forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsdio.c
1071 lines (1014 loc) · 29 KB
/
sdio.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2022-2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/drivers/sdhc.h>
#include <zephyr/sd/sd.h>
#include <zephyr/sd/sdmmc.h>
#include <zephyr/sd/sd_spec.h>
#include <zephyr/logging/log.h>
#include "sd_ops.h"
#include "sd_utils.h"
LOG_MODULE_DECLARE(sd, CONFIG_SD_LOG_LEVEL);
uint8_t cis_tuples[] = {
SDIO_TPL_CODE_MANIFID,
SDIO_TPL_CODE_FUNCID,
SDIO_TPL_CODE_FUNCE,
};
/*
* Send SDIO OCR using CMD5
*/
static int sdio_send_ocr(struct sd_card *card, uint32_t ocr)
{
struct sdhc_command cmd = {0};
int ret;
int retries;
cmd.opcode = SDIO_SEND_OP_COND;
cmd.arg = ocr;
cmd.response_type = (SD_RSP_TYPE_R4 | SD_SPI_RSP_TYPE_R4);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
/* Send OCR5 to initialize card */
for (retries = 0; retries < CONFIG_SD_OCR_RETRY_COUNT; retries++) {
ret = sdhc_request(card->sdhc, &cmd, NULL);
if (ret) {
if (ocr == 0) {
/* Just probing card, likely not SDIO */
return SD_NOT_SDIO;
}
return ret;
}
if (ocr == 0) {
/* We are probing card, check number of IO functions */
card->num_io = (cmd.response[0] & SDIO_OCR_IO_NUMBER)
>> SDIO_OCR_IO_NUMBER_SHIFT;
if ((card->num_io == 0) ||
((cmd.response[0] & SDIO_IO_OCR_MASK) == 0)) {
if (cmd.response[0] & SDIO_OCR_MEM_PRESENT_FLAG) {
/* Card is not an SDIO card */
return SD_NOT_SDIO;
}
/* Card is not a supported SD device */
return -ENOTSUP;
}
/* Card has IO present, return zero to
* indicate SDIO card
*/
return 0;
}
/* Check to see if card is busy with power up */
if (cmd.response[0] & SD_OCR_PWR_BUSY_FLAG) {
break;
}
/* Delay before retrying command */
sd_delay(10);
}
if (retries >= CONFIG_SD_OCR_RETRY_COUNT) {
/* OCR timed out */
LOG_ERR("Card never left busy state");
return -ETIMEDOUT;
}
LOG_DBG("SDIO responded to CMD5 after %d attempts", retries);
if (!card->host_props.is_spi) {
/* Save OCR */
card->ocr = cmd.response[0U];
}
return 0;
}
static int sdio_io_rw_direct(struct sd_card *card,
enum sdio_io_dir direction,
enum sdio_func_num func,
uint32_t reg_addr,
uint8_t data_in,
uint8_t *data_out)
{
int ret;
struct sdhc_command cmd = {0};
cmd.opcode = SDIO_RW_DIRECT;
cmd.arg = (func << SDIO_CMD_ARG_FUNC_NUM_SHIFT) |
((reg_addr & SDIO_CMD_ARG_REG_ADDR_MASK) << SDIO_CMD_ARG_REG_ADDR_SHIFT);
if (direction == SDIO_IO_WRITE) {
cmd.arg |= data_in & SDIO_DIRECT_CMD_DATA_MASK;
cmd.arg |= BIT(SDIO_CMD_ARG_RW_SHIFT);
if (data_out) {
cmd.arg |= BIT(SDIO_DIRECT_CMD_ARG_RAW_SHIFT);
}
}
cmd.response_type = (SD_RSP_TYPE_R5 | SD_SPI_RSP_TYPE_R5);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
