-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathlinpack.f90
251 lines (249 loc) · 6.95 KB
/
linpack.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
! Slightly modified version of LINPACK routines zgefa and zgedi
SUBROUTINE ZGEFA(A,LDA,N,IPVT,INFO)
USE kinds, ONLY : DP
INTEGER LDA,N,IPVT(*),INFO
COMPLEX(DP) A(LDA,*)
!
! ZGEFA FACTORS A COMPLEX(DP) MATRIX BY GAUSSIAN ELIMINATION.
!
! ZGEFA IS USUALLY CALLED BY ZGECO, BUT IT CAN BE CALLED
! DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
! (TIME FOR ZGECO) = (1 + 9/N)*(TIME FOR ZGEFA) .
!
! ON ENTRY
!
! A COMPLEX(DP)(LDA, N)
! THE MATRIX TO BE FACTORED.
!
! LDA INTEGER
! THE LEADING DIMENSION OF THE ARRAY A .
!
! N INTEGER
! THE ORDER OF THE MATRIX A .
!
! ON RETURN
!
! A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
! WHICH WERE USED TO OBTAIN IT.
! THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
! L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
! TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
!
! IPVT INTEGER(N)
! AN INTEGER VECTOR OF PIVOT INDICES.
!
! INFO INTEGER
! = 0 NORMAL VALUE.
! = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
! CONDITION FOR THIS SUBROUTINE, BUT IT DOES
! INDICATE THAT ZGESL OR ZGEDI WILL DIVIDE BY ZERO
! IF CALLED. USE RCOND IN ZGECO FOR A RELIABLE
! INDICATION OF SINGULARITY.
!
! LINPACK. THIS VERSION DATED 08/14/78 .
! CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
!
! SUBROUTINES AND FUNCTIONS
!
! BLAS ZAXPY,ZSCAL,IZAMAX
! FORTRAN DABS
!
! INTERNAL VARIABLES
!
COMPLEX(DP) T
INTEGER IZAMAX,J,K,KP1,L,NM1
!
COMPLEX(DP) ZDUM
REAL(DP) CABS1
REAL(DP) REAL,AIMAG
COMPLEX(DP) ZDUMR,ZDUMI
REAL(ZDUMR) = ZDUMR
AIMAG(ZDUMI) = (0.0D0,-1.0D0)*ZDUMI
CABS1(ZDUM) = DABS(REAL(ZDUM)) + DABS(AIMAG(ZDUM))
!
! GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
!
INFO = 0
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1
KP1 = K + 1
!
! FIND L = PIVOT INDEX
!
L = IZAMAX(N-K+1,A(K,K),1) + K - 1
IPVT(K) = L
!
! ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
!
IF (CABS1(A(L,K)) .EQ. 0.0D0) GO TO 40
!
! INTERCHANGE IF NECESSARY
!
IF (L .EQ. K) GO TO 10
T = A(L,K)
A(L,K) = A(K,K)
A(K,K) = T
10 CONTINUE
!
! COMPUTE MULTIPLIERS
!
T = -(1.0D0,0.0D0)/A(K,K)
CALL ZSCAL(N-K,T,A(K+1,K),1)
!
! ROW ELIMINATION WITH COLUMN INDEXING
!
DO 30 J = KP1, N
T = A(L,J)
IF (L .EQ. K) GO TO 20
A(L,J) = A(K,J)
A(K,J) = T
20 CONTINUE
CALL ZAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
30 CONTINUE
GO TO 50
40 CONTINUE
INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE
IPVT(N) = N
IF (CABS1(A(N,N)) .EQ. 0.0D0) INFO = N
RETURN
END SUBROUTINE ZGEFA
SUBROUTINE ZGEDI(A,LDA,N,IPVT,DET,WORK,JOB)
USE kinds, ONLY : DP
INTEGER LDA,N,IPVT(*),JOB
COMPLEX(DP) A(LDA,*),DET(2),WORK(*)
!
! ZGEDI COMPUTES THE DETERMINANT AND INVERSE OF A MATRIX
! USING THE FACTORS COMPUTED BY ZGECO OR ZGEFA.
!
! ON ENTRY
!
! A COMPLEX(DP)(LDA, N)
! THE OUTPUT FROM ZGECO OR ZGEFA.
!
! LDA INTEGER
! THE LEADING DIMENSION OF THE ARRAY A .
!
