-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotes.tex
1165 lines (996 loc) · 37.9 KB
/
notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%
\documentclass[12pt]{article}
% geometry
\usepackage[left=1in,top=1in,right=1in,bottom=1in,letterpaper]{geometry}
\usepackage{listings}
%\usepackage{algorithm,algorithmic}
\usepackage{amssymb,amsmath}
\usepackage{dsfont}
\usepackage{url}
\usepackage[lined,ruled,linesnumbered]{algorithm2e}
\lstset{language=Python} % Set your language (you can change the language for each code-block optionally)
\usepackage[usenames]{color}
\usepackage[color,final]{showkeys}
\definecolor{refkey}{gray}{0.8}
\definecolor{labelkey}{gray}{0.8}
\usepackage[normalem]{ulem}
\newcommand{\remove}[1]{{\color{Gray}\sout{#1}}}
\newcommand{\comm}[1]{{\color{red}(#1)}}
\newcommand{\revise}[1]{{\color{blue}#1}}
\usepackage[utf8]{inputenc}
% Default fixed font does not support bold face
\DeclareFixedFont{\ttb}{T1}{txtt}{bx}{n}{12} % for bold
\DeclareFixedFont{\ttm}{T1}{txtt}{m}{n}{12} % for normal
% Custom colors
\usepackage{color}
\definecolor{deepblue}{rgb}{0,0,0.5}
\definecolor{deepred}{rgb}{0.6,0,0}
\definecolor{deepgreen}{rgb}{0,0.5,0}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[theorem]
\newtheorem{lemma}[theorem]{Lemma}
\newcommand{\xx}{{\bf x}}
\newcommand{\bb}{{\bf b}}
\newcommand{\ee}{{\bf e}}
\newcommand{\ff}{{\bf f}}
\newcommand{\nn}{{\bf n}}
\newcommand{\rr}{{\bf r}}
\newcommand{\uu}{{\bf u}}
\newcommand{\vv}{{\bf v}}
\newcommand{\FF}{{\bf F}}
\newcommand{\bA}{{\bf A}}
\newcommand{\bB}{{\bf B}}
\newcommand{\bC}{{\bf C}}
\newcommand{\bE}{{\bf E}}
\newcommand{\bS}{{\bf S}}
\newcommand{\bX}{{\bf X}}
\newcommand{\bT}{{\bf T}}
\newcommand{\bnabla}{{\bf \nabla}}
\newcommand{\kk}{{\underline{\underline{k}}}}
\newcommand{\cc}{{\underline{\underline c}}}
\newcommand{\ssigma}{{\underline{\underline \sigma}}}
\newcommand{\te}{{\underline{\underline e}}}
\newcommand{\ta}{{\underline{\underline a}}}
\newcommand{\RR}{{\mathbb R}}
\newcommand{\EE}{{\mathbb E}}
\newcommand{\GG}{{\mathcal G}}
\newcommand{\LL}{{\mathcal L}}
\newcommand{\UU}{{\mathcal U}}
\newcommand{\cF}{{\mathcal F}}
\newcommand{\dV}{{\text{d}V}}
\newcommand{\dS}{{\text{d}S}}
\newcommand{\Var}{\text{Var}}
\newcommand{\std}{\text{std}}
\newcommand{\lambdat}{{\bf \lambda}}
\newcommand{\mx}[1]{\begin{pmatrix}#1\end{pmatrix}}
\newcommand{\dx}[1]{\text{ d}#1}
\begin{document}
\title{Math 272A Spring 2017}
\author{Chuyuan Fu}
\date{}
\maketitle
\section{What is a continuum?}
The quantities that we are interested in, for example displacement, velocity, pressure, stress... can be written as fields.
For example, we can define a displacement field $\uu(\xx, t) : \RR^3\times \RR \rightarrow \RR^3$, which tells us how the matter in a body is displaced when forces are applied. At each point $(\xx,t)$, $\uu$ gives the average displacement of all molecules contained in a small box that is centered at $\xx$.
Specifically, we assume the existence of a length scale $l$ such that if we average over the displacements of all atoms in a box of size $l$, we get a well-defined average.
Imagine we are interested in a quantity $f$. Each molecule has its own value of $f_i$. Lets assume that the $f_i$'s are fluctuating but have the same mean
\[
f_i = \bar f + f_i'
\]
where $\EE f_i'$=0.
Assume Poisson fluctuations $\std(f_i') = \bar f$.
Then our estimator of $\bar f $ is
\[
\hat f = \frac 1 N \sum_i f_i
\]
\begin{align*}
\Var (\hat f) &= \Var(\sum_i \frac 1 N f_i' )\\
&= \frac {1}{ N^2} \sum_i \Var f_i' \\
&= \frac {1}{ N^2} N \bar f =\frac{\bar f}{N}
\end{align*}
\[
\std(\hat f ) = \frac{\bar f }{\sqrt{N}}.
\]
Relative error is
\[
\frac{\std(\hat f )}{\bar f} = \frac{1}{\sqrt N}
\]
Practically, if I want 0.001 relative error, $N = 10^6$, so I want 100 molecules per side of the box, i.e. need $l \approx 100\times d = 10$ nm, where d is a molecule diameter, $d = 10^{-10}$m.
Many of the objects we want to study are larger than this, e.g. in a microfluid device, channel diameter is $10\times 10^{-6} $ m, cell diameter is $10^{-6}$ - $10^{-5}$ m, cell membrane thickness is 10 - 30 nm, carbon nanotube diameter 2 - 200 nm.
In all of the calculus arguments that follow, we will be taking limits, e.g taking a small volume, $\delta V$ and letting $\delta V \rightarrow 0$. In fact, we assume $\delta V \rightarrow 0$ but $\delta V > l^3$.