ret = sdhc_request(card->sdhc, &cmd, NULL);
if (ret) {
return ret;
}
if (data_out) {
if (card->host_props.is_spi) {
*data_out = (cmd.response[0U] >> 8) & SDIO_DIRECT_CMD_DATA_MASK;
} else {
*data_out = cmd.response[0U] & SDIO_DIRECT_CMD_DATA_MASK;
}
}
return ret;
}
static int sdio_io_rw_extended(struct sd_card *card,
enum sdio_io_dir direction,
enum sdio_func_num func,
uint32_t reg_addr,
bool increment,
uint8_t *buf,
uint32_t blocks,
uint32_t block_size)
{
struct sdhc_command cmd = {0};
struct sdhc_data data = {0};
cmd.opcode = SDIO_RW_EXTENDED;
cmd.arg = (func << SDIO_CMD_ARG_FUNC_NUM_SHIFT) |
((reg_addr & SDIO_CMD_ARG_REG_ADDR_MASK) << SDIO_CMD_ARG_REG_ADDR_SHIFT);
cmd.arg |= (direction == SDIO_IO_WRITE) ? BIT(SDIO_CMD_ARG_RW_SHIFT) : 0;
cmd.arg |= increment ? BIT(SDIO_EXTEND_CMD_ARG_OP_CODE_SHIFT) : 0;
cmd.response_type = (SD_RSP_TYPE_R5 | SD_SPI_RSP_TYPE_R5);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
if (blocks == 0) {
/* Byte mode */
cmd.arg |= (block_size == 512) ? 0 : block_size;
} else {
/* Block mode */
cmd.arg |= BIT(SDIO_EXTEND_CMD_ARG_BLK_SHIFT) | blocks;
}
data.block_size = block_size;
/* Host expects blocks to be at least 1 */
data.blocks = blocks ? blocks : 1;
data.data = buf;
data.timeout_ms = CONFIG_SD_DATA_TIMEOUT;
return sdhc_request(card->sdhc, &cmd, &data);
}
/*
* Helper for extended r/w. Splits the transfer into the minimum possible
* number of block r/w, then uses byte transfers for remaining data
*/
static int sdio_io_rw_extended_helper(struct sdio_func *func,
enum sdio_io_dir direction,
uint32_t reg_addr,
bool increment,
uint8_t *buf,
uint32_t len)
{
int ret;
int remaining = len;
uint32_t blocks, size;
if (func->num > SDIO_MAX_IO_NUMS) {
return -EINVAL;
}
if ((func->card->cccr_flags & SDIO_SUPPORT_MULTIBLOCK) &&
((len > func->block_size))) {
/* Use block I/O for r/w where possible */
while (remaining >= func->block_size) {
blocks = remaining / func->block_size;
size = blocks * func->block_size;
ret = sdio_io_rw_extended(func->card, direction,
func->num, reg_addr, increment, buf, blocks,
func->block_size);
if (ret) {
return ret;
}
/* Update remaining length and buffer pointer */
remaining -= size;
buf += size;
if (increment) {
reg_addr += size;
}
}
}
/* Remaining data must be written using byte I/O */
while (remaining > 0) {
size = MIN(remaining, func->cis.max_blk_size);
ret = sdio_io_rw_extended(func->card, direction, func->num,
reg_addr, increment, buf, 0, size);
if (ret) {
return ret;
}
remaining -= size;
buf += size;
if (increment) {
reg_addr += size;
}
}
return 0;
}
/*
* Read card capability register to determine features card supports.
