Skip to content

Commit

Permalink
Docs improvements and minor bug fixes (#22)
Browse files Browse the repository at this point in the history
  • Loading branch information
fmaussion authored Oct 27, 2016
1 parent 151e4af commit f353084
Show file tree
Hide file tree
Showing 22 changed files with 371 additions and 58 deletions.
1 change: 1 addition & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ before_install:
- hash -r
- conda config --set always_yes yes --set changeps1 no
- conda update -q conda
- pip install pyyaml

install:
- conda env create --file ci/requirements-$CONDA_ENV.yml --quiet
Expand Down
8 changes: 5 additions & 3 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,16 @@
Salem
=====

.. image:: https://badge.fury.io/py/salem.svg
:target: https://badge.fury.io/py/salem
.. image:: https://travis-ci.org/fmaussion/salem.svg?branch=master
:target: https://travis-ci.org/fmaussion/salem
.. image:: https://coveralls.io/repos/fmaussion/salem/badge.svg?branch=master&service=github
:target: https://coveralls.io/github/fmaussion/salem?branch=master
:target: https://coveralls.io/github/fmaussion/salem?branch=master
.. image:: https://readthedocs.org/projects/salem/badge/?version=stable
:target: http://salem.readthedocs.io/en/stable/?badge=stable
:target: http://salem.readthedocs.io/en/stable/?badge=stable
.. image:: https://zenodo.org/badge/42607422.svg
:target: https://zenodo.org/badge/latestdoi/42607422
:target: https://zenodo.org/badge/latestdoi/42607422


Salem is a `cat`_. Salem is also a small library to do some geoscientific data
Expand Down
9 changes: 9 additions & 0 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,12 +46,21 @@
'sphinx.ext.viewcode',
'IPython.sphinxext.ipython_directive',
'IPython.sphinxext.ipython_console_highlighting',
'sphinx_gallery.gen_gallery',
]

extlinks = {'issue': ('https://github.com/fmaussion/salem/issues/%s', 'GH'),
'pull': ('https://github.com/fmaussion/salem/pull/%s', 'PR'),
}

sphinx_gallery_conf = {
# path to your examples scripts
'examples_dirs': 'examples',
# path where to save gallery generated examples
'gallery_dirs': 'auto_examples'
}


autosummary_generate = True

numpydoc_class_members_toctree = True
Expand Down
3 changes: 2 additions & 1 deletion docs/environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ dependencies:
- descartes
- numpydoc
- ipython=4.0.1
- sphinx=1.2.3 # pin to avoid https://github.com/sphinx-doc/sphinx/issues/1822
- sphinx
- pip:
- git+https://github.com/fmaussion/motionless.git
- sphinx-gallery
9 changes: 9 additions & 0 deletions docs/examples/README.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
.. _recipes:

Recipes
=======

Plotting
--------

How to make nice looking plots.
56 changes: 56 additions & 0 deletions docs/examples/plot_googlestatic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# -*- coding: utf-8 -*-
"""
===========================
Plot on a google static map
===========================
In this script, we use `motionless <https://github.com/ryancox/motionless>`_
to download an image from the `google static map API <http://code.google.com/apis/maps/documentation/staticmaps/>`_
and plot it on a :py:class:`~salem.Map`. We then add information to the map
such as a glacier outline (from the `RGI <http://www.glims.org/RGI/>`_),
and ground penetrating radar measurements (GPR, from the
`GlaThiDa <http://www.gtn-g.ch/data_catalogue_glathida/>`_ database).
The GPR measurements were realized in 1997, the glacier outlines are from
2003, and the map background is from 2016. This illustrates the retreat of
the Kesselwandferner glacier.
"""

import numpy as np
import pandas as pd
import salem
from salem import get_demo_file, DataLevels, GoogleVisibleMap, Map
import matplotlib.pyplot as plt

