vZh0PK7U2UBBQFlI0GRYAnoNCWwxcy0lAkiLyb/R0agBH7uUPdEVJtah+gCO4zKJezNKGfS9IsOxZkN05TOFYYq7wycRabot4eBv4AHAe8nuT8aAi+2Zp1dpda2vpG9nPfElpkaa8vRmUr+ABqXjCE1yN2q+glWzs/FQQ2FZvEp8j8MMoV8gSUz3kTai0DMaEPUOcXSBLoRlsgRJlx9d+mLH0o4YqpyyZUTnrzzjXSOsaN5w4Om4dp4UM/0dhquwMm/Jpp/+oQpYmw8U6UFrpNB7zLE5seziUm9JFmgukhKTVadKOlj0gqSuN+NLFpZZveWlES4R2ADwNvTV3z93pvLwAahXRbmOMNKBI/F6n950GEkiYJhU2Spo5mmoTHEs2G88D65hyrWiHwQ3UdbZ4a8+KJq+j3L/l17S9tEm+Rcr8UMNxRYEDAEIJhCYMIhoRQsQ6aBQMiYAglxKkq7lTuqA6vSozYzx3qDl9r5I3Fmjl+CkV+5qPmA0P2DOGzNfRpwelUhdHOl1NbBWVx9+8oAfVXgAfQcWNkHCNmSFo+93qr1LB2amQ/LxuCK600vMT55pcS+82bwH+mfUGFZdmoj23t/FRY25j4Rwk3Aqt+/4sivh8hJsDNIu67Hfo6vVSv1xrZd7O07eaZ96IIPah3b2Ot8xvQOG48d3DYPMxIQr9mxcOjnzROZAVN20dvW6EkvAegJoJ2HcHdsyaFeagJc5jkwGuC4jV60hsJforMGw3EK8DTKD95E9He1L9dKGLfjpogj0ld8wSmjunXSDnoZ0tF4AWKzBu/0Ka+CoXmZpoEvFVAi34urdKjpwyy4ifaWJobTSA+d+YHan8Z+c6bvbp9sRJQbG1SfVFof1AkQ1IyDAznPcqh0t4Xdfmr/PEdHOqIEfu5Q10R5Z+XSQ29JJl/3kPNf4b0zUUR+vTc1+ixfzQYza4h9TYRvCJ17k+INffDxFHiB8N4b4LnlUIZ+UAbNKqfh7pNjdC+Qqy9vh3lN/9uYr/5FlQUfztZSw9KCwwpRYVsvMAmJF63VGRsbfEQ8AVUoL8vo+uFWq/kRSyUyqFI/Say+26j+m8kENMFMM+5X++79b6LEWIATH4xq+DGcweHzcOMJPRSTuwUMlLQNIHyK9uXeCGTE2pCMH8LVLA4UL5YWeRxqi5qQikzyXyA0ky8ATVh2Onp2nUql3YvlnTvC+zF1Iz0n7aYMGVZKyU9etEl9N7TwfHym4bJdTThAXvkVSDAFgknCGhuBlnyo8WMlDKu3wQ2dC2zNbVQtDqp+lDFcygHlNo8SuiFp4zT9gwjKBUERV8t6Cpok9nMiPkODvWBM8+cOrD9520NvQmIty8xCTKLD4EifMbkHqo1imlyOxUQShlrrYnJro8KcLs8df5KVArX51GE3mxmfB20xtohWZ3dpVH93BBek7XAzPMPo7L2APwcJbw32msTAR7i9c0mMtqVxk8ZaWsSH0Xmvwo8q89ZT0zmW7zYV9XUsZNsCwRonHVhFjmXxBH5W/W+ixoZJmRj2saN5w4Om4cZSegnGlnk2wyEa1AaeojJu0fS5NDst0ZpfbPMuxtpcj4SfLOI0Ys4M9kbc/u3E0evN7nmWzSZL6SEGnsC+6OsGuxJpdECjVrtu1bCVlJr5sNk5GYxUER0CoSu424e7I+gSYDM55HlEIlM1LHuSPnQVwQEwz5Bax5f6DR7wOOB4KcBPBlKKs05gopZ5MnIB7bhqzIHB4eGo5b/fJlYQ28TerMAmY0iFZCh4WwQsRgNRjufNrX3gd8BuwH/BRyFElL/HFX/z+rjQWJSb7T1Jq+7CTwXTAFBRlpAY45vTJ13J4rMNwultLDn9tlUm6RHAu261KI2sizwbkud80diVwLjTmBbIMwh1nKnhRWNqp/MqFeIaod5xOuVbpIa+vT608HBYXpgRhL6ztk7jn7SOJBlbm+kvmuJfQYFSTNDe4PY7NBcMyEtndASTwxM7vlIMy9j7fwTqInjTcTm9mYriGT8AFP/LuJJP2tSbJSWJqt9JcqaYivUhx4mF73S0nubKoi2vKqfEAgPZgnYJEHmcsiK8aFPmsVNpOTm1juWZH+RXmXoe4ZS4vsVgtY4BsJTEr4F/NkT/EjCczlPL+ykyuxgrjNVV90Or3rU7OcOdYftMx9ax8+i3Kt2IEno7Rgya/Q1qoTZTL2hJUj5zptgeBXUHH4t8HGUm92XUZZqHcBHge8B96Osth5C+dqfpz8z5vvmeoFV8Ub187SlhXGh2CZ13knEhDdrbt9Iba1xIy0wsvpbOv7R8Wj/ea2UgGoLBFM/SAX/m6yCj4Ks5wxqjTVLHxtC30tyndlIdxc3njs4bB5mZJT7IChP6PWypJqG8IFarNjSanvzhDrZmB2uzbiOiZY61WBM8QypN6b3Rjt/OMpEzRD6Ju1qkEPVR8jkM+lBLWoMGh1tVZVBVrWv2dZKya6hzkEvJZ5U2novkMgh8LqaFZkXSlO/lYCXEVDIE/oyWsgYs3spJzbYb0dHW+0vU9r5SJpfCqHJi+r4F6HaoAkY8uDeXI7XANIPCfO5eCEWNZCk4SGLHWYURuznDnWD1NlObPNsQ/4eJfafz6E0uJ41B8zR5w6hNKEJYiGmHqE3ZvZGK1+WsbvZAhSB34c4iJpAzYE5lCXahcBC4OvWNRcD30dld/GFfoZCPQ9oTD8381Pa6iJEWRgcjIqF8y7gdXpub9Jlt9c53cSm3uq6jZ/bDdLCelB99S2o1MNfA/YjjnmUI163GY1YNxkWCDRWGWMUBunybES9bxC3zVPE7ZAWStQ7ZbIbzx0cNg8zUkM/2LdqQq+X0Mxbx6tQpk22eaGtpTcThPncpK5LTAaWZHyqIYvMm/Qtf0LlljfR7Q2Zb9LHWRYKXcSBc6ol+I2Z+COBCilNOsrkvkdabaj950VfSf3dklft7AFCxJGcW/PIIFmvydBCveXQA2pXyuw1IY8EF0MS2ZJDIpDAofrUMtAm4Q15PWRUwvhS6ZWAg0MdUbOfO9QVkuz887X8522TexMp3ATGS4+7U2loCaSMA+BJi9yj8pXfgYqIbguy2zyV3aYNFVytFXgPihDbuIVqjbhBI/q5EdrbVhemfZ5EudSdhbJEMIKarLm9mxECrzVobjcwzzk9Fzej0g2afjuShWU3scAiS8vdCAuEWqb/vSgXCHvdtcH+XYYQoJ5w47mDw+ZhRhL6iUatoGlrUCQdUv7VGXtjdmgHxbMlpY2aFGrBmNtHAfGICf19qAnuNVjm9iLe56ieEI2fXVbqokZNLKYctdp3tZTMNyQeGZnbi/4yosPDEwLhKe28B3QJoQQWuTxhGSsoXhwcr26VtMi8ebihVI0Ztjapj4Rg95ygE7XgPhPYJe8hcyArQSzBj645dfqng4NDfWEHFwvsv4FHiAPDmpgq6TlxKxSxyHa3qmdNRkY6CJ7ZB8BVKHPt7YlTuBWEihvTqrc2EadtfXfq2seRrSFtFNIB40x79qOC/O2NFe1dxNrrLMI71eZ2iJ9tVp9bT2xdmSWksIM6dhMH/cO6RiOFUdH9UwS9F1VeW9jSb/0GGh/Qz8HBYfyYkYQ+l2+Z0Otl+VdLYDVqkRJNAJZG3p70TCPMIzbTNxqKmMxPMS0FMZmvyDgoXoAyHXwbsXbekPic1tAnpPjWcRdxIDZ7AmpkYDzTpnbqFwkMoBY5PRI8HRTPRLj3+ny8tnxkam/av0cok1K/kIPhpKAmlHrROoGVXLuud4RaWfcy2vlyqMwgm/Mg4j5dEYLtgJ11R5XNQMkH0yftBedU6qQOMwK1+7lDPVEreNpzqHlgZ2LtfC6l6YTqwHhZQtRGw5eSokylqkPNg4+jcs2fRjJejPG9bveUpr5dE/smlJDjNH3t/0KZdtfSkDain9vaeVtQ8yQqiG83sYDGJvVZc7tP9dze6MB4Zn2RnudBWUv26GPbwlJkrN26SboUNDqo40iCil5Ue9jClo1Ur18bJWxx47mDw+ZhRhL6nq33mrBrGVNl2xzNDIqrUAHxEhp5ka2dNyb3q6itFZ5KXClN5o2GfhNqUfN2LEJPbG4/koa+S187PblA4xZ0iTaw2ncNKg1du2a1QhdUSPA2+XhdLZbQQiDQWhqgJPLIIKy6ZhU53kJcsyAdq9dC2ocekMMVtc8L9byF8pOUwJBeyUiAJoH0VYx+s2BxcGgURuznDnWD8Z+3NbkSpZ3fj9jc3tbQm0jhAuXXm44hA40NLGZDpgLhpSPb/xSVorYHNdcVUOb2BaEI/SyhyHyztQYAOBAVVG1fsjWk5rN693Ops5j4UpXDkHmJIvR7Ec/dkXaebJN0M7f3Uk0WGymsySKxaQtLux722g2SpLjXumajSXHVM7YKsB4lPINk2wzqfaMD47nx3MFh8zAjCf2aFQ9P2LWqNAkWQVqDkmJHWnmqFzG21n4usfYXkgPrVCL0oQ5+VE6R+QC4G9gDFQG3iaS5fZOII8Rqt/LEs8mhTLt7qeGHVpfaJZFleRG1bRiCBA8rKB7gDZTxOgt6oaOC4nm6sl3AYAFkxU/2Ha2ln0h8/tOnZX9h30ffVEqJHPaR7SARSF3ejQhCoVIrRT/P55C+9qGXqWs6du9QZ9Ts5w51QyhlrJWXSR/wx1HuVwnTbBHPg2YRYrK8pInIVIkhY+a8hLm9/vwvKGHEu9FzHYrIm61ZQKun5kJ7DeChyFUfli83ybob1LufS2rHRHgS1aaCpHY+yl6T0mLnUFkOjFm6Lcxu1NxORlnM8x9Cte1cqjXz9jrOFlgMkhR6GGF3w4Li6Yeado0bQAkgQJXdhKCz28YWLNW7bdx47uCweZiRhH4ikTUZmAGwVg76iMSK5HftqAlxnXWtqTDppRGQIvPWpL+IOBieyT1vk3lbM5OWdEOc3gaytRX1RjpYjmmXtVKytW6UOFq/NrnfWMSblY8XAJ5aDIA2u28FGQZ6slfR7ePFm5x8n8l0ZHojMKoEhG1e9JUUsW/dINZPvBwykMl+WRXt3sHBYaYgKxK6mRMeAfYn6T+fZaU2B2VynyVAVeSocYOL0c5n5Z0vA1cD/4AiR4bQN4nYh76ZZBDALO21GWtrBTOrN0aKiWALadIm97XS8naTTF1n7gGN89VOK2NM2YzrownWmEXi7a1bn5cmxY1qw6z7m3puQAmRbCVTDyMoUtyc7uAwLeAI/RYiInop0ldGDZBbkW1uHxFbkpPeVmREuieecKYCEmb2el9BRfh9AZXuJZF7XpP5PKhAcaTM2ER87dkko8U2emFjk3i7PGslzNWa+YS5vZSIwRKiU0W4N0HxTF07BPTnQZaDai1UvWbO9Eyt3UbkcIhsyiOFwJjTbwS2FhAi8M3Pm3LgZyyyp0j/dHBwqC8SQdOs4+Wo+WE3LHN7ke121UNMpKC2oLwRMFHtI795GeedvxU1jx9LbGrfbGnmTe5ye76z5/4WfdxLcmhuNKGv1abLUHP5jliEXlgZDGzLO2tu7ybOYjMV5nbI7mMhag1W5S5p71PEvoBq+wShb2Ab2msLiIm6sf7sJrnunEW2IqXR752Dg8PYMSMJfffc3SbsWlmTgURNCKAWKWnink5ZZ44hGRgvQSbl1DA7DKSMzA1tMh+iguEdjJJqZ5F5Y25vcpqmtfNG0m0mRah2O6gn7Bz06Yl/LTBXWiRequB4HhJvXYDXUcAjjnCvFgBC1c8Din51UDxATmAlr71+UY2KkdSom7oVQyg06ecsQAg2eYrQAwzrlpItOaSObiSlJcGfapEbR4EMJdIPlXClHKi4Bq8SdYSUUllRmPr5ofr7VVI/GzX7uUPdMJr/fEKLSzIwqpkHjJYQssf/xpE+mcg5H81/KIK0AJWmrolqU3tD6kVKkE3qeC6xhrRKu6orXu9+biwu0m36BLAPyRSEaUFN1tzeRayhhynStlQrTyCOcA8ja+btNjT9t6r9qL+WO70uNVuv/j6d6X0OSWGLHYy53usuN547OGwe8o0uQCNQGu6dsGuNlIN+a6qDxBgtPanPzZaVui66/oSVevMRpMi8Hd3+LuCfiBdvaTKfs66T0M7L+Fl0E5td2lLmUDRQym2Vw2CNlLxdEuWe90K9L4YICaKrOV4ECIHnqR/PFYLHcwL8QGnBw2Q9pdH4C7YYe+2x48iVg2ilEaIIvexoSjz7TSgh03NC+RXOBmRzDkphLL2fZub2MpRQCaESqA5tnrcnIC+QTTlEfvrKOmUgVd38MKN+HrLgIXLTt35pjNjPHSYdoZQJk3tDAENU/nlD/myT7Gizxv8eFOFL+yGb8b9RqMhsU3sfuB7YASXIjkztSZrb24ssT9guWvEw30FMqLIIIdS3n9ttGqba9AmSMRHMmiadss5uW4gDx2XVr6FBb1PCeolagxllDCSFT0K3YZrQdzJyYLx6wrYOsLX0vcSp+Gql3Wt02bekn0utcDJrUki6fhplkoPDqxGvnlXdODA8uH70k8aILHN7iAPiQbW5fcLkLmV+N4/Y5D7Tj77BfoRpMm/y7z6KCpz2RmJze5vMN5EcTGv52XURT/qN9qOsNdkDbJQw15B49F6C2FTE88BryintvCci7Ywn1KS/qcmDwE9YAEi9gJrI6h2w3x7ZX2RFuJcgyyEyrwm9ZxY2gi6URL8Y/SQfB8Uzn0UCgokr/2RABlKl3Cv6UAzibTiAYT/ay3Iw+sWmIGQQQrGSqpufPB72o/Z7NaBmP3eoC0K0YFcmzbMlitDvR+xmlicOigfJuW+Ovp4hFlPBLNvMeRWLzJdQ5vZrgeuAj6JT1BFr5G1zezPvVWl2LW7RTdK/PJ7v4jVFPfu5JLa4MIIa8/yfRuWfN21qtPMmg03W3G6TRsj21W4EzJotHatoLUnim17DjacNG2JdmC6D/rwXZV4PyXrY665036t322xuPw+kZEjCgIS+EPpT25BU5zg4vFoxIwn9RKKWj7Wdg96W7qaD4qUlpXakX6gmlI2EWbhFZN6ShC4GDkfnmSc7XZ2NKsEGsR9lr3Veo/3Q0pO9iY/QL6Wa8KUtrZeIgQrenJyqlycS9QMVFK+/ydMaeqUJMWbrkenhpFfUiOzVPnrGpQqyORc/ayEYFNCJiAg9aA19OYz7aOLSje6ltSGlVFrrUlhNeA3pLelNm6lPJ8hQQjlQ9SulyPyQb9UthJKvhBsODluIdCR0Mye8jDJJ3x0rpZmwzO9Fcn4soNJ62pHuGz3/hcQpWm2LtKXA51GxAfYi9p23zeybBeQtxpc2u7e32ahI99B4DSmkhDNWm65Faa/3pDr3vEd2FH/IdqdLzx/1VlbYAnVTHrMZk/uEZj7jOC2wqNWG9Z5JjHIgXY6NqDWWgWmfLmoIlMw2hed1sMh8qDdpkXkJgxIGQxiWdYxV5OBQZ8xIQl9o6Rj9pDFgJB9rm9CnJbxpYm+TemNyD8nJwF7cNApGI+/LZLq6Iipd3VEQ5Z5vEqnc8ylTp5E09EaKXz2p1Lf+aSGN7T8vQpgt46B4QjeOtylAtDYrM3uwguKpf80CRCEPlexJfyLnmudfWFFdp4wI9xjrgMEKYVsu8fVGlOasVYgoJ70UHlKGUZvoC09cwScLgSa8lVBt5SBJ5Iua7FZCvQ+m/EImAT+My1+y6mTXr2LVb5oJLGohq5871A+1ots/ijK3L5DMP5/2tbbnvx6ShB6S2tx6I52KzwceAr6Gikr/HMoE3bZEs83t00hb5tka0ipCJZOCjHr284CYyNvm9k+hXAzaSPrQe0IHvaV6Xk+TRoOEoLwBaxt7TWGv4SDW0EO1y2StNuymug0bZYFQSyi0CdUOWQKlTfbvZfVv64Xx9nMpJUUJwyFqr8n7oEXkhzSZH5bKfWZazesODmPEjCT0Hd3bT8h1sgi3+XwVcZTUTFIvsieJeShz/URgktR9GgHb9NBoLMwkfy9KeLE7sR+h8VnKixoLG1E9qZiJxThE1JIW1wu14iOsAbbRvvMCReYjq4s+HzG7Rf+tybxOW2e0Fq0F5VUpfU2KQ2NuL6PUdROBP/7pgewvbCYurfRz5QDZClLEi+gNQtAhVNqlIfP7ZhFZGIAus7QvPkURrcotUlsO4fFV8KuH4MlVivhWwmQy7TFASklgbXXXNoVWvcxmSLyp3xOvxN8FEoJQ/W6ao2Y/d5h0jOQ/vxg1lj9BUpObIzn+25HQjYUapKzfxv4qTiiyhBW3pc75I9Xa+UKGEBuy5zyIBdm15jwpZd36uZSSgGTdTVuYgHim7HabRvERMrTzkCSNtrCmUcQxsXZLlWENai2WFkyMpK3vRmno0/VphAVC9O6kiPkGVDtMZUXKePu5SaNcQhH6Ib0N6G1IE/miJvPFBo0lDg6TjRlJ6NevemLUc+QYFuW2BDY9Iaxl5Bz0tUy3jFS4l9SE0yBJr0FAkszbwfAWA28n1s7bZN6Y4KeRqLe1uOsizu2blnTXW6CRJVABlYN+np7lhJRKSGOC4/UXER1NEYFX9RORRB+gUwdck5Ug1sLIWHAwUfjER06q/jBB5tWmnq9E+hVoElGU+yGhvpstYJbQQWYEyGYIS0H0jBLafqam9FtKCaFN1PX+6dXwqxXwWABXvwzPrNadTX8/Sl1CKRkOJYNSmff1aZO/QQnlsI7E3pB5u26+hGfXxPW76mV4atW46jcdkNnPHeoCSUzkjcm9RGnnn0ZZqn0Flbd8LL7Wc6gOipoef+uFLGIbAMekzjueeM5rErG5fRayNLtGkL0hce/qdUW9+rlpRyOcMW0qUe24N6kI9wlBTdKtwCb3XSgXDFtAYKajRhAs83ztoHHSKuNcquMeZa1ZbAsEOzpT2i+/XiOtmXPS6xeJIu3d+rxa/S/r3avnLDHefm4sZ3wZp5QcBv4GfAu4H0Xiy9Jat07/ac/BoQozktDXQiAlpVAyoBfogxKGQ4lfY9FrTwjRMWowGSCOcp+eELJS1pnzmlHmbOupJvON1NBHgyZJc/u/oEwQ52NFtycm800CvDFqKgyhh2rTNWiMH1pmBFwZp6wT+ouoDTcNI7rzasIXyo/eE8mFTpcAPw+y7Cc0MIpnyclv5IiAy2gnBchiSFhQPvQIFfgvJ6DFE7RgxTZoAkpB9UJ7KpPD+EGrvw3xfXhV8rwHXkm9dLXr5Gu/vUGpg/DofZ+MffeGTJtOIqSUEIRxVHtfanIfwj0rU/VblZSSOThsASKNvE3qgd+nzruVpK915HaWIkp2DJm0dr7evTVNbM2QsA/QjiK2/w0cgCWsQJue14imPZKG3uQIT4+r9X5NsywuApQGdBlxhPuslHUGtnbezmAD1VrsRpBGUve15/l1qDK3kyTsUVA8kfzctkCw2xAa04bpZ2rfez3JHPRm6yRbkdKowHjjQVrg5gMPA19FZV46W/8dWdno9auDw6sNjtBrKCKvFuFG02ZHyhwOZdXCPL3oMH+v0d93U21ub3wHE1JskhNED3Eee3tiaOQaPJ1n2EcFBvqO/v5/gCeJoxhHPoU1NBVQPTmaxUEHyZy8aUl3vZAlsJEYczzlP+9BFBjPkxJvUxk6lEm952nNPLGGXmgT9nI+B5VQacaJF8MSJpcYy9QeVD52QA4CrTkkQmsqBF26/ZoFlPTnMgcyiAl9orxTeebPih9wwPzkOa9L/V0DofbbGwzVZoLxDMp4b0z9Jt1nz5B4407ghzELSgfrf/386dNeDlMeiZRmFqnfPXXeO0n6WmfNf7amMD1MNcJs2Sz8bf/5ADU3DaIsD/YnSWiNBUItZGnnPdRawZ7zG0l200IMc/wsivgZRYVtZm+CHEK14sJszfq8TSQJY6MIfZawXqLaYWtqr9FGskAwfTdLO17P+tlWB1j3HkC9Y5AUSHTp414yBAKTWtItQzqOlRl/bk+ddwvJ+rhpz+HViBlJ6HvmvybxdymUDOsFeGJRHiofHKOtTy/Ma00Iq4FtGd3Mvipnq8ZWJFPXNdo0LZSyKjhQ1qB5Oylze5Ftbg/VlgrmM0gGz0kv6Ool0EiklLPuK1ES/K31DCKkVOnqQqly0Q8A3S2gzexzJiieiNt4HlDMaUKPRahlrKmfCFx+1U1ZNauqUAhIPyQUAtli8tAL1gtlbo9ACSEAEMicB2FA5H8vLY5Yb4e7sSKxSjF1l7CzdnLpAP5hW9h1K4tN1K6L8cUzmxk7+kMrCE8Y++5NahK8hF+8jM3phyrwij5nG+CD28FuWyXrNJWtKsaI7H7uUA9k5Sk3PWpH4G3Ad4HXC0szL+K9TZhACbPtoLC2dr7egdOi+Y5k/R4FtkPNU8YizZiem+NaSJPBtGXaMNXaeTNs1aufBySF94G+/xOoiP6mvdJCjCytfNoSYS61c9HXeyiyhfX2MzcR7iFup6g+Vj8235utW382aF2f1D3qgaxna94ho6GPrA6IBTLtJIUtjVKkjKef1+pDWW4xkFzHOTi82pAfy0mbNm1i5cqVzJs3j7lz51Z9f/vtitodd9xxE1u6SUJ/78vRcaA1bbY2rawnMwHkJfgCQgHCU4Of8Y/LMrc3hH60HPRCiFjDm9pMpPv0YGzuUW/YJnh2cKAjUSZNBidSTebFGE0PPUE0ys4mNu/OknTXA/aEZpcBYJ2UzJWW2ahpx4EKngRmFQBldmnIvL1w7RSCwXyeOZUQiYzvZaLNT1AdjjziDbUrZ/ZGcFFURmhhIYfUhR0gzllbAPqE/kleIHVQvKoo99NpppTR/2DfrWCXefpzqy4Z9QmlxEeNFSUZR899EGVafALwRqnaOyeVIKQkR9bcbXYVdHC7iMQHMib3D66H7ZqhXIHDtoNd5lgSsmnYXjVQs59PYxj/bdNMQhgt6CR0os2EEXqmSb1EmWYfAnwIlYpOYAVN08fIauKXJvRZWz0wUmC4R4F9rTKn07aNhdB7Vv1ByRNBzXudJOtq5vx69HMT5DAtvA+JA+LZLhMJNwrdNw3xjdO5xoTeWN9B49rWwJ7XEy51JFPWmbJXKWdSbdim95tQa5h0G9ab0Ke19EbQ0E1tt49esvteKK0TJxnj7edZ67TXojwDJXAu6n1N10lKWXN96uAwHTEqof/xj3/MddddF2mmDz30UL74xS/S1dUVnXP++ecjhGgYob/yyiv5+c9/TqFQiD477LDD+I//+I/M88vF/ujYpGIrS6LUFyXUhOYRDwqegCYJFQEFPRDYCxh7MFlDdcq6xLEeRGyNhbAWN3OB53X5En6EhlDVeSBKEHnr2ExgbwPeARxIMkDOSOb2QgjQRBjiucJIuo2kGJKTSlinakcCFJmc9ANgXSjpiaLcS714kYj+El4bWoIjImm+EALPi9t9NvBSc45yoF7A2AJDamI/MXXYdeftsitma6hNPYd9ZBNIXUYJbBSCHtSqpRX1XgBQ8JAVc4k4Sr6wBQVTDpLkKkfvK2G8l8nT1b66MhLLwh0VKPJB4Av6+0XA94CDJRT0mOFLtViecELmh3EeyUoY+9EHIdy/Gt65A/xllYrmn67PlGyn8SOzn09jlENJGdWvjGWHkDrXuZAq9eUUWIiGxAHTbB9zQ+gPw9Lm6mNDeJPzYUz+elACsCJKiJg1/9WrbgkttYzL8ijwAatetv/8SEJsgyqzbb11ogiVycETSlRsE33fevTzqN4pIYZEEfr36TKbetuWCTYShDElrN9Itma1XnO7QXqON/XMNLm3hFFpMmz35R5U/XbU90i0YZ1IsamLOTZbr/6sXe+jjARW22zS3zVKkQLj6+dZQiFT9gqwC4rcA1GsIPt3jR9FHRwmDiMS+sWLF/Ob3/wGIURE6JcsWcJnPvMZvve97zFv3ry6FHIs2GeffbjooovG9RuTiq0s462EMntbCtyJ0jofLDWZRy+yBORGyEG/ChUwp9aEYGA+t8m8QJlk30uSU5hUYo0YiNL+80aI8QjwOuBzKC1MOs/waP4cWdoKQ+iNL1o0SNd5QZcW0pjjDaj2mid1u4XEaev6fERnU6SSTwTFM/UVgoKAsCXPsA+tZhGsze4DJo7QZ1csSeiMIEGWAmS7NXl7sFHA9rptOhAMoyohm3JQIlJwTxtemCVwKGrKVA5S59SuVWhvsnYQsDdiBeHR7+9E+jipVHVB0m/emNw/tVGN7rt3w33roGQI/WbeK0qpaN5ZtxSaaEgpKcvY4sOMu6CFy0KR3ABoZRKEQ+OEGa8SpB5FyF8GdiWlzSUm9fbYb89/nfraG1DaXJtM1FPLmSbyZt7rR9XttVi+42QHhstClmbXtGIn2WndoH4a0oSLgYzrvRKVtnQ3qqPbRxYXGsb6MIv4dlM7PVo9rQ/TLnX21LAe1b5psm7mcajdhrOotkBI32OyYWdIsLX0vSiBQ0KYpn9j3j0jbDG/gVgoMRWRtQYHFXgR1FrenJcWIDk27/Bqw4jryxtuuAFQg9/OO+/Mtttui5SSFStW8MUvfpG+vr6Rfj5l0dreA8TS6HT0y4eBr6HMyb+A0r6lzzMk0yacBnYOeluqa0i9QZakHpSGfoM+Tk929fYjrOU/b0wPzcImmuCFFSxnnJoKc3YXI5vc1yMwUrptTRusBWZLyKNCx5mAeEKCt6mC6GiJrhGlq7M240cvyTM8bBFqOfH1e/iRZ6o/jGZrGf0tQeWgb8mrYy04GSD2C2wWMGzasymXEEJEruZT1X8erFnc3gPDOt5tya/+LnkQX0om+yNU++wdRXJRLFHCwAmF0c7bfvPm+L7VcNB8JVVqyekAIKkqjaG97LR8JkaAii9SO/tHvZHZz6chypIoa0IUzyWsjutiXMMajax0dQHwIsqawFipmYBpNqlPkwp7rjSR7hPaeZKv8GTDvFZpP/rHUHP7HFICbGveGwlVml3r/DmMPO/Vo59nxQ2QqIC3e6AESlna+XS1o/YVyfp2U+1D34gsBlnrN3P/dai2gOw+ulltKOsnsKhaL+nPNxK70NntZdadRkOf9ft6ClvG08/TJN2U1ayf+2qdy9Rdqjg4bC5GJPQvv/wyQgjOPPNMrrjiCq655hq+8IUvkMvleOmll/jKV75CsVisV1lHxLPPPsu73/1uTjvtNL75zW/yyiuv1Dy3ubUbqC2FT2vbbqFaam0GjvQelMl9zSip1kiaTl+HPp6HGpDSJm9hHScFg5Bs/3lD6Pen2gTPBMYbDbbU254oe4gnfcgmUJONkdo2ykFvB8UDvP4KolMTehMMzxPal96kr1Nfi+YcFW3Druol46B4ExQV76lnXsz+wrq8DLXf/rAkzCvrAgkgBBsEzNbp9tpE7IMn82rYkL56KnIMJHhKwS6nIfLDQfX3Ef9P1ifIOG1f4FT993EoQZf9rgQT/O5Gqepsv3mTqm7lALxSgQOV4JKWfGxyr348pheqIuP0nZtCnY5Pqr0h98VQ1jXyeBZq9vNpBF/HcjHa+aEwDso6INVxUSaDMTZaoGL3azN/gjK33414XrBJvW25lTX2gyJ9Jp93I4hFrfzzZs7bXP95IOFuB9UaUkOooFqIP9n93FjhZNX7CVS6OtNednT7XEa9s7TzAiWsT5NGsEzE69Sn033K3q9CrcGy3CVNClrIJvfd1CbFdV27yOr69aLWVgbpLARdJIURkBR61Avj6ee1AlOb8WOI5LiRmtodHF5VGHH+GRoaAuCd73xn9Nk73vEOzj77bACefPJJ/vM//3MSizc2HHHEEfzsZz/jhhtu4KKLLkIIwRe+8AWGh4czz+9d9xxQ7SNnJq8dU+cfh9Y+yCTJzjK3H0CZ7WfloDd/28iaNMyga/LxZk0+9UIt//llqInfmOAlUvcwtgBgI2noN+njqklR1qf+WW0rgTVSMk9amnlAoIPi9RYRXfmoIkIHxYuDIop4QeR5hKGflCybXPQTVIdT33tU9YdGMqSPo+daDJHteV1fVYGNIjaBbRPK5aEM4HnK39EPEu0SXX8qIu07b8ppTO59KzOtrcmvUR+7uubYBMIcIB5XTD/yo+MJekCBVCp/Y25vNPMh8MB6OHCOIvJCQCGnCH3WrWuUxwQLjTTEoZWaL0ym5Ss3uM0z+/k0QiBlROQNaS9J5Ud+H/BNvbeDttrm+I1AFLSPJKkPUXPDLiRJr03qM8meGTOJA+NVEa46jv3pec+UYSmK0G+u/zxUa3ZtDelGsuf8kMnv53ZbpmMiGEJvu0/Y83263mntvKljNzHZInWPehLH6LlaczwolwpQhN5up/T6Lfq7BilOr1nquW6rJUjo1eXLWnMJkhp6rH29hS3j6edZ7woohZhZxw/pfSOFFA4O9cCIhL67uxuIib3B0Ucfzac//WmklPztb3+btMKNFbvssgvz589HCMG8efM4++yzWbt2LY8++mjm+c1tszn9Qx/ji/92Fv/+b2ex6OZbuOqiayiVykgUaWlftITWe5fyXyht2/p1vVz94wWJSe/GGxbxxKPPRAPEK8tXcusvFtKE8v8TwK2/WMjK5SsjUrf0kWe49vpFQDwp/OzHC+hd3xtNls/eu5R5i5awDnWfcqnMlT+MyxdKuPWOJdyz5OGoTmvX9XLhjxYk6nnt9YsS5kvPv7CiKiXI5VfdxPMvrIj+ftgqH6iF46UXL2D9+t5ogfP4vUtZtGgJ+6Em87BUZsFF1xCUytEkf8edo5fvuhsW8fijz0QTy6rlK/nDLxYym3jSv/0XC1mxfGU0AD/yaLJ8ABf+aAFr1/VGf9+z5GFuvWNJ9HepVOb8C39OqVSOPhvt+UngphsW8cQjz0QTxarlK3nmFwvZWsaa+ZsW3sGKV1bhSYkYLLF0cBXX3v3naBXgAT+98jp6ezdFC4LHH3uCZ19+FFlRhL5UrnD1z39LqVzRizfJ7+/4y+S076PPcu0td0UrDQn8+PqFrN+4CVqalFnpY0+w5K9/I0BN8n7F59af/wZZqUR+9PdufI6/P/JE9KzWbdzEhVdelyCIE9H/YGLad936Xi68/DfxRaXk2j/9mYeXa22AH/D8K6v46e/vTMz0P/3lLTy/bGWifNddvyihAbnu0gVsWt9LP8rU+Nl7l/L3RUsiIeBwqcyPf3ANg8VydOkteX+llFEAvJ9e+3uef/GVSFP/8OPPcO1f74WDeqIV6IVP/B/r+rSITMKfH36cW//vvprPT0rJwjuW8Ke/LI20xivW9fKzSxZE5t9DIdxwwyIeeOQZlZZPyoa272SNfxNdPhlKpB8iiwG/XnAHf7//SYrFgKIf8syyFSz4+UKKoSLzfwO+9YuF3LN8ZeT69eSjz/D7GxapOIiotmrE8zPz0C9/vpCXlq+MTO6XPfYMz/5uUcJ//tpLF9C3oTcign/+61Juu/Ov0bjvl8v8Qs8foAj9C4uW8MS9S6N3bMP6Xi67ZEFC2Dl57buU2+9cEs3zxVKZ31x0Db2lMi+i1gN/1+UzhLZ3Qy+XXDy252cLsm++ZiGrlq+MyODax57hL79blCAfl1+ygHXreyNCNVnt+9wLK7nq6oUJUn/bLxaybPlKVqBS1i1/7Bnu/t2i2DJBwCWXVPe/O+5cEq1vKqUyv77oGiqlMt0oS6+/L1rCY/cuVXVEte/FY3x+Njb3/b3tziURyS4Vy/xKr//Wo4QzT+n2NW3Vu6GXSy9ZEBFgD1h4wyKestYvq5evpO8XCxOEfuE16v0wfz+09OlJH//MeuW2GxbxzKPPxMqI5Ssp/2JhgswvvGYhq5er+a0T6NX9D2Li+1PT/yaofAYT0b4h8JOLF7BhfW/0zjx+71KeWbQkIvS9pTLX6f5n6nDnnUv485Klk14+mFnzmytf7fLdfPPNnHXWWZx11lmc/uGPMRkQixcvrimoOvvss3nggQf47Gc/y0knnVT1/ZVXXsnVV1+tLiQEixYtqjqnEahUKpx44ol885vf5E1velPiu8HBQU488UQ29vYiZnXSr7VQ/aGS5A0DX0UFtbse+DWKnLcBszyYJdS+TShTyMinVKqJ6h7gF8CPUIHi2oAOD9o96NS/Nb7loTZp3RRWl+HzwHuAt5t769926Os027b7k4RQSga0qW2kqdPl+y/9jE7V9WwXup7WfjRthS8lfbreAzK+/mrgY8C1KJ+vdlTd2wV06meQn8SAUDLVLsbsdRj4Zig5dLjCO4oBbWW9lXxm+SEd31tK62m7wvad0JqDlhyl1jwDeUF/MWCoGDBYDCiWfVY800vppUF2evt2FPI52lpytLfmaGvO09GWo6Mtj+eNZsC5GXUb9pXf+LAPxYDKcEBfJWBg8UoGW5sYOmQexbzHi4U83yzkuLg1Rz6UhMWAs4d8zvIDtg8CWhY8QduRO9K+TSezWnJ0tuRoas0rf+32JkR+4su+JZClQOVlLwbKvH7YV4Hw7l0Df3hFrWbO3F9ps1ty0JpXbdiag9YmhPW+DYeq35r3f1Cq9/YXqOwU9wP/C2xL8t2dpd/dwha+uzIIo/aLtmFfaeHvfgVe7IcP7Ql5T5ng37MKVg3BKbtCwYO2PDTn1L41h2htSlw/0O+9GRuHpNoeQgX7eycq4F+bfidnedBRpzFpOkMGoepzZWVRIdGZVQQMCkEx5zHYlGNICErAt4H/s35/DPCfWH1Jz0eNiHjvS0m/NXYPhrF12qnAf6MI4CysPpLqJ7Xeo2uBZ4CvoOaWWSJ+hzrHOLdsCYZDXTcZj/9DwF9R7/VlQAvq3W7X9Zolxj4vFUOpXFfMvK/nljtQGTK+RVzvdlG/th4OJQNWucya5l5dZ7vepg/O0nNyLlWuip7bB6z2HQJeAD4F3AA0o/uH1Tc6Mq41GSil2mBA13UJcCVwia6rWXuYsdus30qhVC5IVh2HUO13C3ABel1Efd9Xs3axn320dkG5SL6HeF7y0PE5UPEhvgVcbdXdbptZdWqb8WAwlJl1vQjVt24jXqu2k1pHe9A0xerjMDPQ19dHV1cXN998M+3t7aP/YIwYcdW9//77I6Xk17/+NZVKper7M844g3e/+90TVpjNxeLFi9m0SWmgNmzYwAUXXMDs2bPZd999M8/farsDMk3tIw00cDhq0HuepOms8Z+3TdKMSZwkDohnYJsY2lFSYWT/+q1Q/tq2KZHRikyUSfZoqPWMQpK+hDmUVNv4EeYZn+lheuvS32+k2mysHnU3zzlqWxnff42U9Eh07nmp/ejBqwR4FWB2i2XHJqK0dcbc3mztORDDPkglOIlS1qXutyVISySVhkfGldSfSUCWfGj21LFQk3yXLqzQ+zahNIcSoMlTpt6o308L+zVTRtvnvxgqO9B0KJCquAAxbBcMextAmWpuDzxF8n2x36MthklTl05V54dw/xo4ZG4yAlmzB0XbpSC5T5tShsQm3T7KxPtBVIDQRcBZqL8r0toyrlMvpPv5VEQkhBnWAphSQHnIpzjsM1QMKJUCymW9hSr7Sn/qGsb1K9omaJzYHERzIMl5cQ2qL+yI5T8vkoFTDew50dZam6B40b1k/cyyjStBet4LUYRnH6ucxtTezHtjFWGm5zvzu05iH2ZImaNLuPDiyevnUdwAGbenadOnUMIZu96jxQ2w65U1t5t4LI0yg06b25tyrEON4RD3z7TrpPkuvYGaSvr0cdUcUYf3Nb1etIfk9aigfYm+pwvuoazx+kiuZ+u95oSxj+dZmQrMthFl6dOF6mtZ8/UUienq4DBhGDF22amnnso73vEOgJrawn/913/l1FNPzfyuXvjDH/7AD37wA4rFIh0dHey///5873vfo62tLfP89aufIpBqQMvyDW9CLUj2BJ5GmdglFudS+RPbk4LZ7IB49kQQLVgsomund8nKRV/Lh75eg2st//nlKLeE3clOYTMW/3mDyA9NJv3zOlCLm22xSK6oz6SfEKCQfP6rJczXfSdqO0D0ltQCpkUnLtKzv/BEou3NW9SaF/RXAgaQdGNPnjIKarOl+NBpx2d/YfmRR/UbrCBbvagc64Wa4FXJ1fkmF70EpJdH+jqVmZnw037qUwlp33mDUgizWqBXM/qsPO0Z1bEXBObrQZQg7rUooeBbSZF5oRfJUm62lmbEVHVPbFCNtGt37NwJitD7dtA/Ge8z6pYIEqpJ/a2pc24B3qDHwUi4mRJY1gs1+/kUgZQy1sxXQiiH+H5IMZQUgbInKOeEyj8vwUewuDnHE8ApwHUoLdO+ZC9MGwFfpki93p4HtkNFQ7dlSmZ+sPuHTeJtUtRDdQwVW6A9mZ3MzO9Z/vOPAO+w6mXmPUPqx5pGMJ2m1WyzUUTElCPdzqd/YPL6uXm2WXERngQOJRbee7oOpt5ZY1mCMMqY3Btd1CZUfe0+XE/SmCatZluHWnvVErqYupo1S/q8bkYO6FiP99VOVWc/XztrTda716W/60dp6LOeTz0w1vG86vlaBVyLGkdaqBaMNnrsdHCYLIxI6AuFAnPmzBn1IvPnzx/1nMnEeeedN67zA7+ID3jWwtUMXk+gpPAeKk3Ls1RrI0xO6YQUk5jQ70+G9p1sSbZH9uA6F0UK0osZk4t9S0jBWFEr//xSYD/iQEDp4EDj0VTYggzzGajJxSxu0hP+ZC/qIsGJTD7/ftRz7zGR7c2iTErEQBkxW7eeEXuboHiAyOmo9wIEgnzBY1bgs1HXVVr3M9r6LcW8ud3VFbOvq9POhVIiA5+w2XwtGARm6Qj3JmJVC1qzIgQyl1OrPl3exD2mMmwWLlFR7rub4eUiCVWgOVemfy6zpf2oZ9MKbAP8zvrckHlbGDhavuqasFPVmc0Q+/tXwxvnQ85TFhSeAEIoCKj41RKIqFIk3ifT980xwLHAYusnx1AtrAgZ+7s/kajq51MNviLxZh+WA4rlkGIQUhaCUk5Qznkqcr3wWJ4L+FHo8WVPsCOK0O9D3BZqjFD9qFEIqSb1EiUQ35UkoUtr6g0SglzruAe1ILfH3nqRImOdks58Mww8RzL/fHreGysSc71FDLv0fcw8G226redOYj+36522WHwM5QJnCP1Y6p2lwTbrnNkoYX1CO18nYb2BTQLtfrUWpURIt1F6/TZSG/oohUchfR8x+fXLmpdM3dahCL2ph62dF6j53UO1zVzivlfvthnreJ5uP/MZqDrMQdV3QH+WFnBM9aWKg8N4MbUcXesIM4EZcyI7Pcve+pzdiAm9GTxsYm8TP4NVJDX0aS19GtFihiSxn4fyJY/KK6sH6smEyT8fTfJW3bPyz0eLnHFo6aomfOuHZtKH+kuKEwtJq53XAi0htKn8cmoSD7WWvi9AtDfHmlGjoUdp6RPtKwQ0eRQCn01SE/gwyScnTVuRInVRPUs+ssmLvlovYLYgoXVtQUQRYynkkL614Jys8k4AslwNoucwXIGOZnVsUruNJRd9xn2GUH57+6B8RYskUz+Z92lzn1VVqjpfa3xDCS/3w2ofDujRLMp6mZo9ZYlgFzz9HFJ1S2/7AAfp7z9NTDDt/OPBBL+YUjY+Jd6WQkqZEMBIP6RYDhkuB5SeW0vx1scpP7+Gsh9S8SUDfsgPfMlpQchBxFkmjJYpvXBtxNMx6c3s9rc19LuQrc2Nxj6NhObT2owKYRPJsbgeZtlGgJ0m9U/qcpnsNXa6trHkn09jJA2pqXfWNllIW+WY4xd02YwLRdZ8XwvpKP7mVGN9B3GdEhYYk4y0qbZtvLWBpIa+1votS2AhiN/XjVS3Wz3mSHutat/TzNvd1C47qLpvInvNNRWHYmPNaI9BPsp1oAflNttPdRvUK2OGg0M9MSMJfXvn/KqUdeblfhpF6AXK5P4VlObNJv22z6AZ+Mzfr6B86LMk01kxo9Jk3jTIXJIa6qyFzWQioX0jWf9HURp6s2jLo6X1Yuz+81jnpSd8s7gxCxtTHogFMJOJWrlN1wBb61lNaeZ1G0vw+nxEl85Bb5k7Z5F5AVDIUahAr7WYiBYaE1RHO8pnfJPoZtE9Q0AOAS05Ql32PnSKG21lgFALsUBXTLbkkGV1LWmuDWRptacMsszuh33o0Prysm2WTvW5ZGg/rO/7USalW6EWds9SPWYYErRZMKnqbL9501n+tg5e3wPNeb3iNn1QQFNOqf4SFcl4Fqk6ph9XW+qcdHyAieizUkpkJUAWA+X3X/SRwz6yHCh3gwxU9fOphBAlhNGuEWU/ZDgIKb6wjtK1LxM8XMS/4SXKL60hCCSXBZIdpOR9oRpL9YgSLUrrTRCyYPpzmtSDcscyOeht03RD6m0I6zt7jGxBaTcTLmepMXkyMJIfufGft4XYkZa6hrC+FqK6iuQ6oaC3XqrrLSERlXuikWWVIIktFo1W3iby5u8sjCSsn0MNYX0d5naoFg7Z75QxuYfkmswmvdjfW33XPJtZJElx+l6TCfOOmGOz9erPZlllN3u7bmlhS9YzmmyMdTzPWqNJlFAGlFKokzheQ3pKH62vSSnxpaQYSoZDta9IOXGpZx0cJhgzktDncoXYV86auNfpbU/UwDwHNSjUWpiniZ8JKJKVgz7tP2iQnvTM5DAXtYgrkxy0zEJqsoeUWv7zL6K4wR5suf88VE/4tlneBqrJUz3qXmWBQUzo5+sVVhQUz/jR95UQnYXk7KjJvMlFnyD3TXk8CRuDMFVHnYt+AiaN/v6h6g/NykkfK2MDifQhbG3S5RD0IejyktXJi3ixST6HLMtEuaPrT0XY5bKfbcWHNk3oSxkh67I02Kmqmn0RRegFSihoXGZsLb0vNy8wnp2qLvKbD6S6YH8ZnuyPU9XlvVh1JlAk38Q0tUlxhtDCaMSzFoX9qPf8aZICPnt82BKNugykChg35KuMBIO+2kxWhpKP9KuXYZn9fKrAsqioBJLhQFIMJKUn1+ALKDeDXwb/yV5urUjWScknA2gOQnJ6bJlDPLfA5BKEUC9YR2pHSdK6zWwDKCumnYkJjieSpN7GaJrCqvE/KuOW1bEW0n3Z9iNPC7E3138eRq63IbtZZKqvfzB9qQmBiduStlg0hD6Rf15YghqRvaaBsQvrs0jZZCPdp+z9alTfS6/f0kKJtMLGfAZjcBecRCSs/GR8742oNVVaQGHWJwbd1Oh/sn4CxLGO5+m1oWnHDSgin0cJMAYYf118KRmSKltAv7U32TgqjtQ7TEHMSELft/HFpMZM759ERahuJ34wu6NS6KQX5pGpoTWQrEFpsVrJNteqRejtAdYcG7NDo6WwiWw9SG0t//lHmBj/eYNagZG6GNnkfjJNcRMCFOt4bRThHjz9RdRmvUVEVz5B5k3jJ10vtC99XpHI4UpQJcWP7rmFdTzh2ENTnySZaKSdLyuhAoV81K96RRxAx1RpFiooHqB86P1YGGFfd8qRejOLR8fWZzq6PwXUsTkvi/imf25tEGvoQS2CnySpxYzIgtwMgU0ok2TeDor3t/WwYxvMaVX+80ZDb1DQAosqSYSsaiu7PvZjA/U+vl7Xy3ycsODZgkWfDHVbmHR8pSCZls+kGywqbb2N6n4+NWC7SASBZNgPGQ4kJSkpd3ZSFlCpQNAFy3bv5i4p+WQIs6SkCRWnA1Sf2mSuqfcTSRBCKSmFkoFQpbwyaVhLoSTI6Ke2m4VNAJehSEMXFoknSeptGDKR1tRDMtJ9lkB7MmCb2kekHiVUfxIVlHBL/echWe+sec9ua3s79pjJ6ecSMi0WJUmLxUSddZuOZI2XpagwwvreVN0MyarH1GHm2CyFDNQOimfXNN2GaQsEc62stctkImvdAup5d+jjaIlCdT27qd3/6jWtj3U8r+U/v5547dJO7K6UOXdnjG8VKaM0zQNhnJozStMZqlSHpakY/NdhRmNGEnqoNic3hN6kpTGLEUPobU1EeiIwA8oq4pQnaXOtWtLs9GLGvvc8lMbDNt2Kyd6EPIZMpP3n0+b2ZmGzJf7zBlkTvkD5P/VSzT0me2Kx/evS7bxOwlxirbwAPAmelHj9RejSSzsrKB5CkXhPiOQiwIPQg6ImJ1HaOr1NmluFZUcdPc/higq2mBeYu/YCXcQR+hGCWUJEaetkPo/UPudV7TIVpdd2R7IxiMrJ3gJUgtS52b+p+lpvwyiBnoci9LaGPnqHrDFnXDB+2JVQbUZCUAngb3aqOlFN6JuNS0GYrE/cYMn6pd418+0gyo/+RRTJsQV9ZizdnJaPrA9MFPhKWE3mS3orh1AKlAn+VOxnNkIJvkQGkqIfUgwkZaki2ZcHJcXXtDIsYN3btuPnW8/hNGAHJAUpaZYg9LvazeQRBKOJMgvWvpAov3a/hCFZrY2ySZ8dEO85lP88aAIokvNEem4w7kdZWtzZJDX09dDipkmtOX4KpfHbliSptY/Hi1oa0i6q/a/tuX8yYNfZFmasR60/9mLzrPFqCes7ya7jSCRrIpFYu1lj3VqgmbEpZEbqu3b9oNqyZjIRkhy/TT03otZUBtF6MyVY6qaxwpbxwK6rbUm5gXgd3kGcts5GrboEUlLU496g2SwiP2R9V5Rq/JzOCLVbgdmcO8H0xmYR+o0bN7J8+fKJLkvdIIRXpWmXqAW4MS8zJvJ7oAL9QHLhmvahlyhzrawc9LV8sEY7bw7VKVDSQoTJQGKCJ7lYH8l/fjSJfRbSE/5YNBWT6aZd9ZytG60GtjaaeRPpPpSK0PcCnS2kg+JhDq1FQeRH3yQYLgcQTZjG3H5iJv9SqVxdOQMd4V6GEln0oR1CBFIIigIqQjDbahAhVDrHyB+tSYD0k8KlqToZyNQe4oatAK1NKt1gOfVWZbgR2AtsiN9Dk8bemNzvpj97mYz3ifH50UtD3G2/ebN/fAN0Cti1SzVSTiiTe5sp6GCHmxMjwCZQG1ACzjYUeUub3JvjcSOUqmyGzBvtvDG1L2qtvSbz0fflEClldT+fKtAMKQgk5UBpwcuBpFz2Kb+4ifKh2xPs1MafRI43IHk9IflA0iwl+VC1tUAtSjcx8QQhkJJhvWA1WnmjfbL3Q2FM6o1VT5rUS1QAtV2ISXya1GeZpacF2uZ3c1Hub1nEYjLmPtt/Pj3HP4YKAmvKtyX+8xCP/1nbbGrPe8OT1M/tmAEjWSxmpawbCWlFRVYdoVqAONlIj93mvnYO+iz/+SqBFPFUb34DI5itM7nrNmrcE9Tz7ia7z6XXXbXKrt7ByW+hsY7nNom367qe2MLVxDOIfiOzn49BWRP1kt4PSyXstMn9cKjOK+ltyguWMxBIFRfAWB1sCmN3glLoiP10xbjmokceeYRPfOITvO997+NjH/sYAN/4xjc466yzePzxxyelgJOBrbY7INOs7nmUNNoezPdASW57SWrzzXraJn9rUIQ+aWKdJHJppAfVSLmLWtSsoXoymOzAcFn+8yFKMzfIxPnPQ/aEbyb9tDBjpIF4omDImt2u5l69QchWUmvk0WQeEEO+epE6CvGFzLPwrNR1QiSi5Xq5PE2VUJmEJSYa7ce6hXX5/iW/TlUuSVClRGnmyyGyxUtM/p7QQdCs2b7Ng2FTr2Yif2aJCbAX3WgLSz4JsAtoimf8sVvykM+p2RlICCYyqpLmwpJY0DEL1b5NqLHEmKen3XXG5UdvR7Y3fvN+CM+tgd+vhO3bwPMUcW9K+c/bxL7oZ1SmmhWmtTwSZa1TQWmf9kKZ4pp3xK5Xxh1Gh9HMm6j9htQ/tRquXar2NtEvh0oAUPShFPL9i389+j3qjMjcPpSUg5ByqHzoy6Gk/GI/5dktPDurhbu27WbuajhBQF5CAUkBiReCp1NfdFEdFG9LCYI0mqhQLVqH9GLVaOrNAnbYWuAa6yXbt9wIcCSxhj4ivvp4JNKbpcUVqAX5xhHqO9GL6CzBlKmjbZWWNe+Nx3/eICKLqfnPJlRpLfIlP752C2qYDSPIqGWx+BqrbHad0ykIszDVhPUGaes785zXEhN6qPafT7dyrb5r2tDcC+t+k02Ko36TGr97ySD0NYQtG+3r1VgLTSaq1i01EI0JqTKuJ7ZG6CAWtpuy222SuJ4l1KvoMW9YKsu7+4H/0vsyitCXia16phN87VIwKOP4AMa1oE/PAcMSR+qnIcZM6J9//nm++MUvsmzZssSAtNNOO/HQQw+xePHiSSngZGDNioer/P+eRS3GtyHpJ9eBCnJnm90HMmMiQmlwt8KaBKx9rQdtm26lA8PNI9ZS2JP7RJg/jZQSKst/PiT2n28iFfV2jBL7LNSaYLpQBEIHUk8M3pNp/hVN8qkJvxyElCsBc/1QpaqTUueflYgn1iJC4OUNWoJjGlJVSAiRXLzpz8jnmeWHbJAxIQ7DZF23BJ878wPVlTM3Il6gy1KIzDchhUCiBvQuXX7l86/6aDt6chQgm1Cmz+bS0WwZX3vqIP3C6rKZIHiFHOTz1andrJ/bh/bCxuwHia1W0MfG7D6L9I41gJw0vvOGxJvt2bXw61fUSUsHYfm62NTetgE2ZKOg65sVIyBV1azNmHx3ogR6htBHBEDGKfnG0/YykNhR4COBxXNrYMFKeCKAX6yISX2a2Jd8PvuxU9R1phK0uX3oh/iBxA+UP7oPVJ7t45U953CxhEd2aGFtoczLITRJpZ1vDrXQUKrUmKMRhM2BrYky2ihD4oeITUpL1r4iUwJt4r5dAV5C5aD3rM0m9VlIa+fNHGJy0duPM72An0hIsv3nK1QTerOZrC6bg4QQ3zruJmmNYZOQT37y1LoIMsxzfpw4sn/WXD+aNV4WYTSkcYM+p9Z4M5kYSbPbk1HeWgoZWwFjm97PpnYbTmbdovk8Y9tInBYxLWBJC1vSPue1CPBkoWrdkoF06kH7WW8kJvSzqM4WRcYekvOzbx0/BHwF+CNwFvCAHgt9qcYHf4pNPSMh1ILcYRlbXw1KteYbkOpvY501LKfaOs5hNIyZg1199dWUy2W6uroSn7/5zW8G4KGHHprQgk0mpAwTZNVMXib4i70QESjz2eeIF7C2FNteXKxGkX/I1tLXQuJc4sG1hwyzQ6xBbJwvmzGzMcGPBiUUQ5nwA7Ij3qb95x+h2n/e9iPcYkJvbaaXbUzVHSZXIpqeJCSKVG0oBTSXQ7orIaISIny9vbgeb9E61WYLVsLzehlqBcWLJPyC2JceAc05tg2Uz6pERmQ+Hexlc9HcXEh+oDpN9Ge0SB6WyNYmJY0Xgg1CRbg3HVEACEGziPPZyjxITehNX5T2faYast4Vo7HOCWjNKUIfdTKZ3NuXSp+CIvSmz5r3Y29iDb1p17QGcFQElvba1tI/tCp53tLV2hbWizubjVbAHz1GQKLfW4v7PtRCvoAi9M+xhfUyiIQVMimweDBVv/tXKq18qdo0v5kclH1kMIV0Jdp2O9DR7YNQHYfDZYI1A9yzQyulnGBjZ45tNg7yQBBQkFCQKFcebV/uSUkHcaRmrP3maqtDKRNaJkPqS8DfgP8GHkAR+Yq1aK2QdL+ySf3LqD5vUraaKOj2XJqFLEIkUHOfIX2RMJvJI321/OefQVkq7YhF6EXyeHOQ1s6b+ncR1xuSgoxCc2HC621rGm1Bxt9R77i9HrLrnKtxPRvjFdbXw1fbJr1pza7R0CeUMSK5JrORRfwhKYCDpBKinu6C9rCwkTjKfS1hkocSKK1LXS+9TTaq1i0ZSM9P9jp8PaquHkoJEQnQqe5r6Wva1g1mbLstdd7NxKTfjI/ThfhGVgd6M25W/RaJL+q5oCw30+LOoWEYMwdbunQpQgi+853vJD7fcccdAVi7dm3Wz6Ys0il3nkItwCNyLeKFSDownr2YsQfQVcQm9+kBMysHvYE9udvk3gTFS5c5PYCNBhkR+disxvjM9Ms4Yqfxj0z4EVr3fAxF6M2CbTwRb0dCVv2NdUQv1XWezIkloZmXisxTDthQCdiuHOL5IZ4fICpSEfq/v6IW4OYCD6+y/CaE1tBbWnos873WPO1B2vxQ/QuDSRJcRGwgznkviwHhrFjXNEScr9ZejLUBwwh1jRwQxIHJquazqTS/2WWJggJK5Z9t1g7NeUUSs35n/T5ttW/2g8R52k0ffg3wCqp9s0zuR2tfKWU1kfdDRfJ3npM8+Y3bKHP7vEjah5p9cy62QKhVGZKLJHvrI/ZL3BM11vWn6jXegH+J2AB2PUMJ3bOSJy+T0FuKibwJkGf+NhHwpwCpl6FUbeSHVAKJH2oNfSjxnx8k3HoW27Q1A4L1rS0MthR4+9ohmqWkICEn1YP0pHoeXWSbwW7uWGjMScv2htJEfQ24C/gSitRVdJMYUm8s2yJSr/fLUIJvm8AbUj9avvL0uChQfW2I+llo2VZpNgF4lNh/fjx52EdDmgSa17SbpIYUJk9DGpgAjdbmAw8D5+pzvo9SdmyOIGM0YX0v1f24Hm+vvWazYsSynjjCPViucTWUFbWEUbMZOZf7ZE6NtpDZvlc/yaw1IwlbJMrM3G6PLbUImmjYbZh+rmuJ27FDfzZg/Y6M35DxudkOTp1zLJYMms0QYjcIobYQM++6Cf53L/BN4D7U3yWZtOCaLsIKh3HMRwMD6pXYZZddEp+XyyqAxdDQFM4FnELn7B2ryKrtL2aCvZmFxp7EqevsBbk9qBipujG5T5sSjjT/2edBPLjOJSb06cFrrIuayFdSKvI+IMlMyTEgTdTOauIRoMwpB5hY/3lT16z6Q2PyudpWF1JKZCVElAP6KiHzKyFUAqWhD0K8IERsCJLt+8Zt4kjjAvC8hLBCeHafyNFZgpXR/ZKL1i2dJG69Y0mqctbqBatPlUJkTuegF8rSZA46vZ6IJ/02XcmiEJD3CKXS+Eqr/NEHUwm1WHg5iPPMFXRQvKyi19JgW5eyCT2o96ILJeAz6evSgSZHNdWz/eWNf7kZtFYFarDZJwcf2h722Do2uY9WpJZgKW8R+hFiBNRaePZZ9etCCRvTbkjjDoyXjg1gBBahhOXDsE+rqt/7t4HXdMPPnoTVg9qHPow09rf+8V5N7EMY9pEmW0GjYMzt02ReSvxnNhDu1skmYG8hOCwUHFyCndf4NEkohDJ26dHHnViWMSTbZrzjoInibLTyZam1McDvUufeRqyFijT0VJP6EBV/ZlfiucsMf6PmK09tZizt1t9vsO6RngMmCiarS/R+WuOvEWIniLyIg8Fujv88VPtnQ6wh3Ug2YbnzziUTSqiMIMdoGc3+9tR5d2DN9WJ8gQCzLBFyxKkYo/WMzB53Jhr2vdKkdwNqzRWV29pntXKi36ZI8SDxeBjVa5KJX9bcZFsfzE7VJ2vtZQjwJjLGmkksu42qdUsG0v3G1HMYNWbN1uc16306Fz1U97PEs7P64zbWOf+B4glGAGgLO6c6jLLOCCJ8qYS4Z6PcCb6AssyyhXvTMUbATMaYCb0xtV+2bFni89tuUwYpc+bMqfrNVEUQlBMLUKNt2p3qoC85lOahD2WKZBbmdiTyEEWCOlEKvyxz+5Gm/SwthYdaNJdISkvTk99o8ImjdQ6HceAj4zczFCYDI9maGFv7ZjQVBSYm/7xd9/QEY2BLumtJYycaifv4oTJT9kPWakIv/BAR6MX2PWvx8nnE+7ZBvDYHH9ke9pofmz2b1R+pXPRos/vmPK1FPdnIanMvNbFsfk07OtpSn+hrhTI5aQU+FHKEuhGKQtAZEXkRK3lRhL8Iql6VIDnZZ2h8pwTsWRprXwqRzU1q8d7kQdmPz7fPS10qaz9EvBiCuD8bs/uI+BKToZH86KNUbnaKOuNnPuzD3zfACbvCe/aFPbaKo9s31XgTm/JqlrYLbepo/R2mPjKTeR/xIgliqyVJPEZE1j3ZJUjWz8QGMCTeCCxCCS/3waoKHL8rvHc/2GtreOcOcOBWcMWz8EJvnNquHNLZ3FKd1s4EPGwEdFyAQAfCCwJJEISEfcMEfUXYYRZLheBIT/DBHPTMaye3ul/NNxaRF1LihSGdoawZIBTG97plkTijkR5InXsUKdNSmRT42tryZaT850NJTkq1Z2TrLVv4bZO+2SiSZQtx05rViUBa2Bb9TexmZoQTOZTlRE5K8qFUWUI2c4xOC/ANGYQ4yKZd91kd7RM2tPpaO5+w1EC19S6pc09EzfF5oeLnqPYaXZCRntttYtxF0p0OJl9YD9mCEjN2rUER+iyLkVoWlmmCbAuj0qR4stcuUX3MNK8/H9b7bpL1yRKmeah1bC/J9pjsstuoXrdUI6sdJbFirZO4bTpR6/vR6lPLOm0TypV2W+s6AdPP7N7M1aaPBMAtqXNuxYolImNS7zA9MGYe9rrXvQ6Ar3/969FnX/ziF/nxj3+MECL6fjpgsG9Vwjf8SdQk1kw8aUfaBZT76XaowHmhtZlBBdRksJU+TmsbRtJQYJ2blpZ26r3tR5+WSI4GM1mb4EYm+JEh9cZnZliT+oqMFzf2M5oM/3mIF3pp7bxZ3JhJEaoXdhONRA76itIASk2qhsoh83yL0D+9EfHkOrwTd8XbYys49QBF5gue2po8pfXNCTDR7T0rXZEAyDFLBvRGPEtHtw+J89JvQX3ecugBibrpm0R7iXKxkIMVwjYv6mMbRbywhKiweEK9C0OALOSQflLoIFPXnyxIqQKMBXIz06voPj5cDhlsa2JAwGB7jkE/pETqWelK2XXMSns0QJy/GOKx4zXEfvRpq5dgpPY1hNcOFmfI/QPrYNsCbDMLcl4yur2dg94edGrFCMgoQPp9kyhCP4t4fDKB8ezx0NZsjtouJjZAWmARAn9dB2+cq9wgckK7EuTgiG3guG3hV8vhsXXqN6WAN++1V9L8XgfLa0SgPCWoCED7zscB8cB/uki4czcvN+Xp9wR75FXQydzcPPlXBsiHKm2dkFgaeujS0Zdr+RyPFb6UCc18RO5R/tKPAZ9DaaR2QPVdE/U5ChRFtRBHYkW4D0LyJZ9cySdXrJArVvCGK8hykLngtclSlvm5EWRMpkA3K6tLgLI6yAM7YxH5ICRX9MkNV/CGfRiuQDFAVrLrVwtpomjqbgyGsjSkBx2y/+ZXMoWKjAU7pi9UUG38F+DNwNuB7wKvB5pETOoLo3N5IGnObdY3BrOJXc3qJazHun56HdWrvzem2mmim1Xl6LsUOS6gBB+JNqxBIica9phttl79mRE4264E9t+mjp0kXQbs69YjMJ69bqmFLP/5kDj1oC08mkW2yT0k65Pug+arPtSzOxz4P+LxwUTDN6R+qmuy08saiXIfsHE001NYMdVQkSpNbb0xZh72oQ99iEKhwOrVqyMS9uCDDyKlpFAo8A//8A+TVsjJQJrQ70PSXDBPUoppa6Ts35oXwwTEM4PIWHPQQ/bkYfbzUeZS9r3GqqUIpExE4ixLpV01gY/+hpLeGqJvNPm1/Of3M8/HbFLlS87pEXVzX/paixujobEHoMmMch/dI5RQ9hWp12b2vZWQbu2/LFb14f1pJeKE7fG6W/HyFqkymyb2Qs/2ZuJPxAtohZZSoHwJw6TkOAzlxNfTrCyIhRcSVB76lvhevcBsIRAIPM/qu0LQjrIakU05dYA0/0269D6QkqIO6GhcRgYlDKUCO1bBfllCSQk1wQ9UJH2dBfoE9LXmGAglAx4MCctsPHXd9ILA7NNxB4xQ8DXAE8RkaMx+9JE9X5gMiueHcN9qOHTrmMDb0e2rJGP6oDmviO5IlSF7cS1Ri9Mu69JVqeus+vhy5L6QiA2QiG4fwsZheHYA3jRX+/JowVhBCyxeNw/evwPctAKWrI41+ybyffS8pBIa1Btpc/tQEoQhvgzxX1xLuGMbjwOv8QR5IfA8QW5eO/lhyG0okrNWqEKrwTt13+0ju23G8t7JFJmPSD2qb14BnAS8DfhPlItVL/HCzl682vnnQ9T8VAolu5QC8sM+XsknX/IRxQBRCvG0KwTFoErIkiX8NsjMRc/EC3SzsrpIYClqzssBuVCSLwfkiz65ckCuFOIVdewGXTfKoRLojAFp0mg/gznU1pBOxBoxLdipELtTPAAsB85EmeC+HkXgzdYsxhfZ31ZQ2ML6TmINPVTXdbKQXj+Z57oeJZBtpro/jkToszaI2zDzfZ2kCqbfEVB17SXWzmdZFKTfuzk0RtgyHtgKNbtcG0hakoESktmEvlZdQqoFL/bc91bU+zFAclw0c99U12RnteW+wLv19zuSFOLawooGO7FNG0i9Rh0IjQtzfTvFmAn9jjvuyHe+8x223377KOWZlJLtt9+eb3/721FwvOmAXL6lKj2LHRAvK0LvHiR9RtMS3tXEEX6zJoORTA7NuSJ1DPGiBqpfyNEWNZJk+g07Bcddev8gitSXJBRNJySpqViBWkzuaZ6NXtwo7YtPbsiHoYoKSlUOkMHYFzZQe5LpYmST+8mQGoaBRJZ8ZbKryTx+yIAf0hMEMFRG3PUS4pBt8HboQuQ9PJvEm+PmHCIXv152LvpokdMMTfiExGnBkpNydi56OUZTz7Xreq0fkVhJxCb+EhlUkFEQBEGvB526ESIti/67RQhlct+UQwqQgdTm9nqCnKQwvr6UKtWK1IEdpdo2hXGalVKtZyLjfRlFvgdQXXaoo8AwMNTqMUjAoP5uWAeITPwe651PTfyDqIWDvTj3gO1Ri8TnyY5NkaVETgSLs0lvKOGx9WrluXu3ahRD6Js8RX5NnzPjjWnWpvHFCEhbIfShFuGmfruizA+NsDFyJZCjCCogGRvAFliEwH3rYa8O6GrW9RHR+0RzTqkId58DH9kV/rIKfvEY6675KzxtpbWzCH3dNQva4iAyt/eV6X24dpCg6MN2HTwkBAfkPDxdnVzOw9uqmdzKIh5SWQAF2uReSpoCSYFULvpU/xsNUTAkLHN7/fm9KJP5U1Hj+3zUWG+0UenFq+nD5l1YFkp2Lfm0lny8SkC+FCBKAV4pIFcMEEUtbBn2VTYCa24w42EtYmsLdNNC7bFCSiXwK4UqOOxgKBnSx8OhjF3MrPqFxGnbckFIvuiTL/vkyj5eOSRXCpSGvhjEwqSir0j9GPtcLQ1pOtUWujzr1vdu8dAqMwLh2dr5q4H36TLkUZpmo50vCKV9HmvwW7tts4T1m8gmvJMphrPXbVj3XMfI/vM1Cb2gqv9Ccu2SVcfJQFbdQPWlTqvMYGnpU58bYUsvyb5nX3+ykVi31EB6jjLPdT1x6kGDTqpT8Zkx1O5rtdrJzH3boSyX7iPpkmrckaa6Jjtr3pCocXYb4EWqhRX22OgwMkK9Rh2Uyn05VpDW7+GNy1J6v/3246qrruLnP/85P/zhD/n5z3/O1VdfzQEHHDBZ5ZsU9Gy9VzRpD6G0EYbQG1NZc2wI/Z5k5142L8UaYg29QJFeUVGLGq8YIIuBIrsVTXiDmJTZJM+eFATVqevS0uWRkNCk6MHr1tQ5N6MWeUViLX1am/gIamFTAPKVgKZihXypQk4v2DyzoBkOYMhXW9FXda4orcxIA50txLCfQQ/JiWWyzdaklISVkLASIn21meP+IGR2EOD9YQViux7Evt0ITyDyHiIi9LmYzDdZiX0EyVz0ZsuDKAZ0QzIXvVXPyDI6lKr/DCvBCXovS7o/ZTzfaxakEq5EM3TKh74UEjbnkMQmuF3RQkUkBolmof07c8pEHz+MhCvSvscEtpAvJYOatA+GcYqV/lDnTZU6HoSM3cST9VYfBmiLFJRxwVAYMtTcxCAwWBAMIylJpcE3qVviayRrld4PEAeNM/3XjCX7oCxczPtrE/vMtDDpYHG+1P7lIdy/Cg7aJja1z3sx8TUR7k0hDARK2FQZOUaA6UPpBaFELYgMoc+hZArbk2F2T6SkzsSIsQGKPjy4Hg6eG9vomno1ay19s37HtuuAY+bBSwE///ujKlf9M6st030Zs7M6QWrfeULL3D7U5vbPFwl3msuKXI4BIdgzp/yQc56nTJnnd9K0YgAvRJnbS7VHgggls6Ws7ZM7yqsWao1sUSa18xVUH78S+CDKrNT4SL8dWETcpnYgJbut8UNeKfrsXg7wygG5coBXCfBKIaIYkBv21fxg2ryshTcWzHyb9uvtIWlyr+piLeDHsFAK9CIrEgLqccNsA/o9TwjZ9PaIlBxQCciVfPKVgFw5RFQk+VJAfsiPhRSG1Je1AHgMq9+RNKQ9JDWkpr7XLbhti7tzgG5/qgU7f0XNt8ZnvkBSM98sFLkfD8YqrIfkvDdZsIWx9rNdS+wyCbUVLGkk6mWdZOqX9a5O1pCUVTdQhH6OdV76PcsStmSWnfoMp1XrlgzYbWdv64nravpeG2rNUmvuxvo7S1i/idg67a0oQWfVuMjU12RntSeouX1vsoUVRlM/1YUVtRBuqXvmGOFLyZCMybxxZTZbvZ7dmKynyuUyxx9/PEIIfvrTn7Lzzjuz3XbbTXbZJg1rVjwcDUzPoCbQeSS188Y3XEh1vDNq4n8F2In4xTXNFPnQS0lOpzbzpExKd9MRqPUqRhITes+YOuvPTOq6xKAqIRSjD662n64hEccCi61zniKOoCxAmXl6SeJh/OdzfkiuEpCrqAjvXijJhTImfMb0NzL/tTSIOYHMKeJha66j+6Y2iH3ozXNOT4xyhIl2cxD6krCk/ObNRiWkzw/JBSFdS9aDEHhv3gqRyyntfMFDGJJR8KAlnxmYzGjo4zYGkQOKPl1SKvNDqXPRa+1wpEUPQhXRu2xpbEE/6zAKiCa1H7XRoHz+06fFBUjNYhJl1i8BOQyyNQfCPG/BLL1C8fS55potKEIsdd4iqXObJ4jFBI5dZkEexXrQhMSYdeeEyt0tvVgglJeSXEKLpArkh1LlP5ZS598OKbXk1Lvc5FEgIES98x7qus0o31kYmfAOE/uYg24afR07MF5CSy+MYFBGQaaiYHG25toP1cNdvgk2hHBAT9W7pfpALiURtJ5Bs6eIh6pIalaXSRcMksIkUAs8s6gxC6W9UOPnW+266XoF+nlVafNCGZHeqtgAD+rYANt2qPoZgYX9PtkCi2UbAPj87Deqz/6+CvaeHxc+kLpTTuQoMQK0ICbUgfB8P1T7MCRYvobwLdvzBNrcPufFzSYgt32BpjtWqzlDKhIvArUnlHRI6NPVqLUwq4VaaeoqwO9RT+cEFJnPo9ruLcBPUNZZO2JpbISRl0g9Pga8XA7Zq6wyf+SsOCP5MFRCTztYRE5ALkDmPIQeQyJSIZMEcB7Kgsz8NNRj/ljqDPHYMRSquTvt5yr0wxTE76Tpx8ulJF8O2b0SkPND8r6qWy4IyVXURih1P5Vx3SoC8gHSGoezIIQAKRMaUpvsZglvPnHmaVs0tBq3i4RmXsak/hrg/VLSFkqVcQFJwRM0IWjOC5rF2LXzUT1Jtq35bDYq0G56yojG1qyxYwJgE0GzB6U0MZrdBNk1xxllEUIo4VvG72aTvXaxifZEI2tckLoc3anywcjCluf0OQlBmnn3JqFtQh0nJJTwL2d+gFIoozhN6XvZc1XaUnYDSvlm17ODlHUTyfZIXzO99aEC4oGa636pr9dESpMt1BiyuRmfJhuJ+lr7PtQzMsKKI7GEFcISVojxuds0EsbduEzcRzwgLyRNApomsP+WQ5kg8MadKRCKT3meuncLkzOm2RiThr5QKNDRoUJqbLvttqOcPT1g/OSeRA0AQCLYm21yn0NJq3ckNru3gwIFaA29lOTKIZ6W5nvG9NBI8I00PzJBDGDQh2EfoTdvWAUUEkGIINuPEEbXUhhSmCb1+6DI+Tzg66iJ57uojl9CkbWyrPaf3zeU5MoBeb2Y8SoheWNSORwk61VK7W3t/bDW3FtajKyIq2ZSNBqaWoPtREEGIWEpINRa+bCsSb0f0BtIjntqE2LtRsQx2ymtvNbMe022hl7tq15aES8KEuZ8TR74Pl1CaYog2a6hVKQ7zrOd2vTzjPrWsB+7PVS5PMgE6444XRAiQ6BZpa3rR0Taec/Ti5ZIcCKYhRrcBSALqHul22OCzO7tBXmUqUEqCeggarOloZHpqHVvO8BdlIILdV65FFBqg6dDuDEv2ORL/XupfcFVG9iVsydC+9XrJ6mht911agbGkxlpYRLp6WTSDvjPa+GgrZT5fMQGLS19U9TR4oKYfcGDUoY9QGr8yAr4h37WnfrYCKay0nnaxD6zC5jVTzo2QBCq2ACHWBH7bWGF0dAb8/tCDl4/P3nt/efH2nlTgDrZCkoZt1UQSMomur2UhCv78REwv4O/C8H+OQ8vJ8jlBDlPB8abP4v8RokYqkCo09ZJJTQVoWROKLOFm+n+k0KQ9peWsUZ2E2px+jG0aTXaCgu1wDsIJfwNSZvdS6ROGyjKIatLIbuWQzytpfd8NQd6z68j/5tH4KlVVjvLuL01skycIY6hYtc5ImOjDDFRutaQaAwx6Vr7QysGh94Ph1bQv1DyZCng9eVAuZZVAoSpWzFQ5vZPrYbfLq129bDf11EQkcbU/NdNhobUmo83FwG13S7+D/D9kHcUfQrDPs3FCs1Fn0LRp7lUoakckN8MB/4sggyKNG6wzktbpU3GW5sIepuab+3c5Vkuk7UQnZ/RhhupFpBO9LrFRvR+yOR9N1JN6C19EpAUtnQTx+uAVD+c6DJLSUVrN/u0FU2/tR+S1X7IVetA6+sswUwH1UHxstqi1jX7UM8khzJN3xFlzWLckaaDJjuyoKR6jjeE/i3A31Frmelsdm8sOvutPmX3rYFwBPfMccD4y9ta+SHr2FjF2evTycaYTe7f/OY3A/DII49MWmHqCUPGn0AtuG1zezu/es5aGxuNVNrUx5DOrfwwMjsUZR9KIZ4m6hgTPdtUz5A0bZYoymG0cMiXfEQlSPjQm0khJn21B1izlo2EDvpEKSUDoeTDoeT1oeTfgZeBy1ATfRnt94HaVqIWfvtUQrVQC0Jyvl7UFAPyj78Cv/w7PL6qmsTbZN42TxyuJKJQJyZ9a2LsQhOv1PMeKTCelNqVQbs0jAVSSihbpvaVEOlLQj9Avryeztsf45D7XoLDt0O0FhA5Dy+vNPMRoW/2oJBHZOW3MRp5oRdvAmWFUfAQQcA2qNSJ9kRs6hjawb4McTduDfazLll9yhD7UioIlfUQI4l00UcKCAvK5H6jUAtpGRc9sfeAXiHU9wWQJaU9ljCuuAmjIdQLcjMYJgZHVHCa81GBHc0C1SbsCUh1PfUexIIuv1jhlRz8QMKf2nP8eftOngnjnNTmvMTjSy2WDIaII1SbRZ4ZU/ZEvUNrrGua9jXHYEihRQqMn3kQwtoheHEYDtLa+YjIW8Q+s+/pfUEoc+CoMql+QbJeUT/Up6wnmQpI6Ho9SdI9x0z8gfXb6DYjxQZ4YoNilHvMJjM2QLPlR28i+u+2FZy2rSrMbgXYZa718phtbD7NUpvkBRmbn7EFMrUgCIksD1Tu+VCfB/7zQ4Q7b81KIdgkPPbMq2B4eSHI5wR5T9DUnCPfI+DlAWURElrR7qWkK5CRlimrrWrBELjIxF7GRO7XqDntjcT+0nkRC7HfDvwJi9BLCEKJLAWElQBZCiiWAgZKAdtV1HwlfD1P3L8Cb8HLeI/5cM2KDFIft0uWH7KHWpivIUnkx1pvQ17tYK+D1mbcdPqt45KEIAgRJZ9nSwGvLVluBL4SYuf8kNzza/EWrIQnQvjVSnh2TbLPpQQWtWDGCLvekAwYl7lluMrYMQJKoSJJdh/N0s6bPlGWkuvKAR8q+rSWA5pKPs2lgKaSEmg0lUIK5UBlfRnnqv7/k/ffUZJd130v/jnn3FvVaaa7Z6a7J+eEQSICCRIgGMScJZESRUm0LMpBfs9BlmQ9v2dbDnq2JfrZtCVTkiWREjMIkgBBJAJEIEAAgwwMMiZiUk/qCZ2r6t5z9u+Pfe6tWz09AzAt2+t31qpV1d3VVffce+4++7v3d3/3+ToYVANUcPY1/kmPs2xbxe6dpFMdvawxN+d3kueu2arvUoDi6nyqGeGf5DhfhvkMnYKm53pUgy2ni8+lE/z+hGL15WhJZ5BtIgKxohxm6hygfm5mvvjrOG0thGKtFSr3c69F+SxzShDn+cwF8bWlrXZf+Nb/O9Hu58vQT6HXfDn/ewYrqiMX0Vbc0hmwnZJYsilt0N38MaYS5lDsq0C+8FGLQHq1w9hPWyTvNQP6q6++mgULFvAHf/AHfO1rX+PRRx9lx44dHY//XcbAkg0EHxAfeNkHtvlIIfdKqSuenagoUQHu52akiudjwLAP1DKvn9PykIlG9GfniAJVM/WVjL2diVn6hgJ7mym9fdgHBXtzvrP6PN+oAnmNSEvphJ1oZGxqZNQaGUsaOf8282wX4Ru0M/VZ/P9ngQt9oO49LhTlBKIZ+t3HsV8+DM97+PIheOloG1AWwHO28ijOQyvEZxVIOtcGU2xCc52bYn7VUdSY04gCfbP6kMZr6Ekdac3BCyHXYEDIAuHASZLbDjG0y1PLBFotrDXY1GFqEdSXgD4pKaRnjYpTU9DtrQFTc5hWoM/AGRHdUGJWWESz88FLBEKhDeqLx7kCKDFwdP03v1eegzb9GIigNkgE9Kp0BKgx6olF/oUQXjXYMmDUuAME5yo19PHatHfJ85/z84zC+ZybnW+Irs+ngX9BW9jxaToTY4HKxlN5KrIXxd9D7nnWGXILiXP0NlpsD4UDXHGeK1M5yxmIz3MBvaENjLrQjfJFKqCXTvAL8YdM2jT7EvgCj47BRf3QV2uD+KKsJZnDDKkuw1LlXtkgzDkv1YnN5+iCbk7QKYpn45wCGhCca2/mjeifTxvgkaPwhvNoA6Su3QayFNwwsH6I61ccgaZtH3yp2Cavmu4LEoXSpJ21LeqrJ0JnzXX156LDQquI9Ffo9nkeyMvXHn/gFGF9jRcwbLOQWoNNjIriWaNxCwzJsn7M4Uak3OvxmwjsB0JgfI7TDuffA4pe40V2oAT3KJX+VjQ7X62XTuLPDgX6E+i69UDuA74ZGUDx+UjTs7jlWZgHTK595+3zp7HfH8OFioPxxFHKTgZ5iNQUPfK5WdFijS2O/1pk18p9T84/b2gLVRVigA3RspjHgH+PBgJn0N/NEBk/uc7v5ZbnqczT3/QqgJeFUhsgyTzJDYc7v+zpo3PYB/Ka0lnzZXYNnXRtaNuim2+8+6w5++hYTs7JSI1X1mijLDWKXQ2kwmYKwn2tQL3peWtTBQ1rLW09mLQ8taY+knLv/tHa8xXXtpj3AHpdq0zHYh959VDIjz7OBQRP0QkEO9bkeT5v7jUs3jtAO9FT/d659+9Pasz97OolOo2uqbN8rHmCLYY2Q2Tez/0JHnsWg/YNoQ2OAtx0w92lXs6stFsqFzXQc69f8XNAk1+L5syp2rYOzgbu55pnMcbRc0L83GvRDhhnmL8LyI+qdl8moiI2+WHFpc/72XMec8vpioDFW4AH+N8zWAGUfmM1iFsF9sWaKlp2/yit5Yp6+eIxHXTdFmywWWJilE4wXzx+miJ5r7kk4vd///dLh/Gv/uqv5n3P3Xff/ZM5qp/yaM6egUbO0TQnBTYQHRkbnRmjdGN1yLXe0VjLJmv4U9rOeGE0TgRhZdNjIhXd5AGbRVG8XScwTx6B143A+iH9h9KSmtKyGgPGGYwz7TpKDENOEKcGqc4cp8acB9BLu6zA+1jv2PQc94E+L6wU9Z2tC6xwln8b4PdSy5A1vL34DFQY6HWRZl/UEVqvtfPu6aOdm90to/BLvbC4C4xt73bVevrCySaeaBcgte2NUTqzmwtQg7O8Mu+5dZTiBVp5Z425EHdY/XyJmb2z6rGClGA55O2H+IDsPInMAD1gZ0F2n8GsG8akBpNaXGoUlNe1nv68Yy7dHjC1BDwMBuFM/HfdjCOoLw27YKqiUruPw46j8LqlmqV0oQJ+pBRH27xyhTphxd/LSRfrKGbbuuP3GsNxdEOsttir1mJ3A0dMdBicKzM25bWINYU/6q5fUmULgysVo4gayj+b8z93AFdx9r1RyhJGrQAf2pH4ABByNtYUCE4ljka9xpvyQKhTBj3atlcQzLxOAOim30tnZsdBvI/hQhQYvZ1KNlsq9eYhzKGgVx4zGTxzGj61sc2TLGn2kWrvKjal+lxcuprVE1ocePW5sqlVI/jFYyL+rmjL5yqPgrW0nk7n3MdrUJ69QhugAPEd2gATMObn1wawBhK9vyTI2TodBrZsXQ13NTQw4E0nsC8v4tnBtlZQAcQiczkXJJ4r9lGc3kSgy0CXCPVYN16l2+cihIMT5N0pLO7lKQPvSSw2idl5g7atMwrq7coe7FPHMbJMV5q0gf0CEUbjNIprFOLPhc2o2rZqm7q5vcY98Ndoz+G1tKn2tbhmE9HnOurg3QNclAdCKyfPA4kPSFOZTEdagTWZXnXjA/bBE9jdY9i3LsHdPdY+65eOVLLXlbVQkX2YW0ffE9fYSdqsIZnH/s8dItJW55d2ic0ONAAIGgx8G7p+u0XozQMLW57jrcBfZ4E0C3yrFVifeS40Gsh2jRz77X0kcylAF4/MYYWIMhC8nDvIy/xBbGhnd6HzPly/aXWHdkyRjZqVNlAPtPfQxICT9vPcdZAFIWvm3JoFPtEKJLkn9YHEC2kQEoGa1fp5Q7xAeQBvf6hC4Sq4Kq7tQPzdZBC6fSj3a3EgiUHsa841veYhFMmNTiDoaVO156Pbn6/sdS6QL946wDw07+J5fnP02udRMls6P+RcwYpJ2q3c5ltzxXyLvWoADXJ5OtefzLHpP84ohDrLjKYXZvNAHmBo9Upmmp66AYkXwTkTOwFbzaiXbp4p51vcM1XKPei+NVn57o79O95P0N4qqtfLx3OxkLZPOoLud9uBD9AGvCWpzpxtj8vv7ogmSOWihYrzEv8W8UGhPaX7nZmfBfqaznl7XsWxmCC0gjAQ5/cWZ/mygXFjztIIyA0/tkaAFNkqoJot+knUllfbdFfX1lPAd9FrdWW8QYytsLBFSF7j98+tl6/WzBcly0/H7/sgWrZmg2qlWGew8R77aTEdfiiNg/Mqlf+Ui/1/kmN2+iQ0cg6kOa9DnZlSnMhqFrWof00wOBdInGV1zSHOcggNAhSO1MkssDyCeRszFSYP2D0nMF87pE7Zi6PwhknYvAQWd0N3/IZ43swrJ7AvnsBcvhTZvBRrAzZY+rwnDZYxa85yas6XpSiovF4EMq9ib63AoVZgUxCcUeGweqKe6aYg/L44fr/m6LeGK+Jnv5wHPhjnVGbno1Pnhvox1Ti0A/5yl1rQjYtgYy+s7YdDp+CZY3DZUtgyEk+sLamJJtE60sIRgU7n5nR8Pd/GKEG0NrigpRftrwqDWA0iSILU2qBeRGtBTUUAr6TdByGk3Rgzg8xCWAhm26DWzUen3CYWV9TPv9owFbp9QcFPHVZg0AdOO9em2dO28ZpYL5xEgT3H4bpR/cwXR+EXBDYO69+cweeBLLF4Z9i4di0zDY9zhjQRrKO06uW+0vJQS8tzOmtg0BTn31TU+fWYU6KjYgziEo0oF+eymOuPYavKbJpoZL4UwkMN9QNoRrg63kUleCVzAl3xRZmZR50JnXugp26pASNiuXL/BAOXD3Xut7TPGZXfVx2dwr+fL0NfBKe2AddX/qcK5jUGpfdVJ+CJPz82Bqu6YKS3ksGuAt95dBuKAylepE5DxsXJKJ4r3k3h2Myd4wQayClsYtUx34Qq3RfX4KxAReHYFNoAeegEdgHYfgJeP9SZgZ8bsIDSodGTW95MXHrFVrjrWTg+A8v79OCrWXovleiOjqINYkG9qwL6cy3fihuCFT2snBgoyoWuSna+pNvvmyKsG2IUwxlrucDF3vOJJQkhkg8MqTGYlX2Y2w7rOnAW6wWSWEPvYSoIEp25ubZw7igy0006M/M5ml16CvhLOluTpfG0pjFYYdEA1H/IPP+g5alnAR8p9SEK4o1mgbU+YLIcd9dhTKOJ+dgG7MIu7FAd+9XDsK0b1izpLLOI5ReS2Hbst7KuiqU7hIKtcr+lM3A3HzAqA0q07y9BA3/V8QjKjMqyQB71AE60PGkW6GkFch94OPdcYsCdnMbe8gpJTzfmH18Ih0/DA6NqjFYvnj9Df45AUjGKAPZccDXI/NoxWy/aVMmwSYeuSDMIrbj1FbeHs6YU9y2WfwnqfUCannszz4Is8KYskGSBNATSXEj2naD27DFqFw3jNo+099LXKPpXzpGzAaMB6iJ05YGpzDOiEc0IXgySGIKPe/V5AiI/7Chtf4wjBi+IMZyJ99TcGnrmvJ5vVOdVDUgN0G65ODebfD4bc85jL8o4fPu/BRSZmLjnhRh0FhCJZXEGjhtTArazgPw8v+uP3zmOsst+3GOfbxRCnc0gNLNAoxVoeWGHF76/fg3vmM242Bic1fhRZgwta0iNV0Fo0bmWk8Rw2kKvMXRVfCwM9BmjnXk4225Wtr+OR/H3IiizsHK+iiz9A6iYaGFvziUgV/pvuahTVzp68dsLNk8J7uPPxaIqhI/jPShFtjGqrb2W+7BjfiLlfmy9lugMiroUy5xhq7M8UnO815qzaukzA7VzBCvO+d3F/DOpOLV0GAcxcT6lsYgnwPCaAxgFmC8ZSKKiqr8X/3438J+BNwilYLECeuhmrpDy2XOYC+KrdfLF/vowygAzQXhYhD/MhStCwDmDrTsMBmt/dBbHq43XDOh/7dd+7adzBP+ThjQ9B51nE2Bc2z+2aDSwuNjWgHMW54RUhAtSx67UsZ5oDPLAycyzPFNgWD7ygH3mWBmRAeDRSXhqUlcdwCIDfV3gm5jDQdfzCwexf9tiNo5gXMB4y/IgnLCGjZxtcM7r1EDZhq1QST/aDGzwQZ0oC4lYukTrzS8DftsY/n3N8kfG0BOEmSywOYulCHlUto9OXfLCOGyuQ5JrBmbtkNbI7h+H3dPw3YMwdbB9UC8chl81sG1pO9LvBRPKfaljY4R2C5ViTmdtLFVF8KIlUhbPjkFBQWkgvTp4qdVL4AOS+TL77bN2/bw0MuTgONlbR3j89DSLtw6yYfWw0u1Tq2C8qKF/VeNmyihklaJno7OyoJVjailnRBiW9uGWmfoqB/rpY50f/Y0jcI1HrlxCszelmaMZQmsQFzTo4Ay1RFSpuDh3IWagmyBprcw+n8SwxrQPsnq8gm6YreK7u1yJZqvZzB/VBWuGNpVpbuSziYoz/mfgn6Pg+V8B/xDNfhf74LyBLtHAVvkeiQ5BDmdqCXUMa41QjyJ/MTl6VpCiuvlXnwtnodqHvtj8C1C/FW2POYsGEMtsdnQEfI4CuaooXlFz/uhx+PnVbVGPKuOloKcXo3ryqxT8ruRsL2bOmK+GUOhs2zN3fpuBb1Y+sgDz1Sy9rVDSOwIWPsDJGXhlBj64pqN8oK0NYCpsA9M+B8Wm74zakRV1ODwDy/oqLJ3K93XMUzpqqwtKetE5oXzfeU6XQ9t4eQPEAC6+3aoueCFv5vgDE4QrFvMihm3GKN3emSIOo8E2q9l6BmqYbjBHpjFrFio4iBelNwiTVSZFXOvV61Rc+vPWS6NA/uNoJquana/HDyiIPg7YlgeWZJ4drcCb8oDPtJ5cu4B4xnLhsvFpzPcPYRb34d6zCltzJM5i1y2BDwE/OKyOXBavb1K5Lj5grO0AtwVIIh7j6WLO86zN+YbQCeQLRt3b0Mx8Mf4VcGHUvTEt3Qf2tDx/nCmYX5AFrkVw+8cx3z2M2zaEu2YJ1lkNoq5ZDJ95Fg6Ow/rBORn6uKDO42F1AKnK/PtpX6tadb7SDlbmhXMZhNlcaOaBVh7wEm8TY3DO6h7vrK41Y3Sd59pCt9EK3NEK/FqmAfo0D7gQSPeeIL3uEDUP9ScPYT4JXLC0fe0KKoCbd1pnzfEs0CiCaQVWZp6ZVsCEgBGJTr0hpBbJM8AhtfOUsr3GUQCK4GPr11jnVBzPGWvpTy01ZzuO9bWI4sHZlPUqKJ6mzayEzvv2NR9/1C9oB0Hjf1tDMRExJvoLpjxeA7SMIU0sA85qxwk6y1qqzMjid7X4GEc7NxVr74fpMHG+URXqzLKAb3p8FnghC/ynXMgEHjfwL4HXJVoSl1uj+4qBEDV8pHIwBs0qr6JgPVGWMg04y3TcM4I18+5xc+dV3ftAA9rQZqa9GfgCGrQZYQ7t3uhzYmgzQKvXr9hoq2zVKpgvDqRchKa9GKvstKJ7lLXlPnkuX7SYT8gDJvrJphXwudBdZOjj57/NCY+HwHtqCSGx5w1WnG9IZCp1MPMK21idH7TXcoW1XHYBM6bUzTmfr10tYSwYWrfNec+twKV0AvoCo/Uwf6Ci6C9f7bJUpdJrBxXhoMCnfaDuBRsC1sP2IFyFQM0SRDsqzavz9BMa/38J6GtdC6DpOeA8HzGd94wxFUqpVXqLS8AleuG3CewDQmIJQWn1U63AshLMq8NjgmBnlGJRjl9aDmuX6AI/3YCJJpzO4f4jnYb2uRPYjcMl3XI4SCmM15HBlfkpUIUAWBCtxwmxPpwscCwLXOQ9BsFaiw1Qj8coGN5uPCeBf1ezvC4P1PLAQR+4uBTEC7ggJDtOYmdz+NWt7VZtBSV28yLN0L9nBXz1WThQObinj8DWkfYEKs723Ox8sTGOc3ZkVW2hKOApAX2sKS82vcSW/ygRiDZFyMSRO0toxv/J2tlRCSqOJY+eRJb2w8UjfMcY/kEtKZXty0fNlaD8tYxiA22DZIOpgc19GbhY0kEni8C76tFdOqKZ+WJc3U84MMHsIydovG6QxuWLyId6yQ0cPHic1auW4ZwhywMh0vLTCvVcZgXpTWKg2zBhtE6+KuBHcbwGui3MxiskXQ5pde5J+gfhh931q/V06qi2616baCLsD4DfAN4Y/2cFSgapOvrF/dEOdEl5bMU9EUABiYHjaVI6/SQuqvZLOY3iE4qrXMXExaMA9PX4XLzXGo3+OjTTuBhtE3lF/BzvBY+utzwPpFWHrXh+9hT0G1jfT1m+UmaurWbn50aw59v06tH79qJWf55rdS4HZ5J2jV3h9FV1RQ7QBh9VpkQeA4VtT2dOwCIAj4zBhf2wYB5tAGcgdZ3aAHPBvDXsPXaM9asWKqC/gvbNUwH2VQpkVTCtKZEJgm6ycx276hC01dadwPuBK0TBgon23uSBECLdPgjhlUnygW5Y0MVTxvDORGvnXczQO48ypaxm7TEWu3IBHG5gVy+Mres0Qz8QhFmvKGo+W1hFHYXjVYD6ou94jqrWzwI/S2ftfN3os6ddtZN4IbQ8b2sFHm0F3ph7fO6xueAzT/DCkoNn2PDoKHbLcuwl/RjncKmuSecFtgzCbYe1rGL9QFwDpgzm4oOWQnF2dt6g5T9FprOY8/n2PmgvrSKoVNzfBYPmbfH6Xep1vzZeA/DkngvywO9mgYd94BoJbH1mnPTRUdJ3LifdOKhMimKv8xa2DsLOaVg72BmwCgIhIGGe+7Myv/ke/fHvZ+IxF2vywCujXLB+OULMRHkhb3ryLNDMAk0vvBTgPgNvN4atzqv4YsEKcVYTZZkCqHuayiy83HvVxAmilPsnj1CLfkEC8OQRZdYVQfjCUXevjugL37wKGG3UJBhqeSZbIZ4nBfTBGX2d2nIhSP0cYrPnGSW1t8iK5grog5eSgVdkd0+7wLKgQXqT2M5uNOb8gN5U3oe0fZhirY1TKReJvzsfs/KseRQ+TeHX5KET8Jn2AXpj2p8c0fe4NfRkgYGiK49SUM/ZWaiY6yLO3Yu+IJ4UpS3F/QYRV8J5s50lcygLZJmn1dLnhxpattR7+Cj58qX8wMAlia6JAJqkMPH8mYJqLxCDGE0xLDcx0Ws1E2rEsNB6eqwlTwy1etJmOUklSCHt+VWp6RN09rUvsMEQWq7zIPARzq6l94bYbjjotYv7XvCxJDFoWW3b0as4fWUCqg1qz2oF3QH0fSmQq/T8eZgtPnYmaXq9d1sBMmHaC915oI+Y8HeWqxPh+mCZICclIU9sR7Ail/PT7ks2ydzkRFUMt7pnVTVxmPNc/D7XxIXU3LwBvqKrV1H6UCQ0301nEPdt6Nqrlvaeq7WciJBTEVYNcxJNQWiJkOXCoyHwp0G41guPi2ByoS7C+zx0J1BLDPUQ6EocXYZ2UuwnPP53aSv4Ex0LBlbSPHCCM+t7WGOLdWPa/ecBt28M99IJ7KXD2A0jWgcRhC0BborIwQQF8aeywNKi/25QB8zuPY0ZzbEfGIJXTsFly2DDkC7kxGomaWk0+0sM5rrRmJEBs3Uxxgs2UYXjYR84ER256qNwWuaO0pcNhcibZp0JgZO5Z92hMdh9GrNxELd2SCOJtB3Djxp43sBjuaeWC/9fFvhXTeHSINhccLMZ7t4j2A+uUppslXZeBSPBwJtXwFcrIkIXV/pEVxzvavS4ujEO0nboqgY3FAazI+snakB2HVehosuWweZhQG+gGVPJxqWogYtaB+SxTt0H5MgkYc9J+Nh6Zq1hxloGU6N18onBuAjmrTnvZl+OCihui+IVtHsLzUC/wHGhwsKQDlxS/rB2CdhR5Qe+YwV+/RKlXZ6YZvbZ07Suf4VsRQ/58joPPHYfH/nIu0lXL8E7tcTGaZCqBMEtj6Sp/mR0AyvoZdqyrjMq2h3PIwKCK6VCBSjU7n8YMF84BYXwTUc/z3jdTgL/FjXOH0SzihnaQuYI7XuhAJNznf2CjVDunUBoZYiBI86y2KioFNYh2RzF22IuBcWPzt8LCuiL7Hw1KFUkk4ts42bgJRGuiPdlEAWAuWhmLfYEaweoQoDHjqhYnK2C+ArwnU+7oYqIimtXi853yyu4P6tAXAiYebP047RBBrQDFRbNTvSgfYsvghLQehEkePIArpq1rD5mMthxGn59Q4UOZdoBi5ptawOg61GsVQpiGYGFe3c8y/p1l8NdJzgr+1G+pswoZlKprZa2EOjTwPfQ2vILaa+pwll7Dvh0PJa70Xafb/CCi2VIBCGJYN4D+a5xwtZBRjGcsoZthbq9swrqpaDbqwOKAbOyF3NwAhhWzozovrMgiIriBTlnlqkYHf3FhbIV4xMCnwV+zkBXrJFMUSBfPBfOWhKENFfW0puzwP+bBWYyrzoqB8aQnadomho/e2QS88blsGYAZ9ttPB2RgZQ6uGwJPHUa1g5UstcRHEZxPGMq2UNpg/vFtNu2ljarsP+VOZcAzdABMopsjQC7gYuB3wK6g9CbeZzXe02i8yk+cPGhMS5+6QT2pKfWEmofWU2ydIH2ZE+tzqnl9SA39cEdB+Fdy2P6sLLWc2mjn3OM+TKkLt5T47S1Y0Rg+w+eYOv65QQRfEvLBHwrkGcaEHy5JfzHoDTyRxz8njFsSgyZUVaIMR5nDT4XZluee5uBv58HbPCkXuvm04PjpLs99QC1wrm4ZKS9p5fMuoDIa2GnzQGMIWByBTj9LU8zluFICJpljoC+9GusUQ2Y2qsHD6TDzoS28GI89gLQh/h3EbUpU9aywqtZMYCtuXlB7qvOjUrWmza7ZHV8bwer5vzLQueTVcB8K7RLloqFX9p50/5cYwhS7FSGBoalzuBqqntkk4ARq6K+hXaTnD3XhZxfGM/HAHxL2vdbce+mQJcRaoaz1kdeZOeDVMB8IG96tjQD232Ax56i973v4loD4mNWPQL5YCqg3ppYT6/fMSGwzICJDKjCx1pgDd0uMB0sfSJIPUGs7bCbxfNcEts4be2Yck+Pz29GafcfopIdNoUbKuS5kLQ8oeXJ4zxDXI8GSp0KVwX1gpZVPh01kjYOnwPEMydbH6KOUtCsfVGaZwzElsxSMFCL4HorMJUHBnLB2miDU2GJCNtE98OfIceTkKf2vBoBHWUFmW/bv6LErqOlZ3yUVFXTCe6hUxPIGf0/F/3z2tl6WHODt0HUHlwYhCVBWCKq/fSM0Qx9y5i2C2E18Vr8XDO6f1cD4kVGvilartTIRTVIgnCjF24Pwj/0whsR9uXCg154VxAuSaAmljpCtwhdFrqL/f6nMF4zoP/t3/7tV33Pf/kv/+XHOpgfZ4gIf/M3f8Ott97K9PQ0mzdv5rd+67dYt27dWe89efRFeu86zOXv7KFnRX9HxskKuP2nsd8+qsJ4zxzE/C1w64ZxQdjg4XikQgcRfBaYzgKLfRQF8gEz1cTccRjznhXYLYvgypXtDBm0I3CFs7l+CC48g31hBvvxlZjV2n7JxuzMkAh7gtZPVjMU7c1Bzl7cQMg0MyUBJASmcqHv0Bhr7zyEm4BkxzTm5yFdP6S0FhM3VWMYEnBBM/R5JjzgA5eLqv4nDxzDrezBbBysZNKi810cXHHjbhqGXxL4+mi7tVSQOY+AFaMZa87OVuyqzKvcVETrVsVrFqvM/u0+0a4xf+kwfALyrSM0gFlraIZI9QoQYmmEic6cyfUa8uBR5KJl0NfFSWOoOUtXpDYbF+n2iX3Vzb5j2ErruuqzTSAPDERQKdEHDBCvm2Zw2+sm/vFDG8mX9jFbM8wEaI700hzupXXNCK3thwgPnuC9Zhutbx3Cf0SQtUtwuZAmWq9btmppekLsQZ8JNIxhMBrazh70+nOP0QyfANRdu4Y+Xp+zdshzjALIV6nB1ex8ITAyBfwbtIb214ittVCANRfQF0svRKe+OI7y+Kq0+2YOdcME6nCNGgNpokEi5qwz1FE5FyV9mvamDxXH3ER7AtggXOQDz8YodYhrP6BCQCHo78o6ehHYc0b7rVy8uHNTL/mE80WrK5tkcTDQDqk3fTvdXnox0jnnygM0Q18GeWg7NoXjugXYFYSLIiDScxbwXh24ehXMV7UBHh+DlXO0AToCFvMABleZX3z8xvveBVMt9UAbebvMpmqLKh50AfKCtAH7DrRzAnRG9M83bgUuyUXtdEwNFNfRTzfxJ6YJ71jOS8awzRpqzmBjD/rEGRJRMJ9UghOs6sE+dEyBjzeYBBChXwQboCFCHXNOCm+xXotMhfdqv58PgU+LUAduNYarE8uVzlJzpszQ1+MhJEKkYHsyH1ieBzZkgadagTcfHsPcfBDXgIV2mjvfsYy3rxnAOotJLLbmsHWL83peyANcNqjaKrMZuFonqI8pH5uajgx9cdUXo6Uqc9dluRfEYGyR4dLMneCdwxuDYEpAvwu1I0ZERV59UEG2gp3lBdk3hnzjIC5+UfKzy6ktXUBPaqknGrDQwt6gRnxdv5aVnZjVAP1cpzUK/803zgUGYf5e9B/95IfUZrR8WUoXsoC0AqEV2J4FUlEb2TKGzzrDRyxsdZalVoFObg3ihbubnjVZYHNQnyURSF48TXrXYervXkmtV0huPqwHtHaoc1550IxZkI6A27xzNEYp9qCJjsyXWkNDWWCiyNAfGEN2jiGblyAbhglVx97Fmn03T/AyrvkS7JbsHznrOfh2S1sf91ac4YwJLAtO/T2LZuldZT2+StBibhKieHcvnaAYOn2Y8w0V+q2wD5uV19UMbvyyEG1igA6htyksQ86oPUkt1tsYYA1a0+sqfpdpH9gA82fogyhore7XRQUGUilFinOdm/EswFErC7QyIcsj0M0DL+SBnzlwgr6+tfQePMH6lYvwLQXwPmbkvUCwncC+GNPesMhoINFYYhmnCpAucJZG8WbjNRiQnJt+X7x1gragYHGti3Kka4DPASfQwFtZa26UPdNqKROm1VIGTd705HEvsl6ooaC+S9osWfZV/NfnD6vvvH7o1bP1HaDeaHSq1QbDkgVN7sVSKck04NXKAlsOjqmvsXkQt3oJVuBqD48LvN1AKEB9zZ5Fu5dY1iYt304eRttvM01wlkmK4vWuY/BURdS5WHzzgfsSX0ibBewFvIsaG3rXlXteEbjLBHIfu+QK/xdCC8O/NJpYudoYMgOZ1WvZKuR7UL2GTPT9LSg7hJSaDzFoP+XhL0LgmId/FwKrBJIQuFjgShFSgbo31BLoDtAVFNS7n4LgZzFeM6B/+umnz12fMQdQ/s8YX//617n99tv59Kc/zYoVK/jiF7/I7/3e7/HFL36R7u7us/9hCn7xtlEYPI7NwWbgWsQMtCcJyigzgH3+BHblEPjASAr9qOLwOgMnoyJuv9fokfUBc8cBzJZB7NZFGolJK85qyeeJDmcjFnNduRT78l7sykHNzkfLbIIwFODxSoawcOKKzWHuKIINIehNHILeZEe98MbdZ5ApsF3gZsDuOEKyajEWEBwh1mS9V+DRoFnrvizwMz7gJJAcmcQ+c5rk1ze2gXzxqLnSscKLbkLWqEF6t8Bzp+YA/vZrI2dnZwzq0D1WmWdJkxJKUNTxePpox7mQx0dprl+ifSHRmsOGREF8H7BRFI9M6V7sHseIRy7rJ1jDGWdZmFjExfZ0TimXhfP1mlZ9BVsVNrlwFKxzmFxYhjCKtMF8cRqLOYd49eOulPXXmbHQcJZGamhlhoYITVOjZTyZhVODsOg0dN94GHs1ZBctpNlb05o+FyPUrQwZULL4RDzcXkPH/EwB8IHuOJkmkOKQrLMaqFyPMt/KpKQxnd0LuRIJpZ2d///QbNU/RSntBa3dopvoQ5y9Ebczebp5FkuunbQVpBkgSTgtsMVoGQ11Bz7+b6i0CJPOuc2dWVEnWbnU7Wi+CEkeSFqeS3LhFi8aNBLKDL3qxOhGZEvHmSgWN9zepKs180UP+tcyTOXImnnnzVRemIpNkc5z2sHaoL3vWtFAxbYssN97bBFAFKUWZug9WgTdJA94L2ReN36ePo77wCoSZ3BzqfaJOQf7oPK+KrDvStQLPTQJWxbNveBlqUER1KlqGAhKo6+Oq4C/S2cbt5fR4FL5niDk3tPyWjNn4rXLg+AfP0pODicneXLlEt7pDNZqLXMSAb0LSr+35XwMZqQXBMzYLIz0qUMUhG7RTM5kEBa6TlBQdWrba11bb0oEAg95qAeJ7EXDA4lwTS1QM46as9SMZugFdUrSzJNlWlft88BVPrDDB67ZeZowC9ID0oB1xycxF41oCUFNNUVcYrEEDTY5qyKwy2uw4xS8aaQTaHmBzMcMsumkQqJ01xOV+ZUBjBCd1AgOiwsZDOTGEJwQrMUnTp13FNB/HLRsLPfaji4X6j5m6POAPHdMF4dTnzjdPUb9ghG6Uke9Fvc5oeJoOljbAy9PamAqzJlbOHcmu/RjpRKDixd1kHb9rt6T0RnPPcFDnoUOYE8WuLAlPCIaaOjDcJWFl43hZhcYMIatVgNLDRFuyQK/mgesRCG87WPUXjhB8rOrqa1cSM0Av74Q/uRFLQ0c6JrDhgvnDVbMnaeNpSm2YDJmgf5MM4Th8BjupoPYBsiTBwm/BLI5iudmhU3wSP1shW8VxfUl+JUI2otSlWKtFb8PPtqo/WOEnaeQbYuYXTnMcmMweewy5AM2ceU6fLW5zbWLxTVcTAT0kXFQsErEmPOqxYtILB8MbRAfH9LyyJ4TmB3HMJe2Oydpbbl+drFmAKYIDDqLEassUxGMaJYe0SCPlhnYjnkM0F5/MueRoW5IUU9cZOkLRlrBaCqOoY5gjWkLMgZllGR5IM/19a5MaBw8wd+565BGkJ+ZIr+kgSzvwdccoe7wvTVCzYExhIOnkF1jyJYl+FWLEYSmh5VWNzETE1MGAWsZtKI055i01oubdIiMlq55ZW1NB2GRl3YJRtGhxBoWoUyuB4CPUqHdeyFrqf2cyTRg0YqlMWHfCXj5BGbzENmiPmonGzDWwp5okB6bgUNFk9g4rhuFdwmsXwCDXXMyQqbtF8wL6jsBvcQ9WFox8J4HwsGTfPLOQ6STkL48hfkg2DVLuMwJ1wMTRm1wICfHkdWdagQEwYkC+TxqeGQVQJ941drq8ur/lHZjz3H42pyAxbqi+xdtX6V6Q1WBfGordkgp+CRWgXyugU3yOM9cOByEEQ9D6N73T8TwFwZWAWssNOJpsta0y0xR37PKclPRO0MzCD4IB3Phz70wEoR/jdAXhBSh5oWaqHBgHagbR5cIXTFw89NGyT8xlfv/2eOmm27iF3/xF1m/fj0An/rUp7j11lv5wQ9+wLvf/e6z3p8vgL3vW8m2FYNlJs0S1X1fOYn7+ijOg03ArV+Myb1SCoGNXmt611rDREG3917F3R47hclz7FuWqpNSrXetxQhB4UW2fOnIsbRX///EDHZZH0YEiwLdxUE4HXTzrAKXwggVbWzKuUGbXhYCwatxOhqEyfUD2GensNFu2AMeO90i7asRjNGwJoFLMfyBF36QB94RAhchmrW59zC11w/hBro7a3kLiqxBb7aCIubi/Fb1wR1H1BFwhqK2tbg5jbRpl+V9jQKJeTeWmFkpM/TF46JhePFIeS78caGVB1rWlO2LWhiaAjvzwPam8OZWYEMISCvDPDUKb1yhtWbOcsYa+kpApRmoueIyr2nENyqgN23A3JVgcs3wFo5rSbeXtiieELPEp2dpJTBbd8waaFlDM7U0raHpA02EvVsWcWI2Y8FUzr6hhLUrFrHu6Az5F4/hNywgv3gQWdqn53E6h25dQxNGy7W1Xr4zO2/jHArgOiPQVzdI05egN0B7V5wDe+cD8qXRlDawL+p9M+B/AKMozbkbrfet09aUXA4U4ZsSyJjO11aKnzuZBJIFxCWMA6usYdqLMg5iIbVQfZbydfVRbPxFW5tilFgzCEkWcJnHxfZe9TxwOMDaCObV5480da91rATgsUO6uV/Z36ahV4F9YttZ+HnWWcfCLMBEN0qHK65N9RJJZ1u+KmAcR6n1xccWa9d5rYXdkgWejCU94ufMK260eO333gqx7vIHBzBNcGkgjdnrWtE1IrHaqm6++VUjYtXMtjGwol/P2ebqgigeCqyENjUvVB7vpDMz//MoA6R6BG8A/gi4HbX/N/jA6yPd3uaFHQr4gycJT57BWeCuQ9TeY9i2YQRjIYkilc4ZUq+U+4JuXwj82aVdcKSBGVZwb4NmNwdEmPRCSPV4qtn56l0nIXbvqFB1354Htnt9f7c1vDcNpCgVsIaC1RSDD0It87S8tilNcm1Zern33OmFmQW91M0UzELeD1NbBrX2OFUar6vHcoJgIqCP1+jyIXjwMFw1NK84nglSZkWry7cERZU1GYIosM2iwFklKyvW4J0KaJFYBXCpo5VYDgKbgpBkvhR2dVmgHu9L8YLMWiQHk0d/4KIR0pojqe5zXjqDSlsH4OkT8OaR+TP058lkzwWExe8WonRtiRdavFLVg9dgmWTqvCqg94Q80B2E1x84xcWHzzCyZoBVKxcRjCELhr3GsAP4srWcARLvuTUPrM892+45TDoxS/oL66kPdFNzWjJBXw1WdWtZzLVLzw7E5B5Jz60R0DHHPHRk500eWJgHxnyAnSehBVIDGhCePwbrhtSv6chIhg6mY9nhpqnCaq0slBk6TYoosKgVgF6UPSMHT8K3D5F4kFemqb8H+tcv1WNMrR5fqp1sXm1/N8aAyLzCeIM+MJsL1nsN2hjUh0scUjNo25l5Rit0ZuezQJ4FWi1P2Hmc8K0j6ju8PEptwxjJ6kXIwhRZkCALUkJvihwbR3afwW4cYPHKJRgi1V4Echv1mUCc0fk6p+zD6JsMAMeZs99Fe5NLO/hedAkpGHE1oRSvK06KoKC+RSx5zGN23kdQ7wM354GP7z6jYL4bpQHuHsOP9RFmm8gZITRikDIIUgDzZw7B5eOwYpBFKSzvTaCvjqknmNHTsPs0bFlE/4olzJZAXteVWA/WEUylBBFKxofJA81cGA5B23migF51tZSl+WZj+B7wc0S2l4DPAnmuzN28FWjFn7NXThC+dUiTdc8cInfgFyXQ3Y1Z1IW7cBF2QwPuO9VeC1u64IVT8L0j6iSuH4R1vbBuIRw90+4eVaXmJ9IJ9EM8bwWwLzQk8sDIg4dIpvSc2xmwL49hViymn8DmoB1R3mL0mnoT2QeJdlPKvfrWzTz62F73euM1eJd6paR354GugN6rt1T0n0ADFqtOa9C3vwaDCQzUYVEXjJ6GHcfg8qWweUSz9EHaAL+wRTVLluscQzwGjawEDmXCRlEwnwCXG/iIwF8B/9yqzkITBfTKmFUfKBNNSJRleXGNv+zhhiDsC8IHvfB+hESEGhHIB6G2/yS1F47TtW2Irk0jdEUbZIr94DUEQX/U8ZoB/T333NPxs/eeI0eO8LnPfY5HHnmEP/mTP/mJH9xrHVNTUxw9epQLLrig/J1zjk2bNrFr166zAP3ipRfwF29fwSfWLFY6rDHtnoRAsmkY+wmwTx3FnQmYx05jl/Zju1KMCOusOnQmNYxlgSV5ABHM6ATm+WPYj6xt07LnAt7EtCko+RxHbmU3ZrSBWdoXBZHAOGGxCCejI9dheDg7S19SLvNI//Rohj4Io0FYvqiXrA5uQzdm82Lszhnct/dQ/4VN5ecY9DAvBy4zQmJ0QdaeP0NtKqf2xiHNKpWK1MUcjWYsCnpY1elZ0qUn98gURAXnqkDGfO17DBodPFnMrfrwmtmUKpgXgRCX9AUW2TZM85GTtO44SP6+VaVycCbwooc/CioC9JgXrvHCW58ep2+kn7GVC+mxhj5reSa17EktL6eWS+KcSzAOr62G0MQWMratcl/+f7eDTDMyRYa82FSEdj2hYkqhOZ0xuyxh1qAgHgX1DWdp5ZbcBL61ZoSD3Y6RG+/h9NvfxusGB/iNSwxhfBZ5+gz+q68gy+vIVUPIxATh2UmkVxhfPUR/AY7iBbBz1heGNu2+DuR5/Hsb9JZ4MQZpski1KyP0tFXFqxn6IuDyFPDfUTr9/0CdizraQqeo87Uo4DoR/6dG+17wQkeNrUib6RCKzLuHrDuhZgxL4//mJCSNSoS+CAJU8O982fpJlEXQMaLglssCrqXAIckDW5vC/hBYg9aZe1GmiCa9ArXRacz398P+6CJ9+xj0pdoZogrmz9ddoUQGpvPnbqPO4twJwFlZeSp/nozXoLwvRXA+kDR1fpuzwFQWmM0DadASkSAaVPQ+0AqiFM0QaB6axD9ykHDAYx3YbxzG/YqlvnUpNWfocobUaUvIeacWMy+l82Lgc7ffxW+882dgRQ88fwpkeXuzLzzR+FpMm25fBfQr4+dfg4ocXUlnds7Ec3EFmpWZCcJ/zAJ/5oXfygKtWDtogsCT6rSEbmAC3rN7gtrmpZq5trFlnYvq9lUwH7MEZtVCzJFp7KWLdR+ITK0FHiZCG7hCe60G0YOUECnZsU2pxO4ma7zQkwlvNHCts1yELU1zAqTGQM2Q5DEIVT6r8nlPCFw006S25yTNNw3D7Ax/vmmQ964ZhprF1pSOblNXYq+OPWDroIrjHZiAdQNnieOZPMRAqelgai3WU1hm/NQRzZFMmQMl6Im1xd6gysyJxfuASfR/Doij21mWthRUugJYxjl2ZwG77wzyYgPetRgzegZzxTLMlhEFkaWmg20zz4q5be6H747CdNYu96gCez+/E1fQ0YsYFSEy84BFIkzFRWq8hyB88+u38smffS/Bq7ZBiFRlBTmBrkeO8nceOwECtcemCFe38JcOkaSWC4xhq4HMB7YbQy0EfLOBv+cgjhrpz20kqSfUEkutbCkLvG6Rdil483D06ivzy0VLD84FTOOwQXVqTGRB2KhbMBiCzhGn17YV7c+mIQUd1mCcULbtch6JGjZFZl6amv1sZCGKrIUKoA/UYmYs9UJo5rB3knD/IUwG0gNhAtbtHGfJmmFMiNl5b/W+wzC/FZpzHanEGYVYWhAYyT2zRXYSfZMYQ0iFEKzuJXPsuOSdYD5kStdu5YGGBPJbjyCJ5l2SHGpHWnTJJNJoEfKAzBpEclysPLpmzxQ/eDeYVYsjYwFM0rYp1kVWghMFNYnDpK4sdZy7JwTae3gB6mfRkqU7qfT6Lt5s2y8boh14skyBfJZrnfn2TO+TZasXYndMcfuBZ3jHhkvgnSuR5Zp9D6DrfibH3PoScggkBeNB9k+CqXPFmQbDrSbMCmYyxzajtNMr06x8lzC9ergMrIkBsRrQCNZqqSm6Z5nIhLBxT1udi/psFqzXsqlUIAlwdc3yP4zhGCrSq/ejZuNbsZwgy5SJkO0c0624G2wD/EVd8DObccZQQ21cDWBlN+w4CpcsVc0kQdfEgXHYOwsPjsJNlea9L8RM94ZIza9m6asZ+qD3q4SA7B9HnjxBgiN0e9yMfo2Z1mCfx3Kl0bZvb3G09YmArAWtyChs5LGePAYtfLQNLg9k0b/h5Az2sVPUnjjZbhdQjDcPQE+3ioMfnoIXZ+G473zPi1o6y+bheTP1igUkgnplMIWooTGaCVuDagSk8W59H3AsaJeC33SmLf5sTekfaPmElBl6D7zg4b+i93jNB7YJpGiZUz1eu9reMWrfOqwU+ycP0f1JSLYtO4ux9dMaP7IonnOOlStX8i/+xb/gQx/6EH/5l3/JH/7hH/4kj+01j5mZGQD6+vo6ft/X11f+rTomzxxidM0QI2kCxb4cwZZDabJsHsGtH8JlHnvPYdyNuzDvX4tZ2M16gdtFwFjG88BACNDMsA8cwrx5OWZxbwnmzwL0ddduYVFx5DBgVi/AHpzCXL5EDW40uku8bopngjByjjr6YgS0jkRCqGTopczQX3t4FrNmAPMza9RALR/EfXMv9W/sxX58YxncyOP3kKtzlzZyuu49TPd7V1JLXZvyWxXoKn6f+U4wHwMWrO6Fg7OwemEnHTaoKqRx7WTbeVv4BNFMRZB2a4zCQ39xXHtav3M53kJr9SKyb+wkf/Ak2bVD+DwQBG4KBieRbkmgeXKKJXuPccN71nEAw5ixTBjDTGJpJoZ/6Sz/seZ4QyGmwavT8TqHbiRlQpGCjZBgZ1RZ/lS855NQoVkW4ChohHtm0jO7oJuWMWU7t5ZAI7XkVnjAGp5zglkxxOSH30Jt6RBX+aB1pQPd5G/txr9hCPPMKeSWA5BBYoXkzEH8Bww960c6GE8GXWNFxh7UJrfQDVUiQOzY+EvU2273UVDzSqGuCpAvIqE5KsTy+5WzdgpYi4L5erHU4tpYEt9zDFhHhUJtKoGuCogvg2ECkkOrnjCIGmML5HUHzbOzEsUEq7+vOjmzVFrWSZGxVcEtG8G8awZsFtiSBUa9IDZmsUUIEw2yFyZpvHgCezynLnPW1jNH4ZLlld7s5ty1q8UNVL4ufh/vzwLQFyNeq/K8xF+X80Yz9EXZvQmi3S6KYEUWWJgFljYDh3xgawhx3wrxFg80D08zu2uK1p6TtBJDy3itb0zAZJC8fBK/bRkta8isoTtRCnh6rlKuwt5EYP/2Ky/Rea7ogTuPoDUMphPMx6iYjyyEuaD+AAoe/xm61lKgy3ZeB0HFGwXAB34vD/x7H/hGLnw8ZomNgGsacgfS0Cw2F/RHur1p0+1N0VZM2kyDAtCvrGO+f7J9QaKdXBSU5VBer8pxCTHI2VQwT6stgkQrMJEF+r3wSQeJhEixdZWscA5icZlmNZMIeF0eRf+88IEHj/HysiEuvHKICWfYaR2fiiDe1CJ7KbUYCbhgdM8rGFmpg8sWw9OnYc1ABRQG8BaTRxHYOSytRfH4TgE9PoId75UuGmtCywCyRMyZtsUDQ7zABwNcnOh6LajfNlfglWQBO51hb9wP71wGVw5DbXUnkK85fQYNRFRFqnpSWJrCrnFlIlQz9JG1MR/tXoLEbHWsOQ36nAgMBRiVSGtFM9yvv+wSrVXNIqDPY8nOdBN5/ASrnj+p7+0GOw217ceRp0/hl9TwKxbhVya8bbiX/afH2bZngkUzgWX9A9SuWULqLPXEUatZXBIDf8Zol4KbD8OhGIiP16sK6iU5d8mliChTJLZ2LNv6+kBfEJaMTsDRWbL3Lyc9dJqwfxYOecJaqTD8qFCIvWbyW1pO0mh6ZrPAbKQ0Z3lA9o3BSydwm5eQ9XWT75qid+dJwrGMsLKObF5AeH4SaYBdCI+tX8gvi5QsGysx2JPG7hOvMsrgPKiOUlPB4JIssCuXjrZ8khiC14CElga4UrlbvGgWswLmZ+OjEYTsmTPkia5nI1oS2vq5lfjVi6mJBvxBkLt2wvNNBY7TcOmDh5CfXYippxjxGriIa83GMi7jtLa32FsHEsvJqi5TxdcsasULYP808P/E992LlslVQb3EiEdTYnY+PvI8MJMH7vKBX0VwJyx+RcLWdVv5r1es4jdXLSFBCMYSEMRZfC3BXrMS+fohJIfQBfLOlfhli/isF/4vBwNeMPfuxD3XwtRBxuGKXWc4smIxZPF4ciKA8/pzzaqmUsEsja3dWs3AgBdt6WbAJIYk1RbWSazyuqRm+YEx/GIQ8syT5zEr3/JkrTjXIOS5JTg47WBwIfRsGyJJlcLeMkYTE9Zoi8gL5ohHOxO7R6EB6+ufgb2VRXjdKPy8hY2DGnTMA7FXpQaA86Cr4+gk8vBxaDSQK5dz75p++o+d5s17zpCsWIh9Ygz3wAnsm4d4nYWbMpiwsKiwrYBHM++NIjOfaXY+ywP+wBi8fBK3YRE1EnjiJPaVadzGBbhfXYdbuQD2jymz4HUxYAGVTSy++MZzsKfihDx0WN/r5axMffBSMnN8FhQb5Hp/HckCbz58EvacwW4cpLZiEQL8MvCnAW7L4YPRrFtrSwZKAeYD6p9uF7hOFPKkosmYxz1caIX6mVlqrzSo7z1Fbd+MgnmBrgDuiaOwZekcxtarmpQfefzYoYJTp06R5znPPPPMT+J4fqTR06P5sampqY7fT01NlX+rDmMTjv7Lf8Kf/Zd/xWf/87/igQfv4gtf+xa5C7hu7S9++5NP8ejLL2PrCe5dKxkf6eZbf/x17NFJVobAWO657877OLxzL8tDwDx4lKM9ws17HlfVxCig87lb7mTv0WOlU/DMC3u4/jvf73DiPvPN7zA2MYFZ1YU9OMGTz73AQw8/UWZnaDRZ/Odf5XijWYKSB+7azuMPP1P+fGLsDJ/579epsxoEnwt33HovO1/cqz2RvXD8yFF2fPcu7LqFCiwTy7e+dw8H3tRNOtui99YD7Nu5h7vv/gG9TU+vD/R64Wvf+g7NO/fQu6SLrg39PPTCS9z++JNlprApnk//xXU0Qx4pcpbb73+MB59+vpzj2MQEnxl7XNsXRUN1/ffuZ8eLexTQh8CBvYf5xpdu7nDonvzKzaT7R0v64e7nd3HnjXeBL9Rqhc989duMnRpXI/bCBA8mR7j9iSdpJZasJ2X6/av4q7tuYmbHcTIfyHPPiQcfpf70c4QQ6MuFd92/n1vPvMAvDnbzu6nlD1PLuvsfQPbuQxJLnjpuOnSUW758c7sVNvBXX/gOe19pq/jveHYX199wd8d6+8x/v46xk2d07RnDYzte4P5Hn9DIft2RNZvcdf2NmCzjdHTgtt/3KE89/lyspRdGz0zwmRtuZmbG01jcTQO47d4HeWHXPu2DaQyfP36Cr956B/+sy/HP6gmLN6xg8I676D49Rqg5Qup48cB+bnr8UfxVw8jWGhj4+snHOXNqhsW7xlmE4cWnnuPx+x8tSwuyVouv/MV15C2tl+8Cnnn8SV7Yv1uzJMCp8Qn+4ms3toNLAl+54W4ee3YX0wLTAjtfGeVrX7yZ6aA/Twnc9JWb2b9/lBlUYfzfP7+LBTe1z989wM1/fh2NU2foiuf8uUee4cm7t5d19AebLb71J1+m1WyVwP2u723nge3PKKAHxk6O8zdfvbFdYz8D9+1+htq+V8AoIB89c4rvPn2/Hn6cyFe+dTt7DxyhqMV//rldfPfbd3eAqX1/fh31k2c0w9b0PPPg0zxw18OYpjoI+WST67/wDbKZButzz8mDY3zzC7fx0NfuJ9y4h+yrezkyeoLPygtM/85FzP7SCgJw/eRL7Ggeh9cvg8Swd/Qon/vGbR1icfOuv+/cWzF20b6MT0CaQDPw4PMvcvv2x8u3NJsZn/7jr9BoajOVADxy93aef0Rt+iSQnDzDzX/2NWwrx7RybOb5/i338Mpzu6Dl2dL07No/yh1f/TbhrpcJL54gbD/Bl//919j51adpSWD2PavY8eZubhs4xmwvzHqY7YbPH9nB6MQEDWuYMYZ7HnuW79y5nZm4sTabLf7oM1+iGY8PZ7j9vkd58MnnwBnWr1jG2MQkn3kossiOz4AI198d7Ut0FPbuPcznv3hzhxrubV+5maP7DnMwD6zLPPt3vMwDN9yFFY3o9xq4/s+voxnXX7eFXQ/v4Jnvbac/CL+bCU/PtPiTr3yT2WaL5ulp8hnDgxvO8OjQKf7re1ezbs0IE5MT3PClG3BOs/KpgZtuvpdnXtxT2si9R47yue/ehVm+ADMeMNMtbrntTo4e0iBFTxAOvLCbB799V0dQ6S8+ex0njp+CVo40PA8//Azfv/dRQitoBnOmwc1f+yYX7D0K9+7GHBjj4Qce56knnsO0PLbpOXnkFJ/57NeVKpnp464772PPzj04EezT40ycPMbXTj/NQWs4Yi2DieW+W+/k6LFjCupTx8u79nHLrffpPhDZJJ+54WbGJifgdYNqn596jtsffqIEhc2ZJv/ps18lm26W5KDH7t7OS488g0Pp54ePn+KmP/saZJ7QVKXmm279Pjue312WFezZ/jx/8+kv4XcdIzQU+N76jVs5uu8Qh5qeza3A/ud38cBt31etm1yz83/2re9w6hvPw/JeuHIJD774Erc/8VQZiG+K59N/9XWa+LLf8+0PPc6Dz71YAs2xlTU+c9ttHUGk62+LxxcDSntfOcxffeE7GqhteWjk/M3nb+LgzoPQynENz74dO3nwpntY2sjJG6pwfsPnvsHp46dYMTxMaHoefuI5vv/QYwTvkd2nad74Et968j6++c4RWAhmFh6Z2ctzlzbo/uQmei5ZQnbmJN/56xvY9j+e599+5RDvfnKC+vcfZzo5Qi1x1FLH6Nhxvnzr9zqye5+75172rgvw3DgE2LFzL9ffcV+FfRD4zH+/jhNjZ0p78sD2Hdx+53b9IQs0Z5p89s++RmumFbU0hCcefpyjO57nfY8egSuXc2a4xtfHX0Y+tBF58gRyZJLr7/mB3r+RibF372E+98WbISqHzzY9f/X123j5lVEasV55x/1PcfNffo/GMw0a3zhE84u7+PN77uDwhh7Cb25FPr6Zp5Y1eWjrONkgTG1YwJElC7jnq98iazSjwKVw/13beWz7jnJOhX9VHdffcDc7nt0VAb1waPdBbv7iTbiWx7Y8Ay3PiW/eytFXDmtpWtPz0nO7ueXWe1Xboqlr4DN//FVOHD2lwapW4MGHn+HW7z/CTBaYaQXOzDb507/5OuMPHWTm59cx/fGV3DV0mO1XNWluGGY2tRydneJzN92KOIdcOEzogfsPv8TucBzqKebGnRy5eyffufkODag09b7/wrdu58Dew5hmgMyz95ldPHTjXSzKA1NxE7zxz6/jzMkzpa/5yPZnuO+u7WUQ/pZGk8V//CXsbBNQsdAH797OYw8/UwrnHTpxhr/87HVl3XyWB+67436++tIeNgZh42yLE0+/xJ12Pys+fCWTq5ZwuOb47vfu5vDJ40g9wXclPHfwAN8+vBP5tdX4K7rJf2EVNz62ncPTUzRTR6+zPL9zJ49wQpkMDchDzl3PbSdrtLRMMws8+P1HefzRZ5FM7cTY4ZN87k+v0+vU8Jim58Hbvs/UC7sZaOXQzDn6ymFuuuG7mCyQZJ4k89z7le9w5e5D/CBocHH3c7v43i33MpsJM1lg1ge+/s2bGNt5iKlTLf7Dzy/nKyOT/D/rx3l51TC+ZmkY4U+vv5FZJ4QuB90Jtz/1FA++9BJ0Oag7xhpTfOamWzTIWHPwphVt/wBgU52933mOz/3+V+CuUTg6DS3P5/7mBvZ+/n7kxWPI9w7x0hcf4+7x3YSf34LZMMBUYnn6se1MXjECG4ewH1zPC8/v4PEvf58+H9jkA09NN7n+b65ndqqBb3nypufOex7hwUefZbbpmW15jhw/zVc+dx1Ttx3k0MszTH/rELd/4bs8l0zQ+vtbaH1oLbtqs3zurrth61L4xOvggqV87q572Dt2Is7LsuPQAa5/6GF44/LyPvvM6ccZ2zsDDx2DzOv+8YNHVX+sFZidbPDf/vLrNMZnCU3t/PHoQ4+x4+nn6Dpwko3fPcTsY8f51n+/kdrDo9QOj9M1Nsm2732fZ17YzbNZID94kv03PMwNX/k2jSynmXvy3POFW+7kP+0f5amW5xfywNDjT7P6C7fwur3H+PBDx+m+7kW++Znraew+QvfGRfS+b4QdU4e4f2KvkrJeN0Kz0eLTn7+eW+64nd/+5/+M3/7tf8qvfPJT/DSGuffee+XV3za/yn2r1WLv3r00Gg2WLFnC9ddf/xM/wNc6PvGJT/Cxj32Mj370o4CWBHzsYx/jH/yDf9BBuZ+enuaDH/wgf/eFUT6xYCFdBnqt0oh7jGEB0Bcp8b7pmchUuGU6CLMvn2b6sVHyq5fzR6sH+CVnuN0LH37xDCt3HafrQxvoraV0p5YFXY4FdUdXkZXvTjCx9YrkQel5Da+P2RwantDImfrj55n4u5uZXdTNdGqZrTsa9YTfqzk+3J1wderoRR3NPgsLLCw0UI+R5GYQJhueqdmc6VnPbCtnZtZzoOX5xkST37p5N8nPb6K3p0533dEThAUtz4KJFsnnXyRcPIR/+3IyZwiJwWQBe3iS9At7Sf7eZljSrQYlGpryuSdpK062PMzk5bz0kSuY/9o++N2LNWPTk5T/77sTprscE9YyFVDQhwqkfRL4l8A2tIyor5XTl+X0NgP9DU86m+tm+PIpuO0g/OOLyRPHdN0x6WOU+8gks3cdoHHtcp5ZPcBtxvIxY3gy97x73xlGnj6K/NxmJE0gtYTUsSt1/Msux2zd0upK+e/W8Ear573P6LlPXqMYpDQ9TGeEpmdyJmey4ZlueWYeP8nMTEZ27Qh/aB0frTu2dDu6uxN6gZ7M09PwSCNX6t3tB2guW0DrdYO0UkurljBbd/xZl+OFesK/AFbmAeuFZ/PAX3vhP/tATYSeIHQHfU7ywMz+MWa/eZBmgNYAfOtDa7DrlvKBbkdXl6O7O6UvMYSWZ6aRMz3jaTVy/mzGc2Wec9XBcbqeOEHvz22ku+ZYUHMs6Eno6nJk3QnTNce0iSr8oo+cdk/sHGUY3A3cgIL11wO3VM7bfwPeaKDLQN2qTtBUDAbMor3pL0JFaXrifbEgXp+FFrqaei9MznqmZ3NmGp6Zlqfx6En2Ydh95SDvSi3/rRX4lefPMDzeovstI/Smlu7uhAV1x4LuhHqPY7qeMBm0G8F05Rj+M7AqD/xyy2tPV+/p8Vo71opO2Uyum/vuPWNMvnicrkag2WVZM9jPytcvpVZPYi9wQ7czdO8fo/upo7jXL9cNsLQjDs7Tl1lE9F6badsVZnMFPV/fDWsXwBtHSptEt97DvjtlKrVMSpxf0A4DTeDnRPjzPLA20/ktCIEkFxotz0wWaGSB+1uB04dO8tE7DpFOQT1A93JH1+tXENYspJE4GgaaxtAyhn2jYxzbN86yzYNsWr+UNLWkXY60npDWLTWrNMRCfb1mKHsbSxBVTJ+NtmUmb7d2+tLLcMGgigkW9qlb7Yx0Jcx0ufY1DMJ0Fmhmns956BLhV9Aa857E0Jta+mqWrlhXV7BNZpqeVtMz28jJm579s56/bHk+EQLbHjpOYgz+6iHuNpZXao5PdeuceroSerocfXXHAgN9IthGHiMbbVs5nXkmvvYi029cxszGQWYTy2wt4Ss1h+l2fLwrpavu6Cv2gBDoa3l64rWYzAJTTa/rLlPa757dY2z67igmQNoNtfevonfdEnoSy8KaozdS5gF80zPV8Ey2NPs5fXiCmXsO0vrAGq4f6MU4x+LUsqfm+DvdjlrN0dvl6K07ep1hYQj0zuaYRgFa4qPl4QsvwQWL2msw2v/QpfZ6op4wjWEyqDbFLPA7mefjmefNrUBvHujJAz0+0NcKLGx66l7gwQP4+08zZWEygelfXsXs2iFmnKHlLP8usby7ZnlTELWpudDd8izIA32PHKf7oSPw9y6E3qRzf0ttuYZMzakdn51nbzs6DZ/bDb97kQo0VtYdXXF/TF0UPAsxE6tiUpNBmPLCjAgzXss5nsrhVoT/B8qWR7252pTuIExPt5j5/ijT49PMXrOcxqoBfh/D/338FIO7TtO1eZDeFUvoCaLMFAEvAX/LC5idHkkhaYG9rE7tfRfSW7P01KLwH7TXZMvD/nH46ivwOxe3r1l1fhXfpsMW+QCzGpiYbAUmo+2dbnpmc0/zgaPsQlj35mX0Oku3tfT6QM8jJ1jwwnEW/PJWkq6kdPaL7/aJbWfms0Az1s8380Dr5mexewKmDkkD3MV1ut+5VRle1jBjDdMGZvLAzOgE+Q8O8l8/vIXf7k6opY6ebkdPPaGn27GwK6Gv2523pzpo1nmi6Zlqat30THy83ApcnwX+hQTSg2P0vnySnq2L6dkwwsLU0pfGe64qmNxQpsFs0zPT0LZ+zWZG64adNDYtJb98Ed4ZbOqopaqB0WUMXZGFNiMw44XpQ8fJXhrny2sXcvWKRWw8Nkn3I2P0TszSc9ky+rYNsNBqCdB4aplKLTOpZSaxTCeO/anlH9UcX08tdWPoQ/3k3rgHTwtMR8r1F33g5pjBxxj+bmJ5lzN0GUMdrfTqMkCmNrMx62m0PAdnPZ9teX47BIYfGaOeZfhrl9Nyhj9zjotrjmtTQzeFf66Bdyei3x+E2aD3y+4Afx2Efxf3ih4R3CsnmHn5FI2+XrLdp3j47au5driPrsTSXU/KNb+wbvHWMJkHplvt69fKAv+hJfyKBNYdOUnPy6fo2bqY+sYRmolhNp6rU6nj11PLn+SB1S1PV+bxzUDeyvF5YLyZk96yh29dOMyjmwawztJIHG+uOf5hauhJoNsYFjjDAmPaWrdVlo/M+TkI7DwGTx6FS0dg9RJlpu0fh6fPwEsT6hBFKv20hfFVjpkPbWCmv5tpY2hZw59juMhZ3mKErmhXw0yL2dv30RjqZ/ubhnjKOf5BzVKrWboTS09Q/ZxWkaEPQiv3nLrhOfbXE7qi37B2YcKan9lCtzF0Jzq3vtS2RWBjfX8HPbCgBhbze+IIXDwCrga3vgL1BD64FoZ7S5HghjVM+tC2oQKzsy1O7J2m96ED9M1CrQZdM/ovrZU1ZvNAq2D2z+bUZvUQDNAacmTddSYBb/S4uwyYxix21DNRgyUN6NvSTe2iEWor+rS/PNoOtv7KCa39v2KZahsUZZIVf2Qym6G/v59bbrmF3t7e89qXH2b82Cr3hVDe29/+9p/YQf0o4yMf+QjXX389l19+OcuXL+dLX/oSSZJw7bXXnvXe7t7F2K4EuhKlndMWkHYYpYwbZZwlMUvp8qDK9T0WHjrEeyfh4IX99B+fYulzo/Cu1dg0wURhJ1M11kWv9mIUSs0FnSxmM0xisUsTzOgsDHbFeiwgCMMinAztOpYiOxOEDsXUIFq3GoKqTftIPTkWhCuPzMCSPmxXTYU9nCosOxHsghp8YhP287uwCxLSK4d1hecBvntQxYwWVYTwqs8119lSZs68Shrwsj5Ni43NwtK+DmNlJCqw0qaNFNPqRwWCgHYdUBQbCh10+wnYtgSMJXOGVmJVkVMgW7aA7C0rkIcO82JqeeuyhWwyhgu9p+vhUeybl6tYTSwlkNRySd3wHxPLLanj/dbwBhvBBZH1/MMu0vK0VETx6hYzrZnvAYETQTW91M4p3b4RJLahElrTTRr9C2iigHgK+CyGUxj+wBkWJZY0tYRccM/t5Mim9RzxlpU+KL3ba42zJFbbA33C0HrpNK2LFrFn1QhXRiV/se0a2+qyxWhQpYlBUgPBl9T2kjGFqqC2RA170cNzljaQnwW+C9yIbtK/AlyLUp3fgmbrPwS8IQK6LqPGKjPt+lqD1tEfpfO+KO4JH++HguUglfeReyZ6UhbGtdkNNLqA8bxNPS+ei3nJnF70qP3LWoGFsUbU5rH1YawLLkSgbBDMgXHc/aN0LdBrRCOw2zRZ3JUS4iYnxfMFy+Ci5XQ50xbkqlltVXceGmip11C8pfrWLqc8yWJUBAGq9oTiHKFOUz0LDMb5uShoZYsOEfHnVSGw5qFDhBmlQTIDfijFbxykaQwNF/UejOVlDP9x7VL8hmWkieH3UssFqcVZS+osNTGalDOxRAMVWyp6G88VxNuxdx+Xrlqjv1+5EEZnOqjqhSNUlLB4tG1jKGrM88CJPPCWUJRfQeItTgQHdHXZ8p7VNqBtZfWGF9aI8Ksi3D7R5IIDY+QfWAfG8Lg1vD22wEoSpTIniQqOFT5NB3U72kpjDHbZAOZwE7NBL4wVoUuE04GyDk+Mie2IcrWHmdKQQ6Tah4KWfnKKVd8b1XMRxY/MC8cwKxfpHhPtL0FU5yPS0NNcwUTy/YMkr19OPtjL663lc4llRWpZncZWdUls5WmjFo3VTiBkoT2vqjje9lF4Q6c4nvHFQwW6ippykwdWND1TsU5e29SFUtwpBIEXT8L9p5V14aIdeOEYfuUigjfkCYx5Zas6Is090zpPc2SS5J4j8Im1GmCeK/Q6d/9O5lyvYl5D3WoY943D1kVn19BHajpZ0ABApPUWbSoLRXYjqp0zECDzAq6t4/HSzr1ctm414aUzyH2jhM0DyDs3I7WE49ZgjWXB2mHYsBRH7BwjQle0+Xkw+MuWw0sHkWZb9K+ry9GVWmqFjcml7YRmAVYu0LntOg0XLq6I4kX6/TwlBRKkzDiXNPuihj4I7BvHHR/n5vdu4NeNpTexYAwiBnn9YsKuMbj/GLxjeXsd2UDuDA0vCuZbKhRX1piPTpAdC/geFVJc3Au924ZxqY0lLrGnecHuG+mjVavzhkOTsGEgCsYJJg2Y3OpaDPac5U1lu7yi5KPl41y1lKM305ZlHBkjueUQdgrkyRnkl0A2DOs5qj6gVEZvZIFGHmgFT+PBozQX9NC8bABvYTeWB43lWme5NNElmWOw8R6WAKxdCiuHeSELvFMCdtkCzEf64JVxzIOjmMeOYNb1wulJ7BXLMZuG2yVjAQZF/ZwGUE+tCiZHU5oHwbe044LJhVEvfDAIuTG0HHwjt2xKLOtS7Q5U2GDb8mSZgsCQCd/JA9cEYclUg2TXcdKPrAMDr7zyCks2b+JAagg1h7dFGZ0QjPYML0QORbTu/USkOauPFc/numFYsRjjA/v7urjy/oPIe9YRFnZD5st9UiwqjFfoUcSyFnIFrQMHxqjfNkqSgXl6BvdxcBtHtOuTwEKBN4rwqAgrvdCItnciF+7NheGnxtnQ3cXF6/t5xhgmnXYCuSa1+C6ra9KCd3H/LxdYe++atxXjhcs02F/eiwY2DMK6QQ3Gff758mMEkCEHA93asSnar3FrqVsLBKwFk0PSW8O9fx3uu/u5crtw51XDSrtHz3UeVIujFYSWD+S7x8mfPcqRmiNBSDOhVTM8sGUJKxJLnlhyZ2g5Q5ZaTT4mVvfrwuGYC+a96Nw2Drf72f+di9QmfG43XD0M14zEMrro64VAODBB2DeFjI5jRxay85JhrnzxOPYMkEL6syth5aJYninkPjB6/16WPz/LqUXaFerAIsND24a52AhbUIa/E0ifPECXwCIfdQfrgfrafrpiEqbLaDkd25bBxcs794niWYWc9N7/KYwfS+U+SRKWLl3KO97xDn75l3/5J3pgP+z4+Mc/zszMDL/zO7/DzMwMW7Zs4Y/+6I/mbVlX7x7gi90pF/WkvB4VGLGFIydCVMpr19UbsC2DzTxuZT/mXY4t9x7ixOgJrtw/S37REmqL+2KP8vbDprakyHQEQ4oP7RB3im17lg9gR2cw2wbLGnoThGEPp33bkesA9fFjRdq1JPqgrNU6IvDGvROwYWG7TUMB6lGnjqEe+OW18OVXYIHTmp1nTsJEpgq+VSG8EtSbs9tLdQQsKnNMLKyow6FpbfFTqTU0vrOO3hpKNDVIRek4Aviin6xUnYsXxuFX1mntfKx9z5yL9kAIq/sZbQkffvAQybvWYPt7SB4/Ra2/l9rafgVSiW4ipAZqltfXDK+vWZzRyG9X5fFDtWqMwLGIbdjiuQ521sd6UeEU7WCloAZ0Vv0MrTXPWjR7Eo2LYPgTVJn+XxmNDqbGUHeGpoPjBw+z6pLNPJMFlnlLHoIavaCCgjiDbBiBDSNgLcetpSdeW5O2FW+rda2gALtlgNQi3nfWlYsK2Hji8cbjnkXB/SPA51HBu9XA3wfeSLs9WIpm6a8x+rrI0HbbdgS1APMF5f6R6vfTrosujqUT10msgc6Z7E5ZEefUZ6DpIrtk7udV68zby7J0UqTlGYx1oSYPKogXhWFCHuvNt58k2X+Cnm1DnDg9Tt9UzlRfSvf6QfLUYhI1QOIoFewlsUiiNeVJYtSOnEMs7uzFBqUKfvFcS+apoW8/h8qvBLUd082c7pY6p8brQ7yUStU2D5hGxqrtx5jKHfR4ZAryLkguGKKZOhVvtArmc2v4S2NoOoNJDA1r+VZi+N3EavmJNXq/ohtpbog1hrR7GxuiQpE6+i8fOMylqyOgX1WHO493RvzjApCgzogYoqCaL8HVyVxYJaJiU86oVgAqWOYspPVodwvbI0WLLK3Z24Kw8OUZdq5cxOIF3eTGcNxZLk40aGoTS+JsSbdPAWMtYgWM7wD2xoBZ1oV55jhGRhTsibDYw/5C/DPWZpP52IJISke0CFRIEBgdRx44xMELF7Fh3ynceDRFe1uY0Qns8oXlHlOot5tIuXchkHz3EG5xH8mWfqw1rEss04nl4dSyLLYMsjXXsVc6Y/SkFUr2RS20NcqeuO2wthdc09+uoS+EzPJY3y9E/QnP0lZgouV17eVeg9RF/fgTJ+COUXhTP377uPqCFsKRFmGigfTVOSLCgHEsMVHcKlcdCNPKcbftx1w9DKv75wfzddu5fxvT1o6plM1hLGxZDLumdN+c64iHoL3bC8GzZgXsxveYCFCMDyyMeBivNozDp9j33ce5dOEUflzw71uJrB9UO+csh61liTVQjwEWBBcU3NRiXX4IQr5pmPArwHPHcJcuJdk0Qr3uNMCYajAbCZ0CnF7g4mF46hRcsLiiDVDsvdKu8y1GUYecqUZAB6ifmMU8PApvWQFdKVPOaiDdmnbg9N2rkc/ths29em2cITcw4wyz1tCogPlmHmgenSC7/yD737aav+kPrDvcYt/qOr8xPMxFNRWgzJ3RFoYtX8p2j25bzAUvnob1/aUGRtHyruyeM0/kXgqfowDxLQXyZIKJ13hhrm06w3PHlW5SA9MEee44YeXiTkFfLzSdKUsHWrnWzTd3jtM8Ok7zZzfhreUHWL6YWFo1y101y79zliusBqpSIl7IBbGBpjNMYegTC0F7gpt1g5jV/Zi7X8E8NK624OVDmF81sGEIEwVoegS6RZgA+gWkZpEQBVxbeg+GLHAiF/b7wD9C68m9M9xsA59OLb8XLOuirpLJAomXUjjtuTxw0gu/jpA8PU66dhGuv4fcGQ4fGmXFts3c5yySWnyiHYoE2q3/ROLx6D1z47kETgABAABJREFUMkA97vfa5z1ghdJ2jm0aoDUOF9x1EHn/OsSk7faBRsXQpKJdQMw8bztwhoW3j2rnixq4BpgXjuPWLMHhSIJ+zzUC30CYbgYuawZ2Z4Gns8DPHJ/gjXuPYj6wnmWpYaG1fMZa3pFa1qcGnzp8YghxbfoE0iQGQaKIWse9Vjgzxfor70UbbWlxL6bwgeVli7gAcNEIIXXq98UuTqesYUFiIVcTZqKGVtJTw75vLckdB/i1R47x7JtGuBbIgyEL2qGgtW+cfMdxgnNsv3Ipt63op3bmdHnv/a2hIbKaIU0smbPKKE0qoreFuag6aIUDUmivZEbRdGFv37EcLlgAt70CO08QLhkkHDiD76oRxnOCA795OfLhJXy3u84qC9nqOu7lU5gti3Crl2CiHxhEN/d862KebB1nwVTOK5sSRi8c5mdX9dMNZXeDxEDqAukrB6k1df9Otg3TVXN0WUO3rbSffbVna9rJlJ/w+JFV7v9XG8YYPvWpT/GpT33qVd97ZmwPdWu40xreSPQN417mihOOZk0tmqW3FDg/YAZ7OXHpYtbdrlkPu3uMsKEbu2aoDeYTzV4QBU/mHquoZGblIuuX2ZVd2EeOYGV5mTkxQQWRXo5O6tzWXKWBA0JWAfWFIJ4IUzMtFp2awr5tGdZEJ9MZ7RtMYfiAVf3wcyvhhkNw9SQ8NA5X9WuWYq4Qnq7ys+bXIWJjK68NujkfnFYJ/cqNXBheGwRot4sxaIZ+nIg9vCpaFjX0oXBwXzmjam0r+2hFOpG3uhHkiSWLWYpvrxvgQxOw6p5DuHUDJI8cI33vMupWr5lUsqHBtTOi1lBSgLvMa6fan3Ve4pqykflhUjCNHAMsNXAwIqwigtgQ1T/IgkYTfQv29tW4L8AOMbwew8esOtGpUYE3Z5SV8OaffSevAI87yzt8IMsNXiw+aHs0SQzi2wD4eGpZmFokjS1s4iEb274iJiqyjoM6Ya0im93Zt91Lu9+3F33eAfz7yun4e8AltIF8CiXYqcXlVZzvutGAQLVPNWiGvmhSOPeeKIgbhfFuA3JBGhmjSTcXx0kmBhoOmK0EKKKDXcyp+A7QQEtRf9zKfAfgLSLKJgi1kzNkd+4nTRPCh9ezckE3jSN1juyfYM/GAZ5dOczfSwyrE0tIdFMv7jGJ95gkjp6aIU1eIydkvrVp0Hu45SsRifbEpHL9QnFPNnJmM89wqxARK+YY2QdBcIfHMQ8exi4d5Lqf28I7Tk2wad84dusgYe0wPoL3ljFkznAThqPO0EpUXdg72O4cf5pafskaBmiLLqW0Ox/UaTMwDFCvsIB+8T1v1YyEMbBioS7O2bytOB7nE4qHiALhmOWdygK+FVgWAbxJNAtkDKojken1qCe0gaQv+lrH89XKWbbvCPvevpqbBQaMOk0HrWFbGlu5JRoYTKFNq5xrH51RNsCKXsxdHpN73Zw8dFm1B8br9yEa4Ax5aPcXbvqyLZHsOU14aBSuWc4jqwc4vbGHK3afwa8foDZhMTcexLxxGHvZ4nY0JxhoBZwX0ifHcCdmSD65BWctSWLZaS2nU0ueWr6SWjbVHFfGednKdDr2ibnieK9bDE+d1r0mSKl4b1KrQl2SY3PBec10+mbgkcxzZRbYJiEqG3vkByeQx48hv7oOs2ohfsNJ/IvHka3D+AM58p09hLes4NDyftYaD077YZs84IJgv3+EpKuGvWakfZzzZOer+5u2u7KdGfpi8pt74VsH4H0rI2CsgPpcNHBTFd2KwN7uOYF5+QTmgiHMykUgQl8zZ82pBq2GJzl4Gp6a5D1hE0x7wkeWE9YP4iOjRxLLK9YylOi+ZYo9PTJMnAg95XoV2LYM2bZMgzDOtIV7u5wu+iJDX2UgXDIIDx6H6Ra4emVeMUtfacc0V6mdTJlKhcK9uWsUs3EYVvZTRzOWklgF26KZWIZ7CW9dCje/An/3IlrWMGtgNjM0jaHZ8grk80Dz+CTZfQeZumI5f7x2gEZiGFvqmE0s9ySWrTW1PWnMkInXThliDftWL+CtT47CyWns0AJlHKW2gzFyFvugmF8ZsNBgBVn7mVw1iN67YwJzqAUpSCuqhde6CLFzAdF9aYkGKxoxO9/MAs2xKZqPjNJ6x0ryrpSXjeVLid57kloaqeW21HFRdMsSNFAfEiFkltNZoGkNPV7AG9UHENF7rdXo0CoyO45gVi8CcdgQsMCIaCBet48o0BsFx4oOC4+3ApflwkIrJEZt14dTSy3ApwP8boANAaz3SKRoZ5lwcx54lwS6xmdwr5wk/fkNJAYyZ3nLu97K3sSwL7XasaLu8MaQG21XpzhX8AH0NArHROgr9rJcMHk0r6InuC8E7ru8nwuaTbjjAPL+te3rWewtWaWlWzODR8b40LFTmDcMY54+jpnU99kVg6RZoAU4Z0lEgx5ngPuzwEN5YIsP/D3xLH/4GPay5bgF3Vhn2JBY3pQouNVghSWvO221afVWKlhaJKgieqAziFvYldyeH9RvXQq/apAdx+DKZcjGkdKvCNYiznAssXQXfro3GDwWp3a8K8W8dzVDdxyEh44S1neR7z4FXb1ko5Pk1nLysmG+tKqfPmv43cRwaniILy+z9DjD2pohc5YsMaSpvm4l2p62XnOlYF/b6ZC205ZVwK8NlG0kCsbQ374QbtqJ3HOK3EFwDfxblhBev0y74BjDPjG80RnsmmHchmGcURxXBL4EDczdv2aEp3oTrjgwyxOru7ls0SL6XIQ3tLvApBuHSX7FkD57nPpFI9Q2DtPlDDUbW7SWx8vZQL4QKIy/M9lrScz88OM1A/o77rgDY8y8Pd2PHTsGwMjIyFl/+195vJd4jqn4VYBJLNKdgPXaexK0T31cEFZg5PAEBYUxTIDZfRqzcQSX6AbpEoM5X0ZtboTf6iI0Kxdgbz2MaeZYFzcWERYH4Uxxo8aNr6rmXQAQH+kcIUTDGzMFg6MztBb30dOVlhu5tlAy2Ko2YhDYuhguPq1gHuCRcdg4psqb1SxGzXaWEsTRDliEOfMDVnfBrfNn0FS9VdunIG3QNoiqHEuR6fBFS76grJGA0u0vWII3ajRazpAZyJ0lC7oB7ArCaRtYelk/ydHj1O87RpeAu+0Itf6Ens0j2rs4qolL3SG1dpu6momEhB8DzFOsofgr6ywmz0GEBVR60YuQ+SIwq6qa+XSTRgp/UkuZteozXmHU2NSsPnfFNeHi518M3G4NwWrtYe7jGpGgYD4IQQwNA6cSBfQUYD7eDyEefzHtfms4IUCaEHLUSeoAzO1LW12jt805Jd8HrqIC4CvnOI0BlIIVYY06PZE8UwL75Wi/3KKtVfFdvgTz7d+FSgTfNzziNFhkDPRjmLAG8R6F/DHbQTtgEYKeBwFMCFGsyRNamo0xcXM1eVBH4rmTpLcfpnbVCP6aoSg2Zdm0dpg1G5dyZWJZYA1/6Cz/pzVckGgQKiRG225FZ12cZhC6g5RaGa9trc35fc3ClAoXdUTDARFdNWX+PgpRTWaBwVZkHWTqhNoYuHCPjmGfP4F9y3LY0M8AlpdWDbFxwwgSQV/u1AFvWcPNznCLMfybxDBtLXcmlrdZw0Jr+Dzwd9HuNB+kk+GRxyBNMDHwGtdMGRGPwB5rFJQMoBngrZVMaWi3ufRBnb4CCB/LAssyT230JGanRvLN+mElGsWMufLtLTUvdPtIa/VB6XMiyLOTMLiAq4d6edxYHnNa9vMfnOVfG8PlqbaqS2jvM8DZe0BkTpkFNcwCMEenNaMmsQ99KK5N2wESL22qfQw4yFOnkKePIO9cCSsXMoZhy+ohzFpVYbdBMAMO+5392APT8L5VgKNQSHZHpkjvOkL6K+to1ROSxJKklgetXtcQr+8dqeUqKjFc4twKWqUL7Uyvi47ZZYPw+d3wrlwzSdEhtXlsXdeKgDsX9mSBh7JA0gp8Ng/8Ux+4SAJy/xH8vjOEv7URWdSjuidbRjQDnQfCWsHvqSEPHGbgAmHDhf3YTAOpNghm52ncrjOYX92s2aK59Pri9Xz797wZeqMBihYwOtXu5FJhoZUgvvIwO49jvn4YkwDPHsIuPQLGkAb4RJeDhT1wbFKXXwrSBHllDLlwBHFWM3uJ5aC1XFwphROrQL4oGylYGNZXonmFs1ns5bVEjV5m26yK4jHQpey6Z0/Dm0bmBCvUPkiImcU5YL7IzJsg8NhJjM/hikVgDV3GMh6zhcECYpBgNVh/1RDy0kla9x1l9l0rmI105hYokM8CzbFJ8nsPcPJ1y/kf6wa4whkes47JxJLVHW9KLVmqQpRZ1AQSK0gSkNwwljiOrxthxUszsGSBJlDygE0MNtiz2AeSB2X1zLmWds48zfgs5gfH2JJ7jn14PcubLdzOU6R9vbDjFDJxAHnnSqRbS+oaQbSjTgHms5zW9w/Tumg5+fKFbDeWbzvLB2qWb6eWZrz/rqkrA6qwK74I8lnPGWeo5VZV9jODkYDxajftZUthx0FdBgBHc2xTEwsmXsfFicZGY60RJqjv4LNAnul139ESPhQCFgX0Ba34vamQBuG/BOGfCmyJgTvvhQeyQLcX3gAkz54h3TBE2telbT0TZW4tSy2TznAitSx1VgMh1uDjV4QQMW6ie8VhEdYIsVWuB6Nsi6IjQD1o3T9XDyN3HIC7DyPvXtlmu8ZyC4nJIXlslDDSz1+9ZyP/aEGNfEUd/9IYZjzAQ2PYpQtxg92aPBZ4OsQy6cggXRqElU9O4JKUdHM/iTPkTpN8q1LLg4naUF/TYEWAsvOKmKq7GAEKVYBfue9eDdRvWwbblpUMABKDGA2gtZxlMjF0W6vBRluQa4OuJwFHgnnPKuo3vUztGY8J4Jkhe8MQD145wt3G8o7E8GZnsc6yODH8Y2v4v53loLOsTtUXT1JlGbZSS5ZaajFwXR1SxQSJ77Q/1Ux9Fu2ty9XHK8qspqfwiUOM+nLHMSxLY1vGxGIdODQhpSw7TfS8NYOHVgxx9woVfL4WlUFpJ5pMCe5rm5fStVlb7NYiw/mc2fgCxBtzdtLzpzReM6D/oz/6o3MC+k984hMYY7j77rvn+c//Ncf/C1xKG8gXwL2IxBpnkbqCr+JvDsFG+Fu7YJCpfVPMZDDYD/ULF2PLmkKjNMT0PBfRVC5+xSG1XQlmscWMTmE2DOqN7YVhJ5yJUTpJ2lFFqACnGIH3XhSsiUblxwU2750g2bAwZlxNG9Q7izNS+SCUDpg3Oo/32WPaOqsjgzGnlKA6XOe8SoS4coEWfk+2YLCrw+G20enQjHD70Y/2RDU+Mg7mPvKAeX4cfmUtLYvSduMjc5Ys+oy35kqNqgm4nthL1EGaQe2543RduExb9sToKTVbet7qsP4YN2VJ2SzWWXxOLTbXjXQQOB39dEFFuBRww4TA7omM+kBK00GCBiy2G8PFNtb22ygcJxp0csAWVKX8ILDeGPLEkBuLR9eJD0LAcNJAwxoWVuv7K4dvK9NIgYahDOaIl7jZ6HvKjLjoZxcA/2Jge+UzP4SK2FWBfM20AX7NxFZ1ULa0LdZEEbCotq5bSxvEl4GEIB3l1CVIzzPNTMX59gJ5asHnEfTHD5Y2uC9+LSG2y4ogPmsFunKlBBMEshy+fwTz4hlqP7eKsGEQcaqRUdgHrN5D700sfUb1D37TGa5JlBmSG7S2zrS/26AZh/S1rMO2R9D+Xc2oiFcxpP1cBAQFE3t9e/CBRjMw2PQQPBKpqEw2sbe9gg0e+3NrcYO9WAurjOWxxCI1i48bd8NaMmu4PTFcZy3/2hlWOBWau5y2SOK/Bh5HyzHuAH49XpO70d7Gb5AYoBfdz3MTW/zMa2P64VBDxSiKix90rft4jdSOqONzLA9sPThG7c5DpJPgnp3GfgzsxpF2j/D4+TYPdMdAQGGLQuaRF4/Az6wEaxg0WqtrUhVOujMxvN7ZGOmPdPsqhXuOrdQEg8EsWwCjGWaVBjp7RWj4gG0GTNCwk67lULaoC7mHB48T9pxEPrAaGVoAFk5ZR3/Nlg6bCYJdsRDzyS2Yb+2FL7wAH92oOimtHL69h/TqYZJVC2P9v2rDXGstt0dAkdUc7zcmZgcjm628DFq+1OHgJBEgDfdom7dnT8JVbXBofGxxVtDvg/BQSwU8u7zWEz+WeS68+zB+epbw8U1kvTV8ouVtPtV2YD6ek7B+EAZSVtw3yqrxGXjTCCZNcBOz2LtGSd67Erewfo66eXtWj/D2vWU6nc3yYWHrAqXdr1zYCXoLJtlcQP/kaMmCcqD12+9YDwu7+EssP+cMG4704m86BLNxOV88ol1LikxbannFWd6VqpirSa222UJwKNMBQ2dwASqAXoMYxhoNVCWmXT9fzC0HLl0Mjx2Fq4bPbl+XBa2RyfxZYLesnT88iXniOOYX1mASZYEtiIyPkNqyLZoIMSkhND68lsYXdjNzwQKaqxbSMlGXJQu0Tk2T33uQ0UuW81cbBnhPYrgqtVxlLdfXHYdSy5q6ZkOt1XVa8xLBjQaYThrD9MYuzHf3Y1qLsK5WBj5sKeShm6n4Cphv+rMDFnnAhoB5aRzzxChsWsY3X7eQn0kdyxOLrFqi87poCG7Zj//r58k+uJbZNf3MitAMKpLYCoHm9hNkfV3kl/ZzD4Z7rOXv1SwbapYtqeW/pJbu1LHV2ZLFlFm1d8E4vLWMZYEk8UhkGOEtNrb0tJtHMH9LME8cwVw0jHl2Cm7ag/nweqSuHbv7Q2TFmRg4FMHHDHvIA/t8IM8CFyDY0VO4nadItizGrFkCIrwjERIRPiPC7xjD5jwwkQfu9IG/T8CdmiLdf4b0Y5uoxf3ORtCbJJbFiWWvswxXzXixRuiMSZ8xhsuMbnxSN2Xr42JB1X0MhlqQd61EvrMHeeAYcu1ICSRDK4ftx5EDp5Grl3NwbT8eDZLZNUswKxZjgsf84Dju+t0kv7ABt6gHJ8K1Bh6zkHsN7v/MiUm6XjpC+pF1JBHsFuzPlanhxVQ7Jznb2UbVm7avM98wpe1BGZJBYtTbt+1MFdQT/ZUYdJTEEJyyYc6kjoaz9MZzio+mjUg1j8HAbmB0SZ1wdEaF9mbhueYsjyaOTznLqlgSWEsMubX0p5arjOFbieUfOdWy0oCwlr40jfrgdTPP3OI+KEVm3vn5M/XWwBXLyF86pDm+BMJFQ0iqdvEVDAPW0JWaNiYzBmuEmjHqA6D+9cV1+Oc53Ae8DbjYtpNKKVo1VvijNVRcM6n6HXP3gALEv5bky094/Mh96IvhvX/1N/0vNoZXXMqV6MVRoN7O1FeHcQZbdzFSVQAJpWPuWTnC53/WsPlgi72r6/zG8hEuSzUjb1OtB+0Qips7ioU5xyG1xmCW92MOtTDr0Uy1CP0ijAe0ZlNUpKRq5AB8Fh3VPGZhI818bLbF2lNTuLctw1iLs3FuVkUczNwsexC4fCm82G6HxZXLzhLCO5dYjJ68ijNXnWPqYNjBgUkYqHekUk0QpbrSCd4WA49B6ZCoLgCxhlUjqnSBX7GAzBqazmqSwWl0MDeWlwO8UhN+0wouh3TLYtwzM7gMagHSy5bquSjKCuqvtV75hx8l3d4YTM1iGkRAL4yjmzNBAdaBAA954UUvvLcRWJl00RsMEw7qGN5uoMcqnbAeD71gP97859fxnt/8JS5C6e5roRQQ8dYo2Lb680k0sVllDxiiH1AEueLxdxmNyeBcpC2FDop6kDZwhvYGPIgGZy5Ds7CX09YjKDLyBagvgHwZYBNp2/LKGnEo7X4UrckvN/v4rGIp7WhsoQNi8pzeWvv61gwcSA0UmgDFXOIEis8t5mMkBpMCZLkqb3NoTKmLhzxmsBc+tYWkp0ZPvMdMEQRLdJ2JVTbImxJL6gz/wRqOGMNHi+8qzmVlGTpRauV59RsKYFu9aAaN9rTmsdcinQ5SzPoShFkvDEbqqTl0Eh46jDksmEuWYN+yFJs6rFOHeZWzXOcUWPlUxXCy1PK9xPIXzvLvDGwwRhWn4zkv1moGvCGuje8C/7FyePcC/xW4SmJNvUBujW7M1vCZL9/IP/2FD7dtzYoeeO4UsLwEHLouFSSUNdgRkI/6wBv3nEGmwMY6Sfv8ceyaIb0XqhtzdPa7o50lCDx3BulKkOULEGt5i7VsTywTTtkV73WO1LWj/Enl44xV+m91Dyi+z4z0Yl6ZwLAEgrBABN8MBCPKIQkauCqCCiELhNsOEM5MIx9djyzsVhqzs4w5R18E9DilnWPALKhhf3kz3HME/sdOeFM/PDwOveCuHqFm1SFL4zW9OFXF+NtSx7ut4UraNYYFy6bMvLi4X5xLHO/RI/D6Ib2o3mqP+CDaC9srE+StmbAjCM0QWNRo8Z7vHSJPHP4jG/H1hJBY8porjy94KWtjhUC+qJc/fc86fvexY9ib92C3DmLuPIJbW8dsGNSs4lwgH1vMnsshMy7WoM5loFlg00J4+Ai8bVlnhr5wtquA3gtMR3tb0KquXolZsgAQasEwaYE1Q/iPGb701Vv4O3/rwyqoFo8hWMtUYhlNLcuKhIIxWKsBaGOVIV+phYo3OdHY27NLClxkU1RBvTVR/2AUjk3D8r7Oul4vqtw/DwuBLGCaOebOA5irRjBDfboHOnX0J2IAvWRDBSGkVkvOlvQw+/blNL9/kOYvbaFlEpoC2elp8rv3s3/LMr60aYBPJIZNqSVJHZtTx++mlt+rWe5NHe+oq8ZD6gMuERVVdAas5YwVaoM9sKgXu3MKc/Gg9qOPQo3E4KZkph2sqJRLlDoIQTAzLbjrMGZqBt6+EpYvJBXD6YI1AcroMSny0fXkj43R+OYBZt+8lObrF9MS0V7tu8/QPHaa/AMb+Kax7LaW/7Om1zdJFdD/29TxqcSyGw3at1DgYYl7ljWcrDt6gsW7KGAXAsarPogxYLYuxWwYhpbHrl2C+d4hzM17MR9cj+lKWBS09F8/VPfQPAv4aDsfywOXBiF54Tj1e45RC5A8PYP5RWDNEgjw1kSX0n9zhl9oCXdlwogPrBHBPnWadPNS0u4aSRRPs85w41dv5P2/8YssTS37reGqOKdCQ6VYJ9U9+SQq2gbqX1FzVDfubg9nCoeg5uB9a5EbdsPUNCE0kcUL4cUJZKgX+fmN0FNjwhhSG+2BMWACJgdz7bBmbr+xl/Sj6/BLernAef5ZbtmeB94ink0PjpJcvIxkoIc0lkkUraxXppbJ1DKaWNbQLktsC/lyNrtuPjtU2J0EJIpTUpT8eVsGEcsgmdVAc3COPLGMW62XTyGKYcbPjXbcFT4X0Nq8iOkDM0xn0LMQTm8Z5B/VHPWYea85q7X/zpBZw7tTy//hHB9JDKutwRllkaSiYL5lIBU5K0vfMbe6i0HhSra+mqnfthT/65b8+eOE140Q1g5rsM4YdhrDikTZS0V5sHWRcm90bhIdRStwhcBlSBnMSOM5KMpsC/ZrgQPb2fjodMcM3Q+lq/VTGOcF9Hv27GH37t0dv7vjjjs6ft63bx8AaZr+hA/tpzdOHnuZPgs9thMYzIdPrbPYLgXyzngsGul5iMDoyqWcWAlNZ7gvsVyRWmzNqpP7KtGZNi294uREp8Au68E8dwIjw2UN0KCADcIpEUaEdjQbSsqQDyo44iPY8AXV9PAMJxf1MVJPNHjkVPW1EGuyiWl788XzBUvh1ww8dVTB/AXL2mA+RvDPu3gL6kM1ilVSEwfg4Kz2GyvQny8EAANGLKZSR78QmIx/a4vhhXaN84sTmG2Lya1VAO9iht7oa+8M3w5wtUBXMYW1Q6pW+vxx0otHqG9d2q4lPEcpwY81KiCrI2DRlWAzvZD9qE39Sy8MBWGPhxMe3iTwjw0smQLbU+f/sPCQGK41cEmt3daraK9VrOV3/MJ7sWhm/Fk0I15uHnNA6in0+4vjKy5h9efCwe1D1W9La5/lQG3Oemy/LjbgMWAD8Fto1NdGA1kzmqkvoqBVIF89fdbQrqGPr6EN6Ivv8/F1mZCiyD633+Na0F9P4iXRdpWtJFFkWRh7Oh2HEvRG1oQRoem1lrzn8BjprYdIpqNz/u5BbF8Nk1jqaUUsM2nra2hph0MiMPpD4N+gHR0+Rfv7TdB9w6Hsi3oEhucd1dNX2KK6jdeq+HApX1azHeX8BSaCUA8BOXyK9MZDJC09gWZDF7aWYBMbaWfqcM46y+FUFdCz1HFfavkTa/i3aNvJenx0x6BNbtQRbUlbGPGDwAvAg5Up3IqKJVazGOKUyvbJj7yzbWOMgRW9cIf2bseroSzqh71TAOwLIbkQOBUEs7gPwxSmqevKrF+Cy7zeA4b2AgwKylzM1Ic8EJ44QnjbCsRYcJZtNcM/Tw33OsPPpIbL67Yd7TfzZF8KZ6X4juh4sLyOeWRGyzuMpdcLNZ/TQO+2kip64CTyxBFk1BMW1uAXNyPdaRQaU+exmVgGYgDLOgWlqg0SJ/euFWCbsH1cj2kK7IFT1LaOUIvXUlINTF1Zc1yeaBeMIvhWN5QMhHIJFuAwsWeL421bpOCwEMeL4nBJ0G4niYD1wkYRfuvQSfbuHuPi0YyelUOEa4a0JCV1ZJF6bFKrWWsfKjbHcBhD6DIk1y6HBw6Q3nFEP3t3E3fgJHbT8Dnq5l/F/s+XoTcGNgzAzYdhvAmLu88P5l8+iTkkmA8PY0bPYC4dwaweiuvDUBeYMHHRrFvK+//xLyBLBvHOEExRlmPZF1uYLYwOemGWC/tqKGy3OTtrMd/o0MmpgPpaAtsWwjPj2qWmVLmXzpKCSvaaLMDu49gbRzGDYC5bpGUVidJ+B1LLc6nawjL7GgKCJQ/aRaLxukW0Xhmnuf0UrWuHaE3M4u8+wK71y7hh2wB/OzGsimC+XnMaTEwtH04df92VcLXV+6llLakNBGsJNuCd4ZQ19AeD3dqPefwo5sJ+rSXODbaYm5cooNlWs68Ce7P7OOaBUewJMJcswrx3CybuLb1GW8FJTZ3N4HWdBGNoXTXM7JpumncfoDk6SevihTT2Hic7kNF83xq+XK8xbi3/sGbpr1nSmi3FCxellg8Zw1dQdlOhO1IECwWt6e6rAiOvTAlXBPMq/ogxBvOelZj7R7G37oP3r2WgFsWIWyBO69Vzr4A+D8L48Sk++dwZ7AunNNCcQK0F9vljsCLCaxHeLMLhYPlKHkijOvro8Sk2Hp0kfcsyataQOF0DNrG862ffhXEaIN5PJTBPO4E1F9QfQxM/hak2zup6Dao10hOEXIQG6r+E3jpcPoTcdgQCBE4hb+xH3rKaQiV71lq6nPqDpf8RPz95i7Zard3wCvKR1diRBVxsAxdbcI+dIcGRvm6ANAauQmrLQH4B6ncaw2oq/gpxuf0ImNA4owmWgpKfC0V5aunLGFXUD1aDSxNokoV4/dWn1zisYGLyILpEq4f4gw8ZNh/SBOYnR4bprhvtSpNaaomW73prcc4xlBiucZbrgN+JcyvYdS1RP6YAy+eflzKltXSryNarPQrOELYtxV+4TAP2zuCNli3udoaLnV5H7cKilPsEnV+duM/HAHLedoVIRDoYorUYjCgPtcIG/J+RhT/fOC+gf+CBB/jiF79Y/iwifPrTnz7rfcYYli9f/pM/up/S8Hmj7D3viUGu+RytOBJjSOq2QwvuzcbwPYEmgrOWtzlwdYurOZKa68jCnHNUQa/R18YY7MoezN2Z0ricxQZdZGkQPu/hQ0F4gzUltVhAa6M9SrfPJdZSqdO3YN8Ek+sXsjSCeGfBJFpXZh2Y+pxdvgDhFy6Hi5a3N/Zq9uJVakLKgEVVwblAsqu64cFRkJUdyKtQJTVSMcxo5PW0V7VcfJGhrwD7F8cJn1C6fdOaknLfMoaWc+x0hifI+U2I4suGNA0aHd66jFqs8Sn73c7tSvCTGqY4N5VMeOqism5gn7XkomyEXODdCP/ECt0xYWInm6Q9NS60hktTQ5JqllLbJlu6jEbqXQRJixYPMI0C+v8fe38eZ9dV3vnC32etvc85Naoka7QsyYOMB7AN2MaYMYEQQhhCpxMCCZA3ye0h3ekb4r5v+tNvuu+96aZvE24SyNikQ7obAokxQ2zsxEzGELCNGW1jA7Y8SbJkzSqVVKqqc87e6/3jWWvvtfc5JZWkKqlk1fP57DpDnbPPWntYz/N7ht9zK/293OHxAGX6OlSVl8e8BPXfxAN6wDXQ+t2gNEK0Fx+ll9JpsM//htS24DUdPMbiKKJteUzte0JJjFcH3qFmPihMl+t9QZYjQKuRFPtqCRxIbQH+whwgRPg9eBLxKXr6mXAcmlvG4ShIqriILXvheasLJ1EjAvVaJ+jrldEDJGik5f9FQf2jwFoU3F5PxPjuVDEeq5qnb7o96LXdyUpvS+TRKTIr/PMwxxm8obTlINIp52d+tAdzqbaEksSnSlrD+anh0dSwLrXcm1r+EPgPaHlTDOYD0aGjJJ7pUPIkvIkqoH89VTAfMhfECCtXLFMQEVL2VvnOJruPwvphPVfewRn4RVymaaN0HfsdrDrQpfvCUfKsA7va2AcnMJtWaBtTKNdEKEBakjsGHzmgx+qiZd54ENJEeHHDcG3TYFNLw0rhdGtGhnQhAQx6MC/eUJCVg+r13z8Jq4ZJOxnDmeOIwCi+ZODBvbi792iqdA7u9Stxgx7MJxrB3Z8qEEhSSyA/CvXqIVsIcjh8tDquh3fTuGodrVQBiUkF6/eVmzLa0ZCyT3QPv8hs4DC18KIV8MBBrT3v5Fjn1OBCs9LsTJfkkX1c/I09XJiBSyB7VaIR+iTKBGlajCcxdVaK9S0HtjtY6a9x47q67lp1kiWP7EGuXNsD5ufkzA2plXGE3or2Zl/fhMcOwQ2tiMAqArjdXEvObnsGefN65AUrkRevh9Tq2gAgwlAu7BHIrTqvlg2epzeKaNps1+j8n0wMG2vO4rAFP9EJSTCIYmdFyEC4ekyJ/167Tm/GGNSH+bUj0Pv4Hrh5p45nH8iOceSSVVp+lBoGUsN4IuSp1TIph3bywdHO/OYcM687n+mPP0Zn7y7yKcMPL13P569Zxj9PhPMiMN9oaDmISSw3Ni0fN8LngbcAbaMR18zmuMQw3snJrWGUHDYsQ+7biWyfQC4cUwI5T9aofdNqWQfBabFlN3ziWS0TNCBXDPp2yOrcs8awNzW4ps6Jbl5ESme6Oe21I8y87TKm/34L2R07yAVsA/4uy+ga4dcbeozS1NBKfWlJw5IYzeT6FeCHaGyk7c9/0OkHUcAmaGBKy74EaYNEqLHQqQLyqvORr++BO59m7Cc2cnCoiROH63p8mDuyI9Mc+d44v7JjP8kl52PePID9hx3YabU7ksfa8KIjsGpYrxvnaIsCp0aeMy2Oo4/sJ71sHWkz1ewlq8SFkghjK5czmRo2GOFeSvuhSLn3b4R5HvWP50VzMYIC1IbF5VpD385hEu1o4wTcLm116Xxag+tM46zV7A1r2CN67PGOUAkgDrQM6KWr9Rx/Ziudt24iXzcCuw9jvr2b9G0XklhD02eptRPxulJJhy+xhi3AayjtsjhKr1wAJ26DVlLynSmMIdXrUh40FNAPhu+F76YGTEi5D+n3wnecYc+6NRw4H2YS4V5ruKqhQL7hI/T469IYLUv+eeBfobw4nqGFhiurWI4XpS/m5DMu9Lx4PJE58q4oH47Tdoa5aBAvT4TvG8ObE9VTYqRQsdbHI5vG25NO6HhA7/xxSKSaMXq88S0mOW7KfZGi6idVb10HkCQJ7373u+d5aAsrw6IR+mC0q0e7/4nTEyykDUsiQsPkXJ3k/CcHXwB+SjzpUeLJH5jdOVCRGpgP9ZNmtIEMCmbXkYIQ6YmOYyaBB3LHNzPH+xO4kcir52vJs8xH6Lu5gpfpDqv2HWHq5WvV4DQa1QoR+sQY7wXzYwqrYWLKlTO89q2z5hy97uOwQAQ2jsCtXimGOqAA5jP/aKUA9stQ50THORo+6yD0Ic23HcI1obt+hBmjxCOZ0Tr6jlVisb9NDK9xlmF8hoyF1BkSHA0jNE3E9DuX6MxJSQkMBApDWlsMgelk3JckILrodQFyGHG+DhIhPThFsrapCRICidWapAERWp6/qZuXEfpQR/88FHg+DVwKvqd9b4R+Bb1gO2whwGNQ4pApPx8XjHSi1C4o6uj9NHAo4d+FYX/RfsPz40kceQpp94IC+m9TdVAUgDyuofdjC2nny1Nb7GNQ4HCqji3XzZWVOGSA1PZbZPI5OOJ8/9tLl8MjR2BajQV5/uqybaW/ttJG2c5SRJVtyDgI1/oFqJH2eyhvxNeAP0Bb+3UjUJ8fSxH2S7cHNUymaut3lLlQw/g4B4ecKmMuHYPvHUHa/lxctQbb1PIBm1glFrNK+PODhmXICL8H/DvUIdGgF8wPeXsjcT6A67xCctr94LeB9wP/JxrdD46ZAOxd8IzV15jMwAUt2HG0SA0OXBTB4aks9TkTzjEyfpTWjnHMP7kUGWhg2l3kk49hvvIs5sfX69kPYN5IFGXNSe/bycBL1mpXCF9r3k2VIldSwaRSdGroC3jD+bJUdIBYQXKDDDq460nk5RfAUJNX7O8wuK9Lvnsc9rVxhzTjwnemwm3ZR37FWiVTTNWpujextBoawUYEskwdBt3c1+v73752HfzwmXJc160rQJdJtQay3bTa/stfVkVdoejzHgm6w+ZekfpFygAvXA7/8wmYfgheuAZaLZJnp0n3TpEcnMROgml3MQ7yIZApmHniEMlFq8hT0RR7z9eQNayu/ZkjQ+iS4UTY6oR1CMYJ9rIV8NAk0tasTXnRWr1Hw9Y0s9fN98yL3gh9uAYvWw6PjsNL1pQReqkB+lufgstG4QUr1bGSlA6/cP8mCAeN+D7ZFMRWuYHMWjKrButWYBMRmJfIYcyJG6QiUdq9jc6fiGZTJMCT43DZipKcqyM+7T6KzmcOvrizuMQFkMf2IpetKfTtcGrYl2q0Phd1nhIAfe4Bfe5oHzpK28H+A45lnYzvr83554l+P/VgvtkwpE1DllhsarHW8EvAh4CfxDsNE4PpKqAet4Zh4zDOaLvcS9Yi3x/HbBrTbjtxZkW472cijoDMwa3PFpdDMb9LVmsbUmsYtoanfElB5u8Hl2nKf6ejwYe2CDNjKR1ps3+F9sK+7slDXHjJao0CN3RrpgpQu9aQomD9nwB/A/xn1CGaRHr9IHB5OKf+OpDUqo3ZycsAQzx+gFesRr5peeGXtvL0j2+EsZaW5810yB48hHtyN/svWMUP33gJLx9pkhqD/KzB/GAvySUrSXZ24RNPIz+5Hp63HBy8mpwHgLZzXHhwgkt3H6Xxqg2kxqdre9BrjI9kW8NFKPdPKBOMHXVxhuF+P8eh6NYM83LW6AKFBsWO4Fgd/nfFKvjudo3QC7grV+N8KWmeGI6IOlHU3vVlCiYvbvMhl2OuX4lNIPnUVtz1y+Fr+7BXDJKuGiL1vCNZarBeP4gv63weWloW5hCD+cxRIcY7WQk16Tn6I7EtA8qtNFb5vH5HUlMEhVKgI8IrxPE1HEeAhjH8mBUGmnrumv4a7RpDx2kJa4YSFr8S+CTwm/4ctp0GJ1L/fC5R+mJ81uBaomtRlpN3PHmm8xkARh2dO6zhoBE2QYXwPH4OiuksTv2SkVmUhvXzLALyQY4J6F/+8pcXzPXvf//7ERF++7d/u/i/iDA6Osqll17KypUrZ9vNopOh0bUMGxjxjuUuxz4QVoSGOFrgU2cMNnNc5+A6fDaalUqP8jkRqMV15n4TI4gYzPphZGe7IES616ecJ7mhk+f8vTNcL+L7fGt/z46jTC3NNXWt+8wkO8aGWDWY6oJuBWs0/UTb1uk4i9QWkSprZkBdId1+rgYPKHo20rsNporSt0+oUeBBemhdJ1nZj16AZbnD5jnjXcdQLd0+33KE/MqVtK2m23eM0BFVkl0DTxnh28CHfRlEYjLS3GhaDY6mMUpk3ND5STqXnMSTlEiBWkIQREgsJO0urxxs8q1c6+hTB692CoAsQkqOnTxKMrCCFLBGlEDOCK3glEBJbKyowfqD+x/ikhuuJkEB0oPAZkoFGQPVAygwlnirKRXxf4aMRgNy0DSvbhXMl48lqHdohP76aP9B8QYD9HhSRJxc1WDt17oukyjq7AlQHOoEcjMdZlJYYaI5AUeDpm53cQNqBRROAA98w2+EibaBYRycv5zuNUfJHt4PP32BEgN555myFVr1YKeGQT8H8XZ+MT//A/fX5n0ncL2fU9d525m5HbPyBIqmIIY+RLFjNjKOHGWGAk7bpA0Bsm4F2fP2ke+dRl5zAXLhKr3OfAqhrg/qvPi8aFTsPajTMUWdQGFtbIo6Uwf8eW+gDqdpdF7Wn98b0dKMYWplFFJGNawR7vnuI7z8+ZdXQdWGUdgxqQu0B/N57nybN7+GZI69ueO1jx6FC1chrYYalM0E88aLsf/rMWQoUWA2k3n3vSlqE3l8HA47ms8/r3CQplbIEiUfkkTPd4pPS58lA0VboUVjtz4Vftt+zLOZLruffobOqHDZ+jGml48w+sKVuNVDuP2HyT/xDGT+3F2tHQZIhDyxuMSwL7WMNGxBPCaZRhODDihqMa9cC78i8N1dcO3aoszK+Ohg0rK0EhNKLYt1rHEMfXdMcrwpfzE+7uDxXQDYiwaxG0cxVy/Hrh0i2XOI7E4lhOuOwmOXjXFNqmnVeWrJGppenTQMzhoNGOOj9CI8gvBzIpAL5qLVmHcI8vBekuevxj5vTa12fva6+b7zqtfRB4f180bhy7uUQC2w+HcpQeD9e2F8Gt52ia4RcUlOqvNwIgwYeBzlA8iM4YHvPMSNL70GZ4QuJdnoVuAnKNfD0Akk1IOelMRtlmJQnxm4ehU8eBAuXVHaCfW6+W4GX9tdoK0i6+6qNQrYvD0xkhqebVgFuqCp987gXK7lcomQZcKOx8fZsS6hBewAfuzpQwxvXkUjAvONpgKoJLWkxtBB15Cb0ZKdf4pG6RNjcDZnjxFGrYDzdtcLhjH/axeMT2PGWsqhEzIs4rm1PQHZd/eqwoWiLIqr1mIaJqQCMmxL0r/cOWXyzyDrOiWyAzrO8dTzlrN7qlP0wl552RgNH5lv+gyvpg+mhCytLgrofxV4COUf6USncJz+TnrTsJoc5hWIqX/GAS85j6lvGd7490/AmgTXGKC77Qj5+lGOvH4THx0d4t8mnocpMSSXrMFuWkXazWltcrCuAZ/fgeyaQV6+misTw0053N91vPWr+1j+/HU0GgmpFRq+dCq0UX7kuw9z0ctexFo/j53AxVRT7sO1n6O2y5owt+gRyqhz7iDNHUeCrjPAxatx7wT34G7cNWvgkjW6bnqiyT3WcLkvByFXB4jx/jYjft1r5zRetJLuvgnc3ftwgP3+UdIX7CO5fC3dVEvSCsJsn/25GXXY150VsX6bz7BSHFzBH7sJYIRev78RoZEaBd8CzUS4OnX8Tq58Nj9hhBen2n6u0TA0rTK+zziK74RMu18AfgN4OwrwE6qp93ON0gcREY3WO0Oe5OSBCxBtUZ2J8BjKp9SgXANjUB//UuhcdsyMx7NIjgnoN2/ezObNmwH43Oc+h4jwUz/1U6dlYAsp1jYUSIkSFTXpn3kQSys64QZU2YT9Udb/DsoskYo+MhshkhGw64YwTx3CsgqTO14hjrtz6Pgaw9f5Rb0DdHNHxxM8ZT4lPfcApPvUYZ6+eBmbpKyZFKspWKF1XTEeK7iWRUMArsxBEcCaE68XKRAYlTkWLX62T2vIuEBhPu3eaR29wXcZyHJWdB2TPtLmMo3Yk+W4H42TvXUTM0aJsrpWIpZ7wyeN8BNoqndije+VqumyDdGgjHiDZUEJLWqrptbTeqKQFJrTGVcY+D+Au3G8GrjGOpJMsM6ROkey15EMN2iI9pxvGPFt9CgiiAHMW4HpyckC+F4FPIwaAEFxhOkGb/6VVMF22K2espLTYAD1IE87aFirqb+U+wrXXiWq7X/jvOgw9FPAxxITg/no+Xq0hq7euk7r51352u9nsp2TJVY5A3wNcUg9cw2gU/aiL1ry+TdywXu7fcp9Dk3/P1k2hFwmmA3nFeMtniQK7EW0znUQp8fAULbX8WP+abSlX5DXUtZIFqRw7hhKKH4/jtYXpTWuPCnxPAlZCa649Q8Dw8EYHx5G1q1CNqworgnjjRyTWB5pWD4d/fQqVKkGMB+i84NG18kBUYWaOi2z6eQlmA/XxUUoYLmCWpTGQe5/fOLo0arDUIALmvBI2R4zy/3aIRS9lJ1z7J1qc93WPfCGC/XriWjEbqyF+bmLMB95EsZSeN4KHaCjZBC+d5eytKeWxApDVmilSu7kUotpSFGidVyDJWrzKWH74R49zg20r/LFg9z9ig1cbmC1QWv2R1u4XxTcw3vIr15Dfukajc5HgH5Pahnx156AprtbwXQyxGjkqQCkvs1RAcB9GZI0lXiuIULuXLmczWXNnI0c76Hd1c9dYbBvvRTvj1AnyUWr4GeE7LFx7rtsOd/bsJqrUkvXA/lu4vtUp1a7CAp0G5ZMtBPHVoENRo+fyQWzeQ320rWIVSASO9tOODOrX4TeirZ4O0/giXG4amUZ6e3msPMwfGUXvPNC7Y0UMnZ8KQ6BVyM1DIrwLGi/eeDI1DQu8S288nKdewqN0ENpsIY18mQBfYX4Lwb13VzT7v9yL0xFDosY7LZzuHMbPHEIfuUSmJpCHtmNvOR8ZPPqAswroFem7Ta6VjhryLHkOXSTnG5m6GSOr1++nEvu30nadrQbwjcvG+PnUw/kG4am36SZ0JEq6H0X8AHgDXjSxsTguob9Sc6w1fXf5CBDTeSiYcxDh5BXtsqU+5B9UDgrHDx5ED6/E35xE+Qd5Ad7dX6XrtEorNWsg2ZieNY7oByQtbuaZSE5GT5bDvjyhtU81LK8aPsU3904wAvXrORyD+RbPjrfbBi6IkrI5m2/UdRR8TFUx3codekEZQRW6ltqC90Qvx9eGxzt82H5dzLMgYwknyH/8bXkV6/mAQcXiGE01cwSm2hLTuszBlvtDLlwObxjAP7hafjMBPYNm7hquMlVOw5hJ2doPH8ZDSO0EnUWdsN9kAhTR6cLILYRXf8vpBqhj+2KA0S14H3mIiK4hsE6yzg+l9CjPHfZWtzz1ip5qPHXny9P2JsaXpTqGupyXUTEer3n929FGJjJyI8cLQwMAeSh3XDV+TgfpQ9g3lhNR7/Af247GmSJwXyI0s+pbHcOEh+veJtArx+oBlcELUttNSzOGqSbYzPHtc4pCaoxpKnQtBpIaonaszmKfdRJpdf2BcDL0Sj9b+D9mgH4c+JR+lgya8jEcwF6Gy1HHSWXUV4DVkqbIjx/rsqcWe4/+MEPLuAwTq9MHNzW897xDBMRoYXW8DZEL8SwoAhl6mFD5mjkBAnKMjKqEsCua2Hv2YXNc6yxXCrw73PH/+0cP5fDlc7R9V6pTlcBvXSVNC7z4D6f6dLce5jdL11NSLc3Ia3JKhFJD/lYVINzqiISOSwqwB7YMAQP7CVmohYHxjllNHflsZXMMeoc4/5zuQcd+TOHoQGdC4bpiE+xF/XCd4xhR2K4B025s3jSJu9NDGA+OdHzdUoHpDgwWNSR1AWcBWlr/ejVifDCBIx1JLmmiSVAMtmh0XU0hps0nDoDChqD4AwS0c+LRntf8dobOeLB2DXAJyg9whllRBjKlHvo47E3Yfj6g6kf/xTCaGrVwUIJcuspcUEJ70UdK7GzoPitOZyCwlCNngsKHEH70W8iBvSuMH7L9HnHxExOatPC6HUo4BoAMpuQtHMfza+loMeP/h9HUMAKaKNbk1SOVTkvqVxn+nslJwBGx9l2eq7+i9+uQh0tXcpSia5458WxPNvBmxD/OwD6rtObwU/IRRwBzkf+wkGcdDAQnA+HO7B6sMjcCOfPGnWMfqk2hLvxUXapgvnwOoy98KATOZH8dbsRBSyxUyZkYGQAVnjDj9+ghFWxw3D9qFosU11N5/X8CaETSO4dn8t/dJTxdctYPTaoZTCJ8bV1YNaPID9zAXx6O/xyCutHdGK50+yiZzvw9pW6tqWexdhH6UNG05zXlkTKLC2vE8xVa+Dh7VrmMARctoJmYpgKSE00NZTL1pJf7o1SD8TyxGidecPybGI4X6rtKMWP1XQyfTNxClz0Ri7X7NRAM6lkZp1wCrepkeN1c93vi9fBD6IU/2vXIQ2j15MJzhDBXrwGc/FaNgJ/bbVG2noQ0G0mdH3WQGCIzoFuanncCIlkrBAFWCbLy2C6j5qdUN18z8QiIG+i5yKweSVsOQzPX1lGsdsZfPZJePlqdWiHjLeweZBLQ4kyR9FLGPS03PDaG6vdO9AA+AxljapQNWBP1AdfkdRoCC12wlijZH9rE3jkAFy/ugS73RyOduGTT0C7A792BYw2IB1FXqDlGzQskup+XGoZSfS4j6OXuIPifu1khraFbgKXb1rD/2oKl2+f4ekNTX517WoP4i3NpoLdgVZC5tN+Ox4wdNAknXXAZ9FIobFKqLXfGsYST8JrPFP9VWOYz25DXqqlEPjAAR1XlhPsmYRPbIM3rYdNY3rvv2AdNK1eU778SKxhtGHZ4zM3HJA3EvIsJzMZXYSO3y5D+Md1q/jKWs3k+bFEAVXTg/lW09K0GgXtUtYhd1Gy29uA76KdQoLso6yh79kErS8Pa61Dsww8Tw3OsezJQ5gu6sGfhO7Bw+RmDfeK4cd9Zpb1ZabWaBeB0O7LdnJkWQvzc5divraL5G8eJ79mDPe1fdhrR7GpzmfACs1EAbS2rLO87HU3ctiv/xdCQYwX7AiogtR9lJkIUKoB/DzVO63H85B/mWVajuT7haidKgrow/q5r2GVVBAf9GkmSDdDJO+xV8y1ta5Q169TZnVfO29TwXowH5wVz0PB5yX0j9LPlxR2mNf34RhOUDoW6luCZmIaERJraTjIfF1/ID+NM+5A7VmNuHuWeO83eRuacv829D5MKGvp2/7xRKL0YU4amY8y9/zzLZQZS/XofD/C5eeSnFDbum3btnH77bezfft22u12z///8A//cN4GthhFROshU+doSXmDFAr0ZC6UukEgWt+erhpUlsk9kyTrRkid41JxvD2Dhz3BU9dqxL6b57Q9SVNoxZQ5h9t+hINjQ4wNNtSraDxhhVUjXBI5uTGf6Pzqc0Rg4zDcuVNJuqwUKfeSlXX0xqpClTxnVddxNHPgCa1w4J48grvsPO01H6Xbd42QWfiUEV6Jkos1UAUf2KZDv/PTVicTo1Z/KAaA3CdJmnZOgi7kIYpr/ZgbuSMdn6Fhck86In20l76RCEWbRRs9v9h//Em0ri5kl4TFPQD6eFGvAHtvp4p/cxBRMpqBBLolyA2KN+CC8Pyg/52VtX1Te34siY3UOO3eoud4J2rYBuWVE6f/l5kD05nDNBMCwU348RaQG6t9vaP5FAz5uVMvfki/d45O7oraPel0ld04HC+IznnvDI13Eub4VsdSnrOrUUKZv6ZMLy/AvDdYM5nN2yyVh+K3QzlJO9PoYFFPUOUYCOA+A6ZxDIu+KTMdpBUcEFJmmYhed28CvhiN4s1UI/MD0gvmdXhStMixoo6mcG4vBL5OeV2FlMuC6BBvbIX7IKwzLavW7DOHcZev0Br6wKfQzfV5N2fTkzt59mUXsFrw5Ui+nRZgMgdXngcHOvCJJ+HXLtdWmznw9T3wklV6HOPobADBJ1Ka5I8nqUDXUPRkv3QN8i4h+8E+8uevQi5YiTjYLUr843xutUtMUVude1CfW4NLLHlqOYA6hur3m7GCsZaib3HwEDr/gSiSespsvkV3FPH8LGiK//9H4LvPav3+pWtAtIzIGtWDFsWQ4oR1RhgwwgOJ4YbU0G5aGtYUQD4Gug7YYg0XNIXcagq4Zn05TZjxtawnda68lC3epHoNGODSYfj4XgWDIXXoizug1YBXrKleJzGYTzXt36DR1X2UpyQ2zMP98DSabtyi6hTrl156wmJk9raDV62C7++Da1fp/3OnZQSfeAyGBuBdl+u94R0UNMpMhCIjLtVuO4PAITQlV+cotFNLp5vT9Ydvr4OZC9Yg6+HdAlc2ouh1wzDYTJSAzGk5WBwpzIB3ow7SNwJj3hG2x+Zcbf39ZgwiDrlgBBkymB+Nw1XnRZF574g60oabH4cbV2v2hS+pkoYtSU9TC4klTwwjRpgkui6NZs60rTBDpqWBImwxhkvSnPMdvEqE56dCs2FoNdVpMZiYIvMzkKKGKP0wGqX/KNoKVlAnT4ZWNlZ0ePQaQFKra61zytnhdSsOkivGaD91mMYEMAL5lSvYmibsEeGahkbTbUN7rCcJpF2N0Iu/fwf9PZz8+Hq6tOl+Va9m+80J0kv207hsDa1EnQLiu6WYRLmTwrW7ESWIjaPzcbDAoU6tkPkXR5pzF80TJd0db1gyEVw300yjoMtFQX0mStCYJ4b9ItXjZw2YqsOg8Jhd3r8rVODMsT7V3joK/p9LUfD5k9H1EVjuT4UYL5aQeRyn2ofHI+i1E+uFcKxC4FJQ21l9veKt1SppXBhjw2nWa9v/LzicNgE3AJ8Gfh19r+3KGv0Z/3giUfrY+VEcO7895n8njPVcic7DCQD6Rx99lN/6rd9iZmam53/zceGdThE5tdMa6i5OTVsWg4muNn1urZDmhnTdAO1n2yRrdRFIcniFc9zsHHszx9pU0+2zrgJ8CSzOPhrJ04f5wcXLWBtSOK34ukldPO2pGmlzkdjYjubI8qbe9TsPw0VjmrLsa+mNL34Wi/a/7jqWZY7D/u51zpFnOWwZJ3/DBs2KM6JkeFYB/R5juMsIf0LpmYvBfEPOQN1M/HveWB1yYDG0j+Zq93kvkQ2pdbnTWqCDbWQ0iZAiVRDj3zP41hwC2XQbmzaK+V+N1tFfRlmD7VADaIoaoJdyYS+AbyQD/nvOWlybMou7ULZVQrn9aASmQdVREEfp53L4Api30XOoMt0XaXl5APGuYgTMdGFwMDDcl8euJUI3TQqGlAopXjE/VyhJh3LMDQTDIe8gg2kxVkRCRv+sE4yzKhJH0brNAtcCv49GKC7hJNLu43R7KAHbTFb5aAHiKecIcNQf22H/KJ1OwTERgsSpETooYH+JwJ84rVd9I3C9lB78ODrfr966H5gHNQY+5p/XUy4zB85Au9Oh6VsNVaP0y+CZadzzvAc/D9wikOc5PD3BgUaLgbUjGBFPXCTYxCBOWZmZyTSiOj4Dn9yiQGV8BrYehbds0t+LgGEBXO1sJ2aW0yUeHKZhDVQHgzxvLWbzmuJ6GnLCLn+wcl/K4UQK9nOM1uNn1pL7FPL9HCP7RgRpaHowTUfRpzxkC8yTjhArSjgVapLROfD8dboVi4E6LFN/nahjUop16EorfDOxvNhHBTPKeyJEaYKz53HgYiMKtjzJqxHnuR98RPBU5zdbhH79sJ6T7Yc0ivvYAa07/1eXVa+XKN1eUg8KffnNmJ/HFLpuzsy0GRpoVJwWW1HQA+UhjDNdTsXSqWRW2Lw6x+evgC8+C/unYOUg7DgMNz+p7Qhfv74E8rHTwoMbvUeS4tiPgU+FLreuCDONhLbrkgG3ifAzmeFVomtI4rtJNBqWwaZlMDUFAGmi10NI5+2iWU+XopHsd6KR2F2J8Aor2ps9EUxuNJDwgtWY7+7ROYb7oZ3rWvCJLbBxFF69pgDzgYOhJFi0RXbOmD+Wh1CnSzE/a2g3hUwyxo3wD0nOf84NF0fzS6zQbCYMpoZBo5dTRuSsCHoAXW9vQ/lXXuqPJ2hKddDjUtsKSQymmSB0y/IvJ5gL1/CnPy28+7FDjF0xhtuwim+IcLWv7TdJGaHX6hUNOIQ12Pg5p52c7sRRskx/2OSQPLSb5PnrivKLJKSki5BNtzGNRhGhD07ioIdDDX24Bw7Qv1ywMJP84whwxGj6fZaIz0zLfacobXeW+9ZuXdS+GSFeK1HHj6F33bCiHaFCVygr0NT7OfGkeNapsz6M8VIU5AaQXeGH8c9PNVHW1TdX/u8gZcq9RI8lJBEGcepAd+U4C2dhTY+nUkbpQy19iNK/HfgtlPl+Lb5U2J18lL4C5F1pF2z3/99AL5APQa7nssx5vf/4xz/O9PR0WWMZbWebrF5/zZkeQiEFIVFtawCN9SMkzxzWFBfnsM6x3DlenDm+mvsofdiyQIYX0u07sOcw3z5/gNXeSLKJJ9wzaszMibjvlCcoVaOnWPCNRum3T0crtSt7Q+a5GmCZelHHcsdhvwCTO9zOw+QJZOs13b5rjZLhGeERY/h3ieFi9MZOKcshApBvcBqj8/XjEYkFBq1h5GiX0VwX2FEHy5xjOHcMek+mHOrC6ED5xaBQYrc7Oqew4P7NX9xSSb98AVpHX69DO+h3WfFG92z6A2H0DfEt26yF6YgpvQ9rOmi6/az18zJHQO8N+4pDwD/WW9cV0Vx6o8+dKTCSRA4L3f8w0G1Z7zTS98L4Y9CL3x9O09as/5SZ6MAAZTZDoSWPPcFEKHqUJ1I6oAZQEsF7qXqgM+cVIuqwmJPE1s10N5qY61H24fmEU3yZhJT7aQcti/irIZGQdqfEjIMCLzPwXqOPcWT+WGAeooocSiBiUUB/BL1G61GaDMhF+KMPfzrKcKK8oNYPwTMT/vNlm8ss0zUke3gvX3/BClYa8Smyfo30aZIVsr+f2gBpAv/jEfirx2G9wHCjBO9xhPZk+ThSo2URfjNNq2C0mWjae8My2LLsbyXkTUvWtMpc37LkzQQ3mOAGErJmoqmjfrd76G0XGd97gHf4+kijB8Dz3mM3MTqPpo65eGxZbffmn5uWxbYS0qbFDuhxMM0EBhKuGUi5p2HIIjAfIvRxpD4A+s1hnsY7alJtKzsvYB4o+DHqWRrGwOVj8NhRONKB256BN6+HZa2+gL7YqAIQoEgT/tR/v6WSch8A/YVQWRcDqDf0Gt0nLEl5TVfmOJDA5mG462n4qwfho0/Cy9bCT12ggDYC8zQt0rKIv55pJJp952U5JQAN93cH6Fgtqbi/lXJgwHJDy18LAwm2aUmbCWkr0fpyoyVNofQxiXR9ih6PXwI+E37LCHutZbnPGDGJD3gYQV6wHPNsG5494tPtNcODW5/W8/qmTQUBaJhncFaY8No7wRsoEA/nMJg6badBiHbTcvtAwsWtlE0ti21aklai20Cq7epEy9xChmhTqlmGCdp+7OdQ52eOgtwRousgujbqRr+A3u+NRLMNAklk07Lv4rU88/rn4S5eQ7th+Vor4SUNq5H9hiFpJdhWQtLUMZtG+V1aet6TlqX1orUM5TCUqQM8ffHaorQIK0W5kgE+8d9vKe6DTSg/zgxVHZhHam+2drix2hVUvx9GI/HOatePvJngBlJcK8GlWuri/PmCWWwiazBNCwP91y+du5Yp0UpUl0T3ZHi8FNiGOg5icrw4lXw+pKLXo/0epQro6xvo+mFFim5QTaPcY/3WFSNSsbPDvZiiXDjXo/dfl7JFbainn3FVpvnjSR3Ih+O1BS1lCDZUDOTjQMFzVeY8v0ceeQQR4T3veQ+gJ/qv/uqveNnLXsYFF1zAX/zFXyzUGOdd9ux48EwPoSo2yuPxgNcKpOtbpM8cxjrt0Wt99PrVzvGPHtDn3dz3oM/9a023Z/sRumNDjA82WO3RhRGDTdR4s4mcWn3dHEVCxCKOnoXHjcOwdaIC6E1IvXeadmryHMkcyzMlxcNn97mnpmDzeeTG0LWiUUsj/BDhP1rYb4Qn0R6toeYnPDbl9EfnJYRq6xoHkIGEZDrXtl7AgHOkOPXOhhV4oqPGYHz8CiRcXWAT1KD55X/5trJuCI1SPEhJxBMUyAF0YY/Tkyq7j4frf6eFAi0Si8s1oSusx94Xo5kU/v29lLXuRPuuK5DjSRhfHNkXeiP0CryrhHgh7aw7DY2mr3U3UkQqW8BManHd8jsQHAI+Wp+XjguALk6VvnPQ7mi7Ir+/Yk7HmVzwIlt6Qf3L0X7swYgPEZmQdp/322Gfa6x4HEDLXMLZKgCQK+aKn9+0c4XC19QGkMG0MJSsKO/AoBGGrNbcDYtuI0Zfh21QZgfzYcgJVTBvUEN1FWr41MF8WDZ+81/+fFGuFJcuccEg7Jghz3Otm/fro8sd+fZDuDxn94ZRLWOx3qg3Wp9tGhYJ0bdg4L5keen92uFg674S7CTR55KTMxuKPsAti20pEZ20LOINR9dKSAcsz7YsWSuFgZRuK1Wj1BukuadhDtf9pD9m59F7X5/IfTcfIkaUuGQgKY3hgaQ0hgcSGNTX6WBCMphgWylmIMG0EkxqudIIUyI8TrmGhXsiGHY56mzcgQJ6E23hupovwil1yJtq9DpcxM8bge/sgz/9oV7ELyj5FuqbEmZJxeFi0HU5OLP+6T9/W1GOD3p+n6basq5eR3/KEjssYlBvgFUWnuyoxwhgbe0+CA4b30HABCeVkYpeGaWM0Id5FeucNXyiaXltK8UOph7MJ6QDKUnL0rBSISG2HtSHNooFwEejuC9AQUUHOJgIy73tJeJbillBWgly9XL47oESOXx5F+w5Ar+wuYzKR/Ms2pE2yvmFYZ1HNQMhkOF1gaMi3GYNb/Yg0AaAnFrl+6Fqq9RtmHh+b0Dv93v87y2LjjGU10PdgR7UhEQON9dQZ+HAgOVAKyFvWL7dVEfK5gGLtBKSVor1vccTK9qWNdzLzdp25Vr4lQ1wTQq/ukGJN6Pr3zakCEb84r94W3GfrkSjvtuIyqxqzvZxejOQinlFr4dQm6UScJCyW0ScpXbYH9MGverU6IWmx6oVAfkY2A/45w0NoBW2lZT36Dq//63R3OqR51MVN8sGuq5UMhBq8zwZiVPxY7vbooz3/4Dam2WHhxLct2FOAeJQDhiCG/G6vwV1lBTrYbBVoufPZZnzmj8xMQHA6173uuK9iy66iH/7b/8tzzzzDJ/61Kfmf3QLJM71NYPPnNTAPKLGXbpumPQopOPTBUGayR0vdOByx4OZGqrdzNHNUDI8n16cP3WYPZcsY6VoOxCbeHZ7o2lSxsjp81b1q3EVYMMgbJtSBOjvTCmi9GCzXNMPc8dI5jiSa+9o53Lc1v24SwbJxPecN0LHCl8KbUe8t+LL0NdreEZ7TNZToRuJpvTFa1k9bHpgGpYl1X0U1l91LgEcDjQbaoehry9EgXholxJ+7gBVNlwoF4ZCgfn08QB+h9GF2FmDa2dFr9OcEvzGWQD76a2frzyf4/mIF+nY+dC3dR2UafcuaqGXdWkkpvrbotHkaZPgZsr9xBkH4b2ihZ1Tpv+QNyGdDtI0wceij+HcHMN7JqG8Qqop9wb1au/wW4jKB6WfoQpxlp36R6qPA6LXWjEZXUvAR/vD3ICJXEtCdG6ZHvMi5V4naEXB+ogRRkSB/IgH9qMGhuT4YB6qTprwPHxjI0qMF5wsdeOnOdgsvxDAvAAr9cx090xqyyifap87h3vkENuvXMMqayB0/Aig3poyQt8MkUYLj+6tDvqh3dUUe08adipRUe0DrFF58eDWecMxH0gYaKUcaCW4ptZ5YnzqPdUIYHzfgUanwnEmOtanexXUFH8LAykMpQrg462VIAMJtqFpuNZK0Q3EovfGdcA36c1aCRk5GcoVMkxJwhlKdBYkUtMvQi8CEjUR2wVs29cXzEvTYrwTqFh3/eMoZbQwaTYq90CGAp1N9DothPlxWihJrinnFUC9CBw4XP3ww7ur2RcB1AfHlO+0UCyJ/mtjVAFvSHfuAj9A7/3X+wyLNNVuC4kVGh6819OSi8iglJlPIUr/TjQ1/XG0e8DyAOJ9HTfeLpIXrYDvjyuT/3f3wnf2wtsv1Za7wWlRrA0+u6JVBfPxORz3z8P8wlr+eWA16my3IqQhy0BK0F7nG6k4K/zcQmvQt6F96Q9Qglw4vgO9eN8GUK/ANG0m7PFr0N0tw0taCa6VaiaBlSJ4kKLM6NKwJciNyhFoWQXx73wRPP/86j3gnSCJH+NAs1GxDS5CQS9UuVOCg/cgpcMyzLV+H4k/D0foL3XAeyg6fvXjVmxGkKZfywYTvTbidczXzVfWH6r36GWoPRYcPXXdNh+iNll1fuEa7CkpoP/1MVcxNYdaAfBR5+qLgVvxtgt9ovRznE8lOh85eH6EAvpw7QQgXwS2zqLS8JOROeu1ZrMJQKPRKJ5v27aNbldPwb333rsAwztHJKSl1+rxEmtI1zSwO6ZJ0JrOAOxf7Rxfzss0+26uEfos0z7bbs9hnjx/gNW2rJ+3nt3eGK0/PG2X9mx1hms9ndieoyGkq2RQIULvlBBPci01OOpDv+7Zw2DArRsmE21Plxkll7nOKLtzkDdS9RaGdLwzIv0WE0HT9mb8UhYjxzJcCkc9oBeqaKdPvrqhrKOvp3ldhfasDQrRocp/Zfx9mX1RD1NIRBdg7fkYIvQeGFJGtYPrrF9aXAzg5iqFX6j2/HzUZi7YYp0rxlMAcqcp8q1ul9ZQOZ8wnhUC7dTCNEVKvXOlMgzp7eE9cEyiKekATDuNUHglfiIpvYlE50xKYD+E9heuROnRCFbbzZJ2389aC5NNEpgJgD46Pq589AkXTAKDYd8zHcTiAWt53BDBGGiIMGwUxI9GoH7AzI14My6nqDtsNlEyHfeLZED0xRjYG4O7oIXbOa01gLl2Acl3H8YdmeS7F46w1pcjSeL7IPt0e/Gt2ipG6bXrqoO+bl0V6IT64HmQ0PpKUgupxSXaVm3UCPv98aw7mmIHWni9n/49mk/VcDtVESM+zden+Kc6v3DPaFvZ6j0RjLKXoLXCxf0QObjCMXicaqSmDnTndd7G9NXfPNLHAVQH9A2rTiT6+2eXU01Hj8/zLv/++fSuiWGu8yL9etKnfe6H688vovFFZDZEsH19dD9gNFabY+7KLLJPozp8hHJNrHPh1I302aL0KXpNXAf8N9DuB4kSEqpdhKZ+JwZZM6SL7wcf0fZ0b98E5w1WgXy0NkjLX79hXtGQwvwKMOVKQHU7Wlds/fjqToh+LZAT6C0t8O+/zh+3v6dMFyd6LB315Y4lOi/G/5GmZgE1BhP2DSTsG0y4p5XyyqbVLhThfEg57rDOF5H+InodldnUt1qJQpxhEsYU1v96tp2LrpsV9F/bwnugp3MiOo51cr14PT3kPw+9+6urM7HBCRutZdFNbLwTK47ShzVpM1VAHwBqyDg61ZLmfvNz0XEI10h9OxWJo/RxoCJE6T8LvA94gGqLu8ALNJc51aPzGeoE3EYJ6Cu2r/Q6/p6LMmfrY2xsDNBI/Zo1awC46aab+I3f+A3g7PJ8jC7feKaHUJW+xqim6SQXjJLumFQw7xwJWlf+6gweyByHckfWzZUYz6eTZtuP4JYPsW2woe2KJLSqQ9mDE5mf+rq5Ssmy0WNws6EF248WVrrxEXpyh+n615nWk0/6Vdw9PYPbuApnDJlVMry2KBneVgtjRvgx4P9FwVBITQse79PCHdD3ONBfKzSlJCqr55MFUL8v1xZAIfQbW3414BhS1772pfsqxnAA9N+nmoJ+kF6G+9gQNlSBL6iyOwS4Bri87NtesMuHqfiIb0i5j/cdpnAiZyMeV7yfNf7/e6kavXHkzjnHAQfD7S4mKQ2Z4rgB02KArKLcXcQGXyhY/ziDr3XNnfYKb6U9RtTxaujDbwcAk0qZdm+Al6FM70F5BYMw8wpw1rT7+PeDpFY9AZQTDMcrZFiEc3aUUE4AMtVFBsI5k/InoskaX2+XyOx1dnM5BrFhFwy6p8rhFgQ9wfi/865vVDN/onXGbRgl3zWpnw3lOo9OwIXnszu1vn7er4+JKVLubT2tNjVwxVr45Qvg6kTTR69YWyXCm8e68/pSEfY66ufteSh70kVjoxeqDNA99/cJ3nunWwJgqGetXIuSH+2hFqGnSoh3CdWMj3gdnNcMrVi3xVHsF6+tfu76dTUw76O7xhS7gSoICxF6B3zrrvsqPBJPU7ari8ul5jsLQXzmSTG/MP7L1sA7L4Cr/P1w5boSxKdGyyt8pDLMpx6dF9RpMUF5f4d03K3Ad4C3UALemAcnAIV+UkSu+4CKX0IN/wPAwyHl3gc78HX0bN2nHs0geadvdoXO14M4+oOj5ZRZFo4y3f5rfjwvw6/7lOt/cEb0s1X6RenDfBsoaNqJZjf8IDrWx3TU0wcMG2GZNexPDHdbw+VGWAsVMF84WGo7FStRSU2f8prwOpRgSJmWfu9d91V0fOzQDYA3rHsH0Ay5emp8vyj9CEowGc4D9DpBY0C/vHLMq/flia4eoZwuBvaCgs/Hot+Oy8nCmnYqUp9XeDzsfz8+btBr552MaKZJ/yh9iMDfB/w74HtEtox/fjwnRgXIR8+fQrNU1lHaEJUSvsWs7OZJ5rzmX3zxxQA8+eST3HjjjTjnOHjwIPv27UNEuO666xZskPMtWdbbcu9MiogouK0ZoxhorG+SbD9E4lmXba59ydc6xwvbOd9oawumrnNk+JrhJydg8zJ2IpxvInZ7r7SsldPrrarPK36+cRS2HSlWs0CKJzlIN8d0ciTLWZY72i6nm+fwzF7cxS2coP3njZBZoW2FO4zh14xwE/BCqgp9No/3aZNgnYfn4bFpNLUvSLy6O0qwP9YqvxdWp1nAYgIsGxkqSUHQm/1qlBivTTVC3wPopVQ64WditvtR/OKcgJsuk8NKEFxVJAcpswDqhsOJGJ6xgS7Ra4uC+h3RvPK8TDcLLev2ORiY6kJSfl/QPyPA4RYw4wF9neCv9hqnKfcth7aCg9KwkzrD/bEvvDjtPpyvOCK5DSUHKvgPIgV43LT7WJq18o7I2RE7YHAw7pSQERxmJodGrSXfHMoJTkSK6EztMRh0lXR7SuNnaHiIoo453gTyjU2yXYd9yn2Om5gi33oInj/AbhFWehBvEu/49Cm4SYgy1ojqeMH58EsvKsFLHK2bp+g89AcGQklidIheQ7TeZ9ihgH451WWjct0vYim4JKSatTKKtt78FmXGSj9CvEso5xpH5+fvLKn0pqWLXhOXr4V3e8D7qxuKVlaVVGNPDhcDESjHuJwyujswPFSJTm5Fy6jicxuD+nk9v4HsLAayLQsvCGnU66r/G7Dq3Izuifq1HP4ziuqgIMFJ82ngNahDKqSVB2AeItSzOQ3rUfoYVByNPvc7RnjEqkNOrNY7ixXkod3VHT68u8w+qETp/WM0p3rq8hiq/wIg7fj5fQp4a21ulbEe4wTa6BgUUX2/BT27H/j3wCOzHPdYgk4l+r+gEdxDaOniayjvpTqY72dPFuU1raRaXjOk/B+BbyAegxUYHh7qC+iJjmG4z/dRbVlXX9vix2GqpQ+u9jzeDtNbX145NifoEIwd1XGgZDNqs0xTrQUP+v3Y0Pb4EsUiKvrhMMcvKTgVqTvUwvXypdrnPkcvJ87x5hwcAIUd4L/7GEqIFx/neqnDc13mPMd3v/vd/M7v/A5r167lXe96F9ddd13hSXnxi1/Mv/k3/2bBBjnfMjmx6/gfOt1SIdQJBqlg14/SOJiTHO2Q5AHU50qO18m5r53hZjI6nZxu15E/uQ/3w3GmbZf9RlhnpUizN4mPRPkI7umSwmHRx+BmYwu2HcYXO3sw71PtOxnSyaCTM5zl2NzR/sFe2NPFZR1yD+a7fvu6MTQSww2UHu9YUc7m8T5jEobSNNCNAb2rRurHp/3nbM3qC9Zp75yswI0vvbqnhmgjqqgeo1wID1Ia/bFCrBiZhSEs/j1Rb7cF1y4j2qFWPSzOQUmFGvo4WmCoTmeuhyxOK42jjBViPFfWhId5Akw4x2C3C6kpslSCATYIdJugVHcqcSp6eI3D9+p1zDjtvSozHUTJGQogLzCrw6Wf1InxgoG2DM2suAc9ngHIF/3oqXq1j0XASMuWKfd+QuW507dy/6LtYCXKcE/XIUlaZDWY+kmbh9sqKF6hGmW8wI9vN1UwH66tl914dZSnH60tIrh1o+SHwE13tW3d9w/DhedxYLDJjBVW+XR7sT7VPtHuHwIEluICuIfI0mBE/BTAfM04nQ/pBw4sWuUSIprhvNV9gOGar3NXhONcXhaLaD2siaEaWY2vietQQB8AbsF2j0bhdlIlxIuj8wtSclVJwbZluvHzPeANYD4CgjHY7YmOUgKqcf+ZK264GqI5b6UkxIvTeYvslnk8t2JNNZU+Tpuuv9e00EwKZ0Uxxz6AEcoIfZhbG82++Ee0v7qlCh4DUD/eeawD3nAt1UHF58P9b0MnBINcVy+vOb8nzZ6Wkp6F4zwbMFpG9X7NgG+jQPm18fzqYz3G+TtWlP4rtc9+jgjgCH2N/vqYw2eWocTC21GC1jDW+HwkHDvjpae8xpc41CUs4de/9OpKZHWTP1YTRMDPf+cgJaCH2tpGdf0cpnT+VR31VeDr/O8ti/ZT3/eJShFYkSrAXIXaY08SlwvOHzFeAeZrryeolhSEMcL8+Of7lb1Y4Kdqn3sdUQDGVTNH+0kIqgRQHzv5AyFeHPSJQf0Z5c06TTJbxlKPbN68mc2bNxev3//+93PkyBGstQwMDBzjm0syJwl19EUIRZ+bpiU5z5DumCS5rEGSO1IHncxxfSfns+2Mp7KcS/Kc7rb92Nt2YA0Mf30nlwxaBi5arV5no0rApDK/9XVzlVkMbtaPqntyvK0kVrmWFGjoMYd2jsk0Sn/Ftv0s++puTA5yxzPkPytkl6zRtnUi3Grhrb6+q1COwQjgDEfng8TgKjw2jTKP1/uGhVDpRBtWBmso+m6suWoSDFcrqBNI0N7WKNPvQ2i0HsooXvheodSlZnxF2n5QYBL/A1k3SkUPitIV0zjgx3de+fVjRguOJSKCca5nH4L2N623rosVdo569BtZtyBo0npwBXBNgf0W8BkHVaXvCub+oFRAszIHHMh0Bi0pQHxxWsK5mcO1Z6Ho3Rpqh0Nf9hvRKMnPUkboMymJ8TKZZTGvZ4Sk1Qh9uMTKVHsp5ncIJSTCgUyDGUqB2jk7AYfF8aQSXXTl6wRYj6YYX0Cp9OOyimSW9TNrWfKVhnzXJO78Idzje8nfuJG9wErjDfjEYHyE1XqyxODscQ1TXmRdKRFznF4dRVrnS2YDB1BNUT7etp/yPo/vlTDHxSwignWudHD5+8KgvbY/hoL3lMgARlMvR6gS4gnzn4peH6tr2NICF3TQuaPovhAi9x4IVr6PX9pddc2NzzVUI1hbgZ+gPJ8xqJ+zYXci4iPRxcFMjQ4o3HOBPDLtX3oSX8fxXMfQiGEBaFDiuuvR+z52zMft2o5noFsRmuJo43u2o46fNwN3R597oxHSxGJ8wCR1Th0wvyLw3V1aOnH52mqpRFT7HaRwwLleUBzIKePsgzejKcLBXimi8zI3WyVE6UPP79Sps+9Ntfm9mdJJHEBlXfpde6D6soOStw1SBfNxlH4+RAjOgVLvGRSIr0Cv9+VUI/T76c0uhP5r54j/3xE0TT8G8HXgO46Cw377Opn1IywHxlWj9II6Hh9D7bI4Sp87VTnNk/i9IHV9EOZ3mLILAvRxhJzCbwZJRW3PWOdcBfwu8H+hfemfT/V8xsGXfhKcHMVxipzZj6N2UmU9jK77c0FO+No8cOAAd999N7fddhvDw8NnJZi3SetMD6FXCkuW0lgUQITGumU0tk2ROF20be5IspxGN+P6Ts63Orm2r/vyMwDkA8AEvPzxQ0UaoAlMzkbOTPuGmPgvnmNiYG3qo/S+VZ0D6WSYdo50nQf2Xd76jzu0bVgLZAa6j+73PeiFbyXClDG8KiJsKaLznOHa+SAFGKf62DAw5ZfaWMuE1epQFwYHSnAWh6VnKYQ1IhzYP67svlI1+K5GAX3dyx0v5LFi18uw2opnSLR+nMTgvBEb+yBiUrx9aFplSlWR1dP65yp1D2wYV0/rOldG6kM6+T4HSTtXkibiBVCZ+6ctMNMtOmGE+vmgNCSaY9fXZA/goJ0hVgHvyaakh7T7oksUZXTypajC2keVGC8mlKntrM8PoNdaJ/A11JwV/piJ/9+Ui/rUHnHQDPwAUmRtBK/FfEQDA04QqtkXgqYWb6M8t2HLHOzeP15eEGFt8c8zI+TrlpHvbJM/NEG+cghWDLHXGNb4VNuCFM/XwMfrY4WVPTAZx+mjrfkH8+FY1H124VeGKSOa/UB83KN5L/0daeHeW+xSj9CHCOEFaInNA5RZK8EY3ELUfz76XnByLpQWEGvKmmFfH1ypGQ4EYQ3Tc7/MBhqWUXZKPLR/vLjuZ1BSvAuJDGapro3zPr/6vTCQwJB/HExhIFFisGP8eI9eoQQWh/3cDqHtrX6OWnSealr6XCTU8sbbS4A/RqOFfwbcYIRGw5CmQpoabMNWsytecH61vCbUzZv+5zC+z0BBaGBXz9GI92PAT/u5FW2+pAw8zAWAxH3pm6JdWlp+fn/k5/fnwA3GZzRwjPT4ePx+4D8A/sr//1E/7noG2Wz7OxkJvz2+f7ynbGQj6tCtOOopOULq4w9rXNgvlMD4CL1rJrXHI6ijqW4PnSzviJEq6Wt8r15KLzFeIIYM5XAnK7E+iKP0hyhLCqB3nvOhz+O1SKLX16CZCWP0Rufr+qsuxVofg3q0jGYnmnIfH+cFzcpahHJCOv2WW27hHe94B+9973v54z/+YwB+7dd+jde+9rV89atfXZABLoSct+ayMz2EHqmkpVfS78FcMEDyzEFS5zRi4cB2Mkwn52Uu57FuRveePeSJJW8BU5Atg/1XjGkKqfUsrtaUC8vpBreVlczPUfy2YQyemaJoW5c5pJNDJ0O6mTLAf347RwYS8hFgWp0W2VWr6FhDboTbjOH1VoqerJU0NFkk0flYJHrSTCK2lj6r2aEurPBOqNjK96hqtsX3kzd/rpJuHxa3a9D2HjOo932SWsp9DCQqSlEqynFG0IPb7dYARbXV2376t8WLf+tEpOL7ivZ1PtXWdar8XUVJHM5yzfDw4DSe46AIR60h7yrgjZsMFMA3LyP1RwHBqaHQ8fsM6Zem1od+jpMMQD6OgFg0CnEZSiZTAHpKYrweMpm6pg7SMFFHBVedJ1H2gXNMOsdQGH6nq+mSRA6LeV5DgtOoiNJQnttNaOQ1BvMhNfHmmz+nO4jXTwFnBCfQXTuI23mI/NFd5FeN4YywXYQ1fi0SD+RNYmZNVxYTMRkHNuNTbFF33ONB730IZV1rXzDvPxOuhIOUNbV1wLEQoG++JRhjMeN9mMf19LavC5GaON1eqEbnF1L3FW2/BkuQq4A30brhpu17zcTp6PF5H6NMuf/yJz9XzHU7CnBPZxZCELEK7LXnuHdqNfV+OOb3qK75Ya4t/3wcndudwBXoeheI3uJ0+xNpO2tECqDbEhg0MGTgZQbea+BGo++1rDDQsLQaBts0pTOm7pAZ6F9OAFW9GZ/PMZQjIAC2wNw/ytyZ+2eTRIQBP7cBE81PdH4vM5T/94+z7Tu+9izwhdr/74rGGo95vtbAYJve+onPVaK6Yf3fSnkMw3p3gCqgr38vfh/0mAfHEcS6rwokxykj+vV9nexsw1oW7tdwz14KPEFsP1WB/akQ48XOj3gLHAFhXFC9fudD6vd6bOutRkvo4jHOZb4VIB89fwK9z87j9K+Hi0nmPM+vf/3rfOhDH6LT6VQMx7e+9a0457jnnnsWZIALIXt2PHimh9BfYtAbrkYRZMMIjWe7JO3M19E7ko7DdHPWdXN+6Ru7aR+cJPvZ5zHzMxvovHiUv/7pjQxcuEaZlxONzktqFoQUaC7Sl/gv3GkbW7D9oEboHZDlmHaGdHPkaBv5+6dgWZN/fOvl3Pu6C+i8eITu2zaRXbiaLFFSm2es8JPWVGrn49YviyLlJl4pY6TcTELO8ywR+mkYSaur7Ryiv+/5jbeXYF5KJbIOBfA/pIz+LKdXaVWiKVL4DzAiDOCjDqnF+XbLPSRyfttLyUIfhlxXus45XOa0Hn8m08dOVvRI5zjfN5SAPtSUF2Nwuh1xFNFpSayeggC8vaHYSQWybnEKXLSvIGH9m3JlBIkZEJ+SXgFgJ2jsFGn3VM+bQdPJvkE1Oh0T42X1ndWvFcETMEYkhn2cFvgo/WE0zVIAso5GFokuw/r+50GKejeqivlCasRIrjTs/uW/ervePoWnRy9WZ4VMBLeuSb7jKG5fF2cynAg7rFFCvALM2yJ7aTGsFceqyw1GKfRG5gvDCL0uDlMaObGBNZ+G20KKESnusThrxaCRyECMFxv5T3D6CPH6SVEz3FLQKwO+J/UxMjkq5zg6R8vQ6FMGvOVfvr0wdreh5TDxOmhrj6dDtGxpbr/W71oO31yJgqgZtK3VzxLVa0s12+5Eo22pCIOiZWLDooB32D8fNvr+kMBAw9Ic8FkUBTN7LbtiFjAf5FgZCJOoI+bbnBxz/2zSkHIO4TG0DR0y+npIFNDPVpcfwGa4x6yo0yGWN/nfis/JfEc+DfAv/tXbK1wQhnL9r1sD+5i9XBDK6ys8DlNdO8NjvxrzcN4KNRceT3LOYf2pByQ2o9k2R6i234yj9CcrsW4Ir6GcX/0+nE+9UPDt0HvPr6HkxAnHP9Zds0m9dj5871H0OEL/6PzZoOvmQ+as3z71qU8hIlx99dWV96+//noAHn300fkd2bko/YjjjMBIAzsEjR2HFcx3c2w3I+lmyD/uYPWhGf7mJzbiBlLYsJLstZfyjQvXsN6TPElqMIktes+fsfSTWYj/2DCiyHKqi7b/ypFOjhyegTuewKwchpevZSSxbN+wCn7yeXDhajoNS5ZaPpsaXpcaBuN0eykVZVPmz4t8ylLXNKDGApR503V38cQ0jCV93P/HXqliJV0Qsvj3Qx39ARQg1Ou64nT48BMOKtHsLtBNDGRRanoczfbP4x70fb3dDq3rnuroNXC0C5MdfZzqKLiPSd+i/cRp98FpsM/vUnuPB6XhlCtgpgsWzVipzRUBkxro5kWUug54C8XvNKliyP9fjjgwngUeKUG96I7nbPQGACO9LbtehjIWj1Mlxiv6cMfWTjGA6DXoDdGJCBgpyxPitPuO34a9CSBHOsigKcHGHK/BE5X4Go2Nnk2osyZ0Z4hb+4TndWdoboRcIJ+cJs/A5GDvfAa36wDPWGFdIh7MKwCLo7mLQYp7RKr3yzKqddXhnMVGUYhewewtKRfJNI8rlWyVsJYBV6LXw6OUhvAZIcSbJ+m3No75/x2iavw+TUmIF65ZoVqqstgkrNc96z+qg8aBL6IA7VpKQF/PtjuZ0rmmEUZ89HpEFMgP++cj/nlLQJIA5KPSmqEUBtPjlhP0qGf/fiAfOwR8BvgxNOU4DjzMhbl/1t/1WQgByI+a6vyG/bybxyqF8NHxANabohkwH0SJy/4IPSdxiv9CkAyH6zd2TkE15T4AOdA1LtgWYSTHiqgPU3Yj7Bd8CGtnqDHvF70+2RkXkXmpRumXo07XJ+jNPgvPT0aCzVTRE5QlBSPRZ2c7XqcqZVZUVe+soVoeGUfni8BCTXJfwlmPzuf0IcSjuu6fC4R4cAKA/vHHHwfgP/yH/1B5f9WqVQDs37+/5ztLcoISa+YaeZzZMEqydYaGA9vNSdpd7N9vxU5lpK/fwI5WwjPGkiWGnanBpYZVDa31MqlFGqYSrTgz85Oq0R3m2EpghcD2CXBOW9WNTyF/9ziyZjnyijWYxDCSGCZTg0stWcPSSSxPpoZvNi1vSG0vuQzzW+N16iKVhwJwpX6E/XrROwcHO7BMo789YP4YJzNW0vU6+muAB1E/Sj9PdHF66LPYi6ZJAkwnFgRcFoNgV4Jf54rWMhVA4fdtcqcp4NNdJaObysrn4fVUF9p5scgHxVBPu0/QVK6dRDX8DjI/noMOVnYyJTOCsrUcpRFl0wTT7aPkA2KKzstM7igYRLpdNfj8APWx2PnsJ6mPhChNMK6C4l+NRirup9quK9TSd6gpwvhnYwLGbknA6HJXKNBwuTnnfJ9axyD6pkx3EF+E2FNOMI8SK+Rg0Ak69wR4hioZXmEQBG9TlOXkBDIruEf3ApA3wU3C0S0TZImw2vcLl8RqBhNneH2sSd2hFh6HKfta1yNLcb3kfo7trDtbJF7DYgdXgoKOmO3+SXTOZyIV/VSkMHZrwCG0WhunuiZtpQT0sSOqmPMiNWAruiQa4hh6vd5GWTsfE+DF9eUnK4lIAXqXeeA74iPYaZRpIOJb1yVGy2yS/iR/x5wb1XOzAgVsd1NmH4RsrDjwcLIOJxGhYaQC6peZMgPhWIz5QUId/oDfBg3cKPCfBF4q6hRo+XE2WZgyxtjmiJ1UG1D9tpfyHmijDrzYYdnPYRRPfQQF63UgD+VaGvgORmv7gVNbP+rrUMwRcDHVOvp6+7qTlco8I9NgnN75LYRuCGC+on9QQL+Lqt6KHSr9fBhB5xclVq783JMooA/XSx3Unysy53PX6Whe7bJlyyrvHzigcYBu91Quu9MrYysvOdND6CsSItYxmA+PG4ZJt4+T5I5kqkty65Mk1mBev4FGI+GKxHKvNbiGYXtqWeNbhBjPxmpFCs/nGTNqKq66aI6hjn7bNGQO2XsU87ePI5vOw7xyNVgLiSFNDAdSi0sNWcOSpYZPNi2vSS1jVInwQpR+UUXnoaphwrBCSHAmuoeUzU1XrRlgWav8XmxcHMPQuOUzd1UM4biO/irUwNhBWWMbdtfPMAkGTXgdIshTvm7SdT2JHNVoL6gSXhV9t3AYoM4bZvIIwHc9qPfbTKbR++mukiPS6/GNI1KBGA8P5gvWVAeHHKzu5mCTqsMiuj4awbmS5aoAI/d4cFiE50ed70EPSNaBQRspxnof+rlLHKEPz8N5ewVaR1+kVbtq2n2RrhZ+s37tN03kOIrOFwruw/yOuLK2VQDpdtW4Jbrk6tfxPEihkKU3hfhCeusoM+DWz9xFhr9Gozr6LDG4xJBftZo8gbwN+TLYecUYqwKviG+hVPgBWDygLz7WJnpvjNIopfZYONKYf+6KMyVWpBqhl3Itewnq4ApzD4R40D86v1jn3HfN9f9bgRrgX7/truJcb6PsQd/PcbEYJSZWrW9jaHQe4JWUujyOGM9HRFhb9gqJCKl/Pp/2Qb/7FdQJ9zdolHsjNW6A6PFUI4lhfqmf44nML4n4BgbEp+oHp4d3DIStOQ/nou/4gdv/7q5qxgl6rNah6389A2mMql1Rv3/ixyHKCD30j9JP+P8N+sd+UfqTkRBgqWdLGkpivH4cMfr8xMP0Fd0ebaDHIEToZ1t35kNKW698BO1ItDceJ1VSvH6zjYF8Hr0e9/uKI/Txur9YMu5Oh8y5XGfNmjXs2LGD+++/v3gvyzI+/OEPA7B27dr5H90c5YEHHuC3fuu3aLVK9vrh4WE++clP9v38zNT4aRrZSUiwWOrkcRuHsJ/fSfqph0n259gNy0jesJHEGrqJ4SXG8Mep4a2J5enUsLZpyVMLDVOk2p/pdDwRwc1C/MeGQfjSDti1D9kB8oo1yCtXI7bsWzpqLXsbFtcwmonQsHwttfwF1fS82Ou9IO17TlbqGgZKCyBFAWx9JZuY0cfhKEJfIONjL7+XXbqxaFtXLHJOj9UaFGT/IyUjdLzFBkkJUkujDFThTRsht0An60kBDm8c8L8FNaWbOQXp3VwfZzJ9DLnjqYHclF/s5jgfLRHfuq6uxEPrukoaea4p97ud46quQ5IEg5RlBVJi08S3ZnKdHBr9lWLunxx10AyTPNJB1pWno1JDf4I3nIiQOFemGruybvhlaLuuI+glE2rKQhu7rvMKrA62w2NiSwLGMKfISRHmO53DSHghgkzlWhNMvZwgnuypS7isrSsBCq4E9E8TRejRc3HRpRtLR0ZqoGOgm5OlRj9z6RqyXzR0fnSAzgvOY8uG1axKDZIIhO4flL+3WPT/bPdkSE8Okjtw0mu4BUdakNnSnc8GCcCuaOmIHo9rgQ+g9ZhrOLOEeKcixfrqes/PMjQjY/PmjWSoM+cgGqGPU1pjUL9YpTDua3M9ikbsfpISyMd6PIDexSw996tfu0DXrF1oXXqwVeqBh8Uwv6bRtrCpgxlXAstgpjWLsS7MYA3wvEs3Vu1VfwxD2v0NlBlIK+iN/vaYSK5cO0MNfX2tjDObDnFsJ8GpzLwA8650SgoKRgMJYYhEZ1JG6d1J/Gg/Z0Ww0caZJULPvKrz4vxJ9Nyga/Vh1BRpUAXzufQH9N0YyEfPt/j9jVANWp3xAOYZkDnjnZe97GXccsst/O7v/m7x3lve8hamp6cREV7+8pcvyABPRO644w6sPX6CxdTkIi4PqJPihecTRxAg3ZLTSKDzgmE6iSFNLJ1E2GQNA6nlmw3LEw3DixpWa+elGn064+l4UUpsaUELuLb2o3/GL6IbU8RH5k1qIDEMWsvehmYhdFLLp1PLy9GbOaQmxkR488nAOm8yGwgawNc2R+5J57R+fth/vh6ZP452ueaqS8l9H2frjWEbLbAvQFMAX0Lvgl5XZPGQwzFtAdMOSMHNdIuhF/VQHmiOUxJzhaEbQLo5JoD5TgTqH98LD+6Ca9fBFWt10KF9YUOti3jRDkpCUC/+9/2hC6nyQZHtA0a6IINJCZBqUSMjQmYg6XRxHq7HDgpXvIAOTlu/OIfMdJDUk8BE2Qwnq/1DP/qCGM8DmfPRll3fQntQx4z3Haf9lhtF77nogIcT2LSaq4jOo0fhOz1mBz3DPX5+tEFaSZkSHJcTzOMtJqIGZZGS6EqjZxPwHWrefODyF1xaRDHE98d2ucX5CIcTcJeuwW1egxPhSWu4wPeUlobVNdIb15W5nWGpG6NhVHVSPOitn3f01pcW1ziLa55zkQDmg787APthtJfxN9F+20+gEd4ACE43Id6pSI9R7U/uMjyAf75e59tQwBEM2H6gfrFKPwDxCHCv//8XgNeiOimOXKtzczHPzN9Pfu2Ccn4/QEuFQNvAXY6C0thhcSLM/QstqQgWR9OrXSflPaQge+HGKSJcfdWlHM69neDK6/tCygwtQQH9svA9/1iJprvea20ULcmDKh8OlGvpIXRdmW2/pyIxmI/ndylqn4yjTtgYuAZgfzKp40Vgg3LLUFO7AugjNT6fZzesw3U7bcz/fw+6jgUw7yTKquwzlwDq611NAgmqUAXyizljaSFkznN95zvfybp168iyrDAEpqamcM6xdu1a3vGOdyzYIM8pqdWBFqD3oT2AV2452Mf2kqQW2zAkDW0b84qG5c6G4YdNy4bUgJS9LxfNxT2bw+KJ0skigPxwt0bmvWOChmWkYTjUNEw3Eg6kli8AP0+1Hq3OGrvoZLbIactq6nmQ4DI+1IVlzXLFDSsWzCndol5HH3swA73lt1Cjqp+xFS/2haGJ7qCJMA2QWFzH4XDVGiinRHTQpxd27jBZXqL+EK3fsgf+dgf8IIO/fgYe2+3dsZGHgAjMR/MRotZ1rgTz4VCOOxjtgqRJ6Q8xJfAWEVYA3VSUiC/MpcKYH9q6waQrlax0O5rOHvYVzk/8eAISUoQLYrxISb0CuIdSqQVivJgBVsfR53db3ofrtXxIbytIDf1xbLuI8K+d6bHy35V6oe88S3Bi1M/thVSZ7iupd2Hs3mnhGpa8YaBpyVuardRtWvKm5ammZU1TuTiskR5AtFgkPsRxKu8oJSlefL/V+w3HPZrjVPvFVFYwVynuB6qcIAa4Dl3DjqL3fojQBxVzNhDiHSsdfTllGrCjJMSD8tzGOn4RT7OnXMpSptoH+RIRmJeyvvxskLqtZeid3xeoMvcvBFv8qYrxafsDRhg0+piKnBanQ7+UdEGv+acp17v99C8XjIMRUL0fQsp9ETOJHsO6OUHJnB/vdz5UXrDFwjoc7LFhNDAVp93X9duJSgziiR4DR8Cx+tDPl1R0D6VOF2A9ZR19ocPCVptvTIhXmINUCfFieyE46DUbaJHdXAsocz5/w8PD/Nmf/RlvetObWLFiBcYYzjvvPN70pjfxp3/6pwwPDx9/Jwss73jHO/jZn/1ZbrrpJh544IFZP9dojcz6vzMtlTpQI2D98xdpSYMBUgfpVWuwqSHxm2lYXtowPNy0jKeWKalGMWNFc0YlJsYLqfeJgRetKz8CyDVroWU1Op8qD8Bw0zDTSDiQGO4AXoQa+aEeLW79spg83oXUtUEcOU0TzXOGqst4vAtjrd7vzAHMP/n0DiCK8lIF9A3/ua3Av0dBfWz4F2A1PEbp9qB1dpMAxkKWF0OPSfH2O8cyysW1BPQ5JnOadt/1afeZg+/tqk7iO8+WQD4HciXH60e0YlBAv5NqWrYDpnId6+Ak2rIOCOnjROR4TYGOTaCTFyA3zKtAvP5hEhhyTvc17XwEW6pg/iTFiJR1pNG5E7R93bfRdLWYGC9zShwUmiX0tWga/qx2wvmqRunD3A4Bo2FuMx3EoOnpfn/huBXekHmUOmN3OM+b0EjlYaq1hluf2lky3aNrqGsa8oGErGnJGwnZQELeSOi0FNCf30pLTgAW0fpYk3q0T1BAD2UtaB49xu2J4gh9vK+zqX4+SNz9od6+7ga0Y8cj6LEJ2UBnCyFekMLorQGIMfS637V1Jw5drzdGn6+vhYtO70US9FDcuaDeHu3NVIltF03b2TlI7DgPRH71+b2FauBhIdjiz2bZtnVnz7ocIvTPULZyO0BJiNc3Nb4PEA+keEF6uteguu9YYPdUAGJ8v8YlsIJGmUM/+pgYL3SxORmJwXzYwvyDVVnXC/N5JQZbMl6rgqylBPRBlwfHdF7bj8NnixDxCvj3twDPo/yNOqg/l+SE5js2NsZNN920UGPpkfe97318/vOfn/X/11xzDR/84AfZuHEjf/mXf8lFF13EzMwMt99+O7/927/Nn//5n7N58+ae742MXbCQwz51KZh/vNZLDVy2Bt4JPLCb9Lq1pJeuIWlaEmuwPi19W2rpeFKv/wT8PmrsLKZ0PDGCs0ZBfOKjsqmBy8v5cf06zOVrEd92j9AvupHQSgzPArcD/yf969EC2cyilX4KIbUaFo1XXgccbsNosxamK1XNsZTLl7/6HS6+cL0awS66rHxk+Vu1z9+JgsXKAh/SCAvfg/hfVm93F8ElCa5bjc4Hn8QBSm93oRhDa8IcJAD5zOmXVoxQcngD16wtXbKuBPZialFHp89D67r9zjEQRZ/3OlXSSaakeHGkqOKkANrWQqfex96VEVCff98Flgm4DE1jbyXF/grwcAop6cHota5aP7wJLS34NvBjRC3siNPuawc9XCcNP7KZDAbTSmQ3zBNgEkcLNG1xqgsD/lj1Y7if53utAuZdqaRH0RTLbSjICQD23q99h8svPp/MlZEuZ4QstTgxZIkjyzV1cZsI00ZYU/8dyutpsUhxLQmV1PtQChEiSfUlI5z6YPBCb5RksYPbfpJG90C9DGUd8Ek0UgOlc+ZsIMQLEgOPGKAsQ43W73/9O6zedD5b0VrzOOIV9PtiB74FmHcKZLsCL3HaFu3vUTB/vZQkeGE7W6JsVnzAxT+2ovn9A9rL/QaBlqk6LJaklK989Tv8/LvOL+3Wmm7fiTq09lMSQ8ZrZd3RH+v4IcoINfRfOyconabzDXZDSVkRpXfVOvqHqYLVzGlNeSgpOxFnXSXyHWwXdH5jHMMRcopzjEWk5Duqr22r6e1Fn0fzjaUenQ+gfi/qoLiY/rXzi81Bv9ByTL3+e7/3e7z//e+vvHfPPfdw7733zvKN+ZXf/M3f5NZbb511e+973wvAihUr2Lx5M9ZaBgcH+YVf+AWuvPJK7r777r77PTKxi196169y0003cdNNN3HHHXfwex/4a2Zm2sVn7vzCfXz9vgeL13v3jfOBP725sp9bPnMXD35/S/H6yad38OGPfLbymQ9/5LNFpBTgwe9v4ZbP3FX5zAf+9Gb27hsvXt/z7Ye582vfUqCbGmYk5/23/B0zm1fCL74Qe8U6vvLt7/K9h35A0jCYhuHI4cN84q+qJIC33HYXTz6ypbi4t23dyf/8yO2nPL6v3/cgd37hvuL1zEz7xI6fD7Pc8oWv8uBTT+s8m5Ynx4S/GtmDXLkO01SW/r+79XPs3Lkb10xwiWH5I1v4m9vuYgNaO5kAt37oZiYPjBeped++/yE+/8VvnPz4wvGb5/MbjJJ7vvMwd379W8XKOdPp8P6t9zAzGY3v/m9zzyM/hIPTMJqwb2KCD3zytsjdKdzy2buPOb7/7Zffwoc/8lm2Pr2zqCF9/OEtfPU2Zb9/vf/c8g/djN0/zpv9qfne/Q/xlS/eVywO7Zk2/+2PPka3o+MzAt+5/zuMP/JD5VdrGg4dOszffuZ2Qu92B3z9H77CE488zmq/n11bd/IPH7/dp9srqP8fn7qTJ7c/WwD1B3+4jVvMj/QLP7cWLlzJB/72VvYdOFQA/3vue5DP+/FZgc5Mm5v/5GNkM21StAbtvru/wSPffbhoy7ZjfILpW2+HmS5mQEHpF+/+Oo9uebJQMrue3c2PvnAXU6ktctw+e8cXeGbHrgIkPfbDJ/jq579apNyLg9s+81km2keRhvpHv/39H/KFe79VaLCZmc5JXX+f+sxdPPrwliKStWfbTr708dsRlBzvXuALH7+dHVt3FhH6hx/ewqc/c5cqRAFE+MDH/o59hw4Vr++ZeoY7v/O9QpG22x0+/OFP0G53fKtBeOa+bzPz8A/0xUzOIdp89O9uL9vaGOGWf/gKD/7wiVmvPzi59eXe+x7iy1+6rzDMujNtPv0nH6Mz0y6I8b5z1318//6HyIB/+q43s3ffOH/8Z+Xx6zq47e/u4pEfPE5ulUTz2Wd28aW/vYONlE6Cf/j47ezcurMwAr5/OtY/L8dbXwT42EdvZ/vTOwtjaOsjW7jvtruKtPsc+PSHbubAvvHifD58/0N896772INGq7OZNp/4k4/RbbeL/XzhS2dOv53s8fvjP7u5EqH/6m138fQjWxC0fd1TW3ey++O380NKo/HWj93OM0/v9IaenB79dpLHzwA/eGQLn7v1rorTZfuHbmb//nFe+0tvxgE773+I9l06Pouuf3/1Rx+j024XgP5M2i/HOn4iQlPgni/p/TtolEH9igPjPP8vbuZGo5lfTYEv3noXWx7eUkSdzvT1N5fj9z8/envJFG90fRnfvpMbBf6zwMofbOGrn72raBHXEvjjP/vEorj+FsPx+/BHPsv/9stvLoDZbR+7nWe37iycVRsf2cJXbtPxhQykOz50MxP7x4v75dv3P8QXv6jjE9R++YTXHyMooP/eXffxyP0PAT4Rcv84n/mQju8QCnjvve0unvLriwDbn97JRz966vbzN7/xEF/x+s2i6/Otf/IxLpppE47Gt+66jwe+8VABXHfvG+eDf3Zi5zd38DcfvZ2tT+8s5vn0I1v43m13VTgCbvnQzRzar+MzAvfc99C8nt+gx3du3ckdH7u9OJ5rgK0fv51dW3cWDowfPbyFz/7dXWUZoD9+u/aNF0D+e/c/xP133UeOlrPITJu/8fZfwDpfu+s+vv2NhwrnxGK4P+64444Cc/7Su36VhRC5++673Wz/fM1rXoOIcNdddx3zvcUoN910E1dccQX/7J/9s8r7k5OTvOlNb+LQoUOMjo7O8u0zL64dWnb5tl3BNeUjfjOp4XBimEyEycRy1Fq+Cfwf0T7+iLJ/6LBo+5HBU2X1mCdxbd+WrB0xm3s6VWeEyUSYsMLRxHI4tRwxhing19E6yV8AfgmNqA5J2WJlWLT36mJNYXNTXW3NFlq0hfZsd27XdOifOF+jqDl6bP78IXjDRti8XOufW1a3wQQGEqQxt5jMVO6YdHAkVyA6lWs3vAeAz6ORkRtEjalhU/bnFRGO5o7DmePIVJfJqYyj011mpjM+N5VxuJvxT+/ZSWv1IIOXL2egYZluWo42LUcblv/eSuk0Lf8CZcUfEhhtdxlsdxlp5wyF+U9n6rz48x/Bv74c/upH8E82wsW1eQ8kOvfUcMTBRF7O6YjTNPT/6Bw/Nt3lDTMZzZkunemMr0xl7OpkvO3rO2muG2To8uUMppZkIOGoEabaGUenM57sZORf2cFFG4ZIL13OYMMyOJDQalnaTcskwtGpLu3pLn9yNOOV3YwXj0/Suv1pht51JYOJYbiVMNqyNAcSGLAwkCpZ20nIVO44nMNhB5N+npPAo8BvAzej9XeD6HkbCufPORrT/vo6Gl1n7Qz+4CF4x0W4DcuYHLAcalmmGpbJpuVwBp2ZjD+Z7PKSmS4vyzNaT4wz9NABBv7JJYykhpGWHo/KdTjP99sRP+8juZ7XSac10h9Gr9t/jd77w/7eH6lds5Ph+67cxxTaIeBZdJ1sASNSHrPR6PuLQXKn9+yhXM/94VyPwRQ6/19GM2qG0ONgROd6FI1c/DLaKmsMvT7C8Qn9txc7yVg/mcqd3vO1++EzwP+MPhd0X1jLRgRai0T3zSbt3DHhr9fDYU1Dywn+APgf6Hn9Z8An0Iyj+LyG/uNnw3mdyh3TTklV266MSIZU9QB4B2VxlxD0E+ccR/3cZpxmTYWUaUvJCTDg57hY1pvFIs6ve7FuP+yUyO0PUYf9O4F/gdqD11KugbHtcjRa+8Pa+TS6dt6KZkcMA4NGz1PQEf83Ssr4ZlTHjHjbcsTfYwOnuI50neNQpNvCmn0IeAfwl2jW0WA0p2EDy8yJdReYzh2H/XGc9DbEFPA54CvAf6HUocN+jssWQAfO+HXtsB/HEb9m3wP8NfBnfhzBhhk2MOrnHe79fvbAt4D/X/Q7fwDcGGGBhZjLfMnExATLli3jjjvuYGho6PhfmKOcjZl3PfLNb36TZ599ljzPmZ6e5lOf+hQPP/wwr3rVq8700E5apGGVkbppq2BmQB+TlqXZNDSaCc2GpSlKDvRB4HWoQXO9VFliF1Vql4/KV+Y4oMBNWhYaFtNMcM0E8b3Of4AnPEMNmh/h50aVMXaxgnmgf7q94NnHs2qOlHMahotJ8QL3AJxQnXbc+qclqsQGRRfA3xU1fluiqYD1DgHinwfPavjVQTTNGyzOO29Dinow0PZREnMJILkr6udNSLXvenK87x2ACwdhpAEbhmH7TFRU5crnWV6Mp1963fnALn/48lwNhF3Ocb6AHO1g0rLGDsCY8jQMANOJ9cX36ussWsA6V3iNQYHlAMB0hrTCTuY3Jb1SMxwe0Xo7i5adPIhPuXclMV638vu1AQzg2wy6srUfoR2fvnEULSfAgUwDg2lvSt48M9zHUnA9SJmSaChb14XbJJDhhRZ2wbMfvxfX2z+NliwI0X6j31hMyj++fMI4g4xREqUVpS7hPKLRqwS9R8OxC/uonMOzTGKiyLhzy5O1z90Z/f9sSb3sy3uKnusDUNTPrwWa9PIELIaSurlKK3a2RNuwKQHG2QjmQdeQQSnnEZyFwZEWAhBLYL6/iJT92mPiW6FKjLebki9D6ltNNYX3Q2TaNwPuSUkHvdfilPt4n/MBmITe9cugank9ytoe66zAD9N1fXc3q8TzmgtHwEJdif3ICoWyxXDQ1UF3xY+gju3wXpGWT9nmL8jnKdfCc5EQD54jgP5HP/oR73nPe3jjG9/IL/zCL3DPPffwvve9j8suu6zv589be8VpHuHJiTQ0usdg6iNhISpmsa2EZiuhmRoalAryBoH/5IHaoJTpa4uNWEZENBLtI3yV+Q1YzIDFNC3GSrGg12/gL1KS4J019WizrZ4NAzPd6ntH/evRZu/358BsFacPWZEi4hG2EN0MHs1BU0YN4uNYgN8aKV4ivqV5I8HNUFl0A+7dh9ZKhUXcZjmSOSRHAX2ooc9zeGAPXHuefnHDMGybqAL6aHO5q7auo1QY65xXFLWWdctwSLuDhL7jvl1ZcVj9cZk0CfnRiAvA+d/08w4t7KYdtHDQzpAkqRrip8BwH0uI6NRBzA9RArwfoYSGD9BLjJcRTy56bJqio0Kh6GNjwUcrBp0/b5MOGUi9svDHrECFx+ZxOJV5F+0NKdeuTcBTVJX+pz92e49R0A/oA2ynRihGeQ0tRgKdGHzHjyNoi6PC6KFaM7mPsgd93dg1HHfpWLQSOFOC0Racjz9V+9xbKMlAg3G32CWcm/A8bMv8e5/7+O08jV6/xeel6pg6G+YJuvamHviO+ojcqGhUbdhoNsXZCOaDiAhNI0VkdUR0G/Xza5qFWTefC/Lhj3y2sv7XO51sp6yDX0HVCdYPOMZraAD0h+nlHAmPR+lth1ffz6lIcDAGvRY7WTejgL7QY6j+OhlivBjEx49HKB0W/eY339dlmGf9HK2hrOmvgHlXBfTBcR87ORzatjeWN9Lr4DzXZDHaMCcs7373u3n3u989588fHn/m+B9aJCJWwFqcM+XqY/SmazhHy7+2zqeuSfEREhTMB6C22BSIBMb7AYOLXKRihCR3SnqUl0bcG9FUoSBvJorO+8dFHZ0PEoPy8LppNAU/iHOagp6iBIL1yLzEO+ovr3n1tZXXTSOQK0FJKpoKmFMuuA0P5pu1a6W62JdgdQhNa0Ms5GWbt9DfHGDcuaK1jHEOCYA+y0tCPOfg8XH98uYxvSYuGIQv71Kgn0kUnXeFxyD0Dw+9yoMiXwvcE0bgB3XQwZgA3S6mYSrgO2bvHwSmU0u342hQVfhEEWAcTOFoAtIFGikhEi4xiD9FK8CIYD2JTui/ndLbCulzaIZOEaEXqr1rC80t2lGh7SrR7Cg4j3NwxLkiukuniyRJ8XUJTxZQKoR40TnegDos9qLRjAy47pXXVsiDhD6gHuUtfBZ1ChSOAqmC+sUkgVCoH6hfRmnUxoZPMOJCfWn4TuwcWcDEigUXI0JDHA0Hbb/ud53W0P8+GqV5C3CdlHrhbOhBD1Vg0o8Ecf0rruWLKKipO6OK9e9s0H+RhLaqZ+0FeRwp2sY+R+e3EPKaV19bIYyLe5hvQiPzO9HXQ1QdYTE41vuBSj/6YEsegareo1xH96OAt59zbT5ur5gYL+5LLygx3jepRaMlclafIDFeCK7EzotD1LIm/bwWytEbzkW9F/0Aev52oY6ZYOKFXvS50w/GjvkY1F/o9/9ydM2/hqqD82zIyppvmROg/8hHPjKn9375l3/51Ed0GqQ9ffj4H1pkIn2sMBFhEFcsUh0pjdg4gtE8C4Cu1KzpmN276Re06x18AE2nDGyxIftg0ZUUzCZ1rRCeNg20axH6wx1YkVQ/F5HiHW/1vfjC9T3vNY2QOEfbKU4OEmoXE3qNwuJVdA2KiKanAzTAHVH/caE8ckc3V+WxEr+g+zT7AOpN3FD0O/vhRas1/12Atd6M3TsF64ZLMB8Be5NKAfpiJX4BqvDJPZDLYQJ1LJh2jrRskdYnQiX7wPhjnHf1XMQOCp2bqv2cMuVe2iDDSVVBhuM1D1K0eHLlffEG4O7oM6+lZIHtSki/d2XNXTyWxMJMXgHx+D6vAG3/vCDOyTrIUKtiOPU4peZZgvEVg3mDphqvRVOP16HnZ+3G8ysGkFAaQMUlQ2kEro72Xxgb8dwWkcxmmI6iUfjYUIuj9PtRBvy6I6AE9WfDYtlfUr/ud/AODKP3xo0oWWRC6Zg8m1jS6+tHce7Rc2k9w/0NVK/bYLyeixGpJXnuycUXrifzzOh1h/0KVOc+AAXZbv1eiddyqX0GtIQlAPogYd2c8Y9xBLve/m4+pJ9uC4D+Y1Qd0XGUPpe56al6O9p4O4w6Ror5Mf/zi6UwV131HIFmke0GrqQ33T7YI7EOD+Zihna7GQX+vygfTt3BufhX/PmXOQH6j370o8XzoBjj94KcLYD+uSTiU6lT59SIjxafNFzYZ4ExUxeDGmUZZYDWAi/1m0UNtpgt9mwgAwKqK03cAL2bUSlAH+/CSKv8TNy3/hRWXyvCgP9uqAk/1jVSBxNha4qvRWsCh0OEvmxfdwAQ58q0uNxh8hLMaw96BxMz8PRR+OmNfjX2F+76JmyfVHBfgH9XsN1LGikIoWhdtxqQHA7gWIVjNxp5H3AO2mAaEfgO3ABSHmYGIDvQrUSwK+lrTtPtcb6G/rADk/rT4Xval6j+lO8/i0bli1ZdAtc4+H+A96H19FdStq7LHHSNqCEQDIB4CK1EU+7DpeaiaL1ThS8OBrzJYw53YNVgcXykJ1Nk/qXHmPPPQY2RAGxij33u1z9D/7q8pynT7W30uJgNgNkMrhG0bjw21Iieh5T7iqErZ3e6fZBEhJaUDqgEimyaAG4bUpYPnU1piPXofHy+D6BG7IVUnVDnckRqSZ6bIvhWkxHgjdPuv4dGmcNn48h8TDfU714aoJrdVI9egwLFfmvvvAF6KSPz8fOL0CDJLlRXFZFpKR32c832qMwt8l5MoBlePXObo7PgRCXsP9ZDeFttHWUv+gqY93OGMtsu1vWgNkCl/Cj6jVDScK7Jcc+f80RQx9vOJhkYOu/4HzrLxPqarSEjDBphwAiJnL11WqG9TSBwGzIlA+aIKWu+h0zJE3BWSBhn/bw0jbKQB3HARAfGWvq6JzJ//HMbt+SYdThzuEYkeowzKQYFJgVIwWV55TsOrfFdAVjnMLnDdrNq/XwA6Q8cgI0DSv4XVmIBNiyDHZNRLhYRQZ5TBwHlV8KC3nSOVWhatkPT7Vc4oOsU9DdsCeCiqRevG+CyrJpq7zdxuiZO+1ToBmgaf7Oakl4c03m4/4yI9jfGR+jR7SrgN9CawoJAx5UEeR2kbF8Xj6Vpy5R7/6+i4sUzDI/4/wgC013E0zgYUz9gCyN1YqQYwFxISYyUAY89vEXBPKVRUE+3d+hxujAaduW6WaQGQBGdp7otozQ+oTet8gDV+tJ4W4yZCCcqDSl5QIJeGPJbYLUflLOLeKznPEXDXgF89xFdz9fRe90uVofUkizJicqD3y9bxdVrrwUFcT+i7KUOvaDxWPfSKCWgr3OPTKCA39b3Mc9gN8wtrqW3qD2xEdhCFJ33j12nJY5TuSM7DuYKIL7usAB12I9E45hvZ0VdKgTGUgXeayl70YdzEYN351xxDOLa+hx1bm6geo5jB+fZzMFxsnJM5/VzNeLeHBg700NYkjmIqZUUZFK0By+CuCG18qy5eQugF20INBJlY4HSnXpwCi4erQKy8HwOqc6PbtnGNVddOi/DNv5PDFYHRBfWroFkOqt4V52DfU5TRQFMlivDvQfxputr6AMZ3usvoEDnRkBy2NiCf9hTaqaY7T5zmsJlqKRyhaOyzsFeB1c4reNfDdDu6GcSX0NvpIjqVQ6npeAzmC11bdLBUNCQ3Q6MpNFpis7TPF2W9Qh94j36L0TTq59C0/UCmM9EjYAOUeZKGEsjgU7Ww4CLP7RHXFm3Kzik20FSU7tka/tcAInTEmMjYCPa8iYc/q2Pb+Pqqy4tjAEjVTK8YBxsRTMZ6obiYq4/7mecQtUo7ReFCd0loHrszibitGNJcPgmztFxmpkRxBLKVBbf+TyWiAj4VGOoLiHLgMcf38aG519adoAgWjJ5bpzXJVmSYLdYVzrsTaQDLvSfW0nVQVmJ0vv3+q0AQ5SkeFDV6+NUCfFmW39PVeJ5BT0XotbPQwH9qymd0m3/v5CF13TQFDdrOVE/IB+kHqEnelwoHpmKDop+ew0lCWC89Uu/r4P67Wj9fOzsj0H9uSjnJKAf3/fEmR7CksxRjE8PT53TTGu/4BQMxmeZ0VbRCDEoaiWhBxxFSHhyGsZWVF3U1J4fQ972s6+d1yFXHgVa/p2OhVYnCyMn1JkfAM7zUW26gd3eg/nMIc7BU+OKOjcv1+MR8kZFYP2IopbJjhID1pjulTBMKmBF/O+tQVvX4Ry7HKwUkJkupgUGKTzuzv+WSOlJxgKdrEBIJRO8h/9OCdZCSroc7SLrokhqOD3zGPa1AmkNzAeP/nXA/ShDbkbpzW8jNClTkXWwaEeFI20/Jz83yhZ2h4OzIvxz2vMOEI5TtMMFvP/qNYaxQfcMvrwAePXPvLZMy/OGURGdd6VBsx1lQw9GRdwlYbEaALOVu4yixidUjbZwre6nSnwEVcP3uSLWZ6/A3MqHFruE81WvOR0Dtv/Ma3klVTUQg/qzd9ZLsiSlBLulH5iHsv77O2j55fVUwWJwzsaEovE2Qv+Ue1CgX6mfj7d5vMcCMV495d6gFYy3+7ldi5b3hXKyeOv4z7Zwfe3gusMigOJJqm3r+jlC5lviErrYCRMi9GGcIdU+ft6P4R40Qv+L8f6pOjjPRTlX570kZ5kkvqRg0G9NX1JwVkq/cTc9pMgiBLI/157s9AHzp9kqj1N/8c9V+QgzViDLeqLZh5zWsEvusPX6eaep93znALxoFVjjPTSGgtG/aWGVge2HFVzWSPHIew1aA4hzrHaOXX6sex0sdyDtHElsofDjRwhzEyQ1GJ9yX6StRcAXNO2tif5DpjqQliC+Ap7n8fiHrBR1ZJWg/kbgPqqpeQVBHt4JFl9zDQPTXa84XUXx48sJipQ855AZkIG0l+F+genShV7QLagRALCDaqlBAPFdelPuZ1DDYRO90eqw/8Uo/QzKAOinKXkC4q2NtpOMAX29pdNzUeZSPrTYpV/KMJRRw03Mfl+c7XNfkiWJpV4SFZywk/7/z6AtWx+mukbGoKZfydIwVVK8OO1+nPJeo89353V+VLNrrJ/L3/v//w7qtJhCkzePOs0MDI9HcpjM9XEqd+RRilYB4l05RyiPXQD0/Ry+CyFxaVC9dd0eSj1dqaGnDFDEDPcZmmUwgWbrxWthXEN/LsoSoF+SJTmtUtMQwQhreEDf9nX0nUxXr+WtKpiHBQdSdSlBvBSvQ5R2AJhKDXmm4w7p9jitYV8BmG6um4/Qa5TeaZT4iUl40QpdiRIP6os6eoH1Y7B9qrrSF8A+17S8WPH78a1BgTwODgLniYN2jtiyX7yJ5hKfkjQxmCxmudffLYC9U4OgFfRn1kFS64+RP1bz1Ie+OAciRYvGBCppt9ei3uqgGAOo70r5upJe0RSYLtsMFu3q/EcOohF6AaSTaYZFKylAg8T7WkCpp9EFg8Ciinwbtdo7qsA2BvXb0eO2MtpPUPyLPV25DvCE0uicoDdNcZ//3xhVEL9QhumSzJ/EdfHxNuH/H7Jt6hkmZxPx35IsyVxE0Ou6zqFyT+1zn6N3nYNyTa+rq2E0Eg81slv//jL6r7nz7TQLDvrYWf+l2mf+CLU1polAfQ5Hc5gKwD4C+t0I1MdzC1uY96B/7FeusBBSPz/h+Sr//9CxJXauaA19NdsugPpt6Hkapjfl/lzmE1nMdsyCyer115zpISzJuSwxkA8rT6Aunel6V/GMvm55oB9H5k38xdnlA39687wNOe7ZHv96U6CdiEboAZe7Ipo97nzLujzH+Ai7ZArmTeaUDO+CljotQoTeinez+3leMADPHCpRZyDS888Ds30M5sWFGnqtrx3HcR5gMjCpLZntjUTB5vJ8tBqGpFPNNij+egXTdTAcUu6nchiI9rtA2qQeoU/QbRlwBZp2HyLU3eh5J4y+OGkGut1SafpzFkyBGQfDIV1xuqMOD1u2+QOicoKFU511wG3LU8TFlMR4n/7QzQWY7/rLo2hb5/cVE+LZWR4Xo5SGZNWwbKDHJAZ6oOfzABqdr9wTVB0jS7I4pR+IeBi4FVj+oZv5OPADqudzMWeYLMmSnKgEu6UemQ9Zaa+vff6NlHoiRIChvEfCvsJ7w2ik2kX7CHr+EH0Y7hdo3TR4PR50uWg75lg6KPHtfZSZV1NEkXoP7if9NuUgq2VKxlH6eH79HL0LDejrwZeEsnVdPTof7JNK2zq/v230Z7g/18uPzklAv3/3o2d6CEuyJKUEYGRQpnuHtnJb4ZfYfu3q5rBivfPtPzV/wyPyQUSotQlMpxY69Xo0xzhwXg50HdKN6+dzTJ7DA7vhupWRi1qi3CwP7DcMw+4udPIIzFO2rvN1aEF5C2AcrEXZUZ92Sig3DNqybiDpVWY1UJ+mCYnXKA4KjejKpu1M4Rnuc5AOyEBaHqtQiz/PmRQF2Rc+Sh8Z9C8Bvkkftnu/5WE8AA2D65YlEhAi9c4bNY5R0TdlKkOGQBB1gITBSO1xAaTOdB+D740ooM+BH/v5n6oYAqE/eRyx30qZrgxVduHFynAPvbd7/Pw8NOISjJzwuA+Nzseffy7Wzz8XpV9Hgy/6/038vK7nX+TsyjBZkiU5EQl2i4hoS0oPelPU3rgO+H3gdWgE+7oIECfSPzIfr4EjzN4hZILZGeDnHdBH82uIBkeuBz7o5/ZfgQ8DPwv8IfCfgZ1otH4KBfRhm/LbtFMCvXqqfZyBEM8Peo/XQkgdzMfHczVlHX2FBM/Rw3AfE9wGhvvY8VOW052biu6c1ANZd/pMD2FJzlWpaJkYIaN5UO2uapjxLgy1SgvvJEjxVq0cm9dhF5sJPy/q7bZWca5PS88ddBxM4DjPgckdxml0PpDhybZDqpUuXU5BhhdvYY7LGtACdk6Umjdmu8+ryiKksKVo3fz3cljltZk5CtJI/KIvhc+grrRbPn2ebl5JRy82BxNOh0Wnq8eiUUtJLzTW/CkWESkjFRGwNyiBzvfR9Ly4H30GdEWUbzEMpSEwlfdwBDh0glNhbgAzGdKwlUhFJQSywBK3rSvY6NFo+3b/mdHzxgrln6EZBu2QzIFu3wEeRaOb/cDQYq4/7hdlAi13GffP4+tzH5oZE6RYQljYKMySnLrEUaZwj/+0/1923hj413G6brKIHVJLsiQnKrHdkgYgL9Ayvo2xwA3A/wW8VMq2xQ0JKfrBOum/3g2jpgfEAQiVQ5SlSpVNFgYsNUQDA00/j0EDNwj8R9RxMYDe73+BRtb/BXAzmmEQovUB0LejrR+3Cqh9MBr9ft0cXah1JG5dF5uzggL6vr3oqbbuCyafQ/kTNsX7o2onnKtyTgL6JVmSMyp1QFRY6AZmvE91ogsrPKyKUaf/7ukEIPU0+/ixIXDUA2CX5QUoHHf6/xW5Q7p5EaHHOUwO8t2DSoYX6uYT458bClI8I+o92DAM26b7gHmn0f6ad1Z8zv9q4HHfkx5AuhmSJEXquFYuSBFRD46KRuKXxY6qxQB48XMDTWsbBWSmq4R4XkNViOMW4BTVI/ShpeM6YD0KXAtyPBEyhA5xWy+BRoKbqTooiuQDtCZvxDkE74CxKWXWQTSY08DlUAHz0Xm+EOUMmKKq9Ds+SjGVaySjDXwDBf+BROkRqqB+MRsAdcOy3ps8rgUN5zOk3M9mQC1m58W5Lga9xwNXRCLKkfH7wE8Af4Aa+oFPI6UKYpZkSZ5LkvguR4OiYH7IwHB4NPrY8kA4tDAO0s9ZLyigj0uVYsB7OiP0oF06wvwqm9HHAdS5fh7wm8D/A3wN+N+BW4DfQ3V+22lmWsdn5sU2SzzH8Wh+0HuMFlLi8qBYN62lBPT1tPt669mQcbCVMuW+nm5/LoPac3LuQ6Nrj/+hJVmShZD6qlmgY4EkgbZfsg5NK8N9vNIWjoC53bZfv+/BUxxsdZgiUvVFeIPyqDGqEDtZEemdcNqD3jhf5+60D73JHGaqgzx6GF68nB4yvMqK7x83DMO2w1VA7zfjfCo/0Vec9qhfhzLdLw//m+kWPejL3uNhK9PJhwRmEqDT8UrRg/o8RLEdR9H2cUx3kaYUx6c4XXXvxzxJiMgVEXopFeNLUfCa9dkU3PsPNi0ulEjkIe0+aH/HJGpMiAOZBgbTKGU7XAALD+ahvxFg0HM6iCr2h+9/qLg02h7Qz6DbFPC+2j7v9PuLSzUWqwTw3S+NdISSFA+qLetW0McZwDmq8M8iidOMi6idaETyn9z/EDdQApeGeFC/iK/fJVmSE5W63dIIYF5KMD/iwfygKLAf9PdK7NiK18oYuI5QOoLrgP4Qs0To/T4WQhpGGPLzGYrmNRTAPSWwvwotM3gB8DHgK8BvAw9QZuTFbPGzRej7zo+FdfbOlna/hhLQQ7VmvgLuKXkAjqAp90sM91U5J/W7tY0zPYQlOZclXnDiBTS1MB0B+rGkNzRXkOIdXw4fPjoPg/XD9BvGL/oevC4DxgVI0LpsFP7udbAyRNF9hD6w3JuHDsIFTVgxUCXDM6Kvw3wLQD/ome7zKI+6zKk2zpVkKK4E9+ehoLRo39XtYgZMqVDqLeu81h4EOolhxjtXgnKBooSeo0770MtMDklafF9g3hnuYwl1dynVCL1Bjf5voZ76KjmeK0jyAGgqJ3Zoc1Mo/Nzhcp3bcNHnxiGD+vnQhz72Wix0tFcoU4rjfvQCXISS40wdmSwcF9M+/XAGjc7/IXr+Y3kLZYZD6BiwmKVnCfDvj6LGTeX6pEy5j4F8+P45bOucNdKUatRx0Ecj88lJBS9+G/CfW+zX75IsyYlI3W4REQaMFCB+1MCIwDL/fNgDX9tHF/VzhA775+FXgv7LUKBfAbxS/e5CSSKizgkp5zMYwL3x4B4F9QOoXo/l76FKDEuVJT5sE/X5+TkGHbGQUgBuSr0EviORf15Pu+/Xtm4b6tDvx3CfnIZ5LGY5J7udTBzcdqaHsCTnqIiIgqd+dcgDSZlyP96BUX979iPFm4O84SdvPPUBe+nnzUWgEeaTCK6dRZ5uxzIX1c/nKLB3OfL9PcgNa0t3agDziSlX5qKOXmDtkO507xSsG6bek97mDpMoeA9fx0drp4BOYGyf7GIuoCDRj+kJAhgHrWmbsAl0PaD3k8pDPYGDNk5bv3Qd0ihT0ivEceHAzbMUEXrniYCcKsnNqJL7PkquE3vru6JAvwFKiidAO8elFgI5nj9eOMdQuOQ6XcQ7LAr/xGlM7zUivcSHvpwjEOO9/rU3Fmn3badAvgN8BHgSTVN+Fvgy8FbgBuMjnGh0c7GnK8fRjHgbRY0bqEZhxilr6OvfOSc9+GeZiIg6CwFjfE2swOt/8kYEdeaFqGVLFjaqtiRLcrplNrslESERT95a+Mxnv/YrjlBXrn2hZdskCgwDeAxp+MuorplwetZNI0JLIHGOJGSbUZbYtVE9f9Qp0/9Xou/+FFE0W3qj8zGgP99/p69Nt6DzK3V3eG5QQD+BzrVBrUMxJcAP729ldob7c91pvaTfl2RJTrvUwHxQSi2fcp97ZDU2UP6vTop3miV4cutvNlHFiE1wHUfuweE4cJ4DfHSeLNfo+f3PIvsypJWXwD3U0PcjxbOiVu36JmyfLMF8SLvPHJJFC7tTRfF47rjNgeC4DXgqd0ingzSq0fnYSx2D1ra1THccRUJ6FM0GVT5KigcMJxWFqM6OhdMslmqEvnhE2e7vJ4B4Xz+PkuJlRjSSm+qyn7e71Tp64JDPcGj4iZpuF5qmx5Gj/zw912HcqzdW3ptQ5R7m0Iki8/8AfB4lTloBvBj4P4GXiIL5eFvsEl+XccRpGZp6GKfc55Qp93Fk3tT2sySLW2wUsRvxEclRvw37lOMlML8k56Jo6Z/MyRErfR4FBfWHqRLiTfj/NaPPQZV/5HRIiNYPSckTMGSUYilF9eELgHf6z78XeD5VVvhKZD6a5GFmJ/1b6PkVNpqUzwV1qkBv67oic8JVAf12lhjuZ5NzEtDLHGuQl2RJFlTiXvQCNHyE/nBb3x9Jy89V3M1zW7BmZtrzN9SwBbZSP4Qh0TRnrNXWcqgC2QesznKknSPdHJM7ZOt+zFf3YRzwyWdh676IEE/K0HMFzPvnG5fBjsnqau9BvTiN0hfgxTn+EVVuCQryvpmD7XQRa6ogx+eQh1Z8AYxnDUvb56jnEALzhQUw7dSbLEdATGhZJ0VN/kKmpBtRhv6UsodtAL0vQdPuK+ywqFLsoJE+EJyAm9EJxjwBU8Cofy0IHO4gA6a8BONygtOkN+tgPqQYb0Ij9J2ZNjkK5Nvo/P8SBfAXoAbaAFWm5AG/9UvTXGxSN77ilPuD0eeCIw16SfHgHFX2Z7GICE0jDHlQn3baRb1wIgtf7rIkS3ImZL7slh7QSrkWjtDrDJ1g9sym0wnoQe/9hr/3h0R1lpJflnrwtf6zF9PLBh/AL/Q6LULJQTyn0zG/WB/VH89HAX2cTRCD+Bjgb6c/w30IapzLck7q+NXrrznTQ1iSc1lma/vVEG1bNz6tLuQiNzz63gmsuh/880/Mw2BVPA4so8/+vQFgWgQSWyFYO5LD8q6Cecn84/07qmm/D+0uI/Ohft6Ysn6+Ukffgm0T9GtdZzJXMEIHorjXOBhwWk824Bw3GrDTOUnTYpFCOfbWyOnffCAhy0LNvCtc3c4z9R/1c5duBs2kErkuDO0FNLjrEfoA6q9G66qfoFpHH2rouxLmB7SzIqOiSMnLYdifRQFkuoNp6m+aMxTeDT3jY+++RZX6JPCZ/36LtqsDtqAkeL+FRi2aYZOoNtmD+cZZEq6uA/LwepTeOtD9aOZIHGWqOLBOx4CXZF4lRCT/5L/doiUoS0B+SZ7DMq92i1TXwXDnDKCAHqqEeAPhe/4xrLlnSlUYERpSdnkp9CAa2R5Bs9T69WsnegxzPEzZtu50z1Hor8tBme4DoK8AeaqBCSh70EOVV+cE6KWes3JOzn/PjgfP9BCW5FyXAkVGq2jTwFQXDnVgrNEnMs8Jgfr3/KtfmL/h1oBvYIZvoOnntCwuC3FebVu3ouOBfDdHxo9itvsoetAu166NwLxoKnix4kdgXgTWj6gGPtLpy3Sf5HkRsW44eKGF33GOVwE3CTzfQHIUbDOp9KuVaG6VtDOx5DP6tJ621vZvDgjQ9hFsouhp1UOwIFKP0AdA30Dr50PafawMQ/u6HHADguuWbQZzP79JyhpDcEi3A416yn10XZ4GEarRiaDEB4FVwCX//G10Uabc/wS8HXgVvn8xJXnYQEQk1jiLMFF8Xcap96NoJgyUBtB+yihTPQpyGk/ZkiyAzOd6viRLslhlvq7zeL0L+j3IMsqWnzGgXxF9v9LqkzO3dsZAOAawoO1bn/bPYyb4QDEUR7tDDf0oVRB/uuZX70UfP5+tF33MeJ+jGWiTaA19zKtTZO+d4wrunCTFcy4//oeWZEkWSmLtEmucpoF2Boe6sKxVfr4O5ue4aDWb89fNoRfM6+tBESVSSy10Ffh2gaks57w8R7IMme4idz6NXLcWszFBHnoWrjsfrlhXptynPjLvqKbaB2DftLDKwPbDsKxRIcUjc6ROaAp0cSBgxfGiBK7ugs0EO5PT6EKrmSgZWpgHtc2/5xoJMqVzjFPXnPMlBjiaDpjqIGtbFcQl/nEhNaTBVyi4iHrAqZJ7KfAp4JeADF8/LyFCD7kIrpmQt3VmcUnBUQdjDm39B8h0jrQsBunV/KcpUlh4313k2fcnZSOwvdngcuB30ZKDn0MdGy3KFl9xC7Czrfa457D7bZl/HciEoAroobpknOuEQWe7zOd6viRLslhlvq5zEQHPCQPV9XOIMuU+bIfRiHfdH198/wzpjJgYNtaFQll2VgfzuZRO+oB2QjZXneUeTl9kt0Je58oxrAEeoQrmc6efqzPcn4c682PnftyG9lyWcxLQL8mSnHGJV54A2JsGOl2YaMNoszcy7794JhWLjqCUAUJ7EUviI9rjGTRczrDLoZNj7tyGrByBV6xCEos8bzW0rIL4on7eIEaUfC6O0ofnIrB+DJ6ZgiupgHkcJC6nhZB7Z4NF08tz771NpjPSbs5Aamg5rUENkwm19OJBq/6cJXd5BOY190CAydzRAAxOAX3DfydmuF/gUyQiJM6Rime7p1Ru1wEfBHYJbBQF9RlKihfS7/PE4tq5d1K4orRg3LkCHBrnYBpkII2OSzhupw8dikitNWFpGDRQ58UXUKPg1/17DUowH1p/DfjXZxOYhz5OJ/9+qIUMdZEOOMDsPejh7Jv7kizJkizJyUrkZ68w3Yca+iCBfyQ4SftFsM+khPpw4x33YU2/CPgiVQI5J9VU+9hhAerMgN5U+9MxxxjMB3tF0JT7u6LPxWz9BdEf1XT7YCJWnASnYQ6LWc7JlPvR5RuP/6ElWZKFktkinE0DM76GPvSgh94w2xzlzi/cNw+DVSmHXAX1Lf8ka1qY8WldDlZlOeQ5ct8uBYM/fj7GWkxikKYH82FrmIJ5XXvcmwjMS7lqbxiAZw75mnZXst375w2nyko3YQjHCDDkYGiqy3DmGEQj+WECxjdhrSdM0ARpl6Rxzj/JFeMy6JG+pqRbP/YS2Fd3tjCSSMRyL2Xq/TDKgvsNypZ1mejh6vrXrmlxbVcpJdB2fFqbJwCdXB+bSVl/XQ9fnCYJGQlCaQg8AtwHcNd9PAu8iQjMU0blW9Hj2cqAq06nKki3qENtgtJoq/egD76wOE1zSc5Omc/1fEmWZLHKfNst/SL0w5QR+gB+D9GnR3ttH2dKApgPejgmhn2SWpo6Ueq61+8h3X6Icj6xo+K0Reil9/cDoH+W6jzi0oHZGO7DYwnqz079Pl9ypq/TMyJZNn/s30uyJCcs/dLtQdPWp4DD07Cs1oM+PD+B9WpkZPD4HzoBKUCFRwniEUYL6FBGtCfynLHcwbcOIXuPIG/YiEktkhpMAPAND+pbFhpJNXIYUGrMdi8CG4Zhd1fZ9Aswjz7PVHOlgRValK19GBh1jpGpLkOJjz5HvxW4AGpvY1ogrlu2dAugHu0P2wrEcTNZmZJe28dCp6QbtI96UUMfAbeXAN8SKRR85hTUd9FaepoJeUfnEOYIyn0w4MLcOqpwE6k6Korr8PQpz5BOV9TNoZEJgHxYYw734tPsKdnsY1B/NjDa95N+BmaYyTLUEIX+EfrC6DmxpWNJFqHM93q+JEuyGGU+