forked from stanford-futuredata/ColBERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index_updater.py
543 lines (443 loc) · 20.6 KB
/
index_updater.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import os
import ujson
import torch
import numpy as np
import tqdm
from colbert.search.index_loader import IndexLoader
from colbert.indexing.index_saver import IndexSaver
from colbert.indexing.collection_encoder import CollectionEncoder
from colbert.utils.utils import lengths2offsets, print_message, dotdict, flatten
from colbert.indexing.codecs.residual import ResidualCodec
from colbert.indexing.utils import optimize_ivf
from colbert.search.strided_tensor import StridedTensor
from colbert.modeling.checkpoint import Checkpoint
from colbert.utils.utils import print_message, batch
from colbert.data import Collection
from colbert.indexing.codecs.residual_embeddings import ResidualEmbeddings
from colbert.indexing.codecs.residual_embeddings_strided import (
ResidualEmbeddingsStrided,
)
from colbert.indexing.utils import optimize_ivf
# For testing writing into new chunks, can set DEFAULT_CHUNKSIZE smaller (e.g. 1 or 2)
DEFAULT_CHUNKSIZE = 25000
class IndexUpdater:
"""
IndexUpdater takes in a searcher and adds/remove passages from the searcher.
A checkpoint for passage-encoding must be provided for adding passages.
IndexUpdater can also persist the change of passages to the index on disk.
Sample usage:
index_updater = IndexUpdater(config, searcher, checkpoint)
added_pids = index_updater.add(passages) # all passages added to searcher with their pids returned
index_updater.remove(pids) # all pid within pids removed from searcher
searcher.search() # the search now reflects the added & removed passages
index_updater.persist_to_disk() # added & removed passages persisted to index on disk
searcher.Searcher(index, config) # if we reload the searcher now from disk index, the changes we made persists
"""
def __init__(self, config, searcher, checkpoint=None):
self.config = config
self.searcher = searcher
self.index_path = searcher.index
self.has_checkpoint = False
if checkpoint:
self.has_checkpoint = True
self.checkpoint = Checkpoint(checkpoint, config)
self.encoder = CollectionEncoder(config, self.checkpoint)
self._load_disk_ivf()
# variables to track removal / append of passages
self.removed_pids = []
self.first_new_emb = torch.sum(self.searcher.ranker.doclens).item()
self.first_new_pid = len(self.searcher.ranker.doclens)
def remove(self, pids):
"""
Input:
pids: list(int)
Return: None
Removes a list of pids from the searcher,
these pids will no longer apppear in future searches with this searcher
to erase passage data from index, call persist_to_disk() after calling remove()
"""
invalid_pids = self._check_pids(pids)
if invalid_pids:
raise ValueError("Invalid PIDs", invalid_pids)
print_message(f"#> Removing pids: {pids}...")