*/
static int sdio_read_cccr(struct sd_card *card)
{
int ret;
uint8_t data;
uint32_t cccr_ver;
ret = sdio_io_rw_direct(card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_CCCR_CCCR, 0, &data);
if (ret) {
LOG_DBG("CCCR read failed: %d", ret);
return ret;
}
cccr_ver = (data & SDIO_CCCR_CCCR_REV_MASK) >>
SDIO_CCCR_CCCR_REV_SHIFT;
LOG_DBG("SDIO cccr revision %u", cccr_ver);
/* Read SD spec version */
ret = sdio_io_rw_direct(card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_CCCR_SD, 0, &data);
if (ret) {
return ret;
}
card->sd_version = (data & SDIO_CCCR_SD_SPEC_MASK) >> SDIO_CCCR_SD_SPEC_SHIFT;
/* Read CCCR capability flags */
ret = sdio_io_rw_direct(card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_CCCR_CAPS, 0, &data);
if (ret) {
return ret;
}
card->cccr_flags = 0;
if (data & SDIO_CCCR_CAPS_BLS) {
card->cccr_flags |= SDIO_SUPPORT_4BIT_LS_BUS;
}
if (data & SDIO_CCCR_CAPS_SMB) {
card->cccr_flags |= SDIO_SUPPORT_MULTIBLOCK;
}
if (cccr_ver >= SDIO_CCCR_CCCR_REV_2_00) {
/* Read high speed properties */
ret = sdio_io_rw_direct(card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_CCCR_SPEED, 0, &data);
if (ret) {
return ret;
}
if (data & SDIO_CCCR_SPEED_SHS) {
card->cccr_flags |= SDIO_SUPPORT_HS;
}
}
if (cccr_ver >= SDIO_CCCR_CCCR_REV_3_00 &&
(card->flags & SD_1800MV_FLAG)) {
/* Read UHS properties */
ret = sdio_io_rw_direct(card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_CCCR_UHS, 0, &data);
if (ret) {
return ret;
}
if (sdmmc_host_uhs(&card->host_props)) {
if (data & SDIO_CCCR_UHS_SDR50) {
card->cccr_flags |= SDIO_SUPPORT_SDR50;
}
if (data & SDIO_CCCR_UHS_SDR104) {
card->cccr_flags |= SDIO_SUPPORT_SDR104;
}
if (data & SDIO_CCCR_UHS_DDR50) {
card->cccr_flags |= SDIO_SUPPORT_DDR50;
}
}
ret = sdio_io_rw_direct(card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_CCCR_DRIVE_STRENGTH, 0, &data);
if (ret) {
return ret;
}
card->switch_caps.sd_drv_type = 0;
if (data & SDIO_CCCR_DRIVE_STRENGTH_A) {
card->switch_caps.sd_drv_type |= SD_DRIVER_TYPE_A;
}
if (data & SDIO_CCCR_DRIVE_STRENGTH_C) {
card->switch_caps.sd_drv_type |= SD_DRIVER_TYPE_C;
}
if (data & SDIO_CCCR_DRIVE_STRENGTH_D) {
card->switch_caps.sd_drv_type |= SD_DRIVER_TYPE_D;
}
}
return 0;
}
static void sdio_decode_cis(struct sdio_cis *cis, enum sdio_func_num func,
uint8_t *data, uint8_t tpl_code, uint8_t tpl_link)
{
switch (tpl_code) {
case SDIO_TPL_CODE_MANIFID:
cis->manf_id = data[0] | ((uint16_t)data[1] << 8);
cis->manf_code = data[2] | ((uint16_t)data[3] << 8);
break;
case SDIO_TPL_CODE_FUNCID:
cis->func_id = data[0];
break;
case SDIO_TPL_CODE_FUNCE:
if (func == 0) {
cis->max_blk_size = data[1] | ((uint16_t)data[2] << 8);
cis->max_speed = data[3];
} else {
cis->max_blk_size = data[12] | ((uint16_t)data[13] << 8);
cis->rdy_timeout = data[28] | ((uint16_t)data[29] << 8);
}
break;
default:
LOG_WRN("Unknown CIS tuple %d", tpl_code);
break;
}
}
/*
* Read CIS for a given SDIO function.
* Tuples provides a list of tuples that should be decoded.