r/PZ1s1hyrZ1YTtC2dINeqP0Z1LqdeJBF25EnfB7KTlz4tpziAhvKQnxgvQ7Ngsp/XSSQbPrMj/GOilezHC/jSrDfZG1wDkKZmtyTh6DyYldZ3oIS3IuS7xyFtFc0T70M2ju12irGpLrSb0/vrzixmvmZbhQjdBXONECoG+g5QLAkdxx/RPjsO1Z5HUbMc0USQySGqShjwrqDTQtUmcyiQnxYmA/2tAf29mf7b4gyQMauWMAjc4PAI2pDDNgqpMxNZKWAO4FbALGt3UDpwom0+dH8D3oHapNW9WUdD0uC28FiEjB6h9H6C1wAxrBPiSiYB7InSNHyATyprZILBwWfj7TOIbEz+1oFxkEQRAjpbKoO6JOg8RKOxAB/rT/39QNVwPwRkpG+xCVHxQlw0vOUjAP0bUJPcbXKGUqJWiE/jz/vB4FOSeV/XNI5nM9X5IlWawy33ZLvTuwoCn3k7XPHvTvQ+/aeaa1RwCvdXK8BrAOTUWPieTC87BByREQ9lfZTpPTIuiheqR+0G97onnEtfNxyn3Ir7a1/S3pt6VjsCRLcmakH8BoRl00lzXL52eg93c/qfsSwhRawHQLyHOccyTbx3nBd3cir7oAMzIAqUEaFuMfC0DfShDbZwkSKYF8pX2dgY0jsG26P5jPfPJcJY3cv5jJIU16siPKdDwp3hYgsWBmuuXufHs3HEw5n3LfyfTzPuUeCf3sw/4X/mRVWO6lrLVbg6amfc/zCGgdvdAV34++meDyrMIRgHOq9H2NXsg+qCj801lwF4lFsxHC1hDlCvgD4HXAH6Ls/oHNviXllp7FYD5I3fgKMopG6MN53Etvyn0cEVmSJVmSJTlXpAe4+veH0WhwLIcpa+gLn394PMNrZz0yH5uCm4CnqNab1wG9oywpCFJ3Ep8OEaqt62JH8yqU6R6q4w/zOYgmsG5gieF+NjknAb1NWsf/0JIsyUJKvyhnywNDi6ajx1b4SaQ57903fqqjLKQYruD7Ipf/awp0EiDr4vZPct03dvLUS89HVo8gVjDWIImm2xsfladhkaT/8iOhQXwcqQ+PFwzBtsNVQF/fAoiP3dPTOTQiDtCI3C2A8EBqJwgtKyRdbUQf15nrzzpt7TbTgQTEmsqpktPl7kYvlUqEXkpldyPwTco6+i5RWl4iuE5WJcUDJnMYwCE4pOvApEXWQU85wWlUoCJCigL5QHg3IPBSgf99/zgvlTK1Po7ON8+0JTYPUhz/PluI0OeosdNFU+4rWSfR55fk7JX5XM+XZEkWq8zndR63+YQqoPdNbCqAdxn0pNovhrUz6IC4lj5sF6FM9zH4jdPUg/lyhJLFv+92GhzfszmZBc00qLeui6P021HQP+C/v8Rw3yvnJKA/b81lZ3oIS3JOSwTS48cAcM+zvf+PQe0c5WM3f+6URxpLFdSVjO5DQL5/CvfYAfjcVr5x9fnkm8bASAHipeGj9ElUP38sCUxvhRvWP98wCNunIM/L3LLAdh9Tu0IV2E/nMBQDev8g1XmFx0ZDaGYZXWqK0TkmnF84p7pIq3oOKz6X06BhQtp9SjVCH+rov41G5ANrbBffvq5lcFNZZW5dpxUfI6JvyAzIYNKr8E8zmA/SCEDdaBR+yMCwwFc+9TmG/PuDxqfZy9nVa34u0o8YL0ToQVvWQRmFiY2mgtRwSc5ame/1fEmWZDHKQtgt9ccRNOILvrrMP19GL4hfLCCpoBaiBLRC2bquAMK+xM7VQP0EvfMLhKmnS+Je9PW0+7XAbkowH2cchHT7C8J+qDk2TvM8Fqss+rZ1jz/+OH/5l3/Jli1bOHjwIL//+7/PtddeW/nM4cOH+aM/+iO+8Y1vAPDSl76U97znPQwPD/fbJXt2PLjg416SJTmm1K3rGFUOt8rncYTxBF3Fv/Ubbz+FAVYl9HStKwNBWP/sAS55aC8yDZJl/Ggo5yIrmMQiqYXEYBLBpIJpJdAwx/cGxwz3RR29wFrfdGXvFKwbKtnugyaLQXwsMzk0a0SDUUS+rsQbicFlXaaAVsSI55z2al+BQ2ZyxKYVxSh1J81pkCJC73wKvtOF/RJgTOBhhOtQwJ7jGe+bFtpZxYN/FBAXMfhPOmRQj5lQLyc4PR79WESElm8faFH6gq7Av/zXb9faekrQ35DTP76FlDjCFF+noyg7MCigX03VSKpvS3L2ynyu50uyJItV5tVuoWav+HKyIbxjG9UlwSnar6XbYlk7rYBxJYgN6/xFwE5UHzaostwTPU6g+gF6nRynEwzH4w9OCUHLBJ+gN7MgAPptaP18rN/iTIXnkr4/WVn0To00TXnlK1/Jf/2v/3XWz/yX//JfOHjwIB//+Mf5+Mc/zsGDB4/5+SVZkjMq/SK48WK0fRKe2luNzBsPPc/gohWitBVgJ3Dh44e0l9sA5F244qlDLEuM1s6nBtM0SGoxDYtJ5ziHgJDrbPfGwAUtPUYFA4zrE6Wvpd3PdDXVv89PG/97BWgSMI2ERgeOxLvxwL6LU1K8zEGaQiDCi/vQhwN2GsSiEfq4jV1Qci8W+DzwP5zwowy64nvStwSXdSuZB4ccNJwj8UOXmaxwWBT+Cel38Z4+MSIMCowYGDawzMCowKgp32uaM3ufLITE5yC+/cYoSfH2o+n28WeWWO6XZEmW5FyWfo7NQA4XWtcFBvjZnKGLQWLwGqeZr0afP0N/Yjz8Y+AIqIP4060b4uh8ON6ggH6Pf15kGkRZBksM98eXRX8cNm3axJve9CYuu6x/mvyuXbu4//77+fVf/3WWLVvGsmXL+PVf/3Xuvfdedu/efZpHuyRLMkcpVtXISn96nz7vADfvhCf3VD97hjVLkfIrghgQo5H2Hc8bIx8FNw2MwrcuG2PYekCf+Pp5n3Ivc41cFwBeep9vGIVnJqOoPP3r56F8PdWpkg763OU45d67TPTHGwnWwUxeMsEHOYJGg6UNMpKWitEP+3SnpBuRkhxPSpI8gxKkfU/gLoHfM/DDrqMDdFIhz7KC7M8B084bOg5AkLwDnhSPYm7Fj56+CdZEREhEGPItCocNDAkMGDmr2eyPJbNF20coo0v7KFvWweKqAV2SJVmSJTndUqx/kZkF2g0FlOk+1M/HDPDQmxV1pqUOYsNrAS5GU9JDmnoR3Y7slniOZ9JpEafax89Dyn2d2C9Oud/g91FnuLcsCZwFgP548vjjj5OmKZs3by7e27x5M2ma8vjjj/f9ztjKS07X8JZkSXol1jDhNcCDNQfUA7urdfQnCKJu+cxdJz3E2UQKBnoDBlxqyDet5lOv30D3RaM88dMbmdi0WtvR+d7zJAZpJph6BPt4v2NMOe9KHX0Ltk8cs3UdUE27n+5qc/K6cyQuIgsAXwDPvj/TrbV2Q/vQD4FaA6ZMSQ/fD8j3dEaJUynBfFxLv82PwaJJFHej/qJuaqBdMvc7B4ecY8hPVgCOdLTVXzhEi6TbQiwiwqf+7svPuYh8XWYjdxqlZGveT7VlXfheSZD33D5Gz3VZiPV8SZZkscl8Xuf9HKFhbVxG2Yt+As12ClJxhi4SdSfUwHw0xotQpvt67TlUSfFGo31BVU+cLimAePRcKMsB9lMC+TCPAyi/T8xwH2ciPge4b+dFzlgN/fve9z4+//nPz/r/a665hg9+8IPH3c/Ro0f71soPDw9z9OjRPt+AmanxuQ5zSZZk3kVEcDGLe9hetBZ+uKP84LVrq5HpE1y1Lrt04/E/dAJiQHvGJwZJHKQWHFgH2y9aC5esYSfCsDW40JouNUgj0T7mJ6oY+5HiicAFI6qdjnRgzNQY7qPvx2H1tgf0UDmOsZKX+H9W27212xkM+nR7v89pfB/6boY0k2qE/wyBplBDXtTSo4rv9cA3fZr9EPByoIPQaRqkrd8NpQTTDgajAyhTHWj5eZ2AM+Z0y3xf54tRKgapAL6WMjZK9wPPp/eajo3YJTl75Vy4zpdkSeb7Ou8XcQfVh6FcKUSve/z9nKDNsoAiIljnyhZ2rlzjN6EdbQIQDiS4cYR7HAX0Z5rFvxKdjzgBEtQhvRtlvI9r6LehgL/lPxu3rVtiuC/ljOn53/zN3+TWW2+ddXvve987p/0MDg5y5MiRnvePHDnC4OBg3+/kLueX3vWr3HTTTdx0003ccccd/N4H/pqZmXbxmTu/cB9fv+/B4vXefeN84E9vruznls/cxYPf31K8fvLpHXz4I5+tfObDH/ksTz5dgrQHv7+lxwP5gT+9udKq4+v3PcidX7iveD0z014a33NtfHffXzC5z+QZ7//EZ5i5aAW8cz28IOHO6w9xz/QBAincvkOH+MB/+8QJje+aqy6d9+MnAInh3q9/i4e//wNcM6HZStg/fYTbPvVZ9jUtgy0F8//4ha/y+ONPaco9sPXpnfzVR26f+/Hz2QAf+Mhn2Dd+qAD29zz+GHdOPwl/+0N4Yi8zU23e/78+ycx0W4uugDu/9i3uefAHofidfUcm+MD9X64ev8/9Iw/98AlC/fwzO3Zz++1fKBRcN4Fvf+nL7Nq5u6ihf+rxpzjwla8roJ/pIAOGv/nM7Rwcn/j/s/fn8XIc9b03/q7uWc4u2bIsWd43bBODnZBAWBPgBgMxOOQmgYTtCSHJTcjzC3HyQCA3T55s3AvhXhMWYwK5hgCJYwLI2MQ2tnEWO2Yz8SZvsmx5kazVls45c2btrt8fVdVd3TNHy9GZMz2a71uvUc/SM6dquqaqPvVdKiny7T+4z1zfHt+fY7nbX2jd7jfft5mbr7kl2d7t+Qpec+VXYN9+XoXitBDuuu8B/u3++4g7EKNptdv8099/lf2tNqtt3X/w/Tu5Z9ejqIq5dnv37edjf/91PzahML/fC5539kj0LwHw4H2buXnjLUkbnQGOueIqduzdl+xB/+B37+EHt9yRnNNutbjsY18qVv9X9P65gOW74HlnF7p8DimflO9Iyufa+XKUTwGtVovP/PWXaLn5C/Cft9zB5HfvoWYf7927j/YVpnxOFH1r4y08cN/mZKG+CN9fIuaBWzfewmObNicW+ice384tX742I+Kv+/K17Hh8Ow37Ofs3beb2a27JiPjPXH4Ve1bw+johroCNX7qWpx/fnpRl7abNfP8a8/05t/tvXHEVm/fuS9ztH/juPXzv23cksfPtVouPXlb88e26665LNOdb3/4u+oG69dZb8/mgC8srX/nKriz3O3bs4Jd/+Zf53Oc+x5lnGlf6LVu28O53v5urrrqKdevWZT6jVqtx8cUXs3//fmZmZhCEQaAjbeK6WzE0I3OLbBYQhdnCrmxv1RDGS6jqYCOF2lqzP4b5GOYizUIrZqEdcX9HcwWaj2n4WwUTQcCvhIpKNWSqFDAVmO3FpgOYPAwvA621cZVfiKDeMd/RQgce2mlyDDjecRL8yAnmexqz39FCBxqRubUi+N/3wJtPh1NWwXhozp0owVhILVDM1zvM1yNqjYh6o0OjE1H/+sP88MUbeOmGGcYqIZ1KSDvW/PeFDv+/OGbDzU8ydvo0k885holyyNREiZmxkPJ4CSZKqMrKXq+21szHJpHfQgw1DbVOTLve4fZGh+vrEX/aihhrdxirtxn//MNE7z6XeqVEoxzyj6WQoBXxi50OY7Fm/O/uZ/KiU5g8YYbpsZDJMdMOGQthsoxy2ywKfSfSmrkY5jTMxVCLjZNKE3gTcDnwh8AHgPMx+yxPqjRR4IyCivglCoIwQmitqWmYtfOWeW1udeDPgQuBNwCXYZKyvQ2zz/mUMv3mtO1DJwrSd3a8Odi8NscFjEv624AvYBZ1JzFbuC7EJjJwG/AbwFcx9ZuEzLxsJoBwhbwL3TWZi+1Yps241sBch+OAd9hyxpjnP47xoHiXK7+bTypT9sOZVxaB2dlZVq1axXXXXcfk5OTB33CIFH5GprWm1WrRapnVl06nQ6vVIooiANavX8+LXvQirrjiCvbv38/+/fu54ooreMlLXtIl5h2VsemezwvCSqFCle7HXg6MUKo6wWTvJ4I+OPi+7T3wVxaXrdzuqBS6EhKPl6lMlNhZLRGPldhRLTE5bu6rMMi4/B5uDZI4ekV2G7t7crkGfrgjzXbv73cCaTx9C/PdJv533W73KlBJDL0CorBE3DaRaC6OPoo1Laxrer2NKtvPCNKt7wbl/+W2batgYurLQFkpQuDFGHe172gTl9YuBbQDoBObr0hDQ+s0qZrWZhvCyUqaZqBX3ocC0I92XjRUj5tzt1yNmdDNYlwWe7lUDtl8R+jBKLRzQVjOdu5C4PIu9Aojap2Ffo5sUrz8rSgobMJblbqeB5gF3OMw+9E7y7Y/HZrFCGF/mzjjebDyIlBZj8h8UjyFSYy3gzRUANKEeKd65faTAhZexK4ghf8udu7cyUUXXcRFF10EwB/+4R9y0UUX8cUvfjE554Mf/CAzMzO89a1v5a1vfSurVq3iAx/4wKKfOb36pL6XWxAOirO+j4WpmB8PzW3M3sZDsDHoh8u3//XOZS1ufiBwInisHDI3VqI9VuKJsRLHlkwyu0zik6UOHM7HLBnBlMk14HPBulwcfS4pXscODePlHpVysf3ZgR+l0KUQIm13Pjc0MXFfYwDtjkn8Z9+o7PuyH7RyKKWoKivqvVvZrr5fAtxg6xAFinYJ4pbbuk6zD1svQLVjAg2MhV72fvtiwdThcrfzorJYYrwpzIQH0iz3+fj5Yl0xYSmMSjsXRpt+zVuC3NA8TZpQ9FlIws0GLXgPhBPBeUEMRvA+hhdHT1bQr7Ln9VqwWOnxIS/m3Ri1DhND78fPL5bh3s/4LxgGlhTvUFm/fj233nrrAc+ZmZnhj//4jw/5M/fueOBIiyUIR4xSxkqvw8CIzjg2luZkqzabVG6JrlDvfucbl7fA9E4a41JSLgC7gbV0WxJhiTqwV6b7M4+Ht2jjdv/CaTjtuHTj1dh+f/5ecy3jzYNzgffiwLEfieoxuI2VjDmbNCneQgwKs1c7rQ5q3AwvySJH8sUMRkKFGBHf1tCyVvoI6ADPCxW3Av+h4ZVAexxC990AdQ0zdihVzbY5loJk4QbwZhDFkYj9aOdFo8s6r0hmPasxE7lp0u0KE0FfsAmpsHRGoZ0LwnK3c39x079NAy5wr0Y2A3xhLfRKEfRIjBcAp5Hdus7fh34WuzMPvRctBiHoVe4IqaCHdGFiD2ZnnnyG+2QxoEgXaMDIWC8IA0aFysTHj5VgogxjJdR42ezbXqCtpvIr3a7zGLfHvRjP9uPICoojshIGmP3Y3B921vrT18JPrIV66KV1tTkI/Oz2YOLvwbzXVYS0cKacKh3YlLXXV0KjhL3k+XXsAobGZImvllKjfHpnYLMAZ6V3lvqqsu73gRkM36Dg21pRA6JySKcdJ4sVNbsdn9KgGh3UBAR2xSMZKPIrOsKKkrfOu4npo8Axudd87xi5XIIgjCq9DBG+y/0zGAt2T+t1wTpPf0rkXM4VxkL/KNk96J2Ffo7stnw5m8aKs9he9Oswiw9NUi+DJ+zzVSTD/cEQQS8IBUEpZWKxC7zk2GtgVBhRv9U+51a68+72S6lVEkcfqqzrfQCcPg5b9oGOu7euS/ai10bQV1yhvFJ4wj7ddi6tU6hCo+BJB8amhjENtI1lO922zl8QWEJFl5GSUomYryiTDK1qv7ozQjhDwa0xRKUSHZsjAG2SrE1gi9+IkiSMSXUGGE4w6iiVbhuYX1CbwUzk1nrn57ckkksmCMIoEtBbwE5jhG4Ls24/470+aMF7IHyXc99YchrGQh/Zm2/WmMMYIvJ1SqdAK1vLXmJeYULGAHaRehg8AZzkv0+lCxlLDuU8ShnJ72LN+vMGXQRB6Dv5LTiOlJ6r1/a1acxgso5uV6ojHhgTIe/dlIJTZoyf/7PN1EofeeZ0d7R7yWcrk4rTTPy8UsngFlRKxtcLsy6gtaaOTresCwGb+M9Z+ovikp4kxwuM231JKSqY6/EaBT9A0SmFdGyOgDaajtZM2qUL1dFQKqULFZlZQLFMvsvdzouK+z25++7oYiPX0P3bTD1lCnTBhCUxKu1cGG360c57zVmmMIvY++3jmR7nFVHQ+5bp0LNvnGhf95PKOUPEfrIhBe5zBlW/XnNEdzyBtA5O0J9KNpTMt+vI2JYykoJ+bt9Tgy6CIPSdV/3UCw5+0mGSN9K64xjGQn+c93w+y/aSu127H31G2IcKyiGcWIVH52wKes9K79OMTThDr2V3J957GJ/DIKCko2QPVzBu6WNgttMbU4mI91f2uz5oAISelT7JeB8YYb9BwXnAnrESsQ2hrwFK23UPDaoJasykWMkIwoKJeehPOy8iB1pMg1TQL4dnjFA8RqWdC6PNcrfz/NieF/RzmMXvErn+taDWXydkfTEf2tvJmHwqsXeDNIt/rzFkEHX054T55H5+pnuXEO8U0vJKhvvFGcnvo9WYG3QRBKHvnHHaiQc/6TDoGgg8pTADPEmaZds//4ithL0y3bsR4PTV8Ohs6mbvZ7l3wr4RQdnLcJ/bfs3P2O/+HEBpHCZbEfPeVngdG2dOK0aF5eTjnLDHPw4Yfwu7krKCHiP2XxPAvkrIfMesg8xZMZ9cq5pGTZXt9VPkZ0NFWhVf7nZeVHq5jiq6LfTuXBCXxKOJUWnnwmjTz3mLH67kstzvJ5t/ZLGF06KgyIl5b8HidNLEeP62b3OkOQIgOz4Mon7+1nX57/p4jMu9b6F3gl4y3B8YGesFQTgseg0AE5hspMez/FbCJI6+y+0eOGMCHq2lOwQ4P7Mkhh5oxGZLwHwF7Oju4pOTRQdljxUY1x3q9mPQsKA1IRraGlUppfvcqtzgX4BZQKgU1SDdys7sS29E/WoFk6rEY/X0K3LJ/kChWh1UUE4sFZkFiyJUbgRZbKLpBL2LP+wV7iIIgjCq5I0MinR3nj3e/a4+dkCC90A4MexErS90TyNroXfsJ/Xk6iWiB0F+6z1/6zpnod+NyW9wkve6ZLhfnJEU9OOTawZdBEHoO3ffu3lZPy8jfOk9OB63yOtH3NH0ynSvFJwwZZ7fPm8s8y6O3scX9F2J3czn5lesFUAI1YZxuddao7VmFpjSQBvUZDn5qKK6pJcVVJWiEkDZuuGXAkUJOKESMtuCx7VNmqNN/gEF0GmjqmF20M8thBSF5W7nRaWXdV6RbvPzDL0nawW7XMISGZV2Low2yz5v8W54Rzdn2UaxMsAfCk7MJ8KeVNA/Yc/xHAu7tuWD7nwsK81ie9E7l3swdVkPSf4fP3eAZLjvZiQFfXV89aCLIAh956HNTxz8pCXgVq6T+6R7nLqlsl4JTI7sjyoj6rtc7wM4YwoeW8i63Ts00IygUsqN6qkAV7aQXfbnEKqtDgveZ8UaZhSoGhBaCzbmM4Lk81VhXNIDpagoRVmpxN2+bJ8vBQGn6IgbY5Nb0OUNVICqtVHjqrDhBD79audFo5flaBNwuX39k/ax+835Vg9h+BmVdi6MNv1o573ClUKMt9o2Fk+IBxRmLPfJiHmVzrdOw7ir18nuQ/8MxkLvGy4gO5dbaXqJeWehf5o0fv5ke35iz/Huj6SAPQAj+X3s27Nl0EUQhL7zSz//6mX/zMXctdxq99rca76oPxJUoBZ3uz99Gh7blwp6Z6F3wr7ZgWquq8upd2dlV3aEUwDlgLFOxJyNydeYgVIBtKNkyzqc6C3gwA/GIl8FyoEyCfKUzXw/BhtaHfYCP4ztpEZr813UOzChersdFqya/WjnRSSZ/HiTuZty59xEdwbkgl0uYYmMSjsXRpvlbuf5hXp/3nIMRtB37UFf8L4z73LvRPGxmLnYVtKt61r2mLfQD9oLIT8/dI/XYdzs5zB5mU6h20CUeCUUdM41KEZS0AuCsHR6DZDOunsc3Z30sg0avTLdKwVnTMO2ptmezmW6973uax0YC7pdxl0MfZAKV/AEbElRiaLUg19D3SbFU802jAVdk4DM5xeEQBmXtYoisdSXgbACIREvV2Yf80eArTEoNKrTRlUCM0Dkv5hiVW9kCDBOKiWsdUnBxblzfjZ3jhP1giAIo4qfDA/SIWwM2E4aX56frxS173QLts7TwAleSBPjgbHS77f3i7Ytn79A7Yv7Kcx12YlZmDjFOze/WC1kke9EEIRDppfrGsBee3zcOw+WJyleQq9M9wFwTNWMAk/uT+Pofbf7dhvGbYnyBfEs9BnvA6VQlZBSFPEMJoYeoIFmHKDdQY177w/SLewKJ3iVsc5XcaLe3kpQqnU4AWijeRL4pNY8GmtUI0aVzTcS5C+2rIoPBKUUIS4vAowpeJGCTwCvxRxfpGBcedcZsWIIgjC65MWrv97uEooeQ/ecpohDuSOwXoSJmPfmWaeQJsZzGe4rpGLYN0AMUgBmLPTeEUxy5R2ke9D75/iZ7oUsIynojz/xgkEXQRD6zmWfvKovn+tb5hVwH7DRPvffgfvp3Vkf+R/OWegTt/sAzjgGHq176V1dlnsNbc/lPrdlnTtmstu7l8ohpTa0PYN/E6gC1Nqosq1f4L2noDMApUy5q9jkeNht7Bptvq8xoh+oK/huDEEN1EQ5XQnv9b0VhH618yLihLy7TSh4cQB/ruAlgXnsv14u2LUSls4otXNhdOn3vMV/7HL/9LLQD9J6fSi4ved9MR+Q3boOjKBfbe8XzkLvl90ryAmYeWUMbMAT88rzSijyxRkQIyno9+58aNBFEIS+87a3vHbZP9MJPH8f0Jtz59zonee7VB0pymW29zPduxHh9El4/BnPQo+X4lXDmF3P9ZffvWOyWu2tWquyyYzfjtIdXRsaKmhUuw2VtPt0Vv3M3ygKtjwlK+QrGJfscimg2unwcqWZiKGtzfEVUUSgIRwrJZOGru+tQPSjnReVQCkj5AOYCmAygCkF0wFMKvPY3caVOV84Ohildi6MLsvdzhfbnQfS3D/OUp8Mc+5Y4O7Tt8y7ORmYxHiPkma5nyVduOj6HgZYP3ddemW7Xw/ciRH2vTLcFzm/wSAZSUEfdRqDLoIg9J21x61e9s90HWuorChU8IbcOW/EvFayFsKQZXT77ZXpXik4bQZ2x7DQ9gS9VfR1oFpKR6+uomQH/CTzfcl0j61WZE7TsIBmAlDtDmosNO+0b0yqWDQR5bwOrJXe7UlfKQVUmhHPDRSXBvDKGP4fBee2OlQiKJcDSqQeCOnKTLHq1492XmRKShnxrjwxH8CMFfeT1nIfFq0dCkfEqLVzYTTpVzvvFS7oLPOryIr4QVuvDwXfaOJbrk/GJMLbg5kGzdJ7Wz4YfB0zye688qzDlH+xDPcSQ9+b0qALIAjC8BAoRVlpKho6ygwYLwQ+oeGbGHH/E8q4Blc80b98BeiR6T5QZp/540N4bBaefxzo2C5RW1E/5nV1PfaMD+xydWbQV6AD6LSNoG9inh/TQAMYKyfnBj0+s4iUlEk4EyuFLgUwawbJCwK4oKQItaJc61Ataca0Ysx+J0KxCJRiXEFV68QZJbV2FLgBCoIgrDD5ZHju6CzX+YRx/nuKihPwoQKl03j6KsayvRWz69AcxhMhX/fkOxngeJFY53U2sd86ezyVnOj3RL3khumm6G22L0zOrB90EQSh79x2x919+dyqMjnmxpRx651UJn73LwMbx2tv48qcU1rOjtel+vYz3TtX/FOPhcfmvTh6oGnvjHkpVPIjW/5pq+YVoMsK3Y5MhnsADVUr8FW1lHlzAY3XBrc6gTmOYUT9RKXEZDNmQmsmbfb+CTQTzYiJKoxjLPnufUU1W/SrnQ8DgVKUlDK7FyglYv4oZpTbuTA69KOdOzEIWXG/z953G1n3stIXlbxl3g9tPBWTGA+MhX7Gew8Up34ZV3vvvlNodwGbkAz3h8pIfi9hWBl0EQSh78zNLfTlc0NrHZzMxfFO2eecO7BL0LWcKKWslZ6s630AnDkOW/Yb67zLct9om2PZdnW93MfteoC5mdeTYochQTumA9Rjk+FetToQggqtq35grdgFdUkHMosYCpjQMFUOmepopjsxk8CkjpnSMFWLmA4CxrxwgsxqR8Gq1692LghFQtq5MAr0o537a/hONN6H8SqEbDLf/K2ouBh0PzGeu51OuuOQE/S96jZoAejKoHL399jXNwMfwFwrV1eFsekI3Qz6eg6E2WefGHQRBKHvvO41L+7bZ/txvDM2fnc6gBllRP6UteD3xS2qZ6Z7BSfNGDP63kaaFK/eSbPdHaAobnBMNKzT/WGJiShmQWsawLgGGh1U1Q5Bbrs67z3FmwWozMF5H1QrAZMtzXQ9ZpU2cYQzwOR8RKlU9t6eWveLV7f+tnNBKArSzoVRoB/tPC9gFfCt3Dk35s4pckI8h3O59xPjKYyFfqs9Z45U0EOx6ue+71ClIQMhcGvuvBvIeiMUoOiFZCQFvSAIR06gFOOBShJzudukMluj9S3GyW1f5wv7UEE5hJPGjNu9tjleWx0vxWtOmOaW4YPcU0opqISUIpgHWtq4qtOMUOVS1o3P3SnqSOOvUnjCPgBKzQ5loKwh1KDqEUyVs+/1jhK7JgiCIAwLTjCGylh3S8DP5s75WdJpRZnhyEeS2U2IVCCfDmwD2piwApf8z5/juMeDJFTKJE/G1KWiTFb7i3PnuUTLZXv9ZA/63gz6eg4EpUay2sKI0Wy2VuTvKKVsx2xiePsu+PLu9kkcPXD6Ktgym25Z14hhPLdlXZdJ3dP4yrPWo2CsxPERNLXZ/a6CNhvTl8vJ+zM6uaBW7C7cAkQJaEbp96WBRgRj5ex5Qf7LKw4r1c4FYZBIOxdGgX60c5d6x4nCqjLJfC8Dfgb4a0wyX5fI1+3iU3ScgHcx6M56fTzm/lPAAmkMvf8+X9gPkmRHJGx+JnttPg68FrgceFFgxb69LmJU6M1IKtvjT7xg0EUQhL7zscv/cdBF6AtpHH3e7R44YxIeq0Fss9w3Yyh7W9b5fma5EU15e9K7lwlDym0zKC5gV7rboKbKGUt+ocV81u0g+9o40O4A2lsE6cBYkK1LsqRfvAoere1cEHyknQujQD/auVKKCiYMcEylwvEnFfypPY6rNJFvVS3z7jx9wrmoZ7Z0s8fTMW73z7J4DH0RdHHFfucTfqLlAF6sTKLllwbd10bozTAsQi07u7bdPegiCELfee9vv3nQRegfi2W6Xz9pRrltczamPjZ70OfJWOcV5p9vvHcW7BIzDROHptEm6/sCEJQTK76ybzRvWQEPhaXQ5W5vj2OBiSXwmW/DCRPdIr6A1YKjvJ0LgkXauTAK9KudV5RJrRMBBJitdzHReYG1/DqhP66K724PJGF/oSbJAK90Kug3Y+o4TVbEF8lCr5RiDG22Xg1M6F/b7cOKmeo50T82JNdlUIykoNc6PvhJgjDkVKtH8W4OSnkZYVTqeh8FcOYUPLZgBH0jholS+p7MSJaKbyfKA6Wyp4QBYx3NfmBWm/guWhFBtZy+j4K7gOWLlq5aQKmUbu3ndH2zbfYlzL+3oB4IR3U7FwSLtHNhFOhXO1dKUUWjMO7dLQWRBq1Sl/yq6sNWu31EKUWodbqFnU7j5E/FJJODA1joB1DmXoRKMYGmBLQVdLRZfFGk7vgVZc4TFmckBb0gCMONChQ6CCCIe7jdz8C9e+Dl66EVgRXfvWLn0w9UmRVssIbpUkC12WFOQw0Tm6aaHVhdzSSWST6ygC7pQLcwd5TDrKDX2mz1NxFmz/UXQwRBEARhyAiUMoJda8Y0dJQZ9kJ7Kw2hBdgX8y5TvLPQP4V5rky3q33R4q3dtaloTWyvi2I4khMWhaJd0xVh5phTBl0EQeg713/rjkEXob/0ynQfKDh9Gra3oB1BswPVQ4gHV+lA54t6NQ6VToc5zNb2JYBOGzXmGazd1nXJPvTFQmVWKMiWcawErTi1zoNJ6T9WIv1SvPcUcGA96tu5ICDtXBgNVqKdl5SiGigmA8VUYHbrqQRqKIWjv51b4qyIsdADHGuPmWE8dywSgU2wXPYSLQuHRuEt9I888gif/exn2bx5M88++ywf/ehHecELXpA5573vfS+bNm2iVEqr85u/+Zv83M/9XM/PjCLJFisc/UxPTwy6CP2lV6b7QMHqqvExe3wWFjpw/Hj6nnwsefJ8NrldomPLMBZHdDTUtaYCqFobyqmYD3p8XPHI1dt9D9UwjaHXMWADC8fLvUV8ASt61LdzQUDauTAaSDs/PBRGyAUKAp1mvZ8CjsPkvXXnQbH2oReWl8IL+nK5zMtf/nLe9a538d/+239b9Ly3vOUt/Nqv/dohfWZtdsdyFU8QCsvLXnyU7+bg9qPPu9wrBacfY+Lom17G9rylOTegBd7TyUshlOsRs5hkOpNoaLdRFTMsph83JC7p+QWNSmjCEjTm1rLu9+Pe0FDwcIKjvp0LAtLOhdFA2vnhociKeed+D0bMbwM2AT+ON0ViOKYrwuFReEF/6qmncuqppx78REEQRoo0jj4v7IHTJ+G2bWZ7uzGX4O3AluauveitH1up3aGhNTGKMTDbvFVDkxlfkdy6/kaR6Jk3ACPo5z2PpYWOOVbtd+bvQ6/cmwRBEARBGDSBUgQ9EuM9ADxpz/kj4H8BL3bvscdCJ/MVDpujJob+G9/4Bm94wxt4xzvewd/8zd9Qr9cXPTcsja1gyQRhMOzes2/QReg/vTLdKwWnrYI9GnZFqTjNi+5cXH0i5NOnUOWAsBPRAJrYLPdNUNYl3XfR7/rMIrFY0FxFQTNKH9fbdplXFdYin2ck2rkw8kg7F0YBaeeHj8vS7+LnQ+Cm3Dk34kUnchSJPyFhYBb6//k//yc33njjoq9fcMEFfOxjHzukz3r3u9/NKaecwtTUFI8++igf/vCHefrpp/mTP/mTnuevWXfOUoosCEPFl666gd/7nbcMuhj9JQi63e4DBWMhrCvBzo7Ncu+J+J6x4Sqr7wOMBb4cEMQdFjAJ4CfbEYEGKqVu7/0iC2Dnl4d3VEAlgEYnPa/RMcF3mffm/PQKxki0c2HkkXYujALSzg+fsoKSTdpbVmYv94uBb3vnvAEj+p0NpPDu2cJhM7BFmt/93d9l48aNi97+4i/+4pA/6/zzz2dmZoYgCDjrrLN4z3vew7/927/RbDZ7nr//2Sd469vfxaWXXsqll17Kddddx4cv+yLNZup6ev237uC2O+5OHu/es4/LPnlV5nOu/tot3H3v5uTxo1u38bkvfCNzzue+8A0e3boteXz3vZu5+mu3ZM657JNXZVYlb7vj7kymz2azJeWT8h12+X7vd95S6PLBMnx/ATQ7bT7y2X+k2ekkme+vv/M/ub3xlC3cLHtmZ7nsH6/JiPirv+6VT8FjTzzNP3z1+oyV/sbbb2PXvmfRmBj6nQ9v4d923o8qmTNUoPibL32dPftmE5f0In5/e/am39/td23i+u/daR5UA5qtJh/5ytdptttQj2CsbL6/TQ8kIn7PM/u57LNfyQj6ovw+fu933nJU/n6lfFI+v3xO5BS1fA4pn5TvSMrni/kils+nKOULgW2Pb+erX7qWioLxAF6k4O1fvpZXPb6dT2Eeb920mW9tvIUyZqok39/Kle+6665LNOdb3/4u+oG69dZb9cFPKwavfOUre2a5z3P33Xdz6aWX8s1vfpOxsax7fa1W4+KLL2b//v3MzMz0s7iCIKwAutGBegcaUXp7YAf8fdoR89YT4bz1MFEymd0nSjBRQoVmTVNHMVGtw1y9w1wjolbvUG9E1OYbdL7+CH/2S+fRCBV/tneOsX95iolfPI+JcshENWR6LGRmokQ4FsJEGVVAS71uReY7WvC/pw48sBf+fTv82vlmhP/eLnhoP7z1bGO9Hy8Zb4exECZLMFaSuDtBEARBKBBtranFsKChoaGtjRFCY6zxJQVVBRMKJhVUCzhPGRVmZ2dZtWoV1113HZOTk8v2uYUPo9Ba02q1aLXM6kun06HVahFFJu7zmWee4Xvf+x71eh2tNY899hiXX345L33pS7vEvCAIRyGloDvT/d25nSzu3nHQBG+JV7n3siqHAMx0YsoaSs0YSuX0dbzEMkUeHxdL2lcNoGkz22tgIYKpxTPci5gXBEEQhGJRVopxT7BPBuY4pWDC3p9UMK5M6hzh6KPwgn7nzp1cdNFFXHTRRQD84R/+IRdddBFf/OIXAWi1Wlx55ZX84i/+Iq9//ev57//9v/OjP/qj/OEf/uGin7n6uDNXpOyCMEjyrkFHLW77OncrBfCCE7Ln/NgJaay9iyfP9H5mhEs1v92LvmROWtXuMAHQ1qhKOd2rXvkLAKq4ot5fdEhi4RWUQ3D5QzXQiM0e9NAdc1/Qyo1MOxdGGmnnwigg7XzpVAPFVABTAUwrmLH3ZxTJ8+OBkoX5o5TC50VYv349t9566wFf//SnP31Yn9ms7zvCUglC8Tnn7FMGXYQVQYUKXQ6hHVtBr+Dc9fB/KbjzaSPun7POCP2STaIXBl2DmrIKXeUeE5pkeFWADjBV8jSxKr6Yh1xGf0/cV0vQ9l5rtGF1tWsHAKCwSf9GpZ0Lo420c2EUkHZ+ZJSUIkQTK7NGD9aGgXjYHe0UXtD3g3pt76CLIAh954LnnT3oIqwcJQXlACI7hAUKfuQEEzfv9qkvByYuvGyFvY/TuIkbPalYLwcc24l4RmuogwpK9i3pPvTp+ws8YPYqW8WEFKDt91ZrwwkT3e8pcLVGqp0LI4u0c2EUkHZ+5CilCAddCGHFGUlBLwjC0YUKA7QTpy6WPtZmidq52JetmK+EqLBboZqt6lJRnuj0ICRua54GnmnErK+mMfTg711fYNULvfeir9rvrBWb+822SZGbcc2n+B4IgiAIgiAII0rhY+j7QWVsetBFEIS+42+3MQqoSmgsztXAZGWvhmmGdncbL5nzen6ASl3TSDXsQljirmrMsyF8a6rDnkrQFYoOFNYl3ZCztDvLe9kOAS2TZJRmB8bD7Dn+PvQFZNTauTCaSDsXRgFp54KwNEZS0E+vPmnQRRCEvvPtf71z0EVYcVQlNEndJkowWYYJe5ssmy3X8q72yRvTg8LsL2+EveLJmYByVKIMTDRK3D+eatwgUMn5hSeJJcCrqH3c6JjjnDYLH3gW+fwiQMEYxXYujB7SzoVRQNq5ICyNkXS537vjgUEXQRD6zrvf+cZBF2EgqEBBsIQIMmUTypg8eARAWcGpUcBkp0MbKNHhRyoVQmz+PbxOtJh619DL3d4J9ArQtDvWtjELIL28Dgpav1Ft58JoIe1cGAWknQvC0hhJC70gCIKPi5sPnEhXUMZo3bWVkF/ZC6+M4fWPPsNp5YAyENrEM2HBXdITFrO0jwOdyOwSAOm2df57hsEDQRAEQRAEYQQZSQu9IAhCN0agV5XZnS5KUt0FnNqMeHeoCOdjypWAKooxBWM2gb45seCiN5+x3h2rITRjqFu3+4pd5x2SfegFQRAEQRBGmZG00K9Zf96giyAIfedzX/jGoIswlFSVYgyYUDAGTBIw2ewwqTUTc5rx8TJjyhi2q96+9YXWu3kPAifSlYKSFfS1tok16JXRvsB1k3YujALSzoVRQNq5ICyNkbTQz+17atBFEIS+86qfesGgizBcuO3qrFgPMG73bQXRQhuaMWFbE46VGNNQxTNeD4tLei8vgnIJWtpkuJ/KneeHExS0itLOhVFA2rkwCkg7F4SlMZKCvtWYG3QRBKHvnHHaiYMuwnDhidZAKcaBioZOCeK5NnqhTdiKCcPAdJy+S3pm/7rioZRCQ+/keOPO5T428fO9RHyB96GXdi6MAtLOhVFA2rkgLI2RFPSCIAhd5Ld1w8THh2UFCx1YaNseUw1F9vduFtmLvlqCVgwLEVS8IUENYx0FQRAEQRBGi5GMoR+fXDPoIghC37n73s2DLsJw40RsJYBOBxoRTOWUbX5f92EgX+ZyaAR9PYapxTPcq4Im/ZN2LowC0s6FUUDauSAsjZEU9NXx1YMugiD0nYc2PzHoIgwfPfdpD6AdQT0y1uwhc0lPCHIWekclgLZdsBgrZ88dggz30s6FUUDauTAKSDsXhKUxki73+/ZsGXQRBKHv/NLPv3rQRRgu8iLWt9A3rAW76luwc4njhoFeW+xVAyPmAWaquUWNHucXDGnnwigg7VwYBaSdC8LSGEkLvSAIwgHx96KrhFDHWOidS7ov4hNdX1zRC/TMEYDCLFg0OzDfhonQO38IwwkEQRAEQRBGjJG00AuCIHTRy91eAWMliMi6pHdtVzeEijfxQFAmpKATw3gwnOEEgiAIgiAII8pIWuiPP/GCQRdBEPrOZZ+8atBFGD56Wdkr1mo914KxsLdL+tDsQ+/fd1nubdK/ZtsIev81P19AQZF2LowC0s6FUUDauSAsjZEU9Ht3PjToIghC33nbW1476CIMH77BPUmKZwX9bCO1YMPiSeaKyoFyBNQ1zGuT9M9/bQhi6KWdC6OAtHNhFJB2LghLYyRd7qNOY9BFEIS+s/a41YMuwpBhrdF5wVu2d571Ldj+24bQJd3PEVC2OQJiYKKcinff66DA9ZN2LowC0s6FUUDauSAsjZG00AuCIBwSKvkPmqRJ44bIJT3hQDkCYvv8+OL70AuCIAiCIAjFYyQF/eTM+kEXQRD6zm133D3oIgwXvfLbOeE7Zh9XSySW/HziuGGgVzmrXmb7qh0Shmgfemnnwigg7VwYBaSdC8LSGElBH4aVQRdBEPrO3NzCoIswfCwm0MftcaLc+5zi6l2P3EJEPkdAQO/wgYLXTdq5MApIOxdGAWnngrA0RlLQzz77xKCLIAh953WvefGgizBc5Pdp94VvxaYbGS9lz4fhcknvtRd9yd6Zcuf0CCcocBWlnQujgLRzYRSQdi4IS2MkBb0gCEJPernbA5SsFbvSwyVd5d84RPhlHy/1FvHDEk4gCIIgCIIwgoykoFdqJKstjBjNZmvQRRhOeu5FX4IygBoui7zPgXIEjAPVcvfz7vwCV1nauTAKSDsXRgFp54KwNAqvbG+88UZ+53d+hze+8Y1ccsklvPe97+Xee+/NnNNqtfjYxz7GJZdcwutf/3o+8IEPsGvXrkU/8/gTL+h3sQVh4Hzs8n8cdBGGCpV3RfdF7HiYuqSnbxgKl/QMeau7ezyuYHLxDPeqwFZ6aefCKCDtXBgFpJ0LwtIovKBfWFjgHe94B1dddRVf/epXednLXsb73/9+du/enZxz+eWXc++99/KZz3yGr3zlK0xPT/NHf/RHxHHc8zN3PnXXCpVeEAbHj5x9zKCLMITkhK6zxu+fh2eBrXt6u6QXV++m9MoRgH1uQcPmWXhs91BluAdp58JoIO1cGAWknQvC0ii8oH/Tm97EC1/4QiYmJiiVSvzCL/wCQRDw4IMPAsY6f8MNN/Crv/qrrF+/nsnJSd7znvfw2GOPcd999y3yqXrlKiAIA+Lb3/72oIswfPgJ4Rxbd8M2uzh41XZ4dPcQZri39HK3f2w3NIAOpn5bct5NBbbOg7RzYTSQdi6MAtLOBWFpFF7Q57n//vup1+uceeaZADzxxBM0m03OO++85JxVq1ZxwgknsHnz5kEVUxCEYaSXUfrundlz7toxVC7pXeTd7XvWbwjDCQRBEARBEEaQ0sFP6Q//83/+T2688cZFX7/gggv42Mc+lnlu165d/Nmf/Rm/8iu/woYNGwDjkg8wNZUNcJ2amkpe89FaU6lOMzs7e4Q1EIRis3nLE9LODxPdiqDegYY9tiI4Zwru3p6e9NyToDYHUWhvZVQ7HFyhDwPdjKDWNvVydTxnCu7x6nfeSVCbhbgEnRDiEqpZ3PpJOxdGAWnnwigg7Vw42nHtW+vl9RYfmKD/3d/9XX7rt35r0dfDMDuB3LZtG3/wB3/AT//0T/Nrv/ZryfMTExMAzM/PU61Wk+fn5+eT13zq9Tqt5hwnn3zykVZBEArPqlVfHXQRjj6+MegC9JkhrJ+0c2EUkHYujALSzoVRoF6vdxmjj4SBCfrx8XHGx8cP6dwtW7bwvve9j0suuYR3vOMdmddOOeUUqtUqDz74IC996UsB2L9/Pzt27ODss8/u+qw1a9Zw9dVXMz4+PlxusoIgCIIgCIIgCMJQorWmXq+zZs2aZf3cgQn6Q+W+++7jgx/8IO94xzv4hV/4ha7XK5UKr33ta7nyyis566yzmJ6e5vLLL+fUU0/l/PPP7zo/CALWrl27EkUXBEEQBEEQBEEQBKA7THw5ULfeemuhU77/3u/9HnfffXfGnR7grW99K29729sAk+n+8ssv59Zbb6XVanHBBRdw6aWXcvzxxw+iyIIgCIIgCIIgCILQdwov6AVBEARBEARBEARB6Gbotq0TBEEQBEEQBEEQBGEIYuiXE601n//85/nmN79JrVbjOc95Du9973s5/fTTB100QVgSf/M3f8N3vvMddu7cydjYGBdeeCG/+Zu/mQk32blzJx/72Me4++67KZfLvOpVr+K3f/u3KZfLAyy5ICydP/7jP+a2227jox/9KC94wQsAuOuuu7j88st54oknOOaYY3jLW97CJZdcMuCSCsLhs2nTJv72b/+WBx98kCAIOO200/j4xz9OEARs2bKFj3/84zz88MNMTk5y8cUX8853vlOS/ApDxTPPPMOnPvUp/vM//5NWq8Wpp57Kr//6r3PhhRcC0p8Lw8e3v/1tNm7cyJYtW1hYWODmm2/O7Nh2sL77SDXqSFno//Ef/5Hrr7+ej3zkI2zcuJHzzz+f973vfdTr9UEXTRCWhFKK97///WzcuJEvfOELAHzwgx9MXo/jmA9+8INMT0/zla98hc985jPcc889XHHFFYMqsiAcETfeeCONRiPz3I4dO/jABz7A6173Oq699lre//7389nPfpZ///d/H1ApBWFpbNq0ife///1cdNFFfO1rX+Oaa67ht3/7t1FKsbCwwPve9z7OP/98Nm7cyEc+8hG++c1v8k//9E+DLrYgHBYf+9jH2L17N//n//wfrrnmGn7qp36KD37wg8zOzkp/LgwlU1NTXHLJJbznPe/peu1Q+u4j1agjJeivueYafumXfokzzjiDarXKu971LtrttnQSwtDy67/+65xzzjmUy2Wmpqb45V/+ZbZs2cLc3BwA99xzD48//jjvec97mJycZP369fzqr/4q//zP/0yr1Rpw6QXh8HATwD/4gz/IPH/jjTdy0kkn8aY3vYlyucyFF17I6173Or7+9a8PqKSCsDQ+85nP8PrXv56LLrqIsbExwjDkuc99Lkop/u3f/o04jnnXu95FtVrljDPO4M1vfjMbN24cdLEF4bDYtm0br3jFK1i9ejVhGPKGN7yBer3OU089Jf25MJS88IUv5NWvfjUbNmzoeu1Q+u4j1agjI+jn5+fZsWMH5513XvJcGIacffbZbN68eYAlE4Tl4/vf/z7r1q1jenoagEceeYQNGzawatWq5Jxzzz2XRqPBk08+OahiCsJho7XmIx/5CG9729tYt25d5rVHHnmEc889N/PcOeecwyOPPLKSRRSEI6LRaLBp0yaCIOC3fuu3uOSSS/iN3/gN/vVf/xUwLptnnXVWxo3z3HPPZfv27dRqtUEVWxAOm1/+5V/m9ttvZ+/evXQ6HTZu3MiGDRs488wzpT8XjjoO1ncvh0YdmRj6hYUFoHvvv6mpqeQ1QRhm7rzzTv7u7/6OP/3TP02eW1hYYHJyMnOeE/vS7oVh4pprrkFrzRve8Iau12q1GieddFLmuenpaRE5wlAxNzdHHMd861vf4kMf+hBnn302t99+O3/+53/OcccdR61W65rD+P15vq8XhKJy/vnnc9NNN/ELv/ALBEHAzMwMf/Znf0a1WpX+XDjqOFjfrbXZcO5INOrIWOgnJiYAY6n3mZ+fT14ThGHljjvu4E/+5E/44Ac/yAtf+MLk+YmJia5B0LnjS7sXhoVt27bxxS9+scvV3jE5OdnVt8/NzYnAEYaK8fFxAC666CLOPfdcwjDkFa94BRdeeCG33Xbbou0cpD8Xhoc4jvn93/99jj32WK655hq+9a1v8fu///t84AMf4JFHHpH+XDjqOFjfvRwadWQE/dTUFOvXr+fBBx9MnouiiEceeYSzzz57gCUThCPjpptu4i//8i/5f//f/5eXv/zlmdfOOussnn76afbv358899BDDzE2NsbJJ5+80kUVhCVx7733Mjs7y2/+5m9yySWXJNmO/+RP/oSPfvSjnHXWWTz00EOZ9zz00EOcddZZgyiuICyJqakpNmzYsGjGeueOHEVR8txDDz3Ehg0bROwIQ8Pc3Bzbt2/n53/+55mZmSEMQ172spexYcMGvv/970t/Lhx1HKzvXg6NOjKCHuCSSy7h6quv5rHHHqPZbHLllVdSKpW6RJAgDAtf//rX+fjHP86HPvShjGXe8fznP59TTjmFT3/60ywsLLBz506uvPJKXve611GpVAZQYkE4fH76p3+av//7v+dzn/tccgO49NJL+Y3f+A0uuuginnjiCa655hra7Tb33HMP119/PT/3cz832IILwmHypje9iRtuuIFHHnmEOI65/fbbufvuu3n5y1/OK17xCoIg4Morr6TZbPLYY49x9dVXy3ZewlCxatUqTj31VDZu3EitViOOY+644w62bt3Kc57zHOnPhaEkiiJarRbtdhuAVqtFq9UijuND6ruPVKOqW2+9VfelZgVEa82VV17Jddddx8LCAueccw6/+7u/yxlnnDHoognCknjlK19JGIZde8p/+MMf5vnPfz5gtvRy+9BXKhVe9apX8Vu/9Vsi6IWh5pWvfGXXPvSf+tSnMvsWywRQGEa+/OUvc8011zA/P89JJ53EO97xDl72spcBJrnSX//1X/Pwww8zMTHBG9/4RtmHXhg6nnrqKa644go2bdpEq9Vi7dq1/Nf/+l+THCnSnwvDxg033MCHP/zhrucvu+wyLrzwwoP23UeqUUdK0AuCIAiCIAiCIAjC0cJIudwLgiAIgiAIgiAIwtGCCHpBEARBEARBEARBGEJE0AuCIAiCIAiCIAjCECKCXhAEQRAEQRAEQRCGEBH0giAIgiAIgiAIgjCEiKAXBEEQBEEQBEEQhCFEBL0gCIIgCIIgCIIgDCEi6AVBEARBEARBEARhCBFBLwiCIAiCIAiCIAhDiAh6QRAEQRAEQRAEQRhCRNALgiAIgiAIgiAIwhAigl4QBEEQBEEQBEEQhhAR9IIgCIIgCIIgCIIwhIigFwRBEARBEARBEIQhRAS9IAiCIAiCIAiCIAwhIugFQRAEQRAEQRAEYQgRQS8IgiAIgiAIgiAIQ4gIekEQBEEQBEEQBEEYQkTQC4IgCIIgCIIgCMIQIoJeEARBEARBEARBEIYQEfSCIAiCIAiCIAiCMISIoBcEQRAEQRAEQRCEIUQEvSAIgiAIgiAIgiAMISLoBUEQBEEQBEEQBGEIEUEvCIIgCIIgCIIgCEOICHpBEARBEARBEARBGEJE0AuCIAiCIAiCIAjCECKCXhAEQRAEQRAEQRCGEBH0giAIgiAIgiAIgjCEiKAXBEEQBEEQBEEQhCFEBL0gCIIgCIIgCIIgDCEi6AVBEARBEARBEARhCBFBLwiCIAiCIAiCIAhDiAh6QRAEQRAEQRAEQRhCRNALgiAIgiAIgiAIwhAigl4QBEEQBEEQBEEQhpDSoAtwKHz7299m48aNbNmyhYWFBW6++WbCMExef+UrX0mlUiEI0vWJT33qU5xxxhmDKK4gCIIgCIIgCIIg9J2hEPRTU1NccsklNJtN/uqv/qrnOR/60Id4wQtesMIlEwRBEARBEARBEITBMBSC/oUvfCEAd91112ALIgiCIAiCIAiCIAgFYSgE/aHwl3/5l0RRxLp163jjG9/IxRdfPOgiCYIgCIIgCIIgCELfOCoE/Uc/+lHOP/98giDgzjvvTMT9JZdc0nVuHMfs3buX8fFxlFIDKK0gCIIgCIIgCIIwSmitqdfrrFmzJpP77Ug5KgS9Hzv/kz/5k/zX//pfuemmm3oK+r179/L2/+s30VGHVnPOPqtYd9KF7Np2N1rHAMwccwpR1KI2uwOAsDTGmnXnsGvb3clnrT7uTJr1fdRrewGojE0zvfok9u54IDlnzfrzmNv3FK2G+Vvjk2uojq9m354tyTnHn3gBe3c+RNRpADA5s54wrDD77BOmdCrg+BMvkPJJ+aR8Uj4pn5RPyiflk/JJ+aR8Uj4p35CUb+dTdwHa/K3qNK3mHFdffTVr165luTgqBH0epRRa656vjY+Po6MOWx65n5mZmRUumSCsHG99+7v48hf/z6CLIQh9Rdq5MAocze1cx3a+pjjqPCe11m4ef1TWb7k5mtu5IADMzs5y8sknMz4+vqyfOxSCPooioiii3W4D0Gq1CMOQUqnEI488gtaaM844gyAI+OEPf8hXv/pV3vnOd/b8LKUUsY6YmZkRQS8c1UyMj0sbF456pJ0Lo8DR1s51rKETQ6RB21ugIAigFKDC4Ra+OtIQxeamSesX2voFw12/WGsioKMhts+VgJKC8AgWLY62di4Ii7Hci3tDIehvuukmPvzhDyePX//61wNw2WWXsbCwwGc+8xl27dpFGIasW7eOd7/73bzxjW9c9PM6rYW+l1kQBs2JG5bPlUcQioq0c+FopaM1bQ0RsPaE45iPNSWgfISiadDoKIZWBC0r6J2FPlAQxFBS6EqIqoSDLegS0R1bv3aP+oUxlAN0NUSFyxc/u5J0tKapoaFN9SIgAEIFZQ1Vpaku0RtB+nNBWBpDIehf+9rX8trXvnbR11/ykpesYGkEYTi46KKLBl0EQeg70s6Fo43YE0xtjBX0xT9zEXNG61LRMKY0lSF04daxhmYEjR6CF6AcQByA9VQfNlGvoxgaHbNY0Y6tCVuDwtxKQVJnPV4aOlHf0ZpabNpm07ZPd/VK2rTPNsZqP44+7PYp/bkgLI2hEPTLTVgaG3QRBKHv/NgLXjToIghC35F2LhxNaCvma1bQt7TRhGf96IuY18YC2lapm3N1iPS81tqIXCd2WxG0res9GBNv7An8UKGHyD1da516HrRyVnpITdiOMEaPqaFZlIm1pmHbZd3enAeJwgiKigICa7Hn8Nun9OeCsDSGa2lwmViz7pxBF0EQ+s6Xrrph0EUQhL4j7Vw4mmhpWLBiaSGGWmzE/df+8QZqMczHqZhqaGMxHRpioB0ZAe+EfTNKLfYNz3Lvbk7sDwORzi5WuHr5dXSvR3YhIx6e69e2VvmG1/5q3s09V7cW/BZmEeBwkP5cEJaGuvXWW4enN1kGarUaF198Mfv375fEG4IgCIIgFAKtNTUNc1bEL/jCCGvxBMYUTAQwHcCUgvFhsWB3Yqi1U+Fe75jjI7vg7p3wo+vhnHUwFsJ4yR5DGCsNhRVbtyJY6KT1ciLe1e/H1sN566EamrqNhTBRRlWHI6xgIdbMxTCvzULTvIYGcDdwE/CzwAuBSdsup20bLQ3BtROElWJ2dpZVq1Zx3XXXMTk5uWyfO5IWekEQBEEQhCIRYz3Q7bFlBdMPgP8BfB/z2MXVd6y782Lb9BaO2AbGO7f6WMOW3XDVdngggr/fBpt32Uxr9vXIS6NedFyZXR0jDVt2pfX78jZ4eGf6WqQhjofi+mmtiTFtM7JttIMR8x8EbgX+APhP0kR5EWm0gSAI/UUEvSAIgiAIwoCJSUWQE013AR8A/sUe76ZbMA2NZnJCF1Lhe/eO7Dl3PZ2KffdFDIHgzeDKq4G7dmZf++GOrPBvx0OxYKFzN3cZv5U775u58wRBWBlGUtCvPu7MQRdBEPrO1V+7ZdBFEIS+I+1cOFpoO+OuvWnARRRPX2Pa+Q1kBVPEEAmn2BO6jgvWZc95/vpuK/4QmHmNld0uPujkye76XbAua8XXQDwEih5vLcY+1sB/yZ3zerz2uQTnCunPBWFpjKSgb9b3DboIgtB3zjn7lEEXQRD6jrRz4Wgh0bGkt9fY11pnmXb+GrJ6EYZI0LuS+sL+tLWw3r58RhlOPS4r5GOGxi0d8C6OPZ6+Fo6x9180A6cd1x1SEA2gnIdJ3uru7p9vH5+ACQs5n+6v4HCQ/lwQlsZICvp6be+giyAIfeeC55096CIIQt+Rdi4cDWitE4u7M9xGwHOBc4Hmj5zN+4Afodv9eRhIBLkv5t1zlQlYXzaZALXOCt5hiqNf7GKMV8yebo3QLlD49bJx9EOQ7d5dMr/tte1rP45pq12u+Yf5N6Q/F4SlMZKCXhAEQRAEoSj41nlN6mWugbo951Tv3KEjv/rgW9xbLXjuGthps8P77vaJ8C24os9fFL9+UQznrYbHnk0Vcb5+BfdAyAt1V9r53NH3Hil2jQTh6GIkBX1lbHrQRRCEvvPo1m2DLkKC1ppIazr2eLh70wrCYhSpnQvCUvHj4fPHp4Dy49tZoFswDZOVPmuddzcNtQ6sq8AaBVv3p1Z6Z80eErf0TAyEX792BGdOwSywr9kjpEAPR56A3H0NLNjHC7nns1/BoddN+nNBWBojKeinV5806CIIQt/59r/eOegioLWmGad7K7tbTUMzFmEvHDlFaOeCcKQkcfM6K+b32PtrbruTGr2tpEPRjWaCr53wtcc5YKICpx0Lj9WG1y19sQvS0DBZgg0VeGwuVy8vxKDAZNzobVFjzKUDMotN/nsOF+nPBWFpjKSg37vjgUEXQRD6zrvf+caB/v1YaxY0zDsxr2E2Njf3eEFDNBSzUaGoDLqdC8Jy4Av5JPk5xjp/PFB56xsSK6hD547FRufEPNnYgskynDEBjw6pW3qvi+HK2wRKAZy+Gh6d7a7bECxY5BMw5l3u90InH8EAAQAASURBVHvnuva7FA8S6c8FYWmUBl0AQRCOPrTW1DXUNdRiaGmzp3KMWUUMNVQVxMo8MYEmUGqwhRYEQRgQMeme8hFpLP2TwEkYTXggt+ahIO+KDrBg06qNleCUGWPy3deANRO93dLDgZR8abgLEwHVEE6fgDt2mXwAkeoOKdAaKOY4uFibq9lj0zsvcyxulQThqGIkLfSCIPSXljZehgsxND1hP29vC/b1uj22h2ZGKgiCsPw4Ee9EvRP0T2EE/TjGGtrL3X4ous9ervYaqLXNTDRQUA5Tt/Qkjn543NK7PBDwHpdDOHHaXNgdNfN83vW+U9z6dQl1e6wBU6SWev/8oVtwEoQhZiQF/Zr15w26CILQdz73hW8M7G93MHOTFlbYa2Nd+h7wZ8B3rZhvWTHf5vAS5wiCY5DtXBCWg9jbss55YzshtA04Geh8+Voa3nuGy92e3gnj0FBvw4w9J1DGLX3L3BC6pS8i5Ds2O385BKXgjEl4tLZ4/Qo6DrriQroVncYI+eMgye/gFqKW2j6lPxeEpTGSgn5u31ODLoIg9J1X/dQLBvJ3Y62JrEiPrGBvAXcC7wNuBt4L/MCe07bnDEMSY6F4DKqdC8Jyocla5p0ogtTl/tiXvaBnUjz3nsKTd7VPXO4jGC8bsauA0yfh0Xnrlp5zt+/o4YujbzlBH1hBPwOP7U8Vcr6OBb2Yiwn1eWC9vd/KvebvxHCoSH8uCEtjJAV9qzF38JMEYcg547QTB/J3naUp1p4bKXBj7rxvks5fIorvTSkUk0G1c0FYLvw+M8l2jxFLsxhBf8ypG5J45aFzt4feCfE0UItgvGKeV8CJU6byT/dwS9cU2i2952JDyy5Vh8rMuM+YgqcaZiu7XiEFBV6wcJcwc/mAdfb1xRacDgfpzwVhaYykoBcEoX8sZj36ydx5ryUr5sVCLwjCKJKxzutU4D8JTNvbONmkePljUV21EzIDg1fWhchkuAdQAQSBcUt/bMjc0v0i+QsXLW9kU8CxYzABPDGbLljks/kXDG1DQnoJ9XnSiIn8glP+viAI/WMkBf345JpBF0EQlozW+pAmNHffu3kFStNNft7m7m+wrx8DfAh4LmkSqMTNtIgTNaHQDKqdC8JykWy7TirmwSTEO9neb2/aTJ1uMV9QD+1ueiXE00C9AxNlI3YDzPGMGXh039C5pSdo7047gjH3WJlFizNXw2N1zx3Dr2NBFyzoFucas8g0jRH1NdJLk9+67lCR/lwQlsZICvrq+OpBF0EQDgutNW2tqcWamjZ7u9diTTPWxIsM/g9tfmKFS2nIu+Q5y5Pbp3YNRsxrul3uizmNEYrMoNq5ICwXrg/U3jEmjZ8HaD3yBH6woO9uX/R+0wjU/MBgSz3fggm7F12AiTM/cxq2NYfLLX2xjdo7MVTtfWXd7k+bhK17u0MKXKb7gi1YdI3n3te/H5i0t3nv/MzxMC6X9OeCsDRGUtDv27Nl0EUQhEOmrY2In7Vbvu2Pzf25GOa0ySDf6TFi/tLPv3oApV08hm4/UAEewQp4UgOFb6UXhMNhUO1cEJYDrXXGUOvEvMZY6F1E8XMvefWiWe6HIpbeF/H+eFVvw2Ro9yq3gveYqlGIQ+SWvqh6bWuo2Km2W7A4YxXsjo13QldIgYaoeCPhYusVDcy2deNA3Xut1xzgUJD+XBCWxkgKemH4iLWmozWtWNOy9xezTB8txFpTj3Wyd/t87Czzdk93734t7i3qB4Fxne8ezPdhLPMKY3nyxbyzTBVxniYIgtAv8nHz7j6kW9YpjL7Nx9DHuceFJSPm/ZuGum+hV+amAjhjdW+39EgX1y3dL5IrXyuGkt2yDkz9xkuwNoBH95vz8iEFBRsIewl0V8JZTNuc5gAW+pUppiCMNCLohUKjtXErdxbqWXeMjWW6GR9aPPmw0daaBQ0177agUyHvxPyCNvu5N+ytCN/FYoP/LCZ+/myMlT6ZwJKK+eLZJQRBEPqHs8j7C5sxZguwnWQF/az3nqESTXkRj3ecxQhc7LZ1gbXSn76IW7qmkG7pXbgL0tJG0DsURtyftga21rwECn4dNTou1hXt1d40qYV+gjTLPXTH0guC0F9GUtAff+IFgy6CcAhorWlYMTtnXczn4/T+XGxeK4qQXQ7yVvlaDAv25ov5efu91D1B39TQ8T7rsk9eNZA6uAlq3kq/D1gFnAVsJrs9kx9Lf7RcS2FlGFQ7F4TlwIl4TTbb/XbMBO04jAb87hVXZWLtfX1cdG0LLGKl18QRRJMVOsouZoQKrRScvsq4pS+0h8MtPV8/d2zHUPYEvdu+7vRx2LIPdNw7pKBA46C7XG6NwX3zzmNkit4eJEtZbJL+XBCWxkgK+r07Hxp0EYRDoGmt0u7mhP18nLVa17VZBB92FrPKu1sDc7sT+B/AD7AiXqdWHX+L3re95bUrXofFtrfRmBj6GYyFfrP3vCTGE46EQbRzQVgufMt8shhKmhBP2dsrftG0cz9OudexmORWd7UmAurNiPmKYnaqxJyCWaWYCxS1UFGbKFHfUKK5dZa21nQiTRRjLNcFdEsHesfRtzSMeYI+UMZCf8qMUcDPNHqEFBSvfvnwDk3qYj+BEfS13OtuselwaiL9uSAsjdKgCzAIok7j4CcJAyXSmpa1PNfjVLS3MZObkoZIgbbhdmUFZa0JXJzaEBFrTdOzsudvLUy9WxgR/2f2ff8C/G/M/u6RFfaxV/21x61eyWok5K1Hjv0Yl/uzgEdZJDGeMvdHcqVRWBKDaueCsBz4C5nJ9p2YhHinkgr649esBoxoOsa+dzjEPF2u9m1gQUFroUWrEhCVAuNxr0CFCqUUQaAIzjyOcNsC6nkQaE0Qa8JIE8aacqwpxRoVFGTMX+xi+BZ6l+U+VOa5k8bg0Xk4biIbUlCwBYu8SHfjew2T6DbACPo99rxe4v9Qkf5cEJaGzJuFQtJxQtYem9osZn8XI2i/hxHAbXeuzlqnh4WOzWC/mFW+TmqZv4dUzDuup4c1fICuevkB393ACPppTNbmAHgCL4Y+Z6UXBEE42nEeTS4Zni/onyCNn3dbtJcg2Yu+V19bWDxX9I4dyxe0ZqERUT9WmcdKUcO+FhjBXzt1jLkdc8zrmLlYMxdr9seauUgz34lpRgVKjterHBqzbV0i6DEWiMDmCzh9FTw6m/qz50IKihJH36udOQv9KvvYudwv5jlSmOskCEcpIynoJ2fWD7oIy05s9ylvxppGbLLBR3o4E8Zpu4Lf1iYm3In6HwIfAG4Fft8+dud0dDZ+fBjoWBd7Fx/vx8rXdCrkZ4ErgD8G/kvuMy5i8UndbXfcvRLVyNC1uOCVaR+wGtPpPAeTGA96b183TLgdGJqxyX/Qis3jYfztDSODaOeCsBw4Y2xinU91b8blPgAe/O49zNDt1uwfC4sdCLTWNLFJXIF6O2JhokLdivm61iwoZcS9UiycOMVCExb2NezYqKlHmoWOphaZW6Nolc/H0bciKAd2Wz7SxH8KOGMSHq1BHPfOdF8UQb/IsQaM2fvO5T55zxIXm6Q/F4SlMZIu92FYGXQRlg1tXdNbGCu1E0MKKGuoKKgyXK7oTthFWKFu79+YO++bwE/YczvKJWLTqCGoa2wT/rlwgrrudrFvA3cDnwSOBT4FbACOB/4e+AvgeXS7uGs7V5ibW+j+wytAr4R4HcwEzq3mu8R4ryEr5iOVJsYbhuvYtuESzdxvL7S/vTE04RDUY5gZVDsXhCPF35HNWebdAudTZC309fka4yy+dV2sSUVj0bCDU4Sdq8SaDtBsQnOqykOR5t/RvDRQnF2GIHDu9yHq5EnUzibBMROojqYUasKSZszGmQVlKGlNeeD9bE7IO2HfjqDklS0R9ArWT5rVmm1zcOqq7mz+kS7ELD2/QO/a3DwmLw70EPQ9jodyhaQ/F4SlUYCuYuWZffaJQRdhWdBWTDhB2LbCF6x7njKrpxEwPkTCIvKs7i7OOgJegYkbd1yEHf9UNgY77PrE4tG2IrDhXb+6ToV8Dfg8cBPwq8DPAmX73guA64DzObCl5nWveXGfa9HNYhb6/fb1VZi2eRaw0Xvdj5+PvEWJItOMjYdFQ6eeIm7SUlZQsQtNk4GmNCS/vWFkEO1cEJaDxDJPKuY1sMu+fgKpG+WPvvrFjJOKJt/yWQw77gGwhY2AjhXzbQ3tBc3O8Qqf0jAXKL6j4P/WirMxcfSKGE5ZRbBzAc5ZTRDHhLGiEgUQaVQUU440LaUoD7CL1XmrvHdBdCNCV81VdIszSRx9FMCZU/DYApyyqnv7ujhG62Dgi9vOWODuu+M8JiEeGEGfT9i4lMUm6c8FYWkMhaD/9re/zcaNG9myZQsLCwvcfPPNhGEq27Zs2cLHP/5xHn74YSYnJ7n44ot55zvfOfBOsN+0rAh0W7e1dOq+FypjoY8U6MCMH+MMh9UzI+atUHKi3vFHwHPx3LU9K/0wCHo/TKBtr18TuAv4B+AB4BxSq3wZ82NtY+LQZ0kng70E9KDo8haw92cxdahgxvWzga2Y+lTottIXPTFex3lY6DRho9saOcBY5yP7Uws1TAyZl4wgCP3Hj5t3RtkY425/AqbP9/vBKZZna7AVx+YKcAufSb6UVsxD0xVqgRm368CHFfwYivWxYr1WnLyuxEmb9rG1s57/QPESBeeVNaHWRBG0Y02MIi5CUlwvzCoC2sqMcXosQFtjQzlQlIAwcbufgXv3wCtOyIl5d5+BT2oWm2PUMG0SjKDfnzufHkdBEPpDkefMCVNTU1xyySW85z3v6XptYWGB973vfZx//vls3LiRj3zkI3zzm9/kn/7pnxb9PKWGotoHxMWZN3SaCX4hhjlt9ymPSayHvfYoLyqxdcvrkBXzMSbD+0WYfXlL3vPOPd/dLzqx1maLOYwIdJOcuzALFfdh6vPLmBjKMWCcVAxP289xezX4q+D+QNpstvpck256JcTTmPj5Y+05Aelk9XG6E+MNw3Vser+thjZ5D+btb8/fTtG93i54fYaZQbRzQVgOXDI8Z533E+KdZM9xErXTbCUu970soEXtYoz12ox5Uaxtnc0xarc4taIIYzMGVpTiEqV4bqDohIqHFHx19STPBoov1mp8R8EnYs2DLSPmI62JO5pOEervFaCtNTUF8wpmg5jZiZA5hbkB84GiESriQMEZ07C9Ba1O70z3BcjFsphAnycV9BOkhpf8wv7h5MWR/lwQlsZQKNsXvvCFvPrVr2bDhg1dr/3bv/0bcRzzrne9i2q1yhlnnMGb3/xmNm7cuOjnHX/iBX0s7crQwVgFWzp1317AZH//C+D7pFZ7P3Fc0Ymx5dWpqHci74fAj2PctR8mOwlye7BHvT+2ULixOrHM2Oduyp33rxghPw6Mq/THOmmPzkoP3RM8gI9d/o/LXPKDs9hKvstwD2mSp3OALfa5fGK8Il/HWGsiTZK4sanN4or/23M5EfzkjkJ/GEQ7F4QjRduF3STMiFQMbcPEzwf2poBv/s3VSSZxGD4LaGxd7WN/oX6hw5oqVBW8CPh9BW8M4ZUlxZtL8Kuh4r0lxZOnHMNJ+6Ecaxpobos1Oo7RkT1aD4CB4f3xDmZBtwbUtKYeaGplk/SvZpP/zYeK+UCxECraq6roGeDxWat+cxb6Aqxuu7Hc5ejzY+inMO3TCfsjbZ/SnwvC0hgKQX8gtmzZwllnnZVxwT/33HPZvn07tVqt53t2bRv+LJp+fHnbCgc/C/z/A/wnnmu3TpONFZm2V68klh5jsdgNPB8jBB8iJwA9K31c8DomCxG+RRp4Se68NwATCiYCkvhAJ4bHMSv9/ip4fuB872+/uY+16E2vhHjOQr/anuPiCM/AJMZz9c97WxS1rTrvCtc+29r81v4Qk+PhfdjfntcujeGlmPUZdgbRzgXhSHF9oxPxTrdpjMu9nxBPARf/xi8xweJZ7gvbu9jCJX1mrJNxOm602F2GY4B3hornhDARKMZDxVgQUA0VZaU46dgxjnumThsYizUv0xqduDfoIhixwS7QNLTdbtYeF4ipl5W9b251DQuBYk4Za/3C2cfS2brguapp7zjYrfnc3+7V5moYy7wizXbvPEj8Nnk4FnrpzwVhaQy9oK/VakxNTWWem542tsCFhd7ZMrUeto2xsmjnlu4LBrqzwF9PNi6vCGPegcjXy63ia4zV80eBKnAuRtC7eiWCUKdxzEXGt8b4ot4ll/lp4KPY+ioj6p2VxrlfzpAT9P7NXuhqdeV3c1jMQj+LSYjnFiQCTBz9w945eZf7ol5H//fkfl/X5865IXdeoSfcQ84g2rkgHClOxPui3vUXbss6MOHTCihXKxkL/WKhVkVER25s19nwqk6HrZWQM5SJJy8FJv/IRKiYKMFEGDCuFOtPGOc19+9hshnx81pzJhgBHRlhr+MBW+gBtPMw1CaTP3br2VhTqwTUUNRjTUNrGoGirsxtPoDaGVPUtu2njjZW8Lzr/YC3r+s1vwBjoZ8mnZuM2ecS0d/D0HAwpD8XhKUx9IJ+cnKS+fn5zHNzc3MATExM9HoL1YljeOvb38Wll17KpZdeynXXXceHL/tiJnbn+m/dkdkPc/eefVz2yasyn3P1127h7ns3J48f3bqNz33hG5lzPveFb/Do1m3J47vv3czVX7slc85ln7yK3Xv2JY9vu+Nurv/WHcnjZrOVKZ8GbvjWHXz3O/ckg+Oze/ex+ops+U665hY2b9qcvOexrdv53Beu7Xv5YGnf35at2/n8F65NrPKRhuu/fC1PP76dH2Dc7R/ftJk919xCDdiBGUCvvuIqntmzLxH2t91xT1/Kt1zX9/bv3MPNN92RTOCazRZf+8SXeLTZ4gLgvUDzlju477v3EGJ2uNm3dx9fueKqRNBPAvdecwtbN21OBtontm7ny393bWbgXOnrm0xKNdy88Ra22PLtB8Ye384tX742EfVnAfu/fC1PPb49WZR68L7NXPv1W5IJ7nKXz2fJ1/er5vtzE+p/uuIqXrY3Ld/4d+/hjFvuSK5Ls9Hirz/2pcK0v4F/f1I+KZ+UDw383d9dy+OPbU/6zS2bNnPLNbfQwAj6EPjqFVex3/Yv48D+797DD2+5I/mMVrPFp//a9C/Omlqo76/R4sOX/wO1RjvxVvqP79zJ3fc9AK2IrdUSJ87O8o2vXEOgFKGC8RD+7ZZ/5/FHtxIECjVZZV88z/qN17NOa9AxOtZs/Or1PPnENoiMEB7Y9dXw6BPb+dzV/0wb5xmp2XjDzTwxv49HQ8XnI80tDz/GDTf9O3WgrjT1QPHZr13LttWa+VlNrdbmlnvv59r/+AHaCvlmo8VHLhvg+PGpq9izZ18yHt/z3Xv4gW1/NWCs2eLrn/gS7WaLacyC0512/uLGwD179/HXR9nvV8on5Tuc8l133XWJ5nzr299FP1C33nrrwBc2D5W77rqL3/u938tkub/hhhv4zGc+wz/90z8lz331q1/la1/7Gl/+8pe7PqNWq/Erb/9tntx6LzMzM12vDwMdrdkfm8R3NQ1zselEa8Av2nP+AiOAJ4GpwN4UzAQMPhPsIjRjbZL62brNa1OvZ4C3A3+DSaYWAb8LvAl4NWaSM61g0qvjeFDMOmqtk2s2Z6/fvHXNuxyT+O7dGGv9pDL1GQtM0sN579w/xVzfN5Kt/7SCaVv/6791x4puAePqNutdP1feP8eES7zJlreNyer/ZuAvMV4XU67OganDtIJqAa9jw7bT2ThNhrcAfA64BpPY8KWYazgdmDrN2DrJ9nXLz0q3c0FYDpo9+pEacDfwv4H/Q5oQtQPcdssd7H31i7kJ+B/2+SmV9pkzdvwr2k42Oopp1TrM1jvUGhG1hQ4LrYhGo03n6of40M+fw/89WeKYconxiZDxsZDJMCBsRdTrEbVGh4V2TOuWLezcM8/sy07inFPXMj4WMjEeMlktMTUeMjNRohoOxkalIw31NvP1iLl6h1o9YqHRYaETsf/LD/ChN53B3qlxglKJ/1815JzxkHInptzqUGrFlNsRlS/cQyWA8k+fxNhZx1MZCxkbLxGOhTBeQo0PZlOqWGszX7Hzllps2mkDeCcm1Ox8zLzs/wZ+BXgZdu5p5yUzhzGeS38uHO3Mzs6yatUqrrvuOiYnJw/+hkNkKCz0URTRarVot9sAtFotWq0WcRzzile8giAIuPLKK2k2mzz22GNcffXVXHLJJQf4vOHOouncypPYXHv/Efv6GOke5f5NUWy3PD8u2c9u/5/AicDxpO6H55GLoycbflDU+Gt3LRIXS89d8gngFFL3emeddz9S5R2nyLq2OWuxX+vp6d4eKv1kMde8faQu965uCngOabt1167oifH8uvn1dcuDpzJ8CauGmUG0c0E4UvxkeG4cA+Nuf6K977yZFDA+Nck4pt9PPsPrh/xj0WjHOsl147boixtttIKZcsA0ENjtdUtKEYagApXenn6GyqPznLgLzrn5Kdi2Bx2bQUJrbRIMDrjyOiZJdOjGhDjW7BmDuUpICWgp+KwyIWgNBXUUDQXNbc/QeAYau6F+9VPMb93NgoaFWBPF5tMGNafJzyP98I79pEnxwLjf13Pvy98/GNKfC8LSGApBf9NNN3HRRRfxvve9D4DXv/71XHTRRdxzzz1MTEzwkY98hHvuuYdLLrmE3//93+d1r3sdv/iLv7jo59Vmd6xU0fuCizNPhCyms9yEmQg06O5M/WMR8TOHR7m6fR/4CTyRi0mM9wCeQNYMTfy122LHz+yuMfuyn2rPc4LXTebcwrb7wfp70edvru4ve/EF/axKF07o9hr450mT4vmZm8/ECHp3vd21LHJivMUmN26i7U9o8ucLy89Kt3NBWA7SJK5eTg7S+Hm3+On6/vNe9HwmMJ5N0GN8L2gHo+N0m9bIbVenNXGjQ7MacLb1KgiVEfOBMl6EgV3NVoGCh59B14FxCGZBP/QsWAGN1mgX5zW4WmaupduaVndijmuC0oHZlg8zdr9fwW0o2krRRLHwyLO0FDSr0FTQeHAPC7E2Ww9jPQAGWL1ei9jOLObbFydYJLfPYRRf+nNBWBqD8eE5TF772tfy2te+dtHXzzzzTD7+8Y+vYIkGhxO+iUXaE7L3Ay8Evo4Z9KvkkpOo4oqKiFTMJ4nx7PN3Ah/EiEBf0G/FDCoVspbdToHrmWxVl7PMPIsRgifjiflcMjz/NgNs9z4T95kDrPuBVvL3YgS9XwcXR3+1d26kIVLewowy30eRcNctv3gxZ19fIHtNKHB7FARh5YntNmv+gq47bsNs4eYnEHV95iRpPwOL97dFwsxTTAK7SBurdYyGeofZcoWzlDfe2f6+rBSRsmI+UATnHIt+rIaeg3gK9HOO6RKMg17ET65h7HnfdSKqQBgEvEgbV/TTAvgBiq8EcDvwFuDUc44lfLhGvADtcSifdxxoULGmFENZQ2VAF3excd0tYDsLvcII+oXce/2jIAj9Yygs9MtNWBo7+EkFJe9e7m/5tQljyYburUOKOtg7/Mz2vph/2B7PIxXzASaWfgKzj3mvLc8KsHVrT9wKfj7D/eOYkIJxsgsXgcq62rvjJLlssvmj1plEHStFL6HbwlzXGbIu9y7T/ZP2nF5W+qJdRrffca/bfntOLwu9ee9KlXK0GEQ7F4QjwQm+/AIvwFOkFnon5gHm9u5jAtO/OPHoPss/Fo041nZM18YggRWEbaiNlzlVKTPmKUUYpMdMqNmJa2j/zEk0Arj9J9ejTjjWDjQ6EdAD/QI0yS49iZgHdDsiLpmx7+0BnB2YxYqfUPAXAfwIik9pxdXrj+WBV27goQl4+OKTaJy4Jhk3O9p8f4NE97jvhLufk36KdFvF/O1QF1ykPxeEpTGSgn7NunMGXYQl48eJ+/efwIii59jzXGfbqyMuGlprs5832TrFwA+AH8MIwBDjUuImOecAD5IOFr4LY2elK3GIJFvnkpZXYwT9yfYcZ61wojdUWcs2mAnCrPe5eREN8KWrbuhnVbo4mNBdRbegX4fxJNlKb5f7Ii7M5C1DDmexyG+WWfQJ97Cz0u1cEI6UpP/PjQV1jDfTSaSL125R91++ckOytWnL+xw4PJfmlURrTVun29XFsbXWa3imAYxVKCkj4t1CthPzyrriKzf+bTiGzokTdKarPVy6dXIbFLG2ngL+om8nJi4FHIOpUBjAuIJqYBbvLy7BHyrYruFTpxzD02dO8+m1MzwcaTqxJrJzowiM6X8AZES5/XpjjKeIyxvjxnUn6N374PDbpvTngrA0RlLQ79p298FPKigucVw+fv5eTCK8EiRbh+Q71KJa6fM5AZyFXgPfw4QROEHv3NADTGb0h+kt5l0cW5FwCXP8ZEiunn5CPD9uvpfLPaRJ8aCHiLaf/Xu/85aVqFZCrzI4QT9OGkqQdyV1ifHc95EX9kXCr5t77Ohloc/fhOVnpdu5IBwpfty8PxY8hVngPIa0jwTTT17y396SCPrFrKBF62NiIIp1YoDoeGNgrQaVatnUMzAL10ESSw/4Yt7+F1XKqLapqbYdsT/WDAxrnc+E0mmNbsd0gpC1duBWCsoBTCgYCxVVYG0AaxW0ygHlABpxm9u0W6Sw9Yv0wOrnx877xxpp/Lybl4xz4LZ5KAsu0p8LwtIYSUE/rLhEK3lR7+Lnn2vPm6R3pwoU0u3Xj5v33e33YNyxf4zUDb1E7wzpecuuSzxXJNwKty9Y3fNbMQnx8lngXfx4rxj6osVS+hn7/ds+0oR4fqInJ+jPAjaTXeAocmI8V5q8y+s85rrkw12guBY0QRBWnqSf845gBP3JZN3t/YVc596cD+vJ3y8KZizWRM4yD0Sxfb7ZZtVYYOuqCDFiPlSKQCmz/Z4LObNb8empsnHlc5Ziu8KqbRD9IEVvJhmeW7CJNK0gZB3Z6zmurKhXimoAL1eKichkw1/V7vAS0oUBu3wxsLnbYnOLebKC3lno8x5qUMy2KQhHGyLohwgnVP2keK7Dvx/4EXteheFx+9Va0wbanpD3k+GdhXHVTtztPQv92cBuzD71+S3P/G2AioKbuGVEvT0+TirofTHv3C0TK4W9P026aFOUWMrFBv45zDWEbgt9gMl0v9l7T97lvkjXsVcd3W9wFpMHoZE73z8KgiD08tLSZAU9WKs1aZ8J2ThloNAeeB1vuzp/vvKkholOi6kJM66VFARh6nYf2IEvgETUK4BSOfHp1va/ZIF1gJW36wp2y1ySXCtEmoVSwGq7VYG7jmWlGFcwFpq6nxHAryqYmmvz9v0xpwdWwOvUOj+o+vl5cSAr6KftfddeJ8iGAvZa5BcEoT+MpKBffdyZgy7CksgLHXf/aYy7r8sM4KyE4K/wFrND9etiXPLSernt6pLYOpW63oeYic0GcvvR5z6rSMTezZ/I7bb3T8Tbg15lY80ha61xA2nN+2zIDqBXf+2WflanCzfpyLe3Z0gFPZgJnC/oz8ZMZJscWmI8HWt0FNvbysZNJiLeWYjs8+73to7u/BUi6vvLSrdzQTgSnNjrctHGhF6dSHZhV5k38e8bbwatmaR30lt7WmHQdkceY4QwcfPmqNmq4ZhaG8oQYizyZgFbUYbE1R6wlnplxHCpTNiO7een3lvaPjGwxWxPxPtjPBE0yyHH4sZ1lYx/FZs3wNXznECxijLH2olL8hlo64mwkjXKkiyaeI9rGAGvvPOmOPJtFaU/F4SlMZKCvlnfN+giLAnnau9bsZ27/ZmY2DvIxjFBtkMt0HgPkAkhcMlfIkzSnzvJ7j/v3O19q/U5pHH0fvb4JBa7QDMcP6uxs864DPcnYDwr3OKFE/WL7UPvYinze75COuiec/YpfaxNN4stHs2STYjn6uYWK47H1OcxDrxjgY40uhHBQhsWOuZWb0Ojg+7EK3at/UmNu7nwh7X0mGxrf3ImLDcr3c6FYjLopGiHiluszIt6MAubp2D7fK0JopigGaGaHU4++UTCRofpZsRCzlxbxEXDxKOQ1NXeLdA+EGum2i2CapjmxlHGch0Exv3e6nggFY3BFEw2O4nVGOx1jwebM0fb+YuLe3ehYp0IGtWQ47AJ/rDzl8zNLGigoD1Rpt326haniwSDqt5i4/o8RsBDdtu6ee+9+fcdShWK0p/HWtPRmnqsWYjNsW0XpAShiAzFPvTLTb22d9BFOGxcQrVe8fObgOeRdXuq++/NHYtE267g5xcr7sXEXZ+OJ+aVFbk6G0d/G6k4dnuXJxMllV1BHiQdclsVQeJu74YwN+D7ot4JWt9d3cWr+VvX+fvQa+CC5529ArVK8a3X/gC+HyPafUHvW+gVxkq/GZMHostKr0C3I2hG0I5T/02wX5YyjagSoiuBsej0uY6+lV5jFi0mMb+93d65vY7C8rLS7VwoDpHWtHQ2eWaoNWUFpT72A0dCr0VdN7Y/jc1wH2uCTkzYiVBxTCmCM888nWYz4ngV04kUqhQSlwO0UoX0wEsW6WNvgTaCutZsB8rNDsFYmFjn3RhfgsTdXgEqUDYpHpSrMN5uU9dQ8bPJuzFH63QVYAVx8zON2abPab56G+IgZFzlxr/cQoUrclQu05lP64TOivtBkZSHtJ3VMMkbkzqQzd+01FDAIvTnHa1paGjq9Hfq5mMVBWNoygXtX4TRZSQF/TDiVruT7PaeaLof+DXMABhjRMVi+9AXKR7Z7UnrW+hdhvofAC+g290+eYzpYM8FPksuhp5UCMYUww0l72bpi1YXP++LXF/U+zefaYxY9idyyVH3eEMfcZaxXtbr/ZhcCPm6BHZxJrCvb8GzWmHbhII4itGNCNWOjaiPdLpqENgAzNg+p0pQCekXvoj36zmLCXUZx8TQLybmtdZ9XXAQhFFAWyHf0CQ5WFxfH2In3UpTtRbQIuH6OLco6ITgDvv6Oq0J2jFhu0PYiVGRhjgm6JjubiYIaEcBqmKEoLb9nbYLukWhjclwb7pmnSTFe1TDCXGMikCNV5LxPQhsUrwgzW7vlK6rVliCsYU2dYzXl06VfCKAB0ESOpHMy0xda00IQnN9nGdhslCRs84DREGJKDLLU2bOkCbZG4T3ifYXTbwbGGPCSfa+G9NdkrwWxmO0l7Gh6LS1ZiGGuoaW7V8cJW36lo6CCaWpBgX6wQkjTxG0zopTGZs++EkFw48N9y3ZzwA7MZZNv1M90r1AVwK3SOFb6J214k7gx8kK+JJKxb17/hRMvZ4ka/nwhX0RcNbmxDrvCUNnofct1241OBn46Rb2B9y6Dnh067Z+Vyuh6+9737sfQ+9PZkLvsZ/p3k2MXMhE1IyI2zG0YmOhb0RQj6DeMbeGZ71vReg+X/Rek5s5zALLJFnvmPx7hOVnJdu5UAxaGhY0zGuYj6GmoRbDnL0/r82xMSAhdCDylnl3/0mMQCp1YsJ2RNiOCdoRtCJUI2Ln1qdQzYhjGx1aTbPAqVoRumNjygdVoR7kd+RJdyyBTRqe1+yAhrASepnt0zHeF7zp+KegGjDdblFHZ8UiqfgcBJEN9/DFPEC7DaVSkI55iYj3cuN447ueBtW0ElJnrfMxgwspyf9VjTEaTZO1GzhB7zwHexkbDsYg+/PIWuYX7C3Tr9i+ZUEbsd/QxpIvCEVhJAX99OqTDn5SwUjEPN3u9idhxJ2zS45x4MRcRZngJEKe7CLFNmAXcAGpu70v5vOW+vOAB0ktH/k47CLgC3k/3j/CJEI6layF3k1qSnkx742eM3TH0DsxHQPf/tc7V6BmKX6iOH8gX6DHtnW525mY694g276j2GRK1pGGjhX1zQjufxr+4S54YIcR8r4rftQ/P5TEWkL2tp/UQu/HEPrhB3Dokxrh0Fnpdi4Mlo7W1L2JdU2bCbcT8fMxiYWtYceYIuF7afmi/kngJG1c7YMoJujEqLZGNSN0M+I/v3sXtCIqrZhmO4J2ZPrETpSJtS4CSfy8jZuPImOt11rzuIZTm22CarrvfKDcOK9QgXWzt+ntjaUeM/hVS4y3OzTsQJe3yg9iapN432mzkOHGYA10dERJBd4Ynmbyd8Ler2NQgaDeThYG3Hwt1gOqW+7me/27MDNIx3Xn8puff+bvH4hB9ufO66dpjwveAuG8fdzQ6a0pA7pQIEZS0O/d8cCgi3BYaOuanhe+TtD/CN2x1XW6RURRBnswdeqQbsPnu9t/DyPmx8lmtS8pT/B6MXbPIc10n3HXJk1OM2jcYoMv6jWpm+UGPKGr0kSAfoZ7d3Q330Lv/oY7auDd73xjX+rSi65FBa88uzFi16+LS4Tk6rgWU5/HyH5Pkc1kH0XaiPZODA/vhC9vg00RfPEpeHCHveBxIuj7dc0Xq6PbwmecI8/yKxweK9nOhcHT1sYNtqmhYcW7s9Y7q3zTm5Q3dTHGAPDEH+lin3O/fxI4LdYEkRP1GtUxfZ56bDevr5wGT+xhdSdGt2PoaHQnRtnHxaihwc1TOtbV3vXpu4E5DSc0I5OxHtIYeqUo+QI3yFrnFcBYmWobGrEnnJ11XA9mwdQI3TSGPtKeoG9FVMbMeXlX+6Re3uOgDKWGyYrnFmjMZ1nvgwHE0fux8/6xQbegB+ONN08638zn1DkYg+rP3Ty7o42wb2pTxzomBPQvMDsvNbXN/US6iCMIRWAkBf2w4Vub8/Hzm4DzSYUu9Mg0qrs740Hji+5e7vYuft6J90TUkxWCASbT/UN0u2v77veDJu9m6W6PYzws/Pr4CxbJJIDuRDrTmFXyA4nplSK/gu8mN879fDVZLwN/wSKfGM99TxEQx8ay03GNONLwn24ZxPLDHd4XrLNpo/tQT99K755zMfQuf0X+Pf5REISlEWtN2064O07Yk066P0Q66XZboEb96w4Om6SLIu3O3PNPACfFGhVrAg0qjlGxRj22h+ArT1G+q0b5hic59qndtDt2AbMTozraWOmjuDAeeH5eg2QP+hgeijSnoim1tBH01kIfqnTB3g0QiZi3g59SQMXYgNst43eRSdQ2IHGVJMTzrmsiZomYrLp6pFvWJeN54IthRakaUm63k/pgM/j7Y+tKcqC5xX7MInw+FHCCHiGf7jj4prko/pw08u7/J/AB4FbgUuCHyWJVOs8UhCIggn4I8GPRfFftecyq/nNJBwk4cJb7osTSu8mYX6cOZiDYRLr/fAkv+61KxbwveM8Bttv3+lb6WKdW+kHjBoi8m6Vzt/dFez6G3hf1/m2adLu0XqvhK40rgz/wz9rnXNYKvy7O1dJ3u3+ErDeDjmM6GuNS6mYDz1+X/cMX2sf+ps59+ALyCYIgrfMspo4TpNekCAstgnA0kYwVbjHYjiN3AX+EmXT/PmYSno/fLgKub+t1fAo4OTbb1YVaozSEkYYHdxHEmCxjc7Bh8z7qUZx4JGkr7HU7LoRiiuz+8y6rfSfWRNbCvBk4R4FqQzhd9haw033o/dVrM0FV6fZ1AXRCaCVx5jpJjDeopHjJeOWNvdqGhYStiIkwXZwIAuWN6cpuYZdu0VephlRbJlDQLRKATsX9AOrnj+vuGGMW0nxB7/AXtYdt/PMX69087cbcOd+ke/wXhCIwkoJ+zfrzBl2Ew8K5pefj6B8A1gFrSGOuISvo8x1PUTpUf7LlJmcxZiJ2gr25fefdVjb+Yz+G/ljgOMxk4UD7mA+KXhnuneZ8nFTQ+xnuS6Sr+tC9D70T9P62dflr/bnPf6NfVerCH7B9K/0+zKDfy9vAt9IrTGK8R/zPiXVi2XGJ7Yk1nL42zbL3xnVw2lpPzNsT+zjz6bI6YK7DKkz+Ckgn6b5loii/vaONz31h5dq5MFjauncfvzF33j+T/uaKJCT8XCq+mN+DEcInxjFKg9LWSg+o56xFA9dtuweA9rppOsZ1CdrW3b5j73cGLzF8A4Szdro+/BENZwBqFoKwbMd042pfUi5HjLnj79UO6djXrpSIG1F3LpMB7RHuhhtt6+nG+z1AtRlRCtPYeTemu/Ed95wNKaiMlSm5xu1b53F/Y2Xrl8wpvDEdUsE+Sbegn+YAFvpD+JuD6s8XW4D/ydx5r6PbQ08QisBICvq5fU8NugiHTK/4eTcp2IRJCJeIJHucJLWMZkRF7jgoYruC38Zzi4Rku7ofJ61PSWUt9M4tzwl7N5CcTep273+e+/xBokndPvMr+Y+TZrjPuN2rNMlhPo7ePXbb1iV/JzfI/PRPvaAPtelNfsB35dhPqr398rv6+p4WZ2E8Lep44RJ2ktaJtdmH11oqkos6VvVmUzor7JeZ/EDv/4l9pFnu4cBJKYXl5VUr2M6FweKHUTlrvcbkIPF5Hd0WxSLgC3nfoegpYJ2GqtZGzMcYd3utUaesgfUhF555Cp0LV7HukXnasXYZQ62FXhuX+2b/d/k4GH5enMhalWOt2ao1VWCDgqDVplQtZULqSokZPl3EVvaO24deAVG5bJKjer2pE76DwC02x97CvQae0ZrxKE7c6jOL2n5+AG/RYrpSMm2i2c66qdvEeIOgl4XeCfYJe/QXJ8ZJ96L333+okXCD6s+zi0Pp/RPt688H/gfwvB7nCkIRGElB32rMHfykgtDL2uyGMpcQz8+K7jrUxGXZfo7reIowsYlI3e39WKSI3tvV+RZ693zgCfuAbGK8JKGavwAywF43mXx6E7gY8x1sB07Di6vzbqGb3+RujmkO4Nqm4YzT8tPc/tEldu3z+0kz3EM6SfNDCtw1PA4Th/4YbsJrLBTJRMkJ9k5sTOLrS7C7lRXzuPv9qediCxc1W3Znoe+VlFLG/f5wxmknHvwkYehxls98+FlM6pH2XNJJN3jdQEF+fP444I/RTwIn2wHaxNAbC30QaZSOoa7Y8IYfg5eeTKnT4cIt+yE2Ip7IiHrd0eltUNubucRimP7aT4j3QATn2GKF7RbBZJD0/SUv47u7GcGrMsYKlKIzUYZ2apVPEuPBQPZrN+O5l8TOPr9Pw1gUQbJtnbJb19mEeIFLhpeGFEwoaFSg3jAVzO5Dv/LiMT9/dOP7PCYCxA/1dMcpjsxCP6j+vNfuNZrUaPJ6TL6q5PzcURAGzUgK+mHCd19LLPWY+KXNZAU9pBZ6SMVerxXWQdLxJmO+mN+CmZj9CD3EvMpa630xr4BzSS30vvUm1unfGxTJnupkrUtut9Xj8YStyq7kg5ccKHfzLfS9BqKVvM5OU0O2ve3DCN38oO9vz+euJxgr/cN4hnhrmYgisysCGthrp++nHQO769k/nmSMXP5M972+X1fXZ0n35C1hfnu9VvsH/dsThGHFX9DOJ4d90J7zM5hJt/9bK9Jvzl+Y9wXgNuAkbcR8SRuXe6W16S9nm6g2cOwkQRgw/6J1/ORd22GhhY48Ed82O4LoVjSwODPfKy7COhHYi/EwmrOUNv3+/hbBmBnvysobA9xghz2EvnXevKArZYIGVvCaP+qL+5UkE05HKrpjYCdQjiNUybrbu7FdeR6VzjqvjLgPgHq5TKMZ2883/zl3+5W20i8mcl2IGXTPSyZJxz9Ix8A+pbZZNhYbo535r5E7jx7nCsIgGUlBPz65ZtBFOGR88etPZh7GCKUTyIpbMBZ66O5U/eOgcCv4bZ0d+DVwDaYeD+HtP08q6v3s7/lY+jMxq8I76P19DcpdDbqTH+UT4vkeFr67fc8t61RW0De8z/UFZAzcfe/mvtfN4eqUv82SDvyuPv6Exk/859zut9j3RrGZwMRWzJu9ljU804R1JVhbgd211GyRpIzWh+7fdxgkIl6njyEd6GfscbFtIwf92ztaWcl2LgwOt7gd+/065rf2FCZ0yeUU6dUfDpq8S7YfevUUcEpk4+addd653O9uwHEltmx9HAJFsH6GTRvWwp170LGzzptbbBPk0TZ70680qau9E/OaONbUMOPd2Zikf0G7RVgJ7PhuYsr9wS2xXON5prlEMtUyFW8rkYzBIl7ZKPPMdXTDjn2wW0MYRahyQKDSGPpkwd6zzruxHaVolMs0W3FP6/xKex8sNnbVSL3R8ov1/i5LSzEmDao/98vqL9Y7QZ/PSyXjulA0RlLQV8dXD7oIh4S/L6ZvodfA/Rj3Ql8Y4T0uqpVQ021liYB7gNswngd/hEn457azcXvQO1e1vJU+BCoYcezvR69zf2NQOKtFZiUfEz9/OulA6MeTJ/GDll7i3mWOX8y97aHNTyxnNQ5IXuy6wXAfcAy9PQz8fAhusuNnutexmQzGkCbI08CeFqyZgOPHYWfHmfLtH9bpjL8Pk5/8oO8WLcAIeUhjCN15maOM/svOSrZzYXDkF2jd/c2YPuZUsltGFm3C7cY+JxZ8i+WTwEkufl6nW9eFGtjRQq2b5smntoNSjAWKG37sGPTO/fDEfiPcbVI8lySPln28wvihdP5uMw9EcIKGGTRKKcJ6RFgNCEi3rcu4pAEqCJK4eXxxXwmotL1t67xM9ysdWpcs0LghB50MRc8ApTaoUuglg3Vu99bl3lQtEfcA0WSZqGPbRrKzihX3K3xJ84tj7s+7EDNHkv6A3hZ6vPcebFFikP15Ly9DN773NJAtv91AEJbMSAr6fXu2DLoIh4SbAOTj52PgPrLu9n4GcUjjq4u2mrhYPPm3cufdQGqlL1sLPWSt9L6FV2ESBPpx9L6YN4Puytfe7VHrJjZ+nR8nmxBPkS5guBV8wJsMmM90P1q3Qj5H92JNDPziz7+6fxXzcN9rr9X4WbIu976V3r+GvoX+aeCvtGaTdbePrcthx7lUPtOAY8bgWOuLsr9ljvmkeMt8uf16+Qtks5hr4cJeqqRW+17vFZaXX1qhdi4MFre4nfTtmN/Tg5gcKpMsYqGnGBb6ZEHXG8djTJnnYs2Jbg/6GJQ2lmwFqJ01OHacV//USyFUVIKA2liJ+gtOgB/sgFbHJMLrxMTtVNjTNnvTrxSxHesyIYLajA8Pa81Z2DFOa8IFCCcryY4uoZ8Qz1u1TgVv+rg0AZXY9PmZRLDaHVeul02uY2xEt/vLs9icLxpUOUzGbzfWB34cPVnPuygsE9uscmZhO63XSo8fbqxz991xjjQhHmTnnu53mHyGPrzxb1D9+YG8DMEYmxwyngtFZCQF/bCQF6X+RGYTJlYwGSDse1ynWlQr4WLx5M/LnfezdLvXgxG5fny9nxn+XIxlX/f4fHd/pfGFvJ/ZGIxV5lQ8LwtS4R56n9HLuu0WcGYwg6urW2Yv3D7Wy6dr8uz94WfJutzn65FPjPe0Pfc/NHxQazZ1tNnyyFrqI61hbw2Oq5g3r1GweyGrsPuU6X6xeMI5r45gFtOce16vSYIgCIdH7C2M+v16jFnEPRvjIeOERBEtaJlFbG9MuBXTBz4VZ13ujZU+ht0LqGPDNI68pCiFiv2nrkLPTKK//4wJR4o0yb70zkrfilZM4Cbx8zpNiufqeb82Y7wCgmaHUEMwVrL5cdI4ed8tTQXpfu3Y/dtRUCpDda5t3ds1SYy5XvnQOlcGd02dY9heDWvsFoKqFKTJYAN/HDT19sU9gK6Woam9MUMn7The4Qr2Gu/AzC39Pejzgv5AnjJF+T3myc9f3JzKCfp67rwiLRYKAoigLzSZRHje/Ucxq9qn4gnanIv2OIt3QIPsUBeLJ69g3CZ/GvgocCG948khK+Z9MfgcYCvQIuvy5yYYg6i3q2s+s3ETkzTnFLwM9yp7PX3yFm73eIo0xsvVzxf3K8Vi2d/nSLPc5+tQzi3YBMDN3rlBDP+izSRGY2LpY6VhVwRrrH/CminYlct07+4vc2KoxX5Hs6SJKMFY6/1te4ooLgRhmPDFop8fRWNc7s/DWAwX3fWDlbXc9iIj+jD1uA/4W0y8/J9p2Gzj6AOtjZV+ro1qAGsnQSlUoKAUUAkCWoFC/+Ra2Lwbnp412e7bNgtdR6eifoVc75Nda+x91x3viGEfmtOxYQT1NkEAYRgkyW4BzzqfDn7+XvRm3FCUyoqxVpuG7U3NtbUW7BVOjOcvzmjv/g4N66LIWOjDwI7pKjNXc3Xys/krgHEFzbapm710zkttEPvQ9xLk8xyaoB/knORwOJCXocvo7/LiyHguFJWRFPTHn3jBoItwSHTo7WJ4H8Y678eQu4HBcaRbh/SLxeLJn8CI+N/DrOQfMJ7cE76+lf4EzKRuC1kx799faTITOK/eT2IWMY6j2zrv6u3wXfLcY8cMWauUf40/8amrlr9CPeg1eXZ1fhZjvc4nxHNeBvnEeK9x58VmQvsK62aYxNLPmYkOx46ZL2XteDbTvS/sWd7tm5IERbm6zpJdtBgn63JfhN/d0cxln1yZdi4Mjtjrx/37uzC/vzPpDjNzFOV358fNu7H8Rvuasu72tzkxH2tCrVG7FuA4RVAKuPpr16JCIAwISwGNIEBNj6Ev3IC+bXuSEC9um6NZydbGSr8Cg1/XfEVrYq25FdO3PxXZ/r7eIZxM957PZ7d3R38fev/50ljIZKedFY26+/5KkOTr0b6w1zwDbIhiCD0LPGkoXRCQiHxIrfMoCMYh6LQz1nkwbv0AOl6ZBRpY3Go9T7qI7Yv5wD4/m3s/PY6LMYj+PF9Of9qwD7MTkSTFE4rOSAr6vTsfGnQRDkqsdcYa4bsZbsIkxMvHIPvjoXO57+p8BriqeKB48q0cWjw59nFJ5Sza9j3nYmIq3Wf7k8DOCtQxj3Oz9z0TwCxgnEbWfT7MHX0yK+G5hZv99LJGwZvf8to+1KibxQZ9N+FaRfcqvp/x1z+ejxH1Va35U615DiRWl1hr9LN19BRQsjOidRXYO582bD+mIVrext5rcgJZawWYRaVa7j3+QoewvLxthdq5MDj8ftTv1x/CjBtjmN/dfu89+fCjQU68Xfxzfuz7Gft6EGtKsean4jQhXqBBbW+h1k6DUlz0Mz8N1v28XAqYDwN0oNDPW2U+5IfPdCXIo+Ms9v3tedzYnk9Y+ICGGzQsxPAJ4LFYEzRjgnKZUJmEeEFmYMhZ58nuQ6+UgrES4y1NXZNJhrfS1zm5pm7RXqfP7dOwqpPbss7zSEvr59XRDuxBCcq1dvJ3Uus8SWjBStUPelutF8iOeZAd/3wDlD8nOZRWOKj+vNdiPZi6rsMs0i8m5gft/SMIMKKCPurkU1YVj8Xi5zUmw/2PkIo/XwD6nWrRXO59l8N8PHle4C4WTw6p61riqu1Ztc/BbOnXS8yb+ytbe7+ufpjBVtL4ebd4kYQP5DwSlMpu3+PfpllcPK5Zs7qfVcvgD/ru5ibXbiW/l5U+v22dAn4cOD6Gc7VJMxTHmBhRDfGeNvrY8XRVY+0E7I6z7vYu631+qf0I6fU7cvW0U2oU6W8vswAwwIW0o521x60edBGEPuJ2e8mPhzFm8fY8e94kaeKqXgvZgyQj/EgXP38EODbWnBdr/lTDeRjPJKXNfu1q5zwcN4ECjjlmFUopdKgolQPqQQChvb1sA/p7O+G+Heiv3gsP7UiF/QpsY9czV0wM/4pRoCWgoTTf1ZiEeJWyiZ/X2cX6XnH0KNfd2xeqZUINbbtIkWR+t53sSokrjZcXwSVwta/t0rC6o1FhkIj1ZJxzDgcui7+tsxP3lWpAtd3G5QZwVQM9kBh6d/S/1jl6W+gV6W4vS/UQHUR/vtjYDsbL8Hi6E92CjOlCsRhJQT8M5F3F3f0nMSuGZ5F1O895pS26dcggBb0/2PuCuw7sJt2TPR87n48nh3QrOz/sQGHi6B/x/5733TlX/5XCT+SUTOTs8UlSj4TEQu8tTGQmORbfOu8L+lm6r3PMytXVHwB9K/0+Uut8r4R4/n70vkviemBnHEMMOtJm+zr7+dH+Nvp4m19XAaur5v4zDc8M4AqxvBe8Vx3BTG6mSX9743THEB7qZEYQhCy9Qqfcb/EhjFcWdGfXhmIsZLty5McA35PpV7XmHCfiNWlyvF01guPKVviZAUJZC329rIyYDxTxCTOwLiD+5k70pg584Skj6l0uEZNuvq/165Ur5iW2PpGGsRheoiCoRQTTZTt38Vav7UCf7u5i1G7ijR7Y8a8UECtoN6xbum+dj1fuOidje5zzvtCwFzimExMEYWZsC5IQAzf+2X3o7feggPFKwHjbWOgT67xOLdwrZqGn22rtcEnxbFWS+kG6+05m22T7XJE91HqF1EWYnEzHc+DM/TKuC0VgJAX95Mz6QRfhoGS2fiEdIDdhVvXLZOPn84Ip7/YL2c5qEGSyE3sD/+OY8h5Dti69EuI58hnw3fvOxiwOPEN3Yjz3t1cKJ/7ydQbjkXAq3R4JLswgTy9BDNmkePnEM3d8555lrM3iLJYQbz/pXrXJnM0dc2Let9qvsw11n22s/qQt3ruAPrZiT7YzvOND2GNt4vlt65YpdvRA7oe+oFekMfSLiXlxz1tebrvj7kEXQegjvlj088m0MPlSnkMau+vCzJxoLspCmi/4/AXeWaATa9bFLhGetw99vYOaB9abhHh333u/SYqnYKykeLYcQClA2xV9PWlqqV1ne+eObNhRH+Poe+WKibVmJjYJfF+hNe8FzgkUqtkhKJezi/XJnexCdmq9zor7VjUganSS8SHNdK9XLPFack3x2po2Fl3QTEQagtCIeJUd59zKvAs3SLL5K5gYLzPWhrodJ1wyPN/1fqVYbAyrkbXQ491XGFE/779PH/pvcRD9eX7hz5XRza3WYfqbnucOunMRBMtICvowrAy6CAfE38/Vt2ZrTEK8fPx8EpPlfYbLcr9YRzUIUZEX1n48+elkXa99gdvDQG/i6MnGpYUYgbuB1O3et+64HEErhab7GsaYwXAvaYZ73yPB1TmPmwxA+qNVpEnx8oNlDMzN1VbkOufblxO9+zGLNA5ftPvXOrM/L1DVsBrNXrftkR9Dv69BbC1WSXDi2inY2cqa0JPVlGUS9Pk6eh+7j3ThAnps26O7f3/C8jE3t3Dwk4ShJSPkvfuPYYTDBkx34ARGl9v9gBeyodvd3i1S7AQmY82U27M89lzud8zDKggqISpQ1Bt1XMr3SimgWQ6ISwGUrag/f122nheuSxXHMnsr5enKFWNNytuA56B5ewhnB7afb7RRY0E2V0yXsE/vO4u2753WKpWJm1FyqhPTTtyvBJk8QN6QszvWrAGCGLNlnS1zEKhMwts0g79K6qeAUqUMQK1l6pdY6N39FWrJveaObmyfxSxiZ+pCehln6PYQPVQBPIj+vGt+TLrgBsbTMO9yf6gLFIKwUoykoJ999olBF+GAOPdwJ+r9LXoexAh6J4Aye7STHvOiwjHIzsePafdd0bcCJ5N1xc7G0XcrXD8ZoB93rjAZx/8WuJfuGHaTkXZlvoXF9h1+AjMYrsYTtWRFfZ68dd79cKcwgtLhJ4L6Lz/z4hW53r7A9S3Y+8m6ondZ6entdq+0sVjttDWJI4zbfRSj5zXxcZPZGcRxY3YverrFvF6+TPeLeSLUyQp6t20dufNkAtAfXveaFw+6CEIf8cdAf2eUBzHu9q7/cILeLXD2WsgeFIu52z8NnGB35Ei2qrOiPtzRQq2dArtP+0te/ONG1AaKckmxPzSJQbU1Y+uT16BPL6MngbdsgDOOz65m9DmGPr8lLRqe0nCydl21DSmYaxFOhGki32SlOrd6rzy39MQd3/zXrpbRbZNjRWudEb0r5YWXhH9oN8cwUnu3Ni7aRKCqQdYTjZyAV97Y5/4LFe0Q6g0v0739m1qT5gxYAXwB7srgLNU28K3LQg/ZMfBwx79B9eeuXP44P4cxSvRKdEuPoyAMktKgC7AcfP7zn+eLX/wilUpqeX/JS17CH//xHw+wVEsnn93e36JnL2YSk9+2LSIr9CZI3YXAahuVneD0Eo79wg12vqh35XgCeBnd4tbPCJtHKUVgk+2EysQchpiEgffbcz6I2dP+JzXEKpt1dSXqvphHwuMY6zxk63wgj4S8KHbMcIDtVFaoor7LoX/bT7qdW6+EeP7iROKBoEFpWBdrnrHJ8FzCIf1MnTiAeNJ2W0EAKobjK3D3Tm9Gp7Nx9DGLN6RDpNcA7u7vxVyHwH4XExwkOddK/vAEYYhx2dN7eTo9jEmC6vqPkj3m81e4+4OcdPdyt9fADq05IdaoGJvdXqcJ8XbUUOsmExdt5aVKn1CKegDa+mw7N3t91vGg9qFPX4taZHGzV36WI6Hn7jUaYjTbtOZHNWmdtCZotwjGbfZ33yLfyzPNWeaVG0NMcrlosgxtMh2s24d+pRR9MpeJ0+9AA9uxnmkRhBUvht6Jd88tQdnFGhdL78bJZiWk3Yi8+Pl0H/qVase9xnRNGkvuh5n547d7beEAn1M0Flusn8UYTcYwCxki5oUic1QIeoDnPve5fOITnzikc1Wy6Wcx6ZXdPgb+2b6+BfgJsqI+v/heNFGhyVmsSTvPrcBb7X0/J0DoDXC9SOLndeqt8K3cOTcCL/L+llvYWAnyHgmu7k+QJsQ7VI8EpYzQzYvhaVILfX7QbDRbTI73P7wkbwBy3/U+0p0Leop4pVBapx4W2j4fa9ZreCbWJsmRzXav59rEx5eJMZmeE4vG8ZPmj3Vis52dK4hbTVmmJZxeSXNa9vlpe47C/Pby3jEy+PePZrNFtVrsMCphafiLon7SNYDNwKvILmSvwljS8v39oH93XYIXc9ypYQPpVnXK3gKtUbvmCZ5/jOn7A0Wr00aNmWWL8UBRt2ZebVWiVqCPLaF/2Fh8cbMPY78/xuV3r9kOXOzqhRXx8zHBWMmssSZuWyp7xI4PqNQZy4l7IC6VCea9vljn7vdh4cLH34YwGf/sa89qOEVB0ARFaOczKhnnbO2SrewU2Gz+Kqlfq1Sm0zQmiGTsiElCz1aK/KIYpIK+THZM93EGpbyI14cw/xpEf56fO7lrOYfpU8bt4zZQ5fDqIwgrRbGVbZ84/sQLBl2ERfH3c/UnMvcCG+05/x0TS++s836H6u73crkfpKjwB3tf0D+LGSBOJbtVnW+xXozMlmf2vPwOpj9DVnCumDteD48EN/i7hHiH5ZHg3zwr9xRmkOm15+sVn766T7VLOViyuNV4czZrbgjQGff7rgR5sWY9mj06/axYg94TEa+ZQCtl/o7rvaZNzCF76mkBXAIoP+v9kdRzkZuLsZshvSYTpJOexbwXhOXjY5f/46CLIPSJXmNhhFm/20XWQg/Z315+vFvhHb8S4pz4873TdseaEyJjuVZaG3f7WBM0I4J9Gk6YSly0r/rHa5IOsxoo9nuZ1jTaiPrVVXg2tpZqna28GxiWmWSc0959oKFhr4b1yt+KTxPUNMF4KV24PoCV3nknJNZ593pYIoyi5O9bE30i5vtNfnHGZbcHk5B3HUADVBgkVnmX5T4h6LbOm/Fd0ZkoE3XMaXnr/Ipmuad7sb5GdpvWXjd/22T3Wf5nHohB9Of5OrrnnIXeCfpeu9fImC4UhaNG0D/yyCP83M/9HG95y1v48z//c55++ulFz9217e4VLNnh4QtPTapLelme/QzvicsTaYfqZz8ftKjI71HrBP0TwFpb3iQeHlMX50J5IPwEcQHwPOD/s8/9P5gdAXrVv9+4a5cM+KQDxeMYQQ9ZUX8wj4ReA6eL3XbX2q/jr//WL/W9rl0r294ffNaVL9aErYig2SFodFCNDqoZoaPYWKLw2rAV/Wtj2O0mabH97PkG8eoxYoVxNXUrPiqAE8qwx+aWdz8aZ51ahlWc/GKJuz+Paad+W3Xb9nS89+K9T1he3vvbbx50EYQ+4XLJ+KI+xmxXdwJmsu0vgvaKdR30hNsX8f5YBLBLa9bZmPkkhl5rgl0LBOMYi3xgYsh/+VfeZFzUA5hUiqbyPsstcs5UzXGf9c/zhX2fEuP547mf4X6bhgm0WezUdsG+HZvxbrKcjnV5K72HClTicq+8k9UUlJptW4DsIgksX96UxXDXMrILCE7Qd7RmL3CsgoAIVQq7YuhNBdLaBHaV3jxlQwqqZXQzFe++dX6lBP1ibujzdGe4zx/dFpK95p0HK/4g+vP879IdnYXemgyS3Wt6nSsIg+aoEPQ/9VM/xZVXXsnXv/51PvGJT6CU4g/+4A+o1+s9z9crmVXkMMkncXMi+NW5834Wq2fIWrF9SwUY6y0MXlT02qNWYzIVn2zP8a3zvtV6MXzrvC9yL8TU/3iyQtOfUPWbXosXMSaufA5TZ3/x4mAeCb513j0G4/4FWfc2R2UF3NYWW9kGmNWaY9oRYaNN0OygGhGqEaHrEarRgYUOQTuNGQ2UDZ/QmrWxZl9stnSKbWykfqaGXlM21zDxU7SsnYJdrR4WKa+AR1JP3T0p0ZgV/GPsOb51AmQv+pVC3O2PTrTWRFhRr7PjxsOY7ery7r7TLJ6Ma1Cjfkb8kY4FbWBfpDkOY5VXsbPUg9rZJDx+Io2xDhTVahkXSz8WwJztNGPrdq8DZbyX1oTovfVsp+WL+mXGH+fcuAfwtIaTtBunbaK/ehuloVQ2yeK6E+JlB0AVqPQaB6nbfViFcrNjv18n40nEfb9x9fTnFLHW7NZQwVqwmxFhmJbf9yQ00RK5kALS8Z1qGTXfPd7EgI77v2Dh19Md3X1/yzrobWiYosf4d4hzz0H155rucd5l81eY6+p2joJsfWRMF4rAUSHoTz/9dNavX49SirVr1/K+972P3bt3c9999/U8vzpxDG99+7u49NJLufTSS7nuuuv48GVfpNlsJedc/607Mvth7t6zj8s+eVXmc67+2i3cfe/m5PGjW7fxuS98I3PO577wDR7dui15fPe9m7n6a7dkzrnsk1exe88+wHQM3/nOPfzLzXckk5hWs8W9n/gSqtniFcBHgOYtd3Dv9+5JOtBn9u7j7z99VUZUTF9zCw9v2px87rbHt3P1F69NHi+lfGD2Cb3+W3ckj5vN1gG/P601u/fu428uvyoj6m+35TsV0xB3Pb6d6750bWZf+b/9u2sXLZ+r65WXX8X+vfuSQfPB797DcbfcwV5bz1azxd994ks0bPli3f/r69fzy5++imf37ks8Eo7/7j1svuWOpI6dZovPfvxLRM1WMp3Jl2/vnn1ccflVmUHz9mtuYeumzazGCPqnH9/OP3/52oyW/T9fWPz7cxzx9QX27t3Hlz59VWbCGn7tZup3PUzQjFHNiKcffYqv/MM3UU0j7GlGXPmFa3hy81NmIgs8uukR/v26WzlWQynWPBvD17/6DZ7Zvx/9bAe9qsJ3Nj3IDd/7YTJDanbafOTRf6f59P5k0nr9f/yA2++8L/GF3L372SO6vu77fOC+zdy8Mf3+ZoHJK65i1rY/gK3fvYfJW+5IBv92s8XnP/4lWs1WIioG1b/A4V9fKZ/XP2vNbf9xN//8rf8oZPmg2N/f4ZXvnmQM3Lt3H//w6asyFvqpa27h8U2bEwv9rse3E3/52mQveoBrvnQtT23dnoi8QXx/rk98Yut2vv7FaxMBuEtrpq66jujxp5P95zc/8ijX/+vtBLsWUCdMoRT8zT+Z/k/ZGLP777yPx2/9LvPWdN1utfnyl79Ks9M2lvqZcW74wd3cft8DiZfSnmf3c9nnvpJZ1Viu6/uJT13F7r37kmt133fv4Qe3fIentOYkbfq/q//hq3TaLVStTTihufkH/8l/3P9g8hl7nt3PZZ/9SkbPX/21W7hn0yOJ5Xr79h388zdvQgHlEpQX2tx0w808vX2nEbga7n/wETZ+49aMFbsf1zfWcM3Xb+H++zYnIRVPb9vBzdd+i7X2bwd0uO7e29n+9M7E3f6eB7dw9Tf/JfmcQCk++/mvsv/Z/biQgvs3PcADWx8g6JgFi1arzRe/+BWazVYiIq+/qf+/X5cz5vN2/uK+0q3fvYfqLen3126Z8a3tfX/zt9zBM9+9Jxk3n927j7+z8wMjnHUB+pd0frpn7z4+d/lVGTF/+zW38MymzUzZ98w8vp3vfPnajIj/yhevZevW7X0tHxS1f5byHU75rrvuukRzvvXt76IfqFtvvfWoW1xqt9tcfPHF/Pmf/zkvfOELM6/VajV+5e2/zZNb72VmZmaRTxgczVgzq2EuhvkYatqsiN4BfB64HOPSOwlMBjAdwLiCBfueWmxcnZrAm4BPYxKwTWDOnVIwFcCqAEp9TBrjE2vNfAyz2pRvLjart3Xg94BLMB4I48C0svVStm493PAcWmtqGva7emtzq2Pc7l8IvGEJn7sc1GPNrC3TnL2OC8A1wJ22fOOY6zFpr8lMYO73SooX5+rqf4e/A7wNeCmmXUzZuv7glju45DUvptrHuna0Zi6GWVtHV669Ucxv1Tt8oRkx3YmZiGImYs2E1kwHiulAUSoHxNWQ+XLA3FiJuSCg1oqpNzq0Gx3+v4WIt7U6nNuJGJtvMvF3jzDx6+cyXSkxXQ2pVgJoxtDowKPPwrVPwO88HyohjNnbeAnGQxgvmwnxEmnEmjlt6xnDnG1n1wHfAf4Ucz1jzG/vF4G/As4ivSZT9vc6E0B5hX57o8D137qjr1sdaa1NwsWOTn1gFWaXhVJwRO1KWJx83+LGtjrwS5jf19kYa2AH0+9cjvkdvou0f53y+v2JPvf7vWjm+o55O6Z/L9b8faPNXzcixpoRE60OE62YiXbE9JX3M/2SE4jPPZa5asjcWImbv/9Dnv+qn6RWLbGrEvKbjQ5/X+8w1YqYbHYYb8dMtCKm/2UH07UWpdedAtXQ9H/VECZMX6jGywct86GitWbe1s3NV+Y1NNoR/7ve4cfrEf+l1WG8FTHejph89Fkmb3+a6V85j4mKV64xdyxlMt932hGz823mGhG1RkS93mGhGTG7Yz+t23cw86azqZRCJsdCJqolJsZDpsdDZibLhGH/7FULsbZzNM18vUPdlu1fahHbWhFv1RHVW55k4sRpJp97DOPlkFUTJSbHQtR4CSZKqEpIq95hf71Drd6hVo+oNSMazQ67HtrHs7vqnPXyE6iUQibGQibGQybHSkyPh0xPlAiC/trjFpvD/APwJCakcQzz25pQ0NTpuHgD8K/AX+D9Du28ZJWd5yyWtLDf/XmefBuej83vsw68D3gd8Ergt4BfwyRZ7hrTFVQG0LcIw8ns7CyrVq3iuuuuY3Jy8uBvOESOCgv9rbfeyv79+wF45pln+Ku/+iuOOeYYzj///J7nR1Gr5/NFwN+ex900xrKbd01Pksh5z7ujIt0LdNAuQouFEcSYDPenkYYPuKOr34FwA0KSTMa7HQuJhd53i3P3+4lzFc27WbrreAq5JHD+bZFBTuWO/tgxQ++40cnpyb5fZ//7zLiqdTSlKKYaaWhHqJaxyDvrvGpG0I5Rndi4m7YjQq0J0UlDXYNml40d1Psa6NUKHQbEgSIOrO+l81M8fsrM9ttRGjtvrfVppvsjrKf9iHzSHOeSh3d02/bkf29H3eppAZienjj4SUtERxoaEdQjqJswERY6UOuYx/U2uhWtmAvsKJHZ6cW7/xTm/qmkYwb22DN2V69cqFUvuhKo2bLs0JoTI0z/p9Ot61QnJtgbodZPelvVKSYmx20MvWICiJWiFpjwIx3YGHoF+pgy7LUOz35SUFsIvYw+6a5uMdl6omGbhhNdCAF2vKtBWC4TuquWT4jXY/hTXvS8NdZTqYZMtDo0bB21/aP+Ne8X/jZ9bh/62P7hncBx2BCyeoQqe6leelUv9BL+ufACBdUKlGvt5O8lifHS4bHvLJZ7aR4Sq3Uy91TZuegkacJYyEbAudti9LM/74VrL73KN0e6g00VE0Off69/FIRBclRsW3fzzTfz13/91zQaDaanp3n+85/P//pf/4uJid4dQ212xwqX8NBwW6H4MWlOAD9O78zoTvTmBS2YjigT85M7rhT+RMYX9bvs8USyieF8UX8w3Pvy27qtAfaQ7aBjjUmotqy168b9rWTxwhssHgcuIhXz/uLFwVbX8tfXMYWJzc8PRj/xouf3v646+/0CxLFmPopY19EEUUwQaehoVCdCbd2Luncn6vnr4Lz1qFChSgFBYONINYSxpqM162N4xk1m5mLiaZPhPlYYQe9uCmOJLwE7F+BU63njZ3aO9BHtRb/Y5GaWNDGhf13GOEAMvabnxFVYGi978QV9+Vwda2h1jBdIK7Kq0vtFlTV0lH0+RFfD7L7awhHRK7u9xrjbn0e6VWk+y71Lhzvocc/hj+N+P7Ir1qzV2YR4SmuCXTWCEqhpowZVoFAB/OiPP4+aFe9lQAewYAW/thMCDeg1Zdjb7O6c/eMy0Wu+EmMz3KM5QdkxWtvbQgd1gIR4eauti5l3Yte9oTRWgQhmI81M6IncFUga577SiFTMu63kdqI5XZkTVCcmDJ0BRnXXmXQ92o3rTtyXy4pqs01ba0qkiySxJ+5XAn9xxP3Jecz8Kr+I7TPJ0rdN7ld/vhgHWmjwx/dJUkHvn3uwBQpBWCmOCkH/l3/5l4MuwrLgxJ8vft3zj2NcfXyLrlv5DdwAYj/HHat0Jwhy1sV4BUVFpk6kE5utwAZMBtGuOnFo7iO+yPUt9cdiEiflO+rEuqr7t09tMtjTPZF7HGOhh6yHxcE8Etye7fmFG0V3IqgDDVDLTTJf9B4rbVz1pq05QcUaFcUEj+2FrzxF0AHufgp+VcFzTyCMzXZNgdao2GRBJtYcH5tMyRqI90foYybMd+r2XLaTPZy1fl0V9jTNyleyiqKXZRLbtWhhn5/FLEi5a+H+zBjd2/as1DURlol2DK0YrDcJ7di43mtMJ9WJoRR4F1WjKyGqj66+o4KzgnboTqb6IGa7Or/vdOOf2641LyJWot/vhb9feT4x6+4YLnR9pN26LtAQ7GoRHD8OKkiyvLvkeHjCcDJQNFx2e5yFXqGPHUc3MN5KpSBroU+8lZbnO8jPV9x12qY1Uxqm3SKF/YtBIyIcq5g6dO09312mXvvQK6WgYqauzVYHXQmt2E27fN3HXjazPgJJDD0YI8I6bJ3jDipQGSNMPqttktDXWjLcy9VqwFSnzTzGZd0X1v32MIS03fa6zZPOYXrNR9zvcM7/vB63IpH3MnS/0RqpoHdjelddNLIXvVAIRnLmEZbGDn7SAPAHRtehuElM3lU7ICsIew2JU6SiIr+iuJLktxzKex0kglx5bvfq0KYcbkKXXeE2gn6Pd57/nfZp9570b9E9wYkxIQBN/v/s/XeYXdd1341/9j7n3qnAoA0wKERhE6tIUaKKpciWbLklbpFsK46d2H6dOMVvfonzpDvv73XeJ2/yU5zIdhw7TuxEtlWoYjVLohpVKFKU2MECFpAgyqAMBm3aLeecvdfvj7X3OefeGQADYEBSovfzHJw7mDv3nn3KXuu71nd9V6Vw3x+8OF9yr7zWptd4rkKBZb+ROVETsrlcIwrn9AB7L8w7YU2ZulFKKQ8f6clI8NBR8IJ1IUvlpMrkiPawPxm8GDmzgKxrKJCHUtm5BPOgtPvpbt17r3leF+8GRTp13ejH/TwV5b5++Uaonr2l/u4vx8qNuiDNSg3xAi7UzecB1Hed0u/jlvne3wVa/l9S8C99RDpzmZ2vrTHPUPWfrweCQW1eD5CQl/a5Wwz+qgM77j2bAs3eIlULz+k2dvNoaRRNMHBnTs9WrCRgyBjmLKpsH94rBhhKkAQ40a4mHZkldQr+Coyl/BWAQyJsF1W3t0YBbgKYdkYyYOmJqfRl6ftHZe9Mj6PTbUDRySEC+JohupyNjEqbXrsnRZSVMCuwIUzJFE7ZZ2EOSX2usW2dARuKCsqEhDEw2GCw65kXSsE/Ly9OSUH/XPtHi8VlZtGux5+HqQJrF2r/Lsd6fq5RBv36AiYxSRIp90sF6ev779QhXl7Uzgl/OS7feEUC+vWbXvVSH8KSozT69FK2Y4HAFnrBn6EChv2LKuiiOl/77LiPNYUvxliqjCAa//1U9fP9ZQSlYTvPKIP89J6H9SiApvZ9L1aEuId+WHPmDqDR+0H6AjKmtxb0bKM/aLOUE1u/zh//8OfD9b58s62fz/KecsKcF9b2t2Jaswob3mwAXj2hgN7Htk0+vFffv16E0+GG9XNtZLXVa2mVdi/GVt6eBTY2YSqY4f46euGia0f7g2H103mGEMEPc8B58MKQSK9+Rdxf5mDSK3G8/47Pr/yHeqky8l4UEGUenpmCj+6Gp6cqIB+3rJbRz/yK1iq/0kbMzvdTuVvAYbRl3VKAfpjFQew6CHqxr0i0fXF9LH8WmBJhwgs2rpEE6v3xOexEszRmsW7+M3/xZTCmnGsTaJmQHYysJWvAWGRjA053IaauoReBrtBYSh/Hi3AIbVlHDNBGf2Uux4wklZ+yKEvfOyIroexFbyqntdto4Dqu59rG7Pzltnnltax975REweJwLXPBpNqaLqHXN+uZY092PlzfwQapQKfw+vnBuNbB/eUc/c9OfSmbpWpbt5R+kan9PtLu68zQ892Cl2U9P89YUgco/F8s3B2il3K/1P47ZYgIUnik41RUuKOaMNJ1iHux0MFfjpUe3xWU+wsdxw/vfqkPYclxNmr6QZTWm7I0NR2WBntD9NbQ90dKX4xRCsewOKp9EPheqsBEvY5+ueXOvZFtyjr6deji20Udn7phutx19PV51nsnHwC21Y/bLO5Ff64R/wbpve5jsCR4/OV/8O4VmM25R+ncxOvqBbyn5YWRCNKDN2DaYDYbzKTAz2yGnRsgZqi80k4t0bkVxoE2Qsd5Rhccft2QZuYN+Fg3Wp4UYHwAjnfopQz0gvqLnqf0Gvv4UW0vrM09ifMkaG1jKrAmMeSpqqBT0mJfvGdPYkDDhX30qFP7XVfn/U9+7TLc5/G8xXPoBJ47DneEFkVPHYZ3C1y9cXGqLv6dTwIF/7vrfL8Yoz87H1/vRYO166lq6OvsmBGqzFocL6XTHdfHfrr9mRBV3xjWOuOUoWS8kBwrMJuGFcjaqg/93/rldzFXu5dWGWiHGnofTkJ5G64dhpP50uugW5kz4WvicHV/RQQmBb6nLBELInEi2G5GMhQk8ZYhiFd/Wy+4N2SNBj7Tby6vcZjv5YQk/UK3cf5TXthIPFaD6UDSTMogRE+Cosxm92Xnk2qd9gY6nRwG097svH9xEjL1ks/6vkMline2JEME9JHBttTnnG1clvX8HGOpwIWnqp+Pt+YQZxe6/U4B9BL1hPIQgI52Lo7EQMNqGUvDvqjlSRczYuDu5X6cL9Z4RQL6l+voz2LHiHedbt+f0a1T05daVM8qzHW5JtE3osGrG0EP5GimZSeVMatnXJbrA/dHhuNnrQm/P4Uan2h84fIaw1j7WaeJ1q/jTnqDMhHILzL4S4yl5go6vzO193mhpKbH7XIsd/11dvrdegOfFuGGcDOr2JPHHF7A/OhO7B0vQHOwBD/GhRp6hETQjJUXBtE6zNmZNiNNkMFUv6vM0FOrtzAwPgIZGm2OtaM9TuzFnYl+IF/O1wudbsHazJfHb71gMKyzBp8KNEEaFklM5TRcyklfzvG6Wt13PZARjXVqMc1LUAj8Lh8iGpQqU3ARoD/SJ6Z61xHYNa6OUbzP6gEALyChrj59RZLhLno4tNqh3xY+jbaqg5r9qwU5R6kyay82M2up0U+3j6+nAoOpScjKE5hJ0wu6pK0Z0A8I2fkIYuvL15AxzNULzEOaVwH9EJxonSWoKSuiJVDe8vTaeIDDiGqLSCWKZ4BkwWGHwrPQn6Vf6nDC+m6J++qt2UgDKeLBVEr3pUzAZRr9fpoX/f6ThPp5qLoWNJJFLJKeVL2pz6sX3GdNQ9Ypyrn0UO8v843cD1brz84M6lvW/c3+LQ37fv+z/pkvl9FPtY/HNkdv4GKIJZiQwdf6ThjiAoOs8JUmTLRX0TVKTO+D/DL0E3rK4cKBirUhE2he0eD+L72Ml8mI4Ki/bZ2gmd2d9IFe00vTXqq2ul7HVG7SC24v96hT8eoMhMPhGDdSy9AbFhu/84zynNTmHj8j0u7rdK96Hf3lGHUnJ84Z4HHga1TrZp1yn5rlPYj18gKozlHsZhC/H3rnfDlHv8E3AdTkDkZqPXbs6TbkYCdGMbtWw/ML5ckysY7eSekM2XCzrhWhO1cgI0N4DJKYGu3e1KIiJvRcBo4vlN9bgiy4pMxUv1aAeIFOgckcq3KH6RbYToHpOmzXMdQp8F1H0ilUIT04YZf7uZM8tFer13p3+uq/uw7J3Pk/7JU6ygLuGkD3Ards6n3fNPCVIyHbUaPdR2cp8+Gc/2Vd/YUM3xcUrduNZ6no9nVWV1wLIz02NqbtcbxfjIPvGz2Za6oa82kPm2JA01fA10zn2IlBjFEHNWayA5NeM7/U7LutAflwIsQAGxpwqkWlpFaiwktmK8WxlL/iUYbEKYGtEmrohUoYb05IhpoVqO3J0i+2+uV8w9wV1+v7XNooKYi6JkcfRy6ffe8rIYwBfNDlIPoz1nmddyOplRDGSdUnWP0uaiXEXxdpg6zrFmWQfTiOyz3qNg+q+zhDgW7pa/YlleLrMfReuBC6/Usx6sdUfz1HJYgHvTX0SwY8XqbruzhBuk7brUbfoF8Tpl30lo6F1y83+r04rwmbOJdW0K5p5bp1nLaafYWOVySgX7Phqpf6EBaNCP7iolmnOx1EhdSWymLX253124thFqvc9+8v+bjl3PVqS/WfF6r6+TqwvZAWbvWxVB09qEE5FV4vla25HMOh7ANXm/Nu4DfC7z8OPFk71vrclzP6r7FFAX2cZ31un/nEXeX/XY4RA0R1ZyM25j3jhXVl/bzA0QwzMaht6q4ehRdOlWCpzNDHbD3q4CIqMORnQNYMI9TAPKp239O6zhjYMATHs6XB/EWeiP77RgByz3zhGeh6VmceE4yg6ThMVrCu68m6TqPhTqltK/3sLTpOJwosawa5NNZtt6jm++VmrC92fOTjd63sB0ZaYrkgh9db1+nvdwLv3gJ/5xp4dho+sBfm81IgT8LWcw0iY+Ivx3mHJ2TnpSpZiuv3M8B1LA6Kxi1m1GIJ0pLP7os4+nVUouM/5T0TgYkUA5hGIJnuYCZGK0p6UlHuv/DZr/UAvhFgocZWqvrRG/zaJkwV+o39NfQrFNHv91eifT8kwpjAKkKA1oc6eudJvGBGGos/rI990PMrTE+yAhv2Aym2XZ9KLWh6mRB9aevo9dkEraFfF4+5CIA+iOIlfer25QsTWZb9av4GP9DA5xLmVetDT3UfXa7Rb6viyhUz7v0Zeljsh57T/zzHoa/4en6e0e/HxG2GqlwgZug7XD5feqVHCeTbeS9g7xd3rScA6l1dipgFf3kMcX5xsqIdwH3HaXvZroNu8YoF9a9IQN9tn3mpD2HRqNO36jRDBxxiiR70VAwZWHpRjQJBZ1uALtYgiAi5CAteWBCYF1jwQtfLIrGWOl0y7oVe1gFUpQP1bPtyRj0r3xMFR8FgvRd9PTt/uVzrQsJGtb+z7z1fpgrI1AMZ5xt1x7Xu/6yiKmOoG6RdV2+/vOUF/VtZOwytIAxnfDjeYwvYbavBGOyuMTgWhFhKQTypslRUTu56wM52kTUDoYxAwbw3Bl+P4MQTODGqrevq3ntc3L2/qHu+HwyIF6xzLBTCoPM0C4/JCnjhOHzhKXjhOAOFJwtg3hQeipClj59xOZyxwkMuVYb4bEY7/j7/7jB6r7pm+8p+YD07X6aVBCZndVF9981aO79xGH75RmWG/M89uMNzdHJPq+tY6DjmO4525ilyX2bwv1uCKJdz9AD52usptCb3Knq1R6BaC5thfzaq74s5ztqyTuC4COO+6j1frnnHZjGbBjDRkNuqjn7nNTtKOmm07/Nh7fPBKAgK7Fk/pH/fKiqjVxq/lQltLOWvAEwCO8LH9/grrVwDMINJObceo3YWq19m6SPwDf8vAxab5Yuy85dTGK8O4ssATXikp4CNIYhhC6cBGmt6zNNSgYt6dl5NWnjDaAPyGtiUKoFyOVX846hT0OMWRZYjE6b0N/vjFSwG9P3b2caKr+fnGWc7tnmqGnqoaujLv5PqvS8nSypelIHXyYPgnVu81cF9Xei1TsN3Au7lIe4qIkskK2psg37WQfbKBPWvSEDfXjj5Uh/CohEBb91ICpXC/QSLAW9P27o+2hMsFgjqj0JezHCiIH7Ww7yHGa+vZ70C+5ZAEQxppKPV6+vizwepWtbV9QCio7bcOpg6BTGel4jz1qGZ66UW7MthD72IAnmqDH0BvKPvfT9MlV2qt6073zBn2WIUeY7eOV530zWXPSvVQ0UXwXtBnKfjhdVBIM+IxxyZgS1NvU9HGjBuYd8MMRtqQ5Ze+/cqqEeE1QhDZ1qwOnxXyEKVWalaGycsMN6A48HtiJlWuGS+X/wzL5pV8w5a3rOmEAXSB09g//wQ6SMt0s8dYvzgcVzhMU5CzZf0PH8rPSQK3dTr42JLtaePwYd3675e3118d9DTbrn5mvO/aZnjrPXzHtjfhl1jEOjQNBMYTJGfvpLu7RPMf+gF5vacZNYLM4VnLvfMdx1zXUcn80gA9i9XaubLZZRUeyqg6NH6+R3AAJUgXk9ML/z9KtQZrz+zl2r3LmbE74uB7NIvFmHaw0RgLxkfBPFEsMdykk1DlKlbCIDecN1NV/cw0IaAVlBck9ik3RrN0qcWGSbU0dfAfDyGFXjuY8Khp5QNOCiwRWqq/SawDxZyTArW1NZsOGd2Pv66VPePbzVghiFxuZ7S8p8K3F+OQvPST5Ne2zcnKuA6js7V5B7TqPySs9n3erAi+nGEIIBJGpiF6nvjdEpwv+Kzq0YdqNa/dx6lntfvw/q+7raNcnEaTiu5ni9nlMGZvnUiZujjlM7Xtu7lsKqLE+hGar1fGsCXoNfDnmMq9PqUhw8dhr1Ti8vNXg72Kpaw9ZezxQx9nFc9mZEVL4tgxIs5/lIU72Uy+gFv3A6gyuj1esGY3Y2vHX2Lang9RB+gX2K/3Ey4HqPQEmh7aEsFXEGNViaQG3AGRqwa9H7xmPjdB4EfYzF18kIU7uOoMxbq23pgX3hPvY4rqtyvhDBQfTj0HNQz9A64Hr0W24FfBG5F6+bjXOvChucbZfBGqnk2wv/PoaI8pcE3lXG6HKM/SBLrM+dEHblVwUKa2S5mDszmUfXjjIFd62HfPNy4AXzoP+9FayV9VXe5HljdasPqTWW/ZR+AvP4cHL1IVRkfhGOZenU+/F/JB704L2iRaE4IVMwVwlgwfuaZU9guyCAwB+uePUN+xUbN0DtbCrlImpTnbuXuPCp6nJNeUL93Cj58VN+zZxJ+ycBNW2qU8hU/ku/sEaOP/fXzAAfPwK3jVVS1oW56lhtab95E64pBis8fIj+VIdubmOemSW7cSOOaTdqVITEM5haTemi8OGJDpapxnEsZDbYvS/V9ESmBYh3Ue7R+PtLt67aiPzgbA9n1ta+GpV+0272OoetlA3jhpBcmglFMJLCTTrV1v3awQkdJBHemBHqEKUTRWyGA+Ljex79dN6hK97tqB3IBNfTnso9Rdb2fWSjApAhvpbJRVkItfacgGe37vH7hnyWGsTXRuBpqNCkk83l5tqNYXAT3l+NSLylyKMJxUQA7GJMKmcc2I6CvrtsiFAwYYzH4xcH6tEGj0Lu7zM5T+S6XFdD3gdu4LVDVlfcfL3372DY5HmfdB3u5CMn1C/vW14w5YIsXjNNrMwq4kECQcA++FOvK2UYJ5iMLr/BB0T74BtEv8OH/HpqGr/QJvT5yDK6bWMzoeQm18dSG+RprQCpQ/9xx2D0Ft03ocdeHMUCBDKTfdZ19zjZekRn65uCq87/pRR7RgamDeaGi25dZCFOB1wgE463aX8M0QtUHdEnH5gJHN4D5lkBHYCFk5ee8vm6JAv1O2GKGOhr76Jy1UAGZHSwt8nehz179b+rAfgNVhh4uf6amxFPUQD2qF9AGfhO4BY2ixa1hFJAvJ7CwZEQ8vF6LGqA6Te7Q/iOXPYpfORjBoIgw54QBBymBSjrVwWwcwKQJxlqlk141BM/OKPB2tV70LlxDrwGh9Z2MRgGyagBBkJCiEaTM2Fd1JwbGh/UkzJ+FanqJlHsRwRcePHREGI6fec1adSC7YJrQuWqM3Ov7JGgD4DyVGvPKDQnZ9tJg18H61472vvmho7108u+CDP2+/YdX7sPOVj+fOTiaw85VJdCiYSkGEjoDCa3U0N0xxsLfvJrWwRO0Pz5J97Eu7TsO0dl3nLYTOk4oCnW0XozMgQoIBcGghVBHGfftXGv9Xw7Zl9oo4ym11/HZewoF9P2B7X5QsVQge6XWfRHR2tRCGRdS+LOyXBYBv7B1PcyKMB7YSIgykux0hploYKNiczBssZXZ5EF9lqOdHwFma7T1susHoU3mhmE4ldeMQu1knuX+K0Roe2E+lNPFUjrXd58IS/srAIcErqiD+ZCtT1qCHWgsDeLPVUMfxfDC+yMtPRmwDOZ5z5oqAc37FRL+6x8l24J4DvRLptBgOmHeJvfY1PQwEJfkpUPVmjAEK+Kv01EY7OZl9ljnp3T7F6MPfX0fxxyaqYbFfki/f3KxXZZWdD1fxlhqXRAvFJ2C8U5O0i6w7YLV7QLTLrBdp7ac5c3nxRgiAbDXs9jdWoY+ivMWDp48CX/4ODw6Bd8z1vtBr55YbPsuB531QoaXxcmKwldtZJ9y8IHDykCsawB0q7r6V0qm/hUJ6Fet2Xb+N72Io185tW4g91O1rKuD39gWxBjTYwv7I6T1NhtLbcsdhQiZqMJpJgrey/p59HVbFPR3wr6oOzLhtUNZB6MoCO1v4XahgnjU/55ew7IOON03/5IauML2PtLt64J4Rfi+e4A3oIYwUkVTo1sjvF7uOJvSff+1BrjvGw+FY7uICS1j9ETxvYRN6+fHypSNwRzrYLaNlUknYwxsG9ObaUopoSbQ7k1wVGz44NUzXU4Pp8wlFozBJ2iYwJjQiz6eEBMeDKsphKWU7s/hyJ5znrU/86EsAC8sOFgbAxFb1sEGS9GAYqKB3bKOPGTyCbR7uVy0+3p2vqf+TXo5ggC3TtSodHCxugIvp/GVrz+0ch/WXz8fAzaHZtVDHRuoLVaGfCCh27RkzYROw9JdNUh7ywBdC51BvSzZnhNkuSfLPd3cI7F10GUcpYBQu+hz7Fyfk/fyuv5CxfyKQWCHLhUvAK+iYnT1MLNqa+hqKkBfD3DW9xd1bE70XLZDgKQMlOTIEurK0d7V7Y0XYdp7mh4tSZJKEM9Md7CbVlXgL1LuQz/6++95qAcLRpEub23IzFc19GJA1jVhOpyJJQKb9evuA5CfqwXpZ7zu54K9z2vvX8pf8WhGdkZgK1Ip2wOJgGk5ksGaIF4JcM8O5qtfB1AP5b45YBksAuU+gnqhD9yv7KgHmaIvIcARgQmpJV6cYBKrYL523OWE+uZX3sdli0JoDsBQljMvOpnS1kYbchmf234/MT5HLVRsOI4eGYS+OE2dKVN+ptAT/FlqrOh6fp7Rc2wEO+88Saeg1S1Y3XaYzJF0HUMdh+84bLfQTHjhVzRYeEnDiwL2eqldqVrv1BDtn4H3PQWfn4Q3bYG/cxN8304VeG0AVySwc0MvmH85+Ah1MF/3cR7qS1Y8cqwC81ntPET9mlcAqH9FUu5PHnvqRfuu5dC6haUVYwWlpr8Vykhvf0Yb+iKlhjJKPEylytnv0FzorV2IgtVMFKxnop/9KPBF4EeA2yVkno3+vmH6si3hsw6g2Xlq86lT7i8A3wIsoqBHcL8OOM5i43s5FmCHaoz10+09cC/wN1kM5us19MsZpm+zpprEGJVgTZzrO3/hxy6roek5lwHkihfOOGG1cgQ1V3TkNOZNW9VxsRYSr8B71wg8Nw+bR5Vm70WzOb6ar13wzIyNYDCsRZ1WrZ/XNk3OQNqvdL9+BKYzuJrKgYXK+7zAUb934hwRYcZ7mtEpb2WYtoV37sB85RBDhSNL9QEQ58HZYIg8kqwcf20RHS0adOdhakGbcl8/CE911HDvGl86Av/yaze77PErf/vHV+Rzlqyfj4vHgTbsHCPWKcda5aJhQ5mRoTCGDOhetwG37xAzDtYPw6pr15M4IXNC0wnOCWnhkdReFiqgROcuOjUxgOClQg+pDTd0ASZ92fQb7gHytdf7UHu2mV79kaUC2UP0Un3j/lKovmW7pK7vdXaj0Uo8+AQZSDCJrb6PPtsjcEyETYGBlNSB79E5kuvWKYMprmVB5R5r+elf+HHm/BIZ0LIOy5SaIgLauu6Rvhr6+loYjl9E6EjFvItlYxAqS0RL6QoDI0ZoWrPIX4nX6SCwVoTReFhSYxS2XKVwvyhLf/b+0f3q7xHcDww2GOpKT3A+iuFdDt/9bIkXRBmH10hgWoC2YLUJ1hgN2PRPzfS+jqVoPfY9heFWzjzCuvj9nnJ+lxNjxXs1vo77WfQ5XOq56/+/YfS8wIUF1lZqPV/u6Cmp84LpFpjc47ue9YXHeI/xMGKgaS3irXbhoYC0UZYCvqQjD4C3Xm7XdZrF/uYRXRBPAW/eCG/cqOt96NvOVePwwwbun6JspVDav5fWR6h6zveBeS8wUpddBMZGA5uu5kDW99YgTftd3af+FQnoX4xRiJAHUEegnEWKte27oer0wnq026H92nfQm4XuV7iH3oxt3KISaRcVEioX0+DYLNceSMg+1ynlOdqO7V+H93wN+C3gDRIcAHSNqRv8uEVAX87H9IL6/vNzvhE/J4LcCO7Xh9/Ph/lHo1Kvo1+psZS6fYHO9RjwunCMF0u3r4+ljOkoKuJSOq9xfwlO7PlGpAL2A91MhNHw2ixkmFnBbBkJmSYwEjy0q1fDnlPwlomqF70EiqbodeSU0B4dpgNcaWPbunj9Qi/6Ug0x7DcNw4lOLeROjbvrEbmwRb10xqNxCUbFOdgomqHncAszPoiZWAXDTYYPz+G3r8GJkMYT5URpuo14t67AiAYs7zV64sE9cAL3mnXI69djntlLsm0diQvHW8/kvxwKAF8Oo1yE+xwHEThwBm6r1c8b8InBperCayZZKJzl+c3r+LMfF97+0FEmN63nbRNrudl5XG5wicHlhjQxkPrLA6Tr1MvMV5mbmEFuBDAfWAa4C38mLtdYqkRLUEG8V9FrA2N3EBOmFY9+lN5+0XGDi1vzxUkF5suAWbg34jmM5xSQQc2o9zPTFPxJ1YM+BC+1y4fHTGXYtw7qPMpaggDqbW8Q16L2fRZ9T8zOG0NJvZd1Q0pR66+bLzMG+txnouy6lq+x68K5sgJNoz9DCEaLLOmvgNq77eFEa6eSwEAAklaGGWz0oT/Tuz/LiKr/9WT+wECKATq5o5naUvk9Tm2lq8yjOakHMgg/T4vwxjgVwOZgE1sJ3tbn1zfV0mczNeo9BgYSVuU5U1K7j+NlvExBizhkiQ30uYqtIZcC83U/NIri9T97JbhfRrLrco+eOXpRIbWwbmaZZ6Rw2GAjB4EBI3QRBixIYjB5FaC/jJfj3HNwolT6OjPPCTwfKOlx/MQmuGGiAvJBA0Zbso7C1GG1HamtLVzhs8ro5Ys8vPSut3VR36NdePUIFG1YNQr3zcCO07Br7eLPCfX0kH5Xg/pXJOX+co5IXZuPdDVfKcLPiVLT69Q1qAx+NBjRQMZHMSrcRwemDn45x34k7M/Wk3fZc6KikdczJ1/oe9+dVEA+pzdL3c862EFfkKI2rwsdZUQ7TDx+7nD4vJNUjmH9OFZqAT4X3f5e4PVo1ijl0uj2pi+CT20flZ1hsQG9XIam534qb17hjIfVEhScj7cw65uQJpqNLGtCDVy1Gg53ISsUzPugcC8qomQA5hfI1xotJzCUQngxO+/7wbwBxpuqdB+fswhkLkAQqpxj+IzSmYqBCy/Mec9A+L2ZXIAda/WYd26geaiFFeg6UcpaaKwtIbCwEtdEZGljVxRCaz5jbu8sc69fz9z6QeZWW2aPzbMgotm3SyxD+K4cZ6ufzx0cy2FHrX7eVtlQ30igYVVZPDHck1imx9fxzTfvYNdMmwcXurjC4wpPXgh5Ee6Hy1BLr3oKvhJBymqqxrHbwVPHqgBQbF/4MrgHfACKS4H62H++h6Fm6KE0x22EJTL0XvC5U92AzGnt+3Ln7ML5zD3SdRRdR7dd0O3o3nX1c0uwH8opSrBbA4HihWkvbA6/iFohdrara+D4cKgZNyWoj5T7OOKr4TA3F0C82LA3GkxgbEDfeCYo6UjfMy+6htSZdzFTX5bTiQL9rvRu/R154nZQhG2xZp5oi0Wv03yOHa65nMsQxNP5mkCMqRl4oJFYCgvdTlS676+lX9nR46fFn0V/cwzYaGoJl0ywjaQ8D9VkFk+0zM7XT4cxMJgwmBfqv8XsPCvvvyw1yjlK73M0jwL1+mXrlwao35+xDJAlPuvlMOJ59F4wmUNyj8m15WySOVYVDvICDkwz8OW9bD8wRVaodoZxHnFO7fpLOYl+wbi4rj/SJ3j33AloWm2zOpjAgK38pjVNdUiPzVcXqu4jvARaO0v6N6EVMMdbMFXA9++En7oZ3r4LfnQL3HEQDs30shRK6r1/WZaZreR4RQL69RPXX5bPFRHaNWM4LwrkI5iPr1sespozEf3HuqKvUEW7e7LXVOC3fvGWWlgj/aKerWCJ1+cb0cmKAD1ub+173/dTAfpCtO6xf16gugA7wut6GcGF0M/rI56X+j6eg3EU0NeNYB3cr8Q4G91e0Pr5t3DpdPs4yjn2+UKrqZzYuP35n/3FeevVLmXUnVRxvgT1bSeslsCUOJxjtqzBGKNqvwEMkRhYMwBrgBdmQELrOuc1ECAB1J9pYUcsUxhUzRnNzIfsfNm6DkpBKDYO6WIfARpUxil6KRc4TwnzxIeIuBc6HlXydwKTM5gdTXXErhzATp5hOHN0gyES8SWDwa9UL/II3pyUAK4oPC0R5h89zfxVq5jfMMycscztWs3CsYwFYN6Lrj9lJvo728D90Z98emU+6Kz183NL1s9LCChJw+ITi7cWUsvViUWwHBod5cD4CN/36Exo6SsK7F0QVqyBvxUb9c8tHTxR6uWHjsAeB382uXR7opd4OPRQI5CPdvEJ4D5qZVksrqGnto+AHmqOelvFAH3HaZujWPt+njaCZYAk9xS5p5V75jqOuWenmPv4Y8w9O8V819HKNWATLjTifY8tr9YQOCHCZh+y8yGLbU52SDY2sHFtjAa9Buo/+md/0TPXMmAfyijEmsowRCXudQZOtisnvQbm8VJ2ZslEbXdXlNH3IPAfgIfQn2OZXT17v1Sw/hBBEE/Q+dWuU9LOYCRZDOKXVUMf973gvtNM6HaLckmvlO4vg/ho33zjtT2FnpNN4fsMYLuCGUhUOyD+Z23fkyGMQZtynkEYb7BBo4C54KgIAeSIlJVBl2v0A++4Ss1T3Xf1KfVv0CuK1/+ZdXDfP1ZsPV/m8CJlWZLJFQC2Mk8j9wwVHg6dpPHJQzR2z/FPvnAIf+B42Y7WhBvipVo9ewK49XVfBNb1iX+/bnMNzCfaaaUsV7SwdRgO15iN9eDfS2EfPD2MyIqBCOw+DTeshsFUGQWJgVvG4Qc2wwf2w5G53hZ3dXD/XQzql4Unnn/+eQ4cONDzf/fccw933HEHd999N865s/zly3PMnZm8LJ+biUa4I30tqsAvSADy8XfBaEal0rrzUncCYiY7LpB1IN9fP9i/xQu7il5hkovJUEewWm8lFLcGcGN439VUdPxM9O/653UqHM8OelXt6/O60FEZ+95kLSjt/lScO71zX6nH+Vx0+6PA7VRBmZWg25/NeM7SO7fb/8praxn0lV28elvoQEm59zAvwmiklE6dxmxu6PUJAeGeevcr18PzC+AJNfSU9fTGecxCQbpmkBNQZudjDX0UxRMID0T43HVDepAzme77jdMFnIoe5yPWwwcQ3/ZeSwum5jBNg1k/rM7ZqkEYGeTaI3O0yzo0DQRIMEwrcj3qdXOFxztlBy3kjs6eaTqvW0fLaECvvW0VraNztIC2aNClzNS7CzsnL7fx9u997SV/xoXWz2Nr919q8Um135BabGJADLdvHWVs/wncbFvBfO7Jc90T+9KvkLMkkU0QP7uup/DNI71vfvDoS++w1YaIlKAx1nA7tKzrN8J73g/sobITMTsPvVTfYQLVN9TDkild3ocMjbRDa6f2MoQBw7OeO2HBC/NOmN8/zcIdk8zvyVm4Y5LZF6aZd8KCi10MdC3sp2cLYL3nuIf1EchjFPwezbEbR7FxRa+BehPq6L/nra/tmWtY5WiF9ZAY8LS6RmIMrBnW1nV1J534erFmQQE8DPwrtIzuX6A6OXX7Fq9P3a5HwHdI4AqCLkC06wKJCHYhV0BP7cLVDfc5RrSTpn6hgXbaoOioZS8vYTiYlWa/LKUb4FGF+7USyikJQSbvMQ0bgu9xruVs+iZnq9MQgjLWAI2QkukWPXYobpdL6T4+C/GaSm2/QJWhh9pz1+ePwtIq9/2fudRYifV8uUNA7XGuzB1C94qF3LHGOS1Pu3cSkwFD0JyF5JkZxKmQr7iqy8VLsoK6WgC3h5IOHMrg6ibckMAvbIPrN1dgfiBZXKp4xSqYnF8U9IuB7RddVK7OPCj6Xj9yEm5dW2U4B4ImwO0b4S2b4AP7NIsfbOwicB+u9XfbOGcN/dzcHP/0n/5Tnn/+eQBuu+02/v2///f823/7b3nwwQfL991000381m/9Fo1G42wf9bIaWWfu/G+6wOGCsExHoOMrYJ9DqSdRCGD1dVegCTRZWmjFo4DwaqqsRF0ML0Zy4+hfTOOoetUujroup3TWi5QU8mjwI538IeBtwN8Hfg34CvCjVKA+D0auPq8DaNZ8iFodZN+8LnQYY3oUdevnYi19reuorVMX82V943x0+9up6PZRMDAxF063jyP6aUgvqB+jt1UTwLYdWy4rNa90Lpwvaeh4z4IPgL5bwEyB2Txa0kZtYjV9E+kJVw3DnYdAtmG9wTiv94GAnWlDA0YHG5wJExU0K+ohgHlByrZ1VNn/9QamW7B+cMnM1AXP0QsS29CFCHjXa+cCM+lU5d5YyqbJV63jNZMt8ivXhIy+R4IwXszwXwo/aqm6udxpi6ns6Rk66xt0tq0iNwYvgtnSpPFgG/Ee4wyJQMMLaTT+38F19Ffu3HrpH+K5oPp5kgDmrcGnFkkTfCFIajmRCFcnlrYXsrFh/FXjuEdP4946pFn6cK2adQdlJYQSIzV8Ub0hi7sd3DLRx0bQZ/il6tebS5UBjq8ztIyrPr4MfA+9TLV+2zcKLIhgyrICF9aoGshLjGZ2AOQcwoBOcF6Zdy2nzJZszzTOgjTA5JA8NY2/aiM+nOtRH1qLJTVSEMoWcAInvDAuBCZSoNxPzWGuHKsCnvEYFeVhjOGKnVuY99VcDepDtGIZkoHY1pMo1LVhGE51ex2AsgTJU2B7QL1ncSnd54DbCKDe6D7ts+seDSjPAdsgtKuj0kQBkhmBoYYeeX9E+hyB7ViBEBu6lRlsY8gGU33uoFS6j9n5lca7/UDeo9dwSmLLOqmSCl2PTZKSTbecOVZ+nf6ftZA1IOvkMDrQm52/DPOrj7qvWP+eOZbO0MdR13iISYbyc5b47KXGiqznyxySewXyedWGksLTKTyjTuDIDGYmHGsbitUwc/Vq1omUZRCqAm+RqA30Yh271IBufb13Hk624FAb/s/rlVkWAW8jUO6N0WBmXVB42wA8FIXx6E2EvMhB/0XMg7rezzOnNFO5fbXOI7W6IEWmxVsm9G/evxd+8VWwbrD3w+Maa0GsVdbod8k4p0v5gQ98gOeeey4slMLDDz/Mb/7mb/LAAw+U/yciPPHEE3zqU596sY75ZTkiZS0PjsjZqGt1pyWnNzsfQX18bg6xRMs6KvBbH2erY2qyGOidb0GtD0+vGF48VkEj97eF7/pJ4FP0gvk8/g2VU7M/zCkeY71VXXTQLmaUhjQaw/DzBirKfZmhrzlZlzqWotvHz74HeDOL6fYpl1Ze0L+BGs+Z2vvqTAxY+bU4nkcBBbk+tEHy0BJRKvrUAmZtE9PU+vmyJU9pRAzsGFMe38lOWT+vdaWCmc2xI0OsM3DGGDIDPmbobXgdM/SLlO5H4Xi22DBdRDbSQ9l2Dq+RcCmEBRFGEMzhE5jtA+p0BkYp2wfZefgMRabU//Jvg/H1l5oRrbeqKzy+0Lq/rvfkjx8je81GusbSMYanBN43NsyZJnRPLKhgZwCW/mVEuX5JxwXWz8caeh8WHJcq7V5Sy+nUMJZYrrGG3Rj8LWO4/adx0/M4FzL0hceXWfRLz9KfMzt/fEHlpt+wWt/8s5t72xMtsxRFe7CrA1xuK1Cu4UVKm1myu9D19K197/0Rqux8nXLfvxZ2nWBzhwkZNzLRzHyrlqGPdZWRNbNUoM9pd4KuKJhvO6F13QZaiSb4Wym0XzVO24W2rqLBGu96GWGxBOuUVxC/IayVykrymONt7EZdQ8p7LArixaQ21T6+jgy8svwogvn4xnUNOBHypLGGXk96GeDo1yz4wb5T8ANU1yN2uykDADWAexCtoBr1EAqkSqX7xAnGAcONxSD+PJT78q2memsE98VwA8n15ArVPt7aKzUk6Dv019B74JjAZkJgRmKG3mFD5n2Rne8H9jEwFdaSOsPQNVLyrlvEKvQB0V8O2nDdtvd/b4teQL+ULxL3w9BzzspNqkz9SznEeXzX4XMpwbxkuu84z9bTC3DfYcw7tuPesIFiDD7ytm20Nq8P3WWoMtcvLt7V4aXmA0gtUw88eAquWw2jzUoEr17uWDrcNZ9pyyq9wHNZX7A3+k/ntw9OJJS9XOLZiHNbinnw8El49SZNnkS6fQxUNMLP3zcBN6yH9z8DM139nG6ffYyf/100zokpvvWtbwGQpinXXHMNSZKU/7d+/Xre+c53Mj4+johw9913X/6jXaExNLL+/G+6gOFEetq5xezC2ahrMYsbVfBjcigaCI8azSMsrXDfT03vX1TrSZbVVMmZuoNRX6TPPbcaxb527EdR9fZXo87V96KOxQPhvXnYygBf+L66IF45L1P7+SLVJ3s+j8qorGVxDX3dIF/qwhPp9rH+MwY0DqDX7/WsHN0eegMWUM1zNVXgJs7o6Sf2Aivr2MRRGWetD69nrtteWQlmymEmxigFfxJTCuNV6tAJXDEIz88py8JVCvf2pMCaYUaMoYnhBDW6fXBgvanEyXroY+NDcKK9ODPv9ciXe93juyQ44hLSNO1AmR2Z72o97pZVYZ5hjqMDnFo1RPPwfCmkJ06zdN5zSbR7jV67ql7aaYAg94I7MEPhhWLXGLk17MXwXmO4OzF88uYNHJkq9H71+n5fB6/foWP343sv/UPOVT8/imY56vetCUyREFCSWEtvDacblqHUcEtqedYaGGriXjWBe/ikfo1TcTxXr3G/VMeiHuCpbx74+jF4zTp46w5979hob9BiGfeAFF4zOq3aFgAyHQX2FzvyftsZ7GcBPIeu4d8HvAcNIEemU/MsQewRUeFBE9sdFR6faz9i/+xxuGP3EsKAftFCKaIBrzyAetUPFLpb13Pk6gGeHoGj1wzR2bqOPAD5bsjie+dKEFgGV70K4o17VYovu3nsPYmdd9h2u7IJdcp9KFV66om9i9b9QcK6X6uh92Ed9AAbmnCy24vQwgFFxkC0z/E4b0DtyZrwHddSBa7L4HWfvxJt+86wppXgNjDnknahxzx89rZ1ZxvGqkWPtq8E94BvNJAa4VLCHOVcRdoXMQpCqQG9vhoiPAHsBfY5yg47NiuwzX5BvL59bZS4Kkwy7qXRQLIq/RCXpQvx4S5mSN8+jgU0iARLB5jq+9Ha3yz1mWc79hVZz88zYmtPHzLzvqhl6J2j28750bsPw/VbMDvXwKs3QJKSja+u6eJUbLtLWf8uekS7Ebe4hmeFgt7Xra9lAI2C34ZVYbwyaEhl1xoJjFs4PF8F/+p+01nsg5NQ6ieUYuALAm2vAP+ixlJlBE7gTAcmO3DrujCnvrlFUJ8m8I4tWir3B0/rmr/3+JIB7+WUEkgIVLiwvVzr788J6KempjDG8Bu/8Rv84R/+If/6X//rstXEv/yX/5J/+A//If/qX/0rgEU19i/nMTC0ZkU/LzogdXX3nKVV4Ms6a+kFyULlf3kUDBpgY9jXFe7rgLU+lvq/s/XkXY69iwq4MfAQN48GK26kUpIfAP4qmqWP74vnoWT4AS/Q27Iu0szSpSLZFzD6heLiOVpP1QsVejPXl2oQ63T7umCgB76JtqobZuXo9nH0B24samRPx+NC57X/uYOX1fBr5lqBfMzOF07B7moEc+RMVT8fgK6J0eG6Qbl6Deyd0UyO1PoyL3Qwq1Wpea2B0/019CFD72tCUOXJ2diEE32KrfEkXCB9zAdqW32eC05oeqEx1YENo9hmqnOLF9kYDu1ay9hBdWeiIJ4Ew+SjB30xow7egsHLXTA2D57A3TBBkVi8MXzNGjJraAAn1wwxOTMfkrGhxvelrJFbofHM3oOX9PfLrp+vOT8SKXvGVEHLkKE/nljGUsuuhqVjLQeswd+yGnd8Hnd4lsKrOF5RF7DLLx4UL8rOF5WzwtF5eG4e3rxJ78vNDZgMqir9YP4sXy9ZqDVvOwXx7V4wH38+n8DcUiNm5+sMtxgMPgN8BPgnIvxTEV4jQjMA+abRNTUuo/W1cNQLrVjLXkhJo5UXTsCHJpEoDPjsVM8ztMhh9WigTMA50UCZh2e955ubxvjqm7Zzz/gqnvU++NQS3qenPlToVODPCSdEe9DjUbr9oZPYTx/RW+ujRzH7p3sp97bKRu8L93nddIwQAva2Eg0t6fbGwPph6KD3RxnQ1GuupJQ+UI/6MrPA/4uWx91PFciPiYgIbOuA/gCVIF4qlJ1KrIBZyNW+J7U1GpaVnde31cXwTJnk9kmKDRpOkW4fySYrVWPuRcoOAPWgkxPhSWBf2N4r8LwPvkfHYRsWGw9hUR19fXK17Dy1OIcxMNLAhJ6BMUhR1rj7y2PX+/2j8v5F74tRKl/NEjo1OI8N7LX4u0h07u+yBGddaoBLW89FhEK09GzBCy0vdLz+X/09dB10A4iP2fnch/VCuOZrRzg9PgY3jenzONyE0QF2Ts3TjuyIkMCIPsGLZT2dCN3C08kcXRcZQTV/YPcp2JTCttEA1GuZ7MRAYqvnsF+Ec8uYdh4qF666nVichMi8lFphM17Fv2cldPYS1Qvr7+p1viGxbKC+Lkdw/+hp2DVSMQ/KdidGwXyzBuobCdwwrHN5Hvjg4V4xWCfLEqYtRGiJBitix7IYsLhcOhYXO86JoaLY3Rvf+MaePcANN9wAwPXXq2J8q9XiO2WcOfH8in3W2bLzBXBl33t/gIqCXkhlGKMxjQunoNHu7fSC3jrdvn7hSsGYJbZh1J7HIX37c43IHCgFc6QX0L8mHEcErD+CihbtJVAnYZGzcIBeQB+DFXF/saMMNtLrL6xHHUPoNSb9GO9ihufC1e0vhW4PvXOr/xyj5qFBEQK84ye/vyeav5KjNNCRbhaMW0vUUR3KHMx0MRPaf54g7LQoQ28MXLUKDrUxufZ8NQRn98QCdkwnuNYEpoUNCvchMxop+L0ZegMbh2Ha90aaI606XPzlgI/4ZzFbh9Na+paIZiCOLGB2rAaolPzDdnDbIKNHZhQQRQZDoO7LRWbF9e98ZehypW4XzpMdm8dNZ7ibxpS5kBiaibrVuTVMrYZrD8wiogJ64vso9y8z47Tc8TN//fsv7QPiQlc/FzEVduAMbB+pFl9DVT9vKlFGEf29b1hOppbRhsGmlutTw9MYZCDF3bAFd/9xvPfkhaqm+56MwUVG/uuCQf3Z+a8dhddugFVNfS62rYHJNlVBcH2+ix02cT60vvNV+7v61nXV/7djtn75c+i3nZF2X4jwscLz2q7jNe2CRqdgoFvQzB1NEdWf6ceG6IUYyTU77131rIgT5MmpXt2Uh472zr/fYQ2lKd5rHb3zCuofbOesnWvz7FWDrJtr82A7p6i9rwh773xl00PQ6LjXHvQxaGmfPdFza9ndU9X6CDVQD3/tp76/9LvjGCEAJtMH5m3YDyV670a2EpTrjgvHHG//aKcPoqV6m4G3A1+iN0jfk6Wu2ZdDwPbIPIBKEA9RhfvV8UKZal93Vs4xStxverGxXwUmy3VqpVGKAnkrk0mLYsf1ezRD79P3UwUwOsC98bpmHptWrIJzBTDKdrThJiiz9IBNGzSDCFIMVOgUX4Q+9FK9hsq3GEHtsy2cik62c0xg7NhOjslc2Y5xiF5R5noi6WyHf7HredSxmvMKKiMAmwv/1/aC917LbDJl7JQ19FmVnZf7phEv7H3jBqy1WGs0qLZ5LZunHAVU62eg3l9QG8yLHE6CMKeHucIzl3tmC2HWCQuFp5t7Xa8fPAqv2wS2H8gHJzSJWj81HyxmC7cMweEZ/cKlGFy1KeZSdfVa8LrNhf18bd/y9ARUzj/RPntW6gR4ePQ43Laul3kQKfcNqzooTVv9/MTx3s9+JDKz6rZyabakBObBXJjHrGiQYlY0eLEQ5n5Bc7vM45y4YtUqhQnttpK2BwcrcYGhIdVYzfO85+dX2igBvPRmGBzwbeBNwNawXQ9lTXqMdhfCItArBPoa1dpflr3QW2MVRxXVrX4GBfRn60N/vnyQp1cMLxr1HAX0r6UC4ilqr38I+AS9DkAEucfCfhvVXGJwMDIQLnbU/YI6uF+PRpXjudWssjp4Pjp7F7kQ19X/63T7Q8BhVp5u3z/Puh8UAf0sS1/rlR7lZ7tK+V2c9mYfFSE5vgCrGpjBRlk/b/vBfDQiGwZhGMzBWVW4d6GG/kyGHWtiMKwyhmMhWiMGXMiMekNvL/p4E60JPZhPdSrvJF5nJ5px7BRIp1YLvMR9ECnpEqJakTrfEWHUORXN2TJQBStqZQXZqgEWVg/B5FxJzytb/J3DkJxzeKmUWoOh814V691jpyluWo8bSHEWfGKYTAypNWwX+PnREYZykJmOOlZeSiGv73Ta/SWNGOjpd17OUT9PYlTZnmrNFkASy4lQQy+p4VWp5XFrEWtwr16Fa3UpDswq8HNVkKj8vgtci86ZnT88C/tb8ObxasG9YgAOn6k865KhwdJZ+roqcB3Qt4rq535Qv4x2cBAyTVL1No+2NPPC8czz1U7BL3Zykq5joOtodh3NbkGjmzNQONKaHSzXfi+sLjxpIXRdfD7CPJvDes7iAdyyqZeR0Td/KWoAXQIAFuGNJ1pMjw1zenCA6bFh3jTdUrZWeF8J6ENSKX49TjjuhHEXApZOMNdo+Z91Cn65baIMGsU2nEo5X1xm1Q+YyrXeVqKhGAsbUxXGo7YGegWEzld20QHGeQ5mjps6BWk75we7jidyx7SXkjlRLxWMG4QMPQpwS2HTCHAXXKifXwLEL8MWliwv6AX3TUjbeZh7b+cViS/6RrT/sgzbX/TdoxHMF6hA3PM1kzKI8L0mBO2LgrRh9Joty9Sbxdl5IBlo0OgEFoYoyIiPbXx9KfNbaizlPwhVK8hREUzmsZnDdhymU5RrgO16bCcn6eSYwvd0WVq0raC58QFcRrr3XADysXV0bCXdyrVuPiqelxn6TNde/8QMTJ3mq9+3hWaaQGor7Z8tCZuOnKpuLq/Z/CgoejkD4i7MryUw54T5zGvHjcKzUOjrlgjdAzN6wm9Y1+tnRVp6mvSyJOPDlIQ7b+sIHMkqUB0vVFwbIzukxlqJxxWBfTzfsatXJzw3y0qgiLCkur0IvHBGj+HqNZU9TmtBi6atwHzM0t+2ufcLbt6kD0+9VCGCsL6RheOP904MWNSDFQte33PRpQUrPM6pcr9lyxbOnDnDCy+8wK233grAf/kv/6XnPZOT2gJu/fqVrUv/Thjnys7vBp4F/he68P8DdEFsUIFkJwpI6vVr0UDuB15Fbwa7np3vB4Q99rG2H6Fq2xZvOREFRecb/WJ40ejvQQHkTiqwSnj9E2Gux9EIf4NqXgfQwEZKb+lAPVhxKaPHIIZtXfjdKWBLyMJEIOVRMGhTgyS6ECxX5flcdPt70WBHnW5fBki5NLp9OU9DWa8X75EGqu4sweJHBXhJTdWrfYVGzFqrMQuvRWh5GBHgqGA2ran669ZF8erAKDqd16yF5xewV69VJ3Ahx+ZgVg9iDGy2hkeD2JO3UdGZnl70PfWnhYGNCUy3NVtfd9q7Tn9vDBhXCVKkBolGPPyfEIIWIXupTARV8r/22DwMpLB6sJxf3YgOGcORK9ey6sACXLlW3c0I6r0EBUVZdq9GEVHw1kcTzguhmOvinp3D/60rcSHIcdJa9lvDmy2sNYYdqUXWD+OnusiaYbzry9C/CIA+PndCPQC3svfmBY96dr4EuHLO+vme7DzVGifWcCS1jKVKQ72xYXl/4TlZWDalCe7WLfgHpnDbV1MUhjzXgEv5TGQeGTTLD/gtVTsfhZG+egxuH4eRpjo9TmDbKjgZnoHU1gyP1Fga4d6vZbhLilbular+yDF4zQRcuwm8XRw5DIZMGmdXEe4vVdMAqSCZ42Ndxw8Unu3O0xChKZp8aXhLk4QGnsQaTGJLZW0DUAhDztMohFbuGSt8CKB55NAC/tZReGgefnICdo4vnr/3kCSBkeN7AXp4y8QUTLiEEQcbiwabjgtuJz0Zen22VP3ai3bvwAunvLA+imMK2I2rsQnYqxPsrRNwzabFVFKWtu1Qo9zHezJm6EOwCYB1w3Aqr92oFd0+1tF7L1qrnTuOOOE6r23nNhnHG43hnoblnamlaCQl7b4O6M+gOGK7R4Oxoi35otp90vIwUOuCtFSW/hzDmPgnJmTp9Q9sami2cw0ox1tQKnBfvydjy1AKV50LC5Ik0NB7qT5iK8Xo3/WXhHxA4Gbg3SI8gDIwb0wNSeZp5I6kBPS1yZ1lnqWdjPMKb00GLKtnc+ZEfS4JxxXtb/2RUzZNCObFuSfBt0mXr+ZdX9Pqp3A+HFMjgvnClfe1qZYNjLUazKFgxKS0+s9r3/5SR7xObakAZNQ7iL5R04ArnLIAc89gGagM9fNekP2nkceOwA9v58xwk4kk0Ww2YIzAxCjD7cMw34U1Q6UQcBSX9JcpQy+BebDgAzjOPXkeSolyT1Jo+Z8DePgU9vaNNOuZ+Zitjhl66C15rL9eH5K2UwtqK0owL9XrRH3dyFzpimbhu+g5B2WshMdLE1mi1+C8fdCiXxTBdmmbgYdPw63jyjyIYL7OPhhIqyOIvt61G+HnBL5xWDNtm9Ys8p/IPaS+6nqC2qFO7X5qe51vDF42Am4DSPSUMIRcdKJupcY5MdT3fu/38upXv5qDB6ualltvvbUE9wDf+MY3gIqC/50wNm69ZUXoMXWHJAL6qAb7fuBdaNZ6CwpkH6QCxfV6NKEX1IPeezuoMs397d36Rz+QjbdVKZrD4oU0GoelhsjZ27E9TEW3j3TyBkrT24Jmpj8d3hsVcYVKEK9y5Gt0e7PMQPZZRjxP/XX0KeqTn/KiWaaYle06fFf3WgtaaL/XZdaxes5Ot/8Gi+n2jRqYv5TARd2h67nWXhjPHa1OgW3n0C340B/cEfou50irUFrYCkUS9d6JzoVmrUWEeRFGROD4GcyWRul8xfr5ftBbZumvHIF9J1X1GTCnOpix4GQZwzoDJyOIMijtHkplZ6nXOIPeCOOjMJVV3kkE811X1QOX1z/8XyuHTl7eB+KD4XQ6YQnGpQVsP+Zg63pMoK+ZGFQI8xy1hsltg3BkBunmtQy/9AKw5Y5o7GrgSgqPEyF/9Axu1yjF2JCyF6zlMWO4JoGtxjATDI3ftAaZagW/XspM/eWuoxdRsbC6cM6sXwHxHOC9v3fHJR1XWexcz9Z6YP/S9fNYLWfwtfr5uGrMAUVqWZMabMMymBquSixPWS0Tca9aTVEUuOdnyprrnvshOjHLOfaYne+pxQ9p4UMz2rboe8aruklrNEu6Cs3eny1LH0d/pqQIYP4Dh2GP0/3TU9UzVc/gd121pi6x7hRnC4YXngO55/Hc8c7MkXQdjY6jkTnSrifNPAOZo5l76AZAQbUGWqcBr9WFp1ML0Mi+GV2M37EL2WDBpL3OagnowwF6tL1gzLSHe9Qj+BMzPLcx5e9a2Ddu8VOn8eJLYOxdqEuXWi/6ECw55UV1cUS0/vjwPHaiifmJG0mu2tgb6IzrZJjfH//+HYsS3MOEtrQB8Uqg51cZemDdUMVUCgckYV4uPPM+c0hWQOaY6jiu7BTYTkHSdbwtc3y745DcqfaDVP5KBPQHUTZcbEerdHupEhILDlb1CeKVF25xgqJ/VLT0mMHWP04GLANFHh4IKoBFdXsD2umgnePaBd22o90qaHcc3bbDtYJ9zFzPd5atFKmo9l3Up3kO+DzwfyBcZ+BXLdzYMApcgGbHaXew2hzPVUdfXtdoL+MPwzAiuWa5ZTHQLkFl5iqhyk7NprWKyqZdgPBm/I6S0IH6keucD90jFBxL5jEdh2kXmLZS123uMLnH5J51ue/xP/u3nu8MbL//8rsfOitjbqlRQNUyWqqsapmVF+hkjqzj6HQ9We71fs9D//ncw/F55CtH4C1bYP0oc4llNNSe2+B82zRhdt0oY8c7VUbeVddA+1Kv/IiCjBnQ8UK78LScZ6EQWoXQCar82Zk2nckW2W3r9NmvZ6/jz3X/KGbpe4C9VZHiw+3KHtRtQyzXkV4Wbk7V1es/Erp6SW8gLFvO6Ylgvsx4hn0rVy2Y2Hu+Duat2jcTKff18oLUwtUb4W++GrYOqFhgBPE93+F7fH8nVbey2Ia8BXwL+HfAt6UKZsS9W3pGL+o4Z4b+Xe96F+9617vO+QFve9vbuP3229myZcuKHtjlHCennoGuQwqPSS8OXvU7JDFq69CbeRL4TdSYObR37n3A91Gjogs4UzFbYoY3Q+npO6gitRH3RFDfP0ojJ722chSt7aobAVjMrOwf8Rh932sJ8/sZFgcaMtGffwr4DeDdVBnqyDrYFedT+7sobnQp0a14jjQy3BvUWOeF2cxhug6cA+dLQZmy/rrmVMtgqpTa2vmqAgb6qXW6fWQx5Oh1v1x0+zjKjFQAeLbwJN6zvtC2ShoxF370h9+OdAsksfgkzK9Ri9hfQtbeEw0wlPXoDha8sMZ5mGlhNm1R56RePx+zBPUMlDEKnE5PYue62DWD2NMOMzKsdenAGmuYDt6RJ4J6ehTvFyndbxiEwwuVI9t1S9DMascSBWQEkAIZSoODqHXzUkRA78m8sPXwSXjdxiqzkoS5ev2OhjEcGRmAsWHk0LyyEML1Eec1s+k0i7eseyKXCrgFkRjnhDwvcI9P435yu64nifZGvz81vMkYhhLD8chk2GKRe2YQ2VKK4knMsPRlaFdqxAxDzJzE7heES9A00BQYNELDXHjG/uff/cMXf3B1IF+CunAeDp6G2zb21jmF+6TM0PsaLkaZQIkxDDYScIJJhFsawsPO85bY8/u1W3APHKG4coy8UOp+kod7MDeQOiRZRpa+Pztfd4a+dgzeOK4APlKDHHrvX7EaDnXhahYzE3ztfqw7PPE8PXKs9xjuPawt8OJ7G/2fF/6/mWi23hoN7giLle29ILnjY7nnh3LP+tzTKDwNL6QITWMY8MIAuq76+Cg3tcbVFh5TqEjXqPN0i1De4j08MoW8Zotes+1rNFhzHYuve5g/aElErJ33rqqLZ2aBhfUb2WUNX94wjJ09gi88LtHnMWb1fQGSKiMFL7QcdJww7gXj1VaZyTZm6zosplof472WmtLYG+CdP/vDizL0w8CJeCsH/RBv4j0a3ri+AXtPUlKCfaybD3PK1SZKqC2eyj07vQQWruF1ieFDKTwN3ExBbhvkMUCI3vsHiHT7WD8vNWCP1lgPNXsN86IC87MPG7jrEehGf8cOpgwEIO6hzM5HcI9o5tp3CrqZgrm88MpIABJrSBMF4gMSfJFmopRiqjWr38/7PeCdaAIj2vWY1BgABhY8aRrTFfTOe6nn2uq6F81XeVYaMDSXc5pa8DyuOWHdIQS3yrZc8V6O57jPpvUzEfpHHcSHUwpohn6101IRG9YamwvkDrNvGrPnOObWTXDlJgx6D454ZbPV2UxAD0u0ZE7kDjz8wo99vwYiInsiPAdL+StxLalvHVGf91FUmPrHcsftuQYBi8Ipoy3zNHKP3zsNu4/iJx3yxiuQHQoY56xlOAB6U0j53TObV7PmaAeurgVTwvrhoy1dYTZkfW5dp500OrnwbCZ8M/O8LRduEkgen6PxqtXkqwdwqd7XPWC+UfkZxi7RHSi+3rYajtT8priPQX+R0u/1VOW4j6F+P2hnr/8MvJEA+E0kJMpZ7XvZvacfzHtRob+tA7B2sBL1qzOZGuGejmr3ue/1MRMDbxiHz03CmzYq8Cp8sLe2UipP9J4qmbfBt++K8LDAvxFBjOEu4Let4U2oyYvCrpfKvr3UcaksZ66++mpuvfVWNm7cuBLH86IMV3RCD1p30RmppRySmJ3/U3SxH0EXeYve2PejUawysgVl+5cI6j0KCBNUYdZQo9zXtv7RbxrrBr/W1WVZoiRQi8BJL6X8BApab6EXsDaMGrMU1Qq4Eo1gx4cd1Ohvr82pDuovRRAPFmes62vq5twzmzlVku6GXqNdh7QLfL0GNNff5e2Chcwx74Nyp6/qgrpeyPvo9nGOQkW3H+Hy0O219tJjug7bLUi7BaZbYDqO8Y7DdRy265BuwdjICL4T5hozZqVSda7/f5F9pAVK1fcy6yzar3nr9DwMp5jhZhD6qbLzi5zW+PNgCluamOdnsT7Uz68Z0vvYGjZYyCzMGM08+Ui/FwWwspRhyjsa1X1huhLCWSozH7Pz9Uxjpk6S5MH5czGbq1ntdK7DYCfHbF5VtaoLc40X3FpD1xi4Zg08P1syYqIircSHaxlrkL7X9VLFXFDefuIMxYYUt2W0zM7PWsMzieXmxLDBGs6EY5NNI8ic4BeykiYoJZhZ3rFc6OhKVWM3L+F5kqouLarkzoX3XajIzPiGNRd/cD2UQqrzmzs4VsDOVdU1rWVNJanWa6ltJ9F1WxKDSS02NdyYGp5tWFpGBRyLq8dwicXvOaMU7TJII7UF99znYMnsfFQCPjCjrX3euLGiJlpbPRdbR+DQbO98e5w2ysBVL9gV7f9bHweB+6f0WLK+Z6gncx8ZUOoMlsJicQ8459ldCIcKz19zQlp40sLT3Hecxp17aDx/nIHc08hcby/hIIJnAgXYFJ7VoYZevMBBFaaU68f0GdgxDIdOVcawfv1D5NoXAZi7mkaFF/yJBfKGYf2qQbCG7cMN5kca+Kn5EiDHrRSfDGvkCe8Z8cKwF4z3WPHYA6cxOwbLyqMeJ9T2BvrWr9f7vG7jo+itQA+IL3/GwLoBmAryu+H5LlvWeXCFijNK4ZnKPY2uZyJcyzQraOSON2eOe3OPz0VFOKX3/j8EXCEaSI7+Sm8NfQbDfVZ+EbA/9+hNcCv4HRhskMZgUwC7UAP3IkjX0cm92vTMsdB1zHccCx3dz3Ud813HfK7K4c75Hqp9Xd8hdi9aAH6aCsQ3jTr2sTxkYAFMI+GcIL7vVNSz85GRQNMymuecCWti6bsFYOXjOhAp5P3Clf02LfMUXtkrKrCmSvBZDMrHz6/t4+sFEVYHvRy8Bs8oPOb5E/DBSczuDN5/CA5MY70PehZCp5b5lP7NeejkgUWgtnnD8GjwUQJjLjAol/JXIvU76ljF14+gLaPvzR3/tut4suMpckeRC67rcLlHnplCPjSJPOv0IdooIfubcKqRMJBaTAyqBQbM/ETCxqlTAcxTtrH18WHwy2dBLGc4kTIDXggUhZDlnmcK4T86z71e+F3neTYrcM9M425Zi7Pg4joSAW7DLC7tizahvhlg28DZGVwhuBuvXz34s2RXr+gfS4V3zjrOFqD2Hh6bgtds6Fsfa/OLgc+QrS//v540umatOuFPn+q1a2UtveLBOLeYYC1yh3QKvt7JGWgXDLZzBjo5X+g6ci89JWMvdS39JQP679gR6mfILhzQxOx8dEhKcIcK4Z1GW7ilte1KYAO60NTBfATKUtv3A98SAJvq5/7RD2jrgP5sKvd1cL9ojvSC1XhzPxrmMkYF5hNTtWKL9fE/BXyWirWQoa34dlFjHdS2ZZZ3nXX0156VwL7wbModc8HplcLjMxVBkWen8B/ZrT2JA8jvdB3zmWeu45gLoD4KrJRCKz7UaEnvdfRUdPuecoQamL/YB058oNV1HdJWME/Hab/bTEH8uo6j23Hah7Tj8B0PHQ1aSL86dQS2sY/0Baq0xhrTspVbcDBOCmw9JpgNazBU/eetrdXP92/RkFy1FrN3Vq/h9AJmXbO0M01jGDWG4xZcDcwLIUsPvUZp/wn45owe7B1H4INPwO4TcGxeHaAaaOepY/DBR2DP0SrLEYI7pZBdba4iwuhUl9mJ1ZjUKg00lhOkQcQqMQwkhgVj4IphZGoe6eS1DL30UsvON3oAX7iXc3XOit1TuNs2URir2fnE8GhiuCq1jCWGtYnhjIUCZWfIugHkWKt0CKUO7FaYNxZFpWIdWsv3CspEamT8/yg886K1hOkPZsTs/KFZpTetXlw/j126fh507V8P6kA0LDa1rE0tE4nlCWvxicVbi3v9BMVXD5F/9kmK56d7ae3x/jvX/BfdD/F+8vD1o/A9G2EorT1nVMe/bVgBf62Wu4dyLtHRkd7z4wR2BK2czcC7t8Df2AH3HYMP7IUzXX2m+tea2poj3UJ7tUtfMFwEX3g+7IQfc8KIF1LvaRw4QfqRSRqPdGl+cJLms1OaHQyUXlP4si7WimYPcQqaW17BhzxyCm7eove+AdmxGk6Irn+LGAqiDK4QLPO+2nuA047JTWu4zqqFudYaXhhfC0cDJV8o1eO1ttaXAmVTThXuCfXlZqaDnQOzdVTXx7PQ7SGywxbb91FqJXWGUu1eYg29AdYHweKForzWZXlA+NkHIcXDueeKwmEPTWPvehZ74AS28LzFeXYXnnbh8YWjcL68dYSqnC6RAOR95a9YUGA2YmuGOcwgrtfnGaUtiech/M1gI9Fj6OY92V9ESwrEC51CaBdCK/O0A5BvPTfFwmeepLX3GJ3M08o984VnPtetTqUtaffh+X4f8CtoeUGKAvoG2lJxQGAwBDVoLpGmMEvP19iKdVC+zRgIJQURCNUZQUIAxPHZD/4sXQdPHoUPPqo2LdPn3DuhnXvmC1H19/omlWJ3XALq65ugv18V7hcTFjwjgtkzpWwTq2wMnpgmKkGOiOrq1D+H+NpL2T6uXDe6riobqP/c46+EFpmFr5gTcY/6ZHcCjVyFNBuZ5+4siN+G3vM+c8jDR/SZCXEXef4UklqK1NJqWEaaoZQu2nYDxfoRnfuphbJULbbuxQsSi8hXaDipgXkvuMLhnfCNcN2bXmgj7H9+Dr+mgd8yqq18l2hVt4jxVbNn5XNoDGxdBTNoELYfzOvCASxmcLyj79i/n8VgPj/LPBeJ4UW75gUm5+CUwHVre9mU5fz62Kap7e1PX5YeWLh9Au4/XgH5OhMgPkdhqngNBtrQEeEdbcdAp6DZLhjueH6oU1C0c/LCl4HpZZUVXMbxigT0I6snNJsQ1Xvz5UfVzkYXrNfOv5NKEC1m6C3wBrQGo157UmboqRa8QyxWuC8B8FnsX395Vh3Qx4aC8V7rfxB75ufVsSrC5nKPK3yZdXgI7a8eAWv0FWMdfSPM+w2ooftGmNvh8Dcb6Q1QnIt1cKEjfk5p+L2QZI4NwUhHQC+FR/ZN4z80iTyWw/sOwVNHybqOdu5Z6DramWehrRH9eS896qnzwdjX6fZFmOMkcHs8N/QyGC6Gbl8C+U5RGjbTVYBucjV6tuMwmWO061jINPss+6fZ/b8/jzx3HAmgvt5aqnzd7TOUsZ+0k7MCih5RnpICqMDXCWyYnoGtzd6MQ3RYjTl7ZPjKEczzC5qhn+lgx2xVimFhg1HqOLbKDDlCxr6fPrZ7qvegDzt48Dj88XPw/3sc+d97cJ87SPezz9P54GG6TzryP5nEP32s1kasau8mjkrMDhg/NM/c1lGASuzPhmNNAGsZMoaOMTDUgLVD8MJ8BebjZwUAcS7wVraqKxXM1QA5EfLnZygKcFeOqSG3Fp8Y7reWVwdHZHVw9GeCJ+y3rUGOdAJuqyiDFeV45axSIbVaNKlq0b6NliR9SxTM9yjl1rb+zNFS4577dl/UsZ27fr5z1vp5avXz0LuengTWQMkssYlmeW5ILbtTvT6FNbjU4zNwewqKD07inpnqDfBEZ2ap4+7Pztffv38GjmVKL6xnaIIWBcaoSCTA8RYld7cf2C/5s8DRAB9/4Wa4ahx2rYFfvVGFA//gaXjyhL63P1sfnqci92SZL52faDudF+51Qu48bxch8Z5UoPHMCZqi6+eAh8Yjvc8nAdQT6fbhOVnlPF0vyLE5aHWQG1ZpICaxyFAKGyzsn60xNHrn6n2weUJZPy8i5NMt9q0fYqdRuvZ2A89MpGTHzxB7YDsftBFKBoyisFNeFe5jSZQ50sVMDGHTBNuvLxKzSrXxwLceA3oBfVS5119EITxTZeij4zsMnIzXm2puIrhQSiSFcLTw3DZ5gubnJmk+ukDzE4ewB0+wxQlXFp77C/UPXO7xEfwRkhCiT0FCoN17zc4nXqBTy9DX53UB5rCi21d96IcMtAeg21HRv1LpPjw6zqsuQ6fQMqmuEzr7p+l+8hD5o206Hz9E64Up2pnXLH4hmqn3vUGnmNh4HyqE9wZ6wXzDGAZE6fbNiL7rgL7fMVs0ucrHK/UCADPYoNkVpoO9hcr+asCC3jUj9/BM0Ll4ooA/mYRnjiG5BmNahWc+l5IpVbKlagHVeE2p7UHX7eFwbQ0auEHAXL9RAX0IBpvr12NCUHDYQycG1uJnhqVFYlKtXjLQdtx7/+OLWQY9fov+XLQLsnZBnjvy3Gu2NDyrq3NHo+tIM89I5nhrAPKSe3wegP3xcEwOnAW5YT2klvmGpdsMNfSRYRgcy2ZiObx5LRxX5F7a8NKer6z9rGtYucKXjKFthWC9rlOjTnjtnmn8LeOICUHjRYmTJTzsOvOsbuMGUzVih+eq4G4N2ItbnBgEuBH17wFeDdwApU5YnWWwZBa7HkCu2zMP7D4Dt67TvvJ1ob+yF3Tv3ExiIE1619LItLh1vXauOTKnn5/7Hp+qFMwWCfdnUdqya7uOkbZjoO14V7fgmlyZHkW3IC98uVa8lFn6VySgT5JmdSFjP8pliqFFumC/4mmB0q3ngR+lWuzrWes3oY5sCeipIljRj/ScJUMfcQJnB4X9NsOi1O9IuQ/rr76Oi5AL2equQ9o5dHShLBYKFYtp51qH3dHfPd3Oub3rsLkjLTyJF1IRmmj9a72e7MeAj4fv3E8VpOhhHSAkXh0xFSg5N5g814hrkiFQ/TIFvRtzz2w/oL//CN6g2QzAPXSUTojgd7uOdtfRyjytkLFfcNr/M26tGBinys7fA9yGZk1KdkZcU8J5KgVUzjMWAfmagTOBVl/R6BTkj+cFncLhD50g+fQh2s/OIXccQp6b7m07tZSAVQT17aKk5Jc0t77svcTjc8G5cKGWXoQF5xg+s4AZHwyGsNqs7Vtc+53XiRFME8zBGeysx6wfIvZ1xxjWWThqQv0ylePh0Sh7jwG7va9dybu2wC/dAP/iZvzfuYbWmyaYH20yt2ee2RRmB2A2hYXHprSfa2hlo5R7nZuCeqBwbJ6exU0M9Aj+2bKO3oKFgcTQjlT3a9fCs2f0+ZN+ITQ5N9Vdau+tgQ63bxr3iYO4nYO4JADFxDCfWB5PtfbVGjVwa6zhjAlZvE0Jcmym5hjWwaxUCHUFRslgCU5JFxXV/OfAXcCvo6VI9Sx9q/acxfY35zKSc3Ots/7unKMO5OtBDRGtn1+i/3x08MSaqhUx1XYK7ayha5EK45nU8prU8HhiKdIgjvfcKe1wkkBhwT16LKRjaoGbs7HHyox8zYmPreq+dhS+Z5M6ZUuxYKLw0bZBmGzRQzmvg/eYva//ToDn5+Hq0YrW2Ey0Tv/Hd8KPb4PPHoZPvKDZ4OCoS+4pAu25k3s6hSMLWfpoP7uF8HHneWchNAtPwwmpExo71pIKDBYK6O261eWco/AWAcibwmvLSycMxGPeM4O8agvSSDVrHYJbbF8LB1oVkO+7/npKpQS+LgAFMzXDwrqEZnDyE2swGwZJZ1qqbO9CHX34W2rBztNeFe6tF60rPziL2b66AnGJqdWgmR7vzADzcwuLWtfVGXgCpTgeplZDbwysG4STmh/zvlflXlwMXHqOeuHK584gC2CbkHQhfeYU1nu+Jxe+WXgtRyg8zimgP40q7V9B8E9EM/UWzdha0BTwUNp78PUs/XlGPa5GbV4NoJU2KLq6aJWsQ0EFDEMCJraJzJzQefYU8xkcXA/zGXSeOk3He9pO+063nND2VTlI3J4Evg78HdR3aYpUdHujPw8Kek9CVdfbn205C6qPgeE6E4OBFAMKQmvzE2ImvRYYjut3v87Fg0fpeKHjwtxc8GekajVWbzEWijMWbXPAaPjBhHXJeMFsX1eKFfIz2zDbNoCoLsuo13ZqizL+XkpfrFy/Og72HGX2S08pw+BcoL7jyLqOrFOQt4LP2s7xnYKi69jTdbw+86SZ419mjmsklouoj+k/tg8ZbiLv2oLcOoD8jStg50YktcymCSawq6Jtx2qXgAZweNMQHJkrmSAV/T4G6897Oy9r9NDtnT5zPpy3k067eWx0wq8dn2M4y5Fdq7U9aihBlDKgmyzd4aBu2xZl6cdgsltdsJ7ARV+ApvaRTeDHgb1U7NyIc+qgftHoYx+W63FWwONn4JY1FZW3LvQXfK1FoxFBf/29IVjxmnXw4MneIG55H2pgUzKP7xZVS8PM0eoWjHQdf7Pr2BdKWYvcUxRCUVTU+8ukjbis8YoE9LOnD/Y6QgEUnY9yHNtj9FIFK6fkg2hd1QBVdj4C+gTV4EmAJ6hAfT05EL/9EAHQi2CdJ81dWTOdnKX2uc/O9UTwS1q/F0zhgtJ7gW/nyEIAcAt5qFkqKDoOl6kKfNFx+E6BtB0HOo7RjuNVnZy0pfXbjbb2HE07BY3M0Sg8qRcSEX4Arbl/DA1S7ArHR8jAmMxhOwWmXagD2IpbAJPLDLLEUafb28KTOHX41uZKqaMIjktWIMd9MCx63osbN5IXIYOUe7qZo5M5dnc8v9V1PJCpuEvZa1M0sFOn299DH90eoeE8aacgjfOMQLne/9xVmV9xizPy/fVwpl1gugrsTaYbhaNZOLYcmoEvT0IH3rThSoyAfHESmemWokelYez2va7v2zVa/kKuNfche48LgFd08mWQQmD19AK+aWG06s1eOiolbdlU9I46sLcWc80Y5v4TaluGUmr+KeuMCuN5a0pGixc0WxoX7tRqD9LrJuCXr4BbGvC3t+nPTYtrJLQ2jdC6aT2z3zfBwru3MZ9olmvBwvyNm2gVeg9IqCvFB/pmyNJxZJ7ZoQZJqKOtdALUMZdgaFJraIX5yRXDyHQLaWe1fvRSZWXPZQXqDlvM7j93nPzDR8gNuN3zuCOn9LxYbe+3JTWMR+FDa1hrDdMxGDIxipxyarBiZiGezJiJXYHhg9GPz0dc6/pr7T6DAoI26ljWt1hnP+9Vv2IpgPsjP/imizvAMjvbN/+yfn51bxYj3KeRzlzfYnApAnoI+DmxmDRhR2ppNCx7g8aBu249LlXcXAD5zZt6MhTeCXnuyQpP2wsdL3S90M0d3cyRFSrulTshdyEzvO8MMp3DGzZUWYy49QQkUGG8umBk3WkTqYJMPSBf4PlTcO3qygmMvX8TA9evh39wva7ff/gk7hsH6X78CRaenWIu98wVnrlCyHIhz3xV++qFLzjHSCG8SdR2JKIAKT1laG6A5o0J6c0j8NBptRE1+21CDb2eTAHvGfUeTi4g03Nw82j5TJZt3XYOwYFTFUKqPWO+EJzz2qPdqxCeE5C5DuTChg0j4VZQwc6dowO0BhNkel4py76qT5dA/caHHvQBBBjvSSbnMVdo/bxdRLfvpcgaA9//jjeV91Xc1zVyYgeQcrP6vAOwIbSui/auluX1LlDuC+GEF+z2MbWl3WDLdq3FOs/rxHMi9xzKtdWXzx3eCwdR3YghFMBrwD4o3Ac2AhnaPjEeTx3Enx/Pawa7lp2vwL2h02iQZfoElmAx3MYxwBI1EHIvvHD1Wh67MmV6yPLQq5rsvWaNxrKd0M5VWLZdo3NHQP/7wM8BE1Tid5qhD1R7gsp0HlLVUTCnvGDmHHM1vdn58JyaWCbS0WBMxY6rkqfSd/9yS6/ORXHrJrIQrOg6oVsosC/7a0tvy7fIGo1LbVxxF0RYJb1gHtCyF2MwAxauWItxUfRRWCVC5qu/iUOWClLvVWbBj5zeGTpoHDsrqC86qlqfdTx5x1F0C1xHfdZvtwsGM88vZY7VmWOnC2WWRQDzn9yPF49/9zXINePIX70RrtyENCzSTJhrWIaaVsWDgzipSfT6Naxhz/gATM+Bc5X99PXAygrZT2qU9RCQ8oE1+ITzvN0L6wS2Pj+PXLkZSRN8sE++YZHSJzpLACk6Vv3sRgNsGe7VWemzEVEqIHroccZdlME7SG95cVmaHPY9eg1eKgZi/X7wAk+c1vbDm0d7afa15NCSCc5Q/tjLUjO6oN2+HvbMajSv6LsPo55It9YFIfPQ9cxmnmtemOL77tpL84VjvJDre4vCk9eC1Bm8OOWCS4xzqtx/V48I5uNNnBiwHmmeXXHasUTvXPQGvTu8/kH6hFJQIcVEKir6fcCtVJErGz7bh4DBSS/sdFpDmEQHB6moZrnoMTdMeGhtSdmC3v2IaAa8WwgjYQEyvhJ+iEAsOrdCMHxhEVFancLkpwReYyFJDKkxpDkkqWYpUmtpGMeAsfrgGsOwtfxYYvhUMN6v8YJ1Quo8CZqxTiRkK+KiUQd4TpBm0qPOea5hjWYHrKvqKk3hWeM8C0FcQ5xH7ptCNq9Cbh1DHjiC7PUUjy+Q73QUMSrqDU8W8P82oCXCVwT+v8CNTUtqtL9uGs5hgeoDHELV7RPR7FLqnO4RGl5qAXpDT//zsECJMZVTWqfSRsAXopfW6TU00VmabcOzXd5w4BhdDOwcw7dnkJCAkibIf38arloFr12v/UWd1BZF6QUtMXJbr1cKz0ekGwu12vISFApbjnuKjWsYNL1Avox0h/8Xa8vPqyLEwJWj2M8dJrliAEOovQ9U9gkDT9jKeHihUrtPLL6hNLRy3LQFrt9c3t/OCW1Uib/jRJ/jK8fxPwvmm5Mkx6A5NowrPBjDIJVTXBptEThW8NSWDVxPMCbWYGPtfGr0YTYwmFjmrdeDHGrAhiHk+QW4qVkJ0dUyomdVu68e1nLifvcxXT/S8DHPnsRdvRFJLN9KDa9NrPbo9h5nDOusYdYa8AYZSPHrE+ToPP7KtVWGvg7gVsgy1J3CuP0AqoIbRxsFJcPUtDsECqObM9U6OwgMIiQXWLqy5HB9847O2MFZbe22urn4OQj3qVCB+LrtPonW0Btqt3VqcA3DLYXh0cRygwh++wbydwqNeycpDoPbtg5feExhyHJDluhGZvDNEDQSqSiq/ZRz8STfmiL9vgkazZRmpHDH4wZ6HLcrBuDJ40sC2iVZC17UmT5WwFVjgb6uQQOJQY7cI6ub+J+7GvfFF8jvPU1uIX92kuLnDe66CYrc4Qxk1pEHVsm883ymEP6RU1vVcBoIbXhP88kpmt+znYFr12K8hw89D585AO/aBbkpqerG2JJyb5ywWmDnM3Nw5QS+2agCMQHosn0MTk9qsDK1PfeAE7V/3vsSDHrxyIkuR8ZG2BXAdpIYnLNca4UXxtdw/XFPujm833mMN4izepeEDP2mkLk0U/OYFMz4sDI5kr57rC+jVrfpxuhHGpSBF0XxBMBaxDq9PuUfAOuasG8WoKyd974SVhMRZp0KpI0vJLjNCX68idnfJl2wWA8DXniD89xXWHYUXoOoznPAJqXCPSjrzlBR7m3InjNSW1TihJaRne+Zd9ybODHIRxoUee0chH/0ttZWg1GMUUS4Z9NaNo5OM5F7vnX9Jpqb1vJ/iMcXlrwhpIXQKARJQsCJqg3vT1KxL5sm7DEluAcUeMajXu4yZarAdZxZBPduwCJd1T+QMLMyO1xQsbviPbx1LeqRgPzEJro7x+l4DfyVwN4LDycaXP0R4Paw5BemBuj7thYwJLXrEbdWXlLuzWwX1g6XlPumV3tL7RDF0JPVjroXPNzHLPj0EfjFVTA2GBzl8Fzknjy1ZIkhN0FBHUOBio5+AcNPAesLVbY/U3gmvGo/yF8cQLzH//RV0EyRhnbf0JrRBJ8mnG5YbDPRdcL5SIvFGEPDwIlVgzCYIkfndR3pB/UrZD9LnSbRMhcfSl9fCOyl14mwf64Dh87gf3KDagklCuRdUsvQn+sZKxmStfNrgC1D8KWjgallegLeEhmL4YEsnztgFmWovgXFRLfDoq5ehYA3VELYvubv9geQd0/DqzcuDeZjKdkSw5iIjXyNdm/1y9cPw/YhzdJ/3+bgVxutu/AhaFJElmZM7DjcwRP8gy9Nks7BP9o3yx0/arjyqk0UzlI4oXCePEnoSgj4rYCLcqHjom6706dPMzs7y44dO1b6eC56iAjve9/7+OxnP8vCwgLXXnst//gf/2N27dq16L3GWHhuGlaP9QF6pz8vIWZSz873953PgTuAnxUpW580EZqi4iipD5gJeLOBPyQ8HybQNg36gOSeYyKsdbDJexKvWV4TnICoGFveoEW4YSO1JESwgVIgaKTwDBXapxIXwbwusFJ35oKBqCv6OuJenYPnBN5kDElq9NlKDNYZEmtoGE9hDbn1NDAMGIPH89es4e8lagxf7yANtZGJeIwPlHtXO444v4btoS3IMkC9IVDAMod1Hlvoti735M5TiJC+MIOfPIP89WuQ4SZ+53r8fI7/8724T72A//GdgTlh+Wb4umGEtsCHRPin3rKqkWCszttSZedfA6xy2g6l4XWzwUlN4wIVLXZ02Pqjo2WW0PcudPHnwsO+aczjU7BmFHOiUCN61TqOvmEzn5pYza+lhuKa07SfmmLw2k3IFeuQEy3k/lOY978Am1J47Ua4cT0cOhkURCe0X+ciEN/naAaH2FlTGuVIOysENp+Yw+xapdcj/E0J6k2t9UzS9/kxc3/lGNYfxhzvYg+dwlw1rlR2AxusYSq8jkYkgipvjD638TymVs9VPD4ndFCxtY7TNmqZ8+S5p9ixAbatp3HfNP5LB+GnriYJdE5JQvDB67OBCDJ5gudeN8FrDWBrcwtRfCyY1DKUe5w1FF4DYPKqtfDUSeTGNb11687rs+xlkSOvNz+9TptAccsmimeO4B3kKRTXr8dhaBvYnVh+NpxTm+s5X5XAKUwQEDTIpjXIoQy/izKDWNGFLqCV3jnGUk6hADeF378WDXDeCfwj4FfD/8Uylsh+KdC2dhHgF0Zb3DWNGu5uN2NgoMmFjPPXz6+pntX6Mxru0/Jy1OYFqiUUM/SRqZMkljxJuCn1fDC1vNt7CmPx2zfgtqzFfehp8idPk9+6XoNOTsgKIbdebUSi3COTe0w3sGyKmiN84ATcO4mdhuRnNzCQGgYblsGGJYkKxzl9lMrV6n21FgPaRU5VYG3452bwEwnFSKOH1ukbFm9NpWVRGJxk5KmWFDgPxdPTFFdtwlmhMEJuhcJ68oblL3LP1U642XkSp4HehgjpwVmaHc/AVWMk1oCx8JM74Q/2wO6TcOu4BjRC0M0U4VnywuqZFhOTp+Enrg5rljqDgp4HGUwwGxOto3/1hh6qXBGp88EORor6wvGCQxvGeHNYzxJjsBZWGZiZGKCzf44ma/DeU4iCYC+CiME5BfTrJNjzyQKzfQwbqLxlhj7W1i3x7OXdDBrNHjAV1BDoohljCeBDJAQj4zXf0ICHtYZe44eBSVBoUNYXwlGvwCd55hjmDdtIdqwhOXCG9KuHSa9aRWFT3mAN/63w/PUitAm0cDixbLempNpr61hTadosZHqQkYJeDzAZWA7qrbRYws+1vyqSJr5NZYtqgLRa1ipQ/0aEA80Rnt41yqp2wTMCf5DDjybCjkIoEtVysF7IrOE4qo30f1Nl5SOYL1vVBV8PQTP0jfLAa5Po2y+aI2V2vg7uSRsqHEcVc6xT70XQSaLzZ7qlTuh4g6JrybwC+cJJmel9rPD8q+Azfo3FLcaWOsQFgTEJNfRhjwRA3wDGLWa6g1kzFFgDsNqr34wTJKANIfzcH0y8ZRPsOUJXCgZMqtHb339G25Xdsh6uXwfNBGchKzxZYiiMbrl+HbsxpMAbU4P1noncc9p7NhYO+cIhLcP4qV1IM8U3NFkkYXNpAqnlzEDCSGp1DkZ1UFxIPgwaS9sIbF4HRwq4glLpviyjWwH76cNzWqfbF06/46Hcc4MIGxFue7ZDccU60uFmlZ0P63AMuJ7zOKLfVYL5sE2M6O9PtGFitGYHKP29GNiO11TQdWgEeCvwL4FfQ58PR62WPoD60tVZCsw7r/fxsRz+xrrF/mhIZJ6zRWASMvMxQRb9TIe2dP3EQXjLpjJ5GN8jgHSD5kIRyjScZ/CpadI5YAjsLGx95gxHdm5iW2DJNZxUpdhGGWaX6kNd6Lggyv3jjz/Or/zKr/Cud72LX/7lXwbg3/27f8ev//qvs2fPnstygMsdH/7wh7nzzjt5z3vewyc/+Uluuukm/vk//+e02+1F79249Rb4yBF4ZrHAztnq6Qtq2Xmv1K3ceVzuuLvrGOwUvKNT0OxoS4OBTkGzq1TrRjen0S1I2wW3tQp8u+Bgu0BaOa6TK/29pTTqqbbj2o6+tllR1kubTkHSDb3Ul1QQLpS+njulQHX157RbsLbjyDva6oxM6fMShNUkUq4DvbvoOIpOge863N7jFJ9/Gr//OK3McSxz3FTocSVdFWNLu460XdDoqghJ0vE0Ok7nmxWc6hQ0gpDER7sFz3U8SVbonLJQD14Xa6urj9fFUpbRjcCIYHIf+hHH+krPiPMMOs/8TAu+fQT5K1uRoSaSWnzD4kYbFO++Fik87lP79HoUjrfknjTzmMzTyB0Lmef/zBz/sV1wZ6dgquvoeuExEe7wwpVdp2UIXS0/SLu6NToOWz/Pi1qmFYuvZ3+NexbOy6NHsB86Ak877P0zsKGJ+blrMX9lAraNMZtaFQTZOc5HzjyLv2ocUotsGIYf3ga/fiPcPA7fPAL/6XFVgN/jlOL2zJR+T//3t/uOs6vUNsl9WUuPqKr09pNzNDc01BAaSoVYa9EWMHEktpdiGrepM8rYyMB8eBJz6ERw5rSGfjoYcE8NzEvM0hsYSLVOaijRms2hBBlI6AyltAcSOk1LNpCQNy2dNKGVJuzB8EcCe25fR5ak5N88rs93pF9FFoIIzLQhcxzcNMpgABlVyzoNrBmr1N7BxOJTQyf8XnaOwLEuLOQVq8HVtrPR7iN6rO3ynePkVzcp1oB71zb8tg2hC4VhAtgc6IGxnn/cGI4nQQHbgGwdQKZmAuCohPp6RMJWYIRgfo/hjx/9q8APAb+F1t39B+A/AdNo1rEt2lopiuZ1pBLPa4WfvQi//fsfvrgDWyoTLbK4fr7uTJiqfr4epIj340kU0EfDWnYCSQ3Xp5aZ1HAwsUhqKBKLsxb3us24B4/RDUyiVtjahdAqPAu5sBDEOhdC+VAr09cL+6dZ+NgkncPhvEydYSExLCSGTqrZ8/JZqwcnBhJYb1RBuOTusjgrH7bcw8L+eWavGWcuMcxZw1yirI/5hmW+mTA/kLAwmDDXTFh49SbaNlwzC61rx3VeuaflPJ1CyJzjm074tBfe6LxqsThftv5qPHyKgRs30gygl9TCSAN+8gq48wicautaH1kKXgPWiLBtzwIvbB+H4WZJzYwBiLLOfIk6enFa+14EsBvBr4hgj51BNgHxdgig3hiD2dBk8MRcGQjQtndVb+qTXoPsa8Lx2clTmG0jwZfWtbJaBxc7qgb4H3/wkUWYMLjdLJT3YpifpQLzxsC6IThDAPRSPuLiPS6UKUx74bbJWbAJ9orVemzbV5OsHSZ99AzWC7ucZ13heThksSiEw7lnR7jnTWTcBYBrvWjQaCgcdX1e5wG4/cOEjHc/uC8GGkhHV5j4r4QHs2QjCCVdfcdcm1sOzeI3WP76kyf4DSNcLZ7/5oT/VQjHvKgZDEmNPwLejAp9RQCve2EAYdBowJF4BLlT5N9z8Obcc43zojf7jTGYwQa2ELIwqRpRq5wXUIH66S5sbCLXrKP73AxdtItEHrL0uRPuCtcpjjvDn8cy0HpAJI4FEZ2W1FkigukUmFUWM74KM6VUiZiAGhI9j0Z6WaGx5Kyn3GvnOIzD78w/pB00fvUW+EfXw7Vr4f6j8J+fgL/YT7b/DNm+aYrP7iF//jh5VpBnBT5zfL1b8IO5o5GphseE88xkBdw1qd/513aWYN431P8zTVtm6t1AwunUsiomHwIjK5bVNRPNMruJFI6cpuzwU59Lcen201EJ4vlCKEK5qC88TzvhNq8tPV+3/wjT1wwrUzGyCRPNTvu073lbaoS1YkmdlS1NONzSq1YH8yFLXw9qQ6XlMQxcjXb1eoC+OnoqdnOp/xCCsJGRKoWWO7kvv6DkgKOnlwDz5rw9oE1M7KSmt54+JI4YBZ482WvznJRgniig6ASZ67DmWKHPaQvsauhePcbdRZUEjc9WFE1f4YYHyxrLBvT79u3jn/2zf8YLL7zQA6x27NjBo48+yle/+tXLcoDLHZ/61Kf4mZ/5Ga688koGBgb45V/+ZfI85xvf+Mai9x4/vFtfLKGYu1Q9fVS2z0Qjg3nXqQBHEOP4bKfg5zoFza62yRjIdEFJMk/SdSQdR6NTkGaORuZ4U9vxcEdBmg816iYA16Mdx5XtSvjMBsGzJIBCs0RNdRRKk44CfxvBf/jbNV1H3g1qjR1f1mhLCdoqJcciD6r2zx5HPnII+2gLe+chDh88wfbCs6pwCppzR5LpMSWZI207mu2CRkd/bnQdacfx7bZjoOMY6eh7vtnWIIXpemycVzyOPcfgQ49WrVY6NXDfKc4P6gvBxoBGcPJsoNqvKzzDd0/hr9qMbF9TLnrSTJBmgh9M8e+8Ehlu4D7zPNLOGRfHUO743szzf3U9v507fqfjeH234LGu49c7Bf+ok/P/dJ32pewU7Gs70tyHaxeCG+H6lNfsbGA+gv06mI5A/kRbqaafnQ5RfJ2ycW0YbGISy1Aj4VQjhWaCbyT89M//FDKQVFvTqoDV6zfCr96sxYD18eEj8MRJmM97+0dHobxwTNJ2SCsI5uVVpL1zcoEiNZixYTX4NjiqSUWdL4dlaXG8x6Z6tFrM0yc1GGANG1BmwHH6svO118YazECioH4khaGUfCilO2B1a6ZkAwntZkK3YXnaWt6TWu5JLf/VWp57x1bc86dwT52m8CpAQ6E6BwjIkYzu1jU000SDFillOYFJ6ZlLag3OWroRCA41kYkhZO9sX4Y+vl58f0v0TGvelY/smeFh3Gu24a5YryU7xvCAgdtDli4BbMj2rbGGkzF7ZwwyMYyfzrWm0NeckXgsK1ADJn37aPijhN0qFOwOoQKa/x2lF/5a7vhS1/FYu+A/dwoe7hS0c0fLSQnmy3Z3Ar/2939m+ccUnYgeEE/1c+a0Z/eOVZT18xFshetad3br9+Fs+I511JxyQ7gOljRNuC41PJyE9oIGnDW4a8bIU2g/fYZWZJAE4L7ghIVc+2S3Mq9bLgqMC0/rmZNkQGcQMgPd507STS2d1NJJDVls2VMHjPHAtq6BQ93eyFi89rV7s+uEefHMH5pj/uph5g0sWG3J2AIWEkOroa2eFhJLKzG0dm2g9TPbmJ+Aha0Jra1r6RSObiHkhXC88PxBLvxu7kic5wOFsD/T0qRGITTmOgzsX6B5yxrS6JjFOsir1mnp0Cf3VSUH9SzPQsaag9M8eP1ImX1StfewtyGTvWMI9p+uIk4+tqmLEgKaqS8EfO4YWsgY2ziCNQrkkySw1AxcMTZE1jDIyXnN6pf3GSDC6SBgZQhB5xNdzNaKbm/qa+BSLB3gV//+zyzChZFiGdMW3lBS7SVeZ9AuBICc6YZYVmjFF7J+3nkmvXDznhnMjeNYq6Jg1loab95I+vgUjbkO1gt/xanafdQxOOoc24OSf2IUzCVQ1tPTLmBVVLgPB1rP0i9jlKVN8efwQQbwg2C6oSFWJGWhz7oXgt5QvLU97kzO7OgwP7h5lNWFZ+TEAu8w8K8RBpzwfxXCh7zn2074N6iQ8S+hc2mg2fkBU+0HhDJbDShiGey7UOX+7PM1tWAFppprMtxgLNN69/g10S74+NzW0dV0BptGya5bTXeyQ5YVCjSKkITywlghJLXEVb3FWCwYiL+N0+oIrJaQOPEheAOw4DGDKWwYgqn5cC70rwZF2Y0lHT3+KgRXekp9RKAL/5+//ZPaQaNptW3omzbBr9wEf/tKXDMl+/ABuh89jHusi/voJMUjx/Cdgr2Fo1t43ugcSe4whWNjXnDlVw5rmeCPbMc3EySAeWlY9YsiuG8m+NQyawyrw5xtLZCLhUG05LC7eQTmuqptEIOBvm5bLg3Rx2x2EZKG3iuYP1hosHEXAg9MIQsFs0UR2lUaJK1Ki3x6ngw21AB8eF/99dYxONKuAp41u7CUMN58eD0cPvavoLR7R8W4q9fSe+jxf8SrrVnwwvz+aWYnndqajxyhe2BalfvrYH45a0fQQehRx29YDVi8bjM8OKVMvbjoO8FnIZETRJGZ7yBfOsDktVvZ/b2byBtQ/MA2btqyjgdEOOMDgyIEzeL8usK58cplGMum3P/pn/4pWZaxZs0azpw5U/7/m9/8Zv7kT/6ERx999DIc3vLG/Pw8x44d4/rrry//L0kSrrnmGvbu3csP/uAP9rxfJDxsV2/QC1nPEEJVLzygRsiDCh5kHtd1pRiRd8J9XpU8v4cggkalcN4MN7yVUFcd7pnXoT3ascEAm7AeOziVe24UsHiNdBNq0USwz5/A7D5W0aOdhBtVaffWKkg16JOThMjemkzIQwNT7wUOnkT2HIdrx5GNYzC9ANNd/PEMd7pFPpvhFhxi1VjKHOz6zCR/4+oFWD1MsjohGbEkawawpxZIHz9GesNG/FXjNK0hTwx5oCx/nzc8YKGDYVSEtztRR0i03jnxoafpM1Pw8VBD9eQk/C1UyEwvWLhyhZ7lJXQOxCnwN2HVMLk6TnEBesejMzgDvHZNiGKGBd1W2V4P+B/ejtwzhf/cC0z/wBXsGBniFyw0nGAyz4Sx/HBq+CHrOZ1Y3lsYTqee1IEpPN90nteKJ3GQOE9SeJJC4LnjsPsY3DIBu8Z7Pf569gwqypEHji/Avcfh6Vm4aQx+eBw+P63VIQmYG8axoV/qsLG0jaHbMKSJIbUpRryKMzWsLk5xAc0NvG0rfOhwdRJ3pHDvYfjUJGxu4K5aS3HVCD7rwuPHsa/eSLprXOntaailD/RjEcGccBzdtIYrTW/9fLSHvSJPgcqe+Ioenxq4bTNmzyTWoWD55nGtTbea7R9PDMdQReXSHzA1vBv9KKsnOLdCO4GWt3Q8dNIgMJZp79CPOej4hGHROu67hwd41fdvw39mEre+SbpxpMexkYMznLl6jMG4ThhbCucQnbEykmwYSCiF8fCitPsHDsKRKeTmTVrjH52AIlB9bVmGr8+91+dFF6NgMAy4+Qx3ldWMAcoe2gP8BHrOEz3RWKs19CeNCRk8VOF3DOToAn7H2GLnysmK1AH2nLuwRRGvwTDHAfRYJ5zn3+Seh3LPH3hflqJ+y8BvppabEo9rWlxqFQgbzZYMNpp0fUXBrw/pcUSgVMGsU8qrVJcKAa3i7PXzNUAffdD4+hSavYvzipT71CgVOQnaBl9OhZ/yFpdWtO7i9i1kjx4hu34NWWHIjCFLPHu6li8az9uM4foaeFX2kYOta5DdLU4nsHYUhm/coMAnseTWUKSWgaXmYYFtQ/DINLCll1JZK8EoBDoitI/Oa0BsYgRn9NnHaFbIG4ukYZlORNdUY3DbN+DeNYb/xDP4Y3NkE6vYXXjuw/Ck1VKCxCqAL5zwDSe8JtLtd8/Q3D5Cc9VArVVIMJTi4W2b4X2nsfccg7dt0Ux9AJM8OU9n2zqOjA0rmA9OXdTt8HFB2h7KDuYyWDsIPgio+SCE5yWIx3myqQVmRprsHEwV0KcB1Id77gpj2LtpDZtOONZt1POWupChB054WB+yeeboHGZtih1ult0/zDnq5wn30+BAk1wq0xEB3yqqDD3GBJ/CVAKAcb7rDP5kG7dhqCKmBDCPCHJigZH5BcyubYE1YDUguGGE9Nr1JA+cwL59G68RzyecZzrTQJXPPVdYT0oE86FE0FeAj4FGBWb7s/TLw/SlDbFh8ib8vR+GJCj4Rwq6hNvEm/A6gHoEOqfgxNpRrrAGtqynuT/DbtTr8zeN8BYRftfBnztP16ttPQZsJVDuA5AfNFo/n/Y77bkoS+5sWfkl5hsF/+rxtrKEstlgdD5c4zCHEgP7PmAMMLWAv24N2fohsg2WfHKO4qq15CKoJrLwrYbw0074SAO+F205FoGXpwL1cW0DmBUYoW+uAqblYaiJHW9iHmkFwK/rx2hD74OuF1IqEOddxZgoj73jYBYGtq/TE9CwGkFxonVW21aRbV1F5mZxT+UUTZAC8num8E+cZPNQwq9sWEU6OoxdB66b87ZvH2V+KIGfuh7fSJA0ZOKbFj+QQGLxIbHjUvX3Z8O1NkAUp4xK96n1YAxZM4WxQeToAnJVs8xa9wToL3J4kTKr7XOtzS5yfU4fLYSbvCc5fIrmg9OkwPV3TSI/apBdmwKg1+y8P0t9eX2UfljUdCp9UWDbAHzjZGXkIpiX2n1nqvujFc5ZbNf8VrSUbgG9jHV9nFhL3wyf6b2WmnUEMhHcA0fxifq4SQEDe6YZuHkrQ4lql/SLhp51folBGklFua/bwVevhy8fhUNz2qK28EhhSmFqKTyy0MV/fj9csYEHbhtji3jM4yexq4bYKHC9F77shHehGfrUa/K3aXQZcObFFapb9nc99thjGGN4z3vew9/9u3+3/P/t27cDMD09vfJHt8zRamnOZ3R0tOf/R0dHy98tGhuAR2bhuo0VqIqGNNTTS2IwqdV+7F2Hyzx5FnqwFsLTufBnCD/pw9ojouwO0ddN1FlLpXLurAivxvARB1MJbDG6VsWF7UwhbCZE8jFaC9/OsfcfJrk35ID2HIZ3i0Yxg+iFCeDehAxLWU9YCKsyoYtm/2TyFHx0UiPZj0wiblK90PFB/MQoxU3r8RubuHYXd+dhXBfMGHzxtRPcPtzEnoTk8BzJyQXskYxGhoLZx47QeEuL5hu3kQ0kug4buMEY/oWDb4jhr+C5wUCao/TK2Yz02VnsnlMw2em9Pg8dVeAbR2lZChAF9RqeR09e7sqsfNzwKpDE5AyveuEoj/7QLl4feldGFVCf2lI13aNZTv+WTcgDA2z90gFuv2E9TM9hr13LwBUbECsUTluDjFvP3zaW/5AYchFGcuHthScxoW4+tF9KnpmCPw/BiqeOwOYjcMMEbByATaMwGIy/AV6YhkenYMsaONCF5+bhlrXw916lTqcFs6EJT0/DazbDVRtD5lsd97Y1zCSGoUgxFQveq62PtUIxEHTdJvh5A48ehZsnYKe2m3FzGd39c+T75sjvP14qmtqnj9B4e05y2wQiVi+JIdytMDC9wN5NI1xJyFqHfvMmUL8XRYsjHSr2EhXghgnMLxns48cxt01gr9qEbehzSGIYN4bYYX4R7b7v451o+6G2QBdD10DHGtoWMmPYh/C4g8QLHRFGBV6fePz2MfxrM9zn95O8+1VgGjrPrICTC5x+8yYFSaZSto9UsIoOasF4mtaSWR/orwYGHUyDTBXw6GH4JQs3bsaH6HTuhNyY0kgajwqEoZkgK9EwCkWWUwzagFUNTwJj1rAtntJwP2MNG0KgbS4xrHMhGLN1DJns4nfQ009Xt0uvA+wHvvH/5lG2W/QbGkDTebJuQZF73pB7HiuEe0TXzswavu4816ZWs6YeXEOz3HU6X10wr+ogELK3ekOEG0eqm6YE9eFmWmb9fMS99TmeRAXxoBavo3JwjDW8OrX8T+c56SybEo93mqXPrxsjf+QI3QMzZLvWkjnPs13Df8CzUBjuNvCTuefKzDOSqU5H03lWPTPP5793E148L+wY5Bc3beTm1NC04FJdp1x0gurzwMDWEfjcET1PJVjWax/PS9ep9kT3QIfOtWN0rQYKvNF7zpuYDQpCKcZr9iPx7MsN9yUJb7x6C0NPzvBHG0YZwXObtfyiE44Vnv/b6nUZcZ53SCWIN7D7OAM/vE01j6JtruuqSAI/cSX87+cwV40qODdAJ8c8d4zWD26nHeYqSSw9MFoeFDP2A4nqiRyYgzUD4FQMr95/3ocs78wx4cT4GNcbE8CuAnFrLUniKRy0Nw6RH13A37BGBfXEqnMITDlhrSjgtZM5ZsvaEpzGsqRF2bK+Yfr2cYxQo9zXAbyhl3a/Zhh/Kldb52M5gFJ5Ox5ueLaF3zWBbSTYxGAbBlsY9fVvX0d6x17s0TlGt6zilsLzbWu4MvNsMYZh67GigrcGSsq9EWDBwWhN4yJOIMxzuWtMfCTL/HykqKeQLuS9jCBRraBIDdY4kNdnttViYVzVB+wVAzQeOk7j9es0u+aFXSJc7z0HvMWKagjdhbYd7snO0yd8FQF15iGp96DvC2CcY9hwrSw1YJ+krHGuusaReh9Qty+fCZ03022yt26kayDbNU5+YIHsyrWa7U0MdzrLtkJ4d0PbDj9ZS2pE9yAK/sZNM6yiwcpwH5drXMdhRptad91Cn8HhARBh0GviZkFgxIs+e2Gd6Wm3J6K9wVej/lBcd+Mz7yyu8KoHcOsE+TOHKArIh8H/tW0c2LCae0+0+JmWJz2WkTw7DccdiYFB72B6BnZsQBqmVLOPJZcSxPAiEW4eDZKZeL3KYJu+blpD2xlkYh1MdpArw/H73tI18XL+DPkSwxEE8QpP4ZwG+YM48tPO81Mi2IePqE0dBjsLxbMzyNUTeKM96H2SBP9vGXXc9WBiff3YukojkZmrdFaC3RSnex/m59FLXzIb0E5d21CGyw+wOFOfo2u9eMqWke0AiIvVQ4htqSZHAsVrN+OCHRgOAetlj+hfpqJbBPfNBF43Dt8+UYobktdaW7cy5HMvIBNr4fZ1nBLL9cZgNoySTnXxq4f4foTfd/BXC8E2gk6FVOXZXQkBzkvwoy5kLPuszM8roaJfZC7LVPDkrMD5RRjDw7o4x2OMY35+vvxdfYyt28XP7/0jfv0L7+XX/8U/4zNf+yLv+bOP0V3oltT7O7/0Le6951Ekc+Qdx/Gjp/hf//Oj+NxRZI69Lcd//cLXaOx5jq92C/a3Co4fOMxnP/H5UEetFPQPv+8THP7gPaTPT5Pkjv3P7OP+L3+dWwrH3q62LvvIHZ/k9OMvUNy1l5GDJ5h57Eke+uK92G+fxH7sWYo/3MPvf/ZL5FJVZdz5J/dw77ceK0sETkyd5g/+7OMVTT3zfP0Ld/PC088z5hxZ7jj2wF4+9z8/p63Mgr353+nj7Psbm+AXXkX+g1t5fNUcn9n7GP7qcbJ3XkH3tlH+JHmGb28bYt1Va7CvX8OTmxe4b1eL9LomCeB8wXtOfZv8Gydo/pcnGPjA09z3Z1/lya8+yFBWcPPBE7z7sw/x5Ps+wuCxOQa+PU3jg0/x2f/0KZ769pNw7Rr4q+Psy8/wxzOP6YEF9sQff+Lz7DtwpKyn3/3YXj7y51+CbhHo4Dnv/Z0PcuLwqbIv8UMPPsE99zyglPtORn7vQf549jGODKWI1XYk993/EA8/vgcaBte0TLfm+ZM//7QC/CRBbl/LZ848x85P76bx6DzNTx/i+ANP8YVPf4GhwjOceYYyz8FP3Mk/3HeYd3Q8/yZzDOx9nq9+6W6amaOROxqPTPPbf/QZTrjq+bj30CR3fvMh+NQB+O0n6f72w7zn//lfdD/wGHzoCDzluPPTD3Dv1LPwD6+DH93OiTTjvZ/+jC5CN2zG/vQt3HnoWfbu3w/NFAYSjk8fp/EXX2B2KMEPpHzrmw/y8Y9/noPHpqGZIEMpu/fv5yNfv0frywcTuGGC95oDnNg8hAtU9LuOvMBf5AeZ++u7WLipyWlT8Dunv81pCua+Nk37d5/krt/5HA9/7Fv4AzPQzTnz9EG+8qUv4CUra96/8pVv8Oyz+xTQp4Z9+4/wR3/y6fI8mMTwxx++k31Hp9S5HkjYffAAHz28F/Ozt2Cvm8A2LHd84JPMzs4hqWWjNTz37cd46K77SlDV7Wb83u+8n3Y3Kz/7c1/8Jl+97zEF8wJHT5zhT37/DrroQjudWN7z+a/z9udf4GcblqJh+bnjx3n2S1/RoM7t6/FDg3zgv32CQ0eOqPNxeI592Wnuf/ghRsuMvOHD7/84Z07P6jyBx7/9GA/e/W0kUTrtbOH42Ic+TuYKZP9JxMBXFvZxT3sSHj6GF5g8eYbf/qOPMu+FeQ+zHj7y8bt48LHnytZtew4d5Q//4osK5gE/L3zywXs5dOw43sBu4Jpnn+ebd36tzB5aa/jU//4ordkZRozhlDE8+eRTfOuBh5FNI8iRGTp5zn/64J/TbWdldvbOL32Le7/5WHk+p0+c4b2/d0fPOvqRj9/F7sf3lj/v23+YP3rfp4nt/UTgg3/6Fxzcf6R0DF94ci8PfeouVtU+56N/8CG6UycZKTzDuee5Bx7niq99m7GWI2kXDMx2eO5/3MGJuQ5519FpF3z9znv51j2P0nLCF794H4emz/Dbv3cHC4WQhfaQH/nol9j90DO6JrYK9j0/yR+//zM9pS5//NE72XfoaOmE7d7zNB+Ze5p6/fx73/8JTpyZ1ettDfd+6zHu+tJ95Zy63YxP/Nf3c6KblYD+obvu44n7HysrS+ZPnuEzf/hhVjUsVyeWR6zha1+5h2deOIBLLN3Esm9Xg0/8+RfIvKdwnk87wX7yTgYPHCHNPffmnruefp6P3fUNPuuEQ4/PcrhRcN/z3+aBq0Y5snEDX0stjz7+FN+470GcVYe1m2e857/fQTfPS+ftzgcf5t6p/TrPo/OcODPDez/8qR5xuDu+eDePPrdPM3uHT7F/pMUnPv9lnvLwP7zhSQyf+fidHJg8Rju1TCeGu/e+wPvvupsPYXmPMdybGn53393I4WP8vVPz/BOETY8/yb577+cm8fzHQnhHu8sb//SjXJtnNL3QfH6Gb8w8zwMLR4llDyfm5njvBz9ZUe9Ty0eefpTHb3KYz+3HdAqOHJnic396J2bjKtL1o8xZyxc/92WOHpuCoGvx1N4X+MRX76mc1u1ree/nP8+J07MlyP3WQ09w9933hw54QpbnfOGrnybbEA7HwgPfeojHd+9RtpkxzM3O8ciDX2H18ZlSIPSuL93Nc888DyLMiDB65Chf+vyXMUdPYbY1sQY+fOeXOXR0qrwuu5/ax0c/8ZWe5+y9v3cHJ06c4ctfvg+AR7/9GN++674SGw50M771X9+vonlhXfr63fdz/6NPlgD/xOws7z36AP50VhIwvvilu3n26X2ICMfbGRueeY6vHr1fAw1W166P3flljkwfJx1qktyymQOff4x7v3bv/5+8/46z5LjuPNHvici8rnx1l+lqg+4GGt3wlt6JEmfoRSvRStRoNZrVuLcjN7ujedrdMe99KDszq9FoZHZGbkQnQ5GiBy1AiA6EIzzQaO+ry1fdezMj3h8nIjPvrWqgGgTI1r74fLLv7TK3MjIizjm/Y36HF3rHXZnjZO5o/OFHWDhzHtPREsG7v34fX779G9qD3kP7yZP8yp2fpf3oiQLEf/KOb3LHN+8nItzNyJdDh47zgQ9+oocw7jOfuo25hXOk3S7eex577CCfu+0rZeaM8/z3P/4LZs/PF6nejz/4IIcPfUf11I4hsnNrfOBPPoLtdGl6T8N7tn/5GzS+fp9m1wE/cG6Ov/yvH+hJtf/YX32e+x54TG/OwxPHT/IHn/ycopVUDaw/+MRneeJYcOaLcM93HuNDf3HbuvU9c3au0B/f+vb93H7nNws/QLfR5etf/RSzXa1Pd8Adt3+Db33r/qKs4OzsHL/5kY9COydfg/bUIH/x5a9yf/0M3UPzdHPH0WMn+ehff4Yv5J53OY/Jwf3px/jOoeMF2HrkO4/yqb+6rcc58tHf+QCnzs1pGzoHD3z7fv72q99QZw3QWVzlN77zRbo4ZFSQ0yt87Rvf4oF7H8A6JYo+c26Oj/7uB/VzQ2r6Rz/5Je55+PECKD7+wDF+r/0wH//WtwPpuPD7H/sMT5w5DQ1Lt5lw9+HDfOzIw3R/bBedmwdYffNO/vIbX+UTq6vsmBkh3TfKg+OzfKN9SDkCmuDnM/78g39N2+X4UDf/pa9+k6/d8x0IKffnz87xV7+j+28OBaZ3fPQ2nnjgMXVQCpw6cZLPfvwzpKLlTX6H4W/u/DzHTpwo5nTvQ4/zoY9/sadsLa5vHLffeQ+f/Mydxf/b7Q7v/80/ph3sl8zDZz97J1//6j3kocf5+XPn+ZP/8VesOMfl3mOWhS8vPMQT506TjQDXjHPsxGk++lef0qzJRB3Pv/+HH+OJJ8sszHvue3T9/vsvH+Ts3Hyh7+64/0E++c27YDCFFrQPz/IrH/wL2u1uMc/Pf+FrfPNv7yn2yMK5Oe74nQ8UJJ0C3PnR27j5O4/yJXTPHjt0nI/+ycfKWvrc8/t//HEePnScVaetFO959Ak+9qXbWV2BlRdtZfnmFv9t6mFOjtRYEw3IfOmb9/Op2/72gs8P4JOfuZPb79T7wwhn5+f5zT/88556+g995Q7umVzUoNl8myeOnOAPPvppTbdf6eL/+nE+dvYBTlzuwBrmrWH+iSf5yrlHMCdWsMAe76l/8C/53Lk58lxLWr71t/fwxc/eSRcF9ivh/j7+8Y/zsz/7s/zsz/4s7/mxn+S5GPKFL3zBP/2PwY/8yI8wOzvLf/2v/5Wf/umfRkS47bbb+MhHPsJv//ZvMzk5yQc+8IGn/6DnaLzrXe/i7W9/O29729sAyPOct7/97fzMz/xMT8r98vIy73j3T3HsY3cwPOvhTw7Cj++BHcMKlmpGgU5d33sjLHe1B6HWL+r1B23H/WfPcf3hVR7a0eT6LaP8Qys0vacJDK7lDNxzgvYXZlm0sGJg5YXjrMwMsmbhMRHutsLbUkM6u4r58gnyNcBA1oJkqMbA1CjN7Q0GZgYZPLXA8J8eLVs9bEWbvF89DC+ahMkBlgwsWmHZCCuZ1qK0uxn3PrLIgYdOUbeW5mSDgW/O0urCQA5D79hBc+9WnacRFgk1kR5WRclVv+Dg8dzzk1ZJUZpeowLNJ88y9MdHGHQhvfedM/ixIVYPL7FyfJm140t0FjPyvHRMJwbSK0do7RmmtWeYeiMpXdEHz2hkftbpiX/3Aa39i3UvdVu+r9nCK1qt91ztOhbWcpY7OctZzsqnjrA2WOcrL5nkiDG8u26p1yythqFVSxioGRrOs9TOWe3EOlXt8/yNLzzOi+5dwtShuQK1cWj88D78WEsVoJFQC6sRVW255Kg5R/PJeQa/cJyBlQxzYAS+Nl/ZrDNKAOO9govTS3C6A58/UeYoA1xt4S3XVuqG9NWlhiUrLFhNsV8Ka9c2ws8khn9oDTcb4eDX7uWFz7+OQe8Yco4hp5HQHiI2F3peO08nROTaLkSKvSc7dBb/4SNI6K+YvHUHtVYDe3yN9tkVls8ssjrbJc8CDhgG9+qdNPdM0mpYWk3LQCNheCBhIN24e4TyJWRlHSzq7V1Ca3WXrGEpsSzXLB8CHgX+N7T2elDCZWDYwEDYaEUvc1f22F3xysK6HH5/2nt+oaOR4X/WyfkPHceWbk6j62hlOQMrXWp/9DArL5ph5boxVr5yirV6nS/eOsqpxPKOpqXe0Pm1GpZ6M2EFYckpgVBnNePfr+X8vbWMl3Rzmu2M1pNnaX3wKIM5DGdQf98OVq+dYbkR6vprCe2aLbaBdY7aakatk1HvOBorGd12znI7Y+X3H2LlH1zJajNlLU34hdTyz1uWPY2ERjOhlRi6Hla7OZ3VjH+3lvO6tYznhzkOnF+m9ccHGfyZqxhOdS6Fo6dhYTBVUr2nGT6ew64vU9rRLIgFKywiLHlhyeu6fgH4KMqs3Mocg52MgZBV0+k4Oh3l8niw6/my99xkhDsTw6Op4ccTw1U1gw193Wup5cFv38/zX3A99cxRdznNTCND9dyX3SGijICNI/Vdp+Rdv/EddaKNNUo90ArPpJkgNcuK8yw6WPSEtdZ5/RlwFPh5NFtgSMr9GGv+V73no+2cR9sZ/7Kd0+jmNEP2V7ubkf3lw2TP38Yndozy+UT3xGrD0nTw8+2My11ItT+7BJ89zNFX7eK3xgdZSC0mMfxcPeG6lmGwbmnVEwablmE8yVq2ntyy4+B/PAp7h7VOtR7WvZFAJ6fbzllo5yzNr7HyJ4+x8pP7eaCW8OuJZaFh6TQStjQsq82Eo6kl6eZsXcuZbmcsrTna7YxGN8fljh+7b44XnlvCvnIHiTUkdYutWZKaxXZzko4j6eTUMsfAnz7CwGXDpC+ertyTVZnfyUuy1LWcLMtZ/IsnWByosfKqGZY/+DCrP7iDpZlh/rW1/NuGZahuaTYSBhNotnOGOo6h1YykncOjs/CJI/BPryerWRYblsW6ZdV7VlZyVjoZ3W5O9qGHOPba3ewZG6BZU7nWqFs6HcfKWs5qO2Mhc5gPP4h71S6Gtw7RqFm6DW1j9BsrOa/Ncq5ZXKX550/Qeu8BXZ+6ZbiZ6NlrWBhINRtpgzN22533ctXzr2fZaT31ktfa+X+Npk2/JsjE4W7OQKfLYMcxtJbTWAkcOd86w/KDsyy9dz9LgfNgte1Yy3IO3T2HOb/M9ldup24NrUZCq25oeai3c5bb+ixW/vxhVm/dRmfvKP9fseQ1wzX1hLelQjN3tHJHK/e0Msdw1zHw2Gn44IlyIj++A67ZpmeqHuZbX68XNhprnZzF5YzFtYyV1Yzl1Zy1Ts4DZxfZe9thaj9yFbVE5fFAXdcIYGU1Y2VV59DuZPgPPsQdb76Clw/WqXto/c2TNGeG4OYtdGuWrGbo1i33pgmfaFhe1Ui4RYSmgZboNWig2XHISreXF6edw1dOwukVeOtetSfjXFtK0irNdMP5+U7O0nLG4mrG8lquc+zktB8/z6nHF3n0h3by8tTQaCSFXm1ljqF2TityIR2aZ/WjT7L0z65XLovMsfaBB1l5xQ6624f5oLGs1hPe17LYumW1kfKuuuX/QNPuB1B92jTqCF90KtsOe8/PrmV8eC2n1s4Y6OQ0OzkDXcfQhx9nYNcgK8+bZPETh1ieHmLl1i2spoZOLeHnU8s/bFqubCS0apbBTsZgJ2egkzMSuKE6XUf3I4/T3T3M11tnecFN12IbFttMMDWDDXbJYuZZzRxrAQCueTiYef6Lg18WzzDqQDBHz5J9/AjdFeiMQOcNuxjcPUWrbmnVLK2aYbBpWU0sSy7IcZTY7R8BP4N2XBkABnJHtpaxvJqRtXPev5Lz1ixjf5bT/JOHGHjTHlrjAww2LMN1Sy3q0Zbqi4sZzms2w0LmWVnpsrqWs7ya0+7kfGY153yW86NH56h97Tj5C6aYf3KB/3ZgjH96+RRp3arN1VC5P2SEIcPTtnj1zuve6ed26jj48ydgsgUvL2Vxu5mwUFd7bLGWFHr9i8BfAr+ByqEucCw8z/8OTKD19QMCAwaGct237bWc5dWMtXZOu52zutym88FHOfiOfXylXuPlNcsNA5Z6sLMGWyo3L6Z1rc+ctiitEj5HAu4PPqat7F41Q25gcS1j8S8fY3m8xerf28GKNXQTw/+aC/8iz9l+epHGZw+Tv/sq2tZwd5rwZzXLv21aao2EejNhIDEMGD1LQwaafZkaCwsLjIyM8PGPf5yBgYEL3PXFj02n3N90003cdttt/PIv/3LxtV/4hV/grrvuQkS46aabnrWbeibjTW96Ex/60Ie4+eabmZmZ4Y//+I9JkoSXvexl6352eeGkgqOdA/CyKfjLg/APryndvpW0Nw/42JcwkiVkjpcfPctV951maCnjmhOGK1uzWOrYM8ukJzvUVhxpriAnTULburtnsWc7WFHPzphzOJfjjnfU29lCNfSuBuYH9yHGFDV6yRUTyI+hRH7XTWl69Owq/O0Z+IPH4LIW8rIpoAuPnoHdW5FzBp48wY6BAR6+dYrrd43gjcHtGcA9dAZ/zSR+9wSYkqApE61N1RRmwXnPXRk8Dx/SR7UWygD2yinsTwjmm8e1Nnz3VsRDY7yB3LAV6x3pX3yH7KADAyaH5EBK7fW7g6dbeuta9k/B3gllif3kUfjvD8F7r4QtzfULXq31LQoCfUGEJ85j7p1DlleRV21n2BjO2jLNPtZS+dQEFnMTIhfq2WwDd1wxyoueXMLMaUaDaSYkf/wE6XSd/Kat5HtHyJwJaecajUhPLVH78kkax1aov3AKc/OEOiCuOKvt4W6ehr2T5f0nBgZGYTewVZR1Po6bt6lxHcF8rCVNDJKYCjOyxVsljEtFCnKua19wfei7bPFiggPE6vMNZEhZBcR3cr0KNlznyfZMkr1b4IFz2P3jpDNbyLwnnRgAtoD3uM8/gr9/rUj/8o/NIZdPFu3cjLlwWqWIhPKJBNIy1df6GEQTTV8M0YtplGilZxtIWfbrRQ2RtXBV33fQ67dQf9E/F8GmhqYzbPGeRx2MxegyhryZ4l+/C//XR/ATKf7EOfzLdnBOoBmcUFKk4mlJgbiYYamypC5aUqOyRGDnFvyuEzCb4189Q753ko7TlNe2D631vCpDgFpe8VcFP5cF8uWO1toH8P84ek+XISEqLEWHlti+atjAfAhveQE30sA3wJ1awm0frtQuVM7W09gjhUOmk4cU99I/nMfUZmvAGq3VQ2voh0FLYzqZZtbkjlo4u7br6GSOq4+c5YpHz9PdP87VO7byVQ//d+Z5fu55cy203XKeK6+/mtXVbi9zcuZIco8tGc560zur7z16/e1RvfFzCypzNqifh0q6va+8p7cHfUyZjdsj8apsjQi3poYPZoZV40mNp2Od1rtbw+p125i/d45DMyP8Eo6F3HB75nhFDvvwRSmB/8pJ2D/D7q2D/CMx/Ko1vC01XF5X+ZbHdFIIrOdaP97DFyPAriE4sgQvnKo4OFzh6HPO4w4t46YauJrlyyKsWsEaLVVqWOG91rAVGE8Mg4lDcsPjiec/ZoZO7hnKPTuuHKDx4eOkZ5awU0O6Ns6XbUyDM7RxdoXG4VXSN+0pyY9i/XwiKJsdpbz3HnndLuRPHoEPzWMWHfiMhhFya1i1hsFEuwooIV6ooY8R+p3D6jlcaJOPN5Xd3gWG+pBlMn9umVoK20eaug2stixNgkPXGs2EaRnh8OQIcjZjcEv4jFw3xznnteXXyTVkSwsJae2RY6SndecFxgtfeD0Lbv3Xm+gU4smLZHixFKqwZbbW8OfbgRcALffwus4Tj5/k0edtY6eg6fZGlBTPozwwgdQxed427DdPYHYN84JE+OtMeNw6HndwnXeYTHWwdR6z1OkF8wB3n4TrZvR93IObHEVkXmItvf5+0kipdcsH4J2m22u9djzugbx1boV2HUaaaRTRmL0jmO+cpX7TOGlI+U0c3Cqem0NBfmqlqJtvBLle3Hp/SCzzZevjdXX0Tz3haILGGnoDkAit1S6zPjLFh/VzvpBD0VmZnWnT3tqiLUJHDF0DnR1byY9mHNumWVw/j7YKth6S3HGDM9xjhKspGclj9U2c3hIwGP4vQW7GmchaF2lZ/f/EAObcMsIW5UbynpbXTiUSZHDsREEocci8ZxVHZ3YV9+IJrt5xFUsmcEsAqRGs1XKrzGjZQDeUx7jc8zELNztPS3ROKR6/d5LuWwzZQ3P81oFR3rR7ilbNFOz2vq7EwVXxH5fxPEE/xcuEMrqgC5JQsoc1MDmAP7qGH2sVxG5lOZcjKtCiLj78kZi5Zei1jRyBOK7jlM8j8zin7dPuc45X4zH3zGKvncHtGqW2Z5LHEsNyYhgOfAAuNTi0HK1/a26450zsjFHRC/F1+wA8sQB+utChsVQiOvJjP/pl6Mm8S4AplPH+DpT4tmC799DNQklX7ovWim3vaR9f5vyWFr+VJCwa4U4j/EunQaquCF1r6Phgg212xPKNWIpXLaN4wVb44CF4+ZSerY88hh+ow6t2aLZuIqxZQxsY8cDWASSH5Nwy3YkhrvOeP/eer+XwkjzwsCShvblolL7m/UU5IJ7p2DSgf+9738tXvvIVTp06VWzAu+66C+899Xqdd73rXc/ZTW5mvOMd72BlZYWf+7mfY2Vlhf379/P+97+fZnMDMAjam9cKvHgSDs7D3xyGt+xWS7oP0LuuU1AfX51n5/0n2floxuwYbDnuGBhdQq4ZxewcwA4kJCNNOHEe+4Hj2ByMBfumHSQ7tyjRlff8pYOrBF5y4jz2s0dhUSOcXD2BSYLCF61/FCPINdvgqukykrm1Ca/bpd6zr5+FPzuodAAW5N5jyA4Lr9jFN7YOsibC9QEM+r2TsH869NjWg5sboRuAkRcJfSOFVQ/3pp53eRCUxVbvXx9hetU0sn+qBwyYXCNkiROyW2fIHz2KJ/hKrpuilhrtK9xPUtGtWCuv2wG3JfDfHoH3XK69MAuLJXxYX3SeUK8lB88i3ziGHPfIO/YiqWXQGs6HdE2fBsGXBMHuDM5nhQx2Ho57mLtskux1Ag/OUr9iHLN9HLPapXnPefjSUfJPH6V7/SRuK/hHzmBXIDnpqd+0lcYbdlOrJ2Xt51XTcP0MkRxtHXhyXh0a7zVKnnfrNtg3VTI7xyh9GvoWB2IQxKj2D89mhJJ0zFUeF6JrLakSJ2a5o9PN6eQ+BOu0DrQK5juZp5t4Htk1xR07Jnm591xl1AjMvPIgeK/7VY4cwS/o/pUDYxBaTUmitfRPVUsmIloSkJhC0cf6S0EQLwVB5DRwujI/3/caAfyqh1VXAfYomP8L1Kj5ddR/lhqhU7PsDoD+VjwOX26rHcPwwmn4iyfwXSDPaIswEdlTjZRzjfMpJ0ZqYIVghRq09mznJH6sg989oYqN8EwdrOaO1dTybeAzwBu852bnS+Mb5efIl7vkw5CLKuO7Pdwg2kkg3lpCbD+u8mNShDMm9KfNwIvBbR/AHW3jtm+wHysGyUZjXXZFlEvFYY/s4g7EINZCohkXI93ARNx1mEDwlmSeWluzY+yhs9gPHaUm0HlwmdU3eV6yYwtXWMMfec+vec/7nGd7BPEEL7x3qmxzRyfzNEOXAh4/o2Di+inl5tDCPc2OOdOFh07B0XBiPnAcfky5Dfrr530wquOeq17nUDKluAcqrbyBAAEAAElEQVTiZcOv2wDqtxlhMjHcnTpe4oSOMWTW82gmfPSyIf75fSf4R6cXqG0fYUYc1yMkVIyob51XoHLDCKvGsCcxXJFo33l1Vqrh6o0U99pLeFR5v6MB3zhFwSDmPLF3VR4Bw8EF3GVjOBFeIsKXReiESf24EQ5UDFOTGEzuuTp1/GJm+Eru+CEnXNWskVwxhf3GOZLXD2GdAvrUBY6I3JE4aHxrFrt/WLtxVPVDBPT0AnqcRwZqcP0I8tVZFZGfOEr2ZiHdOcWSFbbaQH4qFPrOx89NLUyn+CcX6Y41tAe9U56GLID6ufM5ZmKUnaJAXn1UUhDa2XAZIJ8cIDm9its/WrS7W3Ka7bQVkBMryI7R8nnZCiGelQsWQYpI0fu7/xqgZLkHQl1raFEZ11kEt6VFvga+m5NbgxcXSHLnWbOW2vZhBZHGYBK9twRIEkOaezq5kOwZIbn3PN37F5i4fpRcHI9nwv/l4V/mjhtw6ox9+Dz2rw9rWK5Kr3TrtvV7cZMjTKuUs+F9Wg9mbDfHx1rocCi990X2s8fDQsapwUHGQ7mUAWT3APZzxzQTyhpscOjk8bzhSUVT7VsCLaMO0w0ZrD0qB2M2WvVmNzFBA0XqfQHu64Za1i3agvliPhTtVH046O3ZLu2ZIe2HbYJYvqyO+9YpPnXzGC8Tx7gzpN4jucM4ww3e81WEd1Cpo5de2bbsYbB4sOG+PLonVwKgF0GmUiUAjjfpPMMOVlxwRcT7DcCw7bRP/dpyl04mZJMDxcQt6ofsIJjUIB4yI6Ehk9oohxzc5Ty/TrBJ8aR4ujnYvVNke6dZFDhuDZfVDHlks09tj1M2XpFcNtbQK6Cn2LNeIBVhKayn3zkCRxfgunHdD30BJp87OiK0vX5uVK1RHzQE6nh1TkHB4eHynLzryENbydOZY8559h9bwLTbmCuHEWOoJUIzMZwWYSgQ4cWM0fi3NuU0u5B+2N7QjJOCYVL3nIvzS3xwHqrTp1n5cxYVZ69AgzCvp6yhz72S/XVyzbaIQaW2g+zYGnftGmUpOBZXRLjNwrWiZM9tlKfsYkCyGLV7CxLmaj39ZcN6s797vwY6Jlr4N+7SLlghkDZnLbicRnB8mOkhzImMdEKdNX8v83w69bzIhXk5Q82K1tMHUH9RDohnODYN6Hft2sWv/Mqv8Gu/9mscOXKk+PqOHTv4uZ/7uYIc7/s1RISf/Mmf5Cd/8ulrE2zSKGvxvIe37oHfeRDuPgc3TegiR0Cfa7sIX72+OQfHM0wNJs9DOgjyQzuQHVtKLiUE9k1i32tIv3OK5MZp7GVbNZjnVPjsd3Cfhxfv3ELnNcJDj8yzeuUIt+yaUC+5DQaSKQ2IgtAsMn/mXlt7/OAMZu4c8rhTZkgPTNYx00M0EeYl1h4qqCNsVh8OchbAvBPIEbqoAfRtD8MOJoMTwkDorewLsqeNgLV4tAXRVVP4mFlw0zSyb2o9kK++Vjf9D22DuoE/fBzevUejKVAChurf9B4cyMHTyEdOKM41IN0OYg1DieF0alTgRTK8msWLkFnB1RMylxX8WIc8jBuB3VPYXZMa8fceY2okL5ikcetW3KF5si8dxt+hv2OA5PWTpNduC0yc0tv/MoLzjcB88LBzzTRcu61ixPb9bqrReVX+umixlk1QsrHF8Ijmz80xsHWUuETaTcErOZw1yqTttYNDN7S0iZ7SzHky63nYef6dVe/67c7zi85zlfGkuSpPnIfLJui8XvjGQ3OMHhhl/2WTmHDfYgySmk2RdURmeqwaCsahHFvoHA0K6NdQ5VGjAuaDEdLxZWQ+XjEy/w3gT4BfASbD71ugaw17U8vXXfCkh7rEwmDaCrQDb99tR7F/X0h2TxZ9asVQZBAU9hvqGGsBy1XjSMAPJvhji3ggC86DrHJ923v+t6Cobgd+1cENXqMRLleQlbVzsnq9qH28W+B/MiFZACF20DOe4j7HrPBI8MZ7E9hctw3hnpjDP39CSXziXqx44y/ojMl92Vaxnfe2DrOiDOiJwWfBehGHpIaOMYznyndhA5iXzGE6jmbmSPIc88mjWA/dBMwa+K8dozOzhWnv+BcGPubg13N4QeZZWJrjB0eHuc5rKybjNKqY5EpKmVTTfh84DgPHdRPlqFdnSxNO94U+7wmRxMLQUfnriihZxWAK4yzrI/RC4OTxISLjVVfdlBi+nhleaD1Z4vlEx/E1MbyjbqldtY3k23Ok24ap5b64yBwcW4C7TuHesYe1RIGXpIYBaziXqjx31uKsKe6vJEqj11gTgZkhfRYLXRi34RdcYbTlmcMdWca/aCsO2JMI+61w2hh+wgjXGYOVcu8roHfY3HBT3XOLqP5K2jn2pmGS3z2JPbFIOjNE2hVSK7pGmdcWrd86B+/eXXIYFNlJQX/F5tkxQh+jfvNLusXqICvAowvU90yzFsC8T6x2tymyRsp15bJR3OFl8hsnQju3AOaDQ4PTq7itLb0lo9kJJkToXXC4x370Q1strQfncH5aAWHuOedhxHtq3iPH5jCvGi46gBR6PToGn8JAPXtujvrYqGJDX8qaFtU+9ITzrd+rrr1vWvIU3OwqfltCnqPZaQ/McftVE7zUKtmUSSLhn15JquzNSe61W88LtmI/f4SDVzQxQw0auSMLbd5u6mbIbcexj81jXrcDrtoCh87CfacUzF+1rddJc1FRq7Klm+h/EaBmDV0L6VoXmimxmVYVOMagcHYWjo8NcItQEJiaZopMpthHF2jcsIVazE7zgPeY3JHUDDUj1FFA1zOqoWzQDLhYSrhuCk8937hcRXReBGkmpJ2cBU8B3qs8JZFkLgM6Z5fpXL+VTNSZm4mQzwzhvnoMP7vMK6eGSJy2h5Sg+2/MPL9rVUfWKJnuq2MZBWv4Uh9LBPdLHmmmOrXJFnIepJsrGndQd54OHnLwptQreA0grHnP2pkV2lMJ3cRwfmGR8clRDIJFQbSxFmuVUE/b72lk/0PO8yLvGXFg0P2pvE5KiOg9DIpw3BLq5y15akvZSG90PgZDeiL0MRovDqzBJo5uFvbudIL/+pJ2UTCiQLcA8wpUV2wA9L7sHmCCPogR6yZqW2dAp+PIMo305l2Nzj/iHFc5T3LPeczV27CJxYRztCUxHE8Me63atzEg5zdYxwuOaHtX7XARDaRlwPk2TLQoiP985XwFWbOKOhfjPk5Q++olwB+gfr2ZsL+y3JPnhPJOF2i/PF3ncCdneXjfTvAaka8b4aXGkBmhK4Yuog4rXyTNbXKOppQ70UGcGnj8tB6WbtgLrx/Fh44IpIJLLIvGMJx5MA5xqjeTQ/PY68cwzvOCxPNXznOv89zoS2K8FHU+dPneROkvilH/uuuu4w//8A85duwY58+fZ2xsjO3btz/9L15iY8vU/rIW23llYH3LLvjgYdgxAFPa7kY1QAD0zuPPLeO+dAysZeEtV/BHi2v8k4PzsH+UdMfWIjUnpgphBLl6GnvttmJzJ86TeE0XutZr26wVgdbuST502STvNgKpVNLeNN3IxENWBfKZCe2+grF36wzy+FEVnCnIgS2QWgyG80bwNfXg+VRTEDVLIbBiSvCcYegKmtoiwjeAK4NxgwORIDTFk6As/L3tn+gBBOQeuXobXL2tN3W1/7U6qpv+ZdPQMMp18M5dsGestKKjRO7mcGgeHltGvj2rGQrBqSGPzcKeSUZSQzc1LCWG0UoEy/ngxDBGQb3P8QiPiTCdGcQpe6/NA6B3HpN50kzg8jHq9xzDn8gLH4M8cQ5u3t4LxCtgvIhIbATmK+nKxbOJv1sLodckpnZruz8TjLsImIcoAf1tH/4U7/2Zd5bgg7KeXFPQVTC2jdBJoZsYjdA7BY4PO8f/GdhME+dZcJ6Pes9eCGyentSrUcjuKT62a4r3GQLHgToeIoPzxYqxCIqMlGA+OixqwClgNMwrj84KtE4+zq/tVcm0gSeB9wP/ArgyfEad0jd0RWL4fRe8484Xnc688/DIWb3/OrgFuOzxeQYun8ab2HKqzEDoMbYNNEVohxT36MlmUPDtdhntLaIsGhH8TLwp1Ib4LJ79wckQgqeYZchH6zjgoFfDZ2+QPUnYKobywgpjIsyGNLOipdVMDX/7qqb15VoyUDjJcih60/QN730ZlY99wDtOz6IPc03UaeDCXhZrkNzTsZ6tTlNzpaup+rFDRdLNqX3uBHZOcaYJPF8c89ivHKfzgklMzfJm7xhzhv/hDPKxz3Hvj7yZn88d14qC+sQFTohD89gPnuidQR14216YaGokTUT5O6rlLrduK3vdFtHhXhDfkwEDzKM96OP+LfYwvRF6A9xqhf/TKnnRma7QtIZ/knpmMsFeOUTt7uPUTixR2zFMLXfUc4/pZPCZI/jnT9Eeb4XzpY7Z4UQBvUsrqfZUjDqpgihKWZwamLTaumesXqx7BPTu2CJuENyWVlG60TXCD1s4YFU/NYMq0TlrNM04j3iHOK1/tYmQNmsk149Tu+MMyduGtANIFjqROA8PzMIWgZ1Dem8RyBdGmFElGhchZmV54Lop/ANHyvDa1WOkiWHeCj5Vx5ICirxwNhUpl7ubuL85Q4bDOdG2db5Mvd9yep7OvgHNlhMpiPASK2RWne02gMOtWwfIup5j86tcNjYA3nPWwbgDzi4pkN86UGTNFD3oTbnHLjQ++IFP8b6feWexv+LrAOpMqu5FBfaU+sYIuRjcRIpbyHDb9Ay7s8v45RUe3rWTN8R7SjSQYBNNa09SQy33tAOwr20bJts5yqu+Pc/XXlxnKXEMZZ7XHJ4j+fxx7ESL5H86gGnVKErprt3Wy38TXuUiLPIiYk0JxhFhAFipWYbXsgJbu/AQXJDh0RGXrSyzOjNADcWbBnXEyJ5x7CNz1K/bQt0FtuqKt65GFAfV++0D8vGPd3MYqrD69y/YBScY5kXFIShAPcXksOY0bFAA0ArAz52njWdtrk13PKWDgvkuntwaDm4f49UnMpqTngRdR+80Qr8jd4x4w4Mi3EwZpS+eIwroR4qQdtAJXh39kqMs96LOEQZAzqzA9mHEewbxLOcUKdoulkEEp0nXQ/t0ztrkKA97+OPPfJH3vPMtXNFQeSKoc8M4Xa92InQSOAJ80Xl+F9RG8do22nqHz30oDYBxEY5bJb7NQ9ZStBl6zgsU5Yr1ynJFWx6re64lKgNx4LcM4FPg5BJ+x3BpkDgfktc8q0azBbuoje3D+tZFgxAuLHhNAtDNcu1rnmvavXOOu3PPa08uIKurJFfurLS6NIxb4XiQcbmVdUGOzY2qfqjqPQPTCRxb1ozgmA0XPWSVI7AMPaR4GvhTnXgdGqX/EdQ/kDtPFkoJtNTTqRPt7BIdEUa2DvIzBv6jEd5lhb1WyxysEZJg29XQbMVNR+ltaGGXeY3Uxznee6r4GQ/4R87iD0wHnKTXWS8MWSAPzuttKebOZZLcYY2l5uCHnOfT3nN9HuZnNOs5pt7XL9YB8QzGpgB9p9PhNa95DSLCH/zBH7B79+6/k0A+jtPH7lGAFAG987B3DJ6/Ch99HN53tW5qJwHMO/zd5/HfOIm/cRp3yxizVlgeG0SumFQFWFHQBkpFZaToTW89of+6gpRRYCqHbwO3GDjmYcoQDDWCt5zAOBss9HVAPoD7riBXTSE/JviHzsB1k7BzAqzBICyFdh3OqqGNNdrPvaa1kJmHDNH6HUfRxuQu4KfR9lwxddSI1tEnEoypGCHvi9IXAD8e/Ghg9AP6REoNsi4a6OB5kyrtPnAYXjQPc4tw+VZoW3hkHg6tqFWzbxx5yQhy5zySo3XvV29BUkMt1UjxbGoYSq1GDitC3RFAfUPIrOOhbs5bkghyFMxLALam+txv2YY8eLTU07duK8n7NorQR8IjX3lWxGdIaRTE59MH5OOQC1zDQODU5c3/sxp/MUqXoSSHkfm97SmYOAsDwKo3+w9T+IbzvMx5vhq8qOI9dzoYcp63e8+oUw+78Qbn4JTz2s4t0T0mdQv1pHB0XcyoGjW28n/QKP1JFJhXQUvXlyn2a04BYQetifv3wJvQ3qgpqrAbos/AADtFyFLDIWfY57XeTVtWGdx1E7iHjuDbYMbgmwdGeW0SFGrYw/Feqb6K0EAdduUGEXwjwc+rr96HKGDkkvPA30OJ40CjIA95OJnDtCvToNMVR95s4IFvAdf36GDRGvrqXjHCViucDUrJhVR9N6Gdhd3pFfy2wd5zHN9vlHXv0JT8mF7QdRqtf+QU3H0Sf8M07JtUb74Naf7GIdbQNp4tTlM+NTqvQkeyHPPpYzQencX+1H7swhL2oTPI1ZPI+CDyhRPIRx5GXrYd2TnCMe9UJr3ljeTdjNszzwHR9Ob0xCKdO07TObJC7UCD9KFKW8xXb1fQGA0XQUti3me0ZeSt03BgWxkVTsMZrEy9Gt1xqO9jDo3Qx5+MH22ljNDb8Di7ImSp5au5p5Y4/t+JYTuO1BnSWkJt3zS1r5+lPjNELXc0HNS+cAJfS1i9aZxOdJAE2TKQGo6EdkwuGK3RWel1I6031mKEevuotg29lsISdHkoOzm0gts9ruUZIbPjiBF2hDIaE/ZZU0KKpYCkwRHqjLY8c76Iwtdu2Yr9vx7EnFiCmUGVo5nTm/3WabhxWpFWlTOkCugNFWu1Use7T8uV3INnya6fgN1T1FPDWuxaYgTnBcRolLCapbBzmGwV8vNtsi2tol2dB44vtdnWdgxuHQg+EQXvxobbC8/AJEKSad3+7JZBFs928KMtxCuB4hY8nMiR7WOYUKJjDKGlZ3h4TyMk/9k/eSeLrlfegxIwxh4qEcj7mIkD2n6X4LgeH8Cdz0o/8kPLnN49zVhdeUrUljGhFMCQWME6T80KdStkRp3/jZu3MPOhx/lX43Ds7HkOnM7ZtgDpy2eo7RshEaNZWukFrpotdeFFjJjBIJVfbQBnkhqNdq710+FgRtAYo9jee8zsEqtX6tmPKfdGQPa2MF8+gXRzTJhzvc+WqZIVFun2VUQYRztXD1d50+H1aWfXsy2Ltnwhfd+tZdBIishzcTmvjvm1jG5X6E40i4BMboW/zWB1pskPPXAee/0IidOoYe7AOHW63eA891rhRiiyvuLtemDJe1pUHA2h/MOshc5LzaS4Z8ZbcD5HtutvD+Sw4pXvgvBaAnq99+zMEkevHOE/O1j4kR/mV43wz72wT9DOREHORH9eDnwYeIURJtDSuZQoIgwmJyZtMgbcb8o09OoFvQ7aRUqnbDXLiuBA8kYjxosSZKcY2KntX9lOUV/uQl34Wu5Yc4Y1L6wFe8ujeCCjjNjjwBvIuppin2ceF67zueOs8+y5bw571TZMmuj5TLSd71hiOBwzT6WU/UXZhN9E27TodY5es+K9wPYROLaqqDyeJRf4QZzDeQMiLKNt6gr5JJqJYFC762PA2yjT7fOQCRXT7TPvOXQ0pzs1zputULPCDwncY4SXGiEzQW/yXYDkCg+VHgK14fmO8uc4AXf9FD5kMyuot8znjmbQnWIEGW+RWHCnl+jODJN7zyu856M5POE8e3OPTcrofLzf1Ps+p+CzOzYF6Gu1GkNDQywtLTEzM/Oc3cz3dFQj9OrGhR+YhsPn4XPH4bU7Ife4xTb+k0dw3Tb+jTvx24bBwFkxNG2poMSGyHwA9UBhNFgJtWiRiMTra9fDVR6+5hWkpAID4SBJqPE3VrCJYBM9NHoKHHSlAPIxxVVyjxyY1gu9Hy+aIng+pNf7VMgTi0tDBM1KQVJREKCj13E0TeY6KISpjfMxKkSjoCg8drnfGOBDL6Av0l8qjgrKtnw9P9/O4YYJmF2GO+f1ew+e1nDtzVPwqhmNtolBDJjLzyEPnUGun0R2TyKhbn4gNZxKDTsrEazojY4OjNwI3brl4UTYkXlMniugzz3WO8TrOpIHp8rV0/APBO46CbdMw/7p9SA+/r9mCtbwgjwFX96AryRIiSkihBulPFcNuup3BykJkqpKy4d5RsAbQX3INKKLeqc/CHwceCXwe0b7l78O+AyWH3SeMe/5Q+f5mdzzo87zOuepOWWbXURZPTXH2Op8TW8q+mZHXPrY7zZmIoCelROV9Yse6RiZj2D+LuBvgEeAy4D30AvmUwlpW+i13wgP1iyXR0APCo4un8a9y9B5cJbsmnEe2jHJW0L00AdQVV2L0giAuhFOGjRiHZXlSB3aaMp7En04vugnfI33NBH2Au/0nvs8/Ds8P+HgFtXQuHaHfEgB/UPAO8NZtGh9ZyTcKZ6hCOMGlkRYC+fXGVFjaaaFP7aKnx6sgHnKs7zRWJeZ47V28s9ClPvB4/h3gr98QsFU7AVuPE7UOBSnqfaSeSTPkU8fwRyaR953gNpIHTvZwh6YxuZOibnesAv70Dz2s8ew+9Z4xQu2cq+zLCWCzT0vBLrnlrDfmqVzbAl7zSRrb9xNWk+wh85i7gmklJdPllZAjI4KcM0MXDvTe27TXmdav0EY916QSozFvUu553tq6MPr54HMapTXJYZvJJ6bvaFmPTUv1G4cpvaNE9SPL9GYGaL5+CzpN2fp/OP9tMOeU6NO34+lhlOpptrH5YnOSgV5Wv6iCLsyZ4PW0X/tJPjtZamFB4fHH57FvXRGIz0GzhqhbYVtlrKGPODRAaPnS6xgagbyIDfzkJZuRbPhbhqH20/B2yv77cQSnMrgPePrnb5WIC2juT414EyxNxX0eOTKKb1QQ8wmhvPVjAUj2q41o4zQh6hNvr1OdnQVN97sIcVbOLNGa6TFFmtIIuA1oWbeSCDsCuctZiJNDGNPdPBXqEg/7TzbADk+j9k3UkSYY7q9RuifmmekmGeQg1V5M4gC+uKkKrLSVNi4b42S3ebjTdxiW52Vq13ckXM89ro9bBMF8MYY7T8f5mUSzbao5b6IXHvvMYMNkpkal3/6JFeihnvth2eoXzlGwwi1pwPz6dPPd938JfqjpIhmA9QQ1lopWWASjWeyGr32HlzmqK3mJGOt4nPECpI77NYmMiyYJ+a0TCD3vfbLU8nB/tFx6ojvV9BR/j/tHPtq6AV8Dcxal9w3lE+Dshbdecicp3Nmhe6YkCW2AD6rCJ9HeNf2QeRvj5OudkkTS+o1Qp+EDJqbnOfjFn6M0iZKpNxTqx6GohlXdWYsdYryEfGCwSOTA8jsKuLHEAc18Sx7X3FEqLHpPEUEOj+/zNdGt7CcqMNsxcK/N8KLRNhp4HJUh0fn/pdQVvV/Tqm/I8+BQcvgYnXOFJrRF2+56ujsz7JaoDdtvBjxjFpHYoQ1E5zUzuO3D8A9Z/HP31rU0btwVjohUt9GswXvAj4NvI6gy6k4DjJPluWabu8cWeZwzvGd3PPSU4uY5WXM/h0kEkpjjNqIk6nwt1Y0E47ejMUo/5/upImoLbChfphpwNdPQcgiLMn/ytIJLyqDGpXPTCjT7l8E/GeU9f6yEJjInKeTaap97jwPOs/wsfNMXDtGw6geeU1i+EUjHDbCZaHUKfX6uW2vWQ4XBZJj5lespU89HJiGnxD41gncrdvw+6aK9oYusXhrOO8848H5ajK0lHTHMMnhDuk2LZ1sec8rnOPjzvDPnCP3oTxAQtDMh8zQ5w7Pbz7l/iUveQmf/vSnue+++7jlllueuzv6Xo2ocKqhFu/hzZfD7zwM9Rwem8edB3fTOP4Hd+NqSTACDOfFMJxKEemPUfVeJY0CMtF68ppXWR8j9HjPTcCfAvuAMTQNVgLYjV44a0pBjw3kYYlTBG4DsE8MkmmYT4LLUQlxDA0rzCVCbgPDpwnKXoIXUwIRNJQsp2gLCoMyaN9KKTgTKVNH46jWP0MfwI9StHgmCuJ7vIaJ4JsJ2h8tfmjl++0c5pd613CXhZdOl4gvPvsrp9SpEZ0riT6z4dRwrqaRiKqwi9glgsOjgLOGKQvOmeDFdpjcYEOkvqf04doZLSmopslXU+VTG9K1yvmUxkzlmfnyiT6dRzVgxALwxmuIMm1MP7M07COAL5jfgbuBT6Ag93Z0H/4msAe9rRrwvHB1jdBB+N8sfDuF33eeTwD/IHesoS3iDhoYK/Z/JeLwlLNZPyIJVBH186Xim0YdTVVAFWuW2r4E8/+y8nn/kF4wX5dKxkn47P3Ag9bw2tQW3nMfjEh/+RTsnaItwqpR5xCJZn1smG4fvhDbtyAVgNVIcCKw2MHVm0UvYY226M+sAT/tPVd4uAktz/mw0/aRb/VQa3dhpsFh1Kd3eeEfKyMZ1eeGwHDIIjqD1hV6CedgxzDu2CL+5on1pSD+AnX0/WDeeeXJCMMD/kPH8W9P4IoR/ZxcAVQXz6iAOJVhkjn4zBHkzBK894CmqyYGW7e0rJDkmnGwlgn2qjHsjibmc8fZ/9FH+IX94zy5tMwTo0OMne2SHZ+ju3cbyStnSBopSQCg6YFp6tdUzij0gvooQ6QKIk2ZbVOZVwkYSvkxixozNXrPYxR5KWUtfYoadF8MUXqTe34gcdS9oea11rpWT2lev5XGHadpvL5J+tEj8JoZzEhDdU3IOIqyZig1nA0RxH5ng4sWXYzCVFMHRDRb4WPHNMsiMeCCoX1+DXce/PYhPIITw3GECRNSzG2ZmWJF5zUQ/LOSGA2fRFmZenWAGpSI9j8/BKeXYXpAb/Tb5+GGMYhEomW6SRmtj8fKCL6WFO+jM7uI2Isa30kqLITIM+EsR3LQ4qZDxLl72Rj58SXy68cDoNf1lTM5+cSoRuFFnRfGajeR1GhnESuh1jz8zOi0oXbnHHN+glHnOO/gqixHZpeRbdNFumysUS/229MM6XuNu7KFOnGLPeqDw0KkSLv3EmqjxxPc4fOq6x5chh2j3D/U5IUh9T8SrmrKvcEGniHJPY2wjibUBqd5V9fOqn1ce+Is9WumaMbfqzqzQxlW4SB7hlGqsISV86X/6dQT8sg65tVZCpplpclwHs6vsNYwDNRtGUGUkAEpBnP5FnhkEfZvKWVaAerdejlYxfJVYJ/liiyri7XJyUWnRYwIFxkJSUqr7VhGj1WUP5rC7pX0dS6nOzZAR4QMT2aFT3jYaoTL6wl2bIDk8ArpVXUtIcw9NnEYb7guc/zHxLAsGunOKaPhHo3Qj1fmqHaHx6zlSED6YkQzGaZSuOt8WAjPCJ5zoXzLh6zNGKF3HvKFNXIPV4+1+KSHtuhZeq3RvuNfMcLvhHu6ErVxvhXu4z8Bu4DnE0iaw9erum8KJdItnPSUNl9VVoIGJUYrS1K1X8SqzkytOhxwwUk/08J/poPv5hqgCvIjj5lOmSNLLHeh7XJBnRG/AtxatRc6DroelzvyrtbQu8zxQO559/1zyJUz2DQpCCtN4FKasIYjoXSskPnVOW52D15IP+wYVP2QqX7wLmbB+KKTAQirqHOxqv8iqB9E2wB+GXhPdHZkno5zdHPPaef55ErGzy6swsxOElEZMWzhZVb4iBH+X1Ztm24wvbu+TL3fLEguuirlpjxEghLgXjUdnL5BR6RWu8UYYTYXdoWgiZgQPN0xQPLgLOkLtuo9ec+rPPwLp6S9r/XwPAkJjKL2aVe0lv65Gubpf0THi1/8YoaGhvi3//bf8md/9md8/etf55577um5/q6M0a2Xl8qlX/GMNeD5w9o3/FwQAFe18PVUiRJSi69ZzoQ+v9QTpK59iqWRIo0E00qQgQSaqZKjNBLSZoJtJJhw2XqCNFK2NVJGGyl/2UiZaCS4RgI17SkswTjvB0RiRPtbNpKitykNizS136mmOmu6M3VL2kg410jxVeMmfFY8/NErG4HtfcDnwtd/CfgOFJGYAgg9xTNW48AgNb0faSb6GiItGyl0sSY8L1saAHWN9NKwGgGvjptDensj0b6fzQRpJUgzwTQTpGGRRvj9mqGVWs4EsiioCL2+1ydQj7BBARKJxdR1XZNGgom9kcPfpGHLXrONytUM+2OTBoyENMBN/ewGF5QReoAvf/S2XqcFIfXHayr6t1EF8xV0rd8K/Bu0zUgDJcEp+oaK/r+JguJbgP9khNcb4d+nll9PLZ265ZdSy3esKaMMXISQ6RuGEsRXX2PKfXVukQxvDb0+0fdZd4Q5RUDflHI/x8++EngYQmsbdX65unZC8HU99/M1y2rD0Kzp10lssR7VqGx8bRpYDREzBfVBSQ6AX+qEFksl8PLesxK+tsWDxZN6z60C/9J4zgK/nXs6yx1cXbjfC9chZeaMhAoN6XtuInhrGDfCeaOpedHJ4LbX8EeXcN6tB+kR2VSG1kK6iicsWEbXT/X+3C1D8MXjuI88hj86j88ddHPyTl6wzyuYP4qZW4G3X4kJYD4Caalb6g3LQMNqb+nUUB9uUHvTbtKpQXZ//hSdz3yT99x2guN5m7U3X0H+/DG6zRpZaujWLJ2apdOw5PFMFmez7/8NW8jS4jXtPbvV9Mzq/ptF0+3jvu0B9ZTGZk10/92Kdlp4pRV+1Qo3poZmKjQSzfwaEKF18zitR5dI/8N39ODduCV0jggR+rQE9qOp4UxMt+y7t3gV2QjVS4DhVA/H8YVoaZPjyQ8u4bY3cWmCM4CFY0aYMRLzzRV3U9p/lhj5NKwnIQo6driu4P2OUyFtKIN7z8ONY6VRWa2fj1wGlSFWVL8FvWJqFtOw+KDz8kZCrZGyYCt8AiI4ExjvbfkMMoH8sgbu2AK5d2qIe8+K94ydnGd4qgR+1oRofMg4SCVk0RkpQH9tYpDhtYzDS20A5rxn8uQitFJkoF5kNohVZ/2GPDIbjD//i9vWyXvQrVEwoMfLSDFnjwJ8J4IbSXFzXQVTj53AXzHASYHpAsRrJkdRR19EtDSbpGWFQSsMWcPgtVMMOBjswlAGQ9dNMVizJIX9YSs6MejC1D5zMB91o1SdpvqS1VPyxcpeR+WU1msHcsPFnDPDA0wFGWxMJatSwF7RgofmVbZFY6h6uYoc7LfJyz8KeSXlvjrXzUxbpHTWx1cRqKUMZo7FUE/gHaXu8BoB7s636U4OBsAjnPNwuwhvCPNL94yQPjqnzkWv5ZImB+M8U86zzaudFwM71bZny0AzPNwI4gRgJUeatcIBYURgSwNzNiva06UelkOJobiSzM/lXuXMuTb5aIvLrDAlwuQXv8IvGuHtRni3gX8jwodR8P5qNMBUHZ+hlK9R71V130T4uf4gQNUOjEu4QAlK45LFywd5UTea6VYs0kANxgWOLBatU53zFW4cBfef7rvvT0DRpnY197SzXFue5U7JSHPHovPY04sMzC9hrxoK7TJDADFRvpJJK8xbKTIzoz0ffCfrtuoFR1UnVN+P1BQ1n1xS3e/D3svVKRMDiIv01tBLWI+IGV6BAvr4fLSjEqx5z5/mnlefXobhJknNUjNCmmjHjVcb4etGOGSU86lDAMcVW9ZdBEgWG7KEIr4IMso3E3zD4uoWaiH4WdPy3HmjpMLxcBoRZHuT9NgaNsuVG83BfKZOq2/m8K+d59uVe433mz3dDX4XY9MR+l/+5V8uBPHv//7vb/gzt91227NzV8/xaK/OlcQs/RGp3MPiMlDx3j1yGr9vsqxBt8oqeWPhDAiGn5WYmbMuomUIPgPCJZp6Kah38S+BB8L1PCrOMmJ53QYAWATSELF3Hul6TJaHXtgmGDBC00iRErqRsVc8gsrXPtv3tz4NvJTSvkoucE/f7RBr8Bu524xoFPwnDNx1QuteLsCYHxW0CS54ET2Yo4nhHH1z9b1g3qEK43JKoWSDUrVGMCkYZwqvfdHjGlTAR0T1DFIKL+o5CUU0uHqNUDK17rhiF1CuaSx3jlkYf9P3mSdQwFsLV0xhq4k+pxhh7PhyH78B3bN3VD7n08ALKIF81AsXO6KtGz3t8fMmWZ9Ct0LZmm4eeLTvs14X5lYXvWqi8+iP0J9AHSJpauka0XTNLFfx4GDegLcWCetcPHtZbwSApoMuVb8YftgPJbDU1dS/UJMWJzQbfjem/jVE12uLh/9ZPF8R6HbbfLVm+RzwhsoRiHW9Kfo71WeI0RKKc8Ej57JQZzs9gFt1uA/dBy/arvXkRcqKX19HX9Sp+HJjOa/t4AaOQw38a2bweyfwWY6/Zw5uO4qfGYabx+gODzDg0Rr6zx1Fljvwln3q9LOVqHgtKF7nSYz2+RYj5CJkIqSZwpjLhsdxQN14Ptuo80arJUqdRLCppWOFdk3rgZuJKQ0WkcoDqhgwNsqN9bu2X35GY7AK6KGMzMePS6BsC0qZhvgiUdKxuvfUvKPmhEYmNK1QPzVfnpvzwOFZZP9UCeRj2UdqGQup9guoAVuNzpd19GGTVA02IyBGozBH27AHfKg/zQ/O4y8f088yulcOW9geIjem8viSYmtXnlmMzEZAFMlbDfCSSfjth+HcKhxcUuKlbYNEvpDe/vMbO0TFCNRDe9c8ghyKnspNNiCLM+t7LmdGyGcGyVeEfH4NNzaAw/Nk13HV0hoyNYCIKdLqjdX3qRWyREi7SthkEsFmCvaXRlosnFkjG2qw6GHspNO2pzHyGoFkPLib0KX7r1R5XpUzoHJiue9nq5F5rEbucgE/3sRl4B6Yx6cJZ6aHyYwwZUzQnQHUBzBvhLCGuo7GeZq5pw7k+ybx7wJzz0nklm3YA5Vys8I2ktI++i7thbi/ygh2yc3SsRbfyXSdfdmHvsx+8vhzjsMjg1xFAPLBGWOswYjD7BjWDzuyAHtGVb8Xuj4oz6rFfKE6+k6usqvn5qWcxFNMsB/IS/zGYMpMpqSvhfwJoDhDGe67Z5bJbthCV+AxB7+FsD2BHV6w3lDb2ST90nFq7YzEpCROywitU7LSG3LHvcbyAiq13eFvrToYwhfp9iZ8w6zkSCPtmZoM19WAmF2GiSFaeDrh9zxU+pgH0XA6w08NsyTCnAj/YM9OrrRQsyrrc9H72YtmDm4D/lXl/t6I6vNor7TptRksajOcRNuKrpOLlaVbRHmIijmWS6N7zggNY1hJHN4JPurQHeO4I6vKxRVAvXcen3kgA6OZf1+s8DCMovYKgOk6bfecaQ19FqLz9zvPqx9YQK6cQdJEOS2SMpsGaxhMLXURTqL2X2HTV/TNpkbUD+ucvkb70R9dg10jxfpFHiife0j1ubeqH0dpJxoU5/wH53nSOa7MQzel3PHnXc+wh6uPtUlmxqiJoR70fGJhPBF+wAofMMIv6tNUgCzPLEoPIDUbup2EEoOwH6OedEbIYjZ07jhlhFZQdsbqhpSROsmAkBxbItk9gnWOO522bbVO1/OTCdzcd7+dII+ei3FRwbOyVcb66+/SWF0+V3pp1tV3Ga2zpCI4r9+mEbo09LCsWY7VLEM1iwteZxOEbzRy+ocRKWtKhIIB0lB6EA+jEdPv0GsMPt0iSYiISN0gzVRbt9StKtZg2EBI/aXXmRyN0iqod2gNdXW8LswtRjQ3EVB4xqOMvtjSuI/pr9dsgx+7WV8blQhA5dXUNVoTSdl8I8EnhnHU8F7n0KDXm/kkqjxM5epxriSmkiGRwkC8NBtD6vY5BfOwDh8WX6vW0F92zb6eOWaVy6GKsTreiArk2Gu3JWV0fqDy/1a4mmhg74f7Pue1UNRwb5RhstlROIv73m9DlXPcqx3U091GeR9+ET1TvwT8IBoJfR4hMm8qKfeVe7Ro/fMEIUqPll1kNYtrpOSNlKyVMttIadS1rqpnDSjvjzjf8Jw64eYjhZcDaNVxS3kvuVEwRGedpgmaEEVJvaeBV0cE6uk2bfjkYI2Ogb8W4QknISAqBRbqjxRjhDELp0PasbdoetmJOVwO7kngT4/Bo6d6HZzr6kcrX/eVn8ucIou378PvVQeoryVwyxb8O66EoRZ86hA//NUzDD52Bv7H/cjcIvLDexTMJ5XzHj3nIbsmnut63dJoWNK6pXbVVoyFA2YSMwhj+8f4irWcTS3d1NKtJWQ1Q7du6IRofd6wemZbiZ7XkEVVZBDVrMrSC4CPwliiF9zPUtbPU3mN+6EumhXSDHtiwOhZGhQYqGl0vpUYBhLDYGpoJAa57xQ9475TRUReAb0UoL6JRqhmq/fle+WcVB0X1UiMADsH4fBiiL448k6OP7pGvqepjmHRVMQjxmiE3mq7ukJGSq/Ph/j3qiz1iZSR95EGXDcKf/0ofO6E9juO4LbqpO0jJNxoFNlgSdnSEzZo5wa9+96E1opWSx/ymQbuRJs82DSzp5ZYa6VIPQlReRNI8SCxRmvnDdqFJol19Lp3zMQorZMZp72mWNaOn4PpJPiOIpDcfP08wPXX7aukmpf7a4DSiRvnqaUF4RXlhnFGSfu8yXCfO4yfHOCUCJMmRPuMOiUkOMTi2sbAQVUPm9SQNiy1q6ZJ3n0T9uptfRH5oB8bqZ6pZ8n5X9V11Y/MBkFCEX0IYuMcBcEhQL64zMlxYTQ8xBidl2ItDBwYgUeWe1MWi/IiVzpe48Mu/mBlrFES/vULhKd4DkVWm5F1eh2T0lyp8OO4qC+0fr7rHd3FNp2RhMcc/KYIcwYeFeGgF1KBZLBOOm5JDi5qhD73imecOmpuzD1302sTxVFEX30J5gVgxSEDtXJNrAZQZLSBzGUIngHnWSuMrDK7ICdwVZxaxE0YnvCwXeDqfXtDWQsMJIaWCIPoPm+i2YG/hpLH/ifg+aKyL5XSsVi1GUD1aSwI63HK9snIBcqWdcWc4joY5YKpWXXgRYewF2BnHQ6f74lgu67Dd3Lo5JhOzjVrGc9v52x1nvcCfwXc6ULf8iyn3VW297yr0XnnPWdPLzF9bgG5ekg5PKyWwkgSZJ5VuRx5harzq6bdb2Y8pX7YMQhHl0o7JcxRMzYckjsWwxpVbY4q1mkAL3Wer4UuKpn33J7DIe95h3jsiXOkOyx1o86c1AaOEoE3GcNXRTgKPVH6IlLPxUXpQe14Gona7q0UH2wB30xwdcUMDnUQzxphzJjCqaNBQ4PdNUx6qE3qIUV4hfM0vYIJcY43eiUQd4SyUHrbFz7bY9MR+ve9733P0S18H0dqwCXgs9KAhcB4LPh7TuGetw1/5VQwALSFgUsMh1LLeKrGQ9WYryrb/pFEm8b3Mh4/0vdznwReIr2pjJsdG4GMGOlbCe/7vZJVARffT4bv/QAK5m+sfF41WvpcDbGxTjIvH0I17S0KnapHUS0qrHhVzh4lagnKZwuadhVH9GL211Y9CvxE+JnowKiC+uIeJVqxz46xcrGjCh7jNRS+toJGpIt0Ml/2OY/pdEfRKGEDjbQ/X0pPZ/R4x4i299COezcIUU3dU7D868CnUDD/PFSwpFJRss/AoKueqer7uDfPoX1N26iQfwj4d8CLgZ9G5/ID9NbN16UkxDO+LB+RsK32oev/PMrnZI0UNtsCvaQ5/RfVVxGaIgVhlSdEDwE/0sAt5+WZi5EkNEV3PD4Er/dWJ+5DgbUOx+qw3ExJgFWBr4ie0QRlubfh3qsZDiLawudUiNxpOq7gHz6r0QoJwO+uk9ov+kJ19FVejKIQ0cOJRb2BLQ11YCQGEvCZw0sNnj/O0tUtWl86zPDda1gHNs3h9ALsnSjrwgsgHwCC8xr1Mpr2W+sq03C+b4ruO4XswXP4q7ewddcEN2H4SGL4R6nQSYQ0MSSpoZsInbqllgQysmcIMMr16jUEY4S+Xw/E94kILaMOmiScQxduwSKkqSENdco2gtoK+y4At25DUmUPNxEcV1KYt6IR6StYL8+LOvpqjWTVcNvehC+dBK+sxe7IAm5cdJ8KuJAVcdzCzgiAKGXjBZ28G0XpuyFKvzPV2i6Aby3BgbOqe4t0EwXz3y1ZXP8P+4ox7mxgAwfyHSO4Uyu4A6OqG0958q0jCsClt34+MYAxJBasuPA9QyIOI9DaJuz+1hy3uy3sWm7DShfZNohQAvlIyrZhF4kLzbPv/6Agx1NmmZWX8gMUhHgC7ugsbjk83kfPMr+nwfQuJYk0gWjRWFuQHRbPMwklRlX9m7nyZuJ6PctR+Z75hzUzYf2q0WyXglkuQxZOXwrg4byHuWXya0aL0ggxFFkSRjQFnyuH4HNH4VXb9IBWHZtZ+EBkvREFJbBvo/OPT++iHkFZO69HNETp6wnDba+ZaR7U9av3l3nornTJutAdbXG7qBPZirBmhTuMcBNGeZx2jFN/ZB4OjCkfkPcFoL/GOY47z7wp6+jj9Na8Z8BRMtWHaUk701JPoeSSAZgYRE534QpoeO03LlV94jW7wDlPvrCK2zLNQwj7whonorK+EYRLbNca7bQXoXo+Iej04KhPgl7v18sR0Mezsf6slIB+d7ESfcAeintbLGxPo7+5fQh/JoM/vx8fMAOgvDE5eOsR6xl2njfmhjenhl255z85/dqNubZxNV3VtXnuWXFw1QMLZFfM0KhZdSAmWuqTR2dukP/b0WBGVe4XPpSL2X8X0g876vCVU/DR+/DPm4H90wroMxd4hnLW6iGLLj4zKTFPxDovzz1/5jzvdnAw83w89/wTYPDcMmkOtclBaqJAngDqrdWygleipM0/R1k+GmvTn0mUHqi0DAViiY6LckOfZccIy0bb1imJZpkdlGwfILn3NImfwHrPAev5Vzl8Off8gPPcQBCJULR2jff+XIz/vwT0tYbCHhEpGXP7geK1M/hrZzTF3gg+MeTW4KxhvmZZSwxb6TXeqsbcRsPSR44kUPNaF/TFys/9MGUkP3ocNzMKAdZn3MSOqD3AInytWkdejTydQoHT/4ICvo2M1Od6iBU1IqxoakwED1Bx/wWhmkjhPTOBrMOEycV73YK2loLe+TtfgvrTqBftMnodKk9ptH4fRlxrE9Y6gvsINheBtUPH2XvZTLG+1WsN+BoKxPeF30vRyHyRlk4Jfr0or1Ut/G5HesH9C4Hne30+sU64LqUge6ZzLDztvlyDFG0tcwqtp89RQr9fB34ceEv4mRqhbl7KyHyMkDpChoyUwN6gafd306sQRXoV/mj1HoX1ir9y/hoiLJkAniOYB/UEn1oOhqdGWiJKPBcIiMSrAWWq94rHLHWZdjCQw6LR1nivDEowsaWMycIfK5wiImw1hgeMK9taCfgDE7hvHylAqtwwtT5CHw1Z6E23d5X3R1Zh5wBI6KgRypOUhMxBBkuDTeYGEuXSaoBZAXn0bJFKXoD5GO2LhHRWFNSH/VUzQscK6b5pDtc949unyK3wWmP4xUR42BoOJIbVRBQEp5pyn4S9sWnFVxkxIrZR2dIsKjOKPVC54tlMRBgImRbRsRa/n6ahd3v1eV7V10Hjqm2V6LzRzDArhTNqK5qZzwb3WECvqgM0IjYRTXd3wLk13JYm+cFl/O4tOFFSIKxwwmgUcyJEciylPriQTpCgO9V7E6y7WOp2cLb3h+89VfYrr9bPP8240PMeoJcg1HkCIay2rvNG27DlAfC6HTXyL50i99s4BWyfXaR1+ZDOz0biOzS1PkTVrSUw3QcwHyI3TA0ytnyMx1a6vPDMGowPYtJEI2tGjUFbidBvZhx88jhbd80Uc46vg+H9MiW4x0jxWoD64LwDcA3wCzD2+ALsmcKEaJ+xynIfs5Z6AHlqwCeqizMfiKUqdlPRzeXi+stfzOhZY4n3p/vEtrulLIXetnWdnGTNwWgLhALUF1wGNjj59ozCwlE4s6qEjT0R+gDqL+SAqYL8mq16dnsn8FTzsxWG+zA1I0DD0JjvsOQpnYlhbpn3dM+tkY0lOCvsQte+K0JihFcaIUUj3uneJvU7T5Jlulet88U1lsOukHb/A1RkRuCTiMGCqMUElOV+sky0lrguUzV4YBZhgob3rMbItSdEsUN0fnaZPAEGGzwm8A4rnD5xij2Xb9dsM6s165HcLQL7OJKKvdEIzzbaaVUi3Sm0lLIqv6OYrQZ2Y8p9v0wpHoU1NBNluUdC1wwr+FPz4MA/5vCPHIP3CO6KCbwV7V5jBbEK1CdyT5I5XuxVCfy2c/yig33OYTKPCez2R84ssff0POlLprQUxpQ8F9pdR4r9MkPpsMgr83NSBgw25VzbCMyLQEeLA/wDDv/wUfz7BH/lNOAQlLMhNY6BWi9/kiUEdTxY77nZOX7LeX41d5zIPD+KZyee5EhGbfsodWOoW1FRY43aNEazaX4E+MfAu4Cd4bNrnp5e799tW7iNgptzQG6FkSI6r+eUTJBdg9Q/dYysnZNaQ57DjanneeJJ8BjnqCW2LF8Nz2PtuRGPz3mg9ZIcQ6M7ivdiBWqGvG6V/bBCkBQJEnxd0+xdPSFrJJxODDXK9JJ+UH+htTIiPXXJNdHI2/NRMPL3gd8Cbo12D7GUcPOrLxu8CqroY/ohlEoBKoKNUoifpoyEVpVodZ7fi1EQADZDWnsrEAEOpGW6bD2kyVY8xMU9S3nv46jAjinn1dSkeD2B1lnVwu/0Ez59r+a9mdG/1nF9YgrmvbcrF2zQG0qWg76/C13fPfTyOiQo6B0UGDTadk2jU8rFMGD064NSpt7H9OEhU6boNyrXxezf/vn1A4b4SbEVTQZ8BPgNlNX+LQRPLYHEz6iTolm534aUDrO4xvHzDwAPUnFy9d3TIuuZXLnAewnP0iMFEYoP3/DDCSy1exwH0TM850O0N6TcR1De8GFOqxlbkhr/i9H0+/9V4MZU5Ukioq/0ndnw97dY4WxQ1t4GpvtdW+Bt2/U8vGYCLpsowXwV2EOon3Pl16sA9NAi7BrS+ZnIFFtG2n3NspoavrN/DDMMsga+Blw/iQTZK31gviCKjDKgmWDrlkZIv6/VDd++9z4lHa1bRhqWV9UT/qChRHidRkInsXSQIkWvHY3Kixz9IL6aknoWlS/xWZdOlPVZPWk8SwIDRt8nVgkAC7LWmtF0wGu2wXtv0k4aNROIRQ0m1ZKq6p4bhYIjBNYbrsVPFhav9EbDt9Xg6DK5ePwT58kva2odpmiE/qgI0xZNtw+RmAjq4xnacFRrqqsp9Tf3kZzeuq0vRd9cON2t+kz7XuMYoJcsrngNYDMC+kxQXobpQfIM/Pwqj+aenbOLmPEaxpiQZq+ANxUF9YASyIX0YGMUQFkBkxraQw0mz67gZ9c4u2046KKydl6MdrHZrBX2xS99q3TiUv5abBW1Sp/D3hhduzBPb4X8qglcHVwbZAS+sH+UnWFdYrp9jM7335aI6B6NZLAtW5auxDKWxnMH5ot7CJPvkbd1Q5J1g2M0AkdXMNz786usNi1bCplCKH2gJ/WemoXdLXh4sddhWQB7V8qOKhqsGlOgn7P+5jc3R2JGVSXa2YKW67IQ/1wwXJzzdD3kC47OxABOhAdFeJkIP2jgXxvhmroC41SE2vQAaepJD89jvMfmHut96N7juDH33AsFMV6UIUte9Y8Jcy7ua6WDtExwrkSHhMB4DZlbA+dp4kNb5PgsUWI0D9n5DLd1iBMirIhwmYH7vnlP6ACh+qwhMFyxOwZNsDnC/wvSXinlUVX3Cb2tbuMy9ctzUP1edVysu0Sd9CtFTVtwjD+ijjJvwud99Sg+c9B1+I6DtoOOo7OWM9zWFPxaO+el7Yz3reb8l7WMw21HN1PWd+eh9dACJ/fOYOqJisVUW2faxIR0+xI8z1xgfnnf/J5+81XkcxQ2VuCBMrfVA9x/Gt91emWO1Y6j3s0ZDFk7VZu0KDX22qWH3PNQDqvesy33JN5TP3yOxrZWwEVCw4QyESuk1lAzwgzwMuDDlIGpghjPl+n3z3RspNsd6qwfDDI7cnJFtns7kJKOGexxLWOpeR/Io3XfD1LZt2Hvtox2cXguxqYDFT/7sz/7tD/zG7/xG9/VzXyvxrmTD9JxnlXnQ69pg9Q1PVYiw6kv0xS11k6j816kB+xWhUZViFxo1ES9Sh1RRSxGI58vAl6CgqoIhCLo3+zYUACF7w1SKnz6XvtrbjwKliaq8+oXks/RhrzQUCPhIhVi3zUevj9LGcmoAjcPHETr56vz7o/UXwrjQusMZeu6V73njT0CqppufzuashYBbcwGiR7vurChpzMRweI1JT+Ao9iWI95X9ETGPfzdzrHqSIqRbwE+AHwBOIK2gNmHOsEalBkCMSofX+vBkLP4npT7+H4PCgKOo6l3/e17FihJcwqlJRs70iAAeoEVE0hVwucwaPDL3bLmLv4N75nFc3k4kBqh12h9zXmsB7PosbWU66zh2lQwqXq0a8H4qZneCEU1i2PCCKetAhgXIgzeCW7vVtzu85AnFGxFhVVQAnpCfdi673sHR1bgpZOFzCSC+qRsBbMkhtnLJum83sDDs9Su2YLZM6mdPSrgf6N0XbGCb2jGTtp11LtKSvaj73k9q14zFDLR3rV/ZQ1fMcIr0HKMLqUXv+1DScnFbccecOwqXwP14kf5UjVmin27wVg/PyXv1F8WDWs4U35oALsmDaAe0Uyk8O2tsCHpZ5X8qawdkopQC/exYwSOreK2r5Ktgt8+SC4hom2FI0bYaUwB2GKAP+6xCx31nih97P3rPFw5Be8F7j6lGQj7p0sQb2XTKdsS9nq/PBygr51bvIzue2dDdN5oHb1zhnxyEH+mw7mOPlgZbap/IfRAtgatY42KIPheVq3BWtfDeL80PUrWyfHtNX53/wA/4eB6U7arMyE6v1ld+pPveyNLYeNV5Yyg8nadwz4RJNNn6eK1Z4Lu26D7yHnOHxjj0R2TzKQmRKpDOYfIU2ajaQcDtM1qsJG+V/ZAkY4eX9G/nzYSam3Xu/edgnkHsJhzdmyQ0Rg9NFLwGeiaVs7EgVH49ml46dTGEfqnqqPvhgWqkuL1K4WnnGDMHtD/FnZMAvWlrtpwgWtF5ZFX2Tbbxg0NcMTDIQO/lMCQFRqpkPpQj2yFem6oXzGOf2SZZO+Y8rTkHptpSvh1zvF7zhddEkDlJXiGwhyLM+Y90s5gwBaLE9dDxppIDiyt0RppYZxnzXnqruTdygB3soMfG+JxYG/IKHjtW1+j0flw3lLUMR9lWbX+OEaAYzaJDbqy35E9jQapoNferS4hqH4fqcyxmG+0PUSoGcOCcfjEKGg3gr9qAn/XkSJN2x0BvnwS9+IJfGI1y8k52mIY8x7JQuZs7nlpru3t/sB5/jEwdfQc2XdOse1Ih6V3HtCAig0ZZkngt4jElZX5xRr6OLceh+5mj2c8+NXLCNw0DQ8e088X8PsnNN0+yN1Vr47pmgnnMnBImIpdmeSOL4fyjppziPP8rfdc08mpnW5Te/WA2jBWqBkhSwxdE9Luw1r/KPDPgHeiTowEVSdFr3d55lH6KoiPzxE0620wgvkACIwpuzrY7SPUn1yhu1fLWBKvnR1SBw3vqBEcMd8DGblpQH/33XdfmChos+kcl9BY9BW7FWiK0GwYdbHFaJT3eB/avSCFMXcGjRDGEaOI0Xh7qidhRWiICuPovcpEN1MEj6mU0cT0Ip9rf7p9fG1QMuHGjeoqr/1ETyfR/p79gCpGny71EZyn69hOh1GjdxvrDXSHpmVdA2X0iVIoqWC/NPZ5VDL9hiz0GrJVp0W8OsDfoiC4x4Mq5funEogiWmNn0fThji/3UnxuqfBdeyFFtHyiAAxhLWM3CNCz+PNoy7nI0F8F71VAX68gq3ifVTBvw+/vRXktdtHLrwBljV0/eCjOW9/5qwUP/qrXbxa9sAdSWPA4fMFyH8H9Oa9dAgqDxKvxlIQ52rkuSSsJZzW0zRKhbtVp0AjzrDq14vtx0WjrWSNsD++L1lZ7RvAHF+DWyfUR+EgItRG7vQfOrenD2jZUzFNT7sEnltx4vAjz4kgSA3snkSumNGU8NZhaaHG5Qau4/j0R23rWk5yus3TyUP4RgFTLCO8B/gh9jpbw/cprzev+vVjFX62fj/siD/tiC+v1QHVvbGZIzeKrJUbRkSJSkMoZKxgvPWcf1KFwiA0yCeL7oKe9MSB5XyQG2FnHf+ks7vE67rIBXKL34qyC4CNWuDyEwPozl2JE8YIjCci3nwfl6m16BQBfpORHr9RmnlnltXr+BijLzHqMNNH55EbIjKZT5qJ19G7bMOdPrrLgmsxNjDAtCtCtKSPwqUBMk9coryU1LvxcCejvmzRceXiOusDJoQG+KnCDqfR6jw9wk6Nfp1fXfrgy13Kegk8Elxtc6ou0Zb93Erd7kkNi2GK1ywKp7itJzKaz0WILue/lEEB6U14AqDVSjR5nDm+11t9ZKQhHOe84OjDAjFTAvAngORjoxXnYPwqfOg5LXRg1fRH68GplfXQEtCwIKqR4Ut5475sLTrDqtIhcAdQMtW43tK3T4ZwPKeie7vkV3M46X/DwIoFWcFSkARAlufKO1AXkykGSvzlM8uoZbC5B/2na/bU5nHWe00brskHtRgFaQaBIZc6yGFnuK90brEAuyGgdZtskw02M9yx7GPHRrlZnRH5uAX/zVh72sF+igyWet5KEMoUiA7OaXbXOKUqfDA66fRoNaC2hOj7KxOJZhv8vowGR+KkbOevrqaGdC3kWHJUAV0zh3wP+7pP4AxP4oQH8bUfxHz4HL9+hHV6ctl0b9L6wpeuhnO3lXtPxP3l0lp/6/FGSBfAJJOeXMEMNbCIl+aYROklwwgWH7jTa3We1b34x7b4616caIprOj6k4X3MP+ybhXR5/+3H8KUAS5cYJf6eNMGYEsWDJS+I4gv4VDUi82nvuyj0uhyHneTme2rElauMJtWZK3ahjwFqhY6TYvzU0G3MnGvz8czT9PjLed7zukY5/ZrX0sB4HRZ0xC2wRJURE8kJWxDOa7mqS3nmSmp/BekhzdVylKKg3PHPOnosdF4XN/p/AcB/HkoMFp6lE3QBInFR6p9dCL+ok9K2lNJDOoNGQfoN+s9HrupGS5biSRhRfh0TB/MVGNzdS+HEMoIedyjzi++rhj187iTot+ucWBdGlPKoGtal8DTQtNVZuxrlXS/MPUbasi8KoCuovpdGz/yqLPYICjKpRX023/xa6fy9nfbp9JDHZzNASEmHASMmGL2gK8bMkwKrRv+iY+Uzfz9xFaElHYN+XEsgPmMAL0BcmLRzRlffxWR5ACfYiWIvDowZBrLGLnwMbK34J/zQF2iZ6yUPkY7CmZDXtXBVH8OyL9yx62BJSIE34DYMaJ00PQ0tthtJU07lEs2+GjDAo0DC28ARv9OysKFvrrAn17bZSS7+ziTu0TNGHuSCY8CF3r2LY+opxi4cjyzBTK6LIRXswCZHBVMuWzjeSggHbV5jspRa6dGw2KmuEWq3Cet+w1BJNzUvQ7gZ14OPovq+y4sa0+4tNz+sBx5XrfPj+GBvrhIsdYo2m28cyo2oHjVroqNK3roI6FM5WPudCaaUbtyYS2DGEO+dxj57F7R0JRo3gRXXgMSPsDH87ysYoa5+O102MrO/9GxnRm0nv1wIh4sUYQVU5H6/IJxLT7ksHdsg6kMByb4LTXuDQlOXbNU9jDf768gEOej0zMQ09CcZmlajPGEowH34mEeHKyRau61hZWWb63BwvC0Cl+NlqdsRm5ynr5wsXcNiHZ+5qhjw4SVzD4mra+eXxumE6dMORVO0eG6Ksl1I2WnUU9bnhNdIPpKkN8lSLm3wg8nQhmu3OL3FkC0yErR6J8CIxnq2eiWYC21J4ZK639CgPcjF3ZfpL/+jm8UbDK+X/N7PU/dF5AUGgYUm6XSV59MoUj4c893S9J19Z5eRIyuMi/IDVuuNUSkCUhqhnIgKXjWBWIDmxrA5zF6L03jPgHJfnnvvoBbkKTLxqLw/ilFDPtIHBtJhbUfYoAhNDyGl9RoNeifF8qP/zzmuv9cUO2dYmB0W40mqavQ2g3lgpSk+rsqAow9pAPhQysSIfBQXpKZp5GucVfaVRLsTzs1ENfVWnN4zQtZa1VFuG+tiJZf80vPV6JdGeaOF/9Aq4Zhvus0fhzjN02hkmyxnKcujmSDennjtquSNZbPPKg3O89UtHyRbg9BjkGfDYnEbnQ+18khhsqrX01fmNhffV+fWn3W96WBOILU2l+5eFfVP4994Af38H/pNHYKmNzx3kjqyTM9TJka4r5hb706eiYL7mHNd7z792nlc4z895uMYItcPL1LePUQvO+Bihr1vtRZ8GJ2qC6pl3oDbgGVSvdwlZooS0e7hoxntYryur+n0MClkRgXzM6kl2jZCeyWktdxkMJIcDIRvF+CAvvkdj0zL785//fM/12c9+lj/6oz/iFa94BY1Gg9/93d99Lu/zWR1bpq9iycGy0/6aRRSusgeqBEj9aZZnKNPRn2n0OhVR8B6uWCM0FEBI3Twzr86FQF5/1Da+9nuk4veqWQjV9KVnaqR+L8c6o7ryHCZYn5ZajbKdRdOu41pGY9Vw0bbXczri3tgIRMa+xJ/7048BpfKKEfo7UC9nCfJ60+03SbrcMwrm4GfZExkNy5hBkAKv7/uZN6AlFLE+vikK4mOrvY2yXDQ9r4zSF2tMbx099MqFOXr71G6k+KuXF6ElsIoyyhe/lFq8ATffDhHfwPjrYd7DVl9G54soPZrKNXBujaGmMBTuZVgUzDeFIhU47nvpu0+AkUQj9AXTfQA0fnpA53pyuRewV9NNq1+PAsQBR5dh50h4MLE+n6KW3jUSXDNhvqEA3NUTbSlZt0gtQUL7z4vZPyIacfrQH3+sh5ckRa+fRMsy5giefAIzLgHYo9GtzY6qkq+C5fOUpJI9e6Ky3Bc7tBWpFK3YqhwhF3JWbqF0LhT32Xe/4cPX10ka0dY9QH4iw9dynNHWZ85A2wgnrLCzkpJ9sbJRbATzpgTzoe66APXB2SNP06qu53Mv8BoBfWz1RfU1kaK+XPe/OvTv2DJAc63DvvPnOdNM+BoBzIcrMYLpI7GTQN5UixGl8H7f+SVeef8SNz+R879/+CjXnjwX0oj1Z8wmGPyr4//+w49tOE/QlmKR0b/qvPHW4GtGQX3N4msJWcOS1y2PNRIF9DWLqSWhH/ull41WHRL+0dcy9b4psFYTWOuWc3clqGdhiaXBhFYEg8E4N1UHTTXF+MpxeGiuPDx539VrLIZXoJ2XCvQZHXxYF50HTCPFdGAl/C1l4w4M98sdnIMvDTZ5nmh6sO4xNF3ZCDWrlwRuCrNvCPvosrKPxzp6p2TCt+SOe0I5qgeWvWeUilyLZR8hG0GaZR/6IrsAkIkazC0C0PSetfDstKOLJz+7jGsKTzZqDAlMBsfZJ//qUxjRsxb1/kU8vkLm2sr/QaPYkThuI8fsQvi52Oa5X75K5fudmmGxnuDDmVJnpfJuRc4tn1j89eP4t10OS2skH3+MF917isYXHofHzmAeO0/y5RPUP/gQtQ8+RvKdObJdw9xzecK5huGufTWOXTmGDS0lk0TryU1iiuh3dZ4XYrqPW3jTz9BKb5vKmDFV0wAAN2zB7xvDf+qwZsTkjrXcMdx1SNcFtv4c03WID+12vVcOIO+5yXj+qfFcJ566czQem6e2q6FtkE3pzKkJ1KJslUAoh2ZIPh/4C0IdPZX2db4sA73YUeyLPkf4LKGcLhCHii15UIwI0rDUtxqGnlhgwHnSXM/Rhdv+PnfjGWMzay07duzgl37pl/De83u/93vP5n09p2Nx7igrHlZ8LyNkfzSu3yCKXz9NX315fJWLk+FGpPBKDYSrbp55rcVTgbwGvTX0F0q3d2jXlQVCL+zK3KrvL+VReO9ZD7DGWR+hj9dB1CgephfgVQ3XS2kU+y8q/fD1YXT9rn3pLcU+jtH5mG7/kvDzkfE7gnrNqL10FthSkkNGxvxbUBLJvwf8B3p7zLfiJXo91VnqJ/SKr/uBw2hkLzpB4rlZYYMa+vgqvV+Pr4nAclisCKId4McNrGZ4fNE7ed6DeM+4i7WAge3e+QDsPbLaJhm0mpUQvNc23kDlHqpX9d62iHAypFFrlJKQWm1wuwfgyZUKWK8Cd9cH5KPm83BkHnY1ikMXe3wrqA9ZTqnlbCMhaSb4lvZ7paFEd8aai5KdcSTAD77iloI9NoL5FLgZuAptdRPr6NsVpR/fb3ZsVGPnUQfhGOXz3Uj2PJujf13j3xunl/SzMEp8ec9AXwirAuyfPKvObQH38RP4o+eKdTwmmnkzasre8/HXL0Y2SmqLNdesAwtNqwRrTXXyxPrLixllNLO84n31AN24ZaXidBLd/wi8wBhON8GfXyZ3bV4kFBFdTaWnIMSr/vHUKht3aoV6IjSt0HrkHKMOduewZQ3qD5yjbjUClQYSuosZr3zFLU/psO+P0MfXLLG4RoqrJXRrCjh8w/JIw7KjkeAaSVGPG7fGpZaNFkc10F0NgteA5SRVQB1SuqPvkXaG6YAbbYJQOJ61rXRoYxmBvA0LfmAEDq9CJ+t1ahbOzCqgr7zJnKYGVW8w3mT19WlGsZ+LlHtdkWYnL/ezR6Pzs2tkA3UeFuEHTG90PhGoJWpXpkVGDsj+YexjZ7QfvfcYhwL63HGt8zwQuQcoCfHK2w+6aLmrr7ETiVFHiRKHAWMJcn4JvPbmLkgbI845n+OmRngYYY8oQaQR4dYX3kRipWhycTHSoCoT+23VbZTEcYXtV5HpC5TR+X7HLPTKFURYrRlcXTNgtHm6aLQ+EGlTt9pFa7iBf9UOlmaGecvtp0juXSL92HH422PYJKH+om3Uf3w/tTfu5rMv2c2fP2+Gb+zbygefv40v7pzEhtarxhqSVKP08R6r85uhBPT9YP6i+57HqHwV1KcGn6ou9y9TQlP/1TPgPCu5oxVIACVzmMwh3RwyRyLQ8koS13JaujGAfq11apnmmqO1bZCmhHKmcBbT4ISK0fn+KP0nUVu+ypFTddZfTPb4U3WwOU/obBQ3Q3S2R0egCMnOcZKDSyWQ7ylPVMfi92J81xhldnaWLMu49957n437+Z6Mztoiy4RFp7e/ZdwE8SDERY5fA43i9pPiXSrR6369EV+rPXn7FX51rtFhAWUK6Uag/lIfxX1L7xz6iaOqgu9xenuQxuhwjGJfavO+UIR4GDXspy6bKbIPIqD/Niqc9hFqm+hNt3+mLeaeqxE7Q8RWepGt/oUC/4fAC6QE8fF7A+H16RwT/RHG+H4STdF7nF7CRFAFMsTG3nth/blDYABhTaIpJIVi8M06frk3E2jBeYY9pK4kwxMX9rAPnzvvlFW6+ocKr46+Vp1a/ZH6CSOciSA7GLDRyeB2D8MT872RqX4F1X+tdLWAb/uwflaIeiopnukhWFoUoWWNtt2xRo2//md2EUNE2L9npiBgrEsZpbfAPwA+gRo6Hdan3mu7zs0p26rzs6oXZlG5Eke/QflsH6l1BielszLeT79RUt3DEoySHjBvBO49pWDeKsh1j5wjD2t5zBi2B+OlkImUcvJi5ig2sKXHsoJWtVvJxT+tjXRefD+CAt1+He7DQ4wRekTfX3ZqljfctcBl5xz/6hPH2HdqVmvLhZI8rU+uiGgKbN0KLas1oE0rtA5spe6h0UZfr5+kmRqaVgHWxfZAvXzP9gvON0bo4/wKh320YUTI65a8kdBtpMw2Uo40Ei6ra8/5SzkbrTpKkCs94L6FsFJL8Z2SME5BvcfPrrLaShlOIjs1obRA6+cLw7wK6scaSjjy2Dw9pUb9Efp+Y6pbAfTVm4ZNHhLpBfKEsx7SyAbXuix6/YMxzdgte46ND3CTEY3OS2hfKspuXzOV6Hzcv1eMkpx22Lk1bB5AvfckHg7knvnccxyVjyveM1JkIQSGe++RlQxaYVomlkKYMrtga0u94qtdmh5WKuDGAe7sKoy1eMzDVeH3rRV27txWZsNwcQGGqPc2YruPxHgbATdYz3Afn338f1WuDAKrIkX3K5eWkXofMo1czWomXmLBGjrtVf1bzXBPMzXkxRPUd49Sr6fUUstLa5al6S18+Xk7Wd22lVekhrRmlOE+NaRpaJfZNz+DOiz6MxCq2OZihoiUoD52XomAPjE6r9fsgsNn8U/M0XWe0cxBAPOES7o5SeZoeUfTBWDvPU3nGfAw8MQKrR2DtETlZ/UMGqtp91GnV6P0l6OBnd8Gfg0tu4xR+nhdjBNjnb6smATnCB1sJLT1NOHZG3UKYoA9zWA3ufX2Ub8D8Dkc3xXLfafT4YknniDPc8bGxp7VG3uux/3AS+ntbxkXU+j14FXBXwf15G3Ugz6+/36OQoAJPaRJTdb3ofdh7lXh5lChsI1eYdj/eqmPAsj4XqE8DtxLRQ/7cu0PooKiGoGqgvpLKXIdhwmbtTrHQfrSTP3G6fbVdPMYAX8m6fbP9ajH82kU3CZSZjGZcN+xF23knthMuqghRAAETT2UEjRfidbRX0d5PjrhfU9bG1mv7OPXVZhoOmhbKKKBhG8xXMctZSVxEzDrYSSunEeZhAOwN6FukQ4wUi8NxarQqbyt7uPqNQl8M9TOF0z3NvSr3j2A/9wJJHP6QPrTTfuj9t7DkUXYKhptrYDEokVfuD/P5jgILnZoqz5PHSUYjTV1Geqg+yHgV9E+8W8Anu/157Kg+J1szhG7EUD2KIAeY/0+KM7kcyA3qjK+CrCHw/30kH5Kr+EK9LIYJ0bZAm+eJn/omJYKW3DXTARiQ8OTFmZCinhV55V19Bc/RxF51gTORnIQFOhuSAYrQm4M3jitnw/ngUfnqXdhMgG7CPLwLOaKqQD6Arv9RpslEdLE0Eq1HjkBsn1TuPcauO8U9sZp6ldOUQtGqqTmGRkLcoHX/pT7/vmq44qCK+AgmmU4xN+NbLTqkHDIInBEhCZwYigly5THS/d+SBtfdJzdOsBMjMwHUG+MYAmR+iqYD44rRhP46FFoOtg/1Weoh5vpN9Q7TtOVe1IJqjf+dJPr0ytRl4lAzTLRyVmJTsVQTrB2tsORwQavMJFbUgKYR8E8hsT4UjZbgUaCGYbkQ49gX7sDe8Wk9kC3jpo3XO8896Bp3EuE1ohe5Q0E8L6WI4O2b44UhGhYgwyncG6Vwe01TYMOZVvOe/yZRVb2tjgjsM+G9rghtTxyVlxsJxLo1XvV12nga6wHb1VAP1z5HLnAe9DzVmS8WqPywznIwGceH9av0IECZ/ePsfXJJdJ58C3gwFYktcqfGNbmeoGfy4UvGOGVVri+LsoNkxrqNeWJcZV5RfkrqMz/SmVOUfaXkfqLI4EVI9p1pWCBDeS9BEfZYB3/Azvgy0dJBhOSrYNIpsR4cQ9IFyCnibLPd52S/+E84jzpo7MkN2xV32aRQRL3qTL711zZy77oaY8C+ljo/UXgPwIv8pAHezH3m+eDqoL4fufvPJUONkbAGMS6Iu0eEdg5rAL4fBu2tioBEMr33wPj+rtmuY8R7Ve+8pXP3l09x6M5sIV/g3p2XkAJ6CK4h/WR+XgozoWvjbPeUL4UwO5TKfzYSbKq8KsGapzjKcr6+eKcVd5/v+e4mbHR2oAa3v0p9/EZPIG2cos/H4XlxaZ9fa/GRlFiUCNtHnjyO49y1TX7yp6daLr9vwm/G9PtqxH6S9NpITQ1tk1iQmQ1gJTojKhLYLm/CCPZiLLoR8eGqYCj/SjTfXV/LITfi4C0/4KN16QuwqJBAQOhlh7wzRo+1Hz6gOoX8Ew4BfL40iklITIiy6GjfRGhl8om7517v1Mr3tsEcMpoyrEzlEz3IvitTXwKcmIRLhspNV3Vs1kA+/D/I2uwfbS4l9iiLqY1V6MD85S1zRs5G57JuOe+R7n22iuKdqBpUPyp1z1/C3AbCmK+SKn4Ywsk5zf3x8ssrl7ZWXjw6V2KC2G/73YUcngDADtKqaP6nQ8987SmF9SnBndgGv8+Q/7AafwN0/g9k+TG4IxwyBpuTMrofMxainLy+zkupPNgfSp6Vfc5Gx1amknirMMfGKVzcJHaApghkGu2IoFRWoHfBXgejAKu1GlryYZAxwr+qmnk6ukCqCQx4lXbfLu6OO6571H2XXPFhg77SHq7EZjHV0B9+N5jrM9G6ycIvRRHkXkUblDCPzWBFZOSh8UuovMemMs43WgxHh5WBMlGKNoMYl1vhP7QWXiiqx/2gePwXtFuDAXTmOv1kEVg3/WQVE5Evz7azIM1ZUs9E35HAJKU0U7OcphXjif3nrXzS6S7xhmWktQ2EjPWjDo7TfWsG4Enz2Dmghj4wFHMewW7bwrrVA9e5zz3eM/rRFh1SmoXdZKEucqqg1qtLPU0JdM94f5l6xCc99jtSoqH1c4DrpOTr2Q8vkUdLQ0RZXIXePShJ7jplv0XXT9fPD421ntTqG0LpTw0UsqFeTQYUixVRbX2y5YafQ40EXxq9eF3HTFTDVF97xHOXDbJA68V3vrYHGb/GHLZhIJCq33XDboeN4twUwDESaJt8up1S72m9eTd6JvxvbZtjNDHe+qX/ZtuXVd9BjaA+mADFMGHAO6ZGcFf77jh9uO0X7tXF6wbHl7c+04/J3WeNP5e7mE1Q4514C0jvc40U+5VW3HWd8NH17w66x/pu9e/QWvrCxPlIue7UQZeju6LMfQ5exMcFlllr1uV/czU4Mkl2NJcn9n4Paqjvyh7o5/dPtbRv+997+Onfuqnnqt7fNZHvTkKwKdYX2dSdbwWQLfyPhLiVb3aVQPuUlCEG4GLHo8ivQq/H9hGQN9vbBfzvQRBX//oT7eK11bKkoKqI6MDHENblvUYrZSg/lIb/esTb3EINWKPP3ZYbY9w3Y0qrP1QEMJdyun21WFFyeUikeSwgZHwfkg0zf5iwHzxuZQOm/hMhBLQQ3k2FimdID3Pve/s97/WRWiHLxQ1u4AbSvBznRLQA2c9bPHBGPG+ICAyBAN+oV2SHvRYGtHqK5/Bhc7ABHBMlPAsAnlXAHyD3zsEB/vq6J0PRmxFSUXtfmQOdrYqlpSE1mvgxQSjRscaZYZDHBsBsYsZDz96OLQDLUszYnpeDfh638//DX3Gzib+RlyfC9XYbeTgrS7PsznWyeXKH9mI9FP3V+881xEf1Qy+bskPTOPfej1u3xQuNbjQSu6JxLAz/KGNQP33e/SfxzguRAYLapz5xChBXmIgMczvnuI3X7uLzs0jdN98GXbPpPZ8DjXv5gIhEG2naKBuMTVD2kwYaCYMNiwDoRNDAeYvkvQvjocfPXxBGdOszLOabg+BU6EC6j3rs9H6o/OXomM3jv4+9HH/r6UpWacMw6jt5uDsEo9v0Qx6DbDFtnUasbcxTauSXcQ9J3v/6N0nKyG8DYzz+KWO6wX0PTe+mcn17uOytECglTKQKckn3pM7zxkPg8trXD1W11R7kfJIi9bPJ4ntnZ8RuOeUOnIIEc8Hz5TOHO+5Fs99Yc8sAYNhghLmKR5kJUcG0557x5T3DSDjDZhfZZDQeSfojOz0Mn4g5cHUcnVYD+23Lhx+4nBwSDwz2dKTil55HwFvfxldfF2itwd9vwyvLl+TsntGj6PQGiXGa9iCjNIFzorT9YT23il4zX7M5VOYmkXqBlO3NOqWZtPSbCa0mpZWQ1+bjYRmK6FV11IdI1Ko/o3md5Yyk7AaqKzO92KHJKYg/etJu0+sOi2uGmF2Yojr7jypNkLmtZa+65B2jqzlym0RgK3kmmkoj8/DhNEuCX1AvnhPhRtHSj4lC/z9vvt8DRWThYsrM+jX6fF5zYfvR/0e5QYxOl8ll909CgcXKx4UKvaT+57U0W86Qv/5z3/+ubyP7+mYO/s4deBVVDIipHz+yHqgGzfHWZQ4DXqBbr9h9f0aVe89lEKoGqkAinT7nr1HCeivZP3cnquI03Mx+g3e6K0dJ9SFUfbrzNF2dTU0HTmCuzjnCPIutdEfpYnXEKo8X/ymH+oB9F8FXkg5pygYY2rb9zvS9nRDRArBHgHWd+tcipH5Yr3D+30oUDuDks149JmOxXvZ4Cq+LvoL8WsNA2tFaChE6gX8iMGvrQVCFsH72KvXl58bvfBeDS2WQ29kKAVOtean8jj6z288A5MomJk3hgnrNEKZEVLwwe8ZhHvPwcu39aaOReug8IB6rZU7lcGOQSJ7esGeL4Fwj9KYmKPs87vueoZL+aNv/SFA90UdLW9IPEUa9t9HI/NxvJZeR+5mPPnrFH5FN8cIPWzs5H22h4hoyyjWP8NxejOQqgbKOgMnNeDCqbcKbvOYVimxpZthrmY4U7PsEumpsS7SPr/PwlFEKGp76T2LT1VbLqJA3nUNLgXnE86JY3bvNOaKKe3znAiSWmxqMIl9SlZ6EdH6WSOlYRs3ihUNv9XMMwLzoPt81V14nk/lsI+ZKHE/HAReHn63GpyIkfpLdaickOJ9VWi4FnA+ZjyBC8/eL61weniCrSF1PabbS1gSkT7D3AjcOA3fOVb+4Rumwx8JTzb+kfg+vna9Ap/qDcNFGYdiSmdFMWeAespYB06Fv5cDd8+v8UpgaLCBlUCEF8BwLTCFm+q84ofdNA0PHCNxaKu4AxNYT6ilh8u9AsODaA39aNg4sfxLQFPum7We+RmkTLcWYMwgDy8yzDTHg1fRAe6cg63DPI7wAqMOM6VUEV7/ph/U7qeVtb6YUdV71fcT4fvn0FKCHAVA8UzMs4Fukt73ca3jeYP1Z85LaNMqBic5zji8ERaNp+UMBJ0oSTnvmjVajiOQGVMSw4lmWzSkJPjtn1+0TyMuOYXa+4VtL98doAcUyDuKzhFlBFrAG+543iQ//KmDcPshxGXI/i1w2YTOsetU11jpRdxPLMHeLRTR/OoZjO+hiNInvrcs8lqUGPlLwP8OXEOvvtMj6je1h3r0e0VOnqcMDETZI2Iw1im3StUJuKcFXz+NkgdLX4Q+fPBzjCQ2rVk+/elP85nP9HeA1nHq1ClOnTq14fcu1fFD6AaopppHu5X49QrQJfxMleEeNo6Cfb/HOkWAehR7AH3ltd9APYnWG/ULxOfKQH0uRrzvAvOEr8fo4Cy9QOMgcEX19yhB3qVaU9izzhXFM4Qqm6oxlwF3orwRht7+89HreSlHZfrHhfrQXuyIz6LqvDGowt5BmXYPGqFvxb9P7/mKt9IPsARoibDS90UP+GaCX8pLJeJgzsOEJ/T5LQ0oEw35pQyatfIPVg3FvnqY6hmonuMmWhN5plpHbwh19ILfPQTHO9pT+UKkePGmjy3oh43WSiER6/FD2mE8Z7HLwkD1Ucj6Z/lMR2yn1k8YdC1aWjUC/H8oFf/FePIL44jeyDeo0q86eaGUF8+Vk7dYz7613cIGbTl97/0Wn2EktIpTtvk8RJJcw+Lq+v+8bjlYTxgzwiDrI7oxW+X7PQpd1SfvB7kw+7sHBfQ1S55qNO1E3TLcsPhGEpiqE6RmkZrF1J8+TV5EkJr+Hq0UBlKNQDVTaNhnDObjqK559cxUSW+hNEqhtGtiZHINJYmM2WiF/UwJ6i/VIZSAF8pngaByqBva1oW0dLfSQXLIhpuFjqvW0EdgX354+M/lk/DOGX3/0lHYvXW9sVRspMrJ6jo9U1Q+qyqTN7F/oNKlx+j/BJBawsCiOpmdh3POc36+DYNNdcoLJFZIjOlpodh7MMLrngl427Q69t+0DbNzCzaAeYOCpxu91tGveM9gxYER861kuaPkltIzgb6U+wFYyUg6OZmL2b3g5peZn6yTAzvDelqjdf9xjZ5pVmR8dj2RbNTO2UJfr3bKZV2kTLnv1+H0vfZ3japuhQIYmkCaV1N5erphaTasprAH+SJ1izRSbEszeoZaCcMNy1BqGLbCoNXuV9VuPVW9buid4wzK5F+dV9Rx302AWESQVC81Gk0RrScxLNYsJ64aIb17geTuFcyHj8DjpzVC385hLVwFF4+DR+bh8la5WNUIve2Vtf12TJz3LSgeuyb8XNTpVb23mbGRbvcoTugP4GJj68tyryMCM0NqaJ9ZZcO2v9+DtPtNa5f3v//9vP/979/we+9617t497vf/azd1PdqVDd7Ven5QKbSD+ojoJ9kPdAtDdTvrzbsN2iqCr8d3vcLof4shNOUgN70v17Cyr46NgJWcQ6TqNHrKtfjaP/5fmFZBQeX4uhfZ6F0WixTAql70OjlAfg7wW7/vRrVtOGYrRD3ywHgYcpzsUBoXxJGv2G9kfIHTQFfDnLBx/RzEfxwHb9GwfoLcN57hlGhU7Dch+ij8cBiDsMVGuUCQUYDt1fx9+/9uF8mgNMmMtJTpt0bcKN19VwcXSgVUz8ZXnx/pA07B9XyDN7qguE+MCpHOROBVYyCsMHrdzt6IuSV+d+Anu+rWR+5Vlv16ZVtf/28Q/X3EmWN3Tp98CzNq3/0GzhQAvrzbOCwZeN5igmM880E1wz9k+sJWbjyuuVJI+yq/I1eotBLQzZeyPCOgL665rH8ICab5Kklrye4esKhlmWomeDriabGN6ym0ddtQai2qfsJUUdJNCIv9tlxQPbPL76vptxD7/oXhHjh/efC905Ryr3+db2UR4GTAzAvvpCAWe4WYF4Z7tdYG6ixJcgiCYAxtq2L6fc9RflFxG0CttdhMLhxq4io34iKo+O1lCV+VvWGN3tS+koKIl4gTai7jAzAe25zcN0cJKMDWDEklZT7xBjqJjjtkHJeVOa3b1LXf6Sl0XkgCWDeOM+1Hu7zXlu1eoIuqsi2pS5mwPTooFBhVYKdmkValq2zK+pw8h7nHf70Ik+OWC43kQyvBPI2kaI92TMZ1SXsD7RNUdaZ90etl1D9vpEc6f9aNeUe1svb8tLa+ryRcKaZ0GjGdq2hZWuQMSYx2joyOGPqRvkPNmq7G89q1VaNP7WN3tZ11bbcF5OCvtHwRuvpY8p9LFPCGpatYeDkot5fHSQD+cJRZC1DOk5T7tvaxg7v4eSyFsTvGC4NqWpJSJ9XcaP1FBSn9DP7979uam59V3xWc1QI8eJ9mFBHHztHxPtNDOxswsGlSoS4YjNdSoD+QiPPL7rD4fd9TG6/odj0VU9OsfnpXdTqQp9F67A3MpQvFUW4kUBqoh5IWG/cVOe8jAqqmHq+kXD8uzCeSqiPsT4t9QnKmkKhNzr/TFO/nutR7MGop8PXm+H1b37nA8XafhVlt6/Wzv9dSrd/rkYkHopl6dUo/X4U0Pd78PvPVxVQ9QdlBI3Qt6WiYALI9c1E09NXO8R69AUPY8Fo0tQyX9TPG4+m3A/W+hZ+Y4OxH1xWnXGTwKkQQXehD0vsOe6Mgb0jcHC1193d37bOA4cWAqCv/LHwOZEYKD6/CDgafc+teo/PZPzmb32geL+RJ7+Yb3hfNXCq8v+pRg8orlxRjoyz3rHzXMrLjf4WqGyrkuJVo/P+qeYZo0kNBfKuZnHW4EU4BOyid069kfrvv2zsN76rhveFauh7HPbWkNctRxopo8HolkYCtQRTs0X2x/dz/OZvfWBDmQOa9bKRw74IWITX+4HfD9//18B36AX1iTx3e/bZGFEPGyhwql4CNYPpdouf9YBf8syODzIaQTwhOk+I1AuIMb0CsvoARhuwkFU2TcVA7x8eyPLAcr/hzW9ykpXovJQZBDIArW6XBa+ZXA942Lu4hhmvVYjwtF1d3UAiIcrZIyz6dMZWIV3okOALUti4F270nns9LHioF2VgYd7eI5229outfJ5ATxqyiMDEEIMLjrX47Fa7+Lbj7rEWuwUiu721ml793373Q99VxqAR6ZVVlWWNgL4qE+OYo4zQ99uM/Xo9RuhhvU7okbmUOv+8NbRSG8jzTNHD/GJn+VQtabehEfoeHFNx5n23wxsTWvFphD6C+iVrWLtyDAmRQw9IDvzOA8jtJ2Cpq/wSnVy/+dgSXDG4npy12lqxOmfYEI9Mhnkt0JttXdXvm5oX5ZGu4r5Z1jt5REqn4LpSgb3D8MRCb+CjwkH0XNfRP2UN/eOPP85jjz3W87VPf/rTPf8/ePAgAGn6TBpMfH/GuVMPF5u7qvQKp4r0RuarBl8kxYPeQ3+ppKP3bzwCOBhAgXohYFg/P4cavQllFK16iP4uAXroM3grz2IcdcxU174aobeV1wjqL8XRb9RX12sI2P8jr1EbA023/1dEL3xvur39LpTn/xNGP8t9XP8rgf+MPr8ErbEbDr+zERjdKFsCFFQsFNpXAjrX934I3GIHP9jQPqp4bYHmK7WKAdgLwHwbtlYj9NK3yavfWl9rXc1SOR2Atxe07U5G0daKywbhm6fAb1vfe7lIaXJwZBV+cFtFSEjR49tb6fmV2Baoeh/91zMZ733na4r3Jj7evjlPsoGh0/f6VGMjg82hCn+Y9SSp8hzrg43mKaizudrNpOe+ufA8C58NpR6Mv3cIeB0bOzsvBZ0H62V8/NogT11bXjXkvAjHBW6ugJNqxvL3e67vfedrNuTHETShZiOHvfNa1p2Fte213vT/L5ZeuXep64LYxq0HfwvQsCQd7QLivdeA2NkOZwcbbI2iN0SBTYjUlxHQ8NofxR6qw2Kn13DqidTHzRP+382h2WdW9yuEp51gCdqKS4AUaitdloHPOM/VeOqzy9jLmkoYFqK6SoinJI7F3+3PQCB8aKuBXci0bavzGC8h9d5zmdNOpCfwmvVX0UcGYNlh4lwrH4mpEPkBDLUYPNOhs08/xJ9ZwQ01eMIaftjoWtgYnbfwo+94zebJvS4wejKIfLm3p4HDrHfQQtlStTKdHpu3/7wt9P1+5KWi7+txLLCedK9qR1zs/IrzWnndhpLAXkj2b7am/ELDgwL6PMw3pDYvOPCXTZK9EfIHzsHl48iOMTi8gHzpFHzlNNy6FV44AWfn4Y7TcONAj91QRuc1o6k64vz69V4Lta9Oo3Z9oZ/l4gB9f0Z2vGbp5ccBtEzHGsT4Yr8X8mL3AHzpFGUdPWUwpOhH/9zJ16c8N7fffjt/9Ed/VPzfe8+v/MqvrPs5EWFmZubZv7vnaOTZGkvoAYvEaMVzlz5l3/d6AgX0GxnJl0o6ek/EMFwxattGU6/7QX2c7ymeIt2evzuAvgpmoqEXn8sWyhp6R1lztJNSEcSUpmi8XqpjI2UDCuizLaPkwH3oQb+KMt3eSgnqa5fw/L4XwwpFymH1/U70GT2J8issonX1GwHRpwKo6s3X/xWKXhRAaOs6hVFz3mMcoV6RMuXelaCc1Q4MJb1oA0pg3zf6DZsq8HsYBfK5kbLePbac2z2E/M0xTZNLTG9kKrLbnw5Vu9MDVIltinY9ppwz4fkN9N7eRdu6G42JraM9n9fjyfelAwM0CjNJnydfnl7xb8SnAipHRvrm0B9JeC5Gv7EfjZwx1AG1SqnbqkbOUwH6mJqdV/7v0f0fU+4vVWdndR9VDeUBynaTsN7orjrzQQ3D2LJ1I/33/RwTW0fJijpmehz2LTZ22OcomM/Q64X0EkS+gfXZaJf6iKImAt8iyllPSXK1pZ0Fj4e5ZZ7YWeO6+HumBPbWVrIuNkplEmDEwrGQXF1NcXFef66K5kDlZVrZKRvU0W9qjqZytk2IyKby/2PvzOPmKOr8/66e+7lzJ9w3gkBQuVFAERCN4K2InOq6gP7E7C4ILi64uiKgoAIiCsIKGgEhEBACRJAFAp4kJCgGyEEScue5j3memf79UV3d1TU9z5HM80xPnvq8Xv30HD39VHVX17c+35Nkbz/rXZcVruA818Xp6CM1Keu528sY+oxH6vUwLNfso2rXhCxO24DMIwOSzOONBdflEGCxC3UuCDQZgIvoQuaI0Kz+0qPA9T0DhAAxUZBd2UHenQKuwN0I7VOaaBGCCU6gYFGkfurklu3O4xBF/gTy2Va16CG8/m1DEnpTWQ+l+yxhj69ye32OUQoDU2Tra4Vt7Z9qs1m6zkz47W6HTAopCFIOxYJLMZnAdaXHSMYBscc0xK5TZQLfgSJijxbELs2wugOe3wA3/j044Utd8PZNcMB0jcyLyCQe5fgIeGV4kSGSJcr6YfBnmZQ4WgGyFempWbLOS3hZ7kMWeiHXQgB3vQzH7yz7prveD7ijOskOKaNUiTqVhMosXafK15199tmj18pRQCOwmsAVzXTBNC3XECwMVAy9vmiLC9ktNwGphXRJPCHhRY1KiKegW+ZHc4E6GihHsiYSJI5yke72u4Eft6WTen2yjBt8gU+pUGggcDV9Dulur/qnYucVqa+FRdxowl/AiOD+q/0BSOIL8nrq8d+mdj3K3R6gTsjM69KtXR7oK9EaMrjdcj3Y4SrXbVeSeUAU8a0iwnWl+2dD2CoymM96lFueWtisQ7VJWepVHL3AbUxLX7NV7ZTE0Svz7epu2CUrV8l+UJ9SCuDnC1ALHFn+KGh6CSkd5B4NF6qfptt91vvfGyh1tfcF/yDQ4+fVfAlyHpmsHRdaMzO6hN7sJwQWJqWwjFqkREHPJ6KT+Y3IUMddCcda6/8/Dih3vVV9doi4Hsb97EXK+GmEZV4tKOxVsk69lBZ4FaSQWwFZmnUacAJwHfAODHkQkz4OhkjrNchEhAB56SLvFl3o7GFVY5rJimw6hMrWhaKV9BusXjcloatPe/gNUg/hh6qvIDXkJQuxEUxwHoH3+6l+mkmQH+iXoRUOPNbTQ78Dqbq0rP7iyKz2ocz2/kVzgnaodgmgIYXT0UfChaTreoodVxJ812WCl49gjSmP+uUM6Ge5984p1P9wvPhiBGJyjmRXHwNe2dNiWydvTkmyp8BLvaK53Cccks72h7fo3kT6/Did0rLFEDw3ZpZ7Hfp7FUNfjsyb7tsqf0xzxPm3pa8h+aa93glJbn1eg8FptuF/6XBRRmaZyZ+0Qz6doCeTIJtNypwJWQdUwj9VGnX3Jvj0PlKQ6Fi0Pkzk1WsDg83FSolhyrnh5g0w5YIehrEFaQA0ZbpMqEnQZvV6pRfwtgb41RpYtt5wvS8OK1/PtmJQC/2xxx7LtGlSX33NNdcghOCSSy7xvxdC0NTUxL777svkyZPLnSZ2qG+azi7Am8DBhBczymJjLvqKyMVNFvkw6wvkuLmj+0LODdqkbrRZasN0MVEWinL9i2MseTmU09KqTNAQEPq9Ca6VmfE3zj0uWdh4N7YRWPHiYgpHHsJC4BKIdLevtez2owGZjMf1LfOOwHe/3x/4B/AhpLZWJRzUF9VR7/V9nRC0e9fYN/IosluXwe0s4iK13C3eA6ks88rV3inK2q304MXQC9V4vSMRfQuPf12rvQUCa7oQuAn5XmWoZ4+JsKIb9ptoaDi9/ZtdsGtTMEl4D0tRnU+EjVrK5V5heywUOp5duIh3Hz3Tv95RzzxI4r0BmRgvyu1+METFz7sESXNKBL7fx9F5tsz/p8/XU5AhRbtRap0v5/GnL/j8yoRId/sZSGu/7uaplF9xmTlMeefzFcLVXcCwzml9VRa3CcRTvj+7cBFHH3UIEO4nBAr7buQzpsbnAJ7Lvff6ceBMJKHPEU6Mmha1odwVECTD056vOkeQT0G6tx+3Lo3b1YcLdDRlafYEpMpwLzyX/ZCFXu39SUPIBKRbvKvpu9d7gyZqQAwUggyz2zpgVBMEfplEBwG5JJsp4iYgVXRJdbm8OSnLVCFIJmRJV2mdVwNWlw1a30IeCElY3ht47hWll1jChVddeMKFtAu3uDBjAA7x5BE9/TiuK2uyGtfPcdWt8eL/cynctGDy1m7yUxtIb25nycEtvNNTsijrfMIRJB344wuLOfGYmdt48YLm+CVfNXkwHalYVh5M6jlRxjo9hl5dItO7TVCaFE9BnU9/rZ+/Uvlj1PxkWq1VOPAG5Pyvy7eRuKBHoUT+OYJCJkm7U6THKZArFHELAooOjluUeQIKRUTBkdUfCi68Z2dJdBXeNb1subpQfw2PW12+T0VysxIyL4avwChXwaaNMqWKHc1Cr2+LjWpvf10Hb5sedr3fXq3KIBiU0O+zzz7ss88+ADz22GMIIfjABz4w2E9qAolEmp2QsTShAe+GXe5190qX6Ph50wpcbZRb6IEU9MpCD2F3U9XnDciM0OYiMc6W6nIodx0mIRfiIPu9HFn+QlC6YJVyMQ53thRqkou6541AV2cXS71j307gUqm729dO5ovRhfJccETgci+QcfTPeseoxbJC1HX3P9cIRg7oUexVEWi8564+hdsllwY9rpeARWW1VwsJVbKu18v80RC2igBlzYeh8a8JwinIhU2fEGQSDgWn4LvdqzJ27FEHz64Fd+dAGEHADN9sh0NbNNYTbK7n26qHmHYjLYkmGfH32/icdXQEBbtK5i3tPkxHkjb/2hMW/oNBlxH6omYzYY8tde/HYr4sp7iYQHQt+sEUFwOESb26NishlOFeuWb7t7yyXdpmmONc3fN6gthyUyljvl+HtHCZck+XC9WEGufm/CIIFnLqSfAJvUfmVaWTLgJvrZTahCTzsnxntXs5NErkukdec0BvKkm6b0By7q299NVnafGIfyKhiHxAIkXopN47nfCqiiJ9RUgmNNOrG1gSdYtboQhpwxquzjWSPgrhl1P1QyIyKab3QHN/kdZUgmmd/excV0dKSDKfTgipeFMxCeb/jOpjcxI68iSLnkLblfIvgcvTeCVTvXwE/4fLocj3TucAThoEIiR7/C57/99P/DahkSkdBfK5HtIFWNZSx8c963zSs847XhhEd4epghs51DNrzpHNyNfrkWsk9ZyokrS64k5drtB773UWo6qEpzRFO6dupW8nSK5WznN0JFDyxXS7TyANcmuR4YG6fPPbtB2PuGu+dgSdmQQ9SYEz4OIWCn4iMuGCGBDyfcLb7z8NPifgpXXwzumw/3QZ0ueVvzPL1UX12byG04C/EC3r5FJl8LwBJYoK7bcbkQp700tZgGzzQFETjALeMR1e0RQWh04Lezb6cfSjg2HnnrjhhhtGrRFjjfatq9gVeIlSK42ZHEFf3KiSdQpm2FVcRKG5UFaoQwp8U4uou5uuA04iTOLjtngbLkKTnbcAcghc7ovI928AnyTos0nq4w5zgQdSWOVPPLrE3T4lDHf7uAzaKiMpvMUM4Tj6/ZHPRDvSQq9i4Eo2tU7yzqd/l0MK+z7kgkt94QpwmwWslZak9a5LnWf9cQCKmvByQbR7eayTjsZc0Caf0pvpP8fGwmaC9/0moNHBK1+nJcgTAvZogrmroWcgiKMHue/IS3awc2Ow6vHIfFEg3e4ptVKYHg7baqHQcerJRwf9HUSTPw05h0eR+cGU5spFzlTwupSPsRtteRA5/rznX81vUYoLN6JRKobQLG+mCP3uaAtINJLBtithRgMi4rVyRc8TWOQgWr6vR3ojqN/HLdzs1JOPplhGgQuBwl6N06IbJMMrAI8iZXuaQBaoLU3t5FKRU53wpzx9nu1MpWjqK+Li4rZB64R6pihSiSTygqBsndDP6i8UCG64qinf1gd1nvrbLF/nL6ZcmRTPvJAjjqMXPj9IgrRcA5mUAwNwQV8/CxMOp63sYqepDZ5yXsqWpF931SBGupLCn3QFNGWhQ5L0ZNElhUzMmgY+UITHi0WKQNaF97mQQEgZ2TtAojEh53ER/h+Oo6oHCD9sgKYG9thcoJjM09lUx84JQVoERN4RsgZ9Sgg+qM3n24rQXExA8AWBi/be3rEu4YS3kfLdOH8WOaeo35dTnKqh0UY43AzCMnCb+ufJN11xAaWZ7v0wKndoxfVg0DmDqajPJhzcBNIiWnChWJBehQkhn5d+ESjBDpoBB3qWeUXmVbxPsjzLiFJgKLleUsFGhGXeYN2OUsBA4Nk1gdKx4OApEpURQ3kW7D0VPocMJXjndNh3mvzcDFkcJYwomeSqVauYN28eb775Jvl8vuT7H/zgBxVr2GhjZ+Bh77W5sAvFVhK20KuSdbqGKG7u6FHuhyCT4UW5H6rFnIvU7KmkeFGL1FpDFMGa5H3WRkA09kSLnxdhUh9nlNP2NiI9D5YCswkUFaa7fVSd0/EIdX3MbPfNSIHxCjIOVZWtU+uhKKFv7uu8N90CGhwjvjzjUOzrw3VdevHKg7mUZLl3XBe68pr/lwj25VYdRC9sTEG4W8LRStYFMfVkkzDFgeVtcPBkzULvwpsdMDUhSzQpoeZNEiqxnikgOwgsoFECslIop8mfCvyJQRZfZTT5/sKAsOAHqRCZqP3f0eqTiXKKCwgn/TT7GaW48Bd7BPJPfb4COBJtEUMwL8ZJ2VluEa5c0Tu916Hr4Ybl+zpKw81iKd+NvYJS2ENwv1X8/CZk9utbkP1JERF6NcrtrhRUrXOUS7dHGtNC0JtLSZcE18Vt7WNLS0bmRHDk/XMQOEnPOu9t8qT6ps2tABMFdPTBjPrw4EmIMLMB6HUDUlIiEEYwfkRA0vvxiJiQbT+gb4ADG7OkNnWQ3q+JtICsI5PhJSDa+qIv4PRmNEpvL6dngHQqIV35ERRxOcyB6114yoWTXZeZScgMSNKf6imSSiaD6+edW3h/9NJ1CAFTYMaSDhynibVTmtjfc1lWme0TQnhu95UZh6q7pkEH5PpWJ7wQlKRVv43a9EunklDqCBHeiPO3aMfqiuwyonvw/gkhPSW036vXev/8eX8YiuuhoCJNzK2b4NqhiD0OFIo4hYJUNCgLvZ5gVyDfJ4VUnKUTJdntdUR5pDlIua7KkJuhdIrXDNovwnJAbVu975UMKTFCCBGO/XeE9M45cAYctFMwCPUwAhdGM45+2IT+1Vdf5Wtf+xp9fX0l321vKYTtxUsvvcTXvvY1stms/1lDQwP33ntv5PFCOOyMtGKoWBq/Bn0EsdfdL/bFWLSJYKETB5QslLWJrJEghl4fwOp1m7c3kwIJ4uFyOFL4i1BjIsh422ak6/00AncrndQnqY0+694HEBD6v/XlcTIyw6+e3V65l1t3+wAOAZlXxF4R6n2RLl1QmtTGFMb+elBTqKWQBL5HxdF7B7pC4DamcHukK/1WXN4GCBSZ91wevSz3dBSgLhOQeN1sqPsGGu2JiicEKQg3eQcV/Dh6QTER1JFn94mwslvGbOgM/c0e2LkFPbs9njJAOJ4l2A0vcrqQwrFknTvEvRkKfX15MpkgDCFKk6/6G0qINExNvrlA0xdqUUlztsfyMhKUU+ZNAJaZ7fX651Iqr/XYef+1t72JVHbqFvq4Kjujnj01KnSiq/bmPV2PzKmj38c4yfe+vjypdMqvamDOPxmCfoIXP4+8j08ChyIX+zqZ1+Pn46KwGAqhZHHqmRWCOgGb0ylZygdgSydrd8swVR4QxHVjZLiXX2tEnjAZrc9CmyyHV2KdN5FHKjnRzjXiDsotJSArhFybCtnedFJQ7C4iCkWSG12SE3PkhCArIG0oVktOqn+ujks6chC09pFqTJMFCh5zE67LUQ4clXARSUgMyOcp60K2c4B0NhU6vdwHscVKhAghYGKGqR3dDACLDmjhGO+7hOMR+QQkEw4JIcjn+0Pz+bZgME8tM/TKRRLu5tDvy5N5gfQGUcYxdQ71OqqeeRvhhLpqvz3ziu4x5WjzwQxgMeG5LfR6G/maa+wVupBzD2j9cwQkEwgcKVhSxSCOXl0gNR5TjiTz6cFVxGpONtc0qipJGzKU0PS+G5LQa4oKsyTtFOP/hjY1wHUrvdROhYm8/kwmBKEFRIUx7PF0991309vbG5nlPi54+OGHefTRR3n00UfLknmAqTvPpBnpNqMy3bsECxpzIaSwnkCDbw6uOAh8HVGPaw5pqTAnH9Xf9cgFd9yT/g0XUYtddZ8mIx/Y5cAe2vG6O2kc76sJ0wNBvd8M1N16D3tT6m6vZzW2kBDegknFLerEZX8koRfIBU1oTGmCH2Ov3486AT1KuHix5S7I5E0FoL9IlwsTvYfTUa61/h5J6FVMp/7PBvEHVovfKIGkksTJ2HmHoneQtNB7P9ozB8u3Gup5F1a3wm658CThuXu6jhN4IGjzZweBy715DbfnObvh5t+E3vvyk/B9GEyTP1jCIP97/RIg1+49GC55xv8eTfiLVcJ9nUyQ9JOIdpv9dDEU2t7rt7zv9TKmcVXwDjbXNyHlnu6KDmFvBAgqvPh9JRjacZADN9z8m5K5Rl+XNxFW2Bdcr2wdst78BwgUuykRjp+Pk7fFcBCURfMugPBqg2dSDHSCWwS6+vhnc5YJngu4jKEHmRhPhPos/AdXhB9mgJaMrC6ixoruroP2GciLnU6ECG7wT4bbOfk7AWQE1AtoEFAvBDmRoL63SN3GbnKiSENdkjoBOa+PAYEQpec0yb7aT0xARx4HyLlyDViHlFl1uH6t75x3jeuAXEcBUZ8Kn0f929De+58NWRCQbetmc0uanT3viIQjSb3jvU6J0vl8W1HOU8sk9BDIpqh5RF0+Xd+TQ87/JpmHsCxR+3YCl35T4SvPPfLZ1Jz/VR93Ipi7zTldJTzdFpgyRM2n3QRyHYxHyBE4aUd6++XUlvC2pAxjyaWGJPNQKoNUn1UFm/UYCmzt9Uj6pQ7fSrgkrT6OfH2ZstAnhPQyyCUhm5BbJhG8rvP6WpeU1ThGSaAM+7RLly5FCMHFF18MyAF42223ccwxx7DLLrvw05/+dHRaOArYsGYRAune+qb3mb+gQcad6QNW3eAtBCWKoiaKOEBNDFETk+kmZD6YGyif9C8OMYQjRUiGEVZaq0XvG8BeBJODOi6OMaJRMAUPwBLgPmDrv3yKl5Hu4iohnm6Vse72YSglhyLzirS8DfnsK9fqEkFfZtNRJwTdQpJnQFqzBZBK4KaArl5P6LteRnuN1CM18HT1Q0PG/31ojyg7VvVxrbdPWaxdvLh5x6EoArd7hIDdmuRqpL0viAHLF2BjEXZpkMeYJetENHkcrGzd9uDiCz8deh81b6n+QuCJFNLkM/hCJ8rSsdX7riWiP2MhE8r9Pz3pp9nmqMWNWuTppY6KSHd7Va6uFsp5CmOvUE/Ymqb2plvmWqR1S7+e+rNTbejjPKo5psJeJcP7k3f84RiEXkgy7ydSqxEoAuQTIo80pgE36VAY6Mft6AEH3qqXFnrlXu/4pD7KiK1c5XWmBTSlZc4Q/QEqup7WAG1QeS+iyMlIr6/HIB2klb7BhQYXmp0kDZ0DNG3so7E5RT0Odd5xJdq9kvNp74OLJ72+2qTCIlF0fVLfCDQJqUho9N7Xu1BXhER3XpIX/Zxq7emJDuEpeR1vIm5PuAy0DrBfVy8IZDI8IXMZyAz3sh/mfL6tUHOV/hwLJKFXtdp171Sd0Pv90N9rm/IF7vf25hAwlajtBN59aPvtUfzq3kP6fLUTci7T4+d9t3sGl3ODQVfQ6/NoJ3LuMREaGo5ApBOIXBJyKW9LytJ2w7Qsmet5/d4o4wREK+sHQ5Q3tovkBxO14yJDLJUVPikkcfcVFZoCw3stsrKMn0iUX6ttL4Ytk9vb2wE46aST/M/23HNP/u3f/o3Vq1dz3333Vb51I8QZZ5zBxz72MWbPns1LL71U9jjXLfqEfhXBDdRJvZk0J498KKcQvViMg8BX8AecJpdAEnqzDr0ZQzhDO77cw1MrUA+NacUWSKvaVqSFfi/vM3PRWgtWi6hJ5gnvO9dzW1uARuKx7vbloIS/H0vvvd7D+17FUunCGMJrNfOZU/s0eISeoKSbkPXoyaXo7ZaZmZVG2H/mPGIPyEVlg2H90R/WMihnyVXlzVwIytVpezchpPvo9BSs6PBWKS6s7pDMvDEdrIw1y5CbkFfGtFJ0ErbQh67ldkwupnumv4Az+pxD3sOoWvSmtVZHaL5U63mkwG8mPG8oWTAWZFf3BtD7OongvpqxgVELugLhUnXqmFXIsa/fI31+jJM8UPKuZMGFvO9m9ndz0dfq7adSKt/j4p2WyaQDd/OIrY6whV4R+seAk4n21FLx87WGEMnSnre+enAL/RTb8uQbcjQKyPhEvkyGe4XQg6RN5E1JaNVMIeZEoebnAY86pLSVgznRDadvhhARQiaLq3ehPpOgsWOAhnV5GibUkVHHK1Kku/iWnFP7Tl8gTshK7y+vGwk3IPUNQtDsujQiFQo5z42d9n6oK5VFfliD938c9X/WbmHqxgLZIpz01Gqct7bgOOB4pD6lWeq3191eoZynloox1+dCvaRq1Bxi7lWyTbMMdJS112UQ7zRGNDRC0Pume9EqxbWSAYrX6PP7tsKU6SCvgapeE3nNDPIqHOEnTBwJ9HtoPqIzGKSCzRDnjYqfVzJhAqVjKHh8vAHvk3mNwGeTiFxSKjEGydxfaQw7hj6TydDT00M6nSaTyZDP51m1ahW5nNTNPP/88xVv3NVXX838+fPLfj9z5kxuuOEGdtttN372s5+x55570tfXx7x587jkkku4+eab/bJ7JgQyMd4SDE2WS6j8hPp8k/e7iURPEnGSieUmonrC5YzUXo8h3FFq0CuEFrxucG0mIcMt1hFY6AVh61MtuKT71mRPpidd+CDwe+2YUymtP18LfRtr6NdST4yXQpLf1cgkg4dRau3WL2fUGi4noNdb8fhabuGR+/oMvb0uDbgkcRGef7dKjufPL5190NBc+k+HcJ8pEYTe51OQeUFUW5Rl3nWEZ7H3hO4eE2BFJ8ycIk/wZq+03Otuql4borLbq/mlHakH0F0Ot3dRU66/Ztyk+p+TkfPcAZSSunKWi3I1arcQdsmD0r6NJvR+6ddRWRXaKI0pVN4TCq7r+jHzZtm6FciyjYLohKFxkwf6c6di6UEupFWJqZDc0+6rKmOVI1o5E6+ehvuokwxdYd+PlG8vAV8mmMtqPTGqAL+WfGgMCuhLAx39sBU6JjQw0Vt0+1nt9ddlT+59oxhDc1ImxTODbTEepn5F6CMs/eEXw+yl1gb1NpuC7gHY3AP7tYQnT5/UlyEQpleX+m1DCtZ7Ki//oXA9Gah1UI+f6stDfSJ8HpDX2ntghH/tgddaGSjAlgkwcSskl20lsfc03zqfcETFFUvmOtaMud6CJPcucn5o0rpR4hZvPGvKINJDWNYpuIQvVytlKuSIbVf+qv6pfD9q3lLrlbeQRFcN14IID92RohzxVblxVJsgLNsrhaEq2ChCb8bQD0Xoo5T1IMfHboTvl67UBqmccNMJb9xXfx4d9lhqaWkBpKV+2jT5SMyePZsvf/nLwOgI969+9avMnTu37Pbtb38bgIkTJ7LPPvuQSCSoq6vj05/+NAceeCBPPfVU5HmbJ+7JNed/niWXzGbxJbN58XePcO+P76K3N+9rs55+ciF/e2GxP0BWbW5ll1vmhIT9E3MX8OrSZf77N1as4ed3PhT6Xz+/8yHeWBHUJVz08jLuuX9B6Jjrb5zDxk2t/vtnFy7i0ccX+u/7+vJ87/pf0tcXVBZ49PGFPLtwkf9+46ZWrr9xDhAMvvlzF/DakmX+Q1VcuZaNd88Dgsln3l3zeGvlWlyk5SqzdBnPP7ggNBnedvMctmyuXPsU7rl/AYteXua/H43r5wD9fXlu/+Fd9Pfl/WvTv2AhS19cTANyAdyxuZX7b5kTIvW/HYP2wfZdv5dfXuZb3tetXMujd8/jXcB1wNELFnLm3fPYeeVa0kJaZpYtWcZDDywILeJGs31xv356+5avWMuvfjnPJy8JAY/fPY/nV65lI3Ie+NbSZczxng+8426+aQ6bNrcBcmz9+YXFPPfkQn8919+XR9x4Nx39ebkGdOD5F/7M317+uxQmuQxbNnTQ88A8/5wCeHz+M/zjn8t9Yv/G5o3ctsTrt3fy2377GG+8+ZYvOaOu343e86sE4dIXF/O3BQt9Qt/bl+feG++mb2DAd5l/4oW/8OySv8vG7Jll0z/Xcf0DD3mm2zbYuZ57/u85Fr2xwpd0b6xex+2/fiSU4f7hu+exbuVaP09V69JlPOddP3UNb715Dpu24/4++vjCyPnvdw8s4J9LlvmLsvUr19J097yQJv/Bu+bx5oq1PpmNun4/umkOmze1+r95+cXF/GXBQj9pTn9fnvt+fBcD+WB+efKJhTy/cLF/jtF4PtQcfcdP5tDq3V8BrHhxMc1e+1wg35fnzh/dRV9f3u+Dun7KM2Hz5lb+9ydz/PU8wNoHF1C/dJn/f9atXMv9v5znJwwdqn0KY/H8CiFYsWIt9/xynn9tAH5/9zzSK9f6RPeNpct4Yu6CkLJp3i1zWLG51bds/f3FxfxxwUL/evbn81x7/V1Vn//UNXvhhcU8/eRCv58DfXnm/vgu6vryvifCnxYs5JUXF/MY0tU+vbmVR26Z48fNp4DfzV3AP5bUzvys2qeIkADuv/9R3nprnW+B3rRuNS+89jfo6GHLxBRNAh767UN0tLZ7sfPw1z8v4cknX/DHiN++fs+BWsCjC//Mcy+/Iv9RY4ZNW7u5fu68kHX+nt/9gUX/fCNo3+q3uK1tcUCsBdz2wGO8sXrdoPNz5PV76kX/HH35fq759W/pG+iXLr09/Tz6xlKe61jpz72b2tu5/s77Q64zJddv1Vpuu+d38o3HuG6b/yRvuK3QIT0QFr2+nHuefEYe43lkXf+L37JpS5s/aT639BUefeufUCfpQ1//ANfceS99/QOSyDuCZ575E39bvFS6Uycc/j4jxa35v7E56/DXfdOsettEnn7qWV5/bblMUOg4rFr1Fj+/86HQ2Nme8afmrYG8nP8KfTJPQBqYumAhf31xsT/XtW5uZcUtcvyp5/6xuQt4ZckynyStXbmWR+6e58/xaeBZT76py/X3Jct4+IEFIcL78C1z6Nrc6nsALH1xMQsXLPTPk9/G5+O++2X7/Pl51Voe99b3ygvhybvnsWblWp/kLnl5Gfdux/OrFBUvLFjIkhelfOtCzi8P3xLIX4CHH1jAkgqv/xzk+urZJ4P5eaAvT+uP72K9Jt8WevdX9Xvjxq2R88tLi//py4E3V65l3l0BP2oFtt49jw3e/XWAfyxZxsNzg/UfwA0/uUc+H0Ncv4cffpjZs2cze/ZszjzrfEYD4qmnnipnmAjhm9/8Js899xzXXHMNf/7zn/nNb34TIvEnnHACV1xxxag0clswe/ZsDjjgAL74xS+GPu/q6uLTn/0Cv172D9qamvgicA/SclSHrMlcL6S7WlcROlyphZuPtHr+D4HrZoMjtyZHJi2Ji8Wit+jS4UJ7MdyHR4CFwFXIPjQIKZ+6kLH1XwL+BTgC5W4F9V7/GgVkYqCBGin6jGvR6fX3OeBq4BDgW4Tvab0Dzd44qIXYQtXHrqKsmtPnQt6FxS8u5tCjDiGFTK5T543TBkeWxLEoRU/RpcN7ZtR4+TagqwZPBr7lXccGIeeMOu/Z6FS/L0KXK8/Tixxr+/cO8Km+Aer6CtT1FaCvQHd/gd4/beWtYoEnDpvE5zIJMpkE9bkEdQWXXL5Ic88A9f0FxNUvwxf3hWn1gYuXSrpSn0KUqeE64Mo2tXtt6izKZ6AT+BTwM2TcXcNAkcb8AHX5Aer75P9N9hagdwCuWyL/94QsXPMyfH4fmF4v26CSweQSDOSSdCQcOrxrp/7XWuCLwG8x5k/v+jU5224pfHbhIt599MzQZ13efeh0g3vRDdyGTIJ9IcEcqJ6JJgfqI+Y4/Vyd3r4HuB3Zty+P4FyVRNF16SxCu2pXMZjLLwTOA45i8Ll8wHVp18drUV4nc2zoslHdr1TM5pCuouyLukfqPv0YaR07l+A+1TnQrY2LXyNDDC5Bxsc2Ci8ZmbqXMZDvapzrc5Tqazcyb8o/gG8gFS7dyD7/O9KrKEfQJ3Uf49CvkcJ1Xbr6i7R19tPdW6C7d4CungJ9+QIPru/gQ8+8STKZ4tl3ToFdWzgukyCbTVCXTVKfS1Bfl6Qxk/DnbP+8haK0fncPQF9B7vX576sHyjAjNfemHXlcbwF6CvBWJ9z+Gnz9EGmlV/OznwgsNex4YTfv/f8erw3dAzJ3yZ83wKJNsK6/tD1DyAK3X52zIM/b5+2Xt8LclfD/DpHx/3oir5QD+WLQjp4B6Ylw9WJPBjTIvmlt6M0m6egr0NlboLtvgK7eIrf2FXlpwybeuaqXP++e450zpvDVOodcJkFdLkFTXYoGL7Y4aj7fFhRdly4X2tTaz5sfe4BLkUki34/0TvoCcDEwE8kF1PPR4EjlV4eSI9ocex7wH8jKGPpvEiI8H/cBn0Zyh/0J5uMGZ/vnUrXeMOe8G5Fz9ucJnvtGTd6OVDa53rU059der1/7AZ/0/qffN+9/5SooB8ut519EyvafIOdvnZ+pdkSt5QeToRcgr9+RVJ4Ptbe309zczMMPP0x9ff3QPxgmhm2hP/vss/nGN77B9OnTOeusszjssMP8DPfvfOc7+cpXvlKxRo0Uf/zjH3nrrbcoFov09vZy3333sWTJEo477rjI47va1yGQ7pcJYA3hLJBRrpgbCcoTQfzi63SIMvs6ZCyPgvIgUy6W65GavSh3wxrk8oDmZea9V1rRSd77vQjuo+qvcimtBTIPMrFRTtvqvYns6KMPod57X+fI7zLCkvnBIF1Qg8RRaWCWccyHCfIRqGMVyj179UCvd91dbxD6yeOawentk/GQrnT3F57fl+NZhESv90GjFl9oTkZloI9v/zWyb03IcKIi0uW+ILwwAMcrXafi6HfJwvJOWNclTzI5R6hknTZh+NYJN+yWl0Zz11ab2HaXQ4WoxZ/uSaX2gnAiQH3z5/qIqi26S55+7GYCmeD/DzF2MkH9P/P+QlCLHkpdJXUXxKgMyAUkuU0hZaQgXKpOdzmME/z7IMJjrIHAFR3CY1N55JkZ7k35FwfSq8a5uu/qtdo3ELgAF5DK+wYkSdGT4elZ7uPQr5FCJcFz/LhtVVMenGySZJ8L3Xn+2ZJlijcIZM1zPHd7USY/jjaPQfBAJR05EFp7g0GkLPX+dOFKwq2ypRmhAKH9tkC1KZeQZD5NkJROj/tPiPD/jjqH3kchoDkrtT+uS8hFx++j1lc1UQDUp7S+BedLJiCRcnCSDolUgmTG4d3pBL07TeX3R+1G785TOD7jkEg5JFMOqUSCpAjGYiXIvOqmPnfp3Z9KEEcPcq5sJLxO1M+hf6aQpUwMvRuebwtIUh9yuTfmqG2FmotNPqLnCdBd0P14ek3Oua5LcZgVy8wjXII69CVrn8GXJduEofIi6PLZ3EfBXAe42rGbMSrYQOz50LBj6PfZZ59QPPo111xDZ2cniUTCj6OvFv7xj3/w/e9/n/b2dtLpNHvttRdXX301+++/f9nfqId8V+TiZR9KM0LqN3gDchKIs8BXEBEbRGe51xenEF13MY5Ki+Ei9DAK/Diqid73S5BZ4FUGYBUjWgsJ8RSEEGRxwZEx9H1uEC/lIB/ytICst1mURwIv87OQXjoDAo5w4YfAo0gyf7iQ6ym1KDaNLv6C2w2emxzQ5YDKW+86BKXdMpBq62OG6yJcOeNIN3tPWLvIGE6QVqGoRecgT6g+9s0FSyg7rMCPoXcdmfneP/8ezTIxXtGFXXPI4EdjIen1zxSMLuE6v1FzU8UFv9FnNYepWDvVrqFq0buuGyLBep9agYO0tptyYbShxxRC+FpORM7ppsJCzxEDQey8X7rV+/xNgoR4iTL7uKFkQent6whyRRS1vc7JNgAHUirzEmN0L0cCk2yo9uUIFPZFZDK8kwjyp+wIyfAU1JRnhJiTVLXRk/BmXZpJnmVOCLzs0gG5jzypvlhA209yZFJSdMLr7dX7gUJQkNs/p9HAkXTQFyTa73Pe3Z6SwVeo+hO8ti+HqKR4DZ6SuLMfJiTCjDSkDfQ62u2FJuSSQR+1a+cgSKYEyaIcbxkhONgpcsmAyx+AExzBoWlBKuWQTCdIpR1So8CQBou5nkFAAPNeN0NJ64zLpOdfUi1NExB6hShy2O59FxlDv519VGtWU87tRNir0JRzRSGt03k3mAsdIRMipkW00cdUWih0EiQJjJJFlYQ+N+vreRUutRUp4804+sEIfRTf60OOiwlUXgkzmhg2oVfYsmULixYtor29ndNPP3002jRinH322Zx99tnDPj6RlGpUgUx6sJqwpTo0cL1tE7J8lSnwdYEaF5hkQl/YRGX7LSIXNBPwStgQrbSoRUTdK4H0ygB4DbgMSdiOJkzqawkJIajD9cm7i4y7mjK5RVpjvcVcnBRPcYQjBGnXJSu89ZqnJDkWOMb1DNYiUI5kRdhVXB9r+lYHbBQqu7081lX/I5ckm+8jrdZuRe23LpLkd+W9NLwC3RoyHMlpjn1Hmx+mIcmOi1QwFB0H1ylS9Kz0AaGvg+fXS0m+W5M2OYQ31xGhNa/adxCUtjGbvL1rOTXOdZgLOLWNtBa9bnHRSSCEy9pE3fexgLqvZn+VhT60uFQLOe33RUpJfRGZEG8Pgr7oFSDGIuHftkAf2/rCsgHPAOl9ZvIUCBLCQqlnR1zkuxrn5caYrrBfhVRUX0qQDM+vO+/tay0Zng6/bJ3KVu+NybqEQ8EBt7GeghAyKZ5H6h0BwhlkPeMPIA+6FTuXhfaCphWL+H2/KxWu6lyh/QivtU7k/Z8KyHnke1pDcJxB5ssn51KMRDu3UsamgbZeaPE0EuUy+btAZ77UFYbgvSOENCCkHTmnOCCSgkNdOBTv3yUE6WSCdNohnQh7TETN59sKk/Cq5s5AJouEoQm3fiv1ZJsN4OeGMRXYrjZE2r3fZszzGpdvWxBF5lX/1hAoafU5r0AQmtnvBqX3hOvNDy5khFwDqfWi3idTYd9LQOj968T29y0KUfJO9zZcjzRK6spr9bpcY3S9nLpGW73PWrT/WQ35PlKMSFbdc889nHHGGXz729/mRz/6EQCf//znOfHEE/nDH/4wKg0cDUyatr9vZdgNKfyK+uaGtTYgF71mDXp/TTuWjR8mShbNSLdfpcHXCT2Ea9BHEYC4DuChoC9C/WzwhLPAg7Rm6KXK4upSMxiEEGQcQYMjqBcw957HPJd7QcrMCGxRFhlHUCfwNzPmtF77Lh1xSc1nDzz3PE+KF4VnnXfle+rTZHqLTCi6oLLau0EtegegsyAtKVFq4qFc7r1Fr+maB0Gme5+wJoSsRZ8QmoVewM4N8oDXu2C3bJjQ+wtDp0Tgq/mlk8BCrze5EgLyrjmPlfaZ0vnLIdDktxMW4OVq9EZZXFSfNhFUPYmaM8cC5RYapoXebLtys9Tlnn49VhJk+DWt1XItH7+5xHzu1H6oULMB5L0sF24Wl4ogapxHuduDlO9KYf8Y8G7kMxeqcCKC+vO1jBAhUpnUhSAhoL/gMtDaxgFrt0hrvCP8rPgJzzoftWYbvLSbV6tdQZXwVK9BxponE6U3SG/0iDopjD1Q53kgvLEZVmwK2ugYx0aej/B8rT4TAiYkocPrn5/u2y1lcbgyjr4poo3aJJQRkE0I6rIJ6upS5HJJmcMgm6QulySbS8nvkiJEHCF6Pt9WmMo5pTjQPbU6Cao/hOZSbZxEXdUsgaLQnGOVHCki5x4V4qnP0ZWQfapPppxT2fu3UirnCgTx4p2ull9A+6zbI/w6TCW9QlSWe39f4XnG7KeunJtCcE+jlPVRCN03N/jtFuTcaSpK4sr3FIbdtmeffZZbbrmF/v7+UKzFRz7yEVzX5bnnnhuVBo4GNqxZ5N+kXZHuhRAe8OaAWEe4Rm01Fm/DhTkpqebl8GoOU+qFsI6gZB0ED40e81qLcDwhr1wMk0hNqRkXfRr4meBTovYs9CYcIZj95TNqJg9A3JAWQdKaRqElWHGCZG7mQgTCa0BduNUD3cpC730uX7uQTeECTX39AZlHknlcPJf7AWjQ/DmjrPSDIOR1Q/BM64TexVM0OF7bPNd7yeQc6cIDkO8L/q9B6nXBqM8x7d41MAV+JYTj1778mZLPfIEvwn3OIQleuVr0UYR+MJe8EKEPr2nHBLqhTL/Hqha9gtl+fRGjiK2KoYdwDXql5BQECtE4QkRsECa6ULrwViEnKh+CLvPi5J2mxrnePz1HTB3yOesFnkSWL1XhY4rMK9f7uN7D4SL0jGlvJq/dSkNrgYZNcMbvV8Nbm3AQHrHHj6Eve0/VvBoivMjcJR294ZU/xkSXdyWhN8+lzjOiDhqTiTrX+la5bwV+vQZWbAy+1zLcR5/TOJe+cG3wFBYmuyFCcdFTkJ4CUROeZqWvE16CtISgMZOgKZugPpugMZOgMSlkbh9R6ikSNZ9vK0LkT3s9DVnWs8/bK9FWbg6J2usx9BAtO/DOryzYptzbXu5g9k1V6Mkirct6HL2a6/Mu9HibT+I1ct9TlBb8XlcmTVV9idpAzjl1Rp9GSw6a87L+mE4jnB/H7HcUdNkPQZ+2Ut2StNuKYa+n7rvvPoQQHHLIIaHPDz/8cABeffXVyrZslKEGxa5IF8wBwpYKXeC3eb9RCYLUQIqbwNcRNQEpLZqeyENXWMQ9KdC2wnc1FJKE5YTMXPkj5KLnFuBoh1BJn1rur8X2Qwjp1aCyQrc4MrupqmiRdqI9HsoR1hxSk60YmEsQRz8goDvr0NyVBzd8Dknwgc6BICFeSbzk0N4X5oJGPde6VhuQ1nknSIrnu92v2Bj4od23TlqH/FWEWkyKEkWhet9FOEbR3Ff6eYuao9W9ULXoIUKTb67KiHbJUwnnmimdM0djIVMOpseF+r+TCG6XKc90cj9AmNQXkRarLUgLvRorysNJ3e44opzlWrncg6Zk0hZySpmtFsO6jI+7fNdfK9LwNPK5PgCPwLNjJMPTIQQIbw4Wnks9QjDp9VZ5Y3OQbAdebUMkQChSnxCDe5iowQ7hh7k5CW19wXH6Q4S37y/KBKJRjd2mThIe1I6AJRvCx/x1XZhhlKl0IpvhdSY0OXo/bMlCR3+YlZpMR21dBcilguPKKJcdIa3vKtO4XhGqsQyZrzRMwque54ne9+uRFnSTcPt7EfGZt88RhLhEyT116doJFAZACeHdniugz1P63AVBngAIy7keV1rg1daF3LrdgMj3uYFLvoILJfkRlc+Kef3M15VCOW9DgeQvkbXoGYTQU+qxpeT7ZO24St6z0cSwCf1rr70GwH/+53+GPp8yRTpqb968ueQ3cYYaBCpuTs+QWHTD8/VG5MObozzhjRMGIxUQdhOCwEqhLPRRfaxlqJhnleVdZYI/1oFvO3CME3yfFfJ4CwuQAiTpbSkhSAwRulBu0s+hFGlSMuiW+nagNZ0h2yN9Z4QLouilz/Os9XTkZRmhKIk5DDW/bsnT26e7HvoxdglHEnohrfQkBCxeHz7honWe5d7b/KR4YSGptg4koQ9dn1GcP6PmMYUZSBIXRXRNwa/LAdMlbyKlCyn9f44FQv9XW+BMQBLzfsJKatfV7rPXNxVDr+LpVyE9apu1/pmkPo4wrwXgh5q1eceY1hsIx8+bcj2u1pgokqEU9nORJbn0zPZ6/HwtJ8NTEDK7HSIBCCHJvSPo3a+FgSagB4rN4Bw4AeE4OAkCl/tBT0wwOaHtmxLQni+d2PTsYHlXlm/Tz6XtR6REUZ5Rao5Vr985PXzcETsF3w2W4d4/r2qM9pkAGlOBwsI3W+rsTetndyFIpFdipQ/LRyU/s46g3ttyjvxsLJRKIRlg7HciIPQt2m+iLMyhIeF9pmS6vo5W0PUg7QSyT/+9r4TdjutQTs4Jwpnf1Zw34Mpynd1FSeB7gL8gy+r+GemxMOAdN+C9Volh9T7qinoIvO/MazYaKOdtuD0VbEwDRCtB/Lwp22H77tloYthcrb9fpk5obm4Ofb5li7RVDAwMlPwmrmiZvLe0NHjbLki3ezOeUG16fHnUQIrjrdVdMSFos6pPaw7gjcQ/KdC2Qnia4pwIXKeV27Rfl9cJSrvtKG7q99y/oNpNGHcoZyWsQ8XQo7m1C1whaEfQ15KBPChnUEXqfXLY2QeNiQjGMjzGYQp99X4KUmh3olkVHBVH7+CmHGn1edeM8AkPn+FlCHQCl3xK5xW17yQcZ1dJwR81zgfT5E8lnDdgME1+Cen3Plcxdnr7K+VGORJEySJBYIHairGoIeiD7mav930lsLv3Wif0gqG9eqsNk6eAHHfKmhS1gFOE3ly4xc07TY3zkinA+15VTFPedorQq/h5FVJWy8nwFKSFHhCOrO2edBApB2f3qdx4yq783zuaWPmh3WC3qThJ4ZH6wEI/6IkhPFEKAU1Zr/ahG+3GA2ELfUkc/ciuuVJY4HhzbMqBTALeNh3O3gUOScLnd4X9pwWkP5kYJCGe1oxyHggdWg0kXXtpmmV7BoKSef4kLsL77UAl1y36nKXLApDPyDok4Y4qu+YY5zG3QElf6vmjb+0EKQei3NK3q39ChBSuitcIpOJaTwAbss57bf8rcDnSq+cyYBGSzKuwY13JHeWsoTyf/GqNFe5fFPS+6vxEEXrVRj0vTrk8lrpbvt4vpbAP3XMRyIW4YthtmzZN0r0XX3zR/6xQKPDzn/8cgOnTp0f+Lo7o62kNabJ2QxJ6feDrxF6VrFMIDaYYLnDMiUl/sBoJCL2ZFGga0d4HcXWxHAn0mC4VF92oXMC892PhAjaW2H/f3ardhHGJqOevDujwCLyCi7TUdwD5TAZavWfVxXe1d5R1pCsPjVqZILUf5nDVFzQQPNsNyAX/RjThJwRu0qGYFLgJITM3HzgDzt8VZqbkQvKAGZLoK8uQ5uoZpc3vIsgirF+bSsyf5cZ5JTT5Ud4GLnK+nEQAU2kwlrOIrrxVfU4gr/dmtAWZG+6rWrQV3LDMW0E4IZ6SBUHypfjOkVELb6VIUtYk00r/FgGhN+VfnBZv+jiPmmOWasd+B/g74WR4ylq/I0AAwiPxQikd0wlymQT/3HM6d5+8Py17TkekE/4xIulIK/1g10AnvGoVD9Dk5S/p0hLH6QzBBQZ0Qq/Otx0XPOnIuVcR+rQjPQDePgPOeie8fSdJ8tMJ77hh/C994Yq2b0xC6wCh9OwhCz0Bse/IQ52RK0B/4LYTlVy36IpdnQAqOaAI/WCEW/e40ruXIboOva4LwTt/M9FzUyXmF32O1vupZ7oHOc/3uDJMoA9JWq8yzvUYpd5cZv90/U4Xkszrtz7qWlUS5fIiKJf7ktBpjdjrUHI+SlGxldIa9BUc4qOGYY+nY445Btd1ueqqYAicdtppPPnkkwghOPbYY0elgaOBnq7NocG/O9LNUBfy5uJtsPrscdHg6zC196qFfiyvB5egRq9KChTVxx0BKgu8yliutnohM5vHeaG6LZh58L7VbsK4Q0iJpi0Kcnjuz15iPBVHj5DuwAPZBPTmvbqqbiA8lMt9G56bY8TiaRgm4RBZ0fZQmkzGFYJiykEkBcV0gkLaoT+boO+gneg5+530v30nCtmEXFymHEglEIlw/Xl9YeM3XzUXKiogy41zU+Cr/xtZi157rQt+XR7oi4KtBPNl5DZGc4lam+v3U/3nFiShh1Klhe5ur/fbJahBr48T5W4f52RqwbUP3kNQGryL6LH5FkH+GJPUx6m/apyXIwZPGsc/TpDkdUdJhqdDCCHJbNLBTTu46QS5TJKenJyb6jMJj9DLzUk5wwgZEcHN9976Lu8poLU3YDRm9s98QZLwqH+wDfOBSIiArGe8+TabkKFX2YT8LON9n04gEsNYzuuyQs+M35yVLK/ghidB16M7urtyTz/UJyiZwEegYB4MlV63mBZstU0jIPSDEe6oOUUQlIk0FdgYnymFgS+u1b4ylyvkgaDvVQy9mvfzXnt7gSXA17xjdJxEOSV3tPddN+HcOGNBfstxFBXzrqq7ROVD0zHYesUsSWsqeuOKYbftc5/7HDNmzKBQKPiLlZ6eHlzXZfr06Zxxxhmj1sjRgH6TdiYg9KCFEBEQXj0hnn5j43hzRZk9SGKhJwgqIhe3UwmSAkVZ6XckCC8WOuntdzQib1FdmMRKEXqAXgEuwrfOK20w9UBPXyCoXFfG0bsg+gvyx42Z8OJJ7YcxfE3ip6/rdIu1T2ATDsV0kr60Q2c6QXtGbh3ZBG3ZJJ3pBD3pBMVMMqi9TOkaV+17KE2KZ16nSiPKaq4WcnpsoT7Xm4LfFPbqeyXwTQI41vNlyQJU++dTiF7cqMXZgEbqdcXFcgKXe10mxH0xA4ZCjeB+1BMQegiuCcixX5IQltLrGRfoygZVitUBTjGO+zBB/HxayPj5OBoftgX+/U0I3GwKkUniZhJkMgm6cwmacorwSjLspB3fPXnQKxCaKA0WNyEBnV7VblXSDYJ9f6HUSh61CBtJP5OOdG9X/cklw+TeU16I9HBVNcJgtl7DGrwkd535oE8m41GTR69mod8Gb7GxhumOrhPedchwMN3lPkp+R+11l3sIXzKdHG4lkH2mB1clLpk+X+nkfgbSiNCO526PJPP3IN3sTwd+CHzbO8+/AG/X2m/eeiL2ykKv98VcolQa+hrGf42c31owvA0NZb0OvZ+mJ0Ir4coHEFbExBXDls8NDQ3cdNNNzJo1i4kTJ+I4DpMmTWLWrFnceOONNDQ0DH2SmCCdbQwRV+Vyr9wQzZuvCK+5SIjzAie0sNEGYFTGX9U/dXwtJAWyGBpvrFhT7SaMO5QT/ioLrBlHD4IuBE5GILr6AI/Eu56gcgkWkVlvttEXnI7+XwZpV4TrodqmEJQ4C1lxkw7d6QSdmSSdaYeudEJuKYfOtEN32qEnJSKFvbkQaCU6TtGcn7YF5ca5OVer91MJLCchMu+GCb1KBqSTYdW/VgJCD2FhP5YyYbD7GpXp3lRe6Auaond8D7L6i57V3nflj7EwMPuvowHDQu/tO5GLXDPcTL+mcYEa50KIUCm6tJCL6sOA65BWth8BRwitFCs7RjI8Hf4c4ghpyc4lKdQl6cqmWJVNsSSXxM2mcFKJINZ4qPWMOXh0K3ZDNlzaTZ8UAHoL8oL75zIUAtsIkXAgk5Skuy4pa9HXe68zSURUZv1BT0ipB4IQUki19QbM1Gd1huKiHalYQJQ+cBVgO5Vet5RT7E5Hxpi3Erjcm3Ipityr16oOvYJvEDTe91Cab6XcPLUt8BUVRj/rkfPeW0hivwm4EunJcy2S0KeBg5BGzYmEh7QeqqX3Rz+mh8Dzzuyfvq8kouZo9X+mMrJa9HpInZKBBWQY5ERKvSkqdc9GC8mRHNzS0sLs2bNHqy1jhsaWXUIu6Tt5n29ALmQKyAdEDdrNBIS3JjT4QoDrlrUU6gsblyBHgLkginNIgcXQ+P0f/sJee+xc7WaMO/gk1Q2ePTXR9njllfznT8hYtlR9EtGbR7guTtGVexeE60JHnxcILMITzgilpnqmHREoDBShf4NSctsLFByHQgoGEg4FT7I7QpB2oODIfjgu5LzZMirmvIBcUIQy4VZQQJYb5+X6qyqWbECSXn/tKgxCb/RF90TdQqDBr3QIwUjhz9VGPycRzg1j9tOPo3eD97/3zvk6kiAGcfPxznCvoD93+r3IUBpqVkRa6NIEWahNb4Q49Vcf52kBaRcGhGeE8O7PUS4c7RH4jAhvO5InWsnzJgQkBC8npGvxFuDrwA+AowmP30GrlKhQKDNREki39PaBMInXMVCUIUglrGYoLcLQkMnuxPbHTOj9MS31zSno8HIEmBnBdQt9ARn+pfdPP/92otLrFkV4fSLozZHTkF1aTZjQl5vLza7lkGMNosm8zh+aCCsH9Mu+vTD7peYxCBL/9QHfBw5EPhNNeB47SNk8CanYUH0wdVamLFRbF4GxAior18vB5CeONueb+XFCynqjQZF9JLgOLcb/0a9rXDFo+773ve9xzTXXhD577rnneP7550e1UaONzev+HhLeSaR7yioM6wXyQehELnpNDX6ctTUlMsXb1xNO5OES1OE1H5K4hhRYDA9fOOe0ajdh3CFqQaCeoQagW3iEysFLkCfoBDL1WRgAMVCUv/PIvANykdWYCktLM6nRMGC6qalTTSEQgiAF9wDQVYTOInQUoRNBp+PQ4Th0CUE3IlSzVnk2mZZskPMnBHGE+rxZifmz3DjX52pzoTOFiJq1BMIf4zOzb5FhWIRvzVjBvK947ZhIkOUewoucAtLlXr0uIOMq7/KO/U/vvSJCteByX/LsafehmcCapocXrEcueiFCWU+85Ls+zhNe5ZZQ9RZtr1dtyYqw4XhHgLq/5j038wg8RlhJMyw+HDW3CqApKS3YUGq9BhjQLPRxvd7mw6E/JI1ZLzEepS5Lqp+9XvhXTkvQqk5RoYmv0usWf62vzZEOkpA3IgltSUlVtDEWMc4Eksh2UwpdVuSRlzAUZ15h/mDKn4Q2BBPADcB/AWcAlyLnwixhV/lmJJGNss5HJcZT6EZeh3J8YzSMgUPVolclaXVvazXn6wjJd01ZsRV5bZTCQx8LcZMJJgaVz/Pnz2f+/Pmhz6644gquuOKKUW3UWEB3UQFpmV9F6SJOuaK2EE1443xzQ/O291kdpRZ6ndBH9dHCwmL4KEdW64BuLymeK4Q/z2wV0Jh0cJIguvq8xHj4rvd0FqAurf0DbTE2glWBaUlWz/ZUSl3uu4vQ6UKXK4V2N/BHZPbsPyGJfN6Ffm1Tv1d7tSlCr5KT6eu/Si1qojAY0VYZcSM1+UYfzJwqPUiFxwTt3GNhmSgHc6Gp7usEwknxQlnuPSVMwQ2IfVjSy/e6HJBeAHGWeBJmC9Xiu4PS8akS4ilEZVCOK9ICv3JLvRMuyVovgi0nauO+jQR6uS6/DDvReQTUd8MOGdEnC32SakpCp1HaLaQFLUgLvWxg+HwxgfCUyGFtp9fA5qwM7wppZd2w0kLF2Kvkf+ZkHqfOegh1lXCzledtiNBHEHi079TrLIFsK2ftbfO+N5XZFSX0HsE13e5fAV7VjtsdKYOVh1pa4zC68jcy/hxjWHh73UIf5Z4+WtBDpvV7qif4hVLZHapg4700lfZbCCfEG417NloYt3zNLPOzK9L1JqTZQVpiphIeQOZCMY4oNxDrKY2hj6pB77sojVF7LSx2FJSrRe+7/Worhy4HigiaBJBNIToHELgh9zk6C0HZpBLmKIa9WC9X7mUKcuHRT+CVpEh8j7e9iKxT+xTwH8DfkKR2wJV7lVhNJ4x4n3UQLgs0VgJyME1+SWZ/SjX5LqXkXgl8IvpULSVvuRjRyQQVTEzFhU/mCSz07zXOOwvpveYg46/jniFd3e+osWXKPXUdIhPiafcxzkTYr9riyLKrTU54a3CkdX5HcrXXoUryJb3XaWSYyLXIPAI3AO8SMvwg4R03rDHsL/A0Ug/SJd0s7QbB675iqStEheLoK4qopHgCaEzAVk9h4ZssNS2g60J3PgiajlJaxKmfHsz1um7BVsq8ZkrnDWGcw3ytLNy6dxqEL1kHclwmzXOLyq6tkwTzVsJ7/4RxzFNIIl8npPeOLqtakHKtnGICIoYDck6tp/T2jwmh1+Zp3ThRTuZFVZp0jeMgqGDj/6+QPIjlEPcxLvnapOkHBBot5A3aFVhJqcvJRuSCF0onhrhr8KPmWJXIQw3iPmSOk6ikQLpMs6g9/PzOh6rdhHGHKMGm0IDMco+k7NI670oLWlIIyKVxej2X+6KL40piT1cf1CfDUlJP1jSCtpnxYIJAG70JuThRJL4VWAB8l9J6tY8SlD5TydXKZbjvQFsDquYb77cHg43zcpp8JfhN64OuyXeN/qnXWwjc7eOgwdf/r07uJyLvp5rvTTfKAYIa9AWCPA8nANcA7yCwbqokbLUAk6eAXHR2UmqhVy73Ue72cVsclRvnCSHIOiKw1gvIOYKUGL6yrxaRFJIspYXMF5oTkqwcCXwTONJ7n9aOG5Zyo1xpt6asTCyiJjvX+F0fkPRMIeZkEKf7YD4gatJoTkJ3X2CRN9OCA/QUPVmkLX63IfxrMFR63TKYYlf18J+U3q7Q+4i9X7nG25tzi4tcW0/QfjNaskIprFLCS5YJmIELp+GRee+Z0NswgSCBKpQSd1OmR1noB1v7VBrljBNKUW9WbomqRW/KdbzvtxJ4ZOv9qAUl74iS4u0o6Ghd7Wtq1U1Sme6V9UI97HqsJERYQ2J6c/052w0PzAbCMfQqI+QESpUVcfZAsBga7zv+XdVuwrhESGBrqwY/IaX3ZVFAhxA0eU+ZU59BtBUDl3tvoz0PuzVEL6BGwDpCAtAN3ieQC4CbgQ8irfUvAC8hs98egyR3t2jnOhlD+015zX4nQQyhaod/ncT2zzGDjXO9vzq517PhQpA0x9fki/L92Uw4a7E5b4419PuKGwwJdc23INur92PAlWReWedd5P0+BrgYOVZ9Mi8CS33cUU7B0oD0wIPwwm49Ye+0OIebDTWfx3UtMlqQeQRc/346jkwUWPDmlAQe2RfSIjn8PAIi2ordqJV2m5iTrMdLQAzIgOl0Ip4kXkdkWT4BjWnY4sXIm9pZ9b6rAJlU+FwKFWKoo7FuUeEWuufbUkBlA/tPZIWIIylPuE2Cpwh9N5IAQqmsaMfLZxtx3kpaexN4FS9cOd5dB45w4UYXHkGGnhwmggSZRaN/E7y26n3QyXBCRMfSmxZ60+1+tBDiYNprvRb9zkQr6xX8z9zw91sJl6TV+xPTJ9rHsAj9nXfeOazPzjnnnO1v0Rgg39sRKCa9B3xnpMViEzLrvRoEegb4WiK75uShBmYOaTGDgNDPwOifsbeoTdgM92MPVWHCFP4Cr26tEH78PEKwxZVWNVwgk0F098tnVs9y390n3SGhdAE1krYRnvPU3LAU6W7/srdNAk5F1qXdiWAumAj8D7KG7dspzSArLdulJFjV+Q2uUWUtFION86j+CsK16KPK25iWeX3bTNglr1zM5VghisDqiovNyPhJXVnhJ8NzA0vGX5D3XVnk1SJYuSzXiuu2+exBkMDK5ycEWe5DFnpBVZUzg8HO56VQJN1BLmb7tXumSI5KHpgYyfg1Ca8q7ZYF2vpggudw7bvfeyOrXD34OI0lXUmh97El48VRFWWMvB83pZH77oIk/vq5tPNUQqk0GuPcXNMmgMeNY+YDRxEmcQr+JdOU7epO93n7KAt9GwHZh8rLvuC8giwuBY2sJ5EVL45GI/xC7nuKYVkxgSAEbTDlvJLxCp1Ux0Kv2m0q65NI2bwByWvM9UnRlT9WJWmjti3IagD6/zF5VFwxLEL/v//7v/5r9cDqnynUCqGHII5GLVwyyMXPmwRxNS6S4B9I6UIpjhp8HeUeqnrCE5Ce5ddc0CREvOSQhUUtoJxgyyG9Y/yEeAJaHUGL95w5TQKxsjcQHEox0OpCvZdz1Z+IjAXZCNoWmsPc0li7g4FPEQhIgSR/RyBdVyeixWJrBNEU/AqK0JsLGX8/ikTR7K8S/lO9PrQj5/4o5USkKz6lGnz/3Kp/Y0x8zb7p13gCQcy/3hfd1X4AeY/eAA4l8NrwN1E7rnwO+OX79PGm6tArKMUMlCrs9dcW8YYQgoyAhOuSdIOxrRb7KSSBGZEyypxfgwcbWlLQ3i+/K7rBcQMRhN4gu/GBCE9aqn0qc31HHrLeaz01uAt0DwQJWktkUNz6GSAhIOEGoUNJFz6EjCtX+JD3nVJiyjEkKHpy2Nwg8Hj15Z4bln0dlGbQR99XUFYkhSAnZFuTAlJucPsE0jKfRs73uswQBGEB3QTyEDRvNTdatvcQJvRR12g0MJjMU6XrIFpJDxFyXevUZgL5rm9x53wwjPbJWMKht1pCrn6Sr2HTXUN2IVy3FwKXeyi18sT55kYl5hIEWe4hIPS2Bv2OiUUvL6t2E8Yt1PpPf6Z8K6HPOoSXME7ItzkQnX1+uTrhIq0lRaApou7vCH32hBDBgkYEyaQ+aBw3C6l8qPfaXEdgjdDLwpSzbJubWtSo6wKVdWEbbJyrucwMlapDGts2ECbzvmVea7+e4A+CLLhRc2a1ZIK58FCfTUQqpfUFDIST4hWBxUiLxhQMIi+C17UCU+aBvN+d2jFFpOybhLZ4J1Bkx5HQ2/m8PJJCUO8IGgQ0OkGm/4wjRu5ZohN4tD1AYwbatNJuCv3ek2Vmufd/GqPRFMW4lAdCI9DeSygpHmgu9/2Qc8K/rbDiYjTGubJQqy0tpIL6BwQJFA/zjklSqsQsp7KowyD0xtZGOMM9jK77dtpLktkgZGLMRuElzBTys6wT8B4I5JXyoGs12g9hV3XT7V653EPpNRpN6mDyFF3mTSFYo4TWJ66UewpRWe5BKvknGv9nLJQUlcCgivdasriPBJlcS4m7hkAmxtMJvU54o7T3sVO8aihZ4HmaOJUcCIL+7Udpv+KYFMhiZHh12SpmHrxvtZsx7mBqjHVS0Qrgl66DjQ7s6gBFgcgmET3K5V5az+nyrEHKehKyGOlnHx5SQlon1KKmABzuwvXIRHcfAt6JFjctZJ15Je1mUF5YqrhzkwB3IJWlUcKxEnPMYOPc/F/6/1Sa/LeV64/xHgIL/WERfahWklQhhK8EMuPoJxGdvbjohqsTvIS0zqs+KYWP472uFVlg9l/dj3qC5FVqXK4jKFsVJdvjJt7tfD40lNJye8/hIsIDQS/t1tEfJvMA/R5VUJkjdVYTt4Gk98f0QGhMS4UFeJOgYXLuykN9YymJr+ADMxrjXAhBynXJCE+J6TX3aKSbvSL8GSHDMzIe8Q9+j7+GhmCfJlw9wyS+7cDe2m8qLfuikBCCnJDG2KI2HJW3QW9EOwTScLkVmU8MjFA6rW8m+a2ndL4d7SFvyjydx+klaaPDAqPd7dWxm5CEPioMK+72zXFJ6Fs3ve5P+np5tt2Q7qfqBm/1jplCmBzrD0GcISJeq0Qe/UjLxDrgOMIWJn0QW9QuPvWxE6vdhHGLKMGWRbncS7d7gA4Ek7xFn2hMIzqRGe69LPd09MkfChHWIG7jAspPFAW+sE8gFzVHExA4ZckvIuvNq7lhBuWFpa7J1/ddRCfOqdT8Odg49+cyN6zcBBlHr/elRPi7pUIfJEGeoJ1flwfVkgmm95jaJiBrEZv3S2W4V/1aBJxPEGahu9pLi07cpV0A89kTSAtUm/de9VklxNO5SRzuZTnY+XwMoZv8QqXdkrDCy0KksoUB9CnbXwwJfBRMUq/Qkg08EMDQZrqQ74e67c/nMhhGa5ynRTDPC0e6pBeQ3XK8uS4tZLUEvdxj1HyikCOc5d4kvp0EJfFgbJW/5ZRbutJTn+caCTiP6W2nJ49Tm1IGh1zuRVj+jCaiyLxAzulL0JQrnrEhqk9RxgcIkoTr/agFzlcroXEVhz5fq0G/C7DKe600NfXImBJd0NdiUjy1KfeYbuREo2LoozR2cfZAsLCIK/w1oKHRV1ZCReZdYKuQrnAOILIp+dz19EMqIYV/5wA0JYKTwHZZRVTyHBfAkUQ37YZj7VIiyC3SFSEsFxIhGL3f+59rVp12Sl3u1TUabaWh0uSr+UwX/mVr0QuDABvHbCCswQ/NnVWaM8stbiYTZHIGeV+KIpzhfh1SDhxM2N1e7VNV6tO2IHQ/vOshkIvOfsL38i2kV55aA+iyXUbF1FDHLSoL/WH2Jw9kabeu3mCCU4OpvyAtJBA240WxwCrD90CAUlnSmIHO/jAzRXvdXgy8xaLkUYwhhCDjdSQF5EWQA8ZBznUqgWLSePZNuaWuh3K5J/goVO2vlUD2RcmLsYa5xtf7MpEytehdebCprFf9rmNwpcdoQfe4U3sIx9Cb1veoCjZ64tutBPJCP+cOleV+R4S+ABOuFOi7IoluK0HWR5XNuGTwjHwtPeaIIhYqP2kXss99RNegj7vCwsIirighed7neoUJHBhA0CVkUjyEQDgCUQeiPY/TkJEx9J0FyGWCRWIFygQlhCCHK63wyDJPBc2CrazzfS6hDLIQxNBDBAEuY9HuIlyHfqwXNSHPI+3/TkVapk3SXi5+3iXIlK7H0JdEQVQB5cbcJLwwD0qtK2r7GzLsQOVKMDPc15qnVtTiUo2/bqQMdJHj+F1EK7Jrrc8WFUZkaTdk6bqtnjXen+RcSegzxjlK4uhjhKiyfAJoSsJbXlCm7m5f9DrbB9SnysujmMPx3NFTrkvGlbLPJZj3kqK8N5L5qUDzuvM+M/edyBh6/fc6SRxr6Apuc5tAtKwwvQ7UXuXiUl6/Y01+QxnutddTkcbYyFr0isxHrFWKSEJfLgyrFgj9uJRbU3ee6SeGUIs9B7mgmYCsV+siE+JN035nLtzifnOjFjYC+QB2IxUWKYIsnLXkgWAxNK6/cU61mzAuUU5LnUWvMCHYLKSAaVBrI0DUJaF7IJhfOgag2Vsp6v5sjnyxrVZEWcNZJpBqVHvtdUZT7OlKvunIeSNKWJpCX0HVodfnTH9fgUlmqHFu9kHNbVMJlBPgCXw8wuuWWuZd4AXv2JXauaH6c6Zj3C+81xORWXv1e6US4unx8+8guDbKOq+SQ9XSIiH0eBBWpoFchKrxuYGgwks5a0+cYOfzMYT+IPukXkiX9H68CcINLPX9rjTt6r+t5CRXaZjKCvW6KQndmgdC0Q20mn2eH1Z9KnwetN9XAGMxzpNCkHW8RIqOIOcI0mUSKAohyiqidZmuoCuFtyI9YaPIbrVGhT/PGW2ZiGyvab0Oed9pRLibQOEbxTVGG7os1+dulcRcJYONUtZHyXYI7heU3u9aMOLGUW6NOjavfzVE5vXybLsSuN1vJIifj06QEN/bGzUBqdY2IB9GvWSd6pOeUyC+vbMYDj73mQ9UuwnjElEVJkC63Pd4HxQFtAlBswNCLSSEQNRlcNoL8vlz8ZIQpQw2LML7bW6nICkEGUdQ5y1qMo78TFd06vPBFO+3gwlL830HQdk6qPyiZqhxHhUbLRg8Y38BWYlKkV8XmQn+x945/xN4hfJzbDWg5yZQm/Iwa6O0f2p7CZhJMP/rlRASxFvORSFqcSmQBlRlVepFhoKY3mlxDjez8/lYQoQnKjUg6jyn1naDxvW7kEyUTv7a6WKFqKR4CFlNZZNG5nV0ewla0070OSrUybiOc7nmD15DYByDsNyDILY+qmxdNYlXiKRqr1sYOsu9aaHXvQ/GmtSr9pvK+gRBpvuQdV57HdoT9HczQfw8lCo94o5xSegLA72hAaAPbFW6DsKE3nwIauHClSMWWeQktI7yHgi1oI2yGBxTJrdUuwnjFuYzpzyAOgGZ5V6wSUgh6n0kn7vGDHQWgvmlLQ+NidFjw2XgE3pDWCaJFpYF7TWM7aJmqHFuKmTV+ynIdndgkHpP0KvEcQNIo9x847zzKSWB1ZozoxY3isRmCMdGqvtVAF73PtuXMJlXbvfJGhMCUQoW1YUm5CJUlayDYPFWC95pdj4fQ5hEHu+1EFI7qUq7KYrTX4SEXoNehM8VN4TYqbZQbM7K1/2F8ITuulK5nPUOjHK1r1A/4zjOyxFWlRTPdEt3kQpDCMJ9TFf7ag0LXU6ouQ/kXLhZO84MoTNL1nXhDQdKZfpYKERNea7fo6Fq0ZcrsbuVoGSdKdflIxPHhzlALfDSUYFasIQWZEgL/WrvmPWELfS1FGM3mLZMWQr1LL+15oFgYRFXhMiERvJySHLoAkUh2OpAg7LMK6GRSeL09MlkXq4LvX0yszJELC5Htw+mG7f6d3ocvS4YC2rtR7BXOQNUMk7diqzvRxPlyG495WvRDyAt9IrUF4H3G+f9EIGHlyrxVq05M4rEqms9GblQ8+8TgQLmb0jrfMLcRJDhvtYwmCK7E9nv9cBOGLLP2ycYm3FpEXOUK+3WlIZ2LY4eZCmQVMTTEts1lDAmRa+dWW/WaO0rNcv2FGQ8lvdzIHyNdmCUW09HWejV63aCkm6m3KsmfzDDkVSbWghXAoFSEq/3Ua9Br59nrGS7CoUwvaoEAaEvcbV3DWJvGCBUBZsoWRp3zge10caKo75pur8Q011LQZauUy73mxm8Tm3cYRILBVWLfgMBoTcXNuNyYOxgeHbhomo3YdwiSrip8i4y0z20Ivx4L/8ZbUoiWvv8xDW0FqF+7LMKm8JS36YRrkVfwNB0a5r9TqSF2Iyzq2SG+6HGeRRpU/97CkHpOl34q9JuitQPEFgjjgOuQdZtT4kg1ryaGWajFDAKqhY9yL4pBYWKn38ngatiQmgx9IKaKlcHEQsxrflNBIvvdcgSjGjHxcHTYjDY+XwMYS6cQgNJK+2mtnwRMonw77V97Iwj5mQMqLwstAAdeUDzTQboKkAmHX1NBBV7aOI6zqOIapbAQg/hIdFG4JKufmdu1UDU/KjyrbQT5FbRPbpMZQUE5Wj984qx71uUJ6G5Roki8yF5rxkiWpHy0lS8xFUmmBiXvC2RSPtx87qV3kG63LchF0BdSOtGlLtm3G+uEiBRxEK53JsW+lryQLAYGh0d3UMfZFFxlNNU64m5ELBRQLMQCEcj0HUOTk9ePn9FV/p6Nw6S5X4UYeYYGUpYRrmwdVA+yUylBP9Q41yfu02Sp5L8ma54euK4Ae/z54GjgdkEVu0kkvimqK57uprvozwgJmK43CP71QP8HamY8Am9tylFRa0i6lbk8EJekON3KuFxHXodNwKGnc/HEvL+i/CEoSaRpowkvK72g34X0qq8qGLx/tnGoskjg96v0AQpoMFTWECY7XQVoGF0E+JBPMe5rvfQZVcdQVgZhIlvB6Ux5rqeqJqjQpcTas6b4H3WRkR+HMOS7SI5xGAl68ZiDo0i82qNouQ6RMTLR6xXQLrct2jnjoMCZiQYl7ytfesqBERmum9Gxry85B3bgmHZEbVzc8s9aCop3lqia9CbFh6L2sSpJx9d7SaMW0QtAJT9phf5ZatXsi549gTUJ3G2FqW7fZeXhEhlFY7Icj+aKCcspyPnDlNY6oJRoYNAkVEq8CvTzqHGue5tYPbHdM1TixcVO68S4ylCfyxGrLnQrNmV6c42o1wfJxEkMdRd7pcg+z+DwL3erz/vva416Ipsc6snsNDrymz9usXZO83O52OMqNJuIDPBb/WS4imG0F8MXO4rPcGNAoSftMVUPgAtGWgfCE/mLtLlvs4rfFziJbbtFVdMxHGcR80nII1jXdpxOlFsxbDQi9LfVwOmnFBb2ttaKfW2g9K97nJfjmuMNqLCpUDKtY3e68Hc7s11yyYCC70wzl0LnCiusmvUIQhbnky3+z8TZMA1NTW1YKEHra3Gg5sjsLBNhRJlRa30z8IijogS/up5asQjFQK2CpjgSVbhxdE7jRlEEZy+InT0ecHZIuzzNUbqfdMyr/bKqg3ly8AoTX4XgYUeShcRYyn4zX6YhF7vg+luv5KgbrmDZ5n3NmXNrrZVN8qiICgtR6Q8Dv4GHKId58fNi3goKLYVJgdTd0WFmoG8l0qZbb3TLCJhEl41eTUnoUcr7QYyiVzKiZ7Q4krshTfSTQ+ExoyUPT778frZnYdcItzHGlBeVALliGq4FG14r2rQl1sPxCnfimqJCs8yZXmUVbuLwEKvz7ljyR+i8vw4SLm+BengWFKLXnut968XKRtbjP7EQQkzXIxL2SWEg+NZbfwybdqN2wW52FElmnRBrx8bd5TTmtUBK5ALnBylWihL6HcM9PXlq92EcYtyC4A6JKEvCsE6Ac3IEnHCWwuKtCP3HX3QNeAxfu1EY1jI1pwX1PvpSHdtlWBMF5AQdsvrQM4z5vXwXf4qsKgZzjg3Bb4ePrBeO04JfOVur1vnD0fOl8qarUq7VdvdXiGqjyAJ/UbtOLUge4kId3sR9K/W4ucVyi1YGwjq0JfzTtM5XNxg5/MxhmmFFt6fhhRs9mY519srQq+jnBCIC0ITu9bHpqRMimeiox/qjIor6jcV7GMcx3m5RJt1hOvQ64S3jQhCH4P1dRRRVe2ZQDgxXpQVW7fQq7xA5bjGaEOft/XXE73vN2KsUbQNwn1TeWaaIs5rCX2F8Nprr3HppZfysY99jPe+97385S9/KTmmo6ODb3/728yaNYtZs2bx7W9/m87OzoizSUzdeSYQZLo3LVG7IheskwkP0NBNrpHFTskCGvkQqgz+6ruoxbtFbeOGm39T7SaMW5RbAGSQc0u79+FET7oKAcIRCAROM4jOPHQMQLZM/PwYPKQ+MRRhEtyIdM3TS9cVNM032l5ZKSA8B+n77cVwxnm5WvSR+QAIu9u7wHOUutur8m4quWq1US578WSkhR4Cl/uNSFI7E4PQU/0Ef9sLffGlj7EcktC3Iq+DWYNeEO8M93Y+H2Mo5gNh8tqSlZNEfzGY6PoK0lXH/60hAOIIk6WoPjYnobPX8Ld2Id8P9YnwsUClPcbiOs6jSKuel0OXfS5Sxjdqx8aJHIYUmdpQbaY03wpEu92bMfR6Armxgr5G0TlagkBZP5irvW6E2IpUaJhe2bVk5IzDOmRQpFIp3vOe9/Dd73637DHf+c532Lp1K3fffTd33303W7duHfT4DWsWAWEyr8i9QLrcQ2nSnLjH2JnQ3e0h2Ku4lxnaZ+XqOVrULi6+8NPVbsK4hCm4dQHXgCT0WwQkEWS8L32tuRCIXBrRMQAdBWhOh09McMLRViqG5j5tD0HpuhJ3e8MtrxPZ55BitMICcjjjPEph6SCVmgOUehvo9edXA2uQFnq1WNDd7VPEQ8FrjjnVxwlIIpsnsE4sBvZELjhVf1SGe/W6VqHzMP2aqHCX9d7rHNHu9nHtup3PxxpqwSfCE3nOI7Xtmm02X4S0E57ooOJkt6IoV5avMS21XriBXzJA54C00ENp/yrYxziOc1N+qddZ5LxqWrFBeqe1EJ6DfDk/Bm0uBzOnDARyfQLh8KySTeugnuXeHPZjxZFMWafbOaJq0Ue52usl6/QkhlAdJcX2IPbcdPfdd2fWrFnsv//+kd+vW7eOF198kQsuuIDm5maam5u54IILeP7551m/fn3kb1zPTUrXypuZ7gH+BCyltq3XoYnIe62SVNka9Ds2Mpn00AdZjBqiniBlJdwETPIeSj3LvQAZR99WgO5+qE+HF5OOKTpHt/1mqJHCDMKl68olmVEu9+p85lYJDGecmwJf9akB6TVhavIHCFvn3+X1QxF5nfzGwd0eShWyapvgfb+VIMP9X5Hl6pT805Ph1XL8PJQfZ/XI8biOcDhdrch3O5+PMaJYnEpG2kyY0A8UIC3Cv4s7IuUKMikeQK8KK/Bm8y5kUjz9WujEvkKI6zjXPZ/UptbSXvraEKFvo9RCb76uFsrlW1GEHgKiq+t09P6pGHoo7d9YYbDyulMoU4ueUsODcrmfrJ27Wvl+tge1LLcB6ZKfSqXYZ599/M/22WcfUqkUr7322qC/9ZPh6Roe4C3v++XAZUSQ+kp3YpTgz7vqvbdv8PZ6ll8/lwC1MXAtLOKKoUpGSgu9YJKnqhdCyDlIkfrGDKKzH9r6oDGpn1hjIGNA6Mtkh3eQhF7Vbzdj6BWUhV7FpKHvx5g4mfO3Po+bme6LhLPbPwccg2adF0EivLiR36h7lUDyj80E/VsEvEP73oyfr2WFbtRzB5LQ9yLHre6dZobc1W7PLSoKfZ7VtT1CQEMmKO3mulDQXO71ZyfWg0mE+6j6p7L1t/VqmTQ9elefijhNjLVgFUK5OUUR+h5vbyqzmwnPKXGx+IZuO0EbJxKUrYNwBRvT/b6XUgt9NfoXxeMEI6tFD9IpZQKlJL6WjJxVC5W7+uqrmT9/ftnvZ86cyQ033DDkebq7u2loaCj5vKGhge7u6HqWTROkU71ALsiEq8VCuvCkcfyjwLEi2lIVZ7hET0Srvdeq3IYZL1Ij3bMYAo8+vjCWJWDGAwYjFT1IC3CzIvAamXcAUZ9AvNUF3X3QkCh9MMdwARVySSaYJ6YBCynNhgthYt9OoEAcrSQzwxnn/iV0tTnca6eKtVN9UFbsAaRydxVwBOE487i520O4X6YStwVpgSggE6J2AfsTziOjZ7ivZQjtPuvPn26h1zPcq+sW94Wbnc/HFkIIXJPUK7Rkw6Xd8gXpch8+Qenv4oTQZKyReoDJAtrzsJO3iuz2bNBZ5XIvjIm8cp2M6zj3L5Mb9Fb5EvRQaglWdeh9smtesirClMOqPSqGHqLDCPT37UQnvB3rvvlk3i1do/wJQzkh5P0RlLrebyFs5FT3u5aMnFUzLnz1q19l7ty5Zbdvf/vbwzpPXV1dZAK8zs5O6urqIn4hb96ZZ53Pv//bv3H5v83m6Uce4c4f3UWxL08amAXUL1hI7sXFAJwGdGxu5c6fzPEtGAD33L+ARS8v88/7xoo1/PzOh0L/6+d3PsQbK9b47xe9vIx77l8QOub6G+ewcVOr//7ZhYt49PGF/vu+vjzfu/6Xoeyfjz6+kGcXLvLfb9zUyvU3zgmd97f3L2DpkmX+wHxr5Vruvnset3jf3wX86u55rFu51l/QvLJkGfc/MDbti/v1q/X2NTbWxbp9EO/rtz3te+KJhX4Oi/6+PPf++C4G+vLkkHG8qxYsxPnLYgQCB0FbWxu/vO8huU5qTEJ3H/esWsqiNs9fSMAba9Zx2/2PhbSKo339lLBs3dzKb26ZE4qh3/zgAlYsXeZrvt9cuZbf3jUPCIRo4e55DKxcq7rAsiXLmD9Xtk+tHbf3/jY21g15f4UQrFyxlnt+OS+kyf/93fNoXrnWz4b7+tJlPDl3gV/a7TngbbfMwd3c6rvbL/njYp5dsNBXAsdl/KlFyF9eWMxzTy70r29/X566H9/FBq99fwXevmAhr7+42FdQ6PJN3eNafX71heWDd8/jrZVrfUJfXLqMNQ8uCGW4/80tc2jd3OonN4zr/NLYWDcm129b26ewY7VPjqZNbe1c/+u5AStrTHPPkj+z6PUV8ge98EbrZm577MkQs7ltziO8sfIt/7yxun4Cbvv173jjzbd8mbLo9eXc83/PQ85TWADX//YhNq3bompz8tzSv/PoC3/2ziHo689zzQ13Vax9apxDvMafkh/6/PL7u+eRW7mWXgL58eyDC3xjWRPw0C1zaN/c6v/uTy8s5rEnqvt86DLw11r7JgFdLy7mbwsW+uS9ry/Prdr9dYG/LlhI8sXFflK89s2t/PqWOSEyPFbPb39fnptukOsr1ae/LlhI/sXFfnUXtX7R3e7nz13AsiXL/D5tXrmW1rvnhSzz9/9yHm+uWOvfu+0Zfw8//DCzZ89m9uzZnHnW+YwGxFNPPeUOfVg88N73vpfrrruOd73rXf5n69at44wzzuDnP/85e++9NwCvv/46X/jCF5gzZw7Tpk0LnaOrq4tZs2bR1tZGU1MT/a5LexG6itDjQp+3/Q1pmT8NONKBOgE5AQ0O1NeIiX7AdekoIvvnQkcR/hvQh+P7gSvw+iWgyYFGB5IxtVJYWNQCeopyXun0nrsuVxL5XyM9ZDqBw/oLfKRngPp8gfr8ALl8kYbeARpXtJG7Z4XMtvOv+8PknLSM5JJyn01AQwqRGH19rJofO7Q5pBtptb4A+C3S7bAeOYcIoLMoLcB9wMeBHwD7IOPtGrw5tNGRc01qDOcZ/Z50evtu4H7gZeQ8mCMIi+gFvgZ8ADjV+65ByHlS9aFexMui26X6qPrpyr7cjOzXecA3kTkBPkrQJzX/x7FPI0WU3OtGhhychezzZciQg3rCY7JR4CeqtLBw+7xcJr0FuXUPSGv8nzbA37fCmfvJA7+3GM7dG3ZqlEnz9Pm6PoVIxikwJ4Db0w89BegZkP3rKciM/Y+sku0/cSdPE7sFnlwN/3IwpLX+5RLelkLswM9N0ZtTOpQ892RcL3JO/Q/gYOTc0gesBC4EHkDmaGkA6rU5ptGBRBXn2AFNrit52IUMPTsP+A0y/l/J9ZyQ/EjNpVuBM5FGwYlI2d5YJQ4x4Lq06TLP68s64PPAPXjXn0DOJYS8h6o/PcCXgc8hq9kouVDvrVMqLRfa29tpbm7m4Ycfpr6+fugfDBPxnGU0uK5LPp8nn5faoYGBAfL5PIVCAYDp06dz5JFHcsstt9DW1kZbWxu33HILxxxzTAmZj0ISyArIOXKf9W7i0QK+7cAx3ucZEXxfK/DjI0XgJvpB45hTCZdfUi6YFhYW24coFzRFFjcBkxwhXe1F4HIvhMBpzkgyD7LmMYTd7Mdw4aQ01abbvUoqtonySfFUYrkG7VwlnppjiKj4ckFpLXpVf34DMo/KkWiZ4Ali6OPkbq/g902E79dE5L3KIzPcv8P7zq85j9cv4tenkcJ87tRe2f16kB4mUe72OzAnsdgWmINCL+3WpSXFc5FE1x902m/iPKaEt9ozy0I0pqCjL3C16ipCNhU9gY+DGHoo71KuZLpCERmHruLno0LNqn25zLaoNqos761Ey3W8vfJAUDkEys25YwHzGqvXE7zv9Vr0ys2+4AZJb11gCdLQskU7J8Qn58FwEXvutn79ek455RROOeUUAL7+9a9zyimn8Mtf/tI/5vLLL6epqYkzzzyTM888k+bmZi677LKy50wks/5rIQQ5z/pe73ibZqmod6SmRlnoq6lVGykcIUKZmNNCll76AXCStz8cuYhTi7mkkL+zqH3obkAWYwtFXtVrtVeJubYg3dsQaOGLXhx9nReZ5wBJJ7wC8GPpx+YZjSKIighOIVyLXk+gA0F93kaiFzSV6sFwx/lgtegVoVc16AvA88DbkfHnyt3erD8fN6h7pV4DvitlKzLBawuwK+FkeHrpuh0BKtxFv8+qjyCvR9RCMM4LIjufVwFRpd0Q0JiBLd5sp5KGpBOlv4/7Wio0uWsCqzkpk7KCV3S8IDPcK/jCrfJkPq7j3JxPVLfThJPiQWkNeogfOdRvvZr/EkhSv4XSLPcqMzxIq7aSH6FrIsZ+DtXXKLrhwSEor6srJgpArwt5V8r6RcB/eue6FXiF4HGIiwJmuKhaUrzhYvr06Tz11FODHtPU1MQVV1wx7HNOmhYugecIQR0uKaQlvl8buGoRl60xMq+g+jQAFLzmHwUc7gaJkJQHQloEiVotah93zXmMr335M9VuxrhElAYcpDa/FanhnigEjuNZ5ZWl3hGIhKdda9QWTWo/xhLGTDijXkOQRRYCgQnhGvQQJA7yFRsVXgMOd5zrBE7v01Rk2aFOr60qMd7zwPEEiwNfOYqcJyOW71WHPt70cTcB6XL+EjCTcJ+U10HcMvZvK0TEXr1uQj5ayishykofV9j5vArQNbMhwuuVdusrBsemnPDv9H2cEdXHpqRnoXfld92FIMN9REK8Snr1xHGc63OIf7k8gdeAdLOHMKFv1n4ftxJovv4mIoFqM3KNAqUyHaRs7KZ8ST59PxYw5bm5RtFr0asKNn2uJPW9yNBqHU8gOZIpS2sBsSf0o4ENaxaVfOYIQUZAynUpCqmVUtomqe2vlVsaRkpIElEAcCDpygHtehOMstznPKXFWMa0Wowu4iYUxxPKCbY6gioTLd4RksjLz3wD/IQEpDUXxypluRdCIFw30m1QLwujNN9KkBaRWX5bvPOMptvhcMe5rsnXM+I2IIn8eq+9LpL8/hP4OoFlV88CL/NDxW+u1DP569tk5MLmr8i8Bn44FkF/5LWJX5+2BeUWqzk8zxhKiXzcK7zY+bwaEMGkAcEgyXgjq61PxpJDQOhLstvHeFSVK8vXlJGsFG+x2N0P9WmDvYnwvkKI8ziP6mkWSXB11/Q2As80IvbVhikf9KovkwjXolfu6gSHlNSgh+p5IAy2RplCUMFG9SPvevnSkIr8qcb5TiWQjY4IvBBqAeOS0A8GRwg5MGvlDg4BIQQZ7zFMIK0TBRGUtEsKmbQjLWorP4CFRZxhlrfRCQVILXhCKKWhJPWOo+YeAf0F2FCA5Rth/2ma1JSLrrEkk7o1VyfC04E3KB9r10k86tQq6Np204KtNPn7IfuyEFnWbSIaoRfh+vNxhLlIU/drIrJfbxJY6PUyfMr7YEfAYIvoPLJs3yvAYWhKHhSXiemNtagOQgxBJ7ACJgppxU7qn1MVxes2w2dzhNva5Hkg9BSktaezH6Zktd+J8LXZwSGEANeNnFvMGHoIatBDWKkYDKXqXjTVn6i2tRDE0JtkXne5V2sZ9fuo/VhBzeGmsn4qMg+Ovkbp9ch8HngVuA/4JDLHzIeQCWPTIghDTojaUXTvCB52FkPAEYKcI/zM0vrWKGSegJxTWbcpC4vxjpD2GznZKq12