forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask.h
341 lines (297 loc) · 11.8 KB
/
task.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Copyright 2022 The Google Research Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Taskl generation.
// These are called once-per-worker, so they can be slow.
#ifndef AUTOML_ZERO_TASK_H_
#define AUTOML_ZERO_TASK_H_
#include <algorithm>
#include <random>
#include <vector>
#include "task.pb.h"
#include "definitions.h"
#include "gtest/gtest_prod.h"
namespace automl_zero {
constexpr IntegerT kNumTrainExamplesNotSet = -963487122;
constexpr double kDataTolerance = 0.00001;
// Holds data temporarily while it is being created, so that later it can be
// moved to a Task. This allows the Task to store const data.
template <FeatureIndexT F>
class TaskBuffer {
public:
TaskBuffer() : consumed_(false) {}
bool IsConsumed() {return consumed_;}
void Consume() {consumed_ = true;}
// How the tasks are filled is up to each task Creator struct. By the
// end of task creation, the train/valid features/labels should be
// assigned correctly.
std::vector<Vector<F>> train_features_;
std::vector<Vector<F>> valid_features_;
EvalType eval_type_;
std::vector<Scalar> train_labels_;
std::vector<Scalar> valid_labels_;
private:
// Whether this object has already been consumed by moving the data into
// a task. A consumed TaskBuffer has no further use.
bool consumed_;
};
// We define this base class so we can put tasks of different sizes into the
// same container of tasks.
class TaskInterface {
public:
// Always have at least one virtual method in this class. Because it is meant
// to be downcasted, we need to keep it polymorphic.
virtual ~TaskInterface() {}
// Returns the size of the feature vectors in this task.
virtual FeatureIndexT FeaturesSize() const = 0;
// Returns the eval type.
virtual EvalType GetEvalType() const = 0;
// Returns the number of examples in the task. These can only be called
// after the task creation is complete.
virtual IntegerT TrainExamplesPerEpoch() const = 0;
virtual IntegerT NumTrainEpochs() const = 0;
virtual IntegerT MaxTrainExamples() const = 0;
virtual IntegerT ValidSteps() const = 0;
};
template <FeatureIndexT F>
class TaskIterator;
template<typename RankT>
bool ItemEquals(const RankT& data1, const RankT& data2) {
return (data1 - data2).norm() < kDataTolerance;
}
template<>
inline bool ItemEquals<Scalar>(const Scalar& data1, const Scalar& data2) {
return abs(data1 - data2) < kDataTolerance;
}
template <typename RankT>
bool DataEquals(const std::vector<RankT>& data1,
const std::vector<RankT>& data2) {
if (data1.size() != data2.size()) return false;
for (IntegerT index = 0; index < data1.size(); ++index) {
if (!ItemEquals(data1[index], data2[index])) {
return false;
}
}
return true;
}
inline std::vector<std::vector<IntegerT>> GenerateEpochs(
const IntegerT num_examples, const IntegerT num_epochs,
std::mt19937* bit_gen) {
std::vector<IntegerT> indexes;
for (IntegerT i = 0; i < num_examples; ++i) indexes.push_back(i);
std::vector<std::vector<IntegerT>> epochs(num_epochs);
for (std::vector<IntegerT>& epoch : epochs) {
epoch.insert(epoch.begin(), indexes.begin(), indexes.end());
std::shuffle(indexes.begin(), indexes.end(), *bit_gen);
}
return epochs;
}
template <
// The dimensionality of activations.
