forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentropy_stm32.c
883 lines (737 loc) · 23.3 KB
/
entropy_stm32.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
/*
* Copyright (c) 2017 Erwin Rol <erwin@erwinrol.com>
* Copyright (c) 2018 Nordic Semiconductor ASA
* Copyright (c) 2017 Exati Tecnologia Ltda.
* Copyright (c) 2020 STMicroelectronics.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/entropy.h>
#include <zephyr/random/random.h>
#include <zephyr/init.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/util.h>
#include <errno.h>
#include <soc.h>
#include <zephyr/pm/policy.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_rng.h>
#include <stm32_ll_pka.h>
#include <stm32_ll_system.h>
#include <zephyr/sys/printk.h>
#include <zephyr/pm/device.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/irq.h>
#include <zephyr/sys/barrier.h>
#include "stm32_hsem.h"
#include "entropy_stm32.h"
#if defined(RNG_CR_CONDRST)
#define STM32_CONDRST_SUPPORT
#endif
/*
* This driver need to take into account all STM32 family:
* - simple rng without hardware fifo and no DMA.
* - Variable delay between two consecutive random numbers
* (depending on family and clock settings)
* - IRQ-less TRNG instances
*
* Due to the first byte in a stream of bytes being more costly on
* some platforms a "water system" inspired algorithm is used to
* amortize the cost of the first byte.
*
* The algorithm will delay generation of entropy until the amount of
* bytes goes below THRESHOLD, at which point it will generate entropy
* until the BUF_LEN limit is reached.
*
* The entropy level is checked at the end of every consumption of
* entropy.
*
* For TRNG instances with no IRQ, a delayable work item is scheduled
* on the system work queue and used to "simulate" device-generated
* interrupts - this is done to reduce polling to a minimum.
*/
struct rng_pool {
uint8_t first_alloc;
uint8_t first_read;
uint8_t last;
uint8_t mask;
uint8_t threshold;
FLEXIBLE_ARRAY_DECLARE(uint8_t, buffer);
};
#define RNG_POOL_DEFINE(name, len) uint8_t name[sizeof(struct rng_pool) + (len)]
BUILD_ASSERT((CONFIG_ENTROPY_STM32_ISR_POOL_SIZE &
(CONFIG_ENTROPY_STM32_ISR_POOL_SIZE - 1)) == 0,
"The CONFIG_ENTROPY_STM32_ISR_POOL_SIZE must be a power of 2!");
BUILD_ASSERT((CONFIG_ENTROPY_STM32_THR_POOL_SIZE &
(CONFIG_ENTROPY_STM32_THR_POOL_SIZE - 1)) == 0,
"The CONFIG_ENTROPY_STM32_THR_POOL_SIZE must be a power of 2!");
/**
* RM0505 §14.4 "TRNG functional description":
* To use the TRNG peripheral the system clock frequency must be
* at least 32 MHz. See also: §6.2.2 "Peripheral clock details".