\section{Principles of Linear Elasticity}
Assume we have a body to which a discrete set of estimated forces $\{\FF_i\}$ is applied under the constraints
\begin{align*}
&\sum_i \FF_i = 0 \\
&\sum_i \xx_i\times \FF_i = 0 \text{ ( independent of choice of origin)}
\end{align*}
Hooke's 3 laws for linear elasticity
\begin{itemize}
\item If no forces are applied to the body ($\FF_i = 0$), the body has a unique rest state.
we can measure displacements relative to this state.
\item If we are interested in the displacement $\uu$ at a particular point $\uu(P)$ there exists a set of coefficient matrices $\cc_i(P)$ such that $\uu(P) = \sum_i \cc_i(P) \cdot \FF_i$
\end{itemize}
Because of Hooke's 2nd hypothesis, displacements are linear in forces in the sense that
\begin{itemize}
\item if $\{\FF_i\}$ is a set of forces and $\uu(P)$ is the corresponding displacement, then:
If we instead consider the set of forces $\{\lambda \FF_i\}$ then the displacement will be $\lambda \uu(P)$
\item If $\FF_i$ is a force and $\uu(P)$ is the corresponding displacement, $\FF_i'$ another force and $\uu'(P)$ its corresponding displacement, then if we apply $\FF_i + \FF_i'$ the displacement will be $\uu(P) +\uu'(P)$
\end{itemize}
Consider the case where the direction of the force at $i$ is set in advance; then the force at $i$ is given by a scalar $F_i$. If w want to have the freedom to change the direction of the forces, then we can create 3 pts $i$, $i+1$, $i+2$ that all lie in the same point in the body and in which the directions of $F_i$, $F_{i+1}$, $F_{i+2}$ are a 3D basis. Suppose also that I am interested in the displacements only the points indexed by $i$, and only in this direction of the forces at $i$
then Hooke's first and second hypothesis tells us that the displacements $\{u_i\}$
and forces $F_i$ are related by
\[
u_i
\sum_i c_{ij}F_j
\]
for some set of coefficients $c_{ij} $ or equivalently
\[
\uu = \cc\cdot\FF
\]
where $\uu = (u_1, u_2 ... u_N)$, $\cc$ is a $N\times N$ matrix of coefficients, $c_{ij}$ are called the influence coefficients.
We would like to calculate the work done by the forces $\{F_i\}$ in deforming the body. Recall if a force $\FF$ acts on a body and moves the body a distance $\uu$ then the work done is
\[
\FF\cdot\uu
\]
we want to calculate the total work done by the forces $\{F_i\}$ in creating displacements $\{u_i\}$ is NOT $\sum_i F_i u_i$.
Imagine that I build up the forces $\{F_i\}$ starting with all $F_i=0$ and keeping all proportions $F_i/F_j$ constant.
If $\{F_i^*\}$ is the target force, I build up $F_i(t)$ over time by
\[
F_i(t) = F_i^*t.
\]
Similarly if the end displacements are $u_i^*$ then $u_i(t)$ builds up over time by
\[
u_i(t) = u_i^*t = \sum_j c_{ij} F_j^*t
\]
When displacements increase from $u_i$ to $u_i+\delta u_i$, where $\delta u_i= \sum_j c_{ij} F_j^*\delta t$, work done is
\begin{align*}
\sum_i F_i \delta u_i &= \sum_{i,j} F_ic_{ij}F_j^*\delta t\\
&= \sum_{i,j} F_i^*tc_{ij}F_j^*\delta t\\
&= \sum_{i,j} c_{ij}F_i^*F_j^*t\delta t
\end{align*}
Total work done is
\begin{align*}
U &= \sum_{i,j} c_{ij}F_i^*F_j^*t\int_0^1 t \dx{t}\\
&=\frac 1 2 \sum_{i,j} c_{ij}F_i^*F_j^*\\
&=\frac 1 2 \sum_i F_i^* u_i^*
\end{align*}
Hypothesis 3
The total work done in deforming the body should be
\begin{itemize}
\item Positive unless $F_i=0, \forall i$.
\item Independent of the way in which the forces build up from 0 to $\{F_i\}$
\end{itemize}
The first part implies that $\cc$ is a positive definite matrix.
The second part implies the following:
I want $U(\FF^*)$ to be independent of the path going from 0 to $\FF^*$. Work done in traversing the path is
\begin{align*}
U = \int_{path} \sum_iF_i\delta u_i\\
= \int_{path} \sum_{i,j} F_i c_{ij}\delta F_j\
\end{align*}
i.e. I need the above to be an exact differential. An exact differential is a quantity of the form
\[
\sum\frac{\partial f}{\partial x_i} \dx{x_i}
\]
A quantity $\sum_i p_i(\xx) \dx{x_i}$ is an exact differential if and only if
\[
\frac{\partial p_i}{\partial x_j} = \frac{\partial p_j}{\partial x_i}.
\]
This means that
\[
\frac{\partial F_kc_{ki}}{\partial F_j} = \frac{\partial F_kc_{kj}}{\partial F_i}
\]
\[c_{ji} = c_{ij}\]
$\cc$ is symmetric.
This means that if we apply a point force a point $i$ and measure displacement at $j$, we get the same displacement as if we apply the force at $j$ and measure displacement at $i$.
$\cc = \cc^T$ is known as Maxwell-reciprocity. This is analogous to self-adjointness of ODEs/PDEs. e.g. if I have an ODE
\[
\LL[y] = f(x)
\]
I can construct a Green's function solution
\[
\LL_x[\GG(x,\tilde x )] = \delta(x-\tilde x )
\]
If $\LL$ is a self-adjoint operator then
\[
\GG(x, \tilde x) = \GG(\tilde x, x).
\]
The PDEs for linear elasticity theory are self-adjoint.
\begin{enumerate}
\item
Suppose we load (i.e. apply a set of forces) to an elastic body doing an amount of work $U = \frac 1 2 \sum_{i,j}c_{ij}F_iF_j$.
Now we take the forces away; in remaining the forces, we must do work $-U$ i.e. the forces within the body do work $U$. we can think of $U$ as the {\bf internal elastic energy} within a deformed body.
