Skip to content
/ SETR Public

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

License

Notifications You must be signed in to change notification settings

fudan-zvg/SETR

Repository files navigation

SEgmentation TRansformers -- SETR

SETR

image

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, Li Zhang
CVPR 2021

Vision Transformers: From Semantic Segmentation to Dense Prediction [Springer] [arxiv]
Li Zhang, Jiachen Lu, Sixiao Zheng, Xinxuan Zhao, Xiatian Zhu, Yanwei Fu, Tao Xiang, Jianfeng Feng
IJCV 2024 July

SETR

Cityscapes

Method Crop Size Batch size iteration set mIoU model config
SETR-Naive 768x768 8 40k val 77.37 google drive config
SETR-Naive 768x768 8 80k val 77.90 google drive config
SETR-MLA 768x768 8 40k val 76.65 google drive config
SETR-MLA 768x768 8 80k val 77.24 google drive config
SETR-PUP 768x768 8 40k val 78.39 google drive config
SETR-PUP 768x768 8 80k val 79.34 google drive config
SETR-Naive-Base 768x768 8 40k val 75.54 google drive config
SETR-Naive-Base 768x768 8 80k val 76.25 google drive config
SETR-Naive-DeiT 768x768 8 40k val 77.85 google drive config
SETR-Naive-DeiT 768x768 8 80k val 78.66 google drive config
SETR-MLA-DeiT 768x768 8 40k val 78.04 google drive config
SETR-MLA-DeiT 768x768 8 80k val 78.98 google drive config
SETR-PUP-DeiT 768x768 8 40k val 78.79 google drive config
SETR-PUP-DeiT 768x768 8 80k val 79.45 google drive config

ADE20K

Method Crop Size Batch size iteration set mIoU mIoU(ms+flip) model Config
SETR-Naive 512x512 16 160k Val 48.06 48.80 google drive config
SETR-MLA 512x512 8 160k val 47.79 50.03 google drive config
SETR-MLA 512x512 16 160k val 48.64 50.28 google drive config
SETR-MLA-Deit 512x512 16 160k val 46.15 47.71 google drive config
SETR-PUP 512x512 16 160k val 48.62 50.09 google drive config
SETR-PUP-Deit 512x512 16 160k val 46.34 47.30 google drive config

Pascal Context

Method Crop Size Batch size iteration set mIoU mIoU(ms+flip) model Config
SETR-Naive 480x480 16 80k val 52.89 53.61 google drive config
SETR-MLA 480x480 8 80k val 54.39 55.39 google drive config
SETR-MLA 480x480 16 80k val 55.01 55.83 google drive config
SETR-MLA-DeiT 480x480 16 80k val 52.91 53.74 google drive config
SETR-PUP 480x480 16 80k val 54.37 55.27 google drive config
SETR-PUP-DeiT 480x480 16 80k val 52.00 52.50 google drive config

HLG

ImageNet-1K

HLG classification is under folder hlg-classification/.

Model Resolution Params FLOPs Top-1 % Config Pretrained Model
HLG-Tiny 224 11M 2.1G 81.1 hlg_tiny_224.yaml google drive
HLG-Small 224 24M 4.7G 82.3 hlg_small_224.yaml google drive
HLG-Medium 224 43M 9.0G 83.6 hlg_medium_224.yaml google drive
HLG-Large 224 84M 15.9G 84.1 hlg_large_224.yaml google drive

Cityscapes

HLG segmentation shares the same folder as SETR.

Method Crop Size Batch size iteration set mIoU config
SETR-HLG-Small 768x768 16 40k val 81.8 config
SETR-HLG-Medium 768x768 16 40k val 82.5 config
SETR-HLG-Large 768x768 16 40k val 82.9 config

ADE20K

HLG segmentation shares the same folder as SETR.

Method Crop Size Batch size iteration set mIoU Config
SETR-HLG-Small 512x512 16 160k Val 47.3 config
SETR-HLG-Medium 512x512 16 160k Val 49.3 config
SETR-HLG-Large 512x512 16 160k Val 49.8 config

COCO

HLG detection is under folder hlg-detection/.

Backbone Lr schd box AP Config
SETR-HLG-Small 1x 44.4 config
SETR-HLG-Medium 1x 46.6 config
SETR-HLG-Large 1x 47.7 config

Installation

Our project is developed based on MMsegmentation. Please follow the official MMsegmentation INSTALL.md and getting_started.md for installation and dataset preparation.

πŸ”₯πŸ”₯ SETR is on MMsegmentation. πŸ”₯πŸ”₯

A from-scratch setup script

Linux

Here is a full script for setting up SETR with conda and link the dataset path (supposing that your dataset path is $DATA_ROOT).