*/
BUILD_ASSERT(!IS_ENABLED(CONFIG_SOC_STM32WB09XX) ||
CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC >= (32 * 1000 * 1000),
"STM32WB09: TRNG requires system clock frequency >= 32MHz");
struct entropy_stm32_rng_dev_cfg {
struct stm32_pclken *pclken;
};
struct entropy_stm32_rng_dev_data {
RNG_TypeDef *rng;
const struct device *clock;
struct k_sem sem_lock;
struct k_sem sem_sync;
struct k_work filling_work;
#if IRQLESS_TRNG
/* work item that polls TRNG to refill pools */
struct k_work_delayable trng_poll_work;
#endif /* IRQLESS_TRNG */
bool filling_pools;
RNG_POOL_DEFINE(isr, CONFIG_ENTROPY_STM32_ISR_POOL_SIZE);
RNG_POOL_DEFINE(thr, CONFIG_ENTROPY_STM32_THR_POOL_SIZE);
};
static struct stm32_pclken pclken_rng[] = STM32_DT_INST_CLOCKS(0);
static struct entropy_stm32_rng_dev_cfg entropy_stm32_rng_config = {
.pclken = pclken_rng
};
static struct entropy_stm32_rng_dev_data entropy_stm32_rng_data = {
.rng = (RNG_TypeDef *)DT_INST_REG_ADDR(0),
};
static int entropy_stm32_suspend(void)
{
const struct device *dev = DEVICE_DT_GET(DT_DRV_INST(0));
struct entropy_stm32_rng_dev_data *dev_data = dev->data;
const struct entropy_stm32_rng_dev_cfg *dev_cfg = dev->config;
RNG_TypeDef *rng = dev_data->rng;
int res;
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
/* Prevent concurrent access with PM */
z_stm32_hsem_lock(CFG_HW_RNG_SEMID, HSEM_LOCK_WAIT_FOREVER);
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
LL_RNG_Disable(rng);
#if defined(CONFIG_SOC_STM32WB09XX)
/* RM0505 Rev.2 §14.4:
* "After the TRNG IP is disabled by setting CR.DISABLE, in order to
* properly restart the TRNG IP, the AES_RESET bit must be set to 1
* (that is, resetting the AES core and restarting all health tests)."
*/
LL_RNG_SetAesReset(rng, 1);
#endif /* CONFIG_SOC_STM32WB09XX */
#ifdef CONFIG_SOC_SERIES_STM32WBAX
uint32_t wait_cycles, rng_rate;
if (LL_PKA_IsEnabled(PKA)) {
return 0;
}
if (clock_control_get_rate(dev_data->clock,
(clock_control_subsys_t) &dev_cfg->pclken[0],
&rng_rate) < 0) {
return -EIO;
}
wait_cycles = SystemCoreClock / rng_rate * 2;
for (int i = wait_cycles; i >= 0; i--) {
}
#endif /* CONFIG_SOC_SERIES_STM32WBAX */
res = clock_control_off(dev_data->clock,
(clock_control_subsys_t)&dev_cfg->pclken[0]);
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
z_stm32_hsem_unlock(CFG_HW_RNG_SEMID);
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
return res;
}
static int entropy_stm32_resume(void)
{
const struct device *dev = DEVICE_DT_GET(DT_DRV_INST(0));
struct entropy_stm32_rng_dev_data *dev_data = dev->data;
const struct entropy_stm32_rng_dev_cfg *dev_cfg = dev->config;
RNG_TypeDef *rng = dev_data->rng;
int res;
res = clock_control_on(dev_data->clock,
(clock_control_subsys_t)&dev_cfg->pclken[0]);
LL_RNG_Enable(rng);
ll_rng_enable_it(rng);
return res;
}
static void configure_rng(void)
{
RNG_TypeDef *rng = entropy_stm32_rng_data.rng;
#ifdef STM32_CONDRST_SUPPORT
uint32_t desired_nist_cfg = DT_INST_PROP_OR(0, nist_config, 0U);
uint32_t desired_htcr = DT_INST_PROP_OR(0, health_test_config, 0U);
uint32_t cur_nist_cfg = 0U;
uint32_t cur_htcr = 0U;
#if DT_INST_NODE_HAS_PROP(0, nist_config)
/*
* Configure the RNG_CR in compliance with the NIST SP800.
* The nist-config is direclty copied from the DTS.
* The RNG clock must be 48MHz else the clock DIV is not adpated.