\item {Lorentzian or Betti-Rayleigh reciprocity.}
Consider the same body deformed under two different set of forces $\{F_i\}, \{F_i'\}$with reps displacements $\{u_i\}, \{u_i'\}$. Index notation below
\[
F_i'u_i = F_i' c_{ij}F_j = F_i' c_{ji}F_j = F_i c_{ij}F_j' = F_i u_i'
\]
This is known to a bunch of Harvard people (including Roper) as {\bf something for nothing formula}.
\item {Uniqueness.} Using $\cc$ I can calculate $\{u_i\}$ from $\{F_i\}$ using $\uu = \cc\cdot\FF$
I can similarly calculate $\FF$ (uniquely) from $\uu$ as
\[
\FF = \kk\cdot \uu
\]
where $\kk= \cc^{-1}$ and $\cc$ is invertible because it is (by Hooke's first law).
$\kk$ is called the matrix of spring constants.
\[
U= \frac 1 2 \sum_i F_i u_i = \frac 1 2 \sum_{ij} k_{ij}u_iu_j
\]
\item Principle of virtual work.
\[
\frac{\partial U}{\partial u_i} = \sum_j k_{ij}u_j = F_i
\]
Take a stressed and already deformed body; and imagine applying additional virtual displacements $\{\delta u_i\}$ to the body. The external forces $F_i$ do ``virtual work": external virtual work (EVW) $ \sum_i F_i\delta u_i$.
I also change the elastic (internal) energy of the body by
\[
\delta U = \sum_i \frac{\partial U}{\partial u_i} \delta u_i
\]
also known as "internal virtual work" (IVW). The idea IVW = EVW is key to Finite Element Models for linear elasticity. The principle of virtual work is often assumed and can be used to solve problems with {\bf large deformations}, membranes, etc.
\end{enumerate}
\bigskip
\bigskip
Often our b.c.s may consist of a combination of known forces and known displacements. A loaded bridge has $\uu=0$ at points of support. Is he displacement field unique when we use mixed b.c.s.?
Assume we have two set of b.c.s. $\cF$ where $F_i$ is know, $\UU$ where $u_i$ is known, $\cF$ and $\UU$ disjoint.
Can we specify a set of forces $F_i^*$ such that
\[
F_i^* = F_i \quad \forall i\in \cF
\]
\[
\sum_jc_{ij}F_j^* = u_i \quad \forall i\in \UU
\]
We need to solve $|\UU|$ equations to calculate $|\UU|$ unknown $F_i^*$
\[
\sum_{j\in \UU} c_{ij}F_j^* = u_i - \sum_{j\in\cF} c_{ij}F_j^*
\]
Because $\cc$ is positive definite, all of its principal minors are positive. We can order the indices $i$ so that the first $|\UU|$ indices are associated with $\UU$ and the remaining indices with $\cF$.
Because $[\cc]\in\UU\times\UU$ has positive determinant, the above equation can be uniquely solved.
Method for finding approximate (even exact) solutions to equations.
Call a set of forces $\{F_i^*\}$ admissible if $\{F_i^*\} = F_i$ $\forall i\in\cF$.
Claim: the unique admissible solution of minimized the complementary energy
\[
V(F_i^*) = U(F_i^*) - \sum_{i\in\UU} F_i^*u_i
\]
(this is a Legendre transform.)
To minimized $V$ we need $\frac{\partial V}{\partial F_i^*}=0$ $\forall i\in\UU$:
\[
\sum_jc_{ij}F_j^* - u_i=0 \quad \forall i\in\UU.
\]
Still need to show that $\{F_i^*\}$ is a global minimizer. To do this we show that $V\to \infty$ in all directions.
By positive definiteness of $\cc$,
\[
\sum_{ij} c_{ij} F_i^* F_j^* \geq \lambda_{\min}\|\FF\|^2,
\]
whereas
\[
|\sum_{i\in\UU}u_iF_i^*| \leq u_{\max} \|\FF\|.
\]
So $V\to\infty$ as $\|\FF\|\to\infty$.
This is known as Principle of minimum complementary energy.
We can instead write down our problem in elasticity theory.
We specify $u_i$, $i\in\UU$, and we want to solve for $u_i$, $i\in\cF$. There will be unique $u_i$, $i\in\cF$ satisfying all equations; and if we define admissible displacements $u_i^*$ such that $u_i^* = u_i$ $\forall i\in\UU$ and $u_i^*$ unconstrained $\forall i\in\cF$ and the unique solution to the problem minimizes
\[
V(u_i^*) = U(F_i^*) - \sum_{i\in\cF} F_i^*u_i
\]
\section{Tensors}
\subsection{Cartesian tensors and vector calculus \& summation convention}
Components of vectors are related via transformation/rotation matrices.
\[
l_{ij} = \ee_i'\cdot\ee_j.
\]
If we have a vector $\FF$ whose components are $F_i$ in the ``old" coordinate system,
\[
\FF = F_i\ee_i
\]
using summation convention. The components of $\FF$ in the new coordinate system are
\[
\FF = F_i'\ee_i',
\]
where
\[
F_i' = \FF\cdot\ee_i'= F_j\ee_j\cdot\ee_i'
\]
\begin{equation}\label{eq:3.1}
F_i' = l_{ij} F_j.
\end{equation}
A vector in $\RR^3$ is a set of 3 quantities $\FF = \mx{F_1\\F_2\\F_3}$ that when the coordinate system is changed, transforms according to \ref{eq:3.1}. Examples include forces, velocitiy, displacements, position, torque.
we will define a rank $n$ tensor $\underline{\underset{\vdots}{\underline\bA}}$ ( underlined $n$ times) that is made up of $3^n$ components in $\RR$, $A_{i_1, i_2, \dots, i_n}$. When we transform coordinates, these components will transform in a way that generalize \ref{eq:3.1}:
\[
A_{i_1, i_2\dotsi_n} = l_{i_1j_1} l_{i_2j_2} \cdots l_{i_nj_n}A_{j_1, j_2\dots j_n}.
\]
e.g.
