-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbf1_bezier_10k.py
55 lines (43 loc) · 1.79 KB
/
bf1_bezier_10k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
_base_ = [
'../../configs/_base_/models/deeplabv3plus_r50-d8.py',
'../../configs/_base_/datasets/pascal_voc12_aug.py', '../../configs/_base_/default_runtime.py',
'../../configs/_base_/schedules/schedule_20k.py'
]
optimizer = dict(
type='SGD', lr=0.02,
paramwise_cfg = dict(
custom_keys={
'head': dict(lr_mult=10.)}))
# optimizer_config = dict()
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
load_from = None
resume_from = None
runner = dict(max_iters=10000)
data = dict(
samples_per_gpu=8,
workers_per_gpu=4
)
model = dict(pretrained='open-mmlab://resnet101_v1c',
backbone=dict(depth=101),
decode_head=dict(
num_classes=21,
loss_decode=dict(
_delete_=True,
type='AutoSegLoss',
target_metric='BF1',
drop_bg=False,
num_class=21,
theta=[0.8113003373146057, 0.8526162505149841, 0.17164576053619385, 0.03164796531200409, 0.20997394621372223, 0.44903290271759033, 0.07847517728805542, 0.8753038048744202],
parameterization='bezier',
loss_weight=1.0)),
auxiliary_head=dict(
num_classes=21,
loss_decode=dict(
_delete_=True,
type='AutoSegLoss',
target_metric='BF1',
drop_bg=False,
num_class=21,
theta=[0.8113003373146057, 0.8526162505149841, 0.17164576053619385, 0.03164796531200409, 0.20997394621372223, 0.44903290271759033, 0.07847517728805542, 0.8753038048744202],
parameterization='bezier',
loss_weight=0.4)))