*/
static int sdio_read_cis(struct sdio_func *func,
uint8_t *tuples,
uint32_t tuple_count)
{
int ret;
char *data = func->card->card_buffer;
uint32_t cis_ptr = 0, num = 0;
uint8_t tpl_code, tpl_link;
bool match_tpl = false;
memset(&func->cis, 0, sizeof(struct sdio_cis));
/* First find the CIS pointer for this function */
for (int i = 0; i < 3; i++) {
ret = sdio_io_rw_direct(func->card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_FBR_BASE(func->num) + SDIO_FBR_CIS + i, 0, data);
if (ret) {
return ret;
}
cis_ptr |= *data << (i * 8);
}
/* Read CIS tuples until we have read all requested CIS tuple codes */
do {
/* Read tuple code */
ret = sdio_io_rw_direct(func->card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
cis_ptr++, 0, &tpl_code);
if (ret) {
return ret;
}
if (tpl_code == SDIO_TPL_CODE_END) {
/* End of tuple chain */
break;
}
if (tpl_code == SDIO_TPL_CODE_NULL) {
/* Skip NULL tuple */
continue;
}
/* Read tuple link */
ret = sdio_io_rw_direct(func->card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
cis_ptr++, 0, &tpl_link);
if (ret) {
return ret;
}
if (tpl_link == SDIO_TPL_CODE_END) {
/* End of tuple chain */
break;
}
/* Check to see if read tuple matches any we should look for */
for (int i = 0; i < tuple_count; i++) {
if (tpl_code == tuples[i]) {
match_tpl = true;
break;
}
}
if (match_tpl) {
/* tuple chains may be maximum of 255 bytes long */
memset(data, 0, 255);
for (int i = 0; i < tpl_link; i++) {
ret = sdio_io_rw_direct(func->card, SDIO_IO_READ,
SDIO_FUNC_NUM_0, cis_ptr++, 0, data + i);
if (ret) {
return ret;
}
}
num++;
match_tpl = false;
/* Decode the CIS data we read */
sdio_decode_cis(&func->cis, func->num, data,
tpl_code, tpl_link);
} else {
/* Advance CIS pointer */
cis_ptr += tpl_link;
}
} while (num < tuple_count);
LOG_DBG("SDIO CIS max block size for func %d: %d", func->num,
func->cis.max_blk_size);
return ret;
}
static int sdio_set_bus_width(struct sd_card *card, enum sdhc_bus_width width)
{
uint8_t reg_bus_interface = 0U;
int ret;
ret = sdio_io_rw_direct(card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_CCCR_BUS_IF, 0, ®_bus_interface);
if (ret) {
return ret;
}
reg_bus_interface &= ~SDIO_CCCR_BUS_IF_WIDTH_MASK;
switch (width) {
case SDHC_BUS_WIDTH1BIT:
reg_bus_interface |= SDIO_CCCR_BUS_IF_WIDTH_1_BIT;
break;
case SDHC_BUS_WIDTH4BIT:
reg_bus_interface |= SDIO_CCCR_BUS_IF_WIDTH_4_BIT;
break;
case SDHC_BUS_WIDTH8BIT:
reg_bus_interface |= SDIO_CCCR_BUS_IF_WIDTH_8_BIT;
break;
default:
return -ENOTSUP;
}
ret = sdio_io_rw_direct(card, SDIO_IO_WRITE, SDIO_FUNC_NUM_0,
SDIO_CCCR_BUS_IF, reg_bus_interface, ®_bus_interface);
if (ret) {
return ret;
}
/* Card now has changed bus width. Change host bus width */
card->bus_io.bus_width = width;
ret = sdhc_set_io(card->sdhc, &card->bus_io);
if (ret) {
LOG_DBG("Could not change host bus width");
}
return ret;
}
static inline void sdio_select_bus_speed(struct sd_card *card)
{
if (card->host_props.host_caps.sdr104_support &&
(card->cccr_flags & SDIO_SUPPORT_SDR104)) {
card->card_speed = SD_TIMING_SDR104;
card->switch_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
} else if (card->host_props.host_caps.ddr50_support &&
(card->cccr_flags & SDIO_SUPPORT_DDR50)) {
card->card_speed = SD_TIMING_DDR50;
card->switch_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
} else if (card->host_props.host_caps.sdr50_support &&
(card->cccr_flags & SDIO_SUPPORT_SDR50)) {
card->card_speed = SD_TIMING_SDR50;
card->switch_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