$n=0$, $A$ is s scalar. e.g., temperature, pressure, energy.
$n=1$, $\underline A$ is a vector that transforms by matrix multiply.
$n=2$, $\underline{\underline A}$ is an array of 9 numbers that transforms by
\[
A' = LAL^T, \quad L = (l_{ij}),
\]
\[
A' = l_{ik} l_{jm} A_{km} = l_{ik} A_{km} (l^T)_{mj}
\]
where $A$ is an old set of 9 numbers, $A'$ is the new set of 9 numbers. e.g. include: stress, strain (or rate of strain).
\begin{theorem} (see Landau \& Lifschitz)
Define an {\bf isotropic} tensor to be a tensor $\underline{\underline A}$ whose coordinate components are independent of the {\bf allowed} choice of coordinate system.
\end{theorem}
In $\RR^3$,
$n=0$, all scalars are isotropic.
$n=1$, $\bf 0$ is the only isotropic vector.
$n=2$, the only isotropic tensors have components,
\[
A_{ij} = \lambda \delta_{ij}.
\]
$n=3$, only isotropic tensor is the alternating tensor
\[
\lambda\epsilon_{ijk}.
\]
$n=4$, $\lambda\delta_{ij}\delta_{kl}$, $\mu\delta_{ik}\delta_{jl}$, $\nu\delta_{il}\delta_{jk}$ and linear combinations thereof.
\bigskip
\bigskip
{\bf Important identity}
\[
\epsilon_{ijk}\epsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}.
\]
Using summation convenction to evaluation some vector calculus quantities.
\[
\bnabla(\frac{\xx}{r}), \text{ where } r = \sqrt{x^2 + y^2 + z^2}.
\]
\[
[\bnabla(\frac{\xx}{r})]_{ij}= \frac{\partial}{\partial x_i}\frac{x_j}{r} = \frac{\delta_{ij}}{r} - \frac{x_ix_j}{r^3}
\]
\[
[\bnabla(\frac{\xx}{r})] = \frac{\bnabla \xx}{r} + \frac{\xx\xx}{r^3}
\]
\subsection{Multiplication of vectors}
Given 2 tensors $\bA$ (rank n) and $\bB$ (rank m), we can define different products of $\bA$ and $\bB$.
Outer product:
\[
\bC = \bA \bB
\]
\[
C_{i_1 i_2 \dots i_{m+n}} = A_{i_1i_2\dots i_n} B_{i_{n+1}\dots i_{n+m}}.
\]
Inner product:
\[
\bC = \bA \cdot\bB
\]
\[
C_{i_1 i_2 \dots \i_{m+n-2}} = A_{i_1i_2\dots i_{n-1}j} B_{j i_n i_{n+1}\dots i_{n+m-2}}.
\]
And we can keep summing, contraction:
\[
\bC = \bA : \bB
\]
\[
C_{i_1 i_2 \dots i_{m+n-4}} = A_{i_1i_2\dots i_{n-2}jk} B_{k j i_{n-1} i_{n}\dots i_{n+m-4}}.
\]
Given two vectors $\bA$, $\bB$ we can multiply in 3 ways.
\[
\bA\cdot\bB, \quad \bA\bB, \quad \bA\times\bB
\]
\[
[\bA\times\bB]_i = \epsilon_{ijk}A_jB_k
\]
\[
\bA\times\bB = \epsilon:(\bB\bA)
\]
We can define the Kronecker (identity/idempotent) tensor
\[
[\mathds 1 ]_{ij} = \delta_{ij}
\]
\[
\bA\bB = \delta_{ij}A_iB_j = {\mathds 1}:(\bA\bB)
\]
Other methods of multiplying do not produce tensors (for example taking component-wise product of two tensors).
If I have another tensor $\cc$, I could form a product $\bA\cdot\cc\cdot\bB$, but this is a product between $\bA$, $\cc$, and $\bB$.
\begin{enumerate}
\item{Example}
Consider, $\uu$ a vector field, $\uu: \RR^3 \to\RR^3$,
\begin{align*}
[\uu\times(\nabla\times\uu)]_i &= \epsilon_{ijk}u_j(\nabla\times\uu)_k = \epsilon_{ijk}u_j\epsilon_{klm}\frac{\partial u_m}{\partial x_l}\\
&= \epsilon_{kij}\epsilon_{klm} u_j\frac{\partial u_m}{\partial x_l}\\
&=(\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl})u_j\frac{\partial u_m}{\partial x_l}\\
&=u_m\frac{\partial u_m}{\partial x_i} - u_l\frac{\partial u_i}{\partial x_l}\\
&=\bnabla (\frac 1 2 \uu^2) - (\uu\cdot\bnabla)\uu
\end{align*}
\item{Example}
Say that a tensor $\bA$ is symmetric if $A_{ij} = A_{ji}$, and anti-symmetric if $A_{ij} =- A_{ji}$. Suppose $\bS$ is symmetric, $\epsilon:\bS = 0$ by simple calculation.
\end{enumerate}
We can write vectors in the form
\[
\FF = F_i\ee_i,
\]
where $\{\ee_i\}$ are our basis vectors. We can write a tensor in the same way
\[
\bA = A_{ij}\ee_i\ee_j
\]
The outer products $\ee_i\ee_j$ is a bsis for rank 2 tensors.
We can write tensors w.r.t. $\hat\xx, \hat{\bf y}, \hat{\bf z}$, or w.r.t. $\ee_r, \ee_{\theta}, \ee_{\phi}$ (spherical polar basis), or $\ee_r, \ee_{\phi}, \ee_{z}$ (cylindrical polar basis).
\subsection{Stress Tensor}
Consider a body that is deformed by applying some set of forces. Before the forces are applied, I can identify each point in the body by its position $\bX$. I will assume that there is a differentiable field $\xx (\bX,t)$. $\xx (\bX,t)$ tells me the new location of the point at time $t$. So we can define a displacement field $\uu$, $\uu = \xx-\bX$, and a vector field $\ff(\xx,t)$ that defines the force per unit volume of material.
