This repository has been archived by the owner on Nov 10, 2017. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 104
/
ArpackSym.java
166 lines (143 loc) · 5.37 KB
/
ArpackSym.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
package no.uib.cipr.matrix.sparse;
import com.github.fommil.netlib.ARPACK;
import lombok.extern.java.Log;
import no.uib.cipr.matrix.*;
import org.netlib.util.doubleW;
import org.netlib.util.intW;
import java.util.Comparator;
import java.util.Map;
import java.util.TreeMap;
/**
* Uses ARPACK to partially solve symmetric eigensystems (ARPACK is designed to
* compute a subset of eigenvalues/eigenvectors).
*
* @author Sam Halliday
*/
@Log
public class ArpackSym {
public enum Ritz {
/**
* compute the NEV largest (algebraic) eigenvalues.
*/
LA,
/**
* compute the NEV smallest (algebraic) eigenvalues.
*/
SA,
/**
* compute the NEV largest (in magnitude) eigenvalues.
*/
LM,
/**
* compute the NEV smallest (in magnitude) eigenvalues.
*/
SM,
/**
* compute NEV eigenvalues, half from each end of the spectrum
*/
BE
}
private final ARPACK arpack = ARPACK.getInstance();
private static final double TOL = 0.0001;
private static final boolean EXPENSIVE_CHECKS = true;
private final Matrix matrix;
public ArpackSym(Matrix matrix) {
if (!matrix.isSquare())
throw new IllegalArgumentException("matrix must be square");
if (EXPENSIVE_CHECKS)
for (MatrixEntry entry : matrix) {
if (entry.get() != matrix.get(entry.column(), entry.row()))
throw new IllegalArgumentException(
"matrix must be symmetric");
}
this.matrix = matrix;
}
/**
* Solve the eigensystem for the number of eigenvalues requested.
* <p>
* NOTE: The references to the eigenvectors will keep alive a reference to a
* {@code nev * n} double array, so use the {@code copy()} method to free it
* up if only a subset is required.
*
* @param eigenvalues
* @param ritz
* preference for solutions
* @return a map from eigenvalues to corresponding eigenvectors.
*/
public Map<Double, DenseVectorSub> solve(int eigenvalues, Ritz ritz) {
if (eigenvalues <= 0)
throw new IllegalArgumentException(eigenvalues + " <= 0");
if (eigenvalues >= matrix.numColumns())
throw new IllegalArgumentException(eigenvalues + " >= "
+ (matrix.numColumns()));
int n = matrix.numRows();
intW nev = new intW(eigenvalues);
int ncv = Math.min(2 * eigenvalues, n);
String bmat = "I";
String which = ritz.name();
doubleW tol = new doubleW(TOL);
intW info = new intW(0);
int[] iparam = new int[11];
iparam[0] = 1;
iparam[2] = 300;
iparam[6] = 1;
intW ido = new intW(0);
// used for initial residual (if info != 0)
// and eventually the output residual
double[] resid = new double[n];
// Lanczos basis vectors
double[] v = new double[n * ncv];
// Arnoldi reverse communication
double[] workd = new double[3 * n];
// private work array
double[] workl = new double[ncv * (ncv + 8)];
int[] ipntr = new int[11];
int i = 0;
while (true) {
i++;
arpack.dsaupd(ido, bmat, n, which, nev.val, tol, resid, ncv, v, n,
iparam, ipntr, workd, workl, workl.length, info);
if (ido.val == 99)
break;
if (ido.val != -1 && ido.val != 1)
throw new IllegalStateException("ido = " + ido.val);
// could be refactored to handle the other types of mode
av(workd, ipntr[0] - 1, ipntr[1] - 1);
}
ArpackSym.log.fine(i + " iterations for " + n);
if (info.val != 0)
throw new IllegalStateException("info = " + info.val);
double[] d = new double[nev.val];
boolean[] select = new boolean[ncv];
double[] z = java.util.Arrays.copyOfRange(v, 0, nev.val * n);
arpack.dseupd(true, "A", select, d, z, n, 0, bmat, n, which, nev, TOL,
resid, ncv, v, n, iparam, ipntr, workd, workl, workl.length,
info);
if (info.val != 0)
throw new IllegalStateException("info = " + info.val);
int computed = iparam[4];
ArpackSym.log.fine("computed " + computed + " eigenvalues");
Map<Double, DenseVectorSub> solution = new TreeMap<Double, DenseVectorSub>(
new Comparator<Double>() {
@Override
public int compare(Double o1, Double o2) {
// highest first
return Double.compare(o2, o1);
}
});
DenseVector eigenvectors = new DenseVector(z, false);
for (i = 0; i < computed; i++) {
double eigenvalue = d[i];
DenseVectorSub eigenvector = new DenseVectorSub(eigenvectors,
i * n, n);
solution.put(eigenvalue, eigenvector);
}
return solution;
}
private void av(double[] work, int input_offset, int output_offset) {
DenseVector w = new DenseVector(work, false);
Vector x = new DenseVectorSub(w, input_offset, matrix.numColumns());
Vector y = new DenseVectorSub(w, output_offset, matrix.numColumns());
matrix.mult(x, y);
}
}