} else if (card->host_props.host_caps.high_spd_support &&
(card->cccr_flags & SDIO_SUPPORT_HS)) {
card->card_speed = SD_TIMING_HIGH_SPEED;
card->switch_caps.hs_max_dtr = HS_MAX_DTR;
} else {
card->card_speed = SD_TIMING_DEFAULT;
}
}
/* Applies selected card bus speed to card and host */
static int sdio_set_bus_speed(struct sd_card *card)
{
int ret, timing, retries = CONFIG_SD_RETRY_COUNT;
uint32_t bus_clock;
uint8_t speed_reg, target_speed;
switch (card->card_speed) {
/* Set bus clock speed */
case SD_TIMING_SDR104:
bus_clock = MIN(card->host_props.f_max, card->switch_caps.uhs_max_dtr);
target_speed = SDIO_CCCR_SPEED_SDR104;
timing = SDHC_TIMING_SDR104;
break;
case SD_TIMING_DDR50:
bus_clock = MIN(card->host_props.f_max, card->switch_caps.uhs_max_dtr);
target_speed = SDIO_CCCR_SPEED_DDR50;
timing = SDHC_TIMING_DDR50;
break;
case SD_TIMING_SDR50:
bus_clock = MIN(card->host_props.f_max, card->switch_caps.uhs_max_dtr);
target_speed = SDIO_CCCR_SPEED_SDR50;
timing = SDHC_TIMING_SDR50;
break;
case SD_TIMING_HIGH_SPEED:
bus_clock = MIN(card->host_props.f_max, card->switch_caps.hs_max_dtr);
target_speed = SDIO_CCCR_SPEED_SDR25;
timing = SDHC_TIMING_HS;
break;
case SD_TIMING_DEFAULT:
bus_clock = MIN(card->host_props.f_max, MHZ(25));
target_speed = SDIO_CCCR_SPEED_SDR12;
timing = SDHC_TIMING_LEGACY;
break;
default:
/* No need to change bus speed */
return 0;
}
/* Read the bus speed register */
ret = sdio_io_rw_direct(card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_CCCR_SPEED, 0, &speed_reg);
if (ret) {
return ret;
}
/* Attempt to set speed several times */
do {
/* Set new speed */
speed_reg &= ~SDIO_CCCR_SPEED_MASK;
speed_reg |= (target_speed << SDIO_CCCR_SPEED_SHIFT);
ret = sdio_io_rw_direct(card, SDIO_IO_WRITE, SDIO_FUNC_NUM_0,
SDIO_CCCR_SPEED, speed_reg, &speed_reg);
if (ret) {
return ret;
}
} while (((speed_reg & target_speed) != target_speed) && retries-- > 0);
if (retries == 0) {
/* Don't error out, as card can still work */
LOG_WRN("Could not set target SDIO speed");
} else {
/* Set card bus clock and timing */
card->bus_io.timing = timing;
card->bus_io.clock = bus_clock;
LOG_DBG("Setting bus clock to: %d", card->bus_io.clock);
ret = sdhc_set_io(card->sdhc, &card->bus_io);
if (ret) {
LOG_ERR("Failed to change host bus speed");
return ret;
}
}
return ret;
}
/*
* Initialize an SDIO card for use with subsystem
*/
int sdio_card_init(struct sd_card *card)
{
int ret;
uint32_t ocr_arg = 0U;
/* Probe card with SDIO OCR CM5 */
ret = sdio_send_ocr(card, ocr_arg);
if (ret) {
return ret;
}
/* Card responded to CMD5, type is SDIO */
card->type = CARD_SDIO;
/* Set voltage window */
if (card->host_props.host_caps.vol_300_support) {
ocr_arg |= SD_OCR_VDD29_30FLAG;
}
ocr_arg |= (SD_OCR_VDD32_33FLAG | SD_OCR_VDD33_34FLAG);
if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE) &&
card->host_props.host_caps.vol_180_support) {
/* See if the card also supports 1.8V */
ocr_arg |= SD_OCR_SWITCH_18_REQ_FLAG;
}
ret = sdio_send_ocr(card, ocr_arg);
if (ret) {
return ret;
}
if (card->ocr & SD_OCR_SWITCH_18_ACCEPT_FLAG) {
LOG_DBG("Card supports 1.8V signalling");
card->flags |= SD_1800MV_FLAG;
}
/* Check OCR voltage window */
if (card->ocr & SD_OCR_VDD29_30FLAG) {
card->flags |= SD_3000MV_FLAG;
}
/* Check mem present flag */
if (card->ocr & SDIO_OCR_MEM_PRESENT_FLAG) {
card->flags |= SD_MEM_PRESENT_FLAG;
}
/* Following steps are only required when using native SD mode */
if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) {
/*
* If card and host support 1.8V, perform voltage switch sequence now.