Suppose we have an infinitesimal volume $\dV$, located at $\xx$, the total body force acting on $\dV$ is $\ff(\xx,t)\dV$. Body forces include gravity, electric forces. We also need to define a {\bf traction} or {\bf surface force field} as follows.
Across any element of surface has unit normal $\nn$, and area $\dS$, {\bf traction forces} must act the material on the positive side of the element applies a force $\bT_{\nn}\dS$ on the material on the negative side of the element.
That is, I assume I can define a vector field $\bT(\xx, t)$ that tells me what elastic forces are acting within the body. In fact, we can show that all of the traction fields associated with the deformation of a body can be derived from a single second rank tensor field $\ssigma(\xx,t)$, that is
\[
\bT_{\nn}(\xx,t) = \ssigma(\xx,t)\cdot \nn .
\]
By Newton's third law,
\[
\bT_{\nn}(\xx,t) = -\bT_{-\nn}(\xx,t).
\]
Consider Cauchy's stress tetrahedron, $\nn = (n_x, n_y, n_z)$. Length scale $L\to 0$ eventually.
mass $\times$ acceleration $O(L^3)$= sum of traction forces $O(L^2)$ $+$ body forces $O(L^3)$. As $L\to 0$, sum of traction forces must be 0. Force on sloping face:
\[
\bT_{\nn}\rvert_ {\text {centroid of face}}\dS = (\bT_{\nn}\rvert_{\{0,0,0\}}+ O(L))\dS
\]
Similarly for other faces. By force balance:
\[
\bT_{\nn}\dS + \bT_{-\ee_z}n_z\dS +\bT_{-\ee_y}n_y\dS +\bT_{-\ee_x}n_x\dS = 0,
\]
so
\[
\bT_{\nn}\dS = \bT_{\ee_z}n_z\dS +\bT_{\ee_y}n_y\dS +\bT_{\ee_x}n_x\dS .
\]
Once $\bT_{\ee_x}$, $\bT_{\ee_y}$,$\bT_{\ee_z}$, are all known, we can calculate $\bT_{\nn}$, for arbitrary $\nn$. We can construct a tensor from these vectors.
\[
\sigma_{11} = (\bT_{\ee_x})_1, \quad \sigma_{12} = (\bT_{\ee_y})_1,\quad \sigma_{13} = (\bT_{\ee_z})_1
\]
that is,
\[
\bT_{\nn}(\xx,t) = \ssigma(\xx,t)\cdot \nn .
\]
for an array of $3\times 3$ numbers. is it rank 2 tensor.
Note that $\bT_{\nn}$ and $\nn$ are both vectors. Let's suppose we transform coordinates, $\nn$ has new components $n_i'$ ,
\[
{T_{n}}'_i = l_{ij} {T_{n}}_j = l_{ij} \sigma_{jk}n_k
\]
\begin{align*}
\sigma'_{ik}n'_k &= l_{ij} \sigma_{jk} l_{mk}n_m' \quad (n_k = l_{mk}n_m')\\
&= l_{ij} \sigma_{jm} l_{km}n_k'
\end{align*}
\[
n_k'(\sigma_{ik}' - l_{ij}l_{km}\sigma_{jm})=0.
\]
for arbitrary $n_k'$ vectors. This shows that the $\ssigma$ we defined is indeed a tensor.
Take a control volume at equilibrium,
\[
\int_V \ff \dV + \int_S \bT_{\nn}\dS = 0.
\]
By divergence theorem, which says that
\[
\int_S \sigma_{ijkl}n_i = \int_V \frac{\partial \sigma_{ijkl}}{\partial x_i},
\]
we have
\[
\int_V \ff \dV + \int_V\frac{\partial (\sigma_{ij}\ee_i)}{\partial x_j}\dV = 0.
\]
\[
\ff + \nabla \cdot\ssigma^T = 0.
\]
(except possibly on a set of measure 0.)
This is called {\bf Cauchy's equilibrium law}.
Now consider the torque,
\[
\int_V \rr\times \ff \dV + \int_S (\rr \times \ssigma\cdot \nn)\dS = 0.
\]
(next steps do not apply to magnetic objects).
\begin{align*}
\int_S \ee_i \epsilon_{ijk}x_j\sigma_{kl}n_l\dS &= \int_V \ee_i \epsilon_{ijk}\frac{\partial}{\partial x_l}(x_j\sigma_{kl}) \dV\\
&= \int_V \ee_i \epsilon_{ijk} ( \delta_{jl}\sigma_{kl} + x_j\frac{\partial}{\partial x_l}\sigma_{kl}) \dV\\
&= \int_V \ee_i \epsilon_{ijk} ( \sigma_{kj} + x_j\frac{\partial}{\partial x_l}\sigma_{kl})\dV
\end{align*}
\[
\int_V (\rr\times(\ff+\nabla\cdot\ssigma^T) + \ee_i\epsilon_{ilk}\sigma_{kl}=0.
\]
The first term vanishes by force balance. The second term tells us that
\[
\ee_i \epsilon_{ijk}\sigma_{kj} = 0,
\]
so
\[
\epsilon_{ijk}\sigma_{kj} = 0 \quad \forall i.
\]
i.e.
\[
\ssigma = \ssigma^T.
\]
Need to relate $\ssigma$ to how much the body deforms.
\subsection{Measuring deformation/strain}
We are interested in knowing how far initially nearby parts of the object move apart when it is deformed. A point at $\bX + \dx{\bX}$ move to $\xx + \dx{\xx}$, the original separation is $\dx{S}^2 = \dx{X_i}\dx{X_i}$, are now separated by $\dx{s}^2 = \dx{x_i}\dx{x_i}$.
If $\dx{\bX_i}$ and $\dx{\xx_i}$ are infinitesimal,
\[
\dx{x_i} = \frac{\partial x_i}{\partial X_j} \dx{X_j}.