* The RNG_CR_CONDRST is set to 1 at the same time the RNG_CR is written
*/
cur_nist_cfg = READ_BIT(rng->CR,
(RNG_CR_NISTC | RNG_CR_CLKDIV | RNG_CR_RNG_CONFIG1 |
RNG_CR_RNG_CONFIG2 | RNG_CR_RNG_CONFIG3
#if defined(RNG_CR_ARDIS)
| RNG_CR_ARDIS
/* For STM32U5 series, the ARDIS bit7 is considered in the nist-config */
#endif /* RNG_CR_ARDIS */
));
#endif /* nist_config */
#if DT_INST_NODE_HAS_PROP(0, health_test_config)
cur_htcr = LL_RNG_GetHealthConfig(rng);
#endif /* health_test_config */
if (cur_nist_cfg != desired_nist_cfg || cur_htcr != desired_htcr) {
MODIFY_REG(rng->CR, cur_nist_cfg, (desired_nist_cfg | RNG_CR_CONDRST));
#if DT_INST_NODE_HAS_PROP(0, health_test_config)
#if DT_INST_NODE_HAS_PROP(0, health_test_magic)
LL_RNG_SetHealthConfig(rng, DT_INST_PROP(0, health_test_magic));
#endif /* health_test_magic */
LL_RNG_SetHealthConfig(rng, desired_htcr);
#endif /* health_test_config */
LL_RNG_DisableCondReset(rng);
/* Wait for conditioning reset process to be completed */
while (LL_RNG_IsEnabledCondReset(rng) == 1) {
}
}
#endif /* STM32_CONDRST_SUPPORT */
LL_RNG_Enable(rng);
ll_rng_enable_it(rng);
}
static void acquire_rng(void)
{
entropy_stm32_resume();
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
/* Lock the RNG to prevent concurrent access */
z_stm32_hsem_lock(CFG_HW_RNG_SEMID, HSEM_LOCK_WAIT_FOREVER);
/* RNG configuration could have been changed by the other core */
configure_rng();
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
}
static void release_rng(void)
{
entropy_stm32_suspend();
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
z_stm32_hsem_unlock(CFG_HW_RNG_SEMID);
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
}
static int entropy_stm32_got_error(RNG_TypeDef *rng)
{
__ASSERT_NO_MSG(rng != NULL);
#if defined(STM32_CONDRST_SUPPORT)
if (LL_RNG_IsActiveFlag_CECS(rng)) {
return 1;
}
#endif
if (ll_rng_is_active_seis(rng)) {
return 1;
}
return 0;
}
#if defined(STM32_CONDRST_SUPPORT)
/* SOCS w/ soft-reset support: execute the reset */
static int recover_seed_error(RNG_TypeDef *rng)
{
uint32_t count_timeout = 0;
LL_RNG_EnableCondReset(rng);
LL_RNG_DisableCondReset(rng);
/* When reset process is done cond reset bit is read 0
* This typically takes: 2 AHB clock cycles + 2 RNG clock cycles.
*/
while (LL_RNG_IsEnabledCondReset(rng) ||
ll_rng_is_active_seis(rng) ||
ll_rng_is_active_secs(rng)) {
count_timeout++;
if (count_timeout == 10) {
return -ETIMEDOUT;
}
}
return 0;
}
#else /* !STM32_CONDRST_SUPPORT */
/* SOCS w/o soft-reset support: flush pipeline */
static int recover_seed_error(RNG_TypeDef *rng)
{
ll_rng_clear_seis(rng);
for (int i = 0; i < 12; ++i) {
(void)ll_rng_read_rand_data(rng);
}
if (ll_rng_is_active_seis(rng) != 0) {
return -EIO;
}
return 0;
}
#endif /* !STM32_CONDRST_SUPPORT */
static int random_byte_get(void)
{
int retval = -EAGAIN;
unsigned int key;
RNG_TypeDef *rng = entropy_stm32_rng_data.rng;
key = irq_lock();
#if defined(CONFIG_ENTROPY_STM32_CLK_CHECK)
if (!k_is_pre_kernel()) {
/* CECS bit signals that a clock configuration issue is detected,
* which may lead to generation of non truly random data.