self._remove_pid_from_ivf(pids)
self.removed_pids.extend(pids)
def create_embs_and_doclens(
self, passages, embs_path="embs.pt", doclens_path="doclens.pt", persist=False
):
# Extend doclens and embs of self.searcher.ranker
embs, doclens = self.encoder.encode_passages(passages)
compressed_embs = self.searcher.ranker.codec.compress(embs)
if persist:
torch.save(compressed_embs, embs_path)
torch.save(doclens, doclens_path)
return compressed_embs, doclens
def update_searcher(self, compressed_embs, doclens, curr_pid):
# Update searcher
# NOTE: For codes and residuals, the tensors end with padding of length 512,
# hence we concatenate the new appendage in front of the padding
self.searcher.ranker.embeddings.codes = torch.cat(
(
self.searcher.ranker.embeddings.codes[:-512],
compressed_embs.codes,
self.searcher.ranker.embeddings.codes[-512:],
)
)
self.searcher.ranker.embeddings.residuals = torch.cat(
(
self.searcher.ranker.embeddings.residuals[:-512],
compressed_embs.residuals,
self.searcher.ranker.embeddings.residuals[-512:],
),
dim=0,
)
self.searcher.ranker.doclens = torch.cat(
(self.searcher.ranker.doclens, torch.tensor(doclens))
)
# Build partitions for each pid and update IndexUpdater's current ivf
start = 0
ivf = self.curr_ivf.tolist()
ivf_lengths = self.curr_ivf_lengths.tolist()
for doclen in doclens:
end = start + doclen
codes = compressed_embs.codes[start:end]
partitions, _ = self._build_passage_partitions(codes)
ivf, ivf_lengths = self._add_pid_to_ivf(partitions, curr_pid, ivf, ivf_lengths)
start = end
curr_pid += 1
assert start == sum(doclens)
# Replace the current ivf with new_ivf
self.curr_ivf = torch.tensor(ivf, dtype=self.curr_ivf.dtype)
self.curr_ivf_lengths = torch.tensor(ivf_lengths, dtype=self.curr_ivf_lengths.dtype)
# Update new ivf in searcher
new_ivf_tensor = StridedTensor(
self.curr_ivf, self.curr_ivf_lengths, use_gpu=False
)
assert new_ivf_tensor != self.searcher.ranker.ivf
self.searcher.ranker.ivf = new_ivf_tensor
# Rebuild StridedTensor within searcher
self.searcher.ranker.set_embeddings_strided()
def add(self, passages):
"""
Input:
passages: list(string)
Output:
passage_ids: list(int)
Adds new passages to the searcher,
to add passages to the index, call persist_to_disk() after calling add()
"""
if not self.has_checkpoint:
raise ValueError(
"No checkpoint was provided at IndexUpdater initialization."
)
# Find pid for the first added passage
start_pid = len(self.searcher.ranker.doclens)
curr_pid = start_pid
compressed_embs, doclens = self.create_embs_and_doclens(passages)
self.update_searcher(compressed_embs, doclens, curr_pid)
print_message(f"#> Added {len(passages)} passages from pid {start_pid}.")
new_pids = list(range(start_pid, start_pid + len(passages)))
return new_pids
def persist_to_disk(self):
"""
Persist all previous stored changes in IndexUpdater to index on disk,
changes include all calls to IndexUpdater.remove() and IndexUpdater.add()
before persist_to_disk() is called.
"""
print_message("#> Persisting index changes to disk")
# Propagate all removed passages to disk
self._load_metadata()
for pid in self.removed_pids:
self._remove_passage_from_disk(pid)
# Propagate all added passages to disk
# Rationale: keep record of all added passages in IndexUpdater.searcher,
# divide passages into chunks and create / write chunks here
self._load_metadata() # Reload after removal
# Calculate avg number of passages per chunk
curr_num_chunks = self.metadata["num_chunks"]
last_chunk_metadata = self._load_chunk_metadata(curr_num_chunks - 1)
if curr_num_chunks == 1:
avg_chunksize = DEFAULT_CHUNKSIZE
else:
avg_chunksize = last_chunk_metadata["passage_offset"] / (
curr_num_chunks - 1
)
print_message(f"#> Current average chunksize is: {avg_chunksize}.")
# Calculate number of additional passages we can write to the last chunk
last_chunk_capacity = max(
0, avg_chunksize - last_chunk_metadata["num_passages"]
)
print_message(
f"#> The last chunk can hold {last_chunk_capacity} additional passages."
)
# Find the first and last passages to be persisted
pid_start = self.first_new_pid
emb_start = self.first_new_emb
pid_last = len(self.searcher.ranker.doclens)
emb_last = (
emb_start + torch.sum(self.searcher.ranker.doclens[pid_start:]).item()
)
# First populate the last chunk
if last_chunk_capacity > 0:
pid_end = min(pid_last, pid_start + last_chunk_capacity)
emb_end = (
emb_start
+ torch.sum(self.searcher.ranker.doclens[pid_start:pid_end]).item()
)
# Write to last chunk
self._write_to_last_chunk(pid_start, pid_end, emb_start, emb_end)
pid_start = pid_end
emb_start = emb_end
# Then create new chunks to hold the remaining added passages
while pid_start < pid_last:
pid_end = min(pid_last, pid_start + avg_chunksize)
emb_end = (
emb_start
+ torch.sum(self.searcher.ranker.doclens[pid_start:pid_end]).item()
)
# Write new chunk with id = curr_num_chunks
self._write_to_new_chunk(
curr_num_chunks, pid_start, pid_end, emb_start, emb_end
)
curr_num_chunks += 1
pid_start = pid_end
emb_start = emb_end
assert pid_start == pid_last
assert emb_start == emb_last
# Update metadata
print_message("#> Updating metadata for added passages...")
