|
| 1 | +import sys |
| 2 | +import json |
| 3 | +import os |
| 4 | +import glob |
| 5 | +from os.path import join as fullfile |
| 6 | +import numpy as np |
| 7 | + |
| 8 | + |
| 9 | +def overlap_ratio(rect1, rect2): |
| 10 | + ''' |
| 11 | + Compute overlap ratio between two rects |
| 12 | + - rect: 1d array of [x,y,w,h] or |
| 13 | + 2d array of N x [x,y,w,h] |
| 14 | + ''' |
| 15 | + |
| 16 | + if rect1.ndim==1: |
| 17 | + rect1 = rect1[None,:] |
| 18 | + if rect2.ndim==1: |
| 19 | + rect2 = rect2[None,:] |
| 20 | + |
| 21 | + left = np.maximum(rect1[:,0], rect2[:,0]) |
| 22 | + right = np.minimum(rect1[:,0]+rect1[:,2], rect2[:,0]+rect2[:,2]) |
| 23 | + top = np.maximum(rect1[:,1], rect2[:,1]) |
| 24 | + bottom = np.minimum(rect1[:,1]+rect1[:,3], rect2[:,1]+rect2[:,3]) |
| 25 | + |
| 26 | + intersect = np.maximum(0,right - left) * np.maximum(0,bottom - top) |
| 27 | + union = rect1[:,2]*rect1[:,3] + rect2[:,2]*rect2[:,3] - intersect |
| 28 | + iou = np.clip(intersect / union, 0, 1) |
| 29 | + return iou |
| 30 | + |
| 31 | + |
| 32 | +def compute_success_overlap(gt_bb, result_bb): |
| 33 | + thresholds_overlap = np.arange(0, 1.05, 0.05) |
| 34 | + n_frame = len(gt_bb) |
| 35 | + success = np.zeros(len(thresholds_overlap)) |
| 36 | + iou = overlap_ratio(gt_bb, result_bb) |
| 37 | + for i in range(len(thresholds_overlap)): |
| 38 | + success[i] = sum(iou > thresholds_overlap[i]) / float(n_frame) |
| 39 | + return success |
| 40 | + |
| 41 | + |
| 42 | +def compute_success_error(gt_center, result_center): |
| 43 | + thresholds_error = np.arange(0, 51, 1) |
| 44 | + n_frame = len(gt_center) |
| 45 | + success = np.zeros(len(thresholds_error)) |
| 46 | + dist = np.sqrt(np.sum(np.power(gt_center - result_center, 2), axis=1)) |
| 47 | + for i in range(len(thresholds_error)): |
| 48 | + success[i] = sum(dist <= thresholds_error[i]) / float(n_frame) |
| 49 | + return success |
| 50 | + |
| 51 | + |
| 52 | +def get_result_bb(arch, seq): |
| 53 | + result_path = fullfile(arch, seq + '.txt') |
| 54 | + temp = np.loadtxt(result_path, delimiter=',').astype(np.float) |
| 55 | + return np.array(temp) |
| 56 | + |
| 57 | + |
| 58 | +def convert_bb_to_center(bboxes): |
| 59 | + return np.array([(bboxes[:, 0] + (bboxes[:, 2] - 1) / 2), |
| 60 | + (bboxes[:, 1] + (bboxes[:, 3] - 1) / 2)]).T |
| 61 | + |
| 62 | + |
| 63 | +def eval_auc(dataset='OTB2015', tracker_reg='S*', start=0, end=1e6): |
| 64 | + list_path = os.path.join('dataset', dataset + '.json') |
| 65 | + annos = json.load(open(list_path, 'r')) |
| 66 | + seqs = annos.keys() |
| 67 | + |
| 68 | + OTB2013 = ['carDark', 'car4', 'david', 'david2', 'sylvester', 'trellis', 'fish', 'mhyang', 'soccer', 'matrix', |
| 69 | + 'ironman', 'deer', 'skating1', 'shaking', 'singer1', 'singer2', 'coke', 'bolt', 'boy', 'dudek', |
| 70 | + 'crossing', 'couple', 'football1', 'jogging_1', 'jogging_2', 'doll', 'girl', 'walking2', 'walking', |
| 71 | + 'fleetface', 'freeman1', 'freeman3', 'freeman4', 'david3', 'jumping', 'carScale', 'skiing', 'dog1', |
| 72 | + 'suv', 'motorRolling', 'mountainBike', 'lemming', 'liquor', 'woman', 'faceocc1', 'faceocc2', |
| 73 | + 'basketball', 'football', 'subway', 'tiger1', 'tiger2'] |
| 74 | + |
| 75 | + OTB2015 = ['carDark', 'car4', 'david', 'david2', 'sylvester', 'trellis', 'fish', 'mhyang', 'soccer', 'matrix', |
| 76 | + 'ironman', 'deer', 'skating1', 'shaking', 'singer1', 'singer2', 'coke', 'bolt', 'boy', 'dudek', |
| 77 | + 'crossing', 'couple', 'football1', 'jogging_1', 'jogging_2', 'doll', 'girl', 'walking2', 'walking', |
| 78 | + 'fleetface', 'freeman1', 'freeman3', 'freeman4', 'david3', 'jumping', 'carScale', 'skiing', 'dog1', |