*/
__ASSERT(LL_RNG_IsActiveFlag_CECS(rng) == 0,
"CECS = 1: RNG domain clock is too slow.\n"
"\tSee ref man and update target clock configuration.");
}
#endif /* CONFIG_ENTROPY_STM32_CLK_CHECK */
if (ll_rng_is_active_seis(rng) && (recover_seed_error(rng) < 0)) {
retval = -EIO;
goto out;
}
if (ll_rng_is_active_drdy(rng) == 1) {
if (entropy_stm32_got_error(rng)) {
retval = -EIO;
goto out;
}
retval = ll_rng_read_rand_data(rng);
if (retval == 0) {
/* A seed error could have occurred between RNG_SR
* polling and RND_DR output reading.
*/
retval = -EAGAIN;
goto out;
}
retval &= 0xFF;
}
out:
irq_unlock(key);
return retval;
}
static uint16_t generate_from_isr(uint8_t *buf, uint16_t len)
{
uint16_t remaining_len = len;
#if !IRQLESS_TRNG
__ASSERT_NO_MSG(!irq_is_enabled(IRQN));
#endif /* !IRQLESS_TRNG */
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
__ASSERT_NO_MSG(z_stm32_hsem_is_owned(CFG_HW_RNG_SEMID));
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
/* do not proceed if a Seed error occurred */
if (ll_rng_is_active_secs(entropy_stm32_rng_data.rng) ||
ll_rng_is_active_seis(entropy_stm32_rng_data.rng)) {
(void)random_byte_get(); /* this will recover the error */
return 0; /* return cnt is null : no random data available */
}
#if !IRQLESS_TRNG
/* Clear NVIC pending bit. This ensures that a subsequent
* RNG event will set the Cortex-M single-bit event register
* to 1 (the bit is set when NVIC pending IRQ status is
* changed from 0 to 1)
*/
NVIC_ClearPendingIRQ(IRQN);
#endif /* !IRQLESS_TRNG */
do {
int byte;
while (ll_rng_is_active_drdy(
entropy_stm32_rng_data.rng) != 1) {
#if !IRQLESS_TRNG
/*
* Enter low-power mode while waiting for event
* generated by TRNG interrupt becoming pending.
*
* To guarantee waking up from the event, the
* SEV-On-Pend feature must be enabled (enabled
* during ARCH initialization).
*
* DSB is recommended by spec before WFE (to
* guarantee completion of memory transactions)
*/
barrier_dsync_fence_full();
__WFE();
__SEV();
__WFE();
#endif /* !IRQLESS_TRNG */
}
byte = random_byte_get();
#if !IRQLESS_TRNG
NVIC_ClearPendingIRQ(IRQN);
#endif /* IRQLESS_TRNG */
if (byte < 0) {
continue;
}
buf[--remaining_len] = byte;
} while (remaining_len);
return len;
}
static int start_pool_filling(bool wait)
{
unsigned int key;
bool already_filling;
key = irq_lock();
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
/* In non-blocking mode, return immediately if the RNG is not available */
if (!wait && z_stm32_hsem_try_lock(CFG_HW_RNG_SEMID) != 0) {
irq_unlock(key);
return -EAGAIN;
}
#else
ARG_UNUSED(wait);
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
already_filling = entropy_stm32_rng_data.filling_pools;
entropy_stm32_rng_data.filling_pools = true;
irq_unlock(key);
if (unlikely(already_filling)) {
return 0;
}
/* Prevent the clocks to be stopped during the duration the rng pool is
* being populated. The ISR will release the constraint again when the
* rng pool is filled.
*/
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
acquire_rng();
#if IRQLESS_TRNG
k_work_schedule(&entropy_stm32_rng_data.trng_poll_work, TRNG_GENERATION_DELAY);
#else /* !IRQLESS_TRNG */
irq_enable(IRQN);
#endif /* IRQLESS_TRNG */
return 0;
}
static void pool_filling_work_handler(struct k_work *work)
{
if (start_pool_filling(false) != 0) {
/* RNG could not be acquired, try again */
k_work_submit(work);
}
}
static uint16_t rng_pool_get(struct rng_pool *rngp, uint8_t *buf,
uint16_t len)
{
uint32_t last = rngp->last;
uint32_t mask = rngp->mask;
uint8_t *dst = buf;
uint32_t first, available;
uint32_t other_read_in_progress;
unsigned int key;
key = irq_lock();
first = rngp->first_alloc;
/*
* The other_read_in_progress is non-zero if rngp->first_read != first,
* which means that lower-priority code (which was interrupted by this
* call) already allocated area for read.