# prepare the figure
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

# read the shapefile and use its extent to define a ideally sized map
shp = salem.read_shapefile(get_demo_file('rgi_kesselwand.shp'))
g = GoogleVisibleMap(x=[shp.min_x, shp.max_x], y=[shp.min_y, shp.max_y],
maptype='satellite') # try out: 'terrain'

# the google static image is a standard rgb image
ggl_img = g.get_vardata()
ax1.imshow(ggl_img)
ax1.set_title('Google static map')

# make a map of the same size as the image
sm = Map(g.grid, factor=1)
sm.set_shapefile(shp) # add the glacier outlines
sm.set_rgb(ggl_img) # add the background rgb image
sm.visualize(ax=ax2) # plot it
ax2.set_title('GPR measurements')

# read the point GPR data and add them to the plot
df = pd.read_csv(get_demo_file('gtd_ttt_kesselwand.csv'))
dl = DataLevels(df.THICKNESS, levels=np.arange(10, 201, 10), extend='both')
x, y = sm.grid.transform(df.POINT_LON.values, df.POINT_LAT.values)
ax2.scatter(x, y, color=dl.to_rgb(), s=50, edgecolors='k', linewidths=1)
dl.append_colorbar(ax2, label='Ice thickness (m)')

# make it nice
plt.tight_layout()
plt.show()
44 changes: 44 additions & 0 deletions docs/examples/plot_topo_shading.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
# -*- coding: utf-8 -*-
"""
===================
Topographic shading
===================
How to add topographic shading to a plot.
"""

from salem import mercator_grid, Map, get_demo_file
import matplotlib.pyplot as plt

# prepare the figure

f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 7))

# map extent
grid = mercator_grid(center_ll=(10.76, 46.79), extent=(18000, 14000))
sm = Map(grid, countries=False)
sm.set_lonlat_contours(interval=0)

# add topography
fpath = get_demo_file('hef_srtm.tif')
sm.set_topography(fpath)
sm.visualize(ax=ax1, addcbar=False, title='relief_factor=0.7 (default)')

# stronger shading
sm.set_topography(fpath, relief_factor=1.4)
sm.visualize(ax=ax2, addcbar=False, title='relief_factor=1.4')

# add color shading
z = sm.set_topography(fpath)
sm.set_data(z)
sm.set_cmap('topo')
sm.visualize(ax=ax3, title='Color with shading', addcbar=False)

# color without topo shading
sm.set_topography()
sm.visualize(ax=ax4, title='Color without shading', addcbar=False)

# make it nice
plt.tight_layout()
plt.show()
3 changes: 3 additions & 0 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,11 +35,14 @@ Documentation
faq
whats-new
installing
xarray
gis
plotting
wrf
auto_examples/index
api


Get in touch
------------

Expand Down
10 changes: 5 additions & 5 deletions docs/installing.rst
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ Required dependencies
- Python 2.7 or 3+ (Py3 `recommended <https://python3statement.github.io/>`__)
- `numpy <http://www.numpy.org/>`__ (of course)
- `scipy <http://scipy.org/>`__: for its interpolation tools, among other things
- `pyproj <https://jswhit.github.io/pyproj/>`__: for map projections
- `pyproj <https://jswhit.github.io/pyproj/>`__: for map projections transformations
- `netCDF4 <https://github.com/Unidata/netcdf4-python>`__: to read most geoscientific files
- `joblib <https://pythonhosted.org/joblib/>`__: for it's `Memory`_ class
- `six <https://pythonhosted.org/six//>`__: for Py2 compatibility
Expand All @@ -25,17 +25,17 @@ Because not using them is a bad idea
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- `pandas <http://pandas.pydata.org/>`__: working with labeled data
- `xarray <https://jswhit.github.io/pyproj/>`__: pandas in N-dimensions
- `xarray <https://jswhit.github.io/pyproj/>`__ (0.8 or later): pandas in N-dimensions

For vector and raster operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(rasterio and geopandas require GDAL)