* note that we skip this switch if the UHS protocol is not enabled.
*/
if ((card->flags & SD_1800MV_FLAG) &&
(!card->host_props.is_spi) &&
(card->host_props.host_caps.vol_180_support) &&
IS_ENABLED(CONFIG_SD_UHS_PROTOCOL)) {
ret = sdmmc_switch_voltage(card);
if (ret) {
/* Disable host support for 1.8 V */
card->host_props.host_caps.vol_180_support = false;
/*
* The host or SD card may have already switched to
* 1.8V. Return SD_RESTART to indicate
* negotiation should be restarted.
*/
card->status = CARD_ERROR;
return SD_RESTART;
}
}
if ((card->flags & SD_MEM_PRESENT_FLAG) &&
((card->flags & SD_SDHC_FLAG) == 0)) {
/* We must send CMD2 to get card cid */
ret = card_read_cid(card);
if (ret) {
return ret;
}
}
/* Send CMD3 to get card relative address */
ret = sdmmc_request_rca(card);
if (ret) {
return ret;
}
/* Move the card to transfer state (with CMD7) to run
* remaining commands
*/
ret = sdmmc_select_card(card);
if (ret) {
return ret;
}
}
/* Read SDIO card common control register */
ret = sdio_read_cccr(card);
if (ret) {
return ret;
}
/* Initialize internal card function 0 structure */
card->func0.num = SDIO_FUNC_NUM_0;
card->func0.card = card;
ret = sdio_read_cis(&card->func0, cis_tuples,
ARRAY_SIZE(cis_tuples));
if (ret) {
return ret;
}
/* If card and host support 4 bit bus, enable it */
if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE) &&
((card->cccr_flags & SDIO_SUPPORT_HS) ||
(card->cccr_flags & SDIO_SUPPORT_4BIT_LS_BUS))) {
/* Raise bus width to 4 bits */
ret = sdio_set_bus_width(card, SDHC_BUS_WIDTH4BIT);
if (ret) {
return ret;
}
LOG_DBG("Raised card bus width to 4 bits");
}
/* Select and set bus speed */
sdio_select_bus_speed(card);
ret = sdio_set_bus_speed(card);
if (ret) {
return ret;
}
if (card->card_speed == SD_TIMING_SDR50 ||
card->card_speed == SD_TIMING_SDR104) {
/* SDR104, SDR50, and DDR50 mode need tuning */
ret = sdhc_execute_tuning(card->sdhc);
if (ret) {
LOG_ERR("SD tuning failed: %d", ret);
}
}
return ret;
}
/**
* @brief Initialize SDIO function.
*
* Initializes SDIO card function. The card function will not be enabled,
* but after this call returns the SDIO function structure can be used to read
* and write data from the card.
* @param func: function structure to initialize
* @param card: SD card to enable function on
* @param num: function number to initialize
* @retval 0 function was initialized successfully
* @retval -EIO: I/O error
*/
int sdio_init_func(struct sd_card *card, struct sdio_func *func,
enum sdio_func_num num)
{
/* Initialize function structure */
func->num = num;
func->card = card;
func->block_size = 0;
/* Read function properties from CCCR */
return sdio_read_cis(func, cis_tuples, ARRAY_SIZE(cis_tuples));
}
/**
* @brief Enable SDIO function
*
* Enables SDIO card function. @ref sdio_init_func must be called to
* initialized the function structure before enabling it in the card.