*/
other_read_in_progress = (rngp->first_read ^ first);
available = (last - first) & mask;
if (available < len) {
len = available;
}
/*
* Move alloc index forward to signal, that part of the buffer is
* now reserved for this call.
*/
rngp->first_alloc = (first + len) & mask;
irq_unlock(key);
while (likely(len--)) {
*dst++ = rngp->buffer[first];
first = (first + 1) & mask;
}
/*
* If this call is the last one accessing the pool, move read index
* to signal that all allocated regions are now read and could be
* overwritten.
*/
if (likely(!other_read_in_progress)) {
key = irq_lock();
rngp->first_read = rngp->first_alloc;
irq_unlock(key);
}
len = dst - buf;
available = available - len;
if (available <= rngp->threshold) {
/*
* Avoid starting pool filling from ISR as it might require
* blocking if RNG is not available and a race condition could
* also occur if this ISR has interrupted the RNG ISR.
*
* If the TRNG has no IRQ line, always schedule the work item,
* as this is what fills the RNG pools instead of the ISR.
*/
if (k_is_in_isr() || IRQLESS_TRNG) {
k_work_submit(&entropy_stm32_rng_data.filling_work);
} else {
start_pool_filling(true);
}
}
return len;
}
static int rng_pool_put(struct rng_pool *rngp, uint8_t byte)
{
uint8_t first = rngp->first_read;
uint8_t last = rngp->last;
uint8_t mask = rngp->mask;
/* Signal error if the pool is full. */
if (((last - first) & mask) == mask) {
return -ENOBUFS;
}
rngp->buffer[last] = byte;
rngp->last = (last + 1) & mask;
return 0;
}
static void rng_pool_init(struct rng_pool *rngp, uint16_t size,
uint8_t threshold)
{
rngp->first_alloc = 0U;
rngp->first_read = 0U;
rngp->last = 0U;
rngp->mask = size - 1;
rngp->threshold = threshold;
}
static int perform_pool_refill(void)
{
int byte, ret;
byte = random_byte_get();
if (byte < 0) {
return -EIO;
}
ret = rng_pool_put((struct rng_pool *)(entropy_stm32_rng_data.isr),
byte);
if (ret < 0) {
ret = rng_pool_put(
(struct rng_pool *)(entropy_stm32_rng_data.thr),
byte);
if (ret < 0) {
#if !IRQLESS_TRNG
irq_disable(IRQN);
#endif /* !IRQLESS_TRNG */
release_rng();
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
entropy_stm32_rng_data.filling_pools = false;
}
k_sem_give(&entropy_stm32_rng_data.sem_sync);
}
return ret;
}
#if IRQLESS_TRNG
static void trng_poll_work_item(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
RNG_TypeDef *rng = entropy_stm32_rng_data.rng;
/* Seed error occurred: reset TRNG and try again */
if (ll_rng_is_active_secs(entropy_stm32_rng_data.rng) ||
ll_rng_is_active_seis(entropy_stm32_rng_data.rng)) {
(void)random_byte_get(); /* this will recover the error */
} else if (ll_rng_is_active_drdy(rng)) {
/* Entropy available: read it and fill pools */
int res = perform_pool_refill();
if (res == -ENOBUFS) {
/**
* All RNG pools are full - no more work needed.
* Exit early to stop the work item from re-scheduling
* itself. The RNG peripheral has already been released
* by perform_pool_refill().