self.metadata["num_chunks"] = curr_num_chunks
self.metadata["num_embeddings"] += torch.sum(
self.searcher.ranker.doclens
).item()
metadata_path = os.path.join(self.index_path, "metadata.json")
with open(metadata_path, "w") as output_metadata:
ujson.dump(self.metadata, output_metadata)
# Save current IVF to disk
optimized_ivf_path = os.path.join(self.index_path, "ivf.pid.pt")
torch.save((self.curr_ivf, self.curr_ivf_lengths), optimized_ivf_path)
print_message(f"#> Persisted updated IVF to {optimized_ivf_path}")
self.removed_pids = []
self.first_new_emb = torch.sum(self.searcher.ranker.doclens).item()
self.first_new_pid = len(self.searcher.ranker.doclens)
# HELPER FUNCTIONS BELOW
def _load_disk_ivf(self):
print_message(f"#> Loading IVF...")
if os.path.exists(os.path.join(self.index_path, "ivf.pid.pt")):
ivf, ivf_lengths = torch.load(
os.path.join(self.index_path, "ivf.pid.pt"), map_location="cpu"
)
else:
assert os.path.exists(os.path.join(self.index_path, "ivf.pt"))
ivf, ivf_lengths = torch.load(
os.path.join(self.index_path, "ivf.pt"), map_location="cpu"
)
ivf, ivf_lengths = optimize_ivf(ivf, ivf_lengths, self.index_path)
self.curr_ivf = ivf
self.curr_ivf_lengths = ivf_lengths
def _load_metadata(self):
with open(os.path.join(self.index_path, "metadata.json")) as f:
self.metadata = ujson.load(f)
def _load_chunk_doclens(self, chunk_idx):
doclens = []
print_message("#> Loading doclens...")
with open(os.path.join(self.index_path, f"doclens.{chunk_idx}.json")) as f:
chunk_doclens = ujson.load(f)
doclens.extend(chunk_doclens)
doclens = torch.tensor(doclens)
return doclens
def _load_chunk_codes(self, chunk_idx):
codes_path = os.path.join(self.index_path, f"{chunk_idx}.codes.pt")
return torch.load(codes_path, map_location="cpu")
def _load_chunk_residuals(self, chunk_idx):
residuals_path = os.path.join(self.index_path, f"{chunk_idx}.residuals.pt")
return torch.load(residuals_path, map_location="cpu")
def _load_chunk_metadata(self, chunk_idx):
with open(os.path.join(self.index_path, f"{chunk_idx}.metadata.json")) as f:
chunk_metadata = ujson.load(f)
return chunk_metadata
def _get_chunk_idx(self, pid):
for i in range(self.metadata["num_chunks"]):
chunk_metadata = self._load_chunk_metadata(i)
if (
chunk_metadata["passage_offset"] <= pid
and chunk_metadata["passage_offset"] + chunk_metadata["num_passages"]
> pid
):
return i
raise ValueError("Passage ID out of range")
def _check_pids(self, pids):
invalid_pids = []
for pid in pids:
if pid < 0 or pid >= len(self.searcher.ranker.doclens):
invalid_pids.append(pid)
return invalid_pids
def _remove_pid_from_ivf(self, pids):
# Helper function for IndexUpdater.remove()
new_ivf = []
new_ivf_lengths = []
runner = 0
pids = set(pids)
# Construct mask of where pids to be removed appear in ivf
mask = torch.isin(self.curr_ivf, torch.tensor(list(pids)))
indices = mask.nonzero()
# Calculate end-indices of each centroid section in ivf
section_end_indices = []
c = 0
for length in self.curr_ivf_lengths.tolist():
c += length
section_end_indices.append(c)
# Record the number of pids removed from each centroid section
removed_len = [0 for _ in range(len(section_end_indices))]