FeatureIndexT F>
class Task : public TaskInterface {
public:
explicit Task(const size_t index, const EvalType eval_type,
const IntegerT num_train_epochs, std::mt19937* bit_gen,
TaskBuffer<F>* buffer)
: index_(index),
eval_type_(eval_type),
train_features_(std::move(buffer->train_features_)),
train_labels_(std::move(buffer->train_labels_)),
train_epochs_(
GenerateEpochs(train_features_.size(), num_train_epochs, bit_gen)),
valid_features_(std::move(buffer->valid_features_)),
valid_labels_(std::move(buffer->valid_labels_)),
valid_epochs_(GenerateEpochs(valid_features_.size(), 1, bit_gen)) {
CHECK(!buffer->IsConsumed());
buffer->Consume();
CHECK_EQ(train_features_.size(), train_labels_.size());
CHECK_EQ(valid_features_.size(), valid_labels_.size());
}
Task(const Task&) = delete;
Task& operator=(const Task&) = delete;
Task(Task&& other)
: index_(other.index_),
eval_type_(other.eval_type_),
train_features_(std::move(other.train_features_)),
train_labels_(std::move(other.train_labels_)),
train_epochs_(std::move(other.train_epochs_)),
valid_features_(std::move(other.valid_features_)),
valid_labels_(std::move(other.valid_labels_)),
valid_epochs_(std::move(other.valid_epochs_)) {}
Task& operator=(Task&& other) {
this->index_ = other.index_;
this->eval_type_ = other.eval_type_;
this->train_features_ = std::move(other.train_features_);
this->train_labels_ = std::move(other.train_labels_);
this->train_epochs_ = std::move(other.train_epochs_);
this->valid_features_ = std::move(other.valid_features_);
this->valid_labels_ = std::move(other.valid_labels_);
this->valid_epochs_ = std::move(other.valid_epochs_);
return *this;
}
bool operator==(const Task<F>& other) const {
CHECK_EQ(train_features_.size(), train_labels_.size());
CHECK_EQ(other.train_features_.size(), other.train_labels_.size());
if (!DataEquals(train_features_, other.train_features_)) {
return false;
}
if (!DataEquals(train_labels_, other.train_labels_)) {
return false;
}
if (train_epochs_ != other.train_epochs_) {
return false;
}
CHECK_EQ(valid_features_.size(), valid_labels_.size());
CHECK_EQ(other.valid_features_.size(), other.valid_labels_.size());
if (!DataEquals(valid_features_, other.valid_features_)) {
return false;
}
if (!DataEquals(valid_labels_, other.valid_labels_)) {
return false;
}
CHECK_EQ(valid_epochs_.size(), 1);
CHECK_EQ(other.valid_epochs_.size(), 1);
return true;
}
bool operator!=(const Task<F>& other) const { return !(*this == other); }
FeatureIndexT FeaturesSize() const override {return F;}
EvalType GetEvalType() const override {return eval_type_;}
IntegerT TrainExamplesPerEpoch() const override {
return train_features_.size();
}
IntegerT NumTrainEpochs() const override {
return train_epochs_.size();
}
IntegerT MaxTrainExamples() const override {
return TrainExamplesPerEpoch() * NumTrainEpochs();
}
IntegerT ValidSteps() const override {
return valid_features_.size();
}
// Iterate.
TaskIterator<F> TrainIterator() const {
return TaskIterator<F>(&train_features_, &train_labels_, &train_epochs_);
}
TaskIterator<F> ValidIterator() const {
return TaskIterator<F>(&valid_features_, &valid_labels_, &valid_epochs_);
}
// ***IMPORTANT***: if you add a member variable below, you *must* also add it
// to the move constructor. Or else it may just disappear in the middle of
// your experiment.
// Task index. Used to distinguish between different task caches.