*/
return;
}
} else {
/**
* No entropy available - try again later
*/
}
/* Schedule ourselves for next cycle */
k_work_schedule(dwork, TRNG_GENERATION_DELAY);
}
#else /* !IRQLESS_TRNG */
static void stm32_rng_isr(const void *arg)
{
ARG_UNUSED(arg);
(void)perform_pool_refill();
}
#endif /* IRQLESS_TRNG */
static int entropy_stm32_rng_get_entropy(const struct device *dev,
uint8_t *buf,
uint16_t len)
{
/* Check if this API is called on correct driver instance. */
__ASSERT_NO_MSG(&entropy_stm32_rng_data == dev->data);
while (len) {
uint16_t bytes;
k_sem_take(&entropy_stm32_rng_data.sem_lock, K_FOREVER);
bytes = rng_pool_get(
(struct rng_pool *)(entropy_stm32_rng_data.thr),
buf, len);
if (bytes == 0U) {
/* Pool is empty: Sleep until next interrupt. */
k_sem_take(&entropy_stm32_rng_data.sem_sync, K_FOREVER);
}
k_sem_give(&entropy_stm32_rng_data.sem_lock);
len -= bytes;
buf += bytes;
}
return 0;
}
static int entropy_stm32_rng_get_entropy_isr(const struct device *dev,
uint8_t *buf,
uint16_t len,
uint32_t flags)
{
uint16_t cnt = len;
/* Check if this API is called on correct driver instance. */
__ASSERT_NO_MSG(&entropy_stm32_rng_data == dev->data);
if (likely((flags & ENTROPY_BUSYWAIT) == 0U)) {
return rng_pool_get(
(struct rng_pool *)(entropy_stm32_rng_data.isr),
buf, len);
}
if (len) {
/**
* On TRNG without interrupt line, we cannot allow reentrancy,
* so we have to suspend all interrupts. Otherwise, only suspend
* it until we have established ourselves as owner of the TRNG
* to prevent race with a higher priority interrupt handler.
*/
unsigned int key = irq_lock();
bool rng_already_acquired = false;
#if !IRQLESS_TRNG
int irq_enabled = irq_is_enabled(IRQN);
rng_already_acquired = (irq_enabled != 0);
irq_disable(IRQN);
irq_unlock(key);
#endif /* !IRQLESS_TRNG */
/* Do not release if IRQ is enabled. RNG will be released in ISR
* when the pools are full. On TRNG without interrupt line, the
* default value of false ensures TRNG is always released.
*/
if (z_stm32_hsem_is_owned(CFG_HW_RNG_SEMID)) {
rng_already_acquired = true;
}
acquire_rng();
cnt = generate_from_isr(buf, len);
/* Restore the state of the RNG lock and IRQ */
if (!rng_already_acquired) {
release_rng();
}
#if IRQLESS_TRNG
/* Exit critical section */
irq_unlock(key);
#else
if (irq_enabled) {
irq_enable(IRQN);
}
#endif /* !IRQLESS_TRNG */
}
return cnt;
}
static int entropy_stm32_rng_init(const struct device *dev)
{
struct entropy_stm32_rng_dev_data *dev_data;
const struct entropy_stm32_rng_dev_cfg *dev_cfg;
int res;
__ASSERT_NO_MSG(dev != NULL);
dev_data = dev->data;
dev_cfg = dev->config;
__ASSERT_NO_MSG(dev_data != NULL);
__ASSERT_NO_MSG(dev_cfg != NULL);
dev_data->clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (!device_is_ready(dev_data->clock)) {
return -ENODEV;
}
res = clock_control_on(dev_data->clock,
(clock_control_subsys_t)&dev_cfg->pclken[0]);
__ASSERT_NO_MSG(res == 0);
/* Configure domain clock if any */
if (DT_INST_NUM_CLOCKS(0) > 1) {
res = clock_control_configure(dev_data->clock,
(clock_control_subsys_t)&dev_cfg->pclken[1],
NULL);
__ASSERT(res == 0, "Could not select RNG domain clock");
}