j = 0
for ind in indices:
while ind >= section_end_indices[j]:
j += 1
removed_len[j] += 1
# Update changes
new_ivf = torch.masked_select(self.curr_ivf, ~mask)
new_ivf_lengths = self.curr_ivf_lengths - torch.tensor(removed_len)
new_ivf_tensor = StridedTensor(new_ivf, new_ivf_lengths, use_gpu=False)
assert new_ivf_tensor != self.searcher.ranker.ivf
self.searcher.ranker.ivf = new_ivf_tensor
self.curr_ivf = new_ivf
self.curr_ivf_lengths = new_ivf_lengths
def _build_passage_partitions(self, codes):
# Helper function for IndexUpdater.add()
# Return a list of ordered, unique centroid ids from codes of a passage
codes = codes.sort()
ivf, values = codes.indices, codes.values
partitions, ivf_lengths = values.unique_consecutive(return_counts=True)
return partitions, ivf_lengths
def _add_pid_to_ivf(self, partitions, pid, old_ivf, old_ivf_lengths):
"""
Helper function for IndexUpdater.add()
Input:
partitions: list(int), centroid ids of the passage
pid: int, passage id
Output: None
Adds the pid of new passage into the ivf.
"""
new_ivf = []
new_ivf_lengths = []
partitions_runner = 0
ivf_runner = 0
for i in range(len(old_ivf_lengths)):
# First copy existing partition pids to new ivf
new_ivf.extend(old_ivf[ivf_runner : ivf_runner + old_ivf_lengths[i]])
new_ivf_lengths.append(old_ivf_lengths[i])
ivf_runner += old_ivf_lengths[i]
# Add pid if partition_index i is in the passage's partitions
if (
partitions_runner < len(partitions)
and i == partitions[partitions_runner]
):
new_ivf.append(pid)
new_ivf_lengths[-1] += 1
partitions_runner += 1
assert ivf_runner == len(old_ivf)
assert sum(new_ivf_lengths) == len(new_ivf)
return new_ivf, new_ivf_lengths
def _write_to_last_chunk(self, pid_start, pid_end, emb_start, emb_end):
# Helper function for IndexUpdater.persist_to_disk()
print_message(f"#> Writing {pid_end - pid_start} passages to the last chunk...")
num_chunks = self.metadata["num_chunks"]
# Append to current last chunk
curr_embs = ResidualEmbeddings.load(self.index_path, num_chunks - 1)
curr_embs.codes = torch.cat(
(curr_embs.codes, self.searcher.ranker.embeddings.codes[emb_start:emb_end])
)
curr_embs.residuals = torch.cat(
(
curr_embs.residuals,
self.searcher.ranker.embeddings.residuals[emb_start:emb_end],
)
)
path_prefix = os.path.join(self.index_path, f"{num_chunks - 1}")
curr_embs.save(path_prefix)
# Update doclen of last chunk
curr_doclens = self._load_chunk_doclens(num_chunks - 1).tolist()
curr_doclens.extend(self.searcher.ranker.doclens.tolist()[pid_start:pid_end])
doclens_path = os.path.join(self.index_path, f"doclens.{num_chunks - 1}.json")
with open(doclens_path, "w") as output_doclens:
ujson.dump(curr_doclens, output_doclens)
# Update metadata of last chunk
chunk_metadata = self._load_chunk_metadata(num_chunks - 1)
chunk_metadata["num_passages"] += pid_end - pid_start
chunk_metadata["num_embeddings"] += emb_end - emb_start
chunk_metadata_path = os.path.join(
self.index_path, f"{num_chunks - 1}.metadata.json"
)
with open(chunk_metadata_path, "w") as output_chunk_metadata:
ujson.dump(chunk_metadata, output_chunk_metadata)