* @param func: function to enable
* @retval 0 function was enabled successfully
* @retval -ETIMEDOUT: card I/O timed out
* @retval -EIO: I/O error
*/
int sdio_enable_func(struct sdio_func *func)
{
int ret;
uint8_t reg;
uint16_t retries = CONFIG_SD_RETRY_COUNT;
/* Enable the I/O function */
ret = sdio_io_rw_direct(func->card, SDIO_IO_READ, SDIO_FUNC_NUM_0,
SDIO_CCCR_IO_EN, 0, ®);
if (ret) {
return ret;
}
reg |= BIT(func->num);
ret = sdio_io_rw_direct(func->card, SDIO_IO_WRITE, SDIO_FUNC_NUM_0,
SDIO_CCCR_IO_EN, reg, ®);
if (ret) {
return ret;
}
/* Wait for I/O ready to be set */
if (func->cis.rdy_timeout) {
retries = 1U;
}
do {
/* Timeout is in units of 10ms */
sd_delay(((uint32_t)func->cis.rdy_timeout) * 10U);
ret = sdio_io_rw_direct(func->card, SDIO_IO_READ,
SDIO_FUNC_NUM_0, SDIO_CCCR_IO_RD, 0, ®);
if (ret) {
return ret;
}
if (reg & BIT(func->num)) {
return 0;
}
} while (retries-- != 0);
return -ETIMEDOUT;
}
/**
* @brief Set block size of SDIO function
*
* Set desired block size for SDIO function, used by block transfers
* to SDIO registers.
* @param func: function to set block size for
* @param bsize: block size
* @retval 0 block size was set
* @retval -EINVAL: unsupported/invalid block size
* @retval -EIO: I/O error
*/
int sdio_set_block_size(struct sdio_func *func, uint16_t bsize)
{
int ret;
uint8_t reg;
if (func->cis.max_blk_size < bsize) {
return -EINVAL;
}
for (int i = 0; i < 2; i++) {
reg = (bsize >> (i * 8));
ret = sdio_io_rw_direct(func->card, SDIO_IO_WRITE, SDIO_FUNC_NUM_0,
SDIO_FBR_BASE(func->num) + SDIO_FBR_BLK_SIZE + i, reg, NULL);
if (ret) {
return ret;
}
}
func->block_size = bsize;
return 0;
}
/**
* @brief Read byte from SDIO register
*
* Reads byte from SDIO register
* @param func: function to read from
* @param reg: register address to read from
* @param val: filled with byte value read from register
* @retval 0 read succeeded
* @retval -EBUSY: card is busy with another request
* @retval -ETIMEDOUT: card read timed out
* @retval -EIO: I/O error
*/
int sdio_read_byte(struct sdio_func *func, uint32_t reg, uint8_t *val)
{
int ret;
if ((func->card->type != CARD_SDIO) && (func->card->type != CARD_COMBO)) {
LOG_WRN("Card does not support SDIO commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&func->card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT));
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
ret = sdio_io_rw_direct(func->card, SDIO_IO_READ, func->num, reg, 0, val);
k_mutex_unlock(&func->card->lock);
return ret;
}
/**
* @brief Write byte to SDIO register
*
* Writes byte to SDIO register
* @param func: function to write to
* @param reg: register address to write to
* @param write_val: value to write to register
* @retval 0 write succeeded
* @retval -EBUSY: card is busy with another request
* @retval -ETIMEDOUT: card write timed out
* @retval -EIO: I/O error
*/
int sdio_write_byte(struct sdio_func *func, uint32_t reg, uint8_t write_val)
{
int ret;
if ((func->card->type != CARD_SDIO) && (func->card->type != CARD_COMBO)) {
LOG_WRN("Card does not support SDIO commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&func->card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT));
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
ret = sdio_io_rw_direct(func->card, SDIO_IO_WRITE, func->num, reg,
write_val, NULL);
k_mutex_unlock(&func->card->lock);
return ret;
}
/**
* @brief Write byte to SDIO register, and read result
*
* Writes byte to SDIO register, and reads the register after write
* @param func: function to write to
* @param reg: register address to write to
* @param write_val: value to write to register
* @param read_val: filled with value read from register
* @retval 0 write succeeded
* @retval -EBUSY: card is busy with another request
* @retval -ETIMEDOUT: card write timed out
* @retval -EIO: I/O error
*/
int sdio_rw_byte(struct sdio_func *func, uint32_t reg, uint8_t write_val,
uint8_t *read_val)
{
int ret;
if ((func->card->type != CARD_SDIO) && (func->card->type != CARD_COMBO)) {
LOG_WRN("Card does not support SDIO commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&func->card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT));
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
ret = sdio_io_rw_direct(func->card, SDIO_IO_WRITE, func->num, reg,
write_val, read_val);
k_mutex_unlock(&func->card->lock);
return ret;
}
/**
* @brief Read bytes from SDIO fifo
*
* Reads bytes from SDIO register, treating it as a fifo. Reads will
* all be done from same address.