| 79 | + 'suv', 'motorRolling', 'mountainBike', 'lemming', 'liquor', 'woman', 'faceocc1', 'faceocc2', |
| 80 | + 'basketball', 'football', 'subway', 'tiger1', 'tiger2', 'clifBar', 'biker', 'bird1', 'blurBody', |
| 81 | + 'blurCar2', 'blurFace', 'blurOwl', 'box', 'car1', 'crowds', 'diving', 'dragonBaby', 'human3', 'human4_2', |
| 82 | + 'human6', 'human9', 'jump', 'panda', 'redTeam', 'skating2_1', 'skating2_2', 'surfer', 'bird2', |
| 83 | + 'blurCar1', 'blurCar3', 'blurCar4', 'board', 'bolt2', 'car2', 'car24', 'coupon', 'dancer', 'dancer2', |
| 84 | + 'dog', 'girl2', 'gym', 'human2', 'human5', 'human7', 'human8', 'kiteSurf', 'man', 'rubik', 'skater', |
| 85 | + 'skater2', 'toy', 'trans', 'twinnings', 'vase'] |
| 86 | + |
| 87 | + trackers = glob.glob(fullfile('result', dataset, tracker_reg)) |
| 88 | + trackers = trackers[start:min(end, len(trackers))] |
| 89 | + |
| 90 | + n_seq = len(seqs) |
| 91 | + thresholds_overlap = np.arange(0, 1.05, 0.05) |
| 92 | + thresholds_error = np.arange(0, 51, 1) |
| 93 | + |
| 94 | + success_overlap = np.zeros((n_seq, len(trackers), len(thresholds_overlap))) |
| 95 | + success_error = np.zeros((n_seq, len(trackers), len(thresholds_error))) |
| 96 | + for i in range(n_seq): |
| 97 | + seq = seqs[i] |
| 98 | + gt_rect = np.array(annos[seq]['gt_rect']).astype(np.float) |
| 99 | + gt_center = convert_bb_to_center(gt_rect) |
| 100 | + for j in range(len(trackers)): |
| 101 | + tracker = trackers[j] |
| 102 | + print('{:d} processing:{} tracker: {}'.format(i, seq, tracker)) |
| 103 | + bb = get_result_bb(tracker, seq) |
| 104 | + center = convert_bb_to_center(bb) |
| 105 | + success_overlap[i][j] = compute_success_overlap(gt_rect, bb) |
| 106 | + # success_error[i][j] = compute_success_error(gt_center, center) |
| 107 | + |
| 108 | + print('Success Overlap') |
| 109 | + |
| 110 | + if 'OTB2015' == dataset: |
| 111 | + OTB2013_id = [] |
| 112 | + for i in range(n_seq): |
| 113 | + if seqs[i] in OTB2013: |
| 114 | + OTB2013_id.append(i) |
| 115 | + max_auc_OTB2013 = 0. |
| 116 | + max_name_OTB2013 = '' |
| 117 | + for i in range(len(trackers)): |
| 118 | + auc = success_overlap[OTB2013_id, i, :].mean() |
| 119 | + if auc > max_auc_OTB2013: |
| 120 | + max_auc_OTB2013 = auc |
| 121 | + max_name_OTB2013 = trackers[i] |
| 122 | + print('%s(%.4f)' % (trackers[i], auc)) |
| 123 | + |
| 124 | + max_auc = 0. |
| 125 | + max_name = '' |
| 126 | + for i in range(len(trackers)): |
| 127 | + auc = success_overlap[:, i, :].mean() |
| 128 | + if auc > max_auc: |
| 129 | + max_auc = auc |
| 130 | + max_name = trackers[i] |
| 131 | + print('%s(%.4f)' % (trackers[i], auc)) |
| 132 | + |
| 133 | + print('\nOTB2013 Best: %s(%.4f)' % (max_name_OTB2013, max_auc_OTB2013)) |
| 134 | + print('\nOTB2015 Best: %s(%.4f)' % (max_name, max_auc)) |
| 135 | + elif 'TC128' == dataset: |
| 136 | + max_auc = 0. |
| 137 | + max_name = '' |
| 138 | + for i in range(len(trackers)): |
| 139 | + auc = success_overlap[:, i, :].mean() |
| 140 | + if auc > max_auc: |
| 141 | + max_auc = auc |
| 142 | + max_name = trackers[i] |
| 143 | + print('%s(%.4f)' % (trackers[i], auc)) |
| 144 | + |
| 145 | + print('\nTC128 Best: %s(%.4f)' % (max_name, max_auc)) |
| 146 | + |
| 147 | + |
| 148 | +if __name__ == "__main__": |
| 149 | + if len(sys.argv) < 5: |
| 150 | + print('python eval_otb.py OTB2015 DCFNet_test* 0 10') |
| 151 | + exit() |
| 152 | + dataset = sys.argv[1] |
| 153 | + tracker_reg = sys.argv[2] |
| 154 | + start = int(sys.argv[3]) |
| 155 | + end = int(sys.argv[4]) |
| 156 | + eval_auc(dataset, tracker_reg, start, end) |
0 commit comments