def _write_to_new_chunk(self, chunk_idx, pid_start, pid_end, emb_start, emb_end):
# Helper function for IndexUpdater.persist_to_disk()
# Save embeddings to new chunk
curr_embs = ResidualEmbeddings(
self.searcher.ranker.embeddings.codes[emb_start:emb_end],
self.searcher.ranker.embeddings.residuals[emb_start:emb_end],
)
path_prefix = os.path.join(self.index_path, f"{chunk_idx}")
curr_embs.save(path_prefix)
# Create doclen json file for new chunk
curr_doclens = self.searcher.ranker.doclens.tolist()[pid_start:pid_end]
doclens_path = os.path.join(self.index_path, f"doclens.{chunk_idx}.json")
with open(doclens_path, "w+") as output_doclens:
ujson.dump(curr_doclens, output_doclens)
# Create metadata json file for new chunk
chunk_metadata = {
"passage_offset": pid_start,
"num_passages": pid_end - pid_start,
"embedding_offset": emb_start,
"num_embeddings": emb_end - emb_start,
}
chunk_metadata_path = os.path.join(
self.index_path, f"{chunk_idx}.metadata.json"
)
with open(chunk_metadata_path, "w+") as output_chunk_metadata:
ujson.dump(chunk_metadata, output_chunk_metadata)
def _remove_passage_from_disk(self, pid):
# Helper function for IndexUpdater.persist_to_disk()
chunk_idx = self._get_chunk_idx(pid)
chunk_metadata = self._load_chunk_metadata(chunk_idx)
i = pid - chunk_metadata["passage_offset"]
doclens = self._load_chunk_doclens(chunk_idx)
codes, residuals = (
self._load_chunk_codes(chunk_idx),
self._load_chunk_residuals(chunk_idx),
)
# Remove embeddings from codes and residuals
start = sum(doclens[:i])
end = start + doclens[i]
codes = torch.cat((codes[:start], codes[end:]))
residuals = torch.cat((residuals[:start], residuals[end:]))
codes_path = os.path.join(self.index_path, f"{chunk_idx}.codes.pt")
residuals_path = os.path.join(self.index_path, f"{chunk_idx}.residuals.pt")
torch.save(codes, codes_path)
torch.save(residuals, residuals_path)
# Change doclen for passage to 0
doclens = doclens.tolist()
doclen_to_remove = doclens[i]
doclens[i] = 0
doclens_path = os.path.join(self.index_path, f"doclens.{chunk_idx}.json")
with open(doclens_path, "w") as output_doclens:
ujson.dump(doclens, output_doclens)
# Modify chunk_metadata['num_embeddings'] for chunk_idx
chunk_metadata["num_embeddings"] -= doclen_to_remove
chunk_metadata_path = os.path.join(
self.index_path, f"{chunk_idx}.metadata.json"
)
with open(chunk_metadata_path, "w") as output_chunk_metadata:
ujson.dump(chunk_metadata, output_chunk_metadata)
# Modify chunk_metadata['embedding_offset'] for all later chunks (minus num_embs_removed)
for idx in range(chunk_idx + 1, self.metadata["num_chunks"]):
metadata = self._load_chunk_metadata(idx)
metadata["embedding_offset"] -= doclen_to_remove
metadata_path = os.path.join(self.index_path, f"{idx}.metadata.json")
with open(metadata_path, "w") as output_chunk_metadata:
ujson.dump(metadata, output_chunk_metadata)
# Modify num_embeddings in overall metadata (minus num_embs_removed)
self.metadata["num_embeddings"] -= doclen_to_remove
metadata_path = os.path.join(self.index_path, "metadata.json")
with open(metadata_path, "w") as output_metadata:
ujson.dump(self.metadata, output_metadata)