C4Dwnjm17lPkfvnGQEU+Z60k9WgnGmNxGZVkTRH6tRh1XgkT+kbtPNUW+iEjFGGlwlQCbwNF6I9GI74iIL9xdbeHsBcCBAK+QTtmDeGYed3tfkdBFA9bikyQ1A5c7r1X46CW3CotxhAhIk/Yil2fgbYBmRXedAWpGQhDSHnvk46cFFp75ee9eahPlJL4WlBaVAjl5FcO6boNgfxrJ1yDXg2ZOM0zuqzQb+sEZAx9KMmtJ9R1Qq/LFH0YVKN/g61RlFwH6Z3ciyTzbyGrfp2FzNj/H0gynxMyBFmFIafjcsOGgXFJ6Fsm713tJlQFSY/Y1wv8LecIW6JuB4VZL9Ni7GAaLnThD0GWeIRAeHH0Kn5evKznXAcWrQ8nLhrjzGUJQ1AqoTGdcHyameW+nWihX2mjznDHuaokEJURdxqS7BUJkscdQ9jdXlnoE1TfwlIOImJzkP1R+E/vvamk2FEWA+o+K5dJpZR50jhuPoE7pSPi76Fg5/Oxh1K4hqzY6tlv8Wq1DxSlmRbtO3Wsvo8jQhOFRuoBJjrQ4ZVb6e6XhB7CngqVnsyJ9zg39TsgZXoPpbLPjDEfDdm3PYhyUQdpbNhKqcedbqlXLvfmEPf1WmMsH8t53k1FWt5BtrvP29qAK5Ey/qPIkLssQT4xvapZLYUh7ygyfETo62mtdhOqiiAJV+0MVIuRY/99d6t2E8Y1ojT6ykKvsmyLhEA4DiIpcBIeoX/XjPCJDpuu/L6qQuhDgtJbwyWQhL4HaYnXXfMUuhg8w32l5p+RjHPdNU9f0EwhUE68COyJXAyYceYqIV5cod8j3WpRjswqV/s4Kym2BX6+A+91GphlHPNhwmEUcc/wb+fzKkFPcALBpNGYloS3vyjjFkO/MVhfXKETebTXQkB9VnoggGSouRS+RV9ngBWeN+I6zsvJMUXoISC/bQQW+rDMiw/piqoEIpDhWZu14/Ts9rqF3gynq6b+yvS8U/JvGjL8oQ+5PulHWui/i1y//AvSrT5NQOCzAuqcwFJfS4jL2BpT9HRtHvogC4sax8yD9612E8Ytygk5ZaH3Cb1H0J2Eg5N0EJkEHDgDzt8VZqbgi7vD23eSCZdSjmQfY0y8THKoiHAjQTI5PXmO0up3EK5BD4yKh+ZIxnlUqR6BFO7KL+J54FgCy64qU6eXrIsrhJcDRnkUKA+DU43jFJnVE/3tSFDxjynN2nIE8EPgA8DNwJGO/C7OVQt02Pm8SgixBI2oNyWlS3q+CKkEkX7HMVeSCZUPIOR37bW5JQvthSCWSiXFQztmFCb0uI7zkA5D+zxDaQx9J0FN9yglQBxgtkmviNLhvTa97tRnuoU+DsqKcmuUFu/79cikvXngx0j91CXI9UsGaZ3XrfKqlHmtxM4rxN3LzMLCwqIm4WvAtazjijS8ABwMHO4IRCrhJ6hxBJJhHbST3JRFPu14W0IqAcYQuoBMEBb+KkZNJZPTLfUdyHrnUQuaagl+M2mO2qYihX4Hsi7tBV4bTXf7uGa316ES+SRdGf834MoEcN8HHkOS+SM0wpuuATI7UiSEICtcBgDXAceV1+MYF471+qsSwdZ5pD/u99WiSjBZmJp/m73Sbv0uJBPh483fxxlRZfkE0JiCDd3Q41npVTb/iLJ14wG+rsNIdluHtPrqpLeVMhZ6iI2OR61N/HWH93oC0kKvK+j9mvTevgtpyYdSJUc1ZLu+RjH3M5CyfTfgN8AS4BqksSGLR+idUut8rZF5GKcW+nS2ceiDLCxqHG+sWFPtJoxblBhqvG2J9/4N4DK8xFyeZd7JeBb6rLHlkpBJSDKfGPspWxmmdLd7hRnI5DLltPh66Z7RynA/knEeEviaNn8aUnv/e6Tgn07gim7Wn487kiKwNmS8BUqDgKMEXOXtsx6RzwhppajFxctQSHtkvV7bN3rXosEJPq+VOEk7n1cJemx5VGm3fNEg9NpYiv+wMrJoamS9OQntvdDVL79LaN/B6LhbEd9xHiXTIexyD9IS3ItB6E0dSAygK9b1tk3wPuv09rrXHd6+hyB8UP1e3481THmulyBVuX6eQma0/yZSga+s80pWKqt8VkiFcC1iXBL6xpZdqt0EC4tRx+//8JdqN2HcopyAMWOZH/W+c1IJRDaJk01CziPxuSTUeWQ+l0Kkq2NH1ZPJhfpE4Krua/Pd4HdmYiB9X0nBM5JxHtUPgdTWp4CHKXW3193Sa0FgOkL4C5OcR1rrdCLryPf1jiKz1W7x6EAIQVYj8k2O7L9O6hscyFSjhuI2wM7nVYKuxdSHiirt1j4A6QgLfY2MqxLTsWp3UxLa+qEnr/mPi2A/SiwuzuPcVNBDUIceglAzkGXrTBIfpxGh2mVWRFFhgaHEeG5YtnchZaYwtyrJyKiEt2pzgZ8hw60uQ+bHUW72WQE5Jxw/XwvK3XIYly73m9f9vdpNsLAYdXzhnNOq3YRxCyEECdf13bWTrtQIfwh4WjvuNDTC6DgkU4CbCNThgjF3sY+CIvCm0JyOLPEWFWvXRThxjrlVCiMZ53r7zYy4dchM91O8z/X682mP2NeKJTspBPWOS8KFPle63ReF+k72RVnwa6VP2wIhBGkBKdelKKTSyV/IUltu9nY+rxaEwXy89ylHDqKN3WF3dO8n/q/jPsZ0ZYWeFK8pK5lqZwHqUtFm5lGQTXEd5+VIeQ7p3aXQ7h2TofRSVVr2bQ/0W2nKxKlIQm9Wr1HoRCvsQDwUFgk0Zb0XPvAK8JJ2TBa5DlNJ8JR1vs7bakW5Ww7jktBbWFhYjDb82GtXCo4icIQrNcWPIsn8kY4kiynvWCemdX1NQanH0KtkcqbQ72CQLPdV6qNas5qxg0uRmYkBfoR0uz+C0tJutYSkENThkgYGNDLr4OUDiDvRqCCEEP59tLAYEULMRyP1AJMc2NoFTRODY0Gb4GrkGYtKiteYlvsNecimgmPNkIIa6eL2wsyHo7YcYQt9OzLpLZSRfWPZ6EGgy0KzbU1IQg+l7vYgs8abWe4d4/1YQ1+jKHL/uHHMU8DRaMnvnMDNvpbqzZeDJfQWFhYWo4CUkBrhogNu0TPqCDjahWM8K6lKzKW0xXGFSYLVa0XoC0jCqLaoGPpR9NIcNoQQCC8BoW6deMI4bj7BPVIJ8WrB3d6E41mo04DruvG3FlpYxA06kUd7LQTksrCqG/ZJRE9qNfG8KTJvWOoT3sSxthNavPAC3UrvXYfxMqfosktPjpcjiDcHSejrjN+MVv6Y7UWJkt1j7BMorUWvE/sOouvQV1NZnxCQcLW8N670iHxKO2YWQShaRgRkPit2jHFci2uU7cak6QdUuwkWFqOOn9/5ULWbMK6hYnhzQsYr13uJuBoiEnPlYm4xVcTXdM2b4n2/iXA2XJUkyIyzg8oLnZGOcwevpJsIkt2ZZd1moZF5asvdvhx2hAXLeIadz6uDQUu7TfCIrum+U23N5Ujgm2oxMt0LmJCEt3qkhV6fxEfRAyHO41xEvFau5wUCC/0E7bjQsCE+Q0LFneubkusTKW+hd5FJ/+qJl7I+8DyTMjsjpJfdDcDJSM/II0TY1V6tz3YU2TguLfQdraur3QQLi1HH+45/V7WbMO6R8NyeE0ghMyCkQFTCU2UajzOZB43Q65Z6pACZgixdt5N3rJ4YSFkqTAtFJXs70nGe8rT3SvingcNcuA5pmf8QcLjwQiG0zcKimrDzeQxQUtrNc0tPaWrKiDj6WMNUUuhm5IYMrB+AukTpb8xjK4Q4j/Moi7RKIteLtA63Eyiy9WN9l/QYyXpTrquhMBFYTXTJul5vb9ahh+paiB0hSLsuWRF4RTrAUcCRBKVKlWW+lsvTlcO4JPT53o6hD7KwqHHstcfO1W6CBUHW8bTr4gIFNygDVyuJuUrIvPcaZMk3M46+A7nQURp/GD2hP9JxruLh064U6Oqzo4Gj3KDsmyrptiPWabeoPdj5vIpQJevUa8Vimr0ldDrCRClEODV4TCGEwFVu96alviULdEn3MpPE67XBKoi4jvMoMg8Boe9BWq3bkRnuIazIjpN1XsGsQQ+yjS3IErtm7LwKpYPSGPpqW+hBPobqfjiOlPHKc0IZIPTY+VotT1cO45LQD4Xe3l7y+fzQB1pYjCOk02my2ezQB1pEQgmPZA3KkKjYc7VNQ1ro9Ti7LrRKR2W2akEIQRaZ9Vx5S6SFzAQvvHV7inCsXS0oXSwsLEYJphVb7Zs8VZ9y4TGniVqZNqJcpwTQ6CXDq0+EjzOPHSfwh4BmzVbKXmW5bgN2IVrmxS3GuVz7WoAt2nFFNyD1KgFg0vz96Oh3RgQhBDlcn7z3C9n2IkGIncpbtKOReRinhD5XP6nsd729vey5556sW7duDFtkYRF/TJ8+neXLl1tSP06hPAoSmqVeEfrllCbNUZrykoVNheXoopeXMfPgfUf0m6QQ1DkujiurEOT1sm7IPqoYu7iHQ1iMD2zLOLeoEMyEcWoia/JkYdoJH6eOrRXoVvkoDwS/LB/BMfq+gojzOC+nmK4nyBujV3eB+CbEg2jrvEC63Ld6n+lyvUi0sl5/Xe1uqtxFKdf1y7X6FnohFTA7qoJ+XBL6TK6l7Hf5fJ5169bx5ptv0tTUVPY4C4vxhPb2dnbddVfy+bwl9OMUptu9Et4zgOcoJfTN2m/NpDmVFKevLlu1TQtAVdZNz22gBH+ojKCFRQywrePcogLQCa+ulWzykuItXA11Lhww3TumxuYN30RrEPU2zx67uRN2aw5/p35XYcR1nJvkVYdO6LcSEF7H+F2cLfR6HH0LkrgPEK5cg/d5fcR59H0ckBCCRJwaNAYYl4S+ddPrQx7T1NRkCb2FhYWFB9Myr9ei3+C9VoK/g7FLDPSpj524zb91hJDx8kDRdb21+jhbBVjUBLZnnFtsJ0zCq16/uVm+Xw/8ag2c58CBM4IJLxE3ClcGUWX5VmyCpz3H60c2QktaKixMK32FEedxrrvbQ7BPExD6bgJCj3ZcHKzXJpQcN70OWrzvWwk87RSh7yHI7B/lfRe3Po4n1MhsY2FhYWFRTejCX3llJpCEvgdZi1dlwu1CEnoY3Qz3lYQjhCXzFhYWpVDJNdTkp14vWh8+7q/r8M2CNcVuhGy33kezb4vWe997xwrvd+MEJonXe54jIPRbkIQ+yj0/juJFJuYNtzOF7FMrpTXoddkOlHjfWVQPltBbWFhYWAwJRej9NZ/3WSPSQrGecJZ7PY5Qt9BboW9hYVFLEI6Q1nbHI7MJIUvVvWtG+MAjdtKOIZ4MLgoqOUpCQNKR+8OMvh0+IzhG9XGcMYhQ2Jh2a+uQSfHyyKzqIUJvkOU4IUrpoG7pBGT4gFmHvougZB0Re4vqYZw9jhJTd55Z7SZYWFhY1BR0Ep8gLPynIzPdQ0Do9bI25lZJXH/jnAqf0cIifrDjvMpQJD7pyH0mAQdOh/N2hZkp+OLu0iU95RHiZEIqAmoAQngKC0XYMwnZl/O9vp2/K7xtuvxcHZNwRsWjKe7j3OyxQLqgdyNL1sEgFvoxauNwoSsc/BJ2HiYRJMbTY+h7kIRe/d4/j3++uPVy/GBcxtBvXv9qtZtgYWFhUVPwXe1dLZzUk/IzgLcIl7ZpZmxi7D73mQ9U+IwWFvGDHedVRkJAOuHVwfImwYSAg3aSmyL8KUdmvU/WmL0s6bW74AafHbSTzAmgwgz8/iXkfhQQ13GuSrdGEfQs0IdUZKeILukWx9Ggl6OFMEFvRoYPaKPBt9CX1KCvpeiSHRhxHGOjjsJA79AH7WC444475MPrbY2NjcycOZMbb7yRgYGBUf3fK1asQAjBHXfc4X927rnnsscee4zoPE8//TRXXnklxWJx6INHgCuvvHKbtYqrV6/mK1/5CkcffTR1dXUIIVixYkVF22dhEQcIIXzrvO527xAkxlPCv42wFt/U5FcSUya3VPiMFhbxgx3n1YUQIiCz2YQs5ZZNhLdMAjIOZJKIGkuxLRwB6WRpf3JJuVef5RKQToyaJTbu41x3t1dXIEdgoZ+gHxexxQ2+q73XON3lXhF6M4a+nui+jUtCGSPY6z/OcO+997Jw4UJ++9vfcsQRR/CVr3yFb33rW2PejiuuuIIHHnhgRL95+umnueqqqypO6LcHr732Gvfccw8TJkzgPe95T7WbY2ExqlAEXne/F0hCr2LoIZzpV2i/hXjW47WwsLAYCsIRYTKv73MJyCYhm0LUmnXeg0gIrw9ef+q8/tVp/atBZUWlYCqn1T6HjKFvZ5BQs5hesqgs9wKZ6b4VKdOVy72LlO057fc2hj4+qM1ZZztR3zS92k2oGg499FCOOuooTj75ZH72s59xwgkn8MMf/rDs8f39/biuW/b7bcXee+/NO97xjoqfd6xx3HHHsX79en73u9/xyU9+strNsbAYVZhJ8aJi6EEm02mglMSPhtB/duGiUTirhUW8YMd5PCCEQKQ9cluXgoYU1Cchl0JkEzVPdoUjEJkE5FKSyNd7+1wKkRn9vABxHudRZB4CC30bQck3oCQDfBxHRlSiWwFMRMpxEz0EJWlDCg7rdl91jEtCn0ikq92E2ODwww+nvb2dDRs2+K7xN998M5dccgk77bQTmUyG1tZWAO6//36OOuoo6urqaGlp4ZOf/CSrVq0Kna+7u5sLL7yQSZMm0dDQwGmnncbq1atL/m+Uy31XVxdf//rX2XvvvclkMkyfPp2Pf/zjrF+/niuvvJKrrroKgFQq5YcO6P/30ksvZc899ySdTrPnnnvyne98p8Sa/7e//Y33vOc9ZLNZdt55Z/77v/97uxQWjjMuHyGLcYoQmddeKwt9AehHavJVaZuoxDmVREdHd4XPaGERP9hxHi8IRyASApFw5LaDuR7J/jmI5Nj2L+7jPMoinUVa6DsoTYgHAdGKY8K4cmEBE5AKCgjH0XdQGk4X55CC8YRxmRSvfeuqoQ8aJhYVXB4uwiwHZlZQMzta5zWxfPlyEokEDQ0NdHfLifQ73/kOhx9+OLfeeiuFQoFsNsstt9zCBRdcwHnnncc3v/lNOjo6uPLKKzn++ONZvHgxjY2NAHzpS1/iN7/5Df/1X//F4YcfzhNPPMFnP/vZIduRz+c56aSTWLRoEV//+tc56qijaGtrY/78+WzdupUvfOELrF69mttuu41nn32WRCLh/3ZgYIBTTjmFV155hSuuuIKDDz6YF154gf/+7/9my5YtfP/73wdg06ZNvO9972P69OnceeedZDIZrr322hKlBEiFw5133jkq3gkWFrUK3TKva/SneN9vQiYFgqBs3WgL/VNPPrrCZ7SwiB/sOLcYD4jzOPdd590wsVdl69oIE3oIFN9xJbtC4Ce61bcJwEbvGH0V3EsQVuCfw9hbVAfjktBXCosKLh/tl9mdf16Au1yXgxND/mxIvFyAzw1IF9bbCvAAbsVIfaFQYGBggI6ODu655x7uv/9+PvzhD1NXV+cfM23aNB544AFfm9jZ2cmll17Keeedx+233+4fd8QRR7D//vtz2223cfHFF/Pqq6/yq1/9iu985zt8/etfB+Dkk0+ms7OTW265ZdB23XXXXSxcuJAHH3yQ0047zf/8E5/4hP96l112AeDII48kmQyG7q9//WueffZZ/vCHP3DccccBcOKJJwJw1VVXcemllzJ16lSuv/56urq6ePzxx9l1110BOOmkk9h9991L2pNIJEJKAwsLC8M67wbkPokk9euQCwGBJPZmDKEV+BYWFhYWtYhySeCyyGRx7cCeQxwbN4TaqMn1FmTsfA+QJpDdnQR16GslT8B4QVzH2KhCiMp0++GiJPMgF7LvH4Bpfdu/vX8giEd9C3ikgjng3va2t5FKpZg4cSIXXnghZ555ZoikA3zkIx8JuQYtXLiQ9vZ2zjzzTAYGBvxt11135W1vexvPPPMMAC+++CLFYpFPfepTofN95jOfGbJdjz/+ONOnTw+R+eHiscceY/fdd+eYY44Jte/kk0+mv7+fF154we/HUUcd5ZN5gPr6ej784Q+XnPO2224b9ez/Fha1hpIYeo2kT0O63XdSmulXf11pmd/Xl6/wGS0s4gc7zi3GA+I8zstZovWydc3a93oOmbhyXV2WQ9BmldR2K+HEeN0EhB5K8wRYVA+xt9C/9tpr/OxnP2PZsmVs3bqV6667jne9612hYy6++GKWLl0astp+6Utf4iMf+UjkOafuPLMibZvlSAv6W8gY0ruSVNxCPwP4UAXVLg888AC77LILjY2N7L777mSz2ZJjZsyYEXq/YcMGAN7//vdHnnPCBLl8f+stqd6YNm1a6HvzfRQ2b97MzjvvPHQHIrBhwwZWrlxJKpWK/H7z5s1++w466KCS74fTPgsLC0J1a03t/DTknNVMOMYORjfD/Q03/4ZLv3ZW5U9sYREj2HFuMR4Q53Ee5W4PUt71IbPCN3qfRcnIOCLK0q7aPhHZp12R5WqVqkW30OvnsaguYk/oU6kU73nPezj//PP513/917LHfeYzn+Hzn//8sM65Yc2iirRtZkLwAC6PFCXprpRb/LFJmCsqf16Agw46iH322WfQY8zEHZMmTQJkLfu3v/3tJcer+HmlCFi/fj177bWX//369euHbNfkyZNZsmTJkMdFYdKkSey5557cc889kd+r5HszZsyIbMtw2mdhYSGh3Ox19zxF6JcDuxBo96E0w32lBf/FF366wme0sIgf7Di3GA+I+zg35ZhAZrnv9N43G9/XQrlWx1NU+Mn7vH0jshY98mu6vNdlS/ONflMtBkHsCf3uu+8eGeO8PXDdyvmwz0wIZo5CqPVonXdbcMwxx9DY2Mhrr73GOeecU/a4I488EsdxuOeee/wYeoA5c+YM+T9OPvlk5syZw7x58yJd4AEymQwAPT09vhIB4AMf+AC//e1vaWho4G1ve1vZ/3H00Udz7bXX8uabb/pu911dXcybN2/I9llYWEgoMu+4YSvEDOB5wrV4FUZT4GcytmqJxY4PO84txgPiPM5D4WOatT6LtF5vQSqzTVf7OJPdEuu81y+AyQQu9y4ynh5kTL36Ldj8OHFB7An9cPHQQw8xd+5cJkyYwLvf/W7OOusscrlctZu1Q6CpqYlrr72Wiy66iI0bN3LqqafS3NzMmjVr+MMf/sAJJ5zAZz/7Wfbff38++9nP8s1vfpNiscjhhx/O448/zu9+97sh/8fnPvc5fvazn3HGGWdw2WWXceSRR9LR0cH8+fO5+OKLedvb3saBBx4IwPe//31OPfVUEokEhx12GGeeeSa/+MUvOPHEE/m3f/s3Zs6cST6f5/XXX/fHRV1dHV/72te4+eabOfnkk7nyyiv9LPdR4+Tzn/88d95557Di6O+77z4A/vKXvwDw6KOPMmXKFKZMmcLxxx8/kkttYRF7mBnu9Vr0G5Ba/MEy3MexdI+FhYWFhcVQMN3MFaFXMGWf+Zu4YbAwuhakyz0EFnpVjjbq+Dj3czygaoT+6quvZv78+WW/nzlzJjfccMOwzvWFL3yB3XbbjYaGBt544w2+973v8dZbb/Ff//Vfkcc3TdhtW5o8rvGlL32JXXfdlWuvvZZf/epXDAwMsPPOO/Oe97yHQw891D/upz/9KQ0NDVx33XXk83ne97738atf/Yp3v/vdg54/lUrx+OOPc9VVV3Hrrbdy1VVXMWnSJI499lgmTpwIwKxZs7jwwgu5+eab+da3voXruriuSyqVYv78+Vx99dXceuutLF++nPr6evbee28+9KEPkU5LfeLkyZNZsGABX/3qVznnnHOYNGkS//qv/8rAwADf+ta3Qu0pFAoUCoVhwuM6mAABAABJREFUXZtPfvKTofcXXnghAMcffzxPP/30sM5hYVErUNZ5PStuAknouwlnutez346WsH/08YWxLnVkYVEJ2HFuMR4Q53FejsDWacfohNf8TVzhK+g9ea7aOwHYjCTzAknobcm6+KJqWe6/+tWvMnfu3LLbt7/97WGf66CDDqKpqQnHcdhnn3246KKLeOaZZ+jr64s83gXOPOt8Zs+ezezZs3n44Yf53vW/jHV2ze3Fueeei+u6g8bP77HHHriuyxe+8IXI7z/4wQ/y1FNP0d7eTnd3N8uWLeP222/3LecAdXV1/OQnP2HLli10dnby0EMPceyxx+K6Lueee65/3B133MGKFStC529oaODaa69l5cqV5PN53nrrLe677z6mTp0KyFJyN910Exs2bKBYLIZqxGezWa688kr+8Y9/0NfXx5YtW/jTn/7ElVdeGUqW+M53vpP/+7//o7e3lzVr1nDFFVdw1VVXldSbv+OOO4Zdg14pFsxtRybzjz6+kGcXBrkoNm5q5fobw6EV99y/gEUvL/Pfv7FiDT+/86HQMT+/8yHeWLHGf7/o5WXcc/+C0DHX3ziHjZta/ffPLlzEo48v9N/39eVLnl/bvtFrnxL+j85dwLIly3xNfffKtUy6ex6vEyxq5t89j7Ur1/oLhKWj0L7Gxrqaun62fbZ929K+xsa6WLdPwbbPtm972qfGeRzbd/ud80Ll2X539zzWrVzru6A3L13Giw8uCJH5X/xkDls3j037tvX+bt7c6svoxS8u5s8LFvoW+q19eeb++C76+/J0ARngbwsW8vcXF/t93LK5lZ/cvGOMv9Fq38MPP+xzzjPPOp/RgHjqqaeGx1pigPe+972RWe5NLFq0iNmzZ/PII4+UZHHv6upi1qxZtLW10dTUVPLb9vZ2mpuby35vYTEeYZ8LC4Wi69JZhHYXuorQUZSW+R7g/wGrgC8Bs5DJghoF1DvQ5MjX2ThnB7KwsLCwsIhAQZN9nUW5dSEz3H8SGXP+E6QLfj3Q4MitSci9E9Nws76iS7srZXlXETpd2a9ngN8AP0J64T0G/AH4NlK2Nwi51TvQ7EC9sCF1w4FaTz/88MPU15s+D9uO2Nehd12XfD5PPi+1LwMDA+Tzed8desuWLfzxj3+kp6cH13VZvnw5N998M8cee2xkSTYLCwsLi22H72qvvVZQBS+j3A71vYWFhYWFRS3BlGO6K309Qcm60rwx8ZZ9Sp6b8noCMsktSM/mTiSRNxHnvo0nxD4p3vr16znjjDP89yp7+jnnnMO5555LPp/nF7/4BW+++SaFQoGJEyfynve8h7PPPrvsORNJS/QtLCwstgUqiU6CcOk6BxlHD8HCBkY/ac7GTa1MmdwyCme2sIgP7Di3GA+I+zgvp5zOES7XKsToyr1KQm+nXsJuAjIpXtH7rodwDXqb8DZeiD2hnz59Ok899dSg3//kJz8Z0TknTdt/e5tlYWFhMW6hCLwgnO1WEfoGygn8yrflrjmP8bUvf6byJ7awiBHsOLcYD4j7ODcTxymRlkIS+lolu1FJ/CZ4n3UAzUgLvV6DHuLvfTCeEHuX+9HAhjWLhj7IwsLCwiISqha9IvRKkHR5+zVEuxuOhuCP8+LPwqJSsOPcYjwgzuNcJ/CmgjoPvAy8Qlj2OcSf8OrWeV1Jn0Vafbd6x3UjCf1goQcW1cO4JPQWFhYWFtuOEJn3Xr8C3OV9fz2w1HutBL0VNhYWFhYWtQ6TvC5FlmvdCFzmvTfJf5xhetrpbZ8MbPFedxPE0Ed5IVhUF3aNZWFhYWExIuiWeYHMgPuEccwT3udK818LlgoLCwsLC4soCCF8eadkWgJ40jjuMQL5mBDxJ1q6J51J0FuANu91D0E4Hfreut3HAnEfZ6OClsl7V7sJFhYWFjWLBJAUcrGS9F7PMo75kDoGecxoLWzMurAWFjsi7Di3GA+I+zhXsizpvU5TKvs+jJR9Sv4laoDtRuW6EUhCv9k7ph2ZFA/KW/QtqofYJ8UbDfT1tFa7CRYWFhY1CyEESdclLaBfwABwOPBDF34HfBA4XEBGQFpAylvYjEZioP333a3i57SwiBvsOLcYD4j7OE8KSLlSpmWELOd2hAs/BB4FTgOOcOR3SeRxcbecqso1fhy9G7R5AjLTPUAfAaH3f2vsLaqHcUnoe7o2D32QhYWFhUVZpIVMmlPwJHkCOAY4CrkYUAuerLfPjJLEn3nwvqNzYguLGMGOc4vxgLiP84QQZITLAOA6kvwmXTjGhWM1Ep8VkPPknhPzDPcQDqEzM92v9I7pIiLLvdrHv4s7POKuOLKoMBYuXMinPvUpdtppJ9LpNJMmTeKkk07izjvvpFAoVLVtK1as4Morr+SNN94YlfMvXLiQI488kvr6eoQQvPTSSxU7d2trK1deeSV//etfK3bOcjj33HPZY489tvn3S5cu5eSTT6ahoYFJkyZx3nnnsWXLlqF/aGGhISEEOW/RkhNQ78itwdvqHajTvq+FRY2FhYWFhcVgyAgp2+q1rdGBBiUHvc9yAlI1IveUdR7CJex0C30HktCr71VCXOtyHw+MS0KfzjZWuwlVwQ033MCxxx7Lli1b+N73vseTTz7J7bffzn777ccFF1zAww8/XNX2rVixgquuumrUCP3nP/95BgYGmDdvHgsXLmS//far2LlbW1u56qqrxoTQbw/Wrl3LCSecQE9PD/fddx833XQTTz75JLNmzaJYLFa7eRY1hqQQPolXi5pG7b36LjmKi5o3VqwZtXNbWMQFdpxbjAfUwjgXQpD1SH2jA02aIrtRBArtjFM7NNe0zCty2IIsW9fvva/TjifitUX1MC5d7htbdql2E8YczzzzDLNnz+bLX/4yP/rRj0LfnX766cyePZuurq4yv65dFAoFXNfFcRxeffVVvvGNb/C+972v2s2qGq699lr6+/uZN28eLS0tAOy0004cf/zxzJ07l4997GPVbaBFzSEpBAlcP56w6AYZgB1GJ25ex+//8Bf22mPnUf0fFhbVhh3nFuMBtTLOhRAyR4zr+mFnLmMn9yoNPXZeJ/YTkWXrFDuoo5T811ZPd1yMSwv95nV/r3YTxhzf+973mDhxItdcc03k93vvvTeHHHKI//6Pf/wj73//+2loaKC+vp4TTzyRP/7xj6HfnHDCCZxwwgkl59pjjz0499xz/fd33HEHQgheeOEFzjzzTJqamthpp534f//v/9Hb2wvA008/zXvf+14ATjrpJJmkQwiefvpp/zy33norM2fOJJvNMnnyZD7/+c+XuIoLIfjGN77B1VdfzZ577kk6nebHP/4xiUSCYrHIf//3fyOE8F3W//SnP/GJT3yCXXbZhVwux/7778/ll19OT09PSb8eeOABjj32WBoaGmhqauKII47goYceYsWKFey5554AfPGLX/Tbfscdd0ReD72tV155pf/+tdde46yzzmLPPfckl8ux1157ccEFF7B169aS324rHnroIT70oQ/5ZB7guOOOY7fdduPBBx+s2P+xGF8QQpAUgpQQZBy5T3jPwWjjC+ecNur/w8Ki2rDj3GI8oNbGuZJ9Sv6NldyrNMws93oMfS9B6bqMdjzGsRbVxbgk9JWEu7wd957XcZe3x/a8hUKBp556ipNPPplsNjvk8YsXL+b4449n69at3HHHHfzv//4v7e3tHH/88SxatGib23HWWWex9957c//993PBBRdw00038d3vfheAd77zndx0000A/OhHP2LhwoUsXLiQd77znQB8/etf56KLLuL9738/Dz30ENdeey2PPfYYp556akns/x133MEjjzzCddddxyOPPMJnP/tZnn32WUC63S9cuJAHHngAgFWrVnHooYdyyy238Nhjj/HVr36V22+/nfPOOy90zh//+Md87GMfY+rUqdx5553ce++9fPSjH2XFihXMmDGD+++/H4DLLrvMb/uHPvShEV2ftWvXsuuuu3LDDTcwf/58vvnNb7JgwQI++MEPDvnbE044Yci4+p6eHpYvX85BBx1U8t3b3/52XnnllRG118LCwsLCwsLCorYRZXUXQLP3/VogR5i82wz38cK4dLmvFNzl7fA/L8HWPDyxBvdrB8MeFYjPX9EBP3gZWr3zXn4oYs+mbT7dpk2b6OnpYffddx/W8d/61rfIZDIsWLDAt+SedNJJ7LHHHlx11VU+eR0pPvvZz3LVVVcB8P73v58XX3yRX//611x11VU0NTVx4IEHAnDAAQdw1FFH+b9bsWIF1157Lf/1X//FN7/5Tf/z/fbbj3e/+93MmzePj3zkI/7nruvy+OOPk8vl/M8mTZoEwC677BI698c//vHQ74499liampo4++yzuemmm5g0aRLt7e1cfvnlfPSjHw31/ZRTTvFfv+Md7wBgr732Cp1/JDjuuOM47rjj/PfHHHMM++yzD+95z3v429/+5v+PKCQSCZLJwR/nrVu34rouEyZMKPlu4sSJvPrqq9vUbgsLCwsLCwsLi9qFDBUIXO8dZPWaRmC1t4fy5N+iuhiXhH7S9AMqc6I/bZRkHuT+m3+pzHl1bM3DnzfCdhD6keKZZ55h1qxZIbfspqYmTjvtNObNm7fN5zUt1gcffDBPPvnkkL974oknKBaLnHnmmQwMDPifH3nkkTQ2NvLMM8+ECP0HPvCBEJkfDO3t7XznO9/hvvvu480336S/v9//btmyZUyaNInnn3+ezs5O/uVf/mVY59xW5PN5rrvuOv73f/+XlStX+uEIAK+++uqghH7BggWj2jYLi7ji53c+VHNumhYWI4Ud5xbjAXacVwdRNegVSW8G1hDhbq/2ls3HAuOS0He0rq7MiQ6fAk+skaR7QhoqaaG//uXgvIdN2a7TTZo0iVwux8qVK4c+GNiyZQszZswo+Xz69OnbFc89ceLE0PtMJkNfX9+Qv9uwYQMA++yzT+T3mzdvDr2Pans5nHfeeTz55JN861vf4tBDD6W+vp4//vGPXHTRRT6hVuffZZfRTaZ42WWX8eMf/5hvfvObHHPMMTQ2NrJ69Wo+9rGPhcj9tqKlpQUhROQ93LJlS8n9sbCoBbzv+HdVuwkWFqMOO84txgPsOK8OSrLcC2SWP2ASYQs9lJass5y++hiXhD7f21GR84g9m3AvP1Ra0A+bsl1u8SEcOKGi500mk5xwwgk88cQT9PX1kclkBj1+4sSJrFu3ruTzdevWhdy1s9ks7e2lMf6Vrmmu3OUff/zxSHdx9b3CcBOS9Pb28uCDD3LllVfy1a9+1f/85ZdfDh03efJkANasWRMZfz4Ustks+Xw+9JmphACYM2cOZ599Nv/5n//pf9bZ2Tni/1cOdXV17LHHHixdurTku1deeYXjjz++Yv/LwmKsUAsZkS0sthd2nFuMB9hxXh0IIcB1S6zzKo7+n8CBUb8bi8ZZDAs2Kd52QuzZhPjk3pUj86N03q9//ets3ryZSy65JPL75cuXs3jxYgCOP/54fve739HRESg+Ojo6mDdvXiir/e67784///nPEFl95plnQr8bCZSiwcwwf9JJJ+E4DqtWreKwww4r2VSG+ZGir6+PQqFAKpUKfa6y0yscc8wxNDQ0cOutt4647SCv05IlS0KfPfLIIyXHdXd3l7TlF7/4xaB9GClOO+00HnnkEdra2vzPnn32WVauXMlpp1k3NwsLCwsLCwuL8QbdOq9q0avSdT0EJeuI2lu/+6pjXFroc/WThj5oB8Nxxx3HD37wA2bPns0rr7zCueeey2677cbWrVtZsGABP//5z/nVr37FIYccwhVXXMHDDz/MiSeeyKWXXooQgu9973t0d3eHktJ95jOf4dZbb+X888/n3HPPZfny5fzgBz+gubl5kJaUx3777UcymeT2229n4sSJZDIZ9t9/f/bee28uvfRSvvzlL/Pqq69y/PHHk81mefPNN3niiSf4whe+4Je8Gwmam5s56qij+P73v8+MGTOYPHkyt99+O2vWrAkd19jYyHe/+12+8pWv8PGPf5wzzzyTxsZGXnrpJbLZLF/5yleYNm0akyZNYs6cORxyyCHU19ez5557MmnSJD7zmc9w/vnn87WvfY1Zs2axaNGiEqUByNj/O++8k4MPPph99tmH+++/n+eff35YfTnxxBNZuXIlr7322qDH/cd//Ad33XUXp512GpdddhltbW1ccsklHHnkkXz0ox8d9rWzsIgLFr28jJkH71vtZlhYjCrsOLcYD7DjvHpQifBMN3q1oq/XjoOw271F9TEuLfSZXEu1m1AVXHzxxTz77LO0tLTw7//+77zvfe/j3HPP5e9//zs//elP+fCHPwzAIYccwtNPP01TUxPnnHMOZ511Fg0NDfzhD39g5syZ/vne+973csstt/Diiy/y4Q9/mF/84hfcddddoWR6I8GkSZO48cYbWbRoEccffzyHH344f/mLTDT4P//zP9x6660888wzfOpTn+L000/ne9/7HhMmTGDffbd98v/1r3/Nu971Li666CLOPfdcpk+fzg9/+MOS47785S9z7733snr1as4880w+/vGPc9999/neAY7j8POf/5ytW7fy/ve/n8MPP9xPIHjOOef41QE+/OEPM3/+fL9sno4f//jHnHbaaXzjG9/g05/+NB0dHfz6178eVj8KhUIoYWA57Lzzzjz11FOk02k+/vGP86//+q+8973v5ZFHHsFxxuV0YFHjeHXZqmo3wcJi1GHHucV4gB3n1YOf5Z7wpkyg9URb6C2hjwfEU0895Va7EWOJrq4uZs2aRVtbG01Npe7s7e3tNDc3l/3ewmI8wj4XFhYWFhYWFhY7JvJFl3YXOorQWYQuFzqBl4ArgM8Bn0K63jcIaHCgUUCjAznH0vrhQq2nH374Yerr64f+wTBhTXIWFhYWFhYWFhYWFhbjFLp1XvFzB1CpqCMt9MJa6OMCS+gtLCwsLCwsLCwsLCzGKfREePrW4n3/e2AJ5RPjWVQX45LQT9155tAHWVhYWFjEHtffOKfaTbCwGHXYcW4xHmDHefUQZZ0HWOHtlwGXEZB6W4M+XhiXhH7z+ler3QQLCwsLiwrgc5/5QLWbYGEx6rDj3GI8wI7z6sEk6cpi/6Rx3KOEibytWBcPjEtCXxjorXYTLCwsLCwqgCmTW6rdBAuLUYcd5xbjAXacVw8CSAhIIGuaq9enGMfNQlrx1ffjkkjGEOOyDr2FhYWFhYWFhYWFhYUFCCFIui5Jj6ynXMgChwHXAfOBDwOHC0ghiXxSWEIfF4zL+1DfNL3aTbCwsLCwqACeXbio2k2wsBh12HFuMR5gx3l1kRSQBrICco7c6gUcCVwp4EgBGW/LescK63MfC4xLC30ikR7ymPb29jFoiYVFbcA+DxZxRUdHd7WbYGEx6rDj3GI8wI7z6iIpBFnhUgRcpEt9CnBF4JKf9sh81nttEQ+MS0LfvnVV2e/S6TTTp09n1113HcMWWVjEH9OnTyedHloZZmExljj15KOr3QQLi1GHHecW4wF2nFcfiqQ7QF5A2pXkHiRpVIQ+I6x1Pk4Yl4R+MGSzWZYvX04+n692UywsYoV0Ok02m612MywsLCwsLCwsLEYBQggyApKuS96FgpCEXmW9TwlJHi2ZjxfGJaEXYvDUAdls1hIXi5pHX1+eTMZa1C12bNhxbjEeYMe5xXiAHefxQUIIch5nL7quLFVnSXxsEfukePPnz+fLX/4yp512GqeffjoXX3wxL7/8cuiYfD7PDTfcwOmnn84HP/hBLrvsMjZs2FD2nFN3njnazbawqDpuuPk31W6ChcWow45zi/EAO84txgPsOI8nHCEsmY85Yk/ou7u7Ofvss5kzZw6//e1vefe7382ll17Kxo0b/WNuvvlmXn75ZX76059y77330tjYyDe+8Q2KxWLkOdevfmmMWm9hUT28fd8J1W6ChcWow45zi/EAO84txgPsOLew2DbEntB/9KMf5YgjjqCuro5kMsknPvEJHMfhH//4ByCt84899hjnnXce06dPp76+nosuuojly5ezZMmSMmd1y3xuYbHj4Pe//321m2BhMeqw49xiPMCOc4vxADvOLSy2DbEn9CZeeeUVenp62HvvvQFYtWoVfX19HHDAAf4xzc3NzJgxg2XLllWrmRYWFhYWFhYWFhYWFhYWo4qqJcW7+uqrmT9/ftnvZ86cyQ033BD6bMOGDXzrW9/is5/9LDvttBMgXfIBGhoaQsc2NDT43+lwXZd0ptHW1bbY4bHs9VV2nFvs8LDj3GI8wI5zi/EAO84tdnSo8e26lfUWrxqh/+pXv8oFF1xQ9vtEIhF6v2bNGv793/+dE044gc9//vP+53V1dQB0dnaSyWT8zzs7O/3vdPT09JDv67B15i3GBZqbf1vtJlhYjDrsOLcYD7Dj3GI8wI5zi/GAnp6eEmP09qBqhD6Xy5HL5YZ17Ouvv84ll1zC6aefztlnnx36brfddiOTyfCPf/yDY489FoC2tjbWrVvHvvvuW3KuSZMmcc8995DL5WzGRgsLCwsLCwsLCwsLC4tRh+u69PT0MGnSpIqeN/Z16JcsWcLll1/O2WefzSc+8YmS79PpNB/4wAf4xS9+wT777ENjYyM333wzu+++OwcddFDJ8Y7jMGXKlLFouoWFhYWFhYWFhYWFhYUFUBomXgmIp556KtYp37/2ta+xaNGikDs9wJlnnsnnPvc5QGa6v/nmm3nqqafI5/PMnDmT2bNnM3Xq1Go02cLCwsLCwsLCwsLCwsJi1BF7Qm9hYWFhYWFhYWFhYWFhYVGKmitbZ2FhYWFhYWFhYWFhYWFhUQMx9JWE67rccccdPPLII3R1dbHffvtx8cUXs+eee1a7aRYW24Rbb72VF154gfXr15PNZjn00EP50pe+FAo3Wb9+PTfccAOLFi0ilUrxvve9jwsvvJBUKlXFlltYbDuuuOIKnn32Wa677jre9a53AfDSSy9x8803s2rVKiZMmMBnPvMZTj/99Cq31MJi5Fi6dCm33XYb//jHP3Achz322IMf/ehHOI7D66+/zo9+9CP++c9/Ul9fz6xZszjnnHNskl+LmsKWLVu46aab+Nvf/kY+n2f33Xfni1/8Ioceeihg53OL2sPvf/975s6dy+uvv053dzdPPvlkqGLbUHP39nLUcWWh/81vfsOjjz7KNddcw9y5cznooIO45JJL6OnpqXbTLCy2CUIILr30UubOncudd94JwOWXX+5/XywWufzyy2lsbOTee+/lpz/9KYsXL+aWW26pVpMtLLYL8+fPp7e3N/TZunXruOyyyzj11FOZN28el156KT/72c/4v//7vyq10sJi27B06VIuvfRSTjnlFO6//34efPBBLrzwQoQQdHd3c8kll3DQQQcxd+5crrnmGh555BHuu+++ajfbwmJEuOGGG9i4cSO33347Dz74IMcffzyXX3457e3tdj63qEk0NDRw+umnc9FFF5V8N5y5e3s56rgi9A8++CCf+tSn2GuvvchkMpx//vn09/fbScKiZvHFL36R/fffn1QqRUNDA2eccQavv/46HR0dACxevJiVK1dy0UUXUV9fz/Tp0znvvPP43e9+Rz6fr3LrLSxGBrUA/Pd///fQ5/Pnz2eXXXbhox/9KKlUikMPPZRTTz2VBx54oEottbDYNvz0pz/lgx/8IKeccgrZbJZEIsGBBx6IEIJnnnmGYrHI+eefTyaTYa+99uLTn/40c+fOrXazLSxGhDVr1nDcccfR0tJCIpHgwx/+MD09PaxevdrO5xY1iSOOOIITTzyRnXbaqeS74czd28tRxw2h7+zsZN26dRxwwAH+Z4lEgn333Zdly5ZVsWUWFpXDn/70J6ZNm0ZjYyMAr732GjvttBPNzc3+MW9729vo7e3lzTf/P3tvHi5HUS/uvz1z9j0bCUkghF1lUwQB2XeVRcUFRQW9XhfUr4pXUVRk+aEXwYuIKHBRCIJGVBYTBBJikIsGUJSERWMC2UP2nH2ZM931+6O6uqt7es6Wc2bJ+bzPM0/PmenpUzVdU/XZa12xmikIw0Ypxfe//30+8pGPMHXq1Mh7K1eu5OCDD468dtBBB7Fy5cpCNlEQdone3l5efvllUqkUn/3sZzn//PP51Kc+xZ/+9CdAh2zuv//+kTDOgw8+mI0bN9LV1VWsZgvCsPnQhz7En//8Z7Zv3042m+Whhx5i+vTp7LfffjKfC7sdg83do6Gjjpsc+u7ubiB377+GhobgPUEoZ55//nnuuecerr766uC17u5u6uvrI+cZZV/GvVBOPPzwwyilOPfcc3Pe6+rqYubMmZHXGhsbRckRyoqOjg48z2PBggV897vf5YADDuDPf/4z1157LZMnT6arqytHhrHn8/hcLwilyiGHHMLChQt53/veRyqVoqmpiWuuuYbq6mqZz4XdjsHmbqX0hnO7oqOOGw99XV0doD31Np2dncF7glCuLFmyhO985ztcccUVHH300cHrdXV1OYugCceXcS+UCxs2bOAXv/hFTqi9ob6+Pmdu7+joEAVHKCtqa2sBOOusszj44INJp9OceOKJHHHEETz99NN5xznIfC6UD57n8ZWvfIWJEyfy8MMPs2DBAr7yla/wjW98g5UrV8p8Lux2DDZ3j4aOOm4U+oaGBqZNm8a//vWv4DXXdVm5ciUHHHBAEVsmCLvGwoULue6667jyyis54YQTIu/tv//+vP7667S1tQWvLV++nJqaGvbaa69CN1UQRsSLL75Ie3s7n/70pzn//PODasff+c53uPHGG9l///1Zvnx55DPLly9n//33L0ZzBWFENDQ0MH369LwV6004suu6wWvLly9n+vTpouwIZUNHRwcbN27kve99L01NTaTTaY4//nimT5/OX//6V5nPhd2Owebu0dBRx41CD3D++edz//33s2rVKvr6+rjrrruoqKjIUYIEoVx48MEH+dGPfsR3v/vdiGfecNhhh7H33nvz05/+lO7ubjZv3sxdd93FO97xDqqqqorQYkEYPieffDK//OUvufPOO4MHwGWXXcanPvUpzjrrLNauXcvDDz9Mf38/y5Yt49FHH+Xd7353cRsuCMPkPe95D4899hgrV67E8zz+/Oc/s3TpUk444QROPPFEUqkUd911F319faxatYr7779ftvMSyorm5mZmzZrFQw89RFdXF57nsWTJElavXs2BBx4o87lQlriuSyaTob+/H4BMJkMmk8HzvCHN3buqozqLFy9WY9KzEkQpxV133cX8+fPp7u7moIMO4otf/CL77rtvsZsmCCPilFNOIZ1O5+wpf/3113PYYYcBeksvsw99VVUVp556Kp/97GdFoRfKmlNOOSVnH/pbb701sm+xCIBCOXLffffx8MMP09nZycyZM/nYxz7G8ccfD+jiSjfffDP//ve/qaur47zzzpN96IWyY/369dx22228/PLLZDIZpkyZwgUXXBDUSJH5XCg3HnvsMa6//vqc12+66SaOOOKIQefuXdVRx5VCLwiCIAiCIAiCIAi7C+Mq5F4QBEEQBEEQBEEQdhdEoRcEQRAEQRAEQRCEMkQUekEQBEEQBEEQBEEoQ0ShFwRBEARBEARBEIQyRBR6QRAEQRAEQRAEQShDRKEXBEEQBEEQBEEQhDJEFHpBEARBEARBEARBKENEoRcEQRAEQRAEQRCEMkQUekEQBEEQBEEQBEEoQ0ShFwRBEARBEARBEIQyRBR6QRAEQRAEQRAEQShDRKEXBEEQBEEQBEEQhDJEFHpBEARBEARBEARBKENEoRcEQRAEQRAEQRCEMkQUekEQBEEQBEEQBEEoQ0ShFwRBEARBEARBEIQyRBR6QRAEQRAEQRAEQShDRKEXBEEQBEEQBEEQhDJEFHpBEARBEARBEARBKENEoRcEQRAEQRAEQRCEMkQUekEQBEEQBEEQBEEoQ0ShFwRBEARBEARBEIQyRBR6QRAEQRAEQRAEQShDRKEXBEEQBEEQBEEQhDJEFHpBEARBEARBEARBKENEoRcEQRAEQRAEQRCEMkQUekEQBEEQBEEQBEEoQ0ShFwRBEARBEARBEIQyRBR6QRAEQRAEQRAEQShDRKEXBEEQBEEQBEEQhDJEFHpBEARBEARBEARBKENEoRcEQRAEQRAEQRCEMkQUekEQBEEQBEEQBEEoQ0ShFwRBEARBEARBEIQyRBR6QRAEQRAEQRAEQShDRKEXBEEQBEEQBEEQhDKkotgNGAp33HEHzzzzDJs3b6ampoYjjjiCT3/60+yxxx7BOZs3b+aHP/whS5cupbKyklNPPZVLL72UysrKIrZcEARBEARBEARBEMaGsvDQO47D5ZdfzkMPPcScOXMAuOKKK4L3Pc/jiiuuoLGxkd/85jfcfvvtLFu2jNtuu61YTRYEQRAEQRAEQRCEMaUsFPr//M//5KCDDqKyspKGhgY+9KEP8eqrr9LR0QHAsmXLWLNmDZ/73Oeor69n2rRpfPzjH+cPf/gDmUymyK0XBEEQBEEQBEEQhNGnLBT6OH/961+ZOnUqjY2NAKxcuZLp06fT3NwcnHPwwQfT29vLunXritVMQRAEQRAEQRAEQRgzyiKH3ub555/nnnvu4eqrrw5e6+7upr6+PnKeUfa7u7sjr3uex/bt26mtrcVxnLFvsCAIgiAIgiAIgjCuUUrR09PDpEmTSKVGz69eVgr9kiVLuO6667jiiis4+uijg9fr6uro6uqKnGvC8evq6iKvb9++nY9e8mmUmyXT1+G/6jB15hFs2bAUpTwAmibsjetm6GrfBEC6ooZJUw9iy4alwbVaJu9HX08rPV3bAaiqaaSxZSbbN/0zOGfStDfQ0bqeTK/+X7X1k6iubaF126vBOXvMOJztm5fjZnsBqG+aRjpdRfvOtbp1Too9Zhwu7ZP2SfukfdI+aZ+0T9on7ZP2SfukfdK+Mmnf5vUvAEr/r+pGMn0d3H///UyZMoXRomwU+oULF3LzzTdz5ZVXRpR5gP3335/XX3+dtra2IOx++fLl1NTUsNdee0XOra2tRblZXl35Ck1NTQVrvyAUmos++gnu+8XPi90MQRhTZJwL4wEZ58J4QMa5sLvT3t7OXnvtRW1t7ahetywU+gcffJCf//znfPe73+Wwww7Lef+www5j77335qc//Sn/7//9Pzo6Orjrrrt4xzveQVVVVeRcx3HwlEtTU5Mo9MJuTV1trYxxYbdHxrkwHpBxLowHZJwL44XRTvsuC4X+Rz/6Eel0mssvvzzy+vXXX89hhx1GKpXiuuuu44c//CEXXHABVVVVnHrqqXzmM59JvF420534uiDsTsyYPnqhPIJQqsg4F8YDMs6F8YCMc0EYGWWh0C9evHjQc6ZNm8Z///d/F6A1glAenHXWWcVugiCMOTLOhfGAjHNhPCDjXBBGRlluW7erpCtqit0EQRhz3nLk24rdBEEYc2ScC+MBGefCeEDGuSCMjHGp0E+aelCxmyAIY869cx8rdhMEYcyRcS6MB2ScC+MBGeeCMDKcxYsXq2I3opB0dXVxzjnn0NbWJoU3BEEQBEEQBGGE9Pb2kslkit0MQSgZqqqqqKlJjgZvb2+nubmZ+fPnU19fP2r/syxy6AVBEARBEARBKB16e3uZPXs2mzZtKnZTBKFkmDZtGqtWrcqr1I8FotALgiAIgiAIgjAsMpkMmzZtYt26dRL1KgiE+8xnMhlR6Mealsn7FbsJgjDm3P/AIj7w3tOK3QxBGFNknAvjARnnQinT1NQkCr0gFJFxWRSvr6e12E0QhDHnoAP2LnYTBGHMkXEujAdknAuCIAj5GJcKfU/X9mI3QRDGnMMPPaDYTRCEMUfGuTAekHEuCIIg5GNcKvSCIAiCIAiCIAiCUO6MS4W+qqax2E0QhDHntdUbit0EQRhzZJwL4wEZ54IgCEI+xqVC39gys9hNEIQx549/er7YTRCEMUfGuTAekHEuCIXh7rvvxnGc4NHY2Mjhhx/Oj3/8Y7LZ7Jj+79WrV+M4DnfffXfw2iWXXMI+++wzrOs8+eSTXHXVVXieN6rtu+qqq3AcZ0SfXb9+PV/4whc49thjqaurw3EcVq9ePartG8+MS4V++6Z/FrsJgjDmfPLi84rdBEEYc2ScC+MBGeeCUFh+85vfsGTJEn73u99x9NFH84UvfIFrrrmm4O349re/zYMPPjiszzz55JNcffXVo67Q7worV67k/vvvZ8KECZxwwgnFbs5ux7jctk4QBEEQBEEQBCGJI444gv333x+AM888k5UrV3LzzTfnVer7+/upqKgYsQc7H/vtt3tstX3iiSeyefNmAO68804WLFhQ5BbtXoxLD70gCIIgCIIgCIVhqau4rl+x1FVlcd04Rx11FO3t7WzZsiUIjf/JT37C1772NaZPn051dTWtra0APPDAAxxzzDHU1dXR0tLC+9//ftauXRu5Xnd3N5deeimTJk2ioaGB8847j/Xr1+f836SQ+66uLr7+9a+z3377UV1dzbRp07jgggvYvHkzV111FVdffTUAlZWVQeqA/X8vv/xyZs+eTVVVFbNnz+a6667L8eb/4x//4IQTTqCmpoYZM2Zw7bXXotTIv+NUSlTOsWRceugnTXtDsZsgCGPOnXN+L2Gawm6PjHNhPCDjXChnlrqK9/TD68CdLtyrFIemd/26L7rwkSxsAn7mwoMoDk+ProfcsGrVKtLpNA0NDXR3dwNw3XXXcdRRR3HHHXfgui41NTXcdtttfPazn+XjH/84V155JR0dHVx11VWcdNJJLFu2jMZGXZj705/+NL/+9a/5zne+w1FHHcXChQv58Ic/PGg7MpkMZ5xxBkuXLuXrX/86xxxzDG1tbTz++OPs3LmTT37yk6xfv56f/exnPP3006TT4RedzWY566yzeOWVV/j2t7/NoYceyjPPPMO1117Ljh07+MEPfgDAtm3bOPXUU5k2bRpz5syhurqaG264IccoAdrgMGfOnF1S9oVdZ1wq9B2tuRYwQdjdOPWkI4vdBEEYc2ScC+MBGedCOTPf08o8aOX79CwwyvXlXgce8eDwUTAUALiuSzabpaOjg/vvv58HHniAc889l7q6uuCcqVOn8uCDDwYe8M7OTi6//HI+/vGP8/Of/zw47+ijj+aggw7iZz/7GV/60pdYvnw5v/zlL7nuuuv4+te/Duiw/s7OTm677bYB23XvvfeyZMkSHn74Yc47LzTyve997wuez5ypi3+/7W1vo6IiVPV+9atf8fTTT/OnP/2JE088EYDTTjsNgKuvvprLL7+cPfbYg5tuuomuri4WLFjAXnvtBcAZZ5zBrFmzctqTTqcjRgOhOIzL+IdMb0exmyAIY86++8wodhMEYcyRcS6MB2ScC+XMOSnY038+DXiiAjZX7/rjiQp9PdDXf9coajUHH3wwlZWVTJw4kUsvvZSLLroooqQDvPvd746Esy9ZsoT29nYuuugistls8Nhrr704+OCDeeqppwB49tln8TyPD3zgA5HrXXjhhYO2a8GCBUybNi2izA+Vxx57jFmzZnHcccdF2nfmmWfS39/PM888E/TjmGOOCZR5gPr6es4999yca/7sZz8b8+r/wuCMSw+9IAiCIAiCIAhjz+FphwdRPOJppXu0wuLfXgEPOaN/XYAHH3yQmTNn0tjYyKxZs6ipqck5Z88994z8vWXLFgBOP/30xGtOmDABgNdf1/EKU6dOjbwf/zuJ7du3M2PGyAx8W7ZsYc2aNVRWVua9tmnfIYcckvP+UNonFIdxqdDX1k8qdhMEYcxZ+uIKDj/0gGI3QxDGFBnnwnhAxrlQ7hyedkYtHL4Q1z3kkEOCKvf5iFe0nzRJ6xd33303b3rTm3LON/nzxhCwefNm9t133+B9UwV+ICZPnsxLL7006HlJTJo0idmzZ3P//fcnvm+K7+25556JbRlK+4TiMC5D7qtrW4rdBEEYc5avyC1eIgi7GzLOhfGAjHNBKH2OO+44GhsbWblyJW9961tzHgcddBCgc9tTqVSOYj137txB/8eZZ57Jpk2bmDdvXt5zqqurAejp6Ym8fvbZZ7Nu3ToaGhoS2zd58mQAjj32WJ555hnWrVsXfLarq2vA/ykUl3HpoW/d9mqxmyAIY84H3ntasZsgCGOOjHNhPCDjXBBKn6amJm644QY+97nPsXXrVt7xjnfQ3NzMhg0b+NOf/sTJJ5/Mhz/8YQ466CA+/OEPc+WVV+J5HkcddRQLFizgD3/4w6D/4yMf+Qj/+7//y4c+9CG+8Y1v8La3vY2Ojg4ef/xxvvSlL3HwwQfzxje+EYAf/OAHvOMd7yCdTvPWt76Viy66iLvuuovTTjuNr3zlKxx++OFkMhleffVVfv/73/PQQw9RV1fHl7/8ZX7yk59w5plnctVVVwVV7mtra3Pa8x//8R/MmTNnSHn0v/3tbwF4/vnnAXj00UeZMmUKU6ZM4aSTThrOVy3EGJcKvSAIgiAIgiAIwmjy6U9/mr322osbbriBX/7yl2SzWWbMmMEJJ5zAEUccEZx3++2309DQwI033kgmk+HUU0/ll7/8Jccff/yA16+srGTBggVcffXV3HHHHVx99dVMmjSJt7/97UycOBGAc845h0svvZSf/OQnXHPNNSilUEpRWVnJ448/zn//939zxx13sGrVKurr69lvv/1417veRVVVFaDD+hctWsQXv/hFLr74YiZNmsRnPvMZstks11xzTaQ9ruviuu6Qvpv3v//9kb8vvfRSAE466SSefPLJIV1DSMZZvHjxuNo4sKuri3POOYe2tjaampqK3ZySRCmFAszASJGbJyQIgiAIgiCMX9rb22lubhaZWhB8BvtNmPfnz59PfX39qP3fcZlDv8eMw4vdhJIlqxTdCjo9aPegw4MuBT2ewlPjyvZT9tz048FzsQSh3JFxLowHZJwLgiAI+RiXIffbNy8vdhNKDqUUvQp6FWQU9GN56BVUO5AFalFUiLe+LPjIhWcXuwmCMObIOBfGAzLOBUEQhHyMS4XezfYWuwklR0ZBj4JuBX0KsgpcwAHSQL8DWQdIQR2KtCj1Jc+UyS3FboIgjDkyzoXxgIxzQRAEIR/jUqEXomR973yP76Hv8bSC76EV+gpHK/cAKQ/SKe2pl7x6QRAEQRAEQRCE4jEuc+jrm6YVuwklhasgg1biez2t1HcDzwBXA8/6in6ff16/r+wLpc3TS5YWuwmCMObIOBfGAzLOBUEQhHyMS4U+na4qdhNKBqUU/egQ+6zSefIZ4Hnga8ATwJeAv/nvuf5RFPrSp6Oju9hNEIQxR8a5MB6QcS4IgiDkY1wq9O071xa7CSWD2Z7ORSvpJnf+8dh5jwCeCs/zpOB9yfOOM48tdhMEYcyRcS6MB2ScC4IgCPkoixz6P/7xjzz00EO8+uqrdHd388QTT5BOp4P3TznlFKqqqkilQvvErbfeyr777luM5pYVRjlX/nOj4J8OPGmd9w7rPQhz6gVBEARBEARBEITiUBYKfUNDA+effz59fX3ccMMNied897vf5cgjjxzS9RxnXAYm5CWu1HvA/v57M4HPAYcQKvNKoavlCSVNX1+G6mpJLxF2b2ScC+MBGeeCIAhCPspCsz366KM57bTTmD59+qhcb48Zh4/KdXYHbM+8UeoVsNV//wTgTda59lEobX74k18XuwmCMObIOBfGAzLOBUEQhHyUhUI/FK677jrOP/98PvWpTzF//vwBz92yQarFGpLC7T1gs/9+j3+MK/Oi1Jc+X7r0g8VugiCMOTLOhfGAjHNBKCxLlizhAx/4ANOnT6eqqopJkyZxxhlnMGfOHFy3uImnq1ev5qqrruK1114bk+svWbKEt73tbdTX1+M4Di+88MKoXbu1tZWrrrqKv//976N2zXxccskl7LPPPiP+/Msvv8yZZ55JQ0MDkyZN4uMf/zg7duwYvQaOImURcj8YN954I4cccgipVIrnn3+e6667Dtd1Of/88xPPV0pqtBvscHujzEPooe8hV4mXb688kPBMYTwg41wYD8g4F4TC8cMf/pDLLruMU089leuvv55Zs2axc+dOFixYwGc/+1laWlry6hiFYPXq1Vx99dUcf/zxY1Iv7D/+4z+ora1l3rx51NXVceCBB47atVtbW7n66quZOXMmb3nLW0btuqPNxo0bOfnkkzn44IP57W9/S2trK1/96lc555xzePrppyN120qB0mrNCDnyyCOprq6msrKSY445hgsuuICFCxfmPb+6bgIXffQTXHbZZVx22WXMnz+f62/6BX19meCcRxcsiez7unVbKzf9eG7kOvc/sIilL64I/n5t9QbunPP7yDl3zvk9r63eEPy99MUV3P/Aosg5N/14Llu3tQZ/P71kKY8uWBL83deXGbP23XXPPFav3hgo86++vIKnH14UKPTdwPzb5rJzu26fp+CvzyxjwcLCtK/Uvz9pn7RP2iftk/ZJ+6R90r7x2r7djaeeeorLLruMz3/+8zzxxBN89KMf5cQTT+T888/n1ltv5cUXX2T27NnFbuao47ou2WwWz/NYvnw573rXuzj11FM55phjqKurK3bzCs4NN9xAf38/8+bN4+yzz+bCCy/kvvvuY8mSJTz00ENDuob5/c6fPz/QOS/66CfGpL3O4sWLyyZ6+oUXXuDLX/5yTpX7OHPmzOG5557j1ltvzXmvq6uLD3/0UtatfpGmpqaxbG7Jo5SiS0G7B50edCnoUNALfB9YCrwB+CZQCzQ4/iMFTSmod8BxpDpeqfLogiWy1ZGw2yPjXBgPyDgXSpH29naam5tpa2sbVKZWq9rhr1vhqCk4s0dP/h7t677rXe/i2WefZf369dTU1Ax6/nPPPccVV1zBM888g1KKY445hu9973scffTRwTknn3wyAE8++WTks/vssw8nn3wyd999NwB33303H//4x1myZAm33HIL8+bNo6Ghgfe97318//vfp6amhieffJJTTjklpx2LFy8O/s8dd9zBrbfeyvLly4PC4jfccAMTJ04MzncchyuuuILGxkZuv/121q5dy4033shll10Wue6sWbNYvXo1f/3rX7n++ut55pln2L59O3vvvTcXXHAB3/72t6mtrY185sEHH+TGG29k6dKlpFIpDj74YL71rW9x2GGHJRpD7rrrriA83v4+7LZ+5zvf4aqrrgJg5cqVXH311Tz99NNs2rSJPffck7POOovvfve7TJgwIfjcJZdcwpNPPsnq1atz/udg7LfffhxzzDHcd999Od/HySefzJw5cxI/N9hvwrw/f/586uvrh92ufJSFh951XTKZDP39/QBkMhkymQye5/Hvf/+b5cuX09/fj+u6/PWvf+V3v/sdp5566gDX2/0siiPBDrM3RfHM61uAWWjlPulzQunT2Dj+LKrC+EPGuTAekHEulDNqVTt89wW4fxV89wXUKztR3dldf7yyE66zrruqfZfa6bouixcv5swzzxySMr9s2TJOOukkdu7cyd13380999xDe3s7J510EkuXjrxe10c/+lH2228/HnjgAT772c9y66238r3vfQ+At7zlLYHD8kc/+hFLlixhyZIlQfj617/+dT73uc9x+umn8/vf/54bbriBxx57jHe84x05uf933303jzzyCDfeeCOPPPIIH/7wh3n66acBHXa/ZMkSHnzwQQDWrl3LEUccwW233cZjjz3GF7/4RX7+85/z8Y9/PHLNW265hfe+973ssccezJkzh9/85je85z3vYfXq1ey555488MADAHzjG98I2v6ud71rWN/Pxo0b2WuvvfjhD3/I448/zpVXXsmiRYt45zvfOehnTz755EHz6nt6eli1ahWHHHJIzntvetObeOWVV4bV3kJQFjn0Cxcu5Prrrw/+Njfspptuoru7m9tvv50tW7aQTqeZOnUqn/zkJznvvPPyXq+rfdOYt7kcsJV4uygewDbgbcBy+3wFygk/K5Q2xx8ruzkIuz8yzoXxgIxzoaz561bY6TvTdmbgyudH/3/szMDftsIueOm3bdtGT08Ps2bNGtL511xzDdXV1SxatIiWlhYAzjjjDPbZZx+uvvrqQHkdLh/+8Ie5+uqrATj99NN59tln+dWvfsXVV19NU1MTb3zjGwF4wxvewDHHHBN8bvXq1dxwww185zvf4corrwxeP/DAAzn++OOZN28e7373u4PXlVIsWLAg4mGfNGkSADNnzoxc+4ILLoh87u1vfztNTU187GMf49Zbb2XSpEm0t7dzxRVX8J73vCfS97POOit4/uY3vxmAfffdN3L94XDiiSdy4oknBn8fd9xx7L///pxwwgn84x//CP5HEul0moqKgdXfnTt3opSKePsNEydOZPny5QmfKi5lodCfffbZnH322XnfP+644wrYmt2HYN/52B70WWAn2kO/LHa+ORrlXgLuBUEQBEEQhLwcNQUWbtBK94Qq+PKhsE/jrl93dQfc9GJ43bdO2fVrDoOnnnqKc845J1DmAZqamjjvvPOYN2/eiK8b91gfeuihPPHEE4N+buHChXiex0UXXUQ2mw1ef9vb3kZjYyNPPfVURKE/++yzc8Ll89He3s51113Hb3/7W9atWxdETQOsWLGCSZMm8Ze//IXOzk4+9alPDemaIyWTyXDjjTdyzz33sGbNGnp7w3ji5cuXD6jQL1q0KO975UxZKPSjTbpi8DCa8UDSdnUK7Z0HmAn0WedCWOFePPSlz9ZtrUyZ3FLsZgjCmCLjXBgPyDgXyhlndhPqiiO0B/2to5hD/8YJo3rdSZMmUVtby5o1a4Z0/o4dO9hzzz1zXp82bRo7d+4ccTvsXHeA6upq+vr68pwdsmXLFgD233//xPe3b98e+Tup7fn4+Mc/zhNPPME111zDEUccQX19Pc899xyf+9znAoXaXH/mzJlDvu5I+MY3vsEtt9zClVdeyXHHHUdjYyPr16/nve99b0S5HyktLS04jpN4D3fs2JFzf0qBcanQT5p6ULGbUBIoleyl3wJMAeqBTnMushd9uXHv3Mf48ucvLHYzBGFMkXEujAdknAvljjO7aZfC4Qtx3YqKCk4++WQWLlxIX18f1dXVA54/ceJENm3KTePdtGlTJFy7pqaG9vbc/P7R3tPchMsvWLAgMVzcvG8YamHr3t5eHn74Ya666iq++MUvBq+/+OKLkfMmT54MwIYNGxLzzwejpqaGTCZa5yxuhACYO3cuH/vYx/jWt74VvNbZ2Zlz3kipq6tjn3324eWXX85575VXXuGkk04atf81WpRFUbzRZsuGkReq2J0IiuFZR9B70E8GatAeelHmyxMR/oTxgIxzYTwg41wQCsPXv/51tm/fzte+9rXE91etWsWyZToh9aSTTuIPf/gDHR0dwfsdHR3MmzcvqDgPujL6v//974iy+tRTT0U+NxyMoaGnpyfy+hlnnEEqlWLt2rW89a1vzXmMdLu9vr4+XNelsrIy8nq8Gv1xxx1HQ0MDd9xxx7DbDvp7eumllyKvPfLIIznndXd357TlrrvuGrAPw+W8887jkUceoa2tLXjt6aefZs2aNQPWaSsW49JDL2jinnmjuG9BK/Qmq6YfqMZS5q3ieIIgCIIgCIKwO3DiiSfyP//zP1x22WW88sorXHLJJey9997s3LmTRYsWceedd/LLX/6Sww47jG9/+9vMnz+f0047jcsvvxzHcbj++uvp7u6OFKW78MILueOOO/jEJz7BJZdcwqpVq/if//kfmpubR9TGAw88kIqKCn7+858zceJEqqurOeigg9hvv/24/PLL+fznP8/y5cs56aSTqKmpYd26dSxcuJBPfvKTiVveDUZzczPHHHMMP/jBD9hzzz2ZPHkyP//5z9mwYUPkvMbGRr73ve/xhS98gQsuuICLLrqIxsZGXnjhBWpqavjCF77A1KlTmTRpEnPnzuWwww6jvr6e2bNnM2nSJC688EI+8YlP8OUvf5lzzjmHpUuX5hgNQOf+z5kzh0MPPZT999+fBx54gL/85S9D6stpp53GmjVrWLly5YDnffWrX+Xee+/lvPPO4xvf+AZtbW187Wtf421vexvvec97hvzdFYpx6aEXNKYIXlyp3wJMBcwmOcaGFimKh3jpBUEQBEEQhN2LL33pSzz99NO0tLTwX//1X5x66qlccskl/POf/+T222/n3HPPBeCwww7jySefpKmpiYsvvpiPfvSjNDQ08Kc//YnDDw93pjjllFO47bbbePbZZzn33HO56667uPfeeyPF9IbDpEmT+PGPf8zSpUs56aSTOOqoo3j+eb1zwHe/+13uuOMOnnrqKT7wgQ9w/vnnc/311zNhwgQOOOCAEX8nv/rVrzjyyCP53Oc+xyWXXMK0adO4+eabc877/Oc/z29+8xvWr1/PRRddxAUXXMBvf/vbIDoglUpx5513snPnTk4//XSOOuqooIDgxRdfHOwOcO655/L4448H2+bZ3HLLLZx33nl885vf5IMf/CAdHR386le/GlI/XNeNFAzMx4wZM1i8eDFVVVVccMEFfOYzn+GUU07hkUceIZUqPfXZWbx48bjSy7q6uvjIJV9kzat/p6lp9HN5ygWlFJ0K2j3o9KBLQafSyvu3gBOBM4D3ALcBe6EV/MYUNDjQkILmFFQMMf9GKDz3P7CID7z3tGI3QxDGFBnnwnhAxrlQirS3t9Pc3ExbW9u4lqkFwTDYb8K8P3/+fOrr60ft/47LkPu+ntZiN6HomD3o40XxQOfQT0FvSVeFVvKTwu3HlSWoDDnogL2L3YRRJ6sUWQWu/3cKSAOVztCLuwi7F7vjOBeEODLOBUEQhHyMS4W+pyu3YuJ4I67I2/vQbwb28M+rJ6bQx45C6XL4oSMPrSo1PKXoU9CrIAu4/rhNA2lHF3CsRknEyDhkdxrngpAPGeeCIAhCPsalQi/k34Pe7Lg4xT/WAN3WZyJHhXbjC8IYopSiR0GPr9D3K8j6gzDlQKWCrKMfDSlFWpR6QRAEQRAEYZxQeln9BaCqprHYTSg6Ec98bA/6JnSoPejq9r2xz4qXvjx4bfWGwU8qAzK+It+joDtW86HLf95jneMpGZnjid1lnAvCQMg4FwRBEPIxLhX6xpaZxW5C0cm3B/0WYJJ1XgNhlXvboy9V7kufP/7p+WI3YZexQ+17PH3s9pX5TqWV+V5Loe+z8uuF8cHuMM4FYTBknAuCIAj5GJch99s3/bPYTSg6A+1BPxUdSa/QHvpuksPtZS/60uaTF59X7CbsMh46Zz7r5873KegD/g48DrwTeKvSufRZxz9P6SJ5wvhgdxjngjAYMs4HJqsUnm/QddC1VdJASlKwBEEYB4xLhV7ILYpnlPqt6IJ4ZgmsJRpyL+H2QiFxfQHN9Z9n0cr8N/z3nwR+ABxjznX0uUqpsq16r2IpA+Xaj3zY/dvd+iYIQmFxlSLjR2dl0TKN40BKQZUD1UrJLigFoL29vdhNEISSoFi/BVHoxyFKqRzPvHlsBd5inVtHGHIvle6FQuPhR4MQ7sLweOycx4Cj/YgRe0yXm/jmKaUL/hGmwKSASqWocMrf0+T6/XPR/XMARykqkW0HBUEYPq5SdPvpWBkItzRVWrit8oul1gC1Mr2MCVVVVUybNo299tqr2E0RhJJh2rRpVFVVDX7iKDIuFfpJ095Q7CYUlYH2oN9MGHIP2kOfb9s6UehLmzvn/L7swzTjBicFnIX2zBvO8o9GCfbKUJvPKkWvVcXf9CUNVPgCaU0Zb8uX8XT/+tBCt+lfBVqZrwZqUSMyWuwO41wQBkPGeRTlz5k9XlhDJaNCY2GFA/2ENVXSnqIqVZ7zZylTU1PDqlWryGQyo3K9Ob/8Axd/+J2jci1BKBZVVVXU1NQU9H+OS4W+o3V9sZtQVOLF8GxlaRPhHvSgPfQ7/Oe2wqQcUehLnVNPOrLYTdhlgjFq7crwRuBQ4EXg//P/TlL8y4WsUnT5Qmmf8oVQvwNpf1s+1wHPgfoy3JavX6mgeGGfZbAwea6VCtyUvmd1I1Dqd4dxLgiDIeM8SpZwBxRTGNWE3TtAlT9vOiltGK10dLSTRAKNPjU1NaOmvLzr7BNoamoalWsJwnhiXCr0md6OYjehqOTLn+/wn5sceoXevq6X/OH25ZyrvLuz7z4zit2EXcKkhiQ9jOiwj38sV2OTsjzzRijN+IX9HAfSfh6oCTpIK630lstvzrX6Z3vRXL9/FQqqHVBeKHgPNzS23Me5IAwFGedR+v25pB/CnVCApcAC4Bx0KlaFP4f2+wr+uBR6y4ihjHNTh6Vc1kFBKAQyt41DIh56S6nfgg59rUPn7iqgntx96M01BGGsiSjy1qAzJrk2YAJRr7xH+YxPF4KCTj0q6qVHQSW6PylCb3Z1GQmlWb8/RuDu9nTYvclzrSI0VlT4f1erkYXeC4IwPvCUwiW6A0oGeAG4wj9nMXAzcKxvIHWd8kzHEjSuUsG9DiK8/IKHaUS5F4RxuQ99bf2kwU/ajUnark4RVriHcGDUAl3WZ03oM5SP0jReWfriimI3YZcwSnxSGL2pIbqTqHfeI1f5L2VMFX8jmGZ8L9PfgO/5xz7La2+q/ZcLWcLdCTJKK/Px/mVUVDD38l4tmXIf54IwFGSchyj0vGIKpbr+OrEgdt4j5KYYCqVN0jjv83RaWoeCdk8/Oqxjr9JGHkEYz4xLhb66tqXYTSgqdri9vdhtJlToja2zhoG3rZMptHRZvmJtsZuwS+QLtwftmQdo9Y9JOzaUA0bh9fznWWAZ8E104b+vob1OpjK8MQCUA0qpoF+mjy7R/n0V+Adhv0wfh0O5j3NBGAoyzkPMXOLZSj16+1Kbd5Br8BVKm/g47/P0TgZdCjo9/ejyFfkuFT56Ve6Wr4IwnhiXCn3rtleL3YSiYhbAuJfe3oPernLf5z+3Q5rBD18TSpYPvPe0Yjdhl7EL4pm/PXTUyAy0hz5H6S8jwS0wqvkdTNqW7w+Up7EiHmFh+rgwdp7xosHI+rY7jHNBGAwZ5yFGOY8r9WaTqInAd4FDKM+5czxjj3NXqSAdrdt/dCnoNIq8p9O47PosgjBeGZcK/XjG3oM+Hnq/BZhCqNA7aIW+03wW8dALhSMuhBkl3eTPzyL01Ofz5Jcyxptg+mXafEbsvLOD88ujXzZJ88XpsXPeab1XTsYYQRCKQzzqx0XPH8ZV8wbgTcSKpVJ+8+d4x6RpmToz3V5Uoe/2FfleL6w9I156YbwiCv04I6702F52E3IfV+jjHnpR5oVCYY818zAK/Z7okPsk73y5jM1I//w/3gRMRqe7GC9T/NxyIG5cMc9Nf6aj8+gPIdeoIQiCkIRJ5Yl75z20Qj8VbeiNz5dhfRWZZcoBT6lgJwOj0Ns1WK4jVoMFXYdFDMLCeGVcKvR7zDi82E0oGkaJtz3zZgLcil4MDUahB11B1nweytNbON646cdzi92EXSLJ8OShC+JNAJrJE3JPeQhu8ZB0W/mtBA4G3midC5biW+J9MyT1Meu/dxzaeLGrhsJyH+eCMBRknGtMdKGt1Js5YxXwZvS6EJyvbGVe5JZSx4xzF+1xN8VSs74HfilhDZb/Av6OX4NFjayoqiDsLoxLhX775uXFbkLRMAp8XKnv8R9T0IPC5NDX+cce6/NJR6H0+MiFZw9+UgljK/EQjrU2oAGt1NuCm4qN6XIYm/l+R11At32eKr/fXL65wuya0Z3nnOH2r9zHuSAMBRnnGmMUjCj16HllM3Ak4bqQz9grlC5mnJudXWxlPgv8Nna+qTEjtZ2E8c64VOjdbNLO6uODiGfe8pxt8d9vJloUzxSZ6SF/TrNQmkyZ3FLsJuwScSHMjLd2oMV/dMTOLadFPUnQtPvYEzs36Vjq2MYY8zAKfa/1Hozce1bu41wQhoKMc42dO28r9avQa8IstLHQKPphxJbILOXAlMktwZ7zEQ89+v7FlZZ3IAYbQQCoKHYDhMKStAe9h1bo90Qr8ilCL72DDv81Cj34grev8cvkWX6YHERbOUwBacfJ/6EiYIxOEFUM24BGtPC2ldzxXC4Luy1omr8hrFmRk+ZijorQ4lbCRLzuVh+NQi9RP4IgDJck77wCVgD7odcF0PVVaii/dUEgR5nvV2EIvomvnQl8jnAnA4jKpoIw3hiXHvr6pmnFbkLRiIfb2/nz9h70tpe+gZhCHzsKpcnTS5biKYWrFP1K0espujxFp9J7ubb5j/Zgb1d9bqmQT0lvR0eStPjn9VjnQ3lVNE7qn9lVoifhXPtY6iTVB1CEqQR95J9ThlMj4OklS3e5rYJQ6uzqOM8qRZ+n6PEU3Z5+ni2h+X4omF164kq9Al5DK/RVQDWxgqmxuUgoXZ7+y1L60Up81jq66Hz5avROKUcR1mARg40gjFMPfTpdNfhJuyn59qBP2rLOKPQ1hEJ4uXoLxwueUrhoy/bW9i66VFj51cMvHkNo2DGkHS0IuQpqU4rKEvDWBxEkMS99G3oP+gb/71a0gm8v5uUQWhkRQlTY9s7Y0e5XOSn1+doaD7m3zx+JQNbR0T34SYJQ5ox0nHv+Xt4ZpaN+zHyadiCtoMZRVDuQKoE5fzDMGqaIFsRT6Ar3b/fPm0huwVQ71VBkltKltbMrqsyrcGvCPwInAmny7HDjlMfaKAhjwbhU6Nt3ri12E4pCfA96iO5Bvw9hyL1NNcnCt30Uik+/UvT6gpur4JjTjqXNy93ax7OUeqXAcaBCQdbxF0QPGlKqqCH4+fZoV+i8+Ub0WJ2AXtj38t/3/JC7chHc4r8jU9zJPI+nRtjHUifuNTH30vSv0zrX3Cu7j0O9de8489hdbKkglD4jGeeeUnQr6FF62y8TwuwAKQWVTrgW1KJKXqk3inxEqUfLJxvRHnrQ0Vvt1mfEg1s+nHb6sXSqUJk3+fOdwDPAzWhP/VqS761W7hVOiY9lQRhtykKh/+Mf/8hDDz3Eq6++Snd3N0888QTpdDp4/9VXX+VHP/oR//73v6mvr+ecc87h4osvlh90jERLNaFCfzSWd94hWPnqiYY1y+JYevR5ih5fcDP7ssa39klS6hXgKKjyBTvQBp0KBfVF/PnkKIPWQNuJ9siDVux3Wp+B8qlyn6+KfwdhBf8+wjxQ8xlVJl4I4zUxz82xE+1hKfcaAYJQyijfM9+roNvz9/FW4fxYgT/v+1b8FFBb4r87uyCe/Xw1ekeeyf55zcAOco2JZv4UShNPqYhn3ijzLvBnYG900cPXCA02QJA7Xw7rviCMFWWRQ9/Q0MD555/P5z73uZz3uru7+drXvsYhhxzCQw89xPe//30eeeQRfvvb+OYWIY5TFt0edYxiZCv1ZvLbRphDb29bB1qhSMyhVzJ5lgJZ3zPfo6BbQZeCLg929Gb83Hh03rz1MNuiPQtcCzynQoEvgx+mX+T8ynwKbzfQ5D+fhPbQm/Ps/YbLJezeHO3+TfSfJ+0uUS6/uXyGvx70XDNaUT99fZnBTxKEMme449xDG3d7/XndrA+dZo2w3gsju0p7dknyzit0uP3+hA6JFhJCsokq90Lp4QKdvZkg5N6E23vocPvT/PMaiSn09kPkUmGcUhaa7dFHH81pp53G9OnTc9576qmn8DyPT3ziE1RXV7PvvvvywQ9+kIceeijv9faYcfgYtrZ0MYtZvCheP3rxs/egNwPDAWoZeAutcsLzC8T1+AXievziQMVWXncFI5D1KOjxtDemS8F9t99PF6Hy3o2+jz1oZepp4OvAIuBLwN9UKDCZLWKKRZISa55vJ/TQN6Nz6pMEt1K/oyblId5msy0f5G7tFn9eyiTdP+Ohn0wYep9krBhOH3/4k1/vWkMFoQwY7ji3K4Ubxb4H+CtwnX/ssc7pR8/9pYrZnSWu1BuFfl9Chd5EOEF5Fksdr2QV3PbT+wNl3njoN6Gr25+Ilk2biaZUmGO5rP2CMBaURcj9QLz66qvsv//+kRD8gw8+mI0bN9LV1UV9fX3OZ7ZsGJ9VkW3rtHmu0N550F5BuxieUerr2D22mLJzzE2hOL1dG1QpqHYUVQ5llaph79fab7wtwPPAvz/1Af4GvBG9i8Fr6L16XwXW+K/ZPAIco8LCMsXMQY9b280jg75vjf55LeQWPyqX4jhJiixoRbeBhMgYRdltF2nuh3kOun8T0GN2V5V5gC9d+sFdaqMglAPDHedxpagfeAH4hv/+YuCH6DnfdfyCqSW89CnCMHtTHM+8vhJ4P6HMMgF4idw5JZB/dtMc6/iWtCnKo9ghGGcLXPKZD4QeerTR5kngLej7mkJH6HURi8oz1yl0wwWhRCh7hb6rq4uGhobIa42NWtzv7u5OVOiVGp8/+Yhn3npuKtynie5Bj3/MG3JP+SgWfZ4uDhQo9Oi2O+h88T5HCzw1QA3FLQg3HDz8Rc9aAP+B9rxTXcWfrHNnALOBNwDnoBX//7befyelZeVO8ri3+e81oe9dM7Ahz7lamSxdwS1fmzvRCn09+h6VoxHNFOBMenSjcyFB/+aqSTZaDJXq6vG7a4kwfhjOOFf+bifx+imPx857BF07x/w2S1kySsqdN3uTr0UXxEv55zWjc+iDz/rzirKel+aqMDKUn3tuCh+a+5gGKvxdDCpKdB00GMdEqqpKh9qrMFJwMfARdH8cwpS7LrTMZkdhUAbGfEEYC8oi5H4g6uvr6ezsjLzW0dEBQF1dXeJnqusmcNFHP8Fll13GZZddxvz587n+pl9EctQeXbAksu/r1m2t3PTjuZHr3P/AIpa+uCL4+7XVG7hzzu8j59w55/e8tnpD8PfSF1dw/wOLIufc9OO5bN3WGvz99JKlPLpgSfB3X19mlNq3kfvumRfZtu6J++bx2pqNTPHPWfXyChY/rNtnpv/tt82lY7tunwcse3YZTy1cEggBo9e+sfn+unv7uP6me2nvzQQ55k8sXMKflyzTOeYKNmxt5ZZb59Lp78ne5yl+/bsnSv7+vrBsRRB6uG71Rh65bx6PWuc03zePQ9ds5H7gVuD9L69g+sOLOBI4BpgJ7HPbXL69vZU3+Z95/pll/HHhkmCRLMb9tRXA+346l9btrUE4etOzy3hx0ZIgtHJHX4aHb7mX/r5M4NFf/MQSljyzbMzaZzPS+7vkmWWBgNm6vZUHbtPt60RHINQ9vIi1L+v2KWDDmo385hfz9N9q7Ns3Gvd37i/msX7NxuDv1S+voP3hRUzy/+4GHr5N31/Tz2eeWcajCwvTvlL//qR90r4RtW/hEv6yZFmwzu/Y1sqDt83ldOu6jQ8v4ggzvyhYs3ojd98zrzDtG8H3t3LVRu715RcTcv/4ffNYumYjFcA09Pzy54cXMYHQ+PvgbXPZub01kHuW7Gbzi6sU67a1cuOPtfzSoaDDg18/sIjnXlwR1NH512ul+/tQSrFi9UZ+cc+8ILKkH31/n1mzkR3A24C1/v2t8a/RTrh+GCX+mWeW8ViJ3d8tW3eSVTq9c/FfljJ/wV+CNM9SaN9uN/+VYPvmz58f6JwXffQTjAXO4sWLy8aY9cILL/DlL385UuX+scce4/bbb+e3v/1t8Nrvfvc7HnjgAe67776ca3R1dfHhj17KutUv0tTUlPP+7ky3p+jwJ/xOv1BaD3AvOkfpK2hrZ6Nvve5SWuD+HfAK8E10Pn2D4z9S0JTS1dBL1QsKut+dni4I1K10jrkJ3XbQ+69XO9FHjf8o9f15zT3t9BfxLqVzI78B1C9aQtdpx/I94HDCyIs02gDQC9yI9tx/GJ1aUe9AY0rf36YU1KaK0/eMp2j3+2TGahfwN+A24Ha/H39HGyruQI/devS4bEjpcdyYKs37p5SiS0G71T/ze7wWfb8WA+8FTsbvlwP1/m+u0YHqIt2boeD5/WvzhckOL6zh8P+ADwI3oO/lXuixZ8ZdQwqaU0P3KD26YIlsXSfs9gxnnGeVis4tnp4/e4AL0FExVwJvpXzW8x7P71NMfnkMXTDte2j5JIuO2voUWnapxVoX/DWhKUXZROENhEkjNI+M0ql3ZseaCvTWhDWOvq/1w5hXC4mrVGCMeHzBEo449Vi60DLKrej+fAF9L5X/+iXA5cAh+BFtRnbx14/KEulnv7/bRJ8KnRQpoBJ9b0pdxhRGn/b2dpqbm5k/f35iFPlIKQsPveu6ZDIZ+vv7AchkMmQyGTzP48QTTySVSnHXXXfR19fHqlWruP/++zn//PMHuN74rIpsb1lmLPcK2AxMJSyGFy+KZ0J/45SDJcj187IyhFXc+9DKhSkO9ByWsu978INq8EpPyKWIyZezPRYuOmf+UKCxoZ7voYW2OkKlsNYJ728L+YvKlUpRPPMA3VY7waaFsAaE3e7450qRaGpA+Lrx0Nu/u3zfRymTtGUd6D41oA1pkZQCNbK0gsbG5EgsQdidGM44t+dCE3Jv1nqAAyGIyLI/U6qYFAKz1tlbsK4kWhDPVLmH8i2YOhjK9/Z2+QbTblMM1+xqY54rXfjQVvpVCcozdgHH6ob6IHe+D/gTcCragG9C7kGvISYKw/QoEnpfZJRS9PrOJOOY6LCet6vw/pRzUWahdCiLHPqFCxdy/fXXB3+/853vBOCmm27iiCOO4Pvf/z4333wz559/PnV1dZx33nm8//3vz3u9rvZNY97mUsPktAbh9pawvQ1t5TSLoVH2zLGWsCK1vhZlU5wro8Jt2PpV+PcLwLf9cxYD3wfeosLCQJ6jj1n/UePnoZWSJdUIJqbSr10kqA/44NsOC+5rraOtwWm00cLc60b0Hr6Qu1dvMe/tUCrAG8HNQyuGVZRWHwYirrja7exEK/PV5Nm2zvr9lSoDCdEd6P7Vk782x3A4/tjDd6mtglAODGec23nztnK/3n/fTlIsh/XcrG+2Um/6tRJdE8Y4I0zUXRV69549CI2mu8Ne5W7MK28cFea5kW8WAO9ScLSCVEqv/1W+fFNKgr9SKijqmwUOedthdPn3+m/ofPk34tcDIIw+aEGvJZBrxC+F+9uvwq0i7WLMACkHKv17oXxBuxZVUvKlUH6U0u86L2effTZnn3123vf3228/fvSjHxWwReWHUeJtpd5MelshyKGP70EPOpTZ9tAnCeClOA2ZqqkZ/9GPvzUPEE/G+AO6WJy9bZuxEtuPGlTJhKwp9AJhK/Xm3q5B58dDaNWucfzK/v6NM0XlOsi9p8WuBjyQMmgK4hmDBGjBrTF2bikXeILQqGbvPAHRKvcD/e5KnaR5QqGV+DrCYpuJ55bqpCIIZYAphmfWBrMurEOvB3kjf3ylt9R+enYkWvDcf9hb1pl0MtC79uwkeS0p5g4uu4IdYt/jRRX5PkJl/gr//EXAzcCxvjJpdjOoKKG+u4TKfL9pp//6H9EpZym0spJ2AKVvnfHQx9d7Y8wvJp5SZAiNLt3+ver3308rLY8pAA+clO5jDaVbxFcofcoi5H60SVfUDH7SboZR9uy9WM3CuAVtxQ7C7f35xEwrteiFwlwHSiu0KR8m1L5fheFcZqHYETt3Bfp76MXfs12FYWx2KFuXVzoh+EkpFB5aiOkDWra3Bsp82ol6MMwPvwmtDAfXVLnCTzEIjBOx9rShjRB2P5rQfY4s6BS3/YORJGSatraihZU6cvehLxelPiI4E7bX9KcenUPYk/A5+zgU7II0grC7MtRxni8VS6Fzyw9Gr3GRz8SOpYanopFopn+mXNVMcnfoaSG6V3mSM6NcUErR44dvm3D6HmWF0xMq9HNin32EqKxQaobuuDK/fXsrWfRa/zfgFEKF3pZdjDMCco3Gxe6jhy93Ku1M6lN6rXsOXSPnr2gZ00RXGE9+n6IkUyKE8mBcKvSTph5U7CYUnPhiZp5v99+fTDSH3iyKDlqh77SuUw7KhbGQmkk1UO7RyvtWtBX7FP+4D/B54M/4+fboRbLHmmy7VKjoZ0tg0o14YCwhZx064uLZ3zxGitBDn3KitRFAL4omnaJUjDX5tjyDaA693YdW81n/WOw+DAUFkTxzRWjBNx76bvJ7ukudeHsV4VirR0dU9MXOsT83VO6d+9gutFIQyoOhjnPzW0pKxVoPHEBUESqH9dyscUGf/KPxzpv8ant9a0bLN3Elz6yb5YKrVKS+T3fs0YOWVTrRBeSWxz5/NrHohIK2fmA8f7s9E46eBRb85jFc4P/QWxFORxt/K9D3GMKt69pJiDApcB+SMOkhpmJ/Fl3A9+voFM//Ap7HMshYBppMKXRAKEvKIuR+tNmyYWmxm1Bw8u1BvxW98FURtXA7VmhTLeXnKcyqaKi97Z1/ADgLvf/uiejJ9mjgSeCHaOvpp9BKhwnBNwKEMXqkFdQXOTzKtC1Q6v02mnD7cz5zYUSRN3v0pvx7a7zbO8g1+MQV6UKT9P8VWhBtIWqpn0io0Mf7UErCi03S92z6B1qhryXBA6EoejjhUEi6dxAq9BWEBgv7fSOUecPo45c/f+GI2ykI5cJQx7lR4u053cyD64HzCUPW48rQcH53hcIUxIsr9R5aoT8AqyCeE6aUtVCaBV+HQ1Yp7VDwovnydoh9P7AWuB6t+N6O9tK/iN7t5hCi97eUZLYg3F6Fyu95n7mQXnS6wBkQOCVMmoAZoo3Aa+RfS4uVLgi5craL3o3B5hF08eKUL2enVGiUSilVMlX6hfJhXHroxyP5FJ0taO88RKvEYh1NgkI87L5UrKFxlO+dz1iLRD+6/VuAJWihxhRZqUEbNE4BfoyuBPxF4GW0FfX/A55TOmetV4Vh/C7FIyms0s6T3JvcXQvs+xrPQTcGm6Sw9UITt7TbXvY2tBHCYDwx8Vw6Rel7YpIUXqPgVhEWxbPfL3VDmk0w1/iN9dD9a/bfryZa5T5eS0AQhOETGHhVtBp8G/r3d4B/XrnMLWYOiVe5V2iFbj9izgj/YXLooTTWteHi+fny3V5upfpe9CMDPIGWV45EbwU6FV0P6AB0Mbkkua9UwrpN9KTtye5HG55WAccTymkVRO9xE2GVeyAnPa+YxAtSKrQTyeZw9P3rJayFYKJBe0okClQoL8alh348ErcYmknG5M8Hyp4TenLNxGk2y+lBew5LXQCwi6zYXnoP+D3aG78n2ppdhbb8pn3r6J5oBf4BtHXb8EfC4jKmEn4xi8uY+xd4K6zFbB2hZdsUCjJeetNcY8kzCn07oaIcV7AKjb0gx5U8UxQPwvE5gbD4UTC2S9AbYRMRsiyF1+5fHdoLE/+dFbtg4VDIt2VdF+F8Uo6RP4JQ6tgGXnvN34A2phkDfjd67oTS/t0ZD2c85N4D/g18wj/PhN1DuAPKS5Tn/AlabrGV+B4VVrHvQ8+lP0GHcl+B3p62Et2/FqJ1guIV/hXFrwlothQ2EZRGmffQYelHoddCo8xXOPo80+4mclNBg4ff32L10V7bze/vjcBBaFlrOjAXbYRpwW+nVRxPe+l15ft0CY9RobQYlx76lsn7FbsJBSepgJpCh9zn7EEfC22q9o/Gm5akcJUSfSpU5INQLvTk/yjwHkKrb6Wjt3Src7SCUYv22L8PeEvsuqa4jO39KBaK3HB7O+R+L+DPDy8K8+fRhfEcJ6rUp9CpBZFctBKwdMcXaNO3drRQahsnmslfzVj3p/TE1HixOHPsJKwRYFeBh2jUQun1KErSfYCoQj9aNQLuf2DRLrVVEMqBoY5zu/iZWR9AK/SmeFya8LdXKnN+PiJrnKXUb0Kv67MI68TEi6bttK5TKgVfh4KnVFBMzd6WrgcdNXgV2pCxA+1oOAotp1X5n28mWhvHrKH62gXqxCC4MWXepEU+/fCinL3nKxxffiHZQ59v7S8G8S2i7XWtEngv2gAzA/hvwkiLPsL7bAw4vQrZo14YMuNSoe/raS12EwpK0gRjHmbLOnsxjIfdO4QVqYPJqUSVi6xSQYi9OfajF4zH0cXv3oBW5qvQCn21A3Up/ah1tKJhlHqbeHGZYvbbNiyYe+uhc8l70Ar9XvvvnZNDH0+rgHBhTOpbMRZ/27oNoSBiBJQmouNzAtFK/aUsnNrkU3jr/ee1RKtRJym+pUq+tnYTGiwSPfRq+P066IC9R9RGQSgnhjrO7fx4O998HVqJAB2Zlc+YVmpkVTTk3jxeQ69zlYSKn722TSCq8EH5pGPZO/QEkYbAP9DK4N/R6/wH0Q6ZGvR8asLSm4Ft/rXiSmUprItm7/lgi2AVbinct//edKEjDmzHS5rQIWEU+h7y1IIoeI9C4gYye6xtR4/LCnRhvHZ0lEXGf9gRGSbVQirfC0NlXCr0PV3bBz9pN8KeYGwvPeh88T385/FtX+zFsYHyEADshTCjrPwstIf9PYRboFQ4fti976Gv9x81/uJxCHAseuH4LrHiMhRZoVeW50KFQs5adEhlLbDfmw4Ii6w4uQq97eGOVz0u9qJvh9qbh9mCyHh4TftbGMBSX6KCm0ey4aGDMA0iabtIW/EtZZIMMgodgWB76Ecjj/fwQw8Y/CRBKHOGMs7t2irxaLwNhAq9bSws9bklXhDP9OdVYH/CdSDthNGFKfS60EFuBFuxFb7BMDv0GPnFKPP96FRAmz+h59E6tDPCrOst6L6aqMq4IaPYt9jDUuJV6J1fBtz1pgM4CO1wsfPnbYONUeghGnZvjsXso/19x9tialal0DL1lWjjzG8J8+nt4oe9KtzOThAGY1wq9OONyIQeO75OmEOfpOwZ8lWkhtIRAFw/TM1W5I13/mn0YD8W3+JrHo5W6I0iXxHLNT8QnfcULy4TKozF6bxdDM8WctaiwyqBXO+8HbJm3eBGtIc7SRkuhuBjt8FWCtsI96C3jRMTCLdfTLxHBWv58EhSYrsJPfTxkPukz5Qq+RR0u3+1JNcICOeVUu+lIJQWtiJvR3BBGHIPCek8lOZ86fnRhXbIve2h34+wToxZF8zaYOoDJEWflVo/bfp9Bc7klxtZxiVaBA7gPPx0wVQou0BoFDZ9xzqWgjHDw++TCh0uS4Fvoo0wLwCvEHrnKyxjjRFdTLHm+NZ1UNz7a8sutqzdjb6HE9DjtQodXfFt4FdoGbUfvSYaz3ykfkKp5EoIJcu4VOirahoHP2k3wkwq8QnGeDz3IJo/n6TYVxGGx9rXtY/FJmstgPGF8HfAOYT7mVY64cOE3sdztIylu936H6UQzm228UmqcL8eHYboAFvWbMwRcpIezeT30Bejj0meXdDCifnl2kp9M35YIrnGgGJHUuQjyYKv0PfBzqGPF/0h4ViKBGNSRdtrpxTUkTynDHfcvbZ6wy60VBDKg6GMc/O7ixTGQ6+HmwgVehNxB7nzbCnNKwq9rkeUev/1lYQKvakLYK9rVei1PqLQl8D6PRDGO2/LMMY7vwHd5y+j88t/CBztRxfa3nmz3jcQ7Xu8hkAxSYowfNR/r3LNRkBvW1eJVubjFe7tLWvbidYHKHb/bHnMfpgihSayoBJd9+AA4GvAD4B/EebT96pwZyXjtXfFyC0MwLhU6BtbZg5+0m6EPcHYE94WwtyriNfTCY+GBqJbmxVb6Ytjh6kZD73xzr+MFmbORC/6tnfeLBhxYcB0vZFQoc9RwFRx+m7+f1KF+7XoLetSwNKnnw8q3Aeh98Q89WiFOG7lLmZaQfx7Not1B+GWZ5AbereT3DFZCt6IfJjv2TwHrcDbIfe2AEvCsVSJt9Oug2AU+mpCgwXkLxQ4GH/80/MjaqMglBNDGefxdcHMH6/770/xj3Xo32LOvFKkNS0fpv3xaLRt6PbPhkhaGUTX78kMUDC1lDrqE4TYW3KMSTn4DXCS/7gcXSG9ylfmK51oqiTotbKV5PWw2M5el9x7eqb/Xt3TepyfjXaypP0jhAqL6aMp6Aul08ek/HkPHUVo6lWlCHdZqgSOAT6G3mFpE9EiecEDPSYEIR/jUqHfvumfxW5CQUnars4o9GaBT9qv3CZvReoSEQDiOfO2d/5B4J1oIcbkYwXeeUcXxYsLA7aya4e5JQkGhUaR64Exi9hatIce4F0XnRta7J1kLz3kWvJzBZ/C9tIshBD1HrWRWxDPeGZM2kCS4aoUxqeNKVKZ9DA55g5aoQe9kIMlsKjS7JfBjJckI0Q30Rz60agR8MmLzxtZQwWhjBjKOE9aFxRh5JZZA+qI1q8o9pqWj6yKKvXm+avorb9qCNeAeCQaRNfvfIbiUsHzC8WZbXazKiyWtgV4Eng/0crvVf4jvkMRRKMLS8kJY+o8xJX6NwJvAqovOpfvofdpdwiV+sA7X+J9zNeOHYRpIKYvNY4ew1Xo+k7HAF9BV7//G6FSH+zaROHlMaF8GJcK/XgjHm5vJpwt6Bwegx1uT+yYlHNnH4uJSlgITXX7DehtXt5F6J2viofaE1N0nahCb3KfIoXaVPEEgsCqraKCWyvaa7E3Vk6hExN0yiCtIN+C2E7ojU8S3Hb6z0vFUj8Q+b7fbrRxwvzmINxdwj6/BLsUIWoQCl+3t+Wzq9zbn7OPgiAMnfi6YH6D69Hh9ma+rCWPh57S+u2Z4mlGATR9eg3Yl6iSF6zjMYVvB1El3jb4lhJZFSpvxkFhpwweg76HxrNb5YSRhnEjvYlcayV5PSyqQk/UOOOq8PVO4CPoAsR2GoVdH8DuYyPROgGl0Ed7fNm/wW3AJKz2+8aYGif01B+PjkT8M/ANdC0Bs62f/VsQhCREoR8HxKvemsdWwoJ4STn0WMe4RT/pWCyMR74/YSF8GDgBHYlgQu1NTlaF7513fAkgacGIV1ItBStwJFTNWhjXoXPK6oh5LfKkFJRqWkEgfKno322ERfHigtsEQk9MKdyjgYj/bmyDQzs6jNBBj1XI3dot/rzUGGh+MB56E4EQ3ys53+cEQRgYZReQs9YIo9Cb2ioOeo7JWc9LTMn1rIr98ciDV4kWxDPrXKDgExqry8FDr6yUwUCeQT92oLfc/QDRbdyMMl/hRD3XRo5pJn/kXTH7bsujwf31H2vQWwvb9zDJO2/62ET++j/F6mPcmGYeO9DyGYR9MzKo8dI/GbvWo9a1SrkmkFAajEuFftK0NxS7CQUjaQ9620OftAd9Up51LbF96K1jUa29dmV7ornzbcAC4N0kh6lV+4ou5F8wkiqpQnSiLjRJAo4iGm7vAH+4b17gnU85YR5aXKk3C78hSQAoFCacLBIN4T/Mlm5O7DOmD60kW+pLSXAz5Cv810PowYYwMiZJ6C7lhT1f/8w+9GZO6WfXlfk75/x+F1oqCOXBYOM8LvTbnk+zB72ZO+O71uQacos/u5g+xJV60B56s2Vd3Hhtr20TCHPoS6lwWhyz17ydQ2/2ZX8YeDM6IiHinfflmHjBODvyrtW/fin1PTA6ER2vm/z3/23JLaZQcb6ivs3kymbF7KOdThf30m9HK/R2+9P4YfcpXVPmXbHrnU7u77oUIw6F0mDECv3KlSs59dRTOe2000azPQWho3V9sZtQMOyJJT4ZbEaH3OebMLGOSR76UlgcXMJ9WrMqqtA/hs7J2o/kMLVKIOW7eZMWC/PjmIRWeOMh3MXqt13hPkmhN20/8oQj81e4twSfJkonrSDHaGJ9ya2ERfFMH809sgW3uJW+1Na/gYxirUQV+nrCvYSTPluKDNS/dkIPvTGW9cfPV8Pr36knHTnClgpC+TDYODeKkn20c+jt7UwbiBoK7WuUCkGYva3Uo+f5neQWxDPGeTvSzhir43NSsM6VguFCqZxt6mynxDxyvfPmWEW0IGC870bZhdLpe9KuBR6wCp0ueOjxR0ZqIti7DxE7NqIN/faaD8XrY1zusP/9dsKQe1vmto0yhwLX+ee/G5164MWuWYoOCqE0qBjozYceeijve9u2bcs5793vfvdotGnMyfR2DH7SbkJ8IrAnBDvkPq7EQtQTWs3AubxKqSB0vZDEQ+2NVbsPeAT4AuFCaIfam/x5m5QDqBFUUi1gt+19eePGmvXoCrhmoZg5a3og6Nj79EJ0UTRKcidhZXUoXhRCPIff/P9Oogp93FK/0n8vkifphB6nYozPfHjk9tOEHZqQewh/d5D0m6OgY284DNY/CIv+Ga993AAw1HG37z4zRqPJglDSDDbOzdoer5ezE70uzkDP/x7aqGZLQcqfK811SgFjsHYhpyDeVPSckeOdV9F1bgLhdmEQWxP8R7GnUBNiH9mlx3/9EeAN/qOCUG4xEYZVTu5aaIfc77T+T6n03eSC20q9AlajjTTTZk0HtCJvlPoKR38f5v6adjcTRiFAaYxjOzotbqyf7D9PdCD58uch6DTRaqK/YyPTeMUesELJMqBC/6Mf/WhAIdi8d8sttwDlo9CPJwKLobXIK7SS0IsOuc/Jn/cnFlvpS9oz2ly/WHhKhfu0Kj3hm8ef0IrDkViWbcJw+0on9M5D/skVSis/WzG0Cve2hTte4T5uuLDTCiaT4CUfs97kEv9u7f+/k7DKffwxkZgnJia8lBL5jGKmToOdVmAr9MTOL7V+GXIMD/7RhPgahd6uEZDvOxEEYWjkq62yHj2v16DXBY/cgpSR+dafO4utN8QVeWPEfg2dZw3hemavd+Z1iBZ8tY3xtsG3mNgpgxkVFkDLoufLh4GvExb0rXCiEYaVTphaEe97M+GaYvcdCu+IMCirLkLc8LQKrcw6RIv6mnsbX/NBywPxOizFHMe2jK2I9s+E3Nvyti2jOSp8b090CoJ9PaPMa2N5aTkohNJgSCH3Sqm8D/N+OVFbP6nYTSgY8QnB/L2FMNwacieZeHiTXcAKiITFFs0Siu+RV3qxN6Fqy4BbgbcQVeRNARkTem8zUGE8UzQuaVEsikJPVGDz0MpsB1qhN4vhypdXhIVlEiz5tjV/IrqPpZBrl+TdNQWCjLKbtLC3+s8TF/ZCNX6IxA0milD4qrbOMyH38XNL0VBhkxTlYeaPWsJ7V0UspWAE88rSF1fscnsFodQZbJwn1VYBvdOL8e2b+bKUi9xCqPglrXWmIF6KmEKEZbD2X59AuK5FFC1VGqHL8ZTB4DnaOz8NvX2bvUOP/Ug7Tt6+txBW+E9yRBRrbTf30y7eCNohMRtY48stduRFvhz6JqK72xS7j4ESr6Lfu3EI2SH35rdo7p/dx2nolNhA5lS591EQ4gzooTfU1tZy7rnnUltbG7y2Y8cO5s2bB8DFF188Nq0bI6prW4rdhIIx0B70exKdSPJNmqCF8D7ruklCQKHthbZHwij1S4Fv+e8/ApwIHE0058wshHHyebCbKJ1qsQNVuG8hDENMAWtXruWthx1ABdHFw+6beb2B0kgryLcom7Y1kzxGJxCGVpbCwj4QkfGjwtc6iRosYIBUF1V871I+IsYKq39d6P7Y/TPVtndFqVi+Yi2HH3rAyBssCGXAYOPc9nza6XXr0Hu220ZcO+Q+Mq/EjsViIMVvFXAmoSfXzrXuV9F1ocX/TDt67il2hJ2NyZ23i+GZUPs+4PfApYTKvPHKJzkl7PXcPJr917oJ+w7R0PtCo/C3YLPvLXpt2IqOvFi+ci2HvumAqHfescLtrecNhAaQKmIGm2JEIBDNnzft2Y6+B2b9S/LSm/EMOqVks3VN20hXCpElQmkyoIf+6quvZuLEifT09PDkk09y4IEHcvHFF3PxxRdz7rnnBueZ18qF1m2vFrsJBSMptAn0ZLGH/zzumbcF7iSFPlHhKwJJHonHY+c8QdRDbx5JDFZJ1fxPKJ4HO58XZh26oAyEC8bZ7z4tsfJv3JoP0e19iin0RP6v9R13EEZbBH2w+tWCHp/9CdcoBU+Mja3kmqNR6Out8xx0mGw8NNY+liJJXnaj0JuIIDP0TBX/+LnmOkPhA+8tv8KsgjBcBhrnkVBmoorFBsI96G0PvZ2/jHUshfnSI1nx60Q7I2wPfdrJrXJv1vJq9HutJK8rxZxHjXfeLoRnagAtRBt3A2cEoVJvcufTsYK+8cJ4Zi2JOyOgePc4ySFhtqtrQq/jJ55/WnR3HpLlF9toYVe6L6bBJil/XqGdDSYuOEnOjI/dqejIgwwJOfSU9vovFI8BFfoTTjiBOXPmcO6557J161a+9a1vce2119LW1jbQx4QSImmBV2hrqL1lnT2xxJV5o1jY+VilYNFP8kicGTvnHYTGCuOlT5NM0qLoEO51mk/wKWTKSXy7F/NYQyi02WFqoSXYKYu0gqSCeAotlEz0z4kbnGxPTGvCZ0ttAcwndHShBW0bO9e1FH5zQyHn9+EfuwjrNRgqKb8aAYJQauSsCda8vZGoQu8QzjM91uchGjFUTOLeefP8NfQ60EJunZgkxQ90/YCd5FH4itjR+DZ1Zg/6DPAgurJ9PGXQjjI0JBrrCRXeNpIdEcWS2SJKvd+O1YR1EVKxhymOFzfiO4RV/iPRJkXso/3bM7IHaA/9ZOs824EW9E0p0lmPVMZlUp9LZcZlq+uhPJXjmCv271MoTQbNoa+rq+PLX/4yN998M3vvvTeLFy/m4osv5oknnihE+4RdwN6DPj4Z2HvQx8N/IJw8zXO7KF4pKBa2R8KePN+IziPfC/gecBhRBTcNeYuJJC2KkKdaLIVfNOwK9/GFYz3aQ28vEnaFe0M+a34z+a3chbTm51N22wk9DnGhxUH3sY6oQl9s4SUf+X4/nUQ92A5aoc8Xkl5KfYqT1M4eolvy4f/dl3BuKfdNEEqN+Dpv1og+tPF+JlFjvUme7KI01vM4Sd55hc6fn+2f4xCthJ4UiQbRSuj51pdCk40V9DWh9qagbxo4nlChHyxlMMkRAbm1ZaB4kZVKqciWu7Y8uhqYxQAOCZIN+aA933b9n2IabOJyk3m+g3APeqxj0D/XI92XJZXJku7pp7K3n/16smzryUJfFuV6kWvKXvRCEkMqigdwyCGHcOedd3LJJZfQ09PDb37zm7Fs15iyx4zDi92EghCfWGzruwm5jytHqeg6EQmNhV3fM3q0sBW2eI5dBrgEXTE1kp/kDDzg7UnW/ruJaCVVKM6iqMgNtzf/fi1hyL3p8z0/nRsx0sDAoWsm7qaYaQUeyRb2NkIvPEQt9aZ/LUQVenM9KK0F0P4t2kKICbm3hRWj0JtzoHi/uaGSdA8V2ouSFIFgqt/HFYqhGpJu+vHckTdWEMqEgca5WQfja8RGtHJolAk7VzdFcrpLsY2FxhERV+qNQm+H29vrerCeKYVj9aCFZA+9uXYxyNmmToUh978BLiAaZm8XwounDOY4Iqz3JxBNFyymMcN85/FxqtB1EfZF38cHb5urx6flkEhyQthrZLz+T7GMU4FcFlv/7D3oc/Lnsy5OJkuq1/WVeg+nz2WvXpfW3ixOxoW+LF7WK/q4FUqbIRXFM6TTaT72sY9xyimn8Itf/IKenniwZHmwffPyYjehINhKr604vIQOXTNhSnEraFKOjxHEu9FKR6lMnHEF10UbK8yeu/bEmWSwsDHFVjDnKf25ZvSEDMkW/kL13TZe2P3tQC9opsK9sXC/+wNnBwKPwVYW7YWxkcHTCgqxTUrS96rQ/Wsij/DinziB0BtRbOFlIOy2YR07CT3Y5psecB/6MWzjrpLUxh70PGLfv2qiVe4jBpghDrePXHj2rjVWEMqAgca5HcZsG/HXE4bb2yHpoOf8bnJ/c8WeV3LCsv3nLwJPAxcSyilmvatQilS/h5PxSHmQUpByUqRSMKEiRZu/dtnfjS0XFRKz3W6fCrepMx76v6AV/VPQwnmQP++Ex4rYOuw4DiiVN5WuleT5tdCF1ewUikCp94+vEXroz3z/2aHRyUlOpYiv+6VgtDCpl0lt2IE2ROU4U1x/zGY8nH79SGf1GJ6uYGc6FXRCOVlURSVu2hGFXkhkWAq9Ya+99uKKK64Y7bYUDDebtKP67keg6FpK7zLCKvA/Aw4E3kZCuJo/YdqKBcS2mPKPxZhc7IXZzqE3lUFz0gms5/mw+2//bcKge9Ehb/FFsVCLRsR4YSn16/w2NhLNPZs8uSVYDA3xirF2Jf+d1nl238yjEOt/3PhkHm1EFXrIrffQTOiJgeIKL4OhyLXid6KFE7tPdeiw2WIbWoZDkkBj+hc3WIxGjYApk1t2obWCUB4MNM5txdeO3jKpWHEjLui5JR55FhwLNeEnYPpgK/W23DIXeDO6YFzagVS/q72cHqSynj4qqMAlnU4xxVWsr0qjUk7R1m4bj3C73SzR7XZ/AJyBljMqiHrlqxxdEC+JuKJrR621kTwfF1pus8emrdRvQT83aSEtk1qCbXaNUj+Y0SJv/Z8CjmEjiyrruWEbYQ2gSCqBq3Cy/qPfg4yrFXulmOE5vJL2IJXW/Ug7qIyHV5v25YfSW/uF4jLkkHuh/IhY7H0F8LHYOQuJeuTzFcVz0AtMZAstVUQPvYoKLmax2IDejs8umBMJbxrgmjnWU/91o4SYhRFyF49CYIQcuxge6IJ4s/zntvHCFJSxp/x43wzN5IY+Fzpc3YRa2v/TtMF46CFmdCK8p8ZDXwrCSz5MH/MpvHadAIhWgdefLx8Pfbyafxe5KQWmf0nKfCn3TxBKBWXXVomti+uIFkuF/HMLFMezGScutyjg0dg5C/E9t/0u6X4Xp1/h9Lk4fS70uaT6dKiy05tlSp9Lb18W5S8qSUbRQjLYdrsLgX8Rhtzb29TlK+ibFFVpjNyt/jnFTKWDXNnFrMur0BGVpsCdcULYqRSQm1JgOyNKrf6P3T/QHvrJxBwSnoKsS8r1tCHK9T31q7fCEyuYsXYLHVkP+j2dQ+8qPOXp+lFK1kchl3Gp0Nc3TSt2EwpCksX+jNg5Z2MpgU7uoh9XbLsZuSdtNEkqAKTQCv10/xwz+dsLxGD2zMCDTfi9mIJrkUVDFV74iVe4N/c2LrSZ+/j8M8v87yDsdbxKrPlME7lpBSQcC4HtoTfHDrS3Ie5psvvRQhhlkCS8FFpwG4iklnSRuw99DaGhxf5cqSr1AxksugiLcYHu42jUCHh6ydJdarMglAP5xrltsDfrg3ndDrk3a5vBrOeQPw2oGMQL+Cpyd685G3A8XRXc6fdIZ7Qy7/RqJd7pdUn1uaT6PZr7Xdr9cGb7+sUyXiSlCiZttxsUwrO88wMV9E3KMW+htHbosZV6Y7RZja5wb9a9l55blqPUw8BGCzvkHopjtAjGbGx8ZdC/M1PHwtwrRykc1/fSe37KyJqtpB9aR9U/Ojlg4Xqq122DrEK5Sle7z6pgK95SW/uF4jMuFfp0uqrYTSgIcYu9B7wJOAkdQn8dcCjRHHNb6Y0vHYnCtzkWeHaJV3o3E9zraIXejjaw+zdQiFI+Dz2EReOSBIFCeLBNhXtbaLO9MHsTSy9woLuzK8eiH+mfda+b/OtmiPWxgItHjnXd+qetaGUXolZ7W3iZQDT0Lm4tLwUG6mMHuR76OvQ9MZ+NHEulUwkkNa2HZIPFrtYI6OjoHvwkQShz8o3zwKhtzdVmfVxLzNjrf8YY0xKr3BfZ+xdf143ccjrai2vklrSnPZtktTKU7nXBV+TJuLqYWL/H5H6Pvqwi5W8BZv4H1v8peP+I3q+k7XbTvjNisO12IdlID3lS6Si8McPsSpQkk64iVOjTQE9nFylH9zsus5X6tsLxiFFF+P23ELtPriKltDKfdhWOgtQ/t5LuQy+M7fDmFa10Kl+JN2PXVYExRBBsxqVC375zbbGbMObY27rZnmyFvunn4CvzhApgUHwkwYsLejEthT2jVUy5tRcno9DHC/yZEPyBGKjvZtGAIi2IJIesQXKF+xRw+hnH5vQ5yWhhFkXIn29XKJKqv4P+7pv957YybwsvzYSLp1GWbcNEqSyA8b2ezTG+rZtD/rBY+1hK5Iwdq5HtRKvcG6UiqUZAqFwM3st3nHnsLrRYEMqDfOM8vg6adX6b//6e5Ho3IboVLeQaQotFksKr0PLH6fi71yilC4q5Socr95uHC69uxXnsn6g1W0llPZpcRaenQ5bjEUQFzyO35TKrDW9Eh53vzfC324X8FeBbyK0AX+hUOvM/8+1KtIZQoU8Bbz/t2KDvdpGveFSe+buRqNEiaYeVQpCUP++hIx9biKWBKkXK87QS7ylSnlbsnQP1bvWpXkjVwT/3a2Y72qGD8h07Rv4tRQFAKCrjUqEvJZTyw2nccMEZlesSXdxdS4mww/AiSq8TXfCNgmtoIFrAaiiTpvJGv385FnxrcTAKPSTn0A9G3INtaCJPfrYqjFBgL4S2QNCJVsJNQRlbCDD3NE48rcAYPKopblpB0pgyQk8b+h4E4XcJhpcJRBX6Yhom8hEXmu12taF/Y/bvrwZ9j4mdW9JKvTXX2G3uJTkCIalEaSn2SxBKkSRFyUOv81OJ5iZD9LdnPPSlMlfaxvr4GhDZatcoQkrpivYmbHnVdpxfryf9Qi/p362D9Vtp8hRpFzo9BZ6KFNMtdF8Hkl2yjGy7XYh55y3lvplwj/a486OQkWtmfEZ2L0DP/ZvQCn28v0aWMSRFToKWC+z6P/Y9LfS2wvb3auTC7SQ4I3wBKzJ+lSK11yTUnmmyQOYNk+nfcyI7fKHPUzrs3vWKY4wSSp8RVbnfuXMn7e3tzJo1a7TbMyLuvvtufvGLX1BVFYbSH3fccXz7299OPN9xim/HUEpBvweuF85y/mysKlJQkcIZaI+1wa5PNE/LngDsPPNgj09Cxc4jd9KEMJ83PmkqRU41UeUpyHr64Vn9SzuodAoqUyOu0Gn6Es9DywBbiXnorciDwb5Ox3H8PWyT87TyeegLsWbEK9ybRXEd2kLdTNQCnHIg25fBqY2ml+Tz0EM0ZD3JcJE4KEaRYEH0v1AzXo2HuinW5njF/mb/3CxaiI0YXca47cMhKc/OjF9boQftwY5HZJS0Mk/+9iUVxasmNFgAI9pdoa8vQ3X1+EijEsYv+ca5vRba9WTWo72+EK5/trGwjmjdFEheywuJrWjb9QBAK35n4IsRniLtGU+n7+F0Fc7S13UfK9Chy//aQdU+U6lSijYUzZ5lrHYo2Pod6R+5skuW5O12hyq7QP66MqDn2Bpi3nmncH2P5M5bY3Wt367JhEan/r4M6dqqnCLG9lofjy7c4Z+TJJcVqo9J67pCR8pMsc5LOWjjk6vD7h3fO59yddRJqsvBObAZKmqY5EC7P2CVp/D8f+KVmEwjlAbD0mxffPFFPvnJT/K+972PT3ziEwBcc801XHbZZbzyyitj0sCh8sY3vpFHH300eORT5gH2mHF4AVuWi/IU9LrQk4UeVz+6s/rR47/el0W5I5+KgsXdmkg9tMLWjV447MXCrooO0YXfHGvIH6IX+d+ugt5s2L/ubLSvPVnodYN8tpH2zSz+pm+b/PcnERonbOVvqB76JA92Mwnh6KpwVm47BNHkokE03N7upwPccdv9OcqQiTxIUugbiIbnFdpoAdFQe/Nos9oHyYKL8dBD/kr3paAA51PKzfZRRqE3jxr/9b7Y+cWqVDwU4t+5uaemir89JmvY9RoBP/zJr0feWEEoE/KN83z1ZDag13nbYI91rCV3ZxP7WIwionb77XoACh19Nw1/bvRUUFTM8bSX01EKZ48W3d9+UJXgHDQBlKJZWYoRsTmqgN2M9M+SH+Lb7Q5XdknyzkO4fsRlFyic7GL+V7wgHuiCePsS7efc27XcUuFE14rIem/JME3+9fpJls8KRTyNwrRjJ6FMGjx8j3ygyCs/jWRLF04FpPZtxunpZiqw2VOBgw50Lr3np24Igs2QFfrXXnuNr371q6xatSoy0c+aNYsXXniBxYsXj0kDx4ItG5YW7X8rpcAv2kKfUeqz+nmvqxVhv7gLmeyIld6ksC4Pvcg3ohUHO986UjjOv0b8WMfgBayUpyBj9aEn4bnpf783IqEhqXq/AjYSWrjjBeJsgWYg8nmvjbKbT1Eca+HHJbfwkUe06JFtnEkDl372A5EK94b4wmhINFpQuIUxogSaxQv9vZtiapFc0JhhogItwLTG2m4vsKVAktHCeKlNFXgn9ndP7Hwonf7EsYVk00ajtNeRG4EQD7kfbv++dOkHh91GQSg3ksZ5UrFUM0dsIEzFiiuGDtq4lrRlZDEVhSSZxRh1PXQKgS4k5mmvvFKkTf6xglR/BU4KVBOod88ktafOSW5B0WYU+gSlvlAMtN2uiSwcieySJLeYz00i/P5MGwptzIjv0GMeq9Bb7tryy0c//QHL2RT2PKmPRqGHgeWzscYeU/EIw+2EFe5N/nzajF8/DSTlKdIKnPV9pPZsxGlM4ezopgnFTuXL1Yoghz74fZRIZdysUvR5im5P0eXp59kSadt4YsgK/T333EMmk6G5uTny+tvf/nYAXnjhhVFt2HBZuXIl7373u7nwwgu59tpref311/Oeq1QRlyxXhcp8xtOPXt+LbRTffi98r39kbU2qeguh0gu5Hl27wn2Sl9pY9JOU+eCn22+1O+OFhopuW5k3/XNDs+MI+hZX6pO2rEvq20Ak9dtBh661WecVMr88LrTZgs56wgr3ceNMXUJ4pklzyLcwFjOtIF9BvDaie9BDspcekveij4QZFpnIb8ZSejsJlV1bgKv0j72xz8eflwr5BCpjsKi3zjVzSlfssyQcB0LC7YXxQNI4NwqErSSZ34yplQO5yjzo+cZOd7ELhxZrbokYrK01fjN67qgFHKVD7h3lK/F+2DIKnHVtONOrcSbW4+w1CQcFStHgGQ99cYzVQf+sfg223e6wZZeYd958pp5wL3rbaFO4dV1F+msbFNagPfS2/FJTUxWp+WCTJJ9VoNdJU+ne3NdCG2xsucwufLuDcA96CPPntVcecP2UESC1rh1nzwac5hroyjJRKVr9QaussPtS2YveVYoeT9Hh/746POi0nvf40QRCYRiyQr9s2TIcx+H73/9+5PW999YBv1u3bh3dlg2Dk046ibvuuosHH3yQW265Bcdx+K//+i96euL1oYtLmDev9KPfV3j7XPjnJvjlC/CvTfpvc543Qi82uSFrRgE027qZhcMhN8QLkkP04h76iLXXU7omQNbvmzFcvPI6/OoFeMXqW9ZX+rMj71u8RsDrJHjoHbt6/+DLYj4PfSMDKLtjPLHGhTbX+n9r0RZuGHohnXwe7mYStn1TUSFxLMlnRLAr3EMouCTdpwmEhhdbaCnkwj4QSTl2RuFttM6z+2Qq3avYNaA0+hQnyehgQnuNSmIbCe1QSRKO4xlPqcArs7uh/L7trv0rBIGiZK2FHvr31opVLNWvqp3KuKT6sqR6s9RnXPpdL7AslsLvL26wNsr2ZsI85LTvjQ9Clk3+fNbDWd+Hc/AU6O0LFH4HmKigXelZxp6DPQqr0BulNkl2Gel2u5C7Fto598ZDD7E1sUDGDIUW8yJKvf/6a+iCeBCtAZQkv+Tz0EO47ietrYWYWoyMliRv7CBMBwwq3PupIsZDn/bz550N3Th7VuPUVZJKwaTOXtoUuJ7Sofae7pDrFT/q0FOKHgWdCrp8Bb5D6Uenp1/rVNCtSieSYHdnyAp9Z6e25c6ePTvyeiajgym7u4u3F/Ds2bOZNm0ajuMwZcoUvva1r7F161ZeeumlxPObJ87moo9+gssuu4zLLruM+fPnc/1Nv6CvLxOc8+iCJTy9ZGnw99Ztrdz047mR69z/wCKWvrgi+Pu11Ru4c87vI+fcOef3vLZ6g/7Dg6Uv/pv75y8Old5+j5vu+BXb7lkBL2XhrnX8+ZGnefT/nvOLyin6evqG1T4T/vPwg4v454srgoXj9TUbWXHfvMjCMf/eeby+ZmMwkS57aSW/e2BRRJl/4La5tG9vDRSLfz67jL8uWhJMJn19GX74w3vp6+kNlPVH/+85/vyPl+Hfm+HeDWxb1sFNtzyk//YNGvfPX8zSZcuDtIJBvz/gH8v+zQMPLIpYQh+8bS5t21sDhf5fzy7jb4uWBIp81rRvCN+fWTcd4ImHFvHayysCD33Hmo0sum+e/o79x69/MY9VqzcG38XSF1dw/wOLIn246cdz2bqtNfj76SVLeXTBkuDvvr7MgPdXAZu3t/Kzn8yNeGKefHgR3S+vYC//3m1es5Hf3zcv6PfCJ5bkfH9LX1zBg/79Nff4Qf/+NqCFwH89u4zn/Pur/Pbd9MN76e3tC64zFr8PBbz04goee2hRZFF84ba51G9vDdq77Nll/PmJJUEfspkMv73lXrJ9mWDruucXLeHlZ5cFAsu2ba3ccusu/n7Z9ftr+vTUE0tY+uyy4Jzt21upu023z/Tr6YcXsfrlFdTjVwNes5E/3DcvInDfNWfeqLbPMNL7+/M580JhWcEf7tPzizFYrH55BX9+OBx/NcCE2+ayY3tr0KcXnl3Gkwuj88tA7Xt0wZLRmZ9L4Pu7c87v8fzwxU5P8dM583jptY10Ke3t+Puyfxe9fTYj+f7+7y9LefjxvwQC3/aeDNfddC/tPX2B4FfM9pXq92faZLfPU9DTl+GOm++lpzcTKE1/WrSE5meX0QykPEXHpu386tZf4fRlSfdmSfVlWf/AQpy/L8fJ6P3ZN67ZyO/unRdctxjfn+3BXfjQIl59Wcsvm4Apazbyx/vmaY+mnz//mwceY82GTThKwesdvORu5pHXl+G0or3zwMNzH6ZqZysdSit3Lz23jCWLlgT/p7dA99dTihdfXMHvH1wUUQDn3TaXDdtbA2fEK88u49lFSwJHS/8Q2rdtexu33jo34oz5v4cXseblFTSiDfWb1mzksfvmRZT6u+8Z+/XDA7b68out1C98eBHKl1/Sfvvm3TeP/3tiSaDUx8ffyy+t4JEHF0UU+vm+fGDq/7z07DL+Yskvhbi/5n+98tIKHvflF/M9Z26bS8321sA4s+yZpTz15LNB/nxfXz83/voB+te14lSAM7GWv/7tH7zctYn6tgxppVjb1s6Dv3zIMlIoHnywePPfHxb8hSeXLKNHQbcH67e2cuetc+nMKv1wFQ88sIi/L1tBr4I+tfvPz4O1b/78+YHOedFHP8FY4CxevHhIppP3v//97Nixg9tvv51PfepTOI7DokWL+O1vf8tPfvIT9thjD+bOnTv4hQpAf38/55xzDtdeey1HH3105L2uri4++OFPsnHdcpqamvJcYWxQWQ+6+nNzyn+zFJZbt+HwSvjom6G2AmrSUF+JUzH0+oWeUoG1rNMPgelCKwWXAh8D3o4OxWpwoD4FjSlocqA65dDrKToUtHvQ5V+nB/gD8GfgGrRnrcEJP9+cgrqsh2MK4Jk+/uoFeMUNG3dIGj78Zt2v2gqoTUNtJU7S/moJuEoFIT2dfvtM3z4OfAU43Opbg9+3Rr9vg5FVijb/O+tU4Xe3AfgU8Du/7/Xoazc4/neXgvQIq/YPRp9/P0w4U5fSHt2XgOuAe9HVwoM2+f1d9uwyTjzu8Jzr5bu/jwOL/Wua+1vvf4dNfl9HujPBUOjy9L0Nxq3frp+jPU6fIzrualPQ638vXUqfcxtaOPhPdEhpvX9/zH2q34WdI0aDfN/9I8BfCH9bJhqmB/2b/QTwNnLHdZMDVUXuk03GU5HQu06lfz/PAf+Lvj816PHagx7HHwDmoD1wdfj3yfpdVQwy5p5espTjj80d5+VIVqlAAMqoMFUqBVQ6OsKhZohzWSmS8XT/Muj+GYNbmrB/tSmoHMN5plxJGuc9nqIzYT55Ar1e3+Ap6vqy1Gc9GlyPbFbRrRRdrmKNk+L/Szv8tNKhoipNXXUFDRWOnu/9OWas1rR8dPrhu2ZON2vALeg6Np9QirreLA0Zl/p+l/o+l8ZefeSpTfRs7abjvL3pvH05Pf95IF21VfRWpnmqMs0zdWm+XFNBVW0FDRWpiOxSP8ZrGwwsu/wH8CXgCEYuu3T5312ntSb2AHeii6peSrgmNljr+liviX2xNaHLXxOeAX5GuCbUo+/H8ueWccqxh+WMP6UUXQra/O+u0xofVwNvBc5Dr52NRq7115HaMe5j1pe5273QW92N9s5/BC2jTQTqlKKpP0tdn0tjRo/dil4Xr8+l45nNdGztpuu82fQAXU9toH+POv5n/xbOrUpzcG0FtbVp6mrS1NZW0lSbHvLYGG1cpYK+dmUVvVmP3qyH60/oFSmoqUhRU5GirsKhsUjzSanS3t5Oc3Mz8+fPp76+fvAPDJEha4lvfvObAbjyyiuD17761a/y05/+FMdxgveLweLFi2lr00FFO3bs4IYbbmDChAkccsghied3tW9KfH3MCStZWPE5Cqa2RM97y7RoIs4wk38DL66K5ta56Bx649ENwrPMw/JOJx3tfFdICP3Nqtw+Hj412rjDp0XPcY3NcWgYy2c8D60X7Zm1C8sMth97PpLys43ppxg55vF7aYR8kz9v2hwPuT/+2MMSrxcPWTP9bSLMtYNoHph9HEv8iLLI99pG7pZ1jhMdw+bRQrgXvVEWSqkifORnbb2WVAHeUMWuF44rFPl+E92EFZft6BBTI2BXiv7tLsq8CWHssgVfLzTKdno6fLFHacW43Mia/qlon+w+Go+PFFTKJWmc2+Hb8dS6mUqR6vdwMi4V/S5OxoV+F6cnS6rPpT6TDVPg+j2cbJjeV8gwdEPSHvTmsRldEM9UA09b+fMpM8GvbiM1q4FUZRqnAujo8+cZRT1a4TLF8/KFR49p/0iWXfrQhdP2ZNdkl6T1EKLretJ3O9bpLlmS6zysJkwXdAjTI4865rCg/zbG4JKUEmpSIk1P7LW1ENjj1h5bZltIo7Kl/BNSJh3E1YPRUZBa3YEzszG8j7W1sDPLZAe2Kj9FyYTde55+XqD+xckqPX6zWY/+3iyZ3iyZXpeXerL8uCfLsh6Xvt4s2b6sPocRlcsShsmQ96H/yEc+wv/93/+xefPm4If197//HaUU1dXVfOhDHxqzRg7GE088wc0330xvby+NjY0cdthh/OAHP6Curq5obUrETVB4FaD8zNIm4F3TYZ8p4UxkJ0wPkWDhIDrRbPHfn4qlyDtRRdCQtDDEK1JHBG9P50E6XqyP+0yBKRv1BvEnT4R9dNXZiJHCU8kVUPL0zQgudh7aJvQlJlh9M4tEvG8DESi5jv4n5m+jjLSjPYl23wuh0OercL9XrM0OJFaItTF9iy+MTUQNFuZ/4//vIX+JIyCp8rB5tBPm2SWNS7sfE9CRC3GlMBBklBpzT8xAxNtljp2E2/IZg4V5s4Fo7YpCC6LDIel7B20ItOOh7HtoDBbBZxXBXtil1r+xpEdBj6ejTnqUPpoSI2lHRzWY7zMFVCiV9zdeanh+5IF59CgdhWCEvAq/f4a0gnqK+1stdcycmZRDvx44yFOk+10qPIXjK+xOv4fKKlCKulSK6hT0paAy5aCyLlSlCr5HedCfeD8s0WcL/pZ1ytqizs+fT7lK1+5Z30vqLK06pVocnK4sDlpZakFHLwA5RouxXtvs/tnb7Zp+vu7/e7O12a7ILvbabubXCUSVXdOWQqwfZozaSr35DlaTWxDPKPW6+F1uz+Pyme2MaCN5fSyE0ptkIPLQCr0tb+sK9/qEIIfe5M+v6yZ12p5BbaPURAf+3U0TsNPszuBZhi9VHMMb6PuZzXq4fVm8fo9sxuNfGY/verrvz6Ucvu06vFkpPBSuU4FbOfQoY2FkDFmh33vvvfn+97/PjTfeyLp164LXZ86cyVe+8pWgOF4xuO6664Z1frqiZvCTRhm97YSKKvLmuN6vNXvgZK0AAxH393A99CrqpTeTy3r0olhBbuE48zdElVmIKvTx/bAjTXStftkRCKaUbmNttD8jcJ3Gi8mYo73nbqDQxv4eCnGF0VYcJ6OVy7ggYLo5FkKB2W80yUCzFjiKaJSFKSaTRucNTZncknPNiHfeWhibCIviJVryR797ESL/y/pnbeiieDn3xSEoemTGbjM6zM3g+cqhuaZyCiK75SX4bmMCgMkxt8ebwYSnx++DrfiWCva9s+eITvwK1da55nm+7bOGOt7yjfNywlWKrNKh6LZCbwoGVhjlN6V/21UO9CuoLrH7nw8P3d5Aofe0EcdEG6Ut4TTtQJUC1xmGgDIOiI/zyJJLVAFeD5ye1YpCUHDLL8LrrNsGK3ZSfdBEKvbag74sNFSmtFHe9SCdLoohLd4POyLNeOhNRfuUh79tnfbYs7ETUuBMrtXzSlUNTpfuhYOiAegwW355uYpXIfqbtDOPQkdNmq1nR1t2geTIu0KtifEIElvkWw2cQNhPI8O07milJc98nhSF4KD7uMb6nxDt51gTH0umDTvRofb47Uz5eoDjhvvP44/fdFqRmlxLynG0waq+Aqezm8ko1hpl3lzfVWFEToGdFMr8jjIuXr+H6tMRPkv6PKpcjwqgL53iT26KNzugUqD6PbyKJOlGGE2GZTI59NBDmTNnDr/4xS/40Y9+xC9+8QvuueceDj/88LFq35gwaepBhf+nSoUeevuhPFjfBfs3wHbfDxf34jO8KsBJYV0KvchHtqxzbG9usrBtH2sIdfMcRc/1w/Xi/evIaGl933rY0W/NSHYfh9y1nPBzczlboYeokSLet8HIt/1LHWG1WHM3xjq0y/6KkoS2vYkq9A6hUn/v3MfyXjcpraDZf82kVRQyZD0QLoiNK/SYM97dgbzzxhth3yN7kR3rPgyGsaxjtcPuownLi/8OaxggMqbEiN8/08YeYhEI1mdMsU3I7dtQpr2Bxnm54Crf6+EfM0rf878B/w38FW1M7bfezxavucPGtNvFrweL7s/fgO8Bf8fvkwrP7S/FAV5E4uPcXhNsRcIFNnqKvV2PlIfes90oEGu2kf7Neipf6KL68XXss24L3b7WpTytaEBx5sr4XG2em7DlPYCU64Vb1vkeekcBa7phn3pIpUjh4LRU43RmfYUJmpU2/nagvaTFSMeyo+xs+cXeShiinvnhyC5JcouDjk5o9V9Lmp/Hel3PUerRhssNwGysvvqPB379WN40g8AJQbSfJrowvn4E8tkYpxWY32HkfwLbCPegx99pwjHb1NmOrzXdpPZqIJVK4aQdUo5DakItTo/HlKzHNv9GmbB7ZZ6r4vxOlavwsgqV9fQj43J8X5YKP62nqS/LyRkXsh5ev3+exNyPOUNS6DOZDKeeeiqnnXYaq1evZsaMGRxyyCHMmDFj8A+XIFs2LC38P7V/vHbofWtGSzdvaoGOnlCCtX+pw/zVDrQ1ilF6k7zz9h7l5mhXfa8jdz/s4BhIFlYflYINnTAlBVProa0v1FCxjmpoW/Mp21ttLRCmb3b1/nge2lAtmHHLr11vZAIElVSTPNhjQbAIqlBY89A5ydsJ6yHY4WpGqf/y5y9MvGa8b2YSMAkqxktv92usQ7sGEjR2kuyhjws9RnjpJGrIMsaCYoWnxYkbgRTaiGI89BBVeu1Ul3wGgVLBvm/2sRM9vux+mWMlu1YjIN84LyeCOZtQuV8KfBN4EvgG8AJ+7qKy93QutRGQjEfY9iy5/fsa8A//dVeFOZpCSHycm7XdzHNmLdyC9lpP9bRnXnu1dYgv/96qn9eA1w5Hr2ijz/e46dxyFTE8FpKkaAMP7Z2fBFT4uccpo8y7YS4ya9phVqOO2nLAqauEnoxe2xRUoahEF/KyQ5YLodTCwLKLcUbEoyaHs90u5MottqG+m+KsiZ5KTpFcj+7fHlgeel9e++ylF+Y1YiTJAJAnCoEC3l+i99Y8dqDHLiTnzztB/Yd2Uns3hHKNA05VGqcGJrX10Kb0f/E87an3lL8nfQH6ltjXfg88nb5jlPrZyuMNa7dx/tMr+fL6rRyg9OtkPTx/O2vZnnRsGZJCX1VVRWOj3iV5+vTpY9qg3RajYScpvFMrYHINbPN/nsaSpawZcIi/Ay9WWMaeYDYQ7ktrJlE73MkmyVtvEhX6/WOozCuUiWOL1AkA1vfC9GaYUAE7esKLJoTdm1CefJh+2Hlo5nVj5Y4rewPtx57EYIVXjLILuR7sscBVud55F1iHVpAmkF8QyEd8UbS/L5OLluTBGOupOCkU3UV78prs9lrCSrw/Lf5rbUSvU6g+DES8HXYmTRtW4RyifTIV75MU5VJbHuN9M+Ooi4QaAT4NRA0WpWqsGEviSoxC7zph8xih0q8I93YudZKKnXnAgth5jxI1XOpxVA49LA4DpdbtlVVUuFa+uR8h6MycqMdML6SaYMX+zfT7mpZS5qivX+ivPp5SZuaOzfiKn98+k3tsiuI5ngdre2DvunBtaKzA2dnnr226Iy0ewdZ1OTVbxrivA8kutjMiIpcNU3aBgSPv4ob6QqyJxhkRKPX+cQ06fz5HDnWS5VGDWTaS6v+YjbOT5LOxJKn+jx1dMsFvp8mfN7/HlJ8/j+vBuh6cvev12p9OkUo5OI6DU1tHc2eWHhQ98Rx6d1iqwejhKjzX0x56zzcsuApv3Xb+3x/W887nO9lvwXq89VtRfuSP+cyY34xxzpDni7e//e0AvPjii2PWmN0VHYpuKby2or6+B2Y0wwRfXe72AykTwu6H9L+ILfTWJ40lGGJhTgkLR5Ky5GfA50ycyv+nKm6sAFjfBjNqYWIV7MhENTZP4SrocxVdnt6SxOy3nE1Q7k3fzFdn9+11dJVYSM5DGw75PNjNFL7wSjyk0nit1pFb4d4WBAaz6edLK2gijEIo5MKYT9AwbWkmjyHCif5dhfb4ttrXUdFrFpOk/HLQRotG67xBPfQlqMyZ32u8bwptkMhXorSGhDnFP5ZKVMVYYiu89vx2Zuy8M7AEZBV63EqdYEkg2sfTY+edSXkaLIqFnZNse1/XKcVMz8OE+Abh9krh9FSgaiDrQOb0mbTuOVGnWFmTZfw3WCiSjFoKS6H3UwJSHlqZN4r9636S2LR6cBy97jekSfX2ggrzlJuBVqWvmi+9a6wYSHbZiFboYddkl3xrYrV/nYjsUqA10SVXqfeA19Dh9oERw4kq9Xk99NZ7tgzTRJiakU+WGCviSrwtJ21F115yIPwNuvjRJWDy50mBs0edVuRTVvRBcy2VbdCgYJtr/S9XBVEfBf+d+gq88lQQeo/nkVm5k1QGqNXRP+qfO3SYvatTA8jqzwljx5AV+uOOO47GxkauvfZafvWrX/Hcc8+xdOnSyKNcaJm8X973PKWVyX7/4Y6G6TaIf1ehNOYXx2BDG8yo0Rs3VqO92PnC7odAsLjHFo8etJJjh3bl2xolrtDGPfSRitQASuGZWFG7j1kPNvXDzHqYUKs/mPUCI0Ufet/ZTk/R4er939s8gn1oe1XUQ5Ovb91oxc9sWWfabj8fDgMVXmnzzylUDl4QZh9bENcwcIV7B7j/gUWJ14wba+zvp5nCpxUQ/z/Wd9qOvh9VxO6Hk3yfQIe47Uxoe3yxLTQDCRrthNvW2X0BPS3kU3hLbXmM30eDqeIf759DWCMgrsQP9V7lG+flgvm+4t67N6J31AD4oP+3mfNspbfUiQi71vFN1jn/he6fbbAwfRU09ji3Q7hzUus8xSxfiU/5L6aU0r+5V3fgHDUTmipgj2b929OLOJ6/mNkex0KRr2K/Qu9gMw2tBKVVNH8+BThru2FWHfj5x47j6IJiOxWO6YUHdZ7eDz1HmVdjP84KIbskySz2mpjPGTFW0QmefU+JOibWoHeuCZxKhBEJDz2wKG+aQdL6AVo2U2jDuD12C1X/Jyl/HvR3PgkC45rjhuM3CLf36z84qRTptKNlG8fR382EaujoowVo83+bdg69Uqqg28EppVD9rvZPmjx6vx3dLX4MXg+k6oADJmrvvcJX6pUO0R9kwClf78r6R4nSGjpDLiJ75ZVXBj+yO++8M/GcRYvKQ7Dq62nNec1Tij4VFuPx0JNFBVDhKKodqBhpJUlTEC9eBT7rwRYXZvo/hIlV0NqvN+eMh90PcUxHvLkqXEg2oJWiZoYWoh2fMM0kWkGs4rYiqOBvQmuCN17v1BefaO0q0NoH0yroA7o9RbeCrK6dgWuUUke31Qittegqnvn6thGt9Ay1b4MRLKQq6sFuZvDCK6NZbTSSd0dUyFkPvIVwQTTfW+CpdxwOOmDvxOua/iTd40bChR9ihovR61oOSR4Do9CbHLR4m/MJL81EowySFOhikaSQK8KicUm/wzpCQcX+7FiNu5EykLGhizDCJz7udrVGwEDjvBwwS4L9+zb9zqK9k7Yxz1bmveLf9kEJFJhYH1v99/dAz1n2XGeUgKyCyjLoYyGwx7kZI/Ft0BRaoT/SM4qDqXKvSPX047zeB2c34KwA2nuon9iI66/djq8kYJTeAn7vpu1xL6dCe+iP9HyFyAuVoZTyDRar22GfJnAIc+ibqsFDb9eXSuMovY60Y/qnMOq++b9jSZLs4qFllyq0QjoaskvKIdj5xV4TG8gtFjvWa2K8r7aBbjVwIVGF3sgwQ5Fb4g8T3daO7mtcjhhr4vObmcNa0eMupXSEScoff6YwHgo9fg9o9seuowvjOa7+uxFYpSvdt2Lk7FCZ9zzwhpuXsUsdVbiur8z7UQLK9VAKUu2KfxzexKQN7Uzfo56KPSfoyN2sh3JTvrfeAy+dGHqilCKjdEqvic4K9AGlqPQNHUJ+hjUUzCBKepQTPV3bI397StGjoFtBuwed1qNDQZenH/0j7Wc8fN4ovBs7fC27Sq9CE2vDSvDxzw3RDBfPVTITqKlwH1EAY38b8inzEO6JHZksTUhNvI8bemBGHTj+f5jkwM5eXKWCrZkyrs4N6nTDkPtuT29r1O355/j/zA47t/u2kTDcfrC+DYX4YmGH3Lda54114RXbqm0vGJBb4T4p7+7wQw9IvK7jW3/t+2r3Mb4XfSGEnvh3aI5t5CqCgZHFiXrszTkt6PC7JCGxmDOV/ROB8Ps03ve4B9v0164CD6Hxw1yzlMjnqeglt8p9vH9JyvxQ+pdvnJcLSQqvh64EvRM4FnjVet0IyuG8UGqjIIo9T9p93IwWxA9Ch+Ca1yMGi+I0uSSxx3leZUkptmQ9pvlKfNojrAb/agfsUYlTV4VTVwOdWSpQ9FraZpA+V+C+xceG/dvfAkz13ejpwDtvlCJPezhn1fqLYUofqlI6dLmzz59rFA1K0eX5fbRFMnZtHh2K/JskuyjCcPuhyGWDkaPoWh+eQCwNzTzG8DdmRxfaY3QnWvGehbVdnWXAePNhA8/nQdE4wkcavY5E6gTE5LOxIuc7JWqwnAB+MUci0SV2/jyz6nWf0g6pFDgpBweHVHMVTlcPU9A7V9g59K5bhCgmP2zey3ph7rwHKuPStH4H/zxkD+adPBt29Gm9wNcHTJV77fTLbbGntHOvU/kRukrrYu1e+He3YnQipndjhuyhv/jii8eyHUVD+cp8l688Gi+9p/SkUaF0vpkL4EFDSpEerpUoUijOer6uV4ejm6SZlmrtwY5I/UZ6V0PyxMVD8OyFw+x1CmHOkplMkzyD9tFQSyz816QO2Dn05ri+E/Zu9C/i6H3od/brrYk8Rb+CPqXocRW9LmQr9KlV/rVTDlQq6HegUqnEkDVFtHr/UPo2GEneedBWdHvbPoh6sIf9jwbBCADxPMkedG5Wvgr3QwnTCwQG36JvXmtGC1DxRX+s93O1FUBl/d1OuI8rRPMDTZvjhpcWCl/rYKjEFV1FOKZMjnl83Nk55vHPmmMp2K2T2mWetxGmFBA71qKrAUc+64+58UBciTHPt/rvHwUs9p+b+d11Qg92qX9P8egi8xvYjE4p2A9d8T7HYOGEBgvxzESx1wb7e2tX0KUUM4wS73m6ABfAv1tx9tGzqTOxFjqgVllrWuCgKfxcGazpsfU9g1aMpnphCoEDflE8RWpLt/7Ang2YPCxtsHZwWsDp6MeZqC86AVjpL2h2Jf+RRDrpkGAtK2rxTJFGR5MkRXIOVXYx69tIZBfHccBPrYg/mih81JoZm/Fxugb9u68ndEaY/lYwcJ+T+mbOb2GAwn9juEhG5jYV/s8d6DW9CoKK9o7rG9h85d7kz7NHHTgOqZQThNunHXAaa3CyMLk3w6t1NWHevG908zw/0qQAUXpGGVeeCvPojZd+XQftjXU0N9fyogKvolLXz5o9QXvmPSuC1/VQKhW0V1kOvi4v3JLV3LK0gmpHrwekoA5ZD/IxLhX6qpqw/JTZ07cPnUvWq/TfLlrRqTLKPFDhaIXfhIAPBWUpvCQqvA3hrDShEl7bGX44iDuzZokB/m28uJK9cKwjzFmyFb98W6M4vlIbnzQriXoLAf2DVX5f7QiE9Z3w1on6wwqYVItq7acfvVBrpV6H2fQqxQvAQuAc4G1KG1Mq0fej2slVcE3f1hMaK3Zl25dI/63rGOW+mVDxsAXwsVoYbS+cnWJghHsTmRDvs1EIX1u9gX33Sd5aMt+i2Ij2Bubr21guHEne3Q5yt3MDy5BBbpjhBHSKiX0tkzIwVsLLUIgoutZPuhOdMmJ7ZOxvuA79e4lfA8ZWUBkJSQYLDx1GZ29bZ4+5AfehH8L/HGiclwMRQd96vhmYilZ429FRJ9OIbgNllN7hFv4sJPF+mXG/Gd2f/YEHrHPLzWBRKOxxnlRk0AVedz0mZRV1Qc6uX4wrkyW1pgtOnqZ/d3W1OG0ZmoFNlpKrL6gF7kJOLHGlyDzf4r8/0eQeKxUoRykFzpou2LsWUqkgPC3l+Ep9dQ1Ot/I91Yo6BZ2WtcJeE4YgXgX0eTo9M4NOzzRzVKWjZZYaR1HjEFFYhiq7xI3zw11rg/D12JrYQoKH3p8/xmpNTNpuVwGrCAv6xuWWlAOrV29kv9l55BZlbfmmHL0Fo+/BqKc4qXZJcotCz9cTAZQi5Xqhgc2kjSiC/HkzflMOfmE8/5FOQV0FE9v6aK2t0XK2H2ofhN3743jMf62eCrap8zxLmVcKVrTxrwNbaEw51HjQPXsKlWu7UftM8MPyw9B7HXqlgsJd/YpAoe9TUR0shdbBzP1L+TpBtawJiRQy+6JkaGyZCegfRJ8/iDL+sUdpb9izwLXAc/7r5mHy64eMyZ/3Yg/lwfoumFlrmRgr/ZB7S9qPGwEG+lfEwptU+Lodcp+0eNjkKHvWj6eR2BZTro5hM9tXBP3ryGgpfXojQXzUhCq8HT3+XssqiDjqV/CiUnxTKZ5EF0j6O2ElZ5dw4bQ9OKYNRrG1+2UvFMPFVjbs78GYgYzyEVEWGd1FQykV7Mls71H9EnCHf863gJeJGmnsCvd//NPzea+fFLbmkJtWUKiwtXwGklbCbXfMZGV76ZOq9bcQrQNgjrYnphjEv0vz6CTsY3zsQW7IPQxP4S0UwfccE3BMdMFAHvqkGgHBcZD7NdA4LweSPJMQVveuRc9vK4l5sAkV4FImbpS0lbWp6O2rjMHCDrmXwnhR7HFuG+2NsgjwuqvYy/eEOa5WgFJK4aztwJmQwplQq5XdCUB7DykgqxQmN9fxPfQMLm6MKkkGHw9dEG9PT5H2Iw1M7nEQwrymA2Y1WYtBmE6WaqnGaXe1Aqh8D64CyPXOe0PsbMbzIzqVTskMjn5ocJfSocG9Kpy37P7EZZcNjI3sEjeaNjHwVq6jvSYaT3I8wlCh8+dnk9tf8/fip3Lnc6UUKuOiel3ozuL0ZEl195PKZHH6XPBUfg/9cGX2YZJv/t6OrnBvGmHvP2+e6/oPjcGXYKrc623rtEEn1VzHhG6PVhQeugB1oMwXMuw+rsx7fv58Ry/s7OKlmfVMdByqHYed+1aj1rZCXz9YFfFV1vMLZofjrR/8aF39u+lWWmZ4DrgGeEaFSn5GaUNaqaeZFYshe+gvu+yyQc/5n//5n11qTKHYvumfQChkmAFlBsvfgSv8cxcBP1JwDFCtdPh3VkWrwg+I7bW2Q+9b+/Q/NqFiAJPqtGSb9XTV+4Sw+4HscPak6cX+TrQEEyqBSSS9bOe7miYpo9CbPhrv/JQUVKb1bK0UTKhAdeoceh204FsXPcUT/gRnvDHz0aGmWRUWf4oLhGYSM3vQY/fJ6utwiS+G5hp24ZUm/3lcMBgtjHeqn3D+c8ndm/px4Dgn2mfT7k9efF7e6w+08NtpBfGFcawswYHQE1MGTa5dUnvjVe7tkHsTSQEj98SMNnFF1dBJuINEoOg6+sSU/178ngx0vbHADlEdyHOU1Daj0OdLKagjNBImXWswBhrnQ2Wo/RsL7EiquAd7qn/Ovug882OxtoLCnxdK2FuRtAe93b/90fd/GjoyaA+spdIJ12gpjBcd5xHDh39UnmKT5zEj8GB7geKQXtlBat9J4GhFgfoKnK5uqtC5q8qfcPWarkYUhr4rDGTU2tPXyEwhvEAp8jycVV1w7B6WVugrRQA1VTh9OrbJARqV0kXxPFCehyI9LC+u66dnmodRMjz/+iY904QGp7AiC/PILibkHkZHdknyzttGboOdRjcW60fwGyZqdFRoD/1RhH00/a3wlfr4fK48BX0u9Hs4RiH0Uy7SToqU41HhpmiuTtORDr+14dzbXe1r0mMH2kNvijcG+fP+l+OY/PnTpweCuJNy/AgTbZpKATTWUrtD4cyGVhf2UH7FeC80nIy1DKDD5d0gb14F4fbgreyFmRPYUl1JY8qhCuhqqIHmOtTqTtRBVti92f3K9VBeCuWEOpirfD0MeJ5QB3sCuEVpObffP8dzxqk3ehCGrNC/8MIL+YW4Ak36o01cYcqiH4/EzpsHvJVwMPU7uurikPpsZjNbqVcKNnTB1AqtuKf9UV3r22R39sI0v4RUjlI/8L+Kh+ApYJt/jG+NYi8eNnYuFtb7DjFvoVIoz/MXSBVdkTf0wvRmyw3sQEsN7g5PWxm9cOsNz1Mc7MEfCbt4FmHopfFU214JM4l1+O3Zk2gqQWC4GOGwjOeXGwOICeuKK7mjvWiYsZn1x1wWfT9PBJ60znsXut/xCveDkbToO2iFfqd/Tr6FarQx3oGkcO0Ov01x44qdXxhXEFuIht7Z1zbKfTGIf4+mTV2EHnrIrRNQS3TMk3AcKzyla12YedK0r0KpnHzRSP9U+LwLHSaXr/hmNaHBQv/PwhlgXD/lx+y6aeYP079h10sZJvn2oFdoZWa2f97+6OgcexyUQ565IqaoWcuY8dCDTit4DW04D7a5ovQNFsXA5G8HO8XijwnX4yUXql3Fq/2KQ11f8XU9Usvb4H37aGXeX4vpUTRkPTKVqeBHqyPt/OcFNHsmGbU8/LQMP0Q5bZQi4+3c2oPjAdMbouFm+HNNYxpnVZd+yVPaIK904a0WjJfP3z3HGXwuNWuyieTs8bT/xYQGV/rtTjta0TdyopHFItGT6DVqtGWXfIb6ZgYIR/fn29G827YiHzz3H2uJeujjSr2NUgr6Pci4WqnPKpysp9uqgJSnlXqlmAx01DioVLh7gWnLWK6Tcbnb/L/taAOlnT+PQkeYeConf56UQyqtq9ynHBUO6ZY0zqZuJjCBnUoxBawsXhN2P8o3MI7raQ+9rcy7Hp7yYNUWskfuQacDEyocqrLQpRw4uAX1yk44sCX00Js8ej/sXqWdiGHSjJMFsX//CDoN13X0+1mVO1aEYRo5docK9walVOCZtxUmD/0jtDHKZdY632VwdE6aF1XkzS9+fQ/MaA6982l/+p2S0t57LInYDrsfAFuRtyeXjegiJFVEJ0+jBCb9LpKUedDKRZDv6rfJFMNTQR+VLogxozacsQFaarSnvavfT9UL99CsVFDrj6VvAm/A+oH7C2mSwWIjWsk2FcLtVIKRZgHmWxRBL4xtJCtmQw3bG4yksWnGp9n+62TgBvTWdRWO2V5x6JNcpH+WLNSEtpCaoiT2oj9WYV05iq71Pe4kGnKfdG+MIGTOmYAWXmwh0Vy3IKFpebD7pqzXOgjzyyE63owRDbTwaH92LFI9bLJKe+86VFhp1lSf7VQ6zLTPi64BKuHYRRjRkvSbqkH/vhM/P4bLS78KK+u2+/1rV9Dm969b7cLOJkPEnkPi4+N1tOcatEL/mvWZpPoapYjpmz1WjdAWj0BYARGFp5wq+RcS29ibJYze+qerWON5rPYUN3mKV/t9D/2GDlJV4OxZr8PtHXCq01AF9R09fn0OhQm7x4TdU5hxNZhRaw/XhNiroCZASkF6XTfMrIG0yZ/XC5nje+idxjT09ZLyO1OjFJUK2kyKgTUmB5tH42uyqbvUA/wNuM4/mtTNjCUn5quRsREtt4yq7OIkr48tRAuPJj1GE08lp86Y2jbTiBoubLk0QtZX5vs9yHjQ55LqdXG6dai90+vh9HvQ79HS79KTcbEjTOz5dCx0lYGcETuACco3qKno/vMO5OTPm7FrPPQp87w+Bdu7mIhiq8IvShfqY75PbcxQSvmTjAoK4qmsp40Jmzohm2XHjCbSKYc6J0VdyqHHcVB7N8COHlR7r/bI+4YAPOV76a3UF/+J6cdxsTacSTQqLcvg99NVij5P0e0pujxFj6f3ti9XnXUoDFmh/+Mf/xh5LFy4kHvuuYeTTjqJmpoa7rjjjsEvUiJMmvaGIC/bKEuBxRtdhfMI/9z/Ag62zrGV+kEJpC1/EAeeegUb2mBGTdQU6zi6ErzZus54vWHIHvqkCvfr0d55sCLTYs+TiCt7DmGVewWhlmeMO6aProJN/bCXsZzrSjUq7eA2OnitfWG4vb+Yr1WK0z3Fnvg5MsTuS2yhNwYVs+0LWH0iNFiMWKFPWBhBKyb2tm4q4fmuMtDYXAycD3wZOJyoMl9JNO/uzjm/z/s/8inGRvHKWy12dLqYQ1JhGchVBsHyyFtjNy68QNgHW6kfyz4MRnysmL+7iW7pZo62EQ2iqS72tcYCVym6vXDLzmAbT/tvpZXeYFvJPPcwKaXAfm4bCQ3D6d9A4zwf/UoF/Yj3r9v6u9vzc4zHCDPNx8cp6MiqqegxPhtt3NpJ1INt19goReL9MkK+US6moPt3ADoU13ymXAwWheTOOb/HUyooxhY8ANdTPOR5pLKKaleRcRV/9nQRqdRr3aQOmAipFI6v+Do4UFdLbWdWG62MMo//XXtq1AzUgxGIOtZzwyZPMT2oCRAWxksBqdUdsE9zKMiktSZkco+dugqcVi+cSxU0K224i5cm0gpf/jbavzUTMZgFlqEdEE+SW/vHroGTJLu8TlR2iadB7rIzIsFQ3090DRkrQ33S9skKnT8/Cz+qkFwjRopwPldG8eu3Hn0uTp9L6t+b4fcv4qzaDP0uqX6PSf0e/eY8LMP3GPTPEJ+/7bG7HZikCCNKPBXkz6c8cvLnMYXwnFgOfUsNdPfTopRvjML3yuvfrGcZMMYED+2hN+H2RplXoFb04O0zlbZ0imYnBWmoTmuF3qmqQM1qRi3v1ucahT5Q6v0Qfuu7NA+ThlKBNpa9icCmEOgD+fqslN6K02w73mGt7R3e7r393YjTENLpNDNnzuSb3/wmSin+93//dzTbNaZ0tK4PFKZ+FQ23b0NPyp9GK0wbCSdno1wZS+2gXgNlRqC1ephJaosbKrzGugx6L/rWTFSys5X6AbA92LYQtYHcPejtxSMpRNv2hmIdI/muvnFCuQT5NCgFr3fqX+KE6sg/VY6D11KD25H1vw7f0ugp1imY7WmP89+JhmjZnoi4gGjv4wrRLevinsDhEF8YDU3k3891tKaIfGOzFf3dnIReDCsIw+0r0XmmdtjtqScdOeD/SSqMV+VfMyetgOiQHE1yvkvCyXoH+jtPKohnHqnYPa/2+9BawD4MhWDsWmNFoRXepD3ozZ2s9I92MUoSno8mgQdK+UVqVKj8dil9NLuC9FoLpN0v87yH0GABufNKLdpwE/9c/JiPwcZ5HLsYqumfXdzKGCr6rP6NlVXfFgSD5+jvrBMdLZZCf39Tie5HXw6F8fJ5Jzej80tNKsa+6N96K1GDhfH0larBopCcetKRZFVYHMrIIS462q3H1fm6rqer3J+ER9rzSK/YQcV+dWG4PfrotNRS16nHORCkwBXcQ4+lzBOd/7cppbes8xQpdP58ylU4yiO1tsPaf94JH/6fNFeT6geyujAeClqUohUVKEXxdWewNsYdJo/FzptP1JPYn/A5Wy6zZZd4GuQuK/TWo9l/vy3W37FaE03/lT8eVdaDfpd1/S4HZHWldwijRFOEslswn2d9r3x/9OGs2Izzy/Wk/tGHc99anNVbod+jod+js98jlXXB9aLGmjHoIyR/j8HYBSapcKs6O38+Ze0/H1hw/AFgPPOmFoRTV4mTghkdvew049Yo877hTcs4Y/Rrdb1Aj/GyXpBDT9ZFrdkGs6vZgUNDCkilqEyl2JlydGrjvvWoVZtRysPzvfSBc9OE8JvvzW++R5ge4gIHYekChMa0pDUh2IZcWcq8/9zscd+5Gyv1u1xXYMeOHWSzWZYtWzYa7SkImd6O0AuqoiHNSzzFga7H9H6X012PJz1tCbM99HbI24DYZuDwVwcbO7TW0VSVK922VMJ2319layFGec4zCE1xDNszb462Qh8o804Y5pSPuDIPsaJ4pnql8c77efFs6IEZdYFn3owyBbiTavF2ZIPABVeB8mCdUuyjVEShj1jFVSjg2X20F8X4dnxaYR3+sug4Tt6FsYnR3xpFb+vhoTIubo9Lts8lk3HJuioyNv8P7cnaE98rT8xDH+vqQFt5xT3B9jCcxCD7uQ63f/6CbqrUqoyL6tfWWSBxQofQa9uU0EZ7LCf1YTJ5DC8j7MNooGJH088OdNoI5P7mzNH+3UGuUWA0ySq9L6xRenv9BbIbrXh3+a8FO38Q/j6Twlg7rf6Bb0SyDDO1RD1HJBwHYrhb1tkVdfuU9sJ3K79v6Oc9nlb2jTd0KClWI8Gep22F12zX1UI4BvYl3FIyyUtfiuRT1LYQprYZg8UehJX849EHpWqwKCSzZ03X6VCWHJJFj9Etfrj957OKU13F5Z7ijQ5UbO6issujYq9mva6lnXB9q6+hqr1fGwpdS5n3QG9dV5gv3YyLeKRKJ7qq/FRPe+SDbesUpLb14vQR3UUnFnKfqk7rfnZl/N+QolZpo53yJxt7TRjIaGR+c4E457fz8Nh5Z5HrSTR1gjxXBd7UgWSXwNkywpoYSYb6SrTIGVHoY3P1aKCUr/RlPbw+F683Cz39eD39OD1ZtnRnObAnS0VvPxV9rq6NEJPX9t1nRuidNw4x88gqUn99HfDFSxecl7fhZD2afQ+9Y3LuvdzQ+9Em39jt8x+TTYFK/w3HN045r+fmzxul3t6LXnvqHZy6avboyLDDeMY9W71Qo3oPI/1TKlToLWVeKYW3th1VW4GaXK/z59MpqHBoSEN/KgWOgzezSS+om7r03GKu5Sv1yo+msL30oGWi6WgH4nKi64BtMIuTUeF+9ibC0Hjmu7ywoGW3/3x3C7/fpSr3mUyG1157Ddd1mTBhwqg2bKzpV+BYC6OxIj6bdTnDg7SnOM5x+HkaVqbTvKHCoT+d0ouo4yv1DlSqAYrj2cXwbKV+XS/MrLcU3hS6DCYwsRLae8LZNinsPuHf5Xh5LIHfVIEPlHkso2Ce7ycw5quochF46P12OX4bA++8Qle438sKJXJSkFK6gFNzNaq9Ty+QvgCxQ+nCVHspxXSl2Ok4rEULsEHYmj/pm68E//l6dOXniLGCgVMJhkKgLDpEisc1o8NeI0qLYsT7uSpX6cXHX7xcTwU57G7Kwa1I46ZTeI7DH9G5RMYQY5T5Sl+ZH25/U9b9tZXhOkKjBfG+Drt//uKa8cKbZ8ZFZQpVmYKKVGIOmmmD2V0gKbw+qbgfhJEUSe0fs4XPkgid2NYRA+XadaH7aD4R7ydohbg39jn7OJqYCJFgmxilhZN/AAvRQutR6KrOVf5cmPXHX1K7usmtEWA/N+H4/WihM7iGYtQLGJpcWDt9KkPYvyeAdwBHYxWkdMauCE9SuL1Cb9dlhH0zp+2HFm5sw63nz436eekVxovnENv924PoWNgXXSfgaBIMFqXVraJgnBDGyGS89J6nWOB6HO3CsShOTilqUpB2oWJlNxUHNJFOW+H2pvpjC1Ss0GbTDIoKo8wH6XBjM7/EsceG7cneDNS6igbf8u/4Rf4cpUit68KZUR0WFTbeeaXzk52Ug+M60AxORz9Oi5ZVJqF00Vfj5cQyKA/Qxrhn3rS31jrnauCNhN5E11VkXQ/H1SHKeKCUVtBIO7yeTvF2J3QgjIbsks8RAbq2TCvkrIVGhhlpOKMygyWrwPPwsgo3q/A8L4je1PcNtnmwXwpSFSnSVVDhKJxUmnSFE3Uu2aH2WevoKZz+FA6uNkKlgQMm4rgeDUBvyoM0KMeBtIdKp1BEi+SNNvaabh7bAZSixfVCQ5SVP+8k5M8bpV4XNg7D7lOOAxPrmNANrUr/pyBd1f/NumOwVurOKctCpZX5INx+eTvefnuA47A9laLFt9TXpR1aUx5KpVBpUPtNQq3owtuzUesKWQ/HTWmDi+c7A2P3yGzlOwtYChxKLGLXXxPsguyeFXmXITTYZ/zrVhB69h103a5qJ4yA3B3Y5Sr3RlA95ZRTRq9VY0xt/SSy/prmKq3Me31ZdvR7rMsqjvM8KtDvn4HDkkqPN1SmcKsq6K9IBcq82U4tycsdTHK2Im+O6zth74aoSdZoJxNq/FlXRc2KdvxQ0v8jGtplBKIMsBWt0Nt587ZFOAknz7GGMDw2rIqr2xr0eX0nvHViTv9cB7yWCrx1Oy2vlGK9p/earfLnjTc7usDMbGK5aE5uTpbJQwsUcOs45K0F8/Q/aVFsRNdYSFwUiU4wg6FcBb39WtnNKsh6YRhlClwnhetCtgI2VKVY5Ti8nTDc3vbMV0COML/0xRUcfugBQ+ufr9yDXvjb/PMii5U/3oeKynrQm/X750XdbCknDOOq5v/n7s+j5Lqu+178c865t6pHdDeARjcaMwESnGeJIqnJ1izLlm3JsmVbiq3YiZ2X/JzYWfo5v8R+b71kJS+yn6U4frFii7ZMSRYHiRQlShQlUqTEeSZIAsRMDN2NqdHouavq3nP274997q2qBkBSEmkr76x1163urq66594z7O/e3/3dceNtGpGCAvpumoZOed1mScrIGfrQzxkcL1AqGr9WrRlJaO+fRG81iS3HQ/HX0oCKbYYz59C3nqu0iFEuPf8YxtjSVrCRGtICetFN9d/H99wP/CmxhFoLoCyuaen1zdOM0LcaqsUlt2oE9Cz5/1djiL3cOD+tf5y5gsSzwH9o6d+foYrrrzegbF2zW4HCcZqCeMU430KzbGUBfop7/7oZdD9GeyWxszZhLNRhsVQYr9Vh8b9qNZ3Xqj313B42XXTuaWKpiyLcF4Q/CgEbBOcVnCcipC9NUHnj6qi5q4CBYDAZ0O2wcwuYyMjpig+ncM6/XgBoaTubU+t4EIZjONyGWKYsAnZ7eB6zvq8NCKlHUcGR/tpgOjpUOA2FDD0BJuMXlnuNvLJD/kwq9UIzoLANBQb6PsE3AsF7gheyQkxMwKBUZGsMpxLDBmOwzmKLkmWRXfCj2i7FYz6bk/vVsguDSAmeis910c4o9zMforHiW26QgrS8oGcHQXLdJ2teWAywPjFYH3BicTjFs85hozH67LbdXLZ542lUe/IAUzU46DHvGcQ8cwLjwAz3gw/0GLBZIHOQWoPkHhwE68qqKa91Oy1/PjIwJkXLy5VieIXSvSjt3hyYgS0t47flMLTn0BvAdnTQNZ2zANS8VmEpafc+EEQdF695K8B8HkpGbvCCLGaE0TnkLUOIMUwYw1qnOlmpgUVnQTRIKZu74K7DyPWrtAJBdPAUDgLJA5K0l5CcRm2BK9Agwq/SvheXla9a8FcuinfKIISoTfE0um++H3iD6Ptz02Ro/7+pJOoP5Qhcqm5f5NH/k3/yT/it3/qt1+saX/NW7exvRmlE8FFB84mG54p6zkDDk9RzXC3nrQ3Ps7VAVg+ERk7uQzkQXpZ2X/DJw5JDAozOw9qW3K8SjQDLqnqei7rPMfqteE/IQ4h13Nu/WGinhBWLzDj68Svj+UzUrrO1VlDRanzXQGtohphLI4UDA2S2obOojQqnX+gB358SZvKYP6875LjAetEN16KT+BmWRGiW9Cugkz6jvRzf0hz6H7WdibZmOEs9V14d8GhtEgQaOdRDqd4aap58ISdbzMkXPb6R4xseMs8DeeAN6KZ8JjB/pkVp155DZ/3+YlNuBcrFuRelPBX9ORNYe8X+eYF6XvaNWjwWcj3XfVlbNtSUobDUoJumKYhXXNurPVqdEksNl5eLxPwwrezjYg6LXo+if4vx3Ajq9OL0sVLcy0XaKfdLwTyotsHSWu1LgfNr0TztYL4QZLx7yfvupt3H2MqaWdrPeZoaAXC6oVl4yH9U0b+XG+dL29nKQd615H13tfSrHJevAz2vFRy0jv9jqGBccZ+KPPMTqFH+v0Keeet8WzpGipJ1rWv1Fk4XxmulWv6k9e8fsnkRdu451BTEozl278+FES9sjszCNAiJD6SnFklPBCqblmGNiaCxGFMG+juhFujJA7U4acuYdXh9xvuZWoAyUtdKST8mhSBeaNafDzF//uAMZkPH6YAISlBkANNfwUw3oc6AoHnItKvcl3vcGfpcOKbOxDY5DKwHLkUF8iSIUs3rHl8LZI2A1D2+5pG6R+o51D0zdU9l0TNS87jFHFfPSRqq3O4yr4DnR2xte2HLJtLH2fV/WudWI2j1j5lIVZ4JzdfzAlnQ9DkWc1jI4t6n+6As5jQWPXnN4+u6t4dGjtRynljUe3C05nFZwBZHHnCNUNoiu3YebIsKl0cAvn8Ec1Ef5soR+M1LoLcT+8QkBKErDyR5YC5X8K/q9+3U+9e6iURAWvdQy5BajlvMma1lDNVzTN4O5Mv8+UNnzp+njMrTTB0xwApDMr1AF3CyJTXGR9uilZH7mvUtzr1Skb4A80EIu2dhsBPproI1TDrDyuiU6rGGmcg8FmtgdQ/SCRycbilbF9oB/ZK0gTnU9rsMdfIu0Fzviv1gaR59UVq3lcn0NPDvUCf9J+PPrXn4nn+4de4for3qCP33vve91/M6/kHb1MQ+clFDwueBkHtCHni6Hnh3FrAh4EQIGM5xwnInPG3gWgveBnJnyMS8fE361sh8K/V+qq4jb3VL7VRr0Xos0dPcDUwuIP1VHZhBa0EXk6FgmXUgZR3os1HCRoG1LAHzS34+Uyvo2EsBXxc6UZphl0i39xGgj85p6b3UNTdZYxECwRr8QAehht5zawkCoyKsRzABrAhXY/gb1MCv0KTaLI30jKObVCftEdtWBsKP2s4EEqEJduHMG+OrLge6VPCl7smzQOZ18/GJxYvBBwNieMzCLzmLs6ak27eC+TOxRD7yi+94VX1c+qz7eA3Ec/LovS/6V/PNeWBQqmQLA0WsdqSgx0GzBn3rtbYaKq1gZ2lUoh8FRUsBRVnfvJifxTWBTqqCmvoKrXTIRNDexkAo5nHp0HNI9ezUv1malPs2QG+ab+6hXRTvR3omr6ItBfNFhP6yIPyg5fvfZVCRS9rvMWc4z6O6D5ypj/FIWZJSEJ9V6+ecrb3SOC/a2cpB5ih4bm3vabmGVqD946wpZ7qecs1eAhSOoaU7i/vj0LkwiObRD7T8X5Ny/xpf4I/ZWg3N1nsI7TXolzosZtHxcKYo/ctpvvzY11siG2k+7JjD+o/dGgI/8wvvYC40U0XUMSV8OwR+NQg2BJIgOFE6abJnnnR9F0maNOn2xpYLpak4SGFwZpFaZ6+CeRFCzKd/PSn3UjAQvRCymJtbfpkFCxMxQl/mz4doI0zVMYtg1ixrsaFMM0IPTUGxzipmIebQC3QjzBXPt0gtMLStpUufdjGOizFcLPOC1lS/BhXbezgPmMzH/mh02sdItVKVCyaAYdIYVhtDRwLOWRKPRuoTj80MJBapOEgt5ocoSG+M0XvF6Xtmsa8X136mPaQepMwzbsQ1smiJQAUNgHU0PJWCCt+SE50HrbDQCKJOUy94H9jvhfsnTnLt4Tp/v6GD3xhaxWUWzca0YJ2BTCO8H/mZt+m+2kq390HFlnfMwL84X83KxGLesRbueAmzLoWRZfRLYD4DnNajxxl1PjjHax3BFi/RYRGDW7mU4otzQVgdB1PBLlFRPMEcncecJX8eo8+wyKF3Ttk0tieB2YUo6gjrQovjXJqg/jXtYpC25yvRxhcRZPcJ5LJVOm6MYcIaehO1n7qMMOfUbiU3iLXIllXIjmlk00AbqJfUNvPybdM+mkFtoqF4vEBkBNISpZdmhN2LtJfzlDMHIr4NvLGch01m2z/+Cv/atFcN6O+++26MMbz73e8+7W/Hjh0DYGho6LS//aS2HJ1oeR7wWWCsETiZBS7PvdKBRk8iuyfJL1rOW9cM8bg1XGPBJ4E8N+QV16xJb85wI8uwgrSMHNHo/FDSnvu1FKn0V5FTOTVgMQh1NDofgmBysAlKTzfQYYRqjH63UsKKiTFGE9BDe2TevsJANmc4dwBzosaD7v+FMJ5+oYzVYKSvudHGkHmwRidR1REqINM1wmAKCEdEeENQ77sTjbivQj3e19FOuRc4Y8m6wihsBfU/FqBfAhBbN8Wp+J4zbYqvxgA6TfCloeA+a3jyAxPku0/gL15FvnEVoWLYZwyLmeGNLuAqlsSYMkqfGjV+fxSj80yCcgZdSA/E9xQe0FbD5xX756NnfGnJmSzAvuOw7RhcvRrOHwZrCMVCbgPimtSrKZZE6JdMFZZcd2t/+oHdnA4uQ/Q6Sy6YM6UBJAZJHVTsWe+pSNzoCnZFdMiUXjUDpFat6milijFIoldc9K+YpwUlvRXIL/3mKs1yka3j7LXMMz9tUwSyoMI1J3xgqwgHBf61hUusJaRWQb2YMo2hlc1RnIuyfGdaT4rXPSwR/Vtyfk36xxIwL01H4T400nYI+E/AxZzZGfRatvJzW14X7SjwUyiQcdFxApqGtA+4inZHpxelEVZf20v8sVpx/5Yyq3I0x7RQ8C80QfpQJtk+dP7+QzkspGDTteTpAqWhrekzr87R93q0Ig2mqG9eAC0PPBXpzdf4QBIgCUq1dyJU9p6kcuFKZdlbE0F9XF+KYtddnQwu5GSFc77VeCj29deo2+1O1KAq1zHqF/KCdWgQPNYYZozhnJb8+ZJ2f2gBO1LRoEFr/ry1+rktora2J8GMzurPomNstrBVYqQzxA6ebXwVNseZzqPAuiB0ZIEvZZ5GFqh6FYXLg+DzQJ5F6nnxHRaOY1ljwHiDTYJGYxPNLTYu6hwEgWCRSvJDjb1yL1xiw/Sj867NXongJtAUQy0qf9SlKXZqUb0oH9XqJQvYzJMUgC8+y3oQ6qJpBg2R6NMP7DgwyUe2HaUjF648ZNj+RrhsyxDGCsaJRuot4Gych9KeO+8F7h2HNwxi+qqY1Gq/BrowbxqBh8fh57rpTQz1HI20WYPk8ZwaxLrXbiznAeq5shCyoD8XVClRAbbVAtZGh1RJuQdzeAFzlvx5EoPJpS1Cb2JFChYDK/PAqcSCEHPZW9TuX+v1aYmzRryoUv3JBWQyJ2zsBWuYtYY8MaxIVBOsw8KsM4iPTpUAcl43PHpMGSo2LR0EkgfERXReae73MzQdvpeiKXHX0Fz3iv2uqEe/1G4p3vdTaHS+aO+ifV8KhpJBWX77T4gT90dprxrQ/9f/+l/PCug/+tGPYozh3nvvfU0v7vVsXiB4Ic91UD3hhSt8oMMH7OEJ0q+M4gKwb543/pzhjvVDzCSG5VnAO0PuLHliSgOxVTBJvc+hHcgXo2hsEdb0UUo9l3U74s8AyzupxXyZRdRr6kOzxJsLMYcf/Vh7BkpY24ZDO+BtT9s/88BtM7qNfphBo+H1uBNI9CCoqEXckMem4YrB9j4VQNwaAgYZSPCzGbIykIvlRFBj2or2xaC0+6fRPNYij75lvURQQL+a5ob1WpR9OVv/i41xGRpJbL2O1o3xVbWlgi950I1//wmyW8cIBvIXD5P/CsiGIZ7A8FZr6HCexBmSRPOUitrzP6pYV3HPkHYmRj/tlPviXIK1V8plLVykrZtyFmDPMbhZFWrZMQq/aeCC1YgLKmKTecQoSCReQx9ndjoUY9eKtD2foh/9NGtdAzECFJAQStqYyUKTSVN4yhMT52yCVM4SHclDU8iwAPONQNh1DHn2CPaK1ZitLc5NaxDjESzBubZ7WUTdC0C/9CieSQftlPvXA/CetilmAWnkkAmPB+E3vPB5YMgAScAEiwSHVGzpXS+uqZXFdiYV/6WtUPGHwvAP+nkWFdZJFIn8MNGqpW0pmC/YBydQ5+GnUFreebQ7RpuRtde2FVtC63qtAWJhwgurveBCiIwjg3OGc51lrzU/sXnmbZFXiYamUeZNiM6sQsF/Be2OOFCHxV60fGng9XdYSEH/bPh2AxaaC2Rqm46+V8ngeS1bIYC3lDnjgW8F4V1eNCIvgUQgDUI61yA50iD9YF8JFooa18X4MBjo62LFbAs7ptjbYxT7hx3z0hrWjx8oEfAZiUCtAPWi99+HpjiWQATkhikDQ5iWknUxf350Druuvx0ILRFaKXKQ6TWYhRrEXOZeEabjpG5lIbQeS1vrPGudqxOAzQNrG56OLLA2C+zLApeK7uchRqclD8ihk/g9E8h5K2HtcmYlMGQMJhhsbjTanBtsIppLXzC8BMAjHe5Vz+uz7SN9aErL0v4WfS7zjkWrfNSkKShmglDNPOQeE+nsLgt0Rdo8WSATDT41gCz3ZEfnyMY8+fFpfuqlGfasT3CpIQi8dddJkg2DasNYQ1IYb4m0UbLL+XhgSsu8fegcdXg4q2PZC2ztw4zPwWMn6L52iAUPkiuYlBiplwYKHO2Pz/EptIGkEZAsEBoR1PugaeMi1LymkdqY4oLR31vAvjQDm5Y1x2/bYTFOHTyuAPUGbMVBh2HNzCJHq8qmaQPzQX7oSidaEz7EjSMs+auhqD1fCuLlQefLjnlkSx9SSRBjmLSGDmtJotOwWwx5Elj0htQagrXQ34kMpcjOaeSyFac5CnABCbrHC01RPFDa/ZdpjtVCEC+0vG6l0beuj42WHv0+Ws++tN2DOii818oDZTCmcOL+kOyYn4T2o4ppls37H3YY/eO3VWsuw4vgM6/UKC9sywNviJSY5MUJUg8uBTsLy3aeYqsPPNFQz6vPAt6Hs9ekLyyQFuOmlI0dm4Y1HUtCyXHQxNXXD1RpzNapATUR6l5YCMJcUCrPnBcWQrNsVF3OTglrLY3SGsEuSoW8XDNneN2JLky510W+6GMhmMGRDNb1NJ0V8Yt9YYQaQ+jrQub0X48EoVtgQHTTdkGv8SrOXL5OWn63tG9Fv8p+/piGbZsQWzyKRWYGYr/jhp15Pb9C7ttp0fkIevM8kD1xRL2PFSAHv2OSPAs87QNvzmOuWeZJRdrA/Nkm8af/4qaXvZalm37xOb1EFkIRzc58s3+lN/Ms/fPSjM4v3ZTvO9L+5ieOKO0qj7Vqo4OjoJDNcAZAb9oBgDXt1178vj/+P6LXYxp5mbcfipz+1tz+mAPYzO/PITu9dJMUkbx4SBaoZ4H53ceY+/tR5nZ45r40yvzu4+TF+xoKGCQ6AVrt3bn4eqkoHkt+LrQriv870/nHaa109BzI8oBv5IQs8GLdU6nlXFbPWbeYczLeI6l7aORIPUd8KO3PpYZijabw3dmMzRRd60zdY2sZtp5DXXMSw4JXTZGFDFnMteyhD2XZw1ca56Drc5Om3ATzHrgPNRq2xPeeoB1st75+LVu5lknLdwRhoRFwtZyRWoare1zdkzRyXM1zXi1nNOaFRlzSlo601Cz7h2wq8hl1JBZzwoLm1Mqi5tCSe0KQsmRdUaqq9diCRuhbwXxrH1+rfEcR0flYy3Te1/2ZtT7K9aHQxch0/IXXejSc/TozFGzd8Jc3lWM4Aw6KsDMPvCsIzgcSLyReNI9+7yyVoQquK22CeWdKhGEKGlBPlcHZPFauiVE/FCjIy5SuK6NrjZgbXvPIYq4iqLWcsJBRX8iYn8+ZX8iZq+XML3qymr63WHNlMScs5kgt5pnXPLLooZazsOBZVfcamQ8FZTlgDs1g11dPB0SFUxYU1GMwXQlmLtd1RoReUefvQuxWMV9amTJLWyuQL+dqEI7WPRtqOR0Nj8k8V9Q9O+P9CA2Pbyj9Pn/+GHLzKPbZGvYro4SnjzFVzxnxStEnC5h6jq3n2IUc26Iv0+b4f5XtbPo/fbQ7uZc6MwpRscKurQFPAP85CM/Wc+p1Tz2W1K03ArVGoF7XfS3sPkb9S9tofHMv2Vf3k9+wk+zBMXw9I7+on6+/d4QLpnIGj+dccSBnzYYB0lxz6V0WSAqHWh749Oe+cnrfvzcGbxmCzkTHszMapU8sxlrMdcNwfIqLDk4zF20siTaIZAXw/vHnbZvQbxaiLkJ85vWge2HdM1f39OW6P9Lw2Lj325cmMC8tgM1aDFbTMpb1rEO6RSAPg+3sZPV8zmyMzIdAk24fCl/cK/evXPsWsyU6CK1H7GNppxYl6wJh7wlkS48yNp1h0lr6XbT3naHTGby1zBcMJ2uUobh1BWHHRBuQl8KZ55WpU0QCplE71KIK92Nx7BastFJaAdo0zQqTunjfg8AH0P2ml+YeErJAqDfXn2LPonhdy6Gev6I9/5PWXjZCv2/fPvbu3dv2u7vvbs9KeOmllwBI0/91xP9PHttF7gVrlep1IBdqPrA1qKfG2QQEXANcF5gt/VzrA9/2lndkAe8secOTJ5bcmFLxvlJYpwWFr0xsj4AmD3Dcnw54TcukNtBYUSE7dIo8bub16PHbkQvfTuEdEtUaJSqeC2XJqFbQWwD6tfGylubOv5I3x7Sci6MTpb4tRiBeeuRF4Og8UgEGWjZbdTMSTMBH6mhY1kmYbuj1CayRpvfdScDhuAQ1rMfR0hXFJG5dj8eBt7f0ZWkO/Y/TSpBrKNkJBo0QGRFm88Bw3ixJIgalH6cxknM2794ZovPiC2qaJTcBn0PuIJw7wO5cWGYC5ySWJA9UEkPiA0niSlB/NsfFr//Ke1+2j2fTSegToZ7rRqtlVqTcfIIzSNUh6Vko6XlBl5P2vobQriYIcMmQbrbFoo9FC8saJDFMo9UZWp/HUiDY5pBo6U+/qOPLZF7p9SEgEggepY0V15dHD7VB02Bab471+vuKjiYRadM+8FmglgVqeaCx/Tg+QSmtAZLtx2ics5IOoMOqsnEwBpEcSRPNK0Pp9gntrJKl4w503p2Nkv5abDnlxkjMe2x4fDSEHq97rs0CzgirPSwYgw54KSMFQURzPpPT1XYLUTxY4iQ0zYvvDfqdNguQ+ybrp0XoSo2f0Hzt1FD49Q+9S9M8XoYqdxr7QJqiOveK8OuigmIjRted9UbHZGt0/rWmfLeu00FAfMDUPSezwEAe6AmC8UpFNcbgTOBcZ5nxwmISqCYWn1gCep254XXPMz9rX3xoAuLCACRugRYwFskCzlkmUsuwU3pmsf25ONY3A99rvT/STrk/W1WZH+5apRmRX5oWdDYtjNZzrGEoqY73HzeKU+yhZ/qcMl9e4L2/9N42IcdvCvy0F5YFIRFVvk4QTcXaeYrKlgGdYy05uk26fRzK/dB7bIFjxR5e6AiECOqXLC4loyFrSTFaEpXPRKihGUlZzFPHS5kO0OGFjqBq/KXQ1pI84DkMiRhWORTAhagOPlPHzssZ8udNMzDSMq7MsiosokJk1tEBOBFOISwrAZF5WaddOY7j6+ADpuE5ngU2ZFqWzuWB8xqBh3JlguU+ECTgt08j3z6qt6YCkgNPHeMXd56kMdgL63qxQxVsfyfm8Cns9uO4iwZh63DbOkdukOTsaWCt7Wx7ZR/NCkWy5CicZkWUMxMVJv7/BSGt5zzRCPznzHNZ7GspZpcH3LZx5M4T1BPIxufJ3thP9o5NZMs68MbwsMAkhqTHsnLXJB0n6qQvzJFsXE7FGCqFH8bq1X7sZ366PRDw4iTMeLhmUMdCavWIc9KIYDpSuGY11zw8xqMrqxoR9gbJDMFZQi6ETDQSnGqE/4dtbWC+oc6sEEUPQx7g0ARh7yk4d4DaqgH6o0Fq8uiw2TeFufuY2lv3nIShDrhodXvaiLMQNOXEGtRxQRza/V30T8Hken1oRbywyGsPottyobTfkObzLex+i0BDsA2PafhSbb7NsC4GUTFQ4poYRAijMzrd1y1TJqWxTFlDb+yDJBYCVF1g3lrEBYxH9/Hz++B7R5CZOgx06mcW0X8XsI0cgz6bujP0xfWqzxjWo5Uk3kmTsduaT38mun0DeBj4j6h45TjqMJcsgNegQFGNofTURTu3HH+YH4od84/dXhbQP/jgg9x4443lzyLCpz71qdPeZ4xhZGTktN//pDaf1/B5QIzSZJ7wgau8kEjA5R53uEbytlXkTxxH1nfihge4VIRb8sBhZ9jkNY/eZ4HcubKMXaX4gtKNKy2uX4HxWUWEyypLvMvx/yJt1fenZFO5euKD0Aiww8P/Llqi5i60rNK18Xsbos6E1khPQPFTHQVFBWBoVYF/OTvkbMCiA3BeWCwo955S4T4cqcGaLlTppLnZiqUJ5g2EAUc4MI8A40EYFvWaW4lOChE6jeEStHzdOprGt9CeTjDSeq20g/ofp51pUyw+cnUeWKyrx1WBov4+JJo3pAukQ6quzUgrVUNL96KUdPtstk5+VMjfv5rG80epL0BY2cezPvBGo9Q+5yD1liT3mkuPeVm6/eDK/lfdxxIMizDQCNQaPuaYa2RAjPYvWNPUS1iSZ37W6LwI7JvSB/jhYfj6UZ0sG5arl7v04hI3CQ9WlVL7z/QcWqYMLGFSiGC9sDLzdHphIQt0+lDmyUqIkaXi+vIA+07Ac8fgytVwfqTKt0R6xColspWaKxHML2SBxTyQnzuI3z5W/o/bMkiWB0JRTaDoGwbwKgBoDXMom6D1eSx9NgYF9CeK+1yciw38DK2V+lw2p0bvmYBDCeaDih75XGmEi43A9kbgk8HD4QnesnuKg+f1w4ZVpcEfor9GAkgqsQRNM+97hmb5weJeLL2Cbq8aEjR8SfUL0cgoxI2ahjttIGVlV4961ZOWfOfWeSdyGphXb76wKw/U88B1XvU7NgHT0a4SG6nW0ZEVXPFkXpvWFpnP1MCSLDBRD6zLAkYCLkT3iDU4a+hzwogPHM4tfWmMmKQOn5oS2P84l9ga4fmhym8WYL4FGIcQ13trEBtUkC0RpvLAusRgU4dxFudUA8aigP4YCjwKQdQCzP+4DgsJ0ZFXj2tbLmcG9XuPwzNH4cphOHdItTBc3GCtaQf2qVUj1qmQ26u5Z2V519Jo1IEghZO/5bOKnPkM6Fnez0Icw9PAfT7w3yJIdiHm0HshreVUDi+SvGddGTgwBe0+IvkiP5cuR/98i6uwBcQv5WKVZVYzaa7voXwzxFzWBTQC3gia+x+Clqmy6PX5SK/v9C0iW4dOIntOIltXIGuWcwrDoECaGGxOU+xtdBE7XMG05s8Xhk2LiEqZf9yRaD8XGpi+LkAYEFVrjz7DdmG8M8yfNgZMzJ02WWAii/PUK7i90AduzwI1hKSWkX//CP7EHOEtg+QPn1Dady/wvrX8j65OPjFRxx6ewzwyo4BvNvornx6DXzdw4XCzj0nUZHkV+XVn0//pR9MEysfVchQ2Yxk4Ae72gUrdU83U0fpwPXBB0Nx560VtkhPzJN86ARYaLgKrUKcx0E1AmDWWu4DfcQa7YZB0ZAVpIyf9ym7SB09QfcsQVVGKeUT1rOzpbWco3DcGbx9Rx3qhPZVYjVynsSScF+zaPo5s9Fz44HHC+9YjRghWAVywcR8hV+dI6jRf/VUC+zYwH69NIpiXPCAHJjBfHSUxYJ6f5xMrjrAstdhFwTTAZJRMkdKRve0YXLy6xXEDhYi0NV5TL2iJ1PdX6Jmsa6WCgk0T00ZCUMDtMeSi6RIFDR1a4EYWsHWPacSATcMrKzamA5xRTDrO8yAQXpxBzl1JsDbqAhlORIV7kmLtEjqdYd4ZxCuoJxikM0U2dCHPT8GbO8oIvQRBGgGMOtec9TSsZcCBM7qnX5VYnrWGn26Zj7k08+hL1p00Af0zqBNrK5qaeyQ64jSIFsqyiqE11ap4FkVul/P6c+Ufw03+w7dXzKEvNviy9uQZKB1JkvDxj3/8Nb6017flecBZVSF9LhM+ITE6v3uWpLuCu2oINveRfPUl7NQC6UAXV2F4LDNsSI3m0Wde8+hTG6tsqIBRmxheK6g/XIO13U3A2wroowEajMEv74wOA6/eRYGHg0bDrCho+SaGq0TX+DyuBeWmQ5OS3s+PrgJvznA2QagGISu8+NL0rjM+h6ztXeKsiCJgRmn3AoQuS5hbRETpl5fGflkRXPHaNMvXfZDmBC5A/cl4Xr2kX4YfX+G+aGeKYJvM01/3zDU0kqiAVYGb5Gr8N3PfaPfutSrbtyjEZgL5kxPkW5fhL1xFfsFKwt2HyZ+ZYddVA/wLEVweSBODywNJAmnDk3Y6rPnxsmaWphXYRqCv4emoe7LMUymisEX/Ult6gSFpB/WFkVxGcYo+BnjgCFw3pAbyv1oB/892eH4SuXSlboglZTJAbjAuMFNx9C65vlbQ23bdBvCi5XAani4f6MkCM7mwIggSghqSkTYmWYzMP3cEvhmzeneMwseAC4bbP9jkGvdqASv1COgX86BiVQdrZOsdMljBnshJt00RNg6A0U25I85vwWKkAPWOWWva6OhLn0nRXrYO/ZJnKj46Hop81WKjMkYdCRXXZsi01Z7PAj7zJah/uh5Yn3uGxyao3HWYzXOw4aVZ5D0Q1q8k4NSQKNaBEBQsJZpvnMWxsTSHvvU5miD0ZJ5GC6sjxPy+QDTEWtfJpQC/+FtiwQWo2LY+FmtHW7m6oLTDh/PAO/NAR4z0jAicis/duFCKKoUEZackru06fhzPfSBGVzJ9XhLH12wjMNTwIKGpWG0K2rRwjrWMJ8LFPiigDIIES6hY8tT+0HnmQZqiQgVZxaAR39SoQXm2JiI61lrFIaPDS7xEMF/ks+rznbKWNYnF5YKLwN7GCh4DqIL/fuBymnvajyOM50XFb/OGx2cqhmm8UMkCSVaUtwpN0c4vj+s/7hiDjwLnrmqP0LcC+1wgCU3GSCl0ZdoAfpsgXKtTt/g9tEdko0ZPjiEzpjRYlRItfDcIl+WB9SFS7IMK4qUipPtnSFdYTF+1OU8KmrI0r8kYA/2ddNQ8jTwgiY1B+pb83GjvtZVZLdf1FtsmRgVVVE1oRFDRkPgZ0fFQidF4I8qIYT5DHh/FPzOrQPS5UeTqRbLNvazu74IOB8ZijGAPn8TcN4odrpZOrvZ1gDZPvo1rnu0DM5thlum1LkOYitfcWi6rOJbOjRLw+kipjv0/WQtcnWlVJBMCvXlgxAsnRqfoenycMLwc+eWt+EqCrOugsWeS7PzlTA2v4KgXOgc64dx+rA/Y217AzLY4O585AluHmvc4siLEvfKa07ZXtoD7vtiPOuosK8F8dGgUZosHvA+8r+55PPO4us6TdY1AHnSs2CDYI7O4Ow5Su7ATs3NRmSQJZBeuxKfKXv2WGDZZw4YUEh+ooPo/lfdupHrjPqrLE5ILV+h4KvrVOr6emdBo1WUrKDVuEotN4noYrOoO+ABiOHRFH5d8axJemEYuHdC9MNegkqBOKZMY/fzUvipgfyYwT0tkXrxH7hvV93ZAaMDxAUPP1eugI8VUE00NGD2F/ftRVcIHeMPqCICL8auOaLHqkNLh2yxjRw9U9i+ACNMIK1tp9zFC3xDVQCjnng7zaMYomLeNgGlEMB9THoyIsn1Rwe1KdCIUA0q8II1cc+B/bVNJtxdjOOoMG5OW6xdInGHGaV+wFjGRxXrxAHL/KFy/ShkU3qpTJLIzjIHcGDpNoM+plkRiA1clhv+eOEJqFSPFPaHMWqWdhl/Q7a9D7YsNeWB7po7ckEctpTxS77OA7DmGeeYoXDFcijVjgFwDOfIaMLH+IdrLAvrrr7++VK7/1Kc+hTGGT37yk+XfjTEsW7aMc889l5UrV76+V/oatu5lw/g8YJywJwtUfOAc0UXKPT+Ou2aExFgY6CI5b5DkiZPk7+zkDSZwg7f8YhZInCV3qmCaO0PmdNO1JW1tCagXtKTb+hbAW54jT9capY9UHaEK4dQifjjFi3AVwt3RojGi1JPCM9WQJqAvNh9QQN9KWW7LVzQvbxedEczH18uCqplKWz8FOTIHl/a3A3qjBnkeI7DeGKS/Spj3IMJxIzElQJV5C+qgwXAVcCPNDaj0lANHUFGlSuxPmUZgmgD/x2lLAWQBGG3mWZVpNNHkqsEgIRoCzhBS2/4h1qhoWIwMF97kYvUJeSCfqZNtm8R/7BxyAx6Lf9Mg9q6XuHBjyqqhHlwwuFwF8fQcSIN92XDVg49s483XXvayfaTom4DLNaevt6Fe+bks0F3ktNsYqWwzQJuU9LbofNZisIrAS9NwIodfW6kPp5rAe9bCt0aR8/qRJEXyEI1/1EPtPHPO0OfsGZkSLQH0ZmQ+0+iByTwmCww3NJVGJGobiJaWERFkpgEPHoNnJttvytNHYMuq5o0pF/FmxMDHvPlaHmgEobH/FItHp2n84nlIZ4Uk94SvvwQPHsW9bTUZKvzTpN17RMBgmK9YlrUYaK3zsvXcxZKybvFczPVCDK3N+Gh9BsWH51aZCkVJJGOatee9tIF58sBTUVvE7DqFmdULSWYg332KMLICIbTnYhac6ADGwXyqBstS0b/WMWh8oDcXGnF+SGSGyP4JeOEYcsEq2LSyDZy0ri8PPbeD66+6WHOPWuhyRepLkS+vAVlVapaGJ8sCz2TCH+YaCRcRhj0cM5SR+QLMS67UTTGhLAF2NkbAq20hSEnZ1IiPnifrgcHcYyRgRk9idp2ErSux61dgvbDVBMZzC1VbRmlCUIFRCQ6JxlURqTzr94uU9XrrhR8u/s2idnSV9vKop7WsyVppLVEpWUBemiDsOo5cMoTfOBiZFpYFIwz5gA0WF6zq1liDNXofz7WG/QYuM1o9oWR3CT+UMJ6XWEKrEchyLQuax6h84oU0D1SyQGem1GF8gHvG2z/kgTHYuLIZulwK7POgjqTSKPdtwFyspdAiaRWCahWGaxPhK6vfBBrW0HCGzFgazvLMY8+x+epL8Hng+3ngE17ZSIkv9k5lmVR3TpNuXkGZ1lfQ7a3BemmOCwOm4shSqMwsQrWXgnavOfTSXGhandGt0dOW93iBOkKDCOyDvs7HTmJ2TZJuGSCMDGCOzlHfX6Oyf4LkSE5ADRiJ2jGy/yRrj8/xG4seOhPMQBc2NDDPzmEDmD11zIEJuGCoea8NOuYJlKkFBSCqVDE1H9cdoSfAQrzutrVLOE3Ytng86njTaCwxsjlZD6wJXtMBosPjFx49ydDRCcIbRvAbB8gtVBKLnLMKzh1CBCZyoccKzsQyZs5irl2HPXi43FK5ZCjupS3PMK7drxSlP9N+aaB0jk+jKVCtDgyhCYpCro6LC7LAVXV1MF7c8DyQBd4ksb/jM9i7R3HXjmAvW469cpJs7wTZZavI1q0is3AUw/3G8B+caWJxhBQhWd5F5WfXUrnpEPRXYE1vefEPPbOd67duVR2b+4/AB9cp8E1tZCpo7rx1ytrAWzQED12J4zvXDfPhew8hwwkM9WowomCURiBfzuMC2CcK7PXmtxgXRSpRK5iPP0sWkOCRB44j8+CL2qv98L2LhzlvsDeCcf08c84g5tdpAsfzhmJU25QK90A5fq0xuoxbZdaYvgosLNIHnArCigjmg1DaoAtCm75WsZ4bLyQRwJsY9DANtffM/gncjuOYCwZJ16+gAnQIdEozuCCAPHhYwW+tjpheXc8Tw8nEcKXVZ2MBjKE7scw7XRtDTIcTY2BzH3LbYfjC8/D2Nci5q8BE8cL4vwvG0ImhJ9H+28RyUW5ZTOF4ENZUHN6aNqX7s9Ht/6sPuIZnXS78ILJpClAfov5V2HeC8MUxNaW3L2HHFHMwDbwWgoqvd3tZQL9lyxa2bFGpoG9/+9sYY3jve18+L/d/heZcBR806vl0LlweF2R3YJrEOpINfThrFORcM0Byy27s+Cyb1iyjh8ALmeHKRNXufR7IcktmNZe+Elo27tZDgpasu37wNMDb6lnOrcF78MtTwnyOFykNr+UCJwWuC8L56KCt0KSeFN7VAtSfRklv+Tr9+ZU3htYzqPHdGTSHnkiXQUDmGzAPsrqXpbltwUTqZVSw9N2acjA332Cxp5MRKZgHMdAmOjDXo6D9ebRkRdE3OL1kXXkbW/r54zRjDEQaEihgNFnAZkJ/Fpgv8y0D4eAE7DhOuGBVEwyiHszceDI0eiHRILK5erxdrs6A/MmT5Ft6yVd2463FI0hfJy+cM8L7nziJeX83zmvOoUa1hDQXbCMg7uxgYnZ24RX7WfYvCCaWbLQ+NPvoA3J4AnnxBFwwiJw7VDovSodNQT8tovOl2zQayT84AtcOQSWWa/QCFwzAUxPw/SOE965DbFMNGRuQDDIbWBajoIbmsIL252uNblg2U/EZ21BAv6IemA0F4IlAfjFDHp9AHj4Om7rh3SvhOxPND7tgUDft1j4Svzwac40skGVRyLCW0XhknPp1I+ytpjwohjdby/nvW4/72h7yJ6pkb1yJb3hlNkTavcFgjGfBQld6+kaxtJ+tKvBAG92+NMp8aBPsoRHHqMQPKkBIGVUDqVgF8yHmzecSo/SBY43A0TxwlQTc8h6szOEX4zWJQbIcwRFouceJ1byZIBgr1IPFVRyVGAEp+lM4kYxoxLTbC3kZuVQwyM2HEQ/y7Ch82MPmVe2hp/h8Zqbnle7dSo2OgElyS5YqUyDLNZ0gj+KmzzQCq7LAJq9RtuCFlQJ7MLrYWEtwIJkysrSsomnSQ51RRkBBuz6brsQZmuQxwlP3pVpyAehnMqW2Mn6S5CujpDnItsPYXxJYt4L1WJ72uspL0Dq+IbWqdJwL3ik9v9AYaAM9xiBEIG8MdaGpok6TomlNLJFmNBLSbU8H9SUT5AygXvYeJ9wyjiQQth9GfgVk7QpwgRksw8FqVCgErLe4xJIQSDFcaGDUqjEXorEXrJZGkkSv39izR9R8CE0g7wP1XMiyoPcmOo2KNbgaqeNd03XsXYebeS1FGwVu2QtvWw1D3WcG9i6czhwpnU6hbTye8dwWoVcj2DtDZg0NY8hdwFvD3OQsYTHnyRDozYSrg5CEoCKpXki9UMk8ye4Z7MdbKs0UEXqruehNtXsdErXOTpjLYVDKfP6Sdl847ltZBbk0Ac6+E7DtKFw2RLZpsMXAjmJ+h06S3TvGVA4rts1jqqO4SkKytpfs6mHshl7CxAzhK6NIBtIN8s613DE0wEg95y1Ti9jpgHnsEDHYh/Fgnj8KFw2fztIpwJM1pU1AXwUz06zNPiDK8INXVrkXUBX+ui/F1SQKwi3knqEQMGMnsc8cwU7B8tV93PjezfxWb1XTdJJY3jMxJdvyqBV6CuarBKXZbx7E/DLY+w9jDwMjA+3jpACfSXhVUfriVrRWf3EoU2oatZ0KZ4WYZjDIZyrIV7AQFhuBD2eey0Lg897zdS98ZHSKxkPj2LeN4DYPYK3BbR4ku2BYGavO4o3hZgNXW8uwUzZGauIhyvKsnDOAe0sdbt0Pv30h9KS6ns/Na38fOQGDFTi3fwl7pUUULwgmARsseOhywpHlPXD5CHznALK6AltXIhtW6n4Q9RjaUme8NOdwMSkK+zXIGcE8WSDkHrn/COHwFPz6efjZBRr7ptl3/gDTwyshKZZcjTQbA3brMKaIAKe2/ShYAib+j6Gk3RsDprcDclhXyziRVNlcQgsF9bkXMmPK0oN1UUe2AC5S7G0j4BoK6k2mIn3uK4fVUfbCKI21R8gGlqlaf4DOoNcgJ6cJo17X81tHkV8zyDnqUJu0lhUxbTJePh3OciopygZagtN7HcandI6NgXxpTD9n0wp1mMcxPW+gD4sL8T4EoWoDVwTL9uBYGwRfdVE/pumIbqXbPyXCcB44L5ZWXJMF5rKi+kSLwJ8XwlNH2uf9M0fgvFXqKCrXvPCqNSz+MdurLlv3mc985nW8jH/YNnPqEOKFhgk854V/iVJOkmdPkFw6hLOWNLEgQlJNcZePkDx+jPyDvVxnAk/mhsu9wXuDzww+8WRJpMZF6puuji3G81RdZ9dwz2mAt2ghRuhzo0rw+bSUIHZXgDeJsAnhhjhRUygjLGnLVxWL8xhaT7kVxBepZq/G11Tk+pQ2NPrhHSLUIre/pOgdXYBVkcLU5qwwTbqk0T6KMYTuhFMzDVZ1d6JaYhpdKGn38ZqvQNXu34BO1uiDZ4wzl6x7tc6KV9NaP5tc9RWyXMHubKa0HTk4AbcehgzkqcOEXwXOH1JqmzPUjCFDyIvoad4SVfGCW2iQbTuJ/7VN+uyd1vWeMsKdl/byh986jts/jdsyQOIDLjdUckPitNwNWYDqmZ/m+9597avqnwFsFqnSecDk6rSo5YEwegJz2yi2DuGZw/BRCOcNtY1brG+hBYZmDn0QODgNRzP46Moy9w0bLcb3r0P+eg9yeT+M9Co1LoKOBQyJC/Q7o/mStIDBpX0QFb8zIeYzZgHqgZWNwEJRWLnhkWenkKeOIas6CR8/B1b36oetrMJT43BQYOcibPHxi1r6aAx4BbpZpnnXWQjkDx4lW9PPvnV9/LkxLCSWZ7zh96pw8bs34L9ykLDc4bcMqDFotIQXoqA+Myr6YpJ2JgJLXnegualFk6XnIJof1hpFKwB9YbgURkzxT0HwkqgRlivbqKibLFngqSxwWQh0ZB676yTZ1Suo+zo3Dy3jl/fMkXzjJcLbViPLu2Mqg0AqSFIYTUIjKDXQVhJsSx/L5xl0PlS8Vs7QxGuB3epkkYJ6dMsR2DgN5yyDTT0w2Kkb7oEJ3veSg/6jSlEtyg7Gw6dClgcya7UySUOfoeTC4/XAT+cBK4HUB+qjJ9mye4ptm/tg/cqynGKIxkooAHKxkBbR1MIg9HH9ewWDW3wg1D2+rirYkkVxpfi85vLAKgmYB0exAUjBZWDuHcX+yjLWVBJOeUMdS+KFkEp0/FoyL80UhdY9xig4zkzUXQEaxBztOA6LCIegJfKqMe/Uoj6aLqRcVyVIm3HbdnhB7h1XMUGnoCI8d5SweoDcaxR3EAXyJlXKrIRAEh1dWwSebAGjYtVpGDKDd+Cdxbno/W3RhQg+0MjV4dbwKuyZ5VoTO/fF+FZAmoRAJToc7bZJ3HfH6Dh3Geb3LoRjU/D8MY2SruyDh47D3+yFc3vgrcOwagmwXwLiC0ZaHu+fSKwPH3TNPyOoL9ab6CDIE6vR+fhZwRquvPZqsnrOD3Lh/V41f9KglWHSEGvPPzJGxQMLC2B7T4vQKyIuKq/rvWv0d9I51xKtDkAMJDRLzDQN2/LYexxuUkaD7BgnrD9K3tNNyD15yMmzwMLJnF0bEjpQ38hmJ6z7mQvIrSUzkBhD6BtEfs2Q7TxJ48IVMLyCUx42dllMdwWzBmxvgJtHlQAhwBWr2++7iytLuWFHMACYjg7MXKbgVqBHhMmYe1xS7oWyHntrK3JsdY5GJk0eOJ4H+vNA1/hJ0ttG9Z5XYfFtXbzU3cGMMyyPYN6neg5OBSwPJYEVXldvE6wq92eC3bQCs7Yf87c74ckJuH5Y55MzTXCRB41Gu7OvL+YsByjtfop254WyXwRfCL1FZ3AjshA2isfmgQ+LcP9LU/gnx+HNa2is78dZg604ktSSJ5YsHrut4RFr+PM47pI8kBpIjScVq7Tu4OH6VXBsAW7dC7++FYzhfVdeCTN1eOQ4/PrGZnS+5bCphdQp2zEFEywk0BGEWS/QE3AnA/ZEjbBtFD4EYWNkrZwpdabNeU979KCFedRc5zzynTFkbBr55S3Isg5koAvOGWLcWqrRgG1S56OTKVLoy+9LLVQsVFr1lpqReSUsGqw1WGehK2FkpsZ8d5UyZSQQnbRSRuZromSBZ4F78sD7Ms+FBZiP4J48YPecJAVsB9g6uIZH+rsheEwmJLmnkoMc923ruew8RdgyTMNaTjrDgIuaBrEH3QbmrabAiTMYH/fOHceVBVOsNbeNIu+1sKEL6aogqCN5OQGCOm5sUBbLpR52CrxbeYEEcZra4UzpZ/SiQnuPZ56351r9w+aBwSxQrQcmfWAkOu+DCHJ4mrDXtwP6S4aaDjRnIg0gMq1eZt79JLRXDegBDh06xDe+8Q0OHz5Mo9E47e9/9md/9ppd2OvdfB7YiTDgA2uDYEdnSOoZbssyEquACQwNLyQX9uF2HsPtn+bSzf18C2E2CwxYpd37zJInUSAvgjVaQb2IRueHkhZKXYth2BLJziMFNu/rIMxmBZudnSL8nAgXB7gxBB7C8VNEKimUpRpaWXJjwHtp99CaIEpj8YLI2WmZp20IRj/chsCyoOq1ZWqBAOMNZKS/3eCN/fKitYhDEa3HIH2d1BYDI3FrsaEA9VKq91u0fN3f0dyACmfFOFpTshXEK1NRP0OkucH/qLkvxeeaoBEdmytg7M8DE3mAEAi7TmI9SBJpT9uOIJtWUgcWrGERQ4YhN7YEvDbTKLgTwT59CjZ144d68M6WTp1t3rK+4rBXr8I+Mk6yrhdnUhIbSDKt76mGjFcA9SOotpb7Vh4w3mNz7Se55gPO+wC7JjEZSAqmAfL8MWTT4OmAAc4QnRf4wTG4bpXS7Fs87ASBFV3ItYPI90aRj25VsBsvatYYOjJDlzUQNwtofm259RkTgbxg8nh4fU7njJ5gw+5JxFWQ0Tmkpwv5+XXIyDI13Fyci1uHlNI9VYe/3gmPn4BrhmJeX/GlBiIoaOSBPAjZ/mnyYzNkHzqPB41lMbFYZ5m1woOZcMGKHuQ9I4Q7x5APJZG9AgEHok6DBjBgcoxJymd4JizYSbOm6pnAvMSNug3MF1GFfcdV9O+q1ZofBmUILpdcNUByBbpFdD5kgW0+8GEJ2MeO4wZ6CdeN4JzlYC6Mb1nOhmdmkK8fQK4eQS7qa4r0eKvdc3oJAwKWHKxGYFqfn801BaXHC0cjuykEYMNy5OkxdRoCvGOFJmjumYLvRVHFfppFzbePwq+J0hhbIp9ZEDJr8IlGr0N0VkxlgUONwCdE56I5fJLqt0cZXIB/+tIs/p0Q1ixXB2RerF1xfJaUe2k6EApgn4sq/Vdsc16UiCECpEyj8j5G5n0mSD0QMhUErDc86584hskdknpMPUZZOh18dTc9l4+w6pxejuI4J6gxU9TzFmvwNopltuwrBYOsbkyMzseohilE1wwNIgvK6P9LzFc1qSU1hqrRNVHz5sOZwXweYHIRmUDZDV5tIdmXwQNHmbm4l+5l3fQ0AKe6BQSrtbj1V2w2qnKeJaqAXUTog4XMWaS10kEEuzlQD0IjF+ohAvlcgXyWK9U+81JWuEhFCFMLcM84dqZO5cPrqWwc0CBZ/5DqaBROyveuhesGFdjfsBfO74UNHXBoEi4fhs2D5fXk1lCL9zt3+ixM0D0t9aruXvFagq2Mzu8/oQJZlw/B5lUEZ8gS0TQ+Z8gNZMbiDRzIhYlcuC4KJurnBtU7OHCS9MFT6qy/+Qh8zKmKdrw2Gze0ghZbyK80ujromYnk3ECZk6uR+nwvcJwAAQAASURBVIAEo8Cp9Zq9wBPN9AQB/HRALl5G6HVIpyV0Jdw/ucja54+SZkKjYnjgitX8cuJUg8gUzBdDOHcYzh0u7YnjmbACiO5PzDmD2F812OeOYi8ainRlG+u26h7R7gltrjNmmcMcn4/MIugXLY3YphdgmiKeRfoSoM6/wvEW10jJPCczz6og8JA63VxF98fqS9OsWj/Ii4nl2gLMVywhUcAbjOFgsFwW7UITRDVgJWBzqw6fNw/D1w/DGwfbqeHOxAkbkI6zOw3LfV1a/Btxs+gnlnMtlqXYX8lDky0UQf1Y3bM8D/SFgBWhZ/cU79s2zk1vXsv71yxjhYVGYnGJaus0nKWeqo7H36SO91jDQFxLUms0Oo9QwVCVqKEgwM9ugBt3wHfH4L3r9OIeOAbndMO6vtPo9romOUyizn7rdc+xKXR7YcoJ7J/Sz6mg6+eto8gHDbK5/3QgX/y8FMi32jX1djDPtw4TxqcIv3o+sqyqqZZOmVqTiaU7ClsKYByxSgmlan25fqXNFIKyRWemLt+myajBYPo6GVoIPCMt5SVRdlzmoWYV0DdQ/an/EIRKw/NEFvh4I3BNI7A8sgtNCGCr1O0CpxwM9EDXT6+FNStwUKaqVQRkc0q4dRzxmloQLlkB1jJhNQg1kJi26ddrNIc+GFOma0piCZcOwbOHm+NvcyfywgnkBxkMpsjaFdjVjv5VPXBkGvacwpy/HLt+kAsF7pZi3haOKPBVS+bRtT2mVb3gAx/OQ2S26rxdVw+cksCwxFLTj54kbDtBeMcaQl+AB4+o13F44MzsmEaAzh/ezv6HbK8a0O/atYt/82/+DfV6/bS/tS6A/1hNRPj85z/PN7/5Tebn5znvvPP41//6X7Np06bT3muMRbzwtBGuicJDyXOncOevJkkczhnSGGUp6romVw9hHz9C/8ZezsGwLTO8xQV8HilxmaGRWPIQdH0ogHyBQscWYU0fJdetBPVNhOKtgvlgIPQl+H3TCMJJL0xapdlb4L0Ct4nwVmOaqs3xY0I8cuAoWrLOoqDUeY1GWZHI/NXdvRTyaYl2lPeq7SYDkS6VRy9+uSEem0YuWBFFMJp9VPVYU6YEBHTjlJ5OwiSs2Uwp9GfjBqTld/S6L439OIqq3Rex6HHgXbQ4K0KkxEtQ0ZHiwouo2ln693Kt3AwjPd5Eunx3HjjgY787u/EsIHnMv9uykkYeWLCGBauU1oZYLUMXBZlsrpEaW8twOyawH1yvufPWkDtLMPCIhfe7gF3XR7JrFvfYBO6twyW10uVBLeVGUC/oGTb4er1BtVo5U9eafRSN7Jo8xGtTo3y5F+aDlOXVyKIzZeug0vEKa6kV2C+Nzh+ahrE64SODasAlFokaA0XNZK4bQv5uEnZMq2CKF8QGasawMjGY3GjeV9WdMeIAlDmMWqtYWRCMTvDW74xi58CygLx1CLlsKEZarUYxW3PpgkBfFT6yEb54AIYqsHGgLeITglAvovMLDfIHxsneNoKvJmwylu87pXenQbg2aPmisHGA8CZP+NoB5GNbkd4KpZlqDDUMKyw4PKbDNMvUtIxBaJata20COgcLI2MpuMoC7Dmmxj0o6C1E//Rfyaoxr1yUap9nSkffmwesF7YcnMYemcJ98Fx8zJPrAmaCgav7CSMO+f5hwt4peM9aVbItUnESYcELy0yMMjhlk5T2UhAKRfvuEKjlRQqPIIsOhgwymMCFQ8j6FTqvrx/W8TU6A7cf1HEuOVWTwJPjsGFl+UyDVxDXSCx5LuRBwXPIAtsagYvywDKiwNNDo/g5oBvSGajdOwpXWsJyi6zqUWPEGE0F2HZUI4TnrWqqTxeGYRGtz6MBSguQD83XZV3k6GAIMVq8MF/jY/eOk3almA+fj0xMw+6T2C0rsWsHsOMz8NRJfufFYxy5bIiwqU+/1qu+hbe61latrr2ZNTSsoW6gYZVFpk5giQabAnmNzht2Cjxg4O3GcGlqqCSC9wHf4cjRfVGdRnn7OGtN87h9H+HqQeS8qtYs3jqILO8hvDBL/7cP8mtrB+DiZZiBHkzMyVWgqWO/z8CgGMYz2NIC5n0E8z463MUYGpbYP0NDIhsjl/J5l8A+qBF78PBJJg5MssWnjOyfJ9kyiP+55WSVBG8NrgANrZR6L9BfhfetU+fkHbvg7lkdxC+Owc97OH8VuTEsWFi0hrozmvtfAnpd73IRuoJGEs1MHR4YhedjMbEXx+GXBL9lFXUfyJym8uUGvAs0GjkPm4RrvdBpdM3TvPlAMjpH5ZZRKoWXD3ScXjrSFsk2ucRoIboXGggD0LWn4P+0gPkIuCQ63U4LUqxcBvsUHgYgfGAtYeOKMtItAlv6u/nbPsN5Yw1eWlflN1YO4isK5H10WITCDsEQglLcx52WHo3FTHVNPHcIc+6QLsct4K6M3BbALC6ctgBCvRazt070UNCDMF9coCgpqBRNi4cBpOHxDRUJLcWz4h435YVLD001yzHUwXUDFyxnY8WxO7FcU1Vw6ytWx26qub/7RfipEDV18miPWcE5owyYLf3QNwbPnoQ3ropOQmnuUz9ClL743TLgVEs/g0hJH9c+FhF6z3gWuOzQCdh7CmssydFFeMd6ugd6+Htj+d3EYlOHS3Vfz5wlTx2PVx17neUPUYCRAmlqSbFUEKqRdl8yU3Dw4XPhr3fBqg7qIxWqz07Cb5/bZOG0HonBJPFeFc/f67ra5ZUV1jh/gM49c8is3iq5dBnynVGkcxyuWw3nDbQD+8KOgSXsw7iut4L5Ow/B6DTysfMJy6oqFJy6ErROJo7uVG0MEw1UjbgrsC9FMyPLa6k9aqLjuMihty1ro+nppm8SJjc1HVJaNUKrStRENacawO0ipA1fin/engW+kwW6ssDqLHDZiVmuGp/lhp8fZvmkZ//6Dj4xuJKLnTpSMyh1q+T8YeRjDtk5gVy2CjatIiSGydSyPKbzFPMUVPNn3KnDLQSLiE4y2bIK+RjIU+OEy1bDxhW63mQeGZ+FYzlDT57kNycPUlmE1EOyfZ7GL8L69Sup5o5DImwuo/SCF6sZQblqUm3LAyO5sDGonWy9ztkRHzgRhPOn5pH7xzWw+NFNhOVd6szbOAg37lQhxuuGT593XrWYzE9wlP5VA/ovfelL1Gq11/Nafqx28803c9ddd/GpT32KNWvWcOONN/LJT36SG2+8kc7Ozrb3rlpzGYte2G0CPy+CmZjHTS7g3rUOaw1pYkkiPTRxhsQa3MY+khemyLfN8oYr+vm+D7zZG1WjtwafGPK6pyFCVaJISrkJCoxNwzXDrZzwZl5jBMA5aoB5wPda/GKNIMIugc2iQhVWhJ9G+LzAiwYuoUm5bxXGO1b0VaSsF2pDaAIfWq7DhrZNvwTABlXkDtHbG73JnQXl3sdFJQgczZB3djUXqvjZwRl8pIGW+f0G6EtIjtdYhf5SRe2UPuhjpD4xKqZ1AfAUTT2AgAL6NSgosEUpldg320phbL3X1ryiA6O1GTR6baM6po1gccAHGj5AlsOBU4RrVyLzs8jRDHl6huzcQfI8RsTiAltPCsMoYHO9VrdtBru+G7e6F5xV/QRnOGgNE064wFhsBu5Ng7gv7yc9t5t0pJc0i9ecF5SgADVBjC29uxj4zF/czCd//9fP7sk3BpP7GNkuBEP0GisScBNzMFYjf/8I+eGTVPbVkcMe2ShquLdG51upzi3R+ey6VdQ6ExqJGm+FEZIkRkvwVR28Yw3hu+PIlh6ks4KYwByWgSyAsxjvwRtszJttfVwSc7CLiJfx0Umx+xR2DugEWQCZmkOS1Yiz0Zse6/oWAKUwVtf1wftG4JZD8NudsKKj/MIsSIzOB/L7j5Bv7CfbOECwsNNZLk0su1LLVUE4x0LIUPGVq5bjTy4SvrEffuncIuYEGOrBMGCi992F2EfTFlmxKOV+rugzLdH5PNL/ish8YXjUYwWGrx9pf+hPH4FzBkGnr5bGTC25SBmlDz7wTB64fq6GeWIcd90aXEeqlL9ERfwmvQEJyJplhA9tRe4bRz6/C7miH+YXkAtWwoaVNCwsi0YY3mNFTRMDkfETx1supeCiiMCuCeSqdciFA1oypjCsCtrbOf3wCxl8eZz/duopPrn8Gtgl8NIpdcSEyKIIQh4kapMIWUO9809mgfch2Lkayf1HsXPgK8Ai+C6Y37SCyqlFZPsUckqQAYdYT9gTI5kFI2DLqnbg1wrusxjzK/aCltchsirKskdBCMdnqT4wyvG1qxh5w3KMs9gNg5gtQziv98mt6cOs7uXAgWk2PnsceWGSsKGbcGoaOXcl+foVZbSxbg21lohxZk1ppGUU7C5T5h0+JvBXRoHVE87w73LDldVAEKsaCxWHpJwugtdCteeecTCG8FPDhKpDzluljs8swBsrPHdRD53b5+Hug5jVfZjBFHvkFGwdxKxbUe5LmwKMWcPmAsxbS4hgPreqlL1oDTWnYD430BCtWpP5FmAfNEofgrBtdBKeO0rPQuBwR4PwhpVsvngVPjr5vIYSm/msPijVuaQ9CwxUYZmFMd+cU187ShieoLZ5OYubuqit7aUerFYNGJuE3RMkW1aQrhkgHJnD7FvA7j5B9VhgaZNbj9C41pNf3kc+0Ik3+tx8bvjKTV9j+4d/gX+LYBFSH0j3zpA+e5RkIifdkOL2ZM0Pu7qdlm6cxZhQBhEiHwi6HQNzi9FBTwTzRLAruvm32jOFg6qRwDoHvSBXrSZsWdXGogNYJoZTq4d4YjW8xRo2JKqFECKg94lG1iXaPyHA8aCCen2Rl2tjf40YPRf7edKkK5fgtlw4W2IlnQlmoVGaXr3AXLmI6pUWTyJENF9oXBQRPwW7ghRCuMdnufqxccw7NxCsR/ZOEi4ZxK5fxVZn+avU8msxQp9XHCGxZcBmDMNqh+5tkmETgw2aD26Le3ztarhnDK5cqf1RmkbTbsnkrHmTZYk/WjBqPPehOfRAs4xu5vG5pv2EorZ6Flg4dIJfvGcUNw3VAP79I7Cihw9Yy586x3cSy3tTSy1VBkIjcdSrjr91ll9GhfdKQO8MiXFUECq02MfFTe/vgF9aD18+xH+bfIxPXvImWNnV7rApD6eO7wDWaQk6myuo7Ug12DS3fhVdH7S4HRNUtixH1iwnvN2rbs83R+GBcXjzCFQ8PH9cmTabBttBvaEs5adRWo/9xkHckRnk4xcgyyqqj5A6SKNGQuo4mjouqLiYokXJ6iqIJK+UkqXf31K6zrQo3Q9Ylh2ZZ5p+CFLCCy/KUKqL0DCGReBA1AmxWaA7C3wyC2ySwIQEprxn/SNH+NalI+xZ14/bYFlMHfc5y0UJmiZrmoC+APXhgtWxhLElJI4TiWVZ6toZMajjaNYafOq0Yo1YtReM09LA565qri8iGmTZOAAbhCfDCtbdt4ct22uYKrga2F2TmJHlXAzsRzjHFGBez8Er61pyrVp2bR6wqPgpkbE5nAsrdk0jz40TzhtBruiL/VDNB+peHWjfGYU3rYpU+zjvEttknrqfXHG8Vw3ot2/fjjGG3/u93+Mzn/kMxhg+97nPccMNN3Do0CH++I//+PW8zldsd9xxBx/5yEc455xzAPjEJz7BN7/5TR544AHe/e53t733+Ng2nssCa42wEnA7Z0jOG8JVkxLAp9HrlAb1rCciuDetxH3nEBef38EdnZ2M5oENhdp9bvE2kIsq66bq/mx6VI97WNdzGuAtNqJgoiCe0VxH31/Fz3uCwEsiMRdeVVG7A7xXhK9huJBooIl+dLGhHgbWBvXQOR9IoqeqALy2cEMXoGwp8C28iJEOb0RxvwlCr4f5Vsr98XmkE+iv6uLV4qwoBFeCoNFRoxQh3wEdpxbpiX0y0syhT4KUlHsLXInm0f9M7FshYTacB1ym/SsM3gLUl63oX9FH5eU3f+ciwI8gr3WhtdFzaKKHz8QofXcI1ETgiUlkuA9502qCXQP1nPCFnfDgcRpvGybPggoDATs8PJwF3lwXNotAPcPuPYp9xzp0b1cDJzjDI8ZyeSqkmeCc4JZ1klw+hLt/lPQjW0koNvV4rqOv8W3Usd/7zV+AxTwqcWt/T6sb34g55xHUE4H9kA9c9Mhx5KIR5LwBjbJduUD44j5kZQrnL1dDt0TXpplDHwRGZ2iM11j8yDksOBXKyWO6iQFsYql4oeoNck4/MjIFj08gb1kNHuYILLNgkoCx4JKgFDvaI9gFiCegUSTRKhBs6Yfn52ARTB/IhctL1XNJrXrT0zMICgaBywfhWB2+sgf+yQX6axQwNIKQ7ZkmOzlH9tPnEYx6op9zhj+qWH6QWkYRQhapcMSg1jvXwFf2IveOIe9aq7R7PHkwdBUUu9wrPc81o9jFuZOWjbV8fmqMhaKedsshXvC7TxJq+j/FXLIbV+jzRtNmmgqxKhjmM9VO2O0Dv/DQMeymIZL1/Ur7SxTQdyeWI5lRRXsfkI6E8J61hB8cggdP6rTafRj5eQjrV9GVF9TSOMbihqjrkY6XjqBAjCAwtYCcasCW3iZdr2L1ufoC9IM/fxj/McM/f+oaGpesxk4I7suHMJfMIO9YQ9aVKBD1ovmduUbCD3qN1l6wfwb75DjunEHs+9bhT0yT753ilnP62TyynDcYEBlGFjLC0QXk24fK/D8AHh2D9SvbqZut4L44F+Oq5XXwUkbmJQhh3yl4bJwjV4/w6Dn9XJ4Y1RxINQpmRHANg7UBk4Pd2M/n1yzjXzx+BPv9Y9gA/plR5LoF/CVD1LpSFq0adg2D6rvEc6H4n0eD7ZSB73q4D6P2sjE0DDzgLFdENluoxHrB3raXeWsF8ztPwjMn4XfO05zhyMgpfGXihSNdHTSurrL1kl7sQ4ewd59UnYBnR7FXzeA29WOWd7Cls8q4Ubq9PzJJ2HUSOW8l+YaViIFFY1hwhkUbGQbWxCoGEch7jcqHIIz6wIFDMww/OoqkljS1UAscmpplU7JaKf0x37kJ6A1lXSRnyvJFOKOpKy+ONteMDw7hQ0J9bIH6dw5Tyw31dd00eg3mhSlMA8Izo4TKKKaSkKzvJbluhHRjnzozbmpS1/1bBmhM1Wl8YT9+bQfZ5SvINyzj4NEpBocu4NLDEywf6MLuWCDZfRTX4UguGqJyfh8V5zAHJzS95g2rYetwe1TTxtWziBRGoOCWVempqQNQnAIj4tqFxH1CWsawoHv/oVPw1jVw4Qp8xRE6XKzioSWqQoCxYBgycI0xbHcQijQC19zvgtGgSDAWH4RjQegWtTsKD4MRcEY1HGxhY6QRzEcxSinrgdFM7TEG01vBzMe9wgq9wEy0X8qyX5hmhN4HTATzPrJoiui89wJzNa59cJSJq0YYWdenJRe3DOFSi00s5ySWY6llLLWsTZ3ue8a0B1ogrqkOE4LmSFvTrKBxwXL4/hi8cFL3o1YdAy+Qe8SfnmonJYCR0swx0hSW7TdwxJiYpuUxPkbmc00BCo1QphcM7p7EzoDpALsAdnwKuXAVwTl+NbX8X4llS2rZkjil3FcT7ovz8f3EEmhA1cSKGYmlahMqZSSoZc8VQNRZ+nsDV8GYwMEJBX/lGLZl2bpibzSg96DidH8QSDFMJ4aVm1ZhNqzU8ey1NK68cQiuWKlR2Ntb5vCOMXh3HS5YBR0OH9fARlw35aUJuH2MFEj+2QVUeipqR8TxF5whpA4Sx2jF8caKPvNIhNHovC1id68A5mPnrGv9/wjquyyVyQXmREtDJjGH3kfbpCFqCv6tDwxmnt/MAk9ngbdlgS2iz3kkBIYfm0D6Orlqax+PYph1Kkx6XdUSksJOV9ZoYXeE6AATo9VdxFmOpk51joppF889aGpHUQVGU7nUUSix1GrwxZ4i5biVABNe4IKVnHt4FDOlQ8V5g8kDWwxsE3hHy3abe2WaSKZr/+4s8IEYVLVBkMMTmJ0TXDuZkacVeOd6wmCvptNFfQsJWmLVbh2Ae0Zh5ym4aEU7KyY3Ou+KQNBPYHvVgH5mRqlV73rXu0qBvE2bNvEHf/AHfOhDH+IrX/kKf/iHf/i6XOQrtbm5OY4ePcoFF1xQ/s45x7nnnsuePXtOA/Qigee9cJUIZnaR5KUp3Ie3aAUJpxu+Sy3GQOItLlWQmQz2YtetIH16mguv6+DJXFjnAj5RtftchIaBalAajCs2vvFZrbWzrHJmEA1RDC+CecB3VQgWwnyNvT1dvDVuaqmoMfYBgd9GqehrUC9oGaEPwlEfOCfzMV9b1HiOC70rcvhar6Etil0cccEUzW20Xq+hGlTAKlafRyZyWNWNGAVKrZ8ZjCEYQSyqhm00AnSyJ2FFbZEOfSBKt4/MgaIeZlGK7irg79GIkgXGgrAuC1QzVWV3sW82oHnueXQ2nM1Zcdrvglq9lSWiVpnS+AuaPJkCkC4vrBmbhvEJ5ANbwGrulJAgHzwH/4V9hDVV/JYBvBd2hsD/nYL3gUeD8FO58N4X5ugZXgarespF3jhL7iwPOcv/FtTRoeWIAu6qAdyLx0ieOYm9crAJpgvKGJw2pqrWwULeshlqbq9xtqwfbSIAN1EsykQK9IYXZ7Sc0EV9uhEmBpZ3IT+zFrntMLK8ihnqpkz4Nq5pbATIHzjG4nVDLHSmGkVz0WiLHuckEXxU6LYi8LbVhFv3Ied2w+pecgwrM4NJtUyYjca0jWCw3BR9QbUvor2RHrqyj9mOUR7a0snWc1ewee1grE+uzzhzhiy1VA1N6l8JugK8cwS+NAd3HIQPbSIzhjpSUu3zd4yQVVO8s9xjLdekloHUsia1/CDOjCKn3BPv989tQm7bDfcdQFyArcvJ1q2i38XNO9e8VpMYjd7E9cqgEXpQ301HnOMmi3VwC0G1GJn3WaB2Yp7GN8fwH16PVAPm+aPYWUgfPEGyehnJYHdZ19p7wVuUbu8Dz3rh3c/PkGY57qoBEqNUZJPo2FmeWF6I+dHBg+SaZy6LmhQgFVSRZ/cpFtespD/X1AmbWGWEpHFhiQ5G44Vur2smIsjuOmzuRyqqu6DlcSLIElXzrQU1YMIFq5EtQ2R5wG0W0vP7cHcdxn12O/n71pJdMKDsg6AgL4TA4Yk5fufRE9jc496xDrd6mRrU6wcxG1dBDqcQdUiKEJY5pLdKSAPh70ebhug+4L4jml9dTXTstObVW9MMn7SNL41MqNpuIDwxiew9hrx9LQeGl9EfnScmtdiK03OxpOZa3m3YBg5j8F5T4EJV73l4cJL84SlCVVhc3U1tZBmN4YTGYCfZqXmyfZP4c5fjR5YzA9wT4DmBCw38MwPfODnJptEGL62v8rbBQYIJSMVFNeU47sqcQt9Ms5mqwddG4YNrkYFOJEYnixQbsQbxgRMEzhHBugomiY5b9W3h9s9gJnPMYoPrLEx0dyBJjt1fw2bgnzmMfEjI16/AW1jMlHJft0aF/ZDSgeNFONrwjO2fZfOO41wNTK1dwfj8LL1zObM9CWu2LEcqSpUNlejoS/W+l84YHy3kRJriSBcOw28YeOoIXDYEGwdpiJBfCrkE8lOL1I82qD9xCJ/DqRWwchK6Nzjcz1xAw1pSo+kO1a1D8HELzxyFS4fINq5UJ9tiRrZrlvyZY8z94BAnBxM2LAaGpo/SOJLTtXUlyU+vIxnpITGWitVABBcMw8Wrm46JkpoeRbdiPm9Juweq1ZRaAh2zi8hyLWgWIjiSILrplpH5eCzmWnJnwzKIufAhiY5SmiDgIBoVvtQYvmgMMw4GrCVzRAE1BQdK+NP/GwtCD5TrAUEwJtLvTSEqdiYnfMveHvdUC5juVBmGiw3o7WBZZCIsAr3SHp0X0Wi8rYeSZl8o3IfcI40c7h3lmfVDnL+lX9eNuDYWDrgkdZxTcTxZcayOUXlLk1k4HG0bCwoMnMWmghWrEfpC4fjaEXh4HC5Z0XTeF+ciYhiDhVpxItBajUCj9IYEvQ+JgUFjOGhMDFYE8B5yZR+ELDK0ck+tnrNyoq5rziJQgcoFK6Di8M6yPrW8L7H8ecXxnyqO7oqjZg1fAj4e96gKCuSLo2qgmsZ9rUxHLcA8KkQJmj4F6pgqxnIB5ovofGQgFPujJI5I6MBamM4MBIMECyEQonMuFGzUNw7B6DFldRXtOxOE70yQWah1G+oDCY3OCt7XkEO+tE3TyVk6BwZ17YgVDEgdkjh86jhRsayIY7JwOrQSc19VswVLr5lDbzHQX8UuZHQG4SSaviPoXlgXrS7xQIBHG54/zZRmfrUEqoQyoh9emkYOnyT84rlsSSy/Yy2fcZa3puqgyVOr9npMQynKhhaOr4CmE/nUMp5YVhnT1kdQQL8Y+xGqCWKjA0qCauSEFjCf61iVKDy3mAmNdYNk7zW4XSdJh/tx2yex3xtl61tWc1eSkFsNsoZ45Jnupy9mgWEvjMRAoTtwErljjNTAsgS+8P7lfHSwp5xDoRJr2+cBKej1bxiGx46pUy2PLK3SkaaOh5/UKP2rBvTVapXFxUUqlQrVapVGo8GhQ4dKOvvDDz/8ul3kK7WFBc3/6unpaft9T09P+belbTQIn0Bw2+dxm5aTdFdxiaXiooJ49JamuZA4LQOUGEiuGiC/Yy/XT3Txl4O9zDYMb8VwiYkO/RgB8UGaoh+Ha7C2u+miaz1iZCePC3+RSx2MIfSkHJ9pkHZ3sQ6llydoLc9VIlwLfB345yjYTURBo2l4TuXCxkxp4i4CUeNFX+87jnnqiNKMtqw6K9i1RZQ+9sNGwN2dw0yk3YkAx+eQoR5dl017/woxqWD0bx6lIR3r7WRVhtKYnFP6VLQdlIIvJBgcsAmlye0Q4fI8MJEFNhb5Z6WzQkqFc7v7GDwba31uPnv/lqoTt4laJVbzpYpybHkoJ3Nv7nnfk8fIrxoh6aoQohdSgLCyi/CzawnfGScsrxCWd/OQ0UhYNQiBwP56TrJ3nC++eR1WDOuNZZM1rLaGO53lWKKbkRWrYB5LEhzp20ZIbjmEOb+fQmAMaN8pirNr+dlFg7RVidsADa9Omhb2AV5gZpG128e57afW8eHElNF9sQbZPIBcU4ev7IVPXNTiJjfRQAiEsVkWj9So/eImpfw6S90aMmc0D9sYOozgrUBqqYggfR3I5cPwyDHCB3uYlkDFqAHjoiHjEoMJzah6UU6pAPQUZxFOjM7yyJXDfOfyQarG8S/FcLE1ZIklSS2N1JAkTh1HrYC+eC0Cv7QZPreD8OAxGm9bTUYgu3ecbHM/2Qal2h+zlidSyx9X1Khbm1oOITQCpGl0sJlAEMF2psgVg5hvHyG1YA7M0/9u6Nq4Sg3TLAL6hsdUTUljA43Qg26Sy4LEsRmj8S2R0jwPzNdyat88QOOaYcJ5A5rHu2kl1nvcIxOkN+8n/cWNhLW9mjtfrDu5AsxDx2f50O5xzLs3qKZIoqrCNoKEvtRxxBrERyBvVMk2XDqEbD+MZDomZEs/s0FI4321ecCkUcSQ6MDL9W+VIGQSF5RDx5A3ri4FEqWFXlsHFryyoOpBhe6KtcrkgWSgg/RXNpO8OEX+vTH8rhnyd42QT80R9pzC24RrxuepbxnBXrEMlzjSRMUoC0dKd6qEKrHR6ECBTdiyCvl1kKeOYC4ZgqQC3xuHJ4/DW4bh6sHozTdqlMe1rAT1En8RlJEV9k0g3x5DukA+dC4s62QcQ69TEF9E523FKu3YGmwjYGygPzekGI5tHaBr3xxhJtodv7SWMNxH48QCjYmMxnSd+tOnqB1fJKvDyS7of2GBibXHObRqJRe6hHf3Qk8VzHSdy546xhQwsA0q7wFZP0gQH1kFoYyOnRahv30fXLYcLlxRRrwLgByM0bJFueEIlku9Pmd7wQp4bgGTqdPYvHstdu1ybBAWZhe571SDX3r8EHh1WJgahFtGyS9doLa2m8ZIB/X+DmpGx8VLoyc5enCK3qFlyMmEDQfG6ejuouOqVXSs62PEGvaOTzJ2aIbLNvezfuMqJI1RmkiLltRiqi6W1wzNqPxSYH/RagXPMX0ieFWZ9sGQregmX97NgWWB488fp3cu5+BWx5pLhjg/ceQuahk4Q8UazEWr4cLVBK9pLw0RvK2QX74cf2k/u3+wg84ToWQW7N5a5bq3rSnFxipO7RZbzJMiolkAoUoEv9JShrXkoxs6DJzs7GRoJiNZ3gLmfVSCP1P+/IEZGLTQkei+ULALI4U1EwgYDhgFsIMWVhjDo9byzmhPVZz+jzHESLl+xVFrWNmylyk2Et2+bYxWng0Zmfb/K5TF6QU724CeDjpQGv9UgN4YqZe4/oe8WbKtFMOLEeyQB7hvnMZAF/dcMcC10dFoU4uraqTPOgcVx9aK41lr+BkiZTsuBWNoAKa81MTiQozSuxihL+yRS1bAD8Zh1ym4sCVaWKS1ZV7XxqDOeRqRHZdHJzlgQpOYCIblUefBgNbjzkIZrS/6GOYb2O8eprFqgMY1VdKXpuD85bhzhqikmibhneN9qeXxiuOvKo7/jzV8HS2L91ZaqPZAaprgPoE4FhMgb99v3zAC2w83n+UbVnOaTkJrdN5QCv8ZQFJHsIbOhmfKCcGbGAU2aqt63adKkbOrR2DXWPl1+UdHqK1dTn0hozafkddzGjXInzik+3IKrgF+zwRywTBp2lzjfOLwiSOrWGaMYTntIL40k848as8wjk2zdJ2hSbvv0qDgprkaU5Vu1hSANi5VYwKfzQN/EPPkK3mgknmq0U6W6UXC98aRd68h76xQc5bNqeX6qP8TUouvKKvEo3tKMGCkoPfrnNUUKMMEsGVJ3wwK6KeKcW+Nrq9ikaBYJMS4iXi1q8ULkii4P2GFdbnFbBjErF2hGiSbBzCPHGX5t/Zz3vUjHBzs4dxIuc+DRNtF2JEL14hAluO2zeIeGgMDWQfQgPUHZ8i2rCJJVKxSbX2tLCWJ0bX98hVw31EYnVWHZZlyVQB7LRf7o4ptv57NvvJbtPX39wMaqR8aGgLg93//9/mX//JfAq+SRvI6ta6uLkAj9a1tbm6u/Ftr61u+iYk/+td84U/+A3/xN/87D889yY233I7PchKnOfR3PfQkDz+7XcU8UsvM/Cw33X4nrruK3TrCsicnmf7+Qzy2bz+fyQMvznsOvjTOLbd+C7+Y42Pk84Zv38P+XYdgrSpcb9t/gFvufaAFXBo+/de3cnxyWsvTGMPTL7zIo088Q+jvYnpBOCdr8NUvfxVpZAp0g7Dt3ke56rHn+DYwC0yeOMUt/+PLmFqOaXgm6zn1O7/HwRf2YDKPbQTGDo5x8423Y78wCts9fGmMG/7udvYfHIdFD4s5217Ywy13fV/zSWoes5jzd3/3VaaOTULdYxY9C089z9GHn9CybQj18Un+5oV7qOdZCfzuevAJHnrqhejkgJOnZvjS338tRuhh1FnuP/EiL72wByu6WY+NHeXWW+9SpfsgOAP3fOkbnDg4ztVBeL7uOfTsbnbecS/ra1pv3DVybrrxq0wdn8TWPWb3cR7+3GPc9fge+OIY7DpGfa7Gp/7uVurTixpZqHnuuv9xHnrs+fLniaOTfPqvbtXSJIs51HK+8rXvseOFPSXQPTp6hLu/9V06nplmuquDuU193H33vYwfO6YR+sTywksHuGNsB+GKQcI9hwiNnPCVO0hPTuFF6MmFt977LNvnxnjb6h7WO8O24Pkvf/9V/qn3/H3MK/wvjzzJd5/fQZJaEmeYnp3lc888SLKxG27eAbe9wC03fYtt2/fqNS/k7N8/xg1fuUuf3ULOXfc9xg23fIv9+8b0d3XPtmd2c8ut323mWGeBv/67rzI1cUoZHCGw47bHeYiTjK3sBWtpeM8XbrqNung13q5fxV2NUR763P0lqJw4cYpP33IHEqD28DFqbxzk9ice54UDBzSK5iwHxo5yw1fv4k8TwzPO0kgsN3/zu+w/dlyjsFcMsOfUOA/+3be45Pv7WHv4BDYEvnrjV5k5earM73/s0ee46zuPKFrOhcZig//nr28iW2youCLw8MNPsXtqjATDvDPcMzPDl7/8NTKj31uvptz6zft5cvf+kja3/9gxbvjmd5uGQ1fKDavH2P393dQfPET2hefZsWMP3/H7FAAnlnusYfiWO0jnZrGJZUVqqT67g+8+8kQZoayFnP95y+3U8ciRUxjgsYX9PD82ysW7T9HlA7MTp7j1776qzqnoYPnu1+5l3/Y9QDSMDo7z/S9+PVKePWSeW26+iwMHxiEan0/u2c+tn72T2oouatetZN4aPnf7Nxifm2PBORavW8UDmxa582+/R+3AFLkXFudqfOHGr1BbrDORed75yFGe6ppk55FDOKcOkOm5GW696WuYVPt4uOp48N4H2PvSAY3gVhyHOwJfXXsQf0lVN9DOKi/d9V2S0XFVsw/C3hf2cvft9zarEohwx5dupzE1pRG5Y7O8cOIQjx7dV4L5evB86m9uYV489YqlVnHc/ehTPPLciyymlnsef4qx+Vn++rZvsJA65pxj7sLl3HbBKV7IT5D/7U7MV0c59sQY99/7APdeNkjPVf241HH3d77H0YkTGgmvJLx04CAnvv8Q4x1OIzBVx5e/+nUm6/OEToecP8yDF6TcNTUKG/rg41upf2A1n/rW16n/xTOwbQIyz12338tDf3En7DwKjcDExCk+/cWvwrYJ5LtjyGe38Y3P38uuU8dhDsL8IkeOn2Dnd79HX0VBgak4vn7Htxk9dgzXocB+34ED/OD+h6DqWFVx7N+wiluru5m4APxH1yHnDPLI3r3cc2QvjctW0HjrCLM/u5G/WXiKp9bBxKqEF9YmPHVoJ+b4Ac4nsGyixsILR/j6Hd+ksqh04HQGvn/n/ezdtU9ziWueAy+Nc8Mt32oTwrvhW99l/x3bFfy+c4RtBw5wy4MPx9rbetz0pds5NT+HVBzjVcfUzp089dQz2HNWwa9uILs04XMrdpCv68clDpNYdu3Zxfa5Ixy9fi2hFyYXFrhx4kn8m1fQ6KzQ2HGSb/7FN9nx2fup3z/K0R8cYu+DO9n90CPkLx6neuQY/u3reMLtZa5ap5I6TOpI/Dz3h6Os3zSkmgCVhC/8/R1Mzs4iVQudjoeefoFv3/sopuKgI6FuA5/63M3UbYAOB1XHXU88zUM7dkKHUs2P1ea44fY78dVE50NiuXnfLm4aznnivJV86ZoRvpYGbv/OveQVR9ahx+fu+i77J45DhyPvcDxz+CDfeOBh8qpG+/LE8czBHRxLGmw/vIe5noQZmeaJp58hTR2umhBs4NM33UbdSvP6Hnuah57bAZ0OKgkTk9P8+f+4uZl2ZeG+7z3I/v0HqGCYGuhkfOwEd991TzMyj/CFm7/FSwfHSzC5bc9+brn/ITi4AOsHwBg+89Wvc2J2pixJ+/Qz23nikSfxnQm7OhMGnHDb527mKhO4P9aPfvy+R3nm0ec0b17g1MkpbvvsTQroUSfAw3fcy4HtexQUWcPooSN84Yt3thnSn/u7r7P/QARlBra9uI9bvnV/7KeCob+9/U6mbAaLGmXd8fwOuh5+koXom8gaDT7/375Abb6GNDxS99x132M8+OQLSkHPA6cmT3HLX9xCqDU4eO0Q/c7y0IMPc+DgIVVaTyxHjxzj27fdhVQcl1rDc6j9MnZwvNQP2rd9Dx133NsW0fzCDbcwNT1bRvgf2r6Tu556Rvega4epP3iYT91yG/WFesmIueu+x3jokecUyC/mTIxP8um/btovZiHnG1+/j10v7FHHfd1zfP8YL910J2HBY2IllG989S4OHRgr2Qh7nn2RH/zVnUwM9fHU9cOwYSVfm9rJzPIOXMVSSS0vvvAizzz6JLaa8M8rjgezjP/037/Il+oN3oaC9mfvfYSdjz9XRudnJ6f47P+4KbJD1Nl0y13fZ9vel0qwvn8Z3HDuQe5aeRD+6Tq4cDU3fOM77D96rGQYPrd9L7fcdm/xuDHAF//yJqYnpwCleIfndrD94ScJ1YRQddRN4HM33krdaHoYVcddzzzDQ9kkfHwt/pKEw7/Qz5889yjzHQnzyztZXNvLHaM7eK5jmsV3rmW+E/YvTHHzzHMsXjZEPbU0Ko5b77ib0SPHCakjVCwv7NhL7x33srzl+v7+L2/i1Mmp8nk/+Mg2tV9iq9cb/NdPf4F6vVk57K57HuHhJ5+P9esN09PT3HzbN/TedVVZN9vgse8/yEt7XyJ4rVRy6OA4f/LFb/CBzPPGXNNsv3vbXZw4dIRKHujKA4duepwfmEN0bOjHOWWC3fGVr7N8fpaXIqB//tntPPSDxwlVh686FvF8+rM3UTcBX3WExPHEfY+y87HnOAGsBGZOTnH7Z28q+9wDdNxxL/u37ykDfaNjR7n5lrsInSl0JdDhuPm2b3P4+HFCVW2IfQcOcuT7D5JUrbIxUsdNt9/JzOIC7s0jcN4qLrv1IV741oNIdOgvzNe56UtfZX6xzrGZRa5+cpKn//Iudux8HvdTQ1CBmbkFvnbqSZ7a2s+xyFT93v0P8uJLL6lDxhn2Hz3GDXffAx0JXLUCnpzghrvuYf/YkdKJtu35PTr+CkcU8Om/uIkTE1Plz2d7vnfeeSe///u/z+///u/zax/7xGm49LVo5r777pNXfhv88R//MQ899BCf+tSnePLJJ7n55pvbQPzb3/52/uiP/uh1uchX0z760Y/y4Q9/mA996EMAeO/58Ic/zO/+7u+2Ue7n5+f55V/9LX77aw/ywb2ejlNzdL5rHV2Jpbvq6O1wdFcdpkO99L7umat5ZuuexZpnoeFZqOfsums3t7xhLUeHemhYy1tF+B2nIm5dqChEdxCt1XrzEXjbcnjzOh0sHU6PzgS6EnwemF30zC7mLNT0e+YbnuzxkzyHJbyhnysrjo6qo6szIas4ZqsJtY6Efwu8OfN8OAtUveY+Zbnw/60HfjcEtuSBziB0+UBXEHpue55lLwbatM/fuRo29sDKjpjsAxhDzaqwxSywKMK8QE2EhwPsEPiEFSp7J+j++jhdP7+Gri2D9FUd3Z0JJho6C50J0zXPwmLOwqLeu3rN8zeNwEe+fYBlF/XTsWmAror2rbtD7/1cNWEuccwFoZYHHso8X8sCf5ILf54FrswCbxehI9d+dflAdxCWfWkbnQeWDI53r4b1S/unfaQ1qtGaP5lavBfm6p6ZumehEfTZH50hu+8w//Pdm3j/8k42VRyd8ej2ge66p54FFnLPwl2HWOh01N++hj/HUgN+JcvZfNsu5K1rkTXL1KucOvKK48+qCY91WHyakNRzfq7u+YPg6WwEumuenoane9sRuPN4s2+/MqJiLtDiJlWX8EM7dnL9pRc2885aozaRFpzVPdNxvM1ngYWdp1jcfpzDP7uZv00S/n3VklYSulJDVy50NTzLGp6e+Rz3N9vh4lXwtii+JEJ9bJa5mw6w8DtbqfVUqVUci6mlXnE8W3H8cYdDnCWte/60nnOFD1Trmhqy0PDMP3sUvn9MI5jLgJ9ZT8emIbo7HV0dOj97OhM6nUWiMRNqntmFXOdo3bNQy5j88i7+4y9u4nhvF946fqvT8YbOhErV0dmZ0Fl1dFnoMtATApXWUm9Fvdm6CgTNP3CAucemWbSwaGH+l9dSXz/IscTyf6SOf191jFQdtiNhsWL5d8bwrszz3rqnM/P05J7OTEganoV9x6ndfph6Bj6BP/vAWn5z0wr6Eu1fV9XSVXHYqmOukjBnLfMo1f5XgP8r82yte7pzT3fm6cqEnoZnWc0TvDD7wFHmRyep/dJ51KsJjUQpZdaAy1QcMwmC3XeK5O5x5F0jLJw7wIJRldzDD50gWagx/M61VJyjK7V0diaQGubShPnUcqqa8DERPp95VmZCt/d0NwKdDU9WjKOHj1PPhS9ft4p1qeWtHY6OitPnWE2wFn1Wi56FWs6JmufTWeD/fOwESWLpvmYlnamluyOhNz73WtUxnzpdh3KhlnnyPPDc489x+WUXYaMR42L9WZerqvjiHc+TvRTIukBqcODSHtb/9BaqiaUz1SNLDPPOsuAsz2P4axE+LVARoScIXQhdQG8QemMaUwlsQ6ThPX8S7h/Xh9WimUY3qoYNMJwQhpcxe2SS2VOwWNHhNnN1D9m7tvJ/WMtHKpaLK5aOiqW74uiqOjoszDeEhcyzkGlFgFtizuCvEegI0I3QidYkbwgsBKHuVSjp1sMTbH3yCN0NYb5iOHDVan52zXIchjQuhfXRk5h7RpEZ9TWHPkPn9evo3tRHl7P0WkOvUwdjqWi/ZxK+chj+2bkw2AUVR55aZjoccxUVWppJHItemPbC7+aBz/pAvxe6gtCJ0C2qV7IYYCEEFoIKPH02Fy4B3nxkgs4XJ+k8bznda5bjRJkqNR+onZijfsqz97lDBKvO9ywLzIx08cbrz8FZSxrLXi46w4w1/IGx/N+podcZOiuW7oqlO3H0Vi3LEkNyhuCElHmULZoBMWqdBWE6CPO5sJAHFkRYzOGxLPBX0bpKreHfWsMlVUOnNXQ6Q1di6XWGLqc5zfNemM2FxTyw6AMLuVDLhYM+cNOhCTY/vI03Xn8Z528Y1HHrDN3xMzrPFp2P+eWgebZzCzkzNd2L5xdyFuqeLPM8+PgUV0tOzzUr6ajoPtzV4ejpcPQJJNHxTc0riPyr5+Hta+ACzZ+f6UqYq1gWqo65SspsxVEDPgR8BmXZjQO/A9wIrIh2UrfRCO5cgAX0uf4B8LPAO+J7egx0W9Ui7DXQcZbImIhALYeF5r4wX8uZzgKL3z7E/EgvC5cO0Egtf+oS3tzpeFOno7MzpctCb+bpzgPL6p5qFlioq903F4SFpydZ2HOU2gc280BnhYPO8Wsdlo6KU9ulquJ3s2nCvFXtil8G/gtwPhqhXgT+d+BNwAdQ1lWPgR4j9DZ0f+8s9p/iXMvhMy/AL6yD85arZkB02tARxUJbdSwi4M+8MAPMWcOCad7bMTH8FwyfcZp/3Z0HOnMtgbgwNsPC/YepXzzCzRf2sSaxvLViqaaW7lT3JZfqnF5IHPOppWYMNwJfbXkOfwK8IT7bbqvnHgudpj3wJ160WkZrffcgPPTMdq6/4qKmnVJVxxoV2/b/80GYCTp25kSPReC/o/b3b4jQ5YWeEOjxQc8BuqJor2RB885Dizp8kFJjRHPS9eeDhyc4uv8U685bzvmbh+isOKoxh34uccwlljlj2A785zjGO+LS3221/8vifXCvIvhZjOX5+ZyZmmchjuXFRmDxgSPsWtnBi1v7+YUOh6skZB2OG2J1gf+YBToyr0cjvvZC1w+OYg+cJPvo+SxUExYSy2LFMZ9Y9qWOP4qfUU0dPcV1G+iNJvOswGyA+aDbWTG//wyN0nej71tAhRc/Gu/DyjiPe+NYWGb1s2tBmb5zHubywIKHhld2wW9ngUtyT1cIdEVRyoUsUAuBfaPTrH5kjI4Nq0lXC8m+U9TX9HHyWKD38ATJ2hUkF3bTvbKXqoHG+CQLe07RuHAFf7J2FT+VWt5QMWpfVCzdQedBb83TUcy5iUX4n7vhfztfBRsLzFbMvU7FcT9qIHtmZoa+vj7uvPNOuru7f6TPOFN71ZT7j3/847z97W9neHiYj33sY+zbt48nn3wSYwxXXnkl/+pf/avX7KJ+lPbBD36QW265hSuvvJKRkRG+8IUvkCQJb3nLW0577/zMUR4OnvftHaf7resi3jGlIJ5p2RBdHkidiuQ1Iq3NpY6ui4a5cu8Exw7PcHBjB9evGIj0tIDUPLLokT0nMfdP6pd+fxLWdipNr5X67QzBm5g/32RsCkLWZ0mPL7KWfqwUeVeRdi9Kq/pQHri57vnFLET6SqCWBeqNwJDEmtzxbF84hdkX2mkZWztUAOKeI7rrnNMLG3phYw9mehZ2TWAuHoJ1y9WdnQcG6jk9tRyOz5Pce1Q/72tj8MsWOW+o7JdYVa4VQ6xDrzQ8MBwD7LJOmG0R7BIphVudoPnjWSBpeC5vBP42D0z5wHRdRduMRKp9EEzucQ+fwB5c8rC3VGD7JHzniI72Dd3av3VdsLioCqdXxtSDgs4WaVkGWuqbRw2Ch4/CZSPU+jpZtFbLusWNJxjbkmYohHeuJXxjH7wwTXZhPx+ysHHXLJWuLuxIL8HaqIyqUdCfc4aHnaORGAiOn/ZRkDGBJFVaMvtOtvfvpnFYPQErOnXhWZGqEvPsPNe/2IDqUU07aFXfzpvUWZNFqn0eMHN1zGPjmHeupSt1TMXrK/oHARHtI13Ah7fA3+yF1VU4bzk5UHv0BLU3rKTRXaGRGBoOGs6SO8NfJhafqDie8YG7g+VCAZsEkhBzpafmVHisE+wMhJ2nVOnb2zI/3gZBrJT5gsYrayX1ugGnh2ZZ1pPym10d/EAME87woDFcEflvxhqdT6JDomYtrqI/LxUvy7zQmFsgM5CnMeVw7yn8piG+k1guTy1DFVuW7jHGsBHYm1hNv0LntYhHxCIbB/G/ANmukzSO1Nk6a+n0AiZgcjXGjVXdAGO8UtStPrd+H2hEqr0pqfZqmIgXsh0nyZ47Qfbrm2lUE2qJpZEYdlnLw8bwNgNbE9WZSDYP4D5gcXePkmfgz+8jHJpm5fgJjrx/M9ZaksQoQyS1+DRS0lNHZ2JJgWPOstzkSEMITjQimyvHUy7uhW/sxy300dXbofoMTuLzChiK2tb6DKsiJLmHwyfgHetLcc1CFK/QX8gSSxa03u6CNTxnA/dfczkhD1xoNF80cQGXqYiW8YH86hHCxCgyD41lMHDBADZ1JBWtZuLSqHDuLDjLgLMcDkrlS4Lgadb8DUErdpTrRCsd+/JBFdL57PNKmypaFfjlLTDYqawDYwiHugi3jmq5y06Qi1cQUsuRxNKfuqjebTEdieorWLAmlsyxAVxgnTXcmQgiFi+F4q+KHTZE6xI3Yj/2bxji6S7LeYfrHFhb4TdXrqTDqYBUgpAL1NevJHsPPLRrigs39zOYWeSJceSZCeRNQ4S1yxDvmwrwM3W4/TB8YA2saCpSS8WWEXoflZ/zFI54LfPalev/m7iHGWK6VQjYoHnEJgjDDg4JsGmIsHFVTKcWvESBSmvIhpdRGxK+0x24ZrvS2xd6HGvOGaAj1XSKYu/GWDoTTQE4lhi6nSWkJqr32zJn9EzNWAMVp2thRUrqJV61GcQHgkMFpXLwTpWb+4KwYAxXO9gYryN1qvSeWz37RIUH8zzgneAdZLklM/rzQw3L2o2r+IVz3kXVagpSkhiSxGr/Wh22BT35DLR09fW21IuOUWwMzCwHXlqIWSFF+UiaVWxaj4UMJgXW94GJwnZxfoox+HgfJ9DzSNzfh4H1wGPAe9C10aN2TWT5A3ACGIqvi6hmoafzcpRSY4pyoLRE6KM4XlcVM5uVwmndIizG14XStuShKYAXGU8+CLLvFPLsEcIHN0BXhXHrWF5oihSpMRXVu3BG0wQdcBmwDdhK0783Hu9H0Tcbr9tWbFP5PZFmqkfq4NohePAYbB6ITiXbfI9wOqDPAmb/CeyO45hLhzEbVpT3qA9DIlp1JwFVIA9C2H+K8P1xwptHYEs/B8RwdeyjK9J+Ko60YsljmlIFTRNdYpHwXeD6GJlPTVMUbyn4Mc4g1aSZExDTXK5/06XNVEFn2oQP2/6/vH/t1Ps+FFCKMTof0dJpIWh6Ac6Qe6HujCrDB41wZwWAF8iQ8rbu9vBnG4dpbBqm4gz/zlquSCwmdbjURf0kvbaTQH/L9bWO4cLkfzWtGMvWGlxBtyeO6c4O+qdz5imyuYRHvfBEgP9TAhUfqfZ5fO2FjoPTdD58jOT/z96fh1l2XfX98Gftfe5QY8+jWq2W1JolS7ItWfIQG4wBYxsDARsCmOCEkOTNmwQnIe8vmCRkeF4gYQo2cRIIMeAgbOMBGeRJHrCNLM+a56HneR6r6t6zf3+svc7Z59xT3VXd1VUlu9fznD63b9177tln773W+q7x7VdxPEaUuFas/dByrG87jrc8uzLHZXG95oGi0r2QlBpCl92J+HpVOsZ4/1bz5zhqvEv3d578P4hoAfzMk2fQzx17fM6Q66su1Osjkhd7yk0FVm1Ywu+9rsM//+QzZF/u4wJkD57g+DXDPPb6y3nF0qGi7o93glyxBrd5DThh3Gvef2jH6vYxfz7PA7mtN+9g+RBcPgJfOwDfvT4pipfsvbO0jlwImjGg37x5M5s3by7+/+u//uscP34c7/1AW7iFoLe+9a2cPHmSf/Ev/gUnT57kmmuu4dd+7demvbdL95xi2/Iuq9aN4p1Ofhbzayt5O31VMKzglovFEdZ2clZ96yiHurDiy9DqbteiaFNoe5OpnDAZqhv4gT2ae5cyK4QpF6tIYqBXN9LOLqw8dIqx2LZFK8BrPksrBFq9wJ0TfT46mfO1yT535lq8be9kzrJezjCxqv2hk7jP7ESOTuJ/ZCNCTwuQ3LwWNq3UndXLYcdReO4UPLQfPqGVdyUDHt2OtLcjIxm04BoHl7eAQz0kB9qa3xge2wvXrY39N0tBb3nzeVRmj4lu9M5oB3dkUhlxDJW2Cvw+5GQ9aE2pB2F0Kuf6iZxHezlHezmrQihycd3WI7jPb0ecw/3slXDyVPP4dh2DLafg6SPwmd3lvDy2A348KKhPilqJFwW8MU+brx1S6XHNEoZEOBLBrvUfFaeVgfM8FuvoZITvvgQ+sYW148L69aO4x3biXr6BIadVQvNMWx72M+HFLeG/tBx/KcIPthy35kK752gFzb/3eVDjw2Nl3hevWQ4jQ3BwCvafhKdOwZ5eMrad8JZQ1krohyg4Q2Hdd71YY+Gzu+Dy5bB+nFEn9L3jVOZoZ7GCa1zMgWhBXjMCb7oE/nwb/Z8f4lQ/59TWE0x+/wbtey3CpFMwf7937M70mojQa3tengdO97UYkPQjILx6Oe7pE+Qn0cIJm5cq8OvnSE8VX5kKigCs+E9PhVY7CuP+E0fpbVrJNd5xeSYcawn/NhO+4ByvimvTJ4Deoe0ph1q+yMUnzuNUHpi8eQ1Tj2+n34OpIehdv5yDmfDXmeOXWloMybe076xDvVGfFy20VbRWyWI+aisQLlsF65ZxZN8xXn3vNtzaDFk5Cj2HxKI9oRdwkiOSF971pb2cXhxvCeYV4Pd3H6N/zw76P7aR/rJh+l7B1OPO8Svx3r4k8IuTwtUZTPZyskuX4N/kyO/dSr7nIOGR43ztttW8YqSDcyWYzzLNiSYqeKBCfLcTrsmcgtw811xF79TYMjYEly7jmsdO0bmtE2sdCNJz0IqdCPq5digIOnfX7jhG3m3DipHYOtMVhsHcK5jvB4quHt/0jl90CpA+NQX/aUq4XgTfV2DvJeBFyDet4vQbhK1PHuHL1yzlLZevxmeCbzmyaIzBOcSrcrbMCaeBPXng0gQoh7yv+aZW9G5Kyj3lRd06TuAN6yuVy/m+S2DdaGnoFCG/ejXhZzz9R/cxdfNquGw1hzLH6cyxoq3h/tJysTI5sR1zrBXQUeV3o+/zVKwnkBFiPUqNSpjow0RQsPmpHhzOAj+xYQ3fuAR+NsCNmdr4srin+3nMu920hs+vX8V6clbmgbBxnPCtw4SPbCVsGCG8ai0sG1JDzIefheuXwk0rKxFOabh9v+XVKAPscp4l3tHPonIUAb2TaKDuu0LOEmBdHz6RB4KEwkjaQ+vETOVagLYfAn/eC/iNK1mZCfufP8SGzcu5+rJVtLyuXcmEKdHKxMEpkN/hhctivndwUiiZeeCMWreYMT6DEFzMu87pT2mBz37f0fOaV/9MFrg2aNvVDzih58E5x6SHVuboZVqYs++inbWX05vMmXKOKZfTc8KpfuCvXeBfBi2M6B20MgX0rQjovYGehk4mg/cPRatWQ0MIx0c82bF667qgea7xXOTPbzkW8+d9UieHmEcvaqgGtqIgvkUJXv8W8EXgdeg+7pmdGT1Oo9Wx19Ccg3zWtFX7gFQBFaMZcvBk1DUUwH2KwCUBboyF96xIV5E3//Re8vt3EnYF8h++jLB8lOCFnd5xZ7sMCdbaIlprxOdlLaAXoe12fzSurSnUWLGuNjYf15XLXDS2m2EmyriXroQv7IGtR+DypSW4ECpe+aJg11N7kffv0gKIj26DN/dxmxXUd0UY6quXdURiZf+HDxH+Zif977uEsHEJx52wVxzr2x6JQN61Ffi1ul5bPAYp6oT9APC5ZAreRLUQXltojHqBBNS7XHlKzxXzV4CrBjBvH6kfoOHeW6mBxiy2Yw6BiSlhopdz2kv00KsRdCpoZNBUTuGl394P/DpwOq7TI5nwKe+4rq2Avt125EGKEhMHUdmYLseme5wRRX1Cyw6VKSSyHMafPsm+yLB29QP/N4ef7wfWhEB7qh8BfaDdy+menKL7F1vofs86wsph7caQHBLl/NqW4xkRLqXcjwbsvVRrGOboWs4oPfOudh5D9fwCyAeKlFu7htXNsKPvhCNtR1fKi4kvDRtOhNGpPtl4l/2rO3R3nyR0IZ+EbV3H5qXD6nTNtGq/y7RehxYEdSwTYVtL+X4vthbMQyD0VccIVseiD9yxAv5sK7xqTWm4L4C9VIpSLhaaMaA3OnjwIA888ABHjx7lzW9+84W4p3MiEeHtb387b3/728/6WZ912bT7GMuvWo0XRxYFf8vHAlyRkYjEHpdT0UubBe0V7R08fZhW0HxDgLCpTXj55eTtTKsnIvDc/qpi95LYRsZRgPoggVykLEwlZsESto22uOPUaYDooZfCo9ECsp72MH79ZJ8vTva5I9eQ+wNT2nORkCPfPII8uAt37WrkzcvxrRgmYpECBmC8qLDYtBTCOvjQg7gnVDK5AFyeId+9GVqeLd7x5zm8Y88h8r/arjmgDrhpDbkZKyRaSJPDNvEuYIWAXwKy61Rpqc7VQ6+V3cH3+2Q99dD3JnNuncz5ai+nk+csJcBED/eVfcgTh5Db1uJuWqYtTPy4Gk6gOr7LlqhX4ZVr4UMPwRN5OTd/tRN+fkW1qJWXotWWHDiBPLQb+aGN4IVhceqhb5XtmayAlgL6yMCWjbD7Zev50c9to9PNEfG4DWN4EdrmnclUCe61PC/zwh1on/Y2njbQzQOdEC3416yBnxL41q7SYAEJVwzwkYfh8Zz9/ZOs9MPw/l3wQx6uXVZEWZhHRw0WAXnyCBw4gfveDSDq/QnecThzjMX7CxLKnzFvwo0rCbsmOP3eJzVsbVNbvfNevcNTXtgVvfP/NHMsccKHga95x8HMMxWLmzlD2JcsZ/L7A8c+tR1/1UrG1y4j5GjxtFYowL1q9qGY3ywPdHuB3kSP/jPH6L9ilUa8OGHYCW9zjt/wsNk71jr1omQpoBcha0E7+OJZTuVBOwJuXsPUTwgTTx5g4oYV5BtX80nvuTFzXBI9GK1YRAYU0P9vdP33277olarmdEH6Wtn56MoxHrl+Pa/84m544+VRchO98yr6HX0IIL2c8V7OpIV49/qEKfUqcWISPvgc+avWkm9aqgamCOj/uqWCCw/HBd4L/NOeWs375Lg1o3DbarKP71SF+7G95Bs7ZJetKrzXEi35Yv3gUYV7D6hyJzm5c9ryKvLP0AeuGeW6z25j1y1jOqbokZdeVFj7FB76LMCtz59g8qqVtMXa4sSWdS45KOvL3aOMn/zoMfrLlvBOn/MPpvrcOSWMO410yBzKVDet5r0b1/D6TL1hPotgPhOk7bQKuChoytDns9cJ61Gwp3zZqSfWKknXPfRWMK3Yo3vUAHflaoo2oELsTyyEq9fEiCY1mOzxjuFYCE/aTgshEX+GVGwIZMJKL+R54Nk8cG0/FgiKnqVT0Rj1ZB/uagV+OQQuB14SoCvQtUgvVJmVQoPL6SAcyWP7MecIL11BuH6M8MU9hP/5pPYe39XXPfgTV1fTlWKBuZDFQnO+bFu3G1jthOCipxvlV4J283Ax2kaC7vdLAzwRVOH20bDSJzCZC6f70MsCX+wFHvXwr8lZesVqrt28hm4mdHz0YHs1Klo7sNw5lrYc22K9Ghu2Kav5LDRusaizzNP30I/t8votBfmPhcDLA7xY4A8QvuIdd3hhMhqhMiG2xtLfn8x8rPERmJoK9LM+X+wFxlqBy3I4dugwYyuWasSWd7RaQrvltPXZDD1FkqxDQYrieKfHOmSn+hoGnZXFIAl5WRTPgH2SP4+LFe7j/uz7suXVVuDS+LvWgeeVwJ+goL2FLqF2AhKsrdsyaiBBytdnHiCVArFFMOS4Q56bQIDn+oFHvK6r/5gH/l2A20IoihLmeaD/9F7yP91ByLQWVvB9QrSobM8U/NByyjva6qnN4zizeBu3AH+IdhLx6PoHDUEWyqgDvWXBt0R/zLzzpkt1M7hjFXxhL1y2tKy4TV71zveDdlR6/y4bvl7/7p2wbC+yvAvLR/m+8Tb5Usgne3D/TsIhCD92OWHdOLnADu9Z6h1DBujjOF3Hay0KVASb9vTSoGHXH0fB/MtEgz3TYnhnnDIn0PFakb4N+w8cYuWKZRTtFc8w1XXvvKAe8jRAKhiQjE6mU044mTkm+4GpXq4e+jwwSbSNBE0t/RDwVwFuJfDV+Iu5E+7wcLqltT6Est0hqId+GdX7SdfxrEK0HUUOvRNK4+6Ip3PsJEeiEeK9ObwqwK25ppx1ejltK4j33AG6f7adoWXgbl1JiGDXtSLYbVlUledKJzyDGt1SMN+Pe6/iWQf2MhhJk9JonIf0+RTn0Pz+cQARRtte52wKxKtqZHJQgI1BePLq5Wx4/iT5UQhL4Pmrl/HyttO6P5kja8UOFOYcEGF1S/iK17SwltMIkzxz9Pt5NEIrzmMqV7ywwsEDB+C21eUes2Nq8bWwmxWgf//7388f/MEf0OupB/DNb34zf+/v/T2ef/55/u2//be8+tWvviA3Ode0Ys01vOqZw1zy6qu0en0Mg2uZB6qVCEgfWwhlOW5KVLnNA+66ZfD8cTgKbhzym9bA2FBhgcoFVdZMsXvJWu0La97/aDRQMB/oReWgL6VH+2sjXV7ZAzepleB9HnAIjkA7qCKW93JemQc+NZWzpZdz2fb9rHzyEHcsH4GnjyLO4958GbJKIxHEuxg660pAn+QDFoI7VgCVHN2tL14Ho90i5P94DmxcydQPCr3HD9K+fgXhSrVkhejN62VqudRxRQ+9gz0I60Vg2ONOnlQvTbCwS32doeHmrqc95t1UztX9nEe27uNHnj6M6w4hzx/CrV6C/ORVuOF20UKmeMbCGca3rlLhlBPAf495gTcsR3vWRqtoL4fP7EBuWoOsGEOcVhbe25LCE5VnEdCHQJ7HvpY9VXJ2tHI2nMyRI9D2fdyOw7grVtFqObqtxEvf1nYhEKvEthxDIYYjg96/E7hhrbZOshioJEQc0LE9voM/Pvoov7DspfCiEfir7XDfbg0fumxpNHJo6LucmkI+swP53kugk6nBKtMczRM2Ni/aOz0EAi4JTc+ZvLLF6W9pGPTklkkmdhxkctNKpsRx2jl+1zvuzISXe0cbuBH4EvAbLcfGvrCp7/A+J3MK5HqXLOeeVzl+9KH9qvD3c8ilCLmXPAwwV4lh272nj9Bb7ugvGVIw4VXJvNHDy7zjXZnw74lKVlAB4cUCMwTfdnhUoZ0i9vAG+letobd5NbmokePezPHOqOz4KBzyeL2NqKdpP7DeCf2WL9qrqCdI8wdP9wPfun4Jr9x9FPnyAeRVa7Q9X/T8iimxMe1j6WTsg5znhAiEQy8nfPR5wsYx8petVNDb8oVH/ZqW555Y9CVD9+G/Aa4KcEcQbgFGdx0F4OAyWH4I3NOHyTavUdDbUuE41faId9peEjVk7oP4e44QckI/gvlo0GPVKHvGRlj+7DHk2qUaXdELqsmbt6+vhfGYmOLy3Uc4+LKVjEZvROFBjDw4ONFq2HErfC/wWWD8Ax/n0D/8cV7VdnzCwe874bae8AoRXuIdQ/2cz/a1y9ywV4+teZyymBfqkKIiNKiXZV98XQA+J4TMq2c2CvSBnvNT0VhxvVYuT4G8ve4LaqiIimY/Kop7Wo6xGMJpocKp18OJrllHVGxEuMILT3q4uqUtiyYghpEGDuXw63nOD4fAxly94KZkdyTQiTyll6tSTK595tuSc7QvamxxytPCSJvwvZeSL3Pwyf0l39x5SHtFp4A+GgBz7xoVQAMwIlrszECXhtrreg9tWJmrp/u5PHBN0OinyX7O6QBT/cDzeeCPM/iXeWAcp32vBdqZKKjPVMb1vIDzMXpEWBXvxUBkCuYTE++MqKL4Og3v7cWWbA8ErXshwKsE7hbhpSiInYq2n6mg3uJAbKYiGoo/1YHJ3PHRfs4PRJ73uXvu5ad+7i14p8pqOzohZgoSDFAUoeiGNoBet0U/A3f8NKGt3YJUniUh94HooT8I37UBnK5fC7fvCwTn6Efj/XYU0NsazmgOu+8la2QPGpJeX/spAD77IMHaqRoIkiGPOz2BEPhSkKIF8ARwbx54ca5tM/t5NMo8uEcjJ7zujfzpg4TLV3O05TmWOdZEIyeZeujt/ryUcmUjmsv9BHATZYX7woFBua8d0dhS987b8bJV8Dv7YMcxuHRM+cwUJZg/1YPP7YJvHYTNbeTpSVzU3dzf3oCMd5Gjk3AU1hyeYOzJ/WS7+vi44Pu9KXXGZI5nnWe9pfy09Ozamcq6CKpSw5dH6wLcGee4LdB10XAoM8sZt7kC+JP3f5Jf+Cc/fvbPU66H9LX1QDdKedBUgFMIp50wITDhHJNxD06iUUBfA34/aAeEfxfg8gCPA/8T2OKFlU6YMO95lIfGRw7EOa6C+Bkao+pkAD7uV10nAsuGcKdzpqZy/oN3DHn4EQKtqUCn16cVPfPt5/czdNd2un3I9gFbDyLXrNF5zJwakDI1IOMdVwJfoeSLaci9C8n78fb2Uzo04+0SQjnOYSJAr83BALhPDjPEdEG7MTkh9Pt4JxH7KN+6NsCHLl3FK39A4MnDvP/qZay+dBXSUiN91pIC2ItXz37uPStbji1xnRW832ul+37fOupEfJQHbWF330548cqyZWSljV3OYmphN2NA/8UvfpH3vOc9xf9NiPzQD/0Qv/Vbv8WXvvSlFwyg37vjAVbs7+N3HqJ1xWp8DF3LrEWXeQ+IG6kt+J5OsstzJHewaTWn3yD8zeNHeOm1Sxi/ZGWZDyJSAHuuX1eG2SdKDzFnsx+FeO6iYhfB/F6Eo5mDrsMdOY0fakWFTkG9AV4fAkO9nDt6gUe27uOqT23nimOwmeNMvXgF7uXrFcR7DQ12Xo0SRfE3s7qnOXL9ANetRX7WwSN74ea1yGUrFdwHVQgPB5STX74arlxD8A5aohXDfQxxckIvED0hlk8vbBPhUgEZ7+COaTqDy0OhrLbygOsruM9yLeQlec6l2/bx85/czokc5NRx5JWrkRevU4aXuaIfbDG2dHwhAfa5jo+3CXxjF9y0Bjau0KJWn90B9++CV1+i4d7O4b51AJmYQl6yTBUE7+hmjiOt0ruetzx5X5XOkAfyviO0FMQtfeaIai1D4E6Ae3o/7qrVZF6LGoVMvfN5pko+RKcXQqfjtWiVLcgsMpTUQAHV/1+/Dn7W8Qtfy+BFa2DjSnhdH+7fB3+6FS7dB9+9DtaPAeA+swPWDuOuWKLji2CwmzkOxtd5yxNcTsCD5DHvUHWKU0/sVzDfgl4fJp86yOSVq+llwp9lQi9z/HSmoNeKMb4ceMoJv+Y9/8UFnHNovKJw3AmPXTqO+9Zu2HEU2bg0CbuPYduSVxWePOBy6D5ymN5lK2Lop1rke15D/X/SCf9EhHuAN8Tlm4bee7SWRrvl6PWidz4EbUXZ00JjU074KxGubTk2mNfCSaHIOTRleh3wPKrA5pmjHzx5NBSEHtAKHOvHugivXAt/8TQ814bLl2lEiHmZAvheQKZyhqdy+j3dhCEPhG0H4J7t2ibuR68kOF+0YTFgtaKtYPyVmfB6gesQjgMPOPga8CHglquXcePJSUaP93ju6hbrrlvGdTEMz0eBL1kJ5g3QP0gMk/MuPmtHyNQgEbyu0b+5fgk/9o09cNUSfUC5CkEhAmCTqltPsGPlGG64oznq0YttWnKIe8MEfw7cgIbufu4f/jj/GbhJNDVkt3fcN5XzgazPf58KXN13PB4CiPAfPPxn73hxJmQdT9ZyMTooOvbiGFeh4CL9vQL4xT0SMtE128urofcWQmCbtgbqNVopqMfIIgC8Z2tLw/3ta+Zhq4N5J6UieQVqqNAoAm2ZOum1dsVvAJcEx/cGBfPtAB0CLVTpHhIF/xKBm4XvDouwe0p7OId+roBetHBb2H24Kkwf2gM3lX3PQ0vlQN72BHTO7NntRfOKbQ1VQA0K7jUSQYpczA2ol35zgF4EW6fznKMh8Jt9eF0euDLWXmkTaIvQyaDjHN1M0zRw6kkzT94aNBS6rmQW3voQZgyS8xABfXx8Vs18lwiToqDOo8anP0NB3UZUHPRCGbmZE/FZBBY9lD9ucZ6Xt/SHfvQf/x3lM5loJzpRw8hsSRK3t4XgDwucHu6SHZmEZWnYPdUc+hNTcIgifz5YWp3T/dqL9xNQD/1NDM71q1CDroXdp2xgD6XXz8BM6qU/62iTkHtsPYngx9u4o6o/vUrU43okpny8JmhUXb8fovoTyG9aQ3hsByGHvof8+hWElmNPLKTVbmkXChfDwe3efChBvcTxP0AJ6C1/vj42H0EbLa/FJs07b8dwSytvf2kPvGVMgXxQmciDB+CTO2HdEPz81bB8CNm6H3lkL3LLWrh0hRrslgcIgS/m8P1fOMHYruMEawf5zEHyzWvIM8dT3nF1J0YgtDzS0XFaNFvHJjIaQHum6xIdERHID8vZvfNNNBMwX0x15In2TAXNoTdgWAeNE0GPUzmxEJ6obUQUoP4+wteAnwW+n7L13k3AfwV+FfgttLihR/lwqxTVHEJTLQoeTnWuZ0ex3o/EdrZmjGtnnOwI7alT7Bse41gIbJ0K3CBlmH2n36f70e0M5ZQFsB/aAzeuw7cs8k6KPHoBrgT+L1VeaPzMzumxD41kk+RAyoc+ThXQF/MQqIbemwqLGmKWps8upt2Jy/H0C9mwSYRdU46Dl61haNMavojwS5nEVq8RzLc0fF6cFmJ2TliH+u6Ooc8lxwySvowwtL3nRGvifHonPHcYrlpegngD963F1cJuxoD+gx/8ICLCTTfdxIMPPli8f9tttwHwxBNPzP3dXUAaBjpP7sddtUaL4Xnr4zoYviY+5hHlIMEXoWrZFWv4i01ruAyt4BgiVw+uDDsrFDlbJAam2x5ctNQXoFcFee7gSeAyERgewp3oqV4bQ9KzXHMJ21EI9fOc7yLw6NOHyY8BQ5CfAulP4DKP87FoS6bWq+IebBGmXuwU4F+/Drl+Xblh48brBDgVROtDROZu1uUQLbqh7TTSAFU0c4lWXYFtArcKyFALceCOncYtHynb1QGtEIF+P3rs+4FdTx1m94qMLiocLz9ygtGoXKf5QEV11MxVjRQp6O0HNbRcvabMQ7OiVl/bBx/ZBqv3IBuHkK8dQb5rlYY2RqPPeOZ4uhU915mPIcKBXAJ57sl7kLeAAJ+7ZinXPH8MOQJ0wF2/srCSZpkCyNB2umbiuskilnHiYoEwSrCQjqPgkFTB/fXrNCLEqjJ7ib2yV8CX9sF7n4VrxpChHHnoBPLD61TxtWfntYDU0VYSOusMiKiS1w9wOg+cvnUtk49t0yJcXZi8YSU977hfHJ/3jn/vhW70zncoef5PAc9nwru9VoB2zhF8zvGeo+UDbF4LTxxFLl2qhQ9jLQsFUJ6iurjN52SP7KnjdF+9NvZKFXre0faOnoMR7/j/OOE/AreiYMFAvSkrPsBpcYSuMEVP87VdYCoL9IJwGPhLrzn50s409FVU6E9JuUcuA54DXkZUWjMHQWsAhJY+v9M+0M0DDLeRO9YjX9iJrBpGxjoxFFaQ3IrgBZZYuL0EwlP74WM7kRxCH8LOw4SrV5PH9W9e0v0tx7qW4586odsRnPRZKvAqEV4lcHgK3nPZGr415HnpttN8dVOXF69bzU0xJzSLeeaCFLmhBoosPBan1u+QBegbqHdMupyHL1nCj31rH2w5gly5rIywsIiLXJVMnjjEs9cvY2O8XnBSrEMspDdUFQpQb8zfQqM+OvH9DU742x3Pj/SFrT7wX/Ociahg5074q8xxexYjs8ohIA3jM+XGtlfqxRWv64TcqRJugt72oV0YCgUhoAstJ/b5FaEXPfS7UENQBQBJCXi9iZFQfmYz8MHkeUzG488jj/wt0dDuFlLJa+06fT1VGHM1aiT3gaGpPocyiT2qBfp5jI4I5C9ZBw9uK8d327qKoTq0zPin0RTGokBDjr83GV86xtQglhosrgSejvKj54R+BpPB8d8CjIfAm/oqM1oh0CLQdtrf3Dz0fdHIC5dX59bCn9N5LVjqTIBjpMI7T6n45sBTwCaUL3hU8b0T+CvgH1CC96mgUUAk/7dicfcA343qKpnTCJtoLymA02xIYnyyRn9EkBB1GYdwfOkwo6dMpOi+DGaRKfLnj8JqX+TPW/95Ir9N6xFspRpyDzoHrwTehyrVLapgYQ9qLEz3QOX1TAwYRay5eodboBF8AfypKTaPdvmnAX4zwPcA1xiYjx76qTzQu2w5fb+D/FIhf+UGwoZVBBF2OWFVlNe0vUaYxPvLiNs8UBTxugX4BCrrdtHgoZck9F6E4NGCmGaoNk99L9ew+3c/DntPwOoRPd+zFQ5Owhs3aEpdjK6Ta9fCDev0dwIaVdrPkQBDPdhy9TIue/Y44Qj0Mwg3rSpSB59uOV7X8oS2QzoZ3kuxLzM0km2IgDhipKguEcEcEdMXwptLSoFkaowdpwz1TsPEQe/VQP1p1LD3CVR2fAZ4KfAeNC3CwHybGKUH/H+BX0D5649B8Xzt+hZyD9X1WwDeWQ5QnBVETcLu+8K2FcMMn4RsPHCawH29nFsl0O71te/8X25jaEJ19eJ3X6q82tLoXCaKa1DD1+Vohfp96DoteFqgCOZNn+k+1DiZ7s90bkao5dDHc5jmPVBAP5pcA2IUV8dBlIUi0HHCpS7wKJqCvEKE1ZkaKLyXskZATItw0fg0hvLTnajhoOD5mRYnz1su8bxHDHHbarhvH1y5vOJAKnBDliueWwQ0Y0D/9NNPA/DOd76Tt7zlLcX7q1ZpCYgDB+q1Lhc3dXIYunYV4qUIK1Xv7uC2E4gVTYlWyaicBWjnWghjk1O9LkRQhtOquQXVAL20fKxMrGGwfdRT33cK7p8MwtUOZLSLP0wRku5z9bBM9jVv2Oc5WQ7LQs7pTUuQB48TTgHjINcsKxa1aysYdZUoAQeEcpEW2k35fwEIoQAq5NBG27KcisphHjl9cA5pC8TWZJZqaopOEGFKhF0CayUKibEMOTKJWzZcVB7XsHutWj6RoyH3eeDhdeNceuAkWQ69lvA31y7n8liwxcdxFt75WLTGcnQbxzddUas71sCtK+AvnsJ9+QiSgfz1PuTSLrJpNWTaj/VIVGBD5hRsOPUQ9vuBXlvn9mQeePCyNRx9gzD++EG4dgXu8tU6J1msst32RbGxJhLvCB1Rb2AMuS44LTSD+9iapQwTiszHt+F71sPtK+BDjyNPoGF5f7ELGc+QzWuKKId2y3GopYVDIIYctz2BQB60LdHpPDBx1Romf0Y4/eh+Jm5YRe+y1ezJHP+7Jfy9mG/YdkIHXS8u3mYO/HMnvDPT0NIf7gveOU65QMcJXDOCPLgTOXISWTqs3vm+iyH3NQ99CPD0EWS50Fk5rGGrMdw+99BraXG+W1El7r8B/5kqoPcSPVKgkTLtjEmXM+G1/VcP+KjA5sxxuXfqzUdZhilypqxdjgJ6E4B5XBt5vwy5P5oFOtFDKpuWIdtOw8e3IT98BZafGkC7EOQ5WT/AqUnCw0fhPs15D5lurvzRvYQb1up6bMWaBy3HvrZneQSV4oRu20ePWp++gxXe8WMu5zc2rOZTG6DthdfE3Pms42h3vCoVeVUxWU0J6HOIKScxZM05yAKn+o7cBeSmVfDgAeSKJTHOWBVuBfY5cvgknDjFM5dsZK0kYN5piDTOqTc7JMs8HgepAoA2JSDqe8cmDz8fHL8UgRoi/ADR5of+TE4VzBvoe4xE8YjfLxTE6MWVmBIQuqKRM+24NmNEAFEWFNpusV0lVs0vt/C0HmypgvkC3KOAdyuqcLZRg/AjKGD6L6hy27HDwLzEFlL2W+b58UJwgSEvPDfVJzirDC3Qy/Ver11LeDvI13fDS9fCtRHQt12Ri5lHflgYQuJ5J2XIfTpGG0+TweJKNIrEZMgk8DERHhX4HYTMm9KtKQRtgW4mdOMSkpwBYLgWBVfpvdXPM6EQQrnWQgnmDdBfE3/TxvYG4D8AP02sXUAJ4iF67OMcHkfTSX6TMi/bqoYbmD8XFdLWrHj07uKD6Qic6HYJR3vqmQ/lOs9TQ/+Wk3DpsoI/VSrcx/z5HPVUTlIaTe3ZZ6jRaiMadv+9cbyph/56BsGarZMZjNAWNcTveqfdi3wX3NFJ/EiHzS7wJgKP52jh0jx65i30fv8pNYr+6A1qoIr519syYY1zWlvJQqIp7e1FGld870XAu1GgtAt4TTKu9LkUXmaJKYs+r3roMwfjHXjRMo3mOhIf8G2r4CdWQyejHgUqXgpHjPRzJLYfcC6wddNqJt/s8I8epHXjCvJNq8idY3/m2dd2XNqOEQhOSv5DwcLIRBghVCJMoOSpMw2zP18qnltyjMf3TqB8z+4tD9UomK8D/09yrZ9EQbpG+5T5/y1Utufx2r8I/Cs0QuxGSgcFUPRlr/M4W8ezoihKXTTKulh3IwPWZ0OsnOixJcBwDq8lp01O+3SPzoefpTuV0/2H1+P2HlHP/G0xBSyC+VYmqnc60cBINMx9PfAsukeLqKP4m6ZmQgnoX1obZz+Zk1FKQH+2w+boOBphYVQE3Ih2F1MDZB+c4/Is5+txTm90gCvrApizLEChu9h9rUdl0fWUfKfvdN/1DQtkqsMURSm/tFcNaGtHqtXuY+RoCM2FG+ebZsYjgampKQCWLFlSef/gwYMARV79C4GWrrySkR+5hJErV9OJhXMym8SGXac6mRZPktj/M3QzQidjtOvZ3/WETka/o++FTkboOvKOhyEPw5n2LRzKoJshLRXF5pHvo16anhBD04WnRb0vMtrBHT+tgCPmUrdyrQqd9XNafQX1Lg/cHDzbV3o+8OJRnnndBmTjarXAdbW4ie9oj3eGPAxlSLwfhlow0or36It+izLkcR0NK6arn827GVnXc2LYc2xIn0Pe8VoMsOvJOxnEQkjFZoGipc1O1Fu0LApdPzqEO6YGA5eXhoMsJ7Yiy8nynBZw22HHIxvH+dKm5Xzoleu55bLV+K4na8cj7RE5lMW5iuMbbcV58NU+rt2G/7edhri1+sqsXPQYPXGgiAAYzYRDPhaAcmVhlOBiznT0kG5paR/p4SvW4F5/HW7zanynzL12hWHlzCROkLbXORtq1cYUj2FfGd/77/1CObb0aDtY2oGlug6j4wZ5Yj+SWTixY6QlHGwpmCrG51WZyVtakft0xzPZdkxuXsPkG25g6oo1TLQc78ocL285bovGMs3bVc9gR1TQtoFlIvxC5vigdzzktDjYYae9mum2kE3L4cFjhZehaLOXAnpbbI8ehmtW4UToOkfXq7eu7dSgkDn11vwsGl73MVQYTBIt9gFO2JHDcYTTmWeykzHVzTgwlPHBbsaPtLwqiVB45wuFJ/KLTWjIfSGwAhqSHtdGyBzHijzMGLJ15ypkYhL56v5irEyqhz5M9Lj1G4e54+6nCZM9+IH19DNlIAEIL14bw53L+cnbGQe9Yzml0M28MNx2uiY7nm7HccOw518NeV4z5Pk33YxbhhytjqPVycgyNxDy6lAQPUUpsFWhj3sh1gg56YSWE+SycZiYQLYfiy00g1a3jx4jnpyAS1YgLc+paPgM4orwt5BJReinisBh4ORH7y3G15HYt1pin2vgJSL8Fye8ToTfAW6Pc2bgqKJ0xd9Ic+hTpSO1nVX2p8RaKynPiTxTOqoci7eK6lK5nl2rqchQCkZtjaVevXXoGAzUH0SB/N8Drop7rEsJ5jsRzHftGlJTPEWjj7Z3M/pdrwbKlie0M0LH63HjeviZF8MN60t+0vGxvZQUAV7pGI/Ec1P18gHDRTLWzcAWYt45CpT/AFWol8fxdVCPTdfHI46zfm0bpz3jgw3zOitATzXM3mzGId7nVTZfcY5uQPfN5ylzx4vQ+wTM91Ewf0U8zFP42Y/eW9YJ4Ny8n2Lfk4h5ozFnXGLruiOn4vi14ntIJzME2HIINg0VAyuAvEPbtsZIw23oHupSzmeWzO8r0bB7M4AY7UYNLinQTUH9jAZYLCwp9k0G+JEMf7pXRONcBzwR7W8acg+9GHafbz1JvmG4KM6ZR2vTLhHW+fLath8rhikpQf0adM4fZrBlXf37BfnSQEaUD0Ux5UsyZUyT8bNXRl2g5aq6TMfjOqr7uY562qWre3hk2HO8m8EVawhvup5w5RryVka/7Xm641neyWhHMJ8CeeOVxaMWoSUqq0fi0XFy3mD+/R+6d0afK/hW/Dl7htbX6ihVWdGHIl++h3rmU9qJ7qshVHYMRzkyVNNZrgL+LspnzXCVA6fQ6y4j4dsJ35k1no9FLjRQTYroiLbAmvE2b9l6ilcH+EUCN4ac9rEJ2h94km7m6b71KrLRFly9Gv7OLQWYx+r+RCeSGVHt/q5EAb3xxX7yui6vDlJW9K+P0QwrAyH3qVwItb+hcmK09qyKPSxoCmA3I3Q913UzPt/1fKnrWdZV/OI6Gb7lybw+J5OTZogSNPpgZ31commZeYwIHEh3uXGJtrAzK0cvT45QOtcWmGbsoV+zZg07duzg/vvvL97r9/v8/u//PgBr166d+7u7QDRx6jBjV6xk2Gl+rfiy2mNjewwRCEHz1Vq+8EDlATohsEskhk+q8UarGFNya2kWvrYOelAUw+uLeva6AmsF3BLItp4qhUX00GdBW9j5HFp59NA8dYy7XnEJD126lC95zz9FeFGm1al9S8conUzHaV47y1NFklY8AKEIc4boTbLNKMIkull7UFQTD1GqFSDelJ04tly0UM4lkQu7vmgEwsHJUomLhcNasY/mZD/Q7gfyfs6lT+7mNa/ZwGfWj/Pzbc8NHUen5Wi3Ha2Wx5sQTOaxMj4P4LVqby/XolYWS5QWtTKv/UvWIY9t19oBHrhpVQy5d4y0HPtaMdSeqtLf945+OyOnx5MCq5wQcBBCLEyoFW19W1MhZlsls8zXsTEphdKtApM511x7mQr3psJdTuAl6+Cx7WrB9CA3rykAJpljuOUrBUTAwpMcPdG2WJMhVmrux16uAu8Trd7/1ig42lIq2eah197ses0rvfBzXni3d/xHCUw4x5DLNRrmulHk7q3Iy1YgrpUUxKMabj/Vh6eOa1qBg5YXui566DOdk6kYDjqChs79O+AlqLfIod68VHClBqmeE/4CVcqvowzFa0mZJ+ijouhQD/0uVNib1ziHaAUGssCxVmBd3GNCjoQMee2lyP99HjYOIevHkF5f0w4e3sWypSN8+bsu5VVrxtTIMu7JH9tHuGkN4ao1CuLTmg6Z4yCDHoOu10rj/UzoT/bp5YFbg6YhZALtzNNuCZ2WoyM6r/WQ9NH4DPZShq71vdaXCLEH92mX03YOJCDXrIdvHoIN4zqHvbyser9lN9y5nq7ASRH1yMe8cwP1qWc+jWg/ANy+eSNQKtVDjqJZRS8ulTsC3CkU+eNpS6VeSHBAKA0We9N5S367SKc66/4cpEKJCFWFwsD4ahgAMfbah6oH25Ttq9A8+svR/M5rgDeSgN1k76WFqvqxY0pdGVsGHJdYXNE7Qp6T9/pIHrTYokUIFbHyosaLlhuoGm9j3IvuuyEbT22MafRBOsZ1cZxb47P5deDvoJ6xdHzd2vicaJX+QgSH8nm1US+QhXfX5zUPycM4A9lYU++8eeyfBP5xvIwpWeal/xilZ7oXeSbE9Lv4/Y8DP0wVDF+xeaPuT6FoNzhbEvSiRUqP03dbCMeHHRw7SSAkoSl5mUN/YkotaBvHKTz0TlvVBdFifjb3W1HvvP2mGWtSQP9/KcPuDYztphrFUQf1Mxpg+rloxPUIfqiDP6YdNYTApaj+9kweuD4P5HmOtUac2nKMfNOSOMexK4UTtjvhe6QsWGr3ZrW0vKjjzmSBoF76r6Dgz1rWpUDevl8MwcUaJOalt/TBfoDnD1bH+/BeTR1M0zmjIUDbfQF9NYbnsUXoSB/2xyKTWsgwpkV6xxMtz6Z2UpRTqqBoxh7A86Brrto4o8/VeVfKV5ag4DDVW3qUxe8mUXn3ueR6b0SBfCobzDBovMHqPbwZNdL8DvDL6B63mbEIgSY+PmvyahRvi9bvsbRVvwQueeYE/8DFYqf7T9D5yPMMbVzC0GvX0/YuGlhdGUHVVuOrxO4FWSgL+9kcXxHHlfLxtMZFwfNQp8jK2jjzUI7TiuKFGR7Ez4/F1/W5NT7oRHAtz6mWdiMA+K8irAVup2pQy6nyf0EB/XO18ajDRRQD9Z1Wurdq9w64bSX84TPwmnUa5VrooaEIuw9+5gVKLxTNGNC//OUv5/3vfz+/8iu/Urz3gz/4g5w+fRoR4RWveMUFucELQadOHCBre7oWnlrkDU8/GYVwEWL1c/3sUlRZKZQ+IVZ+1WM65c7C9aaIoF6MuQoPCFwTQ+P8iMedOKX55SH2Ds4D7SBM5IFWHpjKc7Kjpzh69BiPr1mLd8JxL3y+JdySaRiKRE+9z84cGpICYIkxxBJXfloFehi1SNpGrJ9NsUlBfRDYLlrhPuoDuCUt5LkjBZiXuLtdBPLdmNsmzxyh5YVrNoxxjXf4dvT8Zo6hlqM7pFVYZwKOxQt4P31RKwO+169FflaQh/ciL12Hu2K1RldkjpGYX14vFmLMr5c5epLxpPS5LBYDExQ4exfDgjqxwugckXleQEOAb37JtQp0p1zzGK9fCz8r8MAe3O3rIYbbhxitMpK5IhctndtchMnMM5HDaYSJvuNUT1uofFHg3kz4Ve9pxVB78xAWyjZxrWMhXcIrM8ezPud3vXBTJoz0HRJyZOUosrQDjx5BbllRVLqveOhDgKcP62ZcPVQAjY5XJbPvtONCR8r5eRFa9Oa30UI3nip4S0FcQBWyP0e9++bx0dxkBfU5VdCwCgUOW4Br7Zoh7oOWI+87DueBK3Lts02I+2ztGPKKNXDXs7AK5CTIqmF4+XoeWTfODhEsr5wr18A167QYZcvmzRdgPqBK5FUMKshdB33RNIReHo1BIlEvlGKuWlIC3vQaUOaZX2XPyem6yWP+2UnvaLsAQdQw842duL3HdYwChIDsOKbzt34c72JhPQPxmXr7zaNdnxdsfDdcpes/vme5xlZ0rK+3UCil7WQtZkKl2J8pJ+Z5OIh61SqgPvn92VKqRKTXsmiAFZTKS3pP9XB0n9z3FSigP4wakX4zPgOLiqmD+XZhzC0NGE70Rhy6jQ7Y/TktGJRnWiCPoEWASi1LCgOgiObZp+MyhXpP8kxT72QKGgbGSNVgcVecix+lDIltGp/1vLZr19MpoEwZualhLlKP8Zmo7p23ed0W/16v8O6B16AtLR+Lvz2JynSIva/j3/ahoLfgNcANN12lYB7OqRge8V6c1ydhHnrb99vGunCyr4UQfezUkusGCiEgzx/V/PmOj8I7VrYX5eFp/vx2FNCn85wJRavQ9VTD7gMK7qc4cxTHWccnQkAqbkcXvZtuvI0/0i8iJnohcEOAB/PAtdFD34/Og/72k4RXrU70OWFSRFtZem0pWRifSAAH1dB7h6bR/Fb8+zIG137j2Cx9sBdUdreilfIla+GxpDvP7et0PtLaSFGfdS2HODUEhAjqQ1+jO3eGUBQn6wE95+i3HI95x51U95955118vheabr7pqhl/NuVbUD7HMcpK98arrbuE6aYPoMbPdSiYv43SMGhgvhNle6GvUOq0/wzNp/8Q8Lcpq76n81s/Zk0x5WHIwLwTPMLUaJt87yRCwG87RvbRrQzduoqhO1fR8b4sfJ0AeY3iUMOrzadL1qmgvPajyXPrh9KYkR5mvDB51TTe1ENPcs2KHA3V947F71WuJeU6TFNaPkv8Y6RPAC+XUjfLhKJCf3p/64EvkuizcR/kYvpHKDtOWE792lG4pANfP6BOo6m8NLJZXafcnRFDzgfNGND/1E/9FF/4whfYtWtXsalPnToFwLp16/iJn/iJC3OHF4qi51Jc7D1/FqA73QZdjiob9QVvSsF0FXNzymIiVhzJerU/ifB9Tov5+CVd/DHw/ZzMay/yFtCLHuypfq5C8vGTLF+9lE7W4qgIbSd8l3N4j1Z8bGtxvNkyZKmdjYZQQA8NYD4kzA+K1nUBYbsIL3Mg/SgQRwV3XFvX+ZyYV6tX6kTAJnkg+8Z+pq7StmHEiv2tCNq6maM1QzBfGdt0Ra3M1Jg5uHE9ctN61JshhaAdi6H2R4ktNhj0vgXveKwrvCLXquSFjpEJPhP8jFwO50YiypAU5OWKbFIPvb2+cT3upvUqOLy1aPTkbc+YCIeSaxrjC0Qrd+aZEMfpfuCbrcBHAnxV4F95x2pBK05Thtk3AnrievGOn8yE/5I5PtHP2TQlPIfjOsmRm1cg9+3EvWgZYveeMtMceOwIXLsK4vrACy6G4fazWOk++b0+8Dbgn6M5jjmaW38dqkzvQMOydqLV3E2F+kM09+p2Sk9vWzRk3xQ74xVXomH311IqESGgYLXtOZLHKvfE3ttB17+scTAFsicqLD+wHNmwBC/CMYmVxK3eR6bXIrO+7V4L8MV9Pl2RnrYtAbS4ZR53uKesUmxzlYIiU6BgsHBcLuahd+Qu55h3ZLb2Oi24aiU8dARZM1Z0zOC5E8imtbH4j+NYkpsbzFMVP1qvct9D8ySXwQAA6MaB9gKxh3wJrIrCcHENDowRNdQsRY21a+03E+Vmpl7cOlU888lr8xanylWq8BuoL0J6Q7nWWsBfxuv/V86cN99J7tm+D1WZtjS+V8lBdbHwocRvmBxxVSW/Pi6brzSUOl6usleaDBbm4RxB9yjAeymjY5o88+3a+NLfsLUrVNduBczHOZ4JNXnnA/A0cDXJfMXPZ6gh/HWol/76+J1e3E9pMbzXojI2ozQanmsxvJQEsDB7CxtHNLz4cLelP3bsNGF5LE0VKAvjba32n7c92rewe8rnuQ34LqrzW4TNhtJL/yWU7wq6RrrofNfnbVYeziIGW88GBlpDGRNHNNrRiiReT+BTQWWh1jQK9HcfJ+9CWDmsOlkc526nKUtLfVkIb2CPCgN59GY0Aq1vcVvyTNJzZZ6ctf+NYN4WZ+xgwzd2w+3r4dq1pQc/LbicOfXO5+CImy1A3oKRENhTW7cWXfEEKhfTOSvGNdPnP08kyTnd31CtdG/rMvXO70SL4L0bNSwNofuqIzCc6CtWl6Sur/Tjb/xL4P+H7uWDlLyzifec07aNX24BIzEFYlJgcmmXcKIHf/gQ2UFovW4D7RetYMjFOll1IG8pUTH6wsdW0cZ37fXlqGH4IMoj8/RI+Pr+OH6LrqnjI9B9bHMApcxM8UL9OEq1E0T6HE32GQ/5PgYjLAzMm+FzMp2DeL4E1edsPitnr73oreNS6eAD7lgNf74N9u3TAoPXrS116Swa3xZ4k7izf0RpdHSUd7/73bzxjW9k+fLlOOdYsWIFb3zjG3nXu97F6Ojo2S+ySKjdHStzpW3x+zM/ikLpo1zAoBaqpCvvQGhooJksFNScjL2Ye3YYYbvANSYkupmuqyMThQWYPGh7ir62rmv3+rQf38PqK0f5Jw5eKcK/do6bOkLmteqj5ZTMlkxXq2/WNiWgN0o36gCoj0rAVtGQe3UMCG68jewPeGIFc6P4YDr9nNH9pxjdcoqxG5Yw6oSxTBjzwmimR6c92Jlg5uNTEELXV2sIxPoH0o1tWzoO6dh6yWjF3OLUClwUBI5jPgHsFuEK76Jn32tNg2jhv9DGvGef36Hja3ktmjOUlXl2Q+X/bYzS8dr7s60emCVoMR8bH1SF41SAKRG+njn+dctzX9vTa3lGnebWNYX7DsUjFZpdiNWpPd/jhQnveD4Tfts7ngFk0xJkEuT5I9qz3Dz0abj9E8fg2vFS+4jMuOXU4NP1UtyHefdG0BDYz6CC4Z2opf0foj1nv0EV9Bh9kjJ33pTsNCzR9sllaGhX6pEt9kjmONjytGMevbRckc4hj+4F0DQIgGcOQsvTamUcb+vazDuaKx86WdErOHQ8/baCefudw6jRERIwFV8PO803H3MwHo8xB2NxjnyMEkqFYfq66EVPAoq8FP2MJ7zQsrYzAnLLOPL4ETh6GslzZKoPTx1CrmijXkLhhC/D7IN3WGHApsOMTVNbdg4YWh0wkoxrSTyPupgXKerlTJWtdIxA0a88Xfez9eLWqWLwS64zk3ZdBeil/P8jwEeS609w5rz51LNbUYQp1/lIPB+m+ryBAuCIHTUDcZPyF+L40tzo+hhFpGqwiJ97FC1eZWR5rh1KEG9HR6rGhXTt1ud4LQogU2XObIPqOZpOcivVC+Kliq/lz9vztagQU37fAPwNqjRbbQDLnz8CfAGNHnKUAL4lsPv5nUVe6PmQoBcXFDiKg64IEwDDXTgyqU8kEKMy4vPYcgguK/Png9OUpuCo5M/DYIV7m2/jlQbov4l68VKjVry96lqh3JczGmAK6u13xzKywxMJiAncBOyMbRDzPBYp3j5Jvmmcfkz9yWNKwTYR1jogeudtD9rZagQYBrCxbk9u7Z1oSHNFl5Rpxmbg3EKnTXYXNSzWVev/xNpItJOCePXHASwR4YiLERXxCJQpYpuoyrPUWDEf9OzzO87+oUgpv07fG6XkX1A60GzP/hnaHeUSqgXwTCcZFTVydWK0mhlDC10mfuda1ADyX9FoPPNYA+eVP18ZTZxAA/WjIoxvP8T4FIzvgdFJGBvLGXaCs3omaW2T5P9FKioW6VOCZYfy/jVoHr3xszQSyfb3Pgb1ivp5jGb9EarG+ZSsKF79uYmUOldblP+/FK1j8Do00vI247NSjq2ulzk0IqOP6g8DxlzTO9IC2zH9jyzWiXsih/ftgCf3lDpoTOENC5xLP2MPPcDSpUt5xzvecaHuZd5obOmG0mLlBfzZ+wg2hfYIuoEt/GS6cN0m6lHmz1veXO7gEdG2S6MeXE/Da/xShzs6gV8xTBYv6vMYkp4H8meOEtqCWz/Gjd5xY8fjO6J5xLEtWjta92ZDdSVZpBzQKNr2g9o47bWFJtnzyAUOChx1sM4LMhXbcIx38HlATvTwY77UqqzgRA7ZNw/hN4+Sd1ux6nX0Jnsp26ydJw16tBU0Sq6CXwSC+NgjW1fBCqp5WnVQ/yxqsV1Os7V7xta0c6TPfP7rXLHpEh2fE2j70uqftCBQz2QA53VsUWEZRz28xdji65yY+4kqAPfUfxe4g6oHzQBFSwRHmb+XE6M3csgz4Wstod9TI8tJF/gbHLd4cDesxn11P27TspKBWrj9s4f1ZtcOV62qFnqfSVHfokescxHKOUrpNuBfUzJGQUFFWg33zVS98y1RA4eFQZsCdAVaACs18NmzBDjccgznrgQPMeeXW9YiD22DPoQWyI2roO1piXA06ayQx7iy0NF5Lfp+J2vwGM0ebBPomdNc40AJrOpk4zEvtn1/dXw2FZ4notECvcCRVk63J0juEB+Q8SG4cgz3jUPIq9fCc0eRcQ8rRhCBYS8csnD76Olv6lmbAvoR4LEvfp0rLltf4VOOWKzwLOMrFN7k+ZgX1/LoKwYLZufFrVNq3EnlxF7KcM2KIp7ctyNUPNg+wKdq1/8s8HKmz5tvGnvT7y1HFWLjbWl0QrCHWSN7znX5F1AF8MqG30mN46mX3pTM+vg+g7Z/axpfUxi68dt62P1ayrVr46t0MWgeYjlWqkA+LYj3BPBDydgM7GVB1+QlaMrPp4AfR/moQ/frZ9Aw4Msoi+FZZev7vvB1br5i/XmFPbv4ACo59CK0RZgQgaXDhBNRjuUBYhoFxwfz57VlnZCL01ol8VkcQRXzSoV7KcPR07D7S9Gw+9eiBpZ1tXst1ojMEtAXCouetSiex52YLNIXHTAWYFMOj/UCd+ZBK97vOEzv2hWAGrByUdC7MxPWu1JX9LX7s+imom1dfP3p2u19HN2jdYPWwDBEu8oUDMlaYtqiLdJdpPDK1/XYur4qlF7k45QRODmxVTJlkde6vnL+WtbMKNVbzkQiokVWGQSAS6gWZLMOGZOod/bzwO9RjjM10Be1fsTmWehKYsCT6v7/YUrD6nKqURhnm+OzD5JkI2jUYUeg883dhDyZk4f2aPRG6pFPPPVSa6tmazb10ltB6svRqOPbKZ1T0CyviuuVt1jgpBFKo3sTRkh5r9ERqm3r0qMtugV6QHAqJ+4IqmuaV75w2MT5nEjGZuu5i87TTtRobwboIvrO4vV7tr+C5kU9tJcKfWOXtoYuqt0rZsAvnJv+jJji137t1/j1X//1yntf+tKX+Ju/+ZsLelMXmg7sfqysDt6O1pizUF3ps0W2HLVCRZt2RfG0DVCnPLars/x5Azd9ER4S4aoocL0dw0P4Q3218FtIej/QiYC++419dK9azZBo3vOwF4bMK5kJw5krPFLnQk3fGorjrituaRVLA/U6PmGLgxUIXRGc1/tx3iHDQnbotHpfgUqruak+fGM/cuvy2GJVow2ctRnUKhnnNK7GsUaPtlWTl2GPG2lpxfWOAl77tWFqHnpKBhhQT82VyTOsW7svtID8+z/zgwPvWbX8ohL3cIYbzpAhHZ9Z9kExcs7g2u6FslpsHw2tTOkNlEA+9cyXxeOk8NSnn+s44fudI2TChNcK9X/La2qCe9FS/LZT+L0nlGn2EuT62FG4LobbR4NPAexbDvGuAgAsR64N/EDt3n8UndcuZbXb29DiN9+PKgG3165RKG+UCjyop8PScZq89IecMNQu891c9MjINWvh714GLxmCt21CrlwNbU+7k3G0rVEUoe0I7Yy824JWrdMCVQ/2MpqBW7EmRNRbPQ1/qHs4jQ+m/byhFMxWKfaEdwxZ1IFd4JZl8K39cLqPPHwQrlyteZ7e0XXCsUwt5Ga4S/lnxXCGGlKXAa/9yTcNAmBS6/704zuTF3faXvTJvcyGUsBb8QbH51jPv0xDeYnnTEoPRCbwptpvvJEz583Xqe6dt0+NMaiM1RWxgfFR4o3UoAuD3tf6GIGih7WNsS06nvr46rwlzZsfGB+1ZxrfX0MZfVHI7NoYzkQm3wr5HY8pNM3GKtwbECryOuN7P4AaQnvJ9/poHujrk+9myVz/7M+8aS5s1yWYF/SM8jHz0IfD2tFIPfTKZ4P1n6/nzzutAG/e+Rz1SC9FFXOXHslYTLl+FZrPCmWXh6b1IXbfMxtgPFNsaidCa7SNP5xHQK+gHgLX5YFn8qiXTfXJ90+QbxwuPNjBQ/DRQ+/Lyvl2eRuLi1EmLUoQ3GJQxryRavrMmbxq4kWj67pZqbOm0YSmp8QWZJXvJvcI5dq3KvBHqK79pylbLTbpKxfaAWHUpLdMR8XelirfH6da5b4oPo3W4vgu1KCUeueLg0Fdue2kEgmUhuRnaPg3qEz6Nyion07ezoZUbib6jBlxXry2qj/etr7qkTcw380GwDyYgTgJuac8rkT1lqZwezua6gXYOrP7Go2f7VGTHwl/TWU6qBFmnOp17Nm10Gc+LKo7johGGY64siNBJVqrNrZUJ1iHAnq7h4pcdgKZrz5zL3BrrfD7TWsHq933YhHRBaIzeug/8YlPICL84i/+YvHeL//yLyMi3HvvzFpLLFYqwqxzzuqdh+k9GUvj3w+iFqkUxE+n9OWUHvoi7D5agh8W+Ge2CJ3g++CWdMmOTBbeGXMJuH7O0L5TuC2nyN68hCkLgcvUg91qObotT8fLtArPGccsAtECas/Azl2qIfep9S1VWFOA+xzC+vgAnVD02HTjLdyhSdyltYeSB3j8kJpbL4uegbSNi0VXnIfH4ozj9wLBlV7JvLRAgoKJI/GzKVOw8KRn0LZLKUNJheS5GljmgirFD0PQgof5oFAEHeMIJUO2asx27EOVhJehysuLUeZbz91N5ymLVu9CYETu++LM8Ws9x19nOd+bOW5ygfZkoDXUonXtEvzXD8LrR6qhTo8dhZ+5IiKeZG3ERSYxXK2wsks5X7cFDdf6K9QQ8SKqCqjt9TuBVyQKaaX9l1B45s0b6NHcvNOo8FuPrgtbPlFlZsRrRXqdFBDJkUwI169FrlMBYu3OnBcOtxx9r23pgoudJRgEIwboh+NcVPhXoiTPhMzCXQfLFnKf/n6A2LrRcbyXs8Q7vSnvtD7A2lHcmg7uy3thx2nc940UCksrE045R3CUoL5hXMZXD6FRMpX7pGp0ndH4GAR+Nr6nqCkj6VinqY8yHTUBR3t/N+oRSeVL4UUpxie0QijAbj9+578FzaF/A/DSRKFpyptPaUCmJbxtBWXIamVuw/TRCSnvT8eaU+bQNwG1FHBkos6Qlqj38LagxjTbn7fXxlfPm69T6p1P1/EadF9aD/R69MXZVLIm73wfDbttoQqjUM37bIUS0N8G/D5wH/DqeM2HUF77csrceQu5P99ieEaFDI/eedH/MOTgpCk0T6lkt2r3ITCQP09MrckF7dEu5b7cShlun67lNFIhDbv/v6givweVIXUdKzVqzXiQKbqIRgs/1iYL4CZ6+Myrlz7Aiwj8n1jNv7/rOP1lnv5IW/PY4/gCsN0Jt7lq7/n6HrX0iDZlRNhLgoZkf4JYfM3mU8qohTMOxwl0vBajTFNBRM6ou9b3d/pMl1NGF9pefQqtZ5COzQwTnlkYVOaRmsYIapB8nkRnicc2NKXlfzDonTcP73Q1KjpS89BTqqt1F2cRhcEcGENaThPnDWC2neZvv03gW7tjPve6apeDmIohZ0gltrVXRJSgz+9Kysgo44k2Zlsv+9DaEPV1lR5Wrf4Yqh/W5WiTTD2C6p2lzCuvl4nqM8ZXpyLPsd+32j9DkhRGjVGPhU4Qdfn1aKSG/W6aS58TL2YF8aza/ebV8OMBPrxTFeJNKxPPfChrcLVycAvjpZ9VyP23G5WgZgafpaoU2P89CuwOoqF0UAvfCAxolkX+PFXL4XMiHHNwuZPoVYpKzngL/9RhDbfPA4S8CEf33zzI0FXjZN0WfacFavCCWP/vlobpnPMzmuY8RDXkPj2bwSIF9UFgi8ClcYeahdABfukQ7nCvCPkpPPR5gG/sg1vWKvpvOYpuBAmgv5BUtCysjd8Y1rHa+FNl9lk0T6tQ7CiV1oULymmmwsodSgbqUcPNUVRBNYXe2r9Y7ueH0L6sr6csLmPW7jOFw7Yl8XY6FSxZS7g9F16WOzyBbNLRnsoZAjq3Lkf+z7PwXevAtyjC7UeBdSNVi6q9TlxadYEsKAO8Ix4Vxk/VC2P73eYuBRM5peJeD+1aiyoWVlhN4tnCAUdBW2HGHxAfDSsByHOcOHIBcdqacb95sKmuuxTo2v/Ng13Mb8MxE0oFdgqKVqM84CSqwFZ+3zsOZ8LqTNueiRfoO+2ccfsq+PBWDfc9eBwZ66LhhI7TPoL5ZN4awTQK6JcyyJuKvTpDBbSJr0M1h74O9ixEezacNeUP9WiNfUzfgz7lcC2BTgKqHVrZ945A4QE1Y1NT3nxKKW+rr4slKKC3+64f046PwbmytJ1VtXGlr+1+OgRNibFn4eDlQQ1qTkpDYRrdc8auLdP8nhmC9qJhxhUvzRnGaNTknTdQdA2lbmBnLyVwsJDz70O99K+M17wHBVSd+B0r4GgA8Vxq4DSRi/9IzA3HaQ59QOiNOLITp8ijG015fiBsPQyv3VBBsX2v/ef7MX/e0s22UVa4N56RgvqmsPuvMLMojpmRlF+kvJHMO3wG2ZEJ/HAHh9bt2RRvfHuAy3b36a9bTl+0xo0V/cudY5sTNiT583VDPXF8bYF2KA3HZhC+M/69UstlFrqAWL7ELCgNgbZHAWWOOZTr90ngH9l4kvHNp3d+ttSktxj/Opp8znTsP0X32BoGvfO2z6bjl06EIUIxr4UuETRS6nPJZ99EUlOBsxttzjxIURCf5mc70RoKN6wrnRgWat9x0M7OWleqHnJvTokrUb54DOVXaXFrozRFrC6nbA7a8f/HKduDGhXYiJLXG56wPvTparfXHacF/aaCOpbsmhbp0pJqalm6hlOnxHo0iiKVUxVjrhCfa06l2v2Vq+Hvj8O7H4eDp2DlUGyl4yrAPpylyPqFosW6Ty8orVh73Tl9b7rwxKWUSkvFm8GgYhBin9NKD/r4uW86uEGEzIkW6iZGlC/1ZMdOa492MyNZOPo3DyAvXkbbaWuLES+MZI4RL3RackYL3UxJYCCkKQ25p3ZuquQcRHjeOS51Bub1EMCPtvGHTie7Cg2r3ncSdk7CzStKgJaCtta5F8Ob9fgZnH9TetO5NuZ3Ei0yYx56E/opg7nQ9Pvv/YsZfa6uzKeMdCnV0LVAae3uA19FGfZ3USqhlotmfdqniw4RkSKEaiQeo15TRIYzLWY3nAmjLceQd7TWjsK6FnzrQKlNP350+nD7WjqGi6H+RYiW02M0HsVr0eJw6f/TgnFj8f0hM7xRNQKk3uFNlD1PbZ+DFkyEUuiRxQJ33Rau43Bdh3QyQtdDt0U+lNFuOyYbwLyd68D+IIMe7LrRYiZUKK9SvhbUoOWotu0sQL0TTnjPkNW58BphgAjO95F+NFz8+XbYfQCc0PZw1FryORnw9NZb3BxEPU33vu/uRs/vTKk+Lnu9FgUZ9XSJM6VTnYnqPNGuexpVnpradaV8B1RZGXYlYB9xcd/Es63tYadHPW9+YOz2mzX+voxB3hbOMu7pKvjvRflIO/09mucqk7IIVTEu24tShliOOGaURta0dg1YWkpFRaFLXk9HwXp4U/XOG6DfXPtdRxnZU+TFo+3aHkG9+odQb70VwysKbkqZhvCH7737jGOdCRUKcgzltbD7bvSynx7X1nX0y/7z4fgkHA5waYySs1D0CHRzL5Vntx2NTnLpIYMpBKmX/guUOfRN62NWPol0IRdCW8PhsyUOd7KHR0PufQDXD1wbAltCIOw8RL6hpaBNynHu9dD3jrVuMEUnzS8XkYpBbVhKGWLrOS0M25WZGx5nS3V5nj7DZZTRhX10zgJlq8UUyJ83IJ0lzVRvgen1FnO2QKmzbEE96W+hajCz40zeeSNLF6yH3t9ONS3vZa68XkvOz4Fj9Y+wosxpYePhpNCxFUjsnB3MQ2J0lCpfXILqDc8yGHJv8v0ApYF2ugPKWgb2vfp1Uv3FDDBpDr2d02tmIgw5YdSVutiIQNfJgLxL9THjN4ICegu5r/N+bXMrZVG8SrqDwHgHrh+Hr+wvQ7SmaqH3C1Qc7zvSQ3/s8Pazf6hGqaJXMMc4ZyvR8L06kG8qnmTz31Qh91sivErKHu3eae6nH2vj9/cV0OeBosL3Y4dgqZSFaiyvfA7D0VMll+Q8xGCfz7SAVb3y7xSwVWAjUoTbS7xNWd7CP3mw/NEYfcC3DunGGcpqXldXFoOZB0qfQXqMo95XqI7Viq2No4zRGKVQBfUXmr771S+Z0eeiTjdg5QZlrib4jRH3EkPUh1BrdIcSzJu12zz1Z/xtEbqEImRqKkDectATXF+NW12vdRNwArevgXu3q5c3Bx45Aj99edSak7XvBPxgXqGPVnZx6umcFIooRknmJlXGm/5fr6btQhiwdDu0wIwB+kKoUfZbhWR9eYe0QEKs0xAljCW9dOPnT8fnbfuuAkSYew92he/VzutQUHSl/W4ixw61HN2+EPoS8+SD8qfHNFBfHLg+8MQhuHItXe847UR7nsd7K8bIIH89hAKHm175kkHldUYjaxhfsg+sb/ohFNw3eZ9nQ+n3UmOFRQEsa7iXJuNEJsKIU0DSCxrlZ5QWdjobmLexT6eIbWHwmZfgfjDdoL4G+/H9tIBSkxyt36V5YVoh1umQ8rvp+GYSfp7OqUteQ9mLPr336eR2fZwV73wyl0+ihe5SBdnAbFHgLiivXILmkP8VqkPciEb5GeBPwW9b4LtfMzN+PpNnIk7DyMWV+kYmcKrbYqmHcOw0LB/RcW0/AWuzSv582bcZDb2n3A/bUNBE8hxS2TchZdi9oID+T+PnzxbFMeMBpnw/vnYiZN0O/khepkgBLgSuIPD8iUnCyQn668fISY0Wwg4RVjvK/t21MaX8JhNh2MW2YFG370n5PNJq6jPZo+dKZ4ouHKc01AtqiEpbLaZAfr70FaOZ6i3QrLcIurdMbzFd+0/RqJjVlN75tBjembzzKbVEZXElsjDAK9DDPMVmmJwLo422WM7A5Qoek/bOhc4zTWHEaa9Jc7ogqN7yNHArg3zdovJWUjUWpXLX7mCUanFCqMnyhHceQ5+rpzaf0rz+ZjJXqT6W8pMNKKBPU4LNcGFeekkjI/qBopWdA25bCe99Fl4do0UtBdTAfZZrN5h59tLPCNC/973vndF7P/MzP3P+dzQPNHn62Nk/VKOmipq2SJaj3qK6spcq8UYWjl4Ju0c3ycMC/1gMm6i1yQHZki6tfkCOT8EyX668b+yFm9dwocPRpXaGMoe+SdlLLV0GcnegG3ONEHtOo5Xqp8CPtZCDk+XuzkMshncA/s6mxMQvJWib42J4Zxt/U+jaEhpC7uP5adRTAyWzTEPu5+POZ1Ip1qjOQG1QS6h66Htokbwe8Bg6zl8mWrspvUqzCSc0r0Y7aDgbTsjbGS7v4foB6eUlSL9mGXxyOzx1SN8bBi4ZpVI4piHcPiUvwohAPwR6iRGq7skTZi6IC+UnURQF9dB/nkF+cJxBS3SxtuK6FvRLEr9kxYxOoQqZXRMGhWOg9GCn40k9vzOl4nsJKLIftuJiTSD3hBM63iM+17Z8IUdwyIvWwIPboA95C+TGleAdHS+cqO3ryvioek6tdc7ay9ZXjW7TKABnHF99jOgaHqcEpAUQl+ReZvEgm8LtcxRUWs71dIaTOnkRhglF7nIeSgVtNiBBjVODSvEyyu4tUBpr03uv/0rdk2Ofs1DqYp3X91jDfWUieAKd5FmbLjWb8ZncbjLKWlFHu8+0NVNdbqdkfDAF9TlaVG47ZUG8FNRncRwG6q1X+RvRrhqgBTl98vk0f94zO34+7fNIj2hUtw3TFeG0QBjuwJFJwvIRNShuO0Go5c8XoejE/Pn4LE6gBrDU02sGDZvzNOzeqv4bAHsSbUd1NqPWGccY0wcqzC6umWysQ+vYlN5DAE/AhcB1BLbuPUW+ZJg8c/ScRhRZy7rtmbA+6lN2X6mRvn5/WdyfLShSSOxWbF7no4aO/WZdf1lK2bYr0NxqUUhSyS74nZY0W73FzikfG0dBZx8d8/PAl4H/RRJJKLPzzhe/GZ0QUK5n65wDFMU9z1awc7akoF5U1zcAWbif3ayjVV3iiEh1F4fqrs9S8sWUn1ub7qXUdSX9QHoXdUCf6gd13HAU5QPAAK+erc5iVNd9XCh5P3EsGxjk/TnqUA3eKZC3lAYD7etG4ZIOfH0/vHJtBPGuTBXu5ZC7+Q1tYYaA/o/+6I+K16bgpu8ZvVAA/blSKqBSBWgFVU8tVC09qTejF2o96NHjYWClCOtc3Ggo6PUuhuAPA4dOwdKOfnHfSdg1BW+9sOHoTRtVUBw10fB5U77SIhMB9VJuclZtGgSJ3gvBL+viTqMgPovM6tGDsEzg0jHmuxhenepMxYTiOGUeGqjS+0IoiFen6dq/mGBMQ9fSNJEPoUXwxoieJKoFZtoyc0Bs92EMKUQvPZnNfYiM1cFL18D9+2BZF65bqZppU+78WQw+PuZJzgU1WbrNQ78TNYKkeeYnKPt9wzSKSW3fteK5XrvCXtcPU6yL65KA11mM7UygyPLM678NqlANZaJzGYDgEcnh2rXI33XwyF64dQ1y+RpoOdqZ41DmG2sESPLs7P0jVHvhVpSL2YyPKphPv7+SuetF3xRuHygLxqX3kvKM6caS9m4/V417OqVpKdV9n453OkNGU3hmOr66clV4Ys6QklMoKOexTwtgXZvj1VSjZ0x2NcntlNIw+7ROzLPonl5tv0dihIhjyEJsvxTK1CWjD6Khu7dT5aFzUQwvJYn/FDnZ0arTRphECCuGCcf1gYQQYPtRwt9aV1GA8pg/nztHjhTPY3t8BktIPk4538aas1AaNh6j9Ka+Ey0g11TTZHaDlNpZDz/awh+biPtGwbzL9X5v3jnJ/rVLWStxbKI6efDqoV+fyO+ZrGEXDdUdKFqTzrfHrolnCzrep+NnAs2tFhd7QTyj6SIQoOxr/j40HH4Vg9756Srbn4kM1HvKyMIQv24GuY7MHZhPf3cuI1Onc0RcTtUR0Ut4unWjqPBzuz9KvQUU0B9jUD+oOx+InxtJr5Me58IDaOb9DuWpa1B+tZ5B3l/IOIsEruMrL3DHavjLbXr2UhbFM8djL8zMozWHdFa9LoQwo+OFREMjK87+oQYyJg5VRrmS0kMP1XDKitJt+fOUYN6q7N6DKupPoJZhy6H3kSm4pR2wdjI58I1D8xKOLtOchyjzgHVs5VhN0UmtXs8Bm6InQCKQsrMb8nrdQxMUjbS/uQ9uufDRBzOhdM6hfAZLqCq9qRXzGbQPuTE7Y5SZzA5MnQ898NBTs/p84a2jKviPUPXQT6GM8KvAD1KGk6bFZay11rmS2BxXjFQRuL94BeyYgIePwGhecuyzhNtfSEqVV6Gcb1MgtlKGIAd03Ywl368/9+n2XQflEwXYrfGa1IO9n0EPvQnH2a7BijEzuV4K6JsA95B32lav5XBtp+2Vuh6uXws/+iLcVWuK3MCsJZxsNdcIqOfT9+P1lwFbHtF1Pl3e+dmo+E7tu0K1dd0A8Jv5T+gY0u8n15xJD/oLRVJ7Zva7SynTyJrSHeoSP6/1oE8r+KcKYP05zwcvbFq3gkZF7GJwjaXjbaIm73yg6uVMgZGFsxcRTJQe+HqP8k+R8E8p+SrMnp9PR+aVFzR03tZXW9TwSHcIDk2qbndiEg7nhCR/nuidD6LA3sA8aLi9GREHeKKUsqJIJ6CsqG30CaqGkJQfzpgqk15uaD/myQ5PlKA1J9YmCly29yBPrnOxan8cX0wv2OYcG0WKe0kjDmayhkXmP/wWBnVWe28pJdCartVimi4ynzSbdV7n9zZGS087hupiX6WMgKnnzpvOMlsSEdpOo/3GXXmMOq2dMNdg/kJQva6TrekrUd54ikEDtuXPw6DcsPfsGKWGE5JzXZYcpewaBlUQf65PMr2/en0jy6OvG9j7iWwXJ5BpKkOhf8ZaQGxeqgrZYwfLiIm0+9JUX9t+ziOdUef+dvW4d4aWntP3UmtUKmSWU4YnNil+Vg25yNGgmnv3EPB19ILvFPjtAC914L2UOVvLhuBgT78ci+HxU5sS87dcsHD0dFPZ67O2rUvGGtB8zNuhzJt3lksfi+OtcnD4NKwZmbfog5lSRckWHZCjWhQvDdU5hTKKK6kyyzTkfj7oiae2cvNNV83os03MGBR07oqvDdCbd/7VKGMvCj1JIiyZAyDSctBzyhzTNbDncPmZzx+EDUNw/boZhdtfKKooQKGq9F2BGrSuoRQUJ1FrdF1gpXfdtO9GqQH65PN1QH2UsihesX5r15spFfpxqF5jLfDXtXswBT+gkTwhUw99cECWF1X8JXpAQyyq0el4cidMUa0RkBot7PpH4t+WAw88vZWbbriqGNNsQWIagVAfY1NKgVnyZwPorQd92p/drreHsv9zHexeaMBbXxN2LIt/P4nOReqdt5SDlApZxyAgnmkF/wtF0/3mGgbbLtbldp1sHge6uFAC+opXOuH7LvJFyyFvoSH3n0uu/0aqBfTUjq03Mht+Ph1V5lk0CtCsfG2JMn05hCdi67qdJwlrW4RWmT+PQO6EvkdD75NnZ4A+lZcpLyyMFaHMW35jgM8k9/iDJNFe8TmckyyJ4wIKfUjGM7Jjp8hCzHHPweUBd+QU7amcr6wc5ZUCfawtn/KmLV6KLkYVMC/zD3hnQ/V9bWt/CRrBBWWrxfWUc5UWxJtHuzgwu3VeH186xmWoDPxzNJJwJaV3PjWWzdY7P3APMVLqhUh1D7bxqhWo7vcc2p4u5en74t/r+kmqH6f6SqOHPv49PVsaYl0XKnTTc5gjq2+Uyjh7bb3oU92iUbabg7QnZbRoK4L329fBV3bDjcvVO29/L9rZ5eDnb3V8RwL6w/ufOafvNeUa2uKvK33TLd5UoTPr/j3JDwTn+IzrczsxnFK0hzZLOrD/lGq3jx6EFQIbxqL5312wcPSm3HFQRX0yGVd6TsFtQNMJHgBeEgWsi4qEOAsZFRgfgkM9Hd83DsINSxa8GF5KTYDXwrpOUSq9fZQJjqECpGLxnicl3egtP/LaGX+2iRkLajGN0ZeAWvMPoArY71CG5NXz0eZkior4zMgkrR/og3uqn3twD9y0vgrm51kLsedXgPmEV2xC10TKG45R5tDbeqikfNb+Zv/voCALprd22947hCo1Tdef7eOpA1275moGO3xAtS2fiBDaXiVlP8cRIAQkQED5Ve4c3XhTp+L3BsaXAPtDqCLWAV715tdWxmX3OKvx0WywTcOy689Y72lmvehTwGuvjXZTtres3IfMD6BP9779nq3NwygPSOVYkyEjVYjSNdinBPT1cZ3LOjwXSnMn03W8BvUenaJMh7G5sdaWdcqpeeeTOX0aLYpl81iPymqJtjNrS5lX/dIAv4nqANajvCNV76HRbPj52UiIBjYXPccOhhBOIoQRDydP6fh3nCRcujQa3ZS/WqG4XGTAELINuIXqPkrBoRl8O1Iah18G/LegxQHfBLw0kSEz6dPeSGmYTcH4BMY6ZIcgI+DzgJNcQcyeSWTtEo57xy6EDZ7Yrk447OG4U0Dvqa5hx/ys4XOlJv1NqBaNs1aLQgnoUu/8fOkrRrNd59PpqKPAN1Bn2f+mWrT3XHLnvx2p4E8JmLd9eyUa3XAjVX2+sWVdTXexYwytnwXNRuH0OEq1UDC1654rpfvU5ICgtTu+Qs2Qm441ynbxQsg8RS59Ggn6ohVw7y7YcgSuWBar3EsJ7q2F3Twxifneqy9omm4BL49/NyU2XbipkpsuHPPO58CLkt8IAt9D6b22tcOyDA5HVf4bSTh6muNhYGaOw9Gl4TwQcp8cqcLzAJoXB/C/RXhC4tjSsHuA5cNwaFI3xDcPwq3Lyl2YGiwWCKxB+bP2dC3f5yjV8VtBvFRBT5W7xSg/6ozYxjjGYL/au4EXo/2bWwxWi21xfhbv4p4kruV0bbccvGRd9YMvXVdlsm7+GGh6r4UylCp7aD7aFsr9DsorxmjeW3q9wfdAn/VpqpSCReMvR+PfljO9kWBW42OQ9zlUsBsoSveAGR0s9NEBZA43lCHdDBlqIUMtQifTkDYnlRoBdWNo3VB6kMHog/oxGyq885TzBtP0oqf6zGdCdaUhXQt7KHPM0/1nz/pCUtNzs99ehu79iiJGOfaUKkaO5LV5wK0ict1TMh8KSPFbtfkdj+d667r0/uuUM+idzynblKYe+npUVha94Nbyylp23iHwKwJ3xv/b3yx/fk6fReTLgj4QQUPmEW0FFQQY7xCO5oR+DjsOEy7tVB5i7mMhPOfoi1T2wXZKD32TMdsKoKat3UYEXu7gPwrc6bSd25ArK4SfU+hyunnSr4+3cTlkp/tlj3DAbT+OrBvhCoFn0nB7J+wUYUxU3qd8Pc2hX6xU2deJzroE5dvWf76p1WJRA2IRh44P8K7kVntoXYrbUDmYRhIW3XhY3OO70KT1uhK9JdFdDNAHqumC9ZZ1dSN/qreMcOb21lDKl6OUOtF0+ug5jZFqOoHd73qq0ad12V4xXLckcSgmOmnbw22r4L6khV1aGM/a2c0TXQT0s6A607CFYYz+AIOKQUUpDc2K3QjqBXkN8GsCN3oF8wL4eGZZG/b3YM8J2D2llqGmcPRsbsPR082Z1pexPvRQDfW1zW81Aj5eu96nDdBDUfRIHLA0gwOn4JGDsFLK6IM0b2Wei+GlVLdwG2MYo8wxt/l8Gg2zrgj+RLlbjAKkKc8OqnUCchSI/iXwI5QelzQvdM4t3pa7lB7XrYWfvRRelMHbL4Vr11b/3l4YtlYH8xZodTmlYLTjBGXV+iYB1rTvQHlFWhSvciQ85xCqrHSY3hA5G0qVvfR6S+Lf64XxbHz1sQDaKit6/NKK/hLv2YwD1MaUguDDVAviVTwEcg6AvjYue72GMs+6CZDPFtDXZcBxtLhoUw96+/+Fpun2/hhlWG6TYSWl6XrQ70GVv7r351wjKc6F6kpnel5PtdJ9ZX4bJrcC5JPXz6AyfAXNQNaerYH1EVceY/EYtkPKCtkXQtYV6zsuNBffcBINgUMt3Yg7jxMOQ1g/Rm4e+ghyix7tlEaNCZQPWIV7m+fUqw2xArzoOEfisxiVak9p+3vnnIcv1R+1TdXyek+HJ7TKfT/g+zl+11FkdYvLRXgINVr0I7Df7h0bEkNIHdQvPmlepSagZXz7GIOpIql3/oUSSl4f46OUYO2rwONc9M5PR2ZwFEo+LagO+zSDOMZC7kk+m8rdVOaPUeqPUJXn1M7HUSOrfdfm9Hz3WJr2k8rWS1B+NUU1AsEckqF+kdSpaMDeibawe/4kHDipIfa9PAm5D9DP563O3HckoF99yc3n9L0mhcAWmoWenkkxaMqfDCjjuRb458ANThTMO2J+eRTqy4fU5Hj/PrhxCXTnLxxdGl6b560Xz6nRIq2E/rratV7nwPkYdi/lGFnWgqOn4Jt74Za1FNEHKZi3jTTPJAwyqpRhHaU671bh3tbJQhTEA/itd90148+m40sV/HHK8fVQA81G4AbKEDYLt+/I3Fu8xYw6dnQ8dL3mzP/0i/Xc8aXhx5jsAlBTgRmPPq/TlEXGQAGvCa/KIYNrLKWmdpEw6ME+gHpF7TqV+Z3m2meipu/beR0qGFPD3gnKon8DY6yNL31vhBqgr43R3jtI2TbnI++5a+DeZguEKuNKFBPrn36YQZ5+LoDeFIYU8LYoPRPzDXgH1kbygysoo3NShSfUvReUQL4p+mA2PegvBKW/ZSDMKG1dZ+C80UMTabqCeOblhHL/p975QkmNYHYkHmMRzFphrVFRgDssZe680Wz4+Zko3W/2cESEIYET8TfDaJvw1FHC6pamyxigFzTc3vLnk7W8HZUJdaNG6vUzajtRIO9gTOI5BfZyngaNOlOFYuJlhdA6NkmGVrn3e47jPbilw1zj4SkvTIjQF8i9sMULG6jukeo6Xhh5MxNqkumCyhFBwdl0rRadLEh24+z0lqRQYTrGT9Y+dy/VCMKL3vmS6mDejs3o2pikyv93U3byGJC7VPnLCGXkMjQ7IYwOU+oMTUaoc6XUkGzjFEr9KOX/00VoiUipY1YcqAJjbS1Q/pUDpZfePPO9PLY1uwjoLxgd2PPEOX0vVbjrCskKysJ4deU6VUhtvtNFswv1FKTeWwO84rTNG91oK330KKz0pWYyD+HoTQr4cHzdlM9rSk8ArkfDhK8H/v/Ai0TI0Cr+mSvD7lnWVVf37h6Mh3LT1KMPFgCsNc270VLK8OYcBW47qBbEq4P6+aKf+vHvn9XnUyZqh+U0nUAtmXdTrRZbD7W/IBbvzGlok4F5O3e91lnoJv9v+wVrsWPCIgXzDlWe1qKVhG2fHGWwRYu9nk6YmSI2XTHKC+nBbgJFdg0rHJfezwlKo9/AOGTwPaN0fOnY6hFPB5PxvfbHdJ2fT75dfVyp4jtCabCo30uTF7eJmgy5gbICPMlvpkW3LvRKtr3StPeXUO1w0STTjFKFLx1j2oO+CQzNx141pb9pfutdDFIwXwf0IYRG73yOerIGQJGkntxynE6ErlQB7HjyugnMw+z5+bTPw85xQkQ01H4UoY+ACGHFEDxzFC5Zqv9P5HE/eumtzoAZQbahxsv0+fraOaVMhBEnjDpY4srnMCLQcedZFT4V1JXXAkNd/NGedkIN4LZN4jcsxYmwUhxLRXgcC7mHbVIC+mJcUsr1xUzpfq47oVYC30RzzVdR887LwuTPw+zXeVrEL4v/f33tM2+krGZ/0TtfpVRXccm8r0Yj/LZQ7nHTdS2FakC3SK4JCtDTPvT1cypLTlHr/MPgdc91fDa21BlhXvodNOfQD8h2Lxr92Uowl130tpXwrYNwaqpa7d7A/dT8eOm/IwF9v1fPQp0ZpYpBffEuo9a6jppy0NDWJ1V61iXXLPI9Yn4LTuB5Kz0FfO4gbNk/L+Ho6aaFcsGYsl73phVpJCiwtx7cvwzcTLIH4i237H4PJoE5H9oNz+8vP7SAxfCMpmMslmNuis1zKABYDAJy1cqlM/7sdPNshpujaF/SLlrEqPDOUy2I16SIni+JREaaAvnhrAbmM+hk89r9oE4pYEjDu0DrDTxHVXhZ4TFJvk/te/XzEIN96M/mwbbvp7xrttTE++xYhXp6UoPCSarCuS700/Sd9NxUI8DGlPLPgyjPFWDpiqUD3oJZjy+5x1Tow5l70c9URNet/6m3Y23yufQ5zasHm8E5WoqG3Nc9KnXvRUhk20x70Nc9theaUi9NulbW0lzQtoxGKEdqsi0F9fbXNCor9XRl0gz6RIQs5q2PxGPI6XvTyfDZ8PMzUcHnY4FaxfBCS+CExDHlE4TjPcgmyePDMlCfC/RF27uZom+A/jLKNVvJWz3DWvbxWbRE8GcY/6zGWPPKV5jO0g7uSF/BXwj4rYdwa4dxIoiHa53wiBOC1yLF210V0NfTKRY7VR4B5TyMouHoTa0WhYWr9zPbdW57zNL+2sBLgP+KRoj+Nlps0rzyc1HZ/tuJKnoqVV55FWqsBOV7+1Ad0NLp6tFWdR3SIljt+6nMrAP6Q0wTtUi5dc+FbK828aL1KKCvy2Vru125Tr2mk0WNegfrRuGSDnztQAni6/n0M7X+nwe9EPjRoqKmRSuo0mch9/XQxCbLf7qQd6GAnnhdbelWhqQD8ECtsvcDe+YtHL0JXJjiUsnnDWXhNPNcfAMNzx7CLKkSo+klhjzFfx6uVy7fveDF8IzSsK76sYRqL/oXYkE8aB6bre0lqNHiQ8APUw21t6NNtSLznN+fCNKOwH20pWDeQP1QC+ksTPRG/R5T4Zh6666grHQP+jybWrSkI0gFmb0/xKARDQY92AcoPdh1Q4HAOSnNpbexuj5WU3o57Z6OUxqDUqrzkJSXgj6TieQ6FeGfyEPz0A+s2XNUsutrPr2ntZx/L/rU6p/O0x7KHu11wHuu8zRbajLSwDSAPj3ihDQ9F3t/wEPP+c3TuVJ93aYe+t2U93umoodN3vk+qrDuRfl+6p1Pi2QuJqrwmoTBtL1wSoBdh/APH8cB4UsHYOvBosp9MO+8lwED1VbU42W6gSnSRV7ufAMoiSusjmjH2rjjE/g8kE328bsnydYPF8aEaz084DV/fsILe4ENVNduvS7AYqUzAaNlzKTV4iIfIHqv5nUfEi2oOCJwB/BvgZdJWZPCClJe9M6XZFgj9dLbWr8CNVaanNtH2YO+biBN+bmtN4tCTGU6MFAbp49GgI5SXat1mXQuZPp7PYfePPT1GjlmtG2U7WkR8jR62AvcsRq+sqfMobeieAbuexcB/QWhkfG1Z//QNNRk6QdVLus59BUlh6pClxaSOYgqjcZAnXOIB/GCt8Xy4to9v3RdzYN9YQBNE+Cw16OoJy71DOZx3dr4vom2sSkUHWeh9oJ3grPx3dpQuTyt3r9AxfCMivmuMZlxqmGpz1ALt5cqqJ9PAfnF+x6Y1efr3nm70zG0Td1x4LuIlnAS73w8XwjvfJ3ECeId0vblsYg05jT8L533y9DQNSiBgPWhbxJe6T5L/9/ooQ+D/OYQpYe+fpwr028C8ykost8H5QvD0/y+UdOsdSm7Z6Rgvm4EPUppsHjk/gen/Y2Z0pnCsldTjUCoG2fPRqEWnZW+tpD7dG5ShWM+qImvCarwH0o+V1fCKvMTmuepKaWgSQG80JQa2NIxrqXsRVyPvqhHIqTe+VTpexpdI0uo5aEmSvJc0Gz5+Zmo4C2iegYxh34CgacOIX2gDZJDeHyvgnmJ+fOOov98vcL9ZZRzm4LeBQlNtx+3s703nsHhCQ25334MvwzcSFv1ERGu9sIeBzudsNOpkdZCjM9UF2AxUppSU9/fS+Jn0siStO7DQo1ttutcYgqLgXWrUWF1GazIYlfKzgoLqUsuRirmXqopX1egRh/j6dayzmgg8i45oIzSO0ZVbtRTz8yLv+QM1zofSnm/jU9QQF/pRR/qcr4KwsWJduWxYs2GT0Rg81JVeh45UIbcF0XFcpjqEy5wLv1i50cXhLxvn/N368qPLZLllC16YNATUy+4Y++Zd2BFcj28gnrntAcimYOr18BPbYAbM/i7tcre5sG+QCS1s5F5C6EU6qmHfgoF9C+m3EiZCM47smisEAtduSaO76ZMK5hfl7QiW6BieClNx2TGqRbFexoF9KlSY8Vl5lupOXbs5Nk/FKkOHlPbUA/4NGqY6aDjKArLSBlyf5FqYD4BhldQpp9YTlm9RQsMzkNdoLVpzjFXj2n5uYOUPKUCos5DUZsOkK2i7EVv93KCao0AqPJNpjl3KNvWwaDgt//vQ3muA04dPzFQI+Bcx1cfo6AKTL2Kf0UpOUtuXJ3np5F3dQ/9Qniwp+NtS6lGH9UNGiR/azJWT6K8cSF70BvV94D9f3W8/8MMjs/ktVEdyNvfn0L3t/1O3Ts/V/M4G35+JkoNt8HFThMCw0446QWuWUY+DExC7oAbV5NHWRy85pYXukw8plBP10YG59oxv3NdUJ152k2MZ3DitMqxZ0/hL1mGtdH1Xuh64Vrn+KYTtif58/XaFk11ARYjFfdcA1+2mnokY0rmbKEyHM9lnWciDDsF8XZYF4nR5Dzs5sfx8EKjOpi382bUEdFD9/l+pm9BarI3XWNmKDhBVU9JdRco5Ywhs+l0hnOleuSB8WQD9HYv9Rz6RsmeeuktithC729bB5/aCR96CJ7cUxbESyreX0ia6zanLwg6emjrOX/XCUioLmaoVgSuK6P16r+pkrqLwTA1A/I+c4hpTl7ghrV6WBi6FWewKrQXiET0ZusKeAoujFIvxuOoUn85ZY6TCU2fCa3clT9g47txXXVsLQethQ+nLgRiqDIs89CDKrDbqYZepp6K+RaQr//eO2f1+Saw9Sil0emvgTcAtxNb1UkZar/YiwPNF6Xznu7pVeiz2krZrq4Tz/asG/PMa/tuGI3qqQvEumf0COphte81AbZZjy1Z/ykfXIMCtwkoesmfoBpqnY4h/f36eptJjQAziCyL33vZa+8cUCzOaXy1caUeeksIKvi5JEBdzvybTV5fA0Q7qXro68BzPqiJrzkU0JuRum5YSddaHQin3hwo56kJ1M8X2e/X53cINaztQRXVdE4Lw4Wop6bJO28e+mtIDLhUvfNz5Q2cLT8/E5UKs4aWS+bIfM6xzMHG1Uz9EPQePUj7uuWEK9ZAyxEyR/BCP9P8+Twvn4EpxdafOgW/8z3XBRWWixQViFalPgQOzZ/3r16vQNZphyGchd07NjopCv3ZpVIjxQsBGjZ55x8B7o9//3WUx91OaYRaSGPFua7zlgieQAvoie5dA4QWTfhCSCFYCHKCFogkzn98bcW6twObUHlgER2FrJASIDfJ+aWUHnqoesNB+ccxqimCc6WzGPmU7wu4+HodittOofpZxaArzYBevBAyDz6vhtw7gSVBrZuP5/D4DvgZ0U5MU6J4ppcTLqBz8jvSQ38+VF/IJrRWoEqteSea8uibiiLtRDeNkeXNS8fj2g7pJFW9h2LOsL1nPbezCxeOXt9UZ8p3TfMKLX/+FkpFxwSFzxxZ2+PavmxF1on50VbkzN6zzywwTcdgllBaF59DFURr6ZHmUi92a/5M2798mmp1eyuGdzGETcmU2SZr9xXoGjlBmSs2nfCqA90U8Faq3IcqwGryYKe8SuCcPdgVUJRce2n8u4Wlm4d+qPbdprHNpEZAHSgejH+zHH3jDhW9/RyoKZ1AOP9e9HUPtn3nSDw39aCfT37RJNPSebX1ZgaVdC7S/9dTCqwgXlPkw4IA+ob5BQWhZrCpG1zSdLJe6p1PvDdPA1dTXjv1zi9Gj0ll/5nx3Ds6LcfRjiO0HWxaA2+4jrB5LXQ9IUYD5l4I3g3oOVbhPpV1dcPGvFPKYCoh92pKlX2n8Pt6ZBvGtDCf06hB54RbRPiqg2eBS6kaJ1Le/kKQe3XvfJNc/wSD0WULr3XNnpwIXSeMOu2eoKH3QiemU1ykZkr11VRvcSiAfyZ+bi+l0a7Cz6WqN0LJZ4Y5c6V7GOz6k15nLgzbqV6W7uWlqB67k2oO/Vlle0uSYt2uBPWP7Kt+7uu7q4XxrJ3dBaLFKG9mTd/61rf4hV/4BbrdbvHe6OgoH/jABxo/L3LurGo6JdysSwdRgF5XsuthHLZYdlNWuK9sDudw7aAC1wv0XWnSstz5toP2/FT2bvqFIar5rrYZTBn6OlpELc3N8hEI+paL1nBiWIorY4Zd3CzRaLEYhGaTF0tQD/3h+JnpCuJZyP18C8iJiUk6nZmnl2hKhFov0/Yvn0s+Y+1f0nD7bwsmMkdk+9fHteKTdXMZCuiXU1a4T7+Xnuvv2es0xxxqwCqe7e/LGFyv5wOkmgCZrXMrHHdZ/OxJpin6J9X7oXYeoszbLoR+qPLSg5TefwdMTUzihtrnbc2v82Cz6FtY9lFUmalEXsnZAX1TobUcfV4jNFcMnk/Am4J5QsmnLP/xEMrnmtaava4bq6FMJ7DfqIfbzzegrz9ji345Y9HDeJMpkE8N1wfR53Mlzd75uYyymC0/PxNVlG7voBXoBs9pESa9o5Xn4NDIOC+EtoL6fsvRFykcFfastsMi9GRLdRLsRjpx9A8eobUmw7d9Uc/Hx8r/GzJhxDu+AvwtaoCeco5fCOSjTDf5ngWNtPts8pk3UlaJz7AxLsyszdU6vwjgZ05n0luuRHXb16L87kxF8eqyBFR21HFCymtBAf+S5H6acvPPe3xUjeX2//UooL+ahki6ME0BRcMoPi9TgrOgtc4e21F+7uY1tZD7AP0L18LuhWiEm5Y+9rGPcc8993DPPfdMC+YBVl9y83n9TpPFM0MVoAM0hx/WPfN2WIX7+qbwgGtFr/VQBkNeq3oXlb0z6F54MG9gukn5tp7RqbWthyo6h9Hw4lsoga0VU9O0+Fi1fMgqlifjG27peNtuwUPtjSrMJZn7cTRKocdg/vxCFsQD+O3f+7NZfd7y/E3wN7V/eWkE8xll+5fFYHBZLCQiA/mzdlyB5qOdoPQu14XWdHnmRkNoagfUQp4bPNhm8Z4rD3YKxOqKuuWZGx2j6kEfGGdyzfTcpcztTEVeCiYPU3qPBfjg/3x/RZE4X0Bf9+QOx/tq6kU/Ew99k1cfFEROqxzNIwiqK2MpeFmCPu8m73wK7pvGmNYHqF9b1/r88Y160cM0amAt1aKOBZinHLd55+sh90+h8nuEqnfeJcBormi2/Hw6Gth7IuRtT6eTcarjOdZx5N2MvJMpkO94aAmh4wktX6n0b89rC4vQk11nrNhZ1Nr54D7cxmUaqu3ikYHLtNr9+viV0wwCegM9LwQy/dTAekfgpcBvonL9d1A5b8b5TBa2Js5crfOLNHM6k95iHvoeKgtWMiinzgS8h6nWmaobhQMarXa2rj/nQ3avFYNufL2BamHU1Plab11XXE+krF9mDlYvsHk1/MQlcKOHt22A69aWjCLPy2r3F6g43nekc23vjgfO+bvFIg5VJQjKXvRQXbT1MI602MJuypD7SmiiLT4nGnaOV6tOYN5B7nSbrJ7vagpPDnwLFfDLqOXPSwkYgRiB4AnB6UVkcQLEJkAilFbFoyigfyuD3nkDyfNN//wfv3VWn3eoIO9KjLJwatl/WYi956X8+8X2L9NTIRRDuQ5Aa0n8H9QaPZ583kA8pEo2hQcxfd+MaHVKjYaHqHqwpwPTsyURQUKoePfsWEVZOA6UL5wpCqEQqolHWOL4zlYjwFry2fXe8vNvmRNLfhPotHszg8W1VJ+1gb8z/XBTZFZAI5h2o3UqXsKgIWE+t1bTXICu00PxdV0R0zFN34P+YXQdPArcRlWuLQQ/rMhXyme8FniSZu+Rzq/mz/dCGY5vf0v7z9v4LkRBPJg9Pz8TFRjXeIwTfMdzKhOO9wKr8lxzSGN4WWg5Qib080E9JqAh94vOk10B8iToQ2CkC4dO4y4fis62COhj69HHnOPR+N13odEHL0susdhT6FJyInQkqLMleRx3xMOjcnwoyvTOQs4Zc7vOL9LMqUiLTfQWQZ1UT1HWU0mL7dblZdMxxqCHnuT/UNWJ6nqCbtnz222muxRpsAl+uwSNMKrLdMuhDyE0/75FSZvn3ed68WvXVGudWRE9A/4Wfn8B6NsK0P/ET/wEvV6PTZs28ba3vY1bbrml8XMhnPvDHFjIUShCWe15wBsfNHSvAurR2gn7qHnoJfXo1n471fznmQYUABTQn6SqfJuy83VUSbXNnlb+bTUoOgs5tpmSPYM09L6NjusAqtQ0FcSzkPv5ptmGrTkRugT6onPo0PQIUwIcKuxTUL8YjS8LTRUwH9eLR5XCU6g3y1rWkZwLMCUCIZTvJ2CrKc2l/vogVQ92BaCe5zarhNEmQnE1GpGThtBN17bO9lA6djsPUxoJjepA6yDVAjqdTrtWI+DcRlg8nzDI29dQhmVXPNKhDMuejprSrR4GPh///m9Qb9kdVL0I87W3ziTT0mKvlRz5QKUwYMW4gY7v2fi9/weN7rkzuf5ChAam69b2BOjcWnRJ49ik5p2veehvoQR5qXd+rudwrsLtm/akPYsh7zjuoR+cjt8JwalxNwXyqSerjyrEl1ID8/HaC+XJ1oJ/VN1xRr3IZXpTZFbh3sLuM8enajf9Kcr165M9+kKhjlSN9Fko9VGr9ZD2al/IcPW5WucXaXZUD7k3HeZSdJ08iMqDgs8xyM+bdORRGorihapMP0pDiuAc77Mihz5U73898LXk/voBbdGZ3J+1ni2eFZG/eFcWx2tFcF9053LVsxkAvINwYUxmixrQ/+qv/iqf+MQnpv37zTffzG//9m+zceNG/tf/+l9cfvnlTExMcPfdd/OLv/iL/N7v/R6bN2+e03tKvVR1obiMwfZNda9MqvyYElHvcWoCdiGUniaazvo2RLWtkYWo5MADwL+kDPcy618rvn6hAcFGYBL/thwdb4cyxPSFVBAvpUyEIQk4gVaAyVCCNPPgd6LQz15gczhflM6/gXmHep/XomDnxvjZNBzevmtnqf0fdM9ZjYpUQNY92MvS78rg9c6VmsC8oOv+q8n9nKRmtJDBsdTHCrqHrIAORMEf/2jr8BCavtAESs6HZ6a8vclgUW9dl4K96ShPetCnoL5elOrjwMvnaByzJTMgNUVeLKEs3ldfZ/X30kJyn679ho2vHvI4n1TZj8n8GqCvF3qz+e0z6J23zzwFvIVy3hZ7QTyj+h40GiEa6UUGQmTTvPlUj7GCgmktoMXjyY6/nubRP7+vbN3ygV1kP+VpXb8W77UwXsvBDzjhU8lV3oAa5VtS6jKLRT+bCYkIQ4RCH5ukaqjPLsr173gqnFAJmLfo0k3AlykN6anMNX4+nc4ySomL0jD7OqC/tHbtudJZ0vGlPMn27yVo6rPdXyrTekGdMKnstvFmIdDxglgLOyda96vulW/F1y0PTtuEyukLs8cWNU/6Z//sn/GRj3xk2uM//af/BMDy5cvZvHkz3nuGh4d561vfyvXXX89nP/vZxusuWX45P/nTb+cd73gH73jHO/jYxz7Gr/3WHzMxMVl85p5P3scX73ug+P++/Yf5rXfdBZSL4RMfvZenH36qWCgjW3by/PvuriyID/7x3Wx5fmfx3pMPP8XnPnovOZq3sQ74q/fcxbEDh4vrfuP+B/nMp+4rFvLExOSs7s/o/R+6lwceeqr4/7PP7+D33/sXlc/8/nv/gmefL4s4PPDQU7z/Q/dWPvOud9/FoQOHi7E/cv+DfOPe+4rw36mJST7wu3/C6YlJ+sDzQH7vfbj7HywUnGMHD/PH//2uoq38XN7fb73rLvbtP1z8/4v3PcA9n7yv+P9cPb+tW3byZ398d4XR3Pu+uxnZspMHgKuALY88xd989N6Kd/5//N5dHJyH+6s/v3s+ed85Pb+v3P8gX/j0fYwIjDvoTE7yh7/zJ3SmJhkRrRz76U99ed7W33zN71zd3333Pci9n76vWAO9yUn+/Hf/hKmJSS4DdgBT997H4/c/COg6OnTgMH/we3dVhNdHP3wvjz/8VPHeni07+dr77gZKL/bH3nc327fsLATjc488xXMfvbfiwX7/e+7iyMHDxZr90pcfPOfnl4Ys3/uRe3nuEX1+q4GDW3Zy7/vuLjpfjACfft/d7N6ysxjDow8/xQc+dG9F6P/pe+7iSOQvQ0D//gf55r33FWOamJjkj/+bPr+AAvqJ+PwEuP/e+zh04DC//9+rz+9c5veRh57iLz98b0VZ+dh77mLpgcNFFf+H73+Q++L95cDpiUl+7Tebn58Bw/0HlP/ZmL4HGPvovXTi83sDsGvLTv78j++ueDzma38ciOsvVcz+5qP30n7kKQ7Fe961ZSd/8Sd3Vzq3/MF77+bZ53cWys5TjzzFX3/0Xl6W3N+y99zFqw8c1mgV4KtffpBPfGr+96+g6++ej1Tn96vvuQt/4DD745gevP9BvvTpcn5PnZ7kd377Tzh1erIwWn/13vu4//4HOY6m0pw4cJgPveeuSoTdhz48t/zF5nQu+J8I/OWH7+XJh58qns2eLTvpvu/uooYFwEf/5G62Pq9N6XLgoYef4i8/cm9F8f3Ye+7ikgOHC1n/yP0Pct+n7ytA79RC8mcv/NYffpD9h49gpbi/9Omvcc+JZ4uPTH1zO+96358Tej1aTmg7of+ZL/OO+x/ke9Ec86sOHuaD77mraH/WAj7w4c+8oOTb81t28r4/uptRp3J9zMGH/+RuDmzdyViU6488/PSCy9/02ovp+S32+T3f+xMUi379yw/yN3H/AvQmJln2u3/CtyYmiwr3X7v3Ph7+yoOFrDh44DDvfvddlUr3n//ovWx55Kki5H73lp18IuIj89J/4n13s2fLTo6hUYVbovwodGyBd797bp7f7/7eXRUDxOc/ei9bH3mK9SiOeSbeX2q0fO8f3c3Dz+7kaA5HA3zloaf40w/dy7EcTgQ4IcJv/q8Psv/oMQXuXc+XHnmMe778Ne3WNdxiwuf8+n+/i7/8+F/xL/7lv+Ad73gHP/nTb+dCkHz2s58NZ//YC4/e8Y53cN111/FzP/dzlfdPnDjBW//O32fnticYHx+f5ttnptN54FiAozmcyOFYtOJ8HA2j/E+oYjoq1jZDraLHA8VCOAl8GA1j+eXk86MCIw6WOP3uYvBkTzfej6FWu19B79+h778fzZv8t/H9YVR4jDgYi8/DL4JxzYZCCJwIcCQ+g+NBj1Po+L8JvBl4OzrekTiXo1Fwji6AS+qL9z3AK++8+byukYYaKYN9Yc3bQtGJPHDM1klerpU/jcfbgB9F10qxTuJ52An9EDiaU7nGCfT4MeB/o57FEXRfTQXdl6eBX0Mt6j9OuRbHnP7OuIOh81iLvRA4kpdjsvvaCfwcuvePAX8P+KD9Pjqu0Xgf404Fpl3HeOJxNHrh14E/RCMaRoCug9Pxd04DPx+P2+Lfn/nKg7zizhcxFp9h5zzGN5EHjhqfjmM8AXwJ+BM0n9Z42qjTYzzOW1OYai+ZxxPxuidRr/dPoGG8P4Tm59ozGo38fz49Zafiej2WrNeTwJ+jvPyXqMooAwUt9DvHkjVxAo1YeifwGrSC9u0MPq/5lgH9EHS9JfNra+rngH8CvJi4XhPePSSl3DuRPJu/RvfyuyjX6kj8zoWQc3PBz+HMsuyXgO8Cvo8ab6o9h+OJHvNnaP2Y/4fFp8eEfg4nenCqBxN9ON2Hx3fDH20vP/T2S+ndsJ7jHc/JtuN0N2Mi80XHHqv5MxSP4Timi1XULwzN1Tq/SLOnk9PoLR8D/gcqq96O7vNUrxiLGOdoTRacRLskfRhNKxuilOmnoiw8Bfxj4GfRtDPjvyNmeDpPmW5k/P+ojS3y/wngp9HUtxvRiIKRuM8hRmYlRmwoi0IPCQwTGDrVw0/lFB7LzGs78WnyjY4ePcqSJUv42Mc+xsjISONnzoUWc1TYjOkrX/kKl156KWvWrGFycpKPfexjPPzww/z8z/984+dPHN3d+P5MSWqHeVOWUQ25z2O4aBFyGaphJrvQENzUW1B5vUgEhkxzTvN5oQzH+xaxgAxlOFfRg14WeVjINNQUlmpna+9k+fPCwhfEA+ZEKFp16Is0O2oKXRPKtm5jNOyr2oM2C3Vat6IVz2kxSuM19v9DlPUr7F7g/PPn7Z6aeNWK+Pf9aDVcSPKIk7FI7Vr18xDVnrX1A7TuyPLkure87EXl/ZznAJvSCQSNQDCpUQ/LSwV9ndLQ5LSGyg50Ln8RBYOp58Bezyc5aGzNuYyyKB6UKRA2H/WK5xZSuQO4AfjnlMbe4piDdXguVPx2bX6h2qUhnVcrjmTjTEPun0Kjsuw6JuPs9VzLubkGOU1zYG0xB/ZeKNMPTI+xFIutKF+rz/Gi6NUuUcFuuTiBAa5dCz8r8I3d8NK1cO06Mi8MZRo+6zJHJmVRLEG98m1KUH8RzF84ugjmF44KHT3RW0B1W4BvoLr9bSQyi0F5mfJWS+OBQVlu52OUenST3jIXZPI1zaG331iP4rEbKXn8ybyWShbK2lKZlBXwRZRnDBf58tMD+QtN3xaA/vHHH+c3fuM3OHr0KO12myuuuIJf/dVf5Zprrrkgvzed0reSanGd9MgbXu+hVLyLjSGLK3/eKFW6U0CfFrDqo9a2h4F/RDV/3jZBi8VjqJgtVUBDKOdoSTxfSS2PklKxuUjfWZRWUvUJv7gi/v3TaLuUlzF9vth0hrQOuu8KoRiqQvIQZVG8JkF7PpTyqbS4mKMERR2qFWvrvGPgveRaXbRYaDoeKHmm5bMtS8cmcz++uvBfjRoqjqOKfT3PejpAb8pAml8e0CJiG2q/52vn+aTplLGlaH4jNMi0oM+oPrac6vhSQ0X5bOdfBtTr36Rr2Aw2dRmdQ+GpTXPHHwb+AvVkV+ZOynZ1i1XO1Ytupud6UcpU8U69VNZ1yQD97Qwq92bgWEgSpxX6i2qGoDd2wzo9rJ9029FpOVw7w2fCVJzzEKJNgLJ+zMUc84v07UrTFfQ1I/tWNBLndxgsctpkEBYUqB+r/U6dzx5DdYa682EuZLqRXatSdDze73rUCG33dTo0y+0H0fo3bwzK8wzXdDJH7sD7hUVu3xaA/m1vextve9vbZvx5n3XP6/cqCzZR+pajC+Akg0qfSNW6DWUP+iZBuJgA/XQtjYahyJe1xf8wWu1/PaV32pQca133QqUmpVcoFd6DaKhzvSDeQhSAAs0bWrVy6cL8+Hc41SvBmhAxg98TDApG+x7J/5sMaSNUAT0MerDrrWVSEHM+VAe69hpKQL883mP9e+kZBvmJAXpQUN+hCigCZVtQMxg44PCBw4yvWjonnu26wcKuOYoaI/egINf4eloNt4kMEBYe3/jZnZSAFyjyyxfKgz2dMrYUjbqA6Y3TafSZ/W0HcDODay/1+iwEVaIEkvldiyqrFTCfeKV7QQ06fTSd4Jfi9e5B27VZ+y9ThC/EGOeSn6eGllS2D1PtolE/W5RC3UOf9qCvGzgWmqTlKRobWesoG5RQFrDqZLTajowYlRH3dzqni9VI8+1EF/WWhSPbuymY95QdWYzuoSxyClWZZbjIwPIoZdRPKittS5r3fpyq7CG5/lyQiOBqRW+NT61HW5DmKJ+fovTA2z0/jKaRgTpk/luAl4vKhiknCujn8H7PhRYTbpw3WrHm/Dz3dcXLHqKFjByk2ZuRKkB9yh70TeGWCwUCp6MmgJGG3Nu4vokqcqY4GZi31JIX8oKzObfXAI9QMrt3ovmmxhTTnsQLQX9y18cX6JcvUj1Cw/5fr/59D6UBL11f0LznQEFvGsIGVQ92nwvowY4pGE2e/1Uo4D2J8gYaPpPeS9PYhuP5VDK+EMoxHqI0Vtg93PP+j18YD31yhrIaemo8ScFfnaz+RD0sPaAtLg0EpR6DhQpTbpojhwL6HJ0Pk1+QyLPEk5Eaq3dQjUC4kKHos6G63LYxr6H00EPVCDMVwXwvqKJ3T+2a91Idm8m9uaa55OfT7cGiyn16JJ75wkMfz1YoMtVjzDi18BXuS5KOh6EMhuK56/Ww97oZtJ0q/SK0ROg6YcgJHSdkIhfB/DzRRb1l4Sg1XrWizu6B19c+9yb7nKih2yXfh6o8GY3vmUw3GWL8xbz35gSoh9rP5a5LnW2pw2USrQf2MOqkPAI8jnrj/wD495Rg3uhjlNFbAZUPC03fFh762dLeHQ+c1/cHlFTKhbEazaO/jGYvjp33xWutrn0/XWSLhaazvFkfeig35zfRAhOmxKUeet1Mi2lksyMLRyrGFAYB2ieBV0gV0C3UiH/hn/z4Av3yRXIieAm0QtnuqB20QNjnks/9INU9UhGIUvWaGrUZDIu141B8L/VgG1icC8Br12zycq5BgdxKSuMmNo5kXCSvz1QjoGIQje8fZDCc/6f/ka7zuTCCFs8qVD2YMPte9AOG3FC+vx14JVX5Yc90Iaz8xX0kcwrlsz4cX9eNGTAYgTCFPqcNLD5jdd2DnBprTCbXIxF6KKi3MOzvAT6bXPP1VFuzXigj7lzy8+kMakOUtSLqHvqmaIytaHRDm2bDzWKS9pI5gjdlLI4qLsiLYH3x0EW9ZeFIRGiFoGA+aJpJP2jO/G+ihb/fBNwm+jdz1jlKeWA7yXigAfXjlOmpIZGFxyhb3Naj9uaajzb1oX8E+ED8+ztRXjaJRgheBmxEU6NvBt6bXOv7qaYgNekA803fkYD+fKmu+KSK8jLKsNBUMRCqgnAnqkTUQ3MXew59+trCY3voOPaiaQQvgiJ/3ix8i70v70woHZMxuzcF9dAYvYnY1kbK9jYXlYXvTGpHC3craO4lwO1Bw+zvQcH8y5z+rY21Mi3XSpMhDcqQexgEWAcpC8bVvehzpWDXwbzd42rUoHcZ6mmvg4Xis2fI4RV0z5hHOB1jQI2lVoBPrzU41vOhep513VibeugrxdMarlX3zhf/Rz30qQe7nnK1ENS0XhwK5A+j9wvVYq/1gkE5ZU9fa3HkGRznQlHdWJP2oj+K7qt6ulwact9DFTxQJe9HgVsovVktrP3w4ub5qbEq3cPDDO49O1eiMSgjTS6pXTONOFl0eoyYxWxxz89FukgLRZmo86ETebw41WHuQMPsM9G/dQS6UXdJi0abIwJKvt9BAX1oOI5QGo7tO/Vjrqgij0QddJ+qfeZq4BeoFt419WsLcB/awesGqoVTNZopLKi+/0LHWAtGFcUnzragi8D62aaepbriZxXuoVkQLjZx06R8p+GxLbQC5tVoiE1aDM/CchZDPt35kKNkdj3RubwdeFeAv6S0XHYSMJ+9wMd8kc6dMlTg5Q5CrnsmE7gzaBRHhq4TE4zdhrXStHy6lEp3nc8courBhsEQtvOl6ULSV6NezpOUVvkmvjHd2V6P0AzoQcdXF7SVYw6EaT0Cwa69Gk2pqYD5UBbFqwvz1Iufgl/LSV9X/y0WLkx5OoAH6lU5HF/XvfP1aAWLPjDvfAXMy8KNzyi9l9Qgvyz+fQ8qv9K5TcF8HzXgXoW2m+1S8nkz9rZY/DTdPkxz6IFKV4O0HoSt5W2ogWM6p8RFY/ZFukgvLPIiDLtQ6CwO1XcDpYxqJTpLOyoW08lkUBlyjEEwDwr0LSx/UJ7PrbwwHd6cci2BN9Sccj+JYrOUpwlq7H05Wv/oBhKDr1S99AtdI+Y7jpauvPK8vp/mkdZzqlegXqT6wk29NObFsJZ1FeMAi08QVgwXlGPtxLMp399A+/imeYSealjOC5lEhK7AkFNGNiTar/LlDv6z0/Owi70pI7Ob717LKb3/Q/ee/UMX6YKRiBRtjkZcPKTs3Wr/b1ortv+bFG8D9EYpmKp7sJvyhc+X0mumr1ejEQJHKEPoUsFcjxCoj80oHV8dMDZFIHzio/fOaXhvfVxpSkHa8DRtQ5rmj9f/nuaXWwX41ZRhyqlnfqHClAfkUHITyykBfbrW6p75pgr+MBhuv9CAPjUypOf1lCkVqRFmihhyH///CeAHKA0WKZi3qJwLQXPNz9P9Z6/TNDqoGtWKYnihfO8htPLzI1Sf7ULWjrlIL2y6qLcsPGUijDgYdaqvjIkeo6LvjcbXdSeEqTB12d6lrJQPVR57lJqHXi6Mdx40cspTGmFbaDrBbwOvi+eXoYbNkXgelTId8jIUu01RlXn1PvULRd+RHvqJU4fP+xr18EQ7lqPFFOpeHGrv7QJuoqZYyMKHJE5HTcDC7tUKcX0L+NuUAr1QduTbp0KsF2EourGyABOJUu9QBtGKIK6zwJUNr7lq49k/dJEuKDkRhgm0UABnkR1CCQKmM/w07TlQpTvtLpFauw9z4T3YdQOBvTZDwhZUSJ5pDMBA/rydm2oE2PkwJd8k/vblmzfOaXjvmXrRN/UqT88p1T2aaQX4xRamnIZM2n3Z2ULuU+984Z2gariw8aVVz+ve+YWUA4VRIVQ99aAG9nqNBCuKZ2D+ETRK5OWUxmqLtLGc0gsVbj+X/Hy6aIxRqrwlPacFoKyjzb54pB07LrZrvUjnQxf1lsVBmQgjBNqoFzqnNGL6Bp2l0SgcmccSqgW06x76sdp3Sc9zzE+t/WQfCE7D7u8MCuShWvvKU6ZcCZpGBpoyfSWJjJeSNy4kfUcC+lMnDpz3NZrC9gQtCLU/+VwlZC3x4uyi7GFbCU1cIIXuTNSklKcKwEngSfS+N1MF82kP+m8XMkZnIdWmtBch+bI4etXefNNVC30LFwlV8DsCrRAqwG8m0TgKgKgAX/OipcLDrnsA9TRWQLfMree3AGopMEL3+irgWeA1ye81hfyfSfjXQUVI+OZByvBoG9N1N141p9b8upE17UU/gSomM+lFn/YuT0H/dhTQNxlGFjI6qz4XaTj6YapjCHHMqYcCyjDsW6mNicURpXW2Ggn1XvS9oEcfPe4BXot6nDLUgNuWmEOPni8UzTU/b5LrQ5RVp+tRhn1KUN8HPly73j3AK6XKHy7SRZotXdRbFg+JCO1Z7uMmo/AI6olPjcLE/x+hCuihBNQXgoVkInQlFPeQUU0pMCDv4nsn82rU0Ua0GOgVDHb96IcLKwPORgstX1+wNKCQxvfT8MRUMagXUNpJtdVL3Zux2Kgu/I2siM43USXO1w+J+fPzdJ/zRU60pc2IlGFJow6GY4ubi3SR6uRE10YrHv4srZDq1mo7hqgWxSN5fZjSQw8XJtQ5vV49lH8Vyt+my6GvC5yme+pS7YWdWvMPMBiB0GQwOB+qGCwoxziG8rF9VMF8k4c+jy3r6pXBA2UPelf7rYUOU24CuaDelUM0pJFRVWbSCIQNtWumodgLTamcTddRvYuBKWiWP38E+BJa3TiNxrLQzbYsjvHNhCp8RcrXw1Q7TEBVb+mjzyJQGtaM3kS10v9FKXiRLtJ3DlkqMgzKfetFD4Og/hhlV5zpcNVcU8eJpg5YWoGUKQWmy6eh9j7hkZehRus6tjNj50LSdySgb3fHzv6hs1A9j5T4egXqRaoXCkoVH/Pgpy3r6srjYqPpcmMsPPZrlPnzZUhOkj//bQpyJQIzH/vXLiZ69vkdC30LF+k8qC7cjNo092mHZg/2hRCOKa9K+8WujH9PAX2TMfBMNQI6lKACSv45iXrIK4BeYPvzOy9IBELTeS1VL24l7D6Zh8JzT1UOQJljDgm4ZOGjs1JDTXqkRmqoRkxU2vLFz02gEQhpC7O6rFxIqsvb+twa5THU3orhfQq4Hk0naJF0PKGMzLqQ0RVzzc9TT5odVuh2IOw+RONGsqYPAt8Vj98EbpUSzC+GaIyL9MKki3rLC5cKWVmTI2NUq9wbhfj+OING/wtdb6Ul6pAbtzoBTl+Px/fMQFsvWLsRTStM07Is/Uz1sYULvP+O5LljSzec/UMzoFQg1vNIDzOo7Nn/d6GerMVUFOlMNGA1S25wFM0rfRZt31P30JvCc5Hmnz7z+a8v9C1cpPOguvfMzsOowl33oEG1aFyTgJyT+6oVBa0DXhj00Be8MrmH6az59QgEOw7F95ZQ5Udf/sLX5zQ8LwW2dRBq/crr1vkQqq3rzIBbb/V1Ko7DorNSIG8yYKGobgCyW1mKeqeh2UufGi52xM8PUZVti6HCvVETmK8ba2xeLX++hwL676M0WtfB/IX2zs8lPz/T3oMypSed535y9NCaOW8C3oHKfvNm2XP5dqiZc5Hmny7qLS9cmo6vjFAWxas7IQ5Teuink0EXilyMlhxywrDTc8fpe1oPpWp0F9Sguy0ZSwrmLf12oeg7EtAf2P3YeV+jrtDa0UZDRg+SCMRQVbrrLesqnqBFbNlu2lxd4CuogrqK5mJ4L/R2dS9U+vs/84MLfQsX6TzoTEp3WuU+9WCfQj30qfEt5S9zeW9NYfdWNMaq3Dfdf/06daNF2pbPyDyC45Sh6fa7b33bm+Y2+iAxWNT58ypm1ou+0ns+4f87UBmxjMUHeOteFTuWUUaVNQJ6yrGn4fYpaE5l5UJTXd7a/9egQPUo5ZjMO/8gqpDeSZk7byH3F7oYntFc8/OmvdeO5zQCCMp6Agbsn0T50CaqnWxS+X+RLtK50EW95YVLqcMvdXimHnqoeupPMdhq90w6w3xRE5h3aMj9TlQ2NFW6z5svNy+0WLHjoqdU4UknG9RLX+9F30/+X29ZV+nbyuKzbJ+thdajaLi9PYN6MbwXSl7hRbpIi43SvZYC3nprqdSDvRQagdlcA/om3mdW+G3p7yZAMTRcg9rZ8nihKvgPomNLP38hagTYdZsMthPAJ9EK3/Vq72m4XVoNPAX+TQXx6m3UFooqayUZ9xJ0HBYVUsi1MGjUSMfXJNsWQ1pSYWioGaSG47GXas64FcP7HjQdxABsSyKgh1kXjlpoauINtoet0G093N6eRUC98y+ilmJHmWZ3UbG8SBfpO4/OxFOOJJ+ry3UrijdwjQXkqxWDdGJwXxP/voPBGjkLXen+It89R0qVyNQqBZpHasp1mj+ZFsQzQF/3zC/WCTFlvK6AW87drSTCnVKwXwy9u0gX6dxoOit1vW1dmtPa5MG2KvdzSfW8aEENe++Nf/8NtMVXfRypcW86a3xTH/qAjm8FJTXle88VNQG+R4DPoc/+l9Ae3HVPvFnn05Z1qRV/J2VLN2h+jgtFTcqYUHpPDtMQlVAD9daSr0m2LRbDrlB97qniuYoyj95Cyw8C91OG29eL4WUXYH/NB03HX0aYJuQ+8UB9i6rMdyQFcGVxGG4u0kW6SPNL0/GUUZrT6KwdaKVtnVwYmT5bKnibVI3vDs2jrxfGS8PuF4peiHLovGnF2uvO+xoGUpsKyyxHqzHXvRlGu6i2lqqHXS5WSi1mttEOJ39LwXwadn+RFoZ+/71/sdC3cJHOg6YrRJkCXigtwodQb2r62QvlwTbBZjzPoznGKX2KamG0Jg90U3hel8GieKC8ZhlVXivA+//4bv3uHIKIOph3qGc+pY9T5sZbNXTz0qc59Cmg34aGpNszS/m+zPEYzoXqBY1MqRlD11dhsIiTktYJgEFAX5//xUB1g0Va1HEd1Ur3PeDTwE2ozF6IYnhGc83Pp+MvHcqK1EZphXtrU3szzV1tLtbMuUjnQxf1lhcuTZe2lXroU1xkLTLHG76z0IA+NUantXSEZkBvYH4hK90vFhk7r3Ts8PY5uc50YZkrGAT0aTjGDkpA3wTqFyPVCwgJ6pH7Wvz7f4j/b+pBf5EWhr771S9Z6Fu4SOdJBTBPgO8Qg23dQD2JK5PvXmgPdkuSSByBN9Y+8waSOhoMgroUxKfnNOQeqh765dTGJPDKV71kzvlMao03A+Xra595LSWYT4F9PRzdwG895D7l/YvBmJsafupzs4RqO1YYrB8whYLhSks+WXyy7WxFHa0wXlrd/vsoQ+0NzFv+/HzN21zy8zpfqBe6rXTRoLrGH0LDTtcwaMS/WDPnIp0vXdRbXriUyvIU3I+hkW31zl/HKKOe6nJ9obGDyYnUS7/YK90v9DNbEJo8fezsH5oBVQRi8tpa19VD1izPNaCKQ917ttBFkc5EqfJjim7dY/VJqgr8CzUU8duFrth0yULfwkU6D6oDcTv/v+2de5RcVZ3vP/t0d/rdnQchMYbgQCBRkWSGGXwBTnA5MRhlYOYqLBVn8MEAroUDM0aY67AGUQFzh4CCMOIg42RE9ErHoLwMuSpM4HIREogS0kES8mow5NHpPDpJ1/1jn11nn1PVnVdVn3O6vp+1atWpqt2Vvevs7L1/7ybiOTn8GPrRlDmsu7+voBXRGEMdVqAZZaDJwOkGbsEKP7diXzeGj4ZwXUj2IXYACK8biWLxHW58Y8qM7/i3TKr4uunyf/j14WcAX8UKc+8H3k5kufSt9MX3fHf88H3fQp9MuJO2IDSUkDeGSKBPuty7A82m8PPxJDwQvEdWSCY6cmOeQJT0cAD4DfYg+i682HmieT+K4XMvr8Z6Xq7nTmEYc7cnmtvLsfHz7jfzy9NqzxdHi84t+aacor4tvHa5f3yBfqzXLnnWSVse8oV5f89wFnqIFPjJJLhpoLX3KEha592POZYoKzCUHnrGYA+tvsbHt2RkEWddcxr4BmzJGp8PEyUKagjbpO1CKkSeKbfBudJSfhz9UBbsaglTTpBvMtBsoMXAewP4ioH3BPZ1cyjQN4XPQ43N0Yy19rqxObYQbf5Jr6ZKjy8wJrbeuX/jHcD/wAo8SWHeXfsP3zPL7Qlv8vqfJWVuuTAy99yJdZksZ5138289kXU+JsybbIzPJ2mdd2OegPUyAHvfHgI+QBgbTrS3+fHzeWSoRLctxEN6wGa4d/f5Oaxyq1zOHHsAzumPIoQ4KpLKYLeuujNLL/E9fTtRHi63ari/yYJHl5N7kgrgKVhP6+Sen3am+5oU6Jtbxx280SHgT1r/EO1c7qG0rM8m7IEOr33ycJdFAiKrhLO6/RnWIvdB4FvAO02UMCjPh52RwvLnV6fdBXEUDKatTtaKJnzeRnkLtq/5riR1xtDsCfOtAbQaaAufW0OhviUU6JMH/cFieP069G5sEI3PbxsAK19YXZXN3/cycoKLAaZjY4hd33xhfn8hkQzPu16PFRhHUWqZz4oyd7AD2RhKvc4KifwA64kn/Eu622dhfI6YMO9dT8QK9AeA17EhZX9BKMwTudy7/a1uGIXXSq/ng93rFkotaS7D/RZsYsdYhnviQr0QR4POLfkmuZ+7PcDVovfDBHuJ8v5AdcMEj4SkfJbMdL+R0r0+zUz3NSnQNzaPrsj3uJvtLGFuAo7FHkj7KXWL9UvWQWkMX9oTeDACY2gkssi1BPbA/h5jLXLvDqA5sO83hYL/cB52RCmrVq9LuwviKHFri7sGK0xAXOgFawEuZ8GuZjxavTG0BZEQ3x5etwfQ5oT7wLYrRzmlRTORy73v8uvc85JC4prV66qksIh7Jbnrk7HC7etEgs5AoXwsvXvtBN5J3jj9A0I1vAyOhKRy2j38GPpkHKQ7wDgL/WCHoCx5ayX3XHc9Pvx8CzYZ3kzs4c1VbEkmwxtOKr2e++cN/9kJ9ElhfgBYgbVOuWoaxfrzJroW4mjQuSW/DGVI8GvRu8cOrDt+OSUApL9n+PtYUQEfPo4D1jGIV15KEn0WzhDDzrY/rKnI9yQnrrvho8PP/cR4ftkiJ9AnD3MB6U/goWgwkTWuzUTWuLYgeu1b5ES6fPT896fdBXGUlDtwgw3ZcZng3d6xnfIWbN8KVw2cpb4jCB/hdXtg14vBFHv+mHyFaBPW5d7f+N8I246hdN0977zqzPOAsKa2J8wHWIXDZGAVCbd7osQ4h1rSzRd+s7D2+4oSv4/jiMrWQWSddweXZMK/ch4IWcL1MVY2EKssG4dVvD+C9T6L1Z0n8lQb7iSGlV7PB1tbkkk3IZrTzwJ/gnewNcqZIyqLzi35JbmX+0J9UlEPVknvyqImXe3T3w2j/au4R3h9m4Ld8/zEsH5yvDTQ+nsU+Dc5eTgbixXo3WEOhs5wnxULzVAYY2gKTNHq1h7ELXLtoZWuyWTjcCpEnil34HbXrUQCvRMmd1Degp3UlFelr8ZQZwwNxtAY2Oc6Yw66DpSL124Kr/04+m3YA8Fg2XCrMT4n8Pkuxe7fnQ68SLwGbdk4ei/2eCOJDPBEFuysrP2DWVg6KC07lIyj34AdH8StGe45SwymuAA4Fvg5dkx/RkKgDx/DmQyvmpQrG+li6Iv5ErzQihVYr4XB4ue17wtR2yQV9Y5O4sluXVK8zsTfQIZC0MJM975i3/VtCvAKCYG+EC9fO9xk5RyRW8rF0YO10ifj6J3L/ZuIHyR8S0YeaDCGVs8i1+kJ843BwQ/xQohDYzArWiPxONdt4XU5C3ZWF/mhLIQQCRUFShPiJQWxaqw4JpkYj0j4fivwO69/LhlOudrzblt3LuluDFlU5paLYTTYeeX2M99zwo1zGzZJ45uJ155PWjaygv9/wwn37n2Ap7BVDJyg2mBK4+fzTjllGlhl4S6vnXO5X4+9z28jXtLRz3AvhKhdhkqs2kqUFM/Pct/mtSmnTE6bg2W6L+6FhfQz3WflHDGsHPvmGRX5nuShwJdjj6HU5X4H1ur0JuJCvP8decG3yDUYQ/0hWOPE8HLzt+5NuwviKHBrSrkNzrncg11b3sAKwqNIbIpVtGBXAn/ddH0cFT47DwSwJev8VKa+4Pnt2++t2vh8t2In0DsL/RpsnhQ/xrhopU/E0O8Ox/BmBonLy8gNSs4ddz0au3fF8sJ4iosNWKG/mfihJ4sZ7iFS1vgedgHwW6yiBuCJ8DrtZHiOaqznMWtaeO273EM0h5/DVnkYRflkeDV5mBQVR+eWfFO0sie8f9oodbnfgfX+KhHmM6TkToZluYdzuS/nlZdWpvus/GbDypaeVRX5HueO4Q4uvmA+lnhW4AGsy2U71qUtD4cekW8+ccEH0+6COEpiB25vgXAu9w5Xsg4GT2yWRcpZ6Q1WcPIt9FuxQmWyfQBccMEHq6ZMjAnz3vUkrODzMqXCvEsS52e734AVhEaT7bW/3LwxRJmIt1FqnYcoft59R9IDISvj80kK8wE2bt5nCVHlFud2P9zJ8ByVXs/9/0P+61biJTHdfX6OKLt9uXCUmjxMioqjc0u+ceupu3bPyaR4hK+zbqE3RPu+r4SfGH6+mXime+epJwv9MHFgfzI/9JHjH878h1+6zt3YzUSTwFB6sMvKBBYjg/HHjE67C6IClFsXmojHuW4lEughvvGYjK4tgwnzYIUKVwvbJcUbS6mbtAGOGTe6an0MCJN9DWKld273fnI8lxTHjy9PJowz3vdkzYMiIG6dd2NuxQr0ydh5p7Bw43P3Jr6/ZWmEFieEFl3GgXMSbT5ElNneJcNLqzRbpddzf13wn5uxrrAQz3K/HBs/7+au72pfD/LQExVB55Z8M5hg7petc+wgiqEvWYsyspwkPer8/CGTyVam+5oU6CuJO7xAXLA/hshCXy5+HqIDaR3xCS2EEO6AXO7Q7QR6OLgF25Ddw3ayv45y4xvjtfWFzWpuYkEyjt7b1KdTJtN9Qpj3q5v4NdqT8eVZuTvJ39bfl0YTVRtIjq9cBn+/OkAWcbXl60yUvf5Pgf8FfABYgH3dGAryLst9Vv8vHS4xRZqJrluIV9A4ALyEFdpPJG6V9zPcCyFEcj1xj3bi1TMK4et2SmWiLMlDhsEz3bvSdVnJdF+TAn1rx8SDNzpEyiVoAmtN2hpeu8k71KEny4dukU8eX7Y87S6Io6ScMA/Wiua7xb6B9QoqZ8HO8qqSjJ93z6OIhxT8gchCH3sYePLJFVXto1+SywkwzkL/UtjGaeR9K70v8L5KVKPdL1fqrP5ZWfuT88ZPZjeWKNO9n8EfSvc2PzFeVg8ZgTE0GFuVpdFEJVnfZeBa4J0GmoNIoG8Khfq0qMZ67rvGukdL+J6fL2EFMIP4/wHFz4tqoHNLvinZo8P327AWeYiEeYgEer9tltYTF1qdTI5ngLdQRqBPMdN9ln63YaOubtTBGx0iMddET4szDniNeEbHTUQ16MvFUQpRSXp7dx28kcg8SY03WIHejzF/A2tBLbZneCzYR0Ny0/eFxzYihQVEJfmgVIm6s9dP4VV5/Az3/vXJ2N/9dbzEeAVPmA/3cudy7wR6/75kKcM9MGSW4g4Steix4+wHerDWinKK6qxluPdpDAX15vDRGkCbiaq2tHqfNZp0QwcqvZ4Ppix0An0f0T1+jkS5OhPPcJ/FkAqRT3RuyTflSmGC3dN3e+2ccO/WG9c+i4YIf+/3ZTfncp8s8ZlWpvssnSWGjR1b11Xsu5LWefdwGZldmQawMfSTwutycZRCVJI5f/HutLsgjhJ/Y/PXFyfQO7YQWeiTFuysry3lNu4mbOksJ1A4l/tym36157mLs/ZdyAPsPZhMqdt9LI4uvH6VuAXbPxRkJcO9I6lgcb/5GOx9SJat2xR+fgyle1qWFUpgBVEnyLeHwnxbEAr2ieeGlIXWaszzcspCZ+5wCsPd2FwRMym10Lv4eSEqhc4t+aecsrCNuNdyL5F1vpwMlSWGynT/KvFkuGlmus/yXpsLylnn3YG7niiOfif2gDqRuMtlcZJkbQYLIVJnsE1uFPGkeDuIYsyzvjk6hsoR0Igdnyv3CaUu9zA8G1hAaUZv14fpwItEm/cBIs282+D/EH6PK1fqx81nKcO9o9z8MVgPkG1hm2T8/GTirvZujFkcX5I6Y2gJBfm2ADq8R3topU9bmK8WyXvs/j+5WvQDwEpgPHb+loufz5pCSgiRHkmDgrtuIy747sAK9O5vks9ZWlZiimoT7ZHOQNuDp8BPhNsNJzUp0BtTuWEPpV0ajz3MOStGM3GNlO9ymaXJK0YGe/f2p90FcZSUs6AZrJtaMoZ+LHELdpD4+yxSbiMHu1a6GPqtWOVoE/H11gnF/VWe5yaZGI/ISv9Wokz3sTh6r2TdemACVgmTtMxnce1PWufdnjYGG0NfdC8kCifwE/4l3e2zNr5yGGNoMIbWwNBqrKW+NTA0BiYz7uSVXs/9s0pyhE6gL2Cz259K9H/Pd7V3uSWEqBQ6t+SfcgphJ7y7TPc7vfdK/iZj+4bbt5Nu93VYz7t1xKu+FBX8wyzRZ34t7u7uZt68eZx//vnMmjWLZ555pqRNb28v119/PXPnzmXu3Llcf/317Ny5c9DvPPbNMyrWv6QWyj/AjCNyUXTx81AaA1qXsckrRgYLbv9h2l0QR8lQAq9zuXcW7DGUt2BnfW0pp7Tws9xvwbpzF9t6jwC49fb7qt5H3yrpW6KnA2uwceSxGvTEBV6nyXd7RFLbnyX839afS51EFvpkSb7J3t8krfNZSfh3qBhjMtnnaqzngyWlbMQK9ADPUsbd3kTJ8LKi8BAjA51b8o0vlLvXYNcUiAT67SQEelN6fskKvpzme9hBtjLdZ+0sUUJDQwNnnnkmX//61wdt89WvfpWtW7eycOFCFi5cyNatW4ds/9qG5RXrn8uAmDz8OIuGq0W/CXuo860Y5f5OiErxhcs+lnYXRAXw1xRf4HUH7q3YQ3Yz5S3YWV5bylkJDaUW+rHeZ7HSNga+cNlHq97PmDDvXU8K+7qGeOk6X+B1LunJ9b5orc+YQJQsHeQeo4mXrXPP6ynND+AOQJk/YOSISq/nyXUlmZRyN/b/3nqshT4ZP+/K/QlRSXRuyTfl9g63D3RgY+chstCXa581RfBgme4D4Hgigd6vcuOU+8OZ6T7z++3xxx/P3LlzmTZtWtnPN2/ezFNPPcWll15KZ2cnnZ2dXHrppfz3f/83PT09Zf+mUKhsqoKkdd4daMYRxU9upExSJOO7xWZn8oqRQWNj5ao5iHRICruOZqxVGKzScLzXLrmRZnllORQPBJfBv0QACZ+HY54HhO7Fg1jpXyQS4n2Xe79cqe+Z5X9P1ogfqqLrMdgwD1fObDALvTv4uGdRGaoxzwdT+LVgs9yvwFqgOgmT4BFluFf8vKgGOrfkn8H29TasIA9WsO+g/H6TRfz8Ob7i2rfQQzyGfrgz3WfxPHFYdHd309DQwNSpU4vvTZ06lYaGBrq7u4elD/7N9TfIcUQWjU3YpDLJw6isGEKIwRjMJTZpoR/jfZ6XDdJRrsxNE5GF3uUH8NvErfTVH2GQjKP3tPR+Yjzf1d6v0T7Z639SoZs1BrOYjA4/30Yk0G/DCvi+wiLpmiiyyVBJKZux68tzwB8T3U8/GV5DRuevECI9kopgfwtoJRLoB0uK51v0s4Tb15wi3u13U4hi6NPOdJ9axZEbbriBhx9+eNDPZ8yYwYIFCw76Pbt27aKtra3k/ba2NnbtKl/PsmPMlEPu56Fg3SbBFOI32rfQbyaKofczAcuKIarFg48sUwmYEYDb7AIDhGtMM9aCBlbgHZNoV24zzSK+EO8/txB3uZ/G4K58wzXPXZmuoBAJNc5C73YylxjPbeTObdkJvEnPrKxaOP09zf3Wddj7sh2rnAarrBiDnY+xLPcmHxnu80Q15nnx/5G3tkCUFG8FcBnl4+frkGehqDw6t+SfpFHBabeTLvfOQg+lyvqs4XueBeE5wIXdgc10PwUv070Z/kz3qSlCrrjiCrq6ugZ9XH/99Yf0PS0tLWUT4O3cuZOWlpayf1MAPv7Ji7nyyiu58soreeCBB7jx5u/Hsms++MgyHl+2vPj69T9s4+Zv3Rv7nvt+soTlz68uTsANr2xk0X8uLk7GscCehYtZt3YjO7CHoLUrV/PLRUtih7pv3n4vr/9hW/F7H1+2nAcfWVZ8vXdv/1H1z/HyKxu4656fxtrcdc9PefmVDcXXy59fzX0/WRJrc/O31L889q+9vSXT/YNs/35Z6N/zz68ubowb1m7kwYWLAWvBPgAsWbiYzWs3Fi3Yr6xczZKu+Pqy4LYfZvr3+87t97J1y7biOH/31ApeW7KsqMnfsrefTd/8T/bv7S8K8Y//Yhn/76kVGOw8H47767ypnntyBU8tWVYUcv5obz988z/ZtLe/mBjvqSXLeOGpFWwgzG6/ZRuL77g3lt9g8f1LWJHB+efuw8/vX8LqF1YXf/OetRsZt3BxsZYwwK8XLuZNazcW/27NytU82rUkljiolv//VrJ/7e0tFe/fC+H6ArBp7UYeWri4aKF/Gdi/cDHj124sCvNrVq7mka4lxQz3efr91L989M/N86z2z0f9K+2fU/L97P4lrHohWl9eW7uRAwsXFz0LtwEbFi6mZ+3G4r646oXVLL5/SUygz8rvFwC/fWE1D3UtibndP3THvUzasq1opX/+qRU8sWRZpNTfY/v3wAMPFGXOj3/yYqqBWbp06XCXyjtiZs2axfz58znttNOK723evJkLL7yQu+66ixNPPBGANWvW8JnPfIZ7772XCRMmxL6jr6+PuXPnsn37djo6OirSr/2FAtsHYOcA7CzY5z5s3PxngW8AVwM/wh7EW4HWANoDW+e2PbC1cIUQwmd/oUDvAOwYgL4C9A5Yy9nrwKeAe4GbgZOAj2ItqK3hmtJmbC3t5gz7PfcPFNgRjsutn33A/wXuAr6NXUM/D/wJdu1sM7ZeeHsAHQZGDdP4DhQK7ByAHW6ND9f5PWH/LgDeR5SccBewBPgp8K/h+y3YfreGfW8LspclvFAosLMQzjm3pxWst8E/AX8OfBB7WLkL63J/GXZ8bSZ+f9oyPPcE7B4osCO8x73hGrMLu678F/B24KtEc7ctCO9teI91bhFCJOkbsOeW5LpyJ1YI/gzwaeDvgRnY2PriuSWAzgAaMra2FAoF+gqwvcy++HVgKvAxojOYv062JvbBHTt20NnZyQMPPEBra2vF+pjFUIUYhUKB/v5++vut9mX//v309/dz4IAtCDBx4kTe+c53cscdd7B9+3a2b9/OHXfcwXve854SYb5a+O7z/sNZzV4gynCfTBqU9aRVQoj0SLqi+y7pYDeTN7DhPb4burMCZ31tGSxHgHO5L2CVF2Mpn71/OPf8ZAxxndePtxLF0btHAavUdQnjoDS+PKv3x/XRXbvnTqJSrOUy3BfdEVEoWR4oEP0f8u+3W19cdvtycz/zh0chRCokZSH3aCdyud8Svh4s7C5rHE6m+wLpZLrP/Jrc09PD7NmzmT17NgBf+tKXmD17Nt///veLba655ho6Ojr4+Mc/zsc//nE6Ozu5+uqrB/3OuvqmivezGHOItwFiY0RWMnjJuiwf6kS+8d2URH7xBVe3VrhyUbuxMc1j/bbeI/MLPIMn5dpJlCdgDOXHZhi+eW6SifGIEuRMB35HJOg6gf5VIoE+GV8ekM0YZHdwcX2FaB6NJkqKB6XVW4rZ7SXwVZxqzHOndEn+H3S5f9qI5q7LcF9vsjt3Rf7RuSX/uP0D4vKNS4rnnOP9pHhZrkPvcIpNX84z2Ez3a4n2RT+Pjqt4MxyklhTvUJk4cSJLly4dsk1HRwdf/vKXD/k7x00oXwLvSClajQql2qbRWIF+DvFDqErWiWrzn/c+xN9//oK0uyGOksGs9I1Ygf41rMBbzkso60uLPyY/CVsTsI+oSohzSksmzjEM7zx3wnxdobR03TexB5VR4fvOgn0mcSWEnxgvq5SdS9j97PfYsfVjEwEdR3xf8xUXonJUa577ZxaD9SjsCt/7Djac551EFvoAm+FeiGqgc0v+KZdU1Vno+7BGCChTts57ZJH6cExJD+uhMt0fMMMn0Gf5TFE1XtuwvKLfV2I58mbjeOyh2y9Z50+GmrwBYljQpph/ygnz7rqVSOAdS3z98TebrFPO5c75UPUAxxIfT/IxnPPcF2r860lYr4I1UEyMN4C10PsWbF+rn9UM91DeOm+w88wdxjaFz8cQ39e0t1WHqgjzvrUpVDI9mmjzKHFX+wYUTiGqh84tI4NyZ5Y2rMv9Tuw6Uk9iP8+4otvf55wXmtv/wYYHxtzuGd7SdVn+7XKDc1Esd+AcF7ZxZX6Klgyyb6URQqTPUBZ6l792KAt2lhlsbM3h8wZs3Lb7LOnlNNwEhC7HvmBPZKV/kWgjd27LbyJumfcPBVmlREkdvu9i6MHeG2edjympTfbHJywB9lDt3OjrgbmJNnOxFvl6J8yb7CVyFEJkh3LKYLACfR+2Bv0Y77OkZT6rq4vb45Ju9w2EVcyIwu0GEm73w4HkyQpRPGgmrGOuRMN2St0ts26lEUKki9Nal3NFG4W1ko5naAt21nFjdNdgxwZ2fGP9tibd8QXJOHpPS+8EerehrwcmEJatI77mZ917wj+Q+b/1GCKBfj3xhH/+vqbcMPnAHU4bgEYDTQH8GXALMBu4FTjd2M8agFHGPoQQYjBiymBvL2nD5mDpJVLaJ4X4LIdq+cK8S47nunscUWI853pfdLsfxv7VHKOPObHi3+lbX9yPuhJ4PLz+Rvi6XAy9ENUgWW9U5JOY65q3YLRhBd4sWbCPhHJWeoMVIDYRJcQrn+XeDPs8ryOyaDpXZGehfyls4wR654rn+u3Hl2d5840piLzfuxNbfWA/cYHeV1YXXe9lxa0o1ZjnxhiaDLFHawDvNvAVY59bvM9GmRwkXhK5RueWkYEpc+08Cbdg87E4Ynt64m+zxFCZ7qdgQ+zKZbofYHgy3Wf5TFE19u7eVvHvTE7GAHgk0eZR4gcluSWKajLtpClpd0FUiHLrRBPZs2AfLoMJ82A3fze+cuur27yGe577Ge7965Ox1uvXsRv4BuICry/IZz1LePL39i30YMeZLFnneyAoxrryVGue14dCfbOBNhPVUG4NbF3olvC6JbBCfZbnrcg/Orfkn8H2D5fVfjNRBQ2856KLfobXmMEy3U8BXiGe6d5PjjccXvc1KdDv7ttS8e9MHvLqgQ8l2nwIa9lxVh25JYpqMuMdJ6XdBXGUuI2tnODbhBUekxbs2CPDG6MjOTaHG99YSjd8f+0c7nnuYo39eusB1oVwMrAqbLcBK/D6eVOM1z7r+CFk7lGPvS/bKbXQ+0rqPIwvb1RznjcGJibEu0dbAO2hkN9ioC4H64nINzq3jAyS3l0G63VnsIr6jrBd3vL+FJPiEd/7XKZ730J/gHg9+mqjfbdCBESJY+rD69OA+cAHgH8F/oToswYTTm5tkEKIISgnzEMUg5a0YPtW4DyQjJ93zy6OfnT4XE5hkQZ+hnunwHX9eSs2jh4iC737m2QOlSwzmIUFrAJpLbZsna+wiFkttK3ljgZjaDWhMG+gw0BHKNQ3B0aJ8IQQh0Ryz/CvRxMJ9EO1yyp+WJm/503CCu1pZrrP+rmiKoxqaj94o8MkMIZ6bPKYxtB9rcXAu4B/Bt5lrMtac2Dj0Bqwwr8Q1eLlVzYcvJHIBU7b7a4hKu12MAt2lkkKjL4g6OLtxiXbJNoO9zw3ycR4RFb36cDvsKVKtxIJvHlLhpq0rvjzaQzwfPjcTCLLvVEoWbUYjnlujKHeGBoD+2gwRlZ5Mazo3DIyGCzTfSu2HG2b1zYLivpDxZ1BYsnxsAaIiaSb6b4mBfr20ZMP3ugIaDQ2xszFmrWG2u22IHJZc7FqTXJfE1XmsV8+k3YXRIVIarAN0BK+NyZ8zooF+0go11fngTAGP4SgdHxpzHMnzJcrXbcGG0s3CmuN8OPs8iTw+soTf/51Ar/FKivwPvcVF3kYX97Qei5qAc3z/GMGeYYojj5poXf7e9aFUn+PO5RM935yvGpTkwlLt2z+XVW+NzCGZgr2cBPAvgLs96xqo4w95LlssUJUk8986iNpd0FUgMGEdOeSfjALdpYxxkChUPYA0Bheu42/XJZ7SGee1xmoK3ju94XI7a4Z+BVDx5dn/dYYYzDhfQkMUIgOWmOA14A/pnyYh32d9RHmD63nohbQPB8ZJAV1F0TuPO/ay7UjH3tjUChEwnwhnul+PYk4+gIcMFGm+2qGWdekQF9N6oyhhQL1WGHe3sTIMjNKlnkhxGHiNkRf4PUt9OUs2HlhMG1+MzacwBcUk0qLtAgIS9f5gj2Rlf7/YOt5uz4m48sVLAx8AAAUyUlEQVTzcH/KJlkkymngZ7j3hXpluBdCiNrFVwgnH0Na6IE8iEdFl/tC5KVnsBb635DIdG+8TPdV3vuz7t2QS0wYg9YamKgEjLGJZSTMCyEOh8EE3tfC51cZ2oKdB/yN3PV7O/AGsNJ7z88RkCZBMo7es1BPx8bQOwt9Mr486yXrHL6Xhx8HOSa89j0Q/CRBOlQIIYQot6+72Pl24kJ88nyTZbKa6b4m995xE986bP9WYGx22Dwc4MTI4q57fpp2F0SF8Dc7A7wAdIXvfRkb05y0YOeJ5Gb+W8BFUv4TdrxOUZGM605rntcRWumJMt47Cz3Y/jtlRJ4y3DuSlhPXb1f0dSflcwOkrWwZqWg9F7WA5vnIYDAPLyfQOws93nNe9sZkglu3P07GCu5/IJ1M93n5/SpK77b1aXdBiKpz9vtOS7sLogK4ahj+Bvloos3DlHd/zgP+uJzg+0iizUNE44q0+vaHSWue+xnu/ev94eergKsJlRHkJ8O9o5x1fiVwb/j6X8PXTpD375+oPFrPRS2geT5ySArqBut1BzZ5rP9ZnjwLnXW+XKb7CaSX6b4m997+Pb1pd0GIqnPCW9588EYi8wTYZCd1xj7qgQ8l2nwIaDBW+K/HWYPzsDXaPrtxuczxyfHNJfycaIyOtOa5f198K/2vE+0eIh5fno+7Ej+ouPvyi0SbR4nGlacM/nlE67moBTTPRwY2tCxuhX8Ba3wA+J+UehbmRaAfKtN9I/A97FiHO9N9TQr0QgiRF1wCtnpsUs1GYxOuLQA+ANwCnG5CgR4rfDWk193DxheMG7BlPf8UO76/IBrfKE9hkQUrtxN03X1xVUzmJtp9BNumPux/XpLGuXnnxlhvSsc2l0iR1IDLJ5CBmyOEECI1ygnqSc87J9xnJTfOoWLCHDq+YB8Av8PG0K/HeuctJ8p076z0hUL1zPQ1KdA3t45LuwtCVJ3lz69OuwuiAhhjiuUuG419bgngXQauM/a5yVhBuCl81OdkYwRb9aPR63uTsUlE32ngXwy8OzG2xoRQnNY8d/fFKVIaDbQYOB24FZgDfBt4V2A/GxW2y0s+lcCYmLKiyVjFyjeBD2Kf3xXejwbsnFM51uqh9VzUAprnIwM/CaxTCp+TaHMO8Tw0NqwuH5tILBks5RUWDxFmuidKjldNr/uaFOgbm0en3QUhqs6q1evS7oKoEA2e0N4aVs1oC+IPX+jNy6boaAzH1hLYR1sA7d7YWsPxuTH6QnGa87zeU7AUlREBvCeA68NnX1HRmK/bElO0NIeKFje293pzrjm8Vh3c6qH1XNQCmucjg6JnYbgvNISed/OxnoX/in3tPnNeXnkhGWZWB8xOtPkgpRnvqynQm6VLl1Y7k36m6OvrY+7cuWzfvp2Ojo60uyOEEIdEoVCgvwB7CrAPq/kFu5nUh8Jio4H6nAnzjoFCgb0F2FuwieXc+ILwQNAUWoCzVvpzoFBgV3hf+guwz9tR/fvSnNN7s79QYLc3vv3evGvwrPfNOVQkCSGEqA67Bwr0FaBvwO4fe8P9sYAXYhdYz7aW0EiRtf19MPYXCuwYgN4B6CvY533YRLEPYb0P/hh7fmk00BaOryOA3b29dHZ28sADD9Da2lqxPkmhLoQQOcCErun1hQIHCnDA2I3Rd2nLizt3OQJjaDbQ4I0PomyyWRWGA2NooUAD0G+swDtA5JLXEG7oeRV2642hlQL1hIokE42v3lAMO8jr+IQQQlSeRhNapQNgwO4X+wvRucVXCDdlUFk/FM4qHxgwhTC/EfBu4D0kMuAbr3xdFU3oEuiFECJH1BmTiaRw1aLemFzlAAArzDaGyoiCidzq8lRtYCicsqWxUCjW0jXkK+ZRCCHE8BEYQzMFu08E1jq/P9wuigI9kfddnnAJ8YKCFdpbTTzzvSEu1LtqONWsRV+TMfTHvnlG2l0Qourc/K17D95IiJyTpXkeGEOdMaFSwow4YTfwxlY3AseXZbI0z4WoFprnI4s6Y6w7vbF5cToDaDfW9dy5oTcGJnfehS7TfR02h05rOJ6OIHKtd+NsDz9rN1aJUS1q0kK/pWdV2l0Qoup84oIPpt0FIaqO5rmoBTTPRS2geT7ycOGCjdicM4SW67wJ8UkCwvw4RNZ4J+T75eyGa5w1KdAf2L8n7S4IUXXGHzM67S4IUXU0z0UtoHkuagHN85HNSPLqGhVa3IdbcB+MmhTohRBCCCGEEEKIwyVrSfxqMoa+tWNi2l0Qouo8vmx52l0QouponotaQPNc1AKa50IcGTUp0NfVjUq7C0JUnd7eXWl3QYiqo3kuagHNc1ELaJ4LcWTUpEC/Y+u6tLsgRNWZ8xfvTrsLQlQdzXNRC2iei1pA81yII6MmBXohhBBCCCGEECLv1KRAb0xNDlvUGHv39qfdBSGqjua5qAU0z0UtoHkuxJGRecm2u7ubefPmcf755zNr1iyeeeaZkjZf+MIX+MAHPsCcOXOKj66urkG/89g3z6hij4XIBgtu/2HaXRCi6miei1pA81zUAprnQhwZmS9b19DQwJlnnsnFF1/M3/3d3w3a7oILLuDTn/70IX1nz/rnKtQ7IbLL208ak3YXhKg6mueiFtA8F7WA5rkQR0bmLfTHH388c+fOZdq0aRX81kIFv0uIbPLYY4+l3QUhqo7muagFNM9FLaB5LsSRkXkL/aHy05/+lK6uLsaMGcMZZ5zBJz/5SZqbm9PulhBCCCGEEEIIURVSE+hvuOEGHn744UE/nzFjBgsWLDik7/rMZz7DlClTaGtr4+WXX+bGG29k06ZNXHvttSVtC4UCoxrb2bFjx5F2XYhcsHrNOs1zMeLRPBe1gOa5qAU0z8VIx83vQqGy3uKpCfRXXHEFl1566aCf19XVHfJ3nXLKKcXrqVOncvnll3PVVVexd+9eGhsbY213795N/95ejjvuuMPvtBA5o7Pzf6fdBSGqjua5qAU0z0UtoHkuaoHdu3fT1tZWse9LTaBvbm6umku8MQYor/0YN24c9913H83NzcV2QgghhBBCCCFEtSgUCuzevZtx48ZV9HszH0NfKBTYt29f8fX+/fvp7++nrq6Ouro63njjDbq7u3nHO95BU1MTr7zyCrfffjvvfe97aWpqKvm+IAgYP378cA5BCCGEEEIIIUSNU0nLvCPzAn1PTw8XXnhh8fWXvvQlAD71qU/xN3/zN/T393P33Xfz6quvcuDAAcaOHcuZZ57JRRddlFaXhRBCCCGEEEKIqmOWLl2qGm5CCCGEEEIIIUTOyHwdeiGEEEIIIYQQQpSSeZf7SlIoFPje977Hz372M/r6+jj55JP5whe+wB/90R+l3TUhjoh/+7d/48knn6Snp4empiZmzpzJJZdcwrHHHlts09PTw4IFC1i+fDkNDQ2cffbZXHbZZTQ0NKTYcyGOnC9/+cs8/vjjzJ8/n9NOOw2A5557jttvv51169YxZswYLrjgAs4999yUeyrE4bNy5Uq++93v8uKLLxIEAW95y1u49dZbCYKANWvWcOutt/LSSy/R2trK3Llz+dSnPqUkvyJXvPHGG9x22208++yz9Pf3c/zxx/PZz36WmTNnAlrPRf547LHH6OrqYs2aNezatYtf/OIXsYptB1u7j1ZGrSkL/Q9/+EMefPBBbrrpJrq6ujjllFP44he/yO7du9PumhBHhDGGefPm0dXVxT333APANddcU/x8YGCAa665hvb2dn70ox9x5513smLFCu644460uizEUfHwww+zZ8+e2HubN2/m6quvZs6cOSxevJh58+bxne98h1//+tcp9VKII2PlypXMmzeP2bNn85Of/IRFixZx2WWXYYxh165dfPGLX+SUU06hq6uLm266iZ/97Gf8+Mc/TrvbQhwWCxYs4PXXX+ff//3fWbRoEe973/u45ppr2LFjh9ZzkUva2to499xzufzyy0s+O5S1+2hl1JoS6BctWsRHP/pRTjjhBBobG7n44ovZt2+fFgmRWz772c8ybdo0GhoaaGtr48ILL2TNmjX09vYCsGLFCtauXcvll19Oa2srEydO5G//9m/5+c9/Tn9/f8q9F+LwcAfAf/iHf4i9//DDDzN58mTOO+88GhoamDlzJnPmzOH+++9PqadCHBl33nkn55xzDrNnz6apqYm6ujre9ra3YYzhV7/6FQMDA1x88cU0NjZywgkn8LGPfYyurq60uy3EYbFhwwbOOussRo8eTV1dHR/+8IfZvXs369ev13oucsnpp5/O+9//fiZNmlTy2aGs3Ucro9aMQL9z5042b97MW9/61uJ7dXV1nHTSSaxevTrFnglROZ5++mkmTJhAe3s7AN3d3UyaNInOzs5im+nTp7Nnzx5effXVtLopxGFTKBS46aab+MQnPsGECRNin3V3dzN9+vTYe9OmTaO7u3s4uyjEUbFnzx5WrlxJEARceumlnHvuuXzuc5/jl7/8JWBdNqdOnRpz45w+fTobN26kr68vrW4LcdhceOGFPPHEE2zZsoX9+/fT1dXFpEmTOPHEE7WeixHHwdbuSsioNRNDv2vXLqC09l9bW1vxMyHyzDPPPMN//Md/8C//8i/F93bt2kVra2usnRP2Ne9Fnli0aBGFQoEPf/jDJZ/19fUxefLk2Hvt7e0SckSu6O3tZWBggEceeYSvfe1rnHTSSTzxxBN85Stf4ZhjjqGvr6/kDOOv58m1Xoiscsopp/Doo4/y13/91wRBQEdHB9dddx2NjY1az8WI42Brd6FgC84djYxaMxb6lpYWwFrqfXbu3Fn8TIi8smzZMq699lquueYaTj/99OL7LS0tJZugc8fXvBd5YcOGDXz/+98vcbV3tLa2lqztvb29EnBErmhubgZg9uzZTJ8+nbq6Os466yxmzpzJ448/Pug8B63nIj8MDAxw1VVXMXbsWBYtWsQjjzzCVVddxdVXX013d7fWczHiONjaXQkZtWYE+ra2NiZOnMiLL75YfO/AgQN0d3dz0kknpdgzIY6ORx99lK9+9av88z//M2eeeWbss6lTp7Jp0ya2b99efG/VqlU0NTVx3HHHDXdXhTginn/+eXbs2MEll1zCueeeW8x2fO211zJ//nymTp3KqlWrYn+zatUqpk6dmkZ3hTgi2tramDRp0qAZ65078oEDB4rvrVq1ikmTJknYEbmht7eXjRs3cv7559PR0UFdXR1nnHEGkyZN4umnn9Z6LkYcB1u7KyGj1oxAD3Duuedy33338fvf/569e/dy9913U19fXyIECZEX7r//fm699Va+9rWvxSzzjlNPPZUpU6bw7W9/m127dtHT08Pdd9/NnDlzGDVqVAo9FuLw+fM//3P+67/+i7vuuqv4ALjyyiv53Oc+x+zZs1m3bh2LFi1i3759rFixggcffJC//Mu/TLfjQhwm5513Hg899BDd3d0MDAzwxBNPsHz5cs4880zOOussgiDg7rvvZu/evfz+97/nvvvuUzkvkSs6Ozs5/vjj6erqoq+vj4GBAZYtW8Yrr7zCySefrPVc5JIDBw7Q39/Pvn37AOjv76e/v5+BgYFDWruPVkY1S5cuLVRlZBmkUChw991388ADD7Br1y6mTZvGFVdcwQknnJB214Q4ImbNmkVdXV1JTfkbb7yRU089FbAlvVwd+lGjRnH22Wdz6aWXSqAXuWbWrFkldehvu+22WN1iHQBFHlm4cCGLFi1i586dTJ48mYsuuogzzjgDsMmVbrnlFl566SVaWlr4yEc+ojr0InesX7+eO+64g5UrV9Lf38/48eP5q7/6q2KOFK3nIm889NBD3HjjjSXv33zzzcycOfOga/fRyqg1JdALIYQQQgghhBAjhZpyuRdCCCGEEEIIIUYKEuiFEEIIIYQQQogcIoFeCCGEEEIIIYTIIRLohRBCCCGEEEKIHCKBXgghhBBCCCGEyCES6IUQQgghhBBCiBwigV4IIYQQQgghhMghEuiFEEIIIYQQQogcUp92B4QQQghReS644AJ6enoO2m7ChAnMnDmThx9+GIAf/OAHTJw4sdrdE0IIIUQFkIVeCCGEEEIIIYTIIWbp0qWFtDshhBBCiOoya9as4vXSpUtT7IkQQgghKoVc7oUQQoga54Ybbihxud+8eTMXXnghADNmzOC8887ju9/9Lj09PUyfPp2rrrqK1tZWbrnlFp5++mk6OzuZM2cOn/zkJwmCyAFw7dq1LFy4kGeffZZt27bR1tbGqaeeykUXXcSJJ56YyniFEEKIkYIEeiGEEEIMycsvv8x1113HwMAAACtWrODqq69m1KhRvPLKKwDs2bOH733ve4wfP55zzjkHgOeff55//Md/ZO/evcXv2rZtG7/61a948skn+cY3vsGpp5467OMRQgghRgqKoRdCCCHEkPT29vL5z3+exYsX8/a3vx2AjRs3snPnTu655x5uv/12jDEAPPbYY8W/mz9/Pnv37mXChAnceeedPPLII3znO99h9OjR9Pf3c8stt6QyHiGEEGKkIAu9EEIIIYZk/PjxnHfeeQC84x3vYOXKlQDMmTOHKVOmADB27Fi2bNnCa6+9BsD69etZt24dAD09PVxyySUl3/vyyy/zxhtvMHbs2OEYhhBCCDHikIVeCCGEEEMyYcKE4nVjY2PZ9+vrrY2gv78fgK1btx7Sd2/fvr0SXRRCCCFqElnohRBCCDEkdXV1h/U+wJgxY4rXp512GvPnzy9pUygUiq76QgghhDh8ZKEXQgghRMWZPHkyxx13HAC/+c1v+PGPf8zOnTvp7++nu7ube+65h+uuuy7lXgohhBD5RhZ6IYQQQlSFK6+8knnz5tHf389tt93GbbfdFvt8xowZKfVMCCGEGBlIoBdCCCFEVZg5cyZ33nknP/jBD3j22WfZunUrLS0tHHPMMcyYMYOzzz477S4KIYQQucYsXbq0kHYnhBBCCCGEEEIIcXgohl4IIYQQQgghhMghEuiFEEIIIYQQQogcIoFeCCGEEEIIIYTIIRLohRBCCCGEEEKIHCKBXgghhBBCCCGEyCES6IUQQgghhBBCiBwigV4IIYQQQgghhMghEuiFEEIIIYQQQogcIoFeCCGEEEIIIYTIIf8fhwKSidfYGU0AAAAASUVORK5CYII=", "text/plain": [ "
" ]