-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy patheye.html
98 lines (91 loc) · 5.24 KB
/
eye.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
<!DOCTYPE html>
<html lang="en">
<head>
<title>Eye detection demo with Haar cascades detector in javascript and HTML5 canvas</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
<style type="text/css">
body
{
background-color:#121212;
color:#aaa;
font-size:12px;
}
</style>
<!-- support parallel computations using web-workers (parallel.js) -->
<script type="text/javascript" src="../build/parallel/parallel.min.js"></script>
<script type="text/javascript" src="../build/haar-detector.min.js"></script>
<script type="text/javascript" src="../cascades/haarcascade_eye.js"></script>
</head>
<body>
<style>#forkongithub a{background:#aa0000;color:#fff;text-decoration:none;font-family:arial, sans-serif;text-align:center;font-weight:bold;padding:5px 40px;font-size:0.9rem;line-height:1.4rem;position:relative;transition:0.5s;}#forkongithub a:hover{background:#aa0000;color:#fff;}#forkongithub a::before,#forkongithub a::after{content:"";width:100%;display:block;position:absolute;z-index:100;top:1px;left:0;height:1px;background:#fff;}#forkongithub a::after{bottom:1px;top:auto;}@media screen and (min-width:800px){#forkongithub{position:absolute;display:block;z-index:100;top:0;right:0;width:200px;overflow:hidden;height:200px;}#forkongithub a{width:200px;position:absolute;top:60px;right:-60px;transform:rotate(45deg);-webkit-transform:rotate(45deg);box-shadow:4px 4px 10px rgba(0,0,0,0.8);}}</style><span id="forkongithub"><a href="https://github.com/foo123/HAAR.js">Fork me on GitHub</a></span>
<h1>Eye Detection with eye haar cascade by Mar Canet in JavaScript</h1>
<div id="wait" style="display:none"><img src='ajax-loader.gif' /></div>
<div id="container" style="position:relative;"><canvas id='image'></canvas></div>
<div id="info" style="position:relative;font-size:18px;">
<br />
If <code>"?parallel"</code> is set in the URL, <strong>Parallel</strong> detection is used
<br />
else, <strong>Asynchronous (not Parallel)</strong> detection is used
<br /> <br />
</div>
<script>
//<![CDATA[
var wait=document.getElementById('wait'), info=document.getElementById('info'),
canvas=document.getElementById('image'), ctx=canvas.getContext('2d'), image=new Image(),
log = (window.console && window.console.log) ? function(s) { window.console.log(s); } : function() {},
useParallel
;
useParallel = (/[?&]parallel/.test(location.href)) ? Parallel : false;
if (useParallel)
{
info.innerHTML += "CURRENT MODE: Parallel Detection";
}
else
{
info.innerHTML += "CURRENT MODE: Asynchronous (not Parallel) Detection";
}
image.onload=function(){
// profile
//console.timeEnd('ImageLoad');
wait.style.display = 'block';
canvas.width = image.width;
canvas.height = image.height;
canvas.getContext('2d').drawImage(image, 0, 0);
// profile
//console.time('FeatureDetect');
// detect the feature
new HAAR.Detector(haarcascade_eye, useParallel) // much faster when using parallel computation
.image(image, /*0.8*/150 / image.width) // use the image with standardised dimensions
.interval(50) // set detection interval for asynchronous detection (if not parallel)
.complete(function(){ // onComplete callback
// profile
//console.timeEnd('FeatureDetect');
var i, rect, l=this.objects.length;
wait.style.display='none';
ctx.strokeStyle="rgba(220,0,0,1)"; ctx.lineWidth=2;
ctx.strokeRect(this.Selection.x, this.Selection.y, this.Selection.width, this.Selection.height);
ctx.strokeStyle="rgba(75,221,17,1)"; ctx.lineWidth=2;
for (i=0; i<l; i++)
{
rect=this.objects[i];
ctx.strokeRect(rect.x, rect.y, rect.width, rect.height);
}
// provide info
log('Selection Rectangle: ');
log(this.Selection.toString());
log('Detected Features (' + l +') :');
log(JSON.stringify(this.objects));
alert(l+" Objects found");
})
.cannyThreshold({low:5, high:200}) // custom thresholds for canny pruning (for best results)
.detect(1, 1.1, 0.12, 1, 0.2, true); // go
};
// profile
//console.time('ImageLoad');
image.src='model1.jpg'; // load it
//]]>
</script>
</body>
</html>