* @param func: function to read from
* @param reg: register address of fifo
* @param data: filled with data read from fifo
* @param len: length of data to read from card
* @retval 0 read succeeded
* @retval -EBUSY: card is busy with another request
* @retval -ETIMEDOUT: card read timed out
* @retval -EIO: I/O error
*/
int sdio_read_fifo(struct sdio_func *func, uint32_t reg, uint8_t *data,
uint32_t len)
{
int ret;
if ((func->card->type != CARD_SDIO) && (func->card->type != CARD_COMBO)) {
LOG_WRN("Card does not support SDIO commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&func->card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT));
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
ret = sdio_io_rw_extended_helper(func, SDIO_IO_READ, reg, false,
data, len);
k_mutex_unlock(&func->card->lock);
return ret;
}
/**
* @brief Write bytes to SDIO fifo
*
* Writes bytes to SDIO register, treating it as a fifo. Writes will
* all be done to same address.
* @param func: function to write to
* @param reg: register address of fifo
* @param data: data to write to fifo
* @param len: length of data to write to card
* @retval 0 write succeeded
* @retval -EBUSY: card is busy with another request
* @retval -ETIMEDOUT: card write timed out
* @retval -EIO: I/O error
*/
int sdio_write_fifo(struct sdio_func *func, uint32_t reg, uint8_t *data,
uint32_t len)
{
int ret;
if ((func->card->type != CARD_SDIO) && (func->card->type != CARD_COMBO)) {
LOG_WRN("Card does not support SDIO commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&func->card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT));
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
ret = sdio_io_rw_extended_helper(func, SDIO_IO_WRITE, reg, false,
data, len);
k_mutex_unlock(&func->card->lock);
return ret;
}
/**
* @brief Read blocks from SDIO fifo
*
* Reads blocks from SDIO register, treating it as a fifo. Reads will
* all be done from same address.
* @param func: function to read from
* @param reg: register address of fifo
* @param data: filled with data read from fifo
* @param blocks: number of blocks to read from fifo
* @retval 0 read succeeded
* @retval -EBUSY: card is busy with another request
* @retval -ETIMEDOUT: card read timed out
* @retval -EIO: I/O error
*/
int sdio_read_blocks_fifo(struct sdio_func *func, uint32_t reg, uint8_t *data,
uint32_t blocks)
{
int ret;
if ((func->card->type != CARD_SDIO) && (func->card->type != CARD_COMBO)) {
LOG_WRN("Card does not support SDIO commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&func->card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT));
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
ret = sdio_io_rw_extended(func->card, SDIO_IO_READ, func->num, reg,
false, data, blocks, func->block_size);
k_mutex_unlock(&func->card->lock);
return ret;
}
/**
* @brief Write blocks to SDIO fifo
*
* Writes blocks from SDIO register, treating it as a fifo. Writes will
* all be done to same address.
* @param func: function to write to
* @param reg: register address of fifo
* @param data: data to write to fifo
* @param blocks: number of blocks to write to fifo
* @retval 0 write succeeded
* @retval -EBUSY: card is busy with another request
* @retval -ETIMEDOUT: card write timed out
* @retval -EIO: I/O error
*/
int sdio_write_blocks_fifo(struct sdio_func *func, uint32_t reg, uint8_t *data,
uint32_t blocks)
{
int ret;
if ((func->card->type != CARD_SDIO) && (func->card->type != CARD_COMBO)) {
LOG_WRN("Card does not support SDIO commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&func->card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT));
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
ret = sdio_io_rw_extended(func->card, SDIO_IO_WRITE, func->num, reg,