/* Locking semaphore initialized to 1 (unlocked) */
k_sem_init(&dev_data->sem_lock, 1, 1);
/* Synching semaphore */
k_sem_init(&dev_data->sem_sync, 0, 1);
k_work_init(&dev_data->filling_work, pool_filling_work_handler);
#if IRQLESS_TRNG
k_work_init_delayable(&dev_data->trng_poll_work, trng_poll_work_item);
#endif /* IRQLESS_TRNG */
rng_pool_init((struct rng_pool *)(dev_data->thr),
CONFIG_ENTROPY_STM32_THR_POOL_SIZE,
CONFIG_ENTROPY_STM32_THR_THRESHOLD);
rng_pool_init((struct rng_pool *)(dev_data->isr),
CONFIG_ENTROPY_STM32_ISR_POOL_SIZE,
CONFIG_ENTROPY_STM32_ISR_THRESHOLD);
#if !IRQLESS_TRNG
IRQ_CONNECT(IRQN, IRQ_PRIO, stm32_rng_isr, &entropy_stm32_rng_data, 0);
#endif /* !IRQLESS_TRNG */
#if !defined(CONFIG_SOC_SERIES_STM32WBX) && !defined(CONFIG_STM32H7_DUAL_CORE)
/* For multi-core MCUs, RNG configuration is automatically performed
* after acquiring the RNG in start_pool_filling()
*/
configure_rng();
#endif /* !CONFIG_SOC_SERIES_STM32WBX && !CONFIG_STM32H7_DUAL_CORE */
start_pool_filling(true);
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int entropy_stm32_rng_pm_action(const struct device *dev,
enum pm_device_action action)
{
struct entropy_stm32_rng_dev_data *dev_data = dev->data;
int res = 0;
/* Remove warning on some platforms */
ARG_UNUSED(dev_data);
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
/* Lock to Prevent concurrent access with PM */
z_stm32_hsem_lock(CFG_HW_RNG_SEMID, HSEM_LOCK_WAIT_FOREVER);
/* Call release_rng instead of entropy_stm32_suspend to avoid double hsem_unlock */
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
release_rng();
break;
case PM_DEVICE_ACTION_RESUME:
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
#if DT_INST_NODE_HAS_PROP(0, health_test_config)
entropy_stm32_resume();
#if DT_INST_NODE_HAS_PROP(0, health_test_magic)
LL_RNG_SetHealthConfig(dev_data->rng, DT_INST_PROP(0, health_test_magic));
#endif /* health_test_magic */
if (LL_RNG_GetHealthConfig(dev_data->rng) !=
DT_INST_PROP_OR(0, health_test_config, 0U)) {
entropy_stm32_rng_init(dev);
} else if (!entropy_stm32_rng_data.filling_pools) {
/* Resume RNG only if it was suspended during filling pool */
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
/* Lock to Prevent concurrent access with PM */
z_stm32_hsem_lock(CFG_HW_RNG_SEMID, HSEM_LOCK_WAIT_FOREVER);
/*
* Call release_rng instead of entropy_stm32_suspend
* to avoid double hsem_unlock
*/
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
release_rng();
}
#endif /* health_test_config */
} else {
/* Resume RNG only if it was suspended during filling pool */
if (entropy_stm32_rng_data.filling_pools) {
res = entropy_stm32_resume();
}
}
break;
default:
return -ENOTSUP;
}
return res;
}
#endif /* CONFIG_PM_DEVICE */
static DEVICE_API(entropy, entropy_stm32_rng_api) = {
.get_entropy = entropy_stm32_rng_get_entropy,
.get_entropy_isr = entropy_stm32_rng_get_entropy_isr
};
PM_DEVICE_DT_INST_DEFINE(0, entropy_stm32_rng_pm_action);
DEVICE_DT_INST_DEFINE(0,
entropy_stm32_rng_init,
PM_DEVICE_DT_INST_GET(0),
&entropy_stm32_rng_data, &entropy_stm32_rng_config,
PRE_KERNEL_1, CONFIG_ENTROPY_INIT_PRIORITY,
&entropy_stm32_rng_api);