const size_t index_;
const EvalType eval_type_;
private:
FRIEND_TEST(FillTasksTest, WorksCorrectly);
FRIEND_TEST(FillTaskWithZerosTest, WorksCorrectly);
FRIEND_TEST(FillTaskWithOnesTest, WorksCorrectly);
FRIEND_TEST(FillTaskWithIncrementingIntegersTest, WorksCorrectly);
FRIEND_TEST(FillTaskWithNonlinearDataTest, PermanenceTest);
FRIEND_TEST(FillTaskWithProjectedBinaryClassificationTaskTest,
WorksCorrectly);
FRIEND_TEST(FillTaskWithProjectedBinaryClassificationTaskTest,
BalancedClass);
FRIEND_TEST(FillTaskWithDownsampledBinaryClassificationTaskTest,
WorksCorrectly);
FRIEND_TEST(FillTaskWithDownsampledBinaryClassificationTaskTest,
BalancedClass);
FRIEND_TEST(FillTaskWithProjectedMulticlassClassificationTaskTest,
WorksCorrectly);
FRIEND_TEST(FillTaskWithProjectedMulticlassClassificationTaskTest,
BalancedClass);
FRIEND_TEST(FillTaskWithProjectedMulticlassClassificationTaskTest,
SoftensLabels);
FRIEND_TEST(FillTaskWithCustomNNClassificationDataTest, BalancedClass);
FRIEND_TEST(FillTaskWithCustomNNDistillationDataTest, PermanenceTest);
FRIEND_TEST(CreateTaskWithPolynomialRegressionDataTest, LabelsAreCorrect);
FRIEND_TEST(CreateTaskWithRandomPolynomialDataTest,
DifferentForDifferentSeeds);
FRIEND_TEST(CreateTaskWithRationalDataTest,
LabelsAreCorrect);
FRIEND_TEST(CreateTaskWithRandomRationalDataTest,
DifferentForDifferentSeeds);
FRIEND_TEST(UnitTestFixedTaskCreatorTest, GeneratesScalarTask);
FRIEND_TEST(UnitTestFixedTaskCreatorTest, GeneratesVectorTask);
FRIEND_TEST(FillWithDynamicMatrix, FillWithDynamicMatrixPermanenceTest);
FRIEND_TEST(TaskTest, HasCorrectSizes);
FRIEND_TEST(CreateTaskWithRandomMulticlassRationalDataTest,
DifferentParamSeedsCoverAllLabelIndexes);
FRIEND_TEST(CreateTaskWithRandomMulticlassRationalDataTest,
SameParamSeedsUsesOnlyTwoLabelIndexes);
// ***IMPORTANT***: if you add a member variable below, you *must* also add it
// to the move constructor. Or else it may just disappear in the middle of
// your experiment.
// The xx_features_ and xx_labels_ only contain one epoch worth of examples.
// The xx_epochs_ is a list of lists where the outer index is the epoch number
// and the inner list is the order of the examples in that epoch.
const std::vector<Vector<F>> train_features_;
const std::vector<Scalar> train_labels_;
const std::vector<std::vector<IntegerT>> train_epochs_;
const std::vector<Vector<F>> valid_features_;
const std::vector<Scalar> valid_labels_;
const std::vector<std::vector<IntegerT>> valid_epochs_;
};
template <FeatureIndexT F>
class TaskIterator {
public:
TaskIterator(const std::vector<Vector<F>>* features,
const std::vector<Scalar>* labels,
const std::vector<std::vector<IntegerT>>* epochs)
: features_(features),
labels_(labels),
epochs_(epochs),
current_example_(0),
current_epoch_(0) {}
TaskIterator(const TaskIterator&) = delete;
TaskIterator& operator=(const TaskIterator&) = delete;
TaskIterator(TaskIterator&& other)
: features_(other.features_),
labels_(other.labels_),
epochs_(other.epochs_),
current_example_(other.current_example_),
current_epoch_(other.current_epoch_) {}
TaskIterator& operator=(TaskIterator&& other) {
this->features_ = other.features_;
this->labels_ = other.labels_;
this->epochs_ = other.epochs_;
this->current_example_ = other.current_example_;
this->current_epoch_ = other.current_epoch_;
return *this;
}
bool Done() const {
return current_epoch_ >= epochs_->size();
}
void Next() {
CHECK_LE(current_epoch_, epochs_->size());
++current_example_;
if (current_example_ >= features_->size()) {
current_example_ = 0;
++current_epoch_;
}
}
inline const Vector<F>& GetFeatures() const {
return features_->at(epochs_->at(current_epoch_).at(current_example_));
}
inline const Scalar& GetLabel() const {
return labels_->at(epochs_->at(current_epoch_).at(current_example_));
}
private:
const std::vector<Vector<F>>* features_;
const std::vector<Scalar>* labels_;
const std::vector<std::vector<IntegerT>>* epochs_;
IntegerT current_example_;
IntegerT current_epoch_;
};
} // namespace automl_zero
#endif // AUTOML_ZERO_TASK_H_