forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplay.py
80 lines (66 loc) · 2.4 KB
/
replay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Replay buffer."""
import itertools as it
import pickle
import numpy as np
class Memory(object):
"""Container of episodes."""
def __init__(self, data_keys=()):
self.observations = []
self.actions = []
self.rewards = []
self.data = {k: [] for k in data_keys}
def log_init(self, obs):
"""Call this to begin logging a new episode."""
self.observations.append([obs])
self.actions.append([])
self.rewards.append([])
for value in self.data.values():
value.append([])
def log_experience(self, obs, act, reward, next_obs, data):
"""Add experience to the current episode."""
assert (self.observations[-1][-1] == obs).all()
self.observations[-1].append(next_obs)
self.actions[-1].append(act)
self.rewards[-1].append(reward)
for key in data:
self.data[key][-1].append(data[key])
def entered_states(self):
return np.array(list(it.chain.from_iterable(self.observations)))
def exited_states(self):
return np.array(list(it.chain.from_iterable(
map(lambda obslist: obslist[0:-1], self.observations))))
def attempted_actions(self):
return np.array(list(it.chain.from_iterable(self.actions)))
def observed_rewards(self):
return np.array(list(it.chain.from_iterable(self.rewards)))
def executed_state_action_pairs(self):
return np.array(list(zip(self.exited_states(), self.attempted_actions())))
def serialize(self):
return pickle.dumps(
(np.array(self.observations),
np.array(self.actions),
np.array(self.rewards),
{key: np.array(value) for key, value in self.data.items()})
)
def unserialize(self, s):
stuff = pickle.loads(s)
obs, act, rew = stuff[:3]
self.observations = obs
self.actions = act
self.rewards = rew
if len(stuff) > 3:
self.data = stuff[3]