\]
\begin{align*}
ds^2 - dS^2 &= ( \frac{\partial x_i}{\partial X_j} \frac{\partial x_i}{\partial X_k} - \delta_{jk} )\dx{X_j} \dx{X_k} \\
&:= 2 e_{jk} \dx{X_j} \dx{X_k}\\
&= ( \delta_{jk} - \frac{\partial X_i}{\partial x_j} \frac{\partial X_i}{\partial x_k} )\dx{x_j}\dx{x_k}\\
&:= 2 E_{jk} \dx{x_j} \dx{x_k}.
\end{align*}
$\underline{\underline e}$ is called Cauchy-Almansi strain, and $\underline{\underline E}$ Green's strain.
It is useful to rewrite in terms of displacement:
\[
\uu = \xx - \bX
\]
\[
e_{jk} = \frac 1 2 ( \frac{\partial u_i}{\partial X_j} \frac{\partial u_i}{\partial X_k} + \frac{\partial u_j}{\partial X_k} +\frac{\partial u_k}{\partial X_j} )
\]
\[
E_{jk} = \frac 1 2 ( \frac{\partial u_k}{\partial x_j} + \frac{\partial u_j}{\partial x_k} - \frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_k} )
\]
\section{Linear Elasticity}
Suppose that the deformation of the body is small, i.e. $\|\bnabla \uu\| \ll 1$, and assume displacement is small, $\| \uu\|\ll L$, where L is characteristic object size. Then to leading order the strain tensors have the same components
\[
E_{ij} \approx e_{ij} \approx \frac 1 2 (\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})
\]
This is called Cauchy's infinitesimal strain tensor.
Interpretation. Consider a line element aligned with the x-axis. We will see that line element change in length is
\[
ds^2 - dS^2 = 2 e_{xx}dX^2.
\]
Write
\[
\uu = (u, v, w),
\]
\begin{align*}
\dx{s^2} &= \dx{x^2} + \dx{y^2} + \dx{z^2} \\
&= (X + dX + u(X+dX, Y, Z) - X- u(X,Y,Z))^2 \\
&+ (v(X+dX,Y , Z) - v(X,Y,Z))^2 \\
&+ ( w(X+dX, Y, Z) - w(X,Y,Z))^2\\
&= dX^2 (1+2\frac{\partial u}{\partial X} ) + h.o.t \quad (\|\nabla \uu \|\ll 1)
\end{align*}
Change in length is
\[
ds^2 - dS^2 = 2 \frac{\partial u}{\partial X} dX^2 = 2 e_{xx} dX^2
\]
Relative change in length
\[
\frac{ds-dS}{dS} = \sqrt{1+2e_{xx}} -1
\]
$e_{xx}$ measures {\bf fractional stretch} in the x-direction.
Now consider the off-diagonal terms, for example $e_{xy}$.
\[
A = (u(0), v(0),w(0))
\]
\[
B = (u(0), v(0),w(0)) + dX(1+ \frac{\partial u}{\partial X}, \frac{\partial v}{\partial X}, \frac{\partial w}{\partial X})
\]
\[
C = (u(0), v(0),w(0))+ dX( \frac{\partial u}{\partial X}, 1+\frac{\partial v}{\partial X}, \frac{\partial w}{\partial X})
\]
\[
\tan \alpha_x = \frac{ \frac{\partial v}{\partial X}}{1 + \frac{\partial u}{\partial X}}
\]
\[
\alpha_x\approx \frac{\partial v}{\partial X}.
\]
Similarly,
\[
\alpha_y\approx \frac{\partial u}{\partial X}.
\]
Change in the angle made by the two sides of the $L$ is
\[
-\alpha_x -\alpha_y = -2e_{xy}.
\]
Why does $\underline{\underline e}$ characterize strain but not $\bnabla\uu$ or $(\bnabla\uu)^T$?\[
\underline{\underline e} = \frac 1 2 (\bnabla\uu + (\bnabla\uu)^T)
\]
Let's look at the displacements within a body near a point {\bf 0}. If a point start at $\dx{\bX}$, and gets moved to $\uu(\dx{\bX} )$, I expect the body to resist elastically.
\[
\uu(\dx{\bX}) - \uu(0) = (d\bX \bnabla) \uu(0) = d\bX\cdot(\bnabla \uu).
\]
Decompose $\uu$ into symmetric and skew-symmetric parts. The symmetric part is $\te$, call the skew-symmetric part $\ta$. Let
\[
\omega_i = \frac 1 2 \epsilon_{ijk}a_{jk}
\]
Then we claim that
\[
a_{ij} = \epsilon_{ijk}\omega_k.
\]
Proof of claim:
\begin{align*}
\epsilon_{ijk}\omega_k &= \frac 1 2 \epsilon_{ijk} \epsilon_{klm} a_{lm} \\
&= \frac 1 2 \epsilon_{kij} \epsilon_{klm} a_{lm}\\
&=\frac 1 2 (\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl})a_{lm}\\
&= \frac 1 2 (a_{ij} - a_{ji}) \\
&= a_{ij}.
\end{align*}
\[
dX\cdot \ta = \omega\times dX
\]
This is rigid body rotation.
$\te$ is a symmetric tensor, i.e. is diagonizable wrt three perpendicular eigenvectors $\vv_1,$ $\vv_2,$ $\vv_3$ , where $\te\cdot \vv_1 = \lambda_1\vv_1$. Call the $\vv_i$'s the {\bf directions of principal stretch}.
\subsection{Constitutive equation for linear elasticity}
A constitutive equation gives us a way of computing stresses from strains
\[
\ssigma = f(\te)
\]
$f$ is material specific.
Want $\ssigma$ to be linearly dependent on $\te$.
i.e. we assume
\[
\sigma_{ij} = C_{ijkl}e_{kl}
\]
Where $C$ is a rank 4 tensor, (the {\bf elastic modulus tensor})
\[
C_{ijkl} = C_{jikl}
\]
because $\ssigma$ is symmetric.