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

conda install pytorch=1.6.0 torchvision cudatoolkit=10.1 -c pytorch -y
pip install mmcv-full==1.2.2 -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html
git clone https://github.com/fudan-zvg/SETR.git
cd SETR
pip install -e .  # or "python setup.py develop"
pip install -r requirements/optional.txt

mkdir data
ln -s $DATA_ROOT data

Windows(Experimental)

Here is a full script for setting up SETR with conda and link the dataset path (supposing that your dataset path is %DATA_ROOT%. Notice: It must be an absolute path).

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

conda install pytorch=1.6.0 torchvision cudatoolkit=10.1 -c pytorch
set PATH=full\path\to\your\cpp\compiler;%PATH%
pip install mmcv

git clone https://github.com/fudan-zvg/SETR.git
cd SETR
pip install -e .  # or "python setup.py develop"
pip install -r requirements/optional.txt

mklink /D data %DATA_ROOT%

Get Started

Pre-trained model

The pre-trained model will be automatically downloaded and placed in a suitable location when you run the training command. If you are unable to download due to network reasons, you can download the pre-trained model from here (ViT) and here (DeiT).

Train

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} 
# For example, train a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_train.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py 8
  • Tensorboard

    If you want to use tensorboard, you need to pip install tensorboard and uncomment the Line 6 dict(type='TensorboardLoggerHook') of SETR/configs/_base_/default_runtime.py.

Single-scale testing

./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  [--eval ${EVAL_METRICS}]
# For example, test a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_test.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py \
work_dirs/SETR_PUP_768x768_40k_cityscapes_bs_8/iter_40000.pth \
8 --eval mIoU

Multi-scale testing

Use the config file ending in _MS.py in configs/SETR.

./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  [--eval ${EVAL_METRICS}]
# For example, test a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_test.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8_MS.py \
work_dirs/SETR_PUP_768x768_40k_cityscapes_bs_8/iter_40000.pth \
8 --eval mIoU

Generate the png files to be submit to the official evaluation server

  • Cityscapes

    First, add following to config file configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py,

    data = dict(
        test=dict(
            img_dir='leftImg8bit/test',
            ann_dir='gtFine/test'))

    Then run test

    ./tools/dist_test.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py \
        work_dirs/SETR_PUP_768x768_40k_cityscapes_bs_8/iter_40000.pth \
        8 --format-only --eval-options "imgfile_prefix=./SETR_PUP_768x768_40k_cityscapes_bs_8_test_results"

    You will get png files under directory ./SETR_PUP_768x768_40k_cityscapes_bs_8_test_results. Run zip -r SETR_PUP_768x768_40k_cityscapes_bs_8_test_results.zip SETR_PUP_768x768_40k_cityscapes_bs_8_test_results/ and submit the zip file to evaluation server.

  • ADE20k

    ADE20k dataset could be download from this link

    First, add following to config file configs/SETR/SETR_PUP_512x512_160k_ade20k_bs_16.py,

    data = dict(
        test=dict(
            img_dir='images/testing',
            ann_dir='annotations/testing'))

    Then run test

    ./tools/dist_test.sh configs/SETR/SETR_PUP_512x512_160k_ade20k_bs_16.py \
        work_dirs/SETR_PUP_512x512_160k_ade20k_bs_16/iter_1600000.pth \
        8 --format-only --eval-options "imgfile_prefix=./SETR_PUP_512x512_160k_ade20k_bs_16_test_results"

    You will get png files under ./SETR_PUP_512x512_160k_ade20k_bs_16_test_results directory. Run zip -r SETR_PUP_512x512_160k_ade20k_bs_16_test_results.zip SETR_PUP_512x512_160k_ade20k_bs_16_test_results/ and submit the zip file to evaluation server.

Please see getting_started.md for the more basic usage of training and testing.

Reference

@inproceedings{SETR,
    title={Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers}, 
    author={Zheng, Sixiao and Lu, Jiachen and Zhao, Hengshuang and Zhu, Xiatian and Luo, Zekun and Wang, Yabiao and Fu, Yanwei and Feng, Jianfeng and Xiang, Tao and Torr, Philip H.S. and Zhang, Li},
    booktitle={CVPR},
    year={2021}
}
@article{SETR-HLG,
  title={Vision transformers: From semantic segmentation to dense prediction},
  author={Zhang, Li and Lu, Jiachen and Zheng, Sixiao and Zhao, Xinxuan and Zhu, Xiatian and Fu, Yanwei and Xiang, Tao and Feng, Jianfeng and Torr, Philip HS},
  journal={International Journal of Computer Vision},
  pages={1--21},
  year={2024},
  publisher={Springer}
}

License

MIT

Acknowledgement

Thanks to previous open-sourced repo: MMsegmentation pytorch-image-models

About

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages