- 
                Notifications
    
You must be signed in to change notification settings  - Fork 389
 
Description
I met a similar problem with #963, when I was trying to run the last part in tutorial04_visualize.ipynb.
!python ../flow/visualize/visualizer_rllib.py data/trained_ring 20
2020-08-21 01:10:07,524	WARNING worker.py:673 -- WARNING: Not updating worker name since setproctitle is not installed. Install this with pip install setproctitle (or ray[debug]) to enable monitoring of worker processes.
2020-08-21 01:10:07,538	INFO resource_spec.py:216 -- Starting Ray with 2.0 GiB memory available for workers and up to 1.01 GiB for objects. You can adjust these settings with ray.init(memory=, object_store_memory=).
2020-08-21 01:10:08,514	INFO trainer.py:371 -- Tip: set 'eager': true or the --eager flag to enable TensorFlow eager execution
2020-08-21 01:10:10,410	INFO rollout_worker.py:770 -- Built policy map: {'default_policy': <ray.rllib.policy.tf_policy_template.PPOTFPolicy object at 0x7fd753f9f240>}
2020-08-21 01:10:10,411	INFO rollout_worker.py:771 -- Built preprocessor map: {'default_policy': <ray.rllib.models.preprocessors.NoPreprocessor object at 0x7fd753f93f98>}
2020-08-21 01:10:10,411	INFO rollout_worker.py:372 -- Built filter map: {'default_policy': <ray.rllib.utils.filter.NoFilter object at 0x7fd753f93e10>}
2020-08-21 01:10:10,414	INFO multi_gpu_optimizer.py:93 -- LocalMultiGPUOptimizer devices ['/cpu:0']
Traceback (most recent call last):
File "../flow/visualize/visualizer_rllib.py", line 386, in 
visualizer_rllib(args)
File "../flow/visualize/visualizer_rllib.py", line 155, in visualizer_rllib
agent.restore(checkpoint)
File "/home/zl/.conda/envs/flow/lib/python3.7/site-packages/ray/tune/trainable.py", line 341, in restore
self._restore(checkpoint_path)
File "/home/zl/.conda/envs/flow/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 559, in _restore
self.setstate(extra_data)
File "/home/zl/.conda/envs/flow/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 161, in setstate
Trainer.setstate(self, state)
File "/home/zl/.conda/envs/flow/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 855, in setstate
self.workers.local_worker().restore(state["worker"])
File "/home/zl/.conda/envs/flow/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py", line 712, in restore
self.policy_map[pid].set_state(state)
File "/home/zl/.conda/envs/flow/lib/python3.7/site-packages/ray/rllib/policy/policy.py", line 250, in set_state
self.set_weights(state)
File "/home/zl/.conda/envs/flow/lib/python3.7/site-packages/ray/rllib/policy/tf_policy.py", line 269, in set_weights
return self._variables.set_weights(weights)
File "/home/zl/.conda/envs/flow/lib/python3.7/site-packages/ray/experimental/tf_utils.py", line 186, in set_weights
self.assignment_nodes[name] for name in new_weights.keys()
AttributeError: 'numpy.ndarray' object has no attribute 'keys'