$\te$ is also symmetric, so only symmetric part of $C_{ijkl}$ contributes to $\sigma_{ij}$, so assume $C_{ijkl} = C_{ijlk}$ wlog. So $C_{ijkl}$ has 36 free components.
We can reduce the number of free components further by making an additional assumption. P.V.W.
Calculate total elastic energy stored in a control volume V, when body is deformed. $\ssigma$ and $\FF$ are ramped up slowly from 0 to $\ssigma^*$, $\FF^*$. Work done in increasing forces
\begin{align*}
\dx{U} &= \int_V \FF\cdot\dx{\uu} \dx{V} + \int_{\partial V} \dx{u}\cdot \ssigma\cdot\nn\dx{S}\\
&= \int_V \FF\cdot\dx{\uu} + \nabla\cdot (\dx{\uu}\cdot \ssigma) \dx{V} \\
&= \int_V \FF\cdot\dx{\uu} + \dx{\uu}\cdot(\nabla\cdot\ssigma^T) + \nabla\dx{\uu}:\ssigma\dx{V}\\
&= \dx{e_{ij}}\sigma_{ij}
\end{align*}
where $\dx{\te} = \frac 1 2 (\nabla\dx{\uu} + (\nabla\dx{\uu} )^T)$. The first two terms vanish by force balance, the third terms reduces by symmetry of $\ssigma$.
\[
dU = \int_V\sigma_{ij}\dx{e_{ij}}dV
\]
total amount of work that we do is
\[
U = \int_V\int_0^{\te^*}\sigma_{ij}\dx{e_{ij}}dV
\]
We can define a scalar field
\[
U = \int_{strain} \sigma_{ij}\dx{e_{ij}}
\]
which gives elastic energy stored volume of body.
\[
U = \int_0^1C_{ijkl}e_{kl}^*te_{ij}^*dt = \frac 1 2 C_{ijkl}e_{ij}^*e_{kl}^*
\]
Total work done per volume in building up stress $\sigma_{ij}$ is $\frac 1 2 C_{ijkl}e_{ij}e_{kl} = \frac 1 2 \sigma_{ij}e_{ij}$ if stress increases linearly in time.
If this quantity is independent of the way stress ( + strains) are built up, then we can define PVW
\[
\frac{\partial U}{\partial e_{ij}} = \sigma_{ij}
\]
so
\[
\sigma_{ij} = \frac 1 2 C_{ijkl}e_{kl} + \frac 1 2 C_{klij}e_{kl}
\]
\[
C_{ijkl}e_{kl} = C_{klij}e_{kl}
\]
So
\[
C_{ijkl} = C_{klij}
\]
i.e. $C_{ijkl}$ as at most 21 independent components.
Most materials we study are isotropic. i.e.
\[
C_{ijkl} = \lambda \delta_{ij}\delta_{kl} + \mu \delta_{ik}\delta_{jl} + \nu \delta_{il}\delta_{jk}
\]
for 3 coefficients $\lambda$, $\mu$, $\nu$.
\[
\Rightarrow \sigma_{ij} = C_{ijkl}e_{kl} = \lambda \delta_{ij}e_{kk} + \mu e_{ij} + \nu e_{ji} := \lambda\delta_{ij}e_{kk} + 2Ge_{ij}
\]
$\lambda$ and $G$ are called {\bf Lame coefficients}. Now we want to express $\te$ in terms of $\ssigma$.
\[
\sigma_{mm} = \lambda e_{kk} + 2G e_{mm}
\]
so
\[
e_{mm} = \frac {1}{\lambda + 2G} \sigma_{kk}
\]
\begin{align*}
e_{ij} &= \frac{1}{2G} (\sigma_{ij} - \frac{\lambda\delta_{ij}\sigma_{kk}}{3\lambda+ 2 G})\\
&= \frac1 E ((\nu+1)\sigma_{ij} -\nu \sigma_{kk}\delta_{ij})\\
\end{align*}
E is called {\bf Young's modulus}.
$\nu$ {\bf Poisson ratio}.
$\lambda$, $G$, $E$ are all elastic moduli.
\[
[\sigma] = Nm^{-2} = Pa
\]
\[
[\nu] = 1
\]
\[
[G], [\lambda], [E]= Pa
\]
Pull a block of elastic object in the $x$-direction, expected stress in block is
\[
\sigma_{11} = \sigma, \sigma_{ij} = 0 \text{ otherwise}
\]
\[
e_{11} = \frac 1 E ((\nu+1)\sigma - \nu\sigma) = \sigma/E
\]
$E$ tells us how much stretch there is in the direction in which the force is applied.
\[
e_{22} = e_{33} = -\frac{\nu\sigma}{E}
\]
\[
\frac{e_{22}}{e_{11}} = -\nu
\]
$\nu$ gives ratio of shrinkage in the perpendicular direction to stretch in direction parallel of forces.
\[
-1\leq\nu\leq \frac 1 2
\]
$\nu = \frac 1 2 $ perfectly preserves volume.
Now in a different scenario, apply forces in $x$ and $y$-direction.
\[
\sigma_{11} = \sigma_1, \sigma_{22} = \sigma_2
\]
\[
e_{11} = \frac 1 E ((\nu+1)\sigma_1 - \nu(\sigma_1 + \sigma_2)) = \frac 1 E (\sigma_1 - \nu\sigma_2)
\]
If $\nu>0$, then biaxial force $\sigma_2$ reduces stretch in the x-direction.
Now shearing a block of object between two plates.
\[
\sigma_{12} = \tau
\]
\[
\sigma_{12} = 2Ge_{12}
\]
\[
e_{12} = \sigma_{12}/2G = \tau/2G
\]
If plates are separated by $w$, and total shift is $\Delta x$, then
\[
e_{12} = \frac 1 2 (\frac{\partial u }{\partial y } + \frac{\partial v}{\partial x} ) = \frac 1 2 \frac{ \Delta x }{ w}
\]
\[
\frac{ \Delta x }{ w} = \frac \tau G
\]
\[
G = \tau / (\frac{\Delta x }{w})
\]
G is the shear modulus.