! N INTEGER
! THE ORDER OF THE MATRIX A .
!
! IPVT INTEGER(N)
! THE PIVOT VECTOR FROM ZGECO OR ZGEFA.
!
! WORK COMPLEX(DP)(N)
! WORK VECTOR. CONTENTS DESTROYED.
!
! JOB INTEGER
! = 11 BOTH DETERMINANT AND INVERSE.
! = 01 INVERSE ONLY.
! = 10 DETERMINANT ONLY.
!
! ON RETURN
!
! A INVERSE OF ORIGINAL MATRIX IF REQUESTED.
! OTHERWISE UNCHANGED.
!
! DET COMPLEX(DP)(2)
! DETERMINANT OF ORIGINAL MATRIX IF REQUESTED.
! OTHERWISE NOT REFERENCED.
! DETERMINANT = DET(1) * 10.0**DET(2)
! WITH 1.0 .LE. CABS1(DET(1)) .LT. 10.0
! OR DET(1) .EQ. 0.0 .
!
! ERROR CONDITION
!
! A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS
! A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
! IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY
! AND IF ZGECO HAS SET RCOND .GT. 0.0 OR ZGEFA HAS SET
! INFO .EQ. 0 .
!
! LINPACK. THIS VERSION DATED 08/14/78 .
! CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
!
! SUBROUTINES AND FUNCTIONS
!
! BLAS ZAXPY,ZSCAL,ZSWAP
! FORTRAN DABS,CMPLX,MOD
!
! INTERNAL VARIABLES
!
COMPLEX(DP) T
REAL(DP) TEN
INTEGER I,J,K,KB,KP1,L,NM1
!
COMPLEX(DP) ZDUM
REAL(DP) CABS1
REAL(DP) REAL,AIMAG
COMPLEX(DP) ZDUMR,ZDUMI
REAL(ZDUMR) = ZDUMR
AIMAG(ZDUMI) = (0.0D0,-1.0D0)*ZDUMI
CABS1(ZDUM) = DABS(REAL(ZDUM)) + DABS(AIMAG(ZDUM))
!
! COMPUTE DETERMINANT
!
IF (JOB/10 .EQ. 0) GO TO 70
DET(1) = (1.0D0,0.0D0)
DET(2) = (0.0D0,0.0D0)
TEN = 10.0D0
DO 50 I = 1, N
IF (IPVT(I) .NE. I) DET(1) = -DET(1)
DET(1) = A(I,I)*DET(1)
! ...EXIT
IF (CABS1(DET(1)) .EQ. 0.0D0) GO TO 60
10 IF (CABS1(DET(1)) .GE. 1.0D0) GO TO 20
DET(1) = CMPLX(TEN,0.0D0,KIND=dp)*DET(1)
DET(2) = DET(2) - (1.0D0,0.0D0)
GO TO 10
20 CONTINUE
30 IF (CABS1(DET(1)) .LT. TEN) GO TO 40
DET(1) = DET(1)/CMPLX(TEN,0.0D0,KIND=dp)
DET(2) = DET(2) + (1.0D0,0.0D0)
GO TO 30
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
!
! COMPUTE INVERSE(U)
!
IF (MOD(JOB,10) .EQ. 0) GO TO 150
DO 100 K = 1, N
A(K,K) = (1.0D0,0.0D0)/A(K,K)
T = -A(K,K)
CALL ZSCAL(K-1,T,A(1,K),1)
KP1 = K + 1
IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N
T = A(K,J)
A(K,J) = (0.0D0,0.0D0)
CALL ZAXPY(K,T,A(1,K),1,A(1,J),1)
80 CONTINUE
90 CONTINUE
100 CONTINUE
!
! FORM INVERSE(U)*INVERSE(L)
!
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 140
DO 130 KB = 1, NM1
K = N - KB
KP1 = K + 1
DO 110 I = KP1, N
WORK(I) = A(I,K)
A(I,K) = (0.0D0,0.0D0)
110 CONTINUE
DO 120 J = KP1, N
T = WORK(J)
CALL ZAXPY(N,T,A(1,J),1,A(1,K),1)
120 CONTINUE
L = IPVT(K)
IF (L .NE. K) CALL ZSWAP(N,A(1,K),1,A(1,L),1)
130 CONTINUE
140 CONTINUE
150 CONTINUE
RETURN
END SUBROUTINE ZGEDI