- `rasterio <https://mapbox.github.io/rasterio//>`__: for geotiff files
- `rasterio <https://mapbox.github.io/rasterio/>`__: for geotiff files
- `shapely <https://pypi.python.org/pypi/Shapely>`__: geometric objects
- `geopandas <http://geopandas.org/>`__: geospatial data with pandas

(rasterio and geopandas both require GDAL)

For plotting
~~~~~~~~~~~~

Expand Down
9 changes: 9 additions & 0 deletions docs/whats-new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,18 @@ What's New
v0.1.1 (Unreleased)
-------------------

Enhancements
~~~~~~~~~~~~

- General doc improvements
- New ``ds`` keyword to the accessors ``subset()`` and ``roi()`` methods

Bug fixes
~~~~~~~~~

- Natural Earth file `lr` (low-res) now shipped with sample-data, `mr` and `hr`
can still be downloaded if needed
- Remove use to deprecated ``rasterio.drivers()``
- GeoNetCDF files without time variable should now open without error


Expand Down
89 changes: 89 additions & 0 deletions docs/xarray.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
.. _xarray:

xarray accessors
================

One of the main purposes of Salem is to add georeferencing tools to
`xarray`_ 's data structures. These tools can be accessed via a `special`_
``.salem`` attribute, available for both `xarray.DataArray`_ and
`xarray.Dataset`_ objects after a simple ``import salem`` in your code.

.. _xarray: http://xarray.pydata.org/
.. _special: http://xarray.pydata.org/en/stable/internals.html#extending-xarray
.. _xarray.DataArray: http://xarray.pydata.org/en/stable/data-structures.html#dataarray
.. _xarray.Dataset: http://xarray.pydata.org/en/stable/data-structures.html#dataset


Initializing the accessor
-------------------------

Automated projection parsing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Salem will try to understand in which projection the Dataset or DataArray is
defined. For example, with a platte carree (or lon/lat) projection, Salem will
know what to do based on the coordinates' names:

.. ipython:: python
import numpy as np
import xarray as xr
import salem
da = xr.DataArray(np.arange(20).reshape(4, 5), dims=['lat', 'lon'],
coords={'lat':np.linspace(0, 30, 4), 'lon':np.linspace(-20, 20, 5)})
da.salem
@savefig plot_xarray_simple.png width=80%
da.salem.quick_map();
While the above should work with many (most?) climate datasets (such as
atmospheric reanalyses or GCM output), certain NetCDF files will have a less
standard map projection requiring special parsing. There are `conventions`_ to
formalise these things in the NetCDF model, but Salem doesn't understand them
yet. Currently, Salem can parse:
- platte carree (or lon/lat) projections
- WRF projections (see :ref:`wrf`)
- virually any projection explicitly provided by the user
- for geotiff files only: any projection that `rasterio`_ can understand

.. _conventions: http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/ch05s06.html
.. _rasterio: https://mapbox.github.io/rasterio/


From geotiffs
~~~~~~~~~~~~~

Salem uses `rasterio`_ to open and parse geotiff files:

.. ipython:: python
fpath = salem.get_demo_file('himalaya.tif')
ds = salem.open_xr_dataset(fpath)
hmap = ds.salem.get_map(cmap='topo')
hmap.set_data(ds['data'])
@savefig plot_xarray_geotiff.png width=80%
hmap.visualize();
Custom projections
~~~~~~~~~~~~~~~~~~

Alternatively, Salem will understand any projection supported by `pyproj`_.
The proj info has to be provided as attribute:

.. _pyproj: https://jswhit.github.io/pyproj/

.. ipython:: python
dutm = xr.DataArray(np.arange(20).reshape(4, 5), dims=['y', 'x'],
coords={'y': np.arange(3, 7)*2e5,
'x': np.arange(1, 6)*2e5})
psrs = 'epsg:32630' # http://spatialreference.org/ref/epsg/wgs-84-utm-zone-30n/
dutm.attrs['pyproj_srs'] = psrs
@savefig plot_xarray_utm.png width=80%
dutm.salem.quick_map(interp='linear');
Loading

0 comments on commit f353084

Please sign in to comment.