\subsection{PDEs of linear elastic bodies in equilibrium}
Cauchy's law
\[
\bnabla\cdot\ssigma + \FF = 0.
\]
Now
\[
\ssigma = \lambda \bnabla\cdot\uu \mathds{1} + G(\bnabla\uu + (\bnabla\uu)^T)
\]
\[
(\lambda + G)\bnabla(\bnabla\cdot \uu) + G\nabla^2\uu + \FF = 0
\]
This is called {\bf Navier's equation}.
Modification for non-equilibrium.
\[
mass\times acceleration =\int_V\FF\dx{V} + \int_{\partial V}\ssigma\cdot\nn\dx{S}
\]
\[
\int_V\rho\frac{\partial^2 u}{\partial t^2} \dx{V} =\int_V\FF\dx{V} + \int_{\partial V}\ssigma\cdot\nn\dx{S}
\]
$\rho$ is mass per unit volume in the undeformed state.
\[
\int_V\rho\frac{\partial^2 u}{\partial t^2} \dx{V} = (\lambda + G)\bnabla(\bnabla\cdot \uu) + G\nabla^2\uu + \FF .
\]
This is a wave equation.
Assume $\FF=0$ and the body is in equilibrium. take divergence
\[
(\lambda + G)\bnabla^2(\bnabla\cdot \uu) + G\nabla^2(\nabla\cdot\uu)=0
\]
\[
\Rightarrow \nabla^2(\nabla\cdot\uu)=0
\]
So $e_{kk}$ is a harmonic function.
\[
\Rightarrow \sigma_{kk} = (3\lambda + 2G)e_{kk}
\]
So $\sigma_{kk}$ is also harmonic.
Also take $\nabla^2$ on Navier's equation, $\nabla^2(\nabla^2\uu)=0$, so $\nabla^4\uu=0$. i.e. $\uu$ is {\bf biharmonic}.
\subsubsection{}
The Navier equation has a unique solution in a domain $\Omega$, if $\uu$ is specified on the boundary $\partial\Omega$, or if $\partial \Omega$ can be disjointly partitioned into $\partial\Omega_u$ ($\uu$ is speficied) \& $\partial \Omega_F$ ($\ssigma\cdot\nn$ are specified).
Recall Helmholtz's theorem, exists $\phi$ and $\bA$ such that
\[
\uu = \bnabla\phi + \bnabla\times\bA
\]
\[
e_{kk} = \nabla\cdot\uu = \nabla^2\phi
\]
\[
\nabla\times\uu = \bnabla\times(\bnabla\times\bA) = -\nabla^2\bA
\]
If $\nabla\times\uu=0$, then we say $\uu$ is irrotational. i.e. $\uu = \bnabla\phi$ (ansatz).
Consider a spherical capsule, with a difference in pressure between interior and exterior. Calculate the deformation. Assume spherical symmetric deformation. Define spherical polar coordinates $(r, \theta, \phi)$
\[
\uu = u(r)\ee_r.
\]
Assume there is a potential $\phi(r)$ with $\uu = \nabla\phi$.
At $r = a$,
\[
-\ssigma\cdot\ee_r = \Delta p \ee_r
\]
\[
\sigma_{rr} = -\Delta p , \sigma_{r\theta} =\sigma_{r\phi}= 0
\]
\[
\ssigma\cdot\ee_r = - p_{outer} \ee_r
\]
Navier's equations and $\uu = \nabla\phi$,
\[
\bnabla(\nabla^2\phi)=0.
\]
\[
\nabla^2\phi= A
\]
for some constant $A$.
\[
\frac{1}{r^2\sin\theta}\frac{\partial}{\partial r}(r^2\sin\theta\frac{\partial\phi}{\partial r})= A.
\]
\[
\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial\phi}{\partial r})= A.
\]
\[
r^2\frac{\partial\phi}{\partial r} = Ar^3 + B
\]
\[
\phi(r) = Ar^2 + B/r + C
\]
$\sigma_{\theta\theta}$ and $\sigma_{\phi\phi}$ are known as hoop stresses. (see beam/elastic theory in this course.)
\subsubsection{}
In equilibrium
\[
\bnabla\cdot\ssigma + \FF = {\bf 0}.
\]
$\ssigma$ has 6 components, but only have 3 equations.
To get Cauchy's equation, we need to add a constitutive law
\[
\ssigma = \lambda e_{kk} \mathds 1 + 2G\te
\]
but
\[
\te = \frac 1 2 (\bnabla\uu + (\bnabla\uu)^T)
\]
In general (see homework \#2), $\te$ can be derived from a real displacement field iff the St. Venant compatibility conditions hold.
\[
e_{ij,kl} + e_{kl,ij} - e_{ik,jl} - e_{jl,ik}=0
\]
Recall
\[
e_{ij} = \frac{(1+nu)\sigma_{ij}}{E} - \frac{\nu\sigma_{kk}\delta_{ij}}{E}
\]
and substitute into the previous equation
\[
(1+\nu)(\sigma_{ij,kl} + \sigma_{kl,ij} - \sigma_{ik,jl} - \sigma_{jl,ik}) = \nu(\sigma_{mm,kl}\delta_{ij} + \sigma_{mm,ij}\delta_{kl} - \sigma_{mm,kl}\delta_{ik} - \sigma_{mm,kl}\delta_{jl} )
\]
Let $k=l$,
\[
(1+\nu)(\nabla^2\sigma_{ij} + \sigma_{mm,ij} - (\nabla\ssigma)_{i,j} - (\nabla\ssigma)_{j,i} ) = \nu (\nabla^2\sigma_{mm,ij} + \sigma_{mm,ij})
\]
I have reduced S-V to 6 equations.
\[
\nabla^2\sigma_{ij} + \frac{1}{1+\nu}\sigma_{mm,ij} = \frac{-\nu}{1-\nu}(\bnabla\cdot\FF)\delta_{ij} - (F_{i,j}+